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Abstract. Fuzzy extractor converts the reading of a noisy non-uniform
source to a reproducible and almost uniform output R. The output R in
turn is used in some cryptographic system as a secret key. To enable mul-
tiple extractions of keys R1,R2, . . . ,Rρ from the same noisy non-uniform
source and applications of different Ri, the concept of reusable fuzzy
extractor is proposed to guarantee the pseudorandomness of Ri even
conditioned on other extracted keys Rj (from the same source).

In this work, we construct a reusable fuzzy extractor from the
Learning With Errors (LWE) assumption. Our reusable fuzzy extractor
provides resilience to linear fraction of errors. Moreover, our construc-
tion is simple and efficient and imposes no special requirement on the
statistical structure of the multiple readings of the source.
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1 Introduction

In a cryptographic system, it is assumed that the secret key is sampled from
a random source and uniformly distributed, since the security of the system
heavily relies on the uniformity of the secret key. In reality, such a uniform secret
key is hard to create, remember or store by users of the system. On the other
hand, there are lots of random sources available like biometric data (fingerprint,
iris, etc.), physical unclonable function (PUF) [17,18], or quantum information
[4,19]. These sources do not provide uniform distributions though they may
possess high entropy. Moreover, the readings of the source may introduce errors
and only result in noisy versions. To address the issues, fuzzy extractor [10] is
proposed to allow for reproducible extraction of an almost uniform key from a
noisy non-uniform source.

Fuzzy Extractor. A fuzzy extractor consists of two algorithms (Gen,Rep). The
generation algorithm Gen takes as input w (a reading of the source), and outputs
a string R and a public helper string P. The reproduction algorithm Rep will
reproduce R from w′ with the help of P if the distance between w′ and w is smaller
enough. Note that the difference between w′ and w is caused by errors and the
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distance of w′ and w evaluates the number of errors. Let n be the bit-length
of w. We say that the fuzzy extractor supports linear fraction errors if it can
correct up to O(n) bits of errors. The security of fuzzy extractor guarantees that
if w has enough min-entropy, then R is almost uniform or at least pseudorandom
conditioned on P.

With a fuzzy extractor, it is convenient to implement key management for
a cryptosystem. For example, a user can distill a uniform and accurately repro-
ducible key R from his biometric data, via the generation algorithm of a fuzzy
extractor, i.e., (P,R) ← Gen(w). Then he uses key R for cryptographic appli-
cations. When R is needed again, the user does another reading w′ of his bio-
metric data and reproduces R by the Rep algorithm with the help of P, i.e.,
R ← Rep(P,w′). During the application, the user never stores R. The public
helper string P suffices for the reproduction of R.

Given a source W , multiple extractions of W by the generation algorithm
result in multiple distilled key Rj and public helper strings Pj . When those keys
Rj are employed in different cryptosystems, it is not desirable that the corrup-
tion of Rj endangers the usage of Ri. However, the distilled keys {R1, . . . ,Rρ}
are correlated via W . Information theoretically, given {(Pj ,Rj)}j �=i, there might
be no entropy left in Ri. Therefore most of the fuzzy extractors do not sup-
port multiple extractions of the same source [5–7,16]. This gives rise to another
issue: how to support multiple extractions of the same source data? This issue
is addressed by reusable fuzzy extractor.

Reusable Fuzzy Extractor. Reusable fuzzy extractor was first formal-
ized by Boyen [7]. For multiple correlated samples (w,w1, · · · ,wρ) of the
same source, say biometric iris, applying the generation algorithm of reusable
fuzzy extractor to (w,w1, · · · ,wρ) respectively results in multiple pairs
(P,R), (P1,R1), · · · , (Pρ,Rρ). The security of reusable fuzzy extractor asks for
the (pseudo)randomness of R conditioned on (P,P1,R1, · · · ,Pρ,Rρ).

In [7], two constructions of reusable fuzzy extractor were presented. One
achieves outsider security in the information theoretical setting, the other
achieves insider security based on the random oracle model. Both constructions
require that the difference δi = wi − w is independent of w. Outsider security is
weak in the sense that it only guarantees the randomness of R conditioned on
the public helper string (P,P1, · · · ,Pρ).

Canetti et al. [8] constructed a reusable fuzzy extractor from a powerful
tool “digital locker”, and there is no assumption on how multiple readings are
correlated. However, their construction can only tolerate sub-linear fraction of
errors. Following the paradigm of constructing reusable fuzzy extractor from
digital locker [8], Alamélou et.al. [2] built a reusable fuzzy extractor which can
tolerate linear fraction of errors. However, “digital locker” is too powerful to find
good instantiations. The available digital locker is either instantiated with a hash
function modeled as a random oracle or based on a non-standard assumption.

As a promising post-quantum hard problem, the learning with errors (LWE)
problem attracts lots of attentions from cryptographers. Great efforts have been
and are devoted to the designs of a variety of cryptographic primitives from the
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LWE assumption. The first fuzzy extractor from the LWE assumption is due
to Fuller et al. [11]. Later, Apon et al. [3] extended the construction of fuzzy
extractor to a reusable one. In their security model of reusable fuzzy extractor,
the error δi can be adaptively manipulated by a probabilistic polynomial-time
(PPT) adversary. As their construction uses the same error correction algorithm
as [11], it can only tolerate logarithmic fraction of errors, i.e., for an input w of
length n, it tolerates O(log n) errors. Another restriction of their construction
is that components of w = (w[1],w[2], . . . ,w[n]) ∈ Z

n
q must be independently

chosen according to some distribution χ, where χ is the error distribution in
the LWE problem. It is hard to imagine that our biometric data follow discrete
Gaussian distributions. Therefore this restriction is unreasonable.

Up to now, no construction is available for reusable fuzzy extractor, which is
based on the LWE assumption and supports linear fraction of errors.

1.1 Our Contribution

In this work, we propose a simple and efficient construction of reusable fuzzy
extractor based on the LWE assumption. Our security model is similar to [3],
where the difference δi between the readings is adaptively chosen by a PPT
adversary. Compared with the work of Apon et al. [3] which gave the only
reusable fuzzy extractor based on the LWE assumption, our construction enjoys
the following nice properties.

– Our construction is resilient to linear fraction of errors, whereas the fuzzy
extractor in [3] can only tolerate logarithm fraction of errors.

– Our construction imposes no special structure requirement on the input
w except that w should have enough entropy (as fuzzy extractors always
required). Recall that for an input w ∈ Z

n
q , reusable fuzzy extractor by Apon

et al. requires that each coordinate of w is chosen independently according to
χ, which is the error distribution in the LWE problem.

We stress that our construction is the first reusable fuzzy extractor resilient
to linear fraction of errors based on the LWE assumption. In Table 1, we com-
pare our work with previous fuzzy extractor with reusability or from the LWE
assumption.

Our Approach. Our construction makes use of a universal hash function and a
secure sketch [9]. A secure sketch consists of a pair of algorithms (SS.Gen,SS.Rec)
and works as follows. The generation algorithm SS.Gen on input w, outputs a
sketch s; the recovery algorithm SS.Rec, on input s, can recover w from w′ if w′

is close to w. The security of secure sketch guarantees that s does not leak too
much information of w.

– To correct errors, we apply secure sketch to w to generate a sketch s.
– To distill a random string, we apply the universal hash function Hi to w.

Observe that if w has enough min-entropy, then by the security of the secure
sketch and the leftover hash lemma, Hi(w) is statistically indistinguishable from
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Table 1. Comparison with some known fuzzy extractor schemes. “Reusability?” asks
whether the fuzzy extractor achieves reusability; “Standard Assumption?” asks whether
the fuzzy extractor is based on standard assumptions. “Linear Fraction of Errors?”asks
whether the scheme can correct linear fraction of errors. “–” represents the scheme is
an information theoretical one.

FE Schemes Reusabiliy? Standard Assumption? Linear Fraction of Errors?

FMR13 [11] ✗ ✔ (LWE) ✗

DRS04 [10], Boy04 [7] Weak – ✔

CFPRS16 [8] ✔ ✗ ✗

Boy04 [7] ABCG16 [2] ✔ ✗ ✔

ACEK17 [3] ✔ ✔ (LWE) ✗

Ours ✔ ✔ (LWE) ✔

uniformly random. However, for multiples readings (w,w1, · · · ,wρ) of the same
source, if two reading are identical then the outputs of the hash function will be
identical as well. Obviously, this approach is impossible to achieve reusability.

To solve this problem, we do not use the output of the universal hash function
Hi(w) as the final output of fuzzy extractor. Instead, we use Hi(w) as the secret
key of a symmetric LWE-based encryption scheme. Then the LWE-based scheme
encrypts a randomly distributed string R which serves as the extracted key,
and the ciphertext and sketch serve as the public helper string P. At the same
time, we require that the universal hash function and secure sketch should be
homomorphic. This helps our fuzzy extractor to achieve reusability.

2 Preliminaries

Let λ be the security parameter. Vectors are used in the column form. We use
boldface letters to denote vectors or matrices. For a column vector x, let x[i]
denote the i-th element of x. Let Il denote the identity matrix of l × l. For a
real number x, let �x� denote the integer closest to x. By [ρ], we denote set
{1, 2 · · · , ρ}.“PPT” is short for probabilistic polynomial-time. For a distribution
X, let x ← X denote the process of sampling x according to X. For a set X ,
x ←$ X denotes choosing x from X uniformly at random and |X | denotes the
cardinality of the set. We use game-based security proof. Let the notation G ⇒ 1
denote the event that game G returns 1, and notion x

G= y denote that x equals
y or is computed as y in game G.

2.1 Metric Spaces

A metric space is a set M with a distance function dis : M × M �→ Z
+ ∪ {0}.

In this paper, we consider M = Fn for some alphabet F equipped with the
Hamming distance. For any two elements w,w′ ∈ M, the Hamming distance
dis(w,w′) is the number of coordinates in which they differ.
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2.2 Min-Entropy and Statistical Distance

Definition 1 (Average Min-Entropy). For two random variables X and Y ,
the average min-entropy of X given Y is defined by

˜H∞(X | Y ) := − log
[

Ey←Y (max
x

Pr[X = x | Y = y])
]

.

Definition 2 (Statistical Distance). For two random variables X and Y
over a set M, the statistical distance of X and Y is given by SD(X,Y ) :=
1
2

∑

w∈M |Pr[X = w] − Pr[Y = w]|. If SD(X,Y ) ≤ ε, X and Y are called

ε-statistically indistinguishable, denoted by X
ε≈ Y .

2.3 Universal Hashing

Definition 3 (Universal Hash Functions[9]). A family of hash functions
H = {Hi : X → Y | i ∈ I} is universal, if for all x �= x′ ∈ X , it holds that
Pr

i←$ I
[Hi(x) = Hi(x′)] ≤ 1

|Y| .

Concrete Construction of Universal Hash Functions. Let q be a prime.
For w ∈ Z

l′
q ,A ∈ Z

nl×l′
q , define

HA(w) := Aw, (1)

then H = {HA : Zl′
q → Z

nl
q | A ∈ Z

nl×l′
q } is a family of universal hash functions.

Note that the above hash function is homomorphic in the sense that

HA(w + w′) = A(w + w′) = Aw + Aw′ = HA(w) + HA(w′). (2)

One can easily interpret a vector in Z
nl
q as a matrix in Z

n×l
q . Thus we get a family

of homomorphic universal hash functions H = {HA : Zl′
q → Z

n×l
q | A ∈ Z

nl×l′
q }.

Remark 1. The reason why we interpret a vector in Z
nl
q as a matrix in Z

n×l
q is for

the convenience of the later construction of reusable fuzzy extractor in Sect. 3.

Lemma 1 (Generalized Leftover Hash Lemma [9,15]). If H = {Hi : Zl′
q →

Z
n×l
q , i ∈ I} is a family of universal hash functions, then for any random variable

W taking values in Z
l′
q and any random variable Y ,

SD
(

(HI(W ), I, Y ), (U, I, Y )
)

≤ 1
2

√

2− ˜H∞(W |Y )qnl,

where I and U are uniformly distributed over I and Z
n×l
q , respectively.



18 Y. Wen and S. Liu

2.4 Secure Sketch

Definition 4 (Secure Sketch [9]). An (M,m, m̂, t)-secure sketch (SS) SS =
(SS.Gen,SS.Rec) for metric space M with distance function dis, consists of a
pair of PPT algorithms and satisfies correctness and security.

– SS.Gen on input w ∈ M, outputs a sketch s.
– SS.Rec takes as input a sketch s and w′ ∈ M, and outputs w̃.

Correctness. For any w ∈ M, any s ← SS.Gen(w), if dis(w,w′) ≤ t, then
SS.Rec(s,w′) = w.

Security. For any random variable W over M with min-entropy m, we have
˜H∞(W | SS.Gen(W )) ≥ m̂.

A secure sketch is homomorphic if SS.Gen(w + w′) = SS.Gen(w) + SS.Gen(w′).
An efficient [n, k, 2t+1]F-linear error correcting code E over Fn is a subspace

of Fn and E = {w ∈ F
n|Hw = 0}, where matrix H is the (n − k) × n parity-

check matrix of E . For w ∈ F
n, define syndrome syn(w) = Hw. For any c ∈ E ,

syn(c+e) = syn(c)+syn(e) = syn(e). The syndrome captures all the information
necessary for decoding.

As suggested in [9], based on an [n, k, 2t + 1]F-linear error correcting code, a
syndrome-based secure sketch can be constructed as follows.

Syndrome-Based Construction of Secure Sketch. [9] Define

SS.Gen(w) := syn(w) = Hw = s, SS.Rec(s,w′) := w′ − e, (3)

where e is the unique vector of Hamming weight less than t such that syn(e) =
syn(w′) − s.

Lemma 2. [9] Given an [n, k, 2t + 1]F error-correcting code, one can construct
an (Fn,m,m − (n − k)|F|, t) secure sketch, which is efficient if encoding and
decoding are efficient.

Since there exist efficient [n, k, 2t+1]F-linear error correcting codes such that
t = O(n), the syndrome-based Secure Sketch can correct up to linear fraction of
errors. Meanwhile, the fact that SS.Gen(w + w′) := syn(w + w′) = H(w + w′) =
Hw+Hw′ suggests that the syndrome-based Secure Sketch is also homomorphic.

2.5 Learning with Error (LWE) Problem

The learning with errors (LWE) problem was introduced by Regev [13,14].

Definition 5 (Learning with errors (LWE) problem). Let integers n =
n(λ), m = m(λ) and q = q(λ) ≥ 2. Let χ(λ) be a distribution over Zq. The
decisional LWEn,m,q,χ problem is to distinguish (A,As + e) from (A,u), where
A ←$ Z

m×n
q , s ←$ Z

n
q , e ← χm and u ←$ Z

m
q .
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The decisional LWEn,m,q,χ problem is ε-hard if for any PPT adversary A, its
advantage Advn,m,q,χ

LWE,A (λ) is upper bounded by ε, i.e.,

Advn,m,q,χ
LWE,A (λ) := |Pr[AOLWE(s) = 1] − Pr[AOU = 1]| ≤ ε.

Here the oracle OLWE returns (A,As+e) where A ←$ Z
m×n
q , s ←$ Z

n
q , e ← χm

and the oracle OU returns (A,u) where A ←$ Z
m×n
q and u ←$ Z

m
q , and A is

limited to make at most one call to the oracle. The decisional LWEn,m,q,χ problem
is hard if for any PPT adversary A, its advantage Advn,m,q,χ

LWE,A (λ) is negligible.

The decisional LWEn,m,l,q,χ problem is to distinguish (A,AS + E) from
(A,U), where A ← $ Z

m×n
q , S ← $ Z

n×l
q , E ← χm×l and U ← $ Z

m×l
q . By a

simple hybrid argument, one can show that the decisional LWEn,m,l,q,χ problem
is hard if the decisional LWEn,m,q,χ problem is hard.

Lemma 3. [12] If the decisional LWEn,m,q,χ problem is ε-hard, then the deci-
sional LWEn,m,l,q,χ problem is ε · l-hard. More precisely,

Advn,m,l,q,χ
LWE,A (λ) := |Pr[AOLWE(S) = 1] − Pr[AOU = 1]| ≤ ε · l.

Here the oracle OLWE returns (A,AS+E) where A ←$ Z
m×n
q , S ←$ Z

n×l
q , E ←

χm×l and the oracle OU returns (A,U) where A ← $ Z
m×n
q and U ← $ Z

m×l
q ,

and A is limited to make at most one call to the oracle.

If m = ρm′ with m,m′, ρ ∈ Z
+, the above lemma has an equivalent form.

Lemma 4. [12] Let m = ρm′ with m,m′, ρ ∈ Z
+. If the decisional LWEn,m,q,χ

problem is ε-hard, then the decisional LWEn,m,l,q,χ problem is ε · l-hard. More
precisely,

Advn,m,l,q,χ
LWE,A (λ) := |Pr[AOLWE(S) = 1] − Pr[AOU = 1]| ≤ ε · l.

Here the oracle OLWE returns (A,AS+E) where A ←$ Z
m′×n
q , S ←$ Z

n×l
q , E ←

χm′×l and the oracle OU returns (A,U) where A ←$ Z
m′×n
q and U ←$ Z

m′×l
q ,

and A is limited to make at most ρ calls to the oracle.
Consider a real parameter α = α(n) ∈ (0, 1) and a prime q. Denote by

T = R/Z, i.e., the group of reals [0, 1) with modulo 1 addition. Define Ψα to be
the distribution on T of a normal variable with mean 0 and standard deviation
α/

√
2π reduced modulo 1. We denote by Ψ̄α the discrete distribution over Zq of

the random variable �qX� mod q where the random variable X has distribution
Ψα.
Lemma 5. [13] If there exists an efficient, possibly quantum, algorithm for the
decisional LWEn,m,q,Ψ̄α

problem for q > 2
√

n/α, then there exists an efficient
quantum algorithm for approximating the SIVP and GapSVP problems, to within
O((n/α) · logc n) factors in the l2 norm, in the worst case.

Lemma 6. [1] Let x be some vector in {0, 1}m and let e ← Ψ̄m
α . Then the

quantity |x�e| treated as an integer in [0, q − 1] satisfies

|x�e| ≤ √
mqαω(

√

log m) + m/2

with all but negligible probability in m.
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3 Reusable Fuzzy Extractor

Definition 6 (Reusable Fuzzy Extractor). An (M,m,R, t, ε, ρ)-resuable
fuzzy extractor (rFE) for metric space M consists of three PPT algorithms
(Init,Gen,Rep),

– Init(1λ): the initialization algorithm takes as input the security parameters
and outputs the public parameters pp.

– Gen(pp,w): the generation algorithm takes as input the public parameters pp
and w ∈ M. It outputs a public helper string P and an extracted string R ∈ R.

– Rep(pp,P,w′): the reproduction algorithm takes as input the public parameters
pp, public helper string P and w′ ∈ M, and outputs an extracted string R or
⊥.

It satisfies the following properties.

Correctness. For all w,w′ ∈ M with dis(w,w′) ≤ t, for all pp ← Init(1λ),
(P,R) ← Gen(pp,w) and ˜R ← Rep(pp,P,w′), it holds that ˜R = R with over-
whelming probability.

Reusability. For any distribution W over metric space M with H∞(W ) ≥ m,
any PPT adversary A, its advantage defined below satisfies

AdvreurFE,A(1λ): = |Pr[ExpreurFE,A(1) ⇒ 1] − Pr[ExpreurFE,A(0) ⇒ 1]| ≤ ε,

where ExpreurFE,A(β), β ∈ {0, 1}, describes the reusability experiment played
between a challenger C and an adversary A.

ExpreurFE,A(β) : // β ∈ {0, 1}
1. Challenger C invokes pp ← Init(1λ) and returns pp to A.
2. Challenger C samples w ← W and invokes (P,R) ← Gen(pp, w). If β = 1,

C returns (P,R) to A; if β = 0, it chooses U ←$ R and returns (P, U) to
A.

3. A may adaptively make at most ρ queries of the following form:
– A submits a shift δi ∈ M to C.
– C invokes (Pi,Ri) ← Gen(pp,w + δi), and returns (Pi,Ri) to A.

4. As long as A outputs a guessing bit β′, the experiment outputs β′.

3.1 Construction of Reusable Fuzzy Extractor from LWE

Our construction of reusable fuzzy extractor rFE = (Init,Gen,Rep) is shown in
Fig. 1, which uses the following building blocks.

– A homomorphic (Zl′
q ,m, m̂, t)-secure sketch SS = (SS.Gen,SS.Rec).

– A family of universal hash functions H = {Hi : Zl′
q → Z

n×l
q , i ∈ I} with

homomorphic property as defined by (2).
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pp ← Init(1λ):

Hi ←$ H.
pp := Hi.
Return pp.

(P,R) ← Gen(pp,w): // w ∈ Z
l′
q

s ← SS.Gen(w).
S := Hi(w) ∈ Z

n×l
q .

A ←$ Z
m×n
q .

E ← χm×l.
B := (A,A · S+E) ∈ Z

m×(n+l)
q

x ←$ {0, 1}m.
m ←$ {0, 1}l.
c� = x�B+ (0�,m� · � q

2
�).

P := (s, c), R := m.
Return (P,R).

R ← Rep(pp,P,w′):

Parse P = (s, c).
w̃ ← SS.Rec(s,w′).
S := Hi(w̃) ∈ Z

n×l
q .

d = c� ·
(

−S
Il

)
∈ Z

l
q.

For i = 1 to l

m[i] =

{
1 if d[i] ∈ [ 1

4
q, 3

4
q]

0 else

R := m.
Return R.

Fig. 1. Construction of rFE from LWE.

Remark 2. The content in the dashed frame is an LWE-based symmetric encryp-
tion scheme which is adapted from [12], the secret key is S and the message is
m.

Theorem 1. If SS is a homomorphic (Zl′
q ,m, m̂, t)-secure sketch, H is a uni-

versal family of hash functions H = {Hi : Zl′
q → Z

n×l
q , i ∈ I} with homomor-

phic property as defined by (2), it satisfies m̂ − nl log q ≥ ω(log λ), and the
LWEn,(ρ+1)m,l,q,χ problem is ε-hard, where χ is the discrete Gaussian distri-
bution Ψ̄α, q ≥ 4m, α ≤ 1/(8 · √

m · g(n)) for any g(n) = ω(
√

log n) and
m ≥ (n + l) log q + ω(log λ), then rFE in Fig. 1 is an (Zn×l′

p ,m, {0, 1}l, t, ε, ρ)-
reusable fuzzy extractor, where ε ≤ 2−ω(log λ) + 2ε.

Proof. Let us analyze the correctness first. If dis(w,w′) ≤ t, then by the correct-
ness of SS, we have w = w̃, where w̃ ← SS.Rec(s,w′) and s = SS.Gen(w). As a
consequence, S can be correctly recovered. Next, we have

d = c� ·
(−S

Il

)

=
(

x�B + (0�,m� ·
⌊q

2

⌉

)
)

·
(−S

Il

)

=
(

x� (A,A · S + E) + (0�,m� ·
⌊q

2

⌉

)
)

·
(−S

Il

)

= x�E + m� ·
⌊q

2

⌉

.

Denote E = (e1, · · · , el), where ei ← χm. Since q ≥ 4m, α ≤ 1/(8 · √
m · g(n))

for any g(n) = ω(
√

log n) and χ = Ψα, by Lemma 6, we have |x�ei| ≤ q/4 with
overwhelming probability. Consequently, m can be correctly reproduced with
overwhelming probability. The correctness of rFE follows.

Now we show its reusability by defining a sequence of games, and proving
the adjacent games indistinguishable. The differences between adjacent games
will be highlighted by underline.

GameG0 : It is the game ExpreurFE,A(1). More precisely,
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1. Challenger C samples Hi ←$ H, sets pp := Hi, and returns pp to A.
2. Challenger C samples w ← W , invokes s ← SS.Gen(w), S := Hi(w), samples

A ←$ Z
m×n
q , E ← χm×l, sets B := (A,A · S + E), samples x ←$ {0, 1}m,

m ← $ {0, 1}l, sets c� := x�B + (0�,m� · � q
2�), P := (s, c) and R := m.

Finally, it returns (P,R) to A.
3. Upon receiving a shift δi ∈ M from A, challenger C invokes si ←

SS.Gen(w + δi), Si := Hi(w + δi), samples Ai ← $ Z
m×n
q , Ei ← χm×l,

sets Bi := (Ai,Ai · Si + Ei), samples xi ← $ {0, 1}m, mi ← $ {0, 1}l, sets
c�

i := x�
i Bi + (0�,m�

i · � q
2�), Pi := (si, ci) and Ri := mi. Finally, it returns

(Pi,Ri) to A.
4. As long as A outputs a guessing bit β′, the experiment outputs β′.

Clearly, we have
Pr[G0 ⇒ 1] = Pr[ExpreurFE,A(1) ⇒ 1]. (4)

GameG1 : It is the same as G0, except that si ← SS.Gen(w+ δi) now is changed
to si = s + SS.Gen(δi) and Si = Hi(w + δi) now is changed to Si = S+Hi(δi) in
step 3. More precisely,

3. Upon receiving a shift δi ∈ M from A, challenger C computes si = s+
SS.Gen(δi),Si := S + Hi(δi), samples Ai ←$ Z

m×n
q , Ei ← χm×l, sets Bi :=

(Ai,Ai · Si + Ei), samples xi ←$ {0, 1}m, mi ←$ {0, 1}l, sets c�
i := x�

i Bi +
(0�,m�

i · � q
2�), Pi := (si, ci) and Ri := mi. Finally, it returns (Pi,Ri) to A.

Lemma 7. Pr[G0 ⇒ 1] = Pr[G1 ⇒ 1].

Proof. By the homomorphic property of SS, we have

si
G0= SS.Gen(w + δi) = SS.Gen(w) + SS.Gen(δi) = s + SS.Gen(δi)

G1= si.

By the homomorphic property of Hi, we have

Si
G0= Hi(w + δi) = Hi(w) + Hi(δi) = S + Hi(δi)

G1= Si.

As a result, the changes from G0 to G1 are just conceptual, thus

Pr[G0 ⇒ 1] = Pr[G1 ⇒ 1]. ��

GameG2 : It is the same as G1, except that in G2, S is uniformly chosen from
Z

n×l
q instead of S = Hi(w) in step 2. More precisely,

2. Challenger C samples w ← W , invokes s ← SS.Gen(w), S ←$ Z
n×l
q , samples

A ←$ Z
m×n
q , E ← χm×l, sets B := (A,A · S + E), samples x ←$ {0, 1}m,

m ← $ {0, 1}l, sets c� := x�B + (0�,m� · � q
2�), P := (s, c) and R := m.

Finally, it returns (P,R) to A.

Lemma 8.
|Pr[G1 ⇒ 1] − Pr[G2 ⇒ 1]| ≤ 2−ω(log λ).
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Proof. We consider the information about the source w that is used in G1.

– In step 1, challenger C does not need w.
– In step 2, challenger C uses w to generate the sketch s and extract S, where

s ← SS.Gen(w), S = Hi(w).
– In step 3, upon receiving a shift δi from A, challenger C computes si =

s+SS.Gen(δi), Si = S+Hi(δi). In this step, challenger C can perfectly answer
adversary A’s query with s and S, and does not need w anymore.

– In step 4, challenger C does not need w.

From above analysis, we observe that all the information about w leaked to
the adversary A, except S, is by the sketch s ← SS.Gen(w). Since our SS is
(Zl

q,m, m̂, t)-secure sketch and ˜H(W ) ≥ m, we have

˜H(W |SS.Gen(W )) ≥ m̂. (5)

By the leftover hash lemma (Lemma 1), we have the statistical distance
between S and U is less than 2−ω(log λ), where S ← Hi(w) and U ←$ Z

n×l
q . The

lemma follows. ��

GameG3 : It is the same as G2, except that in G3, B,Bi are uniformly sampled
from Z

m×(n+l)
q . More precisely,

2. Challenger C samples w ← W , invokes s ← SS.Gen(w), samples S ←$ Z
n×l
q ,

B ←$ Z
m×(n+l)
q , x ←$ {0, 1}m, and m ←$ {0, 1}l, sets c� := x�B+(0�,m� ·

� q
2�), P := (s, c) and R := m. Finally, it returns (P,R) to A.

3. Upon receiving a shift δi ∈ M satisfying dis(δi) ≤ t from A, challenger C
invokes si = s + SS.Gen(δi), Si = S + Hi(δi), samplesBi ←$ Z

m×(n+l)
q , xi ←

$ {0, 1}m and mi ←$ {0, 1}l, sets c�
i := x�

i Bi + (0�,m�
i · � q

2�), Pi := (si, ci)
and Ri := mi. Finally, it returns (Pi,Ri) to A.

Lemma 9.

|Pr[G2 ⇒ 1] − Pr[G3 ⇒ 1]| ≤ Adv
n,(ρ+1)m,l,q,χ
LWE,B (λ).

Proof. We prove this lemma by showing that if there exists a PPT adversary
A such that |Pr[G2 ⇒ 1] − Pr[G3 ⇒ 1]| = ε, then we can construct a PPT
algorithm B, which can solve the decisional LWEn,(ρ+1)m,l,q,χ problem with the
same probability ε. Algorithm B proceeds as follows.

1. Algorithm B samples Hi ←$ H, sets pp := Hi, and returns pp to A.
2. Algorithm B queries its own oracle to obtain B. Then it samples w ← W ,

invokes s ← SS.Gen(w), samples x ←$ {0, 1}m and m ←$ {0, 1}l, sets c� :=
x�B + (0�, m� · � q

2�), P := (s, c) and R := m. Finally, it returns (P,R) to
A.
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3. Upon receiving a shift δi ∈ M from A, algorithm B computes S′
i = Hi(δi) and

sets si = s+SS.Gen(δi), then queries its own oracle to obtain B′
i = (Ai, Ci),

sets Bi = (Ai, Ci + AiS′
i), samples xi ←$ {0, 1}m and mi ←$ {0, 1}l, sets

c�
i := x�

i Bi + (0�,m�
i · � q

2�), Pi := (si, ci) and Ri := mi. Finally, it returns
(Pi,Ri) to A.

4. As long as A outputs a guessing bit β′, B outputs β′ as its own guess.

Now we analyse the advantage of B.

– If B’s oracle is OLWE(S), the oracle will return LWE samples B = (A, AS+E)
and B′

i = (Ai, AiS + Ei), where A ← $ Z
m×n
q , S ← $ Z

n×l
q , E ← χm×l,

Ai ←$ Z
m×n
q and Ei ← χm×l, then Bi = (Ai, Ci + AiS′

i) = (Ai, AiS +
Ei +AiHi(δi)) = (Ai, Ai(S+Hi(δi)) +Ei) = (Ai, AiSi +Ei). In this case,
algorithm B perfectly simulates G2 for A.

– If B’s oracle is OU, the oracle will return uniform samples B, B′
i, where

B ←$ Z
m×(n+l)
q , B′

i ←$ Z
m×(n+l)
q , then Bi = (Ai, Ci + AiS′

i) = (Ai, Ci) +
(0, AiS′

i) = B′
i +(0, AiS′

i) is uniformly distributed in Z
m×(n+l)
q . In this case,

algorithm B perfectly simulates G3 for A.

Consequently, |Pr[G2 ⇒ 1] − Pr[G3 ⇒ 1]| ≤ Adv
n,(ρ+1)m,q,χ
LWE,B (λ). ��

GameG4 : It is the same as G3, except that in G4, the challenger uniformly
chooses U from {0, 1}l, and returns (P, U) to A instead of returning (P,R) to A.

Lemma 10. |Pr[G3 ⇒ 1] − Pr[G4 ⇒ 1]| ≤ 2−ω(log λ).

Proof. We will show that G4 is statistically indistinguishable from the G3. Note
that in G4, B is uniformly chosen from Z

m×(n+l)
q and x ←$ {0, 1}m, since m ≥

(n + l) log q + ω(log λ), by the leftover hash lemma (Lemma 1), we have x�B is
2−ω(log λ) statistically close to the uniform distribution over Zn+l

q . Consequently,
R := m is concealed, and |Pr[G3 ⇒ 1] − Pr[G4 ⇒ 1]| ≤ 2−ω(log λ) follows. ��

GameG5 : It is the same as G4, except that in G5, B,B′
i are changed back to

LWE samples.

Lemma 11.

|Pr[G4 ⇒ 1] − Pr[G5 ⇒ 1]| ≤ Adv
n,(ρ+1)m,l,q,χ
LWE,B (λ).

Proof. The proof is similar to the proof of Lemma 9. We omit it here. ��

GameG6 : It is the same as G5, except that S ←$ Z
n×l
q in G5 is changed back to

S := Hi(w) in G6.

Lemma 12.
|Pr[G5 ⇒ 1] − Pr[G6 ⇒ 1]| ≤ 2−ω(log λ).
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Proof. The proof is similar to the proof of Lemma 8. We omit it here.

GameG7 : It is the same as G6, except that

– si := s + SS.Gen(δi) now is changed back to si ← SS.Gen(w + δi).
– Si := S + Hi(δi) now is changed back to Si := Hi(w + δi).

Lemma 13. Pr[G6 ⇒ 1] = Pr[G7 ⇒ 1].

Proof. The proof is identical to the proof of Lemma 7. We omit it here. ��
Observe that G7 is identical to ExpreurFE,A(0), as a result

Pr[G7 ⇒ 1] = Pr[ExpreurFE,A(0) ⇒ 1]. (6)

Combining Eq. (4), Lemmas 7–13 and Eq. (6) together, we have

AdvreurFE,A(1λ) ≤ 2−ω(log λ) + 2Advn,(ρ+1)m,l,q,χ
LWE,B (λ).

This completes the proof of Theorem 1. ��
If we instantiate SS and Hi with the syndrome-based secure sketch as defined

in (3) and homomorphic universal hashing as defined in (1), the construction
of rFE in Fig. 1 results in a reusable fuzzy extractor from the LWE assumption,
which is resilient to linear fraction of errors.

4 Conclusion

Traditional fuzzy extractor distills an almost uniform output from a non-uniform
noisy source, but the distillation is implemented only once. In this paper, we
study on reusable fuzzy extractor which enables multiple distillations from the
same non-uniform noisy source and provide the first reusable fuzzy extractor
which is resilient to linear fraction of errors from the LWE assumption. In the
construction, a secure sketch is used to correct errors, an LWE-type encryption
is used to break the correlations between multiple distilled strings, and universal
hashing is used to extract uniform strings. The reusability of our construction
benefits from the LWE assumption and the homomorphic properties of secure
sketch and universal hashing.
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