
Distributed Time-Memory Tradeoff
Attacks on Ciphers

(with Application to Stream Ciphers and Counter Mode)

Howard M. Heys(B)

Memorial University of Newfoundland, St. John’s, Canada
hheys@mun.ca

Abstract. In this paper, we consider the implications of parallelizing
time-memory tradeoff attacks using a large number of distributed pro-
cessors. It is shown that Hellman’s original tradeoff method and the
Biryukov-Shamir attack on stream ciphers, which incorporates data into
the tradeoff, can be effectively distributed to reduce both time and mem-
ory, while other approaches are less advantaged in a distributed app-
roach. Distributed tradeoff attacks are specifically discussed as applied
to stream ciphers and the counter mode operation of block ciphers,
where their feasibility is considered in relation to distributed exhaus-
tive key search. In particular, for counter mode with an unpredictable
initial count, we show that distributed tradeoff attacks are applicable,
but can be made infeasible if the entropy of the initial count is at least as
large as the key. In general, the analyses of this paper illustrate the effec-
tiveness of a distributed tradeoff approach and show that, when enough
processors are involved in the attack, it is possible some systems, such
as lightweight cipher implementations, may be susceptible to attack in
practice.

Keywords: Cryptanalysis · Time-memory tradeoff attacks
Block ciphers · Stream ciphers · Counter mode

1 Introduction

Time-memory tradeoff (TMTO) attacks were first introduced by Hellman [1] to
attack block ciphers using a chosen plaintext or easily predicted known plaintext.
The basic concept involves two phases: Before system operation begins, the pre-
processing (or offline) phase prepares a compact table from chains representing
information from (almost) all keys, while the online phase efficiently searches
the table in an attempt to identify which key is used to encrypt during system
operation. Following Hellman’s work, Babbage [2] and Golić [3] independently
showed that a time-memory-data tradeoff based on the birthday paradox was
applicable to stream ciphers by attacking the stream cipher state, rather than
the key. This was subsequently combined with Hellman’s approach by Biryukov
and Shamir [4] to develop another, more flexible, tradeoff involving data and
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 135–153, 2018.
https://doi.org/10.1007/978-3-319-93638-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93638-3_9&domain=pdf


136 H. M. Heys

targeting the stream cipher state. This approach was then extended by Hong
and Sarkar [5] to attack directly the key and initialization vector (IV) of stream
ciphers, as well as being applied to some block cipher modes.

Numerous papers have refined Hellman’s approach trying various methods
to improve the success rate and reduce the attack complexity. Most notably, the
distinguished points method, attributed to Rivest in [6], can be used to minimize
costly memory accesses, while the rainbow table method can be used to minimize
memory accesses and improve the speed of the table search [7].

Although the concept of distributed cryptanalytic attacks is well known, no
paper has systematically characterized the value of distributed time-memory
tradeoff attacks. In this paper, we examine tradeoff expressions for a number
of distributed TMTO approaches using the number of processors as a tradeoff
parameter. Further, we explicitly examine the applicability of distributed TMTO
attacks to stream ciphers and the counter mode operation of block ciphers.

2 Background on Time-Memory Tradeoff Attacks

In our discussion, complexities are given for time, memory, and data and the
units of these complexities may differ by a modest multiplicative constant when
comparing approaches. Time and memory complexities are often represented in
units equivalent to the number of encryption operations and the number of key
pairs stored, respectively, while data complexities are sometimes expressed as the
number of contiguous bits of data or the number of data blocks, with each block
corresponding to a unique IV. Also, as is usually done, we assume that when an
algorithm complexity involves a factor that is logarithmic in a parameter, this
factor is small enough to be ignored.

2.1 Hellman’s Attack

The basic TMTO attack on block ciphers introduced by Hellman [1] works
because memory is saved by storing in a table just the start and end of chains
generated during the preprocessing phase, such that, in the online phase, the
table can be efficiently searched while walking through a chain starting with the
data captured from the system. As a result, the preprocessing phase requires a
time complexity that is equivalent to the size of the key space, while the online
time complexity and the memory complexity can be substantially less than the
size of the key space.

The preprocessing phase of Hellman’s approach involves constructing a table
consisting of t subtables, each subtable consisting of m chains of keys of length
t. Each chain is constructed by using a chaining function to map a cipher output
to the next key input, using a fixed plaintext as input to the cipher in each step.
Each subtable uses a different chaining function and picks m arbitrary keys as
starting points for the chains. Only the first and last keys in a chain need to be
stored, with the key pairs in a subtable sorted according to the last key, for easy
search during the online phase of the attack. The table should cover most of the



Distributed TMTO Attacks 137

key space, thus requiring a so-called stopping criterion of mt2 = K, where K is
the size of the key space. Because only the start and end of each chain is stored,
the table requires a memory complexity of M = mt.

During the online phase, a subtable is searched by producing a chain of length
t, starting from the intercepted ciphertext (produced by the plaintext used to
the build the table). At each step in the chain, if the key is found to be one
of the stored last keys of a chain in the subtable, then the cipher key can be
determined by proceeding from the starting key of the chain until the ciphertext
is generated. The corresponding key is very likely to be the correct cipher key.
A chain is built for each of t subtables and, hence, the online time complexity is
given by T = t2.

Subsequently, it can be derived that the following tradeoff exists:

TM2 = K2. (1)

The preprocessing time, P , is determined by the time to construct the table
given by mt2, and, hence, due to the stopping criterion relationship, P = K.
Hellman uses the example that, if T = M , then both online time and memory
are smaller than the key space and, in fact, T = M = K2/3.

2.2 Babbage-Golić (BG) Tradeoff

Both Babbage [2] and Golić [3] independently proposed a tradeoff attack on
stream ciphers, referred to as the BG attack. Assume that the size of the stream
cipher’s state space is N . A keystream prefix is a log2N sequence of keystream
bits corresponding to the state at which the prefix starts. The BG tradeoff works
by constructing, during preprocessing, a table of N/D pairs of the state and
the corresponding keystream prefix. A total of D + log2N − 1 ≈ D bits of
keystream are acquired in the online phase resulting in the determination of D
keystream prefixes, using a sliding window. Due to the birthday paradox, with
high probability, one of the D keystream prefixes can be found in the table and
the corresponding state derived, thus breaking the cipher.

For this attack, the tradeoff expression, involving online time complexity T
and memory complexity M , is

TM = N (2)

where T = D, M = N/D, and the preprocessing time complexity is P = N/D.
Due to this attack, it is prudent to ensure that the state of the stream cipher
(in bits) should be at least twice as large as the key (in bits) (i.e., N ≥ K2) to
ensure that T ≥ K or M ≥ K.

Note that a recent direction of research in the design of stream ciphers is to
develop structures to provide security using a state with a size that is less than
double the key size. The objective of such research is to minimize the hardware
complexity of the ciphers. Designs to do this have been proposed by having the
state update be a function of key [8,9] or by using a specific initialization app-
roach and applying packet mode where the amount of keystream generated under
one IV is constrained [10]. We do not address these designs in our discussion.



138 H. M. Heys

2.3 Biryukov-Shamir (BS) Tradeoff

In [4], Biryukov and Shamir combined Hellman’s table and the BG tradeoff use
of data to develop a new tradeoff involving time, memory, and data, applicable
to stream ciphers. In the BS tradeoff, the Hellman table is derived from chains
on the cipher state, rather than the key. During preprocessing, a total of t/D
subtables are constructed, with each covering m chains of length t, for which only
the first and last states are stored. Variable D represents the amount of data in
the form of contiguous keystream bits used in the attack and now the memory
complexity is M = mt/D. The preprocessing complexity is thus P = N/D,
where mt2 = N is the stopping criterion for constructing the table.

During the online phase, t steps through the chain must be executed, with
each of the t/D subtables being searched and this must be done for each of the
D prefixes derived from a sliding window over the D bits. Hence, the online time
takes T = t(t/D)D = t2. As a result, the tradeoff in this case becomes

TM2D2 = N2. (3)

It should be noted that to ensure there is at least one complete subtable, it is
assumed that D ≤ t and therefore the restriction of D2 ≤ T exists. Letting
N ≥ K2 results in T ≥ K or M ≥ K, thereby ensuring that a BS TMTO attack
cannot do better than exhaustive key search.

2.4 Hong-Sarkar (HS) Tradeoff

In [5], Hong and Sarkar explicitly relate the BS tradeoff for stream ciphers to
the key and the IV, rather than the state. The key is secret and unknown when
building the table during preprocessing and, while the IV is typically public
and known during the online phase, it may be unpredictable and therefore also
unknown when building the table during preprocessing. The HS tradeoff app-
roach treats the input to be discovered in the tradeoff attack to be the key/IV
combination. If the size of the IV space is defined to be V and the IVs to be
used by the system are unknown during preprocessing, then the HS approach
can be applied to a stream cipher with the tradeoff being

TM2D2
iv = (KV )2 (4)

where the preprocessing complexity is given by P = KV/Div. The attack has a
similar data restriction of D2

iv ≤ T as the BS approach. Note that the D term
used in the BS tradeoff of (3) has been replaced by Div in (4) to emphasize that,
rather than D contiguous bits, in fact, Div represents the number of log2(KV )
bit prefixes at the start of the keystream for different key/IV combinations.

In theory, each prefix used in the attack must be collected from different
key/IV combinations and, hence, success in the attack may mean finding one
key from among a number of keys used in encryption. In the single-key scenario,
where it is assumed that data is only available from one key, if unpredictable IVs
are to be used, then data could be collected from different IVs and the target
key. Then the tradeoff of (4) can be applied, where Div represents the number
of IVs under the one key and, hence, Div ≤ V .



Distributed TMTO Attacks 139

2.5 Dunkelman-Keller (DK) Approach

The HS tradeoff approach assumes that preprocessing is structured to consider
the combination of key and IV as one input and builds the table based on this,
resulting in the restriction on data. However, the HS method of attack does not
take advantage of the fact that, during the online phase, the IV is known and
only the key needs to be discovered. In [11], Dunkelman and Keller modify the
HS approach by separating the key and IV in the attack. The preprocessing
phase then builds a number of Hellman tables to cover keys, with each table
built for a particular IV. This allows the online phase of the attack to simply
consider whether an intercepted IV has been used to build a table. If so, the
table corresponding to this IV can be searched for the key. In this approach,
which we refer to as the DK approach, assuming equally likely occurences of
any IV, if V/Div tables, each corresponding to a different IV, are built during
preprocessing, then collected data from Div IVs during the online phase should
result in one of the intercepted IVs being used in the tables with high probability.
For this tradeoff, M = (V/Div)mt and T = t2, where the stopping criterion of
mt2 = K2 applies to the Hellman tables. Hence, the DK method has the tradeoff
expression of (4) if the IV is unpredictable, but now has no restriction on the
data, Div, other than Div ≤ V in the single-key scenario. Further, this approach
has an advantage for applications where the IV is unpredictable but not equally
likely in distribution, as this knowledge can be used to build tables for the most
likely IVs.

2.6 Other Work on TMTO Attacks

We shall consider in our work both the distinguished points and rainbow table
refinements of Hellman’s TMTO attack. These refinements and their relative
merits in terms of probability of success, detailed complexity analyses, and
other practical performance related issues, are studied in a number of papers
including [12–14]. The results of these comparisons indicate that these practical
performance issues do not seem to have substantial implications (i.e., orders of
magnitude effects on complexity) and, hence, we do not consider them significant
for our discussion on distributed TMTO attacks.

It is known that it is possible to parallelize TMTO attacks. For example,
distributed attacks are mentioned in [15] where it is noted that it is possible
to divide the Hellman subtables into groupings and circulate to participating
processors. Parallelizing TMTO attacks is further studied in [16,17]. However,
no work has yet systematically characterized the tradeoff aspects of multiple
processors. In our work, we will thoroughly characterize the distributed approach
to various forms of time-memory tradeoffs.

3 Distributed Hellman Attack

We now consider the parallelization of Hellman’s attack using distributed pro-
cessors, as well as the related approaches of distinguished points and the rainbow



140 H. M. Heys

table. We assume that W processors, with independent memory, are available.
This might represent, for example, W computers on the Internet with users
willing to participate, or being duped into participating, in attacking some cryp-
tographic system. We assume that any necessary communication complexity
between these processors and a central controlling processor are negligible in
comparison to the time and memory complexities associated with the attack.

In our discussion, we let T0, M0, and P0 represent the online time complex-
ity, memory complexity, and preprocessing time complexity, respectively, for an
individual processor. It is these quantities, along with W , which determine the
efficacy of the attack, since it is assumed that the individual processors can oper-
ate concurrently. For example, while a non-distributed attack might require an
online time complexity of T , if it is possible to spread this work evenly between
W processors, each processor would only require a time of T0 = T/W , which
could be done concurrently for all processors, and thus the overall duration of the
attack could be dramatically reduced if W is large. As a point of comparison for
distributed tradeoff attacks, we consider distributed exhaustive key search, which
is expected to have a time complexity for an individual processor of T0 = K/W
(with, of course, no preprocessing phase and negligible memory complexity).

3.1 Distributed Approach to the Original Hellman Attack

A distributed approach to Hellman’s TMTO attack can proceed by distributing
the responsibility for generating the t subtables to the W processors, so that each
processor generates t/W subtables independently. When the necessary cipher-
text data is captured during system operation, it will be distributed to all proces-
sors. Each processor will require a memory of M0, where M0 = m(t/W ) = M/W
and M is the total memory requirement for the attack, with W ≤ t in order to
ensure that each processor generates one or more subtables.

Since each processor only needs to implement t encryptions for each of t/W
subtables, the time taken in a processor (and, if all processors operate concur-
rently, the overall time to search the full Hellman table) is T0 = t(t/W ) = T/W ,
where T is the time required for the non-distributed attack. When a key is found
by a processor in its share of the table, it must communicate this back to the
central processor that is overseeing the cryptanalytic process and that will be
able to announce the successful completion of the attack.

Now T0M
2
0 = (t2/W )(mt/W )2 = (mt2)2/W 3 and assuming the Hellman

stopping criterion of mt2 = K results in the tradeoff for an individual processor
to be

T0M
2
0W 3 = K2 (5)

where the constraint W ≤ t, or equivalently W ≤ T0, applies. This expression
captures the tradeoff of interest in a distributed Hellman attack and reflects that
both time and memory can be improved by a factor of W . The preprocessing
time for an individual processor is P0 = K/W and is improved by a factor of W
over the time required in the non-distributed attack, since each processor only
needs to construct chains covering a fraction of the table. Although we notate



Distributed TMTO Attacks 141

this as the preprocessing cost of the individual processor, if we assume that all
processors compute their tables concurrently, it also reflects the overall time
complexity to prepare for the attack.

It is clear that using a number of processors to implement the attack poten-
tially provides a very significant advantage and may actually make the attack
possible in some practical scenarios. Although exhaustive key search can also be
improved by a distributed approach, a distributed TMTO attack preserves the
possibility for a significantly faster online processing time at the expense of more
memory. Consider the following example applying to an implementation of AES-
128 for which K = 2128. Letting W = 220, the non-distributed exhaustive key
search would require T = 2128, while the distributed exhaustive key search would
require T0 = 2108. In the case of a Hellman TMTO attack with equal online time
and memory complexity, the non-distributed attack would take T = M = 285.3

(with P = 2128), while the distributed approach would require T0 = M0 = 265.3

(with P0 = 2108). As another example, consider a lightweight block cipher with
an 80-bit key so that K = 280. In this case, with W = 220, a distributed TMTO
attack exists with T0 = M0 = 233.3 (and P0 = 260), which is substantially less
complex than the T0 = 260 required for a distributed exhaustive key search.

3.2 Distributed Distinguished Points (DP) Method

One of the issues identified for the Hellman TMTO attack is that the cost of
a memory access can vary by orders of magnitude depending on whether the
access is to internal memory (RAM) or to an external memory (e.g. hard disk
drive or a solid state drive) [18]. In order to mitigate the cost of slow memory
accesses, the distinguished points (DP) method was proposed by Rivest [6]. In
this approach, rather than build chains of fixed length t when constructing a
Hellman table, the preprocessing phase can build a chain which terminates when
a particular pattern (e.g. all zeroes) is recognized in the first log2t bits of the
key. This means the length of a chain is variable but will be a length of t on
average. When executing the online portion of the attack, since the end point
of a chain must start with log2t zeroes, only about 1/t encryptions needs a look
up to be executed in the subtable (which is likely stored in slow access external
memory).

In the distributed Hellman attack, it is fully possible to execute the distin-
guished points approach to the attack. The amount of memory in a processor
is still fixed at M0 = mt/W , since there are t subtables split between the W
processors. However, the time required to finish the concurrent computations
of W processors is now more complex. Since there is an average of t steps in
each chain, the number of encryptions per subtable must be more than t to cope
with chains having more than t steps. Assume that, at most, γt encryptions are
executed for each subtable. The DP method is likely to set γ to be a modest
value, to keep the time complexity of the attack constrained. When preparing
the table during the preprocessing phase, the DP method will stop a chain when
a distinguished point is found or when γt steps in a chain have been reached
without hitting a distinguished point. Similarly, during the online process, if,



142 H. M. Heys

after γt encryptions, a distinguished point is not reached for a subtable, the sub-
table is assumed to not contain the key. Of course, the value used for γ affects
the probability of success, but as shown in [13], γ can effectively be a small
constant. Hence, the online time complexity can be no worse than the maximum
chain length, γt, multiplied by the number of subtables to search through, t/W ,
and, hence, T0 = γt2/W where T0 now represents the maximum possible time
taken at an individual processor.

This leads to a tradeoff of the form T0M
2
0W 3 = γK2 which is slightly worse

than the distributed Hellman tradeoff of (5). However, it is quite possible that
implementing the distinguished points method when using a distributed app-
roach will not be necessary. Since the memory size needed in the individual
processors in a distributed attack is reduced by a factor of W , it is quite con-
ceivable for some parameters that the processor memory complexity of M0 is
small enough that the processor’s complete table portion could be stored in
internal memory and slow accesses to external memory are not needed. In such
a case, there would be no need to implement the DP approach.

3.3 Distributed Rainbow Table Method

In [7], Oechslin proposed an alternate formulation to represent the key chains in
the TMTO attack. Hellman’s approach was to use one chaining function for every
step of a chain and for all the chains in one subtable, with different subtables
then using different chaining functions. In contrast, the rainbow table approach
uses a different chaining function for each step of the chain and then builds
one table of such chains. It is argued that there are improvements to Hellman’s
approach [7,19]. For the online phase, t partial chains of length ≤ t are produced,
starting with the intercepted ciphertext, requiring t2/2 encryptions in total.
Ignoring the somewhat insignificant factor of 1/2 in the number of encryptions
gives T ≈ t2 and results in the same tradeoff expression as in (1). However, since
only at the end of one of the partial chains is it necessary to look up in the table,
only t memory accesses to the table are required.

The distributed rainbow table approach can be accomplished by distributing
the table so that M0 = mt/W = M/W . However, for each processor, the time
complexity involves reproducing t partial chains for a total of T0 = t2/2 ≈ t2

encryptions required in each processor. Hence, the time complexity cannot be
improved by distributing the table since each processor must take ∼t2 to consider
their portion of the table, i.e., T0 = T . The resulting tradeoff expression is

T0M
2
0W 2 = K2. (6)

Rather than divide up the rainbow table between processors, an alternative
approach for a distributed rainbow table attack would be to distribute the com-
putation of t partial chains between W processors. In this case, T0 ≈ t(t/W )
would represent the online time complexity (again ignoring the factor of 1/2).
However, the resulting distributed computations would need to be checked in



Distributed TMTO Attacks 143

one central table. In this case, T0 = T/W , but M0 = M = mt. Hence, the
tradeoff becomes even worse as

T0M
2
0W = K2. (7)

For the rainbow table approach, distributing the table and the computations
is not feasible, since the end of each partial chain must be looked up in the full
table. Hence, the distributed rainbow table approach is inferior to the distributed
version of the original Hellman TMTO approach. In addition, when applying a
distributed approach to time-memory tradeoffs, since the memory requirements
could be substantially smaller on a per processor basis, reducing memory accesses
(one of the advantages of the rainbow table) may not be important, since the
necessary subtables of the Hellman approach may fit within a processor’s RAM.

4 Applying Distributed TMTO Attacks on Stream
Ciphers

In this section, we consider the application of distributed TMTO attacks to
stream ciphers.

4.1 Distributed BG Attack

We first consider the distributed BG attack, which makes use of data collected
and assumes D bits of keystream are available. In this case, the attack can be
distributed by dividing up the work to prepare, and the memory to store, the
BG table to W processors, so that P0 = N/(DW ) and M0 = N/(DW ). The
time required in a processor during the online phase is directly proportional to
the processing of all D prefixes, so that T0 = D, which is unchanged from the
non-distributed case. As a result, it can be shown that

T0M0W = N. (8)

For a non-distributed attack, letting N ≥ K2 ensures that the BG tradeoff
does not lead to a better attack than exhaustive key search. Placing this con-
straint on the stream cipher leads to the following proposition for the distributed
BG attack.

Proposition 1
If N ≥ K2, there is no value of W for which a distributed BG TMTO attack on
a stream cipher has a lower complexity for both online time and memory than
the complexity of distributed exhaustive key search.

Proof
A distributed exhaustive key search has a complexity of K/W . Let N = aK2,
where a ≥ 1. We can now adjust (8) to be T0M0W = aK2. For the best TMTO



144 H. M. Heys

attack, we can minimize the maximum of either T0 or M0 in this equation by
letting T0 = M0, leading to

T0 =
a1/2K

W 1/2
(9)

which clearly implies T0 ≥ K/W and M0 ≥ K/W for all values of W . Since other
tradeoffs lead to one of T0 or M0 being larger, there will always be at least one
of T0 or M0 being at least as large as K/W . Hence, clearly the distributed BG
tradeoff cannot have a lower complexity than distributed exhaustive key search
for any number of processors. ��

4.2 Distributed BS Attack

Consider now the distributed BS attack. With W processors and D contiguous
data bits of keystream, the t/D subtables needed in the BS approach can be
divided into W groups, resulting in the memory for individual processors being
M0 = mt/(DW ), where W ≤ t/D in order for each processor to have one or
more subtables. The time in an individual processor to process the data and
recover the state is given by T0 = t·(t/(DW ))·D = t2/W , where the first term
represents the t encryptions to reproduce a chain from the starting point of the
captured data, the middle bracketed term represents the number of subtables
to process in each processor, and the last term represents the data that each
processor must consider. Combining the expressions for M0 and T0 leads to the
following tradeoff:

T0M
2
0D2W 3 = N2 (10)

where the amount of data and the number of processors must satisfy D2W ≤ T0

(which is derived by combining the constraint on W with the expression for T0).
Since deriving the required subtables determines the preprocessing time in an
individual processor, we also have P0 = N/(DW ).

In the following proposition, we show that the constraint of N ≥ K2 ensures
that the distributed BS attack performs no better than distributed exhaustive
key search.

Proposition 2
If N ≥ K2, there is no value of W for which a distributed BS TMTO attack
on a stream cipher, satisfying the constraint D2W ≤ T0, has a lower complexity
for both online time and memory than the complexity of distributed exhaustive
key search.

Proof
Let N = aK2, where a ≥ 1. Minimizing T0 and M0 in the application of the BS
tradeoff is done by maximizing the data in the tradeoff. Using the upper bound
of D ≤ (T0/W )1/2, it can be shown that (10) is equivalent to the tradeoff of
T0M0W = aK2. This is now identical in form to the distributed BG tradeoff of
(8) and, hence, the remainder of the proof can follow similarly to the proof of
Proposition 1. ��



Distributed TMTO Attacks 145

4.3 Distributed HS and DK Attacks

Targeting a stream cipher system which uses a single key and numerous IVs and
applying a distributed HS approach results in the tradeoff

T0M
2
0D2

ivW
3 = (KV )2, (11)

where Div represents the number of prefixes that are derived from the first
log2(KV ) bits of the initial cipher state following the reinitialization from differ-
ent IVs. The constraints D2

ivW ≤ T0 and Div ≤ V apply and the preprocessing
complexity is P0 = (KV )/(DivW ).

The distributed DK approach, which builds V/Div Hellman tables for dif-
ferent IVs results in the same tradeoff as (11), as well as the same constraint
of Div ≤ V and the same preprocessing complexity of P0 = (KV )/(DivW ).
However, since the DK approach builds a Hellman table to cover just keys
(rather than key/IV combinations), we can assume that each processor con-
tains t/W of the Hellman subtables for all of the V/Div IVs. In this case,
M0 = (V/Div)m(t/W ) and T0 = t(t/W ), resulting in (11) with the contraint
that W ≤ t, or equivalently W ≤ T0, since at least one full subtable per IV must
be stored in a processor.

Note that the HS and DK approaches of (11) require a total number of bits
of data to be about Dtotal = Divμiv, where μiv represents the average number
of bits encrypted under one IV (although only the first log2(KV ) bits of each
IV’s keystream are used in the attack). Hence, substituting into (11) results in

TM2D2
totalW

3 = (KV μiv)2 (12)

where Dtotal is the number of bits collected (although many are discarded) and,
while it represents data collected from multiple IVs, it is similar to the D term
in (10), implying that (12) is a better tradeoff when KV μiv < N . In cases where
N = K2, which ensures security against BG and BS attacks and minimizes
cipher implementation complexity, (12) is the better tradeoff when V μiv < K.
These arguments apply equally to the non-distributed and distributed HS and
DK approaches.

5 Applying Distributed TMTO Attacks to Counter Mode

In this section, we describe how distributed TMTO attacks can be applied to
counter mode [20]. This is of interest because when a block cipher operates in
counter mode, in addition to the key, the initial count value can be unpredictable
during the preprocessing phase of TMTO attacks, making the building of the
Hellman table more challenging, even when a chosen plaintext approach can be
applied during the online phase. When counter mode is operated with a pre-
dictable initial count, Hellman’s TMTO attack (distributed or non-distributed)
can be directly applied by constructing tables for this known initial count.



146 H. M. Heys

5.1 Distributed Attack Without Data

In this section, we consider the application of a distributed TMTO attack to
counter mode with a single key and an unpredictable initial count. (The non-
distributed attack can be considered by simply letting W = 1.) Here, we shall
use the term IV to refer to the unpredictable portion of the initial count and
assume that the non-IV portion is fixed and predictable. We let V represent the
number of possible values for the IV and to apply the attack, V Hellman tables to
cover the keys are built (using appropriate chaining functions to map the cipher
operation output to the next key input), one for each IV. An attack which does
not use data in the tradeoff can be performed by dividing the t subtables of the
V Hellman tables between the W processors. Letting log2V represent the size
of the IV, the tradeoff used in this approach would be a simple modification of
(5), where K is replaced by KV :

T0M
2
0W 3 = (KV )2 (13)

with W ≤ T0 and preprocessing requiring P0 = KV/W to cover all key/IV com-
binations across all processors. We now consider an expression which indicates
the size of W necessary to allow a TMTO attack to outperform a distributed
exhaustive key search. This is equivalent to saying that the online time com-
plexity and memory complexity of the TMTO attack should both be less than
K/W . The resulting analysis leads to Proposition 3.

Proposition 3
Consider counter mode such that the key and the IV portion of the initial count
are unpredictable during the preprocessing phase and assumed to be randomly
drawn from the K and V possible values, respectively. With T0 = Mr

0 , a dis-
tributed tradeoff approach can be applied to obtain an attack with an online
time complexity and memory complexity less than the complexity of distributed
exhaustive key search for the following conditions on W :

W >

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V
2

1−r /K
r

1−r , r < 1
0 , r = 1, if V < K1/2

∞ , r = 1, if V ≥ K1/2

K
r−2
2r−2 V

2r
2r−2 , r > 1

(14)

Proof
We need to show the conditions on W for which T0 < K/W and M0 < K/W .
The proof considers the three cases for r. For r > 1, T0 > M0 and, hence, it is
sufficient to consider scenarios for T0 < K/W , while for r < 1, M0 > T0, and,
therefore, it is sufficient to consider M0 < K/W . For the case of r = 1, T0 = M0

and we can consider a bound on either T0 or M0.
From (13), it can be shown that, if r > 1, then

T0 =
(KV )

2r
r+2

W
3r

r+2
(15)



Distributed TMTO Attacks 147

which, when letting T0 < K/W , leads to the result for r > 1.
Similarly, for r < 1,

M0 =
(KV )

2
r+2

W
3

r+2
(16)

which, when letting M0 < K/W , leads to the result for r < 1.
Finally, letting T0 = M0, gives

T0 =
(KV )2/3

W
(17)

which, when compared to K/W , results in an inequality not involving W , but
which shows that, for V < K1/2, the TMTO attack can improve upon distributed
exhaustive key search for any W , while, for V ≥ K1/2, the TMTO attack cannot
improve upon distributed exhaustive key search for any W . ��

The interpretation of Proposition 3 can be demonstrated by considering the
following example where we let K = 2128 and V = 232. From Proposition 3, we
can determine: (1) if T0 = M0, then W > 0, (2) if T0 = M

1/2
0 , then W > 1, and

(3) if T0 = M2
0 , W > 264. So we can conclude that a distributed TMTO attack

can be made more efficient than distributed exhaustive key search for cases 1 and
2 by using as few as 1 and 2 processors, respectively, while for case 3, the number
of processors must be more than 264, an impractically large requirement. Hence,
for case 3, although it may be theoretically possible to mount a distributed
TMTO attack, it is not practical to do so. Other examples for values of K, V
and r can be considered to determine their practicality in terms of the number
of required processors in a distributed attack.

The following proposition gives the relationship between K and V in order
to ensure that it is impossible for a distributed TMTO attack to outperform
distributed exhaustive key search for any tradeoff of time and memory (i.e., any
r).

Proposition 4
Consider counter mode such that the key and the IV portion of the initial count
are unpredictable during the preprocessing phase and assumed to be randomly
drawn from the K and V possible values, respectively. If V ≥ K1/2, the online
time complexity or the memory complexity of a distributed TMTO attack (which
does not use multiple data) is at least as large as the complexity of a distributed
exhaustive key search.

Proof
The best tradeoff from (13) occurs when we minimize the maximum of either T0

or M0, which occurs for T0 = M0, leading to T0 = (KV )2/3/W . If V ≥ K1/2,
in this case clearly T0 ≥ K/W and M0 ≥ K/W for any W , where K/W is the
complexity of a distributed exhaustive key search. Reducing T0 at the expense
of M0 (or vice versa) still clearly results in M0 (or T0) being at least K/W . ��



148 H. M. Heys

Proposition 4 implies that the entropy of the initial count (which is log2V
for a random IV) should be at least half the size of the key to ensure security
against distributed TMTO attacks, which do not use data. This is also true for
non-distributed TMTO attacks, where W = 1.

5.2 Incorporating Data into the Attack

Consider now incorporating the use of data into the distributed TMTO attack
on a single-key implementation of counter mode. In doing so, the distributed
DK approach can be applied and, hence, the tradeoff of (11) can be used, with
the constraints W ≤ T0 and Div ≤ V , and P0 = KV/(DivW ). Extending
Proposition 4 leads to the following proposition.

Proposition 5
Consider counter mode such that the key and the IV portion of the initial count
are unpredictable during the preprocessing phase and assumed to be randomly
drawn from the K and V possible values, respectively. Assume that a distributed
TMTO attack on a single-key system is applied with data available from Div IVs,
where Div ≤ V . If V/Div ≥ K1/2, the online time complexity or the memory
complexity of a distributed TMTO attack is at least as large as the complexity
of a distributed exhaustive key search.

Proof
We can simply follow the proof of Proposition 4, but base it on the distributed
DK tradeoff of (11), which can be rewritten to be

T0M
2
0W 3 = (K[V/Div])2. (18)

This equation is similar to (13) used in the proof of Proposition 4, except that
we have substituted V with V/Div. Proposition 4 now follows with the same
substitution, resulting in the distributed TMTO attack with data not being able
to improve on distributed exhaustive key search when V/Div ≥ K1/2. ��

Proposition 5 increases the lower bound on V for which the distributed
TMTO attack becomes infeasible. Assuming that it is impractical for Div >
K1/2, then letting V ≥ K is sufficient to ensure security against TMTO attacks
which make use of data. Now if DivW = αV , where α > 1, then P0 < K, mean-
ing the preprocessing time is better than exhaustive search on a cipher with key
space K. Further, T0M

2
0 = K2/(α2W ) < K2/W , which could be substantially

better than the tradeoff of the non-distributed approach. Consider the following
case of counter mode using AES-128: K = 2128, V = 232 and W = 220. If we
let T0 = M0 and Div = 220 (so that α = 256), we get T0 = M0 = 273.3, with
P0 = 2120. Hence, the complexity of the online phase of the distributed TMTO
attack is much better than the complexity of distributed exhaustive key search,
which would be K/W = 2108. Of course, collecting more data Div and/or involv-
ing more processors W could be used to improve the attack even further, but is
still subject to the DK approach constraints of Div ≤ V and W ≤ T0.



Distributed TMTO Attacks 149

To this point, we have only considered single-key systems. Note that the
concept of attacking a multi-key block cipher system [5,21] where the cipher uses
counter mode can result in the tradeoff (11) targeting the key and unpredictable
initial count and may result in some systems being vulnerable.

6 Conclusions

In this paper, we have discussed the characterization of distributed TMTO
attacks on ciphers. A summary of the characteristics of tradeoff attacks, includ-
ing the distributed versions discussed in this paper, is presented in AppendixA.
In AppendixB, numerical examples are used to illustrate the effectiveness of
the attacks against a lightweight cipher (80-bit key) and an AES-level cipher
(128-bit key).

Not surprisingly, distributing Hellman’s approach can be highly effective,
scaling both time and memory by the number of processors. Other tradeoff
approaches such as the rainbow table method and the BG method are not as
well suited to a distributed approach. The BS method benefits from a distributed
approach in both time and memory, but the benefit of data in the tradeoff is not
scaled by the number of processors involved. We have also described the applica-
tion of distributed tradeoff attacks in relation to stream ciphers and have shown
that distributed TMTO approaches can be effectively applied to counter mode
in scenarios where the entropy of the initial count is too small. In particular,
distributed TMTO attacks are of concern in the context of lightweight cryptog-
raphy, where key sizes are smaller and the cryptanalytic gain of distributing the
attacks could seriously compromise the security of some systems.

Appendix A: Summary of Tradeoffs

Table 1 contains a summary of all tradeoffs discussed and applied in this paper.
Tradeoff expressions and preprocessing complexity, as well as target applications
and meaningful restrictions on tradeoff parameters, are presented.

Appendix B: Numerical Results for Some Tradeoffs

In this section, we highlight a few cases to illustrate the applicability of the
distributed TMTO attack. The data presented considers two key sizes of 80 bits
(Table 2) and 128 bits (Table 3) and represents results for both stream ciphers
and block ciphers using counter mode. A key size of 80 bits is consistent with
the typical use of a lightweight block or stream cipher, while the 128-bit key
represents an application that uses AES-128 level security. The results in the
tables represent a tradeoff attack using the DK approach of a single-key system
and the table values assume equal complexity for the online time and memory,



150 H. M. Heys

Table 1. Summary of Tradeoffs

Tradeoff Preprocessing Target applications and
restrictions

Exhaustive
Key Search

T = K, M = 1 P = 0 block cipher key
stream cipher key

Full Dictionary
Attack

T = 1, M = K P = K block cipher key
stream cipher key

Hellman TM2 = K2 P = K block cipher key

BG TM = N P = N/D stream cipher state
D = T

BS TM2D2 = N2 P = N/D stream cipher state
D2 ≤ T

HS TM2D2
iv = (KV )2 P = KV/Div stream cipher key/IV

counter mode key/IV
D2

iv ≤ T

DK TM2D2
iv = (KV )2 P = KV/Div stream cipher key

counter mode key
Div ≤ V for single-key

Distributed
Exh Key Srch

T0 = K/W , M0 = 1 P0 = 0 block cipher key
stream cipher key

Distributed
Full Dict Att

T0 = 1, M0 = K/W P0 = K/W block cipher key
stream cipher key

Distributed
Hellman

T0M
2
0W

3 = K2 P0 = K/W block cipher key
W ≤ T0

Distributed
BG

T0M0W = N P0 = N/(DW ) stream cipher state
D = T0

Distributed BS T0M
2
0D

2W 3 = N2 P0 = N/(DW ) stream cipher state
D2W ≤ T0

Distributed HS T0M
2
0D

2
ivW

3 = (KV )2 P0 = KV/(DivW ) stream cipher key/IV
counter mode key/IV
D2

ivW ≤ T0

Div ≤ V for single-key

Distributed
DK

T0M
2
0D

2
ivW

3 = (KV )2 P0 = KV/(DivW ) stream cipher key
counter mode key
W ≤ T0

Div ≤ V for single-key

i.e., T0 = M0. The tradeoff expression of (11) is applied and the constraints
Div ≤ V and W ≤ T0 are satisfied. For V > 1, P0 = KV/(DivW ) resulting in

T0 =
P

2/3
0

W 1/3
(19)



Distributed TMTO Attacks 151

which can be used to derive the values in the tables. However, for the case of
V = 1 (that is, a predictable initial count in counter mode or a stream cipher
with no IV), data cannot be used in the tradeoff and P0 = KV/W with (19)
still suitable.

For both key sizes, various IV sizes are given and the complexity presented
for cases of differing amounts of data, Div, and number of processors, W . For
reference, the appropriate distributed exhaustive key search complexity (DEKS)
is also presented for each case. Each TMTO case given in the tables has the online
time complexity and the preprocessing complexity for an individual processor
presented in the format “T0/P0”.

It is obvious from the tables that there are many scenarios in which dis-
tributed TMTO attacks could be made more effective than a distributed exhaus-
tive key search. Most notably, if V = 1, one Hellman table can be constructed
straightforwardly to cover just the keys. In this case, although the use of data
from multiple IVs is not applicable, applying a distributed approach can result
in extremely small online time complexities - as low as 233.3 for a lightweight
cipher with an 80-bit key using 220 processors. For cases with V > 1, using data
drawn from a modest number of IVs can result in a compromise of the security
of the cipher. For example, with K = 2128 and V = 232, using data from only
220 IVs and applying 220 processors results in a TMTO attack with an online
time complexity of 273.3 and a preprocessing time complexity of 2120. Hence,
the online time complexity is substantially better than the distributed exhaus-
tive key search complexity of 2108, while the preprocessing complexity is only
slightly worse.

Table 2. TMTO Results T0/P0 for 80-bit Keys

K = 280 DEKS V = 1 V = 220 V = 240

W = 1, Div = 1 280 253.3/280 266.7/2100 280/2120

W = 1, Div = 210 280 253.3/280 260/290 273.3/2110

W = 220, Div = 1 260 233.3/260 246.7/280 260/2100

W = 220, Div = 210 260 233.3/260 240/270 253.3/290

Table 3. TMTO Results T0/P0 for 128-bit Keys

K = 2128 DEKS V = 1 V = 232 V = 264

W = 1, Div = 1 2128 285.3/2128 2106.7/2160 2128/2192

W = 1, Div = 220 2128 285.3/2128 293.3/2140 2114.7/2172

W = 220, Div = 1 2108 265.3/2108 286.7/2140 2108/2172

W = 220, Div = 220 2108 265.3/2108 273.3/2120 294.7/2152



152 H. M. Heys

References

1. Hellman, M.E.: A cryptanalytic time-memory trade-off. IEEE Trans. Inf. Theory
26(4), 401–406 (1980)

2. Babbage, S.: A space/time tradeoff in exhaustive search attacks on stream ciphers.
In: European Convention on Security and Detection, IEEE Conference Publication
No. 408, pp. 161–166 (1995)

3. Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-69053-0 17

4. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 1

5. Hong, J., Sarkar, P.: New applications of time memory data tradeoffs. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 353–372. Springer, Heidelberg
(2005). https://doi.org/10.1007/11593447 19

6. Denning, D.E.: Cryptography and Data Security. Addison-Wesley, Boston (1982)
7. Oechslin, P.: Making a faster cryptanalytic time-memory trade-off. In: Boneh, D.

(ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 617–630. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45146-4 36

8. Armknecht, F., Mikhalev, V.: On lightweight stream ciphers with shorter internal
states. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 451–470. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5 22

9. Mikhalev, V., Armknecht, F., Müller, C.: On ciphers that continuously access the
non-volatile key. IACR Trans. Symmetric Cryptol. 2016(2), 52–79 (2016)

10. Hamann, M., Krause, M., Meier, W.: LIZARD - a lightweight stream cipher
for power-constrained devices. IACR Trans. Symmetric Cryptol. 2017(1), 45–79
(2017)

11. Dunkelman, O., Keller, N.: Treatment of the initial value in time-memory-data
tradeoff attacks on stream ciphers. Inf. Process. Lett. 107(5), 133–137 (2008)

12. Avoine, G., Junod, P., Oechslin, P.: Characterization and improvement of time-
memory trade-off based on perfect tables. ACM Trans. Inf. Syst. Secur. 11(4),
17:1–17:22 (2008)

13. Hong, J., Moon, S.: A comparison of cryptanalytic tradeoff algorithms. J. Cryptol.
26(4), 559–637 (2013)

14. van den Broek, F., Poll, E.: A comparison of time-memory trade-off attacks on
stream ciphers. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT
2013. LNCS, vol. 7918, pp. 406–423. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-38553-7 24

15. Borst, J., Preneel, B., Vandewalle, J.: On the time-memory tradeoff between
exhaustive key search and table precomputation. In: Proceedings of the 19th Sym-
posium in Information Theory in the Benelux, WIC, pp. 111–118 (1998)

16. Hong, J., Lee, G.W., Ma, D.: Analysis of the parallel distinguished point tradeoff.
In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp.
161–180. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25578-
6 14

17. Kim, J.W., Seo, J., Hong, J., Park, K., Kim, S.-R.: High-speed parallel implemen-
tations of the rainbow method based on perfect tables in a heterogeneous system.
Softw. Pract. Exper. 45(6), 837–855 (2015)

https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/3-540-44448-3_1
https://doi.org/10.1007/11593447_19
https://doi.org/10.1007/978-3-540-45146-4_36
https://doi.org/10.1007/978-3-662-48116-5_22
https://doi.org/10.1007/978-3-642-38553-7_24
https://doi.org/10.1007/978-3-642-38553-7_24
https://doi.org/10.1007/978-3-642-25578-6_14
https://doi.org/10.1007/978-3-642-25578-6_14


Distributed TMTO Attacks 153

18. Avoine, G., Carpent, X., Kordy, B., Tardif, F.: How to Handle Rainbow Tables
with External Memory. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS,
vol. 10342, pp. 306–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-60055-0 16

19. Lee, G.W., Hong, J.: Comparison of perfect table cryptanalytic tradeoff algorithms.
Des. Codes Crypt. 80(3), 473–523 (2016)

20. National Institute of Standards and Technology. NIST Special Publication 800–
38A: Recommendation for Block Cipher Modes of Operation, December 2001.
https://csrc.nist.gov/publications/detail/sp/800-38a/final

21. Biryukov, A., Mukhopadhyay, S., Sarkar, P.: Improved time-memory trade-offs
with multiple data. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897,
pp. 110–127. Springer, Heidelberg (2006). https://doi.org/10.1007/11693383 8

https://doi.org/10.1007/978-3-319-60055-0_16
https://doi.org/10.1007/978-3-319-60055-0_16
https://csrc.nist.gov/publications/detail/sp/800-38a/final
https://doi.org/10.1007/11693383_8

	Distributed Time-Memory Tradeoff Attacks on Ciphers
	1 Introduction
	2 Background on Time-Memory Tradeoff Attacks
	2.1 Hellman's Attack
	2.2 Babbage-Golić (BG) Tradeoff
	2.3 Biryukov-Shamir (BS) Tradeoff
	2.4 Hong-Sarkar (HS) Tradeoff
	2.5 Dunkelman-Keller (DK) Approach
	2.6 Other Work on TMTO Attacks

	3 Distributed Hellman Attack
	3.1 Distributed Approach to the Original Hellman Attack
	3.2 Distributed Distinguished Points (DP) Method
	3.3 Distributed Rainbow Table Method

	4 Applying Distributed TMTO Attacks on Stream Ciphers
	4.1 Distributed BG Attack
	4.2 Distributed BS Attack
	4.3 Distributed HS and DK Attacks

	5 Applying Distributed TMTO Attacks to Counter Mode
	5.1 Distributed Attack Without Data
	5.2 Incorporating Data into the Attack

	6 Conclusions
	References




