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Preface

The 13 chapters of this book are the extended and revised versions of selected papers
presented at the 6th International Conference on Pattern Recognition Applications and
Methods (ICPRAM 2017), held in Porto, Portugal, February 24–26, 2016. Since its
first edition, the purpose of the ICPRAM conference has been to establish and
strengthen contacts among researchers active in different research fields related to
pattern recognition in its wider connotation, both from theoretical and application
perspectives. This book collects the best contributions along this line. In particular,
they represent the most interesting and relevant part of all submissions (11%) received
for ICPRAM 2017. The pre-selection process was carried out by the general chair and
the program chairs of the event by taking into account a number of criteria such as
classifications and comments provided by the ICPRAM 2017 Program Committee
members, the session chairs’ assessment of presentation quality, and the program
chairs’ global view of all papers included in the technical program. Then, the authors
of the pre-selected papers were invited to submit a revised and extended version of their
work; a new reviewing process was performed to check whether the submitted
extended papers were characterized by a sufficient amount of innovative material, with
respect to the discussion of the proposed approaches, the presentation of theoretical as
well as operational details, and experiments.

We believe that this book can contribute to the understanding of relevant trends of
current research on pattern recognition in the areas covered by the collected papers. As
with the conference organization, we divided the papers into two main tracks:
“Applications” and “Methods.” The five papers dealing with methods are presented
first, not because they are more important but because they have a more general scope,
and each of them may offer inspiration for different applications. Then the eight papers
presenting a wide variety of applications follow.

The papers dealing with methods are introduced next.
In “Control Variates as a Variance Reduction Technique for Random Projections,”

by Keegan Kang and Giles Hooker, control variates are used as a variance reduction
technique in Monte Carlo integration, making use of positively correlated variables to
bring about a reduction of variance for estimated data.

In “Graph Classification with Mapping Distance Graph Kernels,” by Tetsuya
Kataoka, Eimi Shiotsuki, and Akihiro Inokuchi, two novel graph kernels are proposed,
namely, a mapping distance kernel with stars (MDKS), and mapping distance kernel
with vectors (MDKV), to classify labeled graphs more accurately than existing
methods.

In “Domain Adaptation Transfer Learning by Kernel Representation Adaptation,”
by Xiaoyi Chen and Régis Lengellé, a new SVM-based approach with a supplementary
maximum mean discrepancy (MMD)-like constraint is proposed, as well as a kernel
principal component analysis (KPCA)-based transfer learning method. Both methods



are compared with other transfer learning methods from the literature to show their
efficiency on synthetic and real datasets.

In “Optimal Linear Imputation with a Convergence Guarantee,” by Yehezkel S.
Resheff and Daphna Weinshall, a method for imputation of missing values is proposed,
which is guaranteed to converge to a local minimum. The performance of the method is
shown to be markedly superior in comparison with other methods.

The paper “Condensing Deep Fisher Vectors: To Choose or to Compress?” by Sarah
Ahmed and Tayyaba Azim shows that feature compression is a better choice than
feature selection for reducing data high-dimensional memory. In particular, this holds
when dealing with large-scale retrieval of high dimensional Fisher vectors, when they
are derived from deep or shallow stochastic models such as restricted Boltzmann
machine.

The group of papers dealing with Applications follows.
The paper “Emotion Recognition Using Neighborhood Components Analysis and

ECG/HRV-Based Features,” by Hany Ferdinando, Tapio Seppänen, and Esko
Alasaarela, explores how much neighborhood component analysis (NCA) enhances
emotion recognition using ECG-derived features. Results with the MAHNOB-HCI
database were validated using subject-dependent and subject-independent scenarios
with kNN as classifier for 3-class problem in valence and arousal.

In “A Conversive Hidden Non-Markovian Model Approach for 2D and 3D Online
Movement Trajectory Verification,” by Tim Dittmar, Claudia Krull, and Graham
Horton, an approach for stochastic modelling of movement trajectories is presented,
where the models are based on conversive hidden non-Markovian models. A verifica-
tion system is presented that creates trajectory models from several examples. Its
performance is deduced from experiments on different data sets including signatures,
doodles, pseudo-signatures, and hand gestures recorded with a Kinect.

The paper “Prediction of User Interest by Predicting Product Text Reviews,” by
Esteban García-Cuesta, Daniel Gómez-Vergel, Luis Gracia-Expósito, José Manuel
López-López, and María Vela-Pérez, deals with shopping websites providing social
network services to collect the opinions of the users on items available for purchasing.
A prediction is done based on the sets of words that users would use should they
express their opinions and interests on items not yet reviewed. To this aim, careful
attention is given to the internal consistency of the model by relying on well-known
facts of linguistic analysis, collaborative filtering techniques, and matrix factorization
methods.

In the paper “Blood Vessel Delineation in Endoscopic Images with Deep Learning
Based Scene Classification,” by Mayank Golhar, Yuji Iwahori M. K. Bhuyan, Kenji
Funahashi, and Kunio Kasugai, a novel blood vessel extraction methodology is pro-
posed. First, a high-level classification of the input endoscopic images into four classes
is carried out. Then, the classified images containing blood vessel information are
processed with a Frangi vesselness filter. The results of the proposed blood vessel
delineation algorithm were found to give better accuracy than the vanilla Frangi ves-
selness filter and the BCOSFIRE filter, increasing it by 8% and 5%, respectively.

In “Semi-Automated Testing of an Architectural Floor Plan Retrieval Framework:
Quantitative and Qualitative Comparison of Semantic Pattern-Based Matching
Approaches,” by Qamer Uddin Sabri, Johannes Bayer, Viktor Ayzenshtadt,
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Syed Saqib Bukhari, Klaus-Dieter Althoff, and Andreas Dengel, case-based reasoning
and (in)exact graph matching are utilized to construct an end-to-end system for floor
plan retrieval, accessible by a refined version of a design-supporting Web interface.
A floor plan is modeled as a graph, where each room is represented as a node and the
relations between rooms are modeled as edges.

In “Characterization of a Virtual Glove for Hand Rehabilitation Based on Orthog-
onal LEAP Controllers,” by Giuseppe Placidi, Luigi Cinque, Matteo Polsinelli, and
Matteo Spezialetti, a multi-sensor approach, namely, the virtual glove (VG), is pre-
sented. It is based on the simultaneous use of two orthogonal LEAP motion controllers.
An engineered version of the VG is described, and its characterization is performed
through spatial measurements.

The paper “Congestion Analysis Across Locations Based on Wi-Fi Signal Sensing,”
by Atsushi Shimada, Kaito Oka, Masaki Igarashi, and Rin-ichiro Taniguchi, deals with
congestion analysis focusing on perceptual congestion rather than on objective,
quantitative congestion. The relationship between quantitative and perceptual con-
gestion is also analyzed. To this aim, a system for estimating and visualizing con-
gestion and collecting user reports about congestion is described.

In “Text Line Segmentation in Handwritten Documents Based on Connected
Components Trajectory Generation,” by Insaf Setitra, Abdelkrim Meziane, Zineb
Hadjadj, and Nawfel Bengherbia, a novel approach of text line segmentation based on
tracking is presented. Each connected component is considered as a moving object
along its respective line, and finds its best match given its history motion, i.e., the
closest connected component that lies in its trajectory.

Finally, we would like to express our gratitude to all the authors for their contri-
butions, and to the reviewers, who helped ensure the quality of this book. Our thanks
are also due to the INSTICC staff who supported both the conference and the prepa-
ration of this book.

February 2017 Maria De Marsico
Gabriella Sanniti di Baja

Ana Fred
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Control Variates as a Variance Reduction
Technique for Random Projections

Keegan Kang(B) and Giles Hooker(B)

Cornell University, Ithaca, NY 14850, USA
{tk528,gjh27}@cornell.edu

Abstract. Control variates are used as a variance reduction technique
in Monte Carlo integration, making use of positively correlated variables
to bring about a reduction of variance for estimated data. By storing
the marginal norms of our data, we can use control variates to reduce
the variance of random projection estimates. We demonstrate the use of
control variates in estimating the Euclidean distance and inner product
between pairs of vectors, and give some insight on our control variate cor-
rection. Finally, we demonstrate our variance reduction through experi-
ments on synthetic data and the arcene, colon, kos, nips datasets. We
hope that our work provides a starting point for other control variate
techniques in further random projection applications.

1 Introduction

The random projection technique is used in dimension reduction, where data in
high dimensions is projected to a lower dimension using a random matrix R. One
of the basic applications of this technique is to estimate the Euclidean distance
and inner product between pairs of vectors.

The entries rij in the random matrix R can either be i.i.d. with mean μ = 0
and second moment μ2 = 1, or correlated with each other. While it is common
to have a random projection matrix R with i.i.d. entries rij ∼ N(0, 1), speedups
are achieved by having R with binary i.i.d. entries [1], or drawn from a sparse
Bernoulli distribution [11]. In the above cases, the entries of the random projec-
tion matrix consists of elements {−1, 0, 1}, thus matrix multiplication is faster
when compared to dense entries in N(0, 1).

Further speedups can be achieved by using random matrices with correlated
entries, such as matrices constructed by the Lean Walsh Transform [12] to the
Fast Johnson Lindenstrauss Transform (FJLT) [2] and the Subsampled Random-
ized Hadamard Transform (SRHT) [4]. Both these transformations make use of
matrix-vector products using the Hadamard matrix, which can be computed
recursively.

Consider vectors xi ∈ R
p mapped to a lower dimensional vector x̃i ∈ R

k

using a random projection matrix R under the identity x̃T = xT R. The distance
properties of these vectors xi,xj are preserved in expectations in x̃i, x̃j . If we
wanted to compute a property of xi,xj given by some f(xi,xj), then the goal is
c© Springer International Publishing AG, part of Springer Nature 2018
M. De Marsico et al. (Eds.): ICPRAM 2017, LNCS 10857, pp. 1–20, 2018.
https://doi.org/10.1007/978-3-319-93647-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93647-5_1&domain=pdf
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to find some function g(·), such that E[g(x̃i, x̃j)] = f(xi,xj). For example, if we
want an estimate of the Euclidean distance between two vectors xi and xj , using
a random projection matrix R with entries i.i.d. from N(0, 1), or from {−1, 1}
with equal probability, then f(a, b) = g(a, b) = ‖a − b‖2.

Each of these resultant estimates from a chosen random matrix R have prob-
ability bounds on accuracy plus bounds on their run time, and it is up to the
user to choose a random projection matrix which will suit their purposes.

In this article, we expand upon the conference proceedings Random Projec-
tions with Control Variates [8] in the following ways

1. We give more insight on why control variates reduce the variance of our
random projection estimates.

2. We give more intuition on the control variate correction.
3. We perform more experiments on more datasets.

The control variate approach with random projections can be used with
different types of different random projection matrices. This leads to a variance
reduction in the estimation of Euclidean distances and inner products between
pairs of vectors xi,xj with a negligible extra cost in speed and storage space.
Such measures of distances can be used in clustering [5,6], classification [15], and
set resemblance problems [10].

We structure this article as follows: First, we express our notation differently
from the ordinary random projection notation to give intuition on how we can
use control variates. Next, we explain the control variate technique of variance
reduction and show control variates achieve variance reduction. We next look at
related work which inspired our method, before introducing the control variate
corrections for Euclidean distances and inner products. Lastly, we demonstrate
our method on both synthetic and experimental data and show that we can use
a control variate approach together with any random projection method to gain
variance reduction in our estimates.

1.1 Notation and Intuition

With classical random projections, we denote R ∈ R
p×k to be a random projec-

tion matrix. We let X ∈ R
n×p to be our data matrix, where each row xT

i ∈ R
p is

a p dimensional observation. In most textbooks, the random projection equation
is given by

V =
1√
k

XR (1)

However, we will use
V = XR (2)

without the scaling factor. The motivation is to see each element vij ∈ V as a
random variable drawn from some probability distribution.

Consider the random matrix R written as

R = [r1 | r2 | . . . |rk] (3)



Control Variates as a Variance Reduction Technique for Random Projections 3

where each ri is a column vector with i.i.d. entries. Then for a fixed row xT
i , the

elements {v2
ij}k

j=1 are drawn from the same probability distribution with mean
‖xi‖22.

By the Law of Large Numbers, we would expect that as k increases, the mean
of the observations {v2

ij}k
j=1 would converge to the true value of ‖xi‖22.

Similarly, we have the means of {(vis−vjs)2}k
s=1 and {(visvjs)}k

s=1 converging
to ‖xi − xj‖22 and 〈xi,xj〉 respectively.

For other random projection matrices R where the entries come from a
different distribution, we can also find equivalent expressions of the form
{f(vis,vjs)}k

s=1 where the mean of these observations converge to either the
squared Euclidean distance or inner product.

1.2 Probability Bounds on Random Projection Estimates

We give the form of the probability bounds on random projection estimates in
order to show how control variates give us a tighter bound.

Suppose we look at a single row vi ∈ V , and let Snorm
k =

∑k
s=1 v2

is. By finding
expressions of the form f1(ε, k1), f2(ε, k2) where

P

[
Snorm

k

k
≥ (1 + ε)‖x‖22

]

≤ f1(ε, k1) (4)

P

[
Snorm

k

k
≤ (1 − ε)‖x‖22

]

≤ f2(ε, k2) (5)

we can then place bounds on how far our estimate of the norm is relative to our
actual value since we have

P

[

(1 − ε)‖x‖22 ≤ Snorm
k

k
≤ (1 + ε)‖x‖22

]

≤ 1 − f1(ε, k1) − f2(ε, k2) (6)

Furthermore, computing these expressions f1(ε, k1), f2(ε, k2) suffices to place
probability bounds on our estimate of Euclidean distances and inner products.
Similarly, by defining SED

k :=
∑k

s=1(vis − vjs)2 and SIP
k :=

∑k
s=1 visvjs, we can

thus write

P

[

(1 − ε)‖xi − xj‖22 ≤ SED
k

k
≤ (1 + ε)‖xi − xj‖22

]

≤ 1 − f1(ε, k1) − f2(ε, k2)

(7)

P

[

(1 − ε)〈xi,xj〉 ≤ SIP
k

k
≤ (1 + ε)〈xi,xj〉22

]

≤ 1 − 2f1(ε, k1) − 2f2(ε, k2)

(8)

To see this, we can replace v2
is,x in Eqs. 4 and 5 by (vis − vjs)2,xi − xj and get

the bounds in (7).
We can also use the identities

‖vi − vj‖22 = ‖vi‖22 + ‖vj‖22 − 2〈vi,vj〉 (9)

‖vi + vj‖22 = ‖vi‖22 + ‖vj‖22 + 2〈vi,vj〉 (10)
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and the union bound to show (8), by expressing 〈vi,vj〉 in terms of 〈xi,xj〉.
When rij are i.i.d. N(0, 1), we get f1(ε, k1) = f2(ε, k2) = exp

{
−k(ε2−ε3)

4

}

[18]. The bounds for other random projection matrices can be found in [2,4,18].
These probability bounds are usually computed by looking at the respective

second moments, and using a Chernoff bound approach.

1.3 Control Variates

Having introduced the notion of each vij as a random variable, we now look
at control variates. Control variates are a technique in Monte Carlo simulation
using random variables for variance reduction. A more thorough explanation can
be found in Ross [17].

The method of control variates assumes we use the same random inputs to
estimate E[A] = μA, for which we know B with E[B] = μB . We call B our
control variate. Then to estimate E[A] = μA from some distribution A, we can
instead compute the expectation of

E[A + c(B − μB)] = E[A] + cE[B − μB ] = μA (11)

which is an unbiased estimator of μA for some constant c, which is our control
variate correction. This value of c which minimizes the variance is given by

ĉ = −Cov(A,B)
Var(B)

(12)

and thus we write

Var[A + c(B − μB)] = Var(A) − (Cov(A,B))2

Var(B)
(13)

Suppose we look at

Snorm
k =

n∑

j=1

v2
ij (14)

We can think of A being the probability distribution of the vis, with the mean
μA = ‖xi‖22 being our target. If we found some probability distribution B of the
form f(vij) and known mean μ′, then we must have

Scvnorm
k =

n∑

j=1

v2
ij + c(f(vij) − μ′) (15)

The expected value of Scvnorm
k is still ‖x‖22, but the second moment of Scvnorm

k

has to be lower (or no worse) than Snorm
k . To see this, recall that the variance of

a distribution is given by

Var[A] = E[A2] − (E[A])2 (16)
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where E[A2] is the second moment. Therefore, we can take the variance of our
expression as a proxy for the second moment, and by (13), have our second
moment of Scvnorm

k to be no greater than Snorm
k , since the term (Cov(A,B))2

Var(B) is
always positive.

Therefore, we need to find some distribution B where the variables bi are
correlated with vij to get good variance reduction. If they were independent,
then the numerator in our term (Cov(A,B))2

Var(B) becomes zero, and we do not get any
variance reduction at all.

To find such a distribution B, we necessarily need to fulfill two conditions.

Condition 1: Since each realization vij is the sum of p random variables
r1j , . . . , rpj , we need to have yi constructed from these same random variables
and also correlated with each xi1, . . . , xip in order to get a variance reduction.

Condition 2: We need to know the actual value of μB , the mean of B.
This seems like a chicken and egg problem since any μB that is related to

both xi., r.j would be of some form of either the Euclidean distance or the inner
product, both of which we want to estimate in the first place. We solve this
problem by considering an expression that relates both the Euclidean distance
and the inner product simultaneously.

1.4 Related Work

We draw inspiration from the works of Li et al. [9–11]. In these papers, Li et al.
expressed the tuple (vis, vjs) coming from a bivariate normal when the entries
of the random projection matrix R is i.i.d. N(0, 1).

More formally, given the matrix V = XR where each rij ∼ N(0, 1), then for
any two rows vi,vj of V we have the tuple

(
vis

vjs

)

∼ N

((
0
0

)

,

(
mi a
a mj

))

(17)

where mi,mj denote the norms ‖xi‖22, ‖xj‖22 respectively, and a denotes the inner
product 〈xi,xj〉.

Li et al. showed that if marginal information such as the actual norms
‖xi‖22, ‖xj‖22 were precomputed and stored, then it is possible to get a more
accurate estimate of the inner product a using an asymptotic maximum likeli-
hood estimator.

To do this, Li et al. computed the log-likelihood function after observing k
such draws {vis, vjs}k

s=1 which is given by

l(a) ∝ −1
2

log(m1m2 − a2) − 1
2

1
m1m2 − a2

k∑

s=1

(v2
ismj − 2visvjsa + v2

jsmi)

(18)

and found the value of â which maximizes this function via root finding
techniques.
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Li et al. also showed that the above result also held asymptotically when the
entries of the random matrix R do not come from N(0, 1). If they were i.i.d.
from the Sparse Bernoulli distribution, then under the Central Limit Theorem,
the tuple (vis, vjs) also converges to the bivariate normal.

We will use these results below.

1.5 Our Contributions

We propose using control variates in this article to reduce the variance of the
estimates of the Euclidean distances and the inner products between pairs of
vectors for a choice of random projection matrix R. In particular

1. We describe the process of the control variate approach, which has the same
time complexity to a non control variate approach.

2. We give the first and second moments of A + c(B − μB) for matrices R with
i.i.d. entries, which can then be used to bound the errors in our estimates.

3. We demonstrate empirically that our control variate approach works well with
current random projection methods on synthetically generated data and the
arcene, colon, kos, nips datasets.

2 Process of Using Control Variates

We describe and illustrate the process of using control variates in this section.
Without loss of generality, suppose we had x1,x2 ∈ R

p. Consider v given by
Xr. For the case p = 2, we would have

V =
(

v1
v2

)

=
(

x11 x12

x21 x22

)(
r1
r2

)

= Xr (19)

for one column of R. We do matrix multiplication Xr and get v1, v2.
In the next two sections, we will give the control variate to estimate the

Euclidean distance and the inner product. We will also give the respective opti-
mal control variate correction c, and the respective first and second moments of
the expression A+c(B−μB). This allows us to compute a more accurate estimate
for the Euclidean distance and the inner product, as well as place probability
bounds on the errors of our estimates.

2.1 Control Variate for the Euclidean Distance

Suppose we computed V as above. The following theorem shows us how to
estimate the Euclidean distance with our control variate.

Theorem 1. Let one realization of A = (v1 − v2)2, which is an estimate of our
Euclidean distance. Let one realization of B to be (v1 − v2)2 + 2v1v2 = v2

1 + v2
2

with expected value μB = ‖x1‖2+‖x2‖22. The Euclidean distance (in expectation)
between these two vectors is given by E[A+c(B−μB)], and we can compute c :=
−Cov(A,B)/Var(B) from our matrix V directly, using the empirical covariance
Cov(A,B) and empirical variance Var(B).
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Proof. We have

E[(v1 − v2)2] + 2E[v1v2]

= ‖x1 − x2‖2 + 2〈x1x2〉 (20)

= ‖x1‖2 + ‖x2‖2 − 2〈x1,x2〉 + 2〈x1,x2〉 (21)

= ‖x1‖2 + ‖x2‖2 (22)

We derive the following lemma to help us compute the first and second
moments required.

Lemma 1. Suppose we assume that our matrix R has i.i.d. entries, where each
rij has mean μ = 0, second moment μ2 = 1, and fourth moment μ4. Then

E[A2] = μ4

p∑

j=1

(x1j − x2j)4 + 6
p−1∑

u=1

p∑

v=u+1

(x1u − x2u)2(x1v − x2v)2 (23)

E[B2] = μ4

p∑

j=1

(x4
1j + x4

2j) + 6
p−1∑

u=1

p∑

v=u+1

(x2
1ux2

1v + x2
2ux2

2v)

+ 4
p−1∑

u=1

p∑

v=u+1

(x1ux1vx2ux2v) + μ4

p∑

j=1

x2
1jx

2
2j +

p∑

i�=j

x2
1iy

p
2j (24)

E[AB] = 4
p−1∑

u=1

p∑

v=u+1

(x1u − x2u) (x1v − x2v) (x1ux1v + x2ux2v)

+ μ4

p∑

j=1

(x1j − x2j)2(x2
1j + x2

2j) +
∑

i�=j

(x1i − x2i)2(x2
1i + x2

2j) (25)

Proof. We repeatedly apply Lemma 2 in the Appendix.

Thus, by following Lemma 1, we are able to derive expressions for the optimal
control variate correction c in our procedure as follows.

Theorem 2. The optimal value c is given by

c = −Cov(A,B)
Var[B]

(26)

where we have

Cov(A,B) = E[AB − AμB − BμA + μAμB ] (27)

and

Var[B] = E[B2] − (E[B])2 (28)
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They expand to

Cov(A,B) = 4
p−1∑

u=1

p∑

v=u+1

(x1u − x2u) (x1v − x2v) (x1ux1v + x2ux2v)

+ (μ4 − 1)
p∑

j=1

(x1j − x2j)2(x2
1j + x2

2j) (29)

and

Var[B] = (µ4 − 1)

p∑

j=1

(x4
1j + x4

2j) + 4

p−1∑

u=1

p∑

v=u+1

(x2
1ux

2
1v

+ x2
2ux

2
2v) + 4

p−1∑

u=1

p∑

v=u+1

x1ux1vx2ux2v + (µ4 − 2)

p∑

j=1

x2
1jx

2
2j −

∑

i�=j

x2
1ix

2
2j

(30)

We are also able to derive the first and second moments of A + c(B − μB)
for Euclidean distances.

Theorem 3. The first and second moments are

E[A + c(B − μB)] = E[A] + cE[B − μB] = 0 (31)

and

E[(A + c(B − μB))2] = E[A2 + 2cAB − 2cμBA + c2B2 − 2c2μBB + c2μ2
B ]
(32)

where we substitute in the values of E[A2],E[AB],E[B2] from Lemma 1.

These first and second moments could be used to get tighter (and exact)
bounds of the form in (4) and (5) by using a Chernoff bound type strategy.

2.2 Control Variate for the Inner Product

Suppose we computed V as above. The following theorem shows us how to
estimate the inner product with our control variate.

Theorem 4. Let one realization of A = v1v2, which is an estimate of our inner
product. Let one realization of B to be (v1 − v2)2 +2v1v2 = v2

1 + v2
2 with expected

value μB = ‖x1‖2 + ‖x2‖22. The inner product between these two vectors is given
by E[A + c(B − μB)], and we can compute c := −Cov(A,B)/Var(B) from our
matrix V directly, using the empirical covariance Cov(A,B) and empirical vari-
ance Var(B).

The optimal control variate c in this procedure is given by the next theorem.
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Theorem 5. The optimal value of c is given by

c = −Cov(A,B)
Var[B]

(33)

where

Cov(A,B) = E[AB − AμB − BμA + μAμB ]

= (μ4 − 1)
p∑

j=1

x1jx2j(x2
1j + x2

2j) +
∑

i�=j

x1ix2j(x1ix1j + x2ix2j) (34)

and the value of Var[B] taken from the result in Theorem2.

2.3 The Optimal Control Variate Correction c

While we have computed an expression c in terms of the first and second moments
of our distributions, they are not at all intuitive from first sight. Therefore, we
consider what the optimal value of c would be if the random matrix R had
i.i.d. entries rij ∼ N(0, 1). Thus, we take a second look at the bivariate normal
distribution in (17).

Theorem 6. For rij ∼ N(0, 1), and V = XR, the optimal control variate cor-
rection cED for the Euclidean distance is given by

cED = − (mi − a)2 + (mj − a)2

(m2
i + m2

j + 2a2)
(35)

We use mi,mj to denote the norms ‖xi‖22, ‖xj‖22 respectively, and a to be 〈xi,xj〉
as in (17).

Proof. We can write the control variate correction c for the Euclidean distance
as

cED = −Cov(v2
i + v2

j , v2
i + v2

j − 2vivj)

Var
(
v2

i + v2
j

) (36)

= −Cov(vT
i vj ,vi

T Hvj)
Var

(
vT

i vj

) (37)

where H =
(

1 −1
−1 1

)

. Next, expanding the numerator gives

Cov(vT
i vj ,vi

T Hvj) = E[vT
i vjvT

i Hvj ] − E
[
vT

i vj

]
E

[
vT

i Hvj

]
(38)

For (vi, vj) ∼ N(0,Σ), we have the identities

E
[
vT

i vjvT
i Hvj

]
= Tr(Σ(H + HT )Σ) + Tr(Σ)Tr(HΣ) (39)

= 2(mi − a)2 + 2(mj − a)2 + (mi + mj)(mi + mj − 2a) (40)

E[vT
i vj ] = mi + mi (41)

E[vT
i Hvj ] = mj + mj − 2a (42)

and therefore, we have
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Cov(vT
i vj ,vi

T Hvj) = 2(mi − a)2 + 2(mj − a)2 (43)

The denominator expands to be

Var
(
vT

i vj

)
= Tr (Σ(2I)Σ) (44)

= 2(m2
i + m2

j + 2a2) (45)

Simplifying, we get:

cED = − (mi − a)2 + (mj − a)2

(m2
i + m2

j + 2a2)
(46)

Theorem 7. For rij ∼ N(0, 1), and V = XR, the optimal control variate cor-
rection cIP for the inner product is given by

cIP = − mia + mja

m2
i + m2

j + 2a2
(47)

Proof. Analogous to the proof of Theorem6, we express

Cov(v2
i + v2

j , vivj) = Cov
(
v2

ivj ,vT
i Hvj

)
(48)

where H = 1
2

(
0 1
1 0

)

. Therefore, we similarly compute

E
[
vT

i vjvT
i Hvj

]
= Tr(Σ(H + HT )Σ) + Tr(Σ)Tr(HΣ) (49)
= 2mia + 2mja + (mi + mj)(a) (50)

E[vT
i vj ] = mi + mj (51)

E[vT
i Hvj ] = a (52)

which results in

cIP =
mia + mja

m2
i + m2

j + 2a2
(53)

Without loss of generality, we assume that our data is normalized such that
mi = mj = 1. In this case, we can compute the variance reduction for our
Euclidean distances and inner products respectively.

Theorem 8. Given rij ∼ N(0, 1) and V = XR, then for any pair xi,xj

1. The variance of the estimate of the Euclidean distance between the pair is
given by

σED = 8(1 − a)2 (54)

2. The variance of the estimate of the Euclidean distance with the control variate
correction between the pair is given by

σEDCV = 8(1 − a)2 − 4(1 − a)4

(1 + a2)
(55)
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Fig. 1. Effects of control variate correction on estimates.

3. The variance of the estimate of the inner product between the pair is given by

σIP = 1 + a2 (56)

4. The variance of the estimate of the inner product with the control variate
correction between the pair is given by

σIPCV = 1 + a2 − 4a2

1 + a2
(57)

Proof. This follows from direct substitution of the optimal control variate cor-
rections in Theorems 6 and 7 into (13).

Theorem 8 allows us to analyze the effect of our control variate correction,
given in Fig. 1.

Recall that when observations are normalized, we have the Euclidean distance
between any pair of vectors being in the range [0, 2], and the inner product
between any pair of vectors being in the range [0, 1].

We can now analyze the effect of our control variate correction on Euclidean
distance. For vectors xi,xj in the same direction (inner product close to 1), we
do not get much variance reduction in our estimate of Euclidean distance. Con-
versely, if the vectors were in opposite directions, then we would get a reasonable
variance reduction in the estimates of their Euclidean distance.

Similarly, we analyze the effect of our control variate correction on the inner
product. If the vectors xi,xj are orthogonal to each other (inner product near 0),
then we do not get much variance reduction from our control variate correction.
Conversely, if the vectors share the same or opposite directions, then we would
get a reasonable variance reduction in the estimates of their inner product.
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Theorems 6, 7, and Li et al.’s result that the tuple (vis, vjs) converges to
a bivariate normal even if rij from R do not come from N(0, 1) suggests an
alternative method of computing the control variate correction.

Instead of computing the control variate correction cED empirically from our
data, we could choose to either compute the vanilla estimate â = visvjs for the
inner product, or â using Li’s method. We can then substitute â into the results
of Theorem 6 to compute the optimal control variate correction, using the fact
that we get convergence to a bivariate normal when the number of observations
increase. In fact, since we are storing the marginal norms, we can compute â via
Li’s method, and use this to compute cED directly since this does not increase
the time complexity.

Similarly, we could compute the control variate correction cIP, but only using
the ordinary estimate â = visvjs for the inner product.

2.4 Overall Computational Time

Constructing the matrix V = Xn×pRp×k takes O(npk) time, and computing the
pairwise Euclidean distances (or inner products) takes an additional O(n2k) of
time.

If we want to use control variates, we either need to compute the empirical
covariance between all pairs A and B and the variance of B, or compute an
estimate of the inner product a to put into our control variate correction. Both
these options take an additional O(nk) time for all pairwise computations. We
also need to compute and store the norm of each vector, which takes O(np) time.

Thus, the overall computational time is given by O(npk + n2k + n(k + p)) =
O(npk + n2k).

3 Our Experiments

Throughout our experiments, we use five different types of random projection
matrices as shown in Table 1 (also used in [8]). We pick these five types of random
projection matrices as they are commonly used random projection matrices.

We use N(0, 1) to denote the Normal distribution with mean μ = 0 and
σ2 = 1. We denote (1)p to be the length p vector with all entries being 1, and
(0)p to be the length p vector with all entries being 0. We denote the baseline
estimates to be the respective estimates given by using the type of random
projection matrix Ri.

We run our simulations for 10000 iterations for every experiment.

3.1 Generating Vectors from Synthetic Data

We first perform our experiments on a wide range of synthetic data. We look
at normalized pairs of vectors x1, x2 ∈ R

5000 generated from the following
distributions in Table 2 (also used in [8]). In short, we look at data that can be
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Table 1. Random projection matrices.

R Type

R1 Entries i.i.d. from N(0, 1)

R2 Entries i.i.d. from {−1, 1} with equal probability

R3 Entries i.i.d. from {−√
p, 0,

√
p} with probabilities

{ 1
2p
, 1 − 1

p
, 1
2p

} for p = 5

R4 Entries i.i.d. from {−√
p, 0,

√
p} with probabilities

{ 1
2p
, 1 − 1

p
, 1
2p

} for p = 10

R5 Constructed using the Subsampled Randomized Hadamard
Transform (SRHT)

Table 2. Generated data x1, x2.

Pairs x1 x2

Pair 1 Entries i.i.d. from N(0, 1) Entries i.i.d. from N(0, 1)

Pair 2 Entries i.i.d. from standard Cauchy Entries i.i.d. from standard Cauchy

Pair 3 Entries i.i.d. from Bernoulli(0.05) Entries i.i.d. from Bernoulli(0.05)

Pair 4 Vector [(1)p/2, (0)p/2] Vector [(0)p/2, (1)p/2]

Normal, heavy tailed (Cauchy), sparse (Bernoulli), and an adversarial scenario
where the inner product is zero.

We first compare the relative bias of the estimates of Euclidean distance using
our control variate approach against the baseline estimates for each projection
Ri for a sanity check. Plots can be seen in Fig. 2, and the relative bias goes to
zero as expected.

We then look at the plots of the ratio ρ defined by

ρ =
Variance using control variate withRi

Variance using baseline with Ri
(58)

in Fig. 3 for the Euclidean distance (also used in [8]). ρ is a measure of the
reduction in variance using our control variate approach with the matrix Ri

rather than just using Ri alone. For this ratio, a fraction less than 1 means our
control variate approach performs better than the baseline.

For all pairs xi,xj except Cauchy, the reduction of variance of the estimates
of the Euclidean distance using different Ris with our control variate approach
converge quickly to around the same ratio. However, when data is heavy tailed,
the choice of random projection matrix Ri with a control variate approach affects
the reduction of variance in the estimates of the Euclidean distance, and sparse
matrices Ri have a greater variance reduction for the estimates of the Euclidean
distance.

We next look at the estimates of the inner product. In our experiments, we
use Li et al.’s method as the baseline for computing the estimates of the inner
product. Our rationale for doing this is that both Li’s method and our method
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Fig. 2. Plots of relative bias of estimates of Euclidean distances against number of
columns in Ri for each pair of vectors.

stores the marginal norms of X, thus we should compare our method with Li’s
method for a fair comparison. The ratio of variance reduction is shown in Fig. 4
(also used in [8]).

As the number of columns k of the random projection matrix R increases,
the variance reduction in our estimate of the inner product decreases, but then
increases again up to a ratio just below 1. Since Li’s method uses an asymp-
totic maximum likelihood estimate of the inner product, then as the number
of columns of R increases, the estimate of the inner product would be more
accurate.

Thus, it is reasonable to use a control variate approach for Euclidean dis-
tances, and Li’s method for inner products.

3.2 Experiments with Real Data

We now demonstrate our control variate approach on four datasets, the
arcene dataset, colon dataset, kos dataset, and the NIPS dataset. We select
these datasets since they have different characteristics (sparse/dense, variance
explained/not explained in few principal components). In short

1. the arcene dataset [7] is an example of a dense dataset consisting of n = 900
observations with p = 10000 features. Most of the variance in this dataset is
explained by the first 500 eigenvectors.

2. the colon dataset [3] is an example of a dense dataset consisting of n = 62
gene expression levels with 2000 features. Most of the variance in this dataset
is explained by a few eigenvectors.

3. the kos dataset [13] is an example of a sparse dataset consisting of n = 3430
documents and p = 6906 words from the KOS blog entries. Most of the
variance in this dataset is explained by about a third of the eigenvectors.
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4. the nips dataset [16] is an example of a sparse dataset consisting of n = 5812
observations (conference papers) in this dataset, and p = 11463 words. Most
of the variance in this dataset is explained by slightly less than half of the
eigenvectors.

We normalize each dataset such that every observation ‖xi‖22 = 1.
For each dataset, we consider the pairwise Euclidean distances of all obser-

vations {xi,xj}, ∀ i �= j, and compute the estimates of the Euclidean distance
with a control variate approach of the pairs {xi,xj} which give the 20th, 30th,
. . ., 90th percentile of Euclidean distances.

0 20 40 60 80 100

0.
0

0.
4

0.
8

Plot of Ratio  for Pair 1 (both vectors Normal)

Number of columns k

R
at

io

 with R1
 with R2
 with R3
 with R4
 with R5

0 20 40 60 80 100
0.

0
0.

4
0.

8

Plot of Ratio  for Pair 2 (both vectors Cauchy)

Number of columns k

R
at

io

 with R1
 with R2
 with R3
 with R4
 with R5

0 20 40 60 80 100

0.
0

0.
4

0.
8

Plot of Ratio  for Pair 3 (both vectors Bernoulli)

Number of columns k

R
at

io

 with R1
 with R2
 with R3
 with R4
 with R5

0 20 40 60 80 100

0.
0

0.
4

0.
8

Plot of Ratio  for Pair 4 (IP 0)

Number of columns k

R
at

io

 with R1
 with R2
 with R3
 with R4
 with R5

Fig. 3. Plots of ρ for Euclidean distances against number of columns in Ri for each
pair of vectors.
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Fig. 5. Plots of relative bias in Euclidean distance for real data.

We first do a quick sanity check in Fig. 5. Here, we pick a pair in the 50th
percentile for these datasets and show that for every different Ri, the bias quickly
converges to zero.

Next, we look at the variance reduction for these pairs in Fig. 6 with different
types of random projection matrices Ri. We see that the variance reduction for
the Ris are around the same range. Since the bias converges to zero, this implies
that our control variates work. i.e., we do not get extremely biased estimates
with lower variance.
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Fig. 6. Plots of ρ for Euclidean distance (varying R) for real data.
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Fig. 7. Plots of ρ for Euclidean distance (varying percentile) for real data.

We now look at what happens at different percentile pairs. Since the random
projection matrices have a similar pattern in Fig. 6, we will only take a look at
varying pairs for the random projection matrix R1.

Figure 7 thus shows the ratio ρ of variance reduction from the 10th percentile
to the 90th percentile. Note that for dense datasets (arcene, colon), we can see a
substantial percentage increase in variance reduction as the percentiles increase,
but not as much for sparse datasets (kos, NIPS).
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Fig. 8. Plots of ρ for inner product (varying percentile) for real data.
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Finally, we take a look at the inner product estimates. We do not get good
variance reduction results, when we used Li’s method as a baseline.

Figure 8 shows the plots of ρ with the random projection matrix R1 for
varying percentiles. The same pattern holds for different types of matrices R2 to
R4, and is similar to what we saw in synthetic data. While there is some small
variance reduction, the ratio ρ quickly converges to a value near 1.

This matches what we see in our synthetic data.

4 Conclusion and Future Work

We have shown that which works well in conjunction with different random
projection matrices to reduce the variance of the estimates of the Euclidean
distance and inner products on different types of vectors xi, xj . This allows for
more accurate estimates of the Euclidean distance. As the Euclidean distance
between two vectors increases, we expect greater variance reduction. In essence,
we have shown that it is possible to juxtapose statistical variance reduction
methods with random projections to give better results.

While a control variate approach gives a variance reduction for the estimates
of the inner products, the ratio of variance reduction becomes minimal as the
number of columns increases when compared to Li’s method. This is not surpris-
ing since Li’s method for estimating the inner products is an asymptotic maxi-
mum likelihood estimator, and is extremely accurate as the number of columns
of the random projection matrix increases.

Although a control variate approach requires storing marginal norms and
computing the covariance between two p dimensional vectors, the cost of doing
so is negligible when compared to matrix multiplication. Furthermore, the com-
putation of marginal norms is unnecessary when the data is already normalized
to have norm of 1.

In fact, a control variate approach can be seen as a method that nicely
complements Li’s method since both methods require storing marginal norms.
This approach substantially reduces the errors of the estimates of the Euclidean
distance, while Li’s method substantially reduces the errors of the estimates
of the inner product. The estimate of the inner product given by Li’s method
can even be used in computing the control variate correction cED, instead of
evaluating the empirical value of cED directly, which is less costly.

We note that different applications may require a certain type of random
projection matrix. Thus if we want to reduce the errors in our estimates, we
cannot just switch to a different random projection matrix where the entries
allow us to place sharper probability bounds on our errors. If we want data to
be invariant under rotations, then a Normal random projection matrix would
be best suited [14]. If we wanted to desparsify data, then a random projection
matrix with i.i.d. entries from {−√

p, 0,
√

p}, p small might be preferred [1]. If we
are focused on speed and quick information retrieval, then very sparse random
projections [11] or random projection matrices formed by the SHRT [4] would
be more preferable. A control variate approach allows us to reduce the error in
all these estimates.
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We believe our work can be extended by looking at a control variate approach
for other types of random projection matrices, such as sign random projections.

We further hope that this control variate approach can be adopted to current
algorithms using random projections which require the computation of Euclidean
distances (or inner products).

Lastly, Fig. 1 suggests that we could adopt a multiple control variate approach
using several dominant eigenvectors of the data as control variates, since these
eigenvectors would point in the general direction of the variance, and we are
currently exploring this idea.

Appendix

We use the following lemma for ease of computation of first and second moments.

Lemma 2. Suppose we have a sequence of terms {ti}p
i=1 = {airi}p

i=1
for a = (a1, a2, . . . , ap), {si}p

i=1 = {biri}p
i=1 for b = (b1, b2, . . . , bp) and ri i.i.d.

random variables with E[ri] = 0, E[r2i ] = 1 and finite third, and fourth moments,
denoted by μ3, μ4 respectively. Then:
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)2]
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The motivation for this lemma is that we do expansion of terms of the above
four forms to prove our theorems.
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Abstract. Graph mining is of great interest because knowledge discov-
ery from structured data can be applied to real-world datasets. Recent
improvements in system throughput have led to the need for the analysis
of a large number of graphs using methods such as graph classification,
the objective of which is to classify graphs of similar structures into
the same class. Existing methods for representing graphs can result in
difficulties such as the loss of structural information, which can be over-
come using specifically designed graph kernels. In this paper, we propose
two novel graph kernels, mapping distance kernel with stars (MDKS)
and mapping distance kernel with vectors (MDKV), to classify labeled
graphs more accurately than existing methods. The MDKS is based on
the graph edit distance using star structures, and the MDKV is based
on the graph edit distance using the linear sum assignment problem and
graph relabeling. Because MDKS uses only small local structures that
consist of adjacent vertices of each vertex in graphs, it is not substan-
tially superior to conventional graph kernels. However, the MDKV uses
local structures that consist of vertices that are reachable within a small
number of steps from each vertex in graphs and, unlike existing meth-
ods, do not require isomorphism matching. In addition, we investigate a
framework for computing the approximate graph edit distance between
two graphs using the linear sum assignment problem (LSAP), because
the proposed graph kernels are related to methods for computing the
graph edit distance using LSAP.

Keywords: Graph classification · Graph kernel
Graph edit distance · Graph relabeling

1 Introduction

A graph is one of the most natural means of representing structured data. For
instance, a chemical compound can be represented as a graph in which each
vertex corresponds to an atom, each edge corresponds to a bond between two
atoms, and the label of each vertex corresponds to the atom type. With recent
improvements in system throughput, the need to analyze large numbers of graphs
has arisen, and the topic of graph mining has received considerable interest
c© Springer International Publishing AG, part of Springer Nature 2018
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because the knowledge present in structured data can be applied to various real-
world datasets. For example, in cheminformatics, certain properties of chemical
compounds (e.g., mutagenicity or toxicity) can be identified by analyzing their
structural information, and in bioinformatics, the prediction of protein–protein
interactions is beneficial for drug discovery.

When analyzing datasets of graphs, one of the most critical measures is the
dissimilarity (or similarity) among the graphs. Two representative frameworks
for measuring the dissimilarity (or similarity) are based on the graph edit dis-
tance [21] and graph relabeling [13]. The graph edit distance between graphs
gi and gj is defined as the minimum length of the sequence of edit operations
required to transform gi into gj , where one edit operation includes the insertion
or deletion of a vertex/edge or substitution of a vertex/edge label. The prob-
lem of obtaining the exact graph edit distance between graphs is known to be
NP-hard. Graph relabeling iteratively relabels vertex labels in graphs using the
adjacent vertices of each vertex, and then measures the similarity between sets
of vertices in the graphs using the Jaccard index.

At the International Conference on Pattern Recognition Applications and
Methods in 2017, we proposed two graph kernels that are more accurate than
existing graph kernels by incorporating characteristics of the aforementioned
frameworks [14]. The proposed graph kernels are called the mapping distance
kernel with stars (MDKS) and mapping distance kernel with vectors (MDKV).
The former kernel is based on a method for approximately measuring the graph
edit distance between two graphs. Its computational complexity is O(υ3) for
two graphs, where υ is the maximum number of vertices in the graphs. It
sums the edit distances among star structures of height one obtained from the
graphs. When the height of the star structures is increased to avoid loss of
structural information, the number of vertices in each star structure exponen-
tially increases, which prevents the efficient computation of this graph kernel.
To overcome this difficulty, in the second proposed graph kernel, each of the star
structures of height higher than one is represented as a vector, and the graph
kernel is computed by summing the Euclidean distances between these vectors.
The graph kernel between two graphs is computed in O(h(υ3 + |Σ|υ2)), where
Σ is a set of vertex labels, and graphs are iteratively relabeled h times.

After proposing the graph kernels at the conference, we found that the pro-
posed graph kernels are related to methods for computing the graph edit distance
approximately using the linear sum assignment problem (LSAP) [24]. To mea-
sure the approximate graph edit distance or compute graph kernels efficiently,
various substructures in graphs such as paths, walks, stars, trees, and limited-size
graphs are utilized. This paper also surveys several methods for computing the
approximate graph edit distance between two graphs using LSAP [3,9,23,28] and
several conventional graph kernels using the substructures [1,2,5,8,12,18,22,26].

The remainder of this paper is organized as follows: In Sect. 2, we formalize
the graph classification problem that we consider in this paper and explain the
kernel function used in SVMs. In Sect. 3, we propose the MDKS and MDKV after
we explain two graph kernel frameworks. In Sect. 4, we verify the computational
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Fig. 1. Subtree for v in a graph (h = 2).

efficiency of the proposed graph kernels on an artificially generated dataset, and
compare the proposed graph kernels with conventional graph kernels in terms
of classification accuracy using real-world datasets. In Sect. 5, we discuss the
framework based on the graph edit distance and various graph kernels. Finally,
we conclude the paper in Sect. 6.

2 Preliminaries

In this paper, we consider the graph classification problem. First, we define some
terminology used for solving the problem. An undirected graph is represented
as g = (V,E,Σ, �), where V is a set of vertices, E ⊆ V × V is a set of edges,
Σ = {σ1, σ2, · · · , σΣ} is a set of vertex labels, and � : V → Σ is a function
that assigns a label to each vertex in the graph. Additionally, the set of vertices
in graph g is represented as V (g). Although we assume that only the vertices
in the graphs have labels, the methods used in this paper can be applied to
graphs where both the vertices and edges have labels [11]. The vertices adjacent
to vertex v are represented as N(v) = {u | (v, u) ∈ E}. Furthermore, L(N(v)) =
{�(u) | u ∈ N(v)} is a multiset of labels adjacent to v.

A sequence of vertices from v to u is called a path, and its step refers to the
number of edges on that path. A path is called simple if and only if the path does
not have repeating vertices. Paths in this paper are not always simple. Given
v ∈ V (g), st(v, h) is a subtree of height h, where v is the root and u is the child
of w if u and w are adjacent in g, where the height of the subtree is the length of
a path from the rooted vertex to a leaf vertex, and N ′(v′) is a set of children of
v′ in st(v, h). Figure 1 shows an example of a subtree of height two in a graph. As
shown in Fig. 1, when a vertex vj belongs to N ′(v1) and h > 1, v1 also belongs
to N ′(vj); that is, v′ is a grandchild of v′ in st(v, h).

The graph classification problem is defined as follows. Given a set of n train-
ing examples D = {(gi, yi)} (i = 1, 2, · · · , n), where each example is a pair that
consists of a labeled graph gi and the class yi ∈ {+1,−1} to which it belongs,
the objective is to learn a function f that correctly classifies the classes of the
test examples.

We can classify graphs using an SVM and Gaussian kernel. Given two exam-
ples xi and xj as feature vectors, the Gaussian kernel function k(xi,xj) is defined
as
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k(xi,xj) = exp
(

−‖xi − xj‖2
2σ2

)
,

where σ2 is a parameter that adjusts the variance. Because it is difficult to
represent graphs as feature vectors without a loss of their structural information,
we design a dissimilarity d(gi, gj) between gi and gj to replace ||xi−xj ||. A kernel
function for graphs is called a graph kernel, denoted by k(gi, gj) and defined as

k(gi, gj) = exp
(

−d(gi, gj)2

2σ2

)
. (1)

1e 2e 3e

ig

4e

jg

Fig. 2. Sequence of edit operations for transforming gi into gj .

3 Mapping Distance Graph Kernels

The definition of d(gi, gj) is vital for the performance of the classification model.
There are various frameworks for designing graph kernels. Two representative
frameworks among them are based on the graph edit distance and graph rela-
beling. First, we propose a novel graph kernel based on the former framework
and then we propose another novel graph kernel based on both frameworks.

3.1 Graph Kernels Based on the Graph Edit Distance

The graph edit distance is one of the most representative metrics for defining
d(gi, gj), and a number of graph kernels based on this metric have been pro-
posed [21]. The graph edit distance between graphs gi and gj is defined as the
minimum length of the sequence of edit operations required to transform gi into
gj , where one edit operation includes the insertion or deletion of a vertex/edge
and substitution of a vertex label. Although the edit distance was originally
proposed for measuring the dissimilarities between two strings, the metric was
extended to graphs because edit operations were introduced for graphs.

Figure 2 shows a particular sequence of edit operations that consists of one
deletion of vertex (e1), one insertion of edge (e4), one deletion of vertex (e2),
and one substitution of label (e3). The computation required to obtain the edit
distance between gi and gj is equivalent to searching for the minimum length
of the sequence of edit operations required to transform gi into gj . The method
based on the A� algorithm is a well-known method for computing the exact graph
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edit distance [16]. However, this method cannot be applied to graphs of large
size because the problem of obtaining the exact graph edit distance between two
graphs is known to be NP-hard, and consequently, the graph kernels based on
the graph edit distance have a drawback in terms of computational efficiency.
To address this drawback, we propose a graph kernel based on the mapping
distance [23,28], which is the suboptimal graph edit distance between graphs.

Next, we explain the mapping distance between graphs. The distance is one
method for approximately measuring the graph edit distance, and this metric
is obtained in O(υ3), where υ = max{|V (gi)|, |V (gj)|}. To obtain the mapping
distance, we use star structures in the graph [28]. Star structure s(v) for v in
graph g is a subtree whose root is v and leaves consist of N(v); that is, s(v)
is equivalent to st(v, 1). Given graph g, |V (g)| star structures can be generated
from g. The multiset of star structures generated from g is denoted by S(g) =
{s(v1), s(v2), · · · , s(v|V (g)|)}. The star edit distance between s(vi) and s(vj) is
the minimum length of the sequence of edit operations required to transform
s(vi) into s(vj), and is denoted by λ(s(vi), s(vj)), which is defined as

λ(s(vi), s(vj)) = λ1(vi, vj) + λ2(N(vi), N(vj)) + λ3(N(vi), N(vj)), (2)

where

λ1(vi, vj) = δ(�(vi), �(vj)),
λ2(N(vi), N(vj)) = ||N(vi)| − |N(vj)|| , and
λ3(N(vi), N(vj)) = max{|N(vi)|, |N(vj)|} − |L(N(vi)) ∩ L(N(vj))|,

where δ is the Kronecker delta that returns one if its arguments are the same,
and zero otherwise. Star edit distance λ1(vi, vj) returns one if the roots of the
star structures have identical labels, and zero otherwise, which is equivalent
to a substitution for the labels of roots. Distance λ2(N(vi), N(vj)) equals the
required number of insertions and/or deletions of edges in s(vi) and s(vj). Dis-
tance λ3(N(vi), N(vj)) equals the required number of substitutions for the labels
of leaves in s(vi) and s(vj). From the above, λ(s(vi), s(vj)) represents the star
edit distance between s(vi) and s(vj).

Given two multisets of star structures S(gi) and S(gj), the mapping distance
between gi and gi is denoted by md1(gi, gj) and defined as

md1(gi, gj) = min
P

∑
s(u)∈S(gi)

λ(s(u), P (s(u))), (3)

where P : S(gi) → S(gj) is a bijective function. The computation of md1(gi, gj)
is equal to solving the minimum weight matching on the complete bipartite
graph g′ = (Vi, Vj , E

′) such that for every two vertices (vi, vj) ∈ Vi ×Vj , there is
an edge whose weight is the star edit distance λ(s(vi), s(vj)) between s(vi) and
s(vj). Given a square matrix in which the (i, j)-element represents the star edit
distance λ(s(vi), s(vj)), this matching problem is solved using the Hungarian
algorithm, which runs in O(υ3) [20], where υ = max{|Vi|, |Vj |}.



26 T. Kataoka et al.

Figure 3 shows an example of mapping S(gi) to S(gj) to obtain md1(gi, gj).
Given two graphs gi and gj , five star structures are generated from gi and four
star structures are generated from gj . The table at the lower left of the figure
represents the star edit distance between every pair of star structures in S(gi)
and S(gj). Since |V (gi)| does not equal |V (gj)|, the matrix that represents star
edit distances among star structures is not square. To obtain a square matrix, a
dummy vertex (denoted by v5 in gj) whose label is ε is inserted into gj to equalize
the numbers of vertices in gi and gj . By applying the Hungarian algorithm, the
optimal bipartite graph matching (indicated by solid lines in Fig. 3) is output,
and the final answer md1(gi, gj) = 0 + 2 + 0 + 0 + 5 = 7 is obtained.

Using the mapping distance, we propose a novel graph kernel called the
MDKS.

MDKS: We apply the mapping distance defined in Eq. (3) to the graph kernel
defined in Eq. (1). Given two graphs gi and gj , the graph kernel in the MDKS
is defined as follows:

kMDKS(gi, gj) = exp
(

−md1(gi, gj)2

2σ2

)
, (4)

where kMDKS(gi, gj) is obtained in O(υ3), which is faster than graph kernels
based on the exact graph edit distance.

Fig. 3. Minimum weight matching to find the mapping distance between gi and gj .

Algorithm 1 shows the pseudocode for computing an MDKS kernel matrix
for a set of graphs D. In Lines 2 to 5, the numbers of vertices in gi and gj

are equalized. For each pair of vertices in V (gi) × V (gj), the star edit distance
between star structures s(va) and s(vb) is measured and set as the (a, b)-th
element in square matrix T , which is given to the Hungarian algorithm. The
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Algorithm 1. Mapping Distance Kernel1.
Data: a set of graphs D for training and variance σ2

Result: kernel matrix K
1 for gi, gj ∈ D do
2 while |V (gi)| < |V (gj)| do
3 V (gi) ← V (gi) ∪ {dummy vertex};

4 while |V (gi)| > |V (gj)| do
5 V (gj) ← V (gj) ∪ {dummy vertex};

6 for (va, vb) ∈ V (gi) × V (gj) do
7 λ ← 0;
8 if �i(va) �= �j(vb) then
9 λ ← 1;

10 λ ← λ + ||N(va)| − |N(vb)||;
11 λ ← λ + max{|N(va)|, |N(vb)|} − |L(N(va)) ∩ L(N(vb))| ;
12 Tab ← λ;

13 md1 ← Hungarian(T );

14 Kij ← exp
(
−md2

1
2σ2

)
;

15 return K;

Hungarian algorithm returns the mapping distance according to the optimal
bipartite graph matching in Line 13. In Line 14, Eq. (4) is computed. These
procedures are repeated for every pair of graphs in D, and Algorithm1 finally
returns a kernel matrix for D. This algorithm runs in O(n2(υ3 + dυ2)), where
n, υ, and d are the number of graphs in D, maximum number of vertices in the
graphs, and average degree of the vertices, respectively. Because d is bounded
by υ, the computational complexity becomes O(n2υ3).

The MDKS has a drawback in terms of graph expressiveness. The height of
the subtrees between which we measure the mapping distance is limited. It is
desirable to measure the edit distance between high-order subtrees because the
edit distance between trees with m vertices is computed in O(m3) [7]. However,
because the paths from the root to leaves in a subtree are not simple in the
graph from which the subtree is generated, the number of vertices in the subtrees
increases exponentially for h, which makes measuring the edit distance between
s(vi, h) and s(vj , h) intractable. Another approach [3] is to use subgraphs of g,
each of which consists of vertices reachable within h steps from vi, instead of star
structures of G. However, we require exact distances between subgraphs of gi

and subgraphs of gj , which requires Computation time. In the next subsection,
we propose another efficient graph kernel that compares the characteristics of
two subtrees, st(vi, h) and st(vj , h), for h > 1.
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Fig. 4. Example of relabeling (g(0) → g(1)).

3.2 Graph Kernels Based on Relabeling

Given a graph g(h) = (V,E,Σ, �(h)), all the labels of vertices in g(h) are updated
to obtain another graph g(h+1) = (V,E,Σ′, �(h+1)). We call the operation a rela-
bel, and it is defined as �(h+1)(v) = r(v,N(v), �(h)). The Weisfeiler–Lehman sub-
tree kernel (WLSK) [27], neighborhood hash kernel (NHK) [11], and Hadamard
code kernel (HCK) [13] are representative graph kernels based on this relabeling
framework. The vertex label of the WLSK is represented as a string, and a rela-
bel for vertex v is defined as a string concatenation of the labels of N(v). In the
NHK, the vertex label is represented as a fixed-length bit string, and relabeling
v is defined as logical operations, such as exclusive-or, on the labels of N(v).
The label of the HCK is based on the Hadamard code, which is used in spread
spectrum-based communication technologies, and a relabel for v is defined as a
summation of the labels of N(v).

Figure 4 shows an example of the framework based on graph relabeling. Let
g(0) be an original graph whose vertices have labels A, B, C, and D. Each of
the labels is relabeled to obtain g(1). Although the specific calculation depends
on the method of relabeling, such as the NHK, WLSK, or HCK, it is common
that a relabel for v is applied using v, N(v), and �(0)(v). At the center of Fig. 4,
�(0)(v1) = A is relabeled into E using adjacent vertices v2, v3, and its original
label A. Therefore, �(1)(v1) = E represents the characteristics of st(v1, 1). The
labels of v1 and v5 in g(1) are identical because st(v1, 1) = st(v5, 1) in g(0). It
is desirable to define labels as identical if and only if both their own labels and
the labels of adjacent nodes are also identical. However, achieving this condition
is difficult, and it is important to design a relabel method that satisfies this
condition as much as possible.

The label of each vertex is relabeled iteratively. Labeling �(h)(v), obtained
by iteratively relabeling h times, has a distribution of labels that is reachable
within h steps from v. Therefore, �(h)(v) represents the characteristics of st(v, h).
Let {g(0), g(1), · · · , g(h)} be a series of graphs obtained by iteratively applying
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relabeling h times, where g(0) is an original graph contained in D. Kernel k(gi, gj)
is defined as

k(gi, gj) = k
(
g
(0)
i , g

(0)
j

)
+ k

(
g
(1)
i , g

(1)
j

)
+ · · · + k

(
g
(h)
i , g

(h)
j

)
. (5)

The label aggregate kernel (LAK) [13] is another graph kernel based on this
framework. Next, we present a specific definition of a relabel in the LAK.

Fig. 5. Example of relabeling in the LAK.

In the LAK, �
(0)
L (v) is a vector in |Σ|-dimensional space. If a vertex in a

graph has a label σi from the set Σ = {σ1, σ2, · · · , σ|Σ|}, the i-th element in the
vector is one and the other elements are zero. In the LAK, �

(h)
L (v) is defined as

�
(h)
L (v) = �

(h−1)
L (v) +

∑
u∈N(v)

�
(h−1)
L (u).

The i-th element in �
(h)
L (v) equals the frequency of occurrence of σi in st(v, h).

Therefore, �
(h)
L (v) has information on the distribution of labels in st(v, h), which

means that �
(h)
L (v) is more expressive than star structure s(v) used to measure

the mapping distance.
We show an example of relabeling in the LAK in Fig. 5, assuming that

|Σ| = 4 and relabeling is applied only once. Consider graph g(0), whose ver-
tices have labels (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1). We next apply
relabeling to the graphs to obtain g(1). The label of vertex v in g(1) represents
the distribution of labels contained in st(v, 1). For instance, the label of v2 in
g(1) is �

(1)
L (v2) = (2, 1, 0, 1), which indicates that there are two vertices labeled
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(1, 0, 0, 0), one vertex labeled (0, 1, 0, 0), and one vertex labeled (0, 0, 0, 1). This
distribution is equivalent to that of the labels contained in st(v2, 1) of g(0). In
the LAK, the kernel function is defined as

k
(
g
(h)
i , g

(h)
j

)
=

∑
(vi,vj)∈V

(
g
(h)
i

)
×V

(
g
(h)
j

)
δ
(
�
(h)
L (vi), �

(h)
L (vj)

)
.

Using the labels used in the LAK, we propose another novel graph kernel
called the MDKV.
MDKV: Given two labels �

(h)
L (vi) and �

(h)
L (vj), we denote the distance between

�
(h)
L (vi) and �

(h)
L (vj) by τ(�(h)L (vi), �

(h)
L (vj)), defined as

τ
(
�
(h)
L (vi), �

(h)
L (vj)

)
=

∥∥∥�
(h)
L (vi) − �

(h)
L (vj))

∥∥∥2

. (6)

Given two graphs g
(h)
i and g

(h)
j relabeled iteratively h times, the distance between

g
(h)
i and g

(h)
j is denoted by md2(g

(h)
i , g

(h)
j ) and defined as

md2

(
g
(h)
i , g

(h)
j

)
= min

Q

∑
u∈V

(
g
(h)
i

)
τ

(
�
(h)
L (u), �(h)L (Q(u))

)
, (7)

where Q : V (g(h)i ) → V (g(h)j ) is a bijective function. The computation of Eq. (7)
is also equal to solving the minimum weight matching on a complete bipartite
graph, and is obtained by means of the Hungarian algorithm. By combining
Eqs. (1), (5), and md2, kernel kMDKV (gi, gj) is defined as follows:

kMDKV (gi, gj) =
h∑

t=0

k
(
g
(t)
i , g

(t)
j

)

=
h∑

t=0

exp

⎛
⎜⎝−

md2

(
g
(t)
i , g

(t)
j

)2

2σ2

⎞
⎟⎠ .

The notable difference between the MDKS and MDKV is that, whereas the
inputs for md1 are multisets of st(v, 1), those for md2 are multisets of vectors
obtained from higher order subtrees st(v, h); that is, the computation of the
MDKV between two graphs contains larger subgraphs in the two graphs. If
we directly measure the edit distance between s(vi, h) and s(vj , h), the num-
ber of vertices in s(v, h) exponentially increases when h increases. In this case,
the MDKV requires a large amount of Computation time to compute the edit
distance. However, using a vector representation for the vertices and their rela-
beling, our proposed kernel computes a mapping distance between s(vi, h) and
s(vj , h) efficiently.
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Fig. 6. Computation for obtaining md2(g
(1)
i , g

(1)
j ).

Figure 6 shows an example of the procedure to obtain md2(g
(1)
i , g

(1)
j ), assuming

that |Σ| = 4. Graphs g
(1)
i and g

(1)
j are obtained by relabeling given graphs g

(0)
i and

g
(0)
j once, respectively. After relabeling, the Euclidean distance between every pair

of labels in g
(2)
i and g

(2)
j is measured. The table between g

(1)
i and g

(1)
j represents the

Euclidean distance between every pair of labels. To equalize the number of vertices
in g

(1)
i and g

(1)
j , a dummy vertex whose label is (0, 0, 0, 0) is inserted into g

(1)
j . The

minimum weight matching is solved by means of the Hungarian algorithm, and
the final answer of md2(g

(1)
i , g

(1)
j ) = 0.00 + 1.00 + 0.00 + 0.00 + 1.73 = 2.73 is

obtained.
Algorithm 2 shows the pseudocode for computing an MDKV kernel matrix

for a set of graphs D. In Lines 5 to 8, the numbers of vertices in gi and gj

are equalized. For each pair of vertices in V (gi) × V (gj), the Euclidean distance
between two vectors �

(t)
L (va) and �

(t)
L (vb) is measured and set as the (a, b)-th

element in T . The Hungarian algorithm returns the mapping distance according
to the optimal bipartite graph matching in Line 11. Its output using the Gaussian
kernel is added to Kij . In Lines 14 to 16, where Z is a set of non-negative integers,
g is relabeled to obtain g(t+1). These processes in Lines 9 to 15 are repeated
h + 1 times. This algorithm runs in O(h(n2υ3 + n2|Σ|υ2 + nd|Σ|υ)) because the
computational complexities of Lines 11, 10, and 15 are O(υ3), O(|Σ|υ2), and
O(d|Σ|υ), respectively. Because d is bounded by υ, the computational complexity
of Algorithm 2 becomes O(hn2(υ3 + |Σ|υ2)).
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Algorithm 2. Mapping Distance Kernel2.
Data: a set of graphs D for training and variance σ2

Result: kernel matrix K
1 K ← 0;

2 D(0) ← D;
3 for t ∈ [0, h] do

4 for gi, gj ∈ D(t) do
5 while |V (gi)| < |V (gj)| do
6 V (gi) ← V (gi) ∪ {dummy vertex};

7 while |V (gi)| > |V (gj)| do
8 V (gj) ← V (gj) ∪ {dummy vertex};

9 for (va, vb) ∈ V (gi) × V (gj) do

10 Tab ← τ(�
(t)
L (va), �

(t)
L (vb));

11 md2 ← Hungarian(T );

12 Kij ← Kij + exp
(
−md2

2
2σ2

)
;

13 D(t+1) ← ∅ ;

14 for g ∈ D(t+1) do

15 g(t+1) ← (V (g), E(g), Z |Σ|, �(t+1));

16 D(t+1) ← D(t+1) ∪ {g(t+1)};

17 return K;

4 Evaluation Experiments

In this section, we confirm the Computation time of our proposed graph kernels,
the MDKS and MDKV, through numerical experiments. We implemented the
proposed graph kernels in Java. All experiments were performed on an Intel Xeon
E5-2609 2.50 GHz computer with 32 GB memory running Microsoft Windows 7.
To learn from the kernel matrices generated by the above graph kernels, we used
the LIBSVM package1 [4] using 10-fold cross-validation.

Table 1. Parameters of the artificial datasets.

Parameters Default values

Number of graphs in a dataset n = 100

Average number of vertices in a graph υ = 50

Average degrees of a graph d = 2

Number of distinct labels in a dataset |Σ| = 10

1 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

http://www.csie.ntu.edu.tw/{~}cjlin/libsvm/
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4.1 Evaluation Using Synthetic Datasets

We examined the computational performance of the proposed graph kernels by
means of synthetic graph datasets to confirm that the proposed graph kernels
ran in O(n2(υ3 + dυ)) and O(h(n2υ3 + n2|Σ|υ2 + nd|Σ|υ)), respectively. We
generated graphs with a set of four parameters. Their default values are listed
in Table 1.

For each dataset, n graphs, each with an average of υ vertices, were generated.
Two vertices in a graph were connected with probability d

υ−1 , and one label from
|Σ| was assigned to each vertex in the graph. The Computation times shown in
this subsection are the average of 10 trials.

Fig. 7. Computation time for various n.

We first varied only n to generate various datasets in which the other param-
eters were set to their default values. The number of graphs in each dataset was
varied from 10 to 100. Figure 7 shows the Computation time required to gen-
erate a kernel matrix for each dataset for the proposed graph kernels2. In this
experiment, h was set to three. As shown in Fig. 7, the square root of the Com-
putation time for the graph kernels was proportional to the number of graphs
in the dataset; that is, the Computation time was proportional to the square of
the number of graphs in the dataset. This is because the proposed graph ker-
nels were computed for two graphs, and the kernels run for all pairs of graphs
in the dataset. We next varied only υ to generate various datasets with the
other parameters set to their default values. Figure 8 shows the Computation
time required to generate a kernel matrix in each dataset when the number of
vertices in each dataset was varied from 50 to 120. The cube root of the Computa-
tion time for the proposed graph kernels was almost proportional to the average
number of vertices in the datasets. The parts that required a large amount of
Computation time in Algorithms 1 and 2 were those that included the Hungarian
algorithm. The Computation time of the algorithm was proportional to the cube
of the number of vertices of the bipartite graph that was given as the input. In

2 The figures and tables showing experimental results are the same as ones in the
conference version of this paper [14].
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the MDKV, τ(�(h)L (vi), �
(h)
L (vj)) represents the dissimilarity between s(vi, h) and

s(vj , h). The number of vertices in s(v, h) exponentially increased as h increased.
If we directly measure the edit distance between s(vi, h) and s(vj , h), the MDKV
required a large amount of Computation time. However, using a vector repre-
sentation of the vertices and relabeling the vertices, our proposed MDKV kernel
generated the kernel matrix very efficiently.

Fig. 8. Computation time for various υ. Fig. 9. Computation time for various |Σ|.

Fig. 10. Computation time for various d. Fig. 11. Computation time for various h.

In Figs. 9 and 10, we varied |Σ| and d, respectively, to generate various
datasets. The MDKV required a Computation time that was proportional to
|Σ| to compute the Euclidean distance τ(�(h)L (vi), �

(h)
L (vj)) and relabel the ver-

tices for the |Σ|-dimensional vectors. The Computation times for the proposed
graph kernels were almost proportional to the average number of degrees of each
vertex and number of vertex labels. The MDKS required a Computation time
that was proportional to d to measure the edit distance of the substitutions
for the leaf labels in the star structures. By contrast, the MDKV required a
Computation time that was proportional to d and |Σ| to relabel graphs.

Finally, we varied only h for a dataset generated with all other parameters
set to their default values. Figure 11 shows the Computation time required to
generate a kernel matrix in each dataset when h was varied from 0 to 15. The
Computation time was proportional to h.



Graph Classification with Mapping Distance Graph Kernels 35

4.2 Classification Accuracy

We compared the classification accuracies of the proposed graph kernels with
those of conventional graph kernels based on the relabeling framework, WLSK,
NHK, and HCK on three real-world datasets: MUTAG [6], PTC [10], and
ENZYMES [25]. Because the HCK theoretically returned the same values as
the LAK, the classification accuracies of the HCK were equivalent to those of
the LAK. The first dataset MUTAG consists of 188 chemical compounds, and
their classes are binary values that represent whether each compound is muta-
genic. The second dataset PTC consists of 344 chemical compounds, and their
classes are binary values that represent whether each compound is toxic. Gener-
ally, a chemical compound is represented as a graph with labeled edges, which
is not a graph that is considered in this paper. We considered the graphs with
edge labels using the following two approaches: (1) we ignored the edge labels;
or (2) an edge labeled � that was adjacent to vertices u and v in a graph was con-
verted into a vertex labeled � that was adjacent to u and v, as explained in [11].
After converting the edges in graphs, labels were assigned to only the vertices.
The third dataset, ENZYMES consists 600 proteins, and their classes represent
Enzyme Commission numbers from one to six. Table 2 shows a summary of each
dataset.

Before classifying a dataset that does not contain graphs but consists of
points in a p-dimensional feature space, we typically normalize the dataset using
the mean μq and standard deviation σq in the q-th feature (1 ≤ q ≤ p). By
normalizing the dataset, we often obtain an accurate model for classifying the
dataset. Similarly, we applied this procedure in the MDKV using the mean
μ
(t)
q and standard deviation σ

(t)
q for the |Σ|-dimensional vectors to represent

the vertex labels for each t (1 ≤ t ≤ h) and q (1 ≤ q ≤ |Σ|). Using this
procedure, we avoided the exponential increase in the elements in the vectors
that represented vertex labels when h increased. We call the MDKV method
that uses this procedure St-MDKV.

Table 3 shows the classification accuracies of the proposed and conventional
graph kernels. We examined the highest accuracy for each kernel and each
dataset, varying σ of the Gaussian kernel and h. We varied σ from σmin to
σmax in intervals of 10 (see Table 4) and h from zero to 15 in intervals of one.
As shown in Table 3, the classification accuracies of the proposed graph ker-
nels outperformed those of conventional graph kernels. The values of h for the
MDKV were relatively low, which indicates that the elements in the vectors rep-
resenting vertex labels exponentially increased and distance τ(�(h)L (vi), �

(h)
L (vj))

became inadequate when h increased. However, the values of h for St-MDKV
were high. By normalizing the vectors representing vertex labels, we adequately
measured the (dis)similarity between s(vi, h) and s(vj , h), which resulted in high
classification accuracy for various datasets.
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Table 2. Description of the evaluation datasets.

MUTAG PTC ENZYMES

Edge labels No edge labels Edge labels No edge labels

Number of
graphs n

188 344 600

Number of
classes (class
distribution)

2 (125,63) 2 (152,192) 6 (100 per class)

Max. number
of vertices

84 40 325 109 126

Avg. number
of vertices

53.9 26.0 77.5 25.6 32.6

Number of
labels

12 8 67 19 3

Average
degree

2.1 2.1 2.7 4.0 3.9

5 Discussion on Related Work

5.1 Graph Edit Distance Based on the Mapping Distance

The proposed graph kernels in this paper are related to methods for computing
the graph edit distance. This subsection surveys a framework for computing
the approximate graph edit distance between two graphs using the linear sum
assignment problem (LSAP).

Table 3. Classification accuracies.

MUTAG PTC ENZYMES

Edge labels No edge labels Edge labels No edge labels

MDKS 92.6% 91.0% 64.2% 63.1% 61.2%

MDKV 94.1% (h = 3) 93.6% (h = 2) 64.0% (h = 0) 66.9% (h = 3) 65.3% (h = 2)

St-MDKV 91.5% (h = 7, 8) 90.4% (h = 3) 64.9% (h = 1, 8) 64.0% (h = 1) 63.0% (h = 4)

NHK 92.6% (h = 3, 4) 90.4% (h = 2) 60.8% (h = 3, 5) 55.8%

(h = 1, 2, · · · , 15)

45.0% (h = 8)

WLSK 92.0% (h = 3) 90.4% (h = 1) 62.8% (h = 15) 64.2% (h = 10) 58.5% (h = 1)

HCK 92.0% (h = 3) 91.0% (h = 1) 63.1% (h = 15) 65.4% (h = 12) 57.2% (h = 4)

The problem of computing the exact graph edit distance between graphs
g1 = (V1, E1, �1) and g2 = (V2, E2, �2) is formalized as follows [24]: The sets of
vertices V1 and V2 are extended to



Graph Classification with Mapping Distance Graph Kernels 37

Table 4. Description of the evaluation settings.

MUTAG PTC ENZYMES

σmin 10 10 102

σmax 104 105 104

V +
1 = V1 ∪

b empty vertices︷ ︸︸ ︷
{ ε1, ε2, · · · , εb} and

V +
2 = V2 ∪

a empty vertices︷ ︸︸ ︷
{ ε1, ε

′
2, · · · , ε′

a},

respectively, where |V1| = a and |V2| = b. The graph edit distance computation
is eventually performed on graphs g1 = (V +

1 , E1, �1) and g2 = (V +
2 , E2, �2).

Additionally, a cost matrix for editing g1 to g2 is defined as

C =

1 2 · · · b 1 2 · · · a⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 c11 c12 · · · c1b c1ε ∞ · · · ∞
2 c21 c22 · · · c2b ∞ c2ε

. . .
...

...
...

...
. . .

...
...

. . . c1ε ∞
a ca1 ca2 · · · cab ∞ · · · ∞ caε

1 cε1 ∞ · · · ∞ 0 0 · · · 0

2 ∞ cε2
. . .

... 0 0 · · · 0
...

...
. . . . . . ∞ ...

...
. . .

...
b ∞ · · · ∞ cεb 0 0 · · · 0

, (8)

where cij , ciε, and cεi denote the costs of replacing a label of vertex vi ∈ V1 with
a label of vertex vj ∈ V2, deleting a vertex vi from g1, and inserting a vertex vi

into g1 to edit g1 to g2, respectively. Additionally, we denote the cost of editing an
edge (vi, vj) in g1 into an edge (vi′ , vj′) in g2 by c((vi, vj) → (vi′ , vj′)). Because
we assume that only vertices in graphs have labels in this paper, c((vi, vj) →
(vi′ , vj′)) is the cost of inserting or deleting an edge. When g1 is edited to g2,
the mapping between the two extended sets of vertices is denoted by a bijective
function ϕ : V +

1 → V +
2 . Then, the total cost of editing g1 to g2 via ϕ is

dist(g1, g2, ϕ) =
a+b∑
i=1

ciϕ(i) +
a+b∑
i=1

a+b∑
j=i+1

c
(
(vi, vj) → (

vϕ(i), vϕ(j)

))
. (9)

Therefore, the exact edit distance between g1 and g2 is

dist(g1, g2) = min
ϕ∈Φ

dist(g1, g2, ϕ), (10)

where Φ is a set of all possible permutations of integers 1, 2, · · · , a + b. Equa-
tion (10) is a type of quadratic assignment problem that is known to be NP-
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complete [15], although it is the LSAP if Eq. (9) does not contain its second
term.

Risen et al. proposed an algorithmic and efficient framework that enables us
to obtain the approximate graph edit distance by omitting the second term of
Eq. (9). The framework first solves

ϕ̂ = arg min
ϕ∈Φ

a+b∑
i=1

ciϕ(i) (11)

and then obtains the approximate edit distance between g1 and g2 by substi-
tuting ϕ̂ into Eq. (9). Equation (11) implies that each vertex vi in g1 should be
mapped to a vertex in g2 that has the same label as the label of vi as much as
possible. Solving Eq. (11) is equivalent to the minimum matching problem of a
bipartite graph whose vertices are V +

1 and V +
2 , and whose edge weights are cij

of Eq. (8). Therefore, this problem is tractable in O((a + b)3). However, because
the structural information of the two graphs is ignored and only vertex labels
are taken into account in the optimization problem shown in Eq. (9), we do not
always obtain an adequate mapping from V +

1 to V +
2 . To overcome this difficulty,

the elements of the cost matrix of Eq. (8) are redefined to take account of the
structural information as

c∗
ij = cij + c(local(vi) → local(vj)),

where local(vi) is local structure around a vertex vi, and c(local(vi) → local(vj))
is the cost of editing local(vi) to local(vj). Recently, various methods in this
framework have been proposed to represent local structures around vertices to
obtain a more accurate mapping between sets of vertices than that of Eq. (11).

In [9], local(vi) is a set of walks with k steps from vertex vi. Each walk is
a label sequence of length 2k + 1. Two independent walks on two graphs are
efficiently obtained from a walk on a product graph for the two graphs. The
product graph g× = (V×, E×) of the two graphs is defined as

V× = {(vi, vj) ∈ V1 × V2 | �1(vi) = �2(vj)} and
E× = {((vi, vj), (vi′ , vj′)) ∈ V× × V× |

(vi, vi′) ∈ E1 ∧ (vj , vj′) ∈ E2 ∧ �1((vi, vi′)) = �2((vj , vj′))}.

When W is an adjacency matrix of the product graph whose elements are binary,
the number of walks that generate identical label sequences is obtained from an
element of W k. The edit distance based on a walk leads to the problem of
“tottering,” that is, iteratively visiting the same cycle of vertices; a walk can
generate artificially low edit costs (high similarity values) [2].

In [23,24], local(vi) is defined by vertex vi and its adjacent edges as

c∗
ij = cij + min

ϕ∈Φ

a+b∑
k=1,k �=i,j

c((vi, vk) → (vj , vϕ(k))). (12)
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Fig. 12. Limited-size subgraphs induced by vertices within k steps from vertex vi.

This equation implies that each vertex vi in g1 should be mapped to a vertex in
g2 that has the same label as the label of vi and the same number of edges as that
for vi as much as possible. Because c∗

ij of Eq. (12) is computable in O(a+ b), the
matrix C∗ whose elements are c∗

ij is computable in O((a + b)3). Therefore, the
overall computation to solve Eqs. (12), (11), and (9) is O((a+ b)3). As explained
in Sect. 3.1, [28] defines local(vi) as a vertex vi, its adjacent edges, and vertices.
In this method, c∗

ij is defined as

c∗
ij = λ((s(i), s(j))) = cij + λ2((s(i), s(j))) + λ3((s(i), s(j))), (13)

where λ, λ2, and λ3 are defined in Eq. (2). Compared with Eqs. (12), (13) is
efficient because it does not contain the optimization problem.

In [3], local(vi) is a limited-size subgraph induced by vertices reachable
within k steps from vertex vi, as shown in Fig. 12. The subgraph local(vi) is
denoted by N i

k, and c∗
ij is the exact edit distance between N i

k and N j
k , that is,

c∗
ij = dist(N i

k,N j
k ). Because the problem of a graph edit distance is NP-complete,

although applying the problem to large graphs is intractable, dist(N i
k,N j

k ) is
tractable for small k. Additionally, because the structural information that
limited-size subgraphs have is more than that of walks and stars, the graph
edit distance based on limited-size subgraphs provides an accurate approximate
graph edit distance.

Table 5 summarizes citations in which methods for computing the approxi-
mate graph edit distance are proposed, as provided in this subsection. The next
subsection discusses some graph kernels.

5.2 Support Vector Machines with Graph Kernels

Given a set of examples D = {(xi, yi)}n
i=1 such that xi ∈ Rp and yi ∈

{−1,+1}, the SVM determines a hyperplane wT x + b = 0 in Rp that satisfies
yi

(
wT xi + b

) ≥ 1. Some examples in D that are the nearest to the hyperplane
are called support vectors, and the distance between the support vectors and
hyperplane is 1

||w || . Because the hyperplane that classifies the positive and neg-
ative examples in D accurately is such that the margin 1

||w || is maximum under
yi(wT xi + b) ≥ 1, this problem is formalized as follows:
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Table 5. Methods for measuring the graph edit distance based on the mapping distance
and graph kernels.

Graph edit distance based
on mapping distance

Graph kernel

Path, walk Gaüzère [9] Kashima [12], Borgwardt [2],
Gärtner [8]

Star Riesen [23], Zeng [28] –

Tree – Mahé [22], Bach [1]

Limited-size graph Carletti [3] Costa [5], Horváth [18],
Shervashidze [26]

Relabel – Hido [11], Shervashidze [27],
Kataoka [11]

min
w ,b

||w||2

s.t. yi(wT xi + b) ≥ 1.

By applying the method of Lagrange multipliers to the above optimization prob-
lem, we obtain the following dual problem:

max
α1,··· ,αn

−1
2

n∑
i=1

n∑
j=1

αiαjyiyjk(xi,xj) +
n∑

i=1

αi

s.t. αi ≥ 0,

n∑
i=1

αiyi = 0,

where αi are Lagrange multipliers and k(xi,xj) = xT
i xj . Using the Lagrange

multipliers, the obtained hyperplane is denoted by

f(x) = sign

(
n∑

i=1

αiyik(xi,x) + b

)
.

In this paper, we consider a problem for classifying labeled graphs accurately.
A straightforward method for converting a set of labeled graphs to a set of
feature vectors in Rp to apply the conventional SVM is as follows: First, we
enumerate frequent subgraph patterns F from the set of labeled graphs G in
the training dataset, where the frequent subgraph patterns F are defined as
graphs f appearing in G more frequently than threshold μ; that is, sup(f) =
|{g | g ∈ G, f ⊆ g}| and F = {f | sup(f) ≥ μ} [19]. Then, we derive a feature
vector x = (x1, x2, · · · , x|F |)T ∈ R|F | for a graph g in G, where xj is one if
fj ∈ F and fj ⊆ g, and zero otherwise. Based on this conversion, because all
the graphs are represented as feature vectors, we can apply the conventional
SVM with kernels, such as polynomial, Gaussian, and sigmoid kernels, to the
feature vectors. However, to enumerate all frequent subgraph patterns from a
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set of graphs requires much Computation time, and the subgraph isomorphism
problem fj ⊆ g in which a pattern fj is included in graph g is known to be
NP-complete. Additionally, because we cannot generate graph g from its feature
vector x, there is loss of structural information by converting g to x, which may
cause a decrease in classification accuracy on constructing an SVM.

Since the introduction of convolution kernels in [17], the decomposition app-
roach has been the guiding principle in kernel design for structured objects.
According to such an approach, a similarity function between discrete data
structures can be obtained by decomposing each object into parts and devis-
ing a valid local kernel between the subparts [5]. Thus, in most graph kernels
k(gi, gj), graphs gi and gj are decomposed into subparts local(v) and local(u),
respectively, and then local kernels for the subparts are accumulated, such as
k(gi, gj) =

∑
v∈gi

∑
u∈gj

k(local(v), local(u)) =
∑

v∈gi

∑
u∈gj

k(v, u).
According to [27], the first class of graph kernels is based on random walks.

In [12], k(v, u) is defined by sets of random walks, with k steps from vertices v
and u. A walk from v is denoted by a sequence of vertex labels and edge labels
wv = �v0�v0,v1�v1�v1,v2 · · · �vk−1�vk−1,vk

�vk
, where �v is a label of v and �v,u is a

label of (v, u). For this walk, a random walk kernel is defined as

k(v, u) = p(wv)p(wu)δ(�v0 , �u0)
k∏

h=1

δ(�vh−1,vh
, �uh−1,uh

)δ(�vh
, �uh

), (14)

where p(wv) is the probability that a walk wv occurs. To avoid deriving walks
wv and wu such that δ(�v0 , �u0)

∏k
h=1 δ(�vh−1,vh

, �uh−1,uh
)δ(�vh

, �uh
) = 0, which is

the underlined part of Eq. (14), and raise its computational efficiency, a product
graph of gi and gj is used [2].

The second class of graph kernels is based on trees. For example, in [22], the
size-based balanced tree-pattern kernel is defined as

k(v, u, h) =
∑
t∈Bh

λ|t|−hψ(gi, v, t)ψ(gj , u, t), (15)

where Bh is a set of balanced trees of height h, |t| is the size of t, λ is a parameter,
and ψ(g, v, t) is a tree count function that returns the number of times that a
tree-pattern t occurs in a graph g, where the root of t is mapped to v in g. Using
dynamic programing, Eq. (15) is rewritten as

k(v, u, h) = λδ(�v, �u)
∑

R∈M(v,u)

∏
(v′,u′)∈R

k(v′, u′, h − 1),

where k(v, u, 1) = λδ(�v, �u) and M is defined as

M(v, u) = {R ⊆ N(v) × N(u) |
∀(a, b) ∈ R, �(a) = �(b) ∧ �(v, a) = �(u, b)}.

Each R ∈ M(v, u) consists of one or several pairs of neighbors of v and u that
are identically labeled and connected to v and u by edges of the same label.
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The third class of graph kernels is based on limited-size subgraphs, including
kernels based on so-called graphlets [26], which represent graphs as counts of all
types of subgraphs of size k ∈ {3, 4, 5}. For example, in [5], the neighborhood
subgraph pairwise distance kernel is defined as follows using N v

k , which is a
limited-size subgraph induced by vertices reachable within k steps from vertex v:

k(v, u) =
∑
d>0

∑
k

∑
v′∈V (gi)

dist(v,v′)=d

∑
u′∈V (gj)

dist(u,u′)=d

δ(N v
k ,N v′

k )δ(N u
k ,N u′

k ),

where dist(v, v′) is the shortest step between vertices v and v′ in a graph. This
kernel counts all pairs of neighborhood graphs of radius k whose roots are at
distance d. It requires graph isomorphism matching for small graphs N v

k and
N v′

k in δ(N v
k ,N v′

k ).
The fourth class of graph kernels are based on relabeling. In these ker-

nels, N v
k for a vertex v is represented as a label but not a small graph, so

we can quickly check whether two labels N v
k and N u

k are equivalent. Given
graph g(h) = (V,E,Σ, �(h)), a procedure that converts g(h) to another graph
g(h+1) = (V,E,Σ′, �(h+1)) is called a relabel. The label of a vertex v in g(h+1)

is defined using the labels of v and N(v) in g(h), and is denoted by �(h+1)(v) =
r(v,N(v), �(h)). Let {g(0), g(1), · · · , g(h)} be a series of graphs obtained by iter-
atively applying a relabel h times, where g(0) is one of graphs in the dataset.
Given two graphs gi and gj , a graph kernel is defined as

k(v, u) =
h∑

t=1

δ
(
�(t)v , �(t)u

)
, (16)

where �
(t)
v is a label for v in g(t). Recently, various graph kernels, such as the

NHK [11], WLSK [27], LAK [13], HCK [13], and shortened Hadamard code
kernel [13], have been proposed to apply to the graph classification problem.

In this paper, we proposed two graph kernels called MDKS and MDKV.
MDKS is based on the graph edit distance using star structures. Because the
kernel uses only small local structures that consist of adjacent vertices of each
vertex in graphs, it is not substantially superior to conventional graph kernels.
MDKV is based on the framework of the graph edit distance using LSAP and
the framework of relabeling in conventional graph kernels. The kernel uses local
structures that consist of vertices that are reachable within h steps from each ver-
tex in graphs and do not require isomorphism matching similar to, for example,
the NHK, WLSK, and HCK. Additionally, similarities between local structures
are represented as continuous values by Eq. (6) but not binaries by the underlined
part of Eq. (16), which enables us to measure similarities between graphs ade-
quately. This is why our proposed graph kernel MDKV is substantially superior
to conventional graph kernels.



Graph Classification with Mapping Distance Graph Kernels 43

6 Conclusion

In this paper, we proposed two novel graph kernels, mapping distance kernel
with stars (MDKS) and mapping distance kernel with vectors (MDKV), to clas-
sify labeled graphs more accurately than existing methods. The MDKS is based
on the graph edit distance using star structures, and the MDKV is based on
the graph edit distance using the linear sum assignment problem and graph
relabeling. To verify the computational efficiency of the proposed graph kernels,
we performed experiments on an artificially generated dataset. Additionally, we
compared the classification accuracy of the proposed graph kernels with conven-
tional graph kernels using real-world datasets. Because MDKS uses only small
local structures that consist of adjacent vertices of each vertex in graphs, it is
not substantially superior to conventional graph kernels. However, the MDKV
uses local structures that consist of vertices that are reachable within a small
number of steps from each vertex in graphs and, unlike existing methods, do
not require isomorphism matching. Thus, the MDKV is substantially superior
to conventional graph kernels.
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Abstract. Domain adaptation, where no labeled target data is avail-
able, is a challenging task. To solve this problem, we first propose a
new SVM based approach with a supplementary Maximum Mean Dis-
crepancy (MMD)-like constraint. With this heuristic, source and target
data are projected onto a common subspace of a Reproducing Kernel
Hilbert Space (RKHS) where both data distributions are expected to
become similar. Therefore, a classifier trained on source data might per-
form well on target data, if the conditional probabilities of labels are
similar for source and target data, which is the main assumption of this
paper. We demonstrate that adding this constraint does not change the
quadratic nature of the optimization problem, so we can use common
quadratic optimization tools. Secondly, using the same idea that render-
ing source and target data similar might ensure efficient transfer learning,
and with the same assumption, a Kernel Principal Component Analysis
(KPCA) based transfer learning method is proposed. Different from the
first heuristic, this second method ensures other higher order moments
to be aligned in the RKHS, which leads to better performances. Here
again, we select MMD as the similarity measure. Then, a linear transfor-
mation is also applied to further improve the alignment between source
and target data. We finally compare both methods with other transfer
learning methods from the literature to show their efficiency on synthetic
and real datasets.

1 Introduction

With the trend of Artificial Intelligence, there is more need to transfer knowledge
from what we have trained to another (sometimes more difficult) task (task to
be trained), especially when the latter is different yet related to the trained task.
This is the main objective of Transfer Learning : taking full advantage of previous
knowledge to learn a good classifier or regressor in a new different but related
domain, where learning may be much more difficult using only the new domain.
We designate previous knowledge as source, which is supposed available, while
the new domain is designated as target. Depending on the availability of labels
of target and source domains, transfer learning can be categorized as multi-task
c© Springer International Publishing AG, part of Springer Nature 2018
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learning, self-taught learning, transductive transfer learning and unsupervised
transfer learning (according to [19]). In this paper, we focus on transductive
transfer learning, where there is labeled source data and no labeled target data.
In this sub-branch, we consider that source and target data distributions are
different in their feature space but share the same label space. Marginal, con-
ditional distributions of observations or priors can be different. This problem
belongs to domain adaptation problems.

There is a variety of transfer learning methods. In this paper, we suppose
that the conditional probabilities of labels of source and transformed target data,
given an observation, are similar in a Reproducing Kernel Hilbert Space (RKHS)
subspace, that is:

∃g(.) : IRm → IRn | ps(y|x, x ∈ S) = ps(y|g(x), x ∈ T )

where g(.) is a smooth transformation function, y represents the label, x is an
observation either taken from the source domain (S) or from the target domain
(T ).

Within this assumption, we first propose the use of a Support Vector Machine
(SVM) subject to a zero valued Maximum Mean Discrepancy (MMD)-like con-
straint, then we consider extending the principal idea to solve the domain adap-
tation problem using Kernel Principal Component Analysis (KPCA).

For the first MMD-like constrained SVM approach, the reason of the choice
of a zero-valued MMD-like constraint is that MMD is a non-parametric measure
of the distance between 2 distributions [4] and it can be easily kernelized [8].
Therefore, combining MMD and SVM appears promising. SVM is a famous
method used in binary classification. It is well known for its generalization ability
and the simplicity in dealing with non-linearly separable data set. Our method
keeps these advantages while performing well in the transfer learning context. As
shown in Sect. 3, the optimization problem remains convex and can be directly
solved using standard quadratic optimization tools. Introducing a MMD-like
constraint is a heuristic which is equivalent to projecting the data onto a subspace
where marginal distributions of observations are expected to become similar for
both source and target data. Therefore, the discriminant function found by SVM
for source data might perform well for target data. The experimental results
prove the effectiveness of our idea.

Another way to make the marginal distributions of source and target observa-
tions similar is to first define a subspace adapted to the distributions (obtained,
for example, by Principal Component Analysis) of source and target data respec-
tively and then, to consider that both source and target data share the same
coordinate system. To deal with potential non linear transformations between
source and target data, Kernel Principal Component Analysis (KPCA) will be
used here. We select a l-dimensional common subspace in such a way that MMD
is minimized. This method is called KPCA alignment. It can be further improved
by considering an additional transformation for which the parameters result from
reducing the value of the previously obtained MMD.

Experimental results show the accuracy improvement of KPCA alignment,
compared to that of the MMD-like-constraint alignment.
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This paper is organized as follows: in Sect. 2, we give a short summary of
related work; then we present our MMD-like constrained SVM method in Sect. 3
together with the optimization solution to the problem (in Sect. 4); the extension
to KPCA alignment follows in Sect. 5; we prove the effectiveness of the proposed
methods on synthetic and real data sets in Sect. 6. Finally, we conclude this
paper and suggest perspectives to our work.

2 Related Work

In this section, we first review the common existing transductive transfer learning
methods, especially domain adaptation methods. Then we present SVM based
transfer learning and MMD based transfer learning, which is closely related to the
first part of our work. Some dimension reduction transfer learning methods are
presented, which are related to the second part of our work (KPCA alignment).
For more transfer learning methods, recent advances of transfer learning, readers
are referred to [11,19,20], etc. We start by a brief review of general transductive
transfer learning.

According to [19], transductive transfer learning methods solve the problems
where source and target share the same label space while differ in feature space.
In this category of transfer learning, there are sample selection bias, co-variate
shift and domain adaptation. Sample selection bias and co-variate shift deal with
situations where only marginal distributions of source and target are different,
conditional distributions are required to be the same; domain adaptation refers
to the situations where marginal distributions and/or conditional distributions
can be different between source and target. When target labels are unavailable,
authors proposed instance reweighting strategies: typically [10,23], both of which
solve sample selection bias and co-variate shift problems; others have also pro-
posed domain adaptation strategies, for example GFK [7], TCA [18], JDA [15],
etc.

SVM based transfer learning have been applied in many applications, from
information retrieval to pedestrian detection. In general, authors modify the
standard SVM to adapt to the transfer learning context. To the best of our
knowledge, some authors define wtarget = wcommon+wspecific and the two latter
parameters are found from sources [36]; some modify the penalty by multiplying
a reweighting factor to the penalty term of standard SVM [13]; some add an
extra regularization term to standard SVM to control transfer [9,31], etc. So
far, we have not seen SVM based transfer learning methods that have an extra
constraint to control transfer, which is one of the novelties of our work.

MMD is an efficient measure of similarity between distributions and is widely
used in transfer learning methods. MMD based transfer learning integrates MMD
into traditional machine learning methods, aiming at controlling the transfer by
MMD. However, most of the MMD-based transfer learning methods contribute
to using MMD as an extra regularization term, which will balance the specific
classification performance and the transfer. Some others use MMD as a pre-
selection criterion to eliminate unrelated source domains. Interested readers are
referred to [18,22,24,33,35], etc.
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We now introduce related works of KPCA transfer learning. In general,
KPCA is a traditional method for dimension reduction and usually takes the role
of preprocessing in data mining. There are works related to dimension reduction
which have contributed to solving transfer learning problems: [27] looks for a way
of dimension reduction, after which the target data keeps their discriminative
characteristics while it can also benefit from the advantage of transfer learning;
[17] performs dimension reduction in the learning process of a universal kernel
for transfer problem; [32,34] use the linear discriminant analysis while adapt-
ing the scatter matrix in different ways to different transfer learning contexts;
[1] tries to find a common matching subspace while taking into consideration,
as well, the conditional probability density function of the subspace-source-data,
etc. To the best of our knowledge, KPCA has not been used to deal with transfer
learning problems directly. Compared to the methods listed previously, applying
directly KPCA to transfer learning is simple.

3 Presentation of the MMD Constrained SVM Method

In this section, we briefly present an extended version of our MMD constrained
SVM transfer learning method which has been presented in [2]. We start by
presenting some necessary fundamentals followed by the details of our approach.

3.1 Review of Basic Theoretical Foundations

Maximum Mean Discrepancy. Introduced in [5], Maximum Mean Discrep-
ancy (MMD) is a non-parametric distance between two probability distributions.
It measures the maximum distance between the expected values of these distri-
butions (any distribution p and any distribution q) w.r.t any transformation
(f : x → f(x), where x is a random variable drawn from the distribution)

MMD[F , p, q] = sup
f∈F

(Ep[f(x)] − Eq[f(y)])

In [3], from the Theorem on MMD, we can conclude that distributions p
and q are equal iff MMD = 0. Then, using kernel embedding of distributions,
Smola [28] and Gretton et al. [8] have shown that MMD can be easily evaluated
in a Reproducing Kernel Hilbert Space (RKHS). Accordingly, MMD can be
expressed as MMD = ||μp − μq||H, where H represents a RKHS, μ{p,q} stands
for E{p,q}[k(x, .)] and k(x, .) is the representation of x in the RKHS, which is
equivalent to any transformation function f because of the nature of kernel. In
the previous expression, the kernel must be universal1. The demonstration is
shown as follows:

1 A universal kernel is necessarily characteristic, while the reverse is not true. For
more details see [29,30].
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MMD2[F , p, q] = [ sup
||f ||H≤1

(Ep[f(x)] − Eq[f(y)])]2

= [ sup
||f ||H≤1

(Ep[<φ(x), f>H] − Eq[<φ(y), f>H])]2

= [ sup
||f ||H≤1

<μp − μq, f>H]2

= ||μp − μq||2H
Then using the kernel trick, the squared MMD can be further developed as

follows:

MMD2[F , p, q] = ‖μp − μq‖2H
= Ep,p[k(x, x′)] − 2Ep,q[k(x, y)] + Eq,q[k(y, y′)]

Here, x and x′ are independent observations drawn from distribution p, y
and y′ are independent observations from distribution q, k designates a universal
kernel function.

Theorem 1 (Steinwart [30] and Smola [28]).
MMD[F , p, q] = 0 iff p = q when F = {f : ‖f‖H ≤ 1} provided that H is

universal.

To make kernelized MMD calculable, an unbiased estimation is proposed
in [26]:

̂MMD
2

u[F ,X, Y ] =
1

m(m − 1)

m∑

i=1

m∑

j �=i

k(xi, xj)

+
1

n(n − 1)

n∑

i=1

n∑

j �=i

k(yi, yj) − 2
nm

m∑

i=1

n∑

j=1

k(xi, yj)

(1)

where xi, i = 1, . . . , m and yi, i = 1, . . . , n are iid examples drawn from p and q
respectively.

SVM. As our work is based on SVM, we remind the primal optimization prob-
lem for soft margin SVMs.

min
w,ε,b

1
2
||w||2 + C

n∑

i=1

εi

s.t. εi ≥ 0, ∀i = 1, . . . , n

yi(<w,φ(xi)> + b) ≥ 1 − εi, ∀i = 1, . . . , n

where w is the vector normal to the hyperplane defined in the RKHS, εi is the
error term associated to observation i, C is the trade-off parameter between the
margin term and classification error, φ(xi) is the kernel representation of xi, yi
is the label of xi and b is the bias.

The objective of standard SVM is to find the best w which defines the clas-
sifier f = sign(<w,φ(x)> + b) that maximally separates positive and negative
classes. The use of φ(.) makes nonlinear classifiers possible, which corresponds
to most of the real classification tasks.
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3.2 MMD-Like Constrained SVM Transfer Learning

In this subsection, we briefly present the heuristic proposed in our previous
paper [2].

With the assumption (in Sect. 1) satisfied, the objective of this first heuris-
tic is to find a classifier that maximally separates source classes while remains
effective for the target classification task. Therefore, we modify the standard
SVM by adding an extra constraint, whose aim is to force the hyperplane to
lie in a subspace of the RKHS where source and target data are made similar.
The similarity is measured by the estimated MMD defined in Eq. 1. The general
formulation of the proposed approach is as follows:

min
w,ε,b

1
2
||w||2 + C

n∑

i=1

εi

s.t.<μXs
− μXt

, w>H = 0
εi ≥ 0, ∀i = 1, . . . , n

yi(<w,φ(xi)> + b) ≥ 1 − εi, ∀i = 1, . . . , n

(2)

where the second line is the extra constraint and the other parts are the same
as standard SVM; μXs

(μXt
) is the sample mean of source (target) data in H

and can be estimated by μXs
= 1

ns

∑
φ(Xs) (μXt

= 1
nt

∑
φ(Xt)).

To understand the role of the extra constraint, making <μXs
−μXt

, w>H = 0
corresponds to limiting the objective hyperplane (whose direction is determined
by w) to lie in the subspace where MMD = 0. In this way, we expect that source
and target data will be as similar as possible in this subspace. Accordingly, if the
hyperplane can well classify source data, it might perform well on target data.

In this paper, we use a MMD-like constraint instead of a MMD-like regular-
ization term (as in [22]). This allows to focus on the transfer ability rather than
on performance on source data. If we compare our approach with that of Quanz
and Huan [22], where there is an extra regularization parameter λ (whose value
influences the trade-off between transfer effect and the classification performance
on source data), with a finite value of λ, we might sacrifice the similarity between
source and target data to achieve high performance only for source data.

Moreover, as shown in Sect. 4, our heuristic avoids the calculation of the
inverse of a matrix which leads to inefficiency and inaccuracy during the opti-
mization process. In [22], Quanz and Huan proposed to alleviate this problem by
approximating the original matrix by generalized singular value decomposition,
but the calculation of the inverse of a matrix was unavoidable.

4 Dual Form of the Optimization Problem

We first use the representer theorem [25] to solve problem (2), so w can be
expressed as:

w =
ns∑

k=1

βskφ(xs
k) +

nt∑

l=1

βtlφ(xt
l) (3)
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where βsk and βtl are the parameters to be determined.
Then, the extra constraint can be expressed in terms of β:

<µXs − µXt , w>H =
1

ns

ns∑

k=1

β
s
k

ns∑

i=1

<φ(xi),φ(xk)>H − 1

nt

ns∑

k=1

β
s
k

nt∑

j=1

<φ(xj),φ(xk)>H

+
1

ns

nt∑

l=1

β
t
l

ns∑

i=1

<φ(xi),φ(xl)>H − 1

nt

nt∑

l=1

β
t
l

nt∑

j=1

<φ(xj),φ(xl)>H

= (

[
KSS KTS

KST KTT

]
[

1

ns
, . . . ,

1

ns︸ ︷︷ ︸
ns

,− 1

nt
, . . . ,− 1

nt︸ ︷︷ ︸
nt

]T )T [βs, βt]T

= (K1̃)T β

The new expression of problem (2) in terms of β becomes:

min
β,ε,b

1
2
βTKβ + C

n∑

i=1

εi

s.t.(K1̃)T β = 0
εi ≥ 0, ∀i = 1, . . . , n

yi(βT<φ(X),φ(xi)> + b) ≥ 1 − εi, ∀i = 1, . . . , n

(4)

Using Lagrangian optimization, we obtain the dual form:

max
µ,η

ns∑

i=1

μi−
1
2
(
ns∑

i=1

μiyiK.i)TK−1(
ns∑

j=1

μjyjK.j)−
1
2
η21̃TKT 1̃−η(

ns∑

i=1

μiyiK.i)T 1̃

s.t. 0 ≤ μi ≤ Cand
ns∑

i=1

μiyi = 0

where K.i = <φ(X),φ(xi)>H and X represents the ensemble of Xs and Xt; xi

is a single observation either from Xs or Xt.
If we fix μ and consider the optimization only with regards to η, we can find

the optimal value of η in terms of μ, η = − (
∑ns

i=1 µiyiK.i)
T 1̃

1̃TKT 1̃
. We now obtain the

final dual form, which is still quadratic w.r.t μ:

max
µ

ns∑

i=1

μi − 1
2
(
ns∑

i=1

μiyiK.i)T (K−1 − 1̃1̃T

1̃TKT 1̃
)(

ns∑

j=1

μjyjK.j)

s.t. 0 ≤ μi ≤ Cand
ns∑

i=1

μiyi = 0.

With some further calculation, we have:

max
γ

γTY − 1
2
γT (KSS − KS.1̃1̃TKT

S.

1̃TKT 1̃
)γ

s.t.
ns∑

i=1

γi = 0 and min(0, Cyi) ≤ γi ≤ max(0, Cyi), ∀i = 1, . . . , ns.
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where γi = μiyi and KS. =
∑ns

i=1 Ki.. The matrix KSS − KS.1̃1̃
TKT

S.

1̃TKT 1̃
is the matrix

of inner products (in the subspace orthogonal to w) of source data. Following
the demonstration in [21], we can conclude that if H is a RKHS on X and
H0 ∈ H is a closed subspace, then H0 is also a RKHS on X. Therefore, as the
matrix Knew = KSS − KS.1̃1̃

TKT
S.

1̃TKT 1̃
is the new Gram matrix corresponding to the

projected kernel, Knew is positive semi-definite.

5 Extension to KPCA Alignment

The principle of MMD-like constrained transfer learning method is to match
source and target data in a subspace of a RKHS so that the classifier for source
can work well on target data. Although MMD = 0 guarantees the equality of
two distributions, <μXs

−μXt
, w>H = 0 is no longer the MMD defined in The-

orem 1. There is no guarantee that any transformation of the initial data, leading
to a zero value of the MMD-like constraint, ensures that the transformed data
distributions are similar. Although several experiments have proved the efficiency
of our method (in Sect. 6), theoretical error bounds are to be developed. We now
propose an alternative, based again on the idea that if marginal distributions of
observations from source and target data become similar, the classifier trained
on source data might perform well on target data. Our alternative to solving the
domain adaptation problem is based on Kernel Principal Component Analysis
(KPCA). This contribution briefly appeared in the perspectives of our previous
paper [2] and is now presented in details. In this section, we start by presenting
the fundamentals of PCA and KPCA, after which the details of our method will
be shown.

5.1 A Brief Review of PCA and KPCA

Before introducing the details of KPCA, we first review the fundamentals of
Principal Component Analysis (PCA). PCA is an unsupervised statistical pro-
cedure that linearly transforms data to a new orthonormal coordinate system
so that the greatest variance lies on the first coordinate, the second greatest
variance on the second coordinate and so on. A principal component designates
each coordinate.

Let X be the matrix (n × m) of observations, the objective is to find the
vector u so that Xu extract the most important part of data information, here
measured by the variance of Xu. We begin by determining the first principal
component defined by the vector u that captures the largest variance of Xu. We
first center the data: Xc = X − E(X) and the problem is defined as follows:

arg max
u

||Xcu||2 = arg max
u

uTXT
c Xcu s.t. uTu = 1 (5)

The constraint uTu = 1 guarantees that the optimization problem is not ill-
posed. Introducing the Lagrangian, we have:

L = uTXT
c Xcu − λ(uTu − 1)
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Therefore,
∂L
∂u

= 2XT
c Xcu − 2λu = 0 ⇔ XT

c Xcu = λu

From the above expression, we can find that the Lagrange parameter λ can
be considered as an eigenvalue of XT

c Xc and the first principal direction u is
the eigenvector that corresponds to the largest eigenvalue λ. With a similar
reasoning, we understand that the lth principal component is the eigenvector
that corresponds to the lth largest eigenvalue of the covariance matrix XT

c Xc.

Fig. 1. Illustration of permutation of abscissa and ordinate after PCA. In both (b)
and (c), abscissa corresponds to the eigenvector V1 associated to the largest eigen-
value, while ordinate corresponds to eigenvector V2 associated to the second largest
eigenvalue.

KPCA is a kernelized version of PCA that extracts the principal com-
ponents in a RKHS. After transformation of the data into the RKHS, the



54 X. Chen and R. Lengellé

covariance matrix of the data becomes: CK = 1
n

∑n
i=1 φc(xi)φc(xi)T , where

φc(xi) = φ(xi) − 1
n

∑n
i=1 φ(xi); φ(X) is the kernel transformation of original

data X; φc(xi), i = 1, . . . , n centers all the data in the high-dimensional space
spanned by φ(.), corresponding to Xc in (5). As KPCA manipulates data in a
RKHS, eigenvectors (V̄ ) should lie in the space spanned by φ(xi). So we have
V̄ =

∑n
i=1 αiφ(xi). We now have:

λ̃V̄ = CK V̄ ⇔ nλ̃α = Mα

where M = (In − 1
n1n1Tn )K(In − 1

n1n1Tn ),K = <φ(X),φ(X)>H, In is the iden-
tity matrix of size n × n and 1n is the n × 1 column vector with all elements
equaling 1. We next normalize V̄ (Ṽ Ṽ T = 1) and get α̃M α̃ = 1, which is equiv-
alent to nλ̃α̃T α̃ = 1. Then, expressing the coordinates (Ṽ φc(Z)) of any data set
Z after KPCA, we obtain:

Ṽ φc(Z) = α̃Kc where Kc(i, j) = <φc(xi),φc(zj)>H

In general, a subspace associated to a few l first principal components (l 
 m)
is enough for a good data representation. The information represented by other
components corresponding to smaller eigenvalues is usually associated to noise.
In Sect. 6, on the simulated and real data sets considered in this paper, l can be
selected as small as 2 or 3.

5.2 KPCA Transfer Learning via Alignment of Data
Representations

The general principle of KPCA based transfer learning is the following. We apply
KPCA to source data and obtain a representation of the data in a (non linearly)
transformed space, in a coordinate system adapted to source data. We do the
same for target data. Then the coordinates of target data (obtained in their coor-
dinate system) are directly used in the source data coordinate system. This per-
forms alignment between both representations. However, eigenvectors are defined
up to the constant ±1 and differences between source and target data can change
the ranking of eigenvalues (so the order of eigenvectors, see Fig. 1). Accordingly,
when performing alignment, we have to select the best KPCA subspace for tar-
get data in such a way that the distributions of source and target observations
are maximally similar. Here, the best subspace is selected by minimizing MMD
between source and target, among possible permutations and inversions of the
elements of the coordinate system of the target. MMD estimation is done in
a new RKHS, as presented in Theorem 1 in Sect. 1. The subspace dimension is
determined, as usual, by selecting the number of axes that allow to preserve a
reasonable percentage of the initial variance of source data.

Finally, after the coordinate system is optimized for target data to align, as
well as possible, with source data, we can furthermore reduce the residual MMD
by considering a linear transformation whose parameters (transformation matrix
A, translation vector b) result, here again, from the minimization of this residual
MMD w.r.t A and b.
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In the remaining of this paper, KPCA transfer learning without linear trans-
formation is called KPCA-TL and KPCA-LT-TL is the method using the addi-
tional linear transformation.

6 Experiments

In this section, we first take the similar synthetic and real data sets from the
paper [2], because our first results contribute to comparing our first method with
others from literature. Then, we apply our second method, KPCA based transfer
learning, on these data sets. Furthermore, we also compare both methods with
other transfer learning benchmark methods on new real data sets. Finally, we
analyze the results and prove the efficiency of our methods.

6.1 Data Sets

We take the well-known banana-orange data set as our synthetic data set. We
fix a source data set and generate a target data by drawing samples from a
translated and distorted version of the source data distribution. For binary clas-
sification task, we can attribute positive labels to the banana while negative
labels to the orange. To form a domain adaptation problem, we suppose that
the label information of source is known while it is unknown for target data (see
an example in Fig. 3(a)).

For real data sets, we first use the USPS real data set, a handwritten digits
data set. There are training and testing subsets, both containing the images
(16 × 16 pixels) of handwritten digits 0 to 9. We use the training subset as our
source data while the testing subset is our target data. We suppose that there is
no label information for target data. As in [33], the objective is to separate digit
4 and digit 7 as the source task and to separate digit 4 and digit 9 as the target
task (USPS-Task 1). Other similar transfer learning data set can be formed,
for example, the classification of digits 3 and 6 (source) to help classification of
digits 3 and 8 (target). Generally, we take advantage of an easier task to help
the classification of a harder task (see Fig. 2, where a t-SNE plot [16] illustrates
this case).

Some other data sets from the UCI data repository2 are also used here,
namely IRIS and SEED. For IRIS, we know that there are 3 classes, easily
separated. For the source, we take iris-setosa and iris-versicolor as source positive
and source negative class, while for the target, we consider iris-versicolor as
negative class and iris-virginica as positive class (IRIS-Task 1), respectively. We
can also form another transfer learning task by using iris-setosa and iris-virginica
as source while iris-versicolor and iris-virginica as target (IRIS-Task 2). Similarly
for SEED data set (SEED-Task 1: source data are the Canadian wheat variety
and the Rosa wheat variety while target are the Canadian wheat variety and the
Kama wheat variety. SEED-Task 2: the Canadian wheat variety and the Rosa

2 http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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Fig. 2. t-SNE plot of USPS testing data. Group 0 is represented by red plus; 1 by
blue x-marks; 2 by black circles; 3 by cyan stars; 4 by magenta squares; 5 by magenta
diamonds; 6 by red circles; 7 by black stars; 8 by blue squares; 9 by blue plus. (Color
figure online)

wheat variety are source data while the Kama wheat variety and the Rosa wheat
variety are the target).

In Table 1, we compare the results obtained with our methods and that with
LM (the method proposed in [22]). In [22], LM has been proved superior to some
other related transfer learning methods (T-SVM in [12], CDSC in [14], LWE in
[6]), so we omit here the comparison to these methods. Other domain adaptation
methods are also included in the comparison, even though some of the methods
have little relatedness with ours.
From this general comparison, we show readers that, for some data sets, our
methods give similar or even better results. Included methods are TCA [18],
GFK [7], JDA [15]. Standard SVM is also compared to show the usefulness of
transfer learning (or cases when negative transfer happens).

6.2 Experimental Results and Analysis

For the banana-orange data set (Fig. 3(a)), we show the classification result
obtained comparing SVMMMD, LM and KPCA-TL (or KPCA-LT-TL 3) (see
Fig. 3(a), (c) and (f)). Standard SVM is not compared in this figure, because
standard SVM can not well classify this data set. Figure 3 presents the classifi-
cation results on banana-orange data set for a representative random generation,
including data sets, discriminant functions for source and target data, decision
surfaces. For KPCA transfer learning methods, we present the classifier in the
RKHS (Fig. 3(e)) and the classification results in the original space (Fig. 3(f)),
as there is no need for pre-image to get the classification result.

3 Here, KPCA-TL and KPCA-LT-TL lead to the same results.
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Fig. 3. Results obtained on the banana-orange data set. In (a) and (c), triangles and
stars represent the labeled source data while circle symbols are the unlabeled target
data. In (d) and (b), decision surfaces are plotted as functions of the input space coor-
dinates. Thresholding these surfaces at 0 level gives the decision curves corresponding
to the classifiers shown in (c) and (a), respectively. (e) and (f) represent the classifi-
cation results of our KPCA transfer learning methods (results are identical for both
methods). In (e), triangles and stars are source data while circles denote target data,
colors represent classes: red for orange and blue for banana. In (f), source is represented
by red triangles and blue stars while target data is represented by circles; colors of
circles represent the classification result (before KPCA transfer learning, target are
unlabeled). (Color figure online)
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Fig. 4. Average performance (good classification rate) ±1 s.d. as a function of the
gaussian kernel parameter. Red line: our method. Blue line: LM. (from [2]). (Color
figure online)

For an average performance on banana-orange data set, 50 different indepen-
dently generated banana-orange data sets are used to compare SVMMMD and
its corresponding regularization-term-based approach LM. The average perfor-
mances (±1 standard deviation) of both approaches as a function of gaussian
kernel parameter are shown in Fig. 4. However, KPCA transfer learning methods
are not compared, because there are 2 kernel parameters for KPCA (σKPCA and
σMMD). Standard SVM is not compared either, because a good result on target
data cannot be obtained without transfer learning (see Table 1). We conclude
that our method achieves better results than LM for a wider range of the kernel
parameter.

For the USPS data set, if we use digit 3 and digit 6 as source while digit 3 and
digit 8 as target, we can find that our SVMMMD provides higher performance for
almost all the kernel parameter values considered.(referred to [2] Fig. 6) KPCA is
not compared for the same reason as before. We have also tried on other possible
pairs of source and target, SVMMMD generally performs the best.

Table 1 shows the comparison results of different transfer learning methods
and of standard SVM. The parameters for different methods are adjusted to be
optimal for each task. The banana-orange data set corresponds to the classifica-
tion results on the data represented in Fig. 3(a). As shown in this table, standard

Table 1. Good classification results on different datasets for different transfer learning
methods.

SVM TCA JDA GFK LM SVM MMD KPCA-TL KPCA-LT-TL

USPS-Task 1 0.6976 0.7347 0.8329 0.7560 0.7294 0.9496 0.8117 0.8143

SEED-Task 1 0.8000 0.7286 0.7786 0.7857 0.8929 0.9071 0.9357 0.9214

SEED-Task 2 0.7000 0.8214 0.7714 0.7214 0.8571 0.9357 0.9214 0.9143

IRIS-Task 1 0.5000 0.8800 0.5000 0.5000 0.7000 0.8700 0.9000a 0.9300a

IRIS-Task 2 0.5000 0.5000 0.5100 0.5000 0.7300 0.9500 0.9300 0.9700

Banana-Orange 0.5062 0.7654 0.6914 0.4938 0.9012 0.9877 1.0000 1.0000
aResults obtained after an inversion of labels, read the comment in the text.
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SVM can not solve the problem in 3 out of 6 tasks. For these 3 cases, standard
SVM will predict all the target data in the same class, which is obviously wrong.
Our methods achieve the best results in almost all tasks.

However, for KPCA transfer learning methods (KPCA-TL and KPCA-LT-
TL), positive and negative groups of source and target data might be mistaken
after KPCA, leading to an inversion of the labels (for example, in IRIS-Task 1,
the labels obtained should be inverted, what we have done here). This confusion
can be easily corrected if a few labeled target data observations are available.
GFK does not work well, perhaps because there is no smooth interpolation
between source and target. JDA works relatively well as it utilizes the stability
condition for clustering in solving transfer learning problems, but our exper-
iments show that, in some cases, JDA does not converge and perhaps some-
times gets trapped in local minima. TCA is similar to LM and seems to be
outperformed mostly because they might sacrifice their target classification per-
formance to source classification. On the data sets considered in this study, our
methods compare favorably with the alternatives considered.

7 Conclusion and Future Directions

In this paper, we propose new methods to solve the domain adaptation problem
when no labeled target data is available. We suppose that there exists a smooth
nonlinear transformation of the target data distribution that makes it similar to
that of source data. We also suppose that, after this transformation, the con-
ditional probability distributions of labels remain similar for source and target.
The first approach is to perform a projection of source and target data onto a
subspace of a RKHS where source and target data distributions are expected to
be similar. To do so, we select the subspace which ensures nullity of a Maximum
Mean Discrepancy based criterion. As source and target data become similar,
the SVM classifier trained on source data performs well on target data. We have
shown that this additional constraint on the primal optimization problem does
not modify the nature of the dual problem so that standard quadratic program-
ming tools can be used. Following the same principal idea, we extend our method
to Kernel based Principal Component Analysis transfer learning methods, which
in most cases improve the classification performance. We have applied our meth-
ods on synthetic and real data sets and have shown that our results favorably
compare with other transfer learning methods.

As short term developments, we must propose a method to automatically
determine an adequate value of the gaussian kernel parameters used. We also
have to investigate the deduction of error bounds, which appears to be a chal-
lenging task.
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References
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Abstract. It is a common occurrence in the field of data science that
real-world datasets, especially when they are high dimensional, contain
missing entries. Since most machine learning, data analysis, and statisti-
cal methods are not able to handle missing values gracefully, these must
be filled in prior to the application of these methods. It is no surprise
therefore that there has been a long standing interest in methods for
imputation of missing values. One recent, popular, and effective app-
roach, the IRMI stepwise regression imputation method, models each
feature as a linear combination of all other features. A linear regression
model is then computed for each real-valued feature on the basis of all
other features in the dataset, and subsequent predictions are used as
imputation values. However, the proposed iterative formulation lacks a
convergence guarantee. Here we propose a closely related method, stated
as a single optimization problem, and a block coordinate-descent solu-
tion which is guaranteed to converge to a local minimum. Experiment
results on both synthetic and benchmark datasets are comparable to the
results of the IRMI method whenever it converges. However, while in the
set of experiments described here IRMI often diverges, the performance
of our method is shown to be markedly superior in comparison to other
methods.

1 Introduction

The typical modus operandi in the field of data science evolves a wrangling
stage where either the raw data or features computed on the basis of the raw
data are organized in the form of a table. Indeed, the vast majority of data
analysis, machine learning, and statistical methods rely on complete data [9],
mostly structured in a tabular or relational form.

Since in real-world datasets more often than not some of the entries are miss-
ing, imputation is an important part of data preprocessing and cleansing [13,24].

Invited extension of [29] – presented at the 6th International Conference on Pattern
Recognition Applications and Methods (ICPRAM2017).
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Naturally, this topic has been of long-standing interest in many fields associated
with data analysis.

As is often the case, simple and elegant linear methods with interpretable
results have gained a special place in the heart of the field, and are used in
practice whenever applicable. More advanced methods (see Sect. 3 for a brief
review) are typically reserved for special cases.

The trivial option for many application domains is to discard complete
records in which there are any missing values. Clearly this method is sub-optimal,
for several reasons: first and foremost, when missing values are not missing at
random [11,20], discarding these records may bias the resulting analysis [21]
(consider for instance a classification task where many of the examples from one
of the classes have some missing features. Discarding these entire examples will
lead to a very unbalanced problem, with a potentially detrimental effect on the
final results).

Other limitations include the needless loss of information when discarding
entire records which may actually include valuable information for the down-
stream task. Furthermore, when dealing with datasets with either a small number
of records or a large number of features, omitting complete records when any
feature value is missing may result in discarding a large proportion of the records
(or in the extreme case – all of them), and insufficient data for the required
analysis.

There are several method traditionally used to preform data imputation.
These include procedures which impute missing values by replacing them with
summary statistics such as the mean or median of the feature value across
records [5,7]. While using such summary statistics may indeed provide satis-
factory results when there is no other information present, this is however most-
often not the case we are dealing with. Namely, for each missing feature value
there are other non-missing values in the same record. For this reason it is likely
(or in fact we assume) that other features contain information regarding the
value of the missing feature, and imputation should therefore take into account
known feature values in the same record. This is done by all subsequent methods.

The method of multiple imputation (see [31] for a detailed review) generates
several sets of missing value imputations, drawn from the posterior distribution
of the missing values under a given model, given the data. All down-stream
processing is then performed on each copy of the imputed data, and the resulting
multiple sets of model parameters are combined as a final step to produce a single
result.

Multiple imputation methods are extremely useful in traditional statistical
analysis and heavily utilized in analysis of public survey data. However, this may
not be feasible in a machine learning and modern statistical setting, for several
reasons. First, the run-time cost of performing the analysis on several copies
of the full-data may be prohibitive. Second, being a model-based approach it
depends heavily on the type and nature of the data, and can’t be used as an
out-of-the-box pre-processing step. More importantly though, while traditional
model parameters may (for the most part) be combined between versions of
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the imputed data (regression coefficients for instance), many modern machine
learning methods do not produce a representation that is straightforward to
combine (consider the parameters of an Artificial Neural Network or a Random
Forest for example1).

In [25], a method for imputation on the basis of a sequence of regression
models is introduced. The method, popularized under the acronym MICE [1,36],
uses a non-empty set of complete features (i.e. features with values which are
known in all the records) as its base, and iteratively imputes one feature at a
time on the basis of the completed features up to that point.

Since each step of this method produces a single complete feature, the number
of iterations needed to impute the entire table is exactly the number of features
that have a missing value in at least one record. The drawbacks of this method
are twofold. First, there must be at least one complete feature to be used as
the base (however if there is no complete feature then the feature with fewest
missing values may be imputed using the a feature-wise summary statistic).
More importantly though, the values imputed at the i-th step can only use a
regression model that includes the features which were originally full or those
imputed in the first i − 1 steps. Ideally, the regression model for each feature
should be able to use all other feature values, thus not discarding any available
information.

The IRMI method [34] goes one step further by again building a sequence
of regression models for each feature, this time utilizing the values in all other
features. This iterative method initially uses a simple imputation method such as
median imputation, to produce temporary imputation values. In each subsequent
iteration it computes for each feature the linear regression model based on all
other feature values, and then re-imputes the missing values based on these
regression models. The process is terminated upon convergence or after a per-
determined number of iterations (Algorithm 1). The authors state that although
they do not have a proof of convergence, experiments show fast convergence in
most cases (However, in our experiments the method often failed to converge.
See Sect. 4.2).

In this paper we present a method similar in spirit to IRMI, formulated as
a single optimization problem, and provide an optimization procedure with a
guarantee of convergence. This method of Optimized Linear Imputation (OLI)
is related in spirit to IRMI in that it performs a linear regression imputation for
the missing values of each feature, on the basis of all other features. Our method
is defined by a single optimization objective which we then solve using a block
coordinate-descent method. Thus our method is guaranteed to converge, which
is its most important advantage over IRMI. The OLI method is then compared

1 In this case it would be perhaps more natural to train the model using data pooled
over the various copies of the completed data rather than train separate models and
average the resulting parameters and structure. This is indeed done artificially in
methods such as denoinsing neural nets [37], and has been known to be useful for
data imputation [6].
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to IRMI as well as other methods using both synthetic, benchmark, and real
world datasets.

This paper is an extended version of [29]. The contribution of this paper is
as follows: the proposed imputation method is covered in detail, and some of the
formulation is revised to promote clarity and simplicity compared to the original
conference paper. This extended version also provides a broader review of other
linear and non-linear imputation methods.

The rest of the paper is organized as follows: In Sect. 2 we present the novel
method of Optimized Linear Imputation (OLI), and a method of optimization
which guarantees convergence. We discuss and analyze the relationship to pre-
vious methods, and further show that our algorithm may be easily extended to
use any form of regularized linear regression.

In Sect. 4 we compare the OLI method to the IRMI, MICE and Median
Imputation (MI) methods. Using the same simulation studies as appear in the
original IRMI paper, we show that the results of OLI are rather similar to the
results of IRMI. With benchmark and real-world datasets we show that our
method usually outperforms the alternatives MI and MICE in accuracy, while
providing comparable results to IRMI. However, IRMI did not converge in many
of these experiments, while our method always provided good results.

Algorithm 1 . The IRMI method for imputation of real-valued features (see [34] for

more details).

input:

– X - data matrix of size N × (d + 1) containing N samples and d features. Zeros in
locations of missing values.

– m - missing data mask
– max iter - maximal number of iterations

output:

– Imputation values

1: X̃ := median impute(X) {assigns each missing value the median of its column}
2: while not converged and under max iter iterations do
3: for i := 1. . . d do
4: regression = linear regression(X̃−i[!mi], X̃i[!mi])
5: X̃i[mi] = regression. predict(X̃−i[mi])
6: end for
7: end while
8: return X̃ − X
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2 The Optimized Linear Imputation Method

2.1 Notation

We start by listing the notation used throughout the paper.

N Number of samples
d Number of features
xi,j The value of the j-th feature in the i-th sample
mi,j Missing value indicators:

mi,j =

{
1 xi,j is missing

0 otherwise

mi Indicator vector of missing values for the i-th feature

The following notation is used in the algorithms’ pseudo-code:

A[m] The rows of a matrix (or column vector) A where the boolean mask
vector m is True

A[!m] The rows of a matrix (or column vector) A where the boolean mask
vector m is False

linear regression(X, y) A linear regression from the columns of the matrix X to
the target vector y, having the following fields:
.parameters: parameters of the fitted model.
.predict(X): the target column y as predicted by the fitted model.

2.2 Optimization Problem

We start by formulating the general problem of data imputation. We will assume
that data is given in a matrix X containing missing values in location given by a
Boolean mask M (values of the data matrix in missing places can be arbitrary).
In the following we state the linear imputation objective as a single optimization
problem. First, we construct a design matrix:

X =

⎡
⎢⎣

1

[xi,j(1 − mi,j)]
...
1

⎤
⎥⎦ (1)

where xi,j ,mi,j are the (i, j)-th entry in X and M respectively, and the constant-
1 rightmost column is a convenience used later for the intercept terms in the
subsequent regression models. Multiplying the data values xi,j by (1 − mi,j)
simply sets all missing values to zero, keeping non-missing values as they are.

The proposed formulation uses linear regression models as the imputation
method, but unlike previous methods does so by means of an optimization
problem with a convergence guarantee. The optimization problem approach we
present essentially aims to find consistent imputations for all missing values
and regression coefficients. By having these values consistent we mean that (a)
the imputation values are the values obtained by the regression formulas, and
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(b) the regression coefficients are the values that would be computed after the
imputations if another iteration of the algorithm was to be applied (i.e. a station-
ary point of the algorithm). We propose the following optimization formulation:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
A,M

||(X + M)A − (X + M)||2F
s.t. mi,j = 0 ⇒ Mi,j = 0

Mi,d+1 = 0 ∀i

Ai,i = 0 i = 1 . . . d

Ai,d+1 = δi,d+1 ∀i

(2)

where ||. ||F denotes the Frobenius norm.
The objective function defined above is essentially trying to minimize the

error of reconstruction of the imputed data (X+M), where each feature (column)
is approximated by a linear combination of all other features plus a constant (that
is, linear regression of the remaining already-imputed data). The imputation
process by which M is defined is guaranteed to leave the non-missing values in
X intact, by the first and second constraints which make sure that only missing
entries in X have a corresponding non-zero value in M . Therefore:

(X + M) =

{
M for missing values

X for non missing values

The regression model for each feature is further constrained to use only other
features, by setting the diagonal values of A to zero (the third constraint). The
forth constraint makes sure that the constant-1 rightmost column of the design
matrix is copied as-is and therefore does not impact the objective.

We note that all the constraints set variables to constant values, and therefore
this can be seen as an unconstrained optimization problem on the remaining set
of variables. This set includes the non-diagonal elements of A and the elements
of M corresponding to missing values in X. We further note that this is not a
convex problem in A,M since it contains the MA factor. In the next section
we show a solution to this problem that is guaranteed to converge to a local
minimum. This convergence guarantee is the major advantage of the proposed
formulation over the prior IRMI method.

2.3 Block Coordinate Descent Solution

We now develop a coordinate descent solution for the proposed optimization
problem. Coordinate descent (and more specifically alternating least squares; see
for example [2,17,18,33]) algorithms are extremely common in machine learning
and statistics, and while don’t guarantee convergence to a global optimum (but
only to a local optimum), they often preform well in practice.

As stated above, our problem is an unconstrained optimization problem over
the following set of variables:
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{Ai,j |i, j = 1, . . . , d; i �= j} ∪ {Mi,j |mi,j = 1}
Keeping this in mind, we re-write the objective function in a form that will

facilitate subsequent derivation:

L(A,M) = ||(X + M)A − (X + M)||2F (3)

=
d∑

i=1

||(X + M)−iβi − (X + M)i||2F (4)

where C−i denotes the matrix C without its i-th column, Ci the i-th column,
and βi the i-th column of A without the i-th element (recall that the i-th element
of the i-th column of A is always zero). The term (X + M)−iβi is therefore a
linear combination of all but the i-th column of the matrix (X + M). The sum
in (4) is over the first d columns only, since the term added by the rightmost
column is zero (see fourth constraint in (2) which enforces the exact copy of the
rightmost column).

We now suggest the following coordinate descent algorithm for the minimiza-
tion of the objective (3) (the method is summarized in Algorithm 2):

1. Fill in missing values using median/mean (or any other) imputation
2. Repeat until convergence:

(a) Minimize the objective (3) w.r.t. A (compute the columns of the
matrix A)

(b) Minimize the objective (3) w.r.t. M (compute the missing values entries
in matrix M).

3. Return M2

As we will show shortly, step (a) in the iterative part of the proposed algo-
rithm reduces to calculating the linear regression for each feature on the basis of
all other features, essentially the same as the first step in the IRMI algorithm [34]
Algorithm 1.

Step (b) can be solved either as a system of linear equations or in itself as
an iterative procedure, by gradient descent on (3) w.r.t M using (5).

We now begin by briefly showing that step (a) indeed reduces to linear regres-
sion. Taking the derivatives of (4) w.r.t the non-diagonal elements of column i
of the matrix A we have:

∂L

∂βi
= 2(X + M)T−i[(X + M)−iβi − (X + M)i]

Setting the partial derivatives to zero gives:

(X + M)T−i[(X + M)−iβi − (X + M)i] = 0

⇒βi = ((X + M)T−i(X + M)−i)−1(X + M)T−i(X + M)i
2 Alternatively, in order to stay close in spirit to the linear IRMI method, we may

prefer to use (X + M)A as the imputed data, meaning the imputed values are in
fact derived from the all other features using a linear model. Clearly, at the point of
convergence of the algorithm the two are identical.
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Algorithm 2 . Optimized Linear Imputation (OLI).

input:

– X0 - data matrix of size N × d containing N samples and d features
– m- missing data mask

output:

– Imputation values

1: X := median impute(X0)
2: M := zeros(N, d)
3: A := zeros(d, d)
4: while not converged do
5: for i := 1 . . . d do
6: β := linear regression(X−i, Xi).parameters
7: Ai := [β1, . . . , βi−1, 0, βi, . . . , βd]

T

8: end for‘
9: while not converged do

10: M := M − α[(X + M)A − (X + M)](A − I)T

11: M [!m] := 0
12: end while
13: X := X + M
14: end while
15: return M

which is exactly the linear regression coefficients for the i-th feature from all
other (imputed) features, as claimed.
Next, we obtain the derivatives of the objective function w.r.t M :

∇M =
∂L

∂M
= 2[(X + M)A − (X + M)](A − I)T (5)

leading to the following gradient descent algorithm for step (b), the minimization
of the objective w.r.t M :

Repeat until convergence:

(i) M := M − α∇ML(A,M)
(ii) ∀i,j : Mi,j = Mi,jmi,j

where α is a predefined step size and the gradient is given by (5). Step (ii) above
makes sure that only missing values are assigned imputation values3.

3 Note that this is not a projection step. Recall that the optimization problem is only
over elements Mij where xij is a missing value, encoded by mij = 1. The element-
wise multiplication of M by m guarantees that all other elements of M are assigned
0. Effectively, the gradient descent procedure does not treat them as independent
variables, as required.
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Our proposed algorithm uses a gradient descent procedure for the minimiza-
tion of the objective (3) w.r.t M . Alternatively, one could use a closed form
solution by directly setting the partial derivative to zero. More specifically, let

∂L

∂M
= 0 (6)

Substituting (5) into (6), we get

M(A − I)(A − I)T = −X(A − I)(A − I)T

which we rewrite as:

MP = Q (7)

with the appropriate matrices P,Q. Now, since only elements of M corresponding
to missing values of X are optimization variables, only these elements must be
set to zero in the derivative (6), and hence only these elements must obey the
equality (7). Thus, we have:

(MP )i,j = Qi,j∀i, j|mi,j = 1

which is a system of
∑
i,j

mi,j linear equations in
∑
i,j

mi,j variables.

2.4 Discussion

In this section we take another look at the IRMI and OLI methods, in order
to better understand the difference between them. Specifically, we examine the
problem formulations and their implications. We begin by rewriting the IRMI
iterative method [34] using the same notation as used for our OLI method. Once
on common grounds, we compare the formulations and solutions.

We start by defining an error matrix:

E = (X + M)A − (X + M)

In the following, E is the error matrix of the linear regression models on
the basis of the imputed data. Unlike our method, however, IRMI considers the
error only in the non-missing values of the data, leading to the following objective
function:

L(M,A) =
∑

i,j|mi,j=0

E2
i,j

In order to minimize this loss function, at each step the IRMI method (Algo-
rithm1) optimizes over a single column of A (which in effect reduces to fitting
a single linear regression model), and then assigns as the missing values in the
corresponding column of M the values predicted for it by the regression model.

While this heuristic for choosing M is quite effective, it is not a gradient
descent step and consequently leads to a process with unknown convergence
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properties. The main motivation for proposing our method was to fix this unde-
sired property within the same general conceptual framework of linear impu-
tation; namely, propose a method that is similar in spirit, with a convergence
guarantee.

Another advantage of the proposed OLI formulation is the ability to easily
extend it to any regularized linear regression. This can be done by re-writing the
itemized form of the objective (4) as follows:

L(A,M) =
∑
i

[||(X + M)−iβi − (X + M)i||2F + Ω(βi)]

where Ω(βi) is the regularization term.
Now, assuming that the resulting regression problem can be solved (that is,

minimizing each of the summands in the new objective with a constant M), and
since step (b) of our method remains exactly the same (the derivative w.r.t M
does not change as the extra term does not depend on M), we can use the same
method to solve this problem as well.

Another possible extension is to use kernelized linear regression. In this case
the imputation is preformed in an implicit feature space:

L(A,M) = ||φ((X + M)A) − φ(X + M)||2F
This may be useful in cases when the dependencies between the features are

not linear (see a further discussion of this case in Sect. 3).
The method of initialization is another issue deserving further investigation.

Since our procedure converges to a local minimum of the objective, it may be
advantageous to start the procedure from several random initial points, and
choose the best final result. However, since the direct target (missing values) are
obviously unknown, we would need an alternative measure of the “goodness” of
a result. The missing values are usually assumed to be missing at random, so it
would make sense to use the distance between the distributions of known and
imputed values (per feature) as a measure of appropriateness of an imputation.

3 Non-linear Imputation Methods

Linear imputation methods are the family of methods which model a missing
value as a linear combination of other values in the same record (either only
non-missing or both missing and non-missing). Using these methods makes sense
when a notion of a record exists in the data, in the sense that a set of measure-
ments refers to the same entity in some way. This is often the case in tabular (or
relational) data, where each row represents information about a specific entity.
In this case, redundancy in the structure of the record often allow linear data
imputation.

However, the structure of the data is often such that non-linear relationships
exist between columns, and thus non-linear methods are required in order to
model and impute missing data.
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One of the most utilized non-linear imputation methods uses the method
of Expectation Maximization in order to obtain maximum likelihood estimates
for the missing data [4]. A major advantage of this approach is the convergence
guarantee, and a vast literature regarding statistical properties in various settings
and under different assumptions regarding the underlying model.

Deep learning techniques have become overwhelmingly popular in recent
years for many machine learning tasks. Indeed, this shift has not skipped the
very important task of data imputation.

Stacked Denoising Autoencoders [37] (SDA) is a training method for deep
learning models where noise is added to the training examples and fed into the
network. The objective is then to recover the original version of the data (prior to
having the noise added to it). The main use of the SDA method is for learning
representations (see for instance [16,22,23,40]), however in [6] this method is
proposed as a means for imputation of traffic data.

In order to use SDA for data imputation, during the training stage a “missing
data” mask is randomly selected for each sample, and the corresponding values
are zeroed-out or replaced with noise values. The objective function the network
is trained with respect to, as in the case of denoising, is the reconstruction
error of the output versus the original data. When the trained model is used for
imputation, the actual missing data is treated like the mask during training, and
the output of the network is used as the imputed data.

The most straightforward version of this method would require a substantial
amount of data without any missing elements, since these are used for the train-
ing process described above. However, one might use training data which does
contain missing elements, and use a loss which takes this into account (essentially
by requiring the reconstruction error to be low only for true data).

In image processing, the task of image denoising is to clean up noise in
a digital image, which appears either due to noise in the acquisition process
(dust, rain, etc.), or as the result of some intentional post-processing (such as
overlayed text). Although often treated differently, image denoising is essentially
an imputation problem. Here too, denoising autoencoders have been employed
successfully [39] to achieve state of the art results.

In the recently proposed learning setting of Ballpark Learning [12], an entire
column is imputed (or estimated) based on rough group comparisons. In this
setting, rather than having column-wise partial information, upper and lower
bounds on the proportions of labels in so-called “bags” are used together with
constraints on bag differences to obtain an optimization problem yielding the
desired imputations of the target column.

Non-linear imputation methods are potentially superior to linear methods,
when the linear structure assumption the latter are based on is not a good
description of the data. However, when applicable, linear methods have the very
desirable advantages of simplicity and interpretability, which arguably is what
makes them so popular in practice.
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In the next section we present an in-depth evaluation of the OLI method
proposed in this paper, and compare it to other linear imputation methods. We
start of using synthetic data, them move on to some benchmark datasets.

4 Evaluation

In order to evaluate our method, we compared its performance to other impu-
tation methods using various types of data. We used complete datasets (real
or synthetic), and randomly eliminated entries in order to simulate the missing
data case. To evaluate the success of each imputation method, we used the mean
square error (MSE) of the imputed values as a measure of error. MSE is com-
puted as the mean square distance between stored values (the correct values for
the simulated missing values) and the imputed ones.

In Sect. 4.1 we repeat the experimental evaluation from [34] using synthetic
data, in order to compare the results of our method to the results of IRMI.
In Sect. 4.2 we compare our method to 3 other methods - IRMI, MI (median
imputation), and MICE - using standard benchmark datasets from the UCI
repository [19]. In Sect. 4.3 we augment the comparisons with an addition new
real-life dataset of behavioral modes of migrating storks [30].

For some real datasets in the experiments described below we report that
the IRMI method did not converge (and therefore did not return any result).
This decision was reached when the MSE of the IRMI method rose at least
6 orders of magnitude throughout the allocated 50 iterations, or (when tested
with unlimited iterations) when it rose above the maximum valid number in the
system of approximately 1e+308.

4.1 Synthetic Data

The following simulation studies follow [34] and compare OLI to IRMI. All simu-
lations are repeated 20 times with 10, 000 samples. 5% of all values across records
are selected at random and marked as missing. Values are stored for compari-
son with imputed values. Simulation data is multivariate normal with mean of
1 in all dimensions. Unless stated otherwise, the covariance matrix has 1 in its
diagonal entries and 0.7 in the off-diagonal entries.

The aim of the first experiment is to test the relationship between the actual
values imputed by the IRMI and OLI methods. The simulation is based on multi-
variate normal data with 5 dimensions. Results show that the values imputed by
the two methods are very near (Fig. 1), with the vast majority of values imputed
by the two methods with an absolute difference of up to .02 (compared to the
standard deviation of 1.0 in the data. Furthermore, the distribution of imputa-
tion error derived from the two methods is identical. Together, these findings
point to the similarity in the results these two methods produce.

In the next simulation we test the performance of the two methods as we vary
the number of features. The simulation is based on multivariate normal data
with 3–20 dimensions. The results (Fig. 2b) show almost identical behavior of
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Fig. 1. Distribution of imputation error (imputed−actual) for the IRMI method lLeft).
Distribution of imputation error for the OLI method (center). Distribution of the differ-
ence in the imputed value between the IRMI and OLI methods (right). Data is 10, 000
samples from a 5-dimensional multivariate normal distribution. All columns have a
standard deviation of 1.0 and all pairs of columns have a correlation of 0.7, 5.0% of
the data was randomly selected and designated as missing.

the IRMI and OLI algorithms, which also coincides with the results presented for
IRMI in [34]. Median imputation (MI) is also shown for comparison as baseline.
Figure 3 shows a zoom into a small segment of Fig. 2.

As expected, imputing the median (which is also the mean) of each feature
for all missing values results in an MSE equal to the standard deviation of the
features (i.e., 1). While very close, the IRMI and the OLI methods do not return
the exact same imputation values and errors, with an average absolute deviation
of 0.053.

Next we test the performance of the two methods as we vary the covariance
between the features. The simulation is based on multivariate normal data with
5 dimensions. Non-diagonal elements of the covariance matrix are set to values
in the range 0.1–0.9. The results (Fig. 2a) show again almost identical behavior
of the IRMI and OLI algorithms. As expected, when the dependency between
the feature columns is increased, which is measure by the covariance between the
columns (X-axis in Fig. 2a), the performance of the regression-based methods
IRMI and OLI is monotonically improving, while the performance of the MI
method remain unaltered.

4.2 UCI Datasets

The UCI machine learning repository [19] contains several popular benchmark
datasets, some of which have been previously used to compare methods of
data imputation [32]. In the current experiment we used the following datasets:
iris [8], wine (white) [3], Ecoli [14], Boston housing [10], and power [35]. Each
feature of each dataset was normalized to have mean 0 and standard deviation
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Fig. 2. (a) MSE of the IRMI, OLI and MI methods as a function of the covariance.
Data is 5 dimensional multivariate normal. (b) MSE of the IRMI, OLI and MI methods
as a function of the dimensionality, with a constant covariance of 0.7 between pairs of
features. In both cases error bars represent standard deviation over 20 repetitions.

of 1, in order to make error values comparable between datasets. Categorical
features were dropped. For each dataset, 5% of the values were chosen at ran-
dom and replaced with a missing value indicator. The procedure was repeated
10 times. For these datasets we also consider the MICE method [1] using the
winMice [15] software.

Overall, the results are quite good, demonstrating the superior ability of the
linear methods to impute missing data in these datasets (Table 1, rows 1–5). In
the Iris dataset our OLI method achieved an average error identical to IRMI,

Fig. 3. Zoom into a small part of Fig. 2.
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Table 1. Comparison of the imputation results of the IRMI, OLI, MICE and MI
methods with 5% missing data. The converged column indicates the number of runs
in which the IRMI method converged during testing; the MSE of IRMI was calculated
for converged repetitions only.

Dataset # Features Correlation IRMI OLI MI MICE

Converged MSE

Iris 4 0.59 9/10 0.20 0.20 1.00 0.33

Ecoli 7 0.18 9/10 8.26 5.75 1.72 1.20

Wine 11 0.18 0/10 - 0.87 1.05 1.10

Housing 11 0.45 10/10 0.28 0.30 1.14 0.56

Power 4 0.45 3/10 0.44 0.47 1.02 0.88

Storks 20 0.24 0/10 - 0.31 1.07 0.42

which successfully converged only 9 out of the 10 runs. Both outperformed the
MI and MICE standard methods. In the Ecoli dataset both the IRMI and OLI
methods performed worse than the alternative methods, with MICE achieving
the lowest MSE. In the Wine dataset the IRMI failed to converge in all 10
repetitions, while the OLI method outperformed the MI and MICE methods.
The IRMI method outperformed all other methods in the Housing dataset, but
failed to converge 7 out of 10 times for the Power dataset.

In summary, in cases where the linear methods were appropriate, with suffi-
cient correlation between the different features (shown in the second column of
Table 1), the proposed OLI method was comparable to the IRMI method with
regard to mean square error of the imputed values when the latter converged,
and superior in that it always converges and therefore always returns a result.

While the IRMI method achieved slightly better results than OLI in some
cases, its failure to converge in others gives the OLI method the edge. Overall,
better results were achieved for datasets with high mean correlation between fea-
tures, as expected when using methods utilizing the linear relationships between
features.

4.3 Storks Behavioral Modes Dataset

In the field of Movement Ecology, readings from accelerometers placed on migrat-
ing birds are used for both supervised [26] and unsupervised [27,28] learning of
behavioral modes. In the following experiment we used a dataset of features
extracted from 3815 such measurements. As with the UCI datasets, 10 repeti-
tions were performed, each with 5% of the values randomly selected and marked
as missing. Results (Table 1, final row) of this experiment highlight the relative
advantage of the OLI method. While the IRMI method failed to converge in all
10 repetitions, OLI achieved an average MSE considerably lower than the MI
baseline, and also outperformed the MICE method.
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5 Conclusion

Since the problem of missing values often haunts real-word datasets, while most
data analysis methods are not designed to deal with this problem, imputation is
a necessary pre-processing step whenever discarding entire records is not a viable
option. Here we proposed an optimization-based linear imputation method that
augments the IRMI [34] method with the property of guaranteed convergence,
while staying close in spirit to the original method. Since our method converges to
a local optimum of a different objective function, the two methods should not be
expected to converge to the same value exactly. However, simulation results show
that the results of the proposed method are generally similar (nearly identical)
to IRMI when the latter does indeed converge.

The contribution of our paper is two-fold. First, we suggest an optimization
problem based method for linear imputation and an algorithm that is guaran-
teed to converge. Second, we show how this method can be extended to use
any number of methods of regularized linear regression. Unlike matrix comple-
tion methods [38], we do not have a low rank assumption. Thus, OLI should
be preferred when data is expected to have some linear relationships between
features and when IRMI fails to converge, or alternatively, when a guarantee of
convergence is important (for instance in automated processes).
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9. Garćıa-Laencina, P.J., Sancho-Gómez, J.L., Figueiras-Vidal, A.R.: Pattern classi-
fication with missing data: a review. Neural Comput. Appl. 19(2), 263–282 (2010)

10. Harrison, D., Rubinfeld, D.L.: Hedonic housing prices and the demand for clean
air. J. Environ. Econ. Manag. 5(1), 81–102 (1978)



78 Y. S. Resheff and D. Weinshall

11. Heitjan, D.F., Basu, S.: Distinguishing missing at random and missing completely
at random. Am. Stat. 50(3), 207–213 (1996)

12. Hope, T., Shahaf, D.: Ballpark learning: estimating labels from rough group com-
parisons. In: Frasconi, P., Landwehr, N., Manco, G., Vreeken, J. (eds.) ECML
PKDD 2016. LNCS (LNAI), vol. 9852, pp. 299–314. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46227-1 19

13. Horton, N.J., Kleinman, K.P.: Much ado about nothing: a comparison of missing
data methods and software to fit incomplete data regression models. Am. Stat.
61(1), 79–90 (2007)

14. Horton, P., Nakai, K.: A probabilistic classification system for predicting the cel-
lular localization sites of proteins. In: Ismb. vol. 4, pp. 109–115 (1996)

15. Jacobusse, G.: WinMICE users manual. TNO quality of life, Leiden (2005). http://
www.multiple-imputation.com

16. Kandaswamy, C., Silva, L.M., Alexandre, L.A., Sousa, R., Santos, J.M., de Sá, J.M.:
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35. Tüfekci, P.: Prediction of full load electrical power output of a base load operated
combined cycle power plant using machine learning methods. Int. J. Electr. Power
Energy Syst. 60, 126–140 (2014)

36. Van Buuren, S., Oudshoorn, K.: Flexible multivariate imputation by MICE. TNO
Prevention Center, Leiden, The Netherlands (1999)

37. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denois-
ing autoencoders: learning useful representations in a deep network with a local
denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)

38. Wagner, A., Zuk, O.: Low-rank matrix recovery from row-and-column affine mea-
surements. arXiv preprint arXiv:1505.06292 (2015)

39. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural net-
works. In: Advances in Neural Information Processing Systems, pp. 341–349 (2012)

40. Zhou, G., Sohn, K., Lee, H.: Online incremental feature learning with denoising
autoencoders, Ann Arbor (2012)

http://arxiv.org/abs/1505.06292


Condensing Deep Fisher Vectors: To
Choose or to Compress?

Sarah Ahmed(B) and Tayyaba Azim(B)

Center of Excellence in IT, Institute of Management Sciences, Peshawar, Pakistan
ssarahahmedd@gmail.com, tayyaba.azim@imsciences.edu.pk

Abstract. Feature selection and dimensionality reduction are the two
popular off-the-shelf techniques in practice for reducing data’s high
dimensional memory footprint and thus making it amenable for large
scale visual retrieval and classification. In this paper, we show that fea-
ture compression is a better choice than feature selection when dealing
with large scale retrieval of high dimensional Fisher vectors derived from
deep or shallow stochastic models such as restricted Boltzmann machine
(RBM). The dimensionality of the Fisher vectors is proportional to the
size of the architecture from which they are drawn. As the number of hid-
den units in RBM increases, the dimensionality of the Fisher vectors also
scales accordingly, thus increasing storage requirements as well as caus-
ing overfitting during classification. In order to tackle these challenges,
we compare the performance of feature compression and feature selec-
tion techniques and suggest the use of compression methods on available
Fisher encodings. We have based our diagnostics on multi-collinearity
evaluation metrics and justify the use of the proposed feature condensa-
tion method using feature visualisations and classification accuracy on
benchmark data set.

1 Introduction

Large scale image classification and retrieval has received an increasing atten-
tion over the last decade due to the availability of large amount of multimedia
data on the web and the growing need to mine information of interest from
these large image repositories. Where on one end, we have witnessed improve-
ments in the hardware to efficiently store and process such massively growing
data sets, efforts have also been made at the algorithmic level to come up with
speedy retrieval techniques that are human competitive in perception and image
understanding tasks. These algorithms rely specifically on how the images are
represented semantically in a feature space that makes them discriminant as well
as retrievable for later use. In this regard, one of the most popular approaches to
represent images through mid level features is bag of visual words (BoW) app-
roach [1] that converts the visual vocabulary built in low level feature space into
intermediate representations of fixed size. These features have conventionally
been used to train a non-linear classifier like support vector machines (SVM)
and have consistently shown to outperform other methods in successive image
c© Springer International Publishing AG, part of Springer Nature 2018
M. De Marsico et al. (Eds.): ICPRAM 2017, LNCS 10857, pp. 80–98, 2018.
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classification evaluations like PASCAL VOC [2] and CALTECH 101/256 [3,4].
Despite its success, an important limitation of this approach lies in its inability
to scale to large amounts of training data. Merely computing the kernel matrix in
non-linear SVM requires O(n2d) calculations, where n is the number of training
examples and d represents the dimensionality of image representation. In BoW
model with a large codebook and spatial pyramid, the value of d can be as large
as hundreds of thousands. When n also becomes large, non-linear SVM becomes
computationally intractable. The cost of non-linear SVM in the test phase is also
very high, i.e. O(dnsv), where nsv denotes the total number of support vectors
which grows as the data set becomes large. All these factors make non-linear
SVM unattractive for large scale image classification and retrieval problems. To
achieve both high computational efficiency and competitive performance, recent
research has shifted its focus on either replacing the classifier or choosing a better
encoding scheme [5–9] that can perform well even with a linear classifier.

The Fisher kernel (FK) framework introduced by Jaakola and Haussler [10]
and applied by Perronin and Dance [11] to image classification task is an exten-
sion of the initial bag of words (BoW) idea explained in detail ahead (Sect. 2).
The FK combines the benefits of generative and discriminative approaches to
pattern classification by deriving a kernel from a generative probability model
of the data. The Fisher features have shown to overcome the limitations of BoW
approach [12] and have yielded competitive results for large scale image clas-
sification and retrieval tasks [13,14]. Another prominent feature of the Fisher
vector is that it performs very well even with a simple linear classifier using
techniques such as stochastic gradient descent method. However, these recom-
mended Fisher features have high dimensionality and in combination with a large
number of examples could pose serious computational and storage constraints
[15]. This problem has been tackled by either using standard compression tech-
niques [15] or through feature selection methods [16] that reduce the signature
length of each image to acquire less storage and quick retrieval results.

This paper is an extended version of our previous work [17] that takes into
account efficient ways of condensing Fisher vectors derived from restricted Boltz-
mann machine (RBM) [18] with minimal loss in classification performance. The
dimensionality of the Fisher vectors derived from deep models has an intrin-
sic relationship with the number of hidden units of the model. As the number
of hidden units increases, the length of the encoded Fisher vectors also scales.
See Table 1 to understand the growth rate of deep Fisher vectors. It has already
been shown in literature that when Fisher kernel is derived from a large restricted
Boltzmann machine with thousands of units, the classifier suffers from overfit-
ting [18,19]. If we are to take advantage of large generative models for learning
efficient classifiers, some feature condensation mechanism must be utilised to
make the approach practical for large scale image retrieval and classification.
This paper focuses on techniques to reduce the Fisher feature dimensionality and
hence the storage cost and computational overhead required for large scale visual
retrieval problems. Compared to our previous work [17], where only compres-
sion techniques were explored, this paper also investigates the use of feature
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selection schemes on deep Fisher vectors. The contributions unique to this work
are as follows: (1) Comparison of compression techniques with feature selection
methods to explore their suitability for large scale retrieval problems. The fea-
ture compression techniques used are: Parametric t-SNE, autoencoder, principal
component analysis (PCA) and spectral hashing (SH). For feature selection,
the following filters and wrappers are used: Maximum relevance and minimum
redundancy (MRMR), mutual information, SVM recursive feature elimination
(RFE) and random forest, (2) Assessment of collinearity in deep Fisher vectors
via two diagnostic tests: (a) Variance inflation factor (VIF) and (b) Conditional
indices, (3) Empirical analysis of state of the art classifiers using the above men-
tioned feature compression and selection techniques, (4) Analysis of the effect of
normalisation schemes on feature compression and feature selection methods.

Table 1. Growth of Fisher vector’s length in MNIST data set where the images have
dimensionality 28 × 28.

No of hidden units in RBM 1 5 10 100 1000

Fisher vector’s length (l = |v × h| + |v| + |h|) 1569 4709 8634 79284 785784

2 The Fisher Kernel Framework

The Fisher kernel framework [10] proposes to use the power of generative models
P (x|θ) in kernel methods by computing Fisher scores using gradients of the log
likelihood of the data, x with respect to the model parameters, θ. The derived
kernel function uses these Fisher scores/vectors in the following form:

K(xi,xj) = φT
xi
J−1φxj

, (1)

where J is the covariance matrix of the Fisher scores, φx and is regarded as the
Fisher Information matrix, i.e.

J = E
[
φx

Tφx

]
P (x)

, where φx = ∇θ [log P (x;θ)] . (2)

Fisher kernel works on the intuition that two similar structured objects
should have similar gradients in the parameter space of the generative model.
The computation of Fisher information matrix is generally considered immate-
rial [10] and is often ignored in practice by replacing it with an identity matrix, I.
However, some of the literature on the classification systems has also shown good
discrimination results by using approximations of the information matrix in ker-
nel computation [20]. Examples of such approximations include restricted forms
of covariance matrix, such as a diagonal covariance matrix (J = diagonal(σ2))
or isotropic Gaussians (J = σ2I). Fisher kernel, once derived from a generative
probability model, P (x|θ) is capable of being embedded into any discriminative
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classifier such as support vector machines (SVM), linear discriminant analysis
(LDA), neural networks, etc.

In this work, we have taken a restricted Boltzmann machine (RBM) [21]
to derive Fisher scores. A restricted Boltzmann machine is a bipartite graph
in which the visible units that represent observations are connected to binary
stochastic hidden units using undirected weight connections. The hidden units
are used to discover useful features or patterns from the data fed to the visible
layer during training. The probability of a joint configuration over both visible
and hidden units depends on the energy of that joint configuration compared
with the energy of all other joint configurations:

P (v,h;θ) =
1

Z(θ)
exp(E(v,h,θ)), (3)

Z(θ) =
∑
v,h

exp(E(v,h,θ)).

The parameters of this energy based model are learnt by performing stochas-
tic gradient descent learning on the empirical negative log-likelihood of the train-
ing data. A guide to initialise and optimise these parameters, θ = {W,a,b} is
given by Hinton [22]. The Fisher scores φx derived from the gradients of the
log likelihood of the data x with respect to RBM parameters θ = {W,a,b} are
given as below:

∇θ log P (xn|θ) =
[
S[n] | Q[n] | Z[n]

]
, where (4)

S[n] = ∇W log P (xn|θ) = 〈vhT 〉Pdata
− 〈vhT 〉Pmodel

, (5)
Q[n] = ∇a log P (xn|θ) = 〈h〉Pdata

− 〈h〉Pmodel
, (6)

Z[n] = ∇b log P (xn|θ) = 〈v〉Pdata
− 〈v〉Pmodel

. (7)

3 The Fisher Vector Normalisation

In this section, we describe the normalisation scheme required for achieving
competitive classification performance with a discriminative classifier using deep
Fisher vectors. Feature normalisation is a preprocessing step required to re scale
the features in a fixed range. We have applied Min-Max normalisation technique
[23] on the Fisher vectors that transform the derived Fisher scores in the range
[0, 1]. If x is an n-dimensional feature vector, the Min-Max normalisation is
computed by using the following linear interpretation formula:

xnorm = (xi − xmin)/(xmax − xmin), (8)

where xmin and xmax represent the minimum and maximum values across all
dimensions for each image vector, x respectively. The normalised Fisher vector,
xnorm has the same dimensionality as that of the Fisher vector, x. The Min-Max
normalisation has the advantage of preserving relationship between the original
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Fig. 1. Histogram of Fisher vector features derived from RBM before and after the
application of Min-Max normalization [17].

data values and is capable of suppressing the effect of outliers by bounding the
range of the data that yields smaller standard deviations. The effect of Min-Max
normalisation on deep Fisher vectors could be observed in Fig. 1. Conventionally,
the recommended Fisher vectors for large scale retrieval are derived from Gaus-
sian mixture model (GMM) and deploy L2-normalisation scheme to improve
their classification performance. We checked the L2 and L1 normalisation tech-
niques for scaling deep Fisher vectors but could not find any improvement in the
discriminative performance as realised through Min-Max normalisation.

4 Compression Techniques

In this section, we explore the use of following off-the shelf compression tech-
niques for reducing the dimensions of normalised Fisher vectors: Principal com-
ponent analysis (PCA), spectral Hashing (SH), autoencoder and parametric
t-SNE.
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4.1 Principal Component Analysis (PCA)

Principal components analysis (PCA) is a linear dimensionality reduction tech-
nique that brings out strong patterns in the data set by emphasising disparity
in its features through transforming correlated variables into un-correlated vari-
ables, also known as principal components. The technique embeds the data into
a linear subspace M of lower dimensionality describing as much of the variance
in the data set as possible. This goal is achieved by computing the covariance
matrix cov(X) of data-set X from which the eigenvectors and eigen values are
computed.

Mathematically, PCA selects the linear mapping M that maximises the fol-
lowing cost function: trace(MT cov(X)M). It can be shown that this linear map-
ping M is formed by d principal eigen-vectors of the sample covariance matrix
of the standardised (zero-mean) data to solve the eigen problem.

cov(X)M = λM. (9)

The eigen problem is solved for the d principal eigenvalues, λ. The eigen vector
corresponding to the largest eigen value gives the direction of greatest varia-
tion, similarly the eigen vector with second largest eigen value corresponds to
the direction of second highest variation and so on. The low-dimensional data
representations Y of the data points X are computed by mapping them onto the
linear basis M , i.e. Y = XM .

4.2 Spectral Hashing (SH)

Spectral hashing (SH) algorithm [24] is a non-linear dimensionality reduction
technique that uses Gaussian kernel to find a binary encoding that minimises
the Hamming distance between similar pairs of binary codes. The method works
on the intuition that points far apart in the original Euclidean space are also far
apart in the Hamming space and vice-versa. The solution for spectral hashing
method is simply based on a subset of thresholded eigen vectors of the Laplacian
of similarity graph [24].

4.3 Autoencoder

Autoencoder [25] uses a multi-layer stochastic network to transform high-
dimensional data into a low-dimensional code and a similar decoder network
to recover the original data from the compressed code. The algorithm starts
with random weights in the two networks (encoder and decoder) and then trains
the two together by minimising the discrepancy between the original data and
its reconstruction. The required gradients are easily obtained by using the chain
rule to back-propagate error derivatives first through the decoder network and
then through the encoder network. Autoencoder is a non-linear generalisation of
PCA which can be modelled using a two layer network called restricted Boltz-
mann machine in which stochastic, binary pixels are connected to stochastic,



86 S. Ahmed and T. Azim

binary feature detectors using symmetrically weighted connections. The pixels
correspond to visible units of the RBM because their states are observed; the
feature detectors correspond to hidden units. A joint configuration (v,h) of the
visible and hidden units have the energy:

E(v;h) = −
∑

i∈pixels

bivi −
∑

j∈features

bjhj −
∑
i,j

vihjwi,j . (10)

4.4 Parametric t-SNE

Parametric t-distributed stochastic neighbor embedding (t-SNE) [26] is an unsu-
pervised dimensionality reduction technique which learns a parametric mapping
between the high-dimensional and low-dimensional spaces such that the local
structure of the data is preserved. In parametric t-SNE, the mapping f : X → Y
from the data space X to the low-dimensional latent space Y is parametrised by
means of a feed-forward neural network with weights W . The training procedure
is inspired by an autoencoder based on restricted Boltzmann machine (RBM)
that operates in three main stages: (1) First, a stack of RBMs is trained, (2)
Next, the stack of RBMs is used to construct a pre-trained neural network, and
(3) At the end, the pre-trained network is fine-tuned using back-propagation to
minimise the cost function that retains local structure of the data in latent space
by minimising the Kullback-Leibler (KL) divergence between the probabilities
signifying pairwise distances between examples.

5 Feature Selection Techniques

In this section, we briefly discuss the feature selection methods applied to select
small subset of features from the original deep Fisher vectors for achieving better
classification accuracy.

5.1 Conditional Mutual Information (MI)

Conditional mutual information [27] measures dependency between two features
and picks those features which maximise their mutual information with the class
to predict. The mutual information of two variables X and Y can be defined as:

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log
(

p(x, y)
p(x)p(y)

)
. (11)

Here p(x, y) is the joint probability distribution of function X and Y while p(x)
and p(y) are the marginal probability density functions of X and Y . Mutual
information measures the sharing information of both X and Y in order to
reduce uncertainity in one variable by observing the other variable. If X and Y
are dependent variables, then mutual information is greater than 0 and if both
X and Y are independent then MI will be 0. In conditional mutual information,
score table is updated as features are selected based on their conditional mutual
information.
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5.2 Minimum Redundancy and Maximum Relevance (MRMR)

MRMR is a filter based selection technique [28] that ranks features by maximis-
ing mutual information between the joint probability distribution of the selected
features and the classification variable after calculating the minimum redun-
dancy and maximum relevancy of features. The relevancy of feature set S for
the class c can be calculated as:

D(S,C) =
1

|S|
∑
fi∈s

I(fi; c). (12)

The redundancy of all features in the set S can be calculated as:

R(S) =
1

|S|2
∑

fi,fj∈s

I(fi; fj). (13)

The feature selection criterion of MRMR involves combination of both these
measures that maximise relevance and minimise redundancy of features as fol-
lows:

MRMR = max
s

⎡
⎣ 1

|S|
∑
fi∈s

I(fi; c) − 1
|S|2

∑
fi,fj∈s

I(fi; fj)

⎤
⎦ . (14)

5.3 SVM-Recursive Feature Elimination (SVM-RFE)

SVM-RFE is an embedded pruning method [29] that trains a model with all
features and removes insignificant features by setting the coefficients associated
with these features to 0. It is an iterative process of the backward removal of
features carried out by computing the weights of all features and sorting them
according to their weights. The technique consist of three main stages: (1) In
the first stage, the classifier is trained on the data-set with all the features, (2)
In the second stage, the features are given weights and are sorted accordingly
setting up their rank. The weight assigning procedure is repeated iteratively and
the list of features is assembled according to the order of the weights, (3) In
the last stage, the features with the smallest weights are eliminated in-order to
retain significant impact of the feature variables.

5.4 Random Forest (RF)

Random forest deploys a combination of decision tree classifiers such that the
performance of each tree depends on the values of a random selection of features
used to split each node; the random feature vector is sampled independently and
with the same probability distribution for all trees in the forest [30]. The ran-
dom selection of features used for splitting each node yields error rates which are
monitored to measure strength and correlation between features. The accuracy
of a random forest depends on the strength of the individual tree classifiers and
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a measure of the dependence between them. According to the central limit theo-
rem, the generalisation error of the forests converges to a limit as the number of
trees in the forest becomes very large. The randomness used in tree construction
aims for low correlation ρ while maintaining reasonable strength.

6 Multi-collinearity Assessment Diagnostics

This section discusses multi-collinearity evaluation metrics used to assess the
possibility of inter-correlation or inter-association among the features of Fisher
vectors derived from RBM.

6.1 Variance Inflation Factor (VIF)

Variance inflation factor shows how much is the variance (standard error) inflated
due to the existence of correlation between independent variables in a model.
Mathematically, it is defined as the reciprocal of tolerance given as 1 − R2

i , where
Ri corresponds to the value predicted by regressing i − th variable by the rest
of independent variables. A tolerance close to 1 means that there is little multi-
collinearity, whereas a value close to 0 suggests that multi- collinearity may be
a threat. Conversely, the variance inflation factor is elaborated by the following
piecewise function:

V IF

{
≈0 =⇒ Moderate to null multi-collinearity
>5 =⇒ High multi-collinearity

The threshold for large VIF values is taken at 5 in this paper, however some of
the literature also uses 10 as a threshold, i.e. 0.10 tolerance factor to indicate
multi-collinearity among independent variables.

6.2 Condition Indices

Condition index calculates the collinearity of combination of variables in the
data set by calculating relative size of the eigen values of data matrix X [31]. In
order to calculate eigen values, the method applies singular value decomposition
(SVD) of the n × p data matrix X and computes condition indices as below:

CIi =
√

λmax

λi
(15)

where λ denotes the eigen values of the correlation matrix signifying variance of
the linear combination of independent variables. Condition indices between 30
and 100 indicate moderate to strong collinearity between the features.
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7 Experiments

In order to evaluate the classification performance of condensed Fisher vectors
(FV), we applied four different compression and feature selection schemes dis-

Table 2. Accuracy of k-NN, random forest and SVM classifiers on un-normalised
Fisher vectors derived from RBM with 1 hidden unit using MNIST data set.

Classifiers k-NN Random Forest SVM (Linear Kernel)

Feature Selection
Techniques

2D 10D 20D Full D 2D 10D 20D Full D 2D 10D 20D Full D

MRMR 24% 62% 80%
96
%

30% 73% 86%

96
%

30% 61% 75%

90
%

MI 23% 46% 65% 27% 59% 76% 27% 44% 60%
Random Forest 16% 43 % 63% 21% 58% 73% 19% 39 % 59%
SVM-RFE 20% 40% 58% 25% 53% 70% 23% 39% 51%
Classifiers k-NN Random Forest SVM (Linear Kernel)
Compression
Techniques

2D 10D 20D Full D 2D 10D 20D Full D 2D 10D 20D Full D

Parametric t-SNE 10% 10% 32%

96
%

12% 12% 53%
96
%

11% 11% 11%

90
%

Autoencoder 9.8% 9.8% 9.8% 10% 10% 10% 11% 11% 11%
PCA 9.9% 18% 14% 10% 17% 12% 10% 19 % 13%
Spectral Hashing 19% 9.9% 10% 20% 11% 12% 13% 10% 11%
(Nbits= 16, 80, 160
for 2D, 10D and
20D respectively.)

Table 3. Accuracy of k-NN, random forest and SVM classifiers on normalised Fisher
vectors derived from RBM with 1 hidden unit using MNIST data set.

Classifiers k-NN Random Forest SVM (Linear Kernel)

Feature Selection
Techniques

2D 10D 20D Full D 2D 10D 20D Full D 2D 10D 20D Full D

MRMR 19% 57% 79%

96
%

25% 68% 85%

96
%

27% 59% 75%

90
%

MI 19% 45% 65% 24% 58% 74% 23% 47% 63%
Random Forest 16% 40 % 60 % 21 % 54% 71% 20% 43% 60%
SVM-RFE 19% 38% 57% 24% 53% 69% 20% 40% 51%
Classifiers k-NN Random Forest SVM (Linear Kernel)
Compression
Techniques

2D 10D 20D Full D 2D 10D 20D Full D 2D 10D 20D Full D

Parametric t-SNE 86% 94% 94.2%

96
%

89.6%95.5%95.7%

96
%

76% 87% 92%

90
%

Autoencoder 78% 89% 96% 86% 95% 95% 65% 92% 89%
PCA 27% 67% 68% 31% 68% 67% 38% 69 % 64%
Spectral Hashing 66% 50% 44% 26% 40% 34% 16% 30% 32%
(Nbits= 16, 80, 160
for 2D, 10D and
20D respectively.)
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Fig. 2. Visualisation of normalised compressed Fisher scores derived from RBM with
1 hidden unit [17].

Table 4. Accuracy of k-NN, random forest and RBF kernel SVM classifier on un-
normalised Fisher vectors derived from RBM with 5 hidden units using MNIST data
set.

Classifiers k-NN Random Forest SVM (Linear Kernel)

Feature Selection
Techniques

2D 10D 20D Full D 2D 10D 20D Full D 2D 10D 20D Full D

MRMR 23% 61% 80%

96
%

30% 73% 86%

96
%

30% 59% 71%
90
%

MI 20% 28% 32% 22% 36% 42% 23% 28% 35%
Random Forest 18% 39 % 51 % 25 % 53 % 64% 25% 40% 48%
SVM-RFE 18% 31% 34% 23% 42% 47% 21% 33% 38%
Classifiers k-NN Random Forest SVM (Linear Kernel)
Compression
Techniques

2D 10D 20D Full D 2D 10D 20D Full D 2D 10D 20D Full D

Parametric t-SNE 10% 10% 10%

96
%

12% 12 % 12%

96
%

11% 11% 11%

90
%

Autoencoder 9.8% 9.8% 9.8% 12% 12% 12% 11% 11% 11%
PCA 10% 19 % 14% 10% 17% 12% 10% 20 % 15%
Spectral Hashing 10% 8% 10% 11% 9% 10% 12% 10% 11%
(Nbits= 16, 80, 160
for 2D, 10D and
20D respectively.)

cussed in Sects. 4 and 5 and calculated their classification accuracy with the
following standard classifiers: k-nearest neighbour, random forest and support
vector machines (SVM). The benchmark data set used for performing experi-
ments is MNIST [32]. The MNIST data set consists of 28 × 28 dimensional gray
scale images with 60,000 digits in the training and 10,000 digits in the test sets.
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Fig. 3. Visualisation of normalised compressed Fisher scores derived from RBM with
5 hidden units [17].

Table 5. Accuracy of k-NN, random forest and SVM classifiers on normalised Fisher
vectors derived from RBM with 5 hidden units using MNIST data set.

Classifiers k-NN Random Forest SVM (Linear Kernel)

Feature Selection
Techniques

2D 10D 20D Full D 2D 10D 20D Full D 2D 10D 20D Full D

MRMR 21% 59% 78%

96
%

24% 72% 85%

96
%

26% 61% 75%

90
%

MI 16% 26% 34% 19% 36% 47% 21% 30% 40%
Random Forest 16% 34 % 47 % 19 % 48% 60% 19% 39% 50%
SVM-RFE 18% 30% 37% 22% 43% 53% 24% 36% 52%
Classifiers k-NN Random Forest SVM (Linear Kernel)
Compression
Techniques

2D 10D 20D Full D 2D 10D 20D Full D 2D 10D 20D Full D

Parametric t-SNE 83% 93% 93.2%

96
%

88% 95% 95%

96
%

75% 94% 94.5%

90
%

Autoencoder 75% 94% 96% 79% 94% 95% 66% 91% 89%
PCA 26% 68% 70% 30% 70% 67% 36% 68 % 61%
Spectral Hashing 67% 43% 38% 24% 39% 32% 14% 18% 20%
(Nbits= 16, 80, 160
for 2D, 10D and
20D respectively.)

These images are vectorised to form a 784 dimensional vector fed to the RBM’s
visible layer for training. A guide to initialise and optimise parameters of RBM
is given by Hinton [22]. Once the model is trained generatively, it is ready for
the extraction of Fisher vectors or Fisher scores for classification or retrieval
applications.
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Fig. 4. Estimated Belsley collinearity of Fisher vectors derived from RBM with 1 and
5 hidden units.

7.1 Experimental Setup

For experiments, we start with the extraction of Fisher vectors (FV) from com-
pact models of RBM with 1 and 5 hidden units yielding features of size 784
and 3920 dimensions respectively. The FVs could have also been derived from a
very shallow model containing thousands of hidden units as reported in [18,19],
however in that case the dimensionality of the Fisher vectors scales to a magni-
tude of 106 and the model tends to over-fit resulting in no classification perfor-
mance improvements [18,19]. The growth trend of deep Fisher vectors can also
be observed from Table 1. We therefore constrained our compression and fea-
ture selection experiment to Fisher vectors derived from a small RBM that has
shown to report the best performance on MNIST. After exploring the best con-
densation scheme for small architectures, we believe the same technique could be
deployed for Fisher vectors derived from large models and significant improve-
ments in storage and classification performance could be gained while avoiding
overfitting. Please note that we have skipped computing Fisher scores using
Eqs. 6 and 7. This is because these gradients were not found to improve the
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Fig. 5. Estimated variance inflation factor (VIF) of Fisher vectors derived from RBM
with 1 and 5 hidden units.

classification accuracy of the system. In order to compute the Fisher scores,
only Eq. 5 is utilised. For condensing Fisher vectors, we have applied four stan-
dard compression techniques: Principal component analysis, spectral hashing,
autoencoder and parametric t-SNE, while for comparison with feature selection
techniques, four popular filter and wrapper approaches are deployed, i.e. mutual
information, minimum redundancy and maximum relevance, random forest and
SVM-recursive feature elimination. The classification performance of both types
of condensation techniques is evaluated with the help of standard classifiers:
k-nearest neighbour (k-NN), random forest (RF) and support vector machines
(SVM).
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8 Discussion

After training RBM as a generative model, Fisher vectors are extracted using
train and test examples of MNIST data set. The train Fisher vectors are given to
the standard classifiers for training and validating model parameters, whereas
the test Fisher vectors are used to assess their classification performance on
unseen data set. In order to determine the impact of normalisation on Fisher
vectors, we applied MinMax normalisation scheme to scale the data in the range
[0, 1]. It is observed that compression techniques are more sensitive to normal-
isation as compared to the chosen feature selection methods; as a result, the
compressed Fisher vectors yield better classification results after normalisation.
This sensitivity is due to the nature of unnormalised data which consists of very
small gradient values most of which are negative. In autoencoder and paramet-
ric t-SNE, if the data fed to the model is not positive, negative weights inhibit
other neurons and the sigmoid function used in both autoencoder and paramet-
ric t-SNE saturates the gradients leading to poor classification results shown in
Tables 2 and 4.

Among all the compression techniques discussed above, parametric t-SNE
and autoencoder outperform the rest in terms of classification results. If one
needs to store two dimensional (2D) Fisher encodings, parametric t-SNE beats
the rest of the compression techniques. However, when the dimensionality of
Fisher encodings is increased from 2D, the two compression techniques give
comparable performances as can be seen in Tables 3 and 5. This resemblance
in performance is due to the fact that parametric t-SNE first deploys autoen-
coder to reduce very high dimensional Fisher vectors to low dimensions and
then uses t-SNE for mapping data into further reduced dimensions. Parametric
t-SNE has an edge of preserving local structure of the data in low dimensional
subspace using heavy tailed student t-distribution, however it is sensitive to
very large data dimensions and generally uses autoencoder first for dimension-
ality reduction. After parametric t-SNE and autoencoder, spectral hashing and
principal component analysis follow the classification league respectively. Due
to the inverse relationship between Euclidian distance and Hamming affinity,
spectral hashing does not guarantee to faithfully reproduce affinity between the
data when the number of bits approach to infinity. It is for this reason that the
classification accuracy of spectral hashing decreases as the number of code bits
increases. The worst classification performance is shown by PCA, also evident
from the visualisations shown in Figs. 2 and 3. PCA is not scale-invariant and
mainly focuses on preserving large pairwise distances due to which it is unable
to preserve the significant structure of data in low dimensional space. Also the
computation of eigen vectors is infeasible for high dimensional Fisher vectors as
the computation of covariance matrix becomes difficult.

On comparing the performance of feature selection schemes, the empirical
results in Tables 2, 3, 4 and 5 suggest that maximum relevance and minimum
redundancy (MRMR) approach outclasses the remaining feature selection meth-
ods, however it is unable to beat the discriminative performance of compression
methods on normalised data. MRMR assesses individual features and selects
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subset of features from the top of the ranking list by assigning weights according
to their degree of relevancy to the class. SVM-RFE and random forests (RF)
are wrapper based feature selection schemes and therefore are trained to select
subset of features that would compute best accuracy with SVM and random
forest classifiers respectively. This fact can also be observed by comparing the
classification accuracy yielded by all classifiers on features selected by RF and
SVM-RFE. Wrappers are generally expensive to compute in comparison to filters
that selects feature subsets independent of the classifier. For this reason, filters
are more popular among the practitioners when the classifier to be deployed is
unknown or fast and cost effective classifier is required. We have used linear
SVM using stochastic gradient learning [33] as it was showing better accuracy
than non-linear SVM and has the potential of scaling well with the size of the
data.

In order to explore multi-collinearity in the extracted deep Fisher vectors,
we utilised two diagnostic measures: (a) Variance inflation factor (VIF) and (b)
Condition indices discussed in Sect. 6. Figure 4 displays the Belsley collinearity
diagnostic plot for assessing the presence of near dependencies and collinear-
ity among the dimensions of normalised Fisher vectors. The figure expresses
collinearity in data by plotting condition indices of each dimension. One can
observe that most of the features have extremely high condition indices that
exceed the tolerance threshold, i.e. 30, exhibiting coexisting or simultaneous
near dependencies in features leading to significant multi-collinearity. We also
checked the variance inflation factor of our Fisher vectors for determining the
presence of multi-collinearity. See Fig. 5, where the scatter plot shows that most
of the features have high VIF values above the threshold 5, thus indicating the
presence of multi-collinearity among dimensions.

When comparing the classification results of feature selection with compres-
sion schemes, the supremacy of compression techniques is evident on normalised
data. Our results show that compressed Fisher encodings of 20 dimensions give
same or better accuracy shown by full dimensional Fisher vectors, thus saving
a lot more computational storage for large scale recognition problems. More-
over, the multi-collinearity diagnostics suggest that if multi-collinearity exists
among dimensions then feature selection gives poor classification performance
in comparison to the compression techniques. It is important to note the dif-
ference between feature selection and compression methods. Although both the
techniques seek to reduce the dimensions of the data, compression methods do
so by creating a new combination of attributes that project the data in a dif-
ferent space, whereas the feature selection methods include/exclude the data
attributes without changing them and hence stay in the same data space. The
presence of multi-collinearity in the data hints that there are serious problems
in the attributes and small changes in the data may lead to large changes in the
estimates of coefficients assisting in prediction/classification task. In order to
reduce this variance in results produced due to irrelevant or redundant features,
compression techniques perform better than feature selection techniques. This
is because the attributes/features reduced through compression techniques are
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less interpretable due to space transformation and have reduced dependency on
one another. This ultimately leads to better model accuracies when the data is
compressed.

9 Conclusion

In this paper, we have applied different feature compression and selection
techniques on Fisher vectors derived from restricted Boltzmann machine to
explore their feasibility for large scale visual retrieval and classification tasks.
We observed that feature compression is a better choice than feature selection
if there exists multi-collinearity among features. The multi-collinearity was esti-
mated with the help of diagnostic tests that measured the variance inflation
factor and condition indices of deep Fisher vectors against the tolerance thresh-
olds. The empirical results were shown by using condensed codes through stan-
dard classifiers such as k-NN, SVM and random forests (RF). Overall, the best
classification accuracy among all feature condensation methods was yielded by
parametric t-SNE and autoencoder. Parametric t-SNE and all the other com-
pression approaches indebt their classification supremacy to MinMax normali-
sation method without which they are unable to compete with feature selection
methods.

In future, we would like to extend this experimental framework to other
large scale data sets of object recognition such as PASCAL VOC [34] and Ima-
genet [35]. We would also compare the algorithmic complexity of the two feature
condensation approaches to explore which methods are compute and memory
efficient in addition to yielding better classification performance. We believe
that in applications where storage and computational resources are limited, pre-
scribed compression techniques may prove useful for large scale object classifi-
cation/retrieval tasks.
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Abstract. Previous research showed that supervised dimensionality reduction
using Neighborhood Components Analysis (NCA) enhanced the performance of
3-class problem emotion recognition using ECG only where features were the
statistical distribution of dominant frequencies and the first differences after
applying bivariate empirical mode decomposition (BEMD). This paper explores
how much NCA enhances emotion recognition using ECG-derived features,
esp. standard HRV features with two difference normalization methods and
statistical distribution of instantaneous frequencies and the first differences
calculated using Hilbert-Huang Transform (HHT) after empirical mode
decomposition (EMD) and BEMD. Results with the MAHNOB-HCI database
were validated using subject-dependent and subject-independent scenarios with
kNN as classifier for 3-class problem in valence and arousal. A t-test was used to
assess the results with significance level 0.05. Results show that NCA enhances
the performance up to 74% from the implementation without NCA with
p-values close to zero in most cases. Different feature extraction methods offered
different performance levels in the baseline but the NCA enhanced them such
that the performances were close to each other. In most experiments use of
combined standardized and normalized HRV-based features improved perfor-
mance. Using NCA on this database improved the standard deviation signifi-
cantly for HRV-based features under subject-independent scenario.

Keywords: NCA � Emotion recognition � ECG � HRV

1 Introduction

Previous research has reported that applying supervised dimensionality reduction
(SDR) significantly enhanced the performance of emotion recognition using ECG from
the MAHNOB-HCI database [1]. To be more specific, the Neighborhood Components
Analysis (NCA) outperformed the Linear Discriminant Analysis (LDA) and the Maxi-
mally Collapsing Metric Learning (MCML), and the SDRs were only applied to features
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resulted from one method, i.e. the statistical distribution of dominant frequencies and the
first differences after applying the bivariate empirical mode decomposition (BEMD) to
ECG signals, which showed its superiority in the absence of the SDR [2].

Apparently, analysis on the previous research has suffered from the number of
feature extraction methods. We did not know how well the NCA can enhance the
performance of the same system using features from other methods. This is the main
research question addressed in this paper because conclusions based on the one feature
extraction method may lead to wrong interpretation.

We applied the NCA only to features calculated using other methods, i.e. standard
HRV analysis with normalization and standardization, statistical distribution of instan-
taneous frequency based on Hilbert-Huang Transform (HHT) after applying empirical
mode decomposition (EMD) and bivariate empirical mode decomposition (BEMD),
while other SDR methods were subject to future works. The results were validated under
subject-dependent and subject-independent scenarios using kNN as a classifier.

The paper has been organized in the following way: the first section gives brief
introduction, including a gap in the previous research. Literature studies about super-
vised dimensionality reduction and research in emotion recognition follows it with the
main research question appears at the end of this section. The next section discusses
detail methods we used in this study, including a block diagram to explain the process
visually. Succeeding this section, we present experimental results along with the dis-
cussions about the findings. The last section provides conclusions and some future
works.

2 Literature Studies

2.1 Supervised Dimensionality Reduction

The SDRs use classes of the samples to guide the dimensionality reduction (DR) pro-
cess such that distances among points belong to the same class are decreased while
increasing the distances among points belong to different class. Some proposed algo-
rithms were, e.g. Neighborhood Components Analysis (NCA) [3], Maximally Col-
lapsing Metric Learning [4], Large Margin Nearest Neighbor (LMNN) [5], Supervised
Dimensionality Mixture Model (SDR-MM) [6], Support Vector Decomposition
Machine (SVDM) [7], etc.

As was mentioned in the Introduction section that this paper focused on NCA only,
the following was a brief mathematical background about the NCA, as proposed by
Goldberger et al. [3]. The NCA works based on Mahalanobis distance measure

f x1ð Þ � f x2ð Þk k2¼ x1 � x2ð ÞTQ x1 � x2ð Þ ð1Þ

within kNN framework, where

Q ¼ ATA ð2Þ
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is a positive semidefinite (PSD) learning matrix to a certain space. The algorithm aims
to find the projection matrix, A, such that the classifiers perform well in the transformed
space.

By maximizing a stochastic variant of the leave-one-out (LOO) kNN score on the
training data, the NCA makes no assumption about the shape of the class distribution or
the boundaries between them. Since the LOO classification errors of kNN suffers from
discontinuity, a differentiable cost function based on stochastic (“soft”) neighbor
assignments in the transformed space was introduced,

pij ¼
exp � Axi � Axj

�
�

�
�
2

� �

P

k 6¼i exp � Axi � Axkk k2
� � ; pii ¼ 0 ð3Þ

Equation (3) assigns the probability of point i belongs to the class of selected point
j, among k points as its neighbor. When point i chooses several neighbors and they
might belong to different classes, total probability that point i belongs to class
Ci ¼ fj ci ¼ cjg

�
� , is defined as

pi ¼
X

j2Ci

pij ð4Þ

The main idea is to maximize cost function

f ðAÞ ¼
X

i

X

j2Ci

pij ¼
X

i

pi ð5Þ

The NCA has been implemented in the drtoolbox, a Matlab® toolbox for dimen-
sionality reduction [8]. Experiments in this study used this toolbox after slightly
modifying the algorithm, see Sect. 3.2.

2.2 Literature Review

The MAHNOB-HCI database [9] is one of the affect recognition databases which
includes ECG signals as one of the peripheral physiological signals. Other affect
recognition databases which include ECG signals are RECOLA [10], Decaf [11], and
Augsburg [12]. DEAP also provide signals from the heart activities but they were
quantified as Heart Rate Variability (HRV) measured using Blood Volume Pulse
(BVP) on finger [13]. In this paper, we use the MAHNOB-HCI database, which
involved 27 subjects (11 males and 16 females) stimulated with pictures and video
clips. The data includes the following synchronized signals:

• 32-channel EEG.
• Peripheral physiological signals (ECG, temperature, respiration, skin conductance).
• Face and body videos using 6 cameras.
• Eye gaze.
• Audio.
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Many feature extraction methods for ECG-based emotion recognition have been pro-
posed. HRV-based features using the standard HRV analysis were quite popular in many
applications. This method requires at least 5 minutes or even hours of ECG signal to get
reliable analysis [14]. There are a number of large cross-sectional studies which suggest to
use other methods, some of them are non-linear point-process [15], wavelet analysis [16],
Recurrent Plot [17], and empirical mode decomposition-based techniques [18].

Ferdinando et al. [19] used standard HRV analysis to get features for emotion
recognition in 3-class of valence and arousal, to provide baseline for the recognition
using ECG signal only from the MAHNOB-HCI database. Using SVM classifier, the
achieved accuracies were 43% and 48% for valence and arousal respectively based on
10-fold cross validation. The accuracies were slightly above chance level and close
enough to the ones based on all peripheral physiological signals. There was no DR
applied to the acquired features even for feature selection.

Apparently, the standard HRV analysis was not suitable for ECG signals from the
MAHNOB-HCI database because the signal length varies from 35–117 s. Inspired by
Agrafioti et al. [18], EMD and BEMD analysis were employed [2]. Using statistical
distribution of the dominant frequencies estimated from spectrogram analysis after
employing BEMD analysis to ECG as features, the achieved accuracies using kNN
were 56% and 60% for valence and arousal respectively based on the
subject-dependent scenario. Validated under subject-independent scenario, the accu-
racies were 60% and 59% for valence and arousal correspondingly. Features based on
statistical distribution of instantaneous frequencies estimated using Hilbert-Huang
Transform (HHT) achieved less than 50% of accuracies for both valence and arousal.
The only DR technique used in these experiments was feature selection.

Using SDRs implemented in drtoolbox [8], NCA, MCML, and LMNN, perfor-
mances of the system using statistical distribution of dominant frequency after applying
BEMD analysis to ECG from the same database were enhanced [1]. The NCA out-
performed the other method by improving the performance significantly from 56% to
64% and from 60% to 66.1% for valence and arousal respectively in subject-dependent
scenario. Under subject-independent scenario, the enhancement only worked for
arousal by improving the performance from 59% to 70%.

Although the NCA showed promising results [1], the evidences reviewed in this
sub-section seem to suggest evaluating how well the NCA can enhance the same
system using different features, such as HRV- and HHT-based features. To our
knowledge, no previous study has investigated the NCA, which was applied on the
exactly same system but using features from different methods. This study can open
new finding about phenomena in NCA related to different feature extraction methods as
the main research question addressed in this paper.

3 Methods

Figure 1 shows the block diagram of our method. ECG signals used in these experi-
ments were downloaded from the database server under “Selection of Emotion Elici-
tation” group. Sample from session #2508 was discarded as the visual inspection
showed that it was corrupted, leaving 512 samples for further process. All measured
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signals have a synchronization pulse to separate response and baseline signals. The
non-stimulations or relaxation stages are 30 s before and after stimulation part, and
they must be separated to each other. We applied signal pre-processing methods
suggested by Soleymani et al. [9] to remove baseline wandering and power line
interference.

3.1 Feature Extraction

We used the standard HRV analysis to extract features from both baseline and response
signal as suggested by Soleymani et al. [9], i.e.

• RMS of the Successive Difference between adjacent R-R intervals (RMSSD).
• Standard Deviation of the Successive Difference between adjacent R-R intervals

(SDSD).
• Standard Deviation of all NN intervals (SDNN).
• Number of pairs of adjacent NN intervals differing by more than 50 ms (NN50).
• Number of pairs of adjacent NN intervals differing by more than 20 ms (NN20).
• NN50 count divided by the total number of NN intervals (pNN50).
• NN20 count divided by the total number of NN intervals (pNN20).
• Power spectral density for very low frequency (VLF), low frequency (LF), high

frequency (HF), and total power.
• Ratio of HF to LF.
• Poincaré analysis (SD1 and SD2).
• Ratio of response to baseline features.
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Fig. 1. Block diagram of the experiments.
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resulted 42 features: 14 from baseline, 14 from response, and 14 from the ratios of
response to baseline. We normalized them to [−1, 1] and standardized them based on
mean and standard deviation to get two sets of features.

Another feature extraction method was based on the instantaneous frequency
(IF) calculated using Hilbert-Huang Transform (HHT), see Eq. (6), from the intrinsic
mode functions (IMFs) after either EMD or BEMD [2].

zðtÞ ¼ dðtÞþ jH½dðtÞ�
zðtÞ ¼ yðtÞejhðtÞ

IF ¼ 1
2p

dhðtÞ
dt

ð6Þ

Specific to BEMD, a synthetic ECG signal, synchronized on R-wave event, was
generated using a model developed by McSharry et al. [20], as the imaginary part of the
complex ECG signals, while the original signal as the real part. Of note, the model only
generated one cycle ECG signal as a template. By placing the template according to the
R-wave event, a complex ECG signal was formed. This method was faster than gen-
erating one cycle ECG signal using the model for each detected R-wave event [2].

This method has two drawbacks, at least. First, the connection between consecutive
ECG templates is not smooth but it can be minimized by adjusting the start and end of
ECG template very close to zero. However, this discontinuity issue brings small
problem if it is kept as small as possible. Second, the synthetic ECG may have different
shape at the beginning of the signal because there is no such guarantee of getting a
complete PQRST wave at the beginning of the signal, see Fig. 2. For this reason, 256
zeros were inserted at the beginning of the synthetic ECG and discarded them after the
whole synthetic ECG was complete.

0 100 200 300 400 500 600 700 800 900 1000
-0.5

0

0.5

1

1.5
Original ECG

0 100 200 300 400 500 600 700 800 900 1000
-0.5

0

0.5

1

1.5
Synthetic ECG synchronized based on R-wave event

Fig. 2. Synchronized synthetic ECG signal with its original ECG signal [2].
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Prior to applying EMD and BEMD, each samples was divided into 5-s segments,
because both EMD and BEMD were sensitive to signal length, such they resulted 5–6
IMFs plus residue [18]. Besides, the ECGs in the MAHNOB-HCI database have
different length. The IMFs from both EMD and BEMD were subject to HHT to obtain
the instantaneous frequencies (IFs) from each segment. Once this process was finished,
all five IFs from each segment belonging from the same ECG sample were joined to
represent five IFs of that ECG signal. Following this step was to calculate 14 statistical
distribution values, i.e. mean, standard deviation, median, Q1, Q3, IQR, skewness,
kurtosis, percentile 2.5, percentile 10, percentile 90, percentile 97.5, maximum, and
minimum, from IFs and the first differences as the features for classifier. Finally, we
had another two groups of features and each group contained statistical distribution of
IFs from one to five IMFs, resulting five different sets of features for each EMD and
BEMD, see Table 1 for clarity. All acquired features were standardized based on mean
and standard deviation (SD).

3.2 Dimensionality Reduction

There were two DR processes prior to classification phase, i.e. feature selection using
sequential forward floating search and the NCA. Feature selection is the simplest DR
technique and requires no projection matrix. It only combines the available features
into a new set, with reduced dimensionality, that offers the best performance.

Using the reduced dimensionality from the previous stage, the NCA algorithm was
applied to find a projection matrix able to reduce feature dimensionality while
enhancing the performance. The initial projection matrix in the drtoolbox was set using
random number such that each process produced different results and there was no
guarantee that the optimum projection matrix could be acquired within single pass. For
this reason, the algorithm was modified to be iterative such that it stopped when there
was no improvement, validated using leave-one-out, within 200 iterations. The SDR
process was applied to the selected features having dimensionality higher than the
target, 2D to 9D, as in the previous study [1]. The highest possible dimensionality
target, however, was 37 but it was different for each set of features. In particular, the
performance analysis of the reduced dimensionality was problematic due to this lim-
itation but we had to keep it similar to the previous one for the sake of equal
methodologies [1]. The acquired projection matrices were saved for further processes.

Table 1. Feature configuration prior to feature selection.

HHT-based features after EMD HHT-based features after BEMD

1 IMF 28 features 28 features
2 IMFs 56 features 56 features
3 IMFs 84 features 84 features
4 IMFs 112 features 112 features
5 IMFs 140 features 140 features
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3.3 Classifier and Validation Method

We used kNN as in the previous study [1] to make reliable comparisons before and
after applying the NCA. kNN is one of the classifiers which gets benefits from DR
because its reliability relies on the sample size. Using DR prior to building model with
kNN saves more space for storage. Another reason related to kNN is about the com-
putational speed. Using many samples to build a reliable model, kNN may suffer from
the slow speed. This issue, however, was beyond the scope of this study because we
only used 512 samples.

Results in this study were validated using subject-dependent and subject-
independent scenarios. Within the subject-dependent scenario, 20% of the samples
were held out for validation while the rest of them were subject to training and testing
using 10-fold cross validation. The model was built based on the projection of the
selected features using saved projection matrix from previous stage. The whole vali-
dation process was repeated 1000 times, with new resampling in each repetition, to
accommodate the Law of Large Numbers (LLN) such that the average was close
enough to the real value.

Subject-independent scenario evaluated if the features were ready for a general
model where new samples were introduced to the classifier for recognition. Samples
from one subject were excluded from building the model and used them to test the
model. This process continued for all subjects and the reported performance was the
average over all exclusion processes. We called this validation as Leave-One-Subject-
Out (LOSO) validation.

3.4 Post-processing for the Final Feature Dimension

Validations tests were designed so that they produced classification accuracy with
several dimensionalities to select the best one. However, small differences between the
accuracies may not be statistically significant. Specifically, there can be two accuracies
close to each other while the feature vector dimensions are different. It would make
sense to choose the one that has a lower dimension. The following procedure was
therefore used to choose the final feature vector dimension:

1. Find the best accuracy (namely, A1).
2. If the best accuracy is occurred at the lowest dimensionality, then the best result is

found (best result = A1).
3. Otherwise, find the second-best accuracy (namely, A2) from the lower dimen-

sionality and compare A1 to A2 using t-test with significance level 0.05.
4. If the difference is statistically significant, then the best results is found (best

result = A1).
5. If the difference is not statistically significant, then the second-best turns to the best

accuracy. Repeat process from step 2 until it reaches the lowest dimensionality.
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4 Results and Discussions

We experimented with four sets of features extracted using different methods and then
compare the results side-by-side. We provided the baseline performances for each set
of features, evaluated the difference using t-test with significance level 0.05, and cal-
culated the improvement in percent to answer the main research question in this paper.
Results from the previous study [1] were also presented.

4.1 HRV-Based Features

Table 2 shows the experiment results using standardized HRV-based features under
subject-dependent scenario. The highest performances were 60% and 46% for valence
4D and arousal 3D respectively. Using the post-processing procedure for the final
feature dimension in Sect. 3, the second highest performance in valence with lower
dimensionality was at 2D and p-value as the result of significance test was close to
zero, indicating that the difference was significant such that 60.0 ± 4.4 was the best
result occurred at the lowest dimensionality. Applying the same rules for arousal, we
compared the one at 3D to 2D using t-test and resulted a very small p-value specifying
that 46.0 ± 4.1 in 3D was better than the other. Performances improved about 17% and
6% for valence and arousal respectively.

Results from standardized HRV-based features within subject-independent scenario
are presented in Table 3. For valence, the highest accuracy was at 4D but significance
test against the one at 3D gave p-value 0.079 indicating that the difference was not
significant such that result at 3D became the best one. Next, we compared result at 3D
to 2D, the second highest result, and found that the difference was significant, brought
61.4 ± 4.0 at 3D as the best result. For arousal, comparing the highest performance at
3D, 42.8 ± 4.0, to the second highest one at 2D, 41.7 ± 4.2, emerged p-value 0.0866,
such that result from 2D was chosen as the best result. Although the NCA worked well
in valence, no evidence was found for improvement in arousal.

Table 2. Results for standardized HRV-based features for subject-dependent scenario from each
dimensionality.

Baseline 2D 3D 4D 5D 6D

Valence 51.2 ± 4.2 57.8 ± 4.3 57.2 ± 4.2 60.0 – 4.4 58.8 ± 4.4 59.4 ± 4.3
Arousal 43.3 ± 4.2 45.2 ± 4.3 46.0 – 4.1 44.2 ± 4.3 43.8 ± 4.1 44.2 ± 4.4

Table 3. Results for standardized HRV-based features for subject-independent scenario from
each dimensionality.

Baseline 2D 3D 4D 5D 6D

Valence 54.1 ± 11.3 55.2 ± 4.8 61.4 – 4.0 62.8 ± 4.9 60.3 ± 4.6 61.5 ± 4.3
Arousal 44.5 ± 8.0 41.7 – 4.2 42.8 ± 4.0 36.9 ± 4.2 36.9 ± 4.1 42.0 ± 4.7
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The same procedures were applied to all sets of features and the results were
summarized in Tables 4, 5, 6 and 7 for valence and arousal within both scenarios. From
the third row of those tables, it was evident that NCA improved all performances
significantly except for arousal in subject-independent scenario and it was even lower
than its baseline. If we compared results from arousal for both scenarios, the second
column of Tables 5 and 7, they were either similar or even worse than the ones in [19]
although the later used neither feature selection nor NCA. It was also shown here that
the improvements from the baseline was somehow small.

If we now turn to experiment with normalized HRV-based feature, the third column
of Tables 4, 5, 6 and 7, it was apparent that NCA improved all performances signif-
icantly as shown by p-values at the last row. Compare to standardized HRV-based
features, improvements for normalized HRV-based features were considerably better
than the other.

Surprisingly, experiments within subject-independent scenario showed that the SD
reduced around 50% after applying NCA, indicating higher consistency among the
repetitions than the ones in baselines, but not in subject-dependent scenario. These
were unexpected as validation using this scenario usually resulted high variation.

These experiments also presented the fact that whether valence had higher accuracy
than arousal and the other way around depended on the normalization method. This
finding brought an idea to combine standardized and normalized HRV-based feature,
select the most discriminant features, and then apply NCA to evaluate if this combi-
nation offers more powerful features than working individually. By combining these
two sets of features, result for arousal under subject-independent scenario looked
promising, see the fourth column of Tables 4, 5, 6 and 7. Besides, the accuracies were
even better than the ones when both sets of features worked individually. The selected
features in this scheme were from both parties showing that combining these two set of
features was a choice.

4.2 HHT-Based Features

Performances for recognition in valence and arousal using HHT-based feature after
EMD analysis under both scenarios are presented in the fifth column of Tables 4, 5, 6
and 7. Applying NCA to HHT-based feature after EMD analysis enhanced the per-
formance for both valence and arousal in both scenarios significantly, indicated by
p-values, with the largest enhancement occurred in arousal under subject-independent
scenario, see Table 7.

The sixth column of Tables 4, 5, 6 and 7 displays the summary of experiments
using HHT-based feature after BEMD analysis. The improvements were large and
enhanced the performance significantly as well. Of note, the baselines of HHT-based
feature after BEMD were mostly the smallest among all experiments such that it offered
the largest improvement.

4.3 Summary of the Experiments

Tables 4, 5, 6 and 7 present comparisons side-by-side for each emotional label under
subject-dependent and subject-independent scenarios. Generally, the NCA could
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improve the performances in both valence and arousal within both scenarios. An
exception occurred for valence in subject-independent scenario using spectrogram-
based features after BEMD [1], see the most right column of Table 6, and arousal in the
same scenario using standardized feature, see the second column of Table 7, as the
NCA failed to make it.

Although the baselines for different set of features had large differences, the results
after applying NCA were quite good by neglecting the exceptional cases above. The
lowest accuracies before NCA corresponded to the highest improvements and vice
versa. These facts were interesting as the NCA could make the end results almost close
to each other no matter the feature extraction method applied to ECG signals. To our
knowledge, this interesting phenomenon has not been exposed before.

Related to computational cost, HRV-based feature extraction offered the lightest
one with moderate performances after feature selection process and good results after
applying NCA. On the other hand, a method utilizing spectrogram after BEMD had
high cost because of the spectrogram analysis parameters, i.e. seven values of window
size and nine values of overlap parameters, and process related to BEMD [2]. More-
over, the feature selection process and NCA must search for all parameter combina-
tions. Furthermore, the end results from spectrogram-based feature after BEMD
analysis could not beat the ones from combined standardized and normalized
HRV-based features although the former won the competition on the baseline.

Experiments under subject-independent scenario expect higher variances as the
classifiers never learn the structure from training data [1, 2]. However, NCA was able
to successfully reduce the SDs significantly for HRV-based features. Even more
interesting, the NCA lowered them such that the values were close to the other sce-
nario. There was no such improvement from the other feature extraction methods. This
finding was also interesting but it needs more studies with other databases and feature
extraction methods, and is left for future work.

5 Conclusions

Enhancements of ECG-based emotion recognition on the MAHNOB-HCI database,
processed by several feature extraction methods, using NCA were presented. Gener-
ally, NCA could successfully enhance the performance on this database significantly
and provided new baselines. Results using combined standardized and normalized
HRV-based features were superior, except for valence in subject-dependent scenario.
Although spectrogram-based features after BEMD analysis outperformed the other
feature extraction methods when NCA was not applied [2], the results were completely
different after applying NCA as shown in Tables 4, 5, 6 and 7.

Different feature extraction methods had different classifier performances but the
NCA could make the results from different methods closer to each other. This fact was
interesting to note because so far feature extraction methods were very critical.
However, this observation needs more elaboration with other databases and feature
extraction methods.

Spectrogram-based features after BEMD analysis had a heavy computational cost
and the performances after NCA were not as good as in the baseline. On the other hand,
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HRV-based features had a light computational cost but offered better results after NCA.
Having higher baseline accuracy brought no guarantee that applying NCA would result
in as good improvement as with lower baseline levels.

The NCA reduced the SDs around 50% from the baseline on experiments using
HRV-based features under subject-independent scenario. To our knowledge, such
results have not been explored before in many experiments using NCA. However,
confirmation using other databases but MAHNOB-HCI database remains as future
work.
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Abstract. A novel approach for stochastically modelling movement tra-
jectories is presented that has already been implemented and evaluated
for classification scenarios in previous research and in this article its
applicability to verification scenarios is analysed. The models are based
on Conversive Hidden non-Markovian Models that are especially suited
to mimic temporal dynamics of time series. In contrast to the popular
Hidden Markov Models (HMM) and the dynamic time warping (DTW)
method, timestamp information of the data is an integral part. A veri-
fication system is presented that create trajectory models from several
examples and its verification performance is deduced from experiments
on different data sets including signatures, doodles, pseudo-signatures
and hand gestures recorded with a Kinect. The results are compared to
other publications and they reveal that the developed system already
performs similar to a general DTW approach, but expectedly does not
yet reach the quality of specialized HMM systems. It is also shown that
the system can be applied to three dimensional data and further possi-
bilities to improve the results are discussed.

Keywords: Online signature verification
Conversive Hidden non-Markovian Model · DTW · HMM
Movement trajectories · Kinect

1 Introduction

Human movements are a natural way of interacting with our environment, such
as other beings or objects. Human computer interaction (HCI) is concerned with
how humans can efficiently and effectively interact with computers. Apart from
that, computer based analysis of movements can also be relevant for security,
forensic analysis, or sport science. When analysing designated movements, usu-
ally the shape of the path of a movement (trajectory) and its temporal dynamic
are of interest. However, due to variations between repeated execution of the
same movement or between executions by different people, verification and clas-
sification can prove difficult.
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The modelling paradigm of Conversive Hidden non-Markovian Models
(CHnMM) can capture the temporal and spatial properties of a movement tra-
jectory, as well as the deviations that can occur between different executions.
In previous research (see Sect. 2.1), we have shown that CHnMM can efficiently
model and classify movement trajectories of touch gestures. CHnMM can be
automatically created from training examples and show a promising performance
in this area. In the current article, we present further research on the applica-
bility of CHnMM in verification tasks.

One common application involving movement trajectories is authentication
via signature verification. To be able to compare CHnMM with standard sig-
nature verification methods, we used publicly available databases containing
sufficient data suitable for the task. Besides actual online signature data, we
also used finger drawn doodles and pseudo signatures to assess our methods
performance. All of these contain spatial as well as temporal information on
the movement trajectories, which is sufficient for our method. Since CHnMM
are not specifically tailored for signature verification, but generally applicably
to spatio-temporal trajectories, we do not expect to outperform specialized sys-
tems. Nevertheless, the goal of the current research is to show that CHnMM are
applicable for movement trajectory verification tasks using real world application
data.

We have designed CHnMM to capture not just the shape but also the tempo-
ral dynamics of a movement. Therefore we expect them to be able to distinguish
trajectories that are similar in shape but differ in temporal execution. This trait
could be beneficial when deciding whether a signature is valid. An actual forgery
attempt may be able to mimic a trajectories shape, but will probably exhibit
different temporal dynamics.

2 Related Work

2.1 Previous Work

Hidden non-Markovian Models (HnMM) as an extension of Hidden Markov Mod-
els (HMM) [16] have been developed by [11] and allow more realistic modelling
of systems, allowing for multiple concurrent non-Markovian processes. A state
space-based solution method for behaviour reconstruction solving the Evalua-
tion and Decoding problem has been developed, which is computationally very
demanding. The subclass of Conversive HnMM (CHnMM) [2] slightly reduced
the modelling power but significantly improved the efficiency of the behaviour
reconstruction algorithms.

In two studies we evaluated the applicability of CHnMM to gesture and
pattern recognition, as one major application are of HMM. [1] evaluated WiiMote
movement classification and [3] tested touch gesture recognition. Both studies
revealed that CHnMM can outperform HMM in terms of recognition accuracy
in cases when the shape of the gestures is not the discriminating factor but its
temporal dynamics.
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However, in both studies, the gesture models were created manually from
captured movement executions, which basically prevents the practical applica-
bility of the approach. In [4] an automatic model creation approach has been
developed that covers general movement trajectories that spatially and tempo-
rally behave similar on each repetition. This has been implemented and tested
on touch gesture recognition tasks with promising results. In this work the devel-
oped concept is utilized, adapted and applied to verification problems to evaluate
its potential in this field of application.

2.2 Related Work

Online signature verification is already a well known research area with numerous
methods and techniques being utilized which can be separated into two main
categories of systems: ‘feature-based’ and ‘function-based’ [13]. ‘Feature-based’
systems calculate global features from the input data to do the verification while
‘function-based’ systems operate on the time-discrete function describing the pen
or finger movement trajectory. The CHnMM system is a ‘function-based’ one and
two main representatives in this category are HMM and DTW based systems of
which plenty exist.

One instance is the work by Fierrez et al. [7] where a HMM based system
is employed, extracting several different features from online signatures (from
MCYT database) to train continuous HMM from examples where each trained
HMM is a representation of a certain signature. Similarly, Muramatsu and Mat-
sumoto [14] learned discrete HMM only using the quantized direction angle as
a feature to model Chinese online signatures. The training process for HMM
requires a significant amount of time to generate the model and compared to
DTW it also tends to require more training examples to produce models of good
quality [7]. The computation of the verification score however, is comparably
fast.

A very common technique for online verification is DTW that calculates the
distance between two time series with different length. Hence, it can be employed
for a template matching approach. Kholmatov and Yanikoglu [10] for example
developed a DTW based online verification system that won the First Interna-
tional Signature Verification Competition even without using further information
like pressure, azimuth or elevation of the stylus. Other examples of DTW based
verification systems are described by Faundez-Zanuy [6] and Martinez-Diaz et al.
[12]. In [12] the DTW method was applied on finger-drawn doodles and pseudo-
signatures recorded on a mobile touch device. In contrast to the HMM method,
DTW requires all the training examples to be stored as templates. To verify an
input a DTW distance score is determined for each available template and if a
certain threshold is exceeded the input is considered to be valid. This method is
also applied on three dimensional data: Tian et al. [17] utilized the DTW app-
roach to verify signatures that were written in the air and recorded via a Kinect
device.

Although the temporal dynamics are essential to verify a signature, neither
HMM nor DTW utilize any time information in the calculations. They assume
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a regular time series like a fix frequency from a recording device. Both methods
could unveil problems in cases where this frequency changes for example because
of different recording devices. CHnMM explicitly require the timestamp of each
observation but are not bound to regular or fix-frequency signals.

3 The CHnMM Verification System

In this section the extended CHnMM-based verification system for spatio-
temporal movement trajectories and its most important elements are explained.
The idea, methods and algorithms of the system are still similar to the two
dimensional system explained in [5] but remarks about the adaptations to enable
the processing of three dimensional trajectories are included.

3.1 CHnMM - Formal Definition

For a better understanding of the following explanations the formal definition of
a CHnMM is given, introducing terms and nomenclature.

Certain elements of CHnMM are similar to the elements of HMM, namely:

– S = (s1, . . . , sN ): set of N discrete states
– V = (v1, . . . , vM ): set of M output symbols
– Π = (π1, . . . , πN ): initial probability vector
– A: NxN transition matrix with elements aij being more complex.

In addition to these similar elements, CHnMM also contain of a set of K
transitions TR = {tr1, tr2, . . . , trK} that describe state change behaviour and
thereby model behaviour. Each aij in A is either element of TR or ∅ if there is no
transition between state si and sj . Properties of the state change are described
by the transition tri, which is a tuple of three elements (dist, b(v), aging).

As a part of the element aij the continuous probability distribution dist
describes the duration from state si becoming active until the discrete state
change to state sj occurs. The function b(v) determines the probability that
the symbol v is emitted when the state change is happening and therefore b(v)
is semantically equivalent to the output probabilities described in matrix B of
HMM, except that symbols are associated to transitions instead of states. In case
of multiple outgoing transitions from state si the boolean value aging determines
if the elapsed time since the transition became active (i.e. the state si became
active) is saved (aging = true) or not (aging = false) when the transition
becomes disabled before firing. This value is not of further interest in this paper
and is always considered to be set to false.

In conclusion, a complete CHnMM λ is formally described with the elements
as a tuple, i.e. λ = (S, V,A, TR,Π).
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3.2 Trajectory Model Structure

The chosen model structure for the verification system is driven by the idea
to split the stochastic process into its spatial and temporal stochastics, where
the stochastic process is considered to be the body movement that is always
generating rather similar trajectories. This separation facilitates the automatic
CHnMM creation by utilizing the spatial information of example trajectories to
define the CHnMM states S, the output symbols V and their output probabilities
tr.b(v). With that given as a base, the temporal stochastics of the body movement
to be modelled are extracted from examples and encoded in the transitions of
the CHnMM via the temporal probability distributions tr.dist.

To represent the spatial stochastics of the process, the so called StrokeMap
was introduced, which consists of regions each trajectory path will reach suc-
cessively. For two dimensional trajectories, these regions are circular, while for
three dimensional trajectories they are extended to spheres. A visualization of
the general modelling idea and approach is given in Fig. 1. It shows two exam-
ple trajectories (as points represented by blue circles), created by the stochastic
process/body movement, which are used to automatically create the StrokeMap.
Thereupon, the StrokeMap serves as the base for the structure and layout of
the CHnMM, whose transition time distributions are estimated from the trajec-
tory examples. The following two sections describe and explain the details of the
automatic generation of the CHnMM trajectory models.

Fig. 1. The approach: split the stochastic process given by example trajectories into
its spatial and temporal stochastics [5]. (Color figure online)
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3.3 Creating the StrokeMap

The StrokeMap is represented as an ordered set of regions (SM = {R1, . . . , Rn})
resembling the spatial locations each trajectory has to pass through successively,
if it resembles the body movement to be modelled. By defining probable locations
where the trajectory points will occur, the spatial stochastics are integrated
into the model. Each region consists of its position (2D or 3D), its radius and
its tolerance radius (R = (x, y, z, r, rtol)) and either forms a circle or a sphere
depending on the dimensionality of the trajectories. It would also be possible to
employ other shapes like ellipses and ellipsoids as region shapes, which will be
tested in future research. The automatic generation of regions is based on the set
of example trajectories I = {trj1, . . . , trjn} that is provided as an input, with
each trajectory being a chronologically ordered sequence of recorded trajectory
points, each holding information about the position at a certain point in time
(trj = ((x1, y1, z1, t1), . . . , (xn, yn, zn, tn))).

A more precise and formal description of the StrokeMap generation process
is given by Algorithm 1, that explains how regions R1 to Rn are determined. The
first step is the interpolation of each trajectory in I to approximate a continuous
movement path that has a position at every point in time of the trajectory.
Subsequently, for each trajectory, a fixed number of spatially equidistant points
is sampled from its interpolated path determined by the parameter nRegions.
Hence, the arc distance between the points Δstrj depends on this parameter and
the arc length of the complete interpolated path.

∀trj ∈ I :

Inttrj(s) = Interpolation(trj)

Δstrj =
Length(Inttrj)

nRegions

∀i ∈ N, 1 ≤ i ≤ nRegions :

RPi = {rpi,trj | Inttrj(Δstrj ∗ i)}
Di = {Δt | rpi,trj .t − rpi−1,trj .t}
Ri = CreateRegion(RPi, minRadius)

Ri.rtol = Ri.r ∗ toleranceFactor

Algorithm 1. StrokeMap generation [5].

Determined by their region index, the sampled points are grouped together,
forming the set of region points RPi. Each group is the base for the creation
of a specific region Ri of the StrokeMap. This process is represented by the
CreateRegion function that determines the radius and the position of a minimal
circular or spherical region containing every point in the given set RPi. To avoid
small regions, e.g. due to a limited number of examples, the parameter minRadius
is utilized, defining the minimal radius of regions returned by CreateRegion.
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It can be expected that the path of unknown or new executions of the tra-
jectory may not lie within the calculated regions but close, the parameter tol-
eranceFactor is implemented to define a bigger tolerance region by multiplying
the factor with the original region radius, thus creating a bigger circle or sphere.

Although not necessary for the StrokeMap itself, the set Di containing the
times needed to travel the Δstrj distance from region Ri−1 to Ri is already
calculated, as it will be needed in the CHnMM creation process explained in the
next section.

3.4 Creating the CHnMM

The automatic construction of the final CHnMM is formally described in Algo-
rithm2. As mentioned before, the layout and structure of the CHnMM is mainly
defined by the StrokeMap. This becomes obvious considering the fact that the
elements that define the structure S, V,A are already determined by knowing the
parameter nRegions. Each state corresponds to an region of the StrokeMap and
represents a certain phase of the movement. Due to their chronological order, a
linear topology is employed to connect the states with transitions as it is simi-
larly known from HMM [8]. A graphical representation of the CHnMM structure
is given in Fig. 1.

With the layout being defined, only the transitions tri of the CHnMM are left.
For the output probabilities the parameter hitProbability is utilized, specifying
the probability that the Ri Hit symbol is generated by a trajectory. Semantically,
this indicates that the according sampling point rpi of a given trajectory lies
within the circular or spherical core region. If only the tolerance region is reached,
the symbol Ri Tol is emitted, which is penalized by using a smaller probability.
As a consequence, hitProbability must be greater than 0.5.

S = {Start, R1, . . . , Rn}
V = {R1 Hit, R1 Tol, . . . , Rn Hit, Rn Tol}, n = nRegions

A = TRnRegions×nRegions, aij =

{
trj if j = i + 1

∅ otherwise

∀i ∈ N, 1 ≤ i ≤ nRegions :

tri.b(Ri Hit) = hitProbability

tri.b(Ri Tol) = 1 − hitProbability

tri.aging = false

tri.dist = CreateDistribution(Di, distType)

Algorithm 2. CHnMM generation [5].

For the probability distribution of a transition tri.dist, that defines the tem-
poral behaviour, the set Di from the StrokeMap creation is passed to the Create-
Distribution function that estimates a fitting distribution according to the given
distType.
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3.5 Trajectory Verification

After a trajectory model consisting of the StrokeMap and the CHnMM has
been created, it can be used to verify unknown trajectory examples. Therefore,
the evaluation task, which is known from HMM systems, needs to be solved.
Formally this means to calculate P (O|λ) given a symbol trace O = (o1, . . . , oT )
and a CHnMM λ. The symbol trace O is generated from the unknown input
trajectory by using the point sampling method from Sect. 3.3. If a point lies
within its corresponding StrokeMap region either Ri Hit or Ri Tol is emitted
as an observation oi at the interpolated time of the sample point. If there is a
single sample point that does not lie within its region, the result for P (O|λ) is
0, otherwise the probability that the model λ created the trace O is calculated
according to the evaluation algorithm presented in [2].

If the result is 0, the input is assumed to be invalid, which for example
happens if the trajectory does not pass a tolerance region or if the time needed
from region to region does not fit with the probability distribution. Instead of 0
a threshold value could be introduced, which is discussed in Sect. 4.3 and which
is common for most authentication systems.

4 Experiments

4.1 Databases

For the experiments different real world datasets containing trajectory data
were utilized. The majority of the data was collected and intended for biomet-
ric authentication purposes. It is interesting to evaluate these with the devel-
oped CHnMM authentication system, since the data was recorded with different
devices and by a sufficient number of persons.

MCYT. A typical real world biometric authentication application is the usage
of signatures to verify that a person is who he/she claims to be. A database
containing many real world online signatures is the so called MCYT (Ministerio
de Ciencia y Tecnoloǵıa) bimodal biometric database [15] whose intention is
to represent a statistical significant part of a large scale population. It ideally
suits the purpose of evaluating the CHnMM authentication system, because its
performance can be measured and compared to systems that also utilized this
dataset. It is kindly provided by Biometric Recognition Group - ATVS of the
Universidad Autonoma de Madrid.

The dataset contains signatures of 100 participants of which each created
25 genuine examples of his/her signature using a WACOM INTUOS A6 USB
pen tablet. With a 100 Hz frequency it records: x-y coordinates, the applied pen
pressure and the azimuth and altitude angle of the pen relative to the tablet.
Additionally, the dataset also contains 25 forgeries per participant. These were
created by showing a static image of the genuine signature to five other users who
tried to replicate it five times. For three different participants a few signature
recordings are presented in Fig. 2.
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Fig. 2. Genuine and forgery examples from the Doodle (left), PseudoSignatures (mid-
dle) and MCYT (right) database corpora [5].

To facilitate the processing of the data by the CHnMM authentication sys-
tem, a synthetic timestamp is added to the recorded data by increasing the
timestamp by 10ms for each successive feature vector. The CHnMM system
only utilizes the x-y coordinates and the timestamp for the verification, because
it was designed for general movement trajectories and not device or application
specific data.

DooDB. While the previous trajectories were created with a pen tablet,
the DooDB contains trajectory data of 2-dimensional finger movements. The
database was generated by Martinez-Diaz et al. [12] and is made publicly avail-
able by the ATVS group. There are two different corpora, namely Doodles and
Pseudo-signatures and for both an HTC Touch HD mobile phone (5 × 8.5 cm
screen) was employed to record single finger movements on the touch surface.
For their creation 100 participants performed 30 genuine examples and 20 forg-
eries in both corpora, which vary in what the participants were asked to draw:
In Doodles participants draw a doodle that they would use regularly as a graph-
ical password for authentication scenarios and in Pseudo-signatures a simplified
version of their signature (shorter or only initials to fit the screen) was requested.

Similarly in both corpora the x-y coordinates and a time interval for the
elapsed time since the previous touchpoint (most commonly 10 ms due to 100 Hz
device frequency) are recorded. In case of the finger losing contact with the touch
surface no data is recorded as opposed to the data in MCYT in case the pen is
just hovering over the tablet. If erroneous recordings, i.e. 0, 0 coordinates, occur
they are ignored for the trajectory. However, their elapsed time information is
still considered to determine the correct timestamps for successive touchpoints.
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KinectDB. This database was specifically created by students of our depart-
ment (Lehrstuhl für Simulation) to evaluate recognition and verification methods
on 3D trajectories with a focus on temporal dynamics. The database consists of
3D hand trajectories of people performing certain gestures with their right hand
that were recorded with a Microsoft Kinect (v1) device. A focus was set on a
gesture set that also includes gestures that exhibit the same shape but differ-
ent temporal dynamics. This gesture set consisting of nine different gestures is
visualized in Fig. 3, where colored arrows denote direction and speed of elements
of the gesture. Circle and Triangle shaped gestures exist in four, respectively
two, different temporal versions, creating, together with similar shapes like the
rectangle, a very challenging dataset for recognition and verification tasks. In
Fig. 4 examples of all four circle shaped gestures are presented.

Fig. 3. Gesture set used for KinectDB (blue arrows indicating execution speed). (Color
figure online)

The six participants were asked to perform each gesture twenty times, stand-
ing two meters in front of the Kinect device. The beginning and end of each
gesture was manually determined by the experiment supervisor. The features
included in the recording are the x, y and z coordinates of the right hand Kinect
node and the timestamp of each recorded frame. Frames are recorded with a
frequency of 30 Hz.

4.2 Experiment Protocol

For a better understanding of the experiment results, this section describes the
details and circumstances of how they were obtained and what they consist of.

Performance Assessment. The evaluation of our CHnMM trajectory verification
approach is the main goal of this work, utilizing real world authentication data.
Furthermore, the possible application to three dimensional movement trajectory
data is shown by using the KinectDB data set. For the assessment of the quality
of authentication systems two important measures exist: the False Rejection Rate
(FRR) of genuine trajectories and the False Acceptance Rate (FAR) of forgery
trajectories which are usually used [9,12,15]. Commonly, a certain threshold
value is employed in authentication systems, deciding whether a certain input fits
the template. Depending on that threshold either a better FAR or a better FRR
of the systems is favoured, rendering both values inversely related. Therefore,
the so called Equal Error Rate (EER) where FAR equals FRR is provided as a
single quantity to specify the quality of an authentication system, although it
hides a lot of its actual behaviour.
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Fig. 4. Examples of all four circular shaped trajectories (Circle, Circle (fast), Circle
(fast-slow), Circle (slow-fast)).

Input Data. In the previous section the data sets used for the experiments were
introduced and explained, yielding four different corpora of interest: MCYT
Signatures, Doodles, PseudoSignatures and KinectDB. Since they share a lot
of similarities, one general experiment protocol is applied on them. Except for
one, all corpora contain several genuine examples of a certain user trajectory, i.e.
signature, doodle, pseudo signature or gesture, and also several forgeries of these
user trajectories for each user. The exception is KinectDB that only has genuine
examples for every user. In order to create a similar scale for the coordinates
from all the different corpora, normalization has been applied, creating real
valued coordinate ranges from 0 to 1.

For the experiments the trajectory data of each corpora needs to be divided
into a training, a genuine and a forgery test set. Obviously, the training set is
utilized to create and initialize the verification system, whereas both test sets
are needed to determine the verification performance, specifically FAR and FRR.
Inspired by the procedure in [12], two approaches for creating the test sets were
used in the experiments: random and skilled. While for both the training and
genuine set is similarly created by taking a specified number of genuine training
examples from each user and using the remaining examples for the genuine set,
the forgery set is created differently to test different qualities of forgeries. For
the random forgery test set the first genuine example of every other user is
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taken and the performance results will help to understand the robustness of the
verification system against random input. The skilled forgery set consists of all
available forgery examples for the user and the results will reveal the applicability
of the verification system in real world situations. For the KinectDB corpus that
does not contain skilled forgery examples, a skilled forgery set is created by using
the execution of the same gesture of other users. Those are assumed to be like
possible real skilled forgery attempts.

Parameter Variation. The CHnMM authentication system that is described in
this work has several parameters that influence the authentication behaviour.
In order to determine acceptable parameter sets and to evaluate the influences
of certain parameters, parameter variation has been utilized, hence, the system
is tested with a lot of different parameter combinations. The tested parameter
ranges are based on experience from previous work [4] and are as follows:

– nRegions: 10–20, step size 5,
– minRadius: 0.01–0.19, step size 0.02,
– toleranceFactor: 1.1–2.1, step size 0.2,
– distributionType: uniform and normal.

As a result, there are 360 different parameter sets that are used to evaluate
the CHnMM authentication system. Additionally, to test the influence of a dif-
ferent number of training examples the experiments have been conducted with
either five or ten training examples per user. Consequently, for each database
corpus (MCYT, Doodles, PseudoSignatures, KinectDB) and forgery data type
(random or skilled) 360∗2 FAR-FRR pairs are calculated. Plotting these results
in a FAR-FRR point diagram helps to interpret the results. This diagram must
not be confused with the so called Receiver Operating Characteristic (ROC)
curve although it can seem very similar. The ROC curve is commonly used to
visualize the behaviour of a verification system but in this work there is currently
no single threshold parameter implemented.

4.3 Results

Result Overview. In Fig. 5 a FAR-FRR point diagram for every database
corpus is presented to give an overview of the outcome of the conducted exper-
iments. The diagrams focus on the most interesting result space with FAR and
FRR below 50%, hence, several FAR-FRR points are not shown. The results
visually resemble a typical ROC curve if only the Pareto frontier of most opti-
mal results is considered. This general behaviour is as expected, because trying
to reduce the FRR causes higher FAR and vice versa. Data points beyond the
Pareto frontier are the result of bad parameter sets. Accordingly to the expecta-
tions, the performance difference between random (circles) and skilled (crosses)
forgeries is obvious and similar across all corpora, with the FAR being very close
to 0 for the random ones.
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Fig. 5. FAR-FRR plots for all authentication experiment results distinguished by
forgery type and training size. (Color figure online)

The best overall authentication performance of all corpora was achieved with
the MCYT signatures, where the FAR and FRR values are generally the low-
est. As a result, the difference between random and skilled is rather small com-
pared to doodles, pseudo-signatures and KinectDB, where this difference is more
remarkable. This could be explained by the fact that signatures written with a
pen are performed more consistently, due to them being a common and known
movement for the user. The pseudo-signature results are probably slightly bet-
ter than the doodle results for the same reason, as pseudo-signatures are not
performed as consistent as the signatures. With the KinectDB results gener-
ally being a little better than the pseudo-signature ones the applicability of the
CHnMM verification approach to three dimensional data is proven.
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Another unsurprising observation is that increasing the number of training
examples from five (yellow) to ten (blue) generally improves the performances
on all data sets, indicating that the developed system works as expected.

In Table 1 the achieved EER for each corpus and forgery type are presented.
Be aware that these EER values describe the most balanced (FAR equals FRR)
result that occurred in the parameter variation. The achieved EER values do
not recommend to use the system in practice, especially due to the quite high
percentages for the random forgeries that seemingly suggest that not even ran-
dom input can be distinguished well. However, the plots prove that in all corpora
the FAR values are very low for random inputs until the parameter sets become
more tolerant. Hence, in order to better understand the values they have to be
compared to other methods.

Table 1. Achieved EER for every database.

MCYT Doodles PseudoSignatures KinectDB

Random 4% 12% 8% 6%

Skilled 11% 29% 21% 20%

Martinez-Diaz et al. [12] created the DooDB and therefore also provided
several benchmark values for the Doodle and Pseudo-signature corpora using
a DTW verification approach. Fortunately, one basic DTW approach only uti-
lized the two dimensional coordinates, or the first or second derivative respec-
tively. This circumstance allows for a fairer comparison, as these features are
not application specific like our approach that is not specialized on certain types
of trajectories. The results are based on experiments with five training exam-
ples. Using skilled forgeries EER values between 26.7%–36.4% for doodles and
between 19.8%–34.5% for Pseudo-signatures were achieved. For random forg-
eries the EER are between 2.7%–7.6% for doodles and between 1.6%–5.0% for
Pseudo-signatures.

In the work by Ortega-Garcia et al. [15] an HMM verification approach was
applied to subsets of the MCYT database where models were trained using 10
training examples. Depending on the chosen subset, EER between 1% and 3%
were achieved for skilled forgeries. While this value could not be achieved with
our system we still think that the performance is very promising, especially con-
sidering that it is not specialized on signature trajectories and that there is still
room for improvement by employing a threshold system. This idea is further dis-
cussed in Sect. 4.3. Moreover, the HMM system utilized other recorded data like
azimuth, elevation and pressure of the pen in order to reach these results. In [7]
it is stated that only using the x and y coordinates resulted in an EER of 10.37%.

Parameter Influences. The influence and behaviour of the CHnMM system
parameters still very much resembles the observations made in previous work [4]
where the system was applied to touch gesture classification tasks. The parame-
ters minRadius and toleranceFactor influence the system behaviour the most as
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Fig. 6. FAR-FRR plots for all skilled experiment results distinguished by distribution
type.

increasing their values generally create more tolerant verification systems that
is more accepting and thus leads to lower FRR and higher FAR. Interestingly,
parameter nRegions does not have a significant influence for certain parameter
combinations especially those that lead to practically useless results with FAR
greater than 50%, but a lower nRegions value can slightly improve the EER of
the verification system for better parameter sets. This is due to the fact that a
smaller number of regions in the model decreases the number of “hurdles” for a
certain input and thereby the number of false rejections can be decreased while
the chances of accepting an invalid input (FAR) only slightly increases.

In Fig. 6 the results of the experiments for skilled forgeries are plotted again
but slightly different in order to analyse the influence of the distribution type of
the transitions that are either uniform or normal in this work. The plots visual-
ize that the uniform distribution generally seems to improve the FAR compared
to the normal distribution while sacrificing on FRR. This is expected behaviour
as the uniform distribution only covers a strict time interval while a normal
distribution theoretically covers an infinite one. Hence, if the input does not fit
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Fig. 7. Evaluation value distribution for a chosen parameter set with MCYT Signatures
(logarithmised values) [5].

into the time interval at one point in the trajectory model the input is deter-
mined invalid. With the normal distribution such an early rule out by time
cannot occur. The uniform distribution seems to perform better for the Pseudo-
signatures which leads to think that the temporal behaviour is quite decisive
in this data set. The same trend occurs in the Doodle database but an EER is
never reached. For the MCYT signatures the normal distribution seems to be
the better choice which probably is due to an unsuitable time tolerance for this
data set.

Employing a Threshold Value. Currently, the implemented system does not
employ the usual threshold concept as it is currently not decided how a thresh-
old is determined best for our system. To proof that there is further potential
to improve the already promising system an additional experiment was con-
ducted on the MCYT signature database. This time with the data of all avail-
able 100 users, 10 training examples and only with a specific parameter set. The
chosen set (nRegions = 10, toleranceFactor = 1.7, minRadius = 0.05, distribution-
Type = normal) achieved the best balanced result (FAR = 10%, FRR = 12%) for
skilled forgeries in the previous experiments. In this additional experiment the
evaluation values of each verification have been recorded.

The resulting FAR and FRR values essentially did not change and in Fig. 7
the histogram shows how often certain evaluation values occurred in relation to
the number of made verifications whose evaluation value were not 0. Be aware
that the logarithm was taken of the evaluation values in order to make the very
little values more comprehensible and easier to visualise.
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As expected, the plot reveals that the evaluation values of genuine inputs tend
to be greater than those of skilled and random forgeries with close to 95% of
them being between −40 and −10. While there is no perfect threshold value that
separates the forgeries from the genuines, it is possible to achieve improvements
especially for the FAR. For example, setting the threshold to −40 would keep
the FRR at 12% (there is only a slight deterioration from 11.9% to 12.2%) while
significantly improving the FAR to 6.5%. Choosing a higher threshold like −30
would further improve the FAR to 3% at the expense of the FRR that would
increase to 16.7%.

These findings suggest that the implementation of a threshold value could
further improve the results from the previous experiments. We assume that the
plotted results would see a shift to the left, because the FAR seems to improve
with a comparably smaller deterioration of the FRR.

5 Conclusions

Within this article a CHnMM approach for two and three dimensional online
movement trajectory verification has been presented and evaluated on four dif-
ferent data sets: signatures, doodles, pseudo-signatures and Kinect gestures. The
outcome of the conducted experiments was shown to be in competitive ranges
compared to HMM and DTW methods that others already applied to these data
sets, proving the applicability of the developed CHnMM for trajectory verifica-
tion tasks. The EER values for random forgeries were not as competitive, but the
discussed implementation of a threshold value provides significant potential for a
general improvement of the results. In addition to the results already presented
in [5], the applicability of the developed CHnMM verification approach to three
dimensional data could be proven in this work by performing experiments with
the KinectDB data set, which revealed promising results.

Moreover, the results revealed that the employed system parameters can be
utilized to adjust the behaviour to the needs of a given scenario, either preferring
better FAR or FRR. For example, the use of a uniform distribution generally
improves the FAR values by limiting acceptance in the time domain. In future
iterations of the systems a new parameter for time tolerance besides the already
existing tolerance factor for the spatial domain could be implemented to even
further tune the system for either more accurate timing and/or accurate trajec-
tory shape discrimination.

In the future, the developed CHnMM creation method for movement trajec-
tories might be generalized to work on any time series like DTW and HMM,
but with a focus on also discriminating temporal dynamics. Advantages are the
fast computations and the independence of regular time series with a fixed time
step.
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Abstract. Most item shopping websites currently provide social net-
work services (SNS) to collect their users’ opinions on items available for
purchasing. This information is often used to reduce information overload
and improve both the efficiency of the marketing process and user’s expe-
rience by means of user-modeling and hyper-personalization of contents.
Whereas a variety of recommendation systems focus almost exclusively
on ranking the items, we intend to extend this basic approach by pre-
dicting the sets of words that users would use should they express their
opinions and interests on items not yet reviewed. To this end, we pay
careful attention to the internal consistency of our model by relying on
well-known facts of linguistic analysis, collaborative filtering techniques
and matrix factorization methods. Still at an early stage of development,
we discuss some encouraging results and open challenges of this new
approach.

Keywords: User opinion · Recommendation systems · Prediction
Hyper personalization · User modeling · Big data

1 Introduction

With the advent of the Internet and its social websites, e-commerce web sites
have enabled users to share their opinions with other customers, mostly by allow-
ing them to submit scores and opinion reviews that may help potential purchasers
pick the most suitable items. This is done by recommending new products they
may be interested in [20] or by identifying other users of similar taste in order to
make recommendations based on those similarities [26]. These actions lead to the
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hyper-personalization of the website, better marketing strategies, and improved
users’ experience.

Recommender systems may follow different strategies to model users, includ-
ing defining the set of features that best describe them – such as tags, keywords,
text comments, and likes/dislikes [17] – or, in more sophisticated systems, by
automatically unveiling the latent structure that captures the users’ interests
based on how they evaluate and review products [3]. This latter case typically
uses plain-text reviews and/or numerical scores, together with machine learning
algorithms, to predict the scores that users will give to items still unreviewed [13].

The interested reader will find a vast literature devoted to these topics. In
[21], for instance, authors present a hidden factor model to understand why
any two users may agree when reviewing a movie, yet disagree when reviewing
another: The fact that users may have similar preferences towards one genre,
but opposite preferences for another turns out to be of primary importance in
this context. Also, [21] proposes the use of the aforementioned latent factors to
achieve a better understanding of the rating dimensions to be connected with
the intrinsic features of users and their tastes. Other authors [8,14,22] use text
reviews to better understand user sentiments, hence improving the user modeling
process to generate ratings. The rapid proliferation of social media has gone hand
in hand with the development of sentiment analysis techniques [15], which have
been successfully applied in a wide range of fields, from social networks [12] to
movies [5].

In this article, we intend to predict the representative sets of words that users
will choose to express their opinions on non-previously reviewed items, naturally
extending previous models that use latent spaces to predict or support ratings
[27,28]. Indeed, predicting the future opinion (or text reviews) on unreviewed
products remains, to the best of our knowledge, an open quest that deserves
further attention [31].1 Our approach – that assumes the existence of a latent
space that accurately represents the users’ interests and tastes [21] – is based on
a two-step process:

1. Setting up the opinion dictionary, not too large as to impede numerical com-
putations, but rich enough as to characterize the user’s opinions. Take the
words ‘expensive’ and ‘good quality’ for example,2 the former being a purely
subjective term which expresses a negative opinion about a product, the lat-
ter expressing a positive opinion instead. We would like these terms to be
part of the dictionary since they convey relevant information on the user’s
opinion.

2. Predicting the set of words users would choose should they have the opportu-
nity to review an item, based on the hidden dimensions that represent their
tastes.

1 From now on, we will use the opinion and review terms without distinction whenever
we refer to the text (or a representative part of it) that a user writes about a product.

2 We work with opinion-words provided by a natural language analysis tool. Terms
may be compositions of several words.
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1.1 Recommendation Systems Review

A rich collection of algorithms and recommender systems has been developed
over the last two decades. The wide range of domains and applications shows that
there is not a one-size-fits-all solution to the recommendation problem and that a
careful analysis of prospective users and their goals is necessary to achieve good
results. Most existing recommendation systems can be classified into two broad
groups, namely: (i) content based recommender (CBR) and (ii) collaborative
filtering (CF) systems.

The first approach recommends items based on some specific fea-
tures/keywords that describe them and a user profile model that represents all
the information available on users. In a basic problem setup, this includes the
users’ characteristics and interests on a set of items based on previous or cur-
rent interactions with the system. The recommendations are then generated by
comparing items with the users’ profiles, thus predicting the products they will
be interested in (see [17] for a detailed state of the art until 2010). Notice that
one important limitation of this basic approach is the fact that it ignores users’
opinions on different elements, taking only their characteristics and preferences
into consideration. Indeed, most models rely on user profiles built a priori and
used later on to predict the recommendations. This methodology, however, does
not attempt to reflect the intrinsic likes and dislikes of users on different items,
focusing on a more general description of their preferences instead.

Some benefits of this approach are its simplicity and ease of interpretation of
the recommendations provided. Some recent works that make use of this type of
models have tried to extend the range of applicability by combining this models
with sentiment analysis [7] and also focusing on the dynamic aspects of users’
profiles to make them evolves effectively over time [4].

The second approach – simply abbreviated as CF – has achieved the most
successful results and focuses on users’ behaviors as proposed by [29] rather than
on the users’ characteristics. This method uses the similarities among users to
discover the latent model which best describes them and retrieves predicted rank-
ings for specific items [18,19]. More specifically, CF is a technique that generates
automatic predictions for a user by collecting taste information from other peo-
ple [25]. The information domain for these systems consists of users who already
expressed their preferences for various items, represented by (user, item, rating)
triples. The rating is typically a natural number between zero and five or a
Boolean (like/dislike) variable. The resulting associated rating matrix is usually
subject to sparsity due to the existence of unrated items and the full evaluation
process often requires the completion of two tasks: (i) predicting the unknown
ratings and (ii) providing the best ranked list of n items for a given user [6].

This approach has found applications in areas such as social media recom-
mendation [10] or recommending news articles [16]. As mentioned before, new
lines of work focus on extracting interpretable textual labels from the latent
factors of CF [21].
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1.2 Linguistic Processing

Literature often divides opinion-words or sentiments into two categories:
(i) rational and (ii) emotional sentiments:

– Rational sentiments, namely, “rational reasoning, tangible beliefs, and util-
itarian attitudes” [1]. An example of this category is given by the sentence
“This guitar is affordable”, which does not involve emotions like happiness. In
this case, the opinion-word (that is, the adjective “affordable”) fully reveals
the user’s opinion.

– Emotional sentiments, described in [15] as “entities that go deep into people’s
psychological states of mind”. For example, “I trust this camera”. Here, the
opinion-word is the “trust” verb, that clearly conveys the emotional state of
the writer.

The main challenge in designing our automatic opinion prediction model is
to define a vocabulary rich enough as to characterize the users’ viewpoints, but
not too large as to impede numerical computations. Concretely, given an item
and the associated set of users who reviewed it, we carry out a sentiment analysis
at the phrase level, thereby extracting the relevant opinion-words and creating
a dictionary specifically for that item (see Fig. 1). This is in contrast with our
previous approach to the model, where all items shared the same constant-length
dictionary [9].

Fig. 1. Generation process of an item’s dictionary.

The dictionary generation is achieved by using a solution graciously provided
to us by Bitext,3 a highly effective text analytics and linguistic technology [2]
(see Table 2 as an example of retrieved words included in the dictionary). In a
second step, we generate a feature vector for each user-item pair in our data set
contain the frequency of occurrence of the opinion-words. In a second step, we
generate a feature vector for each user-item pair in our dataset that contains the
frequency of occurrence of the opinion-words.

It is worth pointing out that the set of terms used in this work follows the
power law distribution known as Zipf’s law [30,32], that states that the frequency
of occurrence of an opinion-word is inversely proportional to its ordering number
(see Fig. 2).
3 https://www.bitext.com.

https://www.bitext.com
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Fig. 2. Frequency of occurrence of the concepts considered in the Amazon’s “Musical
Instruments” dataset, as a function of their ordering number. The straight line shows
a least squares fitting in perfect agreement with Zipf’s law.

1.3 Contributions

Our main contribution is to propose and describe – for the very first time, to
the best of the authors’ knowledge – a model that combines the use of hidden
dimensions – associated with users’ tastes and product features – and a matrix
factorization approach to predict the user’s opinion on not reviewed items. The
results show that the prediction of the set of words which best describes a review
is possible and gives, at this early stage of development, an initial understanding
of the main reasons why a user would like or dislike a product. This is important
since this information can be used to complement the rating’s value and provide
extra information to the user whenever a new product is recommended. Thus,
this approach could be used together with the current recommendation systems
to provide further insight into the reasons why the product is recommended to
a specific user, knowing that the very same product may be recommended to
another user for completely different reasons.

The rest of the paper is organized as follows: Sect. 2 introduces the nota-
tion used throughout this article and reviews collaborative filtering approaches
and the ALS matrix factorization process. Section 3 describes the experiments
we conducted to test the implemented model. We show our results in Sect. 4
and discuss the model’s strengths and weaknesses. Finally, Sect. 5 presents the
conclusions and some insights into future work.

2 User Modeling Based on Opinions

In what follows, we introduce the terminology and notation used throughout
this article. We then proceed to explain in full detail our new opinion prediction
model based on tensor factorization.
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2.1 Notation

A typical online shopping website with SNS capabilities provides, for the pur-
poses of this article, N reviewers writing reviews on a set of M items. Generally,
a given user will have scored and reviewed only a subset of these M items, thus
making the website’s database highly sparse.

Table 1. Notation.

Symbol Description

K Rank, number of latent dimensions

u User, reviewer

N Total number of users

i Item, product

M Total number of items

S Set of (u, i) pairs of existing reviews

tui u-th user’s review (‘document’) on i-th item

tij j-th word describing the i-th item

fuij Frequency of occurrence of the j-th word in tui

Di Vocabulary size of the i-th product’s dictionary

D Sum
∑M

i Di of dictionaries’ lengths

R Input matrix in R
N×D

Let S = {(u, i) |u = 1, . . . , N ; i = 1, . . . , M} denote the set of user-item
pairs for which written reviews do exist and let tui be their associated feature
vectors. Our information domain consists then of triples of the form (u, i, tui). In
our model, different items are described by different sets of words, making them
substantially vary in vocabulary size Di. The tui ∈ R

Di vector is populated with
the frequencies fuij ≥ 0 of occurrence of the j = 1, . . . , Di words in the (u, i)-th
review.

The website’s 2-dimensional input matrix R is set up by concatenating the
N ×Di sparse matrices Ri containing the reviews for the i = 1, . . . , M products,
that is,

R = [R0 R1 · · · RM ] ∈ R
N×D ,

where D =
∑

i Di denotes the sum of the vocabulary sizes for the M products.
The R matrix represents a high dimensional space where users’ opinions – either
positive or negative – are latent and can be represented by a subset of new
features in a lower dimensional space. Table 1 summarizes the notation; see also
Fig. 3 for further clarification.
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Fig. 3. Input matrix R is obtained by placing the tables of frequencies for different
items side by side. Reviews whose entries are labeled with a question mark ‘?’ are
removed from the matrix for testing or validation. Notice that items have distinct sets
of words of variable length. In this figure, D1 = 2, D2 = 4, and DM = 3.

2.2 Predicting the Opinion Using Alternating Least Squares (ALS)

Our model follows a collaborative filtering approach and uses the Alternating
Least Squares (ALS) procedure to predict users’ opinions (that is, tui vectors)
not included in S. Our objective is, therefore, to generate automatic predictions
for a given user by collecting taste information from other reviewers – see [6] for
more information.

Specifically, we subject the input matrix R to an ALS factorization [13,24] of
the form R ≈ PQT in order to estimate the missing reviews. Here, P ∈ R

N×K

and Q ∈ R
D×K , where K ∈ N is the number of latent factors or features [3] – in

our model, a predefined constant typically close to ten. Any frequency fuij can
then be approximated by the usual scalar product f̂uij = pT

uqij , with pu ∈ R
K×1

the u-th row of P and qij ∈ R
K×1 the (

∑i
1 Dk + j)-th row of Q. The procedure

minimizes the quadratic loss function

〈P ∗, Q∗〉 = arg minP,Q

∑

(u,i)∈S

⎛

⎝λpT
upu +

Di∑

j=1

(
ε2uij + λqT

ijqij

)
⎞

⎠ ,

where εuij = fuij − f̂uij . Here, λ denotes the regularization parameter in the
ALS method that balances the training error and the size of the solution.

As explained in detail in [24], the ALS technique alternates between P-steps
– where Q is fixed and P is recomputed by solving a least-square problem – and
Q-setps – where the previous order of computation is reversed. More specifically,
for a P-step, let Qu ∈ R

Du×K be the restriction of Q to the items reviewed by
the u-th user. Here, Du denotes the sum of the dictionaries’ lengths associated
with those items, that is,

Du =
∑

i:(u,i)∈S

Di.

The u-th column of P, pu ∈ R
K×1, is then recomputed as

pu =
(
λDuIK + QT

uQu

)−1
QT

u tu.
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Here, IK denotes the K×K identity matrix and tu ∈ R
Du×1 is the concatenation

of the tui feature vectors. A Q-step operates in a similar manner.

3 Experiments

For motivational purposes, we test our model using the musical instruments
Amazon dataset, which contains user-product-rating-review quads for a total of
10, 261 reviews for 1429 users and 900 products [23]4. We chose this dataset due
to its ease of interpretability and reasonable size.5

At a first step, we process the reviews using the Bitext natural language
processor making all the basic tokenization, lemmatization, PoS [2], and concept
identification tasks straightforward. This enables us to syntactically analyze the
texts in an efficient manner in order to extract the simple (e.g., ‘cheap’) and
compound (e.g., ‘highly expensive’) opinion words to be part of the dictionary.

At this stage, we keep track of the (usually different) sets of words used by
each customer in their product reviews, along with their frequencies of occur-
rence. The dictionary associated with a specific item is obtained by taking the
union of the individual users’ lists of words for that item. To retain the most
relevant words only and keep the complexity of the problem manageable, we opt
to discard all words with frequencies of occurrence below a threshold frequency
fmin = 3. For instance, a total of 1285 opinion words remain after this selection
process for the “Musical Instrument” dataset (see Table 2).

Table 2. Some concepts with a high frequency of occurrence.

‘great’, ‘good’, ‘nice’, ‘easy’, ‘love’, ‘best’, ‘perfect’,
‘cheap’, ‘fine’, ‘solid’, ‘worth’, ‘excellent’, ‘problem’,
‘sturdy’, ‘recommend’, ‘long’, ‘awesome’, ‘very good’,
‘fit’, ‘ok’, ‘wrong’, ‘simple’, ‘amazing’, ‘noise’,
‘would recommend’, ‘happy’, ‘very nice’, ‘favorite’,
‘very happy’, ‘decent’, ‘clean’, ‘bad’, ‘really like’
‘inexpensive’, ‘durable’, ‘fantastic’, ‘strong’, ‘adjustable’.

Next, we randomly remove 10% of the word lists – that is, tui reviews –
from the 2-dimensional R matrix to select the optimal values of the model’s
parameters – namely, λ, K, and the number of ALS iterations, giving raise to a
train set Rtrain and a test set Rtest. The way to achieve this is straightforward:

4 http://jmcauley.ucsd.edu/data/amazon/.
5 We use 20 executors with 8 cores and 16GB RAM on a Hadoop cluster with a total

of 695 GB RAM, 336 cores, and 2 TB HDFS. Our implemented algorithms are easily
scalable, so any RAM limitation might be solved using a cluster with a sufficiently
large number of nodes.

http://jmcauley.ucsd.edu/data/amazon/
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We pick 10% of all user-item coordinates (u, i) ∈ S at random – a total of
1024 pairs – and replace their corresponding word lists with empty vectors. The
resulting sparse matrix Rtrain is finally subjected to ALS factorization in order
to reconstruct the removed vectors and compare them with the originals. We
use mean square errors (MSE) to determine the quality of the predictions.

The degree of predictability of our model is assessed by means of a Jaccard
index that measures the similarity between the original and predicted reviews in
the following sense: If the frequencies in the predicted and the original (u, i, j)-
entries of the input matrix are both positive or both zero, then their Jaccard
distance is set to zero; otherwise it is one.

All our codes are implemented in Python 3.5 using the collaborative filtering
RDD-based Apache Spark implementation of the ALS algorithm 6, which is well
known for its robustness and efficiency. This implementation, in turn, makes use
of the MLlib library7.

4 Results

When deciding on a choice for the K latent factors, we must reach a compromise
between the model’s error and the running time of the ALS method, which is
proportional to K3 [11]. For the database used in this article, K = 20 seems to
be the optimal choice. In what follows, all graphs use λ = 0.1 as the optimal
value for the regularization parameter – see Fig. 4 for more details.

Figure 5 displays several MSE curves relative to the number of ALS iterations
for different values of K. As expected, graphs are strictly decreasing for low
numbers of iterations and become nearly horizontal for sufficiently large values
of them. Similar MSE graphs for the test results – see Fig. 6 – attain their
absolute minima between two and three iterations. In this case, the small size
of the used dataset and the efficiency of the ALS algorithm explain the rapid
convergence of the model. These minima are nonetheless expected to shift toward
greater numbers of iterations for larger databases.

We use the Jaccard distance to evaluate whether a word appears or not in
the prediction. In matrix language, if the (u, i, j)-th entries of the test Rtest and
training Rtrain sets are both positive or both zero, then the Jaccard is zero;
otherwise, it is 1. Figure 7 shows the frequency of reviews with a given Jaccard
index (the reader is referred to Sect. 3 to check its definition). The histogram
displays the expected hyperbolic decay for small index values, but we observe
some irregularities for larger values, particularly at 1/2 – something that may
be explained by the very definition of Jaccard distance and the finite length of
the dictionaries – and 1 – a behavior probably dominated by the interchange of
synonyms in the reviews that affect the overall accuracy of the model.

In a complementary approach, it is possible to introduce a discriminative
threshold α as an independent super-parameter of the model. When the pre-
dicted value of a word surpasses this threshold, we interpret that the model
6 It is part of the MLlib Apache’s Library.
7 Apache Spark’s scalable machine learning library.
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Fig. 4. MSE for the test set versus the regularization parameter λ. λ = 0.1 is consis-
tently found to be its optimal value for K = 20 and three iterations.

Fig. 5. MSE for the training set versus the number of ALS iterations. The shown
latent factors are K = 2, 5, 10, 20, 50, and parameter λ = 0.1. Notice how the vertical
distances between adjacent curves decrease drastically for increasing latent factors,
making K = 20 an optimal choice for the number of latent factor.

predicts the appearance of that word. The predicted condition can then be
compared with the true condition of that word. The results are summarized
in Table 3. Changing the super-parameter α produces a trading between pre-
cision (positive predictive value) and recall (true positive rate). In this work,
we consider that both recall and precision are equally important to assess the
effectiveness of the model as a classifier system. Thus, we choose the α value
that produces the largest F1 measure, which is the harmonic mean of precision
and recall. For comparative purposes, the best F1 measure obtained from the
training dataset is 0.726.
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Fig. 6. MSE for the test set versus the number of ALS iterations. The shown latent
factors are K = 2, 5, 10, 20, 50, and parameter λ = 0.1.

Fig. 7. Frequency of reviews with a given Jaccard index for K = 20, λ = 0.1 and three
iterations.

Table 3. Precision, recall, accuracy, and F -measure of the model with K = 20, λ = 0.1
and 3 iterations.

α = 0.110 Predicted Precision = 0.247
Positive negative Recall = 0.433

True
Positive 544 711 Accuracy = 0.739
Negative 1661 6183 F1 = 0.315
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We want to highlight however that, due to the large vocabulary size and
sparsity of the data, many reviews are predicted as zero vectors, even though
they contain nonzero frequencies in the training set. This makes it advisable to
use a variant of the ALS method specifically optimized for low-rank matrices, a
problem that we attempt to address in the future.

5 Conclusions

The fundamental hypotheses behind our model is that it is possible to predict a
user’s review on a previously unreviewed product by means of a CF based model.
Our proposed method makes use of state-of-the-art NLP tools and implements
a new ALS-based model to unveil the latent dimensions that best represent the
users’ expressiveness. Ideally, the different reasons that lead to a user’s opinion
can be captured by those latent factors, and hence, they can be predicted through
a direct comparison with other users of similar taste. An important feature
that distinguishes this model from our previous attempts, is the introduction
of a distinct pre-built opinion dictionary for each item that contains its most
representative opinion-words.

The results show that the model, although still at a preliminary stage of
development, is able to deduce the latent dimensions and to provide predictions
meaningful enough as to gain useful insights into the potential opinions of users
on new products. The model certainly calls for further improvements, however.
For instance, when it is used as a classifier for predicting the occurrence or not of
a word, the F1-score takes a value around 30% for the test set in our experiments
(see Table 3). Moreover, the overall accuracy, which takes into account both true
positive and true negative cases, is approximately 74%. This shows that the
model has a tendency to overlearn the zero values of the matrix, associated with
the words not used in the reviews. Notice that in order to predict the users’
interests on a product, we must be able to predict both the positive and the
negative cases. Otherwise, linking a word to a review when it is not actually
relevant will hinder the prediction of the user’s true opinion.

There are some lines of work already in progress that we hope will invite
future improvements:

1. There are suggestive indications that columns in Rtest corresponding to
semantically equivalent words in the same item’s dictionary (synonyms) may
have been projected into a small neighborhood of the same latent space, thus
making them randomly interchangeable in the predicted reviews. We intend
to subsume such equivalent words in a single concept in order to avoid these
undesired exchanges.

2. We expect more accurate predictions for larger datasets. In this context, the
model may benefit from a larger number of reviews (at a fixed dictionary
length) and further adjustment of the items’ dictionaries, rethinking how
the most relevant opinion-words must be selected from a semantical point of
view. Indeed, concepts of low descriptive value should better be avoided if
this approach is really to be used to provide predictions in recommendation
systems.
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Finally, we mention the scalability of this new approach – implemented using
a Hadoop based cluster and its distributed computational and storage resources.
We intend to conduct further and more exhaustive analysis in larger datasets
by enlarging these capabilities, in the hope that we will obtain better statistics
this way. It is our believe that a deeper analysis of the latent factors and their
categorization will also allow a better understanding of the conceptual parts of
a language involved in the users’ opinions.
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Abstract. A novel blood vessel extraction methodology is proposed in
this work. The blood delineation pipeline consists of three stages. In the
first stage, a high-level classification of the input endoscopic images is
done into four classes, based on the blood vessel information and dye
content. For obtaining the classification features two methodologies are
used, a ResNet inspired Convolutional Neural Network and a collection
of hand picked feature extractors which capture various colour, edge and
texture based class information. The features obtained from both are
then combined and are fed into an SVM for classification. In the second
stage, the classified image containing blood vessel information is then
processed with Frangi Vesselness filter for blood vessel extraction. How-
ever, it is observed that many non-blood vessel edges are also erroneously
detected as blood vessels. To decrease this misdetection, two additions
are proposed. One is the dark background subtraction and another is dis-
similarity index, which is used to differentiate the non-blood vessel edges
from the blood vessel ones. The dissimilarity index, which is another nov-
elty of the paper, exploits the difference of symmetric nature of the blood
vessels versus the non-symmetric nature of non-blood vessel edges. The
results of the proposed blood vessel delineation algorithm were found to
give better accuracy than vanilla Frangi Vesselness filter and BCOSFIRE
filter, which is another state-of-the art vessel extraction approach, by 8%
and 5% respectively.
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1 Introduction

In areas like retinopathy and endoscopy, the detection and analysis of blood ves-
sels plays a major role in medical diagnosis. For example in diabetic retinopathy,
which is a leading cause of blindness among adults, symptoms such as abnor-
mal growth, swelling and leaking of fluid from blood vessels are observed. Early
detection of changes in the physiological structure of blood vessels can help in
early diagnosis. Similarly in gastroenterology, increase in the size of blood vessels
is a symptom of inflammatory bowel diseases like Crohn’s disease and Ulcerative
Colitis. Whilst, a decrease in the size of vessel, which leads to a reduced blood
supply, is a cause of Ischemic bowel diseases like Ischemic Enterocolitis [1].

For segmentation of blood vessels in fundus images an umpteen number of
algorithms are available [2]. But, this is not true in the case for endoscopic
images. Applying generic segmentation algorithms for intra abdominal images
produces egregious result due to the special imaging environment encountered
due to high specular reflection, false blood vessel like patterns, more camera
sensor noise, deformable colon walls etc. Thus, in this paper we propose a novel
algorithm for blood vessel delineation considering the challenging conditions
encountered in endoscopic images.

The proposed blood vessel segmentation pipeline consists of two stages, where
in the first stage, a scene classification is done based on the blood vessel and ink
content using SVM. The feature extraction is done by deep learning and hand
crafted feature extractors. In [12], scene classification is done using on hand
designed features only. Also, as deep learning is used for feature extraction, the
dataset used in this paper is much larger compared to [12]. Earlier, classification
of endoscopic images based on tumor texture pattern has been done in [3,4].
But these methods are only applicable on focused images of tumor and they
take into account local features. Whereas, the proposed classification uses high
level global features for discrimination. The proposed classification is discussed
in detail in Sect. 2.1.

The first stage essentially checks at a global level whether blood vessel are
present in the input image. In the next stage, the blood vessel containing images
are then given to the blood vessel extraction module which segments the blood
vessels. Blood vessel segmentation, with an aim for detecting distinctive feature
points in colon image has been done in [5]. Here, colon wall’s blood vessels’
branching points and branching segments are considered as features. Their blood
vessel delineation approach is based on Frangi vesselness [6]. This is followed by
Ridgeness-based Circle Test and Ridgeness-based Segment Test for detecting
branching points and branching segments respectively. But it was observed that
the Frangi vesselness method erroneously misclassifies many non blood vessel
edges from structures like polyp, colon wall etc. as blood vessel which results
in many incorrect feature points. Thus, in [12] a selection of techniques such as
dark background subtraction and dissimilarity index, are suggested to improve
the performance of blood vessel segmentation by removing edges obtained from
non-blood vessel elements. The procedure proposed is invariant to illumination,
scaling and orientation. Details about these are given in Sects. 2.3 and 2.4.
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2 Proposed Method

The approach is briefly summarized in the Fig. 1. The blood vessel extraction
pipeline consists of two major modules. In the first module, a high level clas-
sification of image is done to ascertain whether the scene contains blood vessel
information or not. In the second module, the classified blood vessel containing
image is initially pre-processed to remove noise and specular components. Then,
the Frangi Vesselness algorithm is applied to segment the blood vessels. The
pre-processed image is also used to do background subtraction. After computing
the vesselness image, the dissimilarity index of edges is calculated by the dis-
similarity detecting filtering procedure, to determine whether they are obtained
from a blood vessel or not. The non blood vessel edges are dropped in the final
result. The above steps are explained in detail in the following sections and in
Fig. 2.

Fig. 1. Overview of proposed blood vessel extraction algorithm.

2.1 Scene-Based Classification

Motivation. During a live colonscopy examination, a dynamically changing
environment is encountered. The endoscopic video of the examination will con-
tain images of colon where physiological structures like polyps, blood vessels etc.
may or may not be present in all frames. Not only this, during the examination
various diagnostic activities take place such as surgical removal of polyp, dyeing
or tattooing the colon with ink for better visualisation of polyps as well marking
smaller polyps for future reference, washing of colon with medicinal liquid etc.
In this potpourri of scenes, it is essential to select only those frames in which
blood vessels are present.

This assortment of scenes is classified into four categories for our purpose of
blood vessel extraction as follows:
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(a) Scene classification module flow
diagram.

(b) Vessel extraction module flow diagram.

Fig. 2. Detailed flow charts of scene classification and blood vessel delineation modules.

(a) Non-dyed images
containing blood ves-
sel - Class 1

(b) Non-dyed images
not containing blood
vessels - Class 2

(c) Dyed images con-
taining blood vessels -
Class 3

(d) Dyed images
not containing blood
vessels- Class 4

Fig. 3. Representative images of Classes 1 to 4.

Class 1: Non-dyed images containing blood vessel.
Class 2: Non-dyed images not containing blood vessels.
Class 3: Dyed images containing blood vessels.
Class 4: Dyed images not containing blood vessels.

The classification into dyed and non dyed images is necessary as both these
types would require different vessel segmentation techniques. This is because in
ink images, special conditions are encountered, like higher specular reflections,
ink pattern texturally similar to blood vessel pattern, etc. [12] discusses vessel
segmentation in non-dyed images only. Delineation of blood vessel in dyed images
is a topic for future work. Illustrative images for the classes are shown in Fig. 3.

For feature extraction from endoscopic images, two modalities were employed.
Firstly, features were hand-picked to capture the color, edges and texture
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content information. The features were then used to train Support Vector
Machine (SVM) model, as done in [12]. In this paper, additional approach of deep
learning is used. Convolutional Neural Network (CNN) was used for the purpose
of classification as well as for feature extraction. The features extracted by CNN
were then used to train another SVM model. Finally the featured extracted by
CNN and the hand picked features were concatenated and again used to train
another SVM model. A detailed discussion is done in the following section.

Methodology. Defining a feature vector to discriminate between the required
classes is a challenging task. For feature selection, [7,8] were referred. In [12],
the feature vector was defined on the basis of the following three criteria:

1. Colour-based Features: The non dyed images have more red component
whereas the dyed images have more blue colour component. So, colour based
statistical features can be used for classification. For every color, the 10 - bin
first order histogram values, the mean, variance, skew, energy and entropy
are used as features. Thus, the total number of colour-based features used
were 45.

2. Edge-based Features: In general, it is observed that the blood vessel con-
taining classes have more edges compared with blood vessel absent classes.
Thus, edge based statistical features can be used for classification. The Canny
edge operator is used on every channel for getting the gradient magni-
tude and direction. For every color, 10 - bin histogram values, the mean,
variance, skew, energy and entropy derived from gradient magnitude are
used as features. A histogram of directional angles with central bin val-
ues {−90◦,−45◦, 0◦, 45◦, 90◦} is constructed. The histogram bin counts, the
mean, variance, skew, energy and entropy obtained from directional angle val-
ues are also used as features. The total number of edge-based features used
were 75.

3. Texture-based Features: The texture of blood vessel edges is different
from texture from edges due to colon walls, polyps etc. Thus, the following
texture information capturing statistical features are proposed. Image is first
converted to grayscale and then:
(a) The Fast Fourier Transform (FFT) transform of the image is calculated.

The mean, variance, skew, energy, entropy of the FFT and grayscale
images are used as features. Also the range of each column of grayscale
image is used as feature.

(b) A gabor filter bank is created, with filters having different wave-
lengths and orientations. The orientations of gabor filter used are
{0◦, 45◦, 90◦, 135◦} and wavelengths increasing exponential, in range
[2

√
2, Hypotenuse of image]. For each filtered image, the 10 - bin his-

togram values, the mean, variance, skew, energy and entropy are used as
features. The total number of texture-based features were 210.

For the sake of completeness, the formulae used above are given. The first
order histogram probability is given by:

P (g) = N(g)/n; (1)
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where N(g) the bin count of the gth histogram level and n is the total number
of pixels.

Mean(μ) =
∑n

i=1 xi

n
(2)

where xi is intensity of the pixel of a particular channel.

Standard deviation(σ) =

√∑n
i=1(xi − μ)2

n
(3)

Skew =
1
n

∑n
i=1(xi − μ)3

σ3
(4)

Energy =
n∑

i=1

x2
i (5)

Entropy = −
L∑

g=1

P (g)log(P (g)) (6)

where L is the total number of histogram levels.
The above features are then used to train a classifier which in our case is

a SVM. Support Vector Machine is used as classifier as the aim was to make
classification robust but computationally less intensive. As SVM is a binary
classifier and we have total four classes, One V/s One classification was used. As
the data is not necessarily linearly separable, different kernels were used. It was
observed that cubic kernel gave the best results. Results are explained in detail
in Sect. 3.1.

Convolutional Neural Network. Current trends have shown the rise of CNNs
as an emerging choice among researchers as image classifiers and feature extrac-
tors. It is observed that in comparison to hand picked feature extraction algo-
rithms, CNNs [9] provide more robustness in terms of extracting highly discrimi-
native global and local features. In CNNs, there are multiple convolutional layers
which are followed by pooling layers which help in dimensionality reduction as
well as inducing geometric invariance to translation, rotation etc. The kernels in
the convolutional layers are trained as feature extractors. In our experiments, we
have used CNN both as a classifier and feature extractor. The details of experi-
ments are described in Sect. 3.1. The details of CNN architecture used and the
salient points of network are described in the following section.

CNN Architecture. Among the many CNN models which were experimented
with, the following ResNet [10] inspired model was found to give the best results
as a classifier. The architecture is described as follows.

The network consists of four residual learning blocks followed by three fully
connected layers. A residual learning block consists of a convolutional layer with
64 filters of size 3× 3× 3 with stride of 1, followed by ReLU activation function.
The output of Relu is fed into another convolutional layer with 64 filters of
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size 3 × 3 × 3 and stride 1. Its output is then added to a feed forward shortcut
connection which carries an identity mapping from the input of the residual
learning block. This is then max pooled by a non-overlapping kernel of size 2×2
and stride 2. Figure 4 shows a diagrammatic representation of a residual learning
block.

Fig. 4. Residual learning block.

After four such residual blocks, the output of the final residual block is then
connected to the fully connected layer with 1024 number of neutrons which are
further connected to 2nd fully connected layer with 64 neurons and finally to
the output with four nodes, each one represents the probability of being in that
particular class. The complete architecture of the net used is shown in Fig. 5.

Each convolved as well as fully connected layer output is passed through
an activation function. In our model, RELU was used as activation function.
The output of last layer is passed through softmax layer to convert the output
into probabilities. The labels of each classes are encoded into one-hot vectors
which are helpful while comparing the probability output as well as calculat-
ing the cross entropy loss. In the loss function, L2 regularisation loss was also
added for each filter to avoid overfitting. Dropout [11], another regularisation
technique where neurons are dropped with some probability to give an effect
of model averaging, was incorporated. A keep probability of 0.6 was used. For
optimization, gradient descent gives decent results but many times it gets stuck
at local minima. To overcome this, we need to consider the momentum at which
the weights are getting modified. Also, an adaptive learning rate is required for
optimal convergence to global minima. All these issues are addressed by using
Adam-optimizer. Weights are initialized as normal random variable with zero-
mean and standard deviation equal to

√
2/Fanin where fanin is the number of

neurons in the filter. The batch size in each iteration is taken as 25 images. Due
to limited dataset, augmentation on images is performed by taking overlapping
crops of images.
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To use CNN as feature extractor, the fully connected layers were removed
and the output of the final residual block was used as feature for the correspond-
ing input image. Using CNN a 127 × 127 image was reduced to a 192-dimension
vector. An SVM model was trained using these features. To further boost the
discriminative ability, these CNN features were combined with the hand engi-
neered features and then used to train an SVM. Detailed comparison of these
four models is given in Sect. 3.1.

Fig. 5. Complete CNN architecture.

2.2 Blood Vessel Extraction

The endoscopic images are known to have high specular reflection component
due to the mucosal lining of the colon. To remove the specular reflection, the
algorithm suggested in [13] was used. The detected specular reflections are then
treated as no information regions. The proposed blood vessel algorithm in [12]
is based on the papers [5,6]. The Frangi vesselness filter is used to segment
the blood vessels. The Vesselness image is then skeletonised, as mentioned in
[5] to obtain the Ridgeness image. In the Frangi vesselness image, edges from
non-blood vessel structures like polyps are incorrectly identified as blood vessel
edges.

For the completeness of paper, their approach is briefly summarized as fol-
lows:

1. Pre-Processing
(a) The green channel of the preprocessed image is used, as it gives the best

contrast between the background and the vessels.
(b) Convert to scale space model.
(c) Calculate Hessian matrix for each point.
(d) From the Hessian matrix, eigenvalues and eigenvectors are calculated, say

λ1 and λ2. The points having λ1 - Medium value and λ2 - High value are
considered as a candidates of blood vessels.

2. Blood vessel enhancement
(a) Parameter ridgeness and vesselness are defined as

V esselness(σ) = exp(
λ2
1/λ2

2

2β2
).(1 − exp(

−(λ2
1 + λ2

2)
2c2

)) (7)
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Ridgeness(x, y, σ) = V esselness(x, y, σ).
abs{sign(∇I(x + εu2, y + εv2, σ)) − sign(∇I(x − εu2, y − εv2, σ))}/2,

(8)

where in the ridgeness formula u2 and v2 are the x and y components of
the eigenvector pointing in the direction perpendicular to that of blood
vessel. In the vesselness formula, β and c are soft thresholds. Ridgeness
for all the candidate points are calculated. Thereafter, the pixels which
have local maximum are only retained.

(b) Single pixel width ridges, representing the blood vessel skeleton are
obtained as a result. Background noise is also removed.

The further part of the section explains in detail the proposed methods,
namely background subtraction and calculation of dissimilarity index, to reduce
this error.

2.3 Background Removal

Source of Error. When the orientation of endoscopic camera is perpendicular
to colon wall, the result of blood vessel extraction of such images is found to be
acceptable. Whereas, if the camera is oriented parallel to the wall of colon, far
away regions devoid of illumination appear as dark background in the image. In
this dark background, many false noisy edges are detected as blood vessels. An
example given in [12] is shown in Fig. 6. So, dark background is segmented to
remove this error.

Methodology. Various methods were used to segment the dark background
namely, Otsu’s single level thresholding, k -means clustering and Otsu’s multi
level thresholding, for each of the three colours. Among these it was experimen-
tally found that Otsu’s multi-level thresholding with two thresholds using Red
channel gave the best results. A point to be noted is that instead of using a
single threshold which would have resulted in two clusters, we are using two
thresholds which results in forming three clusters. The cluster of pixels with the
lowest intensity is labeled as background region and the other two are considered
as the bright foreground region.

When the camera is parallel to the wall of colon, the image can generally be
divided into three different regions based on illumination. Brightly illuminated
region is found close to the light source which is mounted on the camera, mid
range regions have moderate illumination whereas the poor illumination is found
in the regions far away from the source. This observation provided a motivation
to partition the image into three clusters rather than two. Because of sufficient
illumination, the close by and mid range regions are found to have useful clinical
information but faraway regions, due to lack of illumination were found not to
contain much interpretable information and therefore were discarded.
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(a) Original image (b) Vessel image

Fig. 6. Noisy edges in dark background region identified as blood vessels.

2.4 Removing Non-blood Vessel Edges

Source of Error. In the result of Frangi vesselness, it is found that the edges
from polyps, ridges or folds of wall of colon, medical suture and specular reflec-
tions are also detected as blood vessels. This section discusses in detail a method
proposed in [12], to distinguish between the edges from blood vessels and other
non blood vessel edges. A representative image given in [12] showing the above
error is given in Fig. 7.

(a) Original image (b) Extracted edges

Fig. 7. The ridges of inner walls, polyp and medical suture have been erroneously
extracted as blood vessels in vesselness image.

Motivation. Careful observation reveals that the edges obtained from non
blood vessel structures like polyps, medical suture, ridges etc. are fundamentally
different from the edges obtained from blood vessel. This is evident if the colour
intensities of neighbourhood regions of the edges are considered. The differences
are as follows:
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(a) Window around blood ves-
sel

(b) Window around ridge (c) Window around specular
component

Fig. 8. Windows around various structures, showing the differences in intensity in the
two halves of window.

1. Blood Vessel: If a rectangular window is placed such that the center line of
the blood vessel divides the window into two halves, it is found that intensities
of the two halves are very similar as illustrated in Fig. 8a in [12].

2. Ridges, Polyp Edges, Medical Suture and Specular Components:
Similarly if a window is placed on the edge of a ridge, specular component,
medical suture or polyp, with the edge dividing the window into two halves,
it is found that intensities of the two halves are very dissimilar. An example
given in [12] is shown in Fig. 8b and c, one side is brighter whereas the other
side is darker. It is also observed that the vesselness value of these structures
is higher than the blood vessels.

Overview of the Approach. Based on the lines of motivation above, we can
distinguish between blood vessel and non blood vessel edges by exploiting the
property of intensity difference in the two halves. So, a metric called dissymmetry
index is defined which quantifies the intensity difference between the two halves.
A higher dissymmetry index indicates wider intensity difference in the halves
indicating the edge is not a blood vessel. The dissymmetry index for each edge
is calculated by a dissymmetry detecting filtering procedure. The formula of
dissymmetry index and filtering procedure as given in [12] are as follows:

1. As it is found that the vesselness value of non blood vessel edges is higher
than the blood vessel edges, an initial thresholding is done. After thresholding,
mostly the edges from polyps, medical suture, ridges, specular components
remain. Though most of the blood vessel edges are eliminated, some remain.

2. The vesselness image is then converted to the ridgeness image, which is the
skeletonised version of vesselness image. This is done to obtain the center
lines of the edges.

3. After finding the ridgeness image, the custom intensity-based dissymme-
try detecting filtering is done. This filter emulates the role of the window



158 M. Golhar et al.

described in the previous section. The filter is a rotating filter which is always
oriented in the direction of blood vessel. The minor eigenvector calculated
from the Hessian matrix at the center of filter gives the direction of the blood
vessel. Like the windows previously described, the rotating filter is positioned
such that the center line of the edge coincides with that of filter.

f(i, j) = rotate
θ

1
25

⎛

⎜
⎜
⎜
⎜
⎝

−1 −1 −1 −1 −1
−1 −1 −1 −1 −1
0 0 0 0 0
1 1 1 1 1
1 1 1 1 1

⎞

⎟
⎟
⎟
⎟
⎠

(9)

where θ represents the direction of the minor eigenvector, which is along the
direction of edge. Another point to be noted is that, due to lack of space the
filter size shown is 5 × 5 pixels but in actual implementation window size of
20 × 20 pixels was used.

4. The filter is placed on the pixels lying on the center line of the edge in the
ridgeness image. For filtering, the Gaussian smoothened red channel of the
original image is used as input. The function of the filter is to find the sum
of intensities of pixels lying in each half and return the absolute difference of
these sum-of-intensities of the two halves.

g(i, j) =

{
abs|f(i, j) ∗ x(i, j)| if x(i, j) ∈ Center
0 otherwise.

(10)

where f(i, j) is the custom filter, x(i, j) is the gaussian filtered original image’s
red channel and g(i, j) is the filtered image. It is to be noted that g(i, j) is
calculated for center line pixels of edges only.

5. For an edge, the Dissymmetry Index is average of all the filtered values of the
center line pixels lying inside that edge. Mathematically, Dissymmetry index
of the kth edge is given by

Dissymmetry index(k) =
1

|Sk|
∑

g(i,j)∈Sk

g(i, j) (11)

where Sk is the set of all pixels of filtered image belonging to the kth edge.
|Sk| is the total number of pixels belonging to the kth edge.

6. Now thresholding is done based on the dissymmetry index value. All the edges
with dissymmetry index above the threshold, indicating they have contrasting
halves, are marked as non-blood vessel edges.

7. The steps 4 to 7 are repeated using the green channel of the original image as
input. Filtering using both red and green channel is done as it is found that
some non-blood vessel edges are better captured in the red channel whereas
others in the green channel.

8. The results obtained from the red and green channel are then OR’ed together.
The resulting image consists mostly of the unwanted specular components,
polyps, medical suture and other non-blood vessel edges.

9. This OR’ed image is then subtracted from the vesselness image to remove the
error. The final resulting image will consists mostly of blood vessels.
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3 Experiments and Results

3.1 Scene Classification

For the purpose of scene classification, four different models were used, SVM
trained on hand crafted features, CNN used as image classifier, SVM trained on
CNN extracted features and SVM trained on combination of hand engineered
and CNN extracted features. In this paper, the data set used for training and
testing in all models comprised of a total of 38,204 images with 8741, 9146, 10997
and 9320 in Classes 1, 2, 3 and 4 respectively. Initially, the class 4 contained only
4660 images, which would have caused the problem of data imbalance among
classes. To navigate this, data augmentation was done, where in every image,
two overlapping crops each occupying 80% of the original image were taken. All
the images were then resized to 127 × 127 × 3. For giving class labels, data set
images were manually classified by visual inspection into their respective classes.
The dataset of scene classification which earlier consisted on 513 images in [12],
was increased to 38,204 images in this paper. Earlier an SVM based model was
tried out where the features were hand picked (pre-designed feature extractors).
This model gave an accuracy of 85.4%. When the newer dataset was used for
training this model, the accuracy jumped to 98.1%. Now 3 more newer models
were experimented with. Also, as a result of using deep learning features, the
accuracy of the final model was much higher in this paper.

Each model is described in detail as follows:

1. SVM Trained on Hand Crafted Features: As there is no guarantee that
the data is linearly separable, different kernels were experimented with, to find
out which gave the best results. Linear, quadratic, cubic, medium Gaussian
and coarse Gaussian kernels were used. The results obtained for the kernels
are shown in Table 1. The One versus One classification was used as it gave
comparatively better results than One versus All classification. For measuring
the predictive performance of the statistical model, holdout validation was
done with 20% holdout. The One Vs One SVM with cubic kernel gave the
best result with an accuracy of 98.1%. It was observed that if dimensionality
reduction is done using Principal component analysis (PCA), the accuracy
fell by around 1%, if the variance retained is 99%. The post PCA results are
shown in the Table 1. The confusion matrix depicting the true positive rate
and false negative rate is shown in Table 2.

2. CNN as Image Classifier: The CNN architecture described in Sect. 2.1 was
used for classification of images. A training accuracy of 97.9% was obtained.
Holdout validation with 20% was used for testing. The validation accuracy
obtained was 97.2%. Generally, the performance of CNN as a classifier is
better than linear classifier like SVM trained using hand engineered features.
But in this case, the CNN accuracy is found to be lower. One of the reason is
that CNNs generally require large dataset for training properly as compared
to SVM. This is one of the challenges faced while working with medical data,
as publicly annotated medical datasets are not easily available.
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3. SVM Trained on CNN Features: In this model, the fully connected lay-
ers are removed and output of the last residual learning block is taken as
the extracted feature of the input image, thereby using CNN as a feature
extractor. These features are then used to train SVM model. As the features
extracted by the convolutional layers are still not linearly separable, different
kernels are used for transformation. In this model also, we used holdout val-
idation with 20% holdout. The One V/s One SVM with Cubic Kernel gave
the best result with 97.6% validation accuracy as shown in Table 3. Post PCA,
the accuracy fell by 0.5–1% when 99% energy was retained. The confusion
matrix for the cubic kernel is given in Table 4.

4. SVM Trained on Combination of CNN and Hand Picked Features:
To further improve upon the result, feature vectors obtained from CNN and
the hand crafted features were concatenated to form a 518 dimensional vector.
This was then passed to an SVM model for training with different kernels.
Again it is observed that the cubic kernel gave the best result. Among all
the four model, the One V/s One SVM with cubic kernel trained on CNN
extracted and hand picked features gave the best result with an accuracy of
99.2% as shown in Table 5. This is on expected lines, as combining features
taps the strengths of both the methods. It is highly possible that the class
information which might have been missed out while designing hand crafted
features, could have been expressed in the CNN features. Even post PCA,
the accuracy only fell by 0.1% when 99% of the variance was retained. This
tells that the features used, were highly discriminative and uncorrelated. The
confusion matrix is given in Table 6.

Table 1. Accuracy of SVM trained on hand crafted features.

Kernel Accuracy (without PCA) Accuracy (post PCA)

Linear 94.3% 93.6%

Quadratic 97.5% 97.0%

Cubic 98.1% 97.2%

Medium Gaussian 97.4% 96.0%

Coarse Gaussian 93.0% 91%

3.2 Background Removal

To do background subtraction, various techniques were used in [12]. The results
obtained for each methodology are discussed below:

1. Adaptive Thresholding using Otsu’s Method: Single Threshold: The
popular Otsu’s method was used for determining the global threshold. Otsu’s
method tries to find the threshold by minimizing intra-class variance. How-
ever, for most of the images the results obtained were not accurate. An exam-
ple image given in [12] where it failed is shown in Fig. 9.
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Table 2. Confusion matrix for SVM trained on Handcrafted features with cubic kernel.

True class Predicted class

Class 1 Class 2 Class 3 Class 4

Class 1 94% >5% 0% <1%

Class 2 <1% 99% <1% <1%

Class 3 <1% <1% 99% <1%

Class 4 0% 1% 1% 98%

Table 3. Accuracy of SVM trained on CNN extracted features.

Kernel Accuracy (without PCA) Accuracy (post PCA)

Linear 96.1% 95.8%

Quadratic 97.4% 97.2%

Cubic 97.6% 97.2%

Medium Gaussian 97.5% 96.9%

Coarse Gaussian 95.6% 94.8%

Table 4. Confusion matrix for SVM trained on CNN extracted features with cubic
kernel.

True class Predicted class

Class 1 Class 2 Class 3 Class 4

Class 1 94% 5% <1% <1%

Class 2 2% 97% <1% <1%

Class 3 <1% <1% 99% <1%

Class 4 0% 1% 1% 98%

Table 5. Accuracy of SVM trained on combination of CNN extracted and hand crafted
features.

Kernel Accuracy (without PCA) Accuracy (post PCA)

Linear 98.9% 98.7%

Quadratic 99.1% 99.0%

Cubic 99.2% 99.1%

Medium Gaussian 99.1% 98.8%

Coarse Gaussian 98.3% 97.7%
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Table 6. Confusion matrix for SVM trained on combination of CNN extracted and
hand picked features with cubic kernel.

True class Predicted class

Class 1 Class 2 Class 3 Class 4

Class 1 98% 2% 0% 0%

Class 2 <1% 99% <1% 0%

Class 3 0% <1% >99% <1%

Class 4 0% 0% 1% 99%

Fig. 9. Adaptive single threshold based clustering did not give acceptable result.

(a) Result of clustering using Red channel values.

(b) Result of clustering using Green channel values.

(c) Result of clustering using Blue channel values.

Fig. 10. Results of K -means clustering using RGB.
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(a) Result of clustering using Hue component

(b) Result of clustering using Saturation component

(c) Result of clustering using Value component

Fig. 11. Results of K -means clustering using HSV.

2. K -means Clustering: Another popular technique for segmentation of dark
background and bright foreground is the K -means clustering. Clustering was
done on different channels of different colour spaces like RGB, CIE-Lab etc.
to find out which gave the best results. A comparison is given among all the
tested color spaces and channels.
K -means clustering was done into three clusters using initial seeds as 0.1,
0.5 and 0.75. Though it was observed that the choice of initial seeds did not
affect the performance. K -means++ also can be used to determine the initial
choices of centers.
(a) Comparison between R, G and B Color Channels: An illustrative com-

parison of clustering with Red, Blue and Green colors separately is shown
in Fig. 10 as given in [12]. It was found that Red color channel gave the
best results for segmentation in most cases.

(b) Comparison between H, S and V Channels: In [12], an illustrative com-
parison of clustering with H, S and V channels is shown in Fig. 11. It was
observed that V channel of the image gave the best results. As expected,
it’s clustering result was similar to the R channel.

(c) Comparison between L* and a*b* Color Channels: The L*a*b* color
space is derived from the CIE XYZ tristimulus values. The L*a*b* space
consists of a luminosity ‘L*’ or brightness layer, chromaticity layer ‘a*’
indicating where color falls along the red-green axis, and chromaticity
layer ‘b*’ indicating where the color falls along the blue-yellow axis.
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Comparison between L* and a*b* space, given in [12] is shown in Fig. 12.
The best segmentation was done by using L* channel.

(d) Comparison between R and L* Color Channels: Both the RGB and CIE
Lab color space gave good results using the ‘R’ and ‘L*’ channels, respec-
tively. Thus, a comparison is made to between the ‘R’ and ‘L*’ channel
as given in [12] is shown in Fig. 13. It was found that using the R channel
gave best results.

(e) Adaptive thresholding using Otsu’s method using 2 thresholds: Otsu’s
method was used to find two thresholds resulting in three clusters with
the Red Channel as the input. The results obtained by k -means clustering
and Otsu’s multi-level thresholding were found to be almost identical in
[12], as shown in Fig. 14.

(a) Result of clustering using L* component

(b) Result of clustering using a*b component

Fig. 12. Results of K -means clustering using Lab.

The results of Otsu’s 2 level adaptive thresholding and k -means clustering
were found to be identical. Hence, considering the fact that k -means clustering
being an iterative method is generally slower, it can be concluded that Otsu’s
multi-level thresholding using two thresholds on R channel is the best, among all
investigated methods, for dark background segmentation in endoscopic images.
Another interesting observation is that when there are no dark regions, the
clustering automatically detects two clusters with none labeled as background.

3.3 Removal of Non-blood Vessel Edges

In [12], two techniques are proposed to eliminate the non-blood vessel edges.
First was background subtraction and another is using the dissimilarity index,
which quantifies whether the edge belongs to blood vessel or not.
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(a) Result of clustering using Red component

(b) Result of clustering using L* component

Fig. 13. K -means clustering result comparison of Red and L* components.

(a) Result of K-means clustering

(b) Result of Adaptive thresholding using Otsu’s method with 2
thresholds

Fig. 14. K -means clustering and adaptive thresholding using Otsu’s method with 2
thresholds gave similar results.

A dataset of 61 images was used for evaluation. For ground truth, the blood
vessel were manually marked in all the images. The values of various thresholds
used in evaluation are: Strong edge vesselness threshold = 0.9, Green Channel-
Dissimilarity Index threshold = 3 and Red Channel-Dissimilarity Index thresh-
old = 3. The values used are found empirically to give the best results on the test
dataset. The comparison of various algorithms’ results obtained in [12] is shown
in Table 7.
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The proposed method was found to give better results than both the vanilla
Frangi Vesselness method and BCOSFIRE filter. It performed better than
BCOSFIRE filter [14], a popular technique in vessel delineation, by around 50%
in terms of sensitivity. In terms of the overall accuracy, the proposed method’s
result is around 5% better than the BCOSFIRE result.

Sensitivity =
TruePositive

TruePositive + FalseNegative
(12)

Specificity =
TrueNegative

Truenegative + FalsePositive
(13)

Accuracy =
TruePositive + TrueNegative

N
(14)

where N is the total number of pixels. Sensitivity is a measure of how good the
algorithm was at detecting blood vessels while specificity tells us how correctly
could the algorithm identify the non-blood vessel pixels.

(a) Original Image (b) Vesselness image (c) Final Result

Fig. 15. Comparison of input, vesselness and final result.

The proposed method performed better in terms of both the accuracy and
specificity by around 8% and 4% respectively, when compared with the vanilla
Frangi vesselness. This verifies that the proposed method’s focus on remov-
ing falsely identified edges as blood vessel edges was correct. The sensitivity of
Frangi’s method was better by around 3.5%. The reason for this is, while remov-
ing edges, some true blood vessel edges were also removed along with false ones.
This is tolerable as our end goal is to get correct blood vessel information. This
can be obtained from the other detected true blood vessels. Illustrative images
with results improved by the proposed method in [12] are shown in Fig. 15.
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Table 7. Comparison of results of various vessel delineation methods.

BCOSFIRE Frangi’s vesselness Proposed method

Sensitivity 20.22% 75.24% 71.77%

Specificity 93.65% 86.16% 94.57%

Accuracy 88.68% 85.42% 93.03%

4 Conclusion and Future Work

In this paper, a classification of endoscopic images based on scene information
was attempted. The classes were organised on the basis of blood vessel informa-
tion and dye content. Feature selection was done by using hand designed feature
extractors and CNNs. The hand engineered feature extractors capture the tex-
ture, edge and color information of the image. A ResNet inspired architecture
was used for CNN, which acted as feature extractor. Both these features were
then used to train an SVM with a cubic kernel. Post classification, only the blood
vessel containing images are then processed for detailed blood vessel extraction.
The delineation approach is based on the Frangi Vesselness filter. The novelty of
the paper lies in the proposal of two techniques to reduce the error of detection
of Frangi filter. One is the dark background removal and another is the dissim-
ilarity index which has the ability discriminate between the blood vessel and
non-blood vessel edges.

Development of blood vessel segmentation method for dyed images is a topic
of future work. A larger dataset can be created and annotated for classification
using CNN. A future application of this work is using blood vessels’ branching
points as feature points for 3D recovery of absolute shape and size of polyps.
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Abstract. Early design phases in architecture deal with the conceptu-
alization of a building. During these phases, a high-level description of
a building (usually coming from a contractor of costumer) is iteratively
turned into a first floor plan layout. One established method for archi-
tects to get inspiration is the search of references from former building
projects. However, this search is usually conducted manually (and there-
fore labor-intensive) nowadays. Hence, an automated search for similar
architectural concepts is desired. In the course of this paper, case-based
reasoning and (in)exact graph matching are utilized to construct an end-
to-end system for floor plan retrieval, accessible by a refined version of
our design-supporting web interface. In our approach, a floor plan is
modeled as a graph, where each room is represented as a node and the
relations between rooms are modeled as edges. We use a set of high-
level abstractions, so-called semantic fingerprints, to generate simplified
graphs that are simple to match. The retrieval process itself is performed
by three systems (case-based reasoning, exact graph matching and inex-
act graph matching), whose results are unified internally. We conducted
several tests to show the deployment ability of our system: firstly, we
run a stress-test for determining the computational limits our system
can handle. Secondly, we tested our system qualitatively and showed
that each retrieval system is superior in at least one search scenario.

This paper is an extended version of [1]. In the paper at hand, we intro-
duce a new feature that maps components of search queries to results
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and demonstrate this function by the means of a case study. Finally, we
conducted an extended literature comparison of the case-based system
in this area.

Keywords: Graph matching · Subgraph matching
Graph isomorphism · Architectural floor plan · Case-based reasoning
Pattern recognition · Query-result mapping

1 Introduction

During the early phases of architectural design, the architect’s task is to develop
a first, rough floor plan layout given a high-level description of the building. In
order to accomplish this task, different working methods have been established.
In general, working with references of previously completed building projects
is common. However, searching such references is usually conducted manually
nowadays, involving the labor-intensive and manual consultation of dedicated
magazines and libraries. Speeding up this process by computerized means is
therefore desired. To address this issue, we have already introduced MetisCBR
[4], an approach for distributed case-based retrieval of similarly structured floor
plans.

Fig. 1. Overview over the system architecture of Archistant (simplified, adapted from
[1]).

In this paper, we present Archistant1, an end-to-end solution for supporting
the architect in conceptualizing a building (see Fig. 1 for a system overview).
1 http://www.dfki.uni-kl.de/archistant.

http://www.dfki.uni-kl.de/archistant
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The Archistant user interface helps the user to develop an early architectural
concept. For that purpose, it is designed to follow one of the established working
methods in architecture, the so-called room schedule (see Sect. 3). After such a
sketch has been entered, the user can invoke the retrieval function. Archistant
takes care of distributing the search query to MetisCBR and graph-matching-
based based retrieval systems and to collect and unify their results. The results
are sent back to the user interface, where they can be contemplated by the user.
Furthermore, the user is helped to reflect the results by a mapping feature, that
indicates, which room in the query relates to which room in a search result.

Until now, case-based reasoning (CBR) and graph matching have been used
to retrieve the similar floor plans in separately implemented systems. The novelty
of Archistant is that it takes the advantages of both methods, and combines them
in one common system.

This paper is structured as follows: after the problem has been motivated and
the solution roughly sketched in this section, a literature review incorporating
a description of the utilized user interface is given in Sect. 2. The floor plan
retrieval techniques themselves as well as the query-result mapping are stated
in detail in Sect. 3. Afterwards, the system is evaluated by a stress test and
qualitative evaluations of the results as well as the mapping function in Sect. 4.
Finally, the paper is concluded in Sect. 5.

2 Related Work

In this section, we describe work related to our research presented in this paper.
We divide this related research into three main contexts: case-based reasoning,
(sub)graph matching, and sketch-based interfaces.

2.1 Case-Based Reasoning

Case-based retrieval, a sub-domain of case-based reasoning, is a technique used
by previously mentioned MetisCBR to find similar floor plans. Comprehensive
overviews of tools and approaches related to MetisCBR are contained in studies
of Heylighen and Neuckermans [14] and Richter et al. [28]. In these two overviews,
the CBR-based and related approaches were compared with different features to
provide the best comparison possible for both designers (in this case architects)
and academic and professional staff of the knowledge-based design domain. In
[2], a table-based summary of these two studies is presented which is shown in
Fig. 2. Besides this overview, we also provide descriptions of the most influential
approaches that inspired the creation and development of MetisCBR.

FABEL [24] is an approach that comes very close to the current purpose
of MetisCBR and has served as one of the most inspirational approaches. In
FABEL, the special modules (called specialists in FABEL) work with cases that
have a multidimensional aspect-based representation in order to find the most
similar ones to a given problem (a user query which is converted to such an
aspect-specific structure). The database of cases (case base) inside the FABEL
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Fig. 2. A tabular summary of CBR tools and approaches for architectural design sup-
port, provided in [2], of the studies by Heylighen and Neuckermans [14] and Richter et
al. [28]. The comparison has three main categories: storage, input, and output. Storage
is divided in floor plans + text, abstraction, and topology. Input is divided in graphic,
verbal, and adaption. Output is divided in reference projects, applying solutions, graph-
ical information, learning, subproblems, semantic net, and analogy. Figure from [2].

contains the retrievable cases where identical aspects of two cases are connected
by relational arcs. The retrieval algorithm of FABEL uses a so-called fish-and-
sink approach.

The CBR-based framework CBArch [8] supports the construction of buildings
that have a commercial background. CBArch aims at helping the architects and
other professionals involved in a construction of such a building to improve the
currently developed building design by providing alternative suggestions for its
configuration. CBArch considers the main architectural aspects of a building
(such as size) from the energy efficiency point of view. the main functionality
of CBArch supports the CBR cycle (Retrieve, Reuse, Revise, Retain). In the
retrieval phase, the feature vectors are used to compare the information from
query and case to assess similarity between them. The cases are also saved in a
parametric ontology-based representation for graphical representation of cases.

DYNAMO (Dynamic Architectural Memory Online) is a web-based project
(described in [27]) started in 1996 to provide a case base for architecture pro-
fessionals and students. The service aims at providing an easy access to archi-
tectural designs by providing searching and filtering functions for the designs in
the database. DYNAMO is related to other CBR approaches in the use of the
dynamic memory theory of Schank [30] (in DYNAMO’s case the architectural
memory). Cases available in the case base of DYNAMO can be architectural
designs of already existing as well as unbuilt projects, a single case consists
of architectural aspects of the building as well as its graphical representation.
The attribute-value-based structure underlies the representation of the cases in
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Fig. 3. Screenshot of the Archistant WebUI.

the database. The retrieval process consists of two steps: in first step, an exact
matching tries to determine the structurally identical cases, after that cases from
the case base are selected that have at least one criterion in common. DYNAMO
can also apply Data Mining techniques, such as Collaborative Filtering.

One of the first CBR-related architectural design support applications is
CADRE (description of which is available in [29]), developed between 1990–1994.
CADRE was constructed to work with 3D models of buildings and extends the
model with some features that can emphasize its context (e.g., the environmental
criteria such as street context or direction, or topological features such as room
transformation). However, CADRE does not implement a retrieval component (a
user her/himself should select a proper case from the case base) and concentrates
on adaptation of solutions, i.e., the Reuse phase of the CBR cycle. In this phase,
CADRE tries to adapt the existing solution into a new environment with given
constraints. A successor of CADRE is the IDIOM system that instead of using
the 3D models concentrates on the 2D-based representations of floor plans (or
parts of them).

2.2 Graph and Subgraph Matching

Graph matching is widely applicable nowadays for its usability in matching and
retrieval problems. In real life scenarios, there are situations when there is no
exact match with the whole graph but there is a part (subgraph) that matches. If
a subgraph is available, then we can use subgraph matching that tells us about
the parts of two graphs that are isomorphic. Technique presented in [2] used
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graph matching to retrieve the similar floor plans. This work slightly modifies
the method in [19] and uses it for retrieval of similar floor plans by arranging the
row-column vectors of the adjacency matrix in the decision tree. Work in [25] uses
graph and subgraph isomorphism to check the similarity between a query graph
and models of different buildings stored in the database. In this work, a check
has also been implemented that ensures that if the query graph corresponds to
some rules only then the system proceeds for checking the similarity of query
graph.

2.3 Sketch-Based Interfaces

In order to make the retrieval system accessible by the user, a sketch editor is
needed to enter an architectural concept. In the course of the research project
Metis (see Sect. 5), two different approaches have been compared [6]. The first
(Touchtect) was based on free-hand sketching, while the other (Metis WebUI)
was based on polygonal rooms (Fig. 3).

The retrieval system presented here is accessible by a dedicated user interface,
the Archistant WebUI. This browser-based application is an improved version
of the Metis WebUI (first described in [6]). The main purpose of the Archistant
WebUI is to help the user develop an architectural concept and thus generate
retrieval queries. The general usability of the Metis WebUI has been shown by
the means of a user study. For query construction, the Archistant WebUI uses
the AGraphML [16] specification (also see Sect. 3.1).

The Archistant WebUI provides a room-oriented floor plan editor. Is designed
to follow the room schedule working method as established in architecture. A
room-schedule in architecture is a set of high-level requirements (usually coming
from an end-customer or contractor), that has to be turned into a floor plan
layout by the architect. Its formal structure is assumed to be a graph in the
course of this paper. Hence, attributes of rooms are modeled as node attributes
and attributes of room connections are modeled as edge attributes. Rooms are
created in an abstract, shapeless mode indicated by a circle. Rooms may always
be dragged independently from each other and their attributes and connections
can iteratively refined by the user, where each aspect can be specified as abstract
or specific as desired. As a convention, a single line wall between two rooms
indicate a wall connection, double lines represent doors.

In order to be usable as a search interface, the Archistant WebUI possesses a
search sidebar, in which the fingerprint weights can be adjusted and the retrieval
process can be triggered. Furthermore, the result thumbnails are also shown here
as well as the full screen query-result mapping view (showing which room of the
query relates to which room of the result) can be invoked. Finally, results can be
rated by the user, allowing for machine learning-based optimization in future.

3 Floor Plans Retrieval Techniques

In this Section, we present the main components and underlying concepts for our
floor plans retrieval framework that combines three different search methods for
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this purpose. The framework is an integral part of the Archistant infrastructure
and allows for comprehensive search process with CBR and two (sub)graph
matching methods: VF2 (exact matching) and IB (index-based retrieval based on
the Neo4j graph database index). The underlying structure for search of similar
floor plans is the paradigm of semantic fingerprint that allows for decomposition
of the search request into different semantically enhanced sub-patterns, thus
giving us opportunity to look for the best fit for the floor plan query based on the
features that are important for this particular query only. In Sect. 3.1 we describe
the semantic fingerprint, i.e., our underlying sub-patterns paradigm, followed by
Sect. 3.2 that briefly describes our query structure. In Sect. 3.3 we present our
three retrieval methods, including CBR-based MetisCBR and (sub)graph-based
VF2 and IB.

3.1 Semantic Fingerprints Concept

Langenhan and Petzold [17] describe semantic fingerprint as a hierarchically
constructed index for definition of floor plans that enhances the well-known
concept of Building Information Modeling (BIM). To represent the fingerprints,
a graph-based structure is developed that can represent the topology of the floor
plan and the connections between particular node units (rooms) including only
the graph attributes defined for this fingerprint. To transform this graph-based
structure into a machine-readable format (XML), the AGraphML specification
[16] is used. Furthermore, semantic fingerprint is a representative of room-based
configuration, thus rooms and their relations play the most important role in
resolving queries that are constructed in the same way. Our searching techniques
can detect a number of fingerprints in the query provided by the user: VF2 and IB
apply the decomposition of the floor plan query, whereas MetisCBR implements
the recognition of patterns based on the fingerprints data contained in the query.
In Fig. 4 a list of 7 fingerprint patterns that are common for each of our searching
techniques are shown.

3.2 Query Structure

Retrieval queries in Archistant are constructed by utilizing the AGraphML struc-
ture: for each room in the floor plan concept, a node is created and the room’s
properties are used as node properties. Likewise, connections between rooms are
represented as edges and the connection’s attributes are used as edge attributes.
Finally, the resulting AGraphML is wrapped into a search query XML struc-
ture along with the user-defined fingerprint weights. In Listing 1.1, a general
structure for our queries is shown.
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Fig. 4. Fingerprint patterns currently available in all three (MetisCBR, VF2, IB)
retrieval techniques of Archistant (Figure from [1]).

Listing 1.1. General structure of a query for the retrieval methods in our framework
(adapted version from [5]).

<?xml ve r s i on =”1.0” encoding=”UTF−8”?>
<s ea rchreques t>

< f i n g e r p r i n t name=”Room Types” weight =”0.7” />
< f i n g e r p r i n t name=”Adjacency” weight =”0.3” />
<agraphml>

<graphml > . . .</ graphml>
</agraphml>

</searchreques t>

3.3 Matching Techniques

Case-Based Retrieval (MetisCBR). MetisCBR was developed to apply a
multi-agent system with case-based agents to problems of retrieval of similar floor
plans during the early phases in architectural conceptual design. Its main fea-
tures are the retrieval containers that can concurrently resolve different queries
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that may belong to the same retrieval process (or be completely independent, i.e.,
triggered by another retrieval process). Before the actual retrieval takes places,
the search request is analyzed, divided in the sub-queries (if multiple semantic
fingerprints were detected in the request), and then assigned to the correspond-
ing retrieval container that consists of the agents most suitable for this type of
query/fingerprint. This assignment process is governed by a special coordina-
tor agent described in [5]. Figure 5 shows a general overview of the MetisCBR
system.

Fig. 5. General architecture of MetisCBR (a detailed description is available in [4,5]).

As a CBR-based system, MetisCBR defines an underlying structure for each
case saved in its case base. This structure is mostly based on a domain model.
For MetisCBR, a distributed domain model (described in [3]) was created to
govern the system’s cases. Each case represents a single floor plan and is divided
into three main concepts: FLOORPLAN (meta data about the floor plan),
ROOM (information about rooms), and EDGE (information about edges, i.e.
room connections). Attributes, such as roomType or windowExist for rooms,
and edgeType and linearDistance for edges define the detailed structure of a
case.

The attributes are combined in different amalgamation functions that either
correspond to semantic fingerprints or can be of generic type. It depends on
actions of the user (who may or may not include the fingerprint patterns in the
query) which amalgamation will be used for the current search. For the amal-
gamations that are connected to the fingerprints, a combination of attributes is
selected for the search that is predefined and unique for this fingerprint only (it
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is of course possible that an attribute is available in multiple fingerprints, i.e.,
an attribute can be used multiple times during the same search process). In [22]
a footprint sets based retrieval system is presented that became an inspiration
for our fingerprint-amalgamation-based retrieval. The fingerprint amalgamation
and the generic amalgamation (that uses all attributes for comparison) can be
used in two different types of retrieval strategies:

– A strategy for fingerprints that have a complicated structure (such as FP5 or
FP6) and a comprehensive search without fingerprints defined. This strategy
is presented in [3].

– Faster strategy that uses more simple fingerprints (such as FP1 or FP4) and
applied for simplified search for requests without fingerprints defined.

After the actual search, the results can be elevated by means of applying the
user-defined fingerprint weights and sorted in descending order by the computed
similarity value.

The current work on MetisCBR is concentrated on further development of
retrieval strategies. A study of Ayzenshtadt et al. [26], conducted among architec-
tural domain representatives to investigate their cognitive reasoning processes
during the search for similar architectural designs, revealed that a number of
commonalities exist among the similarity assessment processes of all of the rep-
resentatives. The findings of this study helped to infer the definitions for retrieval
strategy and superstructural (conceptualization) process. These definitions will
be considered foundations for every future strategy of the system (e.g., each strat-
egy should satisfy the requirements from the strategy definition to be accepted
for implementation in MetisCBR).

VF2-Based Retrieval (Exact Graph Matching). In graph matching
domain, the phenomena of one-to-one mapping is referred as isomorphism. The
graphs are isomorphic when they follow the exactly same topology, that is, they
both have the same number of nodes and each of the corresponding node is con-
nected in same way. Exact graph matching is a way to detect the isomorphism
[7]. Some of the one-to-one exact graph-based matching approaches include:
[18,20,23]. For Archistant, we decided to use the VF2 algorithm, proposed in
[11], its implementation is provided in the NetworkX library. As compared to
other available implementations, VF2 has the capacity to achieve the best per-
formance for small and sparse graphs [12]. In addition to this, it requires less
memory.

Our exact graph matching system (VF2) relies on a preprocessing step. Dur-
ing preprocessing, one AGraphML file is generated for each of the floor plans
in the data base. Later on, these AGraphML files are used by the VF2 system.
A tool named “Neo4j Shell Tools” is available that is used to generate these
AGraphML files.

VF2 system performs different steps in order to compare the search request
with the floor plans in the data base (see Fig. 6). Firstly, once the request is
received by the system, its validity is ensured. Only the valid requests are for-
warded to the next step. In this second step, AGraphML is extracted from
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Fig. 6. The above diagram shows the workflow of the VF2 exact matching system.
It shows the step by step details of how a search request and the floor plans in data
base are decomposed into fingerprints and then their corresponding fingerprints are
matched. Finally, the results are transferred to the requester (Figure from [1]).

the search request to generate a graph, that is referred as query-graph. The
query-graph represents nodes and connections between the nodes. Finally, the
query-graph is decomposed into fingerprints. All the aforementioned steps take
place each time, when the user creates a query, before the actual matching part.
Once the fingerprints are generated for the query-graph, the fingerprints for floor
plans in the data base need to be generated. For this purpose VF2 system, one
by one takes each of the AGraphML files, referred as db-graph, and generates
its fingerprints. These fingerprints are then matched with the fingerprints of the
query-graph. Each of the corresponding fingerprints, that is, FP1 of query-graph
is matched against FP1 of db-graph, FP2 of query-graph is matched against FP2
of db-graph and so on. Based upon the matching fingerprints, a similarity score
is computed, that shows how closely a db-graph is similar to the query-graph (see
Fig. 4). Finally, VF2 system sends back the results with top similarity scores in
descending order.

Index-Based Retrieval (Inexact Graph Matching). Several different
approaches of index-based graph matching methods have been described in liter-
ature, including GraphGrep [13], Lucene index [21], FG-Index [10] and cIndex [9].
Archistant’s index-based retrieval uses Lucene index since this indexing method
is used by the Neo4j database by default.

The index-based retrieval can be described as follows (see Fig. 7): A search
request AGraphML file is decomposed into the different fingerprints and a set of
fingerprint weights. Graph-based fingerprints are represented by internal graph
structures. These internal representations are then translated into cypher queries
and successively passed to the Neo4j server.

The Neo4j server replies each request with a set of floor plans (more precisely
URIs referencing the floor plans are used). These sets are unified discarding all
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Fig. 7. The above figure shows index-based retrieval flow chart. After the search request
is decomposed into a set of internal graph structures representing the different finger-
prints, cypher queries for each fingerprint are created. These cypher queries are suc-
cessively passed to the Neo4j server, and the Neo4j’s replies to each query with a set
of floor plan references. These references are unified, taking the user-defined weighting
into account (Figure from [1]).

redundant entries. Simultaneously, the index-based similarity score is calculated
for every item. This similarity score is the sum of the user-defined weights of the
fingerprints for which the query matches the database entry. Finally, the result
list is brought into descending order according to the index-based similarity
score.

A graph-based fingerprint is considered to match a database entry if the
fingerprint’s graph is a subgraph of the database entry. The fingerprints are
processed independently from each other for simplicity reasons, hence one room
in the query may be mapped to different rooms within the same floor plan in the
database. Figure 8 illustrates an example of the fingerprints processing within
the index-based method. The query consists of three rooms labeled as Living,
Kitchen and Sleeping. The Living room is connected with Kitchen via an edge
connection labeled as Passage, the Kitchen is connected with Sleeping via an
edge connection labeled as Wall, and Sleeping room is connected with Living
via an edge connection labeled as Door. The right side of the diagram shows
exemplary matching and non matching fingerprints between search query and
floor plan in the database.

3.4 Augmentation of Retrieved Floor Plans

The retrieval systems deliver results in the form of URLs which point to plain
image files. These image files serve as thumbnails for the individual results. In
order to allow for better user experience, additional information is needed: firstly,
detailed information about the results’ graph structures allows for rendering of
the results’ floor plans in higher quality. By using the same layout as employed
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Fig. 8. Decomposition of a floor plan query into fingerprints and subsequent matching
with a database entry (Figure from [1]). Depicted is the subgraph matching behavior
as implemented in the index-based retrieval.

in the WebUI editor, the user may orient himself more easily in the results.
Secondly, a map from individual rooms in the user’s query to individual rooms
in the server’s results helps the user to understand how the results have been
derived. These informations are gathered and centralized for all results of all
retrieval systems at the augmentation processor (AP, see Fig. 9).

Generation of Result-Related AGraphML Files. Both the generation of
AGRaphML files related to the result image file URLs and the generation of
room maps from query rooms to result rooms are implemented by querying
the same Neo4j database on which the retrieval systems are based. As a basic
principle, the image URLs used by the retrieval systems are also attached to the
graphs in the database. The generation of result AGraphML files is implemented
as follows:

1. Result image URL is used to retrieve the id of a so-called storey vertex. These
storey vertices are used to organize floor plans. All room-representing nodes
of a floor plan are connected to a single storey vertex.

2. The node IDs (along with the relevant node properties like room purpose and
room layout polygon) of all room nodes connected to the storey vertex of
interest are obtained.

3. All connections between the nodes retrieved earlier are obtained.

Generation of Room Maps. The AP uses Neo4j’s matching mechanisms to
obtain maps from the user’s query to the retrieval system’s results. Therefore,
the fingerprint abstractions are employed here just like in the retrieval systems.
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Fig. 9. Structure of the augmentation processor (Figure Adapted from [31]).

Based on the order of the user’s fingerprint weights, different abstractions of
result and query are tried to be matched. Since not all retrieval systems use
exact matching techniques (and not all fingerprints are selected as mandatory
by the user), there might be results to which no fingerprints of the query match
the result’s fingerprints at all. The first matching fingerprint (where the order is
determined by the user) is used for the generation of the final room map. There
are situations, in which the abstractions of result and query match in more than
one way (e.g. in FP1, any room may match). In such cases, one of the matches
with the highest number of matching room purposes is selected (if there are
multiple of them, randomly). A visualization of the room map can be displayed
to the user (see Fig. 10).

Fig. 10. Screenshot of the room mapping view in the Archistant WebUI.
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Fig. 11. Overview of the boundary test results. For each fingerprint and retrieval sys-
tem the boundary is depicted (the metrics differ between different fingerprints). For
each fingerprint, the maximum achievable value is given (Figure from [1]).

4 Evaluation of Our System

4.1 Computational Limitations (Boundary Test)

All the presented algorithms are expected to terminate properly for any given
search query in theory. However, since both graph matching and CBR are com-
putational demanding, there are practical limits (boundaries) to the complexity
of a search query our system can handle. In order to determine these bound-
aries, we conducted an automated stress-test in which for every fingerprint we
run a series of test cases and record the behavior of the retrieval systems. In each
series, test cases of increasing complexity are used. In most cases, a test scenario
is considered of complexity n, if it consists of n rooms. For FP2 however, n
connections are used instead. For graph-based fingerprints, we use linear graphs.
Based on the type of fingerprint, we used different node and edge attributes,
that are randomly selected for each test case. A boundary of a retrieval system
for a certain fingerprint is considered to be the complexity rating of the lowest
test case if the system was unable to process without crash minus 1. The results
of the boundary test we conducted are depicted in Fig. 11. Both the VF2-based
retrieval and the case-based retrieval managed to process all test cases with-
out crash. Only the index-based retrieval system exhibited limitations over the
maximum size of fingerprints FP3, FP5, FP6 and FP7. It is assumed that these
limitations arose from internal timeout errors of the underlying Neo4j database.
Generally, given more memory and computational power, these boundaries could
be raised. Using the determined boundaries of the different retrieval systems, the
productive use of Archistant can be secured by restricting the system to queries
that are known to be manageable.
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4.2 Qualitative Analysis

In order to assess the usefulness of the generated results for the architects, the
quality of results is subjectively estimated for a set of dedicatedly generated sam-
ple queries. With the help of architects, we created 10 different search queries.
One by one, each of the queries was entered to the Archistant’s retrieval frame-
work. Archistant performed the same fingerprint matching for each of the queries
and the results were observed and stored. In order to make the fair comparison,
the same architects, who designed search queries with us, also took part in the
qualitative analysis. All the participants rated the three retrieval methods on
scale of 1st, 2nd, and 3rd or equal. Table 1 shows the results of this qualitative
rating study. The table contains the summary of the results and the ratings for
each method. To make it more elaborative, we show the results in two categories.
A method is regarded as best or clear winner when all the participants ranked
it best. The first category shows the queries which were ranked as best for the
corresponding retrieval method. The second category shows the results of meth-
ods that were considered as best by majority of the participants for a particular
query. The third column shows the queries that got equal number of votes. The
last column shows the percentage of the dominating queries.

It is clear from Table 1, that none of the retrieval methods failed completely,
rather they were able to produce quality results of some of the queries. Randomly,
we selected three queries, their two best results for each of the retrieval methods
are shown in Fig. 15. For ease of understanding we show the results in graph-
based representation and graphical representation shown by top and bottom
representation in Table 1 respectively. It is worth noting that the CBR method
has a higher score in relation to other two methods.

Fig. 12. Mapping between query and result 1 (room graph fingerprint overlay).
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Fig. 13. Mapping between query and result 1 (adjacency fingerprint overlay).

In general, we can notice that the retrieval methods were able to find and
present sets of reasonable results. Subjectively, the VF2 method outperformed
other techniques overall, confirming the assumption that the exact isomorphism
can be seen as the most suitable method for matching in databases with certain
structural and technical constraints.

4.3 Query-Result Mapping Case Study

In order to demonstrate the usefulness of the query-result mapping functionality,
we applied this algorithm to a query selected from the qualitative study described
above.

Given was a sketch with a living room, a kitchen, a toilet, and a corridor,
where all rooms are connected to the corridor by passage connections. The
retrieval system returned several results, from which 3 were investigated. In
Fig. 12, the query is matched to a floor plan that has exactly the same amount
of rooms, all room functions in the query are matched to rooms with same func-
tions. However, the architect might at least get inspiration for a room layout.
In the second retrieval result (see Fig. 13), the queried structure is mapped to a
larger one, that could inspire the architect to make some additions to his con-
cept. Finally, in the third result (Fig. 14), a graph structure is found, that is also
extended compared to the query. When switching to the full room graph overlay,
it became obvious, that all room functions could be matched, not all connections
could. However, the founded mapping is suggesting new connection types. This
could hint the user that a doorless connection between a corridor and a toilet
may be improved.
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Fig. 14. Mapping between query and result 1 (full room graph fingerprint overlay).

Fig. 15. The above figure shows the similarity scores of selected queries. Color codes
represent the room purposes, the first column contains the queries with rooms and
assigned purposes. The two best results of a query against each retrieval method are
shown. Each box shows the similarity score, the corresponding graph, and a graphical
floor plan representation. The colored boxes show the best results (Figure from [1]).
(Color figure online)
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Table 1. The above table shows the results of selected queries for each of the retrieval
method. The second column shows the queries whose results were ranked as best by all
the participants against the corresponding retrieval method in the first column. The
third column shows the queries which won the support of majority of participants.
Queries that get equal number of votes are placed in fourth column. The last column
contains the percentage of queries dominated by the particular method (Table from
[1].)

Retrieval method Queries won Queries won
by majority

Co-winner in Summarized
results

VF2 Q3, Q4 Q6, Q7 Q8, Q10 50%

Index-Based – Q5 Q10 15%

MetisCBR Q2, Q9 Q1 Q8 35%

5 Conclusion and Future Work

In this work, we presented a novel possibility for architects to enhance the early
conceptual design phase by using an end-to-end system Archistant that is able
to search for similar floor plans during this phase of the design process. Archis-
tant uses a sketch-based interface for construction of floor plan queries and
distributes this query, with the help of a processing component, among three
different retrieval methods that are based on different research paradigms of
artificial intelligence, namely, case-based reasoning and graph matching. The
retrieval results are enhanced by an augmentation processor that is able to visu-
alize room mapping between the query and the corresponding result, thus pro-
viding a justification of how both room configurations match. We evaluated the
complete system with a boundary test to determine the retrieval-related limi-
tations of our three searching techniques, where most of the methods were able
to deal with the highest complexity of a query. We also conducted a qualitative
analysis where each of the retrieval methods was able to satisfy the expecta-
tions on the delivered results in at least some of the cases. Our future work will
concentrate on building of a bigger collection of retrievable floor plans, and an
inclusion of machine learning for automatic improvement of results.
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Abstract. Hand rehabilitation therapy is fundamental for post-stroke
or post-surgery impairments. Traditional rehabilitation requires the pres-
ence of a therapist for executing and controlling therapy: this implies high
costs, stress for the patient, and subjective evaluation of the therapy
effectiveness. Alternative approaches, based on mechanical and tracking-
based gloves, have been recently proposed. Mechanical devices are often
expensive, cumbersome and patient specific, while tracking-based devices
are not subject to this limitations, but, especially if based on a single
tracking sensor, could suffer from occlusions. In this paper a multi-sensors
approach, the Virtual Glove (VG), based on the simultaneous use of two
orthogonal LEAP motion controllers, was presented. In particular, the
VG design was summarized, an engineered version was presented and its
characterization was performed through spatial measurements. Measure-
ments have been compared with those collected with a accurate spatial
positioning system for evaluating the VG precision. The proposed strat-
egy described the procedure to be used for VG assembly and for making
it to correctly operate.

Keywords: Hand rehabilitation · Virtual Glove
LEAP motion controller

1 Introduction

For patients suffering from post-stroke or post-surgery residual impairments,
the recovery of the hand functions is extremely important for accelerating the
rehabilitation process and it depends on frequency, duration and quality of the
rehabilitation sessions [1–4]. Traditional rehabilitation requires that a therapist
follows the patient during long and challenging one-to-one sessions. Moreover, the
effectiveness of the procedure is evaluated subjectively by the therapist, basing on
c© Springer International Publishing AG, part of Springer Nature 2018
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his experience. Over the last years, several automated (tele)rehabilitation gloves,
based on mechanic devices or tracking sensors have been presented, for allowing
patients to execute therapy in a domestic environment, while its effectiveness is
numerically evaluates and controlled by therapists through Internet [5–13].

Mechanical gloves (MG) are equipped with pressure sensors and pneumatic
actuators for assisting and monitoring the hand movements and to apply forces
to which the fingers have to oppose [14,15]. MG are expensive, cumbersome and
patient specific (reusing for other patients or for the other hand of the same
patient is impossible). Tracking-based gloves consist on computer vision algo-
rithms for the analysis and interpretation of videos from depth sensing sensors
to calculate hand kinematic information in real time, [13,16–21]. Besides depth
sensors, the LEAP motion controller [22] is a small and low-cost hand 3D track-
ing device characterized by high-resolution and high-reactivity [23], represents a
good system to be used for virtual reality applications [24] and has been recently
also used for the hand rehabilitation [13].

The rehabilitation system proposed in [13] consisted on two orthogonal
LEAPs used for reducing the occurrence of occlusions. The two LEAPs have
been fixed to a support that maintain them orthogonal each other, each at a
distance of 25 cm from the corner of the support, for creating a wide area in
which the hand can freely move and tracked by both sensors. In this paper we
present an engineered version of the LEAP based Virtual Glove and a charac-
terization of the proposed system by using a numerically controlled machine in
order to allow an accurate system calibration and positioning error quantifica-
tion. Experimental measurements are reported and discussed.

The remaining of the paper is organized as follows: Sect. 2 summarizes the
system set up and the used tracking strategy; Sect. 3 describes the system cali-
bration; Sect. 4 presents the system characterization, by using an accurate spatial
positioning system, discusses the positioning errors and presents some prelim-
inary hand tracking results; Sect. 5 concludes the paper and describes future
developments and applications.

2 System Set Up

The VG system is designed to obtain simultaneous information from two LEAPs
(Fig. 1a), orthogonally placed each other (Fig. 1b). In fact, a single LEAP sen-
sor is unable to compute with accuracy the hand position if the palm (and the
fingers) is not visible, when the hand is approximately orthogonal to the sensor
plane. Using two orthogonal sensors should ensure that at least one of them is
able to get the correct position. The support used for lodging the two LEAPs
was realized in aluminium and the lodges have been carved through a numerical
control mill (GUALDONI Mod. FU 80, 1995, Milan (Italy), spatial precision
0.01 mm) of the same shape and dimension of a LEAP cover (see Fig. 2a for the
support details). The LEAPs were fixed in position inside the lodges through
plastic screws, just for avoiding possible vibrations and movements (see Fig. 2b
for the assembly details). The centre of each LEAP was positioned at 18.5 cm
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Fig. 1. (a) The LEAP sensor and its references system. (b) Hardware configuration
with two orthogonal LEAPs was designed for creating a sufficiently wide area in which
the hand is tracked (image from [13]).

from the internal part of the corner of the support (in the first prototype it was
25 cm): this was established for maximizing the signal in a cylindrical region of
interest (ROI) of radious 10 cm and height 22 cm (the cylinder axis was perpen-
dicular to the plane of the VG support), while also reducing the VG dimensions.
In fact, by using the experience gathered in [13], the effects of direct infrared
radiation from one LEAP to the other was negligible and the positioning preci-
sion worsen with the distance from the sensors: for these reasons, the minimum
distance for improving signal quality into he desired useful ROI was chosen. The
design and construction of the support was very accurate with respect to the first
prototype presented in [13] in order to ensure that a rotation of 90◦ around the
axis perpendicular to the plane of the support was the only movement necessary
for overlapping one LEAP to the other.

One of the major issues to be addressed was the devices connection: it is
impossible to manage multiple instances of the LEAP on the same machine.
For this reason an architecture including a virtual machine was designed. The
virtual machine (Slave) was installed on the physical machine (Master): in this
way, plugging both sensors, one of them was assigned to the Master and the
other to the Slave for allowing to the machines to instantiate their own driver.
On each machine, data provided were captured and rerouted towards a server
(hosted on the Master machine). In this way, the server was able to send data
of both devices to one or more clients running on the Master.

The hand tracking system used for the proposed VG is based on a mutual
exclusion strategy. The algorithm used for obtaining the positions, illustrated
in Fig. 3, is based on a control switching approach: both LEAPs acquired their
frames stream, but only one, depending on the rotation of the hand with respect
to the horizontal LEAP references system, is used to represent the hand (Fig. 4).
Both LEAPs are simultaneously turned on and remain in this state for the
whole session because the time necessary to switch on and off a sensor would be
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Fig. 2. (a) VG support and (b) the mounted VG system.

impossible in real-time. At each time, only one LEAP is selected as “active” and
the corresponding frame is acquired and used to track the hand. The vector of
hand palm v, orthogonal to the palm and used by the sensor software to estimate
the hand orientation, is used for computing the roll r of the hand, that is the
angle between the x axis and the projection of the vector on the x−y plane, with
respect to the horizontal LEAP reference system. As shown in Fig. 4, if r is in
the range from 225◦ to 315◦ (the palm is facing downwards) or in the range from
45◦ to 135◦ (the palm is directed upwards) the horizontal LEAP is selected as
active, while the vertical is “paused” (it is still turned on, but its frame rate was
reduced to the minimum in order to save computational resources). Out of these
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Fig. 3. The flow diagram of the tracking prototype: the hand is tracked by both sen-
sors, the roll r with respect to the horizontal reference system is computed using the
information from the active LEAP and used to determine the active sensor (image
from [13]).
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Fig. 4. The switching approach: depending on the orientation of the hand, one of the
sensors is active and used to track the hand, while the other is paused, for saving
computational resources and maintaining real time (image from [13]).

ranges, the vertical is active and the horizontal is paused. As explained above,
the prototype behaves in a master-slave mode: the server component receives
data from the routers and manipulates the information from the vertical LEAP
(that is data from the Slave router) performing a roto-translation to obtain the
coordinates with respect to the horizontal LEAP reference system. The server is
responsible to check which LEAP is active, to send only the information received
from it to the client and, if needed, to change the active status of the sensors.

For building a consistent hand model using information from both sensors,
their reciprocal position has to be computed with high accuracy through a cali-
bration procedure.

3 Calibration

The spatial positioning system contained in the numerical control mill used
for drilling the boxes for the LEAPs has been also used for collecting spatial
accurate measurements by using a wood stick rigidly fixed to the mill (Fig. 5).
The VG support, fixed to the moving spatial system of the mill and oriented
for maintaining its reference system oriented as that of the mill (the plane of
horizontal LEAP was the same of the mill and this implied that also its vertical
axis was in the same direction of that of the mill), was moved along the three
axes with a precision of 0.01 mm while the wood stick remained fixed in its
initial position. In this way it could be possible to obtain measurements inside
the desired region of interest. The first measurements we collected were those
regarding the positions of the vertexes of the superior surface of the two LEAPs
(Fig. 6): this made it possible to evaluate their position/orientation with respect
to the mill reference system (spatial calibration was obtained and orientation
and positioning errors could be easily estimated and corrected without using
calibration through LEAP measurements).
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Fig. 5. The mill used both for producing the lodges for the LEAPs on their support
and for collecting accurate spatial positioning measurements. The wood stick (a) was
fixed to the static structure of the mill (b) hosting also the mill tool. The VG structure
(c) was secured by a vise on the three axes moving block of the mill (d), controlled
numerically. The stick was used both during the measurement of the LEAP position
with respect to the mill reference system and during the assessment of spatial points
with respect to the LEAPs references systems.

The resulting transformation matrices were calculated by these measure-
ments, separately of each of the two sensors, through a Singular Value Decom-
position (SVD) [13,25–27], in homogeneous coordinates with respect to the mill
coordinate system:

Whorizontal =

⎡
⎢⎢⎣

1.0 8.4E − 20 3.8E − 4 1.2
0.0 1.0 0.0 −181.1

−3.8E − 4 2.2E − 16 1.0 −4.8
0.0 0.0 0.0 1.0

⎤
⎥⎥⎦ (1)

Wvertical =

⎡
⎢⎢⎣
−1.1E − 16 −1.0 5.9E − 17 171.7

1.0 −1.9E − 20 3.2E − 4 −6.6
−3.2E − 4 −5.0E − 17 1.0 −4.9

0.0 0.0 0.0 1.0

⎤
⎥⎥⎦ (2)

However, the previous matrices taken into account just for spatial transfor-
mations of the two LEAPs and not “logical” internal differences between the
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Fig. 6. Representation of the points collected by using the spatial positioning system
on the corners of the LEAPS.

LEAPs and between each of their reference system and the mill reference sys-
tem. For evaluating and including these effects into the previous matrices, we
collected a series of spatial measurements with the first LEAP (horizontal) and
then we repeated the same measurements on the same points with the second
LEAP placed in place of the first. In this way, we eliminated completely even-
tual effects of matrix transformation on the data and difference in measurements
were just due to internal differences between the two sensors.

A total of 264 measurements were collected on the surface of concentric
cylinders (radii equal to: 0 cm, 2.5 cm, 5 cm, 7.5 cm and 10 cm; sampling angles:
0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦) with the axis oriented along the z-
axis of the LEAPs (along z, a total of 8 points were collected distributed around
the centre of the VG system, distance between measurements along z = 3 cm,
for a total length of 21 cm) in order to capture the transformation occurring
from one LEAP to the other. 15 of the collected measurements, allowing to the
external bases of the cylinders, were discarded because of their instabilities (we
found that the z axis was really sensitive to changes in measurement: this was
probably due to the difficulty of the sensor to recognize the tip of the stick along
its long direction).

Also these measurements were analysed through SVD to find the resulting
transformation matrices, one for each LEAP. By analysing the resulting matrices,
we obtained that transformation between the coordinate system of each LEAP
and the mill coordinate system was simply a translation (no distortions or scaling
factors were present and just negligible fluctuations, due to measurement noise,
occurred in the upper left region of the matrix). The obtained translations, were
respectively included into Eqs. 1 and 2 in order to obtain the following, and
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final, modified transformation matrices for the horizontal and vertical sensors,
respectively:

Whorizontal =

⎡
⎢⎢⎣

1.0 8.4E − 20 3.8E − 4 0.4
0.0 1.0 0.0 −189.6

−3.8E − 4 2.2E − 16 1.0 14.4
0.0 0.0 0.0 1.0

⎤
⎥⎥⎦ (3)

Wvertical =

⎡
⎢⎢⎣
−1.1E − 16 −1.0 5.9E − 17 177.4

1.0 −1.9E − 20 3.2E − 4 0.8
−3.2E − 4 −5.0E − 17 1.0 2.9

0.0 0.0 0.0 1.0

⎤
⎥⎥⎦ (4)

The choice of Eqs. 3 and 4 was to maintain the accurate rotation calculated just
by spatial measurements and to include the translation obtained by experimental
measurements collected with the sensors (we had forced to step across LEAP
measurements to include differences between the external reference system and
those of each LEAP). Equations 3 and 4 were used for transforming data from
both LEAPs to the mill reference system.

4 Spatial Characterization and Tracking

4.1 Spatial Characterization

The spatial characterization of the system was performed by collecting measure-
ments on the same positions used for calibration but with the LEAPs in their
own, definitive, positions. Three types of data were collected: spatial information
(wood stick tip position given by the mill) and data collected by both LEAPs.
Data from each LEAP were transformed and reported to the world coordinate
system (the mill system) and distance between each point measured by the
LEAP and the spatial measurements collected by the mill was calculated both
separately for each coordinate and globally. Results were shown in Figs. 7 and 8.
Pseudo-periodical trends indicate that errors increased with distance from the
sensors: measurements were collected following trajectories aimed at optimizing
the movements of the mill.

This produced an error reduction if the point was approaching the LEAP or
an increment when it moved away. Numerically, the average error positioning
(distance), standard deviation and maximum error, were reported in Table 1
separately for each LEAP. By analysing data, it can be argued that the error is
bigger along the z axis and that the two LEAPs behaviour is almost the same.
However, the maxim error, obtained along the z axis of each LEAP (due to the
difficulty of the sensor software to indicate the tip of the stick along its long
axis), was always below 7 mm. Since our scope is to identify hand tips and joints
whose dimensions, for an adult person, are normally above 1 cm along each axis,
our results represent a good tolerance for hand joints identification. Moreover,
the use of constraints between hand joints movements and the use of temporal
filtering during tracking could further improve accuracy.
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Fig. 7. The distance (expressed in mm) between points measured in different conditions
along the axes for the horizontal (left panel) and vertical (right panel) sensors. Since all
measurements are referred to the mill reference system, the original LEAP axes were
reported inside the graphs for allowing a direct comparison between corresponding
LEAP axes.

4.2 Preliminary Hand Tracking

In order to observe the real time behaviour of the VG system, a sequence
of about 30 s of free hand movement was collected and the corresponding
numerical hand model was represented on a computer screen. The fingers were
continuously moving while the arm was rotated around the wrist back and
forth. Figure 9 shows a set of hand positions and the corresponding model
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Fig. 8. The distances (expressed in mm) between points measured in different condi-
tions for the horizontal (up panel) and the vertical (down panel) sensors.
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Fig. 9. Examples of hand positions with the corresponding model obtained by means
of the proposed prototype. Also critical positions for the single sensor scenario have
been correctly tracked.

reconstructions, obtained with the proposed approach. The accuracy and the
fluidity of the tracking process were adequate (about 25 frames per second) and
the change of perspective did not produce jumps or other disturbing effects.
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Moreover the hand was correctly tracked also in those positions that would be
critical in the single sensor scenario. Due to the fact that no hand numerical
model was still associated to the virtual hand representation and that the hand
was freely moving, by these measurements it was impossible to quantify the
positioning error (we can reasonably argue that it could be no worse than that
described above).

Table 1. Average values, standard deviations and maximum values of the distance
along all the axes and in the space, between points measured by the mill and by each
of the LEAPs.

Horizontal leap Vertical leap

X axis distance Average 0.8 1.3

Standard deviation 0.8 0.9

Maximum 3.3 3.9

Y axis distance Average 1.4 1.4

Standard deviation 1.2 1.0

Maximum 4.7 3.8

Z axis distance Average 1.7 2.0

Standard deviation 1.4 1.1

Maximum 4.6 4.6

3D distance Average 2.8 3.0

Standard deviation 1.4 1.1

Maximum 6.6 5.6

5 Conclusions

A multiple-sensor VG for real time hand tracking, based on the use of two
orthogonal LEAP sensors, has been characterized and accurate positioning error
measurements presented. A procedure for VG assembly and calibration has been
illustrated. The average accuracy of the system is about 2–3 mm in the considered
ROI, thus making the proposed system well suitable for accurate hand tracking
measurements for rehabilitation purposes. This is conformed by the preliminary
test of hand tracking. Future developments will regard the implementation of: (1)
an efficient strategy for merging data coming from both sensors, in substitution
of the actually used (mutual exclusion) strategy, for improving spatial accuracy
and further reducing occlusions; (2) a numerical hand model to be associated
to the virtual representation of the hand and used for forces calculation; (3) a
framework for developing rehabilitation tasks associated with virtual environ-
ments and for numerical analysis of rehabilitation data and therapy outcomes.
Finally, we aim at testing the VG on voluntary patients under the supervision
of therapy experts.
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Abstract. Many studies related to congestion analysis focus on estimat-
ing quantitative values such as actual number of people, mobile devices,
and crowd density. In contrast, we focus on perceptual congestion rather
than quantitative congestion; however, we also analyze the relationship
between quantitative and perceptual congestion. We construct a sys-
tem for estimating and visualizing congestion and collecting user reports
about congestion. We use the number of mobile devices as quantita-
tive congestion measurements obtained from Wi-Fi packet sensors and
a user report-based congestion as a perceptual congestion measurement
collected via our Web system. In our experiments, we investigate the
relationship between these values. In addition, we apply Non-negative
Tensor Factorization to extract latent patterns between locations and
congestion. These latent features help us to understand the relationship
of the characteristics among the locations.

1 Introduction

The sensing and analysis of ‘people flow’ is studied widely based on various sen-
sory data such as monitoring system with stereo cameras [5], laser range finders
for human tracking [9], and data-mining collected by Location-Based Services
(LBS) data [6]. Although these methods provide reasonable results to understand
the flow of people, there are some disadvantages. One of the important issues is
how to identify people to acquire the flow. People flow analysis based on camera
sensors/laser range finders has difficulty in identification of a person between
different sensors since personal ID information is not available directly. In addi-
tion, these sensors are expensive and difficult to install in new environments. In
another vein, people flow analysis based on LBS has poor data coverage. The
quality of the analysis strongly depends on the number of users who use the
application at a certain location. For instance, the Foursquare dataset1 in New
York City has 3,112 users in it, but the data consists of 0.036% of the population
in New York City.

1 Foursquare Dataset. https://sites.google.com/site/yangdingqi/home/foursquare-
dataset/. Accessed 22 August 2016.
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Recently, Probe Request sensing is gathering attention for a new approach
for people flow analysis [3,11]. A Probe Request is a Wi-Fi connection request
packet from a Wi-Fi device to nearby Access Points (APs). The Prove Request
sensing can solve the above-mentioned disadvantages. First, it becomes easier
to collect the identified flows of each person because the packet includes the
device ID (called MAC address). Second, it is also easy to collect a large scale of
data because Wi-Fi devices send Probe Requests periodically while the Wi-Fi is
turned on. In other words, it is not necessary to install a specific application to
collect data. Finally, Probe Request sensors are small and not expensive, so it
is easy to install the sensing system in a new environment. (Table 1 summarizes
the comparison.)

Table 1. Comparison of methods for people flow analysis.

Method Person tracking
between sensors

Data coverage Installation

Camera Difficult High Difficult

Laser-range-finder Difficult High Difficult

LBS Easy Low Easy

Probe request sensing Easy High Easy

Congestion measurements and estimates based on people flow analysis are
useful and important for various applications. For instance, it can aid in conges-
tion avoidance and mitigation. It is also useful in ascertaining the number of vis-
itors to retail stores for purposes of customer analysis and marketing strategies.
Additionally, evacuation planning for emergency situations requires congestion
information [2]. In another vein, Wi-Fi packet sensors also estimate the num-
ber of mobile devices (e.g., smartphones and laptop computers). The number
of mobile devices tends to be proportional to the number of people, so we can
use them to roughly estimate congestion. Wi-Fi packet sensors cover distances
between a dozen to a hundred meters. A Wi-Fi radio wave has a higher trans-
mittance than visible light, therefore we can install packet sensors in typical
situations without a consideration of blind areas.

The above-mentioned techniques are aimed at estimating quantitative con-
gestion measurements such as people count, crowd density, and the number
of mobile devices. Of course, estimating the actual number of people is mean-
ingful and important for customer analysis. Meanwhile, qualitative congestion
measurements, such as a person’s perception, are important rather than quan-
titative values when providing congestion information to people. Figure 1 shows
two spots with almost the same crowd density. There are few vacant seats in
the dining hall, so we would feel that the dining hall is crowded. The crowd
density at the bus stop is similar to that at the dining hall, but the bus stop
cannot be considered crowded. Human perception about congestion depends on
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(a) Dining hall (b) Bus stop

Fig. 1. Two spots with similar crowd density.

the people count and density and also the location fs characteristics such as area
and seating capacity.

In this paper, we focus on the relationship between quantitative and per-
ceptual congestion to provide perceptual congestion information. The number
of mobile devices obtained from Wi-Fi packet sensors is used for quantitative
congestion measurements. On the other hand, user report-based congestion is
collected via our Web service, and it is used as a perceptual congestion measure-
ment.

In addition, we tackle an analysis of congestion patterns. It is important
issue to understand the characteristics of a particular location and relation
among locations. In general, congestion data consists of high dimensional infor-
mation (the number of locations, time resolutions, etc.); thus, effective dimension
reduction methods are required for a better understanding of these characteris-
tics. However, some dimension reduction methods, such as Principal Component
Analysis, are not helpful for interpreting the data. One reason is that they lose
the original meaning of each axis (e.g. locations, dates, time, etc.) and it is often
hard to understand what each axis mean after the reduction. Specifically, we
apply a Non-negative Tensor Factorization (NTF), which is a kind of dimen-
sion reduction method that does not lose the original meaning of each axis, to
extract the latent congestion patterns. In our experiments, we conducted a user
study, involving 304 participants, to investigate the effectiveness of our dimen-
sion reduction strategy. This paper is an extended version of the paper published
in ICPRAM2016 [8]. The extended part and the main contribution with respect
to the previous work is the analysis of congestion data based on NTF (described
in this paragraph) and the user study (reported in the section of experimental
results).

2 Related Work

2.1 People Flow Analysis Based on Wi-Fi Packet Sensing

Schauer et al. installed two Probe Request sensors at a German airport. One
sensor was arranged before people pass the security check, and another after
the check [11]. They analyzed the correlation between the estimated number of
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people by Probe Request sensing and the actual number of people that passed
the security check. They demonstrated that the high correlation value (in fact,
the value was 0.75 on average) through the experiment over 16 days.

Fukuzaki et al. developed their own Probe Request sensors, and applied to
people flow analysis at an exhibition of Osaka Electro-Communication University
over two days [4]. They analyzed the number of people and the length of time
they stayed at each location. The results were utilized for the generation of
origin-destination table that showed the number of people who moved from one
point to the other. They concluded that the rough tendency of people flow was
grasped.

In terms of counting the number of people, not only Probe Request sensing,
but also the other approaches are proposed: based on the number of Wi-Fi frame
[14], Channel State Information (CSI) of Wi-Fi [13], Bluetooth scan data [12].

Above-introduced studies aim at estimation of the number of people as accu-
rately as possible based on Wi-Fi/wireless signal sensing. And, there is no work
that consider the people’s perception for the congestion.

2.2 Prediction and Recommendation Based on Tensor Factorization

Sahebi et al. proposed Feedback Driven Tensor Factorization, to model student
learning processes and predicting student performances [7]. They created a three-
dimensional tensor that indicated whether a certain student passed or failed
quiz Q on a certain attempt. The tensor was, then, factorized it into another
three-dimensional tensor and matrix. The three-dimensional tensor calculated
from the factorization indicates students’ process of acquiring knowledge (e.g.,
what pointers do in programming) by solving quizzes. The decomposed matrix
revealed which knowledge was useful for in answering quizzes. Their approach
showed higher accuracy than other approaches for the task of predicting student
performance.

A mobile recommendation system was proposed to help those wishing to
sightsee or dine in a large city [15]. Their system returns recommended activities
at a location where a user sends a request. They proposed PARAFAC-based ten-
sor factorization with some prior knowledge terms for this recommender system
[1]. They confirmed that their approach outperformed other baseline approaches
in terms of a recommendation task by comparing the accuracy of estimating the
null values in the original tensor.

Oka et al. applied an NTF to people flow tensor. They added two constraints:
a sparsity constraint and an initialization with prior knowledge, to the factoriza-
tion process in order to help interpretation of the decomposed matrices [10]. The
sparsity constraint clarifies which factor is important for some users, locations,
and times. Prior knowledge (e.g., 8:00 h is breakfast time, Restaurant A is open
from 08:00 h to 19:00 h, etc.) also helps our understanding of the data. They
used prior knowledge by initializing the place and time latent factor matrices.
By setting an initial value according to prior knowledge, they could not only
examine whether extracted patterns fit to the given prior knowledge, but also
discover unexpected patterns of people flow.
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Above studies utilize tensor factorization techniques in order to develop a
prediction/recommendation system to support human activities. In such sys-
tems, researchers do not have to consider the readability of the original and
decomposed data, because the most important thing is to produce higher per-
formance. In contrast, our study utilizes the tensor factorization to help users
understand the congestion of each location and/or relationship between loca-
tions. In general, the tensor factorization is often used for dimension reduction,
but its readability is not discussed in details. Therefore, we investigate the effec-
tiveness of tensor factorization in terms of readability of the decomposed data
through a user study involving 304 participants.

3 Congestion Estimate and Collecting User Reports

3.1 System Overview

An overview of our proposed system is shown in Fig. 2. When our Wi-Fi packet
sensors capture probe request frames, tuples of the received time, location ID,
and MAC address are stored to the database. Then, the system calculates the
extent of the congestion. Our Web service plots a time series of the congestion
for each location. This service has a function for receiving user reports about
the congestion. The details of the system are described in following subsection.

3.2 Probe Request Capturing and Filtering

We used Wi-Fi packet sensors arranged in various locations to capture probe
request frames. Wi-Fi packets can be received even when the receiver is several
hundred meters away from the sender. In this study, we estimated the congestion
at dining halls and bus stops on a university campus. We filtered out packets
with weak signal strengths (under −80 dB) so that we only collected data from
close devices. The received time t of the packet, place ID (sensor ID) p and MAC
address m were stored to the database D2.

D ← D ∪ {(t, p,m)} (1)

3.3 Congestion Degree Based on Probe Requests

The congestion degree c(t, p) id defined for each time and place using probe
request data without prior knowledge of the location as

c′(t, p) = |{m | (t′,m, p′) ∈ D, t − 180 ≤ t′ ≤ t, p′ = p}| (2)

c(t, p) =
c′(t, p)

α max
t

(c′(t, p))
, (3)

2 Actually, we stored hash values to the database instead of MAC addresses because
of privacy issues.
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Probe request

Wi-Fi packet sensor
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Fig. 2. Overview of our system.
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Fig. 3. Web service for visualizing congestion.
(Color figure online)
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Crowded

Medium
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Submit

Fig. 4. User report form.

where c′(t, p) is the number of the unique MAC address observed during the three
minutes. We obtain c(t, p) by normalizing c′(t, p). The value α is determined
empirically (in this paper, α = 0.75).

3.4 Visualizing Congestion and User Report

We developed a Web service to visualize the extent of the congestion. Figure 3
plots the congestion degree calculated using Eq. 3. The red line represents the
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congestion during the last 30 min and the green line represents the forecasted
congestion. Readers can browse other locations using the upper tabs.

User reports are collected via our Web service, which are useful information
as perceptual congestion measurements. Figure 4 shows the form for reporting
the congestion degree on our website. There are five radio (option) buttons.
Users can only select one radio button. After a user pushes the submit button
on the form, the selected item, time and location are submitted to the server.

Table 2. Location of Wi-Fi packet sensors.

ID Location Floor Type Purpose

1 Dining hall A GF Indoor Breakfast, lunch and dinner

2 Dining hall B GF Indoor Breakfast, lunch and dinner

3 Learning space 3F Indoor Learning

4 Dining hall C B1 Indoor Lunch

17 Bus stop A N/A Outdoor Returning home

18 Bus stop B N/A Outdoor Returning home

4 Analysis of Congestion and User Reports

4.1 Operation of Our System

We installed six Wi-Fi packet sensors on an university campus (Figs. 5 and 6).
Table 2 shows the installed spot, with an indication of whether or not the spot
is located indoors. These packet sensors have been in operation since January
2016.

Fig. 5. Wi-Fi packet sensor.

We have been operating our Web service for visualizing congestion and
recording user reports since July 2016. We received over three hundred user
reports about congestion via our Web service during the first four weeks.
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4.2 Time Series of Congestion

Figure 7 shows the congestion calculated using Eq. 3 for a typical week. We can
see that the dining halls (IDs 1, 2, and 4) have a steep peak around 12:00
because of lunchtime. The congestion at the bus stops (IDs 17 and 18) tends to
fluctuate intensely because busses arrive every 5 to 15 min to take passengers.
Both bus stops are mainly used by people returning home, so peak congestion
occurs around evening time.

4.3 Correlation Analysis of User Reports

We analyzed the correlation between user reports and the congestion recorded
using Wi-Fi packet sensors. Figure 8 shows the scatter diagrams and correlation
coefficients for the user reports and Wi-Fi-based congestion for each location.
The correlation coefficients for locations 1, 3 and 4 are over 0.6, so we can say
that the quantitative and perceptual congestion of those spots have moderate
correlations. Meanwhile, the correlation coefficient for location 2 is less than
0.5 even though it is from the same category (dining hall) as locations 1 and
4. After analyzing the user reports in more detail, we found out that this low
correlation due to many submissions of ‘Crowded’ in a short period of time.
During this period, the Wi-Fi packet sensors did not estimate that the location
was crowded; therefore, we believe that these submissions were malicious. We
will deal with such malicious submissions in the future.

2. Dining hall B (GF)

1. Dining hall A (GF)

4. Dining hall C (B1)

3. Learning space (3F)

18. Bus stop B

17. Bus stop A

50m

Fig. 6. Wi-Fi packet sensors on a campus.

Table 3. Time table of bus stop (location 17).

8:11 8:25 8:41 9:11 9:41 10:21 10:41 11:16 11:41 12:11 12:46 13:01
13:22 13:47 14:17 14:37 14:47 14:57 15:12 15:42 16:12 16:27 16:32 16:46
16:50 16:57 17:17 17:42 18:17 18:22 18:42 18:57 19:27 19:42 20:02 20:31
21:01 21:31 22:01
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Table 4. Time table of bus stop (location 18).

6:57 6:59 7:11 7:21 7:37 7:39 7:46 7:56 8:13 8:21 8:34 8:39
8:44 8:49 8:54 8:59 9:04 9:14 9:30 9:36 9:46 9:57 10:12 10:17

10:26 10:36 10:44 10:57 11:01 11:12 11:27 11:41 11:51 11:56 12:04 12:11
12:16 12:21 12:26 12:41 12:57 13:06 13:12 13:26 13:36 13:46 13:57 14:11
14:21 14:26 14:37 14:41 14:44 14:47 14:51 14:54 14:58 15:01 15:04 15:11
15:16 15:21 15:26 15:37 15:41 15:46 15:56 16:01 16:04 16:09 16:14 16:19
16:24 16:27 16:31 16:34 16:38 16:43 16:46 16:51 16:56 17:04 17:06 17:12
17:14 17:19 17:22 17:24 17:26 17:29 17:35 17:39 17:42 17:44 17:48 17:52
17:55 18:01 18:04 18:06 18:11 18:17 18:21 18:26 18:31 18:37 18:41 18:44
18:53 18:56 18:59 19:06 19:11 19:14 19:17 19:26 19:31 19:36 19:46 19:51
19:54 19:57 20:06 20:11 20:14 20:26 20:29 20:41 20:49 21:01 21:06 21:09
21:14 21:24 21:26 21:41 21:59 22:01 22:06 22:21 22:48 22:53 22:59 23:13

The correlation coefficients of two bus stops (locations 17 and 18) are not
that large (around 0.5) because of the intense fluctuations in the congestion
calculated using Wi-Fi sensors. Figure 9 shows the congestion of two bus stops
and Tables 3 and 4 show their timetables. Given that busses run frequently, the
congestion curve fluctuates intensely; consequently, the correlation coefficients
of the bus stops are not high and therefore forecasting the congestion becomes
slightly difficult.

5 Spatio-Temporal Feature Analysis Across Locations

5.1 Analysis Overview

In this section, we explain the proposed framework for extracting the latent con-
gestion patterns of people from Probe Request data. The overview of the analy-
sis is shown in Fig. 10. In order to extract congestion patterns that indicate the
number of people who stayed at each location, we compose a three-dimensional
tensor that shows time, date and locations. Here, the element of the tensor indi-
cates the number of people. In fact, the number of people is normalized to a
value between 0 and 1. Table 5 shows examples of the tensor data.

We then factorize this tensor into three matrices: a location latent factor
matrix, date latent factor matrix, and time latent factor matrix. Note that we
can reduce the dimension of the data without losing the original meaning of each
axis (location, date, and time), by applying NTF.

5.2 Non-negative Tensor Factorization (NTF) for Extracting
Understandable Patterns

We use NTF to decompose the data into three matrices that indicate which
factor is important for some locations, day of the week, and times. First, we
show give the basis of for Tensor Factorization.
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(f) Location 18

Fig. 7. Congestion for a typical week.
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Fig. 8. Correlations between the congestion and user reports.
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(b) Location 18

Fig. 9. Congestion of bus stops for a typical day.

Fig. 10. The overview of analysis of spatio-temporal features across locations.
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Table 5. Examples of tensor data.

Location Time Day of the week Congestion

51 19 Friday 0.109188

19 20 Wednesday 0.363372

52 9 Friday 0.051829

50 2 Tuesday 0.003856

...
...

...
...

Let the target three-dimensional L × M × N tensor be X. Here, we consider
factorizing this X into three matrices: M × K location latent matrix T, L ×
K day latent matrix U, and N × K time factor matrix V. Note that K is a
parameter that determines the number of factors. If we obtain three matrices
that completely describe the original tensor X, then each element xlmn in X
and each latent pattern vector ul = [ul1, . . . , ulK ]T , tm = [tm1, . . . , tmK ]T , and
vn = [vn1, . . . , vnK ]T fulfills the following equation.

xnml =
K∑

k=1

tlkumkvnk. (4)

That is, xnml is expressed by as a multiplication of three latent pattern vectors:
the latent pattern vectors of user l, location m, and time n. Using Eq. 4, we
formulate define the cost function as CTF(U,T,V). Tensor factorization is then
equal to calculating the U, T, and V that minimizing CTF(U,T,V). Here, DX

is denotes the set of indices that point to non-null elements in X.

CTF(U,T,V) =
∑

(l,m,n)∈DX

(xlmn −
K∑

k=1

tlkumkvnk)2 (5)

Equation 5 is the fundamental cost function of the tensor factorization, which is
the same as the standard PARAFAC tensor decomposition [1].

6 Experimental Results

6.1 Dataset

We collected packet logs from 40 locations in Kyoto city, Japan. The period of
for the data a collection is was 3 months, from Jul. 1, 2016st to Sep. 30, 2017 .6.
There were more than a 1 million unique MAC addresses, which is equivalent
to about 68% of the population of the city. Then, we made created a congestion
tensor which consists of 40 (locations) × 7 (day of the week) × 24 (hours)
elements.
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6.2 Latent Patterns

Figure 11 shows visualization results of three decomposed (latent) matrices with
5 features. In each matrix, the brightness of each cell indicates the strength of
the response for a feature; the darker the color, the higher the response. For
example, location 1 has a higher response to feature 2 in the location latent
matrix. In the day latent matrix, feature 2 has strong relations with weekdays.
In fact, there is an office of a company at location 1 and the feature indicates
that the employees work on weekdays.

A hotel at location 19 has a strong relation with the feature 3 and feature
4. These features correspond to congestion around 9 AM (check-out time) and
18 PM (check-in time) respectively. Feature 0 has a strong relation with the
midnight period. This feature grasps the characteristics of a bar open until late
at night.

Fig. 11. Three latent matrices with 5 features.

Fig. 12. Frobenius norm error (FNE) of each setting.

A recomposition error, calculated by the following formula, is often used to
discuss the accuracy of the decomposition.

FNE(X,T,U,V) =

∑
(l,m,n)∈DX

(xlmn − ∑K
k=1 tlkumkvnk)2∑

(l,m,n)∈DX
x2
lmn

. (6)
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In general, as the number of features K increases, the decomposition error of the
tensor becomes smaller as shown in Fig. 12. However, visibility and readability
of the decomposed matrices and relations among them become lower. Figures 13,
14 and 15 show the location latent matrices when the number of features were
set to 5, 10 and 20 respectively. It is not easy to understand the correlation of
features across locations. Therefore, we had to determine the appropriate number
of features to ease the analysis. In the next section, we report a user study.

Fig. 13. Location latent matrix with 5 features.

Fig. 14. Location latent matrix with 10 features.

6.3 Subjective Evaluation of Latent Patterns

We conducted a survey to assess which the latent matrix that would be ease to
grasp the characteristics of the locations. In total, 304 individuals, including old
and young people, old and young alike, join participated in our experiments. We
divided the participants into four groups, and gave different materials to each
group as denoted shown in Table 6. We asked the participants to read the given
materials and fill out their findings on the answer sheet.

Table 6. Description of four groups in our survey. Description of four groups in our
survey.

Group 1 The original data on a spreadsheet

Group 2 Three latent matrices with 5 features

Group 3 Three latent matrices with 10 features

Group 4 Three latent matrices with 20 features
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Fig. 15. Location latent matrix with 20 features.

Fig. 16. The number of participants who filled out characteristics of individual
location.

First, we counted the number of participants who filled out the characteris-
tics of individual locations. The result is shown in Fig. 16. The participants in
Group 1 seemed to find the characteristics of each location. This group directly
read the original tensor data organized on a spreadsheet. We assume that the
original data was easy to use to find location-based characteristics by extracting
a specific location on the spreadsheet. In contrast, in the cases of the decompo-
sition data (Group 2, 3 and 4), the characteristics have to be considered through
the extracted features.

Second, Fig. 17 shows the number of people who filled out the relationship
among locations. In contrast to Fig. 16, the number of participants in Group
1 was comparably smaller. In fact, it is not easy to discover a relation and/or
correlation between even two locations from the original tensor data since there
are 40 locations with 7 (day of the week) times 24 (hour) congestion information.
On the other hand, factorization results tell us the characteristics of locations as
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Fig. 17. The number of participants who filled out characteristics across locations.

smaller number of latent features. That is why the participants in Group 2 and
Group 3 could fill out more answers in our survey. With regard to Group 4, the
result indicates that it was difficult for participants to find the characteristics,
as can be judged from the chaotic representation in Fig. 15.

7 Conclusion

In this paper, we described a system for estimating and visualizing congestion
using Wi-Fi packet sensors. We analyzed the relationship between quantitative
congestion measurements using Wi-Fi packet sensors and perceptual congestion
measurements based on user reports. Based on our analysis, we found corre-
lations between the quantitative and perceptual congestion measurements for
each location. We then applied the NTF to the congestion tensor to analyze
the characteristics of individual location and across locations. Through our user
study, we found out that the factorization results helped people to understand
the characteristics of locations.

In our future work, we plan to install Wi-Fi packet sensors at more locations
(e.g., lecture rooms, laboratories, and conference rooms) and then analyze the
congestion in more detail. Based on the relationship between quantitative and
perceptual congestion, we will improve the accuracy of congestion estimates and
provide congestion information via our system. In addition, we will collaborate
with POS data for furthermore analysis of locations.
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Abstract. Text line segmentation in handwritten documents is an
important step in many high level processing such as handwritten docu-
ment enhancement and text recognition. In this paper we describe a novel
approach of text line segmentation based on tracking. In this sense, we
consider each connected component in the image as a moving object
in its respective line and find its best match given its history motion,
i.e. the closest connected component that lie in its trajectory. Direction
of motion gives direction of handwritten text and is the output of our
tracking algorithm. We apply our approach to images of ICDAR 2013
handwritten segmentation contest and report an overall detection rate
of 86.51%.

Keywords: Text line segmentation · Handwritten · Tracking
Connected component analysis · Trajectory generation

1 Introduction

Text line segmentation is the process of finding lines in a document image. This
task is more challenging in manuscript images since writing style is different
for each writer which affects skew and adjacency of text lines in the document.
Among works that try to detect automatically text line in handwritten docu-
ment, Li et al. [1] propose an approach for handwritten text lines segmentation
using level sets. Goto and Aso [2] proposed a local linearity based method to
detect text lines in English and Chinese documents. In the method proposed by
Hones and Litcher [3], text lines are generated by expanding the line anchors of
the document image. The previously cited methods cannot handle variable sized
text, which is the main drawback.

Roy et al. [4] proposed text line extraction using foreground and background
information. Louloudis et al. [5] used a block-Based Hough Transform for text
line extraction. In the method proposed by Loo and Tan [6] the irregular pyra-
mids are used for text line segmentation. Recently, Bukhari et al. [7] proposed
a line segmentation approach for camera-based warped documents using active
contour models. Gatos et al. [8] proposed an algorithm based on text line and
c© Springer International Publishing AG, part of Springer Nature 2018
M. De Marsico et al. (Eds.): ICPRAM 2017, LNCS 10857, pp. 222–234, 2018.
https://doi.org/10.1007/978-3-319-93647-5_13
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word detection for warped documents. Bai et al. [9] used a traditional perceptual
grouping-based algorithm for extracting curved lines. Pal and Roy [10] proposed
a head-line based technique for multi-oriented (printed in several orientations)
and curved text lines extraction from Indian documents. In other work, Pal et al.
[11] developed a system for English multi-oriented text line extraction estimating
the equation of the text line from the character information.

This paper describes a new approach inspired of tracking works to detect
lines in handwritten document images.

The approach is an extension of our previous work [12]. Each cluster of
connected pixels (which can be a word or a part of a word) is considered as
an object moving from left to right in the manuscript image. Its trajectory is
calculated based on a regular motion. We define a regular motion of a cluster as
seeking its best match among the other clusters with minimal angle deviation
with respect to its current trajectory. We benefit from tracking rationale where
we predict the next position of clusters according to their trajectories determined
by their previous positions. We avoid tracking issues since we do not count on any
feature of the cluster. That is because our moving object (the cluster representing
a word or parts of a word in the handwritten document image) need not to have
a similar shape in all positions of its trajectory.

Unlike our previous work in [12] where clusters were considered neighbours
if they resided inside a circle centred at the current cluster, we search, in this
paper, for neighbours inside a rectangular window positioned to the right of the
current column coordinate. The second difference is that we explicitly generate
trajectories whereas we previously only performed pair matching without creat-
ing complete trajectories. This enabled us to extend our experiment to a quanti-
tative analysis using the metrics defined in [13] and computed by their software
package. Throughout this paper, we refer to clusters as connected components.
We explain more deeply our approach in Sect. 2. We present our quantitative
analysis in Sect. 3 and conclude in Sect. 4 with some perspectives.

2 Our Approach

Our algorithm takes as input a binary manuscript image and produces as output
a set of paths tracking the lines of written text. We first extract all connected
components of the image and represent them with the coordinates (raw and
column indices) of their centers of gravity (yellow dots in Fig. 1.). Components
smaller than a certain threshold are deleted in order not to mislead our algo-
rithm. Examples of such regions include dots (dark pink dots in Fig. 1.). We then
generate a set of tracks (lines in the manuscript) passing by the components’
centers as to minimize the distance between each two consecutive points of each
track and the angle between each sequential track segments.

Formally, let X = {x1, x2, ...xn} be a list of connected component centers

s.t. xi =

⎛
⎝

xi
1

xi
2

⎞
⎠ representing the coordinates of xi. X is sorted in the increasing



224 I. Setitra et al.

Fig. 1. Example of a center tracking. Red region: connected component to be tracked
and its center highlighted in yellow. Gray rectangle: search window of the tracked
connected component. The search window includes small connected components to be
removed (pink regions) and connected component to be considered for comparisons and
matching (green regions). Search window starts from column coordinates of the center
to be tracked, and its line minus the line threshold Tl. It ends at the row and column
coordinates of the center plus line and column thresholds Tl and Tc respectively. Black
regions are connected components far from the connected component to be tracked and
are not considered for comparisons. Yellow dots are centers of connected components.
(Color figure online)

order of raw values as follows:

∀i, j, i < j;xi
1 ≤ xi

j (1)

Our algorithm generates for each connected component center a trajectory
starting from it. This process is explained in the following section.

2.1 Preprocessing

Our algorithm takes as input a binary manuscript image and produces as output
a set of paths tracking words or parts of a word in each line of the written text.
Binary manuscript images can be issued from binarization processes. In our
case, we assume binarization has already been performed and accept as input
binary images where each connected component in the binary image is either a
letter, a word or a part of a word depending on the writing script. We refer to
a connected component as set of pixels having same value and connected with a
8−neighbouring connection.
More formally:
Let B be a binary image of a manuscript where:

{
B(u, v) = 1 if B(u, v) ∈ foreground

B(u, v) = 0 if B(u, v) ∈ background
(2)
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where u and v are row and column coordinates of an arbitrary pixel in B. We
refer to foreground and background as text non text regions respectively in B.
The pixel (u, v) is connected to the pixel (u′, v′) if there is a path:
P = {(u, v); (u1, v1); ...; (un, vn); (u′, v′)} With:

{
B(ui, vi) = 1 for i = 1; ...;n,

(ui−1, vi−1) ∈ N8(ui, vi) for i = 1; ...;n.
(3)

where

N8((ui, vi)) =

⎧⎪⎨
⎪⎩

(ui − 1; vi), (ui + 1; vi), (ui; vi − 1), (ui; vi + 1),
(ui − 1; vi − 1), (ui − 1; vi + 1), (ui + 1; vi − 1),

(ui + 1; vi + 1)

⎫⎪⎬
⎪⎭

(4)

is the 8− neighbourhood of pixel (ui, vi).

A connected component CC is a set of pixels such that every pair of pix-
els in the set are connected. Once connected components extracted, we remove
irrelevant connected components. Dots, being a connected component and which
are parts of words, are above letters in many scripts. In the case of manuscript
images, dots are even further than only at above proximity from the letter.
This makes a potential tracking of a dot erroneous and can alter the whole
tracking process. To overcome this issue, we remove all connected compo-
nents having approximately the size of a dot, which makes our line tracking
ignores dots and similar connected components. To do so, we define manu-
ally a minimum area threshold Ta and remove all connected components below
this threshold: Let CC = CC1, CC2, ..., CCk, ..., CCm be the set of all con-
nected components of B. For each connected component CCk of image B where
CCk = {((u1, v1), ..., (un, vn)}

{
if

∑n
i=1(B(ui, vi))

n
< Ta : remove CCk from CC (5)

After small regions removal, we compute for each connected component CCk,
its center of mass: ⎧⎪⎪⎨

⎪⎪⎩

xk
1 =

∑n
i=1 ui

n

xk
2 =

∑n
i=1 vi
n

(6)

where xk
1 , xk

2 are row and column coordinates of connected component CCk.
C = {C1, ...;Cn} are all the n centers of image B.

Figure 1 shows extracted connected components of image B. Centers com-
puted in of Eq. 6 are represented by yellow dots. Removed connected components
of Eq. 5 are represented by dark pink dots.
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2.2 Connected Components Tracking

In order to find text lines in a manuscript, we track connected component center

of each cluster CCk found in the previous step. Let xk =

⎛
⎝

xk
1

xk
2

⎞
⎠ be the center

of cluster Ck for which we want to find the trajectory tk, where xk
1 , x

k
2 are

respectively row and column coordinates of center xk. Tracking is performed as
follows

Step 1: Initialization

– The trajectory tk is a list and is first initialized to the element xk, i.e.
tk = {xk}.

– We define slopevector(xk) to be the vector representing the slope of the cur-
rent trajectory tk at the point xk. For the first point of the current trajectory

xk, we set slopevector(xk) to the horizontal unit vector u1 =

⎛
⎝

0

1

⎞
⎠. That is,

we assume that the trajectory starts horizontal.

Step 2: Search Window Construction

– A window starting from xk is constructed so that to minimize the search
window of the next track of xk. Let W k be the search window of xk. W k is
computed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W k = {xi} s.t. ∀xi ∈ C :

xi
1 ≤ xk

1 + Tl

and

xi
1 ≥ xk

1 − Tl

and

xi
2 ≤ xk

2 + Tc

and

xi
2 ≥ xk

2

(7)

if W k = ∅ then, tracking of xk is stopped and go to step 5.

Step 3: Next Track Selection

– We set the next point y of the trajectory tk to the component xj ∈ C which
minimizes the angle between the vectors slopevector(xk) and

−−→
xkxj (

−−→
xkxj is

the vector xj − xk.).

y = arg min
xj∈neighborhood(x)

θ(slopevector(xk),
−−→
xkxj) (8)
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The motivation behind using this minimization is to generate regular-looking
trajectories with small angle between each sequential trajectory segments.
The angle calculation is given by the following formula derived from the
expression of the dot product between the two vectors:

anglebetween(−→u ,−→v ) = arcos

( −→u .−→v
‖ −→u ‖‖ −→v ‖

)
(9)

– new trajectory is then equal to previous trajectory updated with the new
center: tk = {tk ∪ xj}.

Step 4: Tracking Update

– The slope vector is updated so that the writing style is respected and does
not follow only a horizontal writing. The variable slopevector(x) is updated
as follows:

slopevector(x) ← y − x (10)

– remove xk from C.
– xk is also updated to xj so that we continue the previous tracking starting

from best match.

Step 5: Loop into Remaining Tracks

– if C = ∅, go to step 6.
– else if W k = ∅ then initialize xk to a center in C, create a new trajectory

tk = xk and go to step 2.
– else go to step 2 with already updated variables.

Step 6: Terminate Tracking

– The tracking is terminated when all centers in C have been tracking. This
results in a number of trajectories equal to connected components centers
in the image B. Note that, this method generates redundant trajectories.
For example, even when a center xk is tracked to a center xj , then, our
approach generates a two trajectories while both are merged to same one.
While this method is not optimized, we propose in the following how to
merge trajectories.

2.3 Merging Nearby Trajectories

As discussed earlier, for each center in C we generate a new trajectory regardless
of common tracks with previous trajectories. This leads to a huge number of
trajectories (this number is equal to number of connected components in image
B). In order to reduce this number of trajectories, we merge all trajectories
which have common elements.
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Let T = {t1, t2, ..., tn} be the set of n trajectories generated after tracking.
For each pair (ti, tj) ∈ T if ti ∩ tj �= ∅ then update T to T = (T \ {ti, tj}) ∪ T ′

and T ′ = ti ∪ tj . After merging nearby trajectories, we affect a same value
to each trajectory in T , for example, for trajectory t1 = {x1, x2, x3}, all pixels
centered at {x1, x2, x3} are given the value 1. This value is also propagated to all
connected components from which centers were extracted. For the same previous
example, all pixels of the three connected components centered at {x1, x2, x3}
are given the value 1.

2.4 Small Regions Label Propagation

In Sect. 2.2 we discussed how we removed small connected components so that
our tracking is not affected. Once tracking performed, small connected compo-
nents must be assigned to a text line, i.e. a previously computed trajectory. To
do so, for each pixel in ignored connected components, we look for the near-
est neighbour which had a label i.e. a trajectory number. This label is then
propagated to this pixel. Note that by doing this, pixels of the same connected
component can belong to different manuscript lines based on proximity.

3 Experimental Results

3.1 Dataset Used

We tested our approach on images of ICDAR 2013 Handwriting Segmentation
Contest, [13]. The dataset consists of 150 document images written in English
and Greek as well as 50 images written in Bangla along with the associated
ground truth for training and 50 images written in English, 50 images written
in Greek and 50 images written in Bangla for test.

3.2 Metrics Used

In order to assess numerically accuracy of the approach, we compute the detec-
tion accuracy (DR) metric proposed in [13]. DR of image B computed as follows:

DR =
o2o

N
(11)

where o2o and N are respectively the one to one match and number of ground
truth manuscript lines. In order to compute o2o we first need to compute the
Match Score (MS) of the two regions represented by their labels i and j as
follows:

MS(i, j) =
Gj ∪ Ri ∪ B

(Gj ∪ Ri) ∩ B
(12)

Gj is is a set of pixel coordinates in B where pixels share same label i correspond-
ing to a manuscript line in the ground truth. Ri is the set of pixel coordinates in
B where pixels share same label j corresponding to a trajectory in the resulting
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trajectories sets. MS is computed for all (j, j) pairs because, manuscript line
with label 1 in the ground truth for example, can be different of manuscript
line with label 1 is the resulting trajectories. In order to compute o2o, we first
initialize o2o = 0, then for each tuplet resulting region and ground truth region
(i, j), we check if MS(i, j) ≥ Tacc, in this case, the two regions are accepted as
a one to one match, o2o = o2o+1. In the best case, o2o will be equal to number
of ground truth regions, which results in a DR of 1 (or 100% as percentage).

In our implementation, we first use the framework proposed in which pro-
vides computation of several metrics. We leave the acceptance threshold Tacc by
default i.e. Tacc = 0.9, and compute DR. We then, reimplement the metrics and
check exactitude with results of the framework. We do so, because we would like
to analyse impact of our approach parameters, namely Tl (line threshold) and
Tc (column threshold) on the detection rate DR.

3.3 Parameters Tuning

Our approach requires only three parameters: Threshold Area (Ta) that controls
small regions removal, line threshold Tl and column threshold Tc that define
search window size. Parameters are described in Sect. 2.2. It was not tedious
to choose Ta as we chose it according to image size and fix it to Ta = 150.
Images of the dataset being high resolution, connected components of all images
were relatively high, we chose Ta as a reasonable threshold. The two remaining
thresholds had high impact on accuracies. In order to inspect impact of these
two parameters and choose their best values, we propose to loop the tracking
process over different values of Tl and Tc.

Table 1. Detection rate (DR) by varying Tl and Tc.

Ti 20 20 20 20 40 40 40 40 60 60

Tc 100 250 400 550 100 250 400 550 100 250

DR 0.96 21.60 25.65 23.24 0.98 25.59 27.97 27.34 0.98 25.25

Ti 60 60 80 80 80 80 100 100 100 100

Tc 400 550 100 250 400 550 100 250 400 550

DR 26.43 26.76 0.98 22.99 24.11 24.60 0.85 10.07 12.37 12.74

Table 2. Detection rate (DR) by varying Tl and Tc independently.

Tl DR Tl DR

20 17.86 100 0.95

40 20.47 250 21.10

60 19.86 400 23.31

80 18.17 550 22.94

100 9.01



230 I. Setitra et al.

Table 3. Detection rate (DR) for groups of images, third column is the number of
images that have their best DR with same parameters.

Tl Tc No images DR

20 200 3 83.33

20 250 4 100.00

20 400 5 98.75

20 500 2 100.00

20 550 3 98.33

40 250 21 86.54

40 400 17 92.80

40 550 5 79.08

60 250 2 84.21

60 350 18 71.91

60 400 3 85.96

60 500 4 94.12

60 550 1 83.33

100 350 2 69.16

Fig. 2. DR score of our approach on images of ICDAR 2013 Handwriting Segmentation
Contest. Overall detection rate is 86.51%.
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Fig. 3. RA score of our approach on images of ICDAR 2013 Handwriting Segmentation
Contest. Overall detection rate is 81.00%.

We define for Tl an interval = [20, 40, 60, 80, 100] and for Tc the interval
= [100, 250, 400, 550]. This results in 4 × 5 = 20 combinations. For each tuplet,
we first compute the mean detection rate (DR) over a subset of 90 images from
the dataset. In order to have a better understanding of contribution of each
threshold a part, we further compute the mean detection rate for each threshold
separately.

From Table 1, it is hard to find a universal tuplet that give a good DR for
all images based on Tl and Tc combination. This can be observed by the DR
which is has a maximum mean for all images of no more than 30%. In Table 2,
we compute again the mean DR for all images by fixing only one threshold.
We observe that results are not better than previous ones. We assume here
that fixing same thresholds for all images is responsible of low detection rates,
and assume also that if for each image or group of images, we use different
thresholds, then, DR might be improved. In order to verify this assumption, we
choose for each image, thresholds that gave the best DR and keep this latter.
We observe in this case a detection rate of DR = 90.49%. We show in Table 3
chosen thresholds for groups of images. In the third column of the table we
show number of images that share high detection rates for the same thresholds.
Doing this, we can choose thresholds for groups of images. Although this method
allowed us to have good detection rates, we believe that a further analysis would
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Fig. 4. FM score of our approach on images of ICDAR 2013 Handwriting Segmentation
Contest. Overall detection rate is 83.27%.

be good, such as analysing other relations between groups of images instead of
comparing with ground truth images (distance between connected components,
mean and standard deviation of connected components areas, etc.). We leave
this perspective to future works.

3.4 Final Results

We implemented and tested our approach in matlab 2015. While we used only
detection rate (DR) as a condition to choose best line and column thresholds for
image grouping, we used directly the software provided by [13] for other met-
rics computation (Recognition accuracy (RA) and Final Matching Score (FM)).
These metrics can be found in the referenced paper. We show results of our algo-
rithm applied to each image of the dataset in Figs. 2, 3 and 4. Overall accuracy
for the 150 images is: 86.51%, 81.00% and 83.27% for DR, RA and FM respec-
tively. From experiments, we notice high accuracies for images where connected
components are sufficiently far from each other. While our algorithm gave more
regions than ground truth regions, RA Score is decreased compared to DR score.
However, for all the metrics, a decrease is observed for latest images (between
131 and 141). These images are images where connected components are merged
together, and where writing direction is changed drastically. Although our algo-
rithm succeeds for getting trajectories when motion changes smoothly, it breaks
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when there is an abrupt change in the direction of motion. We aim in future work
to add a processing where trajectories are corrected which can handle the first
issue, and would like to combine our approach to a global approach in order to
correct our local approach based on tracking that causes the second issue. Also,
when two trajectories have at least one common component, they are merged as
one line. Due to this, connected components of different lines are merged into
the same trajectory. This problem can be solved when merges and splits are
detected in trajectories and corrected at their specific tracks [14].

4 Conclusion

In this work, we presented a new approach for handwritten text line segmentation
inspired of various tracking approaches. The aim of the approach is to track each
connected components in the handwritten document from its beginning (which
can be at any point in the image) until its end (which is at the right end of
the image). Our approach is robust to skew and text orientation since we keep
history of connected components’ positions along their trajectories. However,
our approach fails when common connected components of different lines cross.
Trajectory analysis can solve this issue but out of the scope of this paper, is left
as perspective.
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