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Abstract. In PKC’08, Plantard, Susilo and Win proposed a lattice-
based signature scheme, whose security is based on the hardness of the
closest vector problem with the infinity norm (CVP∞). This signature
scheme was proposed as a countermeasure against the Nguyen-Regev
attack, which improves the security and the efficiency of the Goldreich,
Goldwasser and Halevi scheme (GGH). Furthermore, to resist potential
side channel attacks, the authors suggested modifying the determinis-
tic signing algorithm to be randomized. In this paper, we propose a
chosen message attack against the randomized version. Note that the
randomized signing algorithm will generate different signature vectors in
a relatively small cube for the same message, so the difference of any two
signature vectors will be relatively short lattice vector. Once collecting
enough such short difference vectors, we can recover the whole or the
partial secret key by lattice reduction algorithms, which implies that the
randomized version is insecure under the chosen message attack.
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1 Introduction

It is well known that classical cryptography is vulnerable to quantum com-
puters since Shor’s algorithm [21] will solve the integer factorization and the
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logarithm discrete problems efficiently. This has motivated the development of
post-quantum cryptography, especially lattice-based cryptosystems. In general,
the security of lattice-based cryptosystems is always related to some hard com-
putational problems in lattices, such as the Shortest Vector Problem (SVP) and
the Closest Vector Problem (CVP).

As important cryptographic primitives, several lattice-based digital signa-
ture schemes have been proposed in recent years, such as [5,8–10,19]. In 1997,
Goldreich et al. [9] proposed the GGH signature scheme based on lattices, whose
security is related to the hardness of approximate CVP. In fact, GGH is not only
a concrete signature scheme, but also a general framework to construct lattice-
based digital signature schemes. The GGH framework consists of a good lattice
basis G, a bad basis B for the same lattice and a reduction algorithm as the
signing algorithm. Usually, the good basis is used as the secret key, with which
the reduction algorithm can efficiently output an approximation for the closest
vector of a target vector corresponding to the message. Such approximation is
the signature of the message. The bad basis is published as the public key, with
which one can check if the signature is in the lattice and close enough to the tar-
get vector. In GGH scheme, they used a nearly orthogonal basis G as the good
basis, a random basis as the bad basis B, and Babai’s rounding-off algorithm
[2] as the reduction algorithm.

Based on GGH framework, Hoffstein et al. [11] presented the NTRUSign as a
more efficient lattice-based signature scheme. They used some special short basis
as a good basis, a “random” basis as the bad basis B, and Babai’s rounding-off
algorithm as the reduction algorithm.

However, Nguyen and Regev [18] proposed a clever method to recover the
secret key of the GGH signature scheme and NTRUSign by studying the paral-
lelepiped of the lattice. More precisely, by collecting enough message-signature
pairs, they can obtain many samples uniformly distributed in the parallelepiped
due to Babai’s rounding-off algorithm employed as reduction algorithm in this
two signature schemes. Then with these samples, they can finally recover the par-
allelepiped which leaks the good basis. They also pointed out that even taking
Babai’s nearest plane algorithm [2] as the signing algorithm, these two schemes
are still insecure. Later, Ducas and Nguyen [7] proposed some method to analyze
some countermeasures against the Nguyen-Regev attack.

By the Nguyen-Regev attack, it seems that the security of GGH type signa-
ture schemes depends heavily on the reduction algorithms. To resist such attack,
at least two different reduction algorithms have been proposed. In 2008, Gentry
et al. [8] presented a Gaussian sample algorithm similar to [12]. Based on such
a random vector-sampling algorithm, Gentry, Peikert and Vaikuntanathan con-
structed a signature scheme, with a short trap-door basis as the private key and
a long basis as the public key. Since the lattice vectors outputted by the new
sampling algorithm do not reveal the trap-door, the signature scheme of Gen-
try, Peikert and Vaikuntanathan can be proved to be secure under the chosen
message attack (CMA).
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In 2008, Plantard et al. [19] proposed another signature scheme at PKC’08
to resist the Nguyen-Regev attack. They employed a special type of lattices
as the good basis which has a basis that can be written into the sum of a
diagonal matrix and a ternary random matrix. With such a basis, they proposed
a reduction algorithm to reduce any vector into a small cube. Since the cube is
public and it seems hard to recover the private basis from the cube, the authors
claimed that their scheme can resist the Nguyen-Regev attack well.

As pointed out by Plantard, Susilo, and Win, since their reduction algorithm
is deterministic, the scheme may suffer some potential side channel attacks. To
make the scheme more secure, they modified their reduction algorithm to be
randomized.

In this paper, we show that the randomized version of the PSW signature
scheme is insecure under the CMA model. Simply speaking, note that when we
query the signing oracle with the single message m for many times, we will
usually obtain different signature vectors w1,w2, · · · ,wk with k ≥ 2. Denote by
H(m) the hash vector of the message m. Note that, in the PSW scheme, the
difference wi − H(m), 1 ≤ i ≤ k are all in the given lattice. It is easy to see
that wi − wj , 1 ≤ i < j ≤ k are all in the lattice. Note that each signature
wi is contained in a relatively small cube, then their difference vectors wi −wj

are relatively short. Once we obtain many such difference vectors, the Z-linear
combinations of these vectors will span the given lattice with high probability.
By using the lattice reduction algorithms such as LLL [13] and BKZ [4,20] to
these short difference vectors, we could obtain a much shorter basis, which may
leak the good basis in this signature scheme. In fact, we find that for dimension
less than 400, BKZ-20 will recover all or partial rows of the good basis in our
experiments.

To fix the randomized version of the PSW signature scheme, we will give two
methods as presented in [8]. The first method is to store the message-signature
pairs locally. When signing a message, we first check whether the message is in
storage or not. If the message is in storage, we output the stored corresponding
signature, otherwise, we apply the randomized reduction algorithm to generate
a signature. The second method is using the randomized reduction algorithm
to generate the signature for the hash value of a message and some additional
random number instead of the hash value of just the message.

Roadmap. The remainder of the paper is organized as follows. First we present
some notations and preliminaries on lattices and hard problems in Sect. 2. Then
we describe the Plantard, Susilo, and Win signature scheme in Sect. 3. Finally we
describe our attacks and some experimental results in detail in Sect. 4, and some
strategies to fix the randomized version of PSW signature scheme are discussed
in Sect. 5.
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2 Preliminaries

Denote by R, Z the real number field and the integer ring respectively. For a
vector v = (v1, v2, · · · , vn) ∈ R

n, denote by vi its i-th component and denote by
‖v‖ =

√
v2
1 + v2

2 + · · · + v2
n its length.

2.1 Lattices

A lattice Λ is a discrete subgroup of R
n. Equivalently, a lattice is a Z-linear

combinations of m linearly independent vectors in R
n. The set of these linearly

independent vectors is called a basis of Λ. Given a matrix B ∈ Z
m×n, we denote

by Λ(B) the lattice spanned by the row vectors of B. That is,

Λ(B) =
{ m∑

i=1

xibi|xi ∈ Z, 1 ≤ i ≤ m
}

,

where bi is the i-th row of B. If the rows of B are linearly independent, we call
B a basis of Λ(B). For a basis B, we denote by det (Λ(B)) the determinant of
the lattice Λ(B) as

√
det (BBT ).

A lattice Λ(B) may have many bases. If B is a nonsingular square matrix
with all entries in Z, then Λ(B) has a special basis in Hermite Normal Form. In
general, a nonsingular square matrix H = (hij) ∈ Z

n×n is in Hermite Normal
Form if

(1) hij = 0 for 1 ≤ j < i ≤ n;
(2) hii > 0 for 1 ≤ i ≤ n;
(3) 0 ≤ hij < hjj for 1 ≤ i < j ≤ n.

Hermite Normal Form of any integer matrix can be computed in polynomial
time, and Micciancio [15] suggested publishing the Hermite Normal Form as the
public key which will improve the security of some lattice-based cryptosystems.

2.2 Lattice Problems and Algorithms

In lattice theory, the Shortest Vector Problem (SVP) and the Closest Vector
Problem (CVP) are two famous computational problems which have been proved
to be NP-hard [1,3]. Given a lattice basis B ∈ Z

m×n, the shortest vector problem
aims to find a nonzero shortest vector in Λ(B), and the closest vector problem
aims to find the closest vector to a target vector t ∈ Z

n. We denote by λ1(Λ(B))
the length of the shortest nonzero lattice vectors in the lattice Λ(B).

The approximation versions of SVP and CVP are usually used to evaluate
the security for lattice-based schemes. For the approximation of SVP, we need to
find a lattice vector v such that ‖v‖ ≤ γλ1, and for the approximation of CVP,
our aim is to find a lattice vector w satisfying ‖w − t‖ ≤ γ minv∈Λ(B ) ‖v − t‖
with γ ≥ 1.

Some polynomial-time algorithms have been presented to solve approximate
SVP and approximate CVP with exponentially large factor γ, such as LLL [13],
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BKZ [4,20] for the approximate SVP and Babai’s nearest plane algorithm [2] for
approximate CVP.

LLL algorithm is a polynomial-time lattice reduction algorithm which was
presented in [13]. An important property of this algorithm is the output vectors
are relatively short. Furthermore, in practice, the output of LLL algorithm is
much better than the theoretical analysis.

Blockwise Korkine-Zolotarev (BKZ) algorithm [4,20] is also a widely used
lattice reduction algorithm in the analysis for lattice-based cryptosystems. In
general, BKZ algorithm has an additional parameter β ≥ 2 as the block size. In
the process of BKZ algorithm, a subalgorithm which finds the shortest vector
of the projective lattice with dimension β is called at each iteration. Generally
speaking, BKZ algorithm will cost more time than LLL, but the output will be
much shorter than that of LLL when β becomes larger.

3 The PSW Digital Signature Scheme

In PKC’08, Plantard et al. [19] proposed a new digital signature based on CVP∞,
which was claimed to be a countermeasure against the Nguyen-Regev attack.

3.1 The Original Signature Scheme

The original PSW signature scheme consists of three main steps as the following:

Setup
1. Choose an integer n.
2. Compute a random matrix M ∈ {−1, 0, 1}n×n.
3. Compute d = �2ρ(M) + 1� and D = dIn, where ρ(M) is the maximum of

the absolute value of the eigenvalues of M .
4. Compute the Hermite Normal Form H of the basis D − M .
5. The public key is (D,H), and the secret key is M .

To sign a message m ∈ {0, 1}∗, one does the following.

Sign
1. Compute the vector v = H(m) ∈ Z

n where H is a hash function which maps
m to {x ∈ Z

n||xi| < d2, 1 ≤ i ≤ n}.
2. By Algorithm 1, compute w as the signature of m.

To verify a message-signature pair (m,w), one does the following.

Verify
1. Check if |wi| < d, 1 ≤ i ≤ n.
2. Compute the vector H(m) ∈ Z

n.
3. Check if the vector H(m) − w is in the lattice of basis H.
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Algorithm 1. Signing algorithm
Input: A vector v ∈ Z

n, the matrix D and M obtained in the Setup step.
Output: A vector w ∈ Z

n such that w ≡ v (mod Λ(D − M )) and |wi| < d for all
i = 1, 2, · · · , n.

1: w ← v
2: i ← 1
3: k ← 0
4: while k < n do
5: k ← 0
6: q ← �wi

d
�;

7: wi ← wi − qd
8: for j ← 1 to n do
9: wi+j mod n ← wi+j mod n + qMi,i+j mod n

10: if |wi+j mod n| < d then
11: k ← k + 1
12: end if
13: end for
14: i ← i + 1 mod n
15: end while
16: return w

Algorithm 2. Randomized signing algorithm
Input: A vector v ∈ Z

n, the matrix D and M obtained in the Setup step.
Output: A vector w ∈ Z

n such that w ≡ v (mod Λ(D − M )) and |wi| < d for all
i = 1, 2, · · · , n.

1: w ← v
2: i

$←− {1, 2, · · · , n}
3: k ← 0
4: while k < n do
5: k ← 0
6: q ← �wi

d
�;

7: wi ← wi − qd
8: for j ← 1 to n do
9: wi+j mod n ← wi+j mod n + qMi,i+j mod n

10: if |wi+j mod n| < d then
11: k ← k + 1
12: end if
13: end for
14: i ← i + 1 mod n
15: end while
16: return w

3.2 The Randomized Version of PSW Signature Scheme

As pointed out by Plantard, Susilo, and Win, since the reduction algorithm is
deterministic, the original PSW scheme may suffer some potential side channel
attacks. To resist the potential side channel attacks, they suggest using the
following randomized algorithm (Algorithm 2) as the signing algorithm.
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4 The Chosen Message Attack Against the Randomized
Version of PSW Scheme

4.1 Key Idea of Our Chosen Message Attack

As we can see, in the randomized version of the PSW signature scheme, the
signature vectors for the same message may not be unique. Therefore, in the
CMA model, if we query the randomized signing oracle with the same message
m, we may obtain different signature vectors w1,w2, · · · ,wk where k ≥ 2. Note
that wi − H(m), 1 ≤ i ≤ k are all in the lattice, and so are their difference
vectors

(wi − H(m)) − (wj − H(m)) = wi − wj ,

where 1 ≤ i ≤ j ≤ k.
Since each component of wi is in (−d, d), we know that each component of

wi − wj is in (−2d, 2d). Since d ∈ Θ(
√

n) as stated in [19], the lattice vectors
wi − wj ’s are very short.

Once we obtain many such short difference vectors, the Z-linear combinations
of these vectors will span the lattice Λ(D − M). By using the lattice reduction
algorithms such as LLL and BKZ to the set of short generators, we expect to
obtain a much shorter basis, which may leak the private key.

We present the framework of our attack as the following:

1. Generate some messages m1,m2, · · · randomly;
2. For any message mj ∈ {m1,m2, · · · }, querying the signing oracle for several

times to obtain many different signatures {wj1,wj2, · · · ,wjk} with k ≥ 2;
3. Collect enough difference vectors wji − wj1’s such that they can span the

lattice Λ(D − M). Denote by L the set of these wji − wj1’s;
4. Use lattice basis reduction algorithm to L to output a square matrix LL, and

expect to obtain some information about the private key.

4.2 Our Strategy to Collect the Difference Vectors

To collect the difference vectors, we have to decide how many messages we will
choose in Step 1 and how many signatures for one message we will query with
the oracle in Step 2. Below we give a very simple but efficient strategy, that is,
for one message we query as many different signatures as possible and we choose
as few messages as possible to satisfy Step 3.

Note that for every message, the signing algorithm (Algorithm 2) will gen-
erate at most n different signatures since there are n choices for the index i.
Assume there were exactly n different signatures, then it is natural to ask how
many times we query the signing oracle to collect all these signatures. Since
every signature is uniformly randomly returned by the oracle, by the classical
result for Coupon Collector’s Problem [16,17], it can be easily concluded that
the expectation of this number is

n(1 +
1
2

+ · · · +
1
n

) = n ln n + γn +
1
2

+ O(
1
n

),
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where γ ≈ 0.5772156649 is the Euler’s constant. Hence, we can query one mes-
sage for 
n log n� times, and then we know that the probability of collecting all
the n signatures is greater than 1 − n− 1

ln 2+1 [16,17]. When n ≥ 100, this value
is greater than 0.85, which is acceptable.

Therefore, in our attack we query 
n log n� signatures for each message, and
choose random messages until we collect enough difference vectors, then applying
LLL and BKZ to obtain a short basis for the lattice.

We present the attack as Algorithm 3.

Algorithm 3. Chosen message attack against the randomized version of PSW
scheme
Input: The public key H , the randomized signing oracle O and a message generator

G to generate the messages randomly.
Output: A set of short basis for Λ(H).
1: Let LL be a zero matrix of n × n
2: while detLL/ detH ! = 1 and detLL/ detH ! = −1 do
3: W = {}
4: m ← G
5: for i ← 1 to �n log n� do
6: w ← O(m)
7: If w is not in W, append w to W
8: end for
9: Collect all w1 − wi, 1 ≤ i ≤ |W | to append to the matrix LL

10: LL ← the last n rows of LLL(LL) (since LLL algorithm puts linearly indepen-
dent vectors in the last rows)

11: end while
12: B ← LatticeReduction(LL)
13: Check whether B leaks the private key or not.

4.3 Experimental Results

In our experiments, we used SageMath 7.5.1 [23] to implement our attacks, and
the LLL’s parameter is set to the default value. For BKZ algorithm, we set the
parameter “algorithm” as “NTL” to call the NTL library [22] to implement this
algorithm. All experiments were run on a machine with Intel(R) Xeon(R) CPU
E5-2620 v4 @2.1 GHz.

We chose the dimension n to be 200, 300, 400, and for any dimension we
chose 5 randomized generated instances. For the lattice reduction algorithms, we
used LLL algorithm, BKZ-10, and BKZ-20 respectively. The results are listed in
Table 1.

We would like to point out a natural attempt to recover the rows of D −M
is by applying lattice basis reduction algorithm on the public key H directly,
since every row of D−M is very short. However, for just dimension n = 165 in
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Table 1. Experimental results for our attack

dim 200 300 400

#msg 3 2 3 2 3 3 2 2 2 2 3 4 3 2 3

#sig 4587 3058 4587 3058 4587 7407 4938 4938 4938 4938 10374 13832 10374 6916 10374

LLL A P(22) A A P(32) N N N N N N N N N N

BKZ10 A A A A A N N P(3) N N N N N N N

BKZ20 A A A A A A N A P(4) P(22) N P(2) N N N
a dim: The dimension of the lattice Λ(D − M );
b #msg: The number of messages we need to span the lattice Λ(D − M );
c #sig: The number of signatures we need;
d N: The lattice reduction algorithm can not recover any rows of the matrix D − M ;
e A: The lattice reduction algorithm can recover all rows of the matrix D − M ;
f P: The lattice reduction algorithm can recover partial rows of the matrix D − M , and the number in

the bracket is the number of rows we recovered.

our experiments, we could not recover any row of D−M when we even applied
BKZ-20 on the public key H directly.

In contrast, with our attack, for the dimension n = 200, LLL algorithm could
recover all (or partial) rows of D − M , and BKZ-10 could recover all the rows
of D − M for our instances. For the dimension n = 300, we could recover all
rows of D−M in 2 instances and partial rows in 2 instances when BKZ-20 was
used.

For the dimension n = 400, we just obtain partial rows in D − M for only
one instance with BKZ-20 algorithm. Employing BKZ algorithm with bigger
blocksize, we may obtain more rows.

However, we would like to point out that even only partial rows are recovered,
the randomized version of the PSW signature scheme is not secure. Since the
messages are all generated randomly, we may expect to recover all the rows of
the matrix D − M by repeating our attack several times.

Remark 1. Once obtaining a short basis, we can also recover the matrix M
by finding some lattice vector close to (0, · · · , d, · · · , 0). Using some strategies
in [14] to solve the Bounded Distance Decoding (BDD) problem may improve
our results.

Remark 2. We would like to point out that the strategy to collect the difference
vectors also plays an important role in our attack. Another natural strategy is to
query the signing oracle just twice for each message and collect enough difference
vectors to mount the attack. However, the new strategy did not work so well
as Algorithm 3. For dimension n = 180 and larger dimensions, we could never
recover any rows of the matrix D−M by using this strategy in our experiments.

5 Possible Ways to Fix the Randomized Version

There are two possible ways to fix the randomized version similar to the strategies
in [8].

The first way is to store the message-signature pairs locally, which seems a
bit impractical. In detail, once given a message m, we will modify the Sign step
as the following:
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Sign
1. Check whether m has been signed or not.
2. If m is stored locally, return the locally stored signature w corresponding to

m.
3. Otherwise, use Algorithm 2 to output a signature w and store (m,w) locally.

The second way is to add some random number to the hash function. This
strategy is usually used in the hash-then-sign schemes. Since the original PSW
scheme has no security proof and we do not know the exact hardness of CVP∞
over the PSW instances, we can not present some formal security proof for this
fixed version, but just present it as the following:

Sign
1. Choose r ← {0, 1}n at random.
2. Compute the vector v = H(m||r), where H maps (m||r) to the area

(−d2, d2)n.
3. Applying Algorithm 2, compute the signature w.

Once given the signature (m, r,w), we will modify the Verify step as below.

Verify
1. Check if |wi| < d for 1 ≤ i ≤ n.
2. Compute the vector H(m||r).
3. Check whether the vector H(m||r) − w ∈ Λ(H) or not.

6 Conclusions and Open Problems

In this paper, we show that the randomized PSW signature scheme is not secure
under the chosen message attack at least for dimension less than or equal to
400. However, for the scheme with bigger dimension which becomes less efficient
apparently, it seems that we need the BKZ algorithm with bigger blocksize to
recover the private key. In fact, our attack reveals that the storage of previous
signature or the use of random nonce employed in the randomized signature
scheme is crucial.

However, there are still some unsolved theoretical problems, such as present-
ing a theoretical reason why the strategy in Remark 2 does not work as well as
Algorithm 3. The lattice vectors we collected by the two strategies have almost
the same length. However, Algorithm 3 usually succeeded, whereas the strategy
in Remark 2 always failed when the dimension is between 200 and 400. It seems
a bit strange. We conjecture the reason may relate to the fact that the lattice
vectors collected with the strategy in Remark 2 seems more “independent” and
“random”, but we can not present a rigorous analysis.

Moreover, we tried to apply our attack to analyze the security of some sig-
nature schemes with GPV algorithm [8] as the signing algorithm, such as [6].
However, we could only recover the private key with dimension 128 for [6], but
failed for larger dimensions such as 256. This phenomenon also lacks theoretical
explanation.
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Hence, the theory about how the lattice basis reduction algorithm behaves
with shorter input should be further studied. Usually, we measure the quality of
the output for the lattice basis reduction algorithm with the determinant of the
input lattice (such as Gauss heuristic), but it can be expected that with shorter
input, we can have shorter output, although the determinant keeps the same. A
natural problem is if there is some tight relation between the length of output
and input on average, with which we can describe the attack more rigorously in
theory.

References

1. Ajtai, M.: The shortest vector problem in L2 is NP-hard for randomized reductions
(extended abstract). In: Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, STOC 1998, pp. 10–19. ACM, New York (1998). https://
doi.org/10.1145/276698.276705

2. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem.
Combinatorica 6(1), 1–13 (1986). https://doi.org/10.1007/BF02579403

3. Boas, P.V.E.: Another NP-complete problem and the complexity of computing
short vectors in lattices. Mathematics Department Report 81–04. University of
Amsterdam (1981)

4. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H.,
Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-25385-0 1

5. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

6. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45608-8 2

7. Ducas, L., Nguyen, P.Q.: Learning a zonotope and more: cryptanalysis of
NTRUSign countermeasures. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 433–450. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-34961-4 27

8. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fortieth Annual ACM Sympo-
sium on Theory of Computing, STOC 2008, pp. 197–206. ACM, New York (2008).
https://doi.org/10.1145/1374376.1374407

9. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice
reduction problems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp.
112–131. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052231

10. Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.:
NTRUSign: digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36563-X 9

11. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

https://doi.org/10.1145/276698.276705
https://doi.org/10.1145/276698.276705
https://doi.org/10.1007/BF02579403
https://doi.org/10.1007/978-3-642-25385-0_1
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1007/978-3-642-34961-4_27
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/BFb0052231
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/3-540-36563-X_9
https://doi.org/10.1007/BFb0054868


466 H. Li et al.

12. Klein, P.: Finding the closest lattice vector when it’s unusually close. In: Pro-
ceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2000, pp. 937–941. Society for Industrial and Applied Mathematics,
Philadelphia (2000). http://dl.acm.org/citation.cfm?id=338219.338661

13. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational
coefficients. Mathematische Annalen 261(4), 515–534 (1982). https://doi.org/10.
1007/BF01457454

14. Liu, M., Nguyen, P.Q.: Solving BDD by enumeration: an update. In: Dawson, E.
(ed.) CT-RSA 2013. LNCS, vol. 7779, pp. 293–309. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36095-4 19

15. Micciancio, D.: Improving lattice based cryptosystems using the Hermite normal
form. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 126–145. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44670-2 11

16. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York (2005)

17. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1995). https://doi.org/10.1145/211542.606546

18. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: cryptanalysis of GGH and
NTRU signatures. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 271–288. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 17

19. Plantard, T., Susilo, W., Win, K.T.: A digital signature scheme based on CVP∞.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 288–307. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78440-1 17

20. Schnorr, C.P., Euchner, M.: Lattice basis reduction: improved practical algo-
rithms and solving subset sum problems. Math. Program. 66(1–3), 181–199 (1994).
https://doi.org/10.1007/BF01581144

21. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134. IEEE, Santa Fe, November 1994. https://doi.org/10.1109/SFCS.1994.
365700

22. Shoup, V.: NTL: A library for doing number theory (2001). http://www.shoup.
net/ntl

23. Stein, W., et al.: Sage Mathematics Software Version 7.5.1. The Sage Development
Team (2017). http://www.sagemath.org

http://dl.acm.org/citation.cfm?id=338219.338661
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/978-3-642-36095-4_19
https://doi.org/10.1007/3-540-44670-2_11
https://doi.org/10.1145/211542.606546
https://doi.org/10.1007/11761679_17
https://doi.org/10.1007/978-3-540-78440-1_17
https://doi.org/10.1007/BF01581144
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
http://www.shoup.net/ntl
http://www.shoup.net/ntl
http://www.sagemath.org

	Cryptanalysis of the Randomized Version of a Lattice-Based Signature Scheme from PKC'08
	1 Introduction
	2 Preliminaries
	2.1 Lattices
	2.2 Lattice Problems and Algorithms

	3 The PSW Digital Signature Scheme
	3.1 The Original Signature Scheme
	3.2 The Randomized Version of PSW Signature Scheme

	4 The Chosen Message Attack Against the Randomized Version of PSW Scheme
	4.1 Key Idea of Our Chosen Message Attack
	4.2 Our Strategy to Collect the Difference Vectors
	4.3 Experimental Results

	5 Possible Ways to Fix the Randomized Version
	6 Conclusions and Open Problems
	References




