
Decentralized Blacklistable Anonymous
Credentials with Reputation

Rupeng Yang1,2, Man Ho Au2(B), Qiuliang Xu1(B), and Zuoxia Yu2

1 School of Computer Science and Technology, Shandong University,
Jinan 250101, China

orbbyrp@gmail.com, xql@sdu.edu.cn
2 Department of Computing, The Hong Kong Polytechnic University,

Hung Hom, Hong Kong
csallen@comp.polyu.edu.hk, zuoxia.yu@gmail.com

Abstract. Blacklistable anonymous credential systems provide service
providers with a way to authenticate users according to their historical
behaviors, while guaranteeing that all users can access services in an
anonymous and unlinkable manner, thus are potentially useful in prac-
tice. Traditionally, to protect services from illegal access, the credential
issuer, which completes the registration with users, must be trusted by
the service provider. However, in practice, this trust assumption is usu-
ally unsatisfied.

In this paper, we solve this problem and present the decentralized
blacklistable anonymous credential system with reputation (DBLACR),
which inherits nearly all features of the BLACR system presented in Au
et.al. (NDSS’12) but does not need a trusted party to register users. The
new system also has extra advantages. In particular, it enables black-
list (historical behaviors) sharing among different service providers and
is partially resilient to the blacklist gaming attack, where dishonest ser-
vice providers attempt to compromise the privacy of users via generating
blacklist maliciously.

Technically, the main approach to achieve DBLACR system is a novel
use of the blockchain technique, which serves as a public append-only
ledger. The system can be instantiated from three different types of cryp-
tographic systems, including the RSA system, the classical DL system,
and the pairing based system. To demonstrate the practicability of our
system, we also give a proof of concept implementation for the instanti-
ation under the RSA system. The experiment results indicate that when
authenticating with blacklists of reasonable size, our implementation can
fulfill practical efficiency demands.

1 Introduction

There always exists a conflict between users and service providers (SP) on the
Internet. On the one hand, the SPs need to protect their services from illegal
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users and users with misbehaviors, thus hope to know the exact identity and
historical behaviors of each user. On the other hand, the users would like to
protect their privacy, and thus hope to access services in an anonymous and
unlikable manner.

The blacklistable anonymous credential system [9,25] is a good attempt to
address this conflict. In this system, each SP maintains a blacklist to record users
with misbehaviors, and a user attempting to access services of a SP is required
to prove that he is legitimately registered and that he is not in the blacklist
of the SP. Both the authentications and the maintenance of the blacklists are
conducted in an anonymous and unlinkable fashion, thus privacy of users are well
protected. Compared to traditional anonymous credential systems [8,10–14,16],
the blacklistable anonymous credential system supports revocation of users, thus
can protect SPs from users with misbehaviors. Moreover, compared to some other
revocable anonymous credential systems [10,11], this is achieved without relying
on a trusted third party, so in practice the blacklistable anonymous credential
system is preferable.

Subsequently, there are a series of works following this line of research. Some
of them consider how to improve the efficiency [24,26,31], and some others con-
sider how to utilize historical behaviors of users in a cleverer way [5,6,27,29].
In particular, in [6], an anonymous credential system supporting fine-grained
“blacklist” is proposed. In this system, instead of merely putting misbehaved
users into the blacklist, the SP will rate behaviors of users in using the services.
The rated scores can be either positive or negative for good and bad behav-
iors respectively, and belong to different categories based on types of behaviors
rated. When authenticating, SPs can set complex policies about these scores,
and a user attempting to access services of a SP needs to prove that he is legit-
imately registered and that his scores satisfy the policy of the SP. Likewise, all
those operations are conducted in an anonymous and unlinkable fashion. For
simplicity of notation, in this section, we still use the word “blacklist” to denote
this fine-grained type of “blacklists”.

To better explain how these blacklistable anonymous credential systems work,
we illustrate the workflow for them in Fig. 1a. Generally speaking, a user who
wants to access services of a SP first registers himself to the credential issuer
and gets a credential back. Then he requests a policy from the SP and proves to
the SP that he has a valid credential and that he satisfies the policy of the SP
each time he wants to access the services of a SP. Behaviors of the user will be
rated by the SP after he finishes using the services.

Note that to protect services from illegal access, the credential issuer must
be trusted by the SP. Therefore, it is usually suggested that the credential issuer
should be acted by the SP itself. However, in practice, this suggestion is often
contradicted. Considering a SP who runs a forum about alcohol abuse, anyone
who registers for this service runs the risk of revealing his drinking problem to the
SP. So, at worst, no one would register for using this forum. As a result, the SP
faces the dilemma of either trusting a third party credential issuer and suffering
potential attacks or insisting on issuing credentials all by itself and suffering a
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loss of potential users. A similar dilemma occurs when we consider the blacklist
management. More precisely, services will be better protected if the SP can refer
to blacklists of other SPs and further evaluate a user according to his historical
behaviors when using other services, but it may bring additional security issues if
the shared blacklists are fake. Besides these two problems, current blacklistable
anonymous credential systems are also vulnerable to the blacklist gaming attack,
where a malicious SP attempts to learn the identity of the user via providing a
maliciously generated blacklist during the authentication.

User

Credential Issuer

SP

1. Register

2. Issue Credential

3. Request

4. Send Blacklist

5. Authenticate

Rating Records Pool
6. Put Rating

(a)

Public Append-Only Ledger

UserSP

1. Register

2. Collect Data

3. Put Requirement
4. Get Requirement

5. Authenticate

6. Put Rating

(b)

Fig. 1. Workflows of the traditional blacklistable anonymous credential systems (left)
and our new decentralized blacklistable anonymous credential system with reputation
(right).

The first problem, namely the requirement of a trusted credential issuer, is
partially solved in [20], in which a decentralized anonymous credential system is
constructed. In particular, in [20], a blockchain based public append-only ledger
is employed to replace the credential issuer, and to register in the system, a
user just needs to put his personal information attached with his credential
to the ledger. When authenticating, a user proves to a SP that his credential
belongs to a set, which is selected by the SP from credentials of all registered
users. However, in [20], revocation of users is not considered, and it is unknown
whether their techniques can be applied to decentralize current blacklistable
anonymous credential systems. Besides, the other two problems, namely the
blacklist management problem and the blacklist gaming attack, are still open.

1.1 Our Results

In this paper, we solve these open problems by presenting the decentralized
blacklistable anonymous credential system with reputation (DBLACR), whose
workflow is illustrated in Fig. 1b. More precisely, similar to that in [20], in our new
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system, there is no central credential issuer, and a user registers via uploading
his credential together with his personal information to the public append-only
ledger, which can be instantiated with the blockchain technique. Each SP col-
lects data from the ledger automatically and put its requirement, including the
selected candidate users set and the blacklist, to the ledger regularly. When a
user wants to access a service of a SP, he first gets the latest requirement of
the SP from the ledger, then he checks its validity and whether he satisfies it. If
both tests are passed, he then proves to the SP that he satisfies its requirement.
The user can access the service if the proof is valid, and scores for his behavior
in using the service will be rated and put on the ledger by the SP then.

The DBLACR system can achieve enhanced security guarantee in the follow-
ing three aspects. We also give a comparison between our system and existing
blacklistable (or decentralized) anonymous credential systems in Table 1.

– The registration is decentralized. In our new system, no trusted credential
issuer is needed, and each SP can select candidate users by itself. Thus, secu-
rity for the SPs is improved. Note that the user does not need to indicate
which service he would like to access when registering and only the fact that
he wants to access at least one service in the system is revealed. Thus, the
real purpose of the user is well hidden if there are some common and insen-
sitive services in the system. Therefore, our solution will not compromise the
privacy of users.

– There is a consistency between the used blacklist and the shared blacklist for
any SP. This is because a SP will put his own used blacklist in the public
append-only ledger, thus cannot share a fake blacklist without being caught.
The property implies that to refer to blacklists of other SPs, a SP only needs
to trust that they will not use a fake blacklist when conducting their own
authentication protocols instead of trusting that they will not share a fake
blacklist. So, to a great extent, the SP can employ blacklists of other SPs
safely and makes better evaluations for users.

– The system is partially resilient to the blacklist gaming attacks, thus provides
a better protection for the privacy of users during the authentication. This is
achieved in two aspects. First, as in our system SPs update their blacklists
regularly, a malicious SP can only make a less powerful passive blacklist
gaming attack in each time period, where it fixes a blacklist in the beginning.
Besides, in our system, a user can learn whether he could pass the verification
in advance and will not attempt to launch an authentication if he does not
satisfy the requirement, thus less information is leaked from authentication
results. We give a more detailed discussion on how these two modifications
could boost the security in Sect. 3.

Our Techniques. We construct decentralized blacklistable anonymous creden-
tial system with reputation by introducing the blockchain technique to current
blacklistable anonymous credential systems and employ it as a public append-
only ledger to store credentials and blacklists. However, there exists issues when
integrating the blockchain technique and current (blacklistable) anonymous cre-
dential systems. To see this, recall that in a blockchain-based (blacklistable)
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Table 1. The comparison.

Decentralized Blacklist Blacklist Blacklist-Gaming

registration supporting sharing resilience

BLAC[25] ✗ † ‡ ✗

EPID[9] ✗ † ‡ ✗

PEREA[26] ✗ † ✗ ✗

PE(AR)2[31] ✗ † ✗ ✗

FAUST[24] ✗ † ✗ ✗

BLACR[6] ✗ ✓ ‡ ✗

EXBLACR[27] ✗ ✓ ‡ ✗

PERM[5] ✗ ✓ ✗ ✗

FARB[29] ✗ ✓ ✗ ✗

DAC[20] ✓ ✗ - -

Ours ✓ ✓ ✓ ✓ ∗

† : only a basic blacklist is supported.
‡ : blacklists can be shared if SPs trust each other.
✓ ∗ : the system is partially resilient to the blacklist gaming attacks.

decentralized anonymous credential system, users registers by putting its cre-
dential to the ledger. Then, to argue that he is legitimately registered, a user
just proves that he knows the secret key for a credential stored in the ledger. To
make the proof size constant, cryptographic accumulator is desired to accumulate
all credentials in the ledger. However, in most (if not all) current (blacklistable)
anonymous credential systems, credentials are commitments of the users’ secret
keys, thus are either (1) points in an elliptical curve, which cannot be accumu-
lated using existing number-theory-based accumulators or (2) exponential in the
users’ secret keys (i.e., C = gshr where s is a secret key, C is the corresponding
credential, r is a random number, and g, h are group elements), which bring
expensive double discrete logarithm proof1. In both cases, the practicability of
the system are reduced.

In this work, we solve these issues by presenting a new method to construct
credential systems. In particular, the secret key of a user is two large primes
p, q and his credential is another prime n = 2pq + 1. The credential can be
accumulated by a strong-RSA assumption based accumulator and one can effi-
ciently prove that his secret key relates to a credential in an accumulator. As a
result, the efficiency of the system is boosted. The experiment result in Sect. 6
demonstrates that our new system is quite practical. Especially, it implies a
decentralized anonymous credential system that is as much as 30 times faster
for a user to generate an authentication, when compared with the decentralized
anonymous credential sytem in [20].

1 The decentralized anonymous credential system in [20] also suffers from this problem.
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2 Notation

For a finite set S, we use ‖S‖ to denote the size of S and write x
$← S to

indicate that x is sampled uniformly from S. We write negl(·) to denote a
negligible function. For two random variables X and Y, we write X c≈ Y to
denote that X and Y are computationally indistinguishable. We will use a few
cryptographic assumptions, including the strong RSA assumption, the LD-RSA
assumption, the discrete logarithm assumption, the DDH assumption, and the
DDH-II assumption. We will also use cryptographic primitives, such as zero-
knowledge proof of knowledge, commitment scheme, dynamic accumulator, CL
signature, and public append-only ledger. Note that all zero-knowledge proofs of
knowledge used in this paper are non-interactive and admit an additional mes-
sage as input, thus it is also called signature proof of knowledge (SPK), and is
usually written as SPK{(w) : S}[m], for a statement S with witness w and addi-
tional message m. Due to lack of space, we do not provide detailed descriptions
for the used assumptions and cryptographic primitives and refer the readers to
the full version of this paper [30] for more details.

3 Syntax and Security Goals

3.1 The Syntax

There are two types of entities, namely the users and the service providers, and
a public ledger in the DBLACR system, and the system consists of the following
protocols:

– Setup. To setup the system, a trusted party is employed to generate the
public parameter of the system. Note that this party is only used in the setup
phase and we only need to trust that it will generate the public parameter
honestly and will erase all the internal states of the generation process.

– Registration. In this protocol, a user registers himself to the system. To
complete this task, a user just needs to put some information to a public
ledger, which should include some auxiliary proof data and his attributes to
aid the SPs in deciding whether to accept the user as a valid candidate user
for accessing their services.

– Authentication. This protocol is executed between a user and a SP. The user
attempts to access services of the SP in an anonymous and unlinkable fashion,
and the SP will accept the user if and only if the user fulfills its requirement.
Here, the requirement includes three parts, namely the candidate users set
C, the policy PR and the rating records list L. Our system can support a
policy of any DNF formula, whose inputs are accumulated scores for a user’s
behaviors in different category. We refer the readers to the full version of this
paper [30] for a more detailed explaination of the requirement.

– Interaction with The Ledger. The public ledger in this system is pub-
lic and accessible to every participant, including the users and the SPs. In
addition, the SPs can put data to the ledger. In particular, it can upload
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its requirement to the ledger regularly. Besides, it can submit a rating for
the anonymous user in an authentication event and submit a revocation of a
rating record submitted by itself.

3.2 The Security

We refer the readers to the full version of this paper [30] for a formal security
definition of our decentralized blacklistable anonymous credential system with
reputation. Here, we only highlight a few security properties of the system that
are most concerned in practice:

– Authenticity. The authenticity property guarantees that SPs are assured to
accept authentication events only from users satisfying their requirements.

– Anonymity. The anonymity property guarantees that all a SP learns from an
authentication is if the authenticating user satisfies its current requirement.

– Non-frameability. The non-frameability property guarantees that if a SP
is honest, then users satisfying the current requirement of this SP can always
successfully authenticate to it.

– Sybil-Attack Resilience. The Sybil attack [18] allows users to get new
credentials after their current credentials are blacklisted, thus may expose
services to users with misbehaviors. In our new system, since users register
to the system via uploading their identities to the public ledger, the Sybil
attack can be prevented if SPs only select users whose identities have not
been uploaded previously as candidate users.

– Authenticity of Registration. This property guarantees that SPs can
decide which users are legitimate directly and do not have to resort to a
third party. The property can provide a better protection for SPs.

– Privacy of Registration. This property guarantees that only the fact that
the registered user hopes to access at least one service supported by the
system can be learned from a registration event. As personal information is
usually required in registration, this property is significant in protecting the
privacy of users.

– Consistency of Blacklists. This property guarantees that each rating
record selected by a SP will be honestly assessed unless there exist SPs hoping
to expose their services to possible malicious users. The property can greatly
reduce the requirement of trust when using rating records from other SPs.

– Blacklist-Gaming Attack Resilience. The blacklist gaming attack [26]
allows a SP to compromise the privacy of users via generating blacklists
(requirements) maliciously. Our new system is partially resilient to the black-
list gaming attack and this is achieved in the following two aspects:

• First, in our new system, the SPs can only update their requirements
regularly, thus in each time period, the requirement used in authentica-
tion protocols is fixed. Compared to that in previous systems, where the
malicious SP can use an adaptively chosen blacklist during each authenti-
cation event, the privacy of users is better protected now. To demonstrate
this, we consider the following scenario. Via some auxiliary information,
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a SP conjectures that the next authentication event is launched by the
same user who launches a previous authentication event with identifier
“t”. In current blacklistable anonymous credential systems, the SP can
definitely verify its conjecture via providing a blacklist with merely “t”
in it. However, this attack is not applicable in our system since no SP is
able to use a temporary blacklist in an authentication.

• Next, in our new system, as a user could obtain the latest requirement of
a SP from the public ledger, he can check whether he is able to pass the
verification in advance and will not attempt to launch the authentication
protocol if he does not satisfy the requirement. To see why this can better
protect the privacy of users, we consider the following scenario. Again, via
some auxiliary information, a SP learns that the following authentication
events will be launched by one of two lists of users. It also learns whether
each user in these two lists satsifies a pre-defined requirement. Previously,
even restricting the malicious SP to the pre-defined requirement, it can
still determine the list of users in use if there exists an index i that the
ith users in the two lists are different in satisfying the requirement. In
contrast, in our new system, the malicious SP can learn nothing if the
numbers of users satisfying the requirement in these two lists are identical.

We remark that the first four properties are already achieved in current
blacklistable anonymous credential systems. The property “authenticity of reg-
istration” and the property “privacy of registration” have also been achieved
previously, but no system has these two properties simultaneously, and our sys-
tem is the first one that can protect both the security of the SPs and that of
the users in the registration. The last two properties are new security properties
that are only available in our new system.

4 General Construction

In this section, we provide a general framework for constructing the decentral-
ized blacklistable anonymous credential system with reputation. We start by
introducing a few algorithms and protocols used for building the system. Then
we describe how to combine these components to complete the construction.

4.1 Building Blocks

Our DBLACR system can be instantiated from various public key systems, and
for each public key system, we need the following sub-protocols to help build
our system:
A Key Generation Algorithm. On input a security parameter 1λ, the key
generation algorithm returns a public key/secret key pair, namely, (pk, sk) ←
KeyGen(1λ). In our system, the public key is the credential of a user, and the
secret key is the witness for it. So we require that the key generation algorithm
has the following properties:
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– Verifiability. There exists a polynomial-time algorithm T s.t. T (pk, sk) = 1
iff the pair (pk, sk) is a legal key pair of the public key system.

– Onewayness. Given the public key pk, it is computationally hard to compute
a secret key sk such that T (pk, sk) = 1.

– Collision Resistance. It is computationally hard to find a pair of different secret
keys (sk1, sk2) and a public key pk such that T (pk, sk1) = T (pk, sk2) = 1.

A Ticket Generation Algorithm. On input a secret key sk, the ticket gen-
eration algorithm generates a ticket for sk, namely, τ ← TicketGen(sk). In our
system, each ticket will be the representation of an authentication event, and an
authentication event with a ticket τ will be regarded as launched by the owner
of a secret key sk iff S(sk, τ) = 1. So we require that the ticket generation
algorithm has the following properties:

– Verifiability. There exists a polynomial-time algorithm S s.t. S(sk, τ) = 1 iff
τ is a valid ticket of sk.

– Indistinguishability. Let (pk, sk) ← KeyGen(1λ), then for any probabilistic

polynomial time adversary A, Pr[b $← {0, 1}; b ← AOb(pk)] ≤ 1/2 + negl(λ),
where O0 outputs a ticket of sk each time invoked, and O1 outputs a random
element in the range of the ticket generation algorithm each time.

– Verifying Consistency. For any secret keys sk1, sk2, if there exists a τ s.t.
S(sk1, τ) = S(sk2, τ) = 1, then for any τ ′ in the range of the ticket generation
algorithm, we have S(sk1, τ ′) = S(sk2, τ ′).

– Connectivity. Let (pk, sk) ← KeyGen(1λ), τ ← TicketGen(sk), and sk′ be a
secret key s.t. S(sk′, τ) = 1, then given (pk, sk′), one can efficiently compute
sk.

An SPK System Proving the Possession of the Secret Key. We need
a SPK system to prove that the prover possesses the secret key sk of a given
public key pk. Formally, the prover needs to prove SPK{(sk) : T (pk, sk) = 1}.
An SPK System Proving the Validity of a Public Key and a Ticket.
We need a SPK system proving that the prover possesses a secret key sk for a
given ticket τ and the secret key is associated with a public key in a given set C.
Formally, the prover needs to prove SPK{(sk, pk) : S(sk, τ) = 1 ∧ T (pk, sk) =
1 ∧ pk ∈ C}.
An SPK System Proving the Fulfilment of a Policy. We also need a
SPK system proving that the prover possesses a secret key sk for a given ticket
τ and the secret key represents a user whose scores evaluated according to a
policy PR and a rating records list L satisfies RR. For simplicity of description,
in this section, we define a boolean function E that outputs 1 iff the latter
condition is satisfied. Then, the prover needs to prove SPK{(sk) : S(sk, τ) =
1 ∧ E(PR,L, sk) = 1}.
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4.2 The Construction

Now, we present the general construction of our DBLACR system, which is
built on the sub-protocols shown in Sect. 4.1 and a public append-only ledger
with ideal functionality F�

BB , whose formal definition is given in the full version
[30]. Formally, we have:

Setup. On input a security parameter 1λ, a trusted party runs the setup algo-
rithm for each sub-protocol of each public key system and outputs all those
generated public parameters as the public parameter for the DBLACR system.

Registration. To register himself to the system, a user with auxiliary proof
data aux and attributes attr first generates his public key/secret key pair
(pk, sk) ← KeyGen(1λ) for one of the supported public key systems. Then
he computes ΠR←SPK{(sk) : T (pk, sk) = 1}[aux‖attr]. Finally, he stores the
tuple (Nym, pk,ΠR, attr, aux) to the public ledger via F�

BB , where Nym is his
pseudonym in the public ledger. We remark that here the user can use a tempo-
rary pseudonym and not a permanent one.

Authentication. In this protocol, a user uid attempts to authenticate with a
service provider sid. Interactions between these two parties are summarized in
Fig. 2. For the clarity of presentation, here we assume that there are k public key
systems employed in our system, and denote them as Ψ1, . . . , Ψk respectively. All
algorithms in Ψi will be labeled with a superscript “(i)”, and w.l.o.g. we assume
that the user uid chooses the first public key system when registering.

In more detail, in this protocol, the user uid first downloads the require-
ment (C,PR,L) for accessing services of sid from the public ledger. Then he
verifies the validity of this requirement. If the requirement is valid, the user
then checks whether he satisfies the requirement. If not, he aborts the pro-
tocol even without communicating with sid. Otherwise, uid sends a request
to sid and gets a challenge m‖sid′ back, where m is a randomly chosen bit
string whose length is polynomial in the security parameter. Then, uid checks
whether sid = sid′ and if so he generates a ticket T and a proof ΠA, and sends
(T ,ΠA) to sid. More precisely, to generate the ticket T , the user computes
τ1 ← TicketGen(1)(sk), randomly samples τi in the range of TicketGen(i)(·)
for i ∈ [2, k], and sets T = {τ1, . . . , τk}. To generate the proof ΠA, the user
computes ΠA = SPK{(sk, pk) :

∨k
i=1(T

(i)(pk, sk) = 1 ∧ pk ∈ Ci ∧ S(i)(sk, τi) =
1 ∧ E(i)(PR,L(i), sk) = 1)}[m‖sid], which is constructed by employing the tech-
nique in [15] to combine the proof of “validity of a public key and a ticket” and
the proof of “fulfillment of a policy” for each public key system, where Ci con-
sists of all public keys of Ψi that are in C, and L(i) consists of all rating records
in L but for each record the ticket T ′ = (τ ′

1, . . . , τ
′
k) is replaced with τ ′

i . Upon
receiving the response (T ,ΠA), sid verifies the proof and sends the result, which
will be “accept” iff the proof is valid, back to uid.

Interaction with Ledger. To obtain data from the public ledger, a participant
just needs to submit a “retrieve” request to F�

BB . To put data to the public
ledger, a SP just needs to submit a “store” request together with its permanent
pseudonym and its data to F�

BB . The submitted data vary depending on the
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Interactions in the Authentication Protocol.

UF�
BB

(uid, sid, sk, pk, C, PR, L)

SPF�
BB

(sid, C, PR, L)

(‘request’, sid)

m‖sid

(T , ΠA)

accept or reject

Fig. 2. Interactions in the authentication protocol. Here, we use “U” to denote the
user, and “SP” to denote the service provider.

purpose of the SP. In particular, when a SP would like to submit a rating s,
it needs to put a tuple (rid, T , s, Γ ) to the public ledger, where rid is a unique
string identifying this rating record, T is the ticket for the rated authentication
event, and Γ is the transcript of this authentication event, which is used to
prove that the rated authentication event can be accepted by this SP. When a
SP would like to submit a revocation of a rating record rid, it needs to put a
tuple (‘revoke’, rid) to the public ledger. When a SP would like to publish a
new requirement, it first generates a valid requirement (C,PR,L), then puts it
to the public ledger. To generate a valid requirement, apart from meeting those
demands listed in Sect. 3.1, the SP should further ensure that each selected user
in C is attached with a valid proof ΠR. We remark that all those data uploaded
to the public ledger will not be verified in this phase, instead, the verification
will be postponed until the data are used.

The Security. Security of our system is guaranteed by Theorem 4.1 stated as
following. We refer the readers to the full version of this paper [30] for proof of
Theorem 4.1.

Theorem 4.1. The system presented in Sect. 4.2 is a secure DBLACR system
if each sub-protocol has the properties demanded in Sect. 4.1.

5 The Instantiations

To demonstrate the utility of our general framework, in this section, we instan-
tiate sub-protocols defined in Sect. 4.1. The sub-protocols can be instantiated
under three different types of public key systems, namely, the classical DL sys-
tem, the pairing based system, and the RSA system. Here, we only present a
high-level idea on how to instantiate the system from the RSA system and refer
readers to the full version [30] for detailed instantiations from all three systems.

Our RSA based sub-protocols works in a quadratic residue group QRN with
a generator g, where N is the product of two big safe prime numbers. The secret
key of the system is two safe primes p and q that 2pq + 1 is also a prime and
the public key is n = 2pq + 1. To generate a ticket τ = (b, t), one first samples

r
$← ZN , then computes b = gr mod N and t = bp+q mod N .
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To prove the possession of a secret key sk = (p, q) for a properly generated
public key pk = n, the user works in two steps. First, the prover proves that
(n − 1)/2 is a product of two primes. This can be accomplished by employing a
variant the proof system proposed in [21]. Then, the prover needs to prove that
he knows two numbers p, q with identical lengths that satisfy 2pq + 1 = n. To
instantiate this proof system, we apply the framework presented in [23], which
provides a simple method to prove knowledge of discrete logs that are in an
interval and fulfil a set of equations over groups of unknown order.

Then, to construct the SPK system proving that a user possesses a secret
key sk = (p, q) associated with a public key pk = n in a given set C, we apply
the approach presented in [17], which also builds on the framework of [23]. More
precisely, the prover first accumulates public keys in C with a dynamic accumu-
lator, then proves in zero-knowledge the possession of the secret key of a public
key in the accumulator. To further prove that a given ticket τ = (b, t) is also
generated from the same secret key, the prover just plugs the equation t = bpbq

into the above statement.
Finally, to prove the fulfilment of a policy, we exploit the idea in [6] to con-

struct the proof system, but will employ RSA-based cryptographic primitives
instead of those pairing-based ones. In particular, we will apply strong-RSA
assumption based additive homomorphic commitment scheme [19] and CL sig-
nature scheme [12], and we will also apply the framework in [23] to construct
our proof system.

6 The Implementation

To demonstrate the practicability of our system, in this section, we provide a
proof of concept implementation for it. The implementation includes two rel-
atively independent parts, namely, the public ledger part and the credential
system part, and we describe the results for them in Sect. 6.1 and in Sect. 6.2
respectively.

6.1 The Public Ledger

First, we explore how the public ledger could be realized. Recall that the pub-
lic ledger can be instantiated via the blockchain technique. So, we choose the
Bitcoin and the Ethereum, which are the two most popular blockchain tech-
nique instantiations currently, as the test object. The test is conducted on a
personal computer with a 3.16 GHz Intel(R) Core(TM)2 Duo Processor E8500,
8 GB RAM and 500 GB disk, running ARCHLinux version 4.10.6. The Bitcoin
client run in the experiment is Bitcoin Core Version 0.14.0 and the Ethereum
client is go-ethereum 1.5.9. The result is summarized in Table 2.

The row “Market Cap” indicates the market capitalizations of each instan-
tiation, and the data come from [1]. This can reflect the robustness of the
blockchain to some extent. The row “Initial Data Size” and the row “Initial
Sync Time” indicates the disk space and time needed before one could employ



732 R. Yang et al.

Table 2. Comparison of public ledger instantiations.

Bitcoin Ethereum

Market Cap 19257718797 USD 4376127411 USD

Initial Data Size 118 GB 15 GB

Initial Sync Time 9 h 5 h

Ease of Use Difficult Easy

Data Size Limit 80bytes *

Cost 0.5342 USD 0.0225 USD

Confirmation Time 6 min/70 min a few seconds/3min

the public ledger. The row “Ease of Use” and the row “Data Size Limit” indi-
cates the accessibility of using blockchain as a public ledger. For Bitcoin, in
each transaction, there exists a field OP RETURN allowing one to put up to 80
bytes arbitrary data [3] on it, but it seems that the Bitcoin community do not
hope people to use this field, and the client Bitcoin Core also does not provide a
convenient way to implement this functionality. Thus, we test this facility via a
third party open source project on GitHub [22]. For Ethereum, putting data in
a transaction is natively supported. There is also no explicit limits on the size
of data put in a transaction, but for each block, there is a block gas limit, which
is about 4 millions for current blocks. As it will consume gas to attach data
to a transaction, one could only put dozens to hundreds kilobytes data in one
transaction now according to the content of the data. The row “Cost” indicates
the amount of money cost to put data on the blockchain. For Bitcoin, this is
the transaction fee for rewarding the miners. According to statistics (data from
[4]), to hope miners to deal with the transaction immediately, the transaction
fee should be above 1.8 × 10−6 BTC per byte, and for our purpose, which will
send a transaction of about 250 bytes (about 200 bytes for the basic transaction
and about 50 bytes for the attached data), the transaction fee should be 0.00045
BTC, which is about 0.5342 USD according to the price of 1 BTC at April 14th,
2017. For Ethereum, the cost comes from the gas consumed. Currently, each gas
is about 2 × 10−8 Ether, and according to the yellow paper of Ethereum [28], a
transaction will cost 21000 gas for itself, and each non-zero byte put in the data
field will cost 68 gas. In our experiment, we put 32 bytes in a transaction and
this cost us 0.00047 Ether, or about 0.0225 USD according to the price of 1 Ether
at April 14th, 2017. The row “Confirmation Time” indicates the time needed to
wait for the transactions and the data to be confirmed. For Bitcoin, on average,
it will take 10 min to generate a new block, so on average, it will take about 5 min
to see the data appear on the blockchain, and about 1 h to confirm that the data
are put in the blockchain (6 confirmation). For Ethereum, the new block appears
every a few seconds, so the data will appear on the blockchain immediately. As
claimed by the Ethereum Blog [2], 10 confirmation in Ethereum is enough to
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achieve a similar degree of security as that of 6 confirmation in Bitcoin, so it
may take about 3 min to wait for the confirmation of the transaction/data.

From the experiment result, we observe that neither the Bitcoin nor the
Ethereum can support large data storage. So in practice, to use them as a public
ledger, one should first upload the data to some public cloud, then put the link
(40 to 60 bytes for a dropbox link and 10 to 20 bytes if google url shorten service is
used) and hash value of the data (32 bytes if SHA-256 is used) to the blockchain.
In this way, the functionality of the public ledger still reserves. Another problem
is that while it is quite easy for a service provider to sync and maintain a Bitcoin
blockchain or an Ethereum blockchain in its server, this is not the case for a
normal user. To tackle this problem, we suggest users with constrained devices
to use a lightweight client or refer to an online service to complete interactions
with the public ledger (they could exploit multiple approaches to retrieve data
to boost the security), and this will not harm the security as long as there exists
services providing correct Bitcoin or Ethereum blockchain information. When
comparing the Bitcoin and the Ehtereum, it seems that the Bitcoin blockchain is
more robust, while the Ethereum is also very secure and is much more convenient
to use. Thus, in practice, Ethereum seems a better choice and we prefer to employ
Ethereum to realize our system.

6.2 The Credential System

Then we examine the practicality of the credential system part of our system.
The implementation is for the RSA-based instantiation. To simplify the criterion
for evaluating the experiment result, we only consider a simple policy with a
single category, threshold 0, and no adjusting factor, and a rating records list
with one blacklist. The experiment is conducted on a Macbook Pro with 8 GB
of 1866 MHz LPDDR3 onboard memory and a 2.7 GHz dual-core Intel Core i5
processor, running OSX 10.12.4. The test code is written in C based on the
OPENSSL library (version 1.0.2).

There are two main operations, namely the registration and the authentica-
tion, in the system, thus our experiment also focuses on the performance of these
two protocols. First, we test the performance of the registration protocol, includ-
ing the time for a user to generate a credential, the time for a service provider to
verify a credential, and the credential size. As the user may already have a key
pair when joining the system, the time consumption for generating a credential
is tested in two modes, namely the normal mode, where the user needs to gen-
erate both the key pair and the proof, and the pre-computation mode, where
credential is generated on a given public key/secret key pair. Then, we test the
performance of the authentication protocol, including the time for generating a
proof, the time for verifying a proof, and the size of the proof. Since the user
can access the requirement in advance and precompute some parts, we will test
the times for generating a proof both with and without pre-computation.
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The experiment performance is measured under different parameters, includ-
ing the security parameter, the candidate users set size, and the blacklist size.
In more detail, we will consider security parameters of 1024 bits, 2048 bits, and
3072 bits, which can achieve a security strength of about 80 bits, 112 bits, and
128 bits respectively (according to [7]), and summarize the performance of our
system under different security parameters in Table 3. we will consider candi-
date users set size of 10000, 20000, 50000 100000, and 200000, and blacklist
size of 1000, 2000, 3000, 4000, and 5000, and summarize the performance of the
authentication protocol under these parameters in Fig. 3. When analyzing the
relation between the performance and one particular parameter, the other two
parameters will be set as default, and the default values of the security param-
eter, the candidate users set size, and the blacklist size are 2048 bits, 50000,
3000 respectively. Besides, we also test the performance for the setting with an
empty blacklist, which is exactly the scenario considered in [20], and compare
our results with theirs in Fig. 4.

Table 3. The performance of the registration protocol and the authentication protocol
under different security parameters with 50000 users and 3000 blacklist records.

GC GC-P VC CS GP GP-P VP PS

1024 bits 1.316 s 0.153 s 0.047 s 70.1 KB 10.878 s 0.021 s 5.686 s 3.1 MB

2048 bits 19.296 s 0.932 s 0.295 s 139.9 KB 51.917 s 0.036 s 29.289 6.2 MB

3072 bits 69.578 s 2.959 s 0.910 s 209.8 KB 142.123 s 0.047 s 84.872 s 9.3 MB

Here, we use GC, GC-P, and VC to denote time consumed in generating a credential,
generating a credential with pre-computation, and verifying the validity of a credential
respectively; we use GP, GP-P, and VP to denote time consumed in generating a proof,
generating a proof with pre-computation, and verifying a proof respectively; and we use
CS and PS to denote the size of a credential and an authentication proof respectively.

From the experiment results, we can conclude that our system is quite prac-
tical when deployed in practice. First, at the user side, the time consumption is
extremely low if pre-computation is enabled. At the service provider side, it is
also fairly fast to verify the validity of a credential, but it seems time-consuming
to verify the validity of a proof. Nonetheless, the service provider often controls
more computation resources, so it will take less time to wait for the verification
in real world applications. Besides, the size of the credential and the proof is
also not very large, thus the communication cost of our system is also quite low.
One advantage of our system is that both the communication cost and the com-
putation cost hardly increase with the increasing of the candidate users, i.e. it is
scalable in the number of supported users. This is important for the usefulness of
our system, since a large number of registered users is always desired to protect
the privacy of particular users. However, this is not the case for the blacklist
size, as both the communication cost and the computation cost grow linearly
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(a) Performance for the authentication protocol under different candidate users set size with secu-
rity parameter 2048 bits and 3000 blacklist records. GP, GP-P and VP are times for generating a
proof without pre-computation, generating 1000 proofs with pre-computation, and verifying a proof
respectively, and PS is the size of the authentication proof.
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(b) Time for generating and
verifying a proof under differ-
ent blacklist size with secu-
rity parameter 2048 bits and
50000 users. GP and VP are
times for generating (without
pre-computation) and verifying
a proof respectively.
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for generating a proof with
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(d) Size (in Megabyte) of an
authentication proof under dif-
ferent blacklist size with secu-
rity parameter 2048 bits and
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Fig. 3. Performance of our system under different candidate users set size and blacklist
size.

with the size of the blacklist. So, it is better to employ our system in settings
with a small blacklist. We leave how to upgrade the system to scalable in the
size of the blacklist as an open problem.

When comparing the efficiency of our system with that in [20], we observe
that our efficiency is much better than theirs. More precisely, our system can be
as much as 30 times faster than theirs for a user to generate an authentication,
and can be as much as 4 times faster for a service provider to verifiy. Also, the
communication cost of our system is only about 15% to 45% of theirs. Thus our
system is preferable even in scenarios that no revocation is needed.
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Fig. 4. Comparison between the performance of our authentication protocol with
empty blacklist and the performance of the authentication protocol in [20]. Since in
their experiment, accumulator is computed separately, we also do not count time con-
sumed by this part in the test. Here, GP-O and VP-O are times for generating an
authentication proof without pre-computation and verifying an authentication proof
in our system respectively; GP-G and VP-G are respective times in [20]; and PS-O and
PS-G are our authentication proof size and theirs respectively.

7 Conclusion

In this paper, we explore how to employ the blockchain technique to solve several
open problems for previous anonymous credential systems, including trust of the
credential issuer and the blacklist gaming attack. Note that, our system is only
partially resilient to the blacklist gaming attack. Especially, a malicious verifier
can still learn information such as the number of successfully authenticated users
in a time period and may use this information to compromise the privacy of users.
We leave how to construct a blacklistable anonymous credential system that is
fully resilient to the blacklist gaming attack as an open problem.
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