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Abstract. Software defined network (SDN) is the key part of the next
generation networks. Its central controller enables the high programma-
bility and flexibility. However, SDN can be easily disrupted by a new
DDoS attack which triggers enormous Packet IN messages. Since the
existing solutions focus on checking current network states with content
feature to detect the attack, they can possibly be misled. In this paper, we
propose a detection and defense scheme against the DDoS attack based
on the time feature. Specifically, the time feature is the hit rate gradient
of the flow table. We first extract the temporal behavior of an attack.
A back propagation neural network is trained to extract an attack pat-
tern and used to recognize an attack. Then either a defense or recovery
action will be taken. We test our scheme with the DARPA 1999 intrusion
detection data set and compare our scheme with another method using
sequential probability ratio test (SPRT). The experiment and evaluation
show that our scheme enables the real-time detection, effective defense
and quick recovery from DDoS attacks.
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1 Introduction

Software defined network (SDN) is a new network architecture that separates the
control and data planes. A central control plane enables the global view of the
network, which makes SDN programmable and more flexible than a traditional
network. Using SDN can drastically increase the throughput and forwarding
speed in IoT [3] or DCN [1]. However, there are a variety of security concerns
in SDN [2]. One problem is that the central data plane of SDN may lead to the
single point failure, especially when a DDoS attack happens [9].

Especially, there exists an SDN-specific DDoS attack against SDN controller.
Different from the traditional DDoS attack, an attack against the controller
aims to overload the controller and disrupt the entire network. It utilizes the
operations defined by the OpenFlow protocol [11] to launch an attack. In SDN,
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 649–665, 2018.
https://doi.org/10.1007/978-3-319-93638-3_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93638-3_37&domain=pdf


650 J. Cui et al.

the OpenFlow (OF for short) switch encapsulates the packet that matches no
flow entry into a Packet IN message and sends it to the controller. The controller
decapsulates the Packet IN message, then calculates the route and finally pushes
a flow entry to the OF switch. To launch a DDoS attack, an attacker only need
to send enormous fake packets to the OF switch. Since the packets are fake, they
match no existing flow entry and trigger enormous Packet IN messages. Finally,
the controller resources for handling the Packet IN messages will be exhausted
[15].

Normally, the attacker sends random packets to the OF switch as long as
each packet has a different IP address or port from others. Because the attacker
can combine different attacks, such as SYN Flooding, ICMP Flooding, and UDP
Flooding [19], to confuse us, the traditional detection method may be unsuitable
for the hybrid attack. Meanwhile, the attacker uses the OF switch to attack the
controller instead of attacking the controller directly. Therefore, the packets can
be divided and sent to serval switches, but the Packet IN messages shall still be
sent to the controller automatically. Thus, it may not work to detect the attack
against the controller with the traditional method in a single switch.

1.1 Related Work

As SDN is likely to become the heart of the next generation networks, security
issues in SDN become very important. There are many studies on securing SDN
with a focus on detecting DDoS attacks in SDN.

In 2010, Rodrigo Braga et al. [4] proposed a method for detecting a DDoS
attack using OpenFlow. They combined the statistics from an OF switch with
a self-organized map (SOM) to detect a DDoS attack. By using this method,
they detected the DDoS attack without the specific middleware and got a good
accuracy. However, this method was designed for detecting a traditional DDoS
attack but not a DDoS attack against the controller. It is unknown to us whether
this method work to detect a DDoS attack against the controller.

Though studies on the traditional DDoS detection are still active [5,17,20],
many researchers realize that the detection of the DDoS attacks against a con-
troller is more important. Thus, plentiful methods for detecting a DDoS attack
against controller have been proposed [7,8,14,16,18].

Mousavi and St-Hilaire [13] proposed an entropy-based detection of the DDoS
attacks against SDN controllers in 2015. They used the entropy of IP addresses to
detect an attack. When an attack occurs, the attacker sends enormous fake pack-
ets to the OF switch. Consequently, the entropy of incoming packets increases
sharply, which can be used to detect the attack. This method shows a great
promptness, but it may make a misjudgment when the attacker tries to confuse
it [6]. It is not a universal method though it shows a great promptness.

The hit rate of a flow entry can be simply represented by the amount of the
packets that match the flow entry in a fixed time. For example, if a flow entry is
hit 20 times in 1 second, then its hit rate is 20. One primary characteristic of the
attack is that almost every packet has different IP address from another, which
causes the low rate of the flow table. Ping Dong et al. [6] proposed a detection
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method with SPRT. They defined a flow entry with an extremely low hit rate as
“low-traffic flow”. First, they used SPRT to analyze the DARPA 1999 intrusion
detection data set. Then, they used SPRT with the experienced parameters to
detect an attack. This method reduces the possibility of misjudgment since the
normal flows are always continuous but the low-traffic flows are not. It is a
universal method to detect the attack against controller, but they still ignored
the temporal characteristics of a DDoS attack, which could have achieved a faster
detection.

In all methods mentioned before, the feature used to detect an attack is
always a content feature, such as the entropy and the statistics from OF switch.
Thus, the attacker can confuse these detection systems by changing the contents
of malicious packets, such as the distribution of the IP addresses [6]. We notice
that the principle of the attack is to trigger massive Packet IN messages, thus the
attack must cause a sharp decrease in the hit rates. This change is an inherent
behavior feature of the attack. Therefore, we can use the gradients of hit rate as
the time feature to detect the attack.

1.2 Our Contributions

In this paper, we propose a method to detect and defend the DDoS attack
against controller based on time feature. It relies on the detection of the attacking
behavior according to the time feature. First, we collect statistics from the OF
switch, such as the count and duration of each flow entry. Then we calculate
the hit rate with the count and duration of flow entry. The hit rate gradient
is the gradient between two successive hit rates and it shows the changing rate
of the hit rates. For example, if the hit rate changes from 2 to 3, the hit rate
gradient is 1.5. With the multiple successive hit rates, we can calculate hit rate
gradients as the time feature. Then we use the time feature to train a BPNN.
Finally, a DDoS attack can be detected with the BPNN, and the appropriate
response will be taken. In the comparison with the methods mentioned before,
[6,13] particularly, our method has the following advantages:

– First, we use the temporal feature to predict the next state of the network
in some respects. By contrast, the methods mentioned before use the current
network state to detect a DDoS attack. For example, method [6] use low-
traffic flow, which is a current state of flow table, to detect the attack. Thus,
our method can detect the attack earlier.

– Second, the temporal feature is also the inherent behavior feature of the
attack and we use it to detect the attack. It reduces the false positive (FP)
rate caused by attacker’s strategy. The method [13], for example, can be
confused by the attacker and make a misjudgment.

– Finally, we implement a defense method and a dynamic port recovery mecha-
nism, which makes our scheme more complete than method [13] and method
[6]. The defense method interdicts attack flows effectively, while the port
recovery mechanism decreases the negative effect on the legitimate services.
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We have to admit that there are still shortages in our scheme. BPNN is a
classical machine learning algorithm. Compared with other algorithms, it shows
some limitations due to its simple structure. Though our defense method can
effectively protect the controller, it causes the unavailability of the legitimate
services sometimes. The time to recover a victim port is hard to predict and
control. Fortunately, the experiment and evaluation show that our scheme is
still feasible.

The rest of this paper is organized as follows. In Sect. 2, we are going to
introduce the OpenFlow protocol and the BPNN. Details of the method and
experiment are shown in Sects. 3 and 4. Finally, we will present conclusions in
Sect. 5.

2 Background

The OpenFlow protocol is the key protocol of SDN while BPNN is a useful
algorithm in the field of pattern recognition. Attacker utilizes the principle of
OpenFlow to launch an attack and we use the BPNN to detect this attack, so
it is necessary to introduce the OpenFlow and BPNN first.

2.1 OpenFlow

The OpenFlow protocol was proposed by professor N. McKeown in 2008. It sug-
gests separating a network into the control plane and the data plane indepen-
dently, communicating via a secure channel. The overview of OpenFlow archi-
tecture is shown in Fig. 1.

Fig. 1. OpenFlow architecture

In an OF switch, packets are always handled as the “flows”. When a packet
arrives at an OF switch, the switch tries to match the packet with the flow
table which contains many flow entries. If the packet matches any flow entry,
the switch will handle the packet as the instruction and update the counter of
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the flow entry. The packet that matches no flow entry should be encapsulated
into Packet IN message and sent to the controller. Controller makes a decision,
then pushes a flow entry to the OF switch. The process of handling a packet in
the OF switch is shown in Fig. 2.
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Fig. 2. Handle process of packet in SDN

According to the OpenFlow 1.0, a flow entry is mainly divided into three
parts: match field, counter, and instructions. The match field consists of many
segments from a packet, such as IP address, MAC address, port, type of protocol
etc. The match field is used to match packet and determine which instruction
should be chosen. The counter stores statistics of the packets matching this flow
entry. As for the instructions, they tell the switch what kind of action should
be taken, such as dropping, queuing or forwarding. Three main parts of a flow
entry are shown in Fig. 3.
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Fig. 3. Flow entry

From Fig. 3 we can see two important segments: “PacketCount” and “Dura-
tion”. Once we get these two statistics from the OF switch, we calculate the
hit rate of the flow table. Furthermore, we can calculate the gradient of hit rate
with successive hit rates.
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2.2 BPNN

Back propagation neural network(BPNN) [10] is one of the most useful artificial
neural networks. It is a supervised neural network. A BPNN commonly consists
of three layers: input layer, hidden layer, and output layer. The input layer and
the output layer are single-layer structure, but the hidden layer can be a multi-
layer structure. A basic BPNN is shown in Fig. 4.
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Input Hidden Output

Fig. 4. Back propagation neural network

We choose BPNN to recognize the patterns of the attack since it makes our
method adaptive to the hybrid attacks. Though attacker can confuse a detection
system by combining different types of DDoS attacks, the behavior characteris-
tics of the attack are still unchanged. BPNN needs a long time to train while
little time to calculate, which helps us save a significant time and resource. The
structure of BPNN may seem to be too simple, but it is already sufficient for an
effective detection.

3 Our Scheme

In this section, we are going to present the details of our scheme. The scheme
consists of 5 modules, including:

– Statistics collection module. Statistics collection module collects the statistics
for port P in period T1. The statistics that collected include the duration of
each flow entry, the packet count of each flow entry and the number of flow
entry for port P, represented by Duration, FlowCount, Num respectively.

– Feature extraction module. Feature extraction module calculates the average
hit rate e of flow table in period T1, then calculates the gradient of average hit
rate in T1, finally arranges n the gradients orderly in period T2 = n · T1 (n =
2 , 3 , . . .).

– Attack detection module. Attack detection module mainly consists of a well-
trained BPNN. The BPNN was trained with massive historical samples off-
line. With a well-trained BPNN, attack detection module can recognize the
DDoS attack patterns in real time.
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– Attack defense module. Attack defense module defends the attack in real time.
It pushes a flow entry to the corresponding OF switch, then the switch drops
all packets arriving at victim port P. The result is that malicious packets
from the attacker are entirely intercepted.

– Port recovery module. Port recovery module helps to recover the victim port
automatically. We implement this module with the help of the flow entry
pushed by attack defense module.

The whole working process of our scheme is shown in Fig. 5. And in the
following sections, we will explain how every module works in details.
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Fig. 5. Working process

3.1 Statistics Collection Module

Statistics collection module is embedded in the controller. It asks the controller
for the statistics of port P in period T1. The statistics that collected at time t
include the duration of each flow entry, the packet count of each flow entry and
the number of flow entry for port P. We order these statistics as a vector (P,
Duration, FlowCount, Num).

3.2 Feature Extraction Module

Feature extraction module is also embedded in the controller. We get the time
feature by calculating flow table’s hit rate gradients in this module. First, we
calculate the average hit rate of flow table for port P at time t. The equation
we used is shown as Eq. (1) below.
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et =

∑
f∈FP

FlowCount

Num · ∑f∈FP
Duration

(1)

The f is an existing flow entry in the flow table of the OF switch, and FP is
the set of flow entries in the flow table for port P.

We use Eq. (1) to calculate the average hit rates at time t and t + T1, then
calculate the gradient of average hit rates Δe between t and t + T1 as Eq. (2)
below.

Δe =
et+T1/Numt+T1

et/Numt
(2)

Equation (2) can be transformed as Eq. (3) below.

et+T1

et
= Δe · Numt+T1

Numt
(3)

As we mentioned before, a DDoS attack against controller triggers enormous
Packet IN messages and the malicious packets are formed with a spoofed header.
Therefore, the amount of flow entries increase rapidly while the average hit rate
decrease rapidly. We can see from Eq. (3), the hit rate gradient Δe represents the
relationship between the average hit rate and the number of flow entries. That
is why we choose Δe as an important parameter to detect the DDoS attack.

Finally, we arrange these gradients orderly in period T2 = n·T1(n = 2 , 3 , . . .)
and get a vector of gradients e = (Δe1, Δe2, Δe3, . . . , Δen). The vector e is
the time feature and the input of the BPNN.

3.3 Attack Detection Module

After we get the inputs from feature extraction module, the next step is to train
the BPNN. Since the BPNN is supervised, we have to label the inputs before
training. After labeling, we get the training samples (e, Abnormal, Normal).
The first dimension is a gradients vector, the second and the third dimension are
traffic patterns representing the DDoS attack and the normal traffic respectively.

In the detection phase, we use the well-trained BPNN to detect an attack
in real time. First, we activate the statistic collection module and the feature
extraction module to get a new e, then put it into the BPNN without label-
ing, finally the BPNN judges which class this e belongs to. And we take the
corresponding action according to the result.

We should point out that BPNN can be continuous updated online, even it
has already been employed. The matter is the design of a correction strategy.
Though a single mislabeled sample make little influence on BPNN, multiple
mislabeled samples may lead to a totally wrong result due to the snowball effect.
A correction strategy is necessary. But it involves the optimizing of a machine
learning algorithm and is pretty complex. So we choose a static BPNN instead
until we can design an effective correction strategy.
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3.4 Attack Defense Module

Once a DDoS attack has been detected, this module is going to be activated.
Attack defense module will push a special flow entry to the OF switch. The flow
entry is shown in Table 1.

Table 1. Defense flow entry

Priority Match field Counter Instructions

Minimal In Port = P · · · Action = Drop

The function of this flow entry is to directly drop all packets arriving at port
P. It cuts off the way from attacker to the controller so that the controller can
be well protected. First, the new coming packets trigger no Packet IN message
but update the “Counter” of the flow entry. Meanwhile, the existing flow entries
for legitimate services can still match their packets, since they have a higher
priority. As a result, existing services will not be interdicted, but new services
need a longer time to establish a link.

3.5 Port Recovery Module

Since the attack defense module has shut down port P for new flows, the new
legitimate services can be shut down, too. In order to decrease the negative
influence due to the defense method, we design a port recovery module to recover
the victim ports dynamically. The main idea of this method is contrary to the
detection method. In the detection method, we regard a low hit rate as a symbol
of the attack. As for recovery method, we can expect that there will still exist
massive packets arriving at the port P if the attack still goes on. Thus, the
defense flow entry must show an extremely high hit rate since each unknown
packet hits this flow entry. By calculating the hit rate of defense flow entry and
comparing it with other flow entries representing legitimate flows, we can judge
whether port P is still under attack or not. The complete recovery process is
shown as below.

1. We traverse the flow entries of all the legitimate flow entries and calculate
the average hit rate of them as Eq. (4). If there is no or very few legitimate
flow entries for P, we turn to other ports. Fnormal is the set of flow entries
that belongs to all normal ports.

ē =

∑
f∈Fnormal

FlowCount
∑

f∈Fnormal
Duration

(4)

2. Then, we calculate the hit rate of the flow entry as Eq. (5).

e =
FlowCount

Duration
(5)
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3. Finally, we compare these two hit rates. If the result satisfies Eq. (6), we judge
that the victim port is out of the attack and remove the flow entry.

e

ē
< λ (6)

If we make assumptions that (1) attacker sends packets in a speed p1 (2)
attack lasted for time t1 (3) legitimate users send packets in an average speed
p2 (4) it takes time t2 to recover the victim port since the attack ended. Conse-
quently, we can somehow transfer Eq. (6) into Eq. (7).

p1 · t1 + p2 · t2
p2 · t2 < λ (7)

Furthermore, Eq. (7) can be transformed into Eq. (8).

p1 · t1
p2 · (λ − 1)

< t2 (8)

From Eq. (8), we can see that the time needed to recover the victim port
depends on the attack scale and the λ we set. The larger attack scale is and
the smaller value of λ we set, the longer time it needs to recover the victim.
Normally, a port that had suffered from a large-scale attack is more likely to
be attacked again, thus it will be better to set a longer recovery time for it.
However, a long recovery time makes legitimate services unavailable sometimes.
The existence of λ makes the time controllable. We can set a suitable value of
λ to achieve the effective defense and reduce the recovery time, which will be
shown in the experiment. In general, if the network is time-sensitive, we set a
larger λ; if the network is security-sensitive, we set a smaller λ. In our concern,
the set of a suitable λ requires an experienced administrator, and it is better if
we can enable adaptive λ.

4 Experiment and Evaluation

In the experiment, we trained BPNN with the DARPA 1999 Intrusion Detection
Data Set [12]. In this way, we used the DARPA 1999 Intrusion Detection Data
Set as the source of network flow, then programmed to simulated the controller
and switch instead of the real one. We used a computer with 2.6 GHz Intel Core
i7-6700HQ CPU and 8G RAM to perform the experiment, also, the OS of the
computer is Windows 10 × 64.

4.1 Experiment Parameter

The parameters of experiment include: the period of statistics collection T1, the
period of feature extraction T2, the parameters of BPNN, a number threshold
of flow entries and the threshold 4λ. We set these parameters as Table 2 shows.

We set the T1 as 100 packets time, which means statistics collection module
collects statistics when 100 packets arrive at port P every time. The reasons



TDDAD: Time-based Detection and Defense Scheme Against DDoS Attack 659

Table 2. Experiment parameters

Parameter Value

T1 100 packets

T2 5 · T1

Input layer nodes 5

Hidden layer nodes 40

Output layer nodes 2

Learning rate 0.25

Positive (attack) samples 500

Negative (normal) samples 1500

Number threshold 30

λ 9

are to decrease the time of detection and lessen the burden of the controller.
Actually, we also collect the statistics when the time changes. This operation
causes that the time of detecting an attack is not always an integer. The T2

decides dimension of the input vector. With a smaller dimension, we can make a
judgment earlier, but it increases the FP value. Through several experiments, we
find it suitable to set the T2 as 5 times of the T1. The number threshold is a check
parameter to decrease FP value. Only when the BPNN gives a positive result
and the number of flow entries exceeds this threshold will we judge that port P
is under attack. Finally, we performed several times experiments to determine
the value of λ.

4.2 Accuracy and Recall

In the detection of the attack, the accuracy and recall are two of the most impor-
tant measurements. The DARPA 1999 Intrusion Detection Data Set includes
the training data and testing data and contains 56 types of attack, 201 attack
instances. After training BPNN with this data set, we begin to test it. Figure 6
shows the attack instances actually occurred on April 5th, 1999.

As we mentioned before, we simulated the controller and switch to test our
scheme with the data. But, it did not decrease the accuracy and recall, since
the statistics supposed to be got from controller and switch can be extracted
directly from the data set.

Theoretically, there are 4 types of attacks that trigger massive Packet IN
messages. The attack principles of 4 kinds of attacks are shown in Table 3.

Since ipsweep attack did not occur, we evaluate our method by detecting 3
attacks.

Figure 7 shows the attack instances detected by [6]. We can see that 3 attack
instances have been detected. Figure 8 shows the attack instances we detected.
Our method detected smurf and neptune, but we did not detect portsweep.
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Fig. 6. Attack instances actually occurred

Table 3. Attack types

Attack Principle

portsweep Attacker sends a few packets, normally, 1 packet to every port of the
target host to determine which port is available to attack

ipsweep Attacker sends a few packets, normally, 1 packet to every host of the
target network to determine which host is available to attack

smurf Attacker sends massive ICMP packets with forged source IP address to
the target host, then the target host replies to all nonexistent source
hosts, and become too busy to handle other legitimate packets

neptune Attacker sends massive SYN packets with different ports to target
host, then the target host replies every SYN packet and waits, finally
all the ports of target host are occupied

However, the portsweep attack detected by [6] triggers only 1 Packet IN message
per second. In fact, portsweep is not quite similar to the attack we try to detect.
Though we did not detect portsweep, we detected another hidden attack and
called it “burst”. It represents a burst of TCP flow with random ports. Compared
with portsweep, it is more likely to be a DDoS attack against controller, since it
triggers massive Packet IN messages. The “burst” is not defined as an attack in
the DARPA 1999 Intrusion Detection Data Set, because the data set is used for
the traditional network intrusions. Also, this flow is not considered as an attack
instance in [6], either.

Fig. 7. Attack instances detected by method [6]
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Fig. 8. Attack instances detected by our method

In fact, the value of the number threshold can be one of the factors that
decide the detecting accuracy. The value of number threshold is the amount of
the flow entries in the flow table. The accuracy is shown in Table 4.

Table 4. Threshold test

Number threshold Actual attacks Detected attacks Misjudgment Error rate

5 6 50 44 0.89

10 6 18 12 0.67

15 6 9 3 0.33

20 6 6 0 0

The 6 attack instances actually occurred are 4 “burst” instances, 1 smurf
instance and 1 neptune instances. From Table 4 we can see, when number thresh-
old increases, the number of misjudgment decreases. For this dataset, it is enough
to set number threshold as 20. Since we set number threshold as 30 to ensure
the accuracy, the attacks we detected in the experiment can be confirmed to
be the real attack. However, the increase of number threshold may decrease the
recall. For example, portsweep triggered only 1 Packet IN message per second,
therefore the amount of the flow entries did not exceed the number threshold
and we did not detect it.

4.3 Promptness

Benefiting from using the gradients of hit rates rather than the hit rate itself, our
method detected attack earlier, since we are detecting a tendency of the attack.
The time it takes to detect 6 attack instances are shown in Table 5.
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Table 5. Time for detection

Attack Time (every 100 packet time)

burst 1 4.41

burst 2 4.45

burst 3 4.48

burst 4 4.45

smurf 4.76

neptune 4.75

As we mentioned before, we also collect statistics when time changes, such as
4.41 shown in Table 5. The average time our method takes to detect an attack is
4.55 times of period T1, in another word, we detect a DDoS attack through the
first 455 packets. Method [6] shows that they detect a DDoS attack by observing
6 successive “low-traffic flows”, which means that it takes at least 6 periods of
observation to detect an attack. Obviously, our method can detect the attack
with fewer observations. It can be expected that an advanced machine learning
algorithm shall help our scheme show a better performance.

4.4 Versatility

The time feature is extracted from the statistics in OF switch. It does not involve
the content characteristics of flows, such as the IP address and protocol, but
involves the behavior characteristics. The time feature can be used to detect
all attacks aiming at disabling controller with massive Packet IN message since
their attack principles are the same. Consequently, our method can detect hybrid
attacks in different scales or protocols.

4.5 Recovery

We have detected 3 kinds of attack and 6 attack instances, then activate the
attack defense module 6 times. All the recovery time are shown in Table 6. The
time is represented as seconds it passed from 08:00:00, for example, 08:00:05 is
represented as “5 s”.

From Table 6 we can see that the average time needed to recover a victim port
is 31 seconds. Moreover, if we set a larger λ, we may even defend 4 “burst” attack
instances with a single flow entry, then the controller only suffered from 441
packets. In our opinion, a time-sensitive network needs a smaller λ while security-
sensitive network needs a larger λ. Since it need an experienced administrator
to set a suitable λ, we may have to find a way to determine the value of λ
automatically.
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Table 6. Time for recovery

Attack Start End Recover Time

burst 1 9609 s 9611 s 9657 s 46 s

burst 2 9729 s 9731 s 9737 s 6 s

burst 3 9849 s 9851 s 9866 s 15 s

burst 4 9969 s 9971 s 9998 s 27 s

smurf 19088 s 19090 s 19127 s 37 s

neptune 36241 s 36651 s 39760 s 55 s

5 Conclusion

In this paper, we proposed a detection and defense method based on the temporal
features of the DDoS attack against the controller. We calculated the gradients
of the average hit rate with the statistics collected from OF switch. Then we used
the gradients as the inputs of a BPNN. A well-trained BPNN can successfully
detect a DDoS attack against a controller, then we defend against the attack
effectively. Furthermore, we designed a method to dynamically recover the victim
port. Our method was evaluated using the DARPA 1999 intrusion detection data
set and compared with [6]. The results show that our method can detect an attack
with greater speed and accuracy.
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