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Abstract. We revisit the problem of finding a nontrivial divisor of a
composite integer when it has a divisor in an interval [α, β]. We use
Strassen’s algorithm to solve this problem. Compared with Kim-Cheon’s
algorithms (Math Comp 84(291): 339–354, 2015), our method is a deter-
ministic algorithm but with the same complexity as Kim-Cheon’s prob-
abilistic algorithm, and our algorithm does not need to impose that the
divisor is prime. In addition, we can further speed up the theoretical com-
plexity of Kim-Cheon’s algorithms and our algorithm by a logarithmic
term log(β −α) based on the peculiar property of polynomial arithmetic
we consider.
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1 Introduction

RSA is the most widely deployed public-key cryptosystem. Its security relies on
the difficulty of factoring large composite integer: if integer factorization is solved
then RSA is broken. Factoring large numbers is long been believed as a math-
ematical hard problem in computational number theory. Now it is conjectured
that integer factorization cannot be solved in polynomial-time without quantum
computers.

However, even if integer factorization is indeed difficult to solve, one has to
be very careful against the side-channel attacks, which is any attack based on
information gained from the physical implementation of cryptosystems.

In this paper, we focus on the problem of integer factorization given the
approximation of divisors. More precisely, we mainly focus on finding a nontrivial
divisor of a composite integer N when it has a divisor in an interval [α, β].

It is clear that this problem can be solved in O(β−α) time with trial division.
However, based on the bit-size of parameters α and β, more efficient algorithms
exist.
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– For sufficiently small interval bit-size β − α: Using Coppersmith’s method [5]
of finding small roots of modular polynomial equations, we can recover all
divisors in the interval in polynomial time in log N .

– For relatively small α and large β: Using Pollard’s rho method [12], we can
find a nontrivial divisor in O(β1/2) time.

– For large α and large β − α: Using Kim-Cheon’s algorithms [10], we can
recover a nontrivial divisor in ˜O((β − α)1/2) time.

Specifically, in [10], Kim and Cheon proposed two algorithms, one is prob-
abilistic and the other is its deterministic version, for achieving birthday com-
plexity in finding a divisor in an interval. Using their proposed algorithms, one
can check the existence of prime divisors in the interval, and if they exist, one
can find all such prime divisors.

Compared with Kim-Cheon’s probabilistic algorithm, their deterministic
algorithm is more complex, difficult to understand, and needs more time com-
plexity. Besides, for the case of composite divisors, their probabilistic algorithm
works well, but their deterministic algorithm fails. Therefore, Kim and Cheon
posted as an open problem to design a deterministic algorithm for composite
divisors.

1.1 Our Contributions

In this paper, we propose a deterministic algorithm to find a nontrivial divisor
of a composite integer N when it has a divisor in an interval [α, β]. Our deter-
ministic algorithm has the same time complexity as Kim-Cheon’s probabilistic
algorithm, and also works for the case of composite divisors. In addition, we can
further speed up the theoretical complexity of Kim-Cheon’s algorithms and our
algorithm by a logarithmic term log(β − α) based on the peculiar property of
polynomial arithmetic we consider.

Technically, recall that Kim-Cheon’s algorithm reduces the target problem
to solving a discrete logarithm problem over (Z/nZ)∗, where n is an unknown
divisor of the known integer N . We view the original problem from a dif-
ferent perspective: we relate the original problem to a variant of determin-
istic integer factorization problem, and then use Strassen’s algorithm [13,14]
to solve it. More precisely, let p = β − x be a divisor of N in the inter-
val [α, β], where x ∈ [0, β − α] is unknown. Then the problem of finding p
can be transformed to computing gcd(N,β − x). Although x is unknown, we
can use gcd

(

N,
∏β−α

i=0 (β − i) (modN)
)

to find p. Therefore, how to calculate
∏β−α

i=0 (β − i) (modN) efficiently becomes the key point of the complexity.
Moreover, recently Chen and Nguyen [4] used a similar algorithm as

Strassen’s algorithm to solve Approximate Common Divisor Problem, the later
was introduced by Howgrave-Graham [9] in CaLC 2001.
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2 Preliminaries

Let a and b be integers. Let νa(b) denote the nonnegative integer such that
aνa(b) | b and aνa(b)+1

� b. Denote [α, β] as the set of all integers α ≤ i ≤ β. Let
|β − α|2 denote the bit-size of β − α. We will use log for the binary (base 2)
logarithm. Let M(d) be the complexity of the multiplication of two polynomial
with degree d [1]:

M(d) = O(d log d log log d).

In this paper, we consider the univariate polynomial f(x) ∈ ZN [x] with N an
arbitrary integer. We will use two polynomial arithmetic algorithms, AlgPoly

(compute a polynomial given as a product of d terms) and AlgMPE (evaluate a
univariate polynomial with degree d at d points), as subroutines. It is clear that
we can solve them using O(d2) additions and multiplications in ZN . However,
there are classic algorithms with quasi-linear complexity operations in ZN using
a divide-and-conquer approach. Recently these two algorithms have been used
in various area of public-key cryptanalysis [4,6,8]. We give the basic information
of these two algorithms as follows:

AlgPoly: Takes integer N and d points (suppose that a0, . . . , ad−1) as inputs;
outputs a monic degree d polynomial over ZN having d points as roots: f(X) =
∏d−1

i=0 (X − ai)(mod N). According to a classic result [1], the time complexity is
O(log dM(d)) operations modulo N , and the storage requirement is O(d log d)
elements in ZN .

AlgMPE : Takes integer N , a polynomial f(x) with degree d over ZN and
d points (suppose that c0, . . . , cd−1) as inputs; outputs the evaluation of f(x)
at d input points: f(c0), . . . , f(cd−1)(mod N). According to a classic result [1],
the time complexity is O(log dM(d)) operations modulo N , and the storage
requirement is O(d log d) elements in ZN .

3 Review Kim-Cheon’s Algorithms

In this section, we will review Kim-Cheon’s two algorithms: one is probabilistic
and the other is its deterministic version. Their algorithms essentially work by
solving the discrete logarithm problem over (Z/nZ)∗, where n is an unknown
divisor of the target composite integer N . Before given the full description of
Kim-Cheon’s algorithms, we would like to introduce a lemma from [10]:

Lemma 1. There exists an algorithm FINDING which, given as input positive
integers N, g, h, and δ with 1 < g, h < N , gcd(gh,N) = 1, outputs an integer
x ∈ [1, δ] with gcd(gx − h,N) > 1 or shows that no such x exists in

O
(

M(δ1/2) log δ
)

operations modulo N by using storage O(δ1/2 log δ) elements in ZN .
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We recall the FINDING algorithm, given as Algortihm 1.

Algorithm 1. x ← FINDING(N, g, h, δ)
Input: Positive integers N, g, h and δ with 1 < g, h < N , gcd(gh, N) = 1.
Output: An integer x ∈ [1, δ] satisfying gcd(gx − h, N) > 1.
1: Set L := �δ1/2�.
2: Compute the polynomial

F (X) =
∏

0≤i≤L−1

(X − hgi) mod N

using Algorithm AlgPoly.

3: Evaluate F (X) at multiple points gjL for all 1 ≤ j ≤ L using Algorithm AlgMPE

4: j := 1
5: while j ≤ L do
6: dj = gcd(F (gjL), N)
7: if dj > 1 then
8: Find the great u satisfying gcd(gjL − hgu, N) > 1.
9: Output x := jL − u and stop.

10: end if
11: j := j + 1
12: end while
13: Output “there is no such x” and stop.

The complexity of Algorithm FINDING mainly relies on the complexity of
AlgPoly and AlgMPE , thus the overall complexity is O (

log δM(δ1/2)
)

opera-
tions modulo N with using storage O(δ1/2 log δ) elements in ZN .

Now we review Kim-Cheon’s probabilistic algorithm for computing a non-
trivial divisor of a composite integer N , given as Algortihm 2.

Algortihm 2 takes O (

M((β − α)1/2) log(β − α)
)

operations modulo N . The
storage requirement is O((β − α)1/2 log(β − α)) elements in ZN . In [10], Kim
and Cheon showed that Algortihm2 succeeds with a probability of at least 1/2.

Kim-Cheon’s Deterministic Algorithm. Since we do not know exactly how
many a’s are to be tested or how to choose a to split N in Algortihm 2, hence, the
algorithm works probabilistically. Therefore, Kim and Cheon proposed a deter-
ministic algorithm to overcome this problem, the key tool of their deterministic
algorithm was the distribution of smooth numbers, which was originally used for
devising a deterministic primality test under some condition by Konyagin and
Pomerance [11]. We omit the details of their algorithm here, instead, we refer
to [10]. Obviously, Kim-Cheon’s probabilistic algorithm performs better than
their deterministic algorithm.

4 Our Deterministic Algorithm

In this section, we propose a deterministic algorithm to find a nontrivial divisor
of a composite integer N when it has a divisor in an interval [α, β]. Our algorithm
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Algorithm 2. Kim-Cheon’s probabilistic algorithm for computing a nontrivial
divisor of a composite integer N

Input: A composite integer N with unknown factorization and an interval [α, β].
Output: A nontrivial divisor of N when it has a divisor in an interval [α, β].
1: Choose an integer a uniformly at random in {2, . . . , N − 1}.
2: if gcd(a, N) > 1 then
3: output gcd(a, N) and stop.
4: end if
5: Compute xa ∈ [1, β−α] such that d = gcd(axa −aβ−1 mod N, N) > 1 by applying

subalgorithm FINDING (Alg.1).
6: if there is no such xa then
7: output “N has no prime divisor in the interval [α, β])” and stop.
8: end if
9: if d < N then

10: output d and stop.
11: end if
12: if d = N and ya := β − 1 − xa is even then
13: i := 1
14: while i ≤ ν2(ya) do

15: compute di = gcd(aya/2i − 1, N)
16: if 1 < di < N then
17: output di and stop
18: end if
19: i := i + 1
20: end while
21: end if
22: Output “failure” and stop.

has the same time complexity as Kim-Cheon’s probabilistic algorithm, and also
works for the case of composite divisors.

4.1 Algorithmic Details

Now we show how to reduce the target problem to a variant of integer factor-
ization problem. Let p be the divisor of N in the interval [α, β]. At first, we can
write p as

p = β − x

where x is an unknown variable satisfying 0 ≤ x ≤ β − α. Then in this case, we
are given one exact multiple N(N ≡ 0 mod p) and one integer β = p + x, and
the goal is to learn the divisor p. Here, we do not require that p is prime.

Next we give our algorithm based on Strassen’s algorithm [13,14] for solving
the integer factorization problem. It is clear that

p = gcd

(

N,

β−α
∏

i=0

(β − i) (modN)

)
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The key problem is how to calculate
∏β−α

i=0 (β − i) (modN) faster.
To calculate faster, we require the degree of polynomial be a power of two.

Let |β − α|2 = l. Therefore, we focus on

p = gcd

⎛

⎝N,

2l−1
∏

i=0

(β − i) (modN)

⎞

⎠

Set l∗ = �l/2�, we can rewrite it as

2l−1
∏

i=0

(β − i) (modN) =
2l

∗−(l mod 2)−1
∏

i=0

2l
∗ −1
∏

j=0

(β − 2l∗i − j) (modN)

We define the polynomial fj(x) of degree j modulo integer N :

fj(x) =
j−1
∏

k=0

(β − x − k) (modN)

Therefore, we have

2l−1
∏

i=0

(β − i) (modN) =
2l

∗−(l mod 2)−1
∏

i=0

f2l∗ (2l∗i) (modN)

which means

p = gcd

⎛

⎝N,
2l

∗−(l mod 2)−1
∏

i=0

f2l∗ (2l∗i) (modN)

⎞

⎠

We need to compute the polynomial f2l∗ (x) explicitly and evaluate this polyno-
mial at 2l∗−(l mod 2) points, which can fortunately be done using AlgPoly and
AlgMPE . We give a full description of our algorithm as follows.

In our algorithm, the condition d = 1 means that there is no divisor in
the interval [α, β] and if 1 < d ≤ β, d is the divisor what we want. However,
if there are more than one divisors in the interval [α, β], we will obtain that
d > β. According to the Strassen’s algorithm, for this case we can use a trick of
computing greatest common divisor based on a product tree to determine which
f2l∗ (2l∗k), where 1 ≤ k ≤ 2l∗−(l mod 2) has only one divisor. Algorithm4 gives a
brief description of this trick. Note that, if it is still that gcd(N, f2l∗ (2l∗k)) > β
which means there are still more than one divisors of N fall in the same interval
[β − 2l∗(k + 1) + 1, β − 2l∗k], we can further use same trick as Algorithm 4 to
construct a product tree based on the following expression

f2l∗ (2l∗k) =
2l

∗ −1
∏

i=0

(β − 2l∗k − i) (mod N).
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Algorithm 3. Our deterministic algorithm for computing a nontrivial divisor
of a composite integer N

Input: A composite integer N with unknown factorization and an interval [α, β].
Output: A nontrivial divisor of N when it has a divisor in an interval [α, β].
1: Set l∗ = �|β − α|2/2�.
2: Compute the polynomial f2l∗ (x) using AlgPoly.

3: Evaluate f2l∗ (x) at multiple points 2l∗k for all 1 ≤ k ≤ 2l∗−(l mod 2) using
AlgMPE .

4: Compute d = gcd(N, f2l∗ (1)f2l∗ (2) · · · f2l∗ (2l∗−(l mod 2)) mod N).
5: if d = 1 then
6: output “there is no divisor in interval [α, β]” and stop.
7: end if
8: if 1 < d ≤ β then
9: output d and stop.

10: end if
11: if β < d ≤ N then
12: compute a divisor in an interval [α, β], using Algorithm 4.
13: end if

Then the divisor in the interval [α, β] can be finally determined.
Now, we analyze the complexity of Algorithm3. The complexity of AlgPoly

and AlgMPE takes O (

log(β − α)M((β − α)1/2)
)

operations modulo N and the
storage requirement is O((β − α)1/2 log(β − α)) elements in ZN . In addition, we
need GCD computations at most 2 log(β −α)1/2 times and O((β −α)1/2) multi-
plications on modulo N . Therefore, the complexity of our algorithm mainly relies
on the complexity of AlgPoly and AlgMPE , just like Kim-Cheon’s probabilistic
algorithm our deterministic algorithm takes O (

log(β − α)M((β − α)1/2)
)

oper-
ations modulo N .

4.2 Logarithmic Speedup

The complexity of Kim-Cheon’s algorithms and our algorithm mainly relies on
AlgPoly and AlgMPE . However, since the peculiar property of these polynomi-
als we consider, hence more efficient algorithms exist. Thus, we can speed up
the theoretical complexity of Kim-Cheon’s algorithms and our algorithm by a
logarithmic term log(β − α).

Revisiting Kim-Cheon’s Algorithms. In Algortihm 1, they want to com-
pute the polynomial F (X) =

∏

0≤i≤L−1(X − hgi) mod N and evaluate F (x) at
points gL, g2L, . . . , gL2

. Notice that both (hgi) and (giL) are geometric progres-
sions, hence we can use more efficient algorithm of Bostan et al. [3] to compute
polynomial interpolation and polynomial evaluation at a geometric progression.
Bostan gave his pseudocode in [2]. This technique can speed up the overall com-
plexity of Kim-Cheon’s algorithms by a logarithmic term log(β − α).
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Algorithm 4. RecursiveFinding(N , A)
Input: A composite integer N and a set of numbers {a1, . . . , an}.
Output: A nontrivial divisor of N in the interval [α, β].
1: n′ := �n/2�
2: Compute d = gcd(N,

∏n′
i=1 ai)

3: if 1 < d ≤ β then
4: output d and stop.
5: end if
6: if d = 1 then
7: RecursiveFinding(N , {an′+1, . . . , an})
8: end if
9: if β < d ≤ N then

10: RecursiveFinding(N , {a1, . . . , an′})
11: end if

Revisiting Our Algorithm. Likewise, our deterministic algorithm can also
been improved by using a smarter way to calculate the evaluation of function
f2l∗ (x) at 2l∗−(l mod 2) points. We use Chen-Nguyen’s technique, which based
on Bostan, Gaudry and Schost’s result [3], to speed up Algortihm 3.

More specifically, Bostan, Gaudry and Schost’s result can be described as
follows:

Theorem 1 (Theorem 5 of [3]). Let a, b be in ring R and d be in N such
that d(a, b, d) is invertible, with d(a, b, d) = b · 2 · · · d · (a − db) · · · (a + db), and
suppose that the inverse of d(a, b, d) is known. Let F (x) be in R[X] of degree
at most d and r ∈ R. Given F (r), F (r + b), . . . , F (r + db), one can compute
F (r + a), F (r + a + b), . . . , F (r + a + db) in time 2M(d) + O(d) time and space
O(d). Here, M(d) is the time of multiplying two polynomial of degree at most d.

Define set S(k1, . . . , kj) := {∑j
i=1 pki

2ki | pki
∈ {0, 1}}. Suppose that we already

have the evaluation of f2j (x) at points S(kl−j+1, . . . , kl), if we can calculate the
evaluation of f2j+1(x) at points S(kl−j , . . . , kl), then with each iteration, we can
evaluate the f2l∗ (x) at 2l∗−(l mod 2) points closer until j = 2l∗ .

The key technique is how to calculate the evaluation of f2j+1(x) at points
S(kl−j , . . . , kl) using Theorem 1. For every X ∈ S(kl−j , . . . , kl), we have

f2j+1(X) = f2j (X) · f2j (X + 2j+1)

We can easily calculate f2j (X) and f2j (X +2j+1) using Theorem 1, and evaluate
f2j+1(x) at points S(kl−j , . . . , kl).

Note that, our algorithm does not need to impose that the divisor in the
interval is prime. However, if we impose that the divisor is prime, we can use the
method of [7], proposed by Costa and Harvey, to further speed up the theoretical
complexity by removing some elements in the interval that do not contribute any
useful information.
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5 Conclusion

In this paper we revisit the problem of finding a nontrivial divisor of a composite
integer N when it has a divisor in an interval [α, β]. We present a deterministic
algorithm to solve this problem, and our algorithm has the same complexity with
Kim-Cheon’s probabilistic algorithm. Besides, based on the special structure of
polynomial, we give a method to speed up the theoretical complexity of Kim-
Cheon’s algorithm and our algorithm by a logarithmic term log(β − α).
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