
An Algorithm for Tensor Product
Approximation of Three-Dimensional
Material Data for Implicit Dynamics

Simulations

Krzysztof Podsiad�lo, Marcin �Loś, Leszek Siwik(B), and Maciej Woźniak

AGH University of Science and Technology, Krakow, Poland
{podsiadlo,los,siwik,wozniak}@agh.edu.pl

Abstract. In the paper, a heuristic algorithm for tensor product
approximation with B-spline basis functions of three-dimensional mate-
rial data is presented. The algorithm has an application as a precondi-
tioner for implicit dynamics simulations of a non-linear flow in hetero-
geneous media using alternating directions method. As the simulation
use-case, a non-stationary problem of liquid fossil fuels exploration with
hydraulic fracturing is considered. Presented algorithm allows to approx-
imate the permeability coefficient function as a tensor product what in
turn allows for implicit simulations of the Laplacian term in the partial
differential equation. In the consequence the number of time steps of the
non-stationary problem can be reduced, while the numerical accuracy is
preserved.

1 Introduction

The alternating direction solver [1,2] has been recently applied for numerical
simulations of non-linear flow in heterogeneous media using the explicit dynam-
ics [3,4].

The problem of extraction of liquid fossil fuels with hydraulic fracturing tech-
nique has been considered there. During the simulation two (contradictory) goals
i.e., the maximization of the fuel extraction and the minimization of the ground
water contamination have been considered [4,14]. The numerical simulations
considered there are performed using the explicit dynamics with B-spline basis
functions from isogeometric analysis [5] for approximation of the solution [6,7].
The resulting computational cost of a single time step is linear, however the
number of time steps is large due to the Courant-Fredrichs-Lewy (CFL) condi-
tion [8]. In other words, the number of time steps grows along with the mesh
dimensions.

Our ultimate goal is to extend our simulator for implicit dynamics case,
following the idea of the implicit dynamics isogeometric solver proposed in [9].
The problem is that the extension is possible only if the permeability coefficients
of the elliptic operator are expressed as the tensor product structure. Thus, we

c© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10861, pp. 156–168, 2018.
https://doi.org/10.1007/978-3-319-93701-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93701-4_12&domain=pdf

An Algorithm for Tensor Product Approximation 157

focus on the algorithm approximating the permeability coefficients with tensor
products iteratively.

The algorithm is designed to be a preconditioner for the implicit dynam-
ics solver. With such the preconditioner the number of time steps of the non-
stationary problem can be reduced, while the numerical accuracy preserved.

Our method presented in this paper is an alternative for other methods avail-
able for approximating coefficients of the model, e.g., adaptive cross approxima-
tion [15].

2 Explicit and Implicit Dynamics Simulations

Following the model of the non-linear flow in heterogeneous media presented
in [1] we start with our explicit dynamics formulation of the problem of non-
linear flow in heterogeneous media where we seek for the pressure scalar field u:(

∂u(x, y, z)
∂t

, υ(x, y, z)
)

=
((

K(x, y, z)eμu(x,y,z)
)
∇u(x, y, z),∇υ(x, y, z)

)

+
(
f(x, y, z), υ(x, y, z)

) ∀υ ∈ V

(1)

Here μ stands for the dynamic permeability constant, K(x, y, z) is a given
permeability map, and f(x, y, z) represents sinks and sources of the pressure,
modeling pumps and sinks during the exploration process.

The model of non-linear flow in heterogeneous media is called exponential
model [12] and is taken from [10,11].

In the model, the permeability consists of two parts, i.e., the static one
depending on the terrain properties, and the dynamic one reflecting the influence
of the actual pressure.

The broad range of the variable known as the saturated hydraulic conduc-
tivity along with the functional forms presented above, confirm the nonlinear
behavior of the process.

The number of time steps of the resulting explicit dynamics simulations are
bounded by the CFL condition [8], requesting to reduce the time step size when
increasing the mesh size. This is important limitation of the method, and can
be overcome by deriving the implicit dynamics solver.

Following the idea of the implicit dynamics solvers presented in [9], we move
the operator to the left-hand side:(

∂u

∂t
, υ

)
−

((
K(x, y, z)eμu(x,y,z)

)
∇u,∇υ

)
=

(
f, υ

) ∀υ ∈ V, (2)

where we skip all arguments but the permeability operator.
In order to proceed with the alternating directions solver, the operator on

the left-hand-side needs to be expressed as a tensor product:(
∂u

∂t
, υ

)
−

((
K(x)eµu(x)K(y)eµu(y)K(z)eµu(z)

)
∇u, ∇υ

)
=

(
f, υ

)
+

(
K(x)K(y)K(z)eµu(x)eµu(y)eµu(z) − K(x, y, z)eµu(x,y,z)∇u, ∇υ

)
∀υ ∈ V

(3)

158 K. Podsiad�lo et al.

It is possible if we express the static permeability in a tensor product form:

K(x, y, z) = K(x)K(y)K(z) (4)

using our tensor product approximation algorithm described in Sect. 3.
Additionally, we need to replace the dynamic permeability with an arbitrary

selected tensor product representation:

u(x, y, z) = u(x)u(y)u(z) (5)

It can be done by adding and subtracting from the left and the right hand
sides the selected tensor product representation.

One simple way to do that is to compute the average values of u along
particular cross-sections, namely using:

u(x, y, z) =
Nx∑
i=1

(Ny∑
j=1

(Nz∑
k=1

(
dijkBi,p(x)Bj,p(y)Bk,p(z)

)))
(6)

so we define:

u(x) =
Nx∑
i=1

uiBi,p(x) (7)

u(y) =
Ny∑
j=1

ujBj,p(y) (8)

u(z) =
Nz∑
k=1

ukBk,p(z) (9)

and

ui =

∑Ny

j=1

(∑Nz
k=1(dijk)

)
NyNz

; uj =

∑Nx
i=1

(∑Nx
k=1(dijk)

)
NxNz

; uk =

∑Nx
i=1

(∑Ny

j=1(dijk)
)

NxNy

(10)

In other words, we approximate the static permeability and we replace the
dynamic permeability.

Finally we introduce the time steps, so we deal with the dynamic permeability
explicitly, and with the static permeability implicitly:

(
ut+1, υ

)
−

((
K(x)eµut(x)K(y)eµut(y)K(z)eµut(z)

)
∇ut+1, ∇υ

)
=

(
f, υ

)
+

(
K(x)K(y)K(z)eµu(x)eµu(y)eµu(z) − K(x, y, z)eµut(xyz)∇ut, ∇υ

)
∀υ ∈ V

(11)

In the following part of the paper the algorithm for expression of an arbitrary
material data function as the tensor product of one dimensional functions that
can be utilized in the implicit dynamics simulator is presented.

An Algorithm for Tensor Product Approximation 159

3 Kronecker Product Approximation

As an input of our algorithm we take a scalar function defined over the cube
shape three-dimensional domain. We call this function a bitmap, since often the
material data is given in a form of a discrete 3D bitmap.

First, we approximate this bitmap with B-spline basis functions using fast,
linear computational cost isogeometric L2 projections algorithm.

Bitmap(x, y, z) ≈
Nx∑
i=1

(Ny∑
j=1

(Nz∑
k=1

(
dijkBi,p(x)Bj,p(y)Bk,p(z)

)))
(12)

Now, our computational problem can be stated as follows:

Problem 1. We seek coefficients ax
1 , . . . , ax

Nx
,by

1, . . . , b
y
Ny

, cz
1, . . . , c

z
Nz

to get the
minimum of

F (a
x
1 , . . . , a

x
Nx

, b
y
1 , . . . , b

y
Ny

, c
z
1 , . . . , c

z
Nz

)

=

∫
Ω

[(Nx∑
i=1

aiB
x
i,p

)(Ny∑
j=1

bjB
y
j,p

)(Nz∑
k=1

ckB
z
k,p −

Nx∑
i=1

(Ny∑
j=1

(Nz∑
k=1

(
dijkBi,p(x)Bj,p(y)Bk,p(z)

))))]2

=

∫
Ω

[Nx∑
i=1

(Ny∑
j=1

(Nz∑
k=1

(
aibjck − dijkBi,p(x)Bj,p(y)Bk,p(z)

)))]2

(13)

The minimum is realized when the partial derivatives are equal to zero:

∂F

∂ax
l

(ax
1 , . . . , ax

Nx
, by

1, . . . , b
y
Ny

, cz
1, . . . , c

z
Nz

) = 0 (14)

∂F

∂by
l

(ax
1 , . . . , ax

Nx
, by

1, . . . , b
y
Ny

, cz
1, . . . , c

z
Nz

) = 0 (15)

∂F

∂cz
l

(ax
1 , . . . , a

x
Nx

, by
1, . . . , b

y
Ny

, cz
1, . . . , c

z
Nz

) = 0 (16)

We compute these partial derivatives:

∂F

∂ax
l

(ax
1 , . . . , a

x
Nx

, by
1, . . . , b

y
Ny

, cz
1, . . . , c

z
Nz

) = 0

=
∫

Ω

[Ny∑
j=1

(Nz∑
k=1

(
2(albjck − dljk

)(∂(aibjck)
∂ax

l

− ∂(dijk)
∂ax

l

)
Bx

l,pB
y
j,pB

z
k,p)

)]
= 0,

(17)
where the internal term:

∂(aibjck)
∂ax

l

=
∂(ai)bjck

∂ax
l

+ ai
∂(bjck)

∂ax
l

= bjckδil + 0, (18)

160 K. Podsiad�lo et al.

thus

=
∫

Ω

[Ny∑
j=1

(Nz∑
k=1

(
2(albjck − dljk

)
bjckBx

l,pB
y
j,pB

z
k,p

)]
= 0, l = 1, . . . , Nx (19)

Similarly we proceed with the rest of partial derivatives to obtain:

=
∫

Ω

[Nx∑
i=1

(Nz∑
k=1

(
2(aiblck − dilk

)
aickBx

i,pB
y
l,pB

z
k,p

)]
= 0, l = 1, . . . , Ny (20)

=
∫

Ω

[Nx∑
i=1

(Ny∑
j=1

(
2(aibjcl − dijl

)
aibjB

x
i,pB

y
j,pB

z
l,p

)]
= 0, l = 1, . . . , Nz (21)

This is equivalent to the following system of equations:

Ny∑
j=1

(Nz∑
k=1

2
(
albjck − dljk

)
bjck

)
= 0 (22)

Nx∑
i=1

(Nz∑
k=1

2
(
aiblck − dilk

)
aick

)
= 0 (23)

Nx∑
i=1

(Ny∑
j=1

2
(
aibjcc − dijl

)
aibj

)
= 0 (24)

We have just got a non-linear system of Nx + Ny + Nz equations with Nx +
Ny + Nz unknowns:

al

(Ny∑
j=1

(Nz∑
k=1

(
bjck

)
bjck

))
=

Ny∑
j=1

(Nz∑
k=1

(
dljkbjck

))
(25)

bl

(Nx∑
i=1

(Nz∑
k=1

(
aick

)
aick

))
=

Nx∑
i=1

(Nz∑
k=1

(
dilkaick

))
(26)

cl

(Nx∑
i=1

(Ny∑
j=1

(
aibj

)
aibj

))
=

Nx∑
i=1

(Ny∑
j=1

(
dijlaibj

))
, (27)

what implies:

al =

∑Ny

j=1

(∑Nz

k=1 dljkbjck

)
∑Ny

j=1

(∑Nz

k=1

(
bjck

)2) (28)

bl =
∑Nx

i=1

(∑Nz

k=1 dilkaick

)
∑Nx

i=1

(∑Nz

k=1

(
aick

)2) (29)

An Algorithm for Tensor Product Approximation 161

We insert these coefficients into the third equation:

cl

Nx∑
i=1

(
Ny∑
j=1

(∑Ny

m=1

(∑Nz

n=1 dimnbmcn

)

∑Ny

m=1

(∑Nz

n=1(bmcn)2
))2(∑Nx

m=1

(∑Nz

n=1 dmjnamcn

)

∑Nx

m=1

(∑Nz

n=1(amcn)2
))2

)

=
Nx∑
i=1

(
Ny∑
j=1

dijl

∑Ny

m=1

(∑Nz

n=1 dimnbmcn

)

∑Ny

m=1

(∑Nz

n=1(bmcn)2
)

∑Nx

m=1

(∑Nz

n=1 dmjnamcn

)

∑Nx

m=1

(∑Nz

n=1(amcn)2
)

)

(30)

cl

Nx∑
i=1

(
Ny∑
j=1

(Ny∑
m=1

(Nz∑
n=1

dimnbmcn

))(Nx∑
m=1

(Nz∑
n=1

dmjnamcn

)))

=
Nx∑
i=1

(
Ny∑
j=1

dijl

)(
Nz∑
n=1

(Ny∑
m=1

(
bmcn

)2))(
Nz∑
n=1

(Nx∑
m=1

(
amcn

)2)) (31)

cl

Nx∑
i=1

(
Ny∑
j=1

(Nz∑
n=1

(Ny∑
m=1

dimnbmcn

))(Nz∑
n=1

(Nx∑
m=1

dmjnamcn

)))

=
Nx∑
i=1

(
Ny∑
j=1

dijl

)(
Nz∑
n=1

(Ny∑
m=1

(
bmcn

)2))(
Nz∑
n=1

(Nx∑
m=1

(
amcn

)2)) (32)

Fig. 1. The original configuration of static permeability

162 K. Podsiad�lo et al.

Fig. 2. The result obtained from the heuristic algorithm (a) and from the heuristic
plus genetic algorithms (b).

Fig. 3. The tensor product approximation after one (a) and five (b) iterations of Algo-
rithm 1.

cl

Nx∑
i=1

(
Ny∑
j=1

(Nz∑
n=1

(Ny∑
m=1

dimnbmcn

))(Nx∑
m=1

dmjnamcn

))

=
Nx∑
i=1

(
Ny∑
j=1

dijl

)(
Ny∑

m=1

(
bmcn

)2)(
Nz∑
n=1

(Nx∑
m=1

(
amcn

)2)) (33)

Nx∑
i=1

(
Ny∑
j=1

(Nz∑
n=1

(Ny∑
m=1

(Nx∑
o=1

dojnaocndimnbmcncl

))))

=
Nx∑
i=1

(
Ny∑
j=1

(Nz∑
n=1

(Ny∑
m=1

(Nx∑
o=1

(aocnbmcn)2dijl

)))) (34)

The above is true when

dimnbmcncldojnaocn = (aocnbmcn)2dijl, (35)

An Algorithm for Tensor Product Approximation 163

Fig. 4. The tensor product approximation after ten (a) and fifty (b) iterations of
Algorithm 1.

Fig. 5. The error of the tensor product approximation after one (a), and five (b)
iterations of Algorithm 1.

so:
dimncldojn = aocnbmcndijl (36)

thus:
dojndimn

dijl
=

aocnbmcn

cl
(37)

We can setup now a1, b1, and c1 arbitrary and compute cl using the derived
proportions.

In a similar way we compute al, namely we insert:

bl =
∑Nx

i=1

(∑Nz

k=1 dilkaick

)
∑Nx

i=1

(∑Nz

k=1

(
aick

)2) (38)

cl =

∑Nx

i=1

(∑Ny

j=1 dijlaibj

)
∑Nx

i=1

(∑Ny

j=1

(
aibj

)2) (39)

164 K. Podsiad�lo et al.

Fig. 6. The error of the tensor product approximation after ten (a), and fifty (b)
iterations of Algorithm 1.

into

al

(Ny∑
j=1

(Nz∑
k=1

(Nx∑
m=1

(Nz∑
n=1

(dmjnamcn)
)(Nx∑

m=1

(Ny∑
n=1

(dmnkambn)
)))))

=
(Ny∑

j=1

(Nz∑
k=1

dljk

)(Nx∑
m=1

(Nz∑
n=1

(amcn)2
))(Nx∑

m=1

(Ny∑
n=1

(ambn)2
)))

,

(40)

then:

al

(Ny∑
j=1

(Nz∑
k=1

((Nx∑
m=1

(Nz∑
n=1

dmjnamcn

)(Ny∑
o=1

dmokambo

)))))

=
Ny∑
j=1

(Nz∑
k=1

dljk

)(Nx∑
m=1

(Nz∑
n=1

(amcn)2
))(Nx∑

m=1

(Ny∑
o=1

(ambo)2
))

,

(41)

and finally:

Ny∑
j=1

(Nz∑
k=1

((Nx∑
m=1

(Nz∑
n=1

(Ny∑
o=1

aldmokambodmjnamcn

)))))

=
Ny∑
j=1

(Nz∑
k=1

(Nx∑
m=1

(Nz∑
n=1

(Nx∑
m=1

(Nz∑
n=1

(amboamcn)2dljk

)))))
,

(42)

what results in:

aldmokambodmjnamcn = (amboamcn)2dljk, (43)

so:
aldmokdmjn = amboamcndljk, (44)

An Algorithm for Tensor Product Approximation 165

thus:
dmokdmjn

dljk
=

amboamcn

al
(45)

We compute bl from (we already have ai and ck):

bl =
∑Nx

i=1

(∑Nz

k=1 dilkaick

)
∑Nx

i=1

(∑Nz

k=1

(
aick

)2) (46)

The just analyzed Problem 1 has multiple solutions, and the algorithm pre-
sented above finds one exemplary solution, for the assumed values of a1, b1,
and c1.

This however may not be the optimal solution, in the sense of equa-
tion (13), and thus we may improve the quality of the solution executing
simple genetic algorithm, with the individuals representing the parameters
ax
1 , . . . , a

x
Nx

, by
1, . . . , b

y
Ny

, cz
1, . . . , c

z
Nz

, and with the fitness function defined as (13).

4 Iterative Algorithm with Evolutionary Computations

The heuristic algorithm mixed with the genetic algorithm, as presented in Sect. 3,
is not able to find the solution with 0 error, for non-tensor product structures,
since we approximate N ∗ N data with 2 ∗ N unknowns. Thus, the iterative
algorithm presented in 1 is proposed, with the assumed accuracy ε.

Algorithm 1. Iterative algorithm with evolutionary computations
1: m=1

2: Bitmap[m](x,y,z)=K(x,y,z)

3: repeat

4: Find dijk for Bitmap[m](x,y,z) ≈ ∑Nx
i=1

(∑Ny

j=1

(∑Nz
k=1

(
dijkBi,p(x)Bj,p(y)Bk,p(z)

)))

using the linear computational cost isogeometric L2 projection algorithm

5: Find ax
1 , . . . , ax

Nx
, by1 , . . . , byNy

, cz1, . . . , czNz
to minimize

F [m]
(
ax
1 , . . . , ax

Nx
, by1 , . . . , byNy

, cz1, . . . , czNz

)
given by (13) using the heuristic algorithm

to generate initial population and the genetic algorithm to improve the tensor product
approximations

6: m = m + 1

7: Bitmap[m](x,y,z)=Bitmap[m-1](x,y,z)-
(∑Nx

i=1 aiB
x
i,p

)(∑Ny

j=1 bjB
y
j,p

)(∑Nz
k=1 ckBz

k,p

)

8: until F [m]
(
ax
1 , . . . , ax

Nx
, by1 , . . . , byNy

, cz1, . . . , czNz

) ≥ ε

In the aforementioned algorithm we approximate the static permeability as
a sequence of tensor product approximations:

K(x, y, z) =
M∑

m=1

Kx
m(x)Ky

m(y)Kz
m(z) (47)

166 K. Podsiad�lo et al.

Practically, it is realized according to the following equations:
(
ut+m, υ

)
−

(
Kx

m(x)eµut+m−1(x)
)(

Ky
m(x)eµut+m−1(y)

)(
Kz

m(x)eµut+m−1(z)
)
∇ut+m, ∇υ

)

= −
∑

n=1,m�=n

(

Kx
n(x)e

µut+n(x)Ky
n(y)e

µut+n(y)Kz
n(z)e

µut+n(z)∇ut+n, ∇υ

)

+
(
f, υ

)
+ Kx

m(x)Ky
m(y)Kz

m(z)
[(

eµut+m(x)eµut+m−1(y)eµut+m−1(z)
)

− eµut+m−1(x,y,z)
]
∇u, ∇υ

)
∀υ ∈ V

(48)

5 Numerical Results

We conclude the paper with the numerical results concerning the approximation
of the static permeability map. The original static permeability map is presented
in Fig. 1. The first approximation has been obtained from the heuristic algorithm
described in Sect. 3. We used the formulas (25)–(27) with the suitable substitu-
tions. In the first approach we first compute the values of a, next, the values of
b and finally the values of c. As the initial values we picked 3

√
d111.

Deriving this method further we decided to compute particular points in the
order of a2, b2, c2, a3, b3 and so on. This gave us the final result presented in
Fig. 2a.

We have improved the approximation by post-processing with the genera-
tional genetic algorithm as implemented in jMetal package [13] with variables
from [0,1] intervals. The fitness function was defined as:

f(a1, . . . , aNx
, b1, . . . , bNy

, c1, . . . , cNz
) =

Nx∑
i=1

Ny∑
l=1

Nz∑
k=1

(
dilk − aiblck

)2
(49)

The results are summarized in Fig. 2b.
To improve the numerical results we have employed the Algorithm 1. In

Figs. 3 and 4 results obtained after 1, 5, 10 and 50 iterations of Algorithm 1 are
presented.

In order to analyze the accuracy of the tensor product approximation, we
also present in Figs. 5 and 6 the error after 1, 5, 10, 50 iterations. We can read
from these Figures, how the error decreases when adding particular components.

6 Conclusions and the Future Work

In the paper the heuristic algorithm for tensor product approximation of material
data for implicit dynamics simulations of non-linear flow in heterogeneous media
is presented.

The algorithm can be used as a generator of initial configurations for a genetic
algorithm, improving the quality of the approximation. The future work will

An Algorithm for Tensor Product Approximation 167

involve the implementation of the implicit scheme and utilizing the proposed
algorithms as a preconditioner for obtaining tensor product structure of the
material data.

We have analyzed the convergence of our tensor product approximation
method but assessing how the convergence influences the reduction of the itera-
tion number of the explicit method will be the matter of our future experiments.

Our intuition is that 100 iterations (100 components of the tensor prod-
uct approximation) should give a well approximation, and thus we can use the
implicit method not bounded by the CFL condition, which will require 100 sub-
steps in every time step.

Acknowledgments. This work was supported by National Science Centre, Poland,
grant no. 2014/15/N/ST6/04662. The authors would like to acknowledge prof. Maciej
Paszyński for his help in this research topic and preparation of this paper.

References

1. �Loś, M., Woźniak, M., Paszyński, M., Dalcin, L., Calo, V.M.: Dynamics with matri-
ces possessing kronecker product structure. Proc. Comput. Sci. 51, 286–295 (2015).
https://doi.org/10.1016/j.procs.2015.05.243

2. �Loś, M., Woźniak, M., Paszyński, M., Lenharth, A., Amber-Hassan, M., Pingali, K.:
IGA-ADS: isogeometric analysis FEM using ADS solver. Comput. Phys. Commun.
217, 99–116 (2017). https://doi.org/10.1016/j.cpc.2017.02.023

3. Woźniak, M., �Loś, M., Paszyński, M., Dalcin, L., Calo, V.M.: Parallel fast isogeo-
metric solvers for explicit dynamics. Comput. Inf. 36(2), 423–448 (2017). https://
doi.org/10.4149/cai.2017.2.423

4. Siwik, L., �Loś, M., Kisiel-Dorohinicki, M., Byrski, A.: Hybridization of isogeo-
metric finite element method and evolutionary mulit-agent system as a tool-set
for multi-objective optimization of liquid fossil fuel exploitation with minimizing
groundwater contamination. Proc. Comput. Sci. 80, 792–803 (2016). https://doi.
org/10.1016/j.procs.2016.05.369

5. �Loś, M.: Fast isogeometric L2 projection solver for non-linear flow in non-
homogenous media, Master Thesis, AGH University, Krakow, Poland (2015)

6. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite
elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl.
Mech. Eng. 194(39), 4135–4195 (2005). https://doi.org/10.1016/j.cma.2004.10.008

7. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Unfi-
cation of CAD and FEA. Wiley, New York (2009). The Attrium, Southern Gate,
Chichester, West Sussex

8. Courant, R., Friedrichs, K., Lewy, H.: On the partial difference equations of math-
ematical physics. In: AEC Research and Development Report, NYO-7689. AEC
Computing and Applied Mathematics Centre-Courant Institute of Mathematical
Sciences, New York (1956)

9. Paszyński M, �Loś, M., Calo, V.M.: Fast isogeometric solvers for implicit dynamics.
Comput. Math. Appl. (2017, submitted to)

10. Alotaibi, M., Calo, V.M., Efendiev, Y., Galvis, J., Ghommem, M.: Global-local
nonlinear model reduction for flows in heterogeneous porous media. Comput. Meth-
ods Appl. Mech. Eng. 292, 122–137 (2015). https://doi.org/10.1016/j.cma.2014.
10.034

https://doi.org/10.1016/j.procs.2015.05.243
https://doi.org/10.1016/j.cpc.2017.02.023
https://doi.org/10.4149/cai.2017.2.423
https://doi.org/10.4149/cai.2017.2.423
https://doi.org/10.1016/j.procs.2016.05.369
https://doi.org/10.1016/j.procs.2016.05.369
https://doi.org/10.1016/j.cma.2004.10.008
https://doi.org/10.1016/j.cma.2014.10.034
https://doi.org/10.1016/j.cma.2014.10.034

168 K. Podsiad�lo et al.

11. Efendiev, Y., Ginting, V., Hou, T.: Multiscale finite element methods for nonlin-
ear problems and their applications. Commun. Math. Sci. 2(4), 553–589 (2004).
https://doi.org/10.4310/CMS.2004.v2.n4.a2

12. Warrick, A.W.: Time-dependent linearized in filtration: III. Strip and disc sources.
Soil Sci. Soc. Am. J. 40, 639–643 (1976)

13. Nebro, A.J., Durillo, J.J., Vergne, M.: Redesigning the jMetal Multi-objective opti-
mization framework. In: Proceedings of the Companion Publication of the 2015
Annual Conference on Genetic and Evolutionary Computation, GECCO Compan-
ion 2015 (2015)

14. Siwik, L., Los, M., Kisiel-Dorohinicki, M., Byrski, A.: Evolutionary multiobjec-
tive optimization of liquid fossil fuel reserves exploitation with minimizing natu-
ral environment contamination. In: Rutkowski, L., Korytkowski, M., Scherer, R.,
Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI),
vol. 9693, pp. 384–394. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39384-1 33

15. Goreinov, S.A., Tyrtyshnikov, E.E., Zamarashkin, N.L.: A theory of pseudoskeleton
approximations. Linear Algebra Appl. 261(1–3), 1–21 (1997). https://doi.org/10.
1016/S0024-3795(96)00301-1

https://doi.org/10.4310/CMS.2004.v2.n4.a2
https://doi.org/10.1007/978-3-319-39384-1_33
https://doi.org/10.1007/978-3-319-39384-1_33
https://doi.org/10.1016/S0024-3795(96)00301-1
https://doi.org/10.1016/S0024-3795(96)00301-1

	An Algorithm for Tensor Product Approximation of Three-Dimensional Material Data for Implicit Dynamics Simulations
	1 Introduction
	2 Explicit and Implicit Dynamics Simulations
	3 Kronecker Product Approximation
	4 Iterative Algorithm with Evolutionary Computations
	5 Numerical Results
	6 Conclusions and the Future Work
	References

