
An Experimental Assessment of Three
Point-Insertion Sequences for 3-D
Incremental Delaunay Tessellations

Sanderson L. Gonzaga de Oliveira1(B), Diogo T. Robaina2, Diego N. Brandão3,
Mauricio Kischinhevsky2, and Gabriel Oliveira1

1 Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
sanderson@dcc.ufla.br, g.oliveira@computacao.ufla.br

2 Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
{drobaina,kisch}@ic.uff.br

3 CEFET-RJ, Nova Iguaçu, Rio de Janeiro, Brazil
diego.brandao@eic.cefet-rj.br

Abstract. Currently, state-of-the-art algorithms for building 3-D
Delaunay tessellations are incremental. Thus, their execution costs
depend on the order of point insertion. This work evaluates three point-
insertion sequences in incremental algorithms for building 3-D Delaunay
tessellations. An incremental algorithm with point-insertion sequence
provided by the cut-longest-edge kd–tree is evaluated against the BRIO–
Hilbert order in conjunction with spatial middle and median policies
employed in the 4.11 version of the Computational Geometry Algo-
rithms Library. The results of computational costs (time and space) of
these three algorithms are evaluated experimentally. Extensive results
show that the incremental algorithm with a point-insertion sequence pro-
vided by the BRIO–Hilbert order with spatial middle policy employed
in the latest version of the Computational Geometry Algorithms Library
shows lower execution and storage costs than the two other algorithms
evaluated.

1 Introduction

Delaunay tessellations have been employed in various scientific and engineer-
ing applications, including FEM analysis, computer graphics, medical applica-
tions, the modeling of deformable objects, and terrain modeling [8]. In present
day, incremental algorithms are considered as state-of-the-art methods to build
Delaunay tessellations in various point distributions [7].

The efficiency of an incremental algorithm for generating Delaunay tessella-
tions is profoundly influenced by the point-insertion sequence, as both the num-
bers of orientation operations and conflicting polytopes depend on the insertion
order (e.g. see [9] and references therein). In addition, paging policies and modern
hierarchical memory architecture benefit programs that consider locality of refer-
ence. In particular, spatial locality is achieved when a sequence of recent memory
c© Springer International Publishing AG, part of Springer Nature 2018
Y. Shi et al. (Eds.): ICCS 2018, LNCS 10860, pp. 614–623, 2018.
https://doi.org/10.1007/978-3-319-93698-7_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93698-7_47&domain=pdf


An Assessment of Three Point-Insertion Sequences 615

references is grouped locally rather than randomly in the memory address space.
Therefore, spatial locality should be considered highly significant in the design of
algorithms. Thus, an efficient incremental algorithm for Delaunay tessellations
uses properly the cache hierarchy to obtain high cache hit rates.

In an important paper in this field, Amenta et al. [1] evaluated the sequence
in which the points are added to the mesh with the Biased Randomized Insertion
Order (BRIO) technique. In this approach, an adequate spatial location of points
is assumed to produce a large amount of cache hits.

Liu and Snoeyink [10] presented an incremental algorithm for building Delau-
nay tessellations in which points are added to the mesh in the sequence provided
by the Hilbert curve. Liu and Snoeyink [10] and Schrijvers et al. [11] provide a
complete description about the influence of selecting the sequential order and
the proper quantity of randomness. Zhou and Jones [14], Buchin [5,6], and
Boissonnat et al. [4] also evaluated methods that integrate randomness with
deterministic orders. Thus, currently, the incremental algorithm for Delaunay
tessellations implemented in the latest version of the Computational Geometry
Algorithms Library (CGAL) [12] employs the Hilbert space-filling curve order
combined with the BRIO scheme [1]. Specifically, the incremental algorithm that
uses the BRIO–Hilbert strategy with spatial middle policy employed in CGAL
[12] splits each partition exactly at its center [12] (https://doc.cgal.org/latest/
Spatial sorting/index.html). Instead of subdividing each partition in a rigid way
at its center, the incremental algorithm that uses the BRIO–Hilbert strategy
with spatial median policy employed in CGAL [12] subdivides each partition
considering the median point alternately in each coordinate. To be more spe-
cific, these incremental algorithms implemented in CGAL [12] organize the point
set in random buckets of increasing sizes, and the Hilbert order is used only
inside a bucket [12]. Thus, these geometric algorithms available in CGAL [12]
combine randomness and spatial locality [1]. A number of works [1,4–6,14] have
demonstrated that this approach yields sufficient randomness to incorporate the
gains of both random and locality provided by a space-filling curve order when
generating Delaunay tessellations.

Liu et al. [9] presented an incremental method for generating 3-D Delau-
nay tessellations in which points are added to the mesh conforming to a level-
order traversal of the cut-longest-edge kd–tree. Liu et al. [9] exhibited extensive
experiments in which this incremental algorithm with point-insertion sequence
provided by the cut-longest-edge kd–tree order outpaced the preceding pos-
sible state-of-the-art method (an incremental algorithm with point-insertion
sequence provided by the Hilbert curve [10]) in various 3-D point distributions.
Recently [7], this incremental algorithm with point-insertion sequence provided
by the cut-longest-edge kd–tree surpassed incremental algorithms with several
point-insertion sequences. In this publication [7], the experiments focused on
implementation characteristics of incremental algorithms employing determinis-
tic orders (i.e. without the use of randomness) to build Delaunay tessellations
in seven 3-D point distributions (i.e. the same 3-D point distributions used by
Liu et al. [9]).

https://doc.cgal.org/latest/Spatial_sorting/index.html
https://doc.cgal.org/latest/Spatial_sorting/index.html


616 S. L. Gonzaga de Oliveira et al.

Liu et al. [9] compared their algorithm with the incremental algorithm imple-
mented in the 4.0 version of CGAL (in 2013), which did not use the middle and
median policies. In particular, the median policy employed in the incremental
algorithm for Delaunay tessellations implemented in the latest version of CGAL
[12] is similar to the idea of the kd–tree order introduced by Liu et al. [9] in their
algorithm. A difference in these schemes is that Liu et al. [9] used a cut-longest-
edge strategy instead of splitting the partition alternately in each coordinate,
which is the original approach of the kd–tree order [3].

The purpose of this present paper is to conduct a comparison of three state-of-
the-art incremental algorithms for generating 3-D Delaunay tessellations. Specif-
ically, this work evaluates the algorithm with point-insertion sequence provided
by the cut-longest-edge kd–tree against the BRIO–Hilbert order (i.e. with the
use of randomness) using spatial middle and median policies in inexact predi-
cates employed in the 4.11 version of CGAL, which was released in September
of 2017 [12].

To evaluate the three incremental algorithms for 3-D Delaunay tessellations,
this present computational experiment uses eight 3-D point distributions, with
sets ranging from 1 to 40 million points. Specifically, the unit interval is used
as domain in our experiments. In addition, four 3-D test models are used in the
experiments.

The remainder of this paper is structured as follows. Section 2 presents and
analyzes the results. Finally, Sect. 3 addresses the conclusions.

2 Results and Analysis

The three incremental algorithms evaluated here were implemented in the C++
programming language. The g++ 4.6.3-1 compiler was used. The experiments
were performed on an Intel R© Xeon R© E5620 CPU 2.40 GHz (12 MB cache, 24GB
of main memory 1067MHz) (Intel; Santa Clara, CA, USA) workstation. The
Ubuntu 16.04.3 64-bits operating system was used in this machine, with kernel
4.4.0-98-generic.

Table 1 and Figs. 1, 2, 3 and 4 show the results of execution times in
eight point distributions in the 3-D unit cube when using three point-insertion
sequences in incremental algorithms for building Delaunay tessellations: random
points, points on a cylinder, points around a disk, points around three planes,
points along three axes, points around a paraboloid, points around a spiral, and
points on a saddle. Three executions were carried out for each point set, ranging
from 1 to 40 million points. Numbers in bold face in Table 1 are the best results.

Although the BRIO–Hilbert strategy together with the middle policy has
obtained higher execution costs than the other two incremental algorithms eval-
uated here when applied to instances composed of 30 and 35 million points
around a spiral, the BRIO–Hilbert order with middle policy obtained lower exe-
cution costs when applied to instances comprised of 40 million points in this 3-D
point distribution. Thus, the trends remained consistent over the eight 3-D point
distributions used. Although Table 1 shows that the execution times of the algo-
rithm with point-insertion sequence provided by the BRIO–Hilbert order along



An Assessment of Three Point-Insertion Sequences 617

Table 1. Execution times (in seconds) of incremental algorithms with point-insertion
sequence provided by three orders [CGAL BRIO–Hilbert order with spatial middle
(SMi) and median (SMe) policies, and cut-longest-edge kd–tree (KDt)] in eight 3-D
point distributions (N ∗ 106).

N Axes Cylinder Disk Paraboloid

SMi KDt SMe SMi KDt SMe SMi KDt SMe SMi KDt SMe

1 10 10 12 10 10 10 10 10 10 10 10 10

10 97 101 119 97 100 98 100 100 101 97 99 99

20 196 201 233 195 200 198 199 199 202 194 199 198

30 292 301 354 291 301 297 299 300 304 291 297 297

35 339 350 412 341 352 347 353 353 357 343 349 349

40 387 399 471 390 402 397 397 397 404 392 402 401

N Planes Random points Saddle Spiral

SMi KDt SMe SMi KDt SMe SMi KDt SMe SMi KDt SMe

1 9 10 10 10 10 10 10 9 10 9 9 10

10 96 99 102 97 99 99 97 98 99 96 98 98

20 194 199 207 195 198 197 193 197 197 194 199 197

30 290 295 311 293 297 299 290 294 298 305 271 269

35 344 344 367 341 347 346 338 342 348 361 315 314

40 388 395 425 388 397 395 386 392 396 390 393 395

with the spatial middle policy employed in the latest version of CGAL [12] are
lower than the two other algorithms evaluated in the eight 3-D point distribu-
tions used, Figs. 1, 2, 3 and 4 indicate that in most of the cases the differences
between the algorithms are rather small.

Figures 5, 6, 7 and 8 show that the memory requirements of the three point-
insertion sequences in incremental algorithms for building 3-D Delaunay tessel-
lations analyzed in this computational experiment are very similar when applied
to instances arising from eight point distributions in the 3-D unit cube. In par-
ticular, we used the sysconf function to record the memory consumption. This
computational experiment shows that the execution times and memory usage
of the algorithm with point-insertion sequence provided by the BRIO–Hilbert
order along with the spatial middle policy used in the latest version of Compu-
tational Geometry Algorithms Library [12] are slightly lower than the two other
algorithms evaluated in the eight 3-D point distributions used.

Exploratory investigations with both schemes employed in CGAL [12] using
exact predicates showed that the spatial median policy dominated the spatial
middle policy in seven 3-D point distributions. Specifically, the incremental algo-
rithm with point-insertion sequence provided by the BRIO–Hilbert order with
spatial middle policy achieved lower execution times than the spatial median
policy only when applied to instances from points along three axes.



618 S. L. Gonzaga de Oliveira et al.

Fig. 1. Execution times (in seconds) of incremental algorithms with three point-
insertion sequences evaluated in two point distributions (points along three axes and
points on a cylinder) on the 3-D unit cube.

Fig. 2. Execution times (in seconds) of incremental algorithms with three point-
insertion sequences evaluated in two point distributions (points around a disk and
points around a paraboloid) on the 3-D unit cube.

Fig. 3. Execution times (in seconds) of incremental algorithms with three point-
insertion sequences evaluated in two point distributions (points around three planes
and random points) on the 3-D unit cube.

Fig. 4. Execution times (in seconds) of incremental algorithms with three point-
insertion sequences evaluated in two point distributions (points around a saddle and
points around a spiral) on the 3-D unit cube.



An Assessment of Three Point-Insertion Sequences 619

Fig. 5. Memory requirements (MiB) of incremental algorithms with three point-
insertion sequences evaluated in two point distributions (points along three axes and
points on a cylinder) on the 3-D unit cube.

Fig. 6. Memory requirements (MiB) of incremental algorithms with three point-
insertion sequences evaluated in two point distributions (points around a disk and
points around a paraboloid) on the 3-D unit cube.

Fig. 7. Memory requirements (MiB) of incremental algorithms with three point-
insertion sequences evaluated in two point distributions (points around three planes
and random points) on the 3-D unit cube.

Fig. 8. Memory requirements (MiB) of incremental algorithms with three point-
insertion sequences evaluated in two point distributions (points around a saddle and
points around a spiral) on the 3-D unit cube.



620 S. L. Gonzaga de Oliveira et al.

Table 2. Execution times (in seconds) of incremental algorithms with point-insertion
sequence provided by three orders [CGAL BRIO–Hilbert order with spatial middle
(SMi) and median (SMe) policies, and cut-longest-edge kd–tree (KDt)] applied to four
3-D test models (Vellum manuscript, Asian Dragon, Thai Statue [13], and Napoleon
[2]).

3-D test model No. of points KDt SMi SMe

Vellum manuscript 2155617 19.1 19.8 20.4

Napoleon 3396797 19.9 23.4 24.0

Asian Dragon 3609600 32.8 34.6 34.3

Thai Statue 4999996 38.2 37.5 39.5

Fig. 9. Execution times (in seconds) of incremental algorithms with three point-
insertion sequences evaluated for four 3-D test models (see Fig. 10).

Four 3-D test models available on two different repositories [2,13] were used
in this computational experiment. Table 2 and Fig. 9 show that the execution
times of the incremental algorithm with point-insertion sequence provided by
the cut-longest-edge kd–tree order were lower than the two other incremental
algorithms evaluated in this computational experiment when applied to three
(Vellum manuscript, Asian Dragon [13], and Napoleon [2]) 3-D test models used
here. On the other hand, the incremental algorithm with point-insertion sequence
provided by the BRIO–Hilbert order alongside spatial middle policy obtained
lower execution times than the two other incremental algorithms evaluated in our
experiments when applied to the Thai Statue 3-D test model [13] (see Fig. 10).
In addition, Fig. 11 shows that the memory requirements of the incremental
algorithm with point-insertion sequence provided by the cut-longest-edge kd–
tree were slightly larger than the two other incremental algorithms evaluated
here when applied to these four standard 3-D test models.



An Assessment of Three Point-Insertion Sequences 621

Fig. 10. Four 3-D test models: Vellum manuscript, Asian Dragon, Thai Statue [13],
and Napoleon [2]).

Fig. 11. Memory requirements (MiB) of incremental algorithms with three point-
insertion sequences evaluated for four 3-D test models (see Fig. 10).

3 Conclusions

This work evaluated three point-insertion sequences in incremental algorithms
for 3-D Delaunay tessellations. Experiments were performed in instances ranging
from 1 to 40 million points.

The median policy implemented in the latest version of CGAL [12] is similar
to the sequence provided by the kd–tree order. Despite this fact, the incremen-
tal algorithm with point-insertion sequence provided by the cut-longest-edge
kd–tree order obtained, in a larger number of runs, lower execution costs than
the BRIO–Hilbert order along with the median policy implemented in this ver-
sion of CGAL [12]. Moreover, the incremental algorithm with point-insertion
sequence provided by the cut-longest-edge kd–tree obtained overall lower execu-
tion costs than the two other incremental algorithms included in our experiments
when applied to small 3-D test models (see Table 2). In spite of this and also
despite the fact that the CGAL default constructor applies the median policy,



622 S. L. Gonzaga de Oliveira et al.

the incremental algorithm with point-insertion sequence provided by the BRIO–
Hilbert order combined with spatial middle policy employed in the latest version
of CGAL [12] obtained slightly lower execution times and slightly smaller mem-
ory requirements than the two other algorithms evaluated in the eight 3-D point
distributions and in the largest 3-D test model used. These results are consis-
tent with the findings presented in the literature. Therefore, the incremental
algorithm with point-insertion sequence provided by the BRIO–Hilbert order
combined with spatial middle policy in inexact predicates employed in the latest
version of CGAL [12] can be considered as the current state-of-the-art method
for the building of Delaunay tessellations in the eight 3-D point distributions
that were included in our experiments.

We plan to evaluate an incremental algorithm with point-insertion sequence
provided by the cut-longest-edge kd–tree in tandem with the BRIO scheme
against the other strategies analyzed in this appraisal. In addition, we intend
to implement parallel versions of these methods.

Acknowledgements. We are grateful to Prof. Dr. Jianfei Liu, from the Department
of Mechanics and Engineering Science, College of Engineering, Peking University, for
sharing his program code and for his helpful comments.

References

1. Amenta, N., Choi, S., Rote, G.: Incremental constructions con BRIO. In: Pro-
ceedings of the Nineteenth Annual Symposium on Computational Geometry, SCG
2003, pp. 211–219. ACM, San Diego, June 2003

2. Artec3D. Artec3D (2018). https://www.artec3d.com/3d-models
3. Bentley, J.L.: Multidimensional binary search trees used for associative searching.

Commun. ACM 18(9), 509–517 (1975)
4. Boissonnat, J.D., Devillers, O., Samuel, H.: Incremental construction of the Delau-

nay graph in medium dimension. In: Proceedings of the Twenty-Fifth Annual Sym-
posium on Computational Geometry, SCG 2009, Aarhus, Denmark, pp. 208–216.
ACM, June 2009

5. Buchin, K.: Constructing Delaunay triangulations along space-filling curves. In:
Proceedings of the 2nd International Symposium Voronoi Diagrams (ISVD) in
Science and Engineering, Seoul, Korea, pp. 184–195 (2005)

6. Buchin, K.: Organizing point sets: Space-filling curves, Delaunay tessellations of
random point sets, and flow complexes. Ph.D. thesis, Free University, Berlin (2007)

7. Gonzaga de Oliveira, S.L., Nogueira, J.R.: An evaluation of point-insertion
sequences for incremental Delaunay tessellations. Comput. Appl. Math. 37(1),
641–674 (2018)

8. Gonzaga de Oliveira, S.L., Nogueira, J.R., Tavares, J.M.R.S.: A systematic review
of algorithms with linear-time behaviour to generate Delaunay and Voronoi tessel-
lations. CMES - Comput. Model. Eng. Sci. 100(1), 31–57 (2014)

9. Liu, J.-F., Yan, J.-H., Lo, S.H.: A new insertion sequence for incremental Delaunay
triangulation. Acta Mechanica Sinica 29(1), 99–109 (2013)

10. Liu, Y., Snoeyink, J.: A comparison of five implementations of 3D Delaunay tes-
sellation. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Combinatorial and Com-
putational Geometry, vol. 52, pp. 439–458. MSRI Publications, Cambridge (2005)

https://www.artec3d.com/3d-models


An Assessment of Three Point-Insertion Sequences 623

11. Schrijvers, O., van Bommel, F., Buchin, K.: Delaunay triangulations on the word
RAM: towards a practical worst-case optimal algorithm. In: Proceedings of the
10th International Symposium on Voronoi Diagrams in Science and Engineering
(ISVD), Saint Petersburg, Russia, pp. 7–15 (2013)

12. The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board,
4.11 edition (2017). http://doc.cgal.org/4.11/Manual/packages.html

13. The Stanford Models. The Stanford 3D Scanning Repository (2014). http://
graphics.stanford.edu/data/3Dscanrep

14. Zhou, S., Jones, C.B.: HCPO: an efficient insertion order for incremental Delaunay
triangulation. Inf. Process. Lett. 93, 37–42 (2005)

http://doc.cgal.org/4.11/Manual/packages.html
http://graphics.stanford.edu/data/3Dscanrep
http://graphics.stanford.edu/data/3Dscanrep

	An Experimental Assessment of Three Point-Insertion Sequences for 3-D Incremental Delaunay Tessellations
	1 Introduction
	2 Results and Analysis
	3 Conclusions
	References




