
GPU-Based Implementation
of Ptycho-ADMM for High
Performance X-Ray Imaging

Pablo Enfedaque1(B), Huibin Chang1,2, Hari Krishnan1,
and Stefano Marchesini1

1 Computational Research Division, Lawrence Berkeley National Laboratory,
Berkeley, USA

pablo.enfedaque@gmail.com
2 School of Mathematical Sciences, Tianjin Normal University, Tianjin, China

Abstract. X-ray imaging allows biologists to retrieve the atomic
arrangement of proteins and doctors the capability to view broken bones
in full detail. In this context, ptychography has risen as a reference imag-
ing technique. It provides resolutions of one billionth of a meter, macro-
scopic field of view, or the capability to retrieve chemical or magnetic con-
trast, among other features. The goal is to reconstruct a 2D visualization
of a sample from a collection of diffraction patterns generated from the
interaction of a light source with the sample. The data collected is typi-
cally two orders of magnitude bigger than the final image reconstructed,
so high performance solutions are normally desired. One of the latest
advances in ptychography imaging is the development of Ptycho-ADMM,
a new ptychography reconstruction algorithm based on the Alternat-
ing Direction Method of Multipliers (ADMM). Ptycho-ADMM provides
faster convergence speed and better quality reconstructions, all while
being more resilient to noise in comparison with state-of-the-art methods.
The downside of Ptycho-ADMM is that it requires additional computa-
tion and a larger memory footprint compared to simpler solutions. In
this paper we tackle the computational requirements of Ptycho-ADMM,
and design the first high performance multi-GPU solution of the method.
We analyze and exploit the parallelism of Ptycho-ADMM to make use
of multiple GPU devices. The proposed implementation achieves recon-
struction times comparable to other GPU-accelerated high performance
solutions, while providing the enhanced reconstruction quality of the
Ptycho-ADMM method.

1 Introduction

Ptychography provides the unprecedented capability of imaging macroscopic
specimens at nanometer wavelength resolutions while retrieving chemical, mag-
netic or atomic information. It was proposed in 1969 with the aim of improving

This is a U.S. government work and its text is not subject to copyright protection in the United States;

however, its text may be subject to foreign copyright protection 2018

Y. Shi et al. (Eds.): ICCS 2018, LNCS 10860, pp. 540–553, 2018.

https://doi.org/10.1007/978-3-319-93698-7_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93698-7_41&domain=pdf

GPU-Based Implementation of Ptycho-ADMM for High Performance 541

Fig. 1. Overview of a ptychography experiment. An illumination source consecutively
scans regions of the sample to produce a stack of phase-less intensities. The stack and
the geometry of the measurements are fed to an iterative solver that retrieves the
phases and reconstructs an image of the original sample.

the resolution of x-ray and electron microscopy. Since then, it has been success-
fully employed in a large array of applications, and shown to be a remarkably
robust technique for the characterization of nano materials. For this reason, it is
currently used in scientific fields as diverse as condensed matter physics [1], cell
biology [2], materials science [3] and electronics [4], among others. Ptychography
is based on recording the distribution of the scattering pattern produced by the
interaction of an illumination with a sample. In a ptychographic experiment,
only the signal intensities are measured, so one has to retrieve the correspond-
ing phases to be able to reconstruct an image of the sample. It falls under the
category of phase retrieval problems [5]. In the case of ptychography, the phases
can usually be recovered by exploiting the redundancy inherent in obtaining
diffraction patterns from overlapping regions of the sample.

From an algorithmic point of view, ptychography reconstruction can be
briefly explained as follows (Fig. 1). The input is a stack of multiple frames
containing phase-less measured intensities. Each frame corresponds to a snap-
shot of the light source through a specific region of the sample. These regions
are known for each frame, and they are referred to as the geometry of the mea-
surements. Using the stack of frames and their geometries, a non-linear iterative
solver repeatedly approximates the phases of the measurements using two con-
straints: (1) the match between overlapping regions of the frames and (2) the
match with a given model for the data. After the solver reaches an exit condition,
the output is the overlap of the stack of frames (now with phases) in their cor-
responding geometries. This overlap corresponds to the 2D reconstructed image
of the sample.

Computationally, ptychography poses multiple challenges. The primary chal-
lenge is that the stack of measured frames is typically two orders of magnitude
bigger than the final reconstructed image. A real case example: a 700× 700
pixels image of a cluster of iron particles is recovered from a stack of 900

542 P. Enfedaque et al.

frames, each one containing 256 × 256 samples (1:125 output/input ratio). It
is also common that the reconstruction algorithms employ additional copies of
the measured frames (or additional auxiliary structures of the same size). On the
bright side, the algorithms employed in ptychography reconstruction commonly
use highly fine-grained parallel operations with few dependencies. This inher-
ent parallelism is usually exploited to achieve reasonable reconstruction times,
frequently employing many-core accelerators, such as GPUs [6].

An essential consideration in ptychography algorithms resides in the data
models and solver employed. Choosing the proper ones is far from trivial. In a real
scenario, models for the illumination source or the background of the measure-
ments are also usually considered. The models and solver employed determine
the robustness of the reconstruction (regarding noise or experimental uncertain-
ties), the convergence speed, and the image quality. One of the latest advances
in ptychography reconstruction has been recently developed by the CAMERA
team at the Lawrence Berkeley National Laboratory (LBNL). The research pro-
poses a new model for data fitting and a new algorithm based on the Alternating
Direction Method of Multipliers (ADMM) [7]. The proposed method, referred to
from now on as Ptycho-ADMM [8], has been mathematically proven to converge
faster than state-of-the-art algorithms, while producing better quality images,
and to be more resilient to noise. Ptycho-ADMM benefits come at the expense of
increased computational requirements. Besides the input stack, Ptycho-ADMM
needs to keep in memory the solution stack and an additional multiplier of the
same size, thus handling three times the amount of measured data. The multiplier
needs to be updated in each solver step, and it is employed in the optimization
of all models, so additional computation is also required.

In this paper we tackle the computational constraints of Pytcho-ADMM
and design the first high performance implementation of the method. Ptycho-
ADMM parallelism is analyzed to develop a CUDA-based multi-GPU solution
that can efficiently make use of multiple GPU devices to achieve state-of-the-art
reconstruction times. The performance of the proposed implementation is com-
pared with SHARP [6], a high performance GPU-based ptychography solution.
Although the number of arithmetic operations and memory footprint of Ptycho-
ADMM is higher than that of solvers employed in SHARP, our implementation
is able to achieve comparable reconstruction times, in addition to providing
the robustness inherent to the Ptycho-ADMM models. The proposed Pytcho-
ADMM implementation is already being used in the microscopes installed in the
Advanced Light Source in the LBNL, and the code will be soon available in the
Department of Energy online repository system [9].

This paper is structured as follows. Section 2 first overviews the Ptycho-
ADMM method and its models, and later reviews the CUDA programming
model and the basics of GPU computing. Section 3 presents the proposed solu-
tion with a detailed description of the techniques employed, and Sect. 4 assesses
its performance through experimental tests. The last section summarizes this
work.

GPU-Based Implementation of Ptycho-ADMM for High Performance 543

2 Background

2.1 Ptycho-ADMM Overview

A ptychography experiment is usually defined as follows. A localized X-ray illu-
mination ω scans through a specimen u, while a detector collects a sequence J
of phase-less intensities a. The goal is to obtain a high resolution reconstruction
of the specimen u from the sequence of intensity measurements. In a discrete
setting, u ∈ C

n is a 2D image with
√

n × √
n pixels, ω ∈ C

m̄ is a localized
2D illumination with

√
m̄ × √

m̄ pixels, and a2
j = |F(ω ◦ Sju)|2 is a stack of

phase-less measurements aj ∈ R
m̄
+ ∀0 ≤ j ≤ J − 1. The operator | · | represents

the element-wise absolute value of a vector, ◦ denotes the element-wise multipli-
cation, and F denotes the normalized 2-dimensional discrete Fourier transform.
Each Sj ∈ R

m̄×n is a binary matrix that crops a region j of size m̄ from the
image u.

In practice, as the illumination is almost never completely known, one has
to solve a blind ptychographic phase retrieval problem [10], as follows:

To findω ∈ C
m̄ and u ∈ C

n, s.t. |A(ω, u)|2 = a2, (1)

where bilinear operators A : Cm̄ ×C
n → C

m and Aj : Cm̄ ×C
n → C

m̄ ∀0 ≤ j ≤
J − 1, are denoted as follows:

A(ω, u) :=(AT
0 (ω, u),AT

1 (ω, u), · · · ,AT
J−1(ω, u))T ,

Aj(ω, u) :=F(ω ◦ Sju),

and a := (aT
0 , aT

1 , · · · , aT
J−1)

T ∈ R
m
+ .

Instead of directly solving the quadratic multidimensional systems in (1),
Ptycho-ADMM is based on the following nonlinear least squares model:

min
ω∈Cm̄,u∈Cn

1
2

∥
∥|A(ω, u)| − a

∥
∥
2
. (2)

A mapping B(·, ·) : Rm
+ ×R

m
+ → R+ is used to measure the distance between the

recovered intensity g ∈ R
m
+ and the collected intensity f ∈ R

m
+ as

B(g, f) = 1
2‖√

g−
√

f‖2. (3)

Based on the above mapping B(·, ·), a general nonlinear optimization model for
blind ptychography similar to (2) can be rewritten as follows:

Model: min
ω∈Cm̄,u∈Cn

G(A(ω, u)), (4)

with G(z) := B(|z|2, |a|2). The support or amplitude constraints of the illumina-
tion and image [6,11] can also be incorporated into (4).

To solve (4), Ptycho-ADMM employs an auxiliary variable z = A(ω, u) ∈ C
m,

such that an equivalent form of (4) is formulated as below:

min
ω,u,z

G(z), s.t. z − A(ω, u) = 0. (5)

544 P. Enfedaque et al.

The corresponding augmented Lagrangian reads:

Υβ(ω, u, z, Λ) := G(z) + 	(〈z − A(ω, u), Λ〉) + β
2 ‖z − A(ω, u)‖2, (6)

with multiplier Λ ∈ C
m, a positive parameter β, 〈·, ·〉 representing the L2 inner

product in complex Euclidean space, and 	(·) denoting the real part of a complex
number. Consequently, instead of minimizing (4) directly, one seeks a saddle
point of the following problem:

max
Λ

min
ω,u,z

Υβ(ω, u, z, Λ). (7)

Ptycho-ADMM proposes the following update steps to solve the problem in
(7), which summarize the method:

uk+1 =

∑

j

(ST
j ((ωk+1)∗ ◦ F∗ẑk

j)
)

(t)
∑

j(ST
j |ωk+1|2)(t) , (8)

ωk+1 =

∑

j(Sj(uk)∗)(t) × (F∗ẑk
j)(t)

∑

j |(Sjuk) (t)|2
, (9)

zk+1 =
a(t) + β|z(t)|

1 + β
× sign(z(t)), (10)

Λk+1 = Λk + β(zk+1 − A(ωk+1, uk+1)), (11)

given an iteration k and with ẑk := zk + Λk

β .

2.2 CUDA and GPU Computing

GPUs are massive parallel devices composed by multiple SIMD units called
streaming multiprocessors (SM). Modern GPUs have up to several dozens of
SMs, and each SM can execute multiple 32-wide SIMD instructions simultane-
ously. The CUDA programming model defines a computation hierarchy formed
by threads, warps, and thread blocks. A CUDA thread represents a single lane
of a SIMD instruction. Warps are sets of 32 threads that advance their execution
in a lockstep synchronous way. Commonly, all threads in a warp are executed
simultaneously as a single SIMD operation. Control flow divergence among the
threads of the same warp results in the sequential execution of the divergent
paths, so it is commonly avoided. Thread blocks group several warps that are
executed independently but that can cooperate using synchronization operations
to share data. The unit of work sent from the CPU (host) to the GPU (device) is
called kernel. The host can launch multiple kernels for parallel execution in one
or multiple GPUs, where each kernel is composed of tens to millions of thread
blocks.

The GPU memory is organized in three logical spaces: global, shared, and
registers. The global memory is typically allocated in the device main memory,

GPU-Based Implementation of Ptycho-ADMM for High Performance 545

and it is visible to all threads in a kernel. The shared memory is only accessible by
warps in the same thread block, while the registers are local to each thread. The
communication between the threads in a thread block is commonly carried out
via the shared memory. The occupancy of the GPU (or of a SM) is the percentage
of allocated threads relative to the theoretical maximum. It is constrained by
the amount of shared memory and registers assigned per thread. The registers
have the highest bandwidth and lowest latency, whereas the shared memory
bandwidth is lower than that of the registers. The shared memory provides
flexible accesses, while the accesses to the global memory must be coalesced to
achieve higher efficiency. A coalesced access occurs when consecutive threads of
a warp access consecutive memory positions.

3 Proposed Implementation

The main operations involved in the models of Ptycho-ADMM are point-wise
parallel, either across the stack of frames, the reconstructed image or a single
frame. In this section we will present and discuss a GPU-based implementation
of Ptycho-ADMM that exploits such parallelism.

The overview of the proposed solution is presented in Algorithm1. The inputs
are the measured frames (framesm[x, y, z]), the coordinates of the measure-
ments (coord[z]), the solver maximum iterations (itermax) and a given toler-
ance. The outputs are the final image[i, j] and illumination[x, y] after the solver
reaches an exit condition. The framess[x, y, z] stores the partial-solution frames,
whereas the multiplier[x, y, z] corresponds to the additional variable required in
ADMM. The image, illumination, framess and multiplier store complex num-
bers that represent pairs of intensity and phase values (stored as float2). The
input framesm store the original phase-less values (float), whereas coord stores
pairs of x, y coordinates (int2).

The main operations of the proposed solution are highlighted in bold. Split
corresponds to the operator Sj , which defines a j subsection of a 2D image,
whereas Overlap is the transposed operator ST

j , which merges all subsections
back into an image. SumAll performs an addition across the third dimension
of a 3D volume, as follows:

forall(x) { forall(y) { forall(z) {
output[x, y] = output[x, y] + input[x, y, z] } } }

ForwardFT and InverseFT perform z 2D Fast Fourier Transforms (FFT)
over a 3D input, where z is the third dimension of the input. UpdateFrames
computes the update step in Eq. (10), and ComputeResidual calculates the
residual between the measured and solution frames. Operators +, −, ∗ and | · |2
correspond to point-wise addition, subtraction, complex conjugate and complex
norm, respectively. The operator × denotes a point-wise multiplication when
both operands are of the same size, or multiple 2D point-wise multiplications
when a 2D plane is multiplied with a 3D volume, as follows:

546 P. Enfedaque et al.

Algorithm 1. Ptycho-ADMM
Parameters: framesm[x, y, z], coord[z], itermax, tolerance

1: allocate image[i, j], illumination[x, y],
framess[x, y, z], multiplier[x, y, z]

2: framess = framesm
3: multiplier = 0
4: for k = 0 to itermax − 1 do
5: framess = ForwardFT (framess)
6: framess = UpdateF rames(framess, framesm)
7: framess = InverseFT (framess)
8: framess = framess + multiplier

9: illumination =
SumAll(framess × Split(image)∗)

SumAll(Split(|image|2))
10: image =

Overlap(framess × illumination∗)
Overlap(|illumination|2, coord)

11: residual = ComputeResidual(framess, framesm)
12: if residual < tolerance then break
13: multiplier = multiplier − (illumination× Split(image, coord)) + framess
14: framess = (illumination× Split(image, coord)) −multiplier
15: end for
16: return image , illumination

forall(x) { forall(y) { forall(z) {
output[x, y, z] = input1[x, y] × input2[x, y, z] } } }

The most computational demanding operations correspond to Overlap,
Split and UpdateFrames. In all three functions, the arithmetic intensity1

is low, so the key performance considerations are the thread-to-data mapping,
the device occupancy and the GPU main memory transfers. The ultimate goal is
to maximize main memory bandwidth while re-using as much local data as pos-
sible. To this end, improving the device occupancy leads to more active threads,
while an optimal thread-to-data mapping allows for higher data locality and
coalesced accesses, both strategies leading to (potentially) higher main memory
bandwidth utilization.

The proposed Split kernel implementation maps all CUDA threads over the
output stack of frames. A single thread block is mapped to a frame so that
memory is always read and written in a coalesced way. Contrary to Split, the
Overlap function presents inherent data dependencies: values from different
frames can overlap on the same image position. To handle such dependencies,
threads are mapped over the input stack and written into the image via atomic
additions over main memory. Atomic operations risk serializing multiple high
latency operations when concurrency is high, penalizing performance even in
latest CUDA architectures. In our scenario, atomic operations provide the best
performance compared to more elaborated solutions. This is because the arith-

1 Ratio of number of arithmetic operations computed per memory access.

GPU-Based Implementation of Ptycho-ADMM for High Performance 547

metic load of the Overlap kernel is low, and the latency of the atomic operations
can be easily hidden by the main memory transfers.

Data sharing is not required across the solution’s main operations. This per-
mits avoiding shared memory to use only register allocation instead, improving
in this way the latency of local accesses and the overall occupancy [12]. The
thread block size employed is typically 128, which permits optimal theoreti-
cal occupancy in current GPU architectures. The mapping of CUDA threads
to data employed always guarantees coalesced main memory access, normally
using strides of wide equal to the thread block size. To further reduce GPU main
memory transfers, some lesser operations are fused into the main CUDA kernels.
For instance, basic point-wise arithmetic operations, the illumination multiply or
residual computations are usually computed with the nearest Overlap or Split
kernel calls. Several kernel fusions implemented in the code are not reflected in
Algorithm 1 for illustrative purposes.

Forward and Inverse 2D FFTs represent a significant amount of the pipeline
arithmetic computation. FFT GPU implementations have been extensively stud-
ied, being the cufft library one of the most competitive solutions performance-
wise. In the proposed implementation, we employ the cufft library to compute
ForwardFT and InverseFT . To further maximize performance, multiple
2D FFTs are batched together, which permits the library to fusion kernel calls
and maximize data re-using.

The above explanation omits multiple minor steps across the whole solving
process. Different stabilizers, regularizers, penalization factors, etc. are intro-
duced in some of the models to maximize converge speed and stability. Many
of the minor computation steps are implemented using the Thrust library in
order to maintain pipeline flexibility and clean interfaces. This necessary trade-
off slightly hinders performance, considering that the ideal case is to fuse all
minor computation steps with surrounding kernel calls.

3.1 Multi-GPU Solution

The above algorithm and discussion focus on a single GPU implementation. We
extend the Algorithm 1 to support multi-GPU execution. The proposed solution
employs the NVIDIA Collective Communications Library (NCCL) to implement
inter-GPU communication. The partition scheme employed breaks down the
workload by means of dividing the different copies of the stack of frames. This
way, the framesm[x, y, z], framess[x, y, z] and multiplier[x, y, z] are divided
across the z dimension based on the number of GPUs employed.

Almost all operations computed in Algorithm1 present no dependencies
across different frames when processing the 3D stacks. The exceptions are the
operations carried out in lines 9, 10 and 11 of Algorithm1. SumAll performs
an addition over the z dimension of a 3D volume, whereas Overlap requires all
frames to add their values into the result image. ComputeResidual also have
to consider the residuals generated from all independent executions. All three
dependencies can be solved in the following way: (1) compute the local partial
result, (2) reduce across all partial results (3) broadcast the reduced output to

548 P. Enfedaque et al.

Fig. 2. Percentage of computational time of the main Ptycho-ADMM CUDA kernels
when executed on a single GK210B GPU. The input data is a stack of 1600 256× 256
frames. Similar results hold for other input sizes.

all independent processes. The reduce operation is an addition in all three cases.
Step (2) and (3) are implemented using the directive ncclAllReduce(), which
performs both the reduced addition and the broadcast. Step (1) is implemented
in the same way as in the single-GPU execution, but taking sub-sets of frames
instead of the whole stacks.

The proposed partition scheme permits a very efficient handling of the
data dependencies. Communication is limited to 2D reductions when comput-
ing Overlap and SumAll, and it is only a scalar reduction when calculating
ComputeResidual. The amount of communication is in this way compara-
tively small, with respect to the 3D volumes processed locally. To further reduce
communication, we propose an additional optimization: communication can be
configured to occur every solver iteration (default) or every n iterations. When
n > 1, the iterations with no communication employ previous iteration results
as non-local data. This can slightly reduce convergence speed, in exchange of
increased performance (see next section). During iterations with no communica-
tion, the solver can be executed entirely in parallel across all GPUs. The option
to enable periodic communication is provided via a command line parameter.

4 Experimental Results

The results presented in this section are executed in a dual socket workstation
with two Intel Xeon E5-2683 v4, with a clock frequency of 2.10 GHz and 16
cores each. The workstation is equipped with 4 dual-slot Tesla K80 GPUs, for a
total of 8 GK210B devices. Each device has 2496 CUDA cores. The implemen-
tations are compiled with gcc 5.4.0 and nvcc 8.0. The profiling results have been
obtained with both Nvidia visual and inline profilers, nvvp and nvprof, respec-
tively. All performance results consider the full pipeline execution time, including

GPU-Based Implementation of Ptycho-ADMM for High Performance 549

Fig. 3. Performance of the proposed Ptycho-ADMM implementation when executed
using 1, 2, 4 and 8 GPUs. Multi-GPU executions communicate every single iteration.

loading the experimental data, GPU runtime initialization, memory allocation
and transfers, and writing back the reconstructed image. The dataset employed
corresponds to an experiment performed in the ALS during 2015 that measured
a cluster of iron catalyst particles. We have selected different size slices of said
experiment to analyze the performance of the proposed implementation with dif-
ferent input sizes. Experimental results presented below hold for other datasets
and simulations tested. To simplify the computational analysis, all experiments
presented in this section always run 100 solver iterations.

The proposed Ptycho-ADMM implementation achieves a GPU compute uti-
lization of 88%, on average, when executed with significant input sizes (around
100 million input samples). Figure 2 reports the percentage of computational
time of the main Ptycho-ADMM CUDA kernels. UpdateIllumNumerator and
UpdateIllumDenominator compute the numerator and denominator of line 9
Algorithm 1, whereas IlluminationMultiply computes the multiplication of an
illumination with a stack of frames. Other refers to the rest of kernel calls, which
have a computational share of less than 5%. A single solver iteration executes a
total of 64 CUDA kernels, 42 of which employ less than 0.5% of the total compu-
tational time. Out of the kernels with more than 4% of computational time, the
theoretical occupancy is 100%, whereas the achieved experimental occupancy is
96%, on average.

The following experiment assesses the performance and scalability of the
proposed Ptycho-ADMM solution for both single- and multi-GPU execution.
Figure 3 shows the performance of the proposed implementation when executed

550 P. Enfedaque et al.

Fig. 4. Performance of the proposed Ptycho-ADMM implementation when executed
using 1, 2, 4 and 8 GPUs. Multi-GPU executions communicate every 8 iterations.

using 1, 2, 4 and 8 GPU nodes2. This experiment employs 6 different input sizes.
The vertical axis measures performance in millions of input samples divided by
total execution time (the higher the better). The horizontal axis corresponds to
millions of input samples. The multi-GPU executions presented in Fig. 3 perform
communication every iteration.

A horizontal performance line in Fig. 3 represents linear scaling, meaning that
the execution time increases proportionally to the input size. Each one of the
experiments reported in Fig. 3 presents better-than-linear scaling. This is because
the data sizes employed are not big enough to saturate multiple high-end GPU
devices, specially with the smaller input sizes. The proposed implementation
begins to saturate a single GPU at around 60 millions input samples, although
the performance keeps slightly increasing for larger experiments. This proportion
holds when executing the solution on 2 GPUs, with a close-to-saturation point
at about 200 million input samples. With 4 and 8 GPUs, we can extrapolate the
saturation point to be around 400 and 800 million samples. This suggests that,
when executed on similar size GPUs, bigger data sets could still benefit from
additional multi-GPU performance.

With significant input sizes, multi-GPU executions are 1.7, 2.1 and 1.8 times
faster than a single GPU, using 2, 4 and 8 GPUs, respectively. A significant con-
sideration in multi-GPU performance resides on the communication frequency
employed. The above results can be improved up to a 55% by means of reducing
the communication frequency. The tradeoff between communication frequency
and solution convergence is maximized when communicating every 8 iterations,

2 The experiment with a single GPU and more than 200 million input samples is not
reported because it does not fit into the device main memory.

GPU-Based Implementation of Ptycho-ADMM for High Performance 551

Fig. 5. Performance of the proposed Ptycho-ADMM implementation compared to
that of SHARP, both executed on a single GK210B GPU. Different input sizes are
employed, ranging from 100 256× 256 frames to 2500 256× 256 frames. Similar results
are obtained with other datasets.

on average. When enough iterations are executed, this communication frequency
has close-to-no impact on the convergence speed, and significantly accelerates the
multi-GPU performance. Figure 4 presents the same experiment as before, but
communicating every 8 iterations. In this experiment the performance of multi-
GPU implementations is increased on a 40%, on average, achieving speedups
of 2.3, 2.9 and 2.6 respect single GPU, for execution with 2, 4 and 8 GPUs,
respectively.

The last test compares the performance of the proposed Ptycho-ADMM
implementation with that of SHARP, a GPU-accelerated ptychography solu-
tion. SHARP employs the RAAR algorithm [13], a less computational intensive
algorithm than Ptycho-ADMM, finely tuned for ptychography reconstruction.
The results of the experiment are depicted in Fig. 5, using the same datasets as
previous experiments, and executed on a single GPU. The vertical axis represents
performance, in millions of input samples divided by execution time (seconds),
and the horizontal axis are input samples (in millions). On average, RAAR is
10% faster than the proposed Ptycho-ADMM solution. Besides being extensively
optimized for GPU computing, RAAR employs one less additional variable (of
the same size of the input stack) and requires one less update step compared
to Ptycho-ADMM. On the other hand, the RAAR algorithm does not provide
any mathematical convergence guarantee and does not expose the robustness to
noise and features proposed by Ptycho-ADMM.

552 P. Enfedaque et al.

5 Conclusions

This paper presents the first high performance multi-GPU implementation of
Ptycho-ADMM. The solution is designed to efficiently exploit the inherent paral-
lelism of the ptychography basic operations. The experimental results show how
the implementation is able to saturate multiple high-end GPU devices and to
properly scale with the increase of input data size. The ever improving bright-
ness of accelerator based x-ray sources enables novel discoveries by means of
providing faster frame rates, larger fields of view and higher resolutions. In this
context of continuous increase of input data, scalable reconstruction times and
robust solvers that guarantee convergence on a reasonable amount of iterations
are highly valuable.

The main future work lines are related to implement a dynamic data feed
system that does not require all the data to be allocated (and processed) at the
same time. Employing CUDA unified memory could help achieving this goal by
means of oversubscribing the GPU main memory. Additional tests with larger
datasets (synthetic or real) will also be considered, together with execution on
larger scale distributed memory systems using MPI.

Acknowledgment. This work was partially funded by the Center for Applied Mathe-
matics for Energy Research Applications, a joint ASCR- BES funded project within the
Office of Science, US Department of Energy, under contract number DOE-DE-AC03-
76SF00098, and by the Advanced Light Source, which is a DOE Office of Science User
Facility under contract no. DE-AC02-05CH11231.

References

1. Shi, X., Fischer, P., Neu, V., Elefant, D., Lee, J., Shapiro, D., Farmand, M.,
Tyliszczak, T., Shiu, H.-W., Marchesini, S., et al.: Soft x-ray ptychography studies
of nanoscale magnetic and structural correlations in thin SmCo5 films. Appl. Phys.
Lett. 108(9), 094103 (2016)

2. Giewekemeyer, K., Thibault, P., Kalbfleisch, S., Beerlink, A., Kewish, C.M.,
Dierolf, M., Pfeiffer, F., Salditt, T.: Quantitative biological imaging by ptycho-
graphic x-ray diffraction microscopy. Proc. Natl. Acad. Sci. 107(2), 529–534 (2010)

3. Shapiro, D.A., Yu, Y.-S., Tyliszczak, T., Cabana, J., Celestre, R., Chao, W., Kaz-
natcheev, K., Kilcoyne, A.D., Maia, F., Marchesini, S., et al.: Chemical composi-
tion mapping with nanometre resolution by soft x-ray microscopy. Nat. Photonics
8(10), 765–769 (2014)

4. Holler, M., Guizar-Sicairos, M., Tsai, E.H., Dinapoli, R., Müller, E., Bunk, O.,
Raabe, J., Aeppli, G.: High-resolution non-destructive three-dimensional imaging
of integrated circuits. Nature 543(7645), 402–406 (2017)

5. Marchesini, S.: Invited article: a unified evaluation of iterative projection algo-
rithms for phase retrieval. Rev. Sci. Instr. 78(1), 011301 (2007)

6. Marchesini, S., Krishnan, H., Daurer, B.J., Shapiro, D.A., Perciano, T., Sethian,
J.A., Maia, F.R.: Sharp: a distributed GPU-based ptychographic solver. J. Appl.
Crystallogr. 49(4), 1245–1252 (2016)

GPU-Based Implementation of Ptycho-ADMM for High Performance 553

7. Glowinski, R., Tallec, P.L.: Augmented Lagrangian and Operator-Splitting Meth-
ods in Nonlinear Mechanics. SIAM Studies in Applied Mathematics, Society for
Industrial and Applied Mathematics, Philadelphia (1989)

8. Chang, H., Enfedaque, P., Marchesini, S.: Blind Ptychographic Phase Retrieval via
Convergent Alternating Direction Method of Multipliers (2018, submitted)

9. Department of energy online repository system, January 2018. https://github.com/
doecode/

10. Thibault, P., Dierolf, M., Bunk, O., Menzel, A., Pfeiffer, F.: Probe retrieval in pty-
chographic coherent diffractive imaging. Ultramicroscopy 109(4), 338–343 (2009)

11. Hesse, R., Luke, D.R., Sabach, S., Tam, M.K.: Proximal heterogeneous block
implicit-explicit method and application to blind ptychographic diffraction imag-
ing. SIAM J. Imaging Sci. 8(1), 426–457 (2015)

12. Enfedaque, P., Auli-Llinas, F., Moure, J.C.: Implementation of the DWT in a GPU
through a register-based strategy. IEEE Trans. Parallel Distrib. Syst. 26(12), 3394–
3406 (2015)

13. Luke, D.R.: Relaxed averaged alternating reflections for diffraction imaging. Inverse
Probl. 21(1), 37–50 (2005)

https://github.com/doecode/
https://github.com/doecode/

	GPU-Based Implementation of Ptycho-ADMM for High Performance X-Ray Imaging
	1 Introduction
	2 Background
	2.1 Ptycho-ADMM Overview
	2.2 CUDA and GPU Computing

	3 Proposed Implementation
	3.1 Multi-GPU Solution

	4 Experimental Results
	5 Conclusions
	References

