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Arsenic in Paddy Soils and Potential
Health Risk
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10.1 Introduction

Arsenic a metalloid has a serious threat to both environment and human health. It has
been reported in 70 countries worldwide (Zhao et al. 2010). Especially, in South and
Southeast Asia, effects of arsenic toxicity on humans through drinking water and
staple food rice have become a serious concern (Smedley et al. 2005). Natural
and anthropogenic sources are responsible for arsenic contamination in groundwater
and paddy soils (Meharg et al. 2009). In the region, arsenic is mostly reported in rural
areas. In groundwater, arsenic is present both in inorganic and organic form. Rice
grown on contaminated paddy soil accumulates considerable arsenic and makes it a
part of food chain (Meharg et al. 2009).

Paddy rice, a staple food, is mostly irrigated with arsenic-contaminated water in
arsenic-affected countries. Arsenic accumulated rice has become a health disaster
because rice has a special ability to uptake the arsenic (Meharg and Rahman 2003).
So rice has become a potential source of arsenic exposure to humans. Recently, the
Joint Food and Agriculture Organization and the World Health Organization
(FAO/WHO) Expert Committee on Food Additives suggested a maximum limit of
inorganic As of 0.2 mg/kg for polished rice. Environmental Protection Agency
(EPA) has classified arsenic as a carcinogenic (Abernathy 1993; Tchounwou et al.
2003) because it can cause serious health effects, including cancers of the skin, lung,
bladder, liver, and kidney. Similarly it can disrupt human systems like cardiovascu-
lar, neurological, hematological, renal, respiratory, etc. (Ng et al. 2003; Halim et al.
2009; Johnson et al. 2010; Martinez et al. 2011).
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10.2 Arsenic in Paddy Soils: A Threat to Sustainable Rice
Cultivation in South and Southeast Asia

Groundwater arsenic-contaminated water within a range of 0.5–5000 μg/l is present in
more than 70 countries of the world (Ravenscroft et al. 2009). Arsenic contamination
of groundwater in several regions of South and Southeast Asia has become a serious
threat. This contaminated groundwater is used for the irrigation of the main cereal
crop, i.e., rice, of this region especially in Bangladesh and West Bengal (India). The
studies on arsenic-contaminated water is reported in Bangladesh and West Bengal
(McArthur et al. 2001), Nepal (Gurung et al. 2005), the Ganga Plains (Acharyya and
Shah 2007), Vietnam (Postma et al. 2007), and Taiwan (Liu et al. 2005a, b). Other
than these areas, GIS-based geological–geochemical–hydrological models also predict
widespread pollution of groundwater in Indonesia, Malaysia, the Philippines, and
other regions where still arsenic-related research has not been done (Ravenscroft
2007). Arsenic-contaminated water has created a threat to sustainable rice cultivation
in these areas because it is accumulating the arsenic in topsoil and rice of these areas
(Brammer and Ravenscroft 2009; Khan et al. 2009, 2010a, b; Dittmar et al. 2010;
Meharg and Rahman 2003).

As the agroecological and hydrogeological conditions of the South and Southeast
Asian countries are broadly similar, it can be supposed that irrigation of arsenic-
contaminated groundwater can affect paddy rice of this entire region. Besides, paddy
rice is a major contributor of arsenic exposure to human due to its higher deposition
in topsoil from irrigated water and subsequent uptake in rice grain (Dittmar et al.
2010). Rice cultivation in this region through arsenic-contaminated water has been
affected in terms of its production as well as its quality. The first reason of this issue
is the use of arsenic-contaminated groundwater in South and Southeast Asia during
dry season. The second one is that rice is susceptible to arsenic toxicity (Brammer
and Ravenscroft 2009). The dependency on groundwater for rice irrigation in this
region has increased due to low precipitation level even in monsoon seasons.
However, the demand of rice production is expected to increase in near future to
meet the needs of increasing population. This trend will increase higher arsenic
deposition in topsoil of this region.

10.3 Sources of Arsenic in Paddy Soils

Paddy fields are contaminated with arsenic through various sources (Fig. 10.1),
including metal mining (Liao et al. 2005; Liu et al. 2006; Zhu et al. 2008), pesticides,
fertilizer application (Bhattacharya et al. 2003; Williams et al. 2007), and irrigation
with As-rich groundwater (Mehrag and Rahman 2003; Williams et al. 2006). Among
these, the most common one is the irrigation with As-rich groundwater which has
increased the As levels in the soil (Heikens et al. 2007; Hossain et al. 2008; Baig
et al. 2011) and uptake by rice (Duxbury et al. 2003; Williams et al. 2006; Rahman
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et al. 2007; Rahman and Hasegawa 2011). In a survey from Bangladesh, Meharg and
Rahman (2003) showed the positive correlation between As in irrigation water and
arsenic in irrigated soil and rice.

Ravenscroft et al. (2009) have pointed out four geochemical mechanisms of
natural As pollution: reductive dissolution, alkali desorption, sulfide oxidation, and
geothermal activity. In South and Southeast Asia, reductive dissolution is the most
common source of arsenic contamination. It occurs where As adsorbed to iron
oxy-hydroxides in sediments is liberated into groundwater when microbial degra-
dation of organic matter (e.g., in buried peat beds) reduces ferric iron to the soluble
ferrous form (Nickson et al. 2000; McArthur et al. 2001). The As is contained in
relatively unweathered alluvial sediments derived from igneous and metamorphic
rocks in the Himalayas and related young mountain chains (McArthur et al. 2004;
Ravenscropt et al. 2005). Arsenic is not present in large amounts in these sediments:
its importance lies in the toxicity of the element at very low concentrations to
humans and many plants that absorb it.
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Fig. 10.1 Sources of arsenic contamination
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10.4 Factors Affecting Arsenic Mobility in Paddy Soils
and Uptake by Plant

Several factors like pH, adsorption, desorption process, redox conditions, and
biological activity are responsible for mobility of As in water and soil. The presence
of high concentration of As in soil depends on the aforesaid factors; organic content;
oxides of Al, Fe, and Mn; and soil fractions. Many studies reported As mobilization
in coarse and fine soil (Sadiq 1997; Bhattacharya et al. 2010; Cai et al. 2009).
Coarser texture of sediments has less As as compared with finer texture. Fine texture
contains immobile As but released in the subsurface, while coarse texture is rela-
tively high fraction due to mobile As. Mobility of As is affected by geomorphic
characteristic, rainfall infiltration rate, and groundwater level (Bhattacharya et al.
2010).

Arsenic speciation and mobility in soil is highly dependent on redox conditions.
In oxidized condition, arsenic prevails as arsenate [As (V)]. Arsenate has affinity for
Fe-oxy-hydroxide, and it reduces mobility and uptake by plant in oxidizing envi-
ronment (Smedly and Kinniburgh 2002). However, in reducing conditions arsenic is
present in arsenite [As (III)] form and readily available for uptake of plant due to
higher mobility (Takahashi et al. 2004; Xu et al. 2008).

Microorganisms can facilitate the redox processes exclusively bacteria which
assist as catalyst in speeding up the reactions. Movement of As in natural system also
mainly depends on adsorption and desorption processes. Together arsenate and
arsenite adsorb to surfaces of several different solids including iron, aluminum,
and manganese oxides, as well as clay minerals. As compared to arsenite, arsenate
is much more strongly adsorbed because of its greater negative charge at the same
pH. With increasing pH, AsV adsorption decreases in particular above pH 8.5, while
the reverse happens for AsIII. The degree to which pH effects As sorption fluctuates
between soils. The adsorption maximum for AsV on FeOOH lies around pH
4, whereas for AsIII the maximum is found at approximately pH 7–8.5 (Mahimairaja
et al. 2005). AsV and AsIII adsorb mostly to iron (hydr)oxides (FeOOH) existing in
the soil, and AsV association is the strongest. The behavior of FeOOH is extremely
dependent on redox conditions, creating Fe redox chemistry the most chief factor in
regulating As behavior (Fitz and Wenzel 2002; Takahashi et al. 2004). In anaerobic
environments, FeOOH readily dissolves, and As is released into the soil solution,
where As will be present mostly as AsIII (Takahashi et al. 2004). Microbial action is
strictly involved in this procedure (Islam et al. 2004). In aerobic environments
FeOOH is fairly insoluble and serves as a sink for As. Fe and As behavior is
therefore active and closely related in lowland paddy fields. The As concentrations
in the irrigation water frequently differ from those in the soil water. For example, a
study reported that As concentrations in irrigation water were higher compared to the
soil water concentrations during the non-flooded period because of sorption to
FeOOH. In flooded conditions, soil water concentrations increased because of
remobilization and, important to note, became higher than the irrigation water
concentrations. In flooded conditions, plants can therefore be exposed to much
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higher concentrations in the soil water than would be expected based on the
concentrations in the applied irrigation water (Takahashi et al. 2004).

The presence of FeOOH is mainly occurring in the clay-size soil fraction (<2 μm)
and clayey soils; therefore generally they have a higher As content as compared to
more sandy soils (Mahimairaja et al. 2005). Under specific soil conditions, such as
carbonate minerals and manganese oxides (MnO), sorption substrates can also be
relevant (Mahimairaja et al. 2005).

Fe oxides/hydroxides represent as the major sink for As adsorption in soils,
whereas the Al- and Ca-bound fractions and their importance are variable. Phosphate
(PO4) has similarity with AsV, making it an important factor in the behavior of As in
aerobic soils (Mahimairaja et al. 2005). Both ions act as competing sites for FeOOH
and for uptake by plants. The effect of PO4 additions to aerobic soils on the uptake of
As will consequently depend on the existing balance between competition for
sorption sites and competition for uptake mechanism.

As III an analogue of PO4, making the presence of PO4 possibly less relevant to
As behavior in the presence of flooded soil conditions (Takahashi et al. 2004). Role
of PO4 in the rhizosphere is not known (the microenvironment around the roots),
where aerobic conditions are dominant under flooded conditions. Other ions are also
responsible for As behavior, but their impact seems to be less as compared to PO4

(Mahimairaja et al. 2005).
Binding of As with iron oxide surfaces is considered as an important reaction in

the subsurface soil because iron oxides are present in large number in the environ-
ment in the form of coatings on other solids. Arsenate adsorbs strongly to iron oxide
surfaces in condition of acidic and near-neutral pH. Organic matter of soil has no
contribution in significant quantities of As sorption in soils, especially when the
effective sorbents such as hydrous Fe oxides are present.

10.5 Toxicity of Arsenic

The chemical forms and oxidation states of arsenic are more important as regards
toxicity. Toxicity also depends on other factors such as the physical state, gas,
solution, or powder particle size, the rate of absorption into cells, the rate of
elimination, the nature of chemical substituents in the toxic compound, and, of
course, the preexisting state of the patient. The toxicity of arsenicals decreases in
this order, arsines > iAsIII > arsenoxides (org AsIII) > iAsV > arsonium com-
pounds> As (Whitacre and Pearse 1972). High methylation capacity did not protect
the cells from the acute toxicity of trivalent arsenicals as that MMAIII is more
cytotoxic to human cells (hepatocytes, epidermal keratinocytes, and bronchial epi-
thelial cells), compared to iAsIII and iAsV (Styblo et al. 2000).

Arsenic specie inactivates the enzyme system (Dhar et al. 1997). The inhibitory
action starts with the binding of trivalent arsenic with the SH and OH groups of
enzymes when two adjacent HS-groups are present in the enzyme. The iAsV has no
ability to react directly with the active sites of enzymes. It first reduces to iAsIII
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in vivo before producing its toxic effect (Pauwels et al. 1965). The citric acid cycle is
mostly affected because of its enzyme inactivation by iAsIII, so these enzymes are
unable to produce cellular energy in this cycle. In this inhibitory action, iAsIII makes
complexations with pyruvate dehydrogenase, and the generation of adenosine-5-
triphosphate (ATP) is prevented. It reduces productions of energy, and cell damages
slowly (Belton et al. 1985; Wolochow et al. 1949).

Although iAsIII is a mostly considered hazardous form of the element, however,
iAsV as arsenate can also create toxic effects. It causes arsenolysis in which arsenate
disturbs the process of oxidative phosphorylation (In this process ATP is produced).
Arsenate produces arsenate ester of ADP which is not stable and undergone hydro-
lysis nonenzymatically. Hence the energy metabolism is inhibited, and glucose-6-
arsenate is produced instead of glucose-6-phosphate. Arsenate also causes toxicity
by inhabiting mechanism of DNA repairing mechanism as it has the ability to replace
the phosphorous in DNA.

10.6 Potential Health Risk

Due to toxicity, chronic exposure of arsenic causes severe health impacts by creating
disturbances in all body systems. Since the nineteenth century, several skin diseases
(including pigmentation changes, hyperkeratosis, and skin cancers) related to arsenic
contamination have been studied (WHO 2001). Several health effects due to arsenic
exposure are given below.

10.6.1 Respiratory Effects

Arsenic exposure to human through different ways can lead to several respiratory
effects like laryngitis, tracheae bronchitis, rhinitis, pharyngitis, shortness of breath,
chest sounds (crepitations and/or rhonchi), nasal congestion, and perforation of the
nasal septum (Gerhardsson et al. 1988).

10.6.2 Pulmonary Effects

Pulmonary diseases due to chronic arsenic exposure are mostly occurred by drinking
arsenic-contaminated water. Among these the common ones are abnormal skin
pigmentation, chronic cough, and lung disease.
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10.6.3 Cardiovascular Effect

Arsenic toxicity hinders cardiovascular functions. It causes cardiovascular abnor-
malities, Raynaud’s disease, myocardial infarction, myocardial depolarization, car-
diac arrhythmias, thickening of blood vessels, and their occlusion and BFD.

10.6.4 Gastrointestinal Effect

Ingestion of heavy inorganic arsenicals affects gastrointestinal tract. These arsenicals
are absorbed on gastrointestinal tract according to their solubility level. Lesser-dose
arsenic poisoning attacks in the form of dry mouth and throat, heartburn, nausea,
abdominal pains, cramps, and moderate diarrhea. Chronic low-dose arsenic inges-
tion manifests without symptomatic gastrointestinal irritation, or it can produce mild
esophagitis, gastritis, or colitis with respective upper and lower abdominal discom-
fort. Anorexia, malabsorption, and weight loss are also associated with arsenic
contamination (Goebel et al. 1990).

10.6.5 Hematological Effect

The hematopoietic system is also affected by arsenic toxicity. Hemoglobin has
affinity for arsenic, which decreases oxygen uptake by cells. Acute, intermediate,
and chronic exposure of arsenic causes anemia (normochromic normocytic, aplastic,
and megaloblastic) and leukopenia (granulocytopenia, thrombocytopenia, myeloid,
myelodysplasia). The direct hemolytic or cytotoxic reactions occur in blood cells,
and erythropoiesis is suppressed. High-dose arsenic can result in bone marrow
depression in human (Saha et al. 1999).

10.6.6 Hepatic Effect

Arsenic chronic exposure can lead to hepatic effect. Chronic arsenic causes hepatic
disturbances including cirrhosis, portal hypertension without cirrhosis, fatty degen-
eration, and primary hepatic neoplasia. Patients may experience bleeding esophageal
varices, ascites, jaundice, or simply an enlarged tender liver, mitochondrial damage,
impaired mitochondrial functions, and porphyrin metabolism.
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10.6.7 Renal Effects

Kidneys are not so sensitive to arsenic because of their excretion mechanism of
arsenic. Only repeated exposure of arsenic can harm the kidneys. The sites of the
kidney which are damaged by arsenic are the capillaries, tubules, and glomeruli,
which lead to hematuria and proteinuria, oliguria, shock, and dehydration with a real
risk of renal failure, cortical necrosis, and cancer (Hopenhayn et al. 1998).

10.6.8 Dermal Effects

Arsenic exposure may also produce a variety of skin issues like diffused and spotted
melanosis, leucomelanosis, keratosis, hyperkeratosis, dorsum, Bowen’s disease,
cancer, etc. Hyperpigmentation may occur on darker parts of the skin (Shannon
and Strayer 1989).

10.6.9 Neurological Effect

Ingestion of arsenic can cause neural injury. Neurological effects due to arsenic
contamination can be classified on the basis of acute and chronic exposure. In result
of acute high exposure (1 mg As/kg/day or more), encephalopathy can occur, and its
symptoms are headache, lethargy, mental confusion, hallucination, seizures, and
coma. Intermediate and chronic exposures (0.05–0.5 mg As/kg/day) lead to sym-
metrical peripheral neuropathy, which starts as numbness in the hands and feet but
later may develop into a painful “pins-and-needles” sensation, wrist or ankle drop,
asymmetric bilateral phrenic nerve, and peripheral neuropathy of both sensory and
motor neurons causing numbness, loss of reflexes, and muscle weakness.

10.6.10 Developmental Effects

Impacts on development due to arsenic toxicity are not well studied. However, some
studies found that arsenic exposure through dust during pregnancy has a high rate of
congenital malformations, below average birth weight. Similarly, a couple of studies
reported an increased number of miscarriages among women due to arsenic exposure
(Aschengran et al. 1989).
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10.6.11 Reproductive Effects

About arsenic effect on reproductive system, it is known since long time that
inorganic arsenic crosses the placental barriers and effects the fetal development,
but organic arsenic does not. Commonly studies have reported the reproductive
issues like an increase in the prevalence of low birth weight infants, higher rates of
spontaneous abortions, elevations in congenital malformations, higher frequency of
pregnancy complications, mortality rates at birth, and low birth weights due to
arsenic contamination (Tabacova et al. 1994).

10.6.12 Immunological Effects

Relationship between human immune system and arsenic toxicity is not well studied.
However, a few studies have developed a link and stated that arsenic toxicity attacks
on lymphocytes and decreases immunity power of a man (Gonsebatt et al. 1994).

10.6.13 Genotoxic Effects

Arsenic exposure causes genotoxic effects. Several species of arsenic generate these
effects according to their potential toxicity. The comutagenecity and cocarcinogenicity
of arsenic depend on the mechanism of repair inhibition. Trivalent arsenic induces
more potent and genotoxic chromosome aberration frequencies than pentavalent.
Organo arsenicals cause greater disturbing effects on the microtubular organization
of the cell. So, they have higher mitotic toxicity. Among DMA and MMA, the former
one is more toxic. Similarly, TMAO has more potential for inducing both mitotic
arrest and tetraploids (Eguchi et al. 1997).

10.6.14 Mutagenetic Effects

Health impacts due to arsenic toxicity in humans also appear in the form of
mutagenetic effects. Arsenic damages the DNA structure and induces genetic alter-
ation (like gene mutation) in a man, and these problems transfer genetically in
subsequent generation. Arsenic causes genetic damage by inhibiting DNA repair
(Bencko et al. 1988).
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10.6.15 Carcinogenic Effects

Since a century arsenic carcinogenic effects are known. In different parts of the
world, including Japan; Bangladesh; West Bengal, India; Chile; and Argentina,
several studies have reported lung, skin, bladder, kidney, and liver cancer due to
exposure of arsenic contamination through drinking water. Risk of cancer due to
arsenic contamination in humans depends on the level of dose.

10.6.16 Diabetes Mellitus

Drinking water arsenic contamination and prevalence of diabetes mellitus have
positive relation. Several studies conducted in Bangladesh (Rahman et al. 1998)
and in Taiwan (Lai et al. 1994) have reported that the number of diabetes mellitus
patients was higher in those population where drinking water was contaminated with
arsenic.

10.7 Conclusions

This chapter has focused on arsenic contamination in paddy rice and its heath impact
on humans. Rice as a major staple food of South and Southeast Asia has become an
important source of arsenic exposure to human. Arsenic in paddy soil and in rice has
a threat to sustainable rice cultivation in the region as well as serious health problems
for the people of this region. Arsenic species have different levels of toxicity and
make direct attacks on human body functions. It has potential to disrupt all body
systems. To protect the people from arsenic toxicity, there is a need to take several
mitigations measures. Modification in agricultural practices like by avoiding anoxic
soil conditions can decrease the arsenic uptake by rice. Another option is to reduce
the rice ability of uptaking arsenic by genetic modification. Public awareness about
arsenicosis should be enhanced through proper education and guidance.
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