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Preface

This volume contains the papers presented at ACISP 2018 – the 23rd Australasian
Conference on Information Security and Privacy held during July 11–13, 2018, in
Wollongong, Australia. The conference was organized by the Institute of Cybersecurity
and Cryptology at the University of Wollongong, which provided wonderful facilities
and support.

This year we received 136 submissions of excellent quality from 23 countries
around the world. Each submission was allocated to at least three Program Committee
members and each paper received on average 2.8 reviews. The submission and review
process was supported by the EasyChair conference submission server. In the first stage
of the review process, the submitted papers were evaluated by the Program Committee
members. In the second stage, the papers were scrutinized during an extensive dis-
cussion. Finally, the committee decided to accept 41 regular papers and ten short
papers.

Among the accepted regular papers, four papers were nominated as candidates for
the Best Paper Award and five papers were nominated as candidates for the Best
Student Paper Award. The Program Committee voted for both awards. For the Best
Paper Award, two papers were the preferred options with no clear winner and we
decided to award the Best Paper to both papers:

• “Secure Publicly Verifiable Computation with Polynomial Commitment in Cloud
Computing” by Jian Shen, Dengzhi Liu, Xiaofeng Chen, Xinyi Huang, Jiageng
Chen, and Mingwu Zhang

• “Decentralized Blacklistable Anonymous Credentials with Reputation” by Rupeng
Yang, Man Ho Au, Qiuliang Xu, and Zuoxia Yu

The Best Student Paper was awarded to the paper:

• “Asymmetric Subversion Attacks on Signature Schemes” by Chi Liu, Rongmao
Chen, Yi Wang, and Yongjun Wang

The Jennifer Seberry Lecture this year was delivered by Prof. Wanlei Zhou from the
University of Technology Sydney, Australia. The program also included three invited
talks presented by Prof. Robert Deng from Singapore Management University, Sin-
gapore; Prof. Patrizio Campisi from the Roma Tre University, Italy; and Dr. Surya
Nepal from CSIRO/Data61, Australia.

We would like to thank the Program Committee members and the external reviewers
for their effort and time to evaluate the submissions, and our sponsors — School of
Computing and Information Technology at the University of Wollongong, Springer,
DATA61, Australian Government Department of Defence Science and Technology



(DST), Cryptography - Open Access Journal by MDPI, and New South Wales
(NSW) Cyber Security Network, Australia, NSW Office of the Chief Scientist and
Engineer, iTree and Thinking Studio — for their generous support to the conference.
We are indebted to the team at Springer for their continuous support of the conference
and for their help in the production of the conference proceedings.

July 2018 Willy Susilo
Guomin Yang
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A Deterministic Algorithm
for Computing Divisors in an Interval

Liqiang Peng1,2, Yao Lu1,2,3(B), Noboru Kunihiro3, Rui Zhang1, and Lei Hu1,2

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100 093, China
{pengliqiang,r-zhang}@iie.ac.cn, hu@is.ac.cn

2 Data Assurance and Communication Security Research Center,
Chinese Academy of Sciences, Beijing 100 093, China

3 The University of Tokyo, Tokyo, Japan

Abstract. We revisit the problem of finding a nontrivial divisor of a
composite integer when it has a divisor in an interval [α, β]. We use
Strassen’s algorithm to solve this problem. Compared with Kim-Cheon’s
algorithms (Math Comp 84(291): 339–354, 2015), our method is a deter-
ministic algorithm but with the same complexity as Kim-Cheon’s prob-
abilistic algorithm, and our algorithm does not need to impose that the
divisor is prime. In addition, we can further speed up the theoretical com-
plexity of Kim-Cheon’s algorithms and our algorithm by a logarithmic
term log(β −α) based on the peculiar property of polynomial arithmetic
we consider.

Keywords: Integer factorization · Divisors in an interval
Polynomial arithmetic

1 Introduction

RSA is the most widely deployed public-key cryptosystem. Its security relies on
the difficulty of factoring large composite integer: if integer factorization is solved
then RSA is broken. Factoring large numbers is long been believed as a math-
ematical hard problem in computational number theory. Now it is conjectured
that integer factorization cannot be solved in polynomial-time without quantum
computers.

However, even if integer factorization is indeed difficult to solve, one has to
be very careful against the side-channel attacks, which is any attack based on
information gained from the physical implementation of cryptosystems.

In this paper, we focus on the problem of integer factorization given the
approximation of divisors. More precisely, we mainly focus on finding a nontrivial
divisor of a composite integer N when it has a divisor in an interval [α, β].

It is clear that this problem can be solved in O(β−α) time with trial division.
However, based on the bit-size of parameters α and β, more efficient algorithms
exist.
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 3–12, 2018.
https://doi.org/10.1007/978-3-319-93638-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93638-3_1&domain=pdf


4 L. Peng et al.

– For sufficiently small interval bit-size β − α: Using Coppersmith’s method [5]
of finding small roots of modular polynomial equations, we can recover all
divisors in the interval in polynomial time in log N .

– For relatively small α and large β: Using Pollard’s rho method [12], we can
find a nontrivial divisor in O(β1/2) time.

– For large α and large β − α: Using Kim-Cheon’s algorithms [10], we can
recover a nontrivial divisor in ˜O((β − α)1/2) time.

Specifically, in [10], Kim and Cheon proposed two algorithms, one is prob-
abilistic and the other is its deterministic version, for achieving birthday com-
plexity in finding a divisor in an interval. Using their proposed algorithms, one
can check the existence of prime divisors in the interval, and if they exist, one
can find all such prime divisors.

Compared with Kim-Cheon’s probabilistic algorithm, their deterministic
algorithm is more complex, difficult to understand, and needs more time com-
plexity. Besides, for the case of composite divisors, their probabilistic algorithm
works well, but their deterministic algorithm fails. Therefore, Kim and Cheon
posted as an open problem to design a deterministic algorithm for composite
divisors.

1.1 Our Contributions

In this paper, we propose a deterministic algorithm to find a nontrivial divisor
of a composite integer N when it has a divisor in an interval [α, β]. Our deter-
ministic algorithm has the same time complexity as Kim-Cheon’s probabilistic
algorithm, and also works for the case of composite divisors. In addition, we can
further speed up the theoretical complexity of Kim-Cheon’s algorithms and our
algorithm by a logarithmic term log(β − α) based on the peculiar property of
polynomial arithmetic we consider.

Technically, recall that Kim-Cheon’s algorithm reduces the target problem
to solving a discrete logarithm problem over (Z/nZ)∗, where n is an unknown
divisor of the known integer N . We view the original problem from a dif-
ferent perspective: we relate the original problem to a variant of determin-
istic integer factorization problem, and then use Strassen’s algorithm [13,14]
to solve it. More precisely, let p = β − x be a divisor of N in the inter-
val [α, β], where x ∈ [0, β − α] is unknown. Then the problem of finding p
can be transformed to computing gcd(N,β − x). Although x is unknown, we
can use gcd

(

N,
∏β−α

i=0 (β − i) (modN)
)

to find p. Therefore, how to calculate
∏β−α

i=0 (β − i) (modN) efficiently becomes the key point of the complexity.
Moreover, recently Chen and Nguyen [4] used a similar algorithm as

Strassen’s algorithm to solve Approximate Common Divisor Problem, the later
was introduced by Howgrave-Graham [9] in CaLC 2001.



A Deterministic Algorithm for Computing Divisors in an Interval 5

2 Preliminaries

Let a and b be integers. Let νa(b) denote the nonnegative integer such that
aνa(b) | b and aνa(b)+1

� b. Denote [α, β] as the set of all integers α ≤ i ≤ β. Let
|β − α|2 denote the bit-size of β − α. We will use log for the binary (base 2)
logarithm. Let M(d) be the complexity of the multiplication of two polynomial
with degree d [1]:

M(d) = O(d log d log log d).

In this paper, we consider the univariate polynomial f(x) ∈ ZN [x] with N an
arbitrary integer. We will use two polynomial arithmetic algorithms, AlgPoly

(compute a polynomial given as a product of d terms) and AlgMPE (evaluate a
univariate polynomial with degree d at d points), as subroutines. It is clear that
we can solve them using O(d2) additions and multiplications in ZN . However,
there are classic algorithms with quasi-linear complexity operations in ZN using
a divide-and-conquer approach. Recently these two algorithms have been used
in various area of public-key cryptanalysis [4,6,8]. We give the basic information
of these two algorithms as follows:

AlgPoly: Takes integer N and d points (suppose that a0, . . . , ad−1) as inputs;
outputs a monic degree d polynomial over ZN having d points as roots: f(X) =
∏d−1

i=0 (X − ai)(mod N). According to a classic result [1], the time complexity is
O(log dM(d)) operations modulo N , and the storage requirement is O(d log d)
elements in ZN .

AlgMPE : Takes integer N , a polynomial f(x) with degree d over ZN and
d points (suppose that c0, . . . , cd−1) as inputs; outputs the evaluation of f(x)
at d input points: f(c0), . . . , f(cd−1)(mod N). According to a classic result [1],
the time complexity is O(log dM(d)) operations modulo N , and the storage
requirement is O(d log d) elements in ZN .

3 Review Kim-Cheon’s Algorithms

In this section, we will review Kim-Cheon’s two algorithms: one is probabilistic
and the other is its deterministic version. Their algorithms essentially work by
solving the discrete logarithm problem over (Z/nZ)∗, where n is an unknown
divisor of the target composite integer N . Before given the full description of
Kim-Cheon’s algorithms, we would like to introduce a lemma from [10]:

Lemma 1. There exists an algorithm FINDING which, given as input positive
integers N, g, h, and δ with 1 < g, h < N , gcd(gh,N) = 1, outputs an integer
x ∈ [1, δ] with gcd(gx − h,N) > 1 or shows that no such x exists in

O
(

M(δ1/2) log δ
)

operations modulo N by using storage O(δ1/2 log δ) elements in ZN .
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We recall the FINDING algorithm, given as Algortihm 1.

Algorithm 1. x ← FINDING(N, g, h, δ)
Input: Positive integers N, g, h and δ with 1 < g, h < N , gcd(gh, N) = 1.
Output: An integer x ∈ [1, δ] satisfying gcd(gx − h, N) > 1.
1: Set L := �δ1/2�.
2: Compute the polynomial

F (X) =
∏

0≤i≤L−1

(X − hgi) mod N

using Algorithm AlgPoly.

3: Evaluate F (X) at multiple points gjL for all 1 ≤ j ≤ L using Algorithm AlgMPE

4: j := 1
5: while j ≤ L do
6: dj = gcd(F (gjL), N)
7: if dj > 1 then
8: Find the great u satisfying gcd(gjL − hgu, N) > 1.
9: Output x := jL − u and stop.

10: end if
11: j := j + 1
12: end while
13: Output “there is no such x” and stop.

The complexity of Algorithm FINDING mainly relies on the complexity of
AlgPoly and AlgMPE , thus the overall complexity is O (

log δM(δ1/2)
)

opera-
tions modulo N with using storage O(δ1/2 log δ) elements in ZN .

Now we review Kim-Cheon’s probabilistic algorithm for computing a non-
trivial divisor of a composite integer N , given as Algortihm 2.

Algortihm 2 takes O (

M((β − α)1/2) log(β − α)
)

operations modulo N . The
storage requirement is O((β − α)1/2 log(β − α)) elements in ZN . In [10], Kim
and Cheon showed that Algortihm2 succeeds with a probability of at least 1/2.

Kim-Cheon’s Deterministic Algorithm. Since we do not know exactly how
many a’s are to be tested or how to choose a to split N in Algortihm 2, hence, the
algorithm works probabilistically. Therefore, Kim and Cheon proposed a deter-
ministic algorithm to overcome this problem, the key tool of their deterministic
algorithm was the distribution of smooth numbers, which was originally used for
devising a deterministic primality test under some condition by Konyagin and
Pomerance [11]. We omit the details of their algorithm here, instead, we refer
to [10]. Obviously, Kim-Cheon’s probabilistic algorithm performs better than
their deterministic algorithm.

4 Our Deterministic Algorithm

In this section, we propose a deterministic algorithm to find a nontrivial divisor
of a composite integer N when it has a divisor in an interval [α, β]. Our algorithm
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Algorithm 2. Kim-Cheon’s probabilistic algorithm for computing a nontrivial
divisor of a composite integer N

Input: A composite integer N with unknown factorization and an interval [α, β].
Output: A nontrivial divisor of N when it has a divisor in an interval [α, β].
1: Choose an integer a uniformly at random in {2, . . . , N − 1}.
2: if gcd(a, N) > 1 then
3: output gcd(a, N) and stop.
4: end if
5: Compute xa ∈ [1, β−α] such that d = gcd(axa −aβ−1 mod N, N) > 1 by applying

subalgorithm FINDING (Alg.1).
6: if there is no such xa then
7: output “N has no prime divisor in the interval [α, β])” and stop.
8: end if
9: if d < N then

10: output d and stop.
11: end if
12: if d = N and ya := β − 1 − xa is even then
13: i := 1
14: while i ≤ ν2(ya) do

15: compute di = gcd(aya/2i − 1, N)
16: if 1 < di < N then
17: output di and stop
18: end if
19: i := i + 1
20: end while
21: end if
22: Output “failure” and stop.

has the same time complexity as Kim-Cheon’s probabilistic algorithm, and also
works for the case of composite divisors.

4.1 Algorithmic Details

Now we show how to reduce the target problem to a variant of integer factor-
ization problem. Let p be the divisor of N in the interval [α, β]. At first, we can
write p as

p = β − x

where x is an unknown variable satisfying 0 ≤ x ≤ β − α. Then in this case, we
are given one exact multiple N(N ≡ 0 mod p) and one integer β = p + x, and
the goal is to learn the divisor p. Here, we do not require that p is prime.

Next we give our algorithm based on Strassen’s algorithm [13,14] for solving
the integer factorization problem. It is clear that

p = gcd

(

N,

β−α
∏

i=0

(β − i) (modN)

)
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The key problem is how to calculate
∏β−α

i=0 (β − i) (modN) faster.
To calculate faster, we require the degree of polynomial be a power of two.

Let |β − α|2 = l. Therefore, we focus on

p = gcd

⎛

⎝N,

2l−1
∏

i=0

(β − i) (modN)

⎞

⎠

Set l∗ = �l/2�, we can rewrite it as

2l−1
∏

i=0

(β − i) (modN) =
2l

∗−(l mod 2)−1
∏

i=0

2l
∗ −1
∏

j=0

(β − 2l∗i − j) (modN)

We define the polynomial fj(x) of degree j modulo integer N :

fj(x) =
j−1
∏

k=0

(β − x − k) (modN)

Therefore, we have

2l−1
∏

i=0

(β − i) (modN) =
2l

∗−(l mod 2)−1
∏

i=0

f2l∗ (2l∗i) (modN)

which means

p = gcd

⎛

⎝N,
2l

∗−(l mod 2)−1
∏

i=0

f2l∗ (2l∗i) (modN)

⎞

⎠

We need to compute the polynomial f2l∗ (x) explicitly and evaluate this polyno-
mial at 2l∗−(l mod 2) points, which can fortunately be done using AlgPoly and
AlgMPE . We give a full description of our algorithm as follows.

In our algorithm, the condition d = 1 means that there is no divisor in
the interval [α, β] and if 1 < d ≤ β, d is the divisor what we want. However,
if there are more than one divisors in the interval [α, β], we will obtain that
d > β. According to the Strassen’s algorithm, for this case we can use a trick of
computing greatest common divisor based on a product tree to determine which
f2l∗ (2l∗k), where 1 ≤ k ≤ 2l∗−(l mod 2) has only one divisor. Algorithm4 gives a
brief description of this trick. Note that, if it is still that gcd(N, f2l∗ (2l∗k)) > β
which means there are still more than one divisors of N fall in the same interval
[β − 2l∗(k + 1) + 1, β − 2l∗k], we can further use same trick as Algorithm 4 to
construct a product tree based on the following expression

f2l∗ (2l∗k) =
2l

∗ −1
∏

i=0

(β − 2l∗k − i) (mod N).
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Algorithm 3. Our deterministic algorithm for computing a nontrivial divisor
of a composite integer N

Input: A composite integer N with unknown factorization and an interval [α, β].
Output: A nontrivial divisor of N when it has a divisor in an interval [α, β].
1: Set l∗ = �|β − α|2/2�.
2: Compute the polynomial f2l∗ (x) using AlgPoly.

3: Evaluate f2l∗ (x) at multiple points 2l∗k for all 1 ≤ k ≤ 2l∗−(l mod 2) using
AlgMPE .

4: Compute d = gcd(N, f2l∗ (1)f2l∗ (2) · · · f2l∗ (2l∗−(l mod 2)) mod N).
5: if d = 1 then
6: output “there is no divisor in interval [α, β]” and stop.
7: end if
8: if 1 < d ≤ β then
9: output d and stop.

10: end if
11: if β < d ≤ N then
12: compute a divisor in an interval [α, β], using Algorithm 4.
13: end if

Then the divisor in the interval [α, β] can be finally determined.
Now, we analyze the complexity of Algorithm3. The complexity of AlgPoly

and AlgMPE takes O (

log(β − α)M((β − α)1/2)
)

operations modulo N and the
storage requirement is O((β − α)1/2 log(β − α)) elements in ZN . In addition, we
need GCD computations at most 2 log(β −α)1/2 times and O((β −α)1/2) multi-
plications on modulo N . Therefore, the complexity of our algorithm mainly relies
on the complexity of AlgPoly and AlgMPE , just like Kim-Cheon’s probabilistic
algorithm our deterministic algorithm takes O (

log(β − α)M((β − α)1/2)
)

oper-
ations modulo N .

4.2 Logarithmic Speedup

The complexity of Kim-Cheon’s algorithms and our algorithm mainly relies on
AlgPoly and AlgMPE . However, since the peculiar property of these polynomi-
als we consider, hence more efficient algorithms exist. Thus, we can speed up
the theoretical complexity of Kim-Cheon’s algorithms and our algorithm by a
logarithmic term log(β − α).

Revisiting Kim-Cheon’s Algorithms. In Algortihm 1, they want to com-
pute the polynomial F (X) =

∏

0≤i≤L−1(X − hgi) mod N and evaluate F (x) at
points gL, g2L, . . . , gL2

. Notice that both (hgi) and (giL) are geometric progres-
sions, hence we can use more efficient algorithm of Bostan et al. [3] to compute
polynomial interpolation and polynomial evaluation at a geometric progression.
Bostan gave his pseudocode in [2]. This technique can speed up the overall com-
plexity of Kim-Cheon’s algorithms by a logarithmic term log(β − α).
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Algorithm 4. RecursiveFinding(N , A)
Input: A composite integer N and a set of numbers {a1, . . . , an}.
Output: A nontrivial divisor of N in the interval [α, β].
1: n′ := �n/2�
2: Compute d = gcd(N,

∏n′
i=1 ai)

3: if 1 < d ≤ β then
4: output d and stop.
5: end if
6: if d = 1 then
7: RecursiveFinding(N , {an′+1, . . . , an})
8: end if
9: if β < d ≤ N then

10: RecursiveFinding(N , {a1, . . . , an′})
11: end if

Revisiting Our Algorithm. Likewise, our deterministic algorithm can also
been improved by using a smarter way to calculate the evaluation of function
f2l∗ (x) at 2l∗−(l mod 2) points. We use Chen-Nguyen’s technique, which based
on Bostan, Gaudry and Schost’s result [3], to speed up Algortihm 3.

More specifically, Bostan, Gaudry and Schost’s result can be described as
follows:

Theorem 1 (Theorem 5 of [3]). Let a, b be in ring R and d be in N such
that d(a, b, d) is invertible, with d(a, b, d) = b · 2 · · · d · (a − db) · · · (a + db), and
suppose that the inverse of d(a, b, d) is known. Let F (x) be in R[X] of degree
at most d and r ∈ R. Given F (r), F (r + b), . . . , F (r + db), one can compute
F (r + a), F (r + a + b), . . . , F (r + a + db) in time 2M(d) + O(d) time and space
O(d). Here, M(d) is the time of multiplying two polynomial of degree at most d.

Define set S(k1, . . . , kj) := {∑j
i=1 pki

2ki | pki
∈ {0, 1}}. Suppose that we already

have the evaluation of f2j (x) at points S(kl−j+1, . . . , kl), if we can calculate the
evaluation of f2j+1(x) at points S(kl−j , . . . , kl), then with each iteration, we can
evaluate the f2l∗ (x) at 2l∗−(l mod 2) points closer until j = 2l∗ .

The key technique is how to calculate the evaluation of f2j+1(x) at points
S(kl−j , . . . , kl) using Theorem 1. For every X ∈ S(kl−j , . . . , kl), we have

f2j+1(X) = f2j (X) · f2j (X + 2j+1)

We can easily calculate f2j (X) and f2j (X +2j+1) using Theorem 1, and evaluate
f2j+1(x) at points S(kl−j , . . . , kl).

Note that, our algorithm does not need to impose that the divisor in the
interval is prime. However, if we impose that the divisor is prime, we can use the
method of [7], proposed by Costa and Harvey, to further speed up the theoretical
complexity by removing some elements in the interval that do not contribute any
useful information.
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5 Conclusion

In this paper we revisit the problem of finding a nontrivial divisor of a composite
integer N when it has a divisor in an interval [α, β]. We present a deterministic
algorithm to solve this problem, and our algorithm has the same complexity with
Kim-Cheon’s probabilistic algorithm. Besides, based on the special structure of
polynomial, we give a method to speed up the theoretical complexity of Kim-
Cheon’s algorithm and our algorithm by a logarithmic term log(β − α).
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Abstract. Fuzzy extractor converts the reading of a noisy non-uniform
source to a reproducible and almost uniform output R. The output R in
turn is used in some cryptographic system as a secret key. To enable mul-
tiple extractions of keys R1,R2, . . . ,Rρ from the same noisy non-uniform
source and applications of different Ri, the concept of reusable fuzzy
extractor is proposed to guarantee the pseudorandomness of Ri even
conditioned on other extracted keys Rj (from the same source).

In this work, we construct a reusable fuzzy extractor from the
Learning With Errors (LWE) assumption. Our reusable fuzzy extractor
provides resilience to linear fraction of errors. Moreover, our construc-
tion is simple and efficient and imposes no special requirement on the
statistical structure of the multiple readings of the source.

Keywords: Fuzzy extractor · Reusability · The LWE assumption

1 Introduction

In a cryptographic system, it is assumed that the secret key is sampled from
a random source and uniformly distributed, since the security of the system
heavily relies on the uniformity of the secret key. In reality, such a uniform secret
key is hard to create, remember or store by users of the system. On the other
hand, there are lots of random sources available like biometric data (fingerprint,
iris, etc.), physical unclonable function (PUF) [17,18], or quantum information
[4,19]. These sources do not provide uniform distributions though they may
possess high entropy. Moreover, the readings of the source may introduce errors
and only result in noisy versions. To address the issues, fuzzy extractor [10] is
proposed to allow for reproducible extraction of an almost uniform key from a
noisy non-uniform source.

Fuzzy Extractor. A fuzzy extractor consists of two algorithms (Gen,Rep). The
generation algorithm Gen takes as input w (a reading of the source), and outputs
a string R and a public helper string P. The reproduction algorithm Rep will
reproduce R from w′ with the help of P if the distance between w′ and w is smaller
enough. Note that the difference between w′ and w is caused by errors and the
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 13–27, 2018.
https://doi.org/10.1007/978-3-319-93638-3_2
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distance of w′ and w evaluates the number of errors. Let n be the bit-length
of w. We say that the fuzzy extractor supports linear fraction errors if it can
correct up to O(n) bits of errors. The security of fuzzy extractor guarantees that
if w has enough min-entropy, then R is almost uniform or at least pseudorandom
conditioned on P.

With a fuzzy extractor, it is convenient to implement key management for
a cryptosystem. For example, a user can distill a uniform and accurately repro-
ducible key R from his biometric data, via the generation algorithm of a fuzzy
extractor, i.e., (P,R) ← Gen(w). Then he uses key R for cryptographic appli-
cations. When R is needed again, the user does another reading w′ of his bio-
metric data and reproduces R by the Rep algorithm with the help of P, i.e.,
R ← Rep(P,w′). During the application, the user never stores R. The public
helper string P suffices for the reproduction of R.

Given a source W , multiple extractions of W by the generation algorithm
result in multiple distilled key Rj and public helper strings Pj . When those keys
Rj are employed in different cryptosystems, it is not desirable that the corrup-
tion of Rj endangers the usage of Ri. However, the distilled keys {R1, . . . ,Rρ}
are correlated via W . Information theoretically, given {(Pj ,Rj)}j �=i, there might
be no entropy left in Ri. Therefore most of the fuzzy extractors do not sup-
port multiple extractions of the same source [5–7,16]. This gives rise to another
issue: how to support multiple extractions of the same source data? This issue
is addressed by reusable fuzzy extractor.

Reusable Fuzzy Extractor. Reusable fuzzy extractor was first formal-
ized by Boyen [7]. For multiple correlated samples (w,w1, · · · ,wρ) of the
same source, say biometric iris, applying the generation algorithm of reusable
fuzzy extractor to (w,w1, · · · ,wρ) respectively results in multiple pairs
(P,R), (P1,R1), · · · , (Pρ,Rρ). The security of reusable fuzzy extractor asks for
the (pseudo)randomness of R conditioned on (P,P1,R1, · · · ,Pρ,Rρ).

In [7], two constructions of reusable fuzzy extractor were presented. One
achieves outsider security in the information theoretical setting, the other
achieves insider security based on the random oracle model. Both constructions
require that the difference δi = wi − w is independent of w. Outsider security is
weak in the sense that it only guarantees the randomness of R conditioned on
the public helper string (P,P1, · · · ,Pρ).

Canetti et al. [8] constructed a reusable fuzzy extractor from a powerful
tool “digital locker”, and there is no assumption on how multiple readings are
correlated. However, their construction can only tolerate sub-linear fraction of
errors. Following the paradigm of constructing reusable fuzzy extractor from
digital locker [8], Alamélou et.al. [2] built a reusable fuzzy extractor which can
tolerate linear fraction of errors. However, “digital locker” is too powerful to find
good instantiations. The available digital locker is either instantiated with a hash
function modeled as a random oracle or based on a non-standard assumption.

As a promising post-quantum hard problem, the learning with errors (LWE)
problem attracts lots of attentions from cryptographers. Great efforts have been
and are devoted to the designs of a variety of cryptographic primitives from the
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LWE assumption. The first fuzzy extractor from the LWE assumption is due
to Fuller et al. [11]. Later, Apon et al. [3] extended the construction of fuzzy
extractor to a reusable one. In their security model of reusable fuzzy extractor,
the error δi can be adaptively manipulated by a probabilistic polynomial-time
(PPT) adversary. As their construction uses the same error correction algorithm
as [11], it can only tolerate logarithmic fraction of errors, i.e., for an input w of
length n, it tolerates O(log n) errors. Another restriction of their construction
is that components of w = (w[1],w[2], . . . ,w[n]) ∈ Z

n
q must be independently

chosen according to some distribution χ, where χ is the error distribution in
the LWE problem. It is hard to imagine that our biometric data follow discrete
Gaussian distributions. Therefore this restriction is unreasonable.

Up to now, no construction is available for reusable fuzzy extractor, which is
based on the LWE assumption and supports linear fraction of errors.

1.1 Our Contribution

In this work, we propose a simple and efficient construction of reusable fuzzy
extractor based on the LWE assumption. Our security model is similar to [3],
where the difference δi between the readings is adaptively chosen by a PPT
adversary. Compared with the work of Apon et al. [3] which gave the only
reusable fuzzy extractor based on the LWE assumption, our construction enjoys
the following nice properties.

– Our construction is resilient to linear fraction of errors, whereas the fuzzy
extractor in [3] can only tolerate logarithm fraction of errors.

– Our construction imposes no special structure requirement on the input
w except that w should have enough entropy (as fuzzy extractors always
required). Recall that for an input w ∈ Z

n
q , reusable fuzzy extractor by Apon

et al. requires that each coordinate of w is chosen independently according to
χ, which is the error distribution in the LWE problem.

We stress that our construction is the first reusable fuzzy extractor resilient
to linear fraction of errors based on the LWE assumption. In Table 1, we com-
pare our work with previous fuzzy extractor with reusability or from the LWE
assumption.

Our Approach. Our construction makes use of a universal hash function and a
secure sketch [9]. A secure sketch consists of a pair of algorithms (SS.Gen,SS.Rec)
and works as follows. The generation algorithm SS.Gen on input w, outputs a
sketch s; the recovery algorithm SS.Rec, on input s, can recover w from w′ if w′

is close to w. The security of secure sketch guarantees that s does not leak too
much information of w.

– To correct errors, we apply secure sketch to w to generate a sketch s.
– To distill a random string, we apply the universal hash function Hi to w.

Observe that if w has enough min-entropy, then by the security of the secure
sketch and the leftover hash lemma, Hi(w) is statistically indistinguishable from
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Table 1. Comparison with some known fuzzy extractor schemes. “Reusability?” asks
whether the fuzzy extractor achieves reusability; “Standard Assumption?” asks whether
the fuzzy extractor is based on standard assumptions. “Linear Fraction of Errors?”asks
whether the scheme can correct linear fraction of errors. “–” represents the scheme is
an information theoretical one.

FE Schemes Reusabiliy? Standard Assumption? Linear Fraction of Errors?

FMR13 [11] ✗ ✔ (LWE) ✗

DRS04 [10], Boy04 [7] Weak – ✔

CFPRS16 [8] ✔ ✗ ✗

Boy04 [7] ABCG16 [2] ✔ ✗ ✔

ACEK17 [3] ✔ ✔ (LWE) ✗

Ours ✔ ✔ (LWE) ✔

uniformly random. However, for multiples readings (w,w1, · · · ,wρ) of the same
source, if two reading are identical then the outputs of the hash function will be
identical as well. Obviously, this approach is impossible to achieve reusability.

To solve this problem, we do not use the output of the universal hash function
Hi(w) as the final output of fuzzy extractor. Instead, we use Hi(w) as the secret
key of a symmetric LWE-based encryption scheme. Then the LWE-based scheme
encrypts a randomly distributed string R which serves as the extracted key,
and the ciphertext and sketch serve as the public helper string P. At the same
time, we require that the universal hash function and secure sketch should be
homomorphic. This helps our fuzzy extractor to achieve reusability.

2 Preliminaries

Let λ be the security parameter. Vectors are used in the column form. We use
boldface letters to denote vectors or matrices. For a column vector x, let x[i]
denote the i-th element of x. Let Il denote the identity matrix of l × l. For a
real number x, let �x� denote the integer closest to x. By [ρ], we denote set
{1, 2 · · · , ρ}.“PPT” is short for probabilistic polynomial-time. For a distribution
X, let x ← X denote the process of sampling x according to X. For a set X ,
x ←$ X denotes choosing x from X uniformly at random and |X | denotes the
cardinality of the set. We use game-based security proof. Let the notation G ⇒ 1
denote the event that game G returns 1, and notion x

G= y denote that x equals
y or is computed as y in game G.

2.1 Metric Spaces

A metric space is a set M with a distance function dis : M × M �→ Z
+ ∪ {0}.

In this paper, we consider M = Fn for some alphabet F equipped with the
Hamming distance. For any two elements w,w′ ∈ M, the Hamming distance
dis(w,w′) is the number of coordinates in which they differ.
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2.2 Min-Entropy and Statistical Distance

Definition 1 (Average Min-Entropy). For two random variables X and Y ,
the average min-entropy of X given Y is defined by

˜H∞(X | Y ) := − log
[

Ey←Y (max
x

Pr[X = x | Y = y])
]

.

Definition 2 (Statistical Distance). For two random variables X and Y
over a set M, the statistical distance of X and Y is given by SD(X,Y ) :=
1
2

∑

w∈M |Pr[X = w] − Pr[Y = w]|. If SD(X,Y ) ≤ ε, X and Y are called

ε-statistically indistinguishable, denoted by X
ε≈ Y .

2.3 Universal Hashing

Definition 3 (Universal Hash Functions[9]). A family of hash functions
H = {Hi : X → Y | i ∈ I} is universal, if for all x �= x′ ∈ X , it holds that
Pr

i←$ I
[Hi(x) = Hi(x′)] ≤ 1

|Y| .

Concrete Construction of Universal Hash Functions. Let q be a prime.
For w ∈ Z

l′
q ,A ∈ Z

nl×l′
q , define

HA(w) := Aw, (1)

then H = {HA : Zl′
q → Z

nl
q | A ∈ Z

nl×l′
q } is a family of universal hash functions.

Note that the above hash function is homomorphic in the sense that

HA(w + w′) = A(w + w′) = Aw + Aw′ = HA(w) + HA(w′). (2)

One can easily interpret a vector in Z
nl
q as a matrix in Z

n×l
q . Thus we get a family

of homomorphic universal hash functions H = {HA : Zl′
q → Z

n×l
q | A ∈ Z

nl×l′
q }.

Remark 1. The reason why we interpret a vector in Z
nl
q as a matrix in Z

n×l
q is for

the convenience of the later construction of reusable fuzzy extractor in Sect. 3.

Lemma 1 (Generalized Leftover Hash Lemma [9,15]). If H = {Hi : Zl′
q →

Z
n×l
q , i ∈ I} is a family of universal hash functions, then for any random variable

W taking values in Z
l′
q and any random variable Y ,

SD
(

(HI(W ), I, Y ), (U, I, Y )
)

≤ 1
2

√

2− ˜H∞(W |Y )qnl,

where I and U are uniformly distributed over I and Z
n×l
q , respectively.
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2.4 Secure Sketch

Definition 4 (Secure Sketch [9]). An (M,m, m̂, t)-secure sketch (SS) SS =
(SS.Gen,SS.Rec) for metric space M with distance function dis, consists of a
pair of PPT algorithms and satisfies correctness and security.

– SS.Gen on input w ∈ M, outputs a sketch s.
– SS.Rec takes as input a sketch s and w′ ∈ M, and outputs w̃.

Correctness. For any w ∈ M, any s ← SS.Gen(w), if dis(w,w′) ≤ t, then
SS.Rec(s,w′) = w.

Security. For any random variable W over M with min-entropy m, we have
˜H∞(W | SS.Gen(W )) ≥ m̂.

A secure sketch is homomorphic if SS.Gen(w + w′) = SS.Gen(w) + SS.Gen(w′).
An efficient [n, k, 2t+1]F-linear error correcting code E over Fn is a subspace

of Fn and E = {w ∈ F
n|Hw = 0}, where matrix H is the (n − k) × n parity-

check matrix of E . For w ∈ F
n, define syndrome syn(w) = Hw. For any c ∈ E ,

syn(c+e) = syn(c)+syn(e) = syn(e). The syndrome captures all the information
necessary for decoding.

As suggested in [9], based on an [n, k, 2t + 1]F-linear error correcting code, a
syndrome-based secure sketch can be constructed as follows.

Syndrome-Based Construction of Secure Sketch. [9] Define

SS.Gen(w) := syn(w) = Hw = s, SS.Rec(s,w′) := w′ − e, (3)

where e is the unique vector of Hamming weight less than t such that syn(e) =
syn(w′) − s.

Lemma 2. [9] Given an [n, k, 2t + 1]F error-correcting code, one can construct
an (Fn,m,m − (n − k)|F|, t) secure sketch, which is efficient if encoding and
decoding are efficient.

Since there exist efficient [n, k, 2t+1]F-linear error correcting codes such that
t = O(n), the syndrome-based Secure Sketch can correct up to linear fraction of
errors. Meanwhile, the fact that SS.Gen(w + w′) := syn(w + w′) = H(w + w′) =
Hw+Hw′ suggests that the syndrome-based Secure Sketch is also homomorphic.

2.5 Learning with Error (LWE) Problem

The learning with errors (LWE) problem was introduced by Regev [13,14].

Definition 5 (Learning with errors (LWE) problem). Let integers n =
n(λ), m = m(λ) and q = q(λ) ≥ 2. Let χ(λ) be a distribution over Zq. The
decisional LWEn,m,q,χ problem is to distinguish (A,As + e) from (A,u), where
A ←$ Z

m×n
q , s ←$ Z

n
q , e ← χm and u ←$ Z

m
q .
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The decisional LWEn,m,q,χ problem is ε-hard if for any PPT adversary A, its
advantage Advn,m,q,χ

LWE,A (λ) is upper bounded by ε, i.e.,

Advn,m,q,χ
LWE,A (λ) := |Pr[AOLWE(s) = 1] − Pr[AOU = 1]| ≤ ε.

Here the oracle OLWE returns (A,As+e) where A ←$ Z
m×n
q , s ←$ Z

n
q , e ← χm

and the oracle OU returns (A,u) where A ←$ Z
m×n
q and u ←$ Z

m
q , and A is

limited to make at most one call to the oracle. The decisional LWEn,m,q,χ problem
is hard if for any PPT adversary A, its advantage Advn,m,q,χ

LWE,A (λ) is negligible.

The decisional LWEn,m,l,q,χ problem is to distinguish (A,AS + E) from
(A,U), where A ← $ Z

m×n
q , S ← $ Z

n×l
q , E ← χm×l and U ← $ Z

m×l
q . By a

simple hybrid argument, one can show that the decisional LWEn,m,l,q,χ problem
is hard if the decisional LWEn,m,q,χ problem is hard.

Lemma 3. [12] If the decisional LWEn,m,q,χ problem is ε-hard, then the deci-
sional LWEn,m,l,q,χ problem is ε · l-hard. More precisely,

Advn,m,l,q,χ
LWE,A (λ) := |Pr[AOLWE(S) = 1] − Pr[AOU = 1]| ≤ ε · l.

Here the oracle OLWE returns (A,AS+E) where A ←$ Z
m×n
q , S ←$ Z

n×l
q , E ←

χm×l and the oracle OU returns (A,U) where A ← $ Z
m×n
q and U ← $ Z

m×l
q ,

and A is limited to make at most one call to the oracle.

If m = ρm′ with m,m′, ρ ∈ Z
+, the above lemma has an equivalent form.

Lemma 4. [12] Let m = ρm′ with m,m′, ρ ∈ Z
+. If the decisional LWEn,m,q,χ

problem is ε-hard, then the decisional LWEn,m,l,q,χ problem is ε · l-hard. More
precisely,

Advn,m,l,q,χ
LWE,A (λ) := |Pr[AOLWE(S) = 1] − Pr[AOU = 1]| ≤ ε · l.

Here the oracle OLWE returns (A,AS+E) where A ←$ Z
m′×n
q , S ←$ Z

n×l
q , E ←

χm′×l and the oracle OU returns (A,U) where A ←$ Z
m′×n
q and U ←$ Z

m′×l
q ,

and A is limited to make at most ρ calls to the oracle.
Consider a real parameter α = α(n) ∈ (0, 1) and a prime q. Denote by

T = R/Z, i.e., the group of reals [0, 1) with modulo 1 addition. Define Ψα to be
the distribution on T of a normal variable with mean 0 and standard deviation
α/

√
2π reduced modulo 1. We denote by Ψ̄α the discrete distribution over Zq of

the random variable �qX� mod q where the random variable X has distribution
Ψα.
Lemma 5. [13] If there exists an efficient, possibly quantum, algorithm for the
decisional LWEn,m,q,Ψ̄α

problem for q > 2
√

n/α, then there exists an efficient
quantum algorithm for approximating the SIVP and GapSVP problems, to within
O((n/α) · logc n) factors in the l2 norm, in the worst case.

Lemma 6. [1] Let x be some vector in {0, 1}m and let e ← Ψ̄m
α . Then the

quantity |x�e| treated as an integer in [0, q − 1] satisfies

|x�e| ≤ √
mqαω(

√

log m) + m/2

with all but negligible probability in m.
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3 Reusable Fuzzy Extractor

Definition 6 (Reusable Fuzzy Extractor). An (M,m,R, t, ε, ρ)-resuable
fuzzy extractor (rFE) for metric space M consists of three PPT algorithms
(Init,Gen,Rep),

– Init(1λ): the initialization algorithm takes as input the security parameters
and outputs the public parameters pp.

– Gen(pp,w): the generation algorithm takes as input the public parameters pp
and w ∈ M. It outputs a public helper string P and an extracted string R ∈ R.

– Rep(pp,P,w′): the reproduction algorithm takes as input the public parameters
pp, public helper string P and w′ ∈ M, and outputs an extracted string R or
⊥.

It satisfies the following properties.

Correctness. For all w,w′ ∈ M with dis(w,w′) ≤ t, for all pp ← Init(1λ),
(P,R) ← Gen(pp,w) and ˜R ← Rep(pp,P,w′), it holds that ˜R = R with over-
whelming probability.

Reusability. For any distribution W over metric space M with H∞(W ) ≥ m,
any PPT adversary A, its advantage defined below satisfies

AdvreurFE,A(1λ): = |Pr[ExpreurFE,A(1) ⇒ 1] − Pr[ExpreurFE,A(0) ⇒ 1]| ≤ ε,

where ExpreurFE,A(β), β ∈ {0, 1}, describes the reusability experiment played
between a challenger C and an adversary A.

ExpreurFE,A(β) : // β ∈ {0, 1}
1. Challenger C invokes pp ← Init(1λ) and returns pp to A.
2. Challenger C samples w ← W and invokes (P,R) ← Gen(pp, w). If β = 1,

C returns (P,R) to A; if β = 0, it chooses U ←$ R and returns (P, U) to
A.

3. A may adaptively make at most ρ queries of the following form:
– A submits a shift δi ∈ M to C.
– C invokes (Pi,Ri) ← Gen(pp,w + δi), and returns (Pi,Ri) to A.

4. As long as A outputs a guessing bit β′, the experiment outputs β′.

3.1 Construction of Reusable Fuzzy Extractor from LWE

Our construction of reusable fuzzy extractor rFE = (Init,Gen,Rep) is shown in
Fig. 1, which uses the following building blocks.

– A homomorphic (Zl′
q ,m, m̂, t)-secure sketch SS = (SS.Gen,SS.Rec).

– A family of universal hash functions H = {Hi : Zl′
q → Z

n×l
q , i ∈ I} with

homomorphic property as defined by (2).
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pp ← Init(1λ):

Hi ←$ H.
pp := Hi.
Return pp.

(P,R) ← Gen(pp,w): // w ∈ Z
l′
q

s ← SS.Gen(w).
S := Hi(w) ∈ Z

n×l
q .

A ←$ Z
m×n
q .

E ← χm×l.
B := (A,A · S+E) ∈ Z

m×(n+l)
q

x ←$ {0, 1}m.
m ←$ {0, 1}l.
c� = x�B+ (0�,m� · � q

2
�).

P := (s, c), R := m.
Return (P,R).

R ← Rep(pp,P,w′):

Parse P = (s, c).
w̃ ← SS.Rec(s,w′).
S := Hi(w̃) ∈ Z

n×l
q .

d = c� ·
(

−S
Il

)
∈ Z

l
q.

For i = 1 to l

m[i] =

{
1 if d[i] ∈ [ 1

4
q, 3

4
q]

0 else

R := m.
Return R.

Fig. 1. Construction of rFE from LWE.

Remark 2. The content in the dashed frame is an LWE-based symmetric encryp-
tion scheme which is adapted from [12], the secret key is S and the message is
m.

Theorem 1. If SS is a homomorphic (Zl′
q ,m, m̂, t)-secure sketch, H is a uni-

versal family of hash functions H = {Hi : Zl′
q → Z

n×l
q , i ∈ I} with homomor-

phic property as defined by (2), it satisfies m̂ − nl log q ≥ ω(log λ), and the
LWEn,(ρ+1)m,l,q,χ problem is ε-hard, where χ is the discrete Gaussian distri-
bution Ψ̄α, q ≥ 4m, α ≤ 1/(8 · √

m · g(n)) for any g(n) = ω(
√

log n) and
m ≥ (n + l) log q + ω(log λ), then rFE in Fig. 1 is an (Zn×l′

p ,m, {0, 1}l, t, ε, ρ)-
reusable fuzzy extractor, where ε ≤ 2−ω(log λ) + 2ε.

Proof. Let us analyze the correctness first. If dis(w,w′) ≤ t, then by the correct-
ness of SS, we have w = w̃, where w̃ ← SS.Rec(s,w′) and s = SS.Gen(w). As a
consequence, S can be correctly recovered. Next, we have

d = c� ·
(−S

Il

)

=
(

x�B + (0�,m� ·
⌊q

2

⌉

)
)

·
(−S

Il

)

=
(

x� (A,A · S + E) + (0�,m� ·
⌊q

2

⌉

)
)

·
(−S

Il

)

= x�E + m� ·
⌊q

2

⌉

.

Denote E = (e1, · · · , el), where ei ← χm. Since q ≥ 4m, α ≤ 1/(8 · √
m · g(n))

for any g(n) = ω(
√

log n) and χ = Ψα, by Lemma 6, we have |x�ei| ≤ q/4 with
overwhelming probability. Consequently, m can be correctly reproduced with
overwhelming probability. The correctness of rFE follows.

Now we show its reusability by defining a sequence of games, and proving
the adjacent games indistinguishable. The differences between adjacent games
will be highlighted by underline.

GameG0 : It is the game ExpreurFE,A(1). More precisely,
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1. Challenger C samples Hi ←$ H, sets pp := Hi, and returns pp to A.
2. Challenger C samples w ← W , invokes s ← SS.Gen(w), S := Hi(w), samples

A ←$ Z
m×n
q , E ← χm×l, sets B := (A,A · S + E), samples x ←$ {0, 1}m,

m ← $ {0, 1}l, sets c� := x�B + (0�,m� · � q
2�), P := (s, c) and R := m.

Finally, it returns (P,R) to A.
3. Upon receiving a shift δi ∈ M from A, challenger C invokes si ←

SS.Gen(w + δi), Si := Hi(w + δi), samples Ai ← $ Z
m×n
q , Ei ← χm×l,

sets Bi := (Ai,Ai · Si + Ei), samples xi ← $ {0, 1}m, mi ← $ {0, 1}l, sets
c�

i := x�
i Bi + (0�,m�

i · � q
2�), Pi := (si, ci) and Ri := mi. Finally, it returns

(Pi,Ri) to A.
4. As long as A outputs a guessing bit β′, the experiment outputs β′.

Clearly, we have
Pr[G0 ⇒ 1] = Pr[ExpreurFE,A(1) ⇒ 1]. (4)

GameG1 : It is the same as G0, except that si ← SS.Gen(w+ δi) now is changed
to si = s + SS.Gen(δi) and Si = Hi(w + δi) now is changed to Si = S+Hi(δi) in
step 3. More precisely,

3. Upon receiving a shift δi ∈ M from A, challenger C computes si = s+
SS.Gen(δi),Si := S + Hi(δi), samples Ai ←$ Z

m×n
q , Ei ← χm×l, sets Bi :=

(Ai,Ai · Si + Ei), samples xi ←$ {0, 1}m, mi ←$ {0, 1}l, sets c�
i := x�

i Bi +
(0�,m�

i · � q
2�), Pi := (si, ci) and Ri := mi. Finally, it returns (Pi,Ri) to A.

Lemma 7. Pr[G0 ⇒ 1] = Pr[G1 ⇒ 1].

Proof. By the homomorphic property of SS, we have

si
G0= SS.Gen(w + δi) = SS.Gen(w) + SS.Gen(δi) = s + SS.Gen(δi)

G1= si.

By the homomorphic property of Hi, we have

Si
G0= Hi(w + δi) = Hi(w) + Hi(δi) = S + Hi(δi)

G1= Si.

As a result, the changes from G0 to G1 are just conceptual, thus

Pr[G0 ⇒ 1] = Pr[G1 ⇒ 1]. ��

GameG2 : It is the same as G1, except that in G2, S is uniformly chosen from
Z

n×l
q instead of S = Hi(w) in step 2. More precisely,

2. Challenger C samples w ← W , invokes s ← SS.Gen(w), S ←$ Z
n×l
q , samples

A ←$ Z
m×n
q , E ← χm×l, sets B := (A,A · S + E), samples x ←$ {0, 1}m,

m ← $ {0, 1}l, sets c� := x�B + (0�,m� · � q
2�), P := (s, c) and R := m.

Finally, it returns (P,R) to A.

Lemma 8.
|Pr[G1 ⇒ 1] − Pr[G2 ⇒ 1]| ≤ 2−ω(log λ).
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Proof. We consider the information about the source w that is used in G1.

– In step 1, challenger C does not need w.
– In step 2, challenger C uses w to generate the sketch s and extract S, where

s ← SS.Gen(w), S = Hi(w).
– In step 3, upon receiving a shift δi from A, challenger C computes si =

s+SS.Gen(δi), Si = S+Hi(δi). In this step, challenger C can perfectly answer
adversary A’s query with s and S, and does not need w anymore.

– In step 4, challenger C does not need w.

From above analysis, we observe that all the information about w leaked to
the adversary A, except S, is by the sketch s ← SS.Gen(w). Since our SS is
(Zl

q,m, m̂, t)-secure sketch and ˜H(W ) ≥ m, we have

˜H(W |SS.Gen(W )) ≥ m̂. (5)

By the leftover hash lemma (Lemma 1), we have the statistical distance
between S and U is less than 2−ω(log λ), where S ← Hi(w) and U ←$ Z

n×l
q . The

lemma follows. ��

GameG3 : It is the same as G2, except that in G3, B,Bi are uniformly sampled
from Z

m×(n+l)
q . More precisely,

2. Challenger C samples w ← W , invokes s ← SS.Gen(w), samples S ←$ Z
n×l
q ,

B ←$ Z
m×(n+l)
q , x ←$ {0, 1}m, and m ←$ {0, 1}l, sets c� := x�B+(0�,m� ·

� q
2�), P := (s, c) and R := m. Finally, it returns (P,R) to A.

3. Upon receiving a shift δi ∈ M satisfying dis(δi) ≤ t from A, challenger C
invokes si = s + SS.Gen(δi), Si = S + Hi(δi), samplesBi ←$ Z

m×(n+l)
q , xi ←

$ {0, 1}m and mi ←$ {0, 1}l, sets c�
i := x�

i Bi + (0�,m�
i · � q

2�), Pi := (si, ci)
and Ri := mi. Finally, it returns (Pi,Ri) to A.

Lemma 9.

|Pr[G2 ⇒ 1] − Pr[G3 ⇒ 1]| ≤ Adv
n,(ρ+1)m,l,q,χ
LWE,B (λ).

Proof. We prove this lemma by showing that if there exists a PPT adversary
A such that |Pr[G2 ⇒ 1] − Pr[G3 ⇒ 1]| = ε, then we can construct a PPT
algorithm B, which can solve the decisional LWEn,(ρ+1)m,l,q,χ problem with the
same probability ε. Algorithm B proceeds as follows.

1. Algorithm B samples Hi ←$ H, sets pp := Hi, and returns pp to A.
2. Algorithm B queries its own oracle to obtain B. Then it samples w ← W ,

invokes s ← SS.Gen(w), samples x ←$ {0, 1}m and m ←$ {0, 1}l, sets c� :=
x�B + (0�, m� · � q

2�), P := (s, c) and R := m. Finally, it returns (P,R) to
A.
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3. Upon receiving a shift δi ∈ M from A, algorithm B computes S′
i = Hi(δi) and

sets si = s+SS.Gen(δi), then queries its own oracle to obtain B′
i = (Ai, Ci),

sets Bi = (Ai, Ci + AiS′
i), samples xi ←$ {0, 1}m and mi ←$ {0, 1}l, sets

c�
i := x�

i Bi + (0�,m�
i · � q

2�), Pi := (si, ci) and Ri := mi. Finally, it returns
(Pi,Ri) to A.

4. As long as A outputs a guessing bit β′, B outputs β′ as its own guess.

Now we analyse the advantage of B.

– If B’s oracle is OLWE(S), the oracle will return LWE samples B = (A, AS+E)
and B′

i = (Ai, AiS + Ei), where A ← $ Z
m×n
q , S ← $ Z

n×l
q , E ← χm×l,

Ai ←$ Z
m×n
q and Ei ← χm×l, then Bi = (Ai, Ci + AiS′

i) = (Ai, AiS +
Ei +AiHi(δi)) = (Ai, Ai(S+Hi(δi)) +Ei) = (Ai, AiSi +Ei). In this case,
algorithm B perfectly simulates G2 for A.

– If B’s oracle is OU, the oracle will return uniform samples B, B′
i, where

B ←$ Z
m×(n+l)
q , B′

i ←$ Z
m×(n+l)
q , then Bi = (Ai, Ci + AiS′

i) = (Ai, Ci) +
(0, AiS′

i) = B′
i +(0, AiS′

i) is uniformly distributed in Z
m×(n+l)
q . In this case,

algorithm B perfectly simulates G3 for A.

Consequently, |Pr[G2 ⇒ 1] − Pr[G3 ⇒ 1]| ≤ Adv
n,(ρ+1)m,q,χ
LWE,B (λ). ��

GameG4 : It is the same as G3, except that in G4, the challenger uniformly
chooses U from {0, 1}l, and returns (P, U) to A instead of returning (P,R) to A.

Lemma 10. |Pr[G3 ⇒ 1] − Pr[G4 ⇒ 1]| ≤ 2−ω(log λ).

Proof. We will show that G4 is statistically indistinguishable from the G3. Note
that in G4, B is uniformly chosen from Z

m×(n+l)
q and x ←$ {0, 1}m, since m ≥

(n + l) log q + ω(log λ), by the leftover hash lemma (Lemma 1), we have x�B is
2−ω(log λ) statistically close to the uniform distribution over Zn+l

q . Consequently,
R := m is concealed, and |Pr[G3 ⇒ 1] − Pr[G4 ⇒ 1]| ≤ 2−ω(log λ) follows. ��

GameG5 : It is the same as G4, except that in G5, B,B′
i are changed back to

LWE samples.

Lemma 11.

|Pr[G4 ⇒ 1] − Pr[G5 ⇒ 1]| ≤ Adv
n,(ρ+1)m,l,q,χ
LWE,B (λ).

Proof. The proof is similar to the proof of Lemma 9. We omit it here. ��

GameG6 : It is the same as G5, except that S ←$ Z
n×l
q in G5 is changed back to

S := Hi(w) in G6.

Lemma 12.
|Pr[G5 ⇒ 1] − Pr[G6 ⇒ 1]| ≤ 2−ω(log λ).
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Proof. The proof is similar to the proof of Lemma 8. We omit it here.

GameG7 : It is the same as G6, except that

– si := s + SS.Gen(δi) now is changed back to si ← SS.Gen(w + δi).
– Si := S + Hi(δi) now is changed back to Si := Hi(w + δi).

Lemma 13. Pr[G6 ⇒ 1] = Pr[G7 ⇒ 1].

Proof. The proof is identical to the proof of Lemma 7. We omit it here. ��
Observe that G7 is identical to ExpreurFE,A(0), as a result

Pr[G7 ⇒ 1] = Pr[ExpreurFE,A(0) ⇒ 1]. (6)

Combining Eq. (4), Lemmas 7–13 and Eq. (6) together, we have

AdvreurFE,A(1λ) ≤ 2−ω(log λ) + 2Advn,(ρ+1)m,l,q,χ
LWE,B (λ).

This completes the proof of Theorem 1. ��
If we instantiate SS and Hi with the syndrome-based secure sketch as defined

in (3) and homomorphic universal hashing as defined in (1), the construction
of rFE in Fig. 1 results in a reusable fuzzy extractor from the LWE assumption,
which is resilient to linear fraction of errors.

4 Conclusion

Traditional fuzzy extractor distills an almost uniform output from a non-uniform
noisy source, but the distillation is implemented only once. In this paper, we
study on reusable fuzzy extractor which enables multiple distillations from the
same non-uniform noisy source and provide the first reusable fuzzy extractor
which is resilient to linear fraction of errors from the LWE assumption. In the
construction, a secure sketch is used to correct errors, an LWE-type encryption
is used to break the correlations between multiple distilled strings, and universal
hashing is used to extract uniform strings. The reusability of our construction
benefits from the LWE assumption and the homomorphic properties of secure
sketch and universal hashing.
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Abstract. After the concept of a Fuzzy Extractor (FE) was first intro-
duced by Dodis et al., it has been regarded as one of the candidate
solutions for key management utilizing biometric data. With a noisy
input such as biometrics, FE generates a public helper value and a ran-
dom secret key which is reproducible given another input similar to the
original input. However, “helper values” may cause some leakage of infor-
mation when generated repeatedly by correlated inputs, thus reusability
should be considered as an important property. Recently, Canetti et al.
(Eurocrypt 2016) proposed a FE satisfying both reusability and robust-
ness with inputs from low-entropy distributions. Their strategy, the so-
called Sample-then-Lock method, is to sample many partial strings from
a noisy input string and to lock one secret key with each partial string
independently.

In this paper, modifying this reusable FE, we propose a new FE with
size-reduced helper data hiring a threshold scheme. Our new FE also
satisfies both reusability and robustness, and requires much less storage
memory than the original. To show the advantages of this scheme, we
analyze and compare our scheme with the original in concrete parame-
ters of the biometric, IrisCode. As a result, on 1024-bit inputs, with false
rejection rate 0.5 and error tolerance 0.25, while the original requires
about 1TB for each helper value, our scheme requires only 300MB with
an additional 1.35 GB of common data which can be used for all helper
values.

Keywords: Fuzzy extractors · Reusability · Key derivation
Digital lockers · Threshold scheme · Biometric authentication

1 Introduction

Biometrics are metrics derived from biological characteristics inherent to each
individual, such as fingerprints, iris patterns, facial features, gait, etc. A notewor-
thy property of this biometric information is inseparability. Biometric informa-
tion cannot be separated from its owner, and can be used to authenticate a person
without requiring other keys or passwords. However, biometric authentication
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 28–44, 2018.
https://doi.org/10.1007/978-3-319-93638-3_3
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has its problems; First, once biometric information is leaked to an adversary it
is not easy to revoke. This makes protecting biometric information more crucial.
Second, whenever one generates biometric data from their biological source using
a device, small errors occur naturally because of the various environments and
conditions.

This obstacle causes much harder problems in “Privacy-preserving Biomet-
ric Authentication” since classical cryptographic systems are constructed so that
even little errors in inputs lead to huge errors in outputs. For privacy-preserving
biometric authentication, there are recent works [1–4] using cryptographic tools,
especially, homomorphic encryption. They propose a secure biometric authenti-
cation system which is executed with encrypted biometrics, to prevent an adver-
sary from obtaining any information about the biometrics. Such an authenti-
cation system, however, may lose its power if the secret key is leaked and thus
secret key management is a subject of major concern. Storing the secret key in
secure memory and tamper-resistant hardware such as TrustZone and Software-
GuardExtensions might be a solution, but these hardwares are too expensive,
and/or can be vulnerable to physical attacks. For these reasons, generating a
secret key whenever biometrics are scanned was proposed as an alternative solu-
tion, and the notion of Fuzzy Extractors (FE) was introduced by Dodis et al. It
is a cryptographic primitive which extracts the same key from noisy inputs [5,6].

More precisely, a fuzzy extractor consists of two algorithms; a generating
algorithm (Gen) and a reproducing algorithm (Rep). Gen generates a random
secret key and a public helper value from input biometrics. Rep reproduces the
same key from the helper value and a biometric, when it is sufficiently similar
to the original used in the Gen algorithm.

For the security of a FE, there are some important properties such as robust-
ness and reusability. A fuzzy extractor is robust if an adversary cannot forge a
given helper value in a way that Rep outputs a wrong key even though the input
biometric is legitimate. This robustness is quite important, since in a non-robust
FE, a user cannot trust the key generated by Rep, rendering the FE meaning-
less. On the other hand, a FE is reusable if it remains secure even if several
pairs (random key, and related helper value) issued from correlated inputs are
revealed to an adversary. Considering biometric authentication via FE, reusabil-
ity guarantees that the authentication system is still safe for future use even if
some helper values and related keys of a user have been compromised.

In [7], Apon et al. modified the construction of [8] based on the LWE-
assumption making it reusable with a common matrix for every input of Gen.
Unfortunately, it fails to satisfy robustness since it is susceptible to trivial forgery.
In Eurocrypt 2016, Canetti et al. proposed a reusable fuzzy extractor [9]. It is
the first reusable robust fuzzy extractor without assumptions on correlations
of multiple readings of the source, applying the sample-then-lock method with
cryptographic digital lockers. It can tolerate cn lnn

k errors in a given n-bit input
allowing running time in nc with a security parameter of at most k. However,
some biometrics such as IrisCode have error linear (20%–30%) in n.
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In this paper, we point out that Canetti et al.’s fuzzy extractor is inappro-
priate for these cases; it requires too much storage space for the helper value. In
their construction, each locker acts as an oracle to check each partial substring
of the input biometric, outputting the original secret key if that substring is
correct. Therefore, a smaller substring size directly leads to a decrease in the
security of the fuzzy extractor. Without diminishing the size of substrings, the
number of lockers should increase exponentially, leading to impractical storage
requirement in cases with linear errors of input.

The main idea of our construction is to overcome this oracle by modifying the
digital lockers and using shorter substrings. We also exploit a (perfect) threshold
scheme to divide each locker, preserving security. More precisely, we provide m
modified lockers, and each unordered τ -pair of them is applied with a recovery
algorithm of a threshold scheme for reproducing the secret key. As a result, the
probability that each modified locker is unlocked successfully becomes larger
under the same security, leading to a crucial decrease of storage for the helper
values. Although time consumption increases as a side-effect, this trade-off is
favorable because it can be relieved with parallel computing. More precisely, our
contribution can be summarized as follows;

• Combining the reusable FE of [9] and a threshold scheme, we propose a new
size-reduced reusable fuzzy extractor satisfying robustness.1 Our construction
is based on the same or weaker conditions on the biometric source distribution
than Canetti et al.’s construction.

• We analyze this new FE and the original with concrete parameters focusing
on the biometric IrisCode. As a result, we highly reduced the amount of
storage space required. For example, when using a 1024 bit biometric with
false rejection rate2 0.5, the original requires about 6 GB of each helper value
for error tolerance 0.2, 1 TB for 0.25, and 270 TB for 0.3. On the other hand,
our scheme requires only 1.6 MB for 0.2, 300 MB for 0.25, and 111 GB for
0.3 with an additional 1.35 GB of common data which is commonly used for
every helper value. One can find more information in Tables 1 and 2.

• In fact, there is a trade-off between required time and storage space; approxi-
mately, a decrease by a factor of 103 in storage space causes an tenfold increase
in required time. We implement our scheme as a proof-of-concept with parallel
computing via Cuda, and show that the trade-off can be relieved outstand-
ingly.

Road Map. In Sect. 2, we provide some preliminaries for our work. In Sect. 3,
we briefly introduce the reusable fuzzy extractor of Canetti et al. with concrete
analysis. In Sect. 4, we give our construction of new fuzzy extractor and analysis
of it.

1 Robustness can easily be satisfied by the random-oracle-based transform of [10] as
mentioned in [9]. Thus, we only focus on the reusability in this paper.

2 The false rejection rate is the probability that the reproducing algorithm Rep fails
to regenerate the secret value even though a legitimate input is given.
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2 Preliminaries

Through this paper, for a natural number a, |a| denotes the bit size of a. Here
we mostly adhere to the notations used by Canetti et al., for convenience.

2.1 Entropy

Let Xi be a random variable over some alphabet Z for i = 1, . . . , n. We denote by
a random variable X = X1, . . . , Xn := (X1, . . . , Xn). The minentropy H∞(X)
of X is defined as

H∞(X) = − log[max
x

Pr(X = x)],

and the average (conditional) minentropy H̃∞(X|Y ) of X given Y defined as

H̃∞(X|Y ) = − log[Ey max
x

Pr(X = x|Y = y)].

The computational distance between variables X and Y is defined by
δD(X,Y ) = |E[D(X)] − E[D(Y )]| for a given distinguisher D, and for a class of
distinguishers D we define δD(X,Y ) = max

D∈D
δD(X,Y ). We will consider the class

Ds of distinguishers (circuit) of size at most s which output a single bit.

2.2 Fuzzy Extractor and Reusability

Fuzzy extractors (FE) consist of two algorithms; Gen and Rep. Gen takes an input
w such as biometric data and outputs an extracted string r and a helper value
p ∈ {0, 1}∗. Rep takes as input w′ and p and outputs the previous r whenever w′

is similar to w. In this work, we focus on computational fuzzy extractors. (For the
information-theoretic notions, see [6]). The formal definition of computational
fuzzy extractors and their notion of security follows.

Definition 1 (Computational Fuzzy Extractors [8]). Given a metric space
(M, dis), let W be a family of probability distributions over M. A pair of ran-
domized procedures “generate” (Gen) and “reproduce” (Rep) is an (M,W, κ, t)-
computational fuzzy extractor that is (εsec, ssec)-hard with error δ if Gen and Rep
satisfy the following properties:

– The generate procedure Gen on input w ∈ M outputs an extracted string
r ∈ {0, 1}κ and a helper string p ∈ {0, 1}∗.

– Correctness The reproduction procedure Rep takes an element w′ ∈ M and
a bit string p ∈ {0, 1}∗ as inputs. The correctness property guarantees that if
dis(w,w′) ≤ t and (r, p) ← Gen(w), then Pr[Rep(w′, p) = r] ≥ 1 − δ where the
probability is over the randomness of (Gen, Rep).

– Security For any distribution W ∈ W, the string r is pseudorandom condi-
tioned on p, that is δDssec ((R,P ), (Uκ, P )) ≤ εsec.
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Fuller et al. proposed a computational fuzzy extractor based on the Learning
with Error (LWE) problem [8]. However, their construction does not satisfy
robustness and reusability, which mean the security against an adversary forging
a given helper value while avoiding detection,3 and the security of a reissued pair
(r, p) ← Gen(w) when an adversary has extorted some pairs (ri, pi) ← Gen(wi)
for correlated w and wi’s, respectively.

The formal definition of a reusable fuzzy extractor is as follows:

Definition 2 (Reusable Fuzzy Extractor [9]). Let W be a family of distri-
butions over M. Let (Gen, Rep) be a (M,W, κ, t)-computational fuzzy extrac-
tor that is (εsec, ssec)-hard with error δ. Let (W 1,W 2, . . . ,W ρ) be ρ correlated
random variables such that each W j ∈ W. Let D be an adversary. Define the
following game for all j = 1, . . . , ρ:

– Sampling The challenger samples wj ← W j and u ← {0, 1}κ.
– Generation The challenger computes (rj , pj) ← Gen(wj).
– Distinguishing The advantage of D is

Adv(D) := Pr[D(r1, . . . , rj−1, rj , rj+1, . . . , rρ, p1, . . . , pρ) = 1]

− Pr[D(r1, . . . , rj−1, u, rj+1, . . . , rρ, p1, . . . , pρ) = 1].

(Gen,Rep) is (ρ, εsec, ssec)-reusable if for all D ∈ Dssec
and for all j =

1, . . . , ρ, the advantage is at most εsec.

The first reusable fuzzy extractor without assumptions about the correlations
on multiple readings of the source is proposed by Canetti et al. in Eurocrypt 2016
using the digital lockers with sample-then-lock construction [9]. We analyze this
scheme with concrete parameters focusing on the biometric IrisCode. It requires
too much storage space to tolerate up to 20% or more errors in 1024-bit iris
code. To overcome this problem, we propose a modified FE exploiting threshold
scheme, which satisfies both robustness and reusability. More details including
Canetti et al.’s construction and analysis of it are in Sect. 3. Construction of our
new fuzzy extractor is in Sect. 4.

On the other hand, recently, another reusable fuzzy extractor has been pro-
posed by [7] adapting the LWE-based FE [8]. They presented a generic technique
for converting any weakly reusable FE to a strongly reusable one in the random-
oracle model, and made a (strongly) reusable FE by modifying the original LWE-
based FE into a weakly reusable one. Furthermore, they provided a construction
of a strongly reusable FE based on the LWE assumption, not relying on the ran-
dom oracles. However, it does not satisfy robustness. On the contrary, Canetti
et al. [9]’s constructions can easily be made robust by the random-oracle-based
transform of [10], and so can our modification.

3 We refers the formal definition of robustness to [11].
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2.3 (τ, m)-Threshold Scheme

The (τ,m)-threshold scheme is a secret sharing scheme with participants m
and threshold τ . It consists of a Distribution Algorithm DAτ,m and a Recovery
Algorithm RAτ,m. DAτ,m takes a secret s, and divides it into m shares which are
distributed to each participant. RAτ,m takes τ inputs, and outputs the original
secret s only if each τ input is the corresponding share generated by DAτ,m(s).
For the security of this threshold scheme, an adversary with less than τ shares
should not be able to obtain any information about the secret.

The basic idea of a secret sharing scheme was introduced by Shamir and
Blakely independently [12,13]. Shamir’s scheme is based on polynomial inter-
polation, and it requires heavy computation for DAτ,m and RAτ,m due to the
employment of a τ -degree polynomial. To reduce computational costs, a new
secret sharing scheme using just EXCLUSIVE-OR (XOR) operations was pro-
posed for special cases, such as (2, 3), (2,m), (3,m)-threshold schemes by Ishizu
et al., Fujii et al., Kuihara et al., respectively [14–16]. Finally, Kurihara et al.
proposed a (τ,m)-threshold scheme [17] generalizing previous schemes.

Perfect (τ ,m)-Threshold Scheme. In the (τ,m)-threshold scheme, leakage
of information about the secret can be measured by entropy. Let H(X) denote
the Shannon entropy of a random variable X. Let s ∈ S and si ∈ Si be a secret
and a share respectively, and S, Si be the random variables of secrets and shares,
respectively.

A (τ,m)-secret sharing scheme is perfect if

H(S|SI) =

{
0 if I contains k or more elements
H(S) otherwise

where I = {i1, i2, . . . , ij} ⊆ {1, 2, . . . , N}, and SI = Si1Si2 . . . Sij :=
(Si1 , Si2 , . . . , Sij ).

Kurihara et al.’s (τ , m)-Threshold Scheme [17]. In fact, our scheme can be
instantiated with any perfect secret sharing scheme. For the clarity of description
and the concrete parameter comparison with Canetti et al., we utilize Kurihara et
al.’s (τ,m)-threshold scheme [17]. As far as we know, it is one of the most efficient
(τ,m)-threshold schemes which are perfect. From now on, (τ,m)-threshold scheme
refers to Kurihara et al.’s (τ,m)-threshold scheme. In the following, we list some
properties of DAτ,m and RAτ,m of Kurihara et al.’s scheme used in this paper.

1. DAτ,m can only be constructed for a prime m. For a general m, one can take
a prime mp larger than m, run DAτ,mp

, and discard the surplus shares.
2. For a fixed D ∈ Z>0, and an input secret s ∈ {0, 1}D(mp−1), DAτ,m(s) outputs

si ∈ {0, 1}D(mp−1) for i = 1, 2, . . . ,mp.
3. RAτ,m takes as input τ shares of secrets, and outputs s if all τ inputs are

correct shares.
For a set S′ = {s′

1, . . . , s
′
τ}, we denote RAτ,m(S′) := RAτ,m(s′

1, . . . , s
′
τ ).

4. DAτ,m requires at most τDmp(mp − 1) XOR operations.
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5. Each RAτ,m requires at most τDmp(mp−1) XOR operations given D(mp−1)
by τD(mp −1) binary matrices. (Each of which can be generated by O(τ3m3

p)
bitwise XOR operations).

3 Canetti et al.’s Reusable Fuzzy Extractor

As mentioned before, Canetti et al. proposed a reusable fuzzy extractor using
digital lockers and sample-then-lock construction. In this section, we review their
construction and give an analysis on concrete parameters focusing on the case
when the input biometric is IrisCode.

3.1 Sources with α-Entropy k-Samples

As in the Canetti et al.’s construction [9], we assume that the source W =
W1W2 . . .Wn, consisting of strings of length n over some alphabet Z is a source
with α-entropy k-samples, i.e., H̃∞(Wj1Wj2 . . . Wjk |j1, j2, . . . jk) ≥ α for k uni-
formly random indices 1 ≤ j1, j2, . . . , jk ≤ n.

3.2 Digital Lockers

A digital locker is a kind of symmetric encryption scheme which is secure even if
many correlated keys have already been used before [18]. It is composed of two
algorithms; lock, and unlock. The lock algorithm encrypts val (a value) with key
(a key), and outputs lock(key, val). The unlock algorithm decrypts lock(key, val)
with given key′, outputs val if key = key′, and aborts (⊥) otherwise. The digital
locker can be instantiated as lock(key, val) = (nonce,H(nonce, key) ⊕ (val‖0s))
where nonce is a nonce, ‖ denotes concatenation, and s is a security parameter.
unlock is instantiated by XORing(⊕) H(nonce, key′) with lock(key, val). H can be
a random oracle [19], or a cryptographic hash function with specific properties
[20]. Note that nonce is usually different for each lock, and by hashing it with key,
the correlation between keys disappears. For the following definition of digital
lockers, let idealUnlock(key, val) be the oracle that returns val when given key,
and ⊥ otherwise.

Definition 3 (Digital locker). The pair of algorithms (lock, unlock) with
security parameter λ is an 	-composable secure digital locker with error γ if
the following holds:

– Correctness For all key and val, Pr[unlock(key, lock(key, val)) = val] ≥ 1−γ.
Furthermore, for any key′ 
= key, Pr[unlock(key′, lock(key, val)) =⊥] ≥ 1 − γ.

– Security For every PPT adversary A and every positive polynomial p, there
exists a (possibly inefficient) simulator S and a polynomial q(λ) such that for
any sufficiently large s, any polynomial-long sequence of values (vali, keyi) for
i = 1, . . . , 	, and any auxiliary input z ∈ {0, 1}∗,
∣
∣
∣Pr

[

A
(

z, {lock (keyi, vali)}�
i=1

)

= 1
]

− Pr
[

S
(

z, {|keyi|, |vali|}�
i=1

)

= 1
]∣
∣
∣ ≤ 1

p(s)

where S is allowed q(λ) oracle queries to the oracles {idealUnlock(keyi,
vali)}�

i=1.
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3.3 Description

The main idea of Canetti et al.’s scheme [9] is that a random string r ∈ {0, 1}κ

is locked multiple times by some substrings v1, . . . , v� of an input string w and
thus each locked value can be unlocked only with v1, . . . , v�, respectively. To
reproduce the same r, one must extract substrings v′

1, . . . , v
′
� corresponding to

v1, . . . , v�, at least one of which must be identical to its counterpart, and proceed
to unlock with those substrings.

Construction (Sample-then-Lock, [9]). Let M = {0, 1}n be an input space
and w = w1 . . . wn ∈ M, where wi ∈ {0, 1}. Let 	 be a positive integer and let
(lock, unlock) be an 	-composable secure digital locker with error γ. To recover
the random value r in Rep, information on how the substrings are generated
should be stored. Thus a helper value p containing the indices of the bits of
w = w1 . . . wn which are used for each substring is generated along with r in
Gen. The algorithms are in the next table.

Algorithm 1: Gen and Rep of Canetti et al.’s Reusable Fuzzzy Extractor
Gen Rep

Input: w = w1 . . . wn Input: w′ = w′
1 . . . w′

n, p = p1 . . . p�

1. Sample r
$←− {0, 1}κ

2. For i = 1, . . . , � 1. For i = 1, . . . , �

(i) Uniformly choose ji,m
$←− {1, . . . , n} (i) Parse pi as ci, (ji,1, . . . , ji,k)

for each 1 ≤ m ≤ k (ii) v′
i ← w′

ji,1 . . . w′
ji,k

(ii) vi ← wji,1 . . . wji,k (iii) ri ← unlock(v′
i, c)

(iii) ci ← lock(vi, r) If ri �=⊥, then output ri.
(iv) pi ← ci, (ji,1, . . . , ji,k)

3. Output (r, p) where p = p1 . . . p� 2. Output ⊥

3.4 Analysis on Concrete Parameters

In this subsection, we give an analysis of Canetti et al.’s fuzzy extractor with
concrete parameters with IrisCode as the input biometric. To make the False
Rejection Rate (FRR) less than δ, it requires the following condition:

(
1 −

(
1 − t

n

)k
)�

+ 	 · γ ≤ δ.

Using the approximation ex ≈ 1+x, they suggested parameter conditions 	 ·γ ≤
δ/2, tk = cn log n, and 	 ≈ nc log 2

δ for some constant c. Note that under these

parameter conditions, we have
(
1 − (

1 − t
n

)k
)�

≈ (1− e− tk
n )� ≈ exp(−	e− tk

n ) ≈
δ/2 where e is the natural constant.
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However, if lock(key, val) = (nonce,H(nonce, key)⊕val||0s) where H is a hash
function, we can set better parameters since γ = 2−s is small enough. In our
parameter setting, we set δ = 1/2, κ = 128, and use SHA24 with 224-bit output
as an instantiation of H. Then, lock(vi, r) has an error rate γ ≈ 2128−224 = 2−96,
and 	 · γ is negligible. Therefore, we set parameters so that the first term of the
above condition is slightly smaller than δ = 1/2, instead of δ/2. Now, we have(
1 − (

1 − t
n

)k
)�

≈ exp(−	e− tk
n ) � δ from 	 ≈ nc log 1

δ = e
tk
n and tk = cn log n.5

Error Tolerance. Many researches have indicated that the Threshold Ham-
ming Distance T := t

n of IrisCode should lie between 20% and 35% [21–23].
According to this, we set T = 0.2, 0.25, 0.3, 0.35.

Security. With the helper value p, an adversary without biometric information
can run a brute force attack on digital locker lock(vi, r) with an exhaustive search
for vi which is a partial biometric of a user. Therefore, k = |vi| must be larger
than at least the security parameter λ. We set k = λ = 80.6

Iteration Number. Given T = t/n, k, and δ = 0.5, we set iteration number
	 ≈ e

tk
n so that the false rejection rate is smaller than 0.5.

Storage Space. The helper value p consists of two parts; indices and locks for
each iteration. The indices for each iteration represent k among n bit positions
of the biometric, and requires (k log n)-bits of storage space. On the other hand,
since we use SHA2-224, |r| = κ = 128, k = 80, and the output size of hash
function is 224 bits. We set the nonce for the hash input to 144 bits7. As we need
	 iterations, the total storage space for lockers is 	 · (k log n + 368) bits.

Time Consumption. To measure actual time consumption, we implemented
Canetti et al.’s reusable fuzzy extractor as a C++ program. We used g++ 5.4.0
to compile C++ source codes under the C++ 11 standard and ran them on
a GNU/Linux ubuntu 4.4.0-62-generic machine that has a Intel(R) Xeon(R)
E5-2620 v4 2.10 GHz CPU with a 64 GB RAM and a x86 64 architecture. We
measured the average time for 1 unlock under various sets of parameters, and
obtained results as displayed in the table below.

4 One can also use SHA3 or other hash functions.
5 We take δ = 1/2 for convenience. One can achieve δ = 1/2b increasing � to b�.
6 In fact, we should take into account the min-entropy of the partial biometric, but

we will assume that the min-entropy is k for simplicity.
7 In fact, we should take the size of nonce so that the resulting locker is �-composable,

i.e., no collision occurs among � nonces. In our cases, 144 (= 224−80) bit is sufficient
for the size of nonce.
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Table 1. Security, storage space and time consumption with δ = 1/2, κ = 128, SHA2-
224.

Security k Biometric n Error tolerance T Iterations � Storage space (Byte) Rep Time (unlock) (μs)

Index Lock Total

80 512 0.20 4.41 × 107 3.97G 2.03G 6.00G 12.6

80 512 0.25 6.85 × 109 617G 315G 932G 12.6

80 512 0.30 1.87 × 1012 168T 86.0T 254T 12.6

80 512 0.35 7.79 × 1014 70.1P 35.8P 106P 12.6

80 1024 0.20 4.00 × 107 4.00G 1.84G 5.84G 13.9

80 1024 0.25 6.85 × 109 685G 315G 1T 13.9

80 1024 0.30 1.87 × 1012 187T 86.0T 273T 13.9

80 1024 0.35 6.90 × 1014 69.0P 31.8P 101P 13.9

80 2048 0.20 4.00 × 107 4.40G 1.84G 6.24G 15.5

80 2048 0.25 6.85 × 109 754G 315G 1.07T 15.5

80 2048 0.30 1.77 × 1012 194T 81.3T 276T 15.5

80 2048 0.35 6.50 × 1014 71.5P 29.9P 101P 15.5

In Table 1, we present security, storage space, and time required for each
unlock with concrete parameters.8 The maximum required time of Rep is 	 ×
Time(unlock). As fully carrying out all 	 iterations of Rep is unfeasible for most
parameter sets due to the large storage space requirements, we ran Rep for a
much smaller number of iterations and computed the average running time for
each single iteration of Rep and measured the storage memory theoretically.

The form of digital lockers are the same for all cases, and time for unlock
changes little by input size. Note that the iteration 	 and Storage space highly
(exponentially) depends on T , but not on n.

4 Our Construction and Analysis

Note that, in Canetti et al.’s scheme, tk = cn log n and l ≈ nc log 2
δ give large 	

values, leading to large storage space for T ∈ [0.2, 0.35]. One easy strategy for
reducing memory requirements is reducing k. However, a smaller k value implies
less security, since an adversary can easily unlock lock(key, val) if k = |key| is
small.

We solve this problem by preventing adversaries from checking their guesses
on each individual lock. For this purpose, we use a modified digital locker
(lock′, unlock′). It is a symmetric encryption scheme very similar to the orig-
inal digital locker except for one difference; unlock′ outputs a random string
instead of ⊥ when key′ 
= key. With this modified digital locker, adversaries can
not check whether their guesses are right or not, since they can not distinguish
a random string from val in our construction.

8 Canetti et al. [9] mentioned that with sophisticated samplers, one can decrease the
required storage. However, it can only decrease the storage for index, and the storage
for locks can not be decreased.



38 J. H. Cheon et al.

However, a fuzzy extractor must output ⊥ when the input is not legitimate.
We additionally exploit a (τ,m)-threshold scheme to enable legitimacy check-
ing. More precisely, we encrypt each share with the modified lock, so that the
adversary can recover the original secret s only if he or she has found τ or more
correct shares by unlocking corresponding lock′s with their correct keys. Then,
the legitimacy check of the recovered secret s′ is done by unlock(s′, lock(s, r)).

4.1 Construction

The details of our construction are as follows. First, the modified digital locker
can be instantiated as the original digital locker with the reduction of the
zero-padding portion, i.e., lock′(key, val) := (nonce, π ◦ H(nonce, key) ⊕ val) for
val ∈ {0, 1}v and key ∈ {0, 1}k, where π : {0, 1}μ −→ {0, 1}v is the canoni-
cal projection of the first v bits of vectors in {0, 1}μ, the output space of hash
H. Unlock′ is similar to unlock, XORing (⊕) lock′ with π ◦ H(nonce, key′). The
notion of security for the modified digital locker is the same as that of the orig-
inal digital locker, except that if key′ 
= key, unlock′(key′, lock(key, val)) outputs
val′ 
= val which is indistinguishable from a uniformly random string. H can be
a random oracle or the same cryptographic hash function H as in the original
digital locker.

The Gen algorithm takes as input a bit string w with length n. For a divisor
d of n,9 we consider the set Pd(n) of partitions P = {Bj : |Bj | = d}m

j=1 of [n] =
{1, . . . , n} where m = n/d.10 For a partition Pi ∈ Pd(n), we denote vi,j =
wBj

:= wj1 , . . . , wjd , where Bj = {j1, . . . , jd} ∈ Pi. We first choose a random
string r ∈ {0, 1}κ and lock it with a random secret si ∈ {0, 1}k resulting in
lock(si, r).11

Next we split this si into several shares {si,j}m
j=1 using the Distribution

Algorithm DAτ,m of the (τ,m)−threshold scheme. We now choose a random
partition Pi ∈ Pd(n), which specifies vi,j ’s for j = 1, . . . , m. Finally, lock the
shares si,j with the substrings vi,j of w using the modified locker, resulting in
lock′(vi,j , si,j). We iterate this process N times, and output the public helper
value which can be represented by {lock(si, r), lock′(vi,j , si,j)|mj=1,Pi}N

i=1.
The Rep algorithm is simple. Each partition Pi in the helper value specifies

v∗
i,j ’s from the input w∗. Unlock all modified lock′(vi,j , si,j)’s with v∗

i,j ’s. Finally,
use Recovery Algorithm RAτ,m to recover si from s∗

i,j , and check if the recovered
s∗

i is correct by unlocking lock(si, r). Output r if at least one of such unlocks
was successful, and output ⊥ otherwise.

9 We can also consider a divisor d of n′ ≤ n, and follow the construction taking n′

instead of n.
10 For convenience, we only consider the partitions whose elements have the same

cardinality. An analogous statement can be made for more general partitions.
11 Note that, in (τ, m) threshold scheme, the size of secret k is D(mp − 1) for some

D ∈ Z>0. We take D satisfying proper security.
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Algorithm 2 :Gen and Rep of our RFE
Gen Rep

Input: w = w1 . . . wn Input: w∗ = w∗
1 . . . w∗

n, p = (p1 . . . pN )

1. Sample r
$←− {0, 1}κ

2. For i = 1, . . . , N 1. For i = 1, . . . , N

(i) Choose Pi ∈ Pd(n), sample si
$←− {0, 1}k (i) Parse pi as ci,1, . . . , ci,m, Pi, di

(ii) si,1, . . . , si,m ← DAτ,m(si), (m = n/d) (ii) For j = 1, . . . , m
(iii) for j = 1, . . . , m with {Bj}m

j=1 = Pi (ii)-1 v∗
i,j = w∗

Bj
,

(iii)-1 vi,j = wBj where {B1, . . . , Bm} = Pi

(iii)-2 ci,j ← lock′(vi,j , si,j) (ii)-2 s∗
i,j ← unlock′(v∗

i,j , ci,j)
(iii) For each S⊆{s∗

i,j}m
j=1 s.t. |S|= τ ,

(iv) di ← lock(si, r) (iii)-1 s∗
i ← RAτ,m(S)

(v) pi ← ci,1, . . . , ci,m, Pi, di (iii)-2 r∗
i ← unlock(s∗

i , di),
and if r∗

i �=⊥ then output r∗
i .

3. Output (r, p) where p = (p1 . . . pN ) 2. Output ⊥

4.2 Parameters and Security Analysis

Correctness and Security. To ensure correctness of the FE, the parameters
must satisfy

FRR := Pr[⊥← Rep(w∗)|dis(w,w∗) ≤ t] ≤ δ.

To compute this probability, for fixed Pi and w∗ with dis(w,w∗) = t, let

q = Pr
[
s = s∗

i |s∗
i ← RAτ,m(S) for some S ∈ Pτ ({s∗

i,j}m
j=1)

]
. (1)

Note that q is independent from the index i. Then, FRR is at most (1−q)N +
N ·γ considering incorrectness arising from error γ in the lockers. As in Sect. 3.4
we ignore N · γ and set (1 − q)N ≈ 1 − qN � δ = 1/2.

Here, we state a lemma calculating the exact value of q. All proofs of lemmas
and theorems in this subsection are given in the full version of this paper, which
will be uploaded in ePrint.12

Lemma 4. Let M = {0, 1}n be the input space of the reusable fuzzy extractor in
Construction with parameters n, d, λ, τ, δ, t as previously defined. For an input
w = w1w2 . . . wn, let (r, p) ← Gen(W ). If a certifier has a query input w∗ =
w∗

1 . . . w∗
n with dis(w,w∗) = t,

q := Pr(r∗
i = r) =

τmCτ

nCt

m∑
η=τ

(−1)η−τ · m−τCη−τ ×n−ηd Ct

η
for all i = 1, . . . , N.

Here aCb denotes the usual binomial coefficient a!
b!(a−b)! for integers a, b such

that 0 ≤ b ≤ a.

12 https://eprint.iacr.org/.

https://eprint.iacr.org/
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We can easily see that our fuzzy extractor is reusable, as is Canetti et al.’s.

Theorem 5. Let λ be a security parameter and W be a family of sources with
α-entropy k-samples over Zn where α = ω(log λ). Then for any ssec = poly(λ)
there exists an εsec = ngl(λ) such that Construction is a (Zn,W, κ, t)- computa-
tional fuzzy extractor that is (εsec, ssec)-hard with error δ = (1 − q)N + mN · γ,
where the formula for q is given in Lemma 4.

Reusability. As in [9], reusability follows easily from the security of digital
lockers. To enable ρ reuses, we need N(m+1)·ρ composable digital lockers. Then
we can simulate an adversary given r1, . . . , ri−1, ri+1, . . . , rρ, and p1, . . . , pρ as
a simulator with r1, . . . , ri−1, ri+1, . . . , rρ as auxiliary input in the security of
digital locker (see Definition 3). Now, we can prove the reusability similarly to
Theorem 5.

Theorem 6. Fix ρ and let all the variables be as in Theorem 5, except that
(lock, unlock) is N(m + 1) · ρ - composable instead of N(m + 1) - composable13

(for κ-bit values and keys over Zk). Then for all ssec = poly(n) there exists some
εsec = ngl(n) such that Construction is a (ρ, εsec, ssec)-reusable fuzzy extractor.

Comparison with [9]. In Canetti et al.’s work [9], they used the subsets of
strings (biometrics) to lock and take multiple samples for correctness. How-
ever, for reliable error tolerance, they required too many samples, resulting in
the use of enormous amounts of memory space as displayed in Table 1. We
divide said subsets into small pieces and use the threshold scheme to dimin-
ish storage space requirement. As a result, our scheme consumes more time as it
requires multiple RA operations in recovering the secret. We will show that this
can be resolved through the use of parallel computing. In [9], the source of w
needed to be α-entropy k-samples, i.e., H̃∞(Wj1Wj2 . . . Wjk |j1, j2, . . . jk) ≥ α
for k uniformly random indices 1 ≤ j1, j2, . . . , jk ≤ n. Our construction
requires a slightly different condition regarding the distribution of the source
: H̃∞(Wj1Wj2 . . . Wjk |j1, j2, . . . jk) ≥ α for k uniformly random indices 1 ≤
j1, j2, . . . , jk ≤ n selected without repetition.

4.3 Analysis on Concrete Parameters

To analyze our scheme as in Sect. 3.4 with concrete parameters, we calculated
the storage space and number of operations needed when employing Kurihara
et al.’s threshold scheme. We set δ = 1/2, κ = 128, T = t

n = 0.2, 0.25, 0.3,
k̃ := τd ≥ λ = 80 and used SHA2-224 as the hash function as in Sect. 3.4.

Security. To recover r, an adversary equipped with helper value p must cor-
rectly guess at least τ of the d−bit keys for lock′’s. Therefore, τ · d should be at
least λ = 80, the security parameter. (Note that as in Canetti et al.’s scheme,
we should consider the min-entropy of the partial biometric of length τd.)
13 Canetti et al.’s construction requires � or �ρ -composable digital lockers, and � ≥

N(m + 1) in our parameter settings.
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Iteration Number. For given T = t
n , k̃ = τd, and δ = 0.5, we can find

iteration number N such that FRR ≤ (1 − q)N + N · γ ≤ 0.5 where q is defined
in Lemma 4. As in Sect. 3.4, Nγ is negligible.

Storage Space. The helper value p again consists of two parts; indices and dig-
ital lockers. Indices for each iteration indicate which among m sets in a partition
of [n] each biometric bit belongs to, and take up roughly (n log m)-bits of mem-
ory space. The size of a locker (of either type) is the sum of the output size 224
bits of hash function SHA2-224 and that of the nonce in the hash input which is
144 bits. Since we need m+1 lockers (1 for lock(si, r)) each for a total of N iter-
ations, the total memory required for p is N ·(n log m+(224+144) ·(m+1)) bits.
This is denoted as “Help.val.” in Table 2. For efficient computation of the secret
sharing scheme, we will additionally store

(
m
τ

)
precomputed (mp −1)×τ(mp −1)

binary matrices needed for each of the
(
m
τ

)
recovery algorithms. The matrices

are reused for all N iterations. The amount of memory space dedicated to these
matrices is denoted as “Mat.” in Table 2.

Time Consumption. We implemented our fuzzy extractor in the same envi-
ronment as in Sect. 3.4.

Here we give a table for the required storage space, time consumption, and
security of our reusable fuzzy extractor. Again, we did not run the program for
all N iterations, but instead ran it for a smaller number of iterations multiple
times to obtain average values of the time costs of the unlock′ and (RA+unlock)
operations. “All unlock′” denotes the time for (ii), and “1(RA+unlock)” denotes
the time for each subset S in (iii) of Rep (Algorithm 2).

In our FE, Rep takes at most N · ((
m
τ

) · Time(RA + unlock) + Time(All
unlock′)

)
time. The maximum time for Gen is N · (Time(DA + lock)+

Time(All lock′)
)
.14

We visualized the trade-off between time and helper value storage space in
Fig. 1.15 Every point in the figure comes from either Table 1 or Table 2. The
amount of required memory tends to decrease by a factor of approximately 103,
i.e. from GB to MB(or TB to GB) whenever time consumption increases tenfold.
Although time consumption seems impractical for both FEs, this can be solved
with parallel computing methods since Rep consists of mutually independent
iterative routines. We actually implemented our scheme with parallel computing
using CUDA as proof of this (though not optimized), and the obtained positive
results. We compiled CUDA and C++(test driver) codes using nvcc v7.5.17
with the SM53 architecture and under the C++ 11 standard. Then we ran
the program on the aforementioned GNU/Linux machine with the same CPU,
with an additional NVIDIA GeForce GTX 1080 GPU attached for the parallel

14 Since Time(RA) ≈ Time(DA), maximal time of Rep is much bigger than that of Gen,
and we only consider the time of Rep.

15 The space for “Mat. for DA” is excluded since it is a common data for every users.
It doesn’t affect the tendency in this graph overall.
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Table 2. The table for the storage space, time consumption and security of our scheme.
The column k̃ and T means the security parameter and the error tolerance, respectively.

k̃ Bio. n T d τ m Iter. N Storage space (Byte) Time/iteration (μs)

Mat. Index Lock Help.val. All unlock′ 1(RA+unlock)

80 512 0.2 16 5 32 1674 1.47G 0.54M 2.45M 3.00M 184 25.2

80 512 0.2 20 4 25 38612 44.6M 11.5M 44.4M 55.9M 146 16.3

80 512 0.25 16 5 32 3.82 · 105 1.47G 122M 562M 685M 184 25.2

80 512 0.3 16 5 32 1.98 · 108 1.47G 63.5G 292G 355G 184 25.2

80 1024 0.2 20 4 51 516 1.35G 0.37M 1.21M 1.59M 292 39.0

81 1024 0.2 27 3 37 26786 34.0M 17.9M 45.6M 63.5M 428 18.8

80 1024 0.25 20 4 51 97751 1.35G 71.0M 228M 300M 292 39.0

80 1024 0.3 20 4 51 3.63 · 107 1.35G 26.3G 85.1G 111G 292 39.0

81 2048 0.2 27 3 75 1546 616M 2.47M 5.33M 7.80M 440 60.9

81 2048 0.25 27 3 75 3.26 · 105 616M 520M 1.12G 1.64G 440 60.9

Fig. 1. A log-scaled graph of storage space for helper values and time (Original and
Ours)

computing. For the case (n, p, d, τ,m) = (1024, 0.2, 27, 3, 37), the algorithm Rep
takes only 151 s, which is 20 times faster than without parallelization.

5 Conclusion

We analyzed the reusable fuzzy extractor of Canetti et al. with concrete parame-
ters regarding iris authentication with IrisCode and found out that the required
storage space is too large to be used in practice. To solve this problem, we pro-
pose a modified reusable fuzzy extractor using a perfect threshold scheme. Our
modification cuts down the memory cost by a considerable amount. Though
this approach yields a trade-off between memory and time costs, this can be
resolved through parallel computing, since Rep consists of independent subrou-
tines. When fully parallelized, our scheme reduces memory requirements from
GB or TB to MB in many cases, while still operating in reasonable time.
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Abstract. While many cryptographic protocols for card games have
been proposed, all of them focus on card games where players have
some state that must be kept secret from each other, e.g closed
cards and bluffs in Poker. This scenario poses many interesting
technical challenges, which are addressed with cryptographic tools that
introduce significant computational and communication overheads (e.g.
zero-knowledge proofs). In this paper, we consider the case of games
that do not require any secret state to be maintained (e.g. Blackjack
and Baccarat). Basically, in these games, cards are chosen at random
and then publicly advertised, allowing for players to publicly announce
their actions (before or after cards are known). We show that protocols
for such games can be built from very lightweight primitives such as
digital signatures and canonical random oracle commitments, yielding
constructions that far outperform all known card game protocols in terms
of communication, computational and round complexities. Moreover, in
constructing highly efficient protocols, we introduce a new technique
based on verifiable random functions for extending coin tossing, which
is at the core of our constructions. Besides ensuring that the games are
played correctly, our protocols support financial rewards and penalties
enforcement, guaranteeing that winners receive their rewards and that
cheaters get financially penalized. In order to do so, we build on
blockchain-based techniques that leverage the power of stateful smart
contracts to ensure fair protocol execution.

1 Introduction

Cryptographic protocols for securely playing card games among mutually
distrustful parties have been investigated since the seminal work of Shamir
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et al. [20] in the late 1970s, which initiated a long line of research [3,4,8,10–
12,14,17–19,21–24]. Not surprisingly, all of these previous works have focused
on obtaining protocols suitable for implementing a game of Poker, which poses
several interesting technical challenges. Intuitively, in order to protect a player’s
“poker face” and allow him to bluff, all of his cards might need to be kept private
throughout (and even after) protocol execution. In previous works, ensuring
this level of privacy required several powerful but expensive cryptographic
techniques, such as the use of zero-knowledge proofs and threshold cryptography.
However, not all popular card games require a secret state (e.g. private cards) to
be maintained, which is the case of the popular games of Blackjack (or 21) and
Baccarat. In this work, we investigate how to exploit this fundamental difference
to construct protocols specifically for games without secret state that achieve
higher efficiency than those for Poker.

Games Without Secret State: In games such as Baccarat and Blackjack, no
card is privately kept by any player at any time. Basically, in such games, cards
from a shuffled deck of closed cards (whose values are unknown to all players)
are publicly opened, having their value revealed to all players. We say these are
games without secret state, since no player possesses any secret state (i.e. private
cards) at any point in the game, as opposed to games such as Poker, where the
goal of the game is to leverage private knowledge of one’s card’s values to choose
the best strategy. An immediate consequence of this crucial difference is that
the heavy cryptographic machinery used to guarantee the secrecy and integrity
of privately held cards can be eliminated, facilitating the construction of highly
efficient card game protocols.

Security Definitions: Even though protocol for secure card games (and
specially Poker) have been investigated for several decades, formal security
definitions have only been introduced very recently in Kaleidoscope [12] (for
the case of Poker protocols) and Royale [14] (for the case of protocols for general
card games). Concrete security issues and cases of cheating when trusting online
casinos for playing card games are also analysed in [12]. The lack of formal
security definitions in previous works has not only made their security guarantees
unclear but resulted in concrete security issues, such as the ones in [3,8,23,24], as
pointed out in [12,19]. Hence, it is important to provide security definitions that
capture the class of protocols for card games without secret state. Adapting
the approach of Royale [14] for defining security of protocols for general card
games with secret state in the Universal Composability framework of [6] is a
promising direction to tackle this problem. Besides clearly describing the security
guarantees of a given protocol, a security definition following the approach of
Royale also ensures that protocols are composable, meaning that they can be
securely used concurrently with copies of themselves or other protocols.

Enforcing Financial Rewards and Punishment: One of the main issues
in previous protocols for card games is ensuring that winners receive their
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rewards while preventing cheaters to keep the protocol from reaching an outcome.
This problem was recently solved by Andrychowicz et al. [1,2] through an
approach based on decentralized cryptocurrencies and blockchain protocols.
They construct a mechanism that ensures that honest players receive financial
rewards and financially punishes cheaters (who abort the protocol or provide
invalid messages). The main idea is to have all players provide deposits of
betting and collateral funds, forfeiting their collateral funds if they are found
to be cheating. A cheater’s collateral funds are then used to compensate honest
players. Their general approach has been subsequently improved and applied
to poker protocols by Kumaresan et al. [17] and Bentov et al. [4]. However,
protocols for Poker (resp., for general card games) using this approach have only
been formally analysed in Kaleidoscope [12] (resp., Royale [14]), where fine tuned
checkpoint witnesses of correct protocol execution are also proposed as means of
improving the efficiency of the mechanism for enforcing rewards/penalties. Such
an approach can be carried over to the case of games without secret state.

1.1 Our Contributions

We introduce a general model for reasoning about the composable security
of protocols for games without secret state and a protocol that realizes
our security definitions with support to financial rewards/penalties. We also
introduce optimizations of our original protocol that achieve better round and
communication complexities at the expense of a cheap preprocessing phase (in
either the Check-in or Create Shuffled Deck procedures). Our protocols do not
require expensive card shuffling operations that rely on zero-knowledge proofs,
achieving much higher concrete efficiency than all previous works that support
card games with secret state (e.g. Poker). Our contributions are summarized
below:

– The first ideal functionality for general card games without secret state: FCG.
– An analysis showing that that Baccarat and Blackjack can be implemented

by our general protocol ,i.e. in the FCG-hybrid model (Sect. 3).
– A highly efficient protocol πCG for card games which realizes FCG along with

optimized Protocols πCG−PRE and πCG−VRF (Theorems 1, 2 and 3).
– A novel technique for coin tossing “extension” based on verifiable random

functions (VRF) that is of independent interest (Sect. 5).

We start by defining FCG, an ideal functionality that captures only games
without secret state, which is adapted from the functionality for general card
games with secret state proposed in Royale [14]. In order to show that such
a restricted functionality still finds interesting applications, we show that the
games of Blackjack and Baccarat can be implemented by FCG. Leveraging
the fact the FCG only captures games without secret state, we construct
protocols that rely on cheap primitives such as digital signatures and canonical
random oracle based commitments, as opposed to the heavy zero knowledge and
threshold cryptography machinery employed in previous works. Most notably,
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our approach eliminates the need for expensive card shuffling procedure relying
on zero-knowledge proofs of shuffle correctness. In fact, no card shuffling
procedure is needed in Protocol πCG and Protocol πCG−VRF, where card values
are selected on the fly during the Open Card procedure. Our basic protocol πCG

simply selects the value of each (publicly) opened card from a set of card values
using randomness obtained by a simple commit-and-open coin tossing, which
requires two rounds. Later we show that we perform the Open Card operation
in one sigle round given a cheap preprocessing phase. In order to perform this
optimization, we introduce a new technique that allows for a single coin tossing
performed during the Check-in procedure to be later “extended” in a single
round with the help of a VRF, obtaining fresh randomness for each Open Card
operation.

Related Works. Our results are most closely relate to Royale [14], the currently
most efficient protocol for general card games with secret state, which employs
a mechanism for enforcing financial rewards and penalties following the stateful
contract approach of Bentov et al. [4]. In our work, we restrict the model
of Royale to capture only games without secret state but maintain the same
approach for rewards/penalties enforcement based on stateful contracts. As an
advantage of restricting our model to this specific class of games, we eliminate the
need for expensive card suffling procedures while constructing very cheap Open
Card procedures. Moreover, we are able to construct protocols that only require
digital signatures and simple random oracle based commitments (as well as VRFs
for one of our optimizations), achieving much higher efficiency than Royale, as
shown in Sect. 6. Our protocols enjoy much better efficiency for the recovery
phase than Royale, since we employ the same compact checkpoint witnesses
but achieve much lower communication complexity, meaning that the protocol
messages that must be sent to the stateful contract (i.e. posted on a blockchain)
are much shorter than those of Royale.

2 Preliminaries

We denote the security parameter by κ. For a randomized algorithm F , y
$←

F (x; r) denotes running F with input x and its random coins r, obtaining an
output y. If r is not specified it is assumed to be sampled uniformly at random.
We denote sampling an element x uniformly at random from a set X (resp.
a distribution Y) by x

$← X (resp. y
$← Y). We denote two computationally

indistinguishable ensembles of binary random variables X and Y by X ≈c Y .

Security Model: We prove our protocols secure in the Universal Composability
(UC) framework introduced by Canetti in [6]. We consider static malicious
adversaries, who can arbitrarily deviate from the protocol but must corrupt
parties before execution starts, having the corrupted (or honest) parties
remain so throughout the execution. It is a well-known fact that UC-secure
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two-party and multiparty protocols for non trivial functionalities require a
setup assumption [7]. We assume that parties have access to a random oracle
functionality FRO, a digital signature functionality FDSIG, a verifiable random
function functionality FVRF and a smart contract functionality FSC. For further
details on the UC framework as well as on the ideal functionalities, we refer the
reader to [6] and to the full version of this paper [13].

Verifiable Random Functions: Verifiable random functions (VRF) are a key
ingredient of one of our optimized protocols. In order to provide a modular
construction in the UC framework, we model VRFs as an ideal functionality
FVRF that captures the main security guarantees for VRFs, which are usually
modeled in game based definitions. While a VRF achieving the standard VRF
security definition or even the simulatable VRF notion of [9] is not sufficient to
realize FVRF, it has been shown in [15] that this functionality can be realized
in the random oracle model under the CDH assumption by a scheme based on
the 2-Hash-DH verifiable oblivious pseudorandom function construction of [16].
We refer interested readers to [15] and the full version of this paper [13] for the
definition of functionality FVRF and further discussion of its implementation.

Stateful Contracts: We employ an ideal functionality FSC that models a
stateful contract, following the approach of Bentov et al. [4]. We use the
functionality FSC defined in [14] and presented in Fig. 1. This functionality is used
to ensure correct protocol execution, enforcing rewards distribution for honest
parties and penalties for cheaters. Basically, it provides a “Check-in” mechanism
for players to deposit betting and collateral funds, a “Check-out” mechanism for
ensuring that players receive their rewards according to the game outcome and
a Recovery mechanism for identifying (and punishing) cheaters. After check-in,
if a player suspects cheating, it can complain to FSC by requesting the Recovery
phase to be activated, during which FSC mediates protocol execution, verifying
that each player generates valid protocol messages. If any player is found to be
cheating, FSC penalizes the cheaters, distributing their collateral funds among
the honest players and ending the execution. It is important to emphasize that
the FSC functionality can be easily implemented via smart contracts over a
blockchain, such as Ethereum [5]. Moreover, our construction (Protocol πCG)
requires only simple operations, i.e. verification of signatures and of random
oracle outputs. A regular honest execution of our protocol is performed entirely
off-chain, without intervention of the contract.

3 Modeling Card Games Without Secret State

Before presenting our protocols, we must formally define security for card games
without secret state. We depart from the framework introduced in Royale [14]
for modeling general card games (which can include secret state), restricting
the model to the case of card games without secret state. In order to showcase
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Functionality FSC

The functionality is executed with players P1, . . . , Pn and is parametrized by a
timeout limit τ , and the values of the initial stake t, the compensation q and the
security deposit d ≥ (n − 1)q. There is an embedded program GR that represents
the game’s rules and a protocol verification mechanism pv.
Players Check-in: When execution starts, FSC waits to receive from each
player Pi the message (checkin, sid, Pi, coins(d + t), SIG.vki) containing the nec-
essary coins and its signature verification key. Record the values and send
(checkedin, sid, Pi, SIG.vki) to all players. If some player fails to check-in within
the timeout limit τ or if a message (checkin-fail, sid) is received from any player,
then send (compensation, coins(d + t)) to all players who checked in and halt.
Player Check-out: Upon receiving (checkout-init, sid, Pj) from Pj , send
(checkout-init, sid, Pj) to all players. Upon receiving (checkout, sid,
Pj , payout, σ1, . . . , σn) from Pj , verify that σ1, . . . , σn are valid signatures
by the players P1, . . . , Pn on (CHECKOUT|payout) with respect to FDSIG. If all
tests succeed, for i = 1, . . . , n, send (payout, sid, Pi, coins(w)) to Pi, where
w = payout[i] + d, and halt.
Recovery: Upon receiving a recovery request (recovery, sid) from a player
Pi, send the message (request, sid) to all players. Upon getting a message
(response, sid, Pj ,Checkpointj , procj) from some player Pj with checkpoint wit-
nesses (which are not necessarily relative to the same checkpoint as the ones received
from other players) and witnesses for the current procedure; or an acknowledge-
ment of the witnesses previous submitted by another player, forward this message
to the other players. Upon receiving replies from all players or reaching the timeout
limit τ , fix the current procedure by picking the most recent checkpoint that has
valid witnesses (i.e. the most recent checkpoint witness signed by all players Pi).
Verify the last valid point of the protocol execution using the current procedure’s
witnesses, the rules of the game GR, and pv. If some player Pi misbehaved in the
current phase (by sending an invalid message), then send (compensation, coins(d+
q + balance[j] + bets[j])) to each Pj �= Pi, send the leftover coins to Pi and halt.
Otherwise, proceed with a mediated execution of the protocol until the next check-
point using the rules of the game GR and pv to determine the course of the actions
and check the validity of the answer. Messages (nxt-stp, sid, Pi, proc, round) are
used to request from player Pi the protocol message for round round of proce-
dure proc according to the game’s rules specified in GR, who answer with messages
(nxt-stp-rsp, sid, Pi, proc, round,msg), where msg is the requested protocol mes-
sage. All messages (nxt-stp, sid, . . .) and (nxt-stp-rsp, sid, . . .) are delivered to
all players. If during this mediated execution a player misbehaves or does not an-
swer within the timeout limit τ , penalize him and compensate the others as above,
and halt. Otherwise send (recovered, sid, proc,Checkpoint), to the parties once
the next checkpoint Checkpoint is reached, where proc is the procedure for which
Checkpoint was generated.

Fig. 1. The stateful contract functionality used by the secure protocol for card games
based on Royale [14].
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the applicability of our model to popular games, we further present game rule
programs for Blackjack and Baccarat, which paramterize our general card game
functionality for realizing these games.

Modeling General Games Without Secret State. We present an ideal
functionality FCG for card games without secret state in Fig. 2. Our ideal
functionality is heavily based on the FCG for games with secret state presented
in Royale [14]. We define a version of FCG that only captures games without
secret state, allowing us to realize it with a lightweight protocol. This version
has the same structure and procedures as the FCG presented in Royale, except
for the procedures that require secret state to be maintained. Namely, we
model game rules with an embedded program GR that encodes the rules of
the game to be implemented. FCG offers mechanisms for GR to specify the
distribution of rewards and financially punish cheaters. Additionally, it offers
a mechanism for GR to communicate with the players in order to request actions
(e.g. bets) and publicly register their answers to such requests. In contrast to
the model of Royale and previous protocols focusing on poker, FCG only offers
two main card operations: shuffling and public opening of cards. Restricting
FCG to these operations captures the fact that only games without secret state
can be instantiated and allows for realizing this functionality with very efficient
protocols. Notice that all actions announced by players are publicly broadcast
by FCG and that players cannot draw closed cards (which might never be
revealed in the game, constituting a secret state). As in Royale, FCG can be
extended with further operations (e.g. randomness generation), incorporating
ideal functionalities that model these operations. However, differently from
Royale, these operations cannot rely on the card game keeping a secret state.

Formalizing and Realizing Blackjack and Baccarat. In order to illustrate
the usefulness of our general functionality FCG for games without secret state,
we show that it can be used to realize the games of Blackjack and Baccarat.
In the full version of this work [13], we define game rule programs GRblackjack

and GRblackjack for Blackjack and Baccarat, respectively, which parameterize FCG

to realize these games. Both these games requires a special player that acts as
the “dealer” or “house”, providing funds that will be used to reward the other
players in case they win bets. We remark that the actions taken by this special
player are pre-determined in both GRblackjack and GRblackjack, meaning that the
party representing the “dealer” or “house” does not need to provide inputs (e.g.
bets or actions) to the protocol, except for providing its funds. While GRblackjack

and GRblackjack model the behavior of this special player as an individual party
(which would be required to provide the totality of such funds), these programs
can be trivially modified to require each player to provide funds that will be
pooled to represent the “dealer’s” or “house’s” funds, since all of their actions
are deterministic and already captured by GRblackjack and GRblackjack.
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Functionality FCG

The functionality is executed with players P1, . . . , Pn and is parameterized by a
timeout limit τ , and the values of the initial stake t, the security deposit d and of
the compensation q. There is an embedded program GR that represents the rules
of the game and is responsible for mediating the execution: it requests actions from
the players, processes their answers, and invokes the procedures of FCG. FCG pro-
vides a check-in procedure that is run in the beginning of the execution, a check-out
procedure that allows a player to leave the game (which is requested by the player
via GR) and a compensation procedure that is invoked by GR if some player misbe-
haves/aborts. It also provides a channel for GR to request public actions from the
players and card operations as described below. GR is also responsible for updating
the vectors balance and bets. Whenever a message is sent to S for confirmation or
action selection, S should answer, but can always answer (abort, sid), in which
case the compensation procedure is executed; this option will not be explicitly
mentioned in the functionality description henceforth.

Check-in: Executed during the initialization, it waits for a check-in message
(checkin, sid, coins(d + t)) from each Pi and sends (checkedin, sid, Pi) to the re-
maining players and GR. If some player fails to check-in within the timeout limit τ ,
then allow the players that checked-in to dropout and reclaim their coins. Initialize
vectors balance = (t, . . . , t) and bets = (0, . . . , 0).

Check-out: Whenever GR requests the players’s check-out with payouts specified
by vector payout, send (checkout, sid, payout) to S. If S answers (checkout, sid,
payout), send (payout, sid, Pi, coins(d + payout[i])) to each Pi and halt.

Compensation: This procedure is triggered whenever S answers a request for
confirmation of an action with (abort, sid). Send (compensation, sid, coins(d +
q + balance[i] + bets[i])) to each active honest player Pi. Send the remaining locked
coins to S and stop the execution.

Request Action: Whenever GR requests an action with description act − desc
from Pi, send a message (action, sid, Pi, act−desc) to the players. Upon receiving
(action-rsp, sid, Pi, act − rsp) from Pi, forward it to all other players and GR.

Create Shuffled Deck: Whenever GR requests the creation of a shuffled deck of
cards containing cards with values v1, . . . , vm, choose the next m free identifiers
id1, . . . , idm, representing cards as pairs (id1, v1), . . . , (idm, vm). Choose a random
permutation Π that is applied to the values (v1, . . . , vm) to obtain the updated cards
(id1, v′

1), . . . , (idm, v′
m) such that (v′

1, . . . , v
′
m) = Π(v1, . . . , vm). Send the message

(shuffled, sid, v1, . . . , vm, id1, . . . , idm) to all players and GR.

Open Card: Whenever GR requests to reveal the card (id, v) in public, read the
card (id, v) from the memory and send the message (card, sid, id, v) to S. If S
answers (card, sid, id, v), forward this message to all players and GR.

Fig. 2. Functionality for card games without secret state FCG based on [14].
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Protocol πCG (Part 1)

Protocol πCG is parametrized by a security parameter 1κ, a timeout limit τ , the
values of the initial stake t, the compensation q, the security deposit d ≥ (n − 1)q
and an embedded program GR that represents the rules of the game. In all queries
(sign, sid, m) to FDSIG, the message m is implicitly concatenated with NONCE and
cnt, where NONCE

$← {0, 1}κ is a fresh nonce (sampled individually for each query)
and cnt is a counter that is increased after each query. Every player Pi keeps
track of used NONCE values (rejecting signatures that reuse nonces) and implicitly
concatenate the corresponding NONCE and cnt values with message m in all queries
(verify, sid, m, σ, SIG.vk′) to FDSIG. Protocol πCG is executed by players P1, . . . , Pn

interacting with functionalities FSC, FRO and FDSIG as follows:

– Checkpoint Witnesses: After the execution of a procedure, the players store
a checkpoint witness that consists of the lists CO and CC , the vectors balance
and bets as well as a signature by each of the other players on the concatenation
of all these values. Each signature is generated using FDSIG and all players check
all signatures using the relevant procedure of FDSIG. Old checkpoint witnesses
are deleted. If any check fails for Pi, he proceeds to the recovery procedure.

– Recovery Triggers: All signatures and proofs in received messages are verified
by default. Players are assumed to have loosely synchronized clocks and, after
each round of the protocol starts, players expect to receive all messages sent
in that round before a timeout limit τ . If a player Pi does not receive an
expected message from a player Pj in a given round before the timeout limit τ ,
Pi considers that Pj has aborted. After the check-in procedure, if any player
receives an invalid message or considers that another player has aborted, it
proceeds to the recovery procedure.

– Check-in: Every player Pi proceeds as follows:
1. Send (keygen, sid) to FDSIG, receiving (verification key, sid, SIG.vki).
2. Send (checkin, sid, Pi, coins(d + t), SIG.vki) to FSC.
3. Upon receiving (checkedin, sid, Pj , SIG.vkj) from FSC for all j �= i, j =

1, . . . , n, initialize the internal lists of open cards CO and closed cards CC .
We assume parties have a sequence of unused card id values (e.g. a counter).
Initialize vectors balance[j] = t and bets[j] = 0 for j = 1, . . . , n. Output
(checkedin, sid).

4. If Pi fails to receive (checkedin, sid, Pj , SIG.vkj) from FSC for another
party Pj within the timeout limit τ , it requests FSC to dropout and receive
its coins back.

– Compensation: This procedure is activated if the recovery phase of FSC de-
tects a cheater, causing honest parties to receive refunds plus compensation and
the cheater to receive the remainder of its funds after honest parties are com-
pensated. Upon receiving (compensation, sid, Pi, coins(w)) from FSC, a player
Pi outputs this message and halts.

Fig. 3. Part 1 of Protocol πCG.
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Protocol πCG (Part 2)

– Check-out: A player Pj can initiate the check-out procedure and leave the
protocol at any point that GR allows, in which case all players will receive the
money that they currently own plus their collateral refund. The players proceed
as follows:
1. Pj sends (checkout-init, sid, Pj) to FSC.
2. Upon receiving (checkout-init, sid, Pj) from FSC, each Pi (for i =

1, . . . , n) sends (sign, sid, (CHECKOUT|payout)) to FDSIG (where payout is a
vector containing the amount of money that each player will receive accord-
ing to GR), obtaining (signature, sid, (CHECKOUT|payout), σi) as answer.
Player Pi sends σi to Pj .

3. For all i �= j, Pj sends (verify, sid, (CHECKOUT|payout), σi, SIG.vki) to
FDSIG, where payout is computed locally by Pj . If FDSIG answers all
queries (verify, sid, (CHECKOUT|payout), σi, SIG.vki) with (verified, sid,
(CHECKOUT|payout), 1), Pj sends (checkout, sid, payout, σ1, . . . , σn) to FSC.
Otherwise, it proceeds to the recovery procedure.

4. Upon receiving (payout, sid, Pi, coins(w)) from FSC, Pi outputs this mes-
sage and halts.

– Executing Actions: Each Pi follows GR that represents the rules of the game,
performing the necessary card operations in the order specified by GR. If GR
request an action with description act − desc from Pi, all the players output
(act, sid, Pi, act − desc) and Pi executes any necessary operations. Pi broad-
casts (action-rsp, sid, Pi, act − rsp, σi), where act − rsp is his answer and σi

his signature on act − rsp, and outputs (action-rsp, sid, Pi, act − rsp). Upon
receiving this message, all other players check the signature, and if it is valid
output (action-rsp, sid, Pi, act − rsp). If a player Pj believes cheating is hap-
pening, he proceeds to the recovery procedure.

– Tracking Balance and Bets: Every player Pi keeps a local copy of the
vectors balance and bets, such that balance[j] and bets[j] represent the balance
and current bets of each player Pj , respectively. In order to keep balance and
bets up to date, every player proceeds as follows:

• At each point that GR specifies that a betting action from Pi takes place,
player Pi broadcasts a message (bet, sid, Pi, beti), where beti is the value
of its bet. It updates balance[i] = balance[i] − bi and bets[i] = bets[i] + bi.

• Upon receiving a message (bet, sid, Pj , betj) from Pj , player Pi sets
balance[j] = balance[j] − bj and bets[j] = bets[j] + bj .

• When GR specifies a game outcome where player Pj receives an amount
payj and has its bet amount updated to b′

j , player Pi sets balance[j] =
balance[j] + payj and bets[j] = b′

j .

– Create Shuffled Deck: When requested by GR to create a shuffled deck of
cards containing cards with values v1, . . . , vm, each player Pi chooses the next
m free identifiers id1, . . . , idm and, for j = 1, . . . , m, stores (idj , ⊥) in CO and
vj in CC . Pi outputs (shuffled, sid, v1, . . . , vm, id1, . . . , idm).

Fig. 4. Part 2 of Protocol πCG.
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Protocol πCG (Part 3)

– Open Card: Every player Pi proceeds as follows to open card with id id:
1. Organize the card values in CC in alphabetic order obtaining an ordered

list CC = {v1, . . . , vm}.
2. Sample a random ri

$← {0, 1}κ and send (sid, ri) to FRO, receiving (sid, hi)
as response. Broadcast (sid, hi).

3. After all (sid, hj) for j �= i and j = 1, . . . , n are received, broadcast (sid, ri).
4. For j = 1, . . . , n and j �= i, send (sid, rj) to FRO, receiving (sid, h′

j) as
response and checking that hj = h′

j . If all checks succeed, compute k =∑
i ri mod m, proceeding to the Recovery phase otherwise. Define the

opened card value as vk, remove vk from CC and update (id, ⊥) in CO to
(id, vk).

– Recovery: Player Pi proceeds as follows:
• Starting Recovery: Player Pi sends (recovery, sid) to FSC if it starts the

procedure.
• Upon receiving a message (request, sid) from FSC, every player Pi sends

(response, sid, Pi,Checkpointi, proci) to FSC, where Checkpointi is Pi’s lat-
est checkpoint witness and proci are Pi’s witnesses for the protocol proce-
dure that started after the latest checkpoint; or acknowledges the witnesses
sent by another party if it is the same as the local one.

• Upon receiving a message (nxt-stp, sid, Pi, proc, round) from FSC, player
Pi sends (nxt-stp-rsp, sid, Pi, proc, round,msg) to FSC, where msg is the
protocol message that should be sent at round round of procedure proc of
the protocol according to GR.

• Upon receiving a message (nxt-stp-rsp, sid, Pj , proc, round,msg) from
FSC, every player Pi considers msg as the protocol message sent by Pj in
round of procedure proc and take it into consideration for future messages.

• Upon receiving a message (recovered, sid, proc,Checkpoint) from FSC, ev-
ery player Pi records Checkpoint as the latest checkpoint and continues
protocol execution according to the game rules GR.

Fig. 5. Part 3 of Protocol πCG.

4 The Framework

Our framework can be used to implement any card game without secret state
where cards that were previously randomly shuffled are publicly revealed. Instead
of representing cards as ciphertexts as in previous works, we exploit the fact
that publicly opening a card from a set of previously randomly shuffled cards is
equivalent to randomly sampling card values from an initial set of card values.
The main idea is that each opened card has its value randomly picked from a
list of “unopened cards” using randomness generated by a coin tossing protocol
executed by all parties. This protocol requires no shuffling procedure per se and
requires 2 rounds for opening each card (required for executing coin tossing).
Later on, we will show that this protocol can be optimized in different ways, but
its simple structure aids us in describing our basic approach.
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When the game rules GR specify that a card must be created, it is added to
a list of cards that have not been opened CC . When a card is opened, the parties
execute a commit-and-open coin tossing protocol to generate randomness that is
used to uniformly pick a card from the list of unopened cards CC , removing the
selected card from CC and adding it to a list of opened cards CO. This technique
works since every card is publicly opened and no player gets to privately learn
the value of a card with the option of not revealing it to the other players,
which allows the players to keep the list of unopened cards up-to-date. We
implement the necessary commitments with the canonical efficient random oracle
based construction, where a commitment is simply an evaluation of the random
oracle on the commitment message concatenated with some randomness and
the opening consists of the message and randomness themselves. This simple
construction achieves very low computational and communication complexities
as computing a commitment (and verifying and opening) requires only a single
call to the random oracle and the commitment (and opening) can be represented
by a string of the size of the security parameter. Besides being compact, these
commitments are publicly verifiable, meaning that any third party party can
verify the validity of an opening, which comes in handy for verifying that the
protocol has been correctly executed.

In order to implement financial rewards/penalties enforcement, our protocol
relies on a stateful contract functionality FSC that provides a mechanism for the
players to deposit betting and collateral funds, enforcing correct distribution
of such funds according to the protocol execution. If the protocol is correctly
executed, the rewards corresponding to a game outcome are distributed among
the players. Otherwise, if a cheater is detected, FSC distributes the cheater’s
collateral funds among honest players, who also receive a refund of their betting
and collateral funds. After each game action (e.g. betting and card opening),
all players cooperate to generate a checkpoint witness showing that the protocol
has been correctly executed up to that point. This compact checkpoint witness
is basically a set of signatures generated under each player’s signing key on the
opened and unopened cards lists and vectors representing the players’ balance
and bets. In case a player suspects cheating, it activates the recovery procedure
of FSC with its latest checkpoint witness, requiring players to provide their
most up-to-date checkpoint witnesses to FSC (or agree with the one that has
been provided). After this point, FSC mediates protocol execution, receiving
from all players the protocol messages to be sent after the latest checkpoint
witness, ensuring their validity and broadcasting them to all players. If the
protocol proceeds until next checkpoint witness is generated, the execution is
again carried out directly by the players without involving FSC. Otherwise, if a
player is found to be cheating (by failing to provide their messages or providing
invalid ones), FSC refunds the honest parties and distributes among them the
cheater’s collateral funds. Protocol πCG is presented in Figs. 3, 4 and 5.

Security Analysis: The security of protocol πCG in the Universal
Composability framework is formally stated in Theorem 1. In order to prove this
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theorem we construct a simulator such that an ideal execution with this simulator
and functionality FCG is indistinguishable from a real execution of πCG with
any adversary. The main idea behind this simulator is that it learns from FCG

the value of each opened card, “cheating” in the commit-and-open coin tossing
procedure in order to force it to yield the right card value. The simulator can
do that since it knows the values that each player has committed to with the
random oracle based commitments and it can equivocate the opening of its own
commitment, forcing the coin tossing to result in an arbitrary output, yielding an
arbitrary card value. The simulation for the mechanisms for requesting players
actions and enforcing financial rewards/penalties follows the same approach as in
Royale [14]. Namely, the simulator follows the steps of an honest user and makes
FCG fail if a corrupted party misbehaves, subsequently activating the recovery
procedure that results in cheating parties being penalized and honest parties
being compensated.

Theorem 1. For every static active adversary A who corrupts at most n −
1 parties, there exists a simulator S such that, for every environment Z, the
following relation holds:

IDEALFCG,S,Z ≈c HYBRIDFRO,FDSIG,FSC

πCG,A,Z .

The proof is presented in the full version of this work [13].

5 Optimizing Our Protocol

In this section, we construct optimized protocols that improve on the round
complexity of the open card operation, which represents the main efficiency
bottleneck of our framework. The basic protocol constructed in the previous
section requires a whole “commit-then-open” coin tossing to be carried out for
each card that is opened. Even though this coin tossing can be implemented
efficiently in the random oracle model, its inherent round complexity implies that
each card opening requires 2 rounds. We show how the open card operation can
be executed with only 1 round while also improving communication complexity
but incurring a higher local space complexity (linear in the number of cards)
for each player in the Shuffle Card operation. Next, we show how to achieve the
same optimal round complexity with a low constant local space complexity.

Lower Round and Communication Complexities: A straightforward
way to execute the Open Card operation in one round is to pre-process the
necessary commitments during the Shuffle Cards operation. Basically, in order
to pre-process the opening of m cards, all players broadcast m commitments
to random values in the Shuffle Cards phase. Later on, every time the Open
Card operation is executed, each player broadcasts an opening to one of their
previously sent commitments. Besides making it possible to open cards in only
one round, this simple technique reduces the communication complexity of
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Protocol πCG−PRE

– Create Shuffled Deck: When requested by GR to create a shuffled deck
of cards containing cards with values v1, . . . , vm, each player Pi creates
CO = {(id1, ⊥), . . . , (idm, ⊥)} and CC = {v1, . . . , vm} following the instruc-
tions of πCG. Moreover, for l = 1, . . . , m, Pi samples a random ri,l

$← {0, 1}κ

and sends (sid, ri,l) to FRO, receiving (sid, hi) in response. Pi broadcasts
(sid, hi,1, . . . , hi,m). After all (sid, hj,1, . . . , hj,m) for j �= i and j = 1, . . . , n
are received, Pi outputs (shuffled, sid, v1, . . . , vm, id1, . . . , idm).

– Open Card: Each player Pi proceeds as follows to open card with id id:
1. Organize the card values in CC in alphabetic order obtaining an ordered

list CC = {v1, . . . , vm}.
2. Broadcast (sid, ri,l), where hi,l is the next available (still closed) commit-

ment generated in the Shuffle Cards operation.
3. For j = 1, . . . , n and j �= i, send (sid, rj,l) to FRO, receiving (sid, h′

j,l)
in response and checking that hj,l = h′

j,l. If all checks succeed, compute
k =

∑
i ri mod m, proceeding to the Recovery phase otherwise. Define the

opened card value as vk, remove vk from CC and update (id, ⊥) in CO to
(id, vk).

Fig. 6. Protocol πCG−PRE (only phases that differ from Protocol πCG are described).

the Open Card operation, since each player only broadcasts one opening per
card (but no commitment). However, it requires each player to store (n − 1)m
commitments (received from other players) as all well as m openings (for their
own commitments). Protocol πCG−PRE is very similar to Protocol πCG, only
differing in the Shuffle Card and Open Card operations, which are presented
in Fig. 6. The security of this protocol is formally stated in Theorem 2.

Theorem 2. For every static active adversary A who corrupts at most n −
1 parties, there exists a simulator S such that, for every environment Z, the
following relation holds:

IDEALFCG,S,Z ≈c HYBRIDFRO,FDSIG,FSC

πCG−PRE,A,Z .

The proof is very similar to that of Theorem 1, a sketch is presented in the
full version of this work [13].

Lower Round and Space Complexities via Coin Tossing Extension:
Even though the previous optimization reduces the round complexity of our
original protocol, it introduces a high local space complexity overhead, since
each party needs to store the preprocessed commitments. In order to achieve
low round complexity without a space complexity overhead, we show that a
single coin tossing can be “extended” to open an unlimited number of cards.
With this technique, we first run a coin tossing in the Check-in phase, later
extending it to obtain new randomness used to pick each card that is opened.
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Protocol πCG−VRF

– Check-in: When requested by GR to shuffle cards with identifiers (id1, . . . , idm)
to be shuffled, each Pi proceeds as follows:
1. Execute the steps of the Check-in phase of πCG.
2. Send (KeyGen, sid) to FVRF, receiving (Verification Key, sid,VRF.vki)

in response. Sample a random seedi
$← {0, 1}κ and send (sid, seedi) to

FRO, receiving (sid, hi) in response. Broadcast (sid,VRF.vki, hi).
3. After all (sid,VRF.vkj , hj) for j �= i and j = 1, . . . , n are received, broad-

cast (sid, seedi).
4. For j = 1, . . . , n and j �= i, send (sid, seedj) to FRO, receiving (sid, h′

j)
in response and checking that hj = h′

j . If all checks succeed, compute
seed =

∑
i seedi, proceeding to the Recovery phase otherwise. Set cnt = 1

and broadcast message (shuffled, sid, id1, . . . , idm).
– Open Card: Every player Pi proceeds as follows to open card with id id:

1. Organize the card values in CC in alphabetic order obtaining an ordered
list CC = {v1, . . . , vm}.

2. Send (EvalProve, sid, seed|cnt) to FVRF, receiving (Evaluated, sid,
yi, πi) in response. Broadcast (sid, yi, πi).

3. For j = 1, . . . , n and j �= i, send (Verify, sid, seed|cnt, yj , πj ,VRF.vkj) to
FVRF, checking that FVRF answers with (Verified, sid, seed|cnt, yj , πj , 1).
If all checks succeed, compute k =

∑
i yi mod m, proceeding to the Re-

covery phase otherwise. Define the opened card value as vk, remove vk from
CC , update (id, ⊥) in CO to (id, vk) and increment the counter cnt.

Fig. 7. Protocol πCG−VRF (only phases that differ from Protocol πCG are described).

We develop a new technique for extending coin tossing based on verifiable
random functions, which is at the core of our optimized protocol. The main idea
is to first have all parties broadcast their VRF public keys and execute a single
coin tossing used to generate a seed. Every time a new random value is needed,
each party evaluates the VRF under their secret key using the seed concatenated
with a counter as input, broadcasting the output and accompanying proof. Upon
receiving all the other parties’ VRF output and proof, each party verifies the
validity of the output and defines the new random value as the sum of all outputs.
Protocol πCG−VRF is very similar to Protocol πCG, only differing in the Shuffle
Card and Open Card operations, which are presented in Fig. 7. The security of
this protocol is formally stated in Theorem 3.

Theorem 3. For every static active adversary A who corrupts at most n −
1 parties, there exists a simulator S such that, for every environment Z, the
following relation holds:

IDEALFCG,S,Z ≈c HYBRIDFRO,FDSIG,FVRF,FSC

πCG−VRF,A,Z .

The proof is very similar to that of Theorem 1, a sketch is presented in the
full version of this work [13].
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6 Concrete Complexity Analysis

In this section, we analyse our protocols’ computational, communication, round
and space complexities, showcasing the different trade-offs obtained by each
optimization. We compare our protocols with Royale [14], which is the currently
most efficient protocol for general card games (with secret state) that enforces
financial rewards and penalties. We focus on the Create Shuffled Deck and Open
Card operations, which represent the main bottlenecks in card game protocols.
Interestingly, our protocols eliminate the need for expensive zero knowledge
proofs of shuffle correctness in the Create Shuffled Card, which are the most
expensive components in previous works. Protocol πCG only requires a simple
coin tossing to perform the Open Card procedure at the cost of one extra round
(in comparison to previous protocols), while our optimized protocols πCG−PRE

and πCG−VRF implement this operation with a single round.

Table 1. Complexity comparison of the Shuffle Cards and Open Card operation of
Protocols πCG, πCG−PRE and πCG−VRF with n and m cards, excluding checkpoint witness
signature generation costs. The cost of calling the random oracle is denoted by H and
the cost of a modular exponentiation is denoted by Exp. The size of elements of G and
Z are denoted by |G| and |Z|, respectively.

Operation Protocol Computational Communication Space Rounds

Open card πCG n H 2nκ 0 2

πCG−PRE (n − 1) H nκ nmκ 1

πCG−VRF 3n H
+(4n − 1) Exp

3nκ + n |Z|) n |G| + κ 1

Royale [14] n H +4n Exp n |G| + 2n |Z| 2m |G| 1

Create
shuffled deck

πCG 0 0 0 0

πCG−PRE m H nmκ 0 1

πCG−VRF 0 0 0 0

Royale [14] n H +
(2 log(�√m�)
+4n −
2)m Exp

n(2m + �√m�) G
+5n�√m� Z

0 n

We estimate the computational complexity of the Shuffle Cards and Open
Card operations of our protocols in terms of the number of RO calls and
modular exponentiations. We present complexity estimates excluding the cost
of generating the checkpoint witness signatures, since these costs are the same
in both Royale and our protocols (1 signature generation and n − 1 signature
verifications). The communication and space complexities are estimated in terms
of the number of strings of size κ, and elements from G and Z. In order to estimate
concrete costs, we assume that FRO is implemented by a hash function with κ
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bits outputs. Moreover, we assume that FVRF is implemented by the 2-Hash-DH
verifiable oblivious pseudorandom function construction of [16] as discussed in
Sect. 2. This VRF construction requires 1 modular exponentiation to generate a
key pair, 3 modular exponentiations and 3 calls to the random oracle to evaluate
an input and generate a proof, and 4 modular exponentiations and 3 calls to the
random oracle to verify an output given a proof. A verification key is one element
of a group G and the output plus proof consist of 3 random oracle outputs and
an element of a ring Z of same order as G. The estimates for Royale are taken
from [14].

Our concrete complexity estimates are presented in Table 1. Notice that
our basic protocol πCG and our optimized protocol πCG−VRF do not require a
Create Shuffled Deck operation at all, while Protocol πCG−PRE requires a cheap
Create Shuffled Cards operation where a batch of commitments to random
values are performed. In fact, our protocols eliminate the need for expensive
zero knowledge proofs of shuffle correctness, which is the main bottleneck in
previous works such as Royale [14], the currently most efficient protocol for card
games with secret state. Protocol πCG−PRE improves on the round complexity
of the Open Card operation of protocol πCG, requiring only 1 round and the
same computational complexity but incurring in a larger space complexity as
each player must locally store nmκ bits to complete this operation, since they
need to store a number of pre-processed commitments that depends on both
the number of players and the number of cards in the game. We solve this local
storage issue with Protocol πCG−VRF, which employs our “coin tossing extension”
technique to achieve local space complexity independent of the number of cards,
which tends to be much larger than the number of players. We remark that the
computational complexity of the Open Card operation of πCG−VRF is equivalent
to that of Royale [14], while the communication and space complexities are much
lower.
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Abstract. In this paper, we propose secret-sharing-based bit-
decomposition and modulus-conversion protocols for a prime order ring
Zp with an honest majority: an adversary can corrupt k − 1 parties of
n parties and 2k − 1 ≤ n. Our protocols are secure against passive and
active adversaries depending on the components of our protocols. We
assume a secret is an �-bit element and 2�+�log m� < p, where m = k in
the passive security and m =

(
n

k−1

)
in the active security. The outputs

of our bit-decomposition and modulus-conversion protocols are � tuple
of shares in Z2 and a share in Zp′ , respectively, where p′ is the modulus
after the conversion. If k and n are small, the communication complexity
of our passively secure bit-decomposition and modulus-conversion proto-
cols are O(�) bits and O(�log p′�) bits, respectively. Our key observation
is that a quotient of additive shares can be computed from the least sig-
nificant �log m� bits. If a secret a is “shifted” and additively shared as
xis so that 2�log m�a =

∑m−1
i=0 xi = 2�log m�a + qp, the least significant

�log m� bits of
∑m−1

i=0 xi determine q since p is an odd prime and the

least significant �log m� bits of 2�log m�a are 0s.

Keywords: Bit decomposition · Modulus conversion
Secure computation · Secret sharing · Honest majority

1 Introduction

Secure computation enables parties with inputs to compute a function on the
inputs while keeping them secret. There are security notions that secure compu-
tation should satisfy, e.g., privacy, meaning the protocol reveals nothing except
the output, and correctness, meaning the protocol computes the desired func-
tion. These notions should be satisfied in the presence of an adversary, and there
are two classical adversary models according to adversaries’ behaviors: passive
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(i.e., semi-honest) and active (i.e., malicious). Passive security means an adver-
sary follows the protocol but may try to learn something from the protocol
transcript, and active security means the adversary tries to cheat with an arbi-
trary strategy including deviating from the protocol. Active security provides
stronger security guarantee but passive security is sufficient in some cases, e.g.,
each party somewhat trusts each other but cannot share their information due to
privacy regulations, parties cannot tamper with an installed program of secure
computation, and the only thing they can do is seeing the input and output.

An adversary can corrupt a party to see its input and output and control
its behavior. There are two major settings specifying the number of parties the
adversary can corrupt. Honest majority means an adversary can corrupt less
than half the parties, and dishonest majority means it can corrupt more than
half. Security with a dishonest majority provides stronger security guarantee
but security with an honest majority is sufficient in some cases, for example,
each party is a “somewhat” trusted authority, such as a government agency of
a different country that may not collude with other agencies.

Secure computation can accelerate an application of sensitive data since one
can analyze data while they are secret by using secure computation, e.g., detect-
ing tax fraud [3] and aggregating clinical information [14]. Despite the advantage
of secure computation, it has not been widely used in practice. One of main rea-
sons is its inefficiency. Secure computation tends to require heavy computations
and communication; thus, its performance is typically much lower than that of
local computation when the same function is computed. Therefore, to achieve
better performance is one of the main challenges in secure computation.

1.1 Bit Decomposition and Modulus Conversion

When we are interested in secure computation on an integer input a ∈ Zp, there
are two major representations to describe an intended function: an arithmetic
circuit and a Boolean circuit. An input and output of an arithmetic circuit are
represented as elements in Zp, while those of a Boolean circuit are in Z2.

Secure computation in better suited representation provides better perfor-
mance. For example, addition and multiplication (in Zp) can be computed effi-
ciently by an arithmetic circuit, while not by a Boolean circuit. In contrast,
bit-operations, such as comparison and calculating Hamming weight, can be
computed efficiently by a Boolean circuit, while those operations are non-trivial
tasks for an arithmetic circuit.

To bridge these two representations, Damg̊ard et al. [7] and Schoenmak-
ers and Tuyls [18] proposed bit-decomposition protocols to convert the integer
representation into the binary one. The former is a secret-sharing (SS)-based
protocol and unconditionally secure with an honest majority, while the latter is
a homomorphic-encryption-based protocol and computationally secure without
an honest majority. In the honest majority case, several subsequent works have
improved the efficiency [4,8,16,17,20].

There are two types in SS-based bit-decomposition protocols based on
whether each bit of the bit-decomposition result of an original secret is in Zp
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or in Z2. If these bits are shared in Zp, it is easy to convert the bit represen-
tation into an integer representation after computations with a Boolean circuit.
In contrast, if these bits are shared in Z2, a Boolean circuit can be computed
efficiently since the parties can locally compute an XOR gate. In this paper, we
focus on the latter type of output; the output of the bit-decomposition protocol
is shares in Z2.

A modulus-conversion protocol is a related protocol that converts a share
in Zp into that in Zp′ (with p �= p′) without changing an original secret. This
protocol corresponds to a type-casting operation (i.e., type conversion) for ordi-
nary computers. In many applications, a user of secure computation may want
to obtain values that are not reduced by modulus. For example, if we intend to
obtain the sum of shared secrets, we want to obtain

∑
ai, not

∑
ai mod p. In

this case, we have to manage the shared values not to exceed the modulus p.
However, if we do not know which function will be computed with shared secrets,
we cannot determine beforehand how large p should be. Even if we use a large
enough p for most functions, the communication complexity of secure computa-
tion is at least proportional to log p and the efficiency therefore decreases. The
modulus-conversion protocol can be a solution of this problem; namely, when an
output of secure computation will exceed p, we can change p into p′, which is large
enough to represent the output. Another application of a modulus-conversion
protocol is the inverse of a bit-decomposition protocol by setting p = 2.

1.2 Our Contribution

We propose an SS-based bit-decomposition protocol for Zp and modulus-
conversion protocol from Zp to Zp′ with low communication complexity and
an honest majority, where p and p′ are prime numbers. Our basic protocols are
passively secure, but can be made actively secure if the number of parties is
small. In this paper, we consider active security with abort in which an hon-
est party will abort if an adversary cheats. In our protocols, it is assumed that
the parties know the bit-length � of a secret, i.e., a secret a satisfies a < 2�+1.
Therefore, the output of our bit-decomposition protocol is � shares in Z2.1 We
also assume � + �log m� < �log p�, where m = k in the passive security case and
m =

(
n

k−1

)
in the active security case, where k is the number of parties who

can reconstruct the secret and n is the number of all parties. It seems natural
that �log p� is somewhat larger than � and the parties know � to prevent an
output of secure computation from exceeding p; nevertheless, our protocol sup-
ports neither full extraction of the bits of secret nor too many parties in which
�+�log m� ≥ �log p�. In addition,

(
n

k−1

)
is exponential in n so our actively secure

protocol is only for a small number of parties.
Our protocols consist of bit-wise share generation, random share generation,

and Boolean circuit evaluation. If p is a Merssene prime, both of our protocols
can be simplified and their communication complexity is improved in a con-
stant factor. By using ordinary circuits and regarding k and n as constants, the

1 If one wants to use Shamir’s SS scheme, GF(2�log n�+1) can be an alternative option.
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communication complexity of our bit-decomposition protocol is O(�) bits, which
seems optimal since the output is an �-tuple of Z2. For the specific param-
eters of (k, n) = (2, 3) and when p is a Merssene prime, the communication
complexity is 10� + 4 bits, which is smaller than the best known result [4] of
17�log p� + 12�log�log p�� bits, while [4] supports full extraction of bits and uses
a different ring p = 2d. Our modulus-conversion protocol has a similar structure,
and the communication complexity is O(�log p′�) bits, which seems also optimal
since the output of the protocol is a share in Zp′ . We note that out protocols are
not constant-round protocols. Nonetheless, the round complexity is comparable
to that of constant-round protocols when (k, n) = (2, 3).

1.3 Technical Overview

A common difficulty in constructing bit-decomposition and modulus-conversion
protocols is secure computation of a quotient. Let a ∈ Zp be a secret and assume
a is additively shared as a =

∑m−1
i=0 xi mod p. When we intend to obtain a

share of a in Z2, one may try to replace xi with xi mod 2. However, it does not
work since

∑m−1
i=0 xi mod 2 = a + qp mod 2 = a + (q mod 2)(p mod 2) �= a.

Here, p is public, but q is unknown and thus q should be securely computed. A
näıve way to obtain q is to securely compute

∑m−1
i=0 xi by a Boolean circuit and

compare
∑m−1

i=0 xi with p. However, this näıve method requires O(�log p�)-bit
communication to compute

∑m−1
i=0 xi by a Boolean circuit.

Our key observation is that a quotient of additive shares can be computed
from the least significant u bits, and we call this property the quotient transfer. In
both of our protocols, we first additively share 2ua rather than a, i.e.,

∑m−1
i=0 xi =

2ua + qp. Recall that we assume � + u ≤ �log p�, and thus 2ua mod p = 2ua.
We observe that the least significant u bits of

∑m−1
i=0 xi represents q since p is

an odd prime and the least significant u bits of 2ua are 0s. Therefore, we can
obtain q by securely computing the least significant u bits of

∑m−1
i=0 xi. By using

the quotient transfer, � + u bits and �log p′� + u bits of
∑m−1

i=0 xi are sufficient
for our bit-decomposition and modulus-conversion protocols, respectively.

1.4 Related Work

Damg̊ard et al. [7] proposed a constant round bit-decomposition protocol,
which was simplified by Nishide and Ohta [16]. Toft proposed another bit-
decomposition protocol [20] with almost linear communication complexity, and
Reistad and Toft [17] proposed a bit-decomposition protocol with linear com-
munication complexity while admitting statistical privacy. In these works, the
output of a bit-decomposition protocol is shares in Zp, and linear communication
complexity means that the number of invocations of a multiplication protocol
is linear in �log p�. In this paper, we measure the communication complexity in
bits among all the parties. With respect to the communication complexity in
bits, the above mentioned existing protocols incur at least O(�log p�2) since a
multiplication protocol requires O(�log p�)-bit communication.
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A bit-decomposition protocol that outputs XOR-free shares was proposed by
From and Jakobson [8]. They use a share in GF(2256) as an output. Bogdanov
et al. [4] proposed a bit-decomposition protocol that is dedicated to the replicated
SS scheme [6,13] with (k, n) = (2, 3) and p = 2d for some positive integer d. The
output of their bit-decomposition protocol is �log p� shares in Z2 since they
support full extraction.

Regarding modulus conversion, Bogdanov et al. [4] proposed a specific case
of a modulus-conversion protocol from Z

�log p�
2 into Zp. This protocol is also

dedicated to the replicated SS scheme with (k, n) = (2, 3) and p = 2d for some
positive integer d. This protocol is the inverse of a bit-decomposition protocol.

2 Preliminaries

Let a := b denote that a is defined by b, and a||b denote the concatenation
of a and b. If a is an �-bit element, a(i) denotes the i-th bit of a, where we
count the indices in the right-to-left order with 0 being the initial index, i.e.,
a := a(�−1)|| · · · ||a(0). If A is a probabilistic algorithm, a ← A(b) means a is the
output of A on input b. The notations R, Z, Zp, and Z

m
p denote a ring, the set

of integers, Z/pZ, and m-tuple of the elements in Zp, respectively. For a relation
R, 〈R〉 denotes 1 if R is true and 0 otherwise. For example, 〈a <? b〉 denotes 1
if a < b and 0 otherwise.

2.1 Mersenne Prime

A Mersenne prime is a prime number of the form p = 2e − 1 for some integer
e. It provides efficient modular arithmetic, e.g., [5], since modulo a Mersenne
prime can be computed by bit-shifting and addition: If a = a02e + a1, then a
mod p = a02e + a1 mod p = a0 + a1 mod p holds since 2e − 1 = 0 mod p.

2.2 Security Model and Definition

We consider SS-based secure computation with an honest majority. In this set-
ting, there are n parties P0, . . . , Pn−1, a secret is shared among the n parties via
SS, any k parties can reconstruct the secret from their shares, and an adversary
corrupts up to k − 1 parties at the beginning of the protocol, where 2k − 1 ≤ n.

We consider the client/server model. This model is used to outsource secure
computation, where any number of clients send shares of their inputs to the
servers. Therefore, both the input and output of the servers are shares, and
both of our protocols are therefore share-input and share-output protocols.

Regarding adversarial behaviors, we consider two security models: passive
and active security with abort. We prove the security of our protocols in a
hybrid model, where parties run a protocol with real messages and also have
access to a trusted party computing a subfunctionality for them. When the
subfunctionality is g, we say that the protocol works in the g-hybrid model. We
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give a brief explanation here and the formal definitions of security will appear
in the full version.

Passive Security. In passive security, corrupted parties follow a protocol. There-
fore, a passive adversary tries to obtain information about a secret from tran-
scripts that the corrupted parties have. Formally, we say that a protocol is pas-
sively secure if there is a simulator that simulates the view of the corrupted
parties from the inputs and outputs of the protocol [11].

Active Security with Abort. In this paper, an actively secure protocol is a secure
computation with abort. This means that if an adversary cheats, an honest party
will abort. This security model does not guarantee fairness: An adversary may
obtain the outputs of corrupted parties while the honest parties do not.2 Note
that we do not care about fairness even it is possible with an honest majority.
This is because efficient circuit evaluation protocols are known [9,10] in this
security model, and it may be difficult to reveal a secret without abort efficiently.
From here on, in this paper, active security means active security with abort.

2.3 Secret Sharing

We use an unconditionally secure linear SS scheme [2] that supports the following
algorithms, protocols, and local operations.

– Share: On input a ∈ R, this algorithm outputs shares of a. The notation [a]i
denotes Pi’s share and [a] denotes a sharing, which is a tuple of all shares.
Several rings will appear, and thus we explicitly indicate the ring to which
shares/sharings belong. For example, [a]Zp denotes a sharing of a in Zp, while
[a]Z2 denotes a sharing of a in Z2. In addition, [a]Z

m
2 denotes a tuple of sharings

([a0]Z2 , . . . , [am−1]Z2), where a =
∑m−1

i=0 2iai.
– Reconstruction: On input k shares, this algorithm outputs a secret. For any

linear SS scheme, a secret can be reconstructed by a linear combination of
k shares. For example, we denote the linear combination of the shares of
P0, . . . , Pk−1 as a =

∑k−1
i=0 λi[a]i for some λi.3

– Reveal: This is a protocol for reconstructing a secret from its shares. The
requirements of this protocol are different depending on considered security
models. In the presence of a passive adversary, given a sharing of a, this
protocol guarantees that at the end of the execution, all the parties obtain a.
When we consider an active adversary, this protocol guarantees that at the
end of the execution, if [a] is not correct, i.e., either a secret reconstructed
from some k shares is ⊥ or does not equal to that from other k shares, then
all the honest parties will abort. Otherwise, if [a] is correct, then each party
will either output a or abort.

2 The outputs of our protocols are shares, so the adversary cannot obtain any secret
information.

3 This is a slightly small class of SS schemes compared to [2] with respect that each
party has a single share.
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– Local operations: Given sharings [a] and [b] and a scalar α ∈ R, the parties
can generate sharings of [a + b], [αa], and [α + a] using only local operations.
The notations [a] + [b], α[a], and α + [a] denote these local operations,
respectively.

– Multiplication protocol and secure circuit evaluation: Given sharings [a] and
[b], the parties can generate [ab] by the multiplication protocol. Combin-
ing local operations with the multiplication protocol, we can compute any
Boolean circuit over shared data.

Concrete examples of a linear SS scheme are Shamir’s scheme [19] and the
replicated SS scheme [6,13]. In this paper, we use Zp, Zp′ , and Z2 as instanti-
ations of a ring, where p and p′ are prime numbers. We especially say that a
is additively shared in Zp if a =

∑m−1
i=0 xi mod p for some m, and we call xi a

sub-share.
Although an input and output of our protocols can be shares of any linear

SS scheme, the shares have to be converted into one of the replicated SS scheme
in our actively secure protocols. The share size of the replicated SS scheme is
exponential in n; therefore, our protocols with active security are suitable only
for a small number of parties, whereas our protocols with passive security do not
have this restriction.

Replicated Secret Sharing Scheme. The replicated SS scheme [6,13] is an SS
scheme in which a secret is represented as an addition of sub-shares and each
sub-share corresponds to a maximal unqualified set of parties.

Protocol 1. Share conversion from a linear SS scheme into the replicated SS
scheme
Input: [a]Zp

Output: [[a]]Zp

1: The parties call Frand and receive [[r]]Zp .
2: The parties locally convert [[r]]Zp into [r]Zp .
3: The parties reveal [a − r]Zp and obtain a − r.
4: [[a]]Zp := (a − r) + [[r]].
5: The parties output [[a]]Zp .

Let m :=
(

n
k−1

)
and T = {T0, . . . ,Tm−1} be the family of all (k − 1)-subsets

of {0, . . . , n− 1}. We especially use the notation [[·]]i (resp. [[·]]) for a share (resp.
a sharing) of the replicated SS scheme. Shares of the replicated SS scheme in
Zp are generated as follows. A secret a is additively shared into m sub-shares as
a =

∑m−1
i=0 xi mod p, and a share for Pi is [[a]]i = {xj | i /∈ Tj ,Tj ∈ T}. Here,

k − 1 parties cannot obtain any information about a since there exists Tj that
contains all the corrupted parties, and an adversary cannot know xj .

The size of a share of the replicated SS scheme becomes very large for a large
number of parties since each party has

(
n−1
k−1

)
sub-shares. However, the replicated

SS scheme has an attractive property that the parties can generate a share of a
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random number without interaction, which is called pseudorandom secret sharing
(PRSS) [6]. Formally, PRSS securely computes the following functionality Frand.

FUNCTIONALITY 2.1 (Frand – Generating shares of a random value)
Upon receiving id from Pi for 0 ≤ i < n, sample r ← Zp, generate [[r]]Zp by the

sharing algorithm, and send [[r]]
Zp

i to Pi

Share Conversion Among SS Schemes. It is known that shares can be converted
among additive shares, a linear SS scheme, and the replicated SS scheme.

A share of a linear SS scheme [a]i can be locally converted to additive shares
with k sub-shares by setting xi := λi[a]i, where Pi has xi for 0 ≤ i < k. On
the contrary, when Pi for 0 ≤ i < k has an additive share xi, the shares can
be converted by sharing all the sub-shares xi via a linear SS scheme and adding
them all.

A share of the replicated SS scheme can be locally converted into that of
a linear SS scheme [6]. On the contrary, a share of a linear SS scheme can
be converted into that of the replicated SS scheme by using Protocol 1. This
protocol is actively secure in the Frand-hybrid model since we assume that the
reveal protocol is actively secure.

Secure Circuit Evaluation on Linear SS. In our protocols, several circuits are
securely computed. We consider the sum, carryless-sum, and zero-test circuits.
The sum circuit on input m �-bit elements, outputs (�log m� + �)-bit element
that is the sum of the inputs. The carryless-sum circuit is the same as the sum
circuit except the output is �-bit element by discarding the most significant
�log m� bits. The zero-test circuit on input m 1-bit elements, outputs 0 if all
the inputs are 0, and 1 otherwise. We construct our protocols in a modular
way using the functionalities Fsum, Fclsum, and Fzero that correspond to the
sum, carryless-sum, and zero-test circuits, respectively. The formal descriptions
of those functionalities will appear in the full version.

3 Quotient Transfer

In this section, we show our key observation that we call quotient transfer. Infor-
mally, quotient transfer means that, if a “shifted” secret 2ua is additively shared
as

∑m−1
i=0 xi = 2ua + qp, the parties can compute the quotient q from the least

significant u bits of
∑m−1

i=0 xi, where u = �log m�.
Theorem 3.1. Let m be a positive integer, u = �log m�, and 2u < p. Let
(x0, . . . , xm−1) be a tuple of elements in Zp satisfying

∑m−1
i=0 xi = 2ua + qp.

Then, the quotient q satisfies

q = (p mod 2u)−1
m−1∑

i=0

xi mod 2u. (1)
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Proof. We observe

m−1∑

i=0

xi mod 2u = 2ua + qp mod 2u = q(p mod 2u) mod 2u

since q ≤ m − 1 < 2u. In addition, 2u and (p mod 2u) are co-prime, and thus
(p mod 2u)−1 exists.

The prime number p is public, and thus (p mod 2u)−1 can be computed by
every party. Therefore, Eq. 1 means that the quotient q can be computed from
the least significant u bits of

∑m−1
i=0 xi.

For practical applications, protocols with a small number of parties may be
used, and we will later consider the case m = 2 (i.e. three-party case). Further-
more, for performance reasons, a Mersenne prime is used for p. Therefore, in
the following, we give specific cases of Theorem 3.1 for these cases. The second
equation below shows that the parties can compute the quotient q from the LSB
of

∑m−1
i=0 xi in a secure three-party computation when p is a Mersenne prime.

Corollary 3.2. If p is a Mersenne prime, i.e., p = 2e − 1, Eq. (1) is

q = −
m−1∑

i=0

xi mod 2u

since p mod 2u = −1. Furthermore, when m = 2,

q = x0 + x1 mod 2.

4 Bit-Decomposition Protocol

In this section, we first show a useful equation for our proposed protocols, then
show our passively secure bit-decomposition protocol. After that, we discuss a
technique to achieve active security. Here, we show the protocol in which p is a
Mersenne prime, and will give a general protocol in the full version.

4.1 Equation for Bit Decomposition

The following equation can be derived from quotient transfer.

Theorem 4.1. Let m,u, p, a, (x0, . . . , xm−1) be the same as Theorem 3.1, and �

be a positive integer such that � + u ≤ |p| and a < 2�+1. Let ru =
∑m−1

i=0 xi

mod 2u, p̃ = (p mod 2u)−1 mod 2u, and qu, z, and z′ be the quotients of
∑m−1

i=0 xi/2u, p̃
∑m−1

i=0 xi/2u, and pp̃/2u in modulo 2�+u, respectively. Then,

a = qu − z′ru − zp mod 2�.
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Proof. Let q be a quotient of
∑m−1

i=0 xi divided by p, i.e.,
∑m−1

i=0 xi = qp + 2ua.
Here, 2ua =

∑m−1
i=0 xi − qp in Z, therefore, 2ua = −qp +

∑m−1
i=0 xi mod 2�+u.

Recall that p̃ = (p mod 2u)−1 in modulo 2u. From Theorem 3.1,

−qp +
m−1∑

i=0

xi mod 2�+u

= −(p̃
m−1∑

i=0

xi mod 2u)(p mod 2�+u) +
m−1∑

i=0

xi mod 2�+u. (2)

Recall that ru =
∑m−1

i=0 xi mod 2u and z is the quotient of p̃
∑m−1

i=0 xi/2u

mod 2�+u. Then, Eq. (2) is equal to

−(p̃ru mod 2u)(p mod 2�+u) +
m−1∑

i=0

xi mod 2�+u

= −(p̃ru − z2u mod 2�+u)(p mod 2�+u) +
m−1∑

i=0

xi mod 2�+u

= −pp̃ru − zp2u +
m−1∑

i=0

xi mod 2�+u. (3)

Recall that qu and z′ are the quotients of
∑m−1

i=0 xi/2u mod 2�+u and pp̃/2u

mod 2�+u, respectively. In addition, pp̃ = 1 mod 2u. Then, Eq. (3) is equal to

−(z′2u + 1)ru − zp2u + qu2u + ru mod 2�+u = (qu − z′ru − zp)2u mod 2�+u.

Consequently, we obtain 2ua = (qu − z′ru − zp)2u mod 2�+u. By dividing both
sides by 2u, We finally obtain

a = qu − z′ru − zp mod 2�.

This concludes the proof.

We give a specific case of Theorem 4.1 in which p is a Mersenne prime as
follows.

Corollary 4.2. Under the same setting as in Theorem 4.1, if p is a Mersenne
prime, i.e., p = 2e − 1 for some integer e, it holds that

a = qu + 〈ru �=? 0 mod 2u〉 mod 2�. (4)

Proof. If p = 2e−1, then p̃ = 2u−1 mod 2�+u. In addition, z′ = −1 mod 2�+u

holds since pp̃ = (2e − 1)(2u − 1) mod 2�+u = −2u + 1 mod 2�+u.
Recall that z satisfies p̃ru mod 2u = p̃ru − z2u mod 2�+u. By substituting

p̃ = 2e − 1 mod 2�+u,

−ru mod 2u = (2u − 1)ru − z2u mod 2�+u
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and
z2u mod 2�+u = ru2u − (−ru mod 2u) − ru mod 2�+u.

Here,

−ru mod 2u = −
m−1∑

i=0

xi mod 2u =

{
0 if

∑m−1
i=0 xi mod 2u = 0,

2u − 1 otherwise.

Therefore, if ru = 0, then z = ru; otherwise, z = ru − 1. This is equivalent to
z = ru − 〈ru �=? 0〉. By substituting the above into Theorem 4.1, we conclude
the proof.

Theorem 4.1 and Corollary 4.2 show that a can be represented from the �+u
bits of

∑m−1
i=0 xi. We further obtain the following corollary since it is convenient

that an equation is represented by bit-operations of sub-shares. The following
corollary is in fact securely computed in our bit-decomposition protocol.

Corollary 4.3. Let m,u, p, a, (x0, . . . , xm−1) be the same as Theorem 4.1. Let
qi and ri be the bits of xi larger than u − 1 bit and those smaller than u bit,
respectively, and qu and ru be the bits of

∑m−1
i=0 ri larger than u−1 bit and those

smaller than u bit, respectively. Then,

a =
m−1∑

i=0

qi + qu + 〈ru �=? 0〉 mod 2�.

4.2 Passively Secure Bit-Decomposition Protocol

Our passively secure bit-decomposition protocol for Zp with a Mersenne prime
p, is derived from Corollary 4.3 as Protocol 2.

Security Against a Passive Adversary. Protocol 2 consists of share generation and
circuit evaluation, and the security of the protocol is therefore directly reduced
to them. Informally, share generation does not reveal any information about a
secret since SS is unconditionally secure. Therefore, Protocol 2 is passively secure
in the (Fsum,Fclsum,Fzero)-hybrid model.

4.3 Efficiency

The communication complexity of our bit-decomposition protocol is k(� +
u)shareZ2 + sumu,k + clsum�,k+2 + zerotestu bits, where shareZ2 denotes the
communication complexity to share a bit, sumu denotes that to securely compute
the sum on input k u-bit elements, clsum�,k+2 denotes that to securely compute
the carryless-sum circuit on input (k+2) �-bit elements4, and zerotestu denotes
that to securely compute the zero-test circuit on input u 1-bit elements. If k (and
u) is regarded as a constant, the communication complexity is O(�) bits since
4 Precisely, k �-bit elements, one u-bit element, and one 1-bit element are summed up.
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Protocol 2. Passively secure bit-decomposition protocol
Input: [a]Zp

Output: [a]Z
�
2

1: Pi computes xi := 2uλi[a]i mod p for u = �log k� and 0 ≤ i < k, and let the j-th

bit of xi be x
(j)
i .

2: for 0 ≤ i < k do
3: Pi shares x

(0)
i , . . . , x

(u−1)
i bit-by-bit in Z2, and the parties regard them as [ri]

Z
u
2 .

4: Pi shares x
(u)
i , . . . , x

(�+u−1)
i bit-by-bit in Z2, and the parties regard them as

[qi]
Z

�
2 .

5: The parties call Fsum on input [ri]
Z

u
2 for 0 ≤ i < k, and receive [

∑k−1
i=0 ri]

Z
2u
2 . (k

additions yield 2u-bit output).

6: The parties regard the least u bits of [
∑k−1

i=0 ri]
Z
2u
2 as [ru]Z

u
2 , and the others as

[qu]Z
u
2 .

7: The parties call Fzero on input [ru]Z
u
2 , and receive [〈ru �=? 0〉]Z2 .

8: The parties call Fclsum on input [q0]
Z

�
2 , . . . , [qk−1]

Z
�
2 , [qu]Z

u
2 , and [〈ru �=? 0〉]Z2 , and

receive [a]Z
�
2 := [

∑k−1
i=0 qi + qu + 〈ru �=? 0〉]Z�

2 .

9: The parties output [a]Z
�
2 .

shareZ2 is constant, clsum�,k+2 invokes O(�) multiplication protocols in Z2, and
a multiplication protocol in Z2 requires O(1)-bits communication per invocation.

For concrete comparison in a specific parameter, we give a precise commu-
nication complexity when (k, n) = (2, 3) and use the replicated SS scheme to
share Z2. We assume that sum and carryless-sum circuits compute a full adder
sequentially, and zerotest circuit computes an AND gate sequentially. Here,
u = �log k� = 1, share = 2,5 sum1,2 is MultZ2 , clsum�,4 is (� − 1)MultZ2 , and
zerotestu requires no communication since [〈ru �=? 0〉]Z2 = [ru]Z2+[qu]Z2 , where
MultZ2 denotes the communication complexity of a multiplication protocol in Z2.
If we use the replicated SS scheme, MultZ2 = 6 per invocation [12]. Therefore,
the communication complexity is 4(�+1)+6+6(�−1) = 10�+4 bits. This means
that, if � ≈ �log p�/2, the communication complexity of our bit-decomposition
protocol is as large as that of a multiplication protocol in Zp, which is 6�log p�.

There is no bit-decomposition protocol in which � + u < �log p� is assumed
and which outputs [a]Z

�
2 , and thus our protocol is formally incomparable to

existing bit-decomposition protocols. If we try to compare our bit-decomposition
protocol with existing ones, the most efficient bit-decomposition protocol is [4]
and its communication complexity is 5�log p� + 12(�log�log p�� + 1)�log p� =
17�log p�+12�log�log p�� bits. Even regarding �log p� = �, our protocol is about
three times faster. However, [4] supports full extraction and p = 2m, and thus it
is difficult to simply compare with ours.

The round complexity of our bit-decomposition protocol is 1 + sumu,k +
clsum�,k+2 + zerotestu, where sumu,k, clsum�,k+2, and zerotestu are the round
complexities of protocols instantiating Fsum, Fzero, and Fzero, respectively. If

5 This comes from a communication-efficient sharing given in the full version.
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(k, n) = (2, 3), the round complexity of our bit-decomposition protocol is 1+1+
(� − 1) + 0 = � + 1 if we use the same circuits in evaluating the communication
complexity.

4.4 Achieving Active Security Using Replicated SS

We show how to make Protocol 2 secure against an active adversary. Step 1 of
the protocol is local computation; therefore, it is secure even against an active
adversary. In addition, the steps from Step 5 are secure circuit evaluation. There-
fore, if we use an actively secure circuit evaluation protocol, such as [1,10,12,15],
these steps are secure against an active adversary, as desired.

The remaining steps are Steps 2, 3, and 4. In general, an adversary may
corrupt Pi and share an incorrect x̃i, and it is difficult to detect it. Therefore,
we prevent the adversary from mounting such an attack by making these steps
consist only of local computations. We show that if a secret is shared via the
replicated SS scheme, we can generate a bit-wise share of sub-shares by local
computations.

Consequently, our bit-decomposition protocol can be actively secure in the
(Fsum,Fzero,Fclsum)-hybrid model by converting a share by Protocol 1 at first,
and then performing local share generation of sub-shares.

The communication complexity of the actively secure version of our protocol
is at least O(�log p�) bits since revealing in Protocol 1 incurs this amount of
communication. Therefore, only if a secret is shared via the replicated SS scheme
from the beginning, the communication complexity of our actively secure bit-
decomposition protocol is O(�) bits, while O(�log p�) for a general linear SS
scheme.

Local Share Generation of Sub-shares in Replicated SS. In the replicated SS
scheme, each sub-share xi is held by n − k + 1 parties. To obtain a share of the
j-th bit of xi, each of the n − k + 1 parties sets his sub-share x′

i as the j-th bit
of xi, and the parties set all the other sub-shares as 0. It trivially holds that∑m−1

i=0 x′
i = xi. In general, the parties can locally generate an additive share

of f(xi) mod p′, where f is an arbitrary function. We give the algorithm in
Algorithm 3.

Algorithm 3. Local share generation of sub-shares in replicated SS
Input: The n − k + 1 parties have xi ∈ Zp

Output: Each Pi has [[f(x)]]
Zp′
i

1: The n − k + 1 parties who have xi compute x′
i = f(xi) mod p′.

2: The parties set the all sub-shares x′
j as 0 except x′

i.
3: Each Pi outputs [[f(x)]]i = {x′

j | i /∈ Tj ,Tj ∈ T}.

We give an example to obtain a bit-wise share of sub-shares in the case of
(k, n) = (2, 3) and p′ = 2: Before starting the protocol, P0 has (x0, x1), P1 has
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(x1, x2), and P2 has (x2, x0), where a = x0 + x1 + x2 mod p. The parties P0,
P1, and P2 regard (x(0)

0 , 0), (0, 0), (0, x(0)
0 ) as their shares of x

(0)
0 , respectively.

By recursively doing the same procedure for the other bits, the parties obtain
the bit-by-bit shares of x0, x1, and x2.

5 Modulus-Conversion Protocol

When we consider modulus conversion, computing the quotient also has an
important role. Let us consider the case in which we want to convert a share of a
in Zp into a share of a in Zp′ , and a is additively shared, i.e., a :=

∑m−1
i=0 xi

mod p. In this case,
∑m−1

i=0 xi mod p′ = qp + a mod p′ = (q mod p′)(p
mod p′) + (a mod p′). Here, p mod p′ can be computed from the public mod-
ulus and thus q mod p′ is the only unknown value. Therefore, by computing q
using quotient transfer, we can obtain an efficient modulus-conversion protocol.

In this section, we first give a definition and instantiation of the functionality
we use in our modulus-conversion protocols. We then propose a special case of
our modulus-conversion protocol from Z

u
2 to Zp′ . After that, we propose our

modulus-conversion protocol from Zp to Zp′ .

5.1 Generating a Pair of Random Shares

In our modulus-conversion protocol, we have to generate ([r]Z2 , [r]Zp′ ) for r ←
Z2. The functionality that should be realized by such a protocol is defined as
Fdoublerand described below. This can be instantiated with O(�log p′�) bits com-
munication by combining a protocol generating [r]Zp (ran2() in [7]) and our
bit-decomposition protocol. We will further give a more efficient and actively
secure version of our modulus-conversion protocol for a small number of parties
in the full version.

FUNCTIONALITY 5.1 (Fdoublerand – Generating pair of random
shares)
Upon receiving id from each party Pi, sample r ← Z2, generate ([r]Z2 , [r]Zp′ ) via

the sharing algorithms, and send ([r]Z2
i , [r]

Zp′
i ) to each party Pi.

5.2 Modulus-Conversion Protocol from Z
u
2 to Zp

We now give the formal description of Protocol 4, which is a special case of
modulus conversion in which shares [a]Z

u
2 can be converted to [a]Zp′ .

Protocol 4 consists of local operations, revealing, and Fdoublerand. Recall that
we assume revealing is secure against an active adversary. Therefore, Protocol 4
is also actively secure in the Fdoublerand-hybrid model.

The communication complexity is u(drandZp′ + revealZ2), where drandZp′

and revealZ2 are the communication complexities of generating ([r]Z2 , [r]Zp′ )
for r ← Z2 and revealing a share in Z2. If we regard the number of parties as a
constant, it is O(log �p′�) bits. The round complexity is drand + 1, where drand
is that of a protocol for realizing Fdoublerand.
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Protocol 4. modulus-conversion protocol from Z
u
2 to Zp′

Input: [a]Z
u
2

Output: [a]Zp′

1: for 0 ≤ i < u do
2: The parties call Fdoublerand and receive ([r(i)]Z2 , [r(i)]Zp′ ).
3: The parties reveal [a(i) − r(i)]Z2 = [a(i)]Z2 − [r(i)]Z2 to obtain a(i) − r(i).
4: if a(i) − r(i) = 0 then
5: The parties set [a(i)]Zp′ = [r(i)]Zp′ .
6: else
7: The parties set [a(i)]Zp′ = (1 − [r(i)]Zp′ ).
8: [a]Zp′ :=

∑u−1
i=0 2i[a(i)]Zp′ mod p′.

9: The parties output [a]Zp′ .

5.3 Equation for Modulus Conversion

Similarly to our bit-decomposition protocol, we first show a useful equation for
our protocol.

Theorem 5.2. Let m, p, a, (x0, . . . , xm−1), p̃ be the same as Theorem 3.1, p′ be
a prime number, and � be a positive integer such that � + u ≤ |p|. Then,

a = 2−u

(
m−1∑

i=0

xi − (p̃
m−1∑

i=0

xi mod 2u)p

)

mod p′.

Proof. It directly follows from Theorem 3.1 and the fact that 2u and p′ are
co-prime,

m−1∑

i=0

xi − (p̃
m−1∑

i=0

xi mod 2u)p =
m−1∑

i=0

xi − qp = (2ua + qp) − qp = 2ua.

We obtain the following corollary when p is a Mersenne prime.

Corollary 5.3. Let m,u, p, a, (x0, . . . , xm−1) be the same as Corollary 4.3. Let
ri be the bits of −xi mod 2u smaller than u bit and a be an �-bit input and
â := a2�. Then,

a = 2−u

(
m−1∑

i=0

xi − p(
m−1∑

i=0

ri mod 2u)

)

mod p′.

5.4 Our Modulus-Conversion Protocol

In this subsection, we give two modulus-conversion protocols with a Mersenne
prime p. The first protocol is passively secure, and the second one is actively
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secure if the components are actively secure, while the latter assumes the small
number of parties due to the use of the replicated SS scheme. A protocol for a
general prime will appear in the full version.

The first protocol is as described in Protocol 5. The protocol uses Protocol
4 and share conversion from additive shares to a linear SS scheme. Protocol 5
is passively secure in the (Fclsum,Fdoublerand)-hybrid model since the protocol
consists of sharing and Fclsum, and Protocol 5 uses Fdoublerand.

Protocol 5. Passively secure modulus-conversion protocol
Input: [a]Zp

Output: [a]Zp′

1: Pi computes xi := 2uλi[a]i mod p for u = �log k� and 0 ≤ i < k.

2: x̂i := −xi mod 2u and let the j-th bit of x̂i be x̂
(j)
i .

3: for 0 ≤ i < k do
4: Pi shares x̂

(0)
i , . . . , x̂

(u−1)
i bit-by-bit in Z2, and the parties regard them as [ri]

Z
u
2 .

5: The parties call Fclsum on input [ri]
Z

u
2 for 0 ≤ i < k, and regard the received value

as [q]Z
u
2 := [

∑k−1
i=0 ri]

Z
u
2 .

6: The parties convert [q]Z
u
2 into [q]Zp′ via Protocol 4.

7: Pi computes xi := xi mod p′ and shares xi via sharing algorithm of a linear SS
scheme in Zp′ for 0 ≤ i < k.

8: The parties add the received shares as [
∑k−1

i=0 xi]
Zp′ =

∑k−1
i=0 [xi]

Zp′ .

9: The parties locally compute [a]Zp′ := 2−u([
∑k−1

i=0 xi]
Zp′ − p[q]Zp′ ) mod p′.

10: Each Pi outputs [a]
Zp′
i .

The second protocol is as described in Protocol 6. This protocol uses the
same idea as our bit-decomposition protocol. We first convert [a]Zp into [[a]]Zp ,
and locally generate bit-wise shares. Protocol 6 is passively/actively secure in
(Fclsum,Fdoublerand,Frand)-hybrid model since Protocols 1 and 4 use Frand and
Fdoublerand.

5.5 Efficiency

The communication complexity of Protocol 5 is u shareZ2 + clsumu,k +
u(drandZp′ + revealZ2) + k shareZp′ . If the number of parties is small and
regarded as a constant, the communication complexity of u shareZ2 , clsumu,k,
and revealZ2 are O(1), drandZp′ is O(�log p′�), and shareZp′ is O(�log p′�),
respectively. Therefore, the total communication complexity is O(�log p′�).

The communication complexity of Protocol 6 is toRep
Zp

+ clsumu,m +
u(drandZp′ + revealZ2), where toRep

Zp
is that of Protocol 1. If the number

of parties is regarded as a constant, the total communication complexity is
O(�log p� + �log p′�) due to toRep

Zp
. However, if p′ > p, Protocol 6 can be

more efficient than Protocol 5. The number of rounds is (rand + 1) + 1 + (1 +
drand) + 1 = 4 + rand + drand, where rand and drand are the number of
rounds to instantiate Frand and Fdoublerand, respectively.
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Protocol 6. Modulus-conversion protocol for a small number of parties
Input: [a]Zp

Output: [a]Zp′

1: The parties invoke Protocol 1 on input [a]Zp and receive [[a]]Zp , where m =
(

n
k−1

)

and a =
∑m−1

i=0 xi mod p.

2: The parties set x̂i := −xi mod 2u and let the j-th bit of x̂i be x̂
(j)
i .

3: The parties obtain [[x̂i]]
Z

u
2 for 0 ≤ i < m by Algorithm 3.

4: The parties call Fclsum on input [[ri]]
Z

u
2 for 0 ≤ i < m, and regard the received value

as [[q]]Z
u
2 := [[

∑m−1
i=0 ri]]

Z
u
2 .

5: The parties convert [q]Z
u
2 into [q]Zp′ via Protocol 4.

6: The parties locally compute xj := xj mod p′ for all their own sub-shares, and
regard them as [[

∑m−1
i=0 xi]]

Zp′ .

7: The parties compute [[a]]Zp′ := 2−u([[
∑m−1

i=0 xi]]
Zp′ − p[[q]]Zp′ ) mod p′.

8: The parties locally convert [[a]]Zp′ into [a]Zp′ .
9: The parties output [a]Zp′ .

6 Experiments

We implemented our bit-decomposition and modulus-conversion protocols and
compare their efficiency with existing results. As we stated, to the best of our
knowledge, there is no bit-decomposition protocol in which � + u < �log p� is
assumed and which outputs [a]Z

�
2 . Therefore, our bit-decomposition protocols

are formally incomparable to existing ones. In this paper, we compare experi-
mental results with those of [4] as reference, since it is the most efficient bit-
decomposition protocol. We implemented our bit-decomposition protocol with
several optimizations that will appear in the full version. Those optimizations
affect the constant factor of the communication complexity.

The details of the machines and network environments used in the experiment
are as follows. Each machine had an Intel R© CoreTM i7 6900K 3.2 GHz × 8 cores.
For a gigabit network, we used Intel R© I218-LM star network via an L2 Gigabit
hub. The ping latency was 0.19 ms.

The experimental results are listed in Table 1. It shows the experimental
result of passively secure bit-decomposition protocols in a gigabit network. We
measured the processing time of the bit-decomposition protocol of 107 �-bit
elements. To align the setting to [4]. we used (k, n) = (2, 3). Our protocol uses
p = 261 − 1, and � = 32, 20, and 2. The setting of � = 32 is the same message
space as [4], while � = 20 and 2 are favorable for our bit-decomposition protocol.
The input and output of our protocol were shares of Shamir’s scheme, while
those of [4] were shares of the replicated SS scheme.

As shown in Table 1, our bit-decomposition protocol achieves higher per-
formance than that of [4]. Further experiments including modular-conversion
protocols will appear in the full version.



Efficient Bit-Decomposition and Modulus-Conversion Protocols 81

Table 1. Processing time (ms) for 107 records in passively secure bit-decomposition
protocols in Gigabit network

Modulus (p) Bit-length of secret (�) Processing time (ms)

[4] 232 32 200,000

261 − 1 32 1,194

Our
bit-decomposition
protocol

261 − 1 20 759

261 − 1 2 123

7 Conclusion

We proposed secret-sharing-based bit-decomposition and modulus-conversion
protocols for Zp with an honest majority. Our protocols are secure against pas-
sive and active adversaries depending on the components of our protocols. If
k and n are small, the communication complexity of our passively secure bit-
decomposition and modulus-conversion protocols are O(�) bits and O(�log p′�)
bits, respectively. While some settings are different from existing works, the com-
munication complexity is smaller than the current best result [4]. Furthermore,
we also confirmed with the experimental results that our protocols are highly
efficient.
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3. Bogdanov, D., Jõemets, M., Siim, S., Vaht, M.: Privacy-preserving tax fraud detec-
tion in the cloud with realistic data volumes. Cybernetica research report (2016)

4. Bogdanov, D., Niitsoo, M., Toft, T., Willemson, J.: High-performance secure multi-
party computation for data mining applications. Int. J. Inf. Sec. 11(6), 403–418
(2012)

5. Bos, J.W., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: Efficient SIMD arith-
metic modulo a Mersenne number. In: Antelo, E., Hough, D., Ienne, P. (eds.)
20th IEEE Symposium on Computer Arithmetic, ARITH 2011, 25–27 July 2011,
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Abstract. Secret sharing, first introduced by Shamir and Blakley inde-
pendently, is an important technique to ensure secrecy and availability
of sensitive information. It is also an indispensable building block in var-
ious cryptographic protocols. In the literature, most of these existing
protocols are employing Shamir’s secret sharing, while Blakley’s one has
attracted very little attention. In this paper, we revisit Blakley’s secret
sharing that is based on hyperplane geometry, and illustrate that some
of its potentials are yet to be employed. In particular, it has an appealing
property that compared with Shamir’s secret sharing, it not only handles
(t, n) secret sharing with similar computational costs, but also handles
(n, n) secret sharing with better efficiency. We further apply this prop-
erty to design a provably secure and optimal resilient proactive secret
sharing scheme. Our proposed protocol is versatile to support proac-
tive cryptosystems based on various assumptions, and it employs only
one type of verifiable secret sharing as the building block. By contrast,
the existing proactive secret sharing schemes with similar properties all
employ two different types of verifiable secret sharing. Finally, we briefly
discuss some possible extensions of our proposed protocol as well as how
to explore more potentials of Blakley’s secret sharing.

1 Introduction

Secret sharing allows the secret to be shared among a number of participants,
so that a quorum or more of these participants can work together to recover the
secret, but less participants cannot learn any information of the secret. Therefore,
either to learn the secret or to destroy it, the adversary needs to compromise mul-
tiple of these participants instead of a single one, and this helps to enhance both
secrecy and availability of the secret. Moreover, secret sharing is an important
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building block for various cryptographic protocols, such as distributed key gen-
eration [6,15], threshold cryptosystems [11,27], attribute-based encryptions [24],
secure multi-party computation [4,10], and so on.

The earliest two secret sharing schemes were proposed by Shamir [26] and
Blakley [5] independently, where Shamir’s scheme is based on polynomial inter-
polation and Blakley’s one is based on hyperplane geometry. Although their
technical details appear to be different, their ideas are closely related. As pointed
out by Kothari [20], Blakley’s scheme is the generalisation of Shamir’s one. To
see this relationship, recall that in a (t, n) Blakley’s secret sharing scheme, the
secret is treated as some coordinate of a point P in a t-dimensional space. Each
of the n participants is given a secret share as an independent t-dimensional
hyperplane in the space that crosses over P. Note that the coefficients of each
hyperplane form a t-dimensional vector, and in addition, all these vectors form
an n×t matrix M. When t or more participants work together, they can combine
their hyperplanes to retrieve the secret by solving a system of equations. But less
than t participants are unable to learn any information of the secret. Shamir’s
secret sharing is a special case of Blakley’s one when the matrix M is initialised
using some Vandermonde matrix. In this case, the different coordinates of P can
be treated as the coefficients of some polynomial f(·) with degree t−1. And f(·)
can be reconstructed through polynomial interpolation when t or more of the
secret shares are revealed. Moreover, the Vandermonde matrix and polynomial
interpolation have some extra properties, making Shamir’s secret sharing very
easy to use. Firstly, when using the Vandermonde matrix, only n unique values
are needed to represent the entire n × t matrix M, and this helps to reduce the
size of the public parameters. Secondly, knowing t or more secret shares, polyno-
mial interpolation allows to retrieve the unknown secret shares directly without
recovering f(·), and this is very useful in the security proofs during simulation.
At the moment, thanks to its simplicity and elegance, Shamir’s secret sharing
has gained wide acceptance and it has been employed in most of the existing
cryptographic protocols where threshold secret sharing is needed. By contrast,
Blakley’s secret sharing has attracted very little attention.

Our Contributions. In this paper, we revisit Blakley’s secret sharing, illus-
trating that it has some potentials yet to be employed. Our idea is very simple.
Since Blakley’s secret sharing is the generalisation of Shamir’s one, we are not
restricted to initialise the matrix M using the Vandermonde matrix. Instead, we
could explore some other special matrices with unique properties, and then use
them to design new cryptographic protocols or extend the existing ones.

One such special matrix we have found is the Hadamard matrix, which is a
square matrix satisfying the following property. Let H be a Hadamard matrix of
order n. Then, the transpose of H is closely related to its inverse as: H × HT =
n · In, where HT denotes the transpose of H and In denotes the n × n identity
matrix. Note that to recover the secret in Blakley’s secret sharing, the most
expensive computation is to invert a square matrix (i.e. some submatrix of M).
Therefore, when using the Hadamard matrix, such a computation is almost for
free. This makes Blakley’s secret sharing much more efficient than Shamir’s one
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when handling (n, n) secret sharing, because the computational complexity of
the secret reconstruction phase can be reduced from O(n2) to O(n). To the
best of our knowledge, this property has not been employed in the existing
cryptographic protocols.

We further apply the above findings to propose a provably secure and opti-
mal resilient proactive secret sharing scheme. Our proposed scheme is versatile
to support proactive cryptosystems based on various assumptions, and it is as
efficient as the existing schemes with similar properties. But it can be designed
using less building blocks: our scheme employs only one type of verifiable secret
sharing, while the existing schemes all require two different types of verifiable
secret sharing. Note that the proposed scheme should be treated as a proof
of concept, demonstrating the potentials of secret sharing based on hyperplane
geometry. We are not suggesting that it should be used to replace the existing
schemes in practice, but we assume that these discovered potentials may find
applications in other cryptographic protocols.

Outline of the Paper. The rest of the paper is organised as follows: some
related works are briefly reviewed in Sect. 2. In Sect. 3, we describe a verifiable
secret sharing scheme based on hyperplane geometry. And the proposed proactive
secret sharing scheme is presented in Sect. 4. Finally, we discuss some possible
extensions of our proposed scheme and conclude in Sect. 5.

2 Related Works

Blakley’s Secret Sharing. Blakley’s secret sharing is based on hyperplane
geometry [5]. Although it has been introduced for decades, not many applica-
tions of it can be found in the literature. Recently, Xia et al. [29] have shown
that threshold Paillier encryption can be designed using secret sharing based on
hyperplane geometry such that the “interpolating over Zφ(N) problem” (N is the
RSA modulus and φ is the Euler’s totient function) can be completely avoided.
And this method could have some tiny computational advantages over Shoup’s
trick [27]. Note that Xia’s work in [29] can be considered as the complement
of this paper. Both these two papers aim to illustrate some potentials of secret
sharing based on hyperplane geometry, but the explored properties are different
and their applications are different as well.

Verifiable Secret Sharing. Verifiable secret sharing (VSS) ensures that dis-
honest behaviour in the secret sharing schemes can be detected. In particular,
it not only prevents the dealer from distributing inconsistent secret shares in
the share distribution phase, but also prevents the participants from revealing
invalid secret shares in the secret reconstruction phase. The two most widely
used VSS schemes were introduced by Feldman [12] and Pedersen [22] respec-
tively, and both these schemes are based on polynomial interpolation. Although
it is straightforward to design VSS schemes based on hyperplane geometry, it
seems that no such work exists in the literature. In Sect. 3, we adapt the ideas
of Feldman’s VSS and present a new VSS scheme that is based on hyperplane
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geometry. This VSS serves for two purposes. Firstly, it will be used as a build-
ing block in the proposed proactive scheme in Sect. 4. Secondly, we need the
guarantee that different matrices with special properties can be used in Blak-
ley’s secret sharing without sacrificing its security, and the security proofs of this
VSS provide such an assurance.

Proactive Secret Sharing. In some circumstances, the secret needs to be
kept for a very long time, e.g. crypto master keys, legal documents and medical
records. In these cases, traditional secret sharing is insufficient to protect the
secret. This is because the adversary can break into the participants in the
monotonic fashion, and she has a very long time to mount the attack. In this
way, the adversary may gradually compromise enough participants to learn its
information or destroy it [21].

To address this problem, proactive secret sharing has been introduced. The
key idea is to divide the entire lifetime of the secret into multiple time peri-
ods. At the beginning of each time period, the participants jointly update their
secret shares, while leaving the original secret unchanged. The update phase is
composed of a share recovery protocol followed by a share refreshment protocol.
In the share recovery protocol, the lost or tampered secret shares are recovered
for the corresponding participants respectively without being disclosed to the
others. In the share refreshment protocol, the participants jointly compute new
secret shares among themselves and erase the old ones. The requirement is that
the new secret shares are independent to the old ones. Therefore, if the adversary
cannot compromise enough participants in a single time period, after the update
phase, her obtained secret shares will be obsolete. Informally, a proactive secret
sharing scheme is said to be optimal resilient if it is robust against any minority
of corrupted participants. Note that this threshold is the maximum number of
corrupted participants that are allowed in secret sharing schemes.

In the literature, there are three major approaches to design provably secure
and optimal resilient proactive secret sharing schemes:

– Herzberg’s approach [19]: before the update, the secret s is shared among
the participants in a (t, n) threshold fashion using a t − 1 degree polynomial
f(x) such that f(0) = s. To update the secret shares, the participants jointly
generate a random t − 1 degree polynomial δ(x) with δ(0) = 0. After the
update, each participant holds a new secret share of the t − 1 degree polyno-
mial f ′(x) = f(x) + δ(x). Because, f ′(0) = f(0) + δ(0) = s, the secret shares
have been updated without changing the original secret.

– Frankel’s approach [13]: before the update, the secret is also shared among
the participants in a (t, n) threshold fashion. To update the secret shares, the
participants first jointly transform the (t, n) polynomial sharing of the secret
into an (n, n) additive sharing of the secret. To achieve optimal resilience,
each secret share of the (n, n) additive sharing is further shared among the
participants in the (t, n) threshold fashion. Then, the participants jointly
transform the (n, n) additive sharing of the secret back to an independent
(t, n) polynomial sharing of the secret. Note that in both transformations,
the secret is not revealed to any individual participant.
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– Rabin’s approach [23]: before the update, the secret is (n, n) additively
shared among the participants. To achieve optimal resilience, each of these
secret shares is further shared among the participants in the (t, n) threshold
fashion. To update the secret shares, each participant first shares her old
secret share among all the participants using another (n, n) additive sharing.
In this process, each participant will receive a sub-share of the old secret share
from every other participant. Then, each participant sums the received sub-
shares, obtaining the new secret share of the secret. For optimal resilience,
each participant also needs to further share this new secret share among the
participants in the (t, n) threshold fashion. Now, the new secret shares form
an independent (n, n) additive sharing of the original secret.

Based on the above three approaches, many extensions of proactive secret
sharing have been proposed over the last two decades. For example, Zhou
et al. [30] and Schultz et al. [25] have introduced proactive secret sharing schemes
that are also dynamic. This property allowes the threshold to be changed dynam-
ically, and this property is very useful when secret sharing is used for key man-
agement in ad hoc networks. Canetti et al. [9], followed by Frankel et al. [14]
and Almansa et al. [1], have designed proactive secret sharing schemes that are
adaptively secure. In these schemes, the adversary is not required to choose the
set of corrupted participants at the beginning of protocol, but she could decide
which participants to corrupt at anytime throughout the protocol, based on the
information she gathered during the run of the protocol. Cachin et al. [7] have
considered proactive secret sharing in the asynchronous networks, in which the
messages sent by participants might be delayed. Stinson and Wei [28] and Baron
et al. [2,3] have proposed proactive secret sharing schemes that are informa-
tion theoretically secure. To detect dishonest participants, error-correction codes
and hyper-invertible matrices are used in Stinson’s scheme and Baron’s schemes,
respectively. Note that when considering asynchronous networks or information
theoretically security, the proactive secret sharing schemes can only tolerate less
than a third of cheating participants. The majority of the above schemes prove
their security in the traditional way, considering the secrecy and robustness prop-
erties separately. But some schemes, e.g. [1,2], prove their security in the UC
model [8], demonstrating that the proposed scheme is indistinguishable from an
idea scheme which has all the desired properties.

In this paper, to design the proposed proactive secret sharing scheme, we will
not consider any of the extensions mentioned above. The purpose is to clearly
present the features that we believe are most useful to demonstrate the potentials
of secret sharing based on hyperplane geometry. Therefore, we will only compare
our proposed scheme with the three basic approaches. Note that in these three
schemes, Herzberg’s one only employs the (t, n) secret sharing as the building
block. But its limitation is that when designing proactive cryptosystems, it only
supports schemes based on the discrete logarithm assumption [18]. Frankel’s
and Rabin’s schemes require both (t, n) secret sharing and (n, n) secret sharing.
The (t, n) part is realised using Shamir’s secret sharing, while the (n, n) part is
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realised by secret splitting for the sake of efficiency1. Therefore, both Frankel’s
and Rabin’s schemes have employed two types of secret sharing schemes. But
they are able to support proactive cryptosystems based on various assumptions,
including the factoring assumption. It is still an open question whether proactive
cryptosystems that are versatile to support various assumptions can be designed
using just one type of secret sharing. In this paper, we answer this question affir-
matively by employing the special properties of secret sharing based on hyper-
plane geometry.

3 Verifiable Secret Sharing Based on Hyperplane
Geometry

3.1 Model and Assumptions

System Model: The players include a dealer D, n participants {P1, P2, . . . , Pn}
and an adversary A. We assume that all these players are computationally
bounded. Among the n participants, at least t of them are honest, where
n = 2t − 1. The adversary A is assumed to be static: it can corrupt up to
t − 1 participants at the beginning of the protocol. If a participant is compro-
mised, A not only learns its private information, but also controls it to divert
from the specified protocol in any way.

Communication Channel: We assume that there exists a secure channel
between the dealer D and every participant, so that the secret shares can be
distributed privately. Moreover, we assume that every player is connected to a
common broadcast channel, where any message sent through this channel can
be heard by the other players.

Definition 1 (Robustness): A verifiable secret sharing scheme is robust if (1)
the dealer D cannot distribute inconsistent secret shares among the participants,
and (2) the secret can be correctly reconstructed even if there exists some dis-
honest participants.

Definition 2 (Secrecy): A verifiable secret sharing scheme is secret if the
adversary A cannot learn any information of the secret.

3.2 Verifiable Secret Sharing Based on Hyperplane Geometry

The verifiable secret sharing (VSS) based on hyperplane geometry is consisted
of the following three phases: initialisation phase, share distribution phase and
secret reconstruction phase.

1 In secret splitting, the sum of the secret shares directly reveals the secret. When
recovering the secret in (n, n) secret sharing, the computational complexity is O(n2)
in Shamir’s scheme and O(n) in secret splitting.
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Initialisation Phase: Denote G as a group in which the discrete logarithm is
hard and g is a generator of G. To share the secret s = a1, the dealer D randomly
selects t − 1 values {a2, a3, . . . , at}, and publishes Ai = gai for i = 1, 2, . . . , t.
Moreover, D generates and broadcasts an n × t matrix M such that all its rows
are linearly independent. The (i, j)-th entry of M is denoted as bi,j .

Share Distribution Phase: D computes the secret shares si = bi,1a1 + bi,2a2 +
· · · + bi,tat for i = 1, 2, . . . , n, and sends si to the participant Pi through the
secure channel. Now, each participant Pi can verify whether its received secret
share si is valid by checking the following equation:

gsi =
t∏

j=1

Aj
bi,j (1)

Secret Reconstruction Phase: Each participant Pi broadcasts its secret share
si. Anyone can also use the Eq. (1) to verify the validity of si. Without loss of
generality, we assume that the participants {P1, P2, . . . Pt} are honest, and their
corresponding rows in M form a t × t matrix MS . Denote MS

−1 as the inverse
matrix of MS with the (i, j)-th entry as ci,j . Then, the secret can be reconstructed
using the first row of MS

−1 as s =
∑t

i=1 c1,isi.

3.3 Security Analysis

Robustness: Firstly, if all the players are honest, it is obvious that the pro-
posed VSS protocol will always deliver the correct result. In case if the dealer D
distributes inconsistent secret shares, at least one honest participant will receive
a secret share that si �= ∑t

j=1 bi,jaj . In this case, Pi’s verification of the Eq. (1)
will fail, and Pi can make an accusation against D. In the secret reconstruc-
tion phase, if some participants reveal invalid secret shares, the verification of
the Eq. (1) will also fail. In this case, we can simply ignore these invalid secret
shares, and use the remaining ones to recover the secret. Therefore, the proposed
VSS protocol satisfies the robustness property.

Secrecy: We prove this property by simulation. Suppose there exists a proba-
bilistic polynomial time (PPT) simulator S. Without the knowledge of the secret,
S can simulate the adversary A’s view of the protocol, and A cannot distinguish
a real run of the protocol from a simulated one. Because the simulated protocol
does not contain any information of the secret, this proves that the real protocol
reveals no information of the secret.

Without loss of generality, we assume that the participants {P1, P2, . . . , Pt−1}
are controlled by A. In the simulation, S first selects t − 1 random val-
ues {s1, s2, . . . st−1}. Then, S knows that these random values satisfy the
following relationships, although S does not know the secret s = a1.
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Denote the matrix on the left hand side of the above equation as M′, and in
its inverse matrix the (i, j)-th entry is denoted as di,j . Then, S can simulate
A′

i = ga′
i = A1

di,1
∏t

j=2 gdi,jsj−1 for i = 2, . . . , t.
The simulated protocol runs as follows: in the initialisation phase, S first

publishes A1 = ga1 as well as the values A′
i for i = 2, . . . , t. Then, S broadcasts

exactly the same matrix M that is used in the real run of the protocol. In the
share distribution phase, S sends the values {s1, s2, . . . , st−1} to the adversary A.
From A’s point of view, the values published by S in the initialisation phase are
distributed identically as in the real protocol. This is because the same A1 value
and the same matrix M are used, and the other values are randomly distributed
in both protocols. In the share distribution phase, A will receive t − 1 random
values in both protocols, and all these values satisfy the Eq. (1). Hence, A’s view
in this phase is identical as well. Therefore, the adversary A cannot distinguish
the real protocol from a simulated one, and the proposed VSS protocol satisfies
the secrecy property.

3.4 Some Observations

A key observation of the above VSS protocol is that the matrix M can be ini-
tialised arbitrarily subject to the condition that its rows are linearly independent.
Therefore, apart from the Vandermonde matrix that is widely used in existing
secret sharing schemes, we can also use some other special matrices with unique
properties. For example, in (t, n) secret sharing, the proposed VSS scheme is as
efficient as Feldman’s VSS [12]: the computational complexity of the share distri-
bution phase and the secret reconstruction phase is O(t) and O(t2) respectively.
In (n, n) secret sharing, if the Hadamard matrix was used to initialise M in the
proposed VSS scheme, the computational complexity of the secret reconstruction
phase can be reduced to O(n), which is more efficient than Feldman’s VSS. This
is because the transpose of the Hadamard matrix has a very close relationship
with its inverse matrix, making the computation of the inverse matrix almost
for free. In the next section, we use this property to introduce a new proactive
secret sharing scheme that is provably secure and optimal resilient.

4 A Proactive Secret Sharing Scheme

4.1 Model and Assumptions

System Model: The players include n participants {P1, P2, . . . , Pn} and a
mobile adversary AM . We assume that all these players have computational
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resources. Besides, the system is assumed to be synchronised: the players can
access to some common global clock, and each player has a local source of ran-
domness. Moreover, it is assumed that n = 2t − 1, where t is the threshold.

Time Periods: The entire lifetime of the secret can be divided into many short
time periods (e.g. a day or a week), which is determined by the common global
clock. At the beginning of the first time period, there is a share distribution
phase in which the secret is shared among the participants either by a trusted
dealer or in a distributed fashion [15]. For all the other time periods, there is
an update phase at the beginning of each time period. The update includes a
share recovery protocol and a share refreshment protocol. After the update, the
participants hold new shares of the secret and the old shares are erased. When
some participants are corrupted at the update phase, it is assumed that they are
corrupted in both the adjacent time periods.

The Mobile Adversary: Following [21], the mobile adversary AM can be envi-
sioned as follows: it has t − 1 pebbles, and at the beginning of each time period,
AM will place the pebbles on any t − 1 participants. If a pebble was placed
on a participant, this participant is compromised by AM . Corrupting a partic-
ipant means learning its private information, changing its intended behaviour,
disconnecting it, and etc. When the pebble is removed from a participant, this
participant will be “rebooted” to the safe state at the beginning of the next
time period, and its share will be jointly recovered by the share recovery proto-
col. After each time period, AM can move pebbles from a set of participants to
another set of participants. Therefore, the mobile adversary AM has more power
than the ordinary adversary in traditional secret sharing schemes, because AM

can compromise all participants or compromise some participants multiple times
throughout the entire lifetime of the secret. The restriction is that AM can only
compromise up to t − 1 participants in any time period.

Communication Model: We assume that all players are connected to an
authenticated broadcast channel C, such that any message sent through C can be
heard by the other players. The mobile adversary AM can neither modify mes-
sages send by an uncorrupted participant through C, nor prevent an uncorrupted
participant from receiving messages from C. Moreover, we assume that there are
secure pairwise channels among the participants, and AM cannot tamper or
intercept messages sent through these secure channels. With these assumptions,
we can focus our description without considering the low level technical details.
Note that these assumed authenticated broadcast channel and secure pairwise
channels can be implemented using standard cryptographic techniques such as
encryptions and digital signatures.

Definition 3 (Robustness): A proactive secret sharing scheme is robust if in
the presence of the mobile adversary, the secret can be correctly recovered in any
time period throughout the entire lifetime of the secret.

Definition 4 (Secrecy): A proactive secret sharing scheme is secret if after
polynomially many updates, the mobile adversary still cannot learn any infor-
mation of the secret.
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Definition 5 (Optimal resilience): A proactive secret sharing scheme is opti-
mal resilient if it is robust against the mobile adversary who has the ability to
corrupt any minority of the participants.

4.2 The Proposed Scheme

Denote M as an n × t matrix with the (i, j)-th element as bi,j , and all the rows
of M are linearly independent. When t of its rows are selected, these rows form a
t × t matrix MS . In the reverse matrix of MS , the (i, j)-th element is denoted as
ci,j . Moreover, denote H as an t × t Hadamard matrix with the (i, j)-th element
as hi,j .

In the k-th time period, the secret s = a
(k)
1 is shared among the partic-

ipants {P1, P2, . . . , Pn} using the point P(k) in the t-dimensional space with
its coordinates as a vector (a(k)

1 , a
(k)
2 , . . . a

(k)
t ). And the values A

(k)
i = ga

(k)
i for

i = 1, 2, . . . , t are broadcast through the channel C. The participant Pi’s secret
share satisfies s

(k)
i = bi,1a

(k)
1 + bi,2a

(k)
2 + . . . + bi,ta

(k)
t . At the beginning of the

(k + 1)-th time period, the participants will jointly update their secret shares.
The update phase consists a share recovery protocol and a share refreshment
protocol as follows.

Share Recovery Protocol. The set of participants in Λ, where |Λ| ≥ t, jointly
recover the lost share s

(k)
r for the participant Pr as follows:

1. The participant Pi randomly selects a vector (δi,1, δi,2, . . . , δi,t). The require-
ment is that 0 = br,1δi,1 + br,2δi,2 + . . . + br,tδi,t. Moreover, Pi publishes the
values Δi,j = gδi,j for j = 1, 2, . . . , t. Note that the condition can be checked
using the following equation

1 = Δ
br,1
i,1 · Δ

br,2
i,2 · · · Δbr,t

i,t

2. Pi computes ui,j = bj,1δi,1 + bj,2δi,2 + . . . + bj,tδi,t, and sends it to each other
participant Pj through the secure channel. Pj can verify whether the received
value ui,j is valid by checking

gui,j = Δ
bj,1
i,1 · Δ

bj,2
i,2 · · · Δbj,t

i,t

3. Pi computes s′
i = s

(k)
i +

∑
j∈Λ uj,i, and sends this value to Pr through the

secure channel. Pr can verify whether the received value s′
i is valid by checking

gs′
i =

t∏

l=1

A
(k)
l

bi,l ·
∏

j∈Λ

t∏

k=1

Δ
bi,k
j,k

4. Finally, Pr selects t valid values of s′
i and solves a system of equations to

recover a vector (a′
1, a

′
2, . . . a

′
t), where a′

i = a
(k)
i +

∑
j∈Λ δj,i. Then, Pr’s lost

secret share can be computed as s
(k)
r = br,1a

′
1 + br,2a

′
2 + . . . + br,ta

′
t.
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Share Refreshment Protocol. Here, we follow Frankel’s approach [13] to
divide the share refreshment protocol into two sub-protocols: Poly-to-Sum and
Sum-to-Poly. Note that we can also design the share refreshment protocol fol-
lowing Rabin’s approach [23], in which the secret is always additively shared.

1. Poly-to-Sum: the set of participants in Γ , where |Γ | = t, jointly transform
the polynomial sharing of the secret into an additive sharing of the secret.
(a) Each participant Pi computes σi,1 = c1,is

(k)
i , and selects t − 1 random

values (σi,2, σi,3, . . . , σi,t). Moreover, Pi publishes Σi,j = gσi,j for j =
1, 2, . . . , t. Anyone can verify the validity of Σi,1 by

Σi,1 = (A(k)
1

bi,1 · A
(k)
2

bi,2 · · · A(k)
t

bi,t
)c1,i

(b) Then, each Pi computes wi,j = hj,1σi,1 + hj,2σi,2 + · · · + hj,tσi,t for j =
1, 2, . . . , t, and sends wi,j to each other participant Pj through the secure
channel. The receiver Pj can verify whether its received value wi,j is valid
by

gwi,j = Σ
hj,1
i,1 · Σ

hj,2
i,2 · · · Σhj,t

i,t

(c) Each Pi, for i = 1, 2, . . . , t, computes s′
i = (

∑
j∈Γ wj,i) · hi,1 · t−1. At this

moment, the values (s′
1, s

′
2, . . . , s

′
t) form an additive sharing of the secret.

2. Sum-to-Poly: the set of participants in Γ , where |Γ | = t, jointly transform
the additive sharing of the secret back to an independent polynomial sharing
of the secret.
(a) Denote ψi,1 = s′

i. Each Pi selects t−1 random values (ψi,2, ψi,3, . . . , ψi,t).
Moreover, Pi publishes Ψi,j = gψi,j for j = 1, 2, . . . , t. Anyone can verify
the validity of Ψi,1 by

Ψi,1 = (
∏

j∈Γ

t∏

l=1

Σ
hi,l

j,l )hi,1·t−1

(b) Then, each Pi computes vi,j = bj,1ψi,1 + bj,2ψi,2 + . . . + bj,tψi,t for j =
1, 2, . . . , n, and sends vi,j to each other participant Pj through the secure
channel. The receiver Pj can verify whether its received value vi,j is valid
by

gvi,j = Ψ
bj,1
i,1 · Ψ

bj,2
i,2 · · · Ψ bj,t

i,t

(c) Each Pi sums its received values, resulting the updated secret share
s
(k+1)
i =

∑
j∈Γ vj,i. At this moment, we have

gs
(k+1)
i =

∏

j∈Γ

t∏

l=1

Ψ
bi,l
j,l

where i = 1, 2, . . . n. Using these values, anyone can compute the com-
mitments A

(k+1)
i for the (k + 1)-th time period as

A
(k+1)
i = ga

(k+1)
i = (gs

(k+1)
1 )ci,1 · (gs

(k+1)
2 )ci,2 · · · (gs

(k+1)
t )ci,t

where i = 1, 2, . . . , t.
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4.3 Security Analysis

Theorem 1. The proposed proactive secret sharing scheme satisfies robustness,
secrecy and optimal resilience.

Proof. Robustness and optimal resilience: Firstly, we show that if the par-
ticipants are honest, the share recovery protocol will recover the correct secret
shares for the corresponding participants and the share refreshment protocol will
refresh the secret shares without changing the secret.

Before the share recovery protocol, the secret shares (s(k)1 , s
(k)
2 , . . . , s

(k)
n ) can

be used to recover the point P(k) with coordinates (a(k)
1 , a

(k)
2 , . . . a

(k)
t ). Then,

each participant Pi serves as the dealer to share a random point with coordinates
(δi,1, δi,2, . . . , δi,t) among the participants. The requirement is that the r-th secret
share for each of these random points is 0. Thanks to the additive homomorphic
property of secret sharing by hyperplane geometry [20], the sum of the secret
shares (secret shares with the same index are summed together) can be used
to recover the sum of the points (coordinates with the same index are summed
together). Therefore, the secret share in the r-th position remains unchanged,
but all the other secret shares are randomised. With t of these summed secret
shares, Pr can recover the summed point. And then, the r-th secret share can
be computed by Pr. Moreover, because each of the point (δi,1, δi,2, . . . , δi,t) is
randomly chosen, Pr cannot learn the original point (a(k)

1 , a
(k)
2 , . . . a

(k)
t ), although

Pr has seen the summed point. This implies that Pr cannot learn the secret
s = a

(k)
1 . And because the summed secret shares are sent to Pr through secure

channels, the secret share s
(k)
r is not disclosed to the other participants.

At the beginning of the share refreshment protocol, the secret s = a
(k)
1 is

polynomially shared among the n participants, where each participant Pi pos-
sesses the secret share s

(k)
i . In the Poly-to-Sum part, each participant serves as a

dealer to share the value c1,is
(k)
i among all participants in the additive fashion.

Because the sum of these c1,is
(k)
i values equals the secret, if each participant

sums its received sub-shares, the secret is now additively shared among these
participants. In the Sum-to-Poly part, each participant serves as a dealer to
share its secret share among the participants in the polynomial fashion. Recall
that the sum of these secret shares equals the secret. If each participant sums
its received sub-shares, the secret is polynomially shared among the partici-
pants. Considering the point before the refreshment as P(k) with coordinates
(a(k)

1 , a
(k)
2 , . . . a

(k)
t ) and the point after the refreshment as P(k+1) with coordi-

nates (a(k+1)
1 , a

(k+1)
2 , . . . a

(k+1)
t ), we have a

(k)
1 = a

(k+1)
1 , but all the other coor-

dinates are independent. Therefore, after the share refreshment protocol, the
secret shares have been updated without changing the secret.

Moreover, all the steps of the proposed scheme are verifiable. For example,
in the share recovery protocol, Pr can verify whether its received value s′

i is
valid. And because Pr only needs t of these values to recover its lost secret
share, based on our assumption that n = 2t − 1 and t is the threshold, Pr
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can always recover its lost secret share. In the share refreshment protocol, one
can verify whether each participant has shared the correct value and whether
this value has been shared consistently. If any cheating behaviour is detected,
the dishonest participants will be removed and the protocol will restart. In the
worst case, after t − 1 trials, the protocol will end successfully. Therefore, even
if there exists some minority of dishonest participants, both the share recovery
protocol and the share refreshment protocol always output the correct results.
In other words, the proposed protocol satisfies robustness and optimal resilience.

Secrecy: We prove the secrecy property by simulation. Assume there exists a
PPT simulator S. We show that S can simulate the mobile adversary’s view in
our proposed scheme. And AM , who corrupts up to t − 1 participants, cannot
distinguish a real run of the protocol from a simulated one.

Simulation of the Share Recovery Protocol. We assume that Pr is not corrupted
by AM , and S has the knowledge of secret shares processed by the corrupted
participants.

1. For each participant Pi, S randomly selects (δi,1, δi,2, . . . , δi,t) such that 0 =
br,1δi,1+br,2δi,2+ . . .+br,tδi,t. S then publishes Δi,j = gδi,j for j = 1, 2, . . . , t.
If Pi is corrupted, S also sends the vector (δi,1, δi,2, . . . , δi,t) to AM .

2. For each participant Pi, S computes ui,j = bj,1δi,1 + bj,2δi,2 + . . . + bj,tδi,t for
j ∈ Λ. If Pi is corrupted, S sends all these ui,j values to AM . Otherwise, S
only sends those ui,j values to AM , where Pj is corrupted by AM .

3. For the corrupted participants, S computes s′
i = s

(k)
i +

∑
j∈Λ uj,i, and sends

these values to AM .

Note that all the above steps follow the original protocol exactly. Therefore,
the simulated protocol is perfectly indistinguishable from the real one in AM ’s
view, and AM can learn no information of the recovered secret share s

(k)
r .

Simulation of the Share Refreshment Protocol. The share refreshment protocol
consists two parts. Here, we only prove the Sum-to-Poly part, and the security
proof for the Poly-to-Sum part can be derived similarly.

1. If the participant Pi is corrupted, S firstly sets ψi,1 = s′
i, then randomly

selects (ψi,2, ψi,3, . . . , ψi,t), and finally publishes Ψi,j = gψi,j for j = 1, 2, . . . , t.
In this case, S also sends the the vector (ψi,1, ψi,2, . . . , ψi,t) to AM . Otherwise,
if the participant Pi is not corrupted, S first randomly selects t − 1 values
(vi,1, vi,2, . . . vi,t−1). Moreover, denote the matrix M′ as

M′ =

⎛

⎜⎜⎜⎜⎜⎝

1 0 . . . 0
b1,1 b1,2 . . . b1,t

b2,1 b2,2 . . . b2,t

...
...

bt−1,1 bt−1,2 . . . bt−1,t

⎞

⎟⎟⎟⎟⎟⎠

and the (i, j)-th entry of its inverse matrix as di,j . Then, S publishes the
same Ψi,1 value as in the real protocol, and publishes the other Ψi,j values for
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j = 2, 3, . . . , t as

Ψi,j = Ψ
dj,1
i,1 ·

t∏

l=2

gdj,l·vi,l−1

2. If Pi is corrupted, S computes vi,j = bj,1ψi,1 + bj,2ψi,2 + · · · + bj,tψi,t, and
sends these values to AM . Otherwise, if Pi is not corrupted, S sends the values
(vi,1, vi,2, . . . vi,t−1) selected in the previous step to AM .

3. For the corrupted participants, S computes s
(k+1)
i =

∑
j∈Γ vj,i, and sends

these values to AM .

In the above simulation, when the participant Pi is corrupted, the simulated
steps follow the original protocol exactly. Otherwise, when the participant Pi is
not corrupted, the random values (vi,1, vi,2, . . . vi,t−1) are distributed identically
as in the real protocol. Moreover, they satisfy the verification gvi,j = Ψ

bj,1
i,1 ·

Ψ
bj,2
i,2 · · · Ψ bj,t

i,t . Therefore, AM cannot distinguish the simulated protocol from a
real one, and this proves that AM cannot learn any information of the secret in
the Sum-to-Poly part.

Note that similar results also can be obtained for the Poly-to-Sum part. When
putting everything together, we can prove that AM cannot learn any information
of the secret in the proposed proactive secret sharing scheme, and this completes
the proof of the secrecy property.

4.4 Efficiency Analysis

We now compare the computational costs of our proposed scheme with some
existing schemes. The share recovery protocol will be compared with the one in
Herzberg’s scheme [19]. This is because both Frankel’s scheme [13] and Rabin’s
scheme [23] only focus on the share refreshment protocol, and they assume that
Herzberg’s share recovery protocol can be used in their works. The share refresh-
ment protocol will be compared with the one in Frankel’s scheme.

In the share recovery protocol, in steps 1 and 2, each participant serves as
the dealer to share some random value among the participants. Recall that in
both secret sharing based on polynomial interpolation and secret sharing based
on hyperplane geometry, the computational complexity of the share distribution
phase is O(n). Hence, in these two steps, each participant’s computational cost is
similar as in Herzberg’s scheme. In step 3, each participant just sums the received
sub-shares and sends the result to Pr. The computational cost is similar in this
step as well. In step 4, Pr recovers its lost secret share. The computational
complexity for this step is O(n2) both in Herzberg’s scheme and our proposed
scheme. Therefore, our proposed scheme has similar computational costs as in
Herzberg’s scheme regarding the share recovery protocol.

In the share refreshment protocol, the Poly-to-Sum part requires each par-
ticipant to share some value among the participants through additive secret
sharing. In Frankel’s scheme, the additive secret sharing is implemented using
the secret splitting method. And in our proposed scheme, it is implemented using
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secret sharing based on hyperplane geometry in which M is initialised using the
Hadamard matrix. Although our proposed scheme is slightly less efficient, the
computational complexity is O(n) in both schemes2. In the Sum-to-Poly part,
each participant serves as the dealer to share some value among the participants
through polynomial secret sharing. And the computational costs are similar in
both schemes. In summary, our proposed scheme and Frankel’s scheme have sim-
ilar computational complexity regarding the share refreshment protocol. But we
have used only one type of secret sharing (i.e. secret sharing based on hyper-
plane geometry) while Frankel’s scheme has employed two different types of
secret sharing (i.e. secret sharing based on polynomial interpolation and secret
splitting). Note that the proposed scheme also can be designed following Rabin’s
approach [23]. In this case, its computational complexity will be similar as in
Rabin’s scheme, but it uses less secret sharing as the building block as well.

5 Discussion and Conclusion

In this paper, we have renovated an existing proactive secret sharing scheme
using a different mathematical structure. The appealing feature of our proposed
scheme is that it only requires one type of secret sharing as the building block,
while the existing schemes with similar properties require two types of secret
sharing. This improvement is due to the special property found in secret sharing
based on hyperplane geometry. In particular, secret sharing based on hyperplane
geometry handles (t, n) secret sharing as efficient as the one based on polynomial
interpolation, but it can handle (n, n) secret sharing more efficiently. We assume
that this property may find other applications in cryptographic protocols as well.

Moreover, one can further explore some other special matrices with unique
properties and apply them with secret sharing based on hyperplane geometry.
This may uncover some still unknown features of secret sharing. We will further
investigate this in the future work.

Finally, we note that the proposed scheme could be extended in various
aspects. We have deliberately avoided mentioning these extensions in the pre-
vious section in order to make the explanation concise. Here, we briefly discuss
how the extensions can be applied to our proposed scheme.

– Dynamic property. With minor modifications, our proposed scheme could
achieve the dynamic property [30], allowing the threshold to be changed
dynamically. For example, suppose that the threshold needs to be changed
from t to t′, then the share refreshment protocol can be modified as follows:
it first transforms the (t, n) polynomial secret sharing into the (t, t) additive
secret sharing, and then it transforms the (t, t) additive secret sharing into a
(t′, n) polynomial secret sharing.

2 In Frankel’s scheme, each participant just sums the received sub-shares, while in our
proposed scheme, each participant needs to sum the received sub-shares and then
multiplies the result by some constant values. Although our proposed scheme has
an additional multiplicaiton step, the computational complexity is asymptotically
similar in both schemes.



98 Z. Xia et al.

– Adaptive security. Our proposed scheme can be extended to satisfy the
adaptive security. The major challenge in designing adaptively secure dis-
tributed protocols is that the adversary can corrupt the participants at any
time throughout the protocol, and the corrupted participants have to reveal
their internal states that are consistent with the public information. One
feasible solution is to use Canetti’s trick of Single Inconsistent Participant
(SIP) [9]. In the protocol, the Feldman’s VSS [12] needs to be replaced by
Pedersen’s VSS [22] so that the public commitments are binded softly. In the
simulation, the simulator S fully controls n− 1 participants, and the remain-
ing one, called special participant, is used to ensure that the public parameters
are consistent as in the real protocol. Moreover, zero-knowledge proofs [16,17]
are used to verify the participants’ behaviour. In this way, although S has no
knowledge of the special participant’s internal state, its corresponding zero-
knowledge proof can be simulated. Therefore, if the special participant was
corrupted by the adversary (with probability roughly 50%), the simulation
terminates and rewinds. Otherwise, S can generate the adversary’s view that
is indistinguishable from a real run of the protocol.

– Asynchronous networks. The technical difficulty in the asynchronous net-
works model is that when the receiver did not receive the messages from the
sender as expected, it is hard to judge whether this is caused by the network
delay or by a dishonest sender. Similar techniques as in [7] can be applied to
adapt our proposed scheme in the asynchronous networks model. However,
such a scheme is no more optimal resilient, as it only tolerates less than one
third of dishonest participants.

– Proofs in the UC model. It is possible to prove the proposed scheme in the
UC model [8], and this may demonstrate another advantage of our proposed
scheme. Recall that the general goal of the UC model is as follows: suppose
that protocols ρ1, ρ2, . . . , ρm securely evaluate functions f1, f2, . . . , fm respec-
tively, and the n-party protocol π securely evaluates an n-party function g
with subroutine calls to f1, f2, . . . , fm, then the protocol πρ1,ρ2,...,ρm derived
from π by replacing the subroutine calls to f1, f2, . . . , fm with invocations
of ρ1, ρ2, . . . , ρm also securely evaluates g. Therefore, when the protocol π
is designed with fewer building blocks, less subroutine protocols needs to be
considered, and this helps to simplify the security proof in the UC model.
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Abstract. Multikey fully homomorphic encryption (MFHE) allows
homomorphic operations between ciphertexts encrypted under different
keys. In applications for secure multiparty computation (MPC) proto-
cols, MFHE can be more advantageous than usual fully homomorphic
encryption (FHE) since users do not need to agree with a common pub-
lic key before the computation when using MFHE. In EUROCRYPT
2016, Mukherjee and Wichs constructed a secure MPC protocol in only
two rounds via MFHE which deals with a common random/reference
string (CRS) in key generation. After then, Brakerski et al. replaced the
role of CRS with the distributed setup for CRS calculation to form a
four round secure MPC protocol. Thus, recent improvements in round
complexity of MPC protocols have been made using MFHE.

In this paper, we go further to obtain round-efficient and secure MPC
protocols. The underlying MFHE schemes in previous works still involve
the common value, CRS, it seems to weaken the power of using MFHE
to allow users to independently generate their own keys. Therefore, we
resolve the issue by constructing an MFHE scheme without CRS based
on LWE assumption, and then we obtain a secure MPC protocol against
semi-malicious security in three rounds.

1 Introduction

Multikey Fully Homomorphic Encryption. Fully homomorphic encryption
(FHE) scheme (KeyGen,Enc,Dec,Eval) is a public key encryption scheme with
the additional algorithm Eval that allows homomorphic operations on ciphertexts:
for any (pk, sk) ← KeyGen(1λ), a function f , and two ciphertexts c, c′ encrypted
with pk, Eval algorithm takes (pk, f, 〈c, c′〉) as input and returns a new ciphertext
c∗ such that

Dec(sk, c∗) = f(Dec(sk, c),Dec(sk, c′)).

FHE is a very useful cryptographic primitive, and there has been profound
progress after the first construction of FHE by Gentry [4]. Multikey fully homo-
morphic encryption (MFHE), introduced in [6], is part of that progress. MFHE
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 101–113, 2018.
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is a generalization of FHE which supports homomorphic operations between
ciphertexts encrypted with different keys: with abbreviated notation, Eval algo-
rithm of an MFHE scheme takes c and c′ encrypted with pk and pk′, respectively,
and then returns a new ciphertext c∗ such that1

Dec(〈sk, sk′〉, c∗) = f(Dec(sk, c),Dec(sk′, c′)).

MFHE can be applied to construct secure multiparty computation (MPC) pro-
tocols, which is our main concern.

Secure Multiparty Computation via MFHE. Secure multiparty computa-
tion (MPC) can be very helpful for those who want to evaluate a function on their
personal data in cooperation with untrusted parties. More specifically, suppose
that N parties hold the private input x1, · · · , xN , respectively, and that they do
not believe one another at all but must evaluate a function f . Then secure MPC
protocol allows the parties to compute f(x1, · · · , xN ) without disclosing their
secret inputs to other users.

MPC protocols can be realized by MFHE schemes easily: each user encrypts
the data xi with its own public key pki, and sends the ciphertext ci ←
Enc(pki, xi) to other users. On receiving all the public keys pk1, · · · , pkN and
all the ciphertexts c1, · · · , cN , users run Eval algorithm of MFHE with inputs
({pki}i∈[N ], {ci}i∈[N ], f) to obtain a new ciphertext c∗ which encrypts the func-
tion value f(x1, · · · , xN ). These MPC protocols are not only secure by MFHE,
but also highly efficient in terms of round complexity: Mukherjee and Wichs [8]
constructed an MFHE scheme based on LWE which simplified the scheme of
Clear and McGoldrick [3] to obtain a MPC protocol in only two rounds with
a common random/reference string (CRS). They also achieved semi-malicious
security for their MPC protocol based on LWE assumption, and fully-malicious
security with additional NIZK. And then, Brakerski et al. [2] replaced the CRS in
their MFHE scheme with a distributed setup for deriving the CRS, and obtained
a three round semi-mailiciously secure MPC protocol and a four round fully-
maliciously secure MPC protocol.

However, since these protocols are constructed from MFHE scheme associ-
ated with the CRS, either a trusted setup in which all parties get access to
the same string CRS (see [8]), or a complex setup for generating the CRS that
adds one more round in the protocol (see [2]) is needed. This may weaken the
power of using MFHE. Therefore, in order to get a secure MPC protocol which
is also simple and round-efficient, it is important to construct an MFHE scheme
without CRS.

Previous Work. Let us briefly review the MFHE scheme by Mukherjee and
Wichs [8] with N parties. Given a common random public matrix B ∈ Z

(n−1)×m
q

as a CRS (m and n will be specified later), for i ∈ [N ], i-th party Pi generates a
key pair (pki, ski) = (Ai, ti) where Ai = (B,bi)T ∈ Z

n×m
q , ti ∈ Z

n
q and tiAi ≈q

1 Both of secret keys sk and sk′ are needed to decrypt the multikey ciphertext c∗ for
the semantic security.
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0 (i.e. tiAi − 0 is short in Z
m
q ). Define the multi-secret key t̂ = (t1, · · · , tN ) ∈

Z
nN
q which is required for the semantic security. Then a valid multi-key ciphertext

of a bit μ ∈ {0, 1}, which requires all the secret keys sk1, · · · , skN to decrypt, is
a matrix Ĉi ∈ Z

nN×mN
q such that t̂Ĉi ≈q μt̂Ĝ (i.e. t̂Ĉi − μt̂Ĝ is short in Z

mN
q )

where G ∈ Z
n×m
q is a fixed public matrix and Ĝ = diag(G, · · · ,G) ∈ Z

nN×mN
q

is an expanded matrix having the matrix G as diagonal components. To do this,
they built a polynomial time algorithm GSW. Lcomb (see Property 5.3 in [8])
that links pki = Ai and skj = tj for i �= j which is possible thanks to the
CRS matrix B. Then the multi-key ciphertext Ĉi is obtained from a single-key
ciphertext Ci, which can be decrypted by all parties’ secret keys. Then they use
the MFHE scheme to construct a two round MPC protocol which is secure in
the fully-malicious model. See [8] for details.

Our Contribution. In this work, we give an important stepping stone to get
a simple and round-efficient MPC protocol. Namely, we construct a three round
MPC protocol, that is secure in the semi-malicious model, without a CRS from
an MFHE scheme that use neither a CRS nor a complex setup for inducing a
CRS. This is interesting mainly for two reasons. (i) A MPC protocol without a
CRS means that no longer a trusted setup (for example, banks, or any certificate
authorities) for distributing the CRS is needed, and this fits the recent trends
in cryptography such as the famous digital currency Bitcoin. (ii) Three-round
seems to be a lower bound when we do not use a CRS: Firstly, since there is
no CRS, each user generates its own key pair independently and sends it to
other users prior to the protocol, which requires at least one round. Next, once
the ciphertexts and public keys are transferred, the computation can be done
by the evaluation algorithm of MFHE. Thus, it takes at least one more round
to transfer the information. Finally, since the decryption algorithm of MFHE
requires all the secret keys (sk1, · · · , skN ) as input due to the semantic security,
at least one more round is needed in order for each user to send an intermediate
decrypted value involving only its secret key to another users.

To do this, we generalize the MFHE scheme by Mukherjee and Wichs [8]
to construct an MFHE scheme without a CRS. In our scheme, Pi freely gen-
erates its key pair (pki, ski) = (Ai, ti) by choosing its own random matrix
Bi ∈ Z

(n−1)×m
q , instead of the CRS matrix B. Namely, we have pki = Ai =

(Bi,bi)T ∈ Z
n×m
q . Since pki’s no longer contain the common matrix B, we can-

not apply GSW. Lcomb algorithm directly to link pki = Ai and skj = tj for
i �= j. Instead, we give a polynomial time algorithm LinkAlgo that generalizes
GSW. Lcomb algorithm. Then we use LinkAlgo algorithm to transform a single-
key ciphertext Ci into a multi-key ciphertext Ĉi as in [8]. Since our single key
encryption step is independent of the LinkAlgo algorithm, one can use our scheme
for single key FHE and then just expand it freely with multi parties if she wants
to use it for MFHE or MPC.

Organization. In Sect. 2, we introduce notation used throughout the paper, and
review important definitions, including the learning with errors (LWE) problem
and Multikey fully homomorphic encryption (MFHE) schemes. In Sect. 3, as
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our first main result, we present LinkAlgo algorithm for transforming a single-
key ciphertext to the related multi-key ciphertext. Based on the first result, in
Sect. 4, we construct an MFHE scheme without a CRS, and obtain a three round
MPC protocol that is secure in the semi-malicious model.

2 Preliminaries

Notations. We denote κ the security parameter. A function negl(κ) is negligible
if for every positive polynomial p(κ) it holds that negl(κ) < 1

p(κ) . We denote
Z/qZ as Zq and its elements are integer in the range of (−q/2, q/2]. Now we define
the notation of vectors and matrices. For a vector x = (x1, x2, . . . , xn) ∈ Z

n, x[i]
denotes the i-th component scalar. For a matrix M ∈ Z

n×m, M[i, j] denotes the
i-th row and the j-th column element of M. Also we use the notation Mrow

i which
is denoted as i-th row of M and similarly, Mcol

j is denoted as j-th column of M.
We use row representation of matrices and define the infinity norm of a vector x
as ‖x‖∞ = maxi(x[i]) and that of a matrix M is defined as maxi(

∑
j M[i, j]).

Dot product of two vectors v,w is denoted by < v,w >. We also denote the set
{1, . . . , n} by [n].

Let X and Y be two distributions over a finite domain. We write X
comp
≈ Y if

they are computationally indistinguishable. For an integer bound Bχ = Bχ(κ),
we say that a distribution ensemble χ = χ(κ) is Bχ-bounded if Prx←χ(κ)[|x| >
Bχ(κ)] ≤ negl(κ). Throughout this paper, we use the notation ≈q to emphasize
that the two values are almost equal in Zq except for short differences.

The Learning with Errors Problem. We recall the learning with errors
(LWE) problem, a representative hard problem on lattices introduced by Regev
[9]

Definition 1. Let κ be the security parameter, n = n(κ), q = q(κ) be integers
and let χ = χ(κ), be distributions over Z. Given a matrix A ∈ Z

m×n
q and a

vector b ∈ Z
n
q , the decisional learning with error (LWE) problem is determining

whether b has been sampled uniformly at random from Z
n
q or b = sA + e for

some small random s ∈ Z
m
q and e ∈ χn for any polynomial m = m(κ).

The parameter setting for our version of the LWE assumption is that for any
polynomial p = p(κ) there is a polynomial n = n(κ), a modulus q = q(κ) of
singly-exponential size, and a Bχ bounded distribution χ = χ(κ) and q ≥ 2pBχ.

Multikey FHE (MFHE). We give a formal definition of Multikey FHE
(MFHE) [8] which is an adaptation from the original concept [6].

Definition 2. A multikey (Leveled) FHE scheme is a tuple of algorithms
MFHE = (Setup,KeyGen,Enc,Expand,Expand,Dec) described as follows.

– Setup(1κ, 1d) → params: It takes κ is a security parameter and d is the circuit
depth as inputs and it outputs the system parameters params.
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– KeyGen(params) → (pk, sk): It takes params and outputs a key pair (pk, sk).
– Enc(pk, μ) → c: On input pk and a message μ, outputs a ciphertext c. we call

it by a fresh ciphertext.
– Expand((pk1, . . . , pkN ), c, i) → ĉi: Given a sequence of N public-keys, and a

fresh ciphertext c under i-th key pki, it outputs an expanded ciphertext ĉ.
– Eval(params, C, (ĉ1, . . . , ĉ�)) → ĉ: Given a boolean circuit C of depth ≤ d along

with � expanded ciphertexts, it outputs an evaluated ciphertext ĉ.
– Dec(params, ĉ, (sk1, . . . , skN )) → μ: On input a ciphertext (possibly evaluated)

ĉ and a sequence of N secret keys, it outputs the message μ. This decryption
procedure can be done by the one round threshold distributed decryption:

• PartDec(ĉ, i, ski): On input a ciphertext (possibly evaluated) under a
sequence of N public keys and i-th secret key, it outputs a partial decryp-
tion pi.

• FinDec(p1, . . . , pN ): On input N partial decryptions, it outputs the mes-
sage μ.

GSW FHE Scheme. Our MFHE scheme is similar to [8] apart from the exis-
tence of a trusted setup and a few algorithms. Here we describe the GSW fully
homomorphic encryption scheme [5] following the notation of [8]. Note that we
take the matrix B in KeyGen as with the original GSW encryption scheme instead
Mukherjee and Wichs [8] gets the matrix B from Setup, hence consider it as a
CRS.

– GSW .Setup(1κ, 1d) → (params): The needed parameters for this scheme to
satisfy the LWE assumption are n,m, q,G, χ where G ∈ Z

n×m
q is a trap-

door matrix [7], Bχ-bounded error distribution χ = χ(κ, d), a modulus
q = Bχ2ω(dκlogκ), and m = n log q + ω log(κ). and It outputs params :=
(n,m, q,G, χ,Bχ).

– GSW .KeyGen(params) → (pk, sk): generates a secret key and the correspond-

ing public key respectively. Sample s $← Z
n−1
q . A secret key sk = t := (−s, 1) ∈

Z
n
q . Sample e $← χm and B $← Z

(n−1)×m
q . Set b = sB + e ∈ Z

m
q . The corre-

sponding pk = A ∈ Z
n×m
q is defined as A:=

(
B
b

)

.

• The important relation between pk and sk is tA ≈q 0, which is because

tA = (−s, 1)
(
B
b

)

= −sB + b = e : small(i.e.‖e‖∞ ≤ Bχ).

– GSW .Enc(pk, μ) → (C): Choose a short random matrix R $← {0, 1}m×m then
encrypt a bit message μ ∈ {0, 1} under the public key pk as C ∈ Z

n×m
q , where

C := AR + μG

Here, tC = e′ + μtG where e′ = eR implies ‖e′‖∞ ≤ mBχ.
– GSW .Eval(C1,C2) → (C∗): Let C1,C2 ∈ Z

n×m
q be two GSW encryption

of μ1, μ2 under the pk respectively, so that: tC1 = μ1tG + e1 and tC2 =
μ1tG + e2. We can do homomorphic operations(addition, multiplication) as
following:
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• GSW .Add(C1,C2): C1 + C2.

• GSW .Mult(C1,C2): C1G−1(C2) ∈ Z
n×m
q .

– GSW .Dec(sk,C) → (μ): On input as sk,C, set w = (0, . . . , 0, �q/2) ∈ Z
n
q and

compute v = tCG−1(wT ) = ē+ μ(q/2) ∈ Zq such that ē =< e,G−1(wT ) >.
Output |� v

q/2| checking if the value is close to 0 or q/2.

The function G−1(·) introduced in [7] takes any matrix M ∈ Z
n×m′
q (for any

m′ ∈ N) and outputs a matrix whose all elements are in the set {0,1}. This
function satisfies GG−1(M) = M.

The semantic security of GSW FHE scheme under the LWE assumption (with
proper parameters) is proved in [5]. To analyze the correctness, we follow the
notion of β-noisy ciphertext [8].

Definition 3. A β-noisy ciphertext of a message μ under a secret key sk(= t) ∈
Z

n
q is a matrix C ∈ Z

n×m
q satisfying tC = μtG + e for some e with ‖e‖∞ ≤ β.

To recover the original message correctly, the maximum size of the error
generated during the decryption procedure should be less than q/4. Recall that
the depth of the circuit is d and let the fresh ciphertext is β-noisy ciphertext.
Then β is mBχ. And evaluated ciphertext is at most (m + 1)dβ-noisy. Finally
during the GSW-decryption procedure, the error is multiplied by m. Therefore,
the error would become at most m2(m + 1)dBχ, which is less than q/4 because
of our choice of parameters.

3 MFHE Scheme Without a CRS

3.1 Single-Key Ciphertext to Multi-key Ciphertext

An MFHE scheme allows homomorphic operations between ciphertexts under
different keys, but the GSW scheme from the previous section is not enough for
such operations. This is due to the fact that there is no relation between two
different users’ keys. In this section, we present a polynomial time algorithm
LinkAlgo that links two different keys by giving a relation between them. And
then we will use LinkAlgo to transform a single-key GSW ciphertext into a multi-
key ciphertext, and finally to obtain an MFHE scheme.

Let R ∈ {0, 1}m×m be a 0-1 matrix, and V (s,t) be a β-noisy GSW ciphertext
of R[s, t] (s-th row and t-th column of R) under (pk, sk) = (A, t) for all s, t ∈ [m].
Let (pk′, sk′) be another, or possibly same, GSW key pair. Then LinkAlgo takes
pk′ and encryptions V (s,t)’s, and returns a matrix X as follows:

Proposition 4. We have tX = tA′R + e, where ‖e‖∞ ≤ m3β.

Proof. Since V(s,t) is a β-noisy encryption of R[s, t] under (pk, sk) = (A, t), we
have tV(s,b) = R[s, t]tG + es,t for some es,t with ‖es,t‖∞ ≤ β. Hence, it holds
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Algorithm 1. LinkAlgo algorithm
Input: pk′ and {V (s,t)}s,t∈[m]

Output: X ∈ Z
n×m
q

1. Define Ls,t ∈ Z
n×m
q for all s, t ∈ [m] by

Ls,t[a, b] =

{
A′[a, s] if t=b
0 otherwise

2. Output X =
∑m

s=1

∑m
t=1 V

(s,t)G−1(Ls,t) ∈ Z
n×m
q .

that

tX =
∑

s,t

tV(s,t)G−1(Ls,t)

=
∑

s,t

(R[s, t]tG + es,t)G−1(Ls,t)

=
∑

s,t

(R[s, t]tLs,t + e′
s,t)

= t
∑

s,t

R[s, t]Ls,t +
m∑

s,t

e′
s,t,

where e′
s,t := es,tG−1(Ls,t) has a norm ‖e′

s,t‖ ≤ mβ.
Now it suffices to show that

∑m
s=1

∑m
t=1 R[s, t]Ls,t = A′R. Note that Ls,t

has s-th column of A′ on the t-th column and 0 elsewhere.

m∑

s=1

m∑

t=1

R[s, t]Ls,t =
m∑

t=1

m∑

s=1

⎛

⎜
⎜
⎜
⎜
⎝

0 · · · R[s, t]A′[1, s] · · · 0
...

. . . R[s, t]A′[2, s] · · · 0
...

...
... · · · ...

0 · · · R[s, t]A′[n, s] · · · 0

⎞

⎟
⎟
⎟
⎟
⎠

=
m∑

t=1

⎛

⎜
⎜
⎜
⎜
⎝

0 · · · ∑m
s=1 R[s, t]A′[1, s] · · · 0

...
. . .

∑m
s=1 R[s, t]A′[2, s] · · · 0

...
...

... · · · ...
0 · · · ∑m

s=1 R[s, t]A′[n, s] · · · 0

⎞

⎟
⎟
⎟
⎟
⎠

=
m∑

t=1

⎛

⎜
⎜
⎜
⎜
⎝

0 · · · < A′row
1 ,Rcol

t > · · · 0
...

. . . < A′row
2 ,Rcol

t > · · · 0
...

...
... · · · ...

0 · · · < A′row
m ,Rcol

t > · · · 0

⎞

⎟
⎟
⎟
⎟
⎠

= A′R,

where A′row
� denotes the �-th row of A′ and Rcol

� denotes the �-th colum of R.
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To sum up,

tX = t
∑

s,t

R[s, t]Ls,t +
m∑

s,t

e′
s,t = tA′R + e,

where e :=
∑m

s=1

∑m
t=1 e

′
s,t has norm ‖e‖∞ ≤ m3β.

3.2 Our Leveled MFHE Scheme

Let G be the matrix and G−1(·) be the function as we described in Sect. 2.
Following the notation of [8], we expand G as ĜN = diag(G, · · · ,G) ∈ Z

nN×mN
q

and let ĜN
−1

(·) be the corresponding function of ĜN .
Define a tuple of algorithms

(MFHE . Setup,MFHE .KeyGen,MFHE .Enc,MFHE .Expand,MFHE .Eval,MFHE .Dec)

as follows:

– MFHE .Setup(1λ, 1d) → (params)
1. Run GSW .Setup(1λ, 1d)
2. Output params.

– MFHE .KeyGen(params) → (pk, sk)
1. Run GSW .KeyGen(params)

2. Output (pk, sk) =
((

B
b

)

, t
)

.

– MFHE .Enc(pk, μ) → (C)
1. Run GSW .Enc(pk, μ).
2. Output C (i.e. C = AR + μG).

– MFHE .Expand((pk1, pk2, . . . , pkN ), i,C) → (Ĉi) On other’s public keys and
a fresh ciphertext C, the execution is following:
1. {V(s,t)

i,j }s,t∈[m] ← {GSW .Enc(R[s, t], pkj)}s,t∈[m] for j ∈ [N ].

2. Compute Xj
i ← LinkAlgo({V(s,t)

i,j }s,t∈[m], pki) for j ∈ [N ].
3. Define a matrix Ĉi ∈ Z

nN×mN
q as

Ĉi :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ci − X1
i 0 . . . 0 0

0 Ci − X2
i . . . 0 0

...
...

...
...

...
Xi

i . . . Ci . . . Xi
i

...
...

...
...

0 0 . . . 0 Ci − XN
i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

which is concatenated by N2 number of n×m sub-matrices. The diagonal
sub-matrix of Ĉi is Ci − Xj

i for j∈ [N ]\ {i} and the i-th diagonal sub-
matrix is just Ci. Lastly, Xi

i is on the i -th row and zero matrix 0n×m is
elsewhere.

4. Output Ĉi.
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– MFHE .Eval(params, f, Ĉ1, . . . , Ĉ�) → (Ĉ∗)
1. Given � expanded ciphertexts, run the GSW homomorphic evaluation algo-

rithm working with the expanded dimension nN,mN and ĜN , Ĝ−1
N .

2. Output Ĉ∗.
– MFHE .Dec(params, (sk1, . . . , skN ), Ĉi) → (μ)

1. Given the sequence of secret keys(sk1 = t1, . . . , skN = tN ) and an
expanded ciphertext Ĉi, set a vector t̂:=[t1, t2, . . . , tN ] ∈ Z

nN
q .

2. Run GSW .Dec algorithm with ĜN and Ĝ−1
N .

3. Output μ.

To obtain a multi-key version of GSW scheme, Mukherjee and Wich’s scheme [8]
used a slightly modified versions of setup and key generation algorithms. Namely,
they modified GSW setup algorithm to contain a random matrix B which is
originally chosen during key generation. By doing this, one can consider B as a
CRS, and can guarantee that all parties use the same B to generate public keys.
Then they added a component to ciphertext for multi-key setting.

On the other hand, we use the exactly same setup, key generation and encryp-
tion algorithms as GWS scheme. There is no need to modify the setup algorithm
to contain a random matrix (a CRS). Instead, each party can choose a random
matrix to generate its key pair as in the original GSW scheme. This means that
one can use the single-key GSW scheme as usual, and can easily start multi-key
homomorphic operation with anyone when it is needed. All you have to do to
start a multi-key homomorphic operation is to find public key of whoever you
want to communicate, and to use our link algorithm.

Note that the decryption algorithm MFHE .Dec can be done by threshold
decryption, described in Sect. 2.

– MFHE .PartDec(c, ski) → (pi):
1. Given an expanded ciphertext c = Ĉ and i -th ski = ti ∈ Z

n
q , break Ĉ

into N row sub matrices Ĉi (i.e. Ĉ = (ĈT
1 , . . . , ĈT

N ) where Ĉi ∈ Z
n×mN .

2. Fix a vector ŵ = [0, . . . , 0, �q/2] ∈ Z
nN
q .

3. compute γi = tiĈiĜ−1(ŵT ) ∈ Zq

4. Output pi = γi + esm
i where esm

i
$← [−Bdec

smdg,B
dec
smdg] is small randon

noise with Bdec
smdg = 2dλlogλBχ.

– MFHE .FinDec(p1, . . . , pN ) → (μ):
1. Given p1, . . . , pN , just sum p =

∑N
i=1 pi.

2. Output μ = |� p
q/2�|.

Correctness of Expansion. Let Ĉ be the multi-key ciphertext of a bit μ
obtained by i-th user from MFHE .Expand algorithm:

Ĉ ← MFHE .Expand((pk1, · · · , pkN ), i,C)

where C is a GSW encryption of μ under (pki, ski) = (Ai, ti) and Ri is the rel-
evant random matrix. For the multi-secret key t̂ = [t1, · · · , tN ] and the public
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matrix ĜN , if Ĉ satisfies the relation t̂Ĉ ≈q μt̂ĜN , then we can naturally gener-
alize the arguments of GSW FHE scheme. Namely, we can achieve the correctness
of encryption, correctness of evaluation, simulatability of partial decryption, and
hence a valid MFHE scheme as in [8].

Recall that for a valid GSW key pair (pk, sk) = (A, t) it holds that
tA = −sB+b = e for some ‖e‖∞ ≤ Bχ. For a valid GSW ciphertext C of μ under
(pk, sk) = (A, t) it holds that tC = μtG + e′ for some ‖e′‖∞ ≤ βinit = mBχ.
We also recall that for a valid output X from LinkAlgo({V(a,b)}a,b, pk

′ = A′)
with respect to a 0-1 matrix R we have tX = tA′R + e′′ for some ‖e′′‖∞ ≤
m3βinit = m4Bχ.

Now, we are ready to prove the correctness of expansion. By the definition,
we have

t̂Ĉ = [t1(C − X1
i ) + tiX

i
i, t2(C − X2

i ) + tiX
i
i, · · · , tiC, · · · , tN (C − XN

i ) + tiX
i
i]

= [t1C − t1X
1
i + tiX

i
i, t2C − t2X

2
i + tiX

i
i, · · · , tiC, · · · , tNC − tNXN

i + tiX
i
i].

The only thing left is the term tjC for j �= i. This will be tjC = tj(AiRi +
μG) = tjAiRi + μtjG. Then, for j �= i,

tjC − tjX
j
i + tiXi

i = (tjAiRi + μtjG) − (tjAiRi + e′
j) + (tiAiRi + ei)

= μtjG + ẽj

where ẽj = −e′
j +tiAiRi+ei ≤ m4Bχ+(mBχ+m4Bχ)+mBχ = 2(m4 + m)Bχ.

And tiC = μtiG + e′ with ‖e′‖∞ ≤ mBχ. Therefore, we have t̂Ĉ = μt̂ĜN + e
where e = [ẽ1, · · · , e′, · · · , ẽN ] and ‖e‖∞ ≤ 2(m4+m)Bχ. Thus, one can think of
Ĉ as a GSW encryption under the secret key t̂, and the correctness of decryption
is guaranteed if we have 2(m4 + m)Bχ < q/(4mN). This particularly holds by
the choice of q = Bχ2ω(dκlogκ).

4 A Three Round MPC Protocol: Semi-malicious
Security

In the previous section, we give the LinkAlgo algorithm to have a relation between
two key pairs (pk, sk) and (pk′, sk′). In this section, we make use of the relation
obtained by LinkAlgo algorithm to construct our MFHE scheme, and then we
introduce a three round MPC protocol that is secure against semi-malicious
adversary from the MFHE scheme. This type of adversary is weaker than stan-
dard active malicious adversary but stronger than semi honest adversary who
just follows a protocol honestly albeit it wants to know other parties’ inputs. We
give a definition of Semi-malicious adversary model which is introduced in [1].

Semi-malicious Adversary. A semi-malicious adversary can corrupt arbitrary
number of honest parties. It can deviate a protocol to some extent. In other words,
he can choose the randomness of input by himself arbitrarily and adaptively in
each round. This choice must explain the message sent by the adversary. It must
follow the correct behavior of the honest protocol with inputs and randomness
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that it knows. We assume that it can be rushing (i.e. after seeing messages from
honest parties, it may choose its message.) and also the adversarial parties may
abort at any point of the protocol. The proof of the security goes on in the usual
way showing that the real model’s distribution

comp
≈ the ideal one.

4.1 A Three Round MPC Protocol via MFHE

Let f : ({0, 1})N → {0, 1} be the function to compute. Let d the depth of the
circuit for computing f .

Preprocessing. Run params ← MFHE .Setup(1λ, 1d). Make sure that all the
parties have params.

Input: For i ∈ [N ], each party Pi holds input xi ∈ {0, 1}, and wants to compute
f(x1, · · · , xN ).

Round I. (Round for public key) Each party Pi executes the following steps:
– Generate its key pair (pki, ski) ← MFHE .KeyGen(params).
– Broadcast the public key pki.

Round II. (Round for multi-key ciphertext) Each party Pi for i ∈ [N ] on receiv-
ing public keys {pkk}k �=i executes the following steps:

– Encrypt the message xi with its public key pki to get a single-key
ciphertext Ci ← MFHE .Enc(pki, xi). Keep the relevant random matrix
Ri,j ∈ {0, 1}m×m to Ci which will be need for MFHE .Expand.

– Run the expand algorithm to get a multi-key ciphertext:

Ĉi ← MFHE .Expand((pk1, · · · , pkN ), i,Ci)

– Broadcast the multi-key ciphertext Ĉi.
Round III. (Round for partial decryptions) Each party Pi for i ∈ [N ] on receiv-

ing ciphertexts {Ĉk}k �=i executes the following steps:
– Run the evaluation algorithm to get the evaluated ciphertext:

Ĉ∗ ← MFHE .Eval(f, (Ĉ1, · · · , ĈN ))

– Run the partial decryption algorithm on Ĉ∗:

pi ← MFHE .PartDec(Ĉ∗, (pk1, · · · , pkN ), i, ski)

– Broadcast the partial decryption pi of Ĉ∗.
Output: On receiving all the values {pk}k �=i, run the final decryption algorithm

to obtain the function value f(x1, · · · , xN ):

y ← MFHE .FinDec(p1, · · · , pN ),

and output y = f(x1, · · · , xN ).
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Security. The security proof of the above MPC protocol against semi-malicious
adversaries is similar to that of the previous work [8]. The proof heavily depends
on the simulatability of partial decryption and the semantic security of GSW
encryption. By the correctness of expansion in Sect. 4, our MFHE scheme inher-
its the simulatability of [8]. They proved the MPC protocol is secure against
any static semi-malicious adversaries who corrupt exactly N − 1 parties at first
because of their simulator of the threshold decryption. Then they proved the
security against those who corrupt arbitrary number of parties using only pseu-
dorandom functions. We adapt their way apart from the messages of each round,
i.e. the simulator’s the first round behavior of [8] works in our second round and
that of the second round works in our third round.

5 Conclusion

We have presented an MFHE scheme without a CRS (in public key), based on
the LWE assumption. As an important application, we have constructed a three
round MPC protocol which is secure against semi-malicious adversaries. This
seems to be round-optimal among all MPC from MFHE without CRS as we
mentioned in introduction. Our construction also has a strong point that one
can use its key pair for both multi-key setting and single-key setting since we
separate the component for multi-key operation from ciphertext. Furthermore,
with public key infrastructure (PKI), the round complexity is reduced to 2 since
the first round of our MPC protocol is only for broadcasting public keys. In this
work, we also have suggested an important stepping stone to get secure MPC
protocol, without any trusted setup, against fully malicious adversaries.
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Abstract. In Eurocrypt 2016, Kiayias, Zhou and Zikas (KZZ) have
designed a multiparty protocol for computing an arbitrary function,
which they prove to be secure in the malicious model with identifiable
abort supporting robustness property. In their algorithm, the total trans-
action verification time has turned out to be O(n6), where n is the num-
ber of parties participating in the protocol. The main contribution of this
paper is the improvement of their verification time to O(n3 log n). We
achieve this by observing that a deposit transaction created by a party
in KZZ can be generated simply from the information contained in a dif-
ferent deposit transaction. This observation coupled with a host of novel
techniques for addition and elimination of elements on a set relevant for
our protocol is primarily the reason we were able to improve the veri-
fication time complexity of the KZZ protocol. Our trick can potentially
be applied to speed up many other similar protocols (as much as it is
prohibitive in some other specific scenarios). We compare our protocol
with the others, based on various performance and security parameters,
and, finally discuss the feasibility of implementing this in the Ethereum
platform.

Keywords: Blockchain · Fairness · Robustness
Multi-party computation · Ethereum

1 Introduction

In a secure multiparty computation, a set of mutually distrusting n parties –
denotes P1, P2, · · · , Pn – compute the output of a publicly known function
f(x1, x2, · · · , xn), where xi is private to Pi. This line of research on design and
security analyses of various multiparty protocols (MPP), initiated in the semi-
nal works of Yao [30] and Goldreich et al. [14], has now become a hot pursuit
among the cryptographers, due to its enormous potential to solve various hard
and practically useful problems. While privacy is the most important property
of an MPP, it is still not sufficient for the protocol’s practical adoption into
a real-world application. In this context, a property named fairness takes the
center stage that guarantees that, after the execution of the protocol, either all
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 114–131, 2018.
https://doi.org/10.1007/978-3-319-93638-3_8
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parties learn the output, or nobody does. However, Cleve has shown that fair-
ness is impossible to achieve, if the number of dishonest parties is more than
n/2 [10]. This has led the researchers to investigate a slightly diluted version
of the property, known as fairness with compensation which ensures that, if a
party aborts the protocol after knowing the output, he has to pay fine to the
honest parties [7]. Interestingly, it also turns out that this diluted version is still
not enough in various practical applications, since this property fails to penalize
a dishonest party if he aborts right after the start of the protocol (but before
knowing the output); this can lead to a scenario where the honest parties ended
up wasting their time and resources without knowing the output until the end
of the protocol, and the dishonest parties responsible for the abort did not pay
any fine. The robustness property addresses this issue and guarantees that either
the honest parties obtain the output, or they are compensated, no matter the
point during the execution at which they abort the protocol [16].

With the advent of the decentralized cryptocurrencies like Bitcoin and Ethe-
reum, achieving fairness with compensation becomes a realistic goal [21,29]. A
number of papers emerged that implemented several multiparty protocols with
monetary penalty [2,7,17–19]. Although these protocols achieve fine-based com-
pensation, they still lack the robustness property as discussed above. In [16], the
authors introduced this new notion, and provided a compiler that transforms any
multiparty protocol πmal, which is secure in the malicious model with identifi-
able abort, to a protocol which is robust as well as secure in the malicious model
with identifiable abort. Their compiler is based on the following novel ideas: (1)
Broadcasting the commitments of the setup strings using deposit phase; (2) The
function evaluation is done after the deposit phase; (3) Finally, the robustness
is achieved through creation of islands for all parties; an island of a party is a
set of parties who have created similar type of deposit transactions for all the
parties.

Our Contribution. In this paper, we propose a faster technique for computing
islands required for achieving robustness property; as a result, we improve the
verification time of the KZZ compiler from O(n6) to O(n3 log n). Our technique
takes advantage of the following crucial observation: the information contained
in the deposit transactions are not independent; in particular, information of a
deposit transaction of one party can be generated from the deposit transaction of
another party. Note that this technique can only be applied to a protocol where
the embedded commitments as well as the predicates of all the deposit trans-
actions can be computed from the information contained in the other deposit
transactions. We also observe that this technique is unique and cannot be univer-
sally applied to all protocols such as those in [7,18,19]. To complete the protocol,
we have used three new efficient predicates to store, update and check the exis-
tence of appropriate transactions, study of which may be of independent research
interest. We have also described the feasibility of implementing our protocol in
Ethereum. Finally, we compare our protocol with other multiparty protocols
with respect to various security and performance parameters in Table 1.
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Table 1. Comparison between various protocols implementing multi-party computa-
tion of an arbitrary function. Here, n = # of parties, λ = security parameter, T =
size of the transcript in the protocol. The Script complexity also reflects the commu-
nication complexity. The Setup time for all the schemes is O(1).

Scheme On-Chain
Trans.

Script
Comp.

Ledger
Rounds

Verification
Time

Fairness
Prop.

Robustness
Prop.

BK [7] O(n) O(n2) O(n) O(n) Yes No

KVN1 [19] O(n) O(nλ) O(n) O(1) Yes No

BKM [18] O(n2) O(n2T ) O(n2) O(n) Yes No

KVN2 [19] O(n) O(nT ) O(n) O(1) Yes No

KZZ [16] O(n2) O(n4) O(1) O(n6) Yes Yes

This paper O(n2) O(n4) O(1) O(n3 log n) Yes Yes

Related Work. The subject of fairness with compensation has been the theme
of various other papers [2,3,7,17–19]. In addition, Ruffing, Kate and Schröder
recently addressed the equivocation issue in the Bitcoin, i.e., making conflict-
ing statements to others in a distributed protocol, via penalty mechanism [26].
Fairness can be viewed from resource and optimistic perspectives that guaran-
tee fairness with high probability at the cost of running time of the protocol
cf. [5,8,9,13]. Contrary to our work, there are several other works that try to
achieve the fairness property in MPC using alternate models: reputation sys-
tem to measure the reliability of each party in the protocol [4]; exploiting the
rational adversarial power to design protocol using game-theoretic equilibrium
setting for the parties [12]. Another related work is done in [6,20], where they
focus on reducing the collateral amount deposited in the multiparty lottery pro-
tocol. However, these protocols are designed for computing a specific function
and cannot be trivially extended for computing any arbitrary function.

Organization. We start with preliminaries in Sect. 2. Then in Sects. 3.1 and 3.2,
we described the predicates and the sub-protocols to be used in our protocol. In
Sect. 3.3, we present the full description of our protocol that will reduce the verifi-
cation time as compared to [16]. In Sect. 3.4, we highlight the difference between
the KZZ and our compilers. Implementation of our protocol in the Ethereum
platform is discussed in Sect. 4. In Sect. 5, we provide the security analysis of the
robustness property of our protocol. Finally, we conclude in Sect. 6.

2 Preliminaries

Notation. Throughout the paper, we assume an (often implicit) security param-
eter denoted as k. For a number n ∈ N we denote by [n] the set [n] = {1, · · · , n}.
We define Ledger as a publicly-verifiable database which stores all the valid
transactions in the form of a block. Let maxLedger denote the maximum time
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taken by the network to verify a transaction and include it in the Ledger.
The state is defined as a set of valid transactions stored in the Ledger. Let
RoundTime(1) denote the time at which the parties have agreed to start the
protocol execution. We define RoundTime(ρ) = RoundTime(1)+ ρ×maxLedger.

Definition 1 (Script Complexity [17,19]). Let Π be a protocol among n par-
ties P1, · · · , Pn in the F∗

CR-hybrid model. For circuit φ, let |φ| denote its circuit
complexity. For a given execution of Π, starting from a particular initialization
Ω of parties’ inputs, random tapes and distribution of coins, let VΠ,Ω denote
the sum of all |φ|’s, such that some honest party claimed an F∗

CR transaction by
producing a witness for φ during an execution of Π. Then the script complexity
of Π, denoted VΠ , equals maxΩ(VΠ,Ω).

Definition 2 (Q-robustness [16]). We say protocol π realizes functionality F
with QḠ-robustness with respect to global functionality Ḡ, provided the following
statement is true. There exists a threshold T such that for all adversaries A,
there is a simulator S so that for all environments Z it holds:

ExecḠ
π,A,Z ≈ Exec

Ḡ,WT
Q,Ḡ(F)

S,Z

Moreover, whenever the wrapper W reaches its termination limit, then the state
state of the global setup Ḡ upon termination holds that QDlv

Ḡ (sid, P,Rpub
P,sid, state)1

for every party P ∈ P, where sid denotes the protocol ID; Rpub
P,sid denotes the public

component of party P .

Correlated Randomness as a Sampling Functionality [16]. Our pro-
tocol is in the correlated randomness model. In this model, we assume that
the parties initially, before receiving their inputs, receive appropriately corre-
lated random strings. It is parameterized by a sampling distribution D and
the player set P = {P1, · · · , Pn}. In this model, the parties jointly hold a vector
R = (R1, · · · , Rn) ∈ ({0, 1}∗)n, where Pi holds Ri, drawn from a given efficiently
samplable distribution D. This is, as usual, captured by giving the parties ini-
tial access to an ideal functionality FD

CORR, known as a sampling functionality
(see Fig. 1 for details). Hence, a protocol in the correlated randomness model is
formally an FD

CORR-hybrid protocol.

Functionality FD
CORR(P,REQUEST, sid)

– Wait to receive the message (REQUEST, sid) from any party or the adversary S ∈ P. Set
R = (R1, · · · , Rn) ← D.

– For all i ∈ [n], output (REQUEST, sid, Ri) to Pi (or to the adversary if Pi is corrupted).

Fig. 1. The correlated randomness functionality FD
CORR in the malicious model.

1 It ensures that the honest parties do not lose money during execution of the protocol.
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Information-Theoretic Signatures [15,27,28]. Our protocol uses
information-theoretic signatures to commit a party to messages it sends. Infor-
mally, the signer, Pi, sends his signature σ on a message m to the receiver, Pj ,
such that Pj can later verify that the message was indeed sent from Pi [15].
Note that in order to achieve information-theoretic security the verification key
is not known publicly to all the parties. Rather, each receiver, Pi, knows private
verification key vki corresponding to the signing key sk.

Security with Identifiable abort [15]. Secure multi-party computation with
identifiable abort, also referred to as Identifiable MPC (ID-MPC), ensures that,
if a protocol π aborts, then all the parties agree on the identity of the abort-
ing (or corrupted) party Pi. We say that the parties aborted with Pi. Consider
any arbitrary functionality F ; we define a new functionality [F ]ID⊥ that behaves
exactly as F with the following modification: upon receiving from the simulator
a special command (abort, Pi), where Pi is a corrupted party, [F ]ID⊥ sets the
outputs of all (honest) parties to (abort, Pi).

Definition 3 ([15]). Let F be a functionality and [F ]ID⊥ be the corresponding
functionality with identifiable abort. We say that a protocol π securely realizes F
with identifiable abort if π securely realizes the functionality [F ]ID⊥ .

Overview of Blockchain. The Blockchain is a decentralized, immutable, pub-
lic ledger of transactions. It relies on the idea of computationally hard crypto-
graphic puzzle – a.k.a. moderately hard functions or proofs of work – put forth
by Dwork and Naor [11]. It attempts to provide robustness as long as more than
half of the computing power is held by the honest participants [23]. A plethora
of similar-looking currencies like [1,22,24,25] fundamentally use Blockchain as
its underlying technology. Very briefly, the main idea behind the Blockchain
technology is storing and aggregating multiple transactions between the nodes
of the network in the form of a block, and afterwards joining these blocks in a
linear chain. However, the aspect that makes this technology different from all
previous secure storage techniques, is that it is able to correctly verify all these
transactions even when the nodes in the network are not trustworthy. For more
technical details regarding Blocks and Blockchain, please refer to [21].

Overview of Ethereum. Ethereum is a blockchain based distributed comput-
ing platform supporting a Turing-complete scripting language [29]. It can also be
viewed as transaction-based state machine. In Ethereum, the state is comprised
of many small objects called “accounts” that transition the state by transfer-
ring values and information from one account to other. There are two types of
account: (1) Externally owned account which are controlled by private keys and
have no code associated with them. (2) Contract account which are controlled
by their contract code and have code associated with them. Transactions in
ethereum are of two types: those which result in message calls and those which
result in the creation of new accounts with associated code (known informally
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as ‘contract creation’). Each transaction contains recipient account, a signature
identifying the sender, the amount of ether as well as gasLimit and gasPrice.
gasPrice represents the cost per computational step and gasLimit represents the
maximum amount of gas that should be used in executing this transaction. A
contract when executed can change its local state as well as generate new trans-
actions. For a transaction to be considered valid, it must go through a validation
process known as mining. The contract is executed by the miner that processes
an incoming transaction as part of the state update function of the Ethereum
blockchain. Once the validation is done, the state is updated and respective
amount is debited from sender’s account and updated in receiver’s account. If
the value transfer failed because the sender did not have enough money, or the
code execution ran out of gas, all state changes are reverted back except the
payment of the fees which is added in the miner’s account. Ethereum makes
use a special kind of data structure, called Merkle-patricia-tree (trie), that can
store state in the form of keys and values. Ethereum makes use a special kind
of data structure, called Merkle Patricia Trees, that can store cryptographically
authenticated data in the form of keys and values. A Merkle Patricia Tree with
a certain group of keys and values can only be constructed in a single way. In
other words, given the same set of keys and values, two Merkle Patricia Trees
constructed independently will result in the same structure bit-by-bit. For our
work, the Merkle aspect of the trees are what matter in Ethereum. Rather than
keeping the whole tree inside a block, the hash of its root node is embedded in the
block. If some malicious node were to tamper with the state of the blockchain,
it would become evident as soon as other nodes computed the hash of the root
node using the tampered data [29].

3 Description of the Compiler KZZ′

Let πmal be a protocol implementing an arbitrary function f(·) that is secure in
the malicious model with identifiable abort. The KZZ′ is a compiler that takes
πmal as an input and outputs the protocol πrob which is robust and secure in the
malicious model with identifiable abort. The naming of KZZ′ is due to the fact
that it is a more efficient version of the compiler KZZ, named after their authors
Kiayias, Zhou and Zikas. The difference between KZZ and KZZ′ is described in
Sect. 3.4. In the description, the difference of our protocol with KZZ has been
identified in blue color.

Suppose, P = {P1, · · · , Pn} is the set of parties who want to compute the
function f(x1, · · · , xn), where xi is the private input of party Pi. Let ρc be the
number of rounds of the protocol πmal.

We describe the protocol by dividing it into three parts: (A) we give the
description of the predicates to be used in various transactions; (B) then, we
use the sub-protocol such as Dep Ref(·) and Claim(·) for deposit and claim using
(A); (C) and finally, we give the full description of our compiler KZZ′ based on
(B).
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3.1 Description of the Predicates Used in KZZ′ Transactions

Predicates associated with creation and update of islands. The following
three predicates – namely, set un(·), update(·) and exist(·) – work on creation and
update of islands and sub-islands, and hence, are to be studied together. Let
P ′

iaj
= {Paj

} denote the sub-island of Pi. The P ′
i = {Pi}

⋃
∀j∈[m] P ′

iaj
,∀i ∈ [n],

denotes the island of Pi (see Fig. 2).

P′
i

Pi

· · · · · ·Pa2

Pa1

Pa4
Pam

Pa3

P′
ia1

P′
ia2

P′
ia3

P′
ia4

P′
iam

Fig. 2. P ′
i, represented by the solid oval, denotes the island of Pi. The dotted circles

represent the sub-islands P ′
iaj

, ∀j ∈ [m].

set un(s, i). The predicate returns 1 after creating the sub-island P ′
si.

update(s, i). The predicate returns 1 if, for a pair of parties (Ps, Pi) and their
respective sub-island (P ′

si,P ′
is):

1. If
(
Ps ∈ P ′

is ∧ P ′
si = {}

)
then update P ′

is = {}.

2. If
(
Pi ∈ P ′

si ∧ P ′
is = {}

)
then update P ′

si = {}.

The predicate ensures that if a pair of parties doesn’t exist in each other’s
sub-islands, then they should be removed from the sub-islands. This strategy
will help in removing an honest party from a corrupt party’s island.

exist(s, i). The predicate is verified by executing the following: Check if Pi ∈ P ′
si.

The predicate will be used to ensure that a claimant Pi can only redeem the
deposit transactions if he exists in the sub-island of the depositor Ps.

Predicate φρ

(
α, β, h(ρ−1); {Comj}j∈[n ]

)
. Let α, β and h(ρ−1) denote the

message, the NIZK proof of the secret and the random number of a party, and
the history of the protocol at round ρ−1 respectively. The predicate is verified if
α is the correct round-ρ-message in the protocol corresponding to the proof β, the
history of the protocol h(ρ−1) at round ρ−1, and the commitments {Comj}j∈[n]

(for more details see [15]).
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The predicate ensures that parties are executing the protocol correctly by
asking them to provide zero-knowledge proof of the secret and the random num-
bers that prove that the revealed witness is consistent with the history of the
protocol so far. If any party sends an inconsistent message then the protocol
aborts and each party knows the identity of the aborter.

Predicate φ′
i

(
D;n − 1, {Comj}j∈[n ]

)
. Let D denote the set of all deposit

transactions created by a party. The predicate is verified by executing the fol-
lowing: It will first check whether |D| = n − 1; then, check whether all the
transactions in D are created by Pi, that is whether Veri(·) = 1. Now ∀x ∈ D,
check if the output script contains the predicate φρ(·).

This is the most important and newly designed predicate. The predicate check
if the supplied deposit transactions have similar setup as the current deposit
transaction. This strategy will help in creating island for parties having similar
deposit transactions.

3.2 Description of the Sub-protocols Dep Ref(·) and Claim(·)
In any protocol supporting fairness with compensation, the major two operations
are deposit and claim of money by creation of transactions and verifying them
against conditions, also known as predicates. The following protocols, namely,
Dep Ref(·) and Claim(·) are used by the parties for depositing the money and
claiming them back later. The algorithmic description is given in Fig. 3.

Dep Ref(·). The protocol takes following parameters as an input: sid = protocol
id, s = the creator of the transaction, i = the receiver of the transaction, v =
the amount to be deposited and ρ = round of a synchronous protocol π.

The protocol proceeds as follows: A party Ps sends some amount v to Pi by
creating a transaction Tx(d) which can be redeemed if he satisfies the following
conditions. (1) If Pi posts the claim transaction within the time interval (τ−

ρ , τ+
ρ ),

where τ−
ρ = RoundTime(ρ) and τ+

ρ = RoundTime(ρ) +maxLedger − 1, (2) If the
supplied NIZK proof proves that the message is consistent with the view of
the protocol so far, (3) If the claim is done for first round of the protocol π,
then check if the claimant has created his own deposit transactions then add
him into the depositor’s island, (4) Otherwise, check if the claimant exists in
the depositor’s island, (5) If the claim is not done within the specified time
interval then the money will be refunded back to Ps, if he supplies both Pi and
Ps signatures. Now, for Ps to redeem his deposited money back to himself, he
creates a partially complete refund transaction Tx(r) and sends it to Pi. Pi will
then sign on this refund transaction, before sending it back to Ps. This ensures
that Ps can redeem his money only after time τ+

ρ .

Claim(·). The protocol takes following parameters as an input: sid = protocol id,
i = the creator of the transaction, s = the party who has pledged the amount
to party i, v = the amount to be deposited, ρ = round of a synchronous proto-
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col π,m = ρth round message of π, p = NIZK proof of secret and message
generated in π, h = history of the protocol π at round ρ − 1.

The protocol starts by collecting all the deposit transactions created by party
Pi inside the set D. Pi then redeems the deposit transaction Tx(d) made to him
by Ps by supplying the relevant secrets values inside the data field of his claim
transaction Tx(c). If the claim transaction is created for the first round (ρ = 1)
of the synchronous protocol π then the relevant data values will be (m, p, h and
the set D), if ρ > 1 then the relevant data values will be (m, p, h) else the set D.

Dep Ref(sid, s, i, v, ρ)

1. Ps creates a transaction with ID Tx(d), and stores, having the following parameters:
– protocol id: sid
– output script/contract code:

ρ = 1 ∧ τ
−
1 ≤ time < τ

+
1 ∧ Veri(·) ∧ φρ(·) ∧ φ

′
i(·) ∧ Tx(isl).set un(s, i)︸ ︷︷ ︸

for Pi∨
ρ > 1 ∧ τ

−
ρ ≤ time < τ

+
ρ ∧ Veri(·) ∧ φρ(·) ∧ Tx(isl).exist(s, i)︸ ︷︷ ︸

for Pi∨
ρ =⊥ ∧τ

−
⊥ ≤ time < τ

+
⊥ ∧ Veri(·) ∧ φ

′
i(·) ∧ Tx(isl).update(s, i)︸ ︷︷ ︸

for Pi∨
time ≥ τ

+
ρ ∧ Vers(·) ∧ Veri(·)︸ ︷︷ ︸

for Ps

– value: v
– input transaction ID: Tx
– inputscript: sigs(sid ‖〈output script〉‖v‖Tx)

2. Ps also creates a partially complete transaction with ID Tx(r) having the following parameters:
– protocol id: sid
– output script/contract code: Vers(·)
– value: v

– input transaction ID: Tx(d)

– inputscript: ?

3. Ps sends Tx(d) and Tx(r) to Pi who adds his signature σ1 on Tx(r), before returning it to Ps.
Ps then adds his signature σ2 on Tx(r). Therefore, finally, inputscript = σ1, σ2.

4. Release the transaction Tx(r) after time τ+
ρ in the network.

Claim(sid, i, s, v, ρ, m, p, h)

1. If ρ =⊥, D = set of all deposit transactions created by Pi in Step 4 of Fig. 4.
2. Otherwise, D = set of all deposit transactions created by Pi in Step 3 of Fig. 4.
3. Pi creates a transaction with ID Tx(c) having the following parameters:

– protocol id: sid
– output script/contract code: Veri(·)
– value: v

– input transaction ID: Tx(d)

– input script: sigi(sid ‖〈output script〉‖v‖Tx(d))

– data:

⎧⎪⎨
⎪⎩

m, p, h, D if ρ = 1
m, p, h if ρ > 1
D if ρ =⊥

Fig. 3. Algorithmic description of the protocols Dep Ref(·) and Claim(·). For details
see Sect. 3.2.
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πrob = KZZ′(πmal, v)

Global variable: state state; set of parties P.
Input: int v, protocol πmal.
Output: πrob.

1. [Setup] (At τ−3 = RoundTime(1) − 2). For all i ∈ [n]:
– Party Pi ∈ P invokes the sampling functionality FD

CORR (as described in Sect. 2) by
sending message (REQUEST, sid), where sid is the protocol’s session ID .

– Output received by Pi from FD
CORR is (Rpriv

i , Rpub). Here, Rpriv
i = random coins required

in the protocol‖OTPi‖ski, where OTPi is the One-Time Pad, ski is the signing key;
Rpub = (Com1, · · · , Comn)‖(vk1, · · · , vkn)‖CRS, where: Comi is the commitment on
Rpriv

i ; vki is the verification key corresponding to ski; and CRS is the common reference
string.

– Create a transaction, namely, Tx(isl) with predicates set un(·), update() and exist(·). This
transaction also contains variables P′

ij , where P′
ij is initially empty, i �= j, and P′

ii is
initialized to {Pi}, ∀i, j ∈ [n].

– Pi sets his public key address addressi := vki.
2. [Checking Balance] (At τ−1 = RoundTime(1) − 1). Let ρc be the number of rounds of the

protocol πmal. If a party P ∈ P has less than (n − 1) × v × ρc unspent coins in the state, then
it broadcasts ⊥, and every party aborts the protocol execution with output ⊥.

3. [Deposit1] For all (s, ρ) ∈ [n] × [ρc], execute the following:
– (At τ0 = RoundTime(1)) For all i ∈ [n], i �= s: invoke Dep Ref(sid, s, i, v, ρ). (Details of

the protocol are in Fig. 3.)
4. [Deposit2] (At τ1 = RoundTime(2)) For all s, i ∈ [n], i �= s: invoke Dep Ref(sid, s, i, v, ⊥).

(Details of the protocol are in Fig. 3.)
5. [Claim Loop plus execution of πmal] All parties together execute the following steps (sequen-

tially) :

– (At τ2 = RoundTime(3)) Invoke π
(1)
mal

(
P, {xi, Rpriv

i }i∈[n]

)
→ {(ms,1, ps,1) : s ∈ [n]},

where ms,1 = xs ⊕ OTPs, and ps,1 = NIZK proof of (xs,OTPs). Here, xs is the private
input of Ps.

– (At τ3 = RoundTime(4)) For all s, i ∈ [n], i �= s, invoke Claim(sid, i, s, v, 1, ms,1, ps,1, {}).
– (At τ4 = RoundTime(5)) For all s, i ∈ [n], i �= s, invoke Claim(sid, i, s, v, ⊥, ⊥, ⊥, ⊥). [After

execution of this round, the island P′
s is computed as Ps

⋃
∀j∈[n] P′

sj , ∀s ∈ [n].]
– For ρ = 2, · · · , ρc:

(a) (At τρ+3 = RoundTime(ρ+4)) If the state is not aborting, that is, there are no missing
claim transactions in the previous round∗ then execute the following:

i. (At τρ+4 = RoundTime(ρ + 5)) Invoke π
(ρ)
mal

(
P′

s, {(maj,ρ−1, paj,ρ−1) : j ∈
[m]}, {Rpriv

j }j∈[m]

)
→ {(mak,ρ, pak,ρ) : k ∈ [m]}

ii. (At τρ+5 = RoundTime(ρ + 6)) For all i, k ∈ [m], i �= k, invoke

Claim
(
sid,ai, ak, v, ρ, mak,ρ, pak,ρ, h(ρ−1)

πmal

)
. Here, h(ρ−1)

πmal
= history of the pro-

tocol πmal at round ρ − 1.
(b) If the state is aborting then break.

6. Every party broadcasts the output of the function f(x1, · · · , xn) (or outputs ⊥ in case of abort)
and halts.

∗In case, ρ = 2, two previous rounds are considered.

Fig. 4. Algorithmic description of the KZZ′ compiler. For details see Sect. 3.3.

3.3 Constructing KZZ′ Using Dep Ref(·) and Claim(·)
In this section, we will give the full description of our compiler KZZ′ using the
sub-protocols described in Sect. 3.2. The algorithmic description is given in Fig. 4
(and pictorially in Fig. 5).

The KZZ′ compiler is an FD
CORR-hybrid protocol that transforms πmal into

πrob which is secure in the malicious model with identifiable abort having the
robustness property, where πmal lacks the robustness property (see Sect. 2 for
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P1

P3

P2

v, (t−
1 , P2), (t+1 , P1)

φ1(·) ∧ φ′
2(·) ∧ Tx(isl).set un(1, 2)

P2

P3

P1

P3

P2

P1

Time τ = 0

φ1(·) ∧ φ′
3 ∧ Tx(isl).set un(1, 3)

v, (t−
1 , P3), (t+1 , P1) v, (t−

1 , P3), (t+1 , P2) v, (t−
1 , P2), (t+1 , P3)

v, (t−
1 , P1), (t+1 , P2) v, (t−

1 , P1), (t+1 , P3)

φ1(·) ∧ φ′
3 ∧ Tx(isl).set un(2, 3) φ1(·) ∧ φ′

2 ∧ Tx(isl).set un(3, 2)

φ1(·) ∧ φ′
1(·) ∧ Tx(isl).set un(3, 1)φ1(·) ∧ φ′

1(·) ∧ Tx(isl).set un(2, 1)∨
φ2(·) ∧ Tx(isl).exist(1, 2)

∨
φ′
2(·) ∧ Tx(isl).update(1, 2)

∨
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∨
φ′
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∨
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Fig. 5. Pictorial representation of the deposit phase of the KZZ′ compiler.

more details). The KZZ′ compiler consists of following components: (1) Setup
protocol (2) The MPC execution of πmal, (3) Blockchain execution, namely
Dep Ref(·) and Claim(·).

Suppose, P = {P1, · · · , Pn} is the set of parties who want to compute the
function f(x1, · · · , xn), where xi is the private input of party Pi. Let ρc be the
number of rounds of the protocol πmal.

The general idea of our protocol is that each party first commits to their
setup string by creating a deposit transaction for the remaining parties for each
round of πmal. This is done before the execution of the πmal. Depending upon
the parties who have created the transactions in deposit phase, the protocol
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creates an island of parties after the first round of claim phase and proceeds
among them. Each party can claim the “committed” transactions in some round
ρ only if he satisfies the following conditions: (1) the claim transaction is posted
corresponding to round ρ, (2) the party has claimed all the previous “committed”
transactions made for him, (3) the claim transaction contains valid message for
round ρ, and (4) the party has created his deposit transactions for all the rounds.

The protocol proceeds as follows: In a pre-processing (or setup) phase (before
choosing their inputs), each party invokes the sampling functionality FD

CORR

(described in Sect. 2) to receive all the random numbers required in the proto-
col, the One-time Pad OTP and the signing key ski. The parties also create a
transaction Tx(isl), which creates the island for each party. These are done by
executing the Setup phase, as described in Fig. 4. Every party Pi ∈ P checks if
it has sufficient fund to execute the protocol. If Pi has insufficient balance, then
it broadcasts ⊥ and every party aborts the protocol execution with output ⊥.
Now, for each round ρ ∈ [ρc] of πmal, each party creates a deposit transaction
by invoking Dep Ref(·) (as described in Fig. 3) which commits their randomness
for the remaining parties. A party can only claim it if he supplies the proof of
existence of his transaction, i.e., he has executed Dep Ref(·) protocol, along with
a NIZK proof of statement that the message is correct, i.e., he knows the input
and randomness that are consistent with the commitments, {Comj}j∈[n] and
the history of the protocol so far, h

(ρ−1)
πmal . Each party also creates a separate set

of deposit transactions for the remaining parties which can be claimed if they
update islands for each party. After creating deposit transactions, each honest
party invokes the first-round message of π

(1)
mal and Claim(·). After execution of

this round, the island is computed as P ′
s = Ps

⋃
∀j∈[n] P ′

sj ,∀s ∈ [n]. However,
some of the honest parties are added in the corrupt parties island. To remove
them from the island, each party updates the island for each pair of parties by
creating respective claim transactions. The parties, then, execute π

(ρ)
mal|P′

i
and

Claim(·) round-by-round by revealing the secrets along with the proof of the
existence of transactions created by them in deposit phase. If a party Pak

∈ P ′
s

aborts in some round ρ of claim phase, then every honest party stops executing
the protocol, and after the timelock τ+

ρ , all the deposits from round ρ till ρc will
be refunded back to the honest parties.

3.4 Comparing the Verification Times of KZZ and KZZ′ Compilers

Verification Time of KZZ. In KZZ protocol [16], for each deposit transac-
tion created by party Pi we will execute the algorithm Island(·) as described in
Algorithm 1. Since, the number of parties and the number of transactions per
party are both O(n), the total number of invocations of the algorithm is O(n2).
The time complexity of the Algorithm 1 is O(n4) which is computed as follows:
Line 3 is a loop on round ρc that requires O(1) time. Lines 4 and 5 constitute
a loop on the number of parties that require O(n) time. Line 6 is a condition
to search transactions in state that requires O(n2) time. Therefore, the total
verification time of the KZZ compiler: O(n4) × # of invocations = O(n6).
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Algorithm 1. Island(sid,P, Pn+1, ρc, i)
1 P+1 = P ∪ {Pn+1}
2 P+1

i = P+1

3 for ρ = 1, ρ ≤ ρc, ρ + + do
4 for k in P+1

i do
5 for j in P do
6 if state does not contain transaction with arg1k,j,ρ =

(RoundTime(ρ) + maxLedger,RoundTime(ρ) + 2 · maxLedger − 1),
arg2k,j,ρ = (sid, k, j, ρ), and auxk,j,ρ = Rpub then

7 update P+1
i = P+1

i \ {k}
8 go to 4

9 end

10 end

11 end

12 end

Verification time of KZZ′. In our protocol, for each deposit transaction
created by party Pi we will execute the algorithm Island′(·) as described in
Algorithm 2. Since, the number of parties and the number of transactions per
party are both O(n), the total number of invocations of the algorithm is O(n2).
The time complexity of the Algorithm 2 is O(n log n) which is computed as fol-
lows: Line 2 is a loop on the set of all deposit transactions D, created by party Pi

in Step 3 of Fig. 4, that requires O(n) time. Line 4 is a condition to search trans-
actions in state that requires O(log n) time. Line 5 is adding element by calling
Tx(isl).set un(i, k) that requires O(1) time. Therefore, the total verification time
for island creation: O(n log n) × # of invocations = O(n3 log n).

In this way, all the (honest) parties will remain in the island P ′
i = {Pi}⋃

∀j∈[m] P ′
iaj

,∀i ∈ [n]. However, this strategy may add some of the honest
parties into the corrupt party’s island. This can be handled by executing
the algorithm Update Island′(·) as described in Algorithm 3. Since, the num-
ber of parties and the number of transactions per party are both O(n), the
total number of invocations of the algorithm is O(n2). The time complexity of
the Algorithm 3 is O(n log n) which is computed as follows: Line 1 is a loop
on the set of all deposit transactions D′, created by party Pi in Step 4 of
Fig. 4, that requires O(n) time. Line 3 is a condition to search transactions
in state that requires O(log n) time. Line 4 is updating the sub-island by call-
ing Tx(isl).update(i, k) that requires O(1) time. Therefore, the total verification
time for updating island: O(n log n)×# of invocations = O(n3 log n). Therefore,
the total verification time of our protocol: Verification time for island creation+
Verification time for updating island = O(n3 log n).
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Algorithm 2. Island′(sid,P, ρc, i, D, Tx(isl))

1 For all i, s ∈ [n],

{
P ′

is = {}, if i �= s

P ′
ii = {Pi}, if i = s

2 for d in D do
3 Determine Pk and ρ from d
4 if state contains transaction with

arg1i,k,ρ = (RoundTime(ρ) + maxLedger,RoundTime(ρ) + 2 · maxLedger − 1),

arg2i,k,ρ = (sid, i, k, ρ), and predicate φρ(·) then

5 call Tx(isl).set un(i, k)
6 end

7 end

Algorithm 3. Update Island′(sid,P, ρc, i, D, Tx(isl))
1 for d in D′ do
2 Determine Pk and ρ from d
3 if state contains transaction with

arg1i,k,ρ = (RoundTime(ρ) + maxLedger,RoundTime(ρ) + 2 · maxLedger − 1),

arg2i,k,ρ = (sid, i, k, ρ), and predicate φρ(·) then

4 call Tx(isl).update(i, k)
5 end

6 end

4 Feasibility of Implementing KZZ′ Using Ethereum
Contracts

In this section, we will mention the feasibility of implementing our construction
using Ethereum smart contracts. First, we note that, unlike KZZ, our protocols
Dep Ref(·) and Claim(·) can be directly executed in ethereum by creating an
externally-owned account and contract account.

In order to create deposit transactions, each party will create a contract
account that will transfer v ether to the receiver if he satisfies the predicates.
The special features of our deposit transactions are (1) Tx(isl) stores data inside
its contract which can be accessed using (Tx(isl).storage[·]), (2) It calls another
contract account in response to the claim transactions that they receive. The
refund/claim transactions can be, simply, created in the form of externally-owned
account as they have no code associated with them.

Now, we will describe how transactions are validated and processed in ethere-
um. Claim transactions (or message-call transaction) are processed by the miners
in a straight-forward manner by debiting v ether from addresss account and
crediting to addressi account if the supplied signature σi and witnesses are
valid. Time-locked transactions having time-intervals (τ−

ρ , τ+
ρ ) are put on hold

for verification until the specified time-interval (however no credit or debit is
applied). If a claim transaction has been issued between time-interval (τ−

ρ , τ+
ρ )
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and all the witnesses are valid then the amount v is removed from hold, debited
from addresss account and credited in the addressi account. Otherwise, after
time = τ+

ρ , the refund transaction becomes valid, and the amount v is debited
from addresss account and credited to addresss account.

5 Robustness Proof of KZZ′ Compiler

The main ingredient for proving the robustness property of KZZ′ is the following
lemma.

Lemma 1. In the protocol πrob, any party Pi can claim a deposit transaction
Ty, created by party Pj, j �= i, if he has created his deposit transaction with
appropriate setup.

Proof sketch. In order to prove that a particular transaction, say Tx, is Pi’s
deposit transaction, the following statements need to be verified.

1. Pi has indeed created Tx.
2. The output script of Tx contains the predicate φρ(·).
3. Pi is added in the sub-island P ′

ji (i.e., Tx(isl).set un(j, i) has returned 1).
OR Pi exists in the sub-island P ′

ji (i.e., Tx(isl).exist(j, i) has returned 1).

If Pi is able to claim the deposit transaction then it implies that the above
statements are true. This automatically implies that Pi has created his deposit
transaction similar to Pj ’s deposit transaction. Thus, the lemma is proved. �	
Theorem 1 (Robustness Property [16]). Let F be the functionality that real-
izes an arbitrary function f(·) in the ideal world. Suppose W(F) is the wrapper
functionality of F . The πrob protocol, as described in Fig. 4, in the FD

CORR-hybrid
world realizes the wrapper functionality W(F) with robust compensation.

Proof sketch. We first sketch the simulator S, and prove that the πrob protocol
is simulatable, that is, for all PPT adversary A and the environment Z, the
execution of πrob in the FD

CORR-hybrid world and the simulated execution in the
ideal world are indistinguishable. The simulator S simulates in the ideal world
as follows: If the protocol aborts, as some party has insufficient unspent coins,
before the parties make their transactions, then the simulator can easily simulate
such an abort, as he just needs to check the state and see, if all the honest par-
ties have sufficient coins to play the protocol. Now, we will show the simulation
for the remainder of the protocol. Initially, the simulator S internally simulates
the sampling functionality, and computes the islands for all parties. It is suffi-
cient to provide a simulator for honest party’s island as there is no guarantee
given for corrupt party’s island by Q-robustness. Now to execute πmal, the sim-
ulator invokes Sπmal

that computes the messages for honest parties (note that
the simulator receives the messages for the corrupt parties from the adversary
A). If Sπmal

sends “abort” then the simulator S sends “abort” to the wrapped
functionality W(F), and all the honest parties will claim their money back. The
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soundness of the simulation of Sπmal
ensures that the output of the parties and

the contents of the state in the real and the ideal worlds are indistinguishable.
Now, to complete the simulation, and to deliver the relevant output to the honest
parties, we need to ensure the following. (1) If the state is not aborting within the
island, then all the honest parties will claim all the transactions made for them
by the parties in the island, and will have zero balance, (2) If a (corrupt) party
is not there in an honest party’s island, then he will not be able to claim the
transaction made to him by the honest party (because of Lemma 1). Hence, all
the transactions will be refunded to the honest parties. (3) If the state is aborting
within the island, then there can be two possible cases: (i) Some party Pi has
broadcast an inconsistent message in round ρ. In other words, the verification
of the predicate φρ(·) using (private) verification key of Pj has returned 0. In
this case, all the honest parties know the identity of the aborting party Pi; (ii)
Some party Pi has not created the claim transaction in round ρ. In both the
cases, all the honest parties will claim all the deposit transactions made to them
in round ρ (as they honestly execute their protocol) while Pi will not be able
to claim the transactions made to him in round ρ, hence, each honest party will
gain v coins. Since the protocol aborted because of Pi in round ρ, hence, the
honest parties will get a refund of all the transactions that they made for rounds
ρ, ρ+1, · · · , ρc. Thus, the honest parties will gain at least v coins as required by
Q-robustness. �	

6 Conclusion

In this paper, we have improved the verification time of KZZ protocol that com-
putes an arbitrary function in a multiparty setting. We achieve this by observing
a crucial property that deposit transactions of KZZ can be generated from each
other; thereby, the verification time can be sped up by bypassing the exhaustive
searches at certain points on the execution path of KZZ. This trick can poten-
tially be used in various other similar protocols. As much as it is useful in certain
cases, unfortunately, these methods are prohibitive in various other scenarios,
especially, where deposit transactions contain independent information, that is,
they cannot be generated from one another.
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Abstract. In this paper, we consider the implications of parallelizing
time-memory tradeoff attacks using a large number of distributed pro-
cessors. It is shown that Hellman’s original tradeoff method and the
Biryukov-Shamir attack on stream ciphers, which incorporates data into
the tradeoff, can be effectively distributed to reduce both time and mem-
ory, while other approaches are less advantaged in a distributed app-
roach. Distributed tradeoff attacks are specifically discussed as applied
to stream ciphers and the counter mode operation of block ciphers,
where their feasibility is considered in relation to distributed exhaus-
tive key search. In particular, for counter mode with an unpredictable
initial count, we show that distributed tradeoff attacks are applicable,
but can be made infeasible if the entropy of the initial count is at least as
large as the key. In general, the analyses of this paper illustrate the effec-
tiveness of a distributed tradeoff approach and show that, when enough
processors are involved in the attack, it is possible some systems, such
as lightweight cipher implementations, may be susceptible to attack in
practice.

Keywords: Cryptanalysis · Time-memory tradeoff attacks
Block ciphers · Stream ciphers · Counter mode

1 Introduction

Time-memory tradeoff (TMTO) attacks were first introduced by Hellman [1] to
attack block ciphers using a chosen plaintext or easily predicted known plaintext.
The basic concept involves two phases: Before system operation begins, the pre-
processing (or offline) phase prepares a compact table from chains representing
information from (almost) all keys, while the online phase efficiently searches
the table in an attempt to identify which key is used to encrypt during system
operation. Following Hellman’s work, Babbage [2] and Golić [3] independently
showed that a time-memory-data tradeoff based on the birthday paradox was
applicable to stream ciphers by attacking the stream cipher state, rather than
the key. This was subsequently combined with Hellman’s approach by Biryukov
and Shamir [4] to develop another, more flexible, tradeoff involving data and
c© Springer International Publishing AG, part of Springer Nature 2018
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targeting the stream cipher state. This approach was then extended by Hong
and Sarkar [5] to attack directly the key and initialization vector (IV) of stream
ciphers, as well as being applied to some block cipher modes.

Numerous papers have refined Hellman’s approach trying various methods
to improve the success rate and reduce the attack complexity. Most notably, the
distinguished points method, attributed to Rivest in [6], can be used to minimize
costly memory accesses, while the rainbow table method can be used to minimize
memory accesses and improve the speed of the table search [7].

Although the concept of distributed cryptanalytic attacks is well known, no
paper has systematically characterized the value of distributed time-memory
tradeoff attacks. In this paper, we examine tradeoff expressions for a number
of distributed TMTO approaches using the number of processors as a tradeoff
parameter. Further, we explicitly examine the applicability of distributed TMTO
attacks to stream ciphers and the counter mode operation of block ciphers.

2 Background on Time-Memory Tradeoff Attacks

In our discussion, complexities are given for time, memory, and data and the
units of these complexities may differ by a modest multiplicative constant when
comparing approaches. Time and memory complexities are often represented in
units equivalent to the number of encryption operations and the number of key
pairs stored, respectively, while data complexities are sometimes expressed as the
number of contiguous bits of data or the number of data blocks, with each block
corresponding to a unique IV. Also, as is usually done, we assume that when an
algorithm complexity involves a factor that is logarithmic in a parameter, this
factor is small enough to be ignored.

2.1 Hellman’s Attack

The basic TMTO attack on block ciphers introduced by Hellman [1] works
because memory is saved by storing in a table just the start and end of chains
generated during the preprocessing phase, such that, in the online phase, the
table can be efficiently searched while walking through a chain starting with the
data captured from the system. As a result, the preprocessing phase requires a
time complexity that is equivalent to the size of the key space, while the online
time complexity and the memory complexity can be substantially less than the
size of the key space.

The preprocessing phase of Hellman’s approach involves constructing a table
consisting of t subtables, each subtable consisting of m chains of keys of length
t. Each chain is constructed by using a chaining function to map a cipher output
to the next key input, using a fixed plaintext as input to the cipher in each step.
Each subtable uses a different chaining function and picks m arbitrary keys as
starting points for the chains. Only the first and last keys in a chain need to be
stored, with the key pairs in a subtable sorted according to the last key, for easy
search during the online phase of the attack. The table should cover most of the
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key space, thus requiring a so-called stopping criterion of mt2 = K, where K is
the size of the key space. Because only the start and end of each chain is stored,
the table requires a memory complexity of M = mt.

During the online phase, a subtable is searched by producing a chain of length
t, starting from the intercepted ciphertext (produced by the plaintext used to
the build the table). At each step in the chain, if the key is found to be one
of the stored last keys of a chain in the subtable, then the cipher key can be
determined by proceeding from the starting key of the chain until the ciphertext
is generated. The corresponding key is very likely to be the correct cipher key.
A chain is built for each of t subtables and, hence, the online time complexity is
given by T = t2.

Subsequently, it can be derived that the following tradeoff exists:

TM2 = K2. (1)

The preprocessing time, P , is determined by the time to construct the table
given by mt2, and, hence, due to the stopping criterion relationship, P = K.
Hellman uses the example that, if T = M , then both online time and memory
are smaller than the key space and, in fact, T = M = K2/3.

2.2 Babbage-Golić (BG) Tradeoff

Both Babbage [2] and Golić [3] independently proposed a tradeoff attack on
stream ciphers, referred to as the BG attack. Assume that the size of the stream
cipher’s state space is N . A keystream prefix is a log2N sequence of keystream
bits corresponding to the state at which the prefix starts. The BG tradeoff works
by constructing, during preprocessing, a table of N/D pairs of the state and
the corresponding keystream prefix. A total of D + log2N − 1 ≈ D bits of
keystream are acquired in the online phase resulting in the determination of D
keystream prefixes, using a sliding window. Due to the birthday paradox, with
high probability, one of the D keystream prefixes can be found in the table and
the corresponding state derived, thus breaking the cipher.

For this attack, the tradeoff expression, involving online time complexity T
and memory complexity M , is

TM = N (2)

where T = D, M = N/D, and the preprocessing time complexity is P = N/D.
Due to this attack, it is prudent to ensure that the state of the stream cipher
(in bits) should be at least twice as large as the key (in bits) (i.e., N ≥ K2) to
ensure that T ≥ K or M ≥ K.

Note that a recent direction of research in the design of stream ciphers is to
develop structures to provide security using a state with a size that is less than
double the key size. The objective of such research is to minimize the hardware
complexity of the ciphers. Designs to do this have been proposed by having the
state update be a function of key [8,9] or by using a specific initialization app-
roach and applying packet mode where the amount of keystream generated under
one IV is constrained [10]. We do not address these designs in our discussion.
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2.3 Biryukov-Shamir (BS) Tradeoff

In [4], Biryukov and Shamir combined Hellman’s table and the BG tradeoff use
of data to develop a new tradeoff involving time, memory, and data, applicable
to stream ciphers. In the BS tradeoff, the Hellman table is derived from chains
on the cipher state, rather than the key. During preprocessing, a total of t/D
subtables are constructed, with each covering m chains of length t, for which only
the first and last states are stored. Variable D represents the amount of data in
the form of contiguous keystream bits used in the attack and now the memory
complexity is M = mt/D. The preprocessing complexity is thus P = N/D,
where mt2 = N is the stopping criterion for constructing the table.

During the online phase, t steps through the chain must be executed, with
each of the t/D subtables being searched and this must be done for each of the
D prefixes derived from a sliding window over the D bits. Hence, the online time
takes T = t(t/D)D = t2. As a result, the tradeoff in this case becomes

TM2D2 = N2. (3)

It should be noted that to ensure there is at least one complete subtable, it is
assumed that D ≤ t and therefore the restriction of D2 ≤ T exists. Letting
N ≥ K2 results in T ≥ K or M ≥ K, thereby ensuring that a BS TMTO attack
cannot do better than exhaustive key search.

2.4 Hong-Sarkar (HS) Tradeoff

In [5], Hong and Sarkar explicitly relate the BS tradeoff for stream ciphers to
the key and the IV, rather than the state. The key is secret and unknown when
building the table during preprocessing and, while the IV is typically public
and known during the online phase, it may be unpredictable and therefore also
unknown when building the table during preprocessing. The HS tradeoff app-
roach treats the input to be discovered in the tradeoff attack to be the key/IV
combination. If the size of the IV space is defined to be V and the IVs to be
used by the system are unknown during preprocessing, then the HS approach
can be applied to a stream cipher with the tradeoff being

TM2D2
iv = (KV )2 (4)

where the preprocessing complexity is given by P = KV/Div. The attack has a
similar data restriction of D2

iv ≤ T as the BS approach. Note that the D term
used in the BS tradeoff of (3) has been replaced by Div in (4) to emphasize that,
rather than D contiguous bits, in fact, Div represents the number of log2(KV )
bit prefixes at the start of the keystream for different key/IV combinations.

In theory, each prefix used in the attack must be collected from different
key/IV combinations and, hence, success in the attack may mean finding one
key from among a number of keys used in encryption. In the single-key scenario,
where it is assumed that data is only available from one key, if unpredictable IVs
are to be used, then data could be collected from different IVs and the target
key. Then the tradeoff of (4) can be applied, where Div represents the number
of IVs under the one key and, hence, Div ≤ V .
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2.5 Dunkelman-Keller (DK) Approach

The HS tradeoff approach assumes that preprocessing is structured to consider
the combination of key and IV as one input and builds the table based on this,
resulting in the restriction on data. However, the HS method of attack does not
take advantage of the fact that, during the online phase, the IV is known and
only the key needs to be discovered. In [11], Dunkelman and Keller modify the
HS approach by separating the key and IV in the attack. The preprocessing
phase then builds a number of Hellman tables to cover keys, with each table
built for a particular IV. This allows the online phase of the attack to simply
consider whether an intercepted IV has been used to build a table. If so, the
table corresponding to this IV can be searched for the key. In this approach,
which we refer to as the DK approach, assuming equally likely occurences of
any IV, if V/Div tables, each corresponding to a different IV, are built during
preprocessing, then collected data from Div IVs during the online phase should
result in one of the intercepted IVs being used in the tables with high probability.
For this tradeoff, M = (V/Div)mt and T = t2, where the stopping criterion of
mt2 = K2 applies to the Hellman tables. Hence, the DK method has the tradeoff
expression of (4) if the IV is unpredictable, but now has no restriction on the
data, Div, other than Div ≤ V in the single-key scenario. Further, this approach
has an advantage for applications where the IV is unpredictable but not equally
likely in distribution, as this knowledge can be used to build tables for the most
likely IVs.

2.6 Other Work on TMTO Attacks

We shall consider in our work both the distinguished points and rainbow table
refinements of Hellman’s TMTO attack. These refinements and their relative
merits in terms of probability of success, detailed complexity analyses, and
other practical performance related issues, are studied in a number of papers
including [12–14]. The results of these comparisons indicate that these practical
performance issues do not seem to have substantial implications (i.e., orders of
magnitude effects on complexity) and, hence, we do not consider them significant
for our discussion on distributed TMTO attacks.

It is known that it is possible to parallelize TMTO attacks. For example,
distributed attacks are mentioned in [15] where it is noted that it is possible
to divide the Hellman subtables into groupings and circulate to participating
processors. Parallelizing TMTO attacks is further studied in [16,17]. However,
no work has yet systematically characterized the tradeoff aspects of multiple
processors. In our work, we will thoroughly characterize the distributed approach
to various forms of time-memory tradeoffs.

3 Distributed Hellman Attack

We now consider the parallelization of Hellman’s attack using distributed pro-
cessors, as well as the related approaches of distinguished points and the rainbow
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table. We assume that W processors, with independent memory, are available.
This might represent, for example, W computers on the Internet with users
willing to participate, or being duped into participating, in attacking some cryp-
tographic system. We assume that any necessary communication complexity
between these processors and a central controlling processor are negligible in
comparison to the time and memory complexities associated with the attack.

In our discussion, we let T0, M0, and P0 represent the online time complex-
ity, memory complexity, and preprocessing time complexity, respectively, for an
individual processor. It is these quantities, along with W , which determine the
efficacy of the attack, since it is assumed that the individual processors can oper-
ate concurrently. For example, while a non-distributed attack might require an
online time complexity of T , if it is possible to spread this work evenly between
W processors, each processor would only require a time of T0 = T/W , which
could be done concurrently for all processors, and thus the overall duration of the
attack could be dramatically reduced if W is large. As a point of comparison for
distributed tradeoff attacks, we consider distributed exhaustive key search, which
is expected to have a time complexity for an individual processor of T0 = K/W
(with, of course, no preprocessing phase and negligible memory complexity).

3.1 Distributed Approach to the Original Hellman Attack

A distributed approach to Hellman’s TMTO attack can proceed by distributing
the responsibility for generating the t subtables to the W processors, so that each
processor generates t/W subtables independently. When the necessary cipher-
text data is captured during system operation, it will be distributed to all proces-
sors. Each processor will require a memory of M0, where M0 = m(t/W ) = M/W
and M is the total memory requirement for the attack, with W ≤ t in order to
ensure that each processor generates one or more subtables.

Since each processor only needs to implement t encryptions for each of t/W
subtables, the time taken in a processor (and, if all processors operate concur-
rently, the overall time to search the full Hellman table) is T0 = t(t/W ) = T/W ,
where T is the time required for the non-distributed attack. When a key is found
by a processor in its share of the table, it must communicate this back to the
central processor that is overseeing the cryptanalytic process and that will be
able to announce the successful completion of the attack.

Now T0M
2
0 = (t2/W )(mt/W )2 = (mt2)2/W 3 and assuming the Hellman

stopping criterion of mt2 = K results in the tradeoff for an individual processor
to be

T0M
2
0W 3 = K2 (5)

where the constraint W ≤ t, or equivalently W ≤ T0, applies. This expression
captures the tradeoff of interest in a distributed Hellman attack and reflects that
both time and memory can be improved by a factor of W . The preprocessing
time for an individual processor is P0 = K/W and is improved by a factor of W
over the time required in the non-distributed attack, since each processor only
needs to construct chains covering a fraction of the table. Although we notate
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this as the preprocessing cost of the individual processor, if we assume that all
processors compute their tables concurrently, it also reflects the overall time
complexity to prepare for the attack.

It is clear that using a number of processors to implement the attack poten-
tially provides a very significant advantage and may actually make the attack
possible in some practical scenarios. Although exhaustive key search can also be
improved by a distributed approach, a distributed TMTO attack preserves the
possibility for a significantly faster online processing time at the expense of more
memory. Consider the following example applying to an implementation of AES-
128 for which K = 2128. Letting W = 220, the non-distributed exhaustive key
search would require T = 2128, while the distributed exhaustive key search would
require T0 = 2108. In the case of a Hellman TMTO attack with equal online time
and memory complexity, the non-distributed attack would take T = M = 285.3

(with P = 2128), while the distributed approach would require T0 = M0 = 265.3

(with P0 = 2108). As another example, consider a lightweight block cipher with
an 80-bit key so that K = 280. In this case, with W = 220, a distributed TMTO
attack exists with T0 = M0 = 233.3 (and P0 = 260), which is substantially less
complex than the T0 = 260 required for a distributed exhaustive key search.

3.2 Distributed Distinguished Points (DP) Method

One of the issues identified for the Hellman TMTO attack is that the cost of
a memory access can vary by orders of magnitude depending on whether the
access is to internal memory (RAM) or to an external memory (e.g. hard disk
drive or a solid state drive) [18]. In order to mitigate the cost of slow memory
accesses, the distinguished points (DP) method was proposed by Rivest [6]. In
this approach, rather than build chains of fixed length t when constructing a
Hellman table, the preprocessing phase can build a chain which terminates when
a particular pattern (e.g. all zeroes) is recognized in the first log2t bits of the
key. This means the length of a chain is variable but will be a length of t on
average. When executing the online portion of the attack, since the end point
of a chain must start with log2t zeroes, only about 1/t encryptions needs a look
up to be executed in the subtable (which is likely stored in slow access external
memory).

In the distributed Hellman attack, it is fully possible to execute the distin-
guished points approach to the attack. The amount of memory in a processor
is still fixed at M0 = mt/W , since there are t subtables split between the W
processors. However, the time required to finish the concurrent computations
of W processors is now more complex. Since there is an average of t steps in
each chain, the number of encryptions per subtable must be more than t to cope
with chains having more than t steps. Assume that, at most, γt encryptions are
executed for each subtable. The DP method is likely to set γ to be a modest
value, to keep the time complexity of the attack constrained. When preparing
the table during the preprocessing phase, the DP method will stop a chain when
a distinguished point is found or when γt steps in a chain have been reached
without hitting a distinguished point. Similarly, during the online process, if,
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after γt encryptions, a distinguished point is not reached for a subtable, the sub-
table is assumed to not contain the key. Of course, the value used for γ affects
the probability of success, but as shown in [13], γ can effectively be a small
constant. Hence, the online time complexity can be no worse than the maximum
chain length, γt, multiplied by the number of subtables to search through, t/W ,
and, hence, T0 = γt2/W where T0 now represents the maximum possible time
taken at an individual processor.

This leads to a tradeoff of the form T0M
2
0W 3 = γK2 which is slightly worse

than the distributed Hellman tradeoff of (5). However, it is quite possible that
implementing the distinguished points method when using a distributed app-
roach will not be necessary. Since the memory size needed in the individual
processors in a distributed attack is reduced by a factor of W , it is quite con-
ceivable for some parameters that the processor memory complexity of M0 is
small enough that the processor’s complete table portion could be stored in
internal memory and slow accesses to external memory are not needed. In such
a case, there would be no need to implement the DP approach.

3.3 Distributed Rainbow Table Method

In [7], Oechslin proposed an alternate formulation to represent the key chains in
the TMTO attack. Hellman’s approach was to use one chaining function for every
step of a chain and for all the chains in one subtable, with different subtables
then using different chaining functions. In contrast, the rainbow table approach
uses a different chaining function for each step of the chain and then builds
one table of such chains. It is argued that there are improvements to Hellman’s
approach [7,19]. For the online phase, t partial chains of length ≤ t are produced,
starting with the intercepted ciphertext, requiring t2/2 encryptions in total.
Ignoring the somewhat insignificant factor of 1/2 in the number of encryptions
gives T ≈ t2 and results in the same tradeoff expression as in (1). However, since
only at the end of one of the partial chains is it necessary to look up in the table,
only t memory accesses to the table are required.

The distributed rainbow table approach can be accomplished by distributing
the table so that M0 = mt/W = M/W . However, for each processor, the time
complexity involves reproducing t partial chains for a total of T0 = t2/2 ≈ t2

encryptions required in each processor. Hence, the time complexity cannot be
improved by distributing the table since each processor must take ∼t2 to consider
their portion of the table, i.e., T0 = T . The resulting tradeoff expression is

T0M
2
0W 2 = K2. (6)

Rather than divide up the rainbow table between processors, an alternative
approach for a distributed rainbow table attack would be to distribute the com-
putation of t partial chains between W processors. In this case, T0 ≈ t(t/W )
would represent the online time complexity (again ignoring the factor of 1/2).
However, the resulting distributed computations would need to be checked in
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one central table. In this case, T0 = T/W , but M0 = M = mt. Hence, the
tradeoff becomes even worse as

T0M
2
0W = K2. (7)

For the rainbow table approach, distributing the table and the computations
is not feasible, since the end of each partial chain must be looked up in the full
table. Hence, the distributed rainbow table approach is inferior to the distributed
version of the original Hellman TMTO approach. In addition, when applying a
distributed approach to time-memory tradeoffs, since the memory requirements
could be substantially smaller on a per processor basis, reducing memory accesses
(one of the advantages of the rainbow table) may not be important, since the
necessary subtables of the Hellman approach may fit within a processor’s RAM.

4 Applying Distributed TMTO Attacks on Stream
Ciphers

In this section, we consider the application of distributed TMTO attacks to
stream ciphers.

4.1 Distributed BG Attack

We first consider the distributed BG attack, which makes use of data collected
and assumes D bits of keystream are available. In this case, the attack can be
distributed by dividing up the work to prepare, and the memory to store, the
BG table to W processors, so that P0 = N/(DW ) and M0 = N/(DW ). The
time required in a processor during the online phase is directly proportional to
the processing of all D prefixes, so that T0 = D, which is unchanged from the
non-distributed case. As a result, it can be shown that

T0M0W = N. (8)

For a non-distributed attack, letting N ≥ K2 ensures that the BG tradeoff
does not lead to a better attack than exhaustive key search. Placing this con-
straint on the stream cipher leads to the following proposition for the distributed
BG attack.

Proposition 1
If N ≥ K2, there is no value of W for which a distributed BG TMTO attack on
a stream cipher has a lower complexity for both online time and memory than
the complexity of distributed exhaustive key search.

Proof
A distributed exhaustive key search has a complexity of K/W . Let N = aK2,
where a ≥ 1. We can now adjust (8) to be T0M0W = aK2. For the best TMTO
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attack, we can minimize the maximum of either T0 or M0 in this equation by
letting T0 = M0, leading to

T0 =
a1/2K

W 1/2
(9)

which clearly implies T0 ≥ K/W and M0 ≥ K/W for all values of W . Since other
tradeoffs lead to one of T0 or M0 being larger, there will always be at least one
of T0 or M0 being at least as large as K/W . Hence, clearly the distributed BG
tradeoff cannot have a lower complexity than distributed exhaustive key search
for any number of processors. ��

4.2 Distributed BS Attack

Consider now the distributed BS attack. With W processors and D contiguous
data bits of keystream, the t/D subtables needed in the BS approach can be
divided into W groups, resulting in the memory for individual processors being
M0 = mt/(DW ), where W ≤ t/D in order for each processor to have one or
more subtables. The time in an individual processor to process the data and
recover the state is given by T0 = t·(t/(DW ))·D = t2/W , where the first term
represents the t encryptions to reproduce a chain from the starting point of the
captured data, the middle bracketed term represents the number of subtables
to process in each processor, and the last term represents the data that each
processor must consider. Combining the expressions for M0 and T0 leads to the
following tradeoff:

T0M
2
0D2W 3 = N2 (10)

where the amount of data and the number of processors must satisfy D2W ≤ T0

(which is derived by combining the constraint on W with the expression for T0).
Since deriving the required subtables determines the preprocessing time in an
individual processor, we also have P0 = N/(DW ).

In the following proposition, we show that the constraint of N ≥ K2 ensures
that the distributed BS attack performs no better than distributed exhaustive
key search.

Proposition 2
If N ≥ K2, there is no value of W for which a distributed BS TMTO attack
on a stream cipher, satisfying the constraint D2W ≤ T0, has a lower complexity
for both online time and memory than the complexity of distributed exhaustive
key search.

Proof
Let N = aK2, where a ≥ 1. Minimizing T0 and M0 in the application of the BS
tradeoff is done by maximizing the data in the tradeoff. Using the upper bound
of D ≤ (T0/W )1/2, it can be shown that (10) is equivalent to the tradeoff of
T0M0W = aK2. This is now identical in form to the distributed BG tradeoff of
(8) and, hence, the remainder of the proof can follow similarly to the proof of
Proposition 1. ��
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4.3 Distributed HS and DK Attacks

Targeting a stream cipher system which uses a single key and numerous IVs and
applying a distributed HS approach results in the tradeoff

T0M
2
0D2

ivW
3 = (KV )2, (11)

where Div represents the number of prefixes that are derived from the first
log2(KV ) bits of the initial cipher state following the reinitialization from differ-
ent IVs. The constraints D2

ivW ≤ T0 and Div ≤ V apply and the preprocessing
complexity is P0 = (KV )/(DivW ).

The distributed DK approach, which builds V/Div Hellman tables for dif-
ferent IVs results in the same tradeoff as (11), as well as the same constraint
of Div ≤ V and the same preprocessing complexity of P0 = (KV )/(DivW ).
However, since the DK approach builds a Hellman table to cover just keys
(rather than key/IV combinations), we can assume that each processor con-
tains t/W of the Hellman subtables for all of the V/Div IVs. In this case,
M0 = (V/Div)m(t/W ) and T0 = t(t/W ), resulting in (11) with the contraint
that W ≤ t, or equivalently W ≤ T0, since at least one full subtable per IV must
be stored in a processor.

Note that the HS and DK approaches of (11) require a total number of bits
of data to be about Dtotal = Divμiv, where μiv represents the average number
of bits encrypted under one IV (although only the first log2(KV ) bits of each
IV’s keystream are used in the attack). Hence, substituting into (11) results in

TM2D2
totalW

3 = (KV μiv)2 (12)

where Dtotal is the number of bits collected (although many are discarded) and,
while it represents data collected from multiple IVs, it is similar to the D term
in (10), implying that (12) is a better tradeoff when KV μiv < N . In cases where
N = K2, which ensures security against BG and BS attacks and minimizes
cipher implementation complexity, (12) is the better tradeoff when V μiv < K.
These arguments apply equally to the non-distributed and distributed HS and
DK approaches.

5 Applying Distributed TMTO Attacks to Counter Mode

In this section, we describe how distributed TMTO attacks can be applied to
counter mode [20]. This is of interest because when a block cipher operates in
counter mode, in addition to the key, the initial count value can be unpredictable
during the preprocessing phase of TMTO attacks, making the building of the
Hellman table more challenging, even when a chosen plaintext approach can be
applied during the online phase. When counter mode is operated with a pre-
dictable initial count, Hellman’s TMTO attack (distributed or non-distributed)
can be directly applied by constructing tables for this known initial count.
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5.1 Distributed Attack Without Data

In this section, we consider the application of a distributed TMTO attack to
counter mode with a single key and an unpredictable initial count. (The non-
distributed attack can be considered by simply letting W = 1.) Here, we shall
use the term IV to refer to the unpredictable portion of the initial count and
assume that the non-IV portion is fixed and predictable. We let V represent the
number of possible values for the IV and to apply the attack, V Hellman tables to
cover the keys are built (using appropriate chaining functions to map the cipher
operation output to the next key input), one for each IV. An attack which does
not use data in the tradeoff can be performed by dividing the t subtables of the
V Hellman tables between the W processors. Letting log2V represent the size
of the IV, the tradeoff used in this approach would be a simple modification of
(5), where K is replaced by KV :

T0M
2
0W 3 = (KV )2 (13)

with W ≤ T0 and preprocessing requiring P0 = KV/W to cover all key/IV com-
binations across all processors. We now consider an expression which indicates
the size of W necessary to allow a TMTO attack to outperform a distributed
exhaustive key search. This is equivalent to saying that the online time com-
plexity and memory complexity of the TMTO attack should both be less than
K/W . The resulting analysis leads to Proposition 3.

Proposition 3
Consider counter mode such that the key and the IV portion of the initial count
are unpredictable during the preprocessing phase and assumed to be randomly
drawn from the K and V possible values, respectively. With T0 = Mr

0 , a dis-
tributed tradeoff approach can be applied to obtain an attack with an online
time complexity and memory complexity less than the complexity of distributed
exhaustive key search for the following conditions on W :

W >

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

V
2

1−r /K
r

1−r , r < 1
0 , r = 1, if V < K1/2

∞ , r = 1, if V ≥ K1/2

K
r−2
2r−2 V

2r
2r−2 , r > 1

(14)

Proof
We need to show the conditions on W for which T0 < K/W and M0 < K/W .
The proof considers the three cases for r. For r > 1, T0 > M0 and, hence, it is
sufficient to consider scenarios for T0 < K/W , while for r < 1, M0 > T0, and,
therefore, it is sufficient to consider M0 < K/W . For the case of r = 1, T0 = M0

and we can consider a bound on either T0 or M0.
From (13), it can be shown that, if r > 1, then

T0 =
(KV )

2r
r+2

W
3r

r+2
(15)
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which, when letting T0 < K/W , leads to the result for r > 1.
Similarly, for r < 1,

M0 =
(KV )

2
r+2

W
3

r+2
(16)

which, when letting M0 < K/W , leads to the result for r < 1.
Finally, letting T0 = M0, gives

T0 =
(KV )2/3

W
(17)

which, when compared to K/W , results in an inequality not involving W , but
which shows that, for V < K1/2, the TMTO attack can improve upon distributed
exhaustive key search for any W , while, for V ≥ K1/2, the TMTO attack cannot
improve upon distributed exhaustive key search for any W . ��

The interpretation of Proposition 3 can be demonstrated by considering the
following example where we let K = 2128 and V = 232. From Proposition 3, we
can determine: (1) if T0 = M0, then W > 0, (2) if T0 = M

1/2
0 , then W > 1, and

(3) if T0 = M2
0 , W > 264. So we can conclude that a distributed TMTO attack

can be made more efficient than distributed exhaustive key search for cases 1 and
2 by using as few as 1 and 2 processors, respectively, while for case 3, the number
of processors must be more than 264, an impractically large requirement. Hence,
for case 3, although it may be theoretically possible to mount a distributed
TMTO attack, it is not practical to do so. Other examples for values of K, V
and r can be considered to determine their practicality in terms of the number
of required processors in a distributed attack.

The following proposition gives the relationship between K and V in order
to ensure that it is impossible for a distributed TMTO attack to outperform
distributed exhaustive key search for any tradeoff of time and memory (i.e., any
r).

Proposition 4
Consider counter mode such that the key and the IV portion of the initial count
are unpredictable during the preprocessing phase and assumed to be randomly
drawn from the K and V possible values, respectively. If V ≥ K1/2, the online
time complexity or the memory complexity of a distributed TMTO attack (which
does not use multiple data) is at least as large as the complexity of a distributed
exhaustive key search.

Proof
The best tradeoff from (13) occurs when we minimize the maximum of either T0

or M0, which occurs for T0 = M0, leading to T0 = (KV )2/3/W . If V ≥ K1/2,
in this case clearly T0 ≥ K/W and M0 ≥ K/W for any W , where K/W is the
complexity of a distributed exhaustive key search. Reducing T0 at the expense
of M0 (or vice versa) still clearly results in M0 (or T0) being at least K/W . ��
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Proposition 4 implies that the entropy of the initial count (which is log2V
for a random IV) should be at least half the size of the key to ensure security
against distributed TMTO attacks, which do not use data. This is also true for
non-distributed TMTO attacks, where W = 1.

5.2 Incorporating Data into the Attack

Consider now incorporating the use of data into the distributed TMTO attack
on a single-key implementation of counter mode. In doing so, the distributed
DK approach can be applied and, hence, the tradeoff of (11) can be used, with
the constraints W ≤ T0 and Div ≤ V , and P0 = KV/(DivW ). Extending
Proposition 4 leads to the following proposition.

Proposition 5
Consider counter mode such that the key and the IV portion of the initial count
are unpredictable during the preprocessing phase and assumed to be randomly
drawn from the K and V possible values, respectively. Assume that a distributed
TMTO attack on a single-key system is applied with data available from Div IVs,
where Div ≤ V . If V/Div ≥ K1/2, the online time complexity or the memory
complexity of a distributed TMTO attack is at least as large as the complexity
of a distributed exhaustive key search.

Proof
We can simply follow the proof of Proposition 4, but base it on the distributed
DK tradeoff of (11), which can be rewritten to be

T0M
2
0W 3 = (K[V/Div])2. (18)

This equation is similar to (13) used in the proof of Proposition 4, except that
we have substituted V with V/Div. Proposition 4 now follows with the same
substitution, resulting in the distributed TMTO attack with data not being able
to improve on distributed exhaustive key search when V/Div ≥ K1/2. ��

Proposition 5 increases the lower bound on V for which the distributed
TMTO attack becomes infeasible. Assuming that it is impractical for Div >
K1/2, then letting V ≥ K is sufficient to ensure security against TMTO attacks
which make use of data. Now if DivW = αV , where α > 1, then P0 < K, mean-
ing the preprocessing time is better than exhaustive search on a cipher with key
space K. Further, T0M

2
0 = K2/(α2W ) < K2/W , which could be substantially

better than the tradeoff of the non-distributed approach. Consider the following
case of counter mode using AES-128: K = 2128, V = 232 and W = 220. If we
let T0 = M0 and Div = 220 (so that α = 256), we get T0 = M0 = 273.3, with
P0 = 2120. Hence, the complexity of the online phase of the distributed TMTO
attack is much better than the complexity of distributed exhaustive key search,
which would be K/W = 2108. Of course, collecting more data Div and/or involv-
ing more processors W could be used to improve the attack even further, but is
still subject to the DK approach constraints of Div ≤ V and W ≤ T0.
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To this point, we have only considered single-key systems. Note that the
concept of attacking a multi-key block cipher system [5,21] where the cipher uses
counter mode can result in the tradeoff (11) targeting the key and unpredictable
initial count and may result in some systems being vulnerable.

6 Conclusions

In this paper, we have discussed the characterization of distributed TMTO
attacks on ciphers. A summary of the characteristics of tradeoff attacks, includ-
ing the distributed versions discussed in this paper, is presented in AppendixA.
In AppendixB, numerical examples are used to illustrate the effectiveness of
the attacks against a lightweight cipher (80-bit key) and an AES-level cipher
(128-bit key).

Not surprisingly, distributing Hellman’s approach can be highly effective,
scaling both time and memory by the number of processors. Other tradeoff
approaches such as the rainbow table method and the BG method are not as
well suited to a distributed approach. The BS method benefits from a distributed
approach in both time and memory, but the benefit of data in the tradeoff is not
scaled by the number of processors involved. We have also described the applica-
tion of distributed tradeoff attacks in relation to stream ciphers and have shown
that distributed TMTO approaches can be effectively applied to counter mode
in scenarios where the entropy of the initial count is too small. In particular,
distributed TMTO attacks are of concern in the context of lightweight cryptog-
raphy, where key sizes are smaller and the cryptanalytic gain of distributing the
attacks could seriously compromise the security of some systems.

Appendix A: Summary of Tradeoffs

Table 1 contains a summary of all tradeoffs discussed and applied in this paper.
Tradeoff expressions and preprocessing complexity, as well as target applications
and meaningful restrictions on tradeoff parameters, are presented.

Appendix B: Numerical Results for Some Tradeoffs

In this section, we highlight a few cases to illustrate the applicability of the
distributed TMTO attack. The data presented considers two key sizes of 80 bits
(Table 2) and 128 bits (Table 3) and represents results for both stream ciphers
and block ciphers using counter mode. A key size of 80 bits is consistent with
the typical use of a lightweight block or stream cipher, while the 128-bit key
represents an application that uses AES-128 level security. The results in the
tables represent a tradeoff attack using the DK approach of a single-key system
and the table values assume equal complexity for the online time and memory,
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Table 1. Summary of Tradeoffs

Tradeoff Preprocessing Target applications and
restrictions

Exhaustive
Key Search

T = K, M = 1 P = 0 block cipher key
stream cipher key

Full Dictionary
Attack

T = 1, M = K P = K block cipher key
stream cipher key

Hellman TM2 = K2 P = K block cipher key

BG TM = N P = N/D stream cipher state
D = T

BS TM2D2 = N2 P = N/D stream cipher state
D2 ≤ T

HS TM2D2
iv = (KV )2 P = KV/Div stream cipher key/IV

counter mode key/IV
D2

iv ≤ T

DK TM2D2
iv = (KV )2 P = KV/Div stream cipher key

counter mode key
Div ≤ V for single-key

Distributed
Exh Key Srch

T0 = K/W , M0 = 1 P0 = 0 block cipher key
stream cipher key

Distributed
Full Dict Att

T0 = 1, M0 = K/W P0 = K/W block cipher key
stream cipher key

Distributed
Hellman

T0M
2
0W

3 = K2 P0 = K/W block cipher key
W ≤ T0

Distributed
BG

T0M0W = N P0 = N/(DW ) stream cipher state
D = T0

Distributed BS T0M
2
0D

2W 3 = N2 P0 = N/(DW ) stream cipher state
D2W ≤ T0

Distributed HS T0M
2
0D

2
ivW

3 = (KV )2 P0 = KV/(DivW ) stream cipher key/IV
counter mode key/IV
D2

ivW ≤ T0

Div ≤ V for single-key

Distributed
DK

T0M
2
0D

2
ivW

3 = (KV )2 P0 = KV/(DivW ) stream cipher key
counter mode key
W ≤ T0

Div ≤ V for single-key

i.e., T0 = M0. The tradeoff expression of (11) is applied and the constraints
Div ≤ V and W ≤ T0 are satisfied. For V > 1, P0 = KV/(DivW ) resulting in

T0 =
P

2/3
0

W 1/3
(19)
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which can be used to derive the values in the tables. However, for the case of
V = 1 (that is, a predictable initial count in counter mode or a stream cipher
with no IV), data cannot be used in the tradeoff and P0 = KV/W with (19)
still suitable.

For both key sizes, various IV sizes are given and the complexity presented
for cases of differing amounts of data, Div, and number of processors, W . For
reference, the appropriate distributed exhaustive key search complexity (DEKS)
is also presented for each case. Each TMTO case given in the tables has the online
time complexity and the preprocessing complexity for an individual processor
presented in the format “T0/P0”.

It is obvious from the tables that there are many scenarios in which dis-
tributed TMTO attacks could be made more effective than a distributed exhaus-
tive key search. Most notably, if V = 1, one Hellman table can be constructed
straightforwardly to cover just the keys. In this case, although the use of data
from multiple IVs is not applicable, applying a distributed approach can result
in extremely small online time complexities - as low as 233.3 for a lightweight
cipher with an 80-bit key using 220 processors. For cases with V > 1, using data
drawn from a modest number of IVs can result in a compromise of the security
of the cipher. For example, with K = 2128 and V = 232, using data from only
220 IVs and applying 220 processors results in a TMTO attack with an online
time complexity of 273.3 and a preprocessing time complexity of 2120. Hence,
the online time complexity is substantially better than the distributed exhaus-
tive key search complexity of 2108, while the preprocessing complexity is only
slightly worse.

Table 2. TMTO Results T0/P0 for 80-bit Keys

K = 280 DEKS V = 1 V = 220 V = 240

W = 1, Div = 1 280 253.3/280 266.7/2100 280/2120

W = 1, Div = 210 280 253.3/280 260/290 273.3/2110

W = 220, Div = 1 260 233.3/260 246.7/280 260/2100

W = 220, Div = 210 260 233.3/260 240/270 253.3/290

Table 3. TMTO Results T0/P0 for 128-bit Keys

K = 2128 DEKS V = 1 V = 232 V = 264

W = 1, Div = 1 2128 285.3/2128 2106.7/2160 2128/2192

W = 1, Div = 220 2128 285.3/2128 293.3/2140 2114.7/2172

W = 220, Div = 1 2108 265.3/2108 286.7/2140 2108/2172

W = 220, Div = 220 2108 265.3/2108 273.3/2120 294.7/2152
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Abstract. This paper investigates key correlations of the keystream
generated from RC4, and then presents significant improvements for a
plaintext recovery attack on WPA-TKIP from the attack by Isobe et al.
at FSE 2013. We first discuss newly discovered key correlations between
2 bytes of the RC4 key and a keystream byte in each round. Such cor-
relations are referred as iterated RC4 key correlations. We further apply
our iterated RC4 key correlations to the plaintext recovery attack on
WPA-TKIP in the same way as the attack by Sen Gupta et al. at FSE
2014, and achieve significant improvements for recovering 8 bytes of a
plaintext from the attack by Isobe et al. at FSE 2013. Our result implies
that WPA-TKIP further lowers the security level of generic RC4.

Keywords: RC4 · WPA-TKIP · Bias · Key correlations
Plaintext recovery

1 Introduction

The stream cipher RC4 was designed by Rivest in 1987, and is widely used in
various security protocols such as Secure Socket Layer/Transport Layer Security
(SSL/TLS), Wired Equivalent Privacy (WEP), and Wi-fi Protected Access -
Temporal Key Integrity Protocol (WPA-TKIP). After the disclosure of RC4
algorithm in 1994, RC4 has been intensively analyzed over the past two decades
due to its popularity and simplicity.

There are mainly two approaches to the cryptanalysis of RC4. One is to
demonstrate the existence of certain events with statistical weaknesses known
as a bias involving the RC4 key, the internal state variables, and the out-
put pseudo-random sequence (keystream) bytes [Roo95,MS02,IOWM14]. Now,
we refer to the event with significantly higher or lower than random associa-
tion as a positive bias or a negative bias, respectively. The other is to recover
an RC4 key (a key recovery attack) [PM07,SVV11], an internal state (a state
recovery attack) [KMP+98,MK08] and a plaintext (a plaintext recovery attack)
[MS02,IOWM14] using various biases. In addition, many cryptanalyses of the
security protocols have been reported such as the plaintext recovery attacks
on SSL/TLS [IOWM14,VP15] and WPA-TKIP [GMM+15,VP15], and the key
recovery attacks on WEP [FMS01,VV07]. From these attacks, the usage of RC4
cipher suites was prohibited in all SSL/TLS versions in 2015 [Pop15], and is not
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 154–171, 2018.
https://doi.org/10.1007/978-3-319-93638-3_10
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recommended in both WEP and WPA-TKIP. On the other hand, around 21%
of all Web browsers/servers for SSL/TLS remain supporting RC4 cipher suites
as of February 20181. Furthermore, a downgrade attack in Wi-Fi network is still
real threat [VP16]. In summary, many people may continue to use RC4 in the
security protocols, and thus we need to pay attention to RC4 from now on.

1.1 Description of RC4

RC4 consists of two algorithms: a Key Scheduling Algorithm (KSA) and a
Pseudo Random Generation Algorithm (PRGA). We describe the KSA and the
PRGA as Algorithm 1 and Algorithm 2, respectively. Both the KSA and the
PRGA update secret internal states SK and S which are permutations of all
possible bytes N (typically, N = 28) and two 8-bit indices i and j. The KSA
generates the initial state S0 (= SK

N ) from a secret key K of � bytes to become
an input of the PRGA. Once the initial state S0 is generated from the KSA,
the PRGA outputs a keystream byte {Z1, Z2, . . . , Zr} in each round, where r
is the number of rounds. All additions in both the KSA and the PRGA are
arithmetic addition modulo N . We use this notation throughout the remainder
of this paper.

Algorithm 1. KSA
1: for i = 0 to N − 1 do
2: SK

0 [i] ← i
3: end for
4: jK0 ← 0
5: for i = 0 to N − 1 do
6: jKi+1 ← jKi + SK

i [i] + K[i mod �]
7: Swap(SK

i [i], SK
i [jKi+1])

8: end for

Algorithm 2. PRGA
1: r ← 0, i0 ← 0, j0 ← 0
2: loop
3: r ← r + 1, ir ← ir−1 + 1
4: jr ← jr−1 + Sr−1[ir]
5: Swap(Sr−1[ir], Sr−1[jr])
6: Output: Zr ← Sr[Sr[ir] + Sr[jr]]
7: end loop

1.2 Description of WPA-TKIP

WPA is a security protocol for IEEE 802.11 wireless network standardized as a
substitute for WEP in 2003. WPA improves a 16-byte RC4 key setting, which is
known as TKIP, from that in WEP. TKIP includes a key management scheme,
a temporal key hash function [HWF02], and a message integrity code function.
The key management scheme generates a 16-byte Temporal Key (TK) after
the IEEE 802.1X authentication. After that, the temporal key hash function
outputs a 16-byte RC4 key from the TK, a 6-byte Transmitter Address, and a
48-bit Initialization Vector (IV), which is a sequence counter. In addition, TKIP
uses MICHAEL [FM02] to ensure integrity of a message. One of the remarkable
features in TKIP is that the first 3-byte RC4 key bytes {K[0],K[1],K[2]} are
derived from the last 16-bit Initialization Vector (IV16) as follows:

K[0] = (IV16 � 8) & 0xFF,

1 See https://www.trustworthyinternet.org/ssl-pulse/.

https://www.trustworthyinternet.org/ssl-pulse/
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K[1] = ((IV16 � 8) | 0x20) & 0x7F,

K[2] = IV16 & 0xFF.

We note that the first 3-byte RC4 key bytes {K[0],K[1],K[2]} in WPA-TKIP
is known because the IV can be obtained by observing packets.

1.3 Our Contributions

In [SVV11], Sepehrdad et al. investigated correlations between the RC4 key and
the keystream experimentally. We refer to such correlations as key correlations of
the keystream. Their investigations are limited to � rounds. Thus, no correlations
between K[r mod �] and Zr for r ≥ � have been investigated although K[r mod �]
may be iterated to use to produce Zr for r ≥ �.

In this paper, we focus on the key correlations of the keystream, and
investigate them in detail. We first discuss new key correlations that events
Zr = K[0] − K[r mod �] − r for any arbitrary round r induce positive biases,
where (K[0], K[r mod �]) pairs in our key correlations are iterated every � rounds.
This is why we hereinafter refer to the newly discovered key correlations as iter-
ated RC4 key correlations.

By combining our key correlations with the previous ones, e.g., Z1 = K[0] −
K[1] − 1 and Zx·� = −x · � (x = 1, 2, . . . , 7), we can integrate the iterated RC4
key correlations completely. Our contributions can be summarized as follows:

– Theorem 7 shows that events Zr = K[0] − K[r mod �] − r induce positive
biases in both generic RC4 and WPA-TKIP except when r = 1, 2, x · � (x =
1, 2, . . . , 7).

– Theorem 9 shows that an event Z1 = K[0]−K[1]−1 induces an negative bias
in only WPA-TKIP.

– Theorem 10 shows that an event Z2 = K[0]−K[2]− 2 does not induce a bias
in both generic RC4 and WPA-TKIP.

We further present how to apply our iterated RC4 key correlations to
the plaintext recovery attack on WPA-TKIP. In [GMM+15], Sen Gupta et
al. extended the plaintext recovery attack on generic RC4 by Isobe et al. in
[IOWM14], and improved to recover 4 bytes of a plaintext {P1, P3, P256, P257}
on WPA-TKIP. Their improvements can be achieved by using key correlations of
the keystream based on the first 3-byte RC4 key bytes {K[0], K[1], K[2]}, which
are known values of WPA-TKIP. In the same way as the attack by Sen Gupta et
al., our new iterated RC4 key correlations demonstrate significant improvements
for recovering 8 bytes of a plaintext on WPA-TKIP from [IOWM14]. In fact, the
number of samples for recovering P17, P18, P33, P34, P49, P50, P66, and P82 on
WPA-TKIP can be reduced to 217.727, 217.800, 218.955, 219.035, 220.297, 220.386,
221.869, and 223.505 from 223.178, 223.210, 223.770, 223.791, 224.114, 224.135, 224.479,
and 224.820, respectively. Our result implies that WPA-TKIP further lowers the
security level of generic RC4.
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1.4 Organization of This Paper

This paper is organized as follows: Sect. 2 summarizes the previous works for
both key correlations and attacks. Section 3 shows theoretical proofs of the
iterated RC4 key correlations and its experimental results. Section 4 demon-
strates significant improvements of the plaintext recovery attack on WPA-TKIP
from [IOWM14] using our iterated RC4 key correlations. Section 5 concludes this
paper.

2 Previous Works

2.1 Known Key Correlations

In [Sar14], Sarkar proved key correlations of the keystream {Z1, Z3, Z4} reported
in [SVV11] theoretically. Their key correlations are given as follows:

Theorem 1 ([Sar14, Theorem 4]). For any arbitrary secret key K, a key cor-
relation of the keystream Z1 is given by

Pr(Z1 = K[0] − K[1] − 1) ≈ α1 + 1
N (1 − α1),

where α1 = 1
N2 ·(1− 2

N ) ·(1− 1
N )N−2

∑N−1
x=2(1− 1

N )x ·(1− 1
N )x−2 ·(1− 2

N )N−x−1.

Proposition 1 ([Sar14, Theorem 8]). For any arbitrary secret key K, a key
correlation of the keystream Z3 is given by

Pr(Z3 = K[0] − K[3] − 3) ≈ α3 + 1
N (1 − α3),

where α3 = N3−11N2+42N−55
N4 · (1 − 1

N )N−4 · N2−3N+2
N2 ) · 1

N

∑N−1
x=4 (1 − 1

N )x · (1 −
1
N )x−4 · (1 − 2

N )N−x−1.

Proposition 2 ([Sar14, Theorem 9]). For any arbitrary secret key K, a key
correlation of the keystream Z4 is given by

Pr(Z4 = K[0] − K[4] − 4) ≈ α4 + 1
N (1 − α4),

where α4 = N4−18N3+124N2−385N+452
N5 ·(1− 1

N )N−5· N3−8N2+21N−18
N3 · 1

N

∑N−1
x=5 (1−

1
N )x · (1 − 1

N )x−5 · (1 − 2
N )N−x−1.

In [IOWM14], Isobe et al. showed keylength-dependent biases as follows:

Theorem 2 ([IOWM14, Theorem 9]). When r = x · � (x = 1, 2, . . . , 7), the
probability of Pr(Zr = −r) is approximately

Pr(Zr = −r) ≈ 1
N2 +

(
1 − 1

N2

) · γr + (1 − δr) · 1
N ,

where γr = 1
N2 · (

1 − r+1
N

)y · ∑N−1
y=r+1

(
1 − 1

N

)·(1 − 2
N

)y−r·(1 − 3
N

)N−y+2r−4,
δr = Pr(Sr−1[r] = 0).

Their keylength-dependent biases are similar to the key correlations proved by
Sarkar because Zx·� = K[0]−K[x · � mod �]−x · � = K[0]−K[0]−x · � = −x · �.
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2.2 Known Attacks in the Broadcast Setting

In [MS02], Mantin and Shamir demonstrated how to recover the second byte of
a plaintext in the broadcast setting as follows:

Theorem 3 ([MS02, Theorem 1]). Assume that the initial state S is randomly
chosen from the set of all possible permutations of {0, . . . , N − 1}. Then, the
probability that the second byte of the keystream Z2 is 0 is approximately 2

N .

Theorem 4 ([MS02, Theorem 2]). Let X and Y be two distributions, and
suppose that the event e occurs in X with a probability p and Y with a probability
p ·(1+q). Then, for small p and q, O( 1

p·q2 ) samples suffice to distinguish X from
Y with a constant probability of success.

Let X be a distribution of a random sequence, and let Y be a distribution of
the second byte of the keystream Z2 generated form RC4. Then, the number of
samples required to distinguish X from Y is around N because p and q are given
as p = 1

N and q = 1.

Theorem 5 ([MS02, Theorem 3]). Let P be a plaintext, and let C(1), . . . , C(k)

be the RC4 encryptions of P under k randomly chosen keys. Then, if k = Ω(N),
the second byte of P can be reliably extracted from C(1), . . . , C(k).

If Z
(i)
2 = 0, then P2 has the same value as C

(i)
2 because P2 is XORed with

Z
(i)
2 to output C

(i)
2 in the RC4 encryptions. From Theorem3, the event Z2 = 0

occurs with pretty high probability in comparison with the other events. Thus,
we can recover P2 by exploiting the most frequent value in the distribution of
C

(1)
2 , . . . , C

(k)
2 . From Theorem 4, the number of samples for recovering P2 requires

more than N ciphertexts encrypted by randomly chosen keys.
In [IOWM14], Isobe et al. presented a set of the strongest biases in the first

257 bytes of the keystream including their newly discovered biases. They further
demonstrated a practical plaintext recovery attack using their set of the strongest
biases as the following 3 steps:

Step 1. Randomly generate a target plaintext P .
Step 2. Obtain 2x ciphertexts C by encrypting P with randomly chosen keys.
Step 3. Exploit the most frequent value in the distribution of Cr, and recover

Pr using the set of the strongest biases of keystream bytes Zr.

From their experimental results, the first 257 bytes of the plaintext could be
recovered with a probability of more than 0.8 using 232 ciphertexts encrypted
by randomly chosen keys.

In [GMM+15], Sen Gupta et al. investigated for significant key correlations of
the keystream Zr experimentally using certain linear combinations of the known
RC4 key bytes {K[0],K[1],K[2]}. If the exploited key correlations induce higher
biases than certain events used in the attack by Isobe et al., then the key corre-
lations improve the plaintext recovery attack on WPA-TKIP in the same way as
the existing attacks [MS02,IOWM14]. Table 1 presents their experimental results
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for the plaintext recovery attack on WPA-TKIP. Their results show significant
improvements for recovering 4 bytes of a plaintext {P1, P3, P256, P257}, where the
existing attack requires around 230 ciphertexts encrypted by randomly chosen
keys to achieve the same probability of success.

Table 1. Experimental results for recovering 4 bytes of a plaintext on WPA-TKIP.
The probability of success in each case is around 1.

Round Key correlations # of ciphertexts

1 Z1 = −K[0] − K[1] 5 · 213 ≈ 215.322

Z1 = K[0] + K[1] + K[2] + 3

3 Z3 = K[0] + K[1] + K[2] + 3 219

256 Z256 = −K[0] 219

257 Z257 = −K[0] − K[1] 221

3 New Iterated RC4 Key Correlations

3.1 Our Observations

This section shows new key correlations of the keystream in both generic RC4
and WPA-TKIP. In [SVV11], Sepehrdad et al. investigated some key correlations
of the keystream by using a linear form

(a0 · K[0] + · · · + a�−1 · K[� − 1] + a� · Z1 + · · · + a2�−1 · Z�) mod N = b, (1)

where ai ∈ {−1, 0, 1} for 0 ≤ i ≤ 2� − 1. However, they did not investigate
key correlations of the keystream over � rounds. In addition, we focus on the
key correlations of the keystream {Z1, Z3, Z4} proved by Sarkar in [Sar14], and
predict that there might exist correlations between (K[0],K[r mod �]) pairs and
Zr. Then, we have executed experiments for investigating correlations based on
(K[0],K[r mod �]) pairs with 256 bytes of the keystream generated from N4

randomly chosen keys.
Figures 1 and 2 show our experimental observations in both generic RC4 and

WPA-TKIP, respectively. From our experimental results, we have observed new
key correlations of the keystream as follows:

Observation 1. For any arbitrary secret key K, the following key correlations
of the keystream Zr in both generic RC4 and WPA-TKIP induce biases:

Zr = K[0] − K[r mod �] − r.

Predictably, we have demonstrated that there exist key correlations between
(K[0],K[r mod �]) pairs and Zr. (K[0],K[r mod �]) pairs are iterated every �
rounds. Therefore, we refer to our newly observed key correlations as iterated
RC4 key correlations. By combining our key correlations with the previous ones,
we can integrate the iterated RC4 key correlations completely. Our motivation
is to prove the iterated RC4 key correlations theoretically.



160 R. Ito and A. Miyaji

Fig. 1. Our experimental observations in generic RC4.

Fig. 2. Our experimental observations in WPA-TKIP.

3.2 Proofs

This section provides theoretical proofs of Observation 1 as Theorems 7, 9 and 10.
Theorem 7 shows that events Zr = K[0] − K[r mod �] − r induce positive biases
in both generic RC4 and WPA-TKIP except when r = 1, 2, x · � (x = 1, 2, . . . , 7).
We note that Theorem 7 includes the precise proofs of Propositions 1 and 2.
Theorem 9 shows that an event Z1 = K[0] − K[1] − 1 induces a negative bias in
only WPA-TKIP, and a positive bias in generic RC4 as Theorem1. Theorem 10
shows that an event Z2 = K[0]−K[2]−2 does not induce a bias in both generic
RC4 and WPA-TKIP. As a result, by combining Theorems 7, 9 and 10 with
Theorems 1 and 2, Observation 1 can be proven completely.

In our proofs, we assume that certain events with no significant bias occur
with a probability of random association, whose probability is 1

N . These assump-
tions are confirmed experimentally. We also assume that the RC4 key K is gen-
erated uniformly at random in both generic RC4 and WPA-TKIP, except the
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first 3-byte RC4 key bytes {K[0],K[1],K[2]} in WPA-TKIP generated by IV
using a sequence counter.

Before showing the proof of Theorem7, the non-randomness of the initial
state S0 is given as Theorem 6. In [Man01], Mantin showed that the initial state
S0 generated from the KSA is non-randomness.

Theorem 6 ([Man01, Theorem 6.2.1]). In the initial state of the PRGA for
0 ≤ u ≤ N − 1, 0 ≤ v ≤ N − 1, we have

Pr(S0[u] = v) =

{
1
N

((
1 − 1

N

)v +
(
1 − (

1 − 1
N

)v)(
1 − 1

N

)N−u−1)
if v ≤ u,

1
N

((
1 − 1

N

)N−u−1 +
(
1 − 1

N

)v)
if v > u.

By using Theorem 6, which is denoted by ζu,v = Pr(S0[u] = v), Theorem 7 is
proved as follows:

Theorem 7. For any arbitrary secret key K and round r except when r =
1, 2, x · � (x = 1, 2, . . . , 7), key correlations of the keystream Zr in both generic
RC4 and WPA-TKIP are given by

Pr(Zr = K[0] − K[r mod �] − r) ≈ αr + 1
N (1 − αr),

where αr, βr, γr and δr are given by

αr ≈ (
βr + 1

N(N−1) (1 − βr)
) · γr · (

δr + 1
N (1 − δr)

)
,

βr ≈ 1
N · N−r−1

N ·
r∏

x=3
(N − x − 1)/

r−3∏

x=0
(N − x),

γr ≈ (
1 − 1

N

)N−r−1 · 1
N ·

N−1∑

x=r+1

(
1 − 1

N

)x · (
1 − 1

N

)x−r−1 · (
1 − 2

N

)N−x−1
,

δr ≈ (
1 −

r∑

v=2
ζ1,v −

N−1∑

x=r+1

ζ1,x
N−r−2

) · N−r+1
N−1 .

Proof. We consider the following three phases to prove the major path for the
target event. In the following proof, fi = i(i+1)

2 +
∑i

x=0 K[x mod �] for i ≥ 0.

Phase 1. From the initial to the (r + 1)-th round of the KSA, we assume that
all of the following events hold:

jK
1 = K[0] = f0 �∈ {1, 2, . . . , r − 1, r, fr−1},

jK
2 = K[0] + K[1] + SK

1 [1] = f1 �∈ {2, 3, . . . , r − 1, r, f0, fr−1},

jK
3 = K[0] +

2∑

x=1
(K[x] + SK

x [x]) = f2 �∈ {3, 4, . . . , r − 1, r, f0, fr−1},

...

jK
r−1 = K[0] +

r−2∑

x=1
(K[x mod �] + SK

x [x]) = fr−2 �∈ {r − 1, r, f0, fr−1},



162 R. Ito and A. Miyaji

Fig. 3. State transition diagram of the major path in Phase 1 when r = 3.

jK
r = K[0] +

r−1∑

x=1
(K[x mod �] + SK

x [x]) = fr−1,

jK
r+1 = K[0] +

r∑

x=1
(K[x mod �] + SK

x [x]) = fr = f0.

Figure 3 shows a state transition when the above assumptions hold and r = 3.
We note that fr−1 = fr−1 − (fr −f0) = K[0]−K[r mod �]−r when the event
fr = f0 holds. Under the assumptions, both SK

r+1[r−1] = K[0]−K[r mod �]−r

and SK
r+1[r] = 0 always hold simultaneously after the (r + 1)-th round of the

KSA. Now, we can rewrite SK
x [x] into S1[x] for x ∈ [1, r − 1] as follows:

jK1 = K[0] = f0 �∈ {1, 2, . . . , r − 1, r, fr−1} w.p. N−r−1
N

,

jK2 = K[0] + K[1] + SK
1 [1] = f1 �∈ {2, 3, . . . , r − 1, r, f0, fr−1} w.p.N−r−1

N
,

jK3 = K[0] +
2∑

x=1

(K[x] + SK
1 [x]) = f2 �∈ {3, 4, . . . , r − 1, r, f0, fr−1} w.p. N−r

N−1
,

...

jKr−1 = K[0] +
r−2∑

x=1

(K[x mod �] + SK
1 [x]) = fr−2 �∈ {r − 1, r, f0, fr−1} w.p. N−4

N−r+3
,

jKr = K[0] +
r−1∑

x=1

(K[x mod �] + SK
1 [x]) = fr−1 w.p. 1,

jKr+1 = K[0] +
r∑

x=1

(K[x mod �] + SK
1 [x]) = fr = f0 w.p. 1

N
.

This is because SK
1 [x] is never swapped during the first x rounds when all

of the individual events hold. These occur with each of probabilities in the
above events because the internal state in RC4 is a permutation. Therefore,
the probability that all events happen simultaneously is given by
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Fig. 4. State transition diagram of the major path in Phase 2 when r = 3.

βr ≈ 1
N · N−r−1

N ·
r∏

x=3
(N − x − 1)/

r−3∏

x=0
(N − x).

On the other hand, if any individual event does not hold, we then assume
that both SK

r+1[r − 1] = K[0] − K[r mod �] − r and SK
r+1[r] = 0 hold simulta-

neously with a probability of random association. The probability of random
association is 1

N(N−1) because the internal state in RC4 is a permutation.
Therefore, the probability in that case is given by 1

N(N−1) (1 − βr).
Phase 2. From the (r + 2)-th round to the end of the KSA, we assume that all

of the following events hold:
– From the (r + 2)-th round to the end of the KSA, we assume that the

values of jK are not equal to r. This event occurs with a probability of
(1 − 1

N )N−r−1.
– For an index x ∈ [r + 1, N − 1], we assume that SK

x [x] = x. This event
occurs with a probability of (1 − 1

N )x.
– From the (r + 2)-th to the x-th round of the KSA, we assume that the

values of jK are not equal to r − 1. This event occurs with a probability
of (1 − 1

N )x−r−1.
– At the (x + 1)-th round of the KSA, we assume that jK

x+1 = r − 1. This
event occurs with a probability of 1

N . Thus, SK
x+1[r − 1] = x due to the

swap operation.
– For the remaining N − x − 1 rounds of the KSA, we assume that the

values of jK do not touch the indices r − 1 and x. This event occurs with
a probability of (1 − 2

N )N−x−1.
Figure 4 shows a state transition when the above assumptions hold and r = 3.
Under the above assumptions, all of S0[r − 1] = x, S0[r] = 0 and S0[x] =
K[0] − K[r mod �] − r always hold simultaneously after the end of the KSA.
Therefore, the probability that all events occur simultaneously is given by

γr ≈ (
1 − 1

N

)N−r−1 · 1
N ·

N−1∑

x=r+1

(
1 − 1

N

)x · (
1 − 1

N

)x−r−1 · (
1 − 2

N

)N−x−1
.
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Fig. 5. State transition diagram of the major path in Phase 3 when r = 3.

Phase 3. From the initial to the (r −1)-th round of the PRGA, we assume that
all of the following events hold:

j1 = S0[1] �∈ {2, 3, . . . , r − 1, r, x},

j2 =
1∑

u=0
Su[u + 1] �∈ {3, 4, . . . , r − 1, r, x},

...

jr−2 =
r−3∑

u=0
Su[u + 1] �∈ {r − 1, r, x},

jr−1 =
r−2∑

u=0
Su[u + 1] �∈ {r, x}.

Figure 5 shows a state transition when the above assumptions hold and r = 3.
We note that the values of j do not touch the index r and x ∈ [r+1, N−1] from
the initial to the (r−1)-th round of the PRGA. Under the above assumptions,
both Sr[r] = Sr−1[jr] = Sr−1[jr−1] = Sr−2[r − 1] = S0[r − 1] = x and
Sr[jr] = Sr−1[r] = S0[r] = 0 always hold simultaneously after the (r − 1)-th
round of the PRGA. After that, the PRGA outputs Zr = Sr[Sr[r]+Sr[jr]] =
Sr[x] = S0[x] = K[0] − K[r mod �] − r. Now, as with the discussion in Step
1, we can rewrite Su into S0 as follows2:

j1 = S0[1] �∈ {2, 3, . . . , r − 1, r, x} w.p. 1 −
r∑

v=2
ζ1,v −

N−1∑

x=r+1

ζ1,x
N−r−2 ,

j2 =
1∑

u=0
S0[u + 1] �∈ {3, 4, . . . , r − 1, r, x} w.p. N−r+1

N−1 ,

...

jr−2 =
r−3∑

u=0
S0[u + 1] �∈ {r − 1, r, x} w.p. N−3

N−r+3 ,

2 Pr(S0[1] = x) is an average probability because the range of x is from r+1 to N −1.



New Iterated RC4 Key Correlations 165

jr−1 =
r−2∑

u=0
S0[u + 1] �∈ {r, x} w.p. N−2

N−r+2 .

These occur with each of probabilities in the above events because the internal
state in RC4 is a permutation. Therefore, the probability that all of the above
events occur simultaneously is given by

δr ≈ (
1 −

r∑

v =2
ζ1,v −

N−1∑

x= r+1

ζ1,x
N−r−2

) ·
r−1∏

y =2
(N − y)/

r−2∏

y =1
(N − y)

=
(
1 −

r∑

v =2
ζ1,v −

N−1∑

x=r+1

ζ1,x
N−r−2

) · N−r+1
N−1 .

On the other hand, if any individual event does not hold, we then assume that
the PRGA outputs Zr = K[0]−K[r mod �]− r with a probability of random
association 1

N . Therefore, the probability in that case is given by 1
N (1 − δr).

We assume that all events in the above three phases are mutually independent.
Therefore, we obtain the probability of the major path as

αr ≈ (
βr + 1

N(N−1) (1 − βr)
) · γr · (

δr + 1
N (1 − δr)

)
.

If any phase does not hold, we then assume that Zr = K[0] − K[r mod �] − r
with a probability of random association 1

N . In summary, we obtain

Pr(Zr = K[0] − K[r mod �] − r) ≈ αr + 1
N (1 − αr).

�	
Before showing the proof of Theorem9, a distribution of K[0]+K[1] in WPA-

TKIP is given as Theorem 8. In [GMM+15], Sen Gupta et al. demonstrated a
distribution of K[0] + K[1], which is based on a relation between K[0] and K[1]
in WPA-TKIP.

Theorem 8 ([GMM+15, Theorem 1]). For 0 ≤ v ≤ N − 1, the sum v of K[0]
and K[1] in WPA-TKIP is distributed as follows:

Pr(K[0] + K[1] = v) = 0 if v is odd,

Pr(K[0] + K[1] = v) = 0 if v is even and v ∈ [0, 31] ∪ [128, 159],

Pr(K[0] + K[1] = v) = 2
N if v is even and

v ∈ [32, 63] ∪ [96, 127] ∪ [160, 191] ∪ [224, 255],

Pr(K[0] + K[1] = v) = 4
N if v is even and v ∈ [64, 95] ∪ [192, 223].

By using Theorem 8, Theorem 9 is proved as follows:

Theorem 9. For any arbitrary secret key K, a key correlation of the keystream
Z1 in WPA-TKIP is given by

Pr(Z1 = K[0] − K[1] − 1) ≈ 1
N (1 − α1),

where α1 ≈ 1
N2 · (1− 2

N ) · (1− 1
N )N−2 ·

N−1∑

x=2
(1− 1

N )x · (1− 1
N )x−2 · (1− 2

N )N−x−1.



166 R. Ito and A. Miyaji

Proof. The major path for the target event is as follows:
– We assume that K[0] �= 0, 1 and K[1] = 255. This event occurs with a prob-

ability of 2
N (1 − 1

N ).
– After the second round of the KSA, SK

2 [1] = 0 because jK
2 = K[0]+K[1]+1 =

K[0].
– From the third round to the end of the KSA, we assume that the values of

jK are not equal to 1. This event occurs with a probability of (1 − 1
N )N−2.

– For an index x ∈ [2, N − 1], we assume that SK
x [x] = x. This event occurs

with a probability of (1 − 1
N )x.

– For the third to the x-th round of the KSA, we assume that the values of jK

are not equal to 0. This event occurs with a probability of (1 − 1
N )x−2.

– At the (x+1)-th round of the KSA, we assume that jK
x+1 = 0. This event occurs

with a probability of 1
N . Thus, SK

x+1[r − 1] = x due to the swap operation.
– For the remaining N − x − 1 rounds of the KSA, we assume that the values

of jK do not touch the indices 0 and x. This event occurs with a probability
of (1 − 2

N )N−x−1.

If all of the individual events hold, all of S0[0] = x, S0[1] = 0 and S0[x] =
K[0] always hold simultaneously after the end of the KSA, and then the PRGA
outputs Z1 = K[0] = K[0] − K[1] − 1 as K[1] = 255. We assume that the
individual events in the major path become mutually independent. Then, all
events occur with a probability of α1 ≈ 1

N2 · (1 − 2
N ) · (1 − 1

N )N−2
∑N−1

x=2(1 −
1
N )x · (1 − 1

N )x−2 · (1 − 2
N )N−x−1. However, Theorem 8 shows that the range of

K[1] is limited to either from 32 to 63 or from 96 to 127 in WPA-TKIP. Thus,
the target event never occurs because K[1] �= 255 in WPA-TKIP.

On the other hand, we assume that Z1 = K[0] − K[1] − 1 with a probability
of random association 1

N except the major path. Therefore, we obtain Pr(Z1 =
K[0] − K[1] − 1) ≈ 1

N (1 − α1). �	
Theorem 10. For any arbitrary secret key K, a key correlation of the keystream
Z2 in both generic RC4 and WPA-TKIP is given by

Pr(Z2 = K[0] − K[2] − 2) ≈ 1
N .

Proof. We can prove the major path for the target event in the same way as
the proof of Theorem 7 when r = 2. After the end of the KSA, all of S0[1] = x,
S0[2] = 0 and S0[x] = K[0]−K[2]−2 hold simultaneously (see Step 2 in the proof
of Theorem 7). In addition, S0[1] �= 2 always hold because x ∈ [3, N − 1] during
Step 2 in the proof of Theorem7. Figure 6 shows a state transition from the initial
to the second round of the PRGA. According to the state transition, the PRGA
outputs Z2 = 0. Then, the target event occurs only when K[0] − K[2] − 2 = 0,
whose probability is 1

N because the RC4 key is generated uniformly at random.
Therefore, we obtain the probability of the major path as 1

N α2.
On the other hand, we assume that the target event occurs with a probability

of random association 1
N except the major path. In summary, we obtain

Pr(Z2 = K[0] − K[2] − 2) ≈ 1
N α2 + 1

N (1 − α2) = 1
N ,

where α2≈ 1
N2 ·(1− 3

N )·(1− 1
N )N−3

∑N−1
x=3(1− 1

N )x·(1− 1
N )x−3·(1− 2

N )N−x−1. �	
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Fig. 6. State transition diagram of the major path in the case of Z2.

3.3 Experimental Results

We have executed experiments on Theorems 7, 9 and 10 in order to confirm
the accuracy of theoretical values. The following is experimental environment:
Intel(R) Xeon(R) CPU E5-1680 v3 with 3.20 GHz, 32.0 GB memory, gcc 5.4.0
compiler and C language. Our experiments have used N5 samples generated
from randomly chosen keys in generic RC4 and WPA-TKIP. Because each of
the iterated RC4 key correlations has a relative bias with a probability of at
least O( 1

N ). Then, the number of samples to distinguish each of the iterated
RC4 key correlations from random distribution is at least O(N3) according to
Theorem 4. We have also evaluated the percentage of the relative error ε of the
experimental values compared with the theoretical values:

ε =
|experimental value − theoretical value|

experimental value
× 100(%).

Figures 7, 8 and 9 show comparison between the experimental and the the-
oretical probabilities in both generic RC4 and WPA-TKIP, and the percentage
of the relative error ε, respectively.

Fig. 7. Comparison between experimental and theoretical probabilities in generic RC4.
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Fig. 8. Comparison between experimental and theoretical probabilities in WPA-TKIP.

Fig. 9. The percentage of relative error ε between experimental and theoretical prob-
abilities in both generic RC4 and WPA-TKIP.

We can confirm that ε is small enough in each case in both generic RC4
and WPA-TKIP such as ε ≤ 0.453 (%). Therefore, we have convinced that the
theoretical values closely reflect the experimental values.

4 Improvements for Plaintext Recovery on WPA-TKIP

This section presents how to apply our iterated RC4 key correlations to the plain-
text recovery attack on WPA-TKIP. Our method is similar to the attack by Sen
Gupta et al. in [GMM+15] (see Sect. 2.2). If our iterated RC4 key correlations
induce higher biases than certain events used in [IOWM14], then our attack can
be improved in the same way as the existing attack [MS02,IOWM14,GMM+15].

We have compared our iterated RC4 key correlations with a set of biases
used in [IOWM14]. Our iterated RC4 key correlations of the keystream {Z17,
Z18, Z33, Z34, Z49, Z50, Z66, Z82} induce higher biases than the corresponding
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events used in [IOWM14]. Thus, we can reduce the number of ciphertexts for
recovering the corresponding bytes of a plaintext on WPA-TKIP according to
Theorem 4. Table 2 shows significant improvements for recovering 8 bytes of a
plaintext on WPA-TKIP from [IOWM14].

To summarize our result, by using our iterated RC4 key correlations instead
of the corresponding events used in [IOWM14], the number of ciphertexts for
recovering P17, P18, P33, P34, P49, P50, P66, and P82 on WPA-TKIP can be
reduced to 217.727, 217.800, 218.955, 219.035, 220.297, 220.386, 221.869, and 223.505 from
223.178, 223.210, 223.770, 223.791, 224.114, 224.135, 224.479, and 224.820, respectively.

Table 2. Significant improvements for recovering 8 bytes of a plaintext on WPA-TKIP
from [IOWM14].

Round Iterated RC4 key correlations Biases used in [IOWM14]

Event Probability # of

ciphertexts

Event Probability # of

ciphertexts

17 Z17 = K[0] − K[1] − 17 2−8 · (1 + 2−4.863) 217.727 Z17 = 17 2−8 · (1 + 2−7.589) 223.178

18 Z18 = K[0] − K[2] − 18 2−8 · (1 + 2−4.900) 217.800 Z18 = 18 2−8 · (1 + 2−7.605) 223.210

33 Z33 = K[0] − K[1] − 33 2−8 · (1 + 2−5.477) 218.955 Z33 = 0 2−8 · (1 + 2−7.885) 223.770

34 Z34 = K[0] − K[2] − 34 2−8 · (1 + 2−5.518) 219.035 Z34 = 0 2−8 · (1 + 2−7.896) 223.791

49 Z49 = K[0] − K[1] − 49 2−8 · (1 + 2−6.149) 220.297 Z49 = 0 2−8 · (1 + 2−8.057) 224.114

50 Z50 = K[0] − K[2] − 50 2−8 · (1 + 2−6.193) 220.386 Z50 = 0 2−8 · (1 + 2−8.068) 224.135

66 Z66 = K[0] − K[2] − 66 2−8 · (1 + 2−6.934) 221.869 Z66 = 0 2−8 · (1 + 2−8.239) 224.479

82 Z82 = K[0] − K[2] − 82 2−8 · (1 + 2−7.752) 223.505 Z82 = 0 2−8 · (1 + 2−8.410) 224.820

5 Conclusion

This paper has focused on key correlations of the keystream, and investigated
correlations between (K[0],K[r mod �]) pairs and Zr based on the previous
works in [SVV11,Sar14]. Then, we have provided theoretical proofs of newly
observed key correlations of the keystream. Combining our key correlations with
the previous ones can be integrated as the iterated RC4 key correlations com-
pletely, i.e., Zr = K[0] − K[r mod �] − r for any arbitrary round r.

Furthermore, this paper has presented how to apply our iterated RC4 key
correlations to the plaintext recovery attack on WPA-TKIP. Our iterated RC4
key correlations of the keystream {Z17, Z18, Z33, Z34, Z49, Z50, Z66, Z82} induce
higher biases than the corresponding events used in [IOWM14]. Then, our attack
has demonstrated significant improvements for recovering the corresponding 8
bytes of a plaintext on WPA-TKIP from [IOWM14].

Our work could be further extended in the following directions, which remain
open problems in the future:

– In [SVV11], Sepehrdad et al. discovered new key correlations of the keystream
experimentally, and applied these key correlations to the theoretical key recov-
ery attack on generic RC4. Similarly, new iterated RC4 key correlations might
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contribute to the improvements for recovering full bytes of an RC4 key on
both generic RC4 and WPA-TKIP.

– In [OIWM15], Ohigashi et al. proposed full plaintext recovery against generic
RC4 with the help of around 235 ciphertexts. In [PPS15] and [VP15], Paterson
et al. and Vanhoef et al. presented practical impact of the plaintext recovery
attacks against WPA-TKIP, respectively. Our iterated RC4 key correlations
might be applied to the attacks against both generic RC4 and WPA-TKIP,
and reduce the number of ciphertexts for recovering full bytes of a plaintext.

– In [IM17], Ito et al. proposed secure IV setting for WPA-TKIP in such a way
that it can keep the security level of generic RC4. Similarly, we would like
to suggest some minimal improvement to the RC4 key schedule that makes
plaintext recovery attacks more difficult.
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Abstract. In this paper, we focus on traditional cube attacks against
Trivium-like ciphers in which linear and nonlinear superpolies are exper-
imentally tested. We provide a new framework on nonlinear superpoly
recoveries by exploiting a kind of linearization technique. It worth noting
that, in this new framework, the complexities of testing and recovering
nonlinear superpolies are almost the same as those of testing and recov-
ering linear superpolies. Moreover, extensive experiments show that by
making use of the new framework, the probability to find a quadratic
superpoly is almost twice as large as that to find a linear superpoly
for Kreyvium and they are almost the same for Trivium. Hopefully, this
new framework would provide some new insights on cube attacks against
NFSR-based ciphers, and in particular make nonlinear superpolies poten-
tially useful in the future cube attacks.

Keywords: Cube attacks · Linearity tests · Quadracity tests
Trivium-like ciphers

1 Introduction

Trivium [3] is a bit oriented synchronous stream cipher designed by Cannière
and Preneel, which is one of the eSTREAM hardware-oriented finalists and an
International Standard under ISO/IEC 29192-3:2012.

Since proposed, Trivium has attracted a lot of attention for its simplicity. As
a result, there are many cryptanalytic results on Trivium such as key recovery
attacks based on cube attacks [7,8,12,14,17,19], distinguishing attacks based on
cube attacks [10,11,15,18,22], conditional differential attacks [9], and internal
state recovery attacks [13]. Among these various cryptanalytic techniques, cube
attacks are one of the most powerful tool against Trivium. It was proposed by
Dinur and Shamir [7]. In [7], the authors recovered 35 linear superpolies of the
767-round Trivium. In [14], Mroczkowski and Szmidt applied cube attacks to
the 709-round Trivium, and firstly reported quadratic superpolies. In specific,
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they found 41 linear superpolies and 22 quadratic superpolies. In [8], two new
ideas are proposed concerning cube attacks against Trivium. One is a recursive
method to construct useful cubes. The other is simultaneously testing a lots of
subcubes of a large cube using the Meobius transformation. They found 12 lin-
ear superpolies and 6 quadratic superpolies for the 799-round Trivium. In [17],
Todo et al. applied the division property to cube attacks. Based on the division
property, attackers could identify the key variables involved in the superpoly of
a given cube by solving corresponding MILP models instead of performing lin-
earity/quadraticity tests. As a result, for the 832-round Trivium, they provide a
cube of size 72 whose superpoly involves at most 5 key bits. Hence, they could
recover at most one key bit of the secret key with an impractical attack com-
plexity 277. In [19], the authors proposed a technique to reduce the complexity
of superpoly recovery based on the work of [17]. Very recently, in [7], Liu et
al. proposed a new variant of cube attack called correlation cube attack, which
exploits conditional correlation properties between the superpoly of a cube and
a specific set of low-degree polynomials. A major difference between [7] and the
previous cube attacks is that secret information is recovered by solving a system
of probabilistic equations rather than deterministic equations. As a result, they
could recover about 7 key bits and 5 key bits of the 805- and 835-round Trivium
with time complexity 244, using 245 keystream bits and preprocessing time 251.

Due to the simplicity and the established security of Trivium, some recently
proposed crypto primitives adopt similar designs, such as Kreyvium [4] and
TriviA-SC [5,6].

Kreyvium is designed for the efficient homomorphic-ciphertext compression
in homomorphic encryptions. In [10], based on a cube of size 61, Liu presented a
distinguisher on the 872-round Kreyvium. In [19], for the 888-round Kreyvium,
the authors provided a key recovery attack based on a cube of size 102. In [20],
with 24-th and 25-th order conditional characteristics, the authors proposed
distinguishers on 899-round Kreyvium.

TriviA-SC is the base component of the authenticated encryption algorithm
TriviA which was a second-round candidate of CAESAR competition. It has
two versions, i.e., TriviA-SC-v1 and TriviA-SC-v2. Hereinafter, TriviA-SC means
its both versions, if not specified. In [15], the authors proposed distinguishers
for the 930-round TriviA-SC-v1 and the 950-round TriviA-SC-v2 respectively.
Furthermore, the authors provided a slide attack on the full TriviA-SC-v2. In
[10], based on cubes of sizes around 63, the author proposed distinguishers of the
1035-round TriviA-SC-v1, the 1046-round TriviA-SC-v2, and the full 1152-round
of simplified TriviA-SC where the nonlinear term in the output bit was removed.
In [21], for the full 1152 rounds simplified TriviA-SC, the authors found a linear
distinguisher with a complexity of 2120.

Before the work of [17], cube attacks utilize linearity/quadraticity tests to
find desirable superpolies, which is called traditional cube attacks to distinguish
from division property based cube attacks and correlation cube attacks. In this
paper, we are concerned with traditional cube attacks and provide a new idea
on nonlinear superpoly recoveries.
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1.1 Our Contributions

The inspiration of this paper comes from our observations of cube attacks against
Trivium. In particular, it is observed that the algebraic normal forms (ANFs) of
quadratic superpolies recovered in cube attacks against Trivium have fixed forms.
Besides, this observation is also true for other Trivium-like ciphers. Hence, we
propose to treat some nonlinear key expressions as a whole, and regard the first
output bit as a function on these nonlinear key expressions not key variables
themselves. Thus, nonlinear superpolies could be recovered by testing linearity
on nonlinear key expressions. Based on this idea, we propose a generic framework
to recover nonlinear superpolies using linearity test principles for Trivium-like
ciphers.

As illustrations, we perform extensive experiments on Trivium, Kreyvium,
and TriviA-SC-v2 with our new framework. To show the correctness and effec-
tiveness of our framework, for each of the variants with from 600 to 700 initializa-
tion rounds of these three ciphers, we search for linear and nonlinear superpolies
based on 100 randomly chosen cubes. Table 1 shows the total number of nonlin-
ear and linear superpolies that we find. Note that, in the case of Trivium and
Kreyvium, the number of nonlinear superpolies is close to or even twice as large
as that of linear superpolies.

Moreover, with our framework we find several new superpoies for variants
with relatively high initialization rounds. First, we reveal some new quadratic
supeprolies of the 784- and the 799-round Trivium. Besides, we recover 5 linear
superpolies and 2 quadratic superploies of the 802-round Trivium. Second, with a
cube of size 38, we find 8 different quadratic superpolies but no linear superpolies
for the 776-round Kreyvium. Third, we gain linear and quadratic superpolies for
the 864-round TriviA-SC-v2 and the 992-round simplified TriviA-SC-v2, respec-
tively. Table 2 lists our results.

Table 1. The distribution of nonlinear and linear superpolies

Stream ciphers # of nonlinear superpolies # of linear superpolies Ratios

Trivium 7517944 8155985 0.92

Krevium 2538591 1194480 2.13

TrivA-SC-v2 491551 4074914 0.12

Table 2. Results on round-reduced Trivium-like stream ciphers

Ciphers # of rounds # of superpolies

Trivium 802 5 linear, 2 quadratic

Kreyvium 776 8 quadratic

TriviA-SC-v2 864 12 linear, 3 quadratic

TriviA-SC-v2 simplified 992 14 linear, 2 quadratic



A New Framework for Finding Nonlinear Superpolies 175

1.2 Organization

The rest of this paper is structured as follows. In Sect. 2, we introduce some basic
definitions and facts. In Sect. 3, we propose a new framework to find nonlinear
superpolies with a low complexity. In Sect. 4, our new framework is applied to
Trivium-like stream ciphers. In Sect. 5, we summarize our work.

2 Preliminaries

2.1 Trivium-Like Stream Ciphers

The main building block of a Trivium-like cipher is a Galois nonlinear feedback
shift register, such that for every clock cycle there are three internal state bits
updated by quadratic feedback functions and all the other internal sate bits
are updated by shifting. In specific, let A, B and C be three shift registers of
length LA, LB , and LC respectively. For t ≥ 0, let At = (xt, . . . , xt+LA−1),
Bt = (yt, . . . , yt+LB−1), and Ct = (zt, . . . , zt+LC−1) denote the t-th state of A,
B and C respectively. Then the internal state of a Trivium-like cipher at time
instance t is given by st = (At, Bt, Ct), and the state update function could be
described as

xt = zt−rc−1 · zt−rc
+ lA(st−1),

yt = xt−ra−1 · xt−ra
+ lB(st−1),

zt = yt−rb−1 · yt−rb
+ lC(st−1),

where lλ is a linear function and 1 ≤ rλ ≤ Lλ for λ ∈ {A,B,C}. After N
initialization rounds, a filtering function f is used to compute a keystream bit
from the current internal state, i.e., zt = f(st) for t ≥ N .

There are three well-known Trivium-like ciphers, say Trivium [3], Kreyvium
[4], and TriviA-SC [5,6]. The first two algorithms well fulfill the description
above, while the last algorithm uses two extra registers K∗ and V ∗, which are
padded with key bits and IV bits respectively, to XOR the key bits and IV bits to
the feedback function. Besides, the filtering functions of Trivium and Keryvium
are linear, while that of TriviA-SC is quadratic.

2.2 Cube Attacks

The idea of cube attack was first proposed by Dinur and Shamir in [7]. In the
cube attack against stream ciphers, an output bit z is described as a tweakable
Boolean function f on secret key variables Key = (k0, k1, . . . , kn−1) and public
IV variables IV = (iv0, iv1, . . . , ivm−1), i.e.,

z = f(Key, IV ).

Let I be a subset of d public variables, where 1 ≤ d ≤ m. Without loss of
generality, we assume that I = {iv0, iv1, . . . , ivd−1}. Then the function f can be
rewritten

f(Key, IV ) = tI · pI(Key, ivd, ivd+1, . . . , ivm−1) ⊕ q(Key, IV ),
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where tI =
∏d−1

i=0 ivi, pI does not contain any variable in I, and each term in q is
not divisible by tI . It can be seen that the summation of the 2d functions derived
from f by assigning all the possible values to the d variables in I is equal to pI .
The variables in the set I are called cube variables, the set CI of all 2d possible
assignments of the cube variables in I is called a d-dimensional cube, and the
polynomial pI is called the superpoly of I. Furthermore, fixing each non-cube
variable to be a constant, the superpoly pI becomes a polynomial with secret
key variables only. In this paper, all non-cube variables are fixed to be
0’s.

A cube attack consists of two phases: a preprocessing phase which is inde-
pendent of the secret key and a online phase which should be carried out for
every secret key. In the preprocessing phase, attackers should find some useful
superpolies to recover the secret key. In the online phase, by solving a system
of equations derived from previously found superpolies under the real key, some
information of the real key could be revealed.

2.3 Linearity and Quadraticity Tests

Let f(x1, x2, . . . , xn) be a black-box Boolean function, whose explicit representa-
tion is unknown, but the value f(a) for any input vector a ∈ F

n
2 can be queried.

In the following, we would recall how to do linearity [2]/quadraticity [1] tests of
f .

The BLR Linearity Test. Choose a , b ∈ F
n
2 uniformly and independently,

and verify
f(a ⊕ b) ⊕ f(a) ⊕ f(b) = f(0). (1)

If f is linear, then the test will succeed, whereas if deg(f) ≥ 2, then the test
may fail with a certain probability. Thus the test should be repeated sufficiently
many times to make sure that f is very close to being linear. If f passes through
the linearity test, then its ANF could be recovered by n + 1 more queries. The
constant term of f is given by f(0). Then the coefficient of the variable xi in f
for 1 ≤ i ≤ n is given by

ci = f(e i) ⊕ f(0),

where ei ∈ F
n
2 whose elements are 0 except the i-th elements.

The Quadraticity Test. Choose a , b, c ∈ F
n
2 uniformly and independently,

and verify

f(a ⊕b ⊕c)⊕f(a ⊕b)⊕f(a ⊕c)⊕f(b ⊕c)⊕f(a)⊕f(b)⊕f(c) = f(0). (2)

Similarly if f is quadratic, then the test succeeds, whereas if deg(f) > 2, then the
test may fail. Thus the test should be repeated sufficiently many times to make
sure that f is very close to being quadratic. If f passes through the quadraticity
test, then the coefficient of a quadratic term xixj in f for 1 ≤ i < j ≤ n is given
by f(e i ⊕ ej) ⊕ f(e i) ⊕ f(ej) ⊕ f(0).
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3 A New Framework to Find Nonlinear Superpolies

3.1 Motivations

The motivations of this paper come from the following observations on the exten-
sive superpolies recovered by the previous traditional cube attacks against Triv-
ium. Please refer to [7,8,14] for a large number of instances of superpolies for
Trivium variants.

Our first observation is the sparsity of nonlinear superpolies. It can
be easily observed that the ANFs of all recovered superpolies are very sparse,
most of which have less than five terms. Accordingly, the systems of nonlinear
equations in key variables defined by these superpolies are easy to solve during
the online phase, see [14] for an example.

Our second observation is that some key variables are missing in linear
superpolies. It can be observed that none of the linear superpolies were found
so far involving the key variables between k69 and k79. This phenomenon is also
mentioned in [8]. Hence, to recover the information of the key variables between
k69 and k79, linear superpolies are not sufficient.

Accordingly, nonlinear superpolies are as useful as linear superpolies in cube
attacks against Trivium, and exploiting nonlinear superpolies could definitely
bring some merits to mounting cube attacks. However, compared with lin-
ear superpolies, it needs much more queries to find nonlinear superpolies. For
instance, eight queries are needed to do one verification in quadraticity tests
(see (2)), while only four queries are needed to do one verification in linear tests
(see (1)). When the dimension of a cube becomes large, it would be much more
difficult to find nonlinear superpolies than linear superpolies.

Our third observation is the fixed forms of nonlinear superpolies. It is
interesting to find that the ANFs of all nonlinear superpolies recovered in cube
attacks against Trivium have very specific forms. It can be observed that most
of the published quadratic superpolies only have one quadratic monomial of the
form xixi+1 accompanied by two degree 1 monomials. This observation was also
mentioned in [8, Section 4.2].

We remark that since TriviA-SC-v2 and Kreyvium are designed based on
Trivium, the three observations also hold for TriviA-SC-v2 and the first and the
third observations hold for Kreyvium (This maybe due to that Kreyvium has an
independent Key register whose output is continuously xored to the feedback of
the main register.) Inspired by the third observation, we propose a new frame-
work to find and recover nonlinear superpolies with low complexities. In the new
framework, we fix some nonlinear key expressions, and find superpolies which are
linear about these fixed nonlinear key expressions. Note that linear superpolies
in this sense are nonlinear on key variables. There are two key points involved
in the new framework. One is how to do linearity tests on superpolies about
the fixed nonlinear key expressions. The other is how to choose useful nonlinear
key expressions. We shall explain these two points in detail in the following two
subsections respectively.
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3.2 A Generic Technique for Linearity Tests of Composite Functions

Let g(y0, y1, . . . , ym−1) be a Boolean function on the variables y0, y1, . . . , ym−1.
For 0 ≤ i ≤ m−1, let hi(x0, x1, . . . , xn−1) be a Boolean function on the variables
x0, x1, . . . , xn−1. Then

f(x0, x1, . . . , xn−1) = g(h0(x0, x1, . . . , xn−1), . . . , hm−1(x0, x1, . . . , xn−1))

is a composite function of g(y0, y1, . . . , ym−1) and hi(x0, x1, . . . , xn−1). Note that
when f is nonlinear on the variables x0, x1, . . . , xn−1, it is not necessary that f
is nonlinear on the expressions h0, h1, . . . , hm−1.

Example 1. Let f = x0 · x1 ⊕ x2 · x3 be a Boolean function. Let h0 = x0 · x1 and
h1 = x2 · x3. It is clear that f = h0 ⊕ h1. Hence f is linear on the expressions h0

and h1, but nonlinear on the variables x0, x1, x2, x3.

In Example 1, the ANF of f(x0, x1, x2, x3) is known, and so it is easy to see
whether f is linear on h0 and h1. Now the problem is when f(x0, x1, . . . , xn−1) is
a black-box Boolean function, how to test whether f is a linear Boolean function
on h0, h1, . . . , hm−1. Note that f could be queried only by assigning values to
the variables x0, x1, . . . , xn−1. We formally present this problem in the following.

Problem 1. Let f(x0, x1, . . . , xn−1) be a black-box Boolean function. Assume
that h0, h1, . . . , hm−1 are m Boolean functions on the variables x0, x1, . . . , xn−1

such that there is a Boolean function g(y0, y1, . . . , ym−1) satisfying f =
g(h0, h1, . . . , hm−1). How to test whether f is linear about h0, h1, . . . , hm−1 by
querying f(x0, x1, . . . , xn−1)?

The difference between Problem 1 and the traditional linearity test of black-
box Boolean functions lies in that we ask the linearity of a set of nonlinear
expressions of inputting variables not simply inputting variables themselves. This
general problem is open. In the following we give a simple technique to tackle
some instances of the problem which is useful in the following attacks. Our basic
idea is still the BLR linearity test.

Theorem 1. Let f, h0, . . . , hm−1 be as described in Problem 1. If the mapping

H : a = (a0, a1, . . . , an−1) �→ (h0(a), h1(a), . . . , hm−1(a)),a ∈ F
n
2 ,

is surjective with H(0) = 0, then Algorithm 1 is a one-sided tester for f being
linear on the expressions h0, h1, . . . , hm−1. In particular, if Algorithm 1 returns
reject, then f is not linear on the expressions h0, h1, . . . , hm−1 with probability 1.

Proof. Since f is a composite function of the form

f = g(h0, h1, . . . , hm−1),

it follows that f being linear on the given expressions h0, h1, . . . , hm−1 is equiv-
alent to g(y0, y1, . . . , ym−1) is linear. Thus it suffices to show Algorithm 1 is
actually a BLR linearity test on g(y0, y1, . . . , ym−1).
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Algorithm 1. Linearity test of composite functions
Require: a black-box function f on X = (x0, x1, . . . , xn−1) and a vectorial Boolean

function H = (h0(X), h1(X), . . . , hm−1(X)).
1: choose a and b randomly and uniformly in F

m
2 ;

2: compute X1, X2, X3 satisfying H(X1) = a , H(X2) = b, and H(X3) = a ⊕ b,
respectively;

3: compute v = f(X1) ⊕ f(X2) ⊕ f(X3) ⊕ f(0)
4: if v �= 0 then
5: return reject;
6: else
7: return accept;
8: end if

Let a , b, c, X1, X2, and X3 be as described in Algorithm 1, where the
existence of X1,X2,X3 can be deduced from the hypothesis that H is surjective.
Then we have

f(X1) = g(a), f(X2) = g(b) and f(X3) = a ⊕ b.

It follows that

f(X1) ⊕ f(X2) ⊕ f(X3) ⊕ f(0) = g(a) ⊕ g(b) ⊕ g(a ⊕ b) ⊕ g(0).

Hence it can be seen that line 3 in Algorithm 1 is a BLR linearity test for
g(y0, y1, . . . , ym−1).

Remark 1. The probability that Algorithm 1 rejects a function f which is non-
linear on h0, h1, . . . , hm−1 is equal to the probability that the algorithm in [1]
rejecting the corresponding function g which is nonlinear.

Algorithm 1 needs repeating sufficient times to make sure that f is very close
to being linear on h0, h1, . . . , hm−1. When we make sure that f is linear on
h0, h1, . . . , hm−1, we could recover the ANF of f using only m + 1 queries like
recovering a linear Boolean function. It can be seen that the complexities of
doing linearity tests on f and the ANF recovery of f are almost the same as
that of linearity tests and linear Boolean functions recovery except the time
spent on finding a preimage of the mapping H. When the system of equations
defined by h0, h1, . . . , hm−1 is sparse and simple, a preimage of the mapping H
could be found efficiently. That is the case in our attacks, and it costs less than
one second to find a preimage for H in our experiment.
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3.3 A Generic Method of Choosing Useful Nonlinear Key
Expressions

When it comes to cube attacks, the composite function f discussed in the last
subsection is a superpoly pI of some chosen cube CI . Traditionally, pI is seen as
a black-box Boolean function on key variables, say k0, k1, . . . , kn−1, and attack-
ers try to recover linear superpolies on k0, k1, . . . , kn−1. If there exists a set of
nonlinear expressions h0, h1, . . . , hm−1 in key variables such that pI could be
represented as a composite function pI = g(h0, h1, . . . , hm−1) for some func-
tion g, then our new technique could efficiently test whether pI is linear on the
expressions h0, h1, . . . , hm−1 resulting in a desirable nonlinear superpoly in key
variables.. In the following, we shall show a generic method to find such useful
nonlinear expressions in key variables.

During the initialization process of stream ciphers, key variables are gradually
mixed with IV variables, and so in some early rounds, when the mixture is not
sufficient, they may not be multiplied together. Namely, at some time instance
t, each internal state bit si

t could be written as

si
t = gi,1(IV ) ⊕ gi,2(Key)(0 ≤ i ≤ l − 1),

where l is the size of the internal state and gi,1 and gi,2 may be equal to 0. Since
the internal state is updated iteratively, in cube attacks, when all the non-cube
variables are set to constant values, the superpoly pI of a given cube CI could
be naturally seen as a Boolean function on the expressions in the set

G = {gi,2(Key) | 0 ≤ i ≤ l − 1}.

Hence, pI may be nonlinear on key variables but linear on the expressions in G
which is the case we desire. By reasonably classifying the set G, attackers can
choose several subsets of G satisfying the surjective condition in Theorem 1.

Finally, recall that the third observation given in Subsect. 3.1 points out that
Trivium’s nonlinear superpolies have fixed forms. In fact, such fixed forms are in
accordance with our choosing method, which will be clearly seen in Subsect. 4.2.
Hence, this method for choosing useful nonlinear expressions in our new frame-
work is very reasonable.

4 Application to Trivium-Like Stream Ciphers

In this section, we discuss specific applications of our new framework to cube
attacks against Trivium-like ciphers including Trivium, Keryvium, and TriviA-
SC-v2.
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4.1 Some Notes

We give some remarks on implementation details about our framework being
used in traditional cube attacks to recover nonlinear superpolies.

First, we suggest to solve the involved systems of nonlinear equations by SAT
solvers such as CryptoMiniSat-2.9.5 developed by Soos [16]. There are two main
reasons for using CryptoMiniSat not Gröbner basis algorithms or other algebraic
methods. The first one is that we only need one solution not all solutions for each
system of equations. The second one is that CryptoMiniSat is experimentally fast
for sparse equations.

Second, recall that in [8], the Moebius transformation was used to search
all the subcubes of a large cube to find linear and quadratic superpolies. Our
new framework for recovering nonlinear superpolies could be combined with the
Moebius transformation if one has enough memory.

Third, for a stream cipher, useful nonlinear expressions are classified into
several groups according to the hypothesis of Theorem 1. Reusing f(X1) and
f(X2) described in Algorithm 1 for each group test could reduce lots of queries.
Besides, when there is only one set of useful nonlinear expressions, f(X1) and
f(X2) can be reused to find linear superpolies.

4.2 Experimental Results

Results of Trivium. Every internal state bit of Trivium is seen as a Boolean
function of key and IV variables. By observing the internal states after 91 ini-
tialization rounds, we choose the following two sets of nonlinear expressions in
Table 3. There are mainly two reasons for choosing these two sets of nonlinear
expressions. Firstly, these two sets of nonlinear expressions satisfy the condi-
tion mentioned in Theorem 1 perfectly. Secondly, these two sets could cover all
the quadratic expressions appearing in the internal state after 91 initialization
rounds.

Table 3. The chosen nonlinear expressions for Trivium

Ciphers Set Chosen nonlinear expressions

Trivium Set A ki+25ki+26 ⊕ ki+27 ⊕ ki(0 ≤ i ≤ 52)

Set B

k0k1 ⊕ k2 ⊕ k44

kik1+i ⊕ k2+i ⊕ k44+i ⊕ k53+i(1 ≤ i ≤ 12)

kik1+i ⊕ k2+i ⊕ k44+i(13 ≤ i ≤ 24)
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To show the correctness and effectiveness of finding nonlinear superpolies
using our new framework, we do extensive experiments on the Trivium vari-
ants with from 600 to 700 initialization rounds. For each variant, we randomly
choose 100 cubes to search linear superpolies and superpolies which are linear
about expressions in Set A or B. As a result, we totally obtain 8155985 linear
superpolies and 7517944 quadratic superpolies for all these 100 variants. It worth
noting that the number of quadratic superpolies is very close to that of linear
superpolies. It indicates that quadratic superpolies could be found as easily as
linear superpolies with our new framework. Namely, our new framework would
make quadratic superpolies play a more important role in cube attacks against
Trivium.

Second, we try our framework for Trivium variants with up to 802 initial-
ization rounds. Some new cubes and superpolies for the 784, 799 and 802-round
Trivium are listed in Table 5 in the Appendix. To the best of our knowledge, for
Trivium variants, it is the first time that traditional cube attacks could reach
802 initialization rounds.

Results of Kreyvium. According to the internal state after 66 initialization
rounds and the condition mentioned in Theorem 1, we choose the following
nonlinear key expressions

ki ⊕ k25+ik26+i ⊕ k27+i(0 ≤ i ≤ 65).

Certainly, there may exist other sets of useful nonlinear expressions.
We do similar experiments as those of Trivium on Kreyvium variants with

from 600 to 700 initialization rounds. We totally find 1194480 linear superpolies
and 2538591 quadratic superpolies for all these 100 variants. Note that the num-
ber of quadratic superpolies is more than twice as large as that of linear super-
polies. It indicates that quadratic superpolies could be found more easily than
linear superpolies. Then, we apply our new framework to search linear super-
polies and quadratic superpolies for Kreyvium variants with a higher number
of initialization rounds. Consequently, for the 776-round Kreyvium, we gain 8
different quadratic superpolies but no linear superpolies based on a cube of size
38, see Table 6 in the Appendix.

Results of TriviA-SC-v2. According to the internal state of TriviA-SC-v2
after 96 initialization rounds and the condition mentioned in Theorem 1, we
choose the following two sets of expressions in Table 4.

First, we perform similar experiments as those of Trivium on the TriviA-
SC-v2 variants with from 600 to 700 initialization rounds. For all these 100
variants, we gain 4074914 linear superpolies and 491551 quadratic superpolies. It
can be seen that the number of quadratic superpolies is non-ignorable. Namely,
finding quadratic superpolies with our framework would bring non-ignorable
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Table 4. The nonlinear expressions chosen for of TriviA-SC-v2

Ciphers Set Chosen nonlinear expressions

TriviA-SC-v2 Set A
ki ⊕ k64+ik65+i ⊕ k66+i(0 ≤ i ≤ 61)

k62 ⊕ k126k127

Set B k35+i ⊕ k36+ik37+i ⊕ k47+i(0 ≤ i ≤ 29)

benefits to traditional cube attacks on TriviA-SC-v2. Then, based on the chosen
nonlinear expressions, we attack TriviA-SC-v2 variants with more initialization
rounds with our new framework. As a result, we find several linear superpolies
and quadratic superpolies for the 864-round TriviA-SC-v2 and the 992-round
simplified TriviA-SC-v2, see Table 7 in the Appendix.

5 Conclusion

In this paper, we study traditional cube attacks against Trivium-like stream
ciphers, and propose a new framework to find nonlinear superpolies using linear-
ity tests principle. Based on the extensive experiments, it is interesting to find
that the probability of finding a quadratic superpoly is twice as large as that
of finding a linear suppoly for Kreyvium. That is to find a nonlinear superpoly
is easier than to find a linear superpoly for Keryvium. The reason for this and
further implications on the security of Kreyvium will be one subject of future
work.

Although we only performed lots of experiments on quadratic superpolies for
Trivium-like stream ciphers, cubic superpolies and superpolies with degree larger
than three are also applicable. In such cases, more careful analysis is needed to
choose useful key expressions. This also will be one subject of our future work.

Appendix

In this paper, all our programs are implemented with CUDA and we perform
experiments on a PC with an Intel(R) Core i7-4790k @4.00 GHZ CPU, 32 G
memory and a GTX-1080 GPU. In the following, we list all the experimental
results in details.
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Table 5. New superpolies of round-reduced Trivium variants

# of rounds Superpolies Cube index

784 k38 ⊕ k63k64 ⊕ k65 2,4,6,8,10,12,13,15,19,22,24,28,29,32,34,37,38,

40,41,44,47,49,51,53,55,57,65,68,70,73,74,76,78

k46 ⊕ k71k72 ⊕ k73 2,4,6,8,10,12,13,15,19,24,28,29,32,34,37,40,41,44,

47,49,51,53,55,57,59,62,65,70,72,73,74,76,78

k48 ⊕ k73k74 ⊕ k75 2,4,6,8,10,12,13,15,19,24,28,29,32,34,37,38,40,

41,44,47,49,51,53,55,57,59,68,70,72,73,74,76,78

799 k2 ⊕ k27x28 ⊕ k29 0,2,4,5,6,7,9,11,13,15,18,20,22,24,26,30,32,

35,37,39,42,44,46,52,53,57,62,68,70,72,74,79

k46 ⊕ k71k72 ⊕ k73 0,2,4,5,6,7,9,11,13,14,15,18,20,22,24,26,32,35,

37,39,42,44,48,52,53,55,57,61,62,68,70,74,79

802 k47 2,3,4,6,8,10,11,12,15,17,19,21,23,25,29,30,32,34,36,

39,41,43,45,48,50,54,57,58,65,67,69,76,49,59,73,79

k55 5,7,9,11,13,16,18,20,22,24,26,28,30,31,33,35,37,40,

42,44,46,47,49,51,53,56,60,62,64,66,68,70,74,76,79

k56 2,4,6,8,10,11,15,17,19,21,23,25,29,30,32,34,36,39,

41,43,45,50,52,54,57,58,67,69,76,49,59,71,73,79

k57 5,7,9,11,13,16,18,20,22,24,26,28,30,31,33,35,37,40,

42,44,46,49,51,53,55,60,62,64,66,68,70,74,76,79

k59 5,7,9,11,13,16,18,20,22,24,26,28,30,31,33,35,37,38,

40,42,44,49,51,55,56,60,62,64,66,68,72,74,76,79

k61 5,7,9,11,13,16,18,20,22,24,26,28,30,31,33,35,37,38,

40,42,46,49,51,53,55,56,60,62,64,66,68,72,74,76,79

k13 ⊕ k38k39 ⊕ k40 0,5,7,9,11,13,16,18,20,22,24,26,28,30,31,33,35,

37,40,42,44,46,47,49,51,53,60,62,64,66,72,74,76,79

k36 ⊕ k61k62 ⊕ k63 1,2,3,4,6,8,10,12,15,17,19,21,23,25,29,30,32,34,36,

39,41,43,45,50,52,54,57,58,65,67,69,76,49,59,73,79

Table 6. Superpolies of the 776-round Kreyvium

Superpolies Cube index

k4 ⊕ k29k30 ⊕ k31 2,5,7,9,13,17,19,22,24,28,30,37,39,41,43,45,52,54,58,

64,69,71,73,77,81,83,87,92,97,103,106,109,117,121

k5 ⊕ k30k31 ⊕ k32 0,2,5,7,9,13,19,22,24,28,30,37,39,41,43,45,52,54,58,66,

69,71,73,77,81,83,87,92,97,103,106,109,117,121,127

k6 ⊕ k31k32 ⊕ k33 0,2,5,7,9,13,17,19,22,24,28,30,37,39,41,43,45,49,52,

54,64,66,69,71,73,77,81,83,97,103,106,117,121,127

k26 ⊕ k51k52 ⊕ k53 2,5,7,9,13,17,19,22,24,28,30,37,39,41,43,45,49,52,64,

66,69,71,73,77,81,83,87,92,97,103,106,109,117,121

k38 ⊕ k63k64 ⊕ k65 0,2,5,7,9,13,17,19,22,24,28,30,37,39,41,43,45,49,52,

54,64,66,69,71,73,77,81,83,87,92,97,103,106,117,127

k39 ⊕ k64k65 ⊕ k66 0,2,5,7,13,17,19,22,24,28,30,37,41,43,45,49,52,54,58,

64,66,71,73,77,81,83,87,92,97,103,106,109,117,121,127

k46 ⊕ k71k72 ⊕ k73 0,2,5,7,9,13,17,19,22,24,28,30,37,39,41,43,45,52,54,

64,66,69,71,73,77,81,83,87,92,97,103,106,109,117,127

k58 ⊕ k83k84 ⊕ k85 2,5,7,9,13,17,19,22,24,28,30,37,39,41,43,45,52,54,

58,64,66,69,71,73,77,81,83,87,97,103,109,117,121,127
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Table 7. Superpolies of round-reduce TriviA-SC-v2 variants

ciphers # of rounds superpolies cube indexes

TriviA-v2 864

k1
0,2,8,12,15,18,22,25,30,33,40,47,50,69,72,86,89,92,95,98,

104,111,115,120,127

k20
0,2,8,12,18,22,25,30,33,40,55,60,66,69,72,86,89,98, 100,

104,111,115,120,127

k21
0,2,8,15,18,22,25,30,33,40,47,55,66,69,72,86,92,95,98,100,

111,115,120,127

k22 ⊕ 1 0,2,8,12,18,22,25,30,33,47,50,55,66,69,72,86,89,92,95,98,
104,111,115,120,127

k35
0,2,8,15,18,22,25,27,30,33,47,55,60,66,69,72,86,89,95,100,

104,111,115,120,127

k37
0,8,12,15,18,22,27,30,33,47,50,55,66,69,72,86,89,92,98,

100,104,111,115,120,127

k46
0,2,8,12,15,18,22,30,33,40,44,47,55,60,66,69,72,86,89,92,

98,100,104,111,115,127

k50
0,2,8,12,15,18,22,25,30,33,40,47,50,60,69,86,89,92,98,100,

104,111,115,120,127

k52 ⊕ 1 0,2,8,12,18,22,25,30,33,44,47,50,66,69,72,86,89,92,98,100,
104,111,115,120,127

k54
0,2,8,12,15,18,22,25,30,33,40,50,60,66,69,72,86,89,92,98,

100,104,115,120,127

k56
0,2,8,12,15,18,22,25,30,33,40,55,66,69,72,86,89,92,100,

104,111,115,120,127

k64
0,2,8,12,15,18,22,25,30,33,40,50,55,69,72,86,92,95,98,100,

104,111,115,120,127

k32 ⊕ k96k97 ⊕ k98
0,2,8,15,22,22,25,30,33,40,44,55,60,66,69,72,86,89,92,100,

111,115,120,127

k47 ⊕ k111k112 ⊕ k113
0,2,12,15,18,22,25,30,33,40,47,55,60,69,72,86,89,92,95,98,

100,104,111,115,120,127

k61 ⊕ k125k126 ⊕ k127
0,2,8,12,15,22,25,30,33,47,50,55,66,69,72,86,89,92,98,100,

111,115,120

TriviA-v2(simplified) 992

k2
0,2,5,10,13,16,23,29,34,40,45,49,51,59,66,78,88,90,98,104,

108,110,114,117,119,121,123,125,127

k25
0,2,5,10,13,19,23,29,34,40,45,49,55,59,66,71,78,85,88,90,

94,98,104,110,112,114,119,121,123,125,

k26
0,2,5,10,13,16,19,23,29,34,40,45,49,55,59,66,71,78,85,88,

90,94,104,110,112,114,119,121,123,125

k27
0,2,5,10,13,16,19,23,29,34,40,45,49,55,59,62,71,78,85,90,

94,98,104,108,110,112,114,117,119,121,123,125,

k41
0,2,10,13,16,19,23,29,40,45,49,55,59,66,71,78,85,88,90,94,

98,104,108,110,112,114,117,121,123,125

k41 + k63
0,2,10,13,16,19,23,29,40,45,49,51,55,59,71,78,85,88,90,94,

98,104,108,110,112,114,119,121,123,125

k48
0,2,5,10,13,16,23,29,40,45,49,51,55,59,66,71,78,88,90,94,

98,104,110,114,117,119,121,123,125

k50
0,2,5,10,13,16,19,23,29,40,45,49,55,59,66,71,78,85,88,90,

98,104,110,112,114,119,121,123,125,127

k53 ⊕ 1 0,2,5,10,13,16,19,23,29,34,40,45,49,55,59,66,71,78,85,88,
90,94,98,104,110,112,114,119,121,123

k56
0,5,10,13,16,19,23,29,40,45,49,55,59,66,71,78,85,88,90,

94,98,104,110,117,119,121,125,127

k57
2,5,10,13,16,19,23,29,34,40,45,49,55,59,66,71,78,85,88,90,

94,98,104,110,112,114,117,119,121,123,125

k59
0,2,5,10,13,16,19,23,29,40,45,49,51,55,59,62,66,71,78,85,

94,104,110,112,114,117,119,121,123

k61
0,2,5,10,13,16,19,23,29,34,40,45,51,55,59,66,71,78,85,90,

94,98,104,108,110,112,114,117,119,121,125

k72
0,5,10,13,16,19,23,29,40,45,55,59,62,66,71,78,85,90,94,

98,104,110,112,114,117,121,123,125,127

k33 ⊕ k97k98 ⊕ k99
0,2,5,10,13,19,23,29,40,45,49,51,55,59,66,71,78,85,88,90,

98,104,108,110,117,119,121,127

k61 ⊕ k125k126 ⊕ k127
0,5,10,13,16,19,23,29,34,40,45,49,55,59,62,66,71,78,88,

90,94,98,104,108,110,112,119,121,123,127
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Abstract. In SAC 2013, Berger et al. defined Extended Generalized
Feistel Networks (EGFN) and analyzed their security. Later, they pro-
posed a cipher based on this structure: LILLIPUT . Impossible differen-
tial attacks and integral attacks have been mounted on LILLIPUT . We
propose a tool which has found some classical, impossible and improba-
ble differential attacks by using the variance method. It has highlighted
unusual differential conditions which lead to efficient attacks according
to the complexity. Moreover, it is the first time we apply the generic
variance method to a concrete cipher.

Keywords: Differential cryptanalysis
Improbable differential cryptanalysis · Automated search of attacks

1 Introduction

Lightweight cryptography has become an important field of research with the
development of IoT. As a solution, a lot of block ciphers have been built. Some of
them are SPN ciphers like PRESENT [8] or more recently SKINNY [2]. Others
are Feistel ciphers like SIMON [1] or CLEFIA [16]. In this context, a new variant
of generalized Feistel network has been designed: the Extended Generalized Feis-
tel Network [4] (EGFN). It is based on Matrix representation and provides an
efficient diffusion. In comparison to the generalized Feistel networks, the distinc-
tive feature in the EGFN is a linear layer after the confusion step. Moreover, an
efficient differential analysis method remains unknown [14] because of this linear
layer. A cipher based on the EGFN structure called LILLIPUT [3] has been
designed. It is a 30 rounds block cipher. Several kinds of attacks on LILLIPUT
have been provided as shown in Table 1.

Differential attacks [6] consist in putting a specific difference on the inputs
and looking how it propagates through the cipher into the outputs in order to
highlight a bias. Differential cryptanalysis is an efficient statistical attack and
some attacks are derived from it: truncated differential ones [10] or impossible
differential ones [5] for example. A differential analysis based on the variance
method [12] has been made on the EGFN [11]. In this article, we have applied
this method to LILLIPUT .
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 188–206, 2018.
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Table 1. Best Attacks on LILLIPUT .

Variety Distinguisher Key recovery Source

Impossible differential 9 rounds N/A [15]

Division property 13 rounds 17 rounds [14]

Differential 8 rounds 12 rounds Sect. 4

Our Contribution. In this paper, we provide some differential cryptanaly-
sis attacks on LILLIPUT . Indeed, we provide some differential distinguishers.
These attacks are NCPA (Non-Adaptive Chosen Plaintext Attack) ones. They
are based on the variance method [12] that was already used on the EGFN and
on some generalized Feistel network [13,19]. For the first time, we apply this
generic method to a concrete cipher. These differential attacks do not rely on
the key schedule but only on the LILLIPUT structure. Moreover, we have made
a tool in Python to process an automated research of differential attacks. There
are generic tools devoted to different kinds of attacks: meet-in-the-middle and
impossible differential attacks in [9], or only for impossible differential attacks
in [15], in [20] or in [21] for example. Contrary to others generic tools, our pro-
gram is designed to apply the variance method to a concrete cipher. It can be
used on some block ciphers and allows to get differential attacks, impossible
differential attacks and improbable differential attacks. Indeed, we have found
empirically some improbable differential attacks [17,18] and we provide expla-
nations of how it works. Improbable differential cryptanalysis is a statistical
cryptanalytic technique for which some attacks have been invalidated [7] when
built from an impossible distinguisher. In the theory, an improbable differential
attack is like a classical differential attack but the expected differences occur
less often for a permutation generated by the studied cipher than for a random
permutation. In this paper, the attacks we describe work in practice and we
provide simulations of them.

This paper is organized as follow: In Sect. 2, we will describe LILLIPUT .
Then in Sect. 3 we will detail the general structure of our attacks and describe
the tool that allows to find attacks. Section 4 is devoted to the presentation of
distinguishing attacks up to 8 rounds. Conclusion is given in Sect. 6.

2 LILLIPUT

The input is denoted by 16 nibbles: I = [I16, I15, · · · , I1]. Similarly, the output
is denoted by: S = [S16, S15, · · · , S1]. We describe one round of LILLIPUT in
the Fig. 1.

We can see there are three layers in a round:

– NonLinear layer step with the sbox. There is only one 4-bit sbox in
LILLIPUT and we have described it in Table 2 according to the value of
the input.
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Fig. 1. One round of LILLIPUT .

Table 2. Sbox of LILLIPUT .

Input value 0 1 2 3 4 5 6 7 8 9 A B C D E F

Ouput value 4 8 7 1 9 3 2 E 0 B 6 F A 5 D C

Table 3. Permutation of LILLIPUT .

Input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Output 14 10 15 9 11 12 13 16 5 6 4 2 3 7 1 8

– Linear layer step: this is a step with some xor operations between the left
side branches and the right side.

– Permutation layer: there is a permutation step and we have described it in
Table 3.

One can notice that there are two sides and the left side branches go to the
right side through the permutation step and vice versa.

LILLIPUT is an instance of Extended Generalized Feistel Network, a generic
family of Feistel schemes. Because of the LinearLayer, there are no efficient
known methods to make a differential study of this scheme. As previously said,
differential attacks on EGFN have already been proposed. These attacks are
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based on the variance method [12] that we will use on LILLIPUT as well. How-
ever, we can not use the same differential trails or use the same kind of relations
between inputs and outputs because the sbox in LILLIPUT is a bijection.

3 Structure of the Attacks

3.1 Variance Method

Our attacks are based on variance method [12]. With this method, we can make
a further analysis than a classical differential attack. The aim of the attack is to
distinguish a permutation obtained with LILLIPUT from a random permuta-
tion. Just like the authors of the variance method, we will generate a lot of pairs
of messages and count how many of them satisfy specific differential relations
between inputs and outputs. The number of such pairs is denoted by Nperm for
a random permutation and by NL for a LILLIPUT permutation.

Then, the attack is successful if Nperm is significantly different from NL. If
it is smaller, we obtain an impossible or an improbable differential attack and if
it is greater, we have a classical differential one. But if NL and Nperm are of the
same order, then the attack can be successful using the expectation and standard
deviation functions if |E(NL) − E(Nperm)| > max(σ(Nperm), σ(NL)), where E

stands for the expectation function and σ for the standard deviation function. In
that case, the attacks work thanks to the Chebychev formula, which states that
for any random variable X, and any α > 0, we have P (|X − E(X)| ≥ ασ(x)) ≤
1

α2 . Using this formula, it is then possible to construct a prediction interval for
NL for example, in which future computations will fall, with a good probability.
It is important to notice that for our attacks, it is enough to compute E(Nperm),
E(NL) and σ(Nperm). For more details about the variance method see [12],
Chap. 5 for example.

Moreover, for all attacks we will see, the condition on the outputs is an
equality on 4 bits. So, it is easy to check that if m is the number of messages for
a given attack, then for a random permutation: E(Nperm) � m·(m−1)

2 × 1
24 and

σ(Nperm) � √
E(Nperm).

3.2 Conditions on the Inputs and the Outputs

There are 16 branches in LILLIPUT . Our attacks are differential ones, so we
look for differential trails. Due to the structure of LILLIPUT , we look for attacks
by putting conditions to the left side [I16, · · · , I9] of the inputs and looking some
conditions on the left side [S16, · · · , S9] of the outputs. Indeed, one can check
that, if we found an interesting distinguisher which uses the right side of the
output, it leads to a distinguisher which uses the left side of the output and
reaches one more round. It is because in a round the right side goes to the left
side with probability 1 without changes.

We have found by hand distinguishers up to 4 rounds and for more rounds
with the tool. Most attacks are based on a common structure. Each pair (m1,m2)
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of messages that we study has to verify that: m1 and m2 are equal on all branches
but some on the left side. Moreover, on the branches involved, the non-zero
differences have to be equal. For example, this condition on branch number 9
will be written I9(m1) ⊕ I9(m2) = Δ or if more simply ΔI9 = Δ.

On the outputs, if c1 = LILLIPUT (m1) and c2 = LILLIPUT (m2) we will
look at the xor between some branches of c = c1 ⊕ c2. For example, if we are
interested in the branches S12 and S10, we will compute S12 ⊕ S10 on c and it
is denoted by ΔS12 ⊕ ΔS10. One can notice that if one is interested in only one
branch, it leads to a classical differential attack.

3.3 Complexity

In our differential attacks we use structures of messages. Let (m1,m2) be a pair
of messages. As we have said earlier, there are 2 properties the pairs have to
follow. First, m1 and m2 are equal on all branches but some on the left side.
Then, for the non zero branches of m1 ⊕ m2, the difference has to be the same.
Thus, a structure is based on a message m that is randomly chosen. As we want
the same difference on some branches, it leads to 15 more messages. Indeed, the
non zero difference can be Δ ∈ [1 · · · 15] because branches have 4 bits. So, a
structure has 16 messages, and it leads to 16 × 15/2 = 120 pairs.

For example, if we are interested in the branches I10 and I13, a pair will be
(m1,m2) such that: m1 ⊕ m2 = [0, 0, 0,Δ, 0, 0,Δ, 0, 0, 0, 0, 0, 0, 0, 0, 0]. There are
exactly 24×14 of such structures.

The main drawback of our attacks is the data complexity. Indeed for a given
attack which requires 27 messages, the number of pairs is 27×(27−1)

2 = 8, 128.
With our kinds of attacks, because we need the same Δ difference on several
branches, we need 68 structures of 120 pairs (68 × 120 = 8, 160 pairs) and it
corresponds to 68×16 = 1, 088 messages instead of 27. But, thanks to these new
conditions, one can see special relations between internal variables which can be
used to build a differential attack.

3.4 Automated Research of Attacks

To extend this kind of attacks, we have implemented a tool1 in Python to process
an exhaustive search of such conditions. We describe it in Algorithm1.

In order to optimise this algorithm, we test on a small number of samples
and if we found an interesting result, then we test again in a more meaningful
number of samples. It appears that the most efficient attacks are based on having
2 branches involved on the inputs and 2 branches involved on the ouput. We
detail the best attacks we have found in Sect. 4 and some empirical results in
Sect. 4.3.

1 Our tool is available on the Internet at this link: github.com/NicolasCergy/
Lilliput analysis.

https://github.com/
https://github.com/
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Algorithm 1. Automated search of attacks
for all inputCondition=Combination of branches in the left side of inputs: do

Generate a sample of pairs which verify the condition on the input: Equal on all branches
but the inputCondition.

for all outputCondition=Combination of branches in the left side of outputs: do
Count how many pairs verify the outputCondition: the xor between some branches

of the difference of the outputs equals to 0.
if this result is different than the one expected for a random permutation then

We have found a distinguisher.
end if

end for
end for

4 Distinguishing Attacks

In this Section, we will describe the different distinguishers we have found
by hand or thanks to the tool. We have made simulations of these attacks.
Input is denoted by: I16, · · · , I1. After the first NonLinear and Linear lay-
ers and before the permutation, the output is: X1

8 ,X1
7 ,X1

6 ,X1
5 ,X1

4 ,X1
3 ,X1

2 ,
X1

1 , I8, I7, I6, I5, I4, I3, I2, I1. Here X1
1 , . . . , X1

8 denote the internal variable that
appear at round 1. More generally, Xi

j , 1 ≤ j ≤ 16 represent the internal variable
that are introduced at round i. To simplify the notation, we always denote by
f the round functions. But, even though we always use the same bijective sbox,
the entry is xored with a sub-key. For a given round, it is important to note that
f(Xi

j) = f(Xi
k) does not mean that Xi

j = Xi
k.

4.1 First Rounds

In the first rounds, we can mount differential attacks with probability 1 on
LILLIPUT with only 2 messages. So let (m1,m2) be a couple of messages. We
will note c1 = LILLIPUT (m1), c2 = LILLIPUT (m2) and c = c1 ⊕ c2. We
describe an attack on 5 rounds in order to show the relation between internal
variables in LILLIPUT .

Property 1. After r rounds (r ≥ 3), the output is:
[Xr−1

8 , Xr−1
5 , Xr−1

7 , Xr−1
6 , Xr−1

2 , Xr−1
1 , Xr−1

4 , Xr−1
3 , Xr

8 , Xr
6 , Xr

2 , Xr
1 , Xr

3 , Xr
5 , Xr

4 , Xr
7 ].

We have the following formulas:

Xr
1 = Xr−2

3 ⊕ f(Xr−1
8 ) Xr

5 = Xr−2
6 ⊕ Xr−1

8 ⊕ f(Xr−1
3 )

Xr
2 = Xr−2

4 ⊕ Xr−1
8 ⊕ f(Xr−1

6 ) Xr
6 = Xr−2

7 ⊕ Xr−1
8 ⊕ f(Xr−1

5 )
Xr

3 = Xr−2
1 ⊕ Xr−1

8 ⊕ f(Xr−1
2 ) Xr

7 = Xr−2
5 ⊕ Xr−1

8 ⊕ f(Xr−1
4 )

Xr
4 = Xr−2

2 ⊕ Xr−1
8 ⊕ f(Xr−1

1 )

And: Xr
8 = Xr−2

8 ⊕Xr−1
8 ⊕Xr−1

6 ⊕Xr−1
5 ⊕Xr−1

4 ⊕Xr−1
3 ⊕Xr−1

2 ⊕Xr−1
1 ⊕f(Xr−1

7 )

After five rounds, there is an NCPA attack that needs only 2 messages. As
input condition we have Ii(m1) �= Ii(m2) only for i ∈ {9, 10}. Moreover, we set
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ΔI9 = ΔI10. Then, one has to check if ΔS9 ⊕ ΔS10 = 0. This is satisfied with
probability 1

24 for a random permutation. We now explain why this is true with
probability 1 for a permutation obtained with LILLIPUT .

According to Property 1, we have: S9 = X4
3 = X2

1 ⊕ X3
8 ⊕ f(X3

2 ) and S10 =
X4

4 = X2
2 ⊕ X3

8 ⊕ f(X3
1 ).

X2
1 = I14 ⊕ f(X1

8 ) X3
2 = X1

4 ⊕ X2
8 ⊕ f(X2

6 )
X2

2 = I2 ⊕ X1
8 ⊕ f(X1

6 ) X3
1 = X1

3 ⊕ f(X2
8 )

Using the input conditions, we obtain ΔX1
8 = 0,ΔX2

1 = 0,ΔX1
6 and ΔX2

2 =
0. This gives ΔS9 ⊕Δ10 = Δf(X3

2 )⊕Δf(X3
1 ). Moreover, ΔX1

3 = 0 and ΔX2
8 =

ΔX1
1 ⊕ΔX1

2 = I9 ⊕ΔI10 = 0. This implies that Δf(X3
1 ) = 0. It is easy to check

that we also have Δf(X3
2 ) = 0. This shows that we have ΔS9 ⊕ ΔS10 = 0 with

probability 1. Note that the tool has also found a lot of impossible differential
attacks and improbable differential attacks but we have only detailled the most
efficient attacks. We have found 26 of such attacks which require 2 messages.

4.2 Further Attacks

As we have said in Sect. 3, our attacks are based on a specific structure: for each
pair we have equalities on all but some branches and this non zero difference is
the same on the different branches. So, we will detail for each attack, the input
branches involved. Similarly, we have said that the output condition is the xor
between some branches of c = c1 ⊕c2. So, we will explain which output branches
are involved. In order to obtain E(NL), we will use the mean value obtained
from some samples. Thus, we will also detail the number of samples, the number
of pairs for each sample and the results we have obtained.

6 Rounds. The tool has found a lot of attacks on 6 rounds.2 We present here
the most efficient ones. With only one structure (so 120 pairs of messages, this
corresponds to 24 messages since if m is the number of messages, then we have
m(m−1)

2 pairs of distinct messages) we will see that we can distinguish LILLIPUT
from a random permutation. The output condition is ΔS9 ⊕ ΔS15 = 0. It is an
equality on 4 bits, so for a random permutation, the mean value is expected
to be E(Nperm) = m(m−1)

2·24 = 7.5. The results we have obtained are shown in
Table 4. We notice that the number of pairs of message satisfying the conditions
is 32. This provides a distinguishing attack.

Moreover, this attack is still valid with only 4 messages: the last version of
our tool works with structures of messages so the minimal number is 24 but,
one can reduce this attack to 4 messages. Indeed, the mean value of pairs which
satisfy the output condition for a random permutation is then expected to be
E(Nperm) = 0.375 and we have obtained by simulation:3 E(NL) = 1.7128. We
now explain how the structure of LILLIPUT leads to this result.
2 See Sect. 4.3.
3 Mean value obtained in simulation with 5000 samples of 4 messages.



Differential Attacks on Reduced Round LILLIPUT 195

Table 4. Attack on 6 rounds.

Input branches Output branches #Sample #Pairs in a sample #Pairs in average

I10, I14 S9, S15 100 120 32

At the end of round 6 (see Property 1) we have: S15 = X5
5 and S9 = X5

3 and

X5
5 = X3

6 ⊕ X4
8 ⊕ f(X4

3 ),
X3

6 = X1
7 ⊕ X2

8 ⊕ f(X2
5 ),

X1
7 = I15 ⊕ I8 ⊕ f(I2),

X2
5 = I7 ⊕ X1

8 ⊕ f(X1
3 ).

X5
3 = X3

1 ⊕ X4
8 ⊕ f(X4

2 ),
X3

1 = X1
3 ⊕ f(X2

8 ),
X1

3 = I11 ⊕ I8 ⊕ f(I6),

So we have: ΔX1
7 = 0, ΔX1

3 = 0, ΔX2
5 = 0. Or, ΔX2

8 = ΔI10 ⊕ ΔI14 = 0.
So, ΔX3

1 = 0 and ΔX3
6 = 0. Thus ΔS9 ⊕ ΔS15 = Δf(X4

2 ) ⊕ Δf(X4
3 ).

X4
2 = X2

4 ⊕ X3
8 ⊕ f(X3

6 ),
X2

4 = I6 ⊕ X1
8 ⊕ f(X1

1 ),
X1

1 = I9 ⊕ f(I8),

X4
3 = X2

1 ⊕ X3
8 ⊕ f(X3

2 ),
X2

1 = I4 ⊕ f(X1
8 ),

X3
2 = X1

4 ⊕ X2
8 ⊕ f(X2

6 ).

So ΔX1
1 = 0, ΔX2

4 = 0, ΔX3
2 = 0, ΔX2

1 = 0. So Δf(X3
2 ) = 0, ΔX4

3 =
ΔX4

2 = ΔX3
8 . Or, we have:

ΔX3
8 = ΔX2

2 ⊕ ΔX2
3

= Δf(X1
6 ) ⊕ Δf(X1

2 )
= f(X1

6 ) ⊕ f(X1
6 ⊕ ΔI14) ⊕ f(X1

2 ) ⊕ f(X1
2 ⊕ ΔI10).

So we have: ΔS9 ⊕ ΔS15 = f(X4
2 ) ⊕ f(X4

2 ⊕ ΔX3
8 ) ⊕ f(X4

3 ) ⊕ f(X4
3 ⊕ ΔX3

8 ).
The bias is obtained if f(X4

2 ) = f(X4
3 ) note that the round key is not the

same for these two values so it does not lead to X4
2 = X4

3 . We can also follow the
differential trail if X3

8 = 0. This happens at random or if f(X1
6 ) = f(X1

2 ) and,
similarly, it does not mean X1

6 = X1
2 . Thus we are able to distinguish a random

permutation from a LILLIPUT permutation. We can also turn this attack into
a related key attack with probability 1 (see Sect. 5.2).

7 Rounds. Just like the attacks for 6 rounds, our program has found some
attacks4 and we will describe the most efficient of them. The tool found an
improbable differential attack on LILLIPUT reduced to 7 rounds. For this
attack, we use samples of 8, 160 pairs, so 68 structures of 120 pairs of mes-
sages each. This corresponds to about 27 messages, but with this kind of attack,
about 210 messages are needed (see Subsect. 3.3). The output condition is an
equality on 4 bits: ΔS10 ⊕ΔS12 = 0. Thus, for a random permutation, the num-
ber of pairs verifying this condition is expected to be 510 in average, since we
have E(Nperm) � m(m−1)

2.·24 and we obtain that σ(Nperm) � √
E(Nperm) is about

4 See Sect. 4.3.
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22.58. If we look at the values we have obtained and that are given in Table 5,
we see that |E(NL) − E(Nperm)| > σ(Nperm). This shows that, as explained in
Sect. 3.1, the attack is successful. Moreover, since E(NL) < E(Nperm), we have
an improbable attack.

Table 5. Attack simulation on 7 rounds.

Input branches Output branches #Sample #Pairs in a sample #Pairs in average

I10, I12 S10, S12 500 8, 160 477

We describe now the details of the equations and explain why it leads to an
improbable differential attack. At the end of round 6 (see Property 1) we have:
S10 = X6

4 and S12 = X6
2 .

X6
4 = X4

2 ⊕ X5
8 ⊕ f(X5

1 ),
X4

2 = X2
4 ⊕ X3

8 ⊕ f(X3
6 ),

X2
4 = I6 ⊕ X1

8 ⊕ f(X1
1 ),

X1
1 = I9 ⊕ f(I8),

X3
6 = X1

7 ⊕ X2
8 ⊕ f(X2

5 ),
X1

7 = I15 ⊕ I8 ⊕ f(I2),

X6
2 = X4

4 ⊕ X5
8 ⊕ f(X5

6 ),
X4

4 = X2
2 ⊕ X3

8 ⊕ f(X3
1 ),

X2
2 = I2 ⊕ X1

8 ⊕ f(X1
6 ),

X1
6 = I14 ⊕ I8 ⊕ f(I3),

X3
1 = X1

3 ⊕ f(X2
8 ),

X1
3 = I11 ⊕ I8 ⊕ f(I6).

So, ΔX1
3 = 0, ΔX3

1 = 0, ΔX1
6 = 0, ΔX2

2 = 0. Similarly, ΔX1
7 = 0, ΔX3

6 = 0,
ΔX1

1 = 0 and ΔX2
4 = 0. So, ΔX6

4 ⊕ ΔX6
2 = Δf(X5

6 ) ⊕ Δf(X5
1 ). Moreover

we have: ΔX5
1 = ΔX3

3 ⊕ Δf(X4
8 ) and ΔX5

6 = ΔX4
8 ⊕ Δf(X4

5 ) It is easy to
check that ΔX3

3 = 0 and ΔX4
5 = ΔX2

6 ⊕ ΔX3
8 ⊕ Δf(X3

3 ) = ΔX3
8 . We also have

ΔX4
8 = ΔX3

8 ⊕ ΔX3
5 . This gives:

ΔS10 ⊕ ΔS12 = f(X5
1 ) ⊕ f

(
X5

1 ⊕ f(X4
8 ) ⊕ f(X4

8 ⊕ ΔX4
8 )

)

⊕ f(X5
6 ) ⊕ f

(
X5

6 ⊕ ΔX4
8 ⊕ f(X4

5 ) ⊕ f(X4
5 ⊕ ΔX3

8 )
)
.

Suppose that ΔX3
8 = ΔX3

5 . This implies that ΔX4
8 = 0 and we have:

ΔS10 ⊕ ΔS12 = f(X5
6 ) ⊕ f

(
X5

6 ⊕ f(X4
5 ) ⊕ f(X4

5 ⊕ ΔX3
8 )

)
. Since f is bijective,

we obtain:

ΔS10 ⊕ ΔS12 = 0 ⇔ f(X4
5 ) ⊕ f(X4

5 ⊕ ΔX3
8 ) = 0 ⇔ ΔX3

8 = 0.

This also gives ΔX3
5 = 0. But ΔX3

5 = 0 ⇔ ΔX2
3 = 0 ⇔ ΔI10 = 0 which is

not possible. We now compute the probabilities. We have:

P [ΔS10 ⊕ ΔS12 = 0] = P
[
ΔS10 ⊕ ΔS12 = 0/ΔX3

5 �= ΔX3
8

]
P

[
ΔX3

5 �= ΔX3
8

]

+ P
[
ΔS10 ⊕ ΔS12 = 0/ΔX3

5 = ΔX3
8

]
P

[
ΔX3

5 = ΔX3
8

]
.
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The previous computations show that: P
[
ΔS10 ⊕ ΔS12 = 0/ΔX3

5 = ΔX3
8

]
= 0.

Thus we obtain, if m is the number of messages.

P [ΔS10 ⊕ ΔS10 = 0] = P
[
ΔS10 ⊕ ΔS10 = 0/ΔX3

5 �= ΔX3
8

]
P

[
ΔX3

5 �= ΔX3
8

]

=
m(m − 1)

2 · 24

(
1 − 1

24

)
.

With m = 27, this is the value given in Table 5. This shows that we have here
an improbable attack.

8 Rounds. The tool have found a differential attack on LILLIPUT reduced
to 8 rounds. For this attack, we use samples of 301, 977, 600 pairs, so 2, 516, 480
structures. This corresponds to about 1.5 × 214 messages, but with this kind of
attack, about 225 messages are needed (see Subsect. 3.3). The output condition
is an equality on 4 bits: ΔS12 ⊕ΔS14 = 0. For a random permutation, the num-
ber of pairs verifying this condition is expected to be 18, 873, 600 in average, i.e.
E(Nperm) � m(m−1)

2.·24 , and the standard deviation is about the square root of the
mean value which gives: 4344. Since the mean value obtained for a LILLIPUT
permutation is 18, 882, 219.56, we can see that |E(NL)−E(Nperm)| > σ(Nperm).
This shows that, as explained in Sect. 3.1, the attack is successful. The simula-
tions described in Table 6 have taken 65.6 hours of computation on a virtual
machine with a E8500 as processor and 4GB of RAM.

Table 6. Attack simulation on 8 rounds.

Input branches Output branches #Sample #Pairs in a sample #Pairs in average

I9, I10 S12, S14 50 301, 977, 600 18, 882, 219.56

Here are the details of the equations: S12 = X7
2 and S14 = X7

7 .

X7
2 = X5

4 ⊕ X6
8 ⊕ f(X6

6 ),
X5

4 = X3
2 ⊕ X4

8 ⊕ f(X4
1 ),

X3
2 = X1

4 ⊕ X2
8 ⊕ f(X2

6 ),
X1

4 = I12 ⊕ I8 ⊕ f(I5),
ΔX1

4 = 0,

X7
7 = X5

5 ⊕ X6
8 ⊕ f(X6

4 ),
X5

5 = X3
6 ⊕ X4

8 ⊕ f(X4
3 ),

X3
6 = X1

7 ⊕ X2
8 ⊕ f(X2

5 ),
X1

4 = I12 ⊕ I8 ⊕ f(I5),
ΔX1

7 = 0.

Or Δf(X2
5 ) = 0 and Δf(X2

6 ) = 0. So ΔS12 ⊕ ΔS14 = Δf(X6
6 ) ⊕ Δf(X6

4 ) ⊕
Δf(X4

1 )⊕Δf(X4
3 ). We can observe that the condition ΔS12 ⊕ΔS14 = 0 can be

satisfied if for example: f(X4
1 ) = f(X4

3 ), f(X4
1 ⊕ΔX4

1 ) = f(X4
3 ⊕ΔX4

3 ), f(X6
4 ) =

f(X6
6 ), and f(X6

4 ⊕ΔX6
4 ) = f(X6

6 ⊕ΔX6
6 ). But other equalities are also possible.
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Table 7. Some differential and improbable differential attacks on 6 rounds.

Table 8. Some differential and improbable differential attacks on 7 rounds.

4.3 Simulation of Attacks on 6 and 7 Rounds

In this part, we describe some attacks on LILLIPUT reduced to 6 and 7 rounds.
These attacks are based on 500 samples of 8160 couples of messages. This cor-
responds to 27 messages as explained in Sect. 3.3. We count how many couples
verify a property. The average result for a random permutation is 8160

24 = 510
because it is an equality on 4 bits. In order to obtain an attack, the difference
between these values is expected to be 8160

28 = 32. As said in Sect. 4, these attacks
are based on an non zero difference put on two input branches. We detail the
result obtained in Tables 7 and 8. The tool also found attacks for all combination
i ∈ {1, · · · , 8} branches in input and j ∈ {1, · · · , 8} branches in output but i = 2
and j = 2 leads to the most relevant attacks. Note that the attacks on 7 rounds
are not based on 27 messages but 211 according to Sect. 3.3.

5 Key Recovery

In this section, we describe how the key recovery works in order to show what
we can do. We process the key recovery on LILLIPUT reduced to 7 and 8
rounds. We have used the distinguishing attack on 6 rounds to attack 7 then 8
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rounds in order to do simulations because the distinguishing attack on 8 rounds
require 225 messages to be processed. Nevertheless, it will work similarly for this
distinguishing attack.

5.1 Key Schedule Description

LILLIPUT uses a 80-bit master key. The key schedule is managed by an internal
state denoted by 20 nibbles (4-bit words): Y19, . . . , Y0. It is initialized with the
master key and is processed by Algorithm 2 in order to build the round keys
RK0, . . . , RK29. The ExtractRoundKey function is described in Algorithm 3.
Note that the Sbox S used in the ExtractRoundKey function is the same as
the one in LILLIPUT . The functions L0, L1, L2 and L3 are generalized Feistel
schemes with 5 branches and a bit size of 4. They are described in Figs. 2 and 3.

Algorithm 2. LILLIPUT key schedule
Y19, . . . , Y0 = MasterKey
RK0 = ExtractRoundKey(Y19, . . . , Y0)
for i in 1, . . . , 29 do

(Y4, . . . , Y0) = L0(Y4, . . . , Y0)
(Y9, . . . , Y5) = L1(Y9, . . . , Y5)
(Y14, . . . , Y10) = L2(Y14, . . . , Y10)
(Y19, . . . , Y15) = L3(Y19, . . . , Y15)
RKi = ExtractRoundKey(Y19, . . . , Y0)

end for

Algorithm 3. ExtractRoundKey function for RKi

Let Z, a 32-bit word such that: Z = Y18Y16Y13Y10Y9Y6Y3Y1

The bits of Z are denoted by: Z31, . . . , Z0

RK0 = ExtractRoundKey(Y19, . . . , Y0)
for j in 0, . . . , 7 do

RKi
j = S(Zj ||Z8+j ||Z16+j ||Z24+j)

end for
RKi = RKi ⊕ (i||0)

5.2 Related Key Attack on 6 Rounds

In this section, we describe the related key attack on LILLIPUT reduced to
6 rounds. To recall the attack, the input branches involved are I10 and I14. If
c = c1 ⊕ c2, the output condition is S9(c) ⊕ S15(c) = 0.

If I10 = I14 and RK1
1 = RK1

5 and RK2
1 = RK2

2 , the differential trail is
verified with probability 1. This attack was verified in practice. The aim of the
attack is to make ΔX3

8 = 0. We have seen that ΔX3
8 = f(X1

6 )⊕f(X1
6 ⊕ΔI14)⊕

f(X1
2 ) ⊕ f(X1

2 ⊕ ΔI10). Moreover, we know that ΔI14 = ΔI10.
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But, it is important to notice that f(X1
6 ) = sbox(X1

6 ⊕ RK1
1 ). Similarly,

f(X1
2 ) = sbox(X1

2 ⊕ RK1
2 ). So, ΔX3

8 = 0 if and only if sbox(X1
2 ⊕ RK1

2 ) =
sbox(X1

6 ⊕ RK1
1 ). It can happens at random but if we have the condition on

the key RK1
1 = RK1

2 , then (X1
6 = X1

2 ) ⇒ ΔX3
8 = 0. Then, we have X1

6 ⊕
X1

2 = I14 ⊕ I10 ⊕ sbox(I3 ⊕ RK0
5 ) ⊕ sbox(I7 ⊕ RK0

1 ). So if I10 = I14, then
(X1

6 ⊕ X1
2 = 0 if and only if I3 ⊕ RK0

5 = I7 ⊕ RK0
1 ). Now we will see what kind

of conditions on the master key we have. The key state is denoted by 20 nibbles
of 4 bits: Y = [Y19, · · · , Y0]. Each round there is a 32-bit round key extracted by
the extraction function. First, we have Z = [Y18, Y16, Y13, Y10, Y9, Y6, Y3, Y1]. Let
Z = Z31, · · · , Z0 the bits of Z. Then, we have:

RK1
1 = sbox([Z1, Z9, Z17, Z25]) RK1

5 = sbox([Z5, Z13, Z21, Z29])
RK2

1 = sbox([Z1, Z9, Z17, Z25]) ⊕ 1 RK2
2 = sbox([Z2, Z10, Z18, Z26]) ⊕ 1

Y0Y1Y2Y3Y4
>>> 1

>> 3

Y5Y6Y7Y8Y9
<<< 1

<< 3

Fig. 2. L0 and L1 respectively

Y10Y11Y12Y13Y14

>>> 1
>> 3

Y15Y16Y17Y18Y19
<< 3

<<< 1

Fig. 3. L2 and L3 respectively

Note that the xor with 1 is processed to flip the bit at the left. RK1
1 = RK1

5 if
and only if sbox([Z1, Z9, Z17, Z25]) = sbox([Z5, Z13, Z21, Z29]). So RK1

1 = RK1
5

if and only if [Z1, Z9, Z17, Z25] = [Z5, Z13, Z21, Z29]. So RK1
1 = RK1

5 if Z1 = Z5,
Z9 = Z13, Z17 = Z21 and Z25 = Z29. If K = K79, · · · ,K0 is the master key,
these conditions lead to: K5 = K13, K25 = K38, K41 = K53 and K65 = K73.
Similarly RK2

1 = RK2
2 if Z1 = Z2, Z9 = Z10, Z17 = Z18 and Z25 = Z26. Note

that it is the Z of the second round, so the Z9 is not the same. It leads to these
conditions on the master key: K1 ⊕ K18 = K2 ⊕ K19, K21 = K22, K58 = K57

and K61 = K62. With these 8 conditions on 1 bit on the master key, we have
the attack with probability 1 on LILLIPUT reduced to 6 rounds.

5.3 Key Recovery Analysis on 7 Rounds

This attack is based on some distinguishing attacks on 6 rounds. As usual, a
plaintext structure contains 16 messages (thus 120 different pairs) which are
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different only on 2 branches. Moreover, the difference has to be the same on
these branches.

On LILLIPUT reduced to 6 rounds, there are some differential attacks based
on our attacks. The involved input branches are I9 and I10. On the outputs, the
conditions can be: ΔS9 ⊕ ΔS10 = 0 or ΔS9 ⊕ ΔS14 = 0 or ΔS10 ⊕ ΔS14 = 0.
Based on one of these attacks, one can mount a key recovery attack on 7 rounds
using Algorithm 4.

Algorithm 4. Key recovery on 7 rounds.
Encrypt some samples of 68 structures on 7 rounds.
for all guess of RK6

0 , RK6
1 do

Decrypt one round with the guess.
r =Count how many pairs verify ΔS9 ⊕ ΔS10 = 0.
if r > 550 then

The guess is possible, one has to stock it.
end if

end for

This algorithm allows to get a list of possible RK6
0 , RK6

1 . There are 28

possibilities for the guess. In simulations, one can find directly the correct guess
(list of one element) with 5 or 10 samples. But with less samples, one get a list
of several possibilities. With the knowledge of RK6

0 , RK6
1 , one get the following

bits of the corresponding Z: Z0Z1Z8Z9Z16Z17Z24Z25. Even if there are several
RK6

0 , RK6
1 , the cost of the brute-force attack is reduced from 280 to about 274.

Of course, one can optimize this algorithm.
Indeed, one can use several attacks in order to get a better attack. It is

described in Algorithm 5. In simulations, we have always get the correct guess
RK6

0 , RK6
1 and RK6

5 . As we do not test all the possibilities for the second and
third attack but only the ones which work from the previous step, the number
of possibilities is lower than 3 × 28.

With Algorithm 5, one has the knowledge of RK6
0 , RK6

1 and RK6
5 . It corre-

sponds to the following bits of Z: Z0Z1Z5Z8Z9Z13Z16Z17Z21Z24Z25Z29. Then,
the cost of the brute-force attack is reduced from 280 to 268.

We can also improve Algorithm 5 by using the following improbable differen-
tial attacks: ΔS9 ⊕ ΔS15 = 0, ΔS10 ⊕ ΔS15 = 0 and ΔS14 ⊕ ΔS15 = 0. There
are 24 possibilities for RK6

6 , the corresponding round key for S15, and we test
only with the possible RK6

0 , RK6
1 and RK6

5 . Thus, the cost of the brute-force
attack is reduced from 280 to 264.

Starting from these attack, one can get additional details by using distin-
guishing attacks on LILLIPUT reduced to 5 rounds. Indeed, based on the same
input conditions, there are the following attacks on 5 rounds: ΔS13 ⊕ ΔS15 = 0,
ΔS13 ⊕ ΔS14 = 0 and ΔS14 ⊕ ΔS15 = 0. These attacks require the previous
guess RK6

0 , RK6
1 and RK6

6 . One can use the same method from Algorithm 5
to get RK5

4 , RK5
5 and RK5

6 . Thus, the corresponding bits of Z for the round
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Algorithm 5. Key recovery on 7 rounds.
Encrypt some samples of 68 structures on 7 rounds.

for all guess of RK6
0 , RK6

1 do
Decrypt one round with the guess.
r =Count how many pairs verify ΔS9 ⊕ ΔS10 = 0.
if r > 550 then

The guess is possible, one has to stock it in List0.
end if

end for
for all possible RK6

0 in List0 do
for all guess of RK6

5 do
Decrypt one round of the ciphertexts after 7 rounds with the guess RK6

0 and RK6
5 .

r =Count how many pairs verify ΔS9 ⊕ ΔS14 = 0.
if r > 550 then

The guess is possible, one has to stock it in List1.
end if

end for
end for
for all possible RK6

1 in List0 do
for all possible RK6

5 in List1 do
Decrypt one round of the ciphertexts after 7 rounds with the guess RK6

1 and RK6
5 .

r =Count how many pairs verify ΔS10 ⊕ ΔS14 = 0.
if r > 550 then

The guess is possible, one has to stock it.
end if

end for
end for
Deduce the possible correct guess RK6

0 , RK6
1 , RK6

5 .

5 are: Z4Z5Z6Z12Z13Z14Z20Z21Z22Z28Z29Z30. In the key schedule, these bits
correspond to Y3, Y9, Y13 and Y18. Then, for the round 6, they shift to: Y4, Y5,
Y14 and Y19. For this step, the number of possibilities is lower than 3 × 28.

There is a efficient attack with the same input condition on LILLIPUT
reduced to 5 rounds and we can exploit it in our key recovery attack. The output
condition is ΔS9 ⊕ ΔS10 = 0. This condition is always verified, so we can test
it on smaller samples in order to decrease the global complexity. One can look
which round keys are involved from the end of round 7: RK5

0 , RK5
1 , RK6

4 and
RK6

7 . The number of possibilities is 216.
Finally, we have attacked LILLIPUT reduced to 7 rounds using distinguish-

ing attacks on 6 and 5 rounds. One can see the round keys recovered in Table 9.
Here is the state5 at the end of round 6: Y1 =??||, Y3 = ||||, Y6 =??||, Y9 = ||||,
Y10 =??||, Y13 = ||||, Y16 =??||, Y18 = ||||. At the end of the round 5, it is simi-
lar, we have the knowledge of: Y1 =??||, Y3 =?|||, Y6 =??||, Y9 =?|||, Y10 =??||,
Y13 =?|||, Y16 =??||, Y18 =?|||. But, these bits shift for the round 6. Thus, at
the end of round 6, we also have more details described in Table 10. We can see
in this table that we have recovered 44 bits of the internal state. Thus, the cost
of the brute-force is reduced from 280 to 236. The cost for all guess is less than:

5 ’?’ means unknown bit and ’|’ means known bit.



Differential Attacks on Reduced Round LILLIPUT 203

Table 9. Round key recovery at the end of round 5 and 6 to attack 7 rounds.

Round key Corresponding bits on Z Corresponding Y

RK6
0 Z0, Z8, Z16, Z24 Y1, Y6, Y10, Y16

RK6
1 Z1, Z9, Z17, Z25 Y1, Y6, Y10, Y16

RK6
4 Z4, Z12, Z20, Z28 Y3, Y9, Y13, Y18

RK6
5 Z5, Z13, Z21, Z29 Y3, Y9, Y13, Y18

RK6
6 Z6, Z14, Z22, Z30 Y3, Y9, Y13, Y18

RK6
7 Z7, Z15, Z23, Z31 Y3, Y9, Y13, Y18

RK5
0 Z0, Z8, Z16, Z24 Y1, Y6, Y10, Y16

RK5
1 Z1, Z9, Z17, Z25 Y1, Y6, Y10, Y16

RK5
4 Z4, Z12, Z20, Z28 Y3, Y9, Y13, Y18

RK5
5 Z5, Z13, Z21, Z29 Y3, Y9, Y13, Y18

RK5
6 Z6, Z14, Z22, Z30 Y3, Y9, Y13, Y18

c = 216 + 6 ∗ 28 + 24. We can continue to use the previous rounds with more
distinguishing attacks in order to reduce the complexity.

Table 10. Internal state at round 6 to attack 7 and 8 rounds respectively.

5.4 Key Recovery Analysis on 8 Rounds

We have seen how the key recovery works based on our attacks. Now, we will see
how it can be extend. In this subsection, we will see how it works on LILLIPUT
reduced to 8 rounds.

Table 11. Round key involved for key recovery on 8 rounds.

Branch involved Round key and involved branches Round key for internal variables

X5
3 RK6

0 , X6
8 RK7

7

X5
4 RK6

1 , X6
6 RK7

4

X5
7 RK6

5 , X6
5 RK7

6

X5
5 RK6

6 , X6
4 RK7

1

First, we want to use our distinguishing attack on 6 rounds: ΔS9⊕ΔS10 = 0.
If we look at the branches involved until 8 rounds, we can see which round
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key we have to guess. We summarize the analysis in Table 11. To mount a key
recovery attack on LILLIPUT reduced to 8 rounds, one can use Algorithm 6.
As is it described in Table 11, if one wants to exploit ΔS9 ⊕ ΔS10 = 0, the
round key to guess will be: RK6

0 , RK6
1 , RK7

7 and RK7
4 . Thus the number of

possibilities is 216. We can use more distinguishing attacks in order to get more
round keys: ΔS9 ⊕ ΔS10 = 0 and ΔS9 ⊕ ΔS10 = 0 for example. Moreover, there
are the same improbable differential attacks as in the Sect. 5.3: ΔS9 ⊕ΔS15 = 0,
ΔS10 ⊕ ΔS15 = 0 and ΔS14 ⊕ ΔS15 = 0.

Algorithm 6. Key recovery on 8 rounds.
Encrypt some samples of 68 structures on 8 rounds.
for all guess of RK7

7 , RK7
4 do

Decrypt one round with the guess.
for all guess of RK6

0 , RK6
1 do

r =Count how many pairs verify ΔS9 ⊕ ΔS10 = 0.
if r > 550 then

The guess is possible, one has to stock it.
end if

end for
end for

We can use the same method as Algorithm 5. Thanks to this algorithm, we
have recovered 24 bits of data as described in Table 12. Then we will see how
much is the cost of the brute-force attack without using previous rounds method.

Table 12. Round key recover at the end of round 6 and 7 to attack 8 rounds.

Round key Corresponding bits on Z Corresponding Y

RK6
0 Z0, Z8, Z16, Z24 Y1, Y6, Y10, Y16

RK6
1 Z1, Z9, Z17, Z25 Y1, Y6, Y10, Y16

RK6
5 Z4, Z12, Z20, Z28 Y3, Y9, Y13, Y18

RK7
4 Z4, Z12, Z20, Z28 Y3, Y9, Y13, Y18

RK7
6 Z6, Z14, Z22, Z30 Y3, Y9, Y13, Y18

RK7
7 Z7, Z15, Z23, Z31 Y3, Y9, Y13, Y18

As we can see in the Sect. 5.1, the information recovered at the end of round
7 can be go up at the end of round 6 without any condition. Thus, with an algo-
rithm similar to Algorithm 5, we have recovered 24 bits of data for the internal
state at the end of round 6 and not only split on two rounds. It is described in
Table 10. The cost of the brute-force attack is reduced from 280 to 256.
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5.5 Key Recovery Analysis on More Rounds

We have seen how to attack 2 rounds more than the distinguisher. In order to
attack more rounds, we need the internal variable on the branch I16. Thus we
will need to guess all the round keys for this round. So, it costs 232. Similarly, if
we want to attack 4 rounds more than the distinguisher attack, it will cost 264.
It is possible to reduce enough the complexity to do that but we can not process
one more round with this method. Based on the distinguisher on 8 rounds, it is
then possible to attack 12 rounds.

6 Conclusion

We have seen some differential attacks based on the variance method on
LILLIPUT . This is the first time this method is applied to a concrete cipher.
The tool has highlighted unusual differential conditions for which LILLIPUT is
sensitive. Our distinguishers do not reach more rounds than the previous analy-
sis. But, we have found our results empirically and since the last attack require
225 messages, it is far from the maximum. Thus, we can look for distinguishers
which reach more rounds with a devoted equipment. We also have described how
the key recovery works with our attacks. Finally, we have presented improba-
ble differential attacks which work well in simulations. This scheme can be an
efficient support to study this kind of attacks.
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Abstract. Nonlinear permutations (S-boxes) are key components in
block ciphers. The differential branch number measures the diffusion
power of a permutation, whereas the linear branch number measures
resistance against linear cryptanalysis. There has not been much anal-
ysis done on the differential branch number of nonlinear permutations
of Fn

2 , although it has been well studied in case of linear permutations.
Similarly upper bounds for the linear branch number have also not been
studied in general. In this paper we obtain bounds for both the differ-
ential and the linear branch number of permutations (both linear and
nonlinear) of F

n
2 . We also prove that in the case of F

4
2, the maximum

differential branch number can be achieved only by affine permutations.

Keywords: Permutation · S-box · Differential branch number
Linear branch number · Block cipher · Griesmer bound

1 Introduction

A basic design principle of a block cipher consists of confusion and diffusion
as suggested by Shannon [14]. Confusion layer makes the relation between key
and the ciphertext as complex as possible, whereas diffusion layer spreads the
plaintext statistics across the ciphertext. So far there have been several con-
structions of block ciphers, and equal efforts have been made to break them. In
the process literature has been enriched by proposals of elegant cryptanalysis
techniques, for instance, differential cryptanalysis [3] and linear cryptanalysis
[12]. The latter two cryptanalysis methods led to the design known as wide-
trail strategy [6]. This design constructs round transformations of block ciphers
with efficiency and provides resistance against the differential and the linear
cryptanalysis. This strategy also explains how the differential branch number is
related to the number of active S-boxes.

Recently lightweight cryptography has gained huge attention from both the
industry and academia. There have been several proposals of lightweight ciphers
so far, which are mostly based on symmetric cryptography. In this work we
are interested in block ciphers. Some examples of lightweight block ciphers are
CLEFIA [15] and PRESENT [4]; both are included in the ISO/IEC 29192 stan-
dard. There are many block ciphers which follow the design of Substitution-
Permutation-Network (SPN), for example, AES [7]. In this model, S-boxes are
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 207–224, 2018.
https://doi.org/10.1007/978-3-319-93638-3_13
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used to achieve the confusion property, whereas in general MDS matrices are
used as the diffusion layer of a block cipher. MDS matrices generate MDS codes
which achieve the highest possible minimum distance, thus MDS matrices have
the highest possible diffusion power. In the same note we find the design of
PRESENT very interesting. It has removed the usual diffusion layer that is nor-
mally implemented by an MDS matrix. Thus saving a considerable amount of
hardware cost. It uses a 4 × 4 S-box that has the following properties:

• differential branch number is 3,
• differential uniformity is 4 (the highest possible),
• nonlinearity is 4 (the highest possible),
• algebraic degree is 3.

One round function of PRESENT is comprised of 16 such S-boxes followed by a
linear bit-wise permutation L : F64

2 → F
64
2 . The role of this linear permutation is

to mix up the outputs of the S-boxes which become the input to the next round.
As bit-wise permutation can be implemented by wires only, so this reduces the
number of gates required for the whole design. Recently a lightweight block
cipher GIFT [2] has also appeared which relies on the same design principle as of
PRESENT (Fig. 1).
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Fig. 1. Round function of PRESENT (image source: [9])

PRESENT (in 2007) used the diffusion property of an S-box. This construction
idea will succeed provided the S-box has high differential branch number along
with the other cryptographic properties. However after PRESENT, through the last
10 years, no attempt has been made to analyze how far an S-box can diffuse. We
consider this problem and provide an upper bound for the differential branch
number of permutations in general. To the best of our knowledge this is the first
ever work which gives nontrivial bounds on diffusion power of S-boxes. On the
other hand it is also crucial to have S-boxes with high linear branch number
in order to resist the linear cryptanalysis. So we study the differential branch
number of permutations in conjunction with the linear branch number. Below
we summarize our contributions.
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Our Contributions

In Sect. 4, we present bounds on the differential branch number of any permu-
tation of F

n
2 . We completely characterize permutations of F

4
2 in terms of the

differential branch number. In [13] huge computational effort was made in order
to characterize cryptographic properties of 4 × 4 S-boxes. In their search they
considered 16 optimal 4×4 S-boxes from [10] and showed that the maximum pos-
sible differential branch number of such an S-box is 3. However, from this search
it is not clear whether 3 is the maximum for all 4 × 4 S-boxes. In Theorem 4,
we prove that if a permutation of F4

2 has differential branch number 4 then it is
affine, which shows (Theorem 5) that in fact for any 4 × 4 S-box, the maximum
possible differential branch number is 3. Further in Theorem6, we prove that
for any permutation over F

n
2 , for n ≥ 5, its differential branch number is upper

bounded by
⌈
2n
3

⌉
. There is a bound known as Griesmer bound [8] which applies

only to linear permutations, whereas our bound works on any permutation. We
compare these two bounds in Table 3, and observe that values are very close to
each other.

We also study bounds on the linear branch number of permutations of Fn
2 .

It turns out that for a linear permutation of F
n
2 , the maximum value of the

linear branch number matches with the maximum value of the differential branch
number (see Theorem 1). For any permutation of Fn

2 , the linear branch number
is upper bounded by n (see Theorem 3).

2 Preliminaries

Denote by F2 the finite field of two elements {0, 1} and by F
n
2 the n-dimensional

vector space over F2. For any x ∈ F
n
2 the Hamming weight of x, denoted by wt(x)

is the number of 1’s in x. Bitwise XOR is denoted by ⊕ and for any x, y ∈ F
n
2

their dot product xt · y is simply the usual inner product x0y0 ⊕ · · ·⊕xn−1yn−1.
We now bring in some notations which will be frequently used. For i =

0, . . . , n − 1 denote by ei, the element of F
n
2 which has 1 in the i-th position,

and 0 elsewhere. Note that the set {e0, . . . , en−1} forms a basis of Fn
2 . Further,

the element of Fn
2 with all 1 is denoted by ē . To illustrate let n = 4, then we

have e0 = (1, 0, 0, 0), e1 = (0, 1, 0, 0), e2 = (0, 0, 1, 0), e3 = (0, 0, 0, 1), and ē =
(1, 1, 1, 1).

An n × n S-box is a permutation S : Fn
2 → F

n
2 which is (strictly) nonlinear.

We denote by GL(n,F2) (or simply by GL(n)) the set of linear permutations of
F

n
2 . Clearly GL(n) is a proper subset of set of all permutations of F

n
2 and by

definition an n × n S-box is a permutation of Fn
2 which is not in GL(n). For a

secure design, S-box needs to satisfy several properties such as high nonlinearity,
high differential uniformity, high algebraic degree, etc. [5]. We now recall the
notions of correlation matrices, linear and differential branch numbers. See [7]
for detailed discussion on these.
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Consider a permutation φ of Fn
2 .

For any α, β ∈ F
n
2 the correlation coefficient of φ with respect to (α, β) is

given by
Cφ(α, β) =

∑

x∈F
n
2

(−1)αt·x⊕βt·φ(x) (1)

It is easy to see that −2n ≤ Cφ(α, β) ≤ 2n. See [7, Chap. 7] for detailed discussion
on correlation matrices of Boolean functions and their properties. We define the
correlation matrix Cφ of φ as the 2n × 2n matrix indexed by α, β ∈ F

n
2 in which

the entry in the cell (α, β) is given by Cφ(α, β):

Cφ = [Cα,β ]2n×2n where Cα,β = Cφ(α, β) (2)

Next we recall some definitions related to branch numbers of permutations.

Definition 1. For any φ of Fn
2 , its differential branch number (respectively lin-

ear branch number) is denoted by βd(φ) (respectively β�(φ)) and defined as

βd(φ) := min
x,x′∈F

n
2 , x �=x′

{wt(x ⊕ x′) + wt(φ(x) ⊕ φ(x′))},

and
β�(φ) := min

α,β∈F
n
2 , Cφ(α,β) �=0

{wt(α) + wt(β)}.

where Cφ(α, β) is the correlation coefficient as in (1).

If φ is a linear permutation of Fn
2 , then there exists a binary n × n invertible

matrix M such that φ(x) = Mx for every x ∈ F
n
2 . In this case βd(φ) and β�(φ)

can be simplified as in the following lemma [7, Chap. 9].

Lemma 1. Let φ be a linear permutation of Fn
2 given by M ∈ GL(n,F2). Then,

βd(φ) = min
α∈F

n
2 ,α�=0

{wt(α) + wt(Mα)} (3)

β�(φ) = min
α∈F

n
2 ,α�=0

{wt(α) + wt(Mtα)}. (4)

For any φ ∈ Π(n) it is easy to see that βd(φ) is ≥ 2 and β�(φ) ≥ 2. Also,

βd(φ) = βd(φ
−1) and β�(φ) = β�(φ

−1).

It is interesting to note that the differential branch number is related to the
difference distribution table (DDT). DDT of a permutation φ of Fn

2 denoted by
Dφ is a matrix of order 2n × 2n. Suppose for the input difference δ, the output
difference of the permutation φ is Δ, i.e., φ(x) ⊕ φ(x ⊕ δ) = Δ. Let Dφ(δ,Δ) be
the number solutions of φ(x)⊕φ(x⊕ δ) = Δ, then the (δ,Δ)-th element of DDT
is Dφ(δ,Δ). In Table 1, we present the difference distribution table of the S-box
φ = 408235B719A6CDEF.

Then the differential branch number can be redefined as

βd(φ) := min
δ �=0,Δ �=0,Dφ(δ,Δ) �=0

{wt(δ) + wt(Δ)}.
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Table 1. DDT of S-Box 408235B719A6CDEF

δ Δ

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 4 0 0 2 0 2 0 2 0 2 0 4 0 0 0

2 0 0 8 0 0 0 0 0 2 0 0 2 2 0 0 2

3 0 0 0 6 2 0 2 2 2 0 0 0 0 0 2 0

4 0 0 0 2 4 4 0 2 0 2 0 0 0 2 0 0

5 0 2 0 2 0 4 0 0 2 2 0 0 2 0 0 2

6 0 0 0 0 0 0 4 4 0 0 0 4 0 0 0 4

7 0 2 0 2 0 0 0 4 0 0 2 2 0 2 2 0

8 0 0 2 0 2 4 0 0 4 2 0 0 0 0 0 2

9 0 2 0 0 2 0 0 0 2 4 0 0 0 2 4 0

A 0 0 0 0 0 0 2 2 0 2 4 2 0 2 2 0

B 0 2 2 2 0 0 2 0 0 0 2 4 2 0 0 0

C 0 4 2 0 0 0 2 0 2 0 0 0 2 4 0 0

D 0 0 0 0 2 0 0 2 0 2 2 0 4 4 0 0

E 0 0 0 2 2 0 0 0 0 2 4 0 0 0 2 4

F 0 0 2 0 0 4 2 0 0 0 0 2 0 0 4 2

For example, it is clear from the DDT of the differential branch number of
408235B719A6CDEF is 2.

One of the basic notion in the study of permutations is that of affine equiv-
alence. This equivalence preserves various cryptographic properties like nonlin-
earity, differential uniformity, algebraic degree (more than one), etc.

Definition 2 (Affine Equivalence). Let φ, φ′ be two permutations of Fn
2 . We

say that φ is affine equivalent to φ′ if there exist A, B ∈ GL(n,F2), and c, d ∈ F
n
2

such that
φ′(x) = B · φ[Ax ⊕ c] ⊕ d, for all x ∈ F

n
2 . (5)

Affine equivalence preserves many properties of S-boxes, such as uniformity,
nonlinearity, degree, but it does not preserve branch number in general. For
instance, the following two affine equivalent S-boxes (in Table 2) have different
differential branch number. Here S and S′ are related as S′(x) = B S(x), where
B is a matrix with the rows {(1, 0, 0, 1), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}. Note
that βd(S) = 3, whereas βd(S′) = 2, although they are affine equivalent. The
S-box S is used in PRESENT.

On the other hand, if A and B are permutation matrices1 then the corre-
sponding affine equivalence class preserves the branch number [13]. We state this
as the following lemma.
1 A matrix obtained by permuting rows (or columns) of an identity matrix.
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Table 2. Affine equivalent S-boxes with different differential branch numbers.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

S′(x) C D 6 3 1 0 A 5 B E 7 8 4 F 9 2

Lemma 2. If φ and φ1 are two affine equivalent permutations of Fn
2 such that

φ1(x) = B φ[Ax ⊕ c] ⊕ d, for all x ∈ F
n
2 , where A and B are n × n permutation

matrix, and c, d ∈ F
n
2 , then βd(φ) = βd(φ1) and β�(φ) = β�(φ1).

3 Bounds on Linear Branch Number

First we consider the case of linear permutations of Fn
2 . In this case we have the

following connection between the linear and the differential branch numbers of
such permutations.

Theorem 1. For linear permutations of F
n
2 the maximum differential branch

number is equal to the maximum linear branch number.

Proof. Suppose φ be a linear permutation of F
n
2 , then there exists a matrix

M ∈ GL(n,F2) such that φ(x) = Mx for every x ∈ F
n
2 . Consider the permutation

φt defined as φt(x) = Mtx for x ∈ F
n
2 . Using Lemma 1 we see that βd(φ) = β�(φt)

from which the result follows. ��
Remark 1. The best known bound for the differential branch number of a linear
permutation is Griesmer bound (see Sect. 4). Above theorem suggests that this
is also the best bound for the linear branch number of such permutations. Later
in Theorem 6 we present new a bound on the differential branch number of more
general permutations of Fn

2 which is quite comparable to Griesmer bound in case
linear permutations.

It is pertinent to mention here some results similar to Theorem 1 in case of
permutations of Fn

q when q = 2m for m > 1. These results along with proofs can
be found in [7]. We present some of them here for sake of completeness. In [7]
authors consider a permutation of Fn

q as a “bundled” permutation of Fmn
2 with

bundle size m, i.e., if ψ is such permutation then it is defined as

ψ(x0, . . . , xn−1) = (y0, . . . , yn−1) (6)

where (x0, . . . , xn−1), (y0, . . . , yn−1) ∈ F
n
2m . The notion of branch numbers (lin-

ear and differential) are defined with respect to the bundle size. With these
authors prove the following theorem [7, Theorem B.1.2].

Theorem 2. Let ψ : Fmn
2 −→ F

mn
2 be a bundled permutation as in (6). Then

ψ has maximal differential branch number if and only if it has maximal linear
branch number.
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If ψ is a linear permutation of Fn
q given by n × n nonsingular matrix N over

Fq, i.e., ψ(x) = Nx, then Theorem 2 simply means that the matrix N is MDS if
and only if its transpose is also MDS. Note that Theorem2 goes beyond linear
permutations and includes all permutation of Fn

q . However, an important point
to be noted here is that Theorem 2 is applicable for bundled permutations of
F

mn
2 of bundle size m > 1 and is not applicable to our results which involve

permutations of Fn
2 . In the following we will see that such a nice connection is

elusive in case of permutations of Fn
2 . To continue our results from Theorem 1

we now prove a bound on the linear branch number of general permutations.
To present our results we need some facts related to Boolean functions which

we recall here. A n variable Boolean function is map ϕ : F
n
2 −→ F2. We say that

ϕ is balanced if

#{x ∈ F
n
2 : ϕ(x) = 0} = #{x ∈ F

n
2 : ϕ(x) = 1} = 2n−1.

The map ϕ is said to be rth order Correlation Immune (r-CI) if
∑

x∈F
n
2

(−1)αt·x⊕ϕ(x) = 0, (7)

for all α ∈ F
n
2 such that 1 ≤ wt(α) ≤ r. If ϕ is balanced and r-CI then it

said to be r−resilient Boolean function. In our study Boolean functions occur as
coordinate functions of a permutation φ of Fn

2 . The linear branch number of φ
and the resiliency order of its coordinate functions is interconnected as follows.
Suppose that φ is a permutation of F

n
2 given by φ(x) = (φ0(x), . . . , φn−1(x))

where x ∈ F
n
2 and each of φ0, . . . , φn−1 is a coordinate Boolean function. If

β�(φ) = r then, by definition for any α, β ∈ F
n
2

Cφ(α, β) = 0 whenever 2 ≤ wt(α) + wt(β) ≤ r − 1.

In particular if we choose β = ei ∈ Bn, then the above equation implies that

Cφ(α, ei) =
∑

x∈F
n
2

(−1)αt·x⊕φi(x) = 0 whenever 1 ≤ wt(α) ≤ r − 2, (8)

which means that φi is (r − 2)− CI Boolean function. Also, φi is balanced since
it is a coordinate function of a permutation. Thus we see that each φi is a r − 2
resilient Boolean function. In a nutshell this is our observation:

Lemma 3. Let φ = (φ0, . . . , φn−1) be a permutation of Fn
2 . For every 0 ≤ i ≤

n − 1 the coordinate function φi is β�(φ) − 2 resilient Boolean function.

We also recall the notion of degree of a Boolean function. Given a Boolean
function ϕ of n variables there exist a unique polynomial P (X0, . . . , Xn−1)
in n variables over F2 such that ϕ(x0, . . . , xn−1) = P (x0, . . . , xn−1) for every
(x0, . . . , xn−1) ∈ F

n
2 . Such a polynomial is called Algebraic Normal Form of ϕ

and the total degree of P is called algebraic degree (or simply degree) of ϕ. Note
that deg(ϕ) = 0 only for constant functions and deg(ϕ) = 1 if ϕ is affine. For
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any Boolean function ϕ its resiliency order and its degree are connected as fol-
lows, which is known as Siegenthaler bound [16]. If ϕ is a n variable r−resilient
Boolean function then

deg(ϕ) ≤ n − 1 − r. (9)

Using the connection in Lemma 3 and (9) we obtain bounds on the linear
branch number of permutations of Fn

2 .

Theorem 3. For any nonlinear permutation φ of Fn
2 we have β�(φ) ≤ n − 1.

Proof. First we show that β�(φ) ≤ n and then that only linear permutations
have β�(φ) = n. Let φ = (φ0, . . . , φn−1) be a permutation of Fn

2 with coordinate
Boolean functions {φ0, . . . , φn−1}. Suppose φi ∈ {φ0, . . . , φn−1} be any coordi-
nate function. If β�(φ) ≥ n+1 then from Lemma 3 it follows that the function φi

is r− resilient where r ≥ (n+1)−2 = n−1. By Siegenthaler bound (9) we must
have deg(φi) ≤ (n − 1) − (n − 1) = 0. On the other hand, if deg(φi) = 0 then φi

is a constant function which is impossible because φi a coordinate function of a
permutation of Fn

2 and hence need to be balanced. This contradiction shows that
β�(φ) ≤ n. Using same kind of argument one can easily see that if β�(φ) = n
then deg(φi) ≤ 1 for every 0 ≤ i ≤ n−1, which implies that it is affine and hence
φ itself is affine. As a consequence it follows that if φ is a nonlinear permutation
of Fn

2 then β�(φ) ≤ n − 1. ��
Next we focus on bounds for the differential branch number of general per-

mutations of Fn
2 .

4 Bounds on Differential Branch Number

It is trivial to check that for any permutation φ of F
n
2 , we have βd(φ) ≥ 2.

For linear permutations, some upper bound can be easily obtained from coding
theory. If L : F

n
2 → F

n
2 is linear permutation, then the set C = {(x,L(x)) :

x ∈ F
n
2} forms a [2n, n] linear code, and its minimum distance is actually the

differential branch number of L. An [N,K] linear code has minimum distance
d ≤ N − K + 1 (Singleton Bound). The codes which achieve the Singleton
Bound are called MDS codes. Therefore, the differential branch number of L
is bounded by n + 1. However, it is known that there is no nontrivial binary
MDS code [11], which means that there is no linear permutation defined over Fn

2

having the differential branch number n + 1. Thanks to Griesmer bound we can
have further bounds [8].

Lemma 4 (Griesmer Bound). Let [N,K] be a binary linear code with the
minimum distance d then

N ≥
K−1∑

i=0

⌈
d

2i

⌉
.
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In this section we present a bound on the differential branch number of an
arbitrary permutation of F

n
2 . We begin with following remark which will be

useful in our proofs.

Remark 2. Let φ be a permutation of Fn
2 such that φ(0) = c for some c 	= 0 ∈ F

n
2 .

Then for the permutation φ′ defined as φ′(x) = φ(x) ⊕ c it is easy to see that
βd(φ) = βd(φ′) and φ′(0) = 0. Thus while deriving bounds on the differential
branch numbers we can simply consider permutations φ such that φ(0) = 0.

Suppose q is a power of prime, and L : Fn
q −→ F

n
q is a linear permutation. It is

a well known fact [11] that βd(L) ≤ n + 1 whenever q 	= 2.
Next, let φ be a arbitrary permutation of F

n
2 . If βd(φ) = n + 1 then by

Definition 1 and Remark 2 we get

wt(ei ⊕ 0) + wt(φ(ei) ⊕ φ(0)) = wt(ei) + wt(φ(ei)) ≥ n + 1,

which implies that wt(φ(ei)) ≥ n for i = 0, . . . n − 1. However, this is impossible
because there is precisely one element ē ∈ F

n
2 with wt(ē ) = n. Hence we must

have βd(φ) < n + 1. This gives us a trivial bound on the differential branch
number of permutations of Fn

2 as follows.

Lemma 5. For any permutation φ of Fn
2 we have βd(φ) < n + 1.

In the remaining part of this section we sharpen the bound in Lemma5. To
make proofs easy we consider the case of permutations over F

4
2 and the case of

permutations over F
n
2 , n ≥ 5 separately.

4.1 Differential Branch Number of Permutations of F
4
2

In this section we consider permutations defined on F
4
2 which are used to design

4 × 4 S-boxes. Here we show that if the differential branch number of a permu-
tation of F

4
2 is 4 then it is necessarily affine and hence the differential branch

number of any 4 × 4 S-box is bounded above by 3.

Lemma 6. Suppose φ : F4
2 → F

4
2 is a permutation with φ(0) = 0 and βd(φ) = 4.

Then the following conditions hold for x ∈ F
4
2

C1. if wt(x) = 4 then wt (φ(x)) = 4,
C2. if wt(x) = 1 then wt (φ(x)) = 3,
C3. if wt(x) = 2 then wt (φ(x)) = 2,
C4. if wt(x) = 3 then wt (φ(x)) = 1.

Proof. Since βd(φ) = 4, and φ(0) = 0, any nonzero x ∈ F
4
2 must satisfy

wt(x) + wt(φ(x)) ≥ 4. (10)

Immediate consequence of this is that wt(φ(ei)) = 3 or wt(φ(ei)) = 4 as wt(ei) =
1 for any 0 ≤ i ≤ 3. Suppose wt(φ(ei)) = 4 for some i, then for any j 	= i we
have

wt(ei ⊕ ej) + wt(φ(ei) ⊕ φ(ej)) = 3 < 4,
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contradicting (10). Hence C2 follows.
Next let x ∈ F

4
2 with wt(x) = 2. Then, 2 ≤ wt(φ(x)) ≤ 4 by (10). Since

φ maps all weight 1 elements to weight 3 elements and φ is a permutation, so
wt(φ(x)) 	= 3. Suppose that wt(φ(x)) = 4. Choose ei such that wt(ei ⊕ x) = 1,
and since wt(φ(ei)) = 3 we must have

wt(ei ⊕ x) + wt(φ(ei) ⊕ φ(x)) = 1 + 1 = 2 < 4,

again contradicting (10); hence it follows that wt(φ(x)) = 2. This concludes the
proof of C3.

Now let’s prove C4. Consider x with wt(x) = 3. By C2 and C3, we have
wt(S(x)) 	= 2, 3. This leaves open the possibility that wt(φ(x)) = 1 or 4. If
wt(φ(x)) = 4, consider an element x′ with wt(x′) = 2 and wt(x ⊕ x′) = 1. Then

wt(x ⊕ x′) + wt(φ(x) ⊕ φ(x′)) = 1 + 2 < 4,

a contradiction. So wt(φ(x)) = 1.
Finally, C2, C3, C4 imply that wt(φ(x)) = 4, when wt(x) = 4. ��
Above theorem leads to the following characterization of permutations φ of

F
4
2 for which βd(φ) = 4.

Theorem 4. Let φ : F4
2 −→ F

4
2 be a permutation with βd(φ) = 4. Then φ is

affine.

Proof. As per Remark 2 we prove the result for φ(0) = 0. Since βd(φ) = 4 and
φ(0) = 0, φ satisfies C1, C2, C3, C4 ( of Lemma 6). Note that the set of 1-weight
vectors {e0, e1, e2, e3} form a basis of F

4
2 and by C2 the corresponding image

set {φ(e0), φ(e1), φ(e2), φ(e3)} contains all the 3-weight vectors of F4
2. Note that

{φ(e0), φ(e1), φ(e2), φ(e3)} also forms a basis of F4
2. Recall that the permutation

φ is a linear map iff

φ(c0e0 ⊕ c1e1 ⊕ c2e2 ⊕ c3e3) = c0φ(e0) ⊕ c1φ(e1) ⊕ c2φ(e2) ⊕ c3φ(e3)

holds for all (c0, c1, c2, c3) ∈ F
4
2.

As wt(φ(e0 ⊕ e1 ⊕ e2 ⊕ e3)) = 4 (by C1 of Lemma 6), and wt(φ(e0) ⊕ φ(e1) ⊕
φ(e2) ⊕ φ(e3)) = 4, then

φ(e0 ⊕ e1 ⊕ e2 ⊕ e3) = φ(e0) ⊕ φ(e1) ⊕ φ(e2) ⊕ φ(e3).

In the following we will use the fact that φ(ei) ⊕ φ(ej) has weight 2, and
φ(ei) ⊕ φ(ej) ⊕ φ(ek) has weight 1. The set {φ(e0), φ(e1), φ(e2), φ(e3)} forms a
basis and wt(φ(ei ⊕ ej)) = 2 (by C3 of Lemma 6), then φ(ei ⊕ ej) can be written
as

φ(ei ⊕ ej) = φ(e�) ⊕ φ(er),

for some 	 and r. If linearity does not hold for (ei ⊕ ej) then (i, j) 	= (	, r).
If i = 	 (and j 	= r), then

wt(ej ⊕ ei ⊕ ej) + wt(φ(ej) ⊕ φ(ei ⊕ ej)) = wt(ei) + wt(φ(ej) ⊕ φ(ei) ⊕ φ(er))
= 1 + 1 < 4,
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a contradiction. The case j = r can be treated similarly.
Next if 	, r /∈ {i, j}, then

wt(ej ⊕ ei ⊕ ej) + wt(φ(ej) ⊕ φ(ei ⊕ ej)) = wt(ei) + wt(φ(ej) ⊕ φ(e�) ⊕ φ(er))
= 1 + 1 < 4,

which contradicts the fact that βd(φ) = 4. Therefore, for any linear combinations
of the form ei ⊕ ej we must have

φ(ei ⊕ ej) = φ(ei) ⊕ φ(ej).

We now consider linear combinations of the form ei ⊕ ej ⊕ ek. By C4 of
Lemma 6, we have wt(φ(ei ⊕ ej ⊕ ek)) = 1. As {φ(e0), φ(e1), φ(e2), φ(e3)} forms
a basis, so we can write

φ(ei ⊕ ej ⊕ ek) = φ(e�) ⊕ φ(er) ⊕ φ(et).

Suppose that linearity does not hold for ei ⊕ej ⊕ek, then (i, j, k) 	= (	, r, t). Note
that we must have |{i, j, k} ∩ {	, r, t}| = 2. Assume that i = 	 and j = r. Then

wt(ei ⊕ ek ⊕ ei ⊕ ej ⊕ ek) + wt(φ(ei ⊕ ek) ⊕ φ(ei ⊕ ej ⊕ ek))
= wt(ej) + wt(φ(ei) ⊕ φ(ek) ⊕ φ(ei) ⊕ φ(ej) ⊕ φ(et))
= wt(ej) + wt(φ(ek) ⊕ φ(ej) ⊕ φ(et))
= 1 + 1 < 4,

a contradiction. Therefore, for any linear combinations of the form ei ⊕ ej ⊕ ek

we must have
φ(ei ⊕ ej ⊕ ek) = φ(ei) ⊕ φ(ej) ⊕ φ(ek).

Thus we conclude that φ is linear, and the theorem follows. ��
Recall that, by definition an n × n S-box is a strictly nonlinear permutation

of Fn
2 . Using Lemma 5 and Theorem 4 we get the following strict upper bound

on the differential branch number of 4 × 4 S-boxes.

Theorem 5. The maximum possible differential branch number of a 4×4 S-box
is 3.

The paper [13] followed the work of [10] to search for optimal 4 × 4 S-boxes
in the affine equivalent classes. The maximum differential branch number in the
affine equivalent classes of the 16 optimal 4 × 4 S-boxes from [10] is 3. As this
search did not consider the so-called non-optimal S-boxes, the question of the
maximal differential branch number of any 4 × 4 S-box remained unanswered.
Theorem 5 settles this question.

We now give a family of linear permutations LSn of F
n
2 with βd(LSn) = 4.

Definition of these permutations varies slightly depending on whether n is even
or odd. Since these permutations are linear we specify their action on basis
Bn = {e0, . . . , en−1} of Fn

2 and the maps extend linearly to other elements of Fn
2 .
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Example 1. Let n be an even integer. The linear permutation LSn of Fn
2 , defined

on the basis Bn as
LSn(ei) = ē ⊕ ei (11)

has βd(LSn) = 4 and it is also involution. Further, observe that matrix repre-
senting the map LSn is symmetric from which it follows that β�(LSn) = 4.

Next we give a family of linear permutations with the differential branch
number 4 defined over F

n
2 for odd values of n

Example 2. Let n be an odd integer. The linear permutation LSn of Fn
2 , defined

on basis Bn as

LSn(ei) =

⎧
⎪⎨

⎪⎩

ē ⊕ ei ⊕ ei+1 if 0 ≤ i ≤ n − 2

ē ⊕ en−1 ⊕ e0 if i = n − 1

has the differential branch number 4.

In both cases it is easy to show that the set {LSn(e0), . . . , LSn(en−1)} is a
basis of F

n
2 asserting that the maps LSn indeed are bijections. The fact that

βd(LSn) = 4 can also be easily checked from the Definition 1 of the differential
branch number for linear maps. Next we present bounds for permutations of Fn

2 ,
for n ≥ 5.

4.2 Differential Branch Number of Permutations of F
n
2 , for n ≥ 5

In this section we present bounds on the differential branch number of a general
permutation of Fn

2 . In the remainder of this paper we assume that n ≥ 5 unless
specified otherwise. We begin with some initial observations.

Suppose that x ∈ F
n
2 with wt(x) = n − δ for some δ ≥ 1. Then x can be

expressed as x = ē ⊕ ex1 ⊕ . . . ⊕ exδ
for unique set of elements ex1 , . . . exδ

∈ Bn.
Using this one can easily see the following fact which we will be using frequently
in this paper:

Fact 1 For x, x′ ∈ F
m
2 with x 	= x′, wt(x) ≥ n − δ and wt(x′) ≥ n − δ′ we have

wt(x ⊕ x′) ≤ δ + δ′.

Lemma 7. Let φ be a permutation of F
n
2 with φ(0) = 0 and the differential

branch number βd(φ) = n − β + 1 for some 1 ≤ β ≤ n − 1. Then we have for
0 ≤ i ≤ n − 1

n − β ≤ wt(φ(ei)) ≤ 2β + 1 (12)

and for 0 ≤ i 	= j ≤ n − 1,

n − (β + 1) ≤ wt(φ(ei) ⊕ φ(ej)) ≤ 2β. (13)
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Proof. From the definition of the differential branch number it follows that

wt(φ(ei)) ≥ n − β, (14)

as φ(0) = 0. Then using x = φ(ei), x′ = φ(ej) in Fact 1 we get

wt(φ(ei) ⊕ φ(ej)) ≤ 2β. (15)

Again for every pair of indices i 	= j

wt(φ(ei) ⊕ φ(ej)) ≥ n − (β + 1). (16)

Using (14) and (16) in Fact 1 we get (12). Further combining (15) and (16) we
get (13). ��
Lemma 8. Let δ be an integer such that 1 ≤ δ ≤ n. Denote by Wn

δ the following
set

Wn
δ = {x ∈ F

n
2 : wt(x) = n − δ}. (17)

Then for any x, x′ ∈ Wn
δ we have wt(x ⊕ x′) = 2k for some 1 ≤ k ≤ δ. Further

suppose V ⊆ Wn
δ defined as

V = {x ∈ Wn
δ : wt(x ⊕ x′) = 2δ for all x′ ∈ V}

then |V| ≤ ⌊
n
δ

⌋
.

Proof. First claim is obvious. To see second part, first observe that given any
x ∈ Wn

δ there exist a unique set of elements {ex1 . . . , exδ
} ⊆ Bn such that

x = ē ⊕ ex1 ⊕ · · · ⊕ exδ
.

An element y ∈ Wn
δ is in V if and only if

{ey1 . . . , eyδ
} ∩ {ex1 . . . , exδ

} = ∅

for every element x already in V. Consequently, we have |V| ≤ ⌊
n
δ

⌋
as required.

��
Using the above observations we prove the following bound on the differential
branch number of a permutation of Fn

2 .

Theorem 6. If n ≥ 5 then for any permutation φ of Fn
2 we have

βd(φ) ≤
⌈
2

n

3

⌉
. (18)

Proof. First it is easy to see that
⌈
2

n

3

⌉
= n −

⌊n

3

⌋
,

and hence we substitute the bound in (18) by n − ⌊
n
3

⌋
to make the proof easy.
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On the contrary to (18) assume that βd(φ) ≥ n − ⌊
n
3

⌋
+ 1. Using β =

⌊
n
3

⌋
in

Lemma 7 we get
n −

⌊n

3

⌋
≤ wt(φ(ei)) ≤ 2

⌊n

3

⌋
+ 1 (19)

for 0 ≤ i ≤ n − 1, and

n − (
⌊n

3

⌋
+ 1) ≤ wt(φ(ei) ⊕ φ(ej)) ≤ 2

⌊n

3

⌋
(20)

for 0 ≤ i 	= j ≤ n − 1. Now, recall that the integer n can be written as

n = 3
⌊n

3

⌋
+ r (21)

for a unique r such that 0 ≤ r ≤ 2. We prove our claim separately for each value
of r.

Case 1. r = 2. From (19) we have

n −
⌊n

3

⌋
≤ 2

⌊n

3

⌋
+ 1

and substituting n = 3
⌊

n
3

⌋
+ 2 in this we get 2 ≤ 1 which is a contradiction.

Case 2. r = 1. In this case, by substituting n = 3
⌊

n
3

⌋
+ 1 the inequalities (19)

and (20) become the following equalities

wt(φ(ei)) = n −
⌊n

3

⌋

wt(φ(ei) ⊕ φ(ej)) = 2
⌊n

3

⌋ (22)

Note that both identities in (22) must be satisfied by all the elements of the set
{φ(e0), . . . , φ(en−1)}. We show that this is impossible. Since wt(φ(ei)) = n−⌊

n
3

⌋

for all 0 ≤ i ≤ n − 1, we are in the situation of Lemma8 with φ(ei) ∈ Wn
δ where

δ =
⌊

n
3

⌋
. Consequently, we see that there can be at most  n

� n
3 �� = 3 elements

φ(er), φ(es), φ(et) for which the latter identity in (22) can hold. On the other
hand, since n ≥ 5, there exists at least two basis elements eu and ev apart from
er, es, et, and by Lemma 8 we will have

wt(φ(eu) ⊕ φ(ev)) ≤ 2 (δ − 1) < 2
⌊n

3

⌋

which contradicts (22).

Case 3. r = 0. In this case we have n = 3
⌊

n
3

⌋
and the inequalities (19), (20)

simplify to
wt(φ(ei)) = n −

⌊n

3

⌋
or n −

⌊n

3

⌋
+ 1 (23)

wt(φ(ei) ⊕ φ(ej)) = n −
⌊n

3

⌋
− 1 or n −

⌊n

3

⌋
(24)
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Note that for every element of {φ(e0), . . . , φ(en−1)} there are only two pos-
sibilities for wt(φ(ei)) as in (23). First we show that wt(φ(ei)) = wt(φ(ej)) =
n − ⌊

n
3

⌋
+ 1 cannot hold, for i 	= j, otherwise using x = φ(ei), x′ = φ(ej) and

δ = δ′ =
⌊

n
3

⌋ − 1 in Fact 1 we get

wt(φ(ei) ⊕ φ(ej)) ≤ 2(
⌊n

3

⌋
− 1) = n −

⌊n

3

⌋
− 2 < n −

⌊n

3

⌋
− 1

contradicting (24). Thus there can be at most one element φ(ei) such that
wt(φ(ei) = n − ⌊

n
3

⌋
+ 1. Without loss of generality assume that wt(φ(e0)) =

n − ⌊
n
3

⌋
+ 1, then it follows from (23) that for i = 1, . . . , n − 1 the weights of

wt(φ((ei)) satisfy

wt(φ(ei)) = n −
⌊n

3

⌋
. (25)

Thus, we are in situation of Lemma 8 with φ(e1), . . . , φ(en−1) ∈ Wn
δ for δ =

⌊
n
3

⌋
.

Hence there can be only three elements φ(er), φ(es), φ(et), 1 ≤ r 	= s 	= t ≤ n−1
such that for any two indices i, j ∈ {r, s, t}

wt(φ(ei) ⊕ φ(ej)) = 2 δ = 2
⌊n

3

⌋

holds. Since n ≥ 5 there exist at least one element ek, where k 	= 0 and also
k /∈ {r, s, t}. Then for any i ∈ {r, s, t} we must have (by Lemma 8) wt(φ(ek) ⊕
φ(ei)) ≤ 2(δ − 1), which means that

wt(φ(ek) ⊕ φ(ei)) ≤ 2
⌊n

3

⌋
− 2 < n −

⌊n

3

⌋
− 1,

contradicting (24). This concludes the proof of Case 3 and also of the theorem.
��

4.3 Comparison with Griesmer Bound

Recall that Griesmer bound (Lemma 4) is applicable to linear permutations only.
Notably our bound as in (18) works for any permutation. The Table 3 shows
different n with corresponding values of Griesmer Bound and our bound (18).

It is noticeable that our bound is very close to Griesmer bound, and in
fact matching for some small values of n. The Griesmer bound is not sharp,
for example for an [8, 4] binary linear code the maximum possible minimum
distance d is 5 (see [1]), whereas the Griesmer bound says d ≤ 6. Our bound for
the differential branch number of permutations of F8

2 is also 6. At this moment we
also do not know the existence of any nonlinear permutation with the differential
branch number 6, and in general for F

n
2 with n ≥ 5, it is not known whether

there is any nonlinear permutation for which the bound of the differential branch
number is achieved. We suspect that like Griesmer bound our bound is also not
sharp in general.
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Table 3. Comparison between the differential branch number of linear permutations
obtained from Griesmer bound and that of general permutations obtained from our
bound (18).

n Griesmer bound Our bound

4 4 4

5 4 4

6 4 4

7 5 5

8 6 6

9 6 6

10 7 7

11 8 8

12 8 8

13 8 9

14 8 10

15 9 10

16 10 11

17 10 12

18 11 12

19 12 13

5 Conclusions

In this paper we have analyzed the differential and the linear branch numbers of
permutations. We have theoretically proved that 4×4 S-boxes can have the max-
imum differential branch number 3. This is important for the designers who are
aiming to construct lightweight block ciphers following the design like PRESENT.
We have also presented upper bounds on both the linear and the differential
branch number for permutations over F

n
2 , for general n. We feel that there is

still a scope of improving these bounds. We showed that the maximum differen-
tial branch number and the maximum linear branch number of liner permuta-
tions match. However, it is not known whether the same happens for nonlinear
permutations as well. It will be interesting to pursue the following question.

Question 1. Can an S-box achieve both the maximum linear and differential
branch numbers?

As we have seen that the differential branch number is associated with dif-
ference distribution table, whereas the linear branch number is associated with
the correlation matrix. Therefore, if there is a relation between these two matri-
ces, then probably we have the answer to Question 1. In fact [17] has shown
that there is a relationship between the DDT and the correlation matrix (in a
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different form). Let C2φ denote the following matrix which is derived from the
correlation matrix of φ.
Recall from (1) that the correlation coefficient of φ with respect to (α, β) is given
by

Cφ(α, β) =
∑

x∈F
n
2

(−1)αt·x⊕βt·φ(x)

Now define C2φ = [C2φ(α, β)]2n×2n as the matrix whose (α, β)-th element is given
by (Cφ(α, β))2. Then we have the following relation as mentioned in [17, Lemma
2 (iii)]

C2φ = HnDφHn, (26)

where Hn is the Hadamard matrix of order 2n × 2n.
It will be interesting to explore (26) in order to establish a relationship

between the linear and the differential branch numbers.
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Abstract. In this paper, we study the pseudo-random function (PRF)
security of keyed sponges. “Capacity” is a parameter of a keyed sponge
that usually defines a dominant term in the PRF-security bound. So
far, the PRF-security of the “prefix” keyed sponge has mainly been ana-
lyzed, where for a key K, a message M and the sponge function Sponge,
the output is defined as Sponge(K‖M). A tight bound for the capacity
term was given by Naito and Yasuda (FSE 2016): O((qQ + q2)/2c) for
the capacity c, the number of online queries q and the number of offline
queries Q. Later, Naito (CANS 2016) showed that using the sandwich
method where the output is defined as Sponge(K‖M‖K), the dependence
between c and q can be removed, i.e., the capacity term is improved to
O(rQ/2c), where r is the rate. However, unlike the prefix keyed sponge,
the sandwich keyed sponge uses the suffix key that requires the memory
to keep the suffix key. The additional memory requirement seems not to
be appropriate for lightweight settings.

For this problem, we consider a keyed sponge with a prefix-free
padding, KSpongePF, where for a prefix-free padding function pfpad, the
output is defined as Sponge(K‖pfpad(M)). We show that KSpongePF

achieves the same level of PRF-security as the sandwich keyed sponge:
the capacity term is O(rQ/2c). Hence, using KSpongePF, the indepen-
dence between c and q can be ensured without the suffix key.

Keywords: Keyed sponge · Prefix-free padding · PRF-security

1 Introduction

Sponge Function. The sponge function introduced by Bertoni et al. [4] is
a state-of-the-art permutation-based mode of operation for cryptographic hash
functions. It offers variable-output-length hash functions that are called extend-
able output functions (XOFs), and is employed in the SHA-3 functions (a.k.a.
Keccak) [9,20]. The sponge function has the structure of iterating a permu-
tation, and unlike Merkle-Damg̊ard-type hash functions such as SHA-2 hash
functions [19], does not require feed-forward operations, i.e., the memory for this
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operation is not required, and thus it has been adopted to the area of lightweight
hashing e.g., [2,10,14].

The sponge construction consists of a sequential application of a permutation
on an internal state of b bits. The internal state is partitioned into an r-bit part
and a c-bit part with b = r + c. Here r is called rate and c is called capacity. The
internal state is updated, by xor-ing the current message block of r bits with
the r-bit part of the previous internal state and then inputting the resultant
state into the next permutation call. After the absorbing phase, (r-bit) output
blocks are generated, by squeezing the r-bit part of the current internal state
and then inputting the internal state into the next permutation. This phase is
called “squeezing phase.”

Keyed Sponge. Hash functions are mainly used as components of crypto-
graphic algorithms such as message authentication code, key derivation function
and pseudo-random bit generator. In these algorithms, a hash function is used
in the keyed setting, and in order to securely use the keyed hash function, it is
required to become a secure pseudo-random function (PRF).

Bertoni et al. suggested (e.g., [5]) that a keyed sponge should simply occur
by prepending a key K to a message M , where the output is defined as
Sponge(K‖M) for sponge function Sponge. We call the keyed sponge “prefix
keyed sponge.” The PRF-security of the prefix keyed sponge has been analyzed
in the random permutation model. The first PRF-security bound of the prefix
keyed sponge was derived from the indifferentiability of the sponge construc-
tion [5]: the dominant term in the bound is O((�q +Q)2/2c) against a adversary
with parameters q, Q, and �: the number of online queries (queries to the keyed
sponge/a random function), the number of offline queries (queries to a random
permutation), and the maximum number of permutation calls by an online query,
respectively. Their result was generalized by Bertoni et al. [6], where a duplex
construction was introduced, which becomes building blocks of keyed sponges
and sponge-based authenticated encryptions. However, the indifferentiability-
based PRF-security bound is rather loose, and the actual PRF-security bound
should be much smaller, as first noticed by Bertoni et al. [7].

Andreeva et al. [1] successfully removed the term Q2/2c and obtained a
PRF-security bound with the capacity term O(((�q)2 + μQ)/2c). Here, μ is an
adversarial parameter called “multiplicity” and lies somewhere between 2�q/2r

and 2�q. Mennink et al. [16] analyzed the full state keyed sponge (i.e., the donkey
sponge [8] is considered) and introduced a duplex construction supporting the full
state absorption. Their result can be seen as a generalization of Andreeva et al.’s
result. Gaži et al. [13] succeeded in giving a tight PRF-security bound. Their
result supports the full-state absorption but considers only single-block outputs.
Naito and Yasuda [18] provided a tight PRF-security bound of the prefix keyed
sponge with extendable outputs whose capacity term is O((q2 + qQ)/2c). Dae-
men et al. [12] introduced a duplex construction that supports the full state
absorption and the multi-user setting, and that can be seen as a generalization
of Naito and Yasuda’s result.
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Keyed Sponge Without the Dependence Between q and c. Regarding
the prefix keyed sponge, the previous works attained the tight result regarding
the capacity term. From the tight result, it is natural move on to find another
type of keyed sponge with a better security bound.

For this motivation, Naito [17] showed that using the sandwich method,
i.e., Sponge(K‖M‖K), the online query influence can be removed from the
capacity term: the capacity term becomes O(rQ/2c). However, the disadvan-
tage of the sandwich keyed sponge over the prefix one is that the suffix key K
is required after absorbing a message M , i.e., the memory to keep the suffix key
K is required. The additional memory requirement seems not to be appropriate
for lightweight settings. On the other hand, the capacities of the sponge-based
lightweight hash functions are small, and in order to ensure the longevity of
the keyed sponge functions, we want to keep the security bound without the
dependence between q and c.

Our Result. In this paper, we consider a keyed sponge with a prefix-free
padding denoted by KSpongePF. For a message M , the output is defined as
Sponge(K‖pfpad(M)), where pfpad is a prefix-free padding function. Hence, the
suffix key is not required in KSpongePF. We show that KSpongePF achieves the
same level of PRF-security as the sandwich keyed sponge, that is, the capac-
ity term in PRF-bound of KSpongePF is O(rQ/2c). Note that the prefix-free
padding method has been applied to several schemes such as CBC MAC [3,22]
and Merkle-Damg̊ard [11] in order for the resultant schemes to be secure, but it
has not been applied to keyed sponges. Thus, our result is the first one apply-
ing the padding to keyed sponges. Note that as the previous works for keyed
sponges such as [8,12,13,16], our result supports the keyed sponge with the
full state absorption. To cover the full state absorption, the capacities in the
procedures of absorbing input blocks and of squeezing output blocks are distin-
guished. The capacity c in the PRF-security bound is of the squeezing phase,
and the PRF-security bound is independent of the capacity c′ in the absorbing
phase. Note that if c′ = c then the (original) sponge function is considered, and
if c′ = 0 then the full state absorption is considered.

An example of pfpad that does not require the suffix key is that pfpad(M) =
(0‖M1)‖ · · · ‖(0‖Mm−1)‖(1‖Mm‖10∗), where for the rate r′ in the absorbing
phase, M = M1‖M2‖ · · · ‖Mm, |Mi| = r′ − 1 and 10∗ is a one-zero padding.
Note that KSpongePF can be seen as a generalization of the sandwich keyed
sponge, since the padding method in the sandwich keyed sponge, i.e., a message
with the suffix key (M‖K), becomes a prefix-free padding if the key K is not
revealed (the probability that K is revealed is negligible).

Regarding the security proof, we take a similar approach to Naito-Yasuda’s
proof for the prefix keyed sponge [18]. The proof makes use of the game-playing
technique, introducing just one intermediate game between the real and ideal
worlds. This transition between the games heavily relies on the coefficient H
technique of Patarin [21]. In this proof, we need to consider “bad” events in
which an adversary may distinguish between the real and ideal worlds. The bad
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events come from collisions for b-bit internal state values, since in the real world
the collisions may occur whereas in the ideal world the collisions never occur
due to a monolithic random function. Regarding the prefix keyed sponge, an
adversary can control the outer part by message blocks and thus the collision
probability largely depends on the c-bit hidden part. More precisely, once an
adversary finds a collision on the c-bit part (by online queries) or a collision
between the c-bit part and offline queries, he can perform the same attack as the
plain CBC-MAC, i.e., the real and ideal worlds are distinguished by the message
length extension attack. This yields the capacity term (q2+qQ)/2c. On the other
hand, KSpongePF uses a prefix-free padding pfpad, and thus he cannot perform
the message length extension attack on KSpongePF. Therefore, the dependence
between c and q can be removed.

Table 1. Comparison of PRF-bounds of keyed sponges with extendable output.

Scheme/Construction Bound Ref

Prefix keyed sponge O

(
q2 + qQ

2c
+

(
�qQ

2b

)1/2

+
(�q)2

2b

)
[18]

Sponge(K‖M)

Sandwich keyed sponge O

(
rQ

2c
+

(
�qQ

2b

)1/2

+
(�q)2

2b

)
[17]

Sponge(K‖M‖K)

KSpongePF O

(
rQ

2c
+

(
�qQ

2b

)1/2

+
(�q)2

2b

)
Ours

Sponge(K‖pfpad(M))

Comparison. In Table 1, the PRF-security bounds of the prefix keyed sponge,
the sandwich keyed sponge and KSpongePF are summarized, where for simplicity,
the k-terms (k is the key size) are omitted. In the following, we compare the
bounds of the prefix keyed sponge, the sandwich keyed sponge and KSpongePF.
This comparison is quoted from [17].

We first consider the parameters of the SHA-3 functions SHAKE128 and
SHAKE256 [20]: (b, c) = (1600, 128) and (b, c) = (1600, 256), respectively. For
these parameters, it may safely be assumed that b-terms are negligible com-
pared with the capacity terms. The PRF-security bound of the prefix keyed
sponge becomes a constant if qQ = O(2c), whereas that of KSpongePF becomes
a constant if rQ = O(2c). Therefore, if r ≤ q, KSpongePF and the sandwich keyed
sponge achieve a higher level of PRF-security than the prefix keyed sponge.

We next consider sponge-based lightweight hash functions e.g., [2,10,14]
whose parameters satisfy b/2 < c < b. The PRF-security bound of the pre-
fix keyed sponge becomes a constant if qQ = O(2c) or �qQ = O(2b), and those of
KSpongePF and the sandwich keyed sponge become a constant if rQ = O(2c) or



Keyed Sponge with Prefix-Free Padding 229

�qQ = O(2b). Therefore, if 2c < 2b/� (i.e., � < 2r), then qQ affects the security of
the prefix keyed sponge. In this case, KSpongePF and the sandwich keyed sponge
have a higher level of security than the prefix keyed sponge. On the other hand,
if 2c ≥ 2b/� (� ≥ 2r), then KSpongePF is as secure as the prefix keyed sponge.

2 Preliminaries

Basic Definitions. Let {0, 1}∗ be the set of all bit strings. For an integer b ≥ 0,
let {0, 1}b be the set of all b-bit strings, 0b the bit string of b-bit zeroes, and
({0, 1}b)∗ the set of all bit strings whose bit lengths are multiples of b. Let λ be
an empty string and ∅ an empty set. For integers 0 ≤ i, j, [i, j] := {i, i+1, . . . , j},
if i = 1 then i is omitted, i.e., [j] := [1, j], and if i > j then [i, j] := ∅. For a

finite set X, x
$←− X denotes uniformly random sampling of x from X. For a bit

string x resp. a set X, |x| resp. |X| denote the bit length of x resp. the number
of elements in X. For integers i, b with 0 ≤ i ≤ b and x ∈ {0, 1}b, let lsbi(x) resp.
msbi(x) be the least resp. most significant i bits of x. For integers i and b with
0 ≤ i ≤ 2b − 1, let strb(i) be the b-bit binary representation of i. For an integer
b ≥ 0, Perm(b) denotes the set of all permutations: {0, 1}b → {0, 1}b, Func(b)
denotes the set of all functions: {0, 1}b → {0, 1}b, and Func(∗, b) denotes the set
of all functions: {0, 1}∗ → {0, 1}b. For a permutation P ∈ Perm(b), the inverse
permutation is denoted by P−1. For an integer s > 0 and a set X, Xs denotes
the s-array Cartesian power of X.

Pseudo-Random Function (PRF) Security. For an integer b > 0, let
P ∈ Perm(b) be a public permutation. For a finite set M ⊂ {0, 1}∗ and an
integer � > 0, let F[P] : M → {0, 1}� be a function using the permutation P. We
focus on the random permutation model, namely, P is a public random permu-
tation that is defined as P

$←− Perm(b). Through this paper, an adversary A is a
computationally unbounded algorithm. It is given query access to the set of ora-
cles O, and the A’s output is denoted by AO. Its complexity is solely measured
by the number of queries made to its oracles.

The PRF-security of F[P] is defined in terms of indistinguishability between
the real and ideal worlds. In the real world, A has query access to F[P], P, and

P−1, where P
$←− Perm(b). In the ideal world, it has query access to a random

function R, P, and P−1, where P
$←− Perm(b) and a random function is defined as

R
$←− Func(∗, �) and queries by A are in M. After interacting with the oracles, A

outputs a decision bit y ∈ {0, 1}. For the function F[P], the advantage function
of an adversary A is defined as

Advprf
F (A) = Pr

[
P

$←− Perm(b) : AF[P],P,P−1
= 1

]

− Pr
[
R

$←− Func(∗, �),P $←− Perm(b) : AR,P,P−1
= 1

]
,

where the probabilities are taken over P,R and A. Though this paper, queries
to F[P]/R “online queries,” queries to P or P−1 “offline queries.”
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Algorithm 1. Sponge

� Main Procedure Sponge[P](M)

1: Partition pad(M) into r′-bit blocks M1, . . . , Mm

2: S ← 0b; for i = 1, . . . , m do S ← P(S ⊕ (Mi‖0c′
)) � Absorbing

3: Z ← msbr(S); for i = 1, . . . , �max − 1 do S ← P(S); Z ← Z‖msbr(S) � Squeezing

Algorithm 2. KSpongePF

� Main Procedure KSpongePF[P](K, M)

1: Partition K‖0p into r′-bit blocks K1, . . . , Kκ where p = 0 if k mod r = 0; p =
r′ − (k mod r′) otherwise

2: V0 ← 0b; for i = 1, . . . , κ do Ui ← Vi−1 ⊕ (Ki‖0c′
); Vi ← P(Ui)

3: Partition pfpad(M) into r′-bit blocks M1, . . . , Mm

4: T0 ← Vκ; for i = 1, . . . , m − 1 do Si ← Ti−1 ⊕ (Mi‖0c′
); Ti ← P(Si)

5: H0 ← Tm−1 ⊕ (Mm‖0c′
); Z ← λ;

6: for i = 1, . . . , �max do Hi ← P(Hi−1); Z ← Z‖msbr(Hi)
7: return Z

3 Keyed Sponge with Prefix-Free Padding

Sponge. Firstly, the sponge function, denoted by Sponge, is defined, which is the
underlying function of the keyed sponge function. Sponge accepts a variable-
length input M ∈ {0, 1}∗ and returns a variable-length output Z ∈ {0, 1}∗. For
an integer b > 0, let P ∈ Perm(b) be the underlying permutation. Let r′, c′ ≥ 0 be
integers with b = r′ + c′, and r, c ≥ 0 integers with b = r + c. Let pad : {0, 1}∗ →
({0, 1}r′

)∗ be an injective padding function. In this paper, we slightly generalize
the sponge function, where the parameters for handling input message blocks
are distinguished from those for handling output blocks. In Sponge, the padded
message pad(M) is partitioned into r′-bit message blocks M1, . . . , Mm. Then for
each message block Mi, Mi is absorbed into the most significant r′-bit part of
the b-bit internal state S, and then the permutation P is applied. After absorbing
all message blocks, an output block is squeezed from the most significant r-bit
part of the internal state and then P is applied. This procedure is iterated until
an output becomes the desired length. In this paper, for the sake of simplicity,
the output length is fixed as the maximum one �max×r bits (i.e., �max blocks of r
bits). Note that shorter outputs can be obtained by truncation. This procedure
is defined in Algorithm 1. Note that it becomes the original sponge function,
when c = c′.
KSpongePF. Next, a keyed sponge with a prefix-free padding is defined. Let
pfpad : {0, 1}∗ → ({0, 1}b)∗ be a prefix-free injective padding function. We
say pfpad is prefix-free if for any distinct messages M,M ′, pfpad(M) is not a
prefix of pfpad(M ′), i.e., for any W ∈ {0, 1}|pfpad(M ′)|−|pfpad(M)|, pfpad(M ′) �=
pfpad(M)‖W , where |pfpad(M ′)| ≥ |pfpad(M)|. Let k > 0 be an integer and the
key size in bits. In this paper, similar to the previous works [1,13,17,18], for the
sake of simplicity, if k mod r′ �= 0, then a zero string is appended to the secret
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Fig. 1. KSpongePF.

key so that the length becomes a multiple of r′. Let κ = |K‖0p| mod r′ be the
block size of the padded key, where p = 0 if k mod r = 0; p = r′ − (k mod r′)
otherwise. Then, for a secret key K ∈ {0, 1}k and a message M ∈ {0, 1}∗, the
keyed sponge is defined as KSpongePF(K,M) = Sponge(K‖0p‖M), where the
padding function in Sponge is defined as pad = pfpad. This procedure is defined
in Algorithm 2 and illustrated in Fig. 1.

4 PRF-Security of KSpongePF

The PRF-security bound of KSpongePF is given below, where the underlying
permutation is a (public) random permutation.

Theorem 1. Assume that κ ≤ 2b−1. For any adversary A making q online
queries of σ random permutation calls and Q offline queries,

Advprf
KSpongePF(A) ≤ 2σQ + 2.5σ2

2b
+

2r(κ + Q)
2c

+
(

44σ(κ + Q)
2b

)1/2

+λ(Q, k, r′, b),

where λ(Q, k, r′, b) = Q
2k if k ≤ r′; min

{
Q2

2c′+1 + Q
2k , 1

2b + Q

2

(
1
2 − log2(3b)

2r′ − 1
r′

)
k

}
oth-

erwise.

Remark 1. Regarding the parameter c′, the terms except for λ(Q, k, r′, b) are
independent from c′. Although λ(Q, k, r′, b) includes the parameter c′, by choos-
ing k properly, one can select any value for c′ without sacrificing the PRF-
security, e.g., c′ = 0 (full state absorption).

Remark 2. Regarding the key term λ(Q, k, r′, b), this term is derived by using the
analysis of Gaži et al. [13]. From this term, if k > r′ and a-bit security is required
with respect to the key, then we need to define the key size roughly k = 2a. On
the other hand, by using the indifferentiability result of the sponge function [5],
the key term is O(Q/2k) (though the capacity term becomes O((σ + Q)2/2c)).
Hence, we conjecture that the key term becomes O(Q/2k), yet deriving the
optimal key term without using the birthday term regarding capacity is an open
problem from the previous and this papers.
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Algorithm 3. FM

� Main Procedure FM [P,F,G](K, M)

1: Partition K‖0b−(|K| mod b) into r′-bit blocks K1, . . . , Kκ

2: V0 ← 0b

3: for i = 1, . . . , κ do Ui ← Vi−1 ⊕ (Ki‖0c′
); Vi ← P(Ui)

4: Partition pfpad(M) into r′-bit blocks M1, . . . , M
5: T0 ← Vκ

6: for i = 1, . . . , m − 1 do Si ← Ti−1 ⊕ (Mi‖0c′
); Ti ← Fi(Si)

7: H0 ← Tm−1 ⊕ (Mm‖0c′
); Z ← λ

8: for i = 1, . . . , �max do Hi ← Gi(Hi−1); Z ← Z‖msbr(Hi)
9: return Z

4.1 Proof of Theorem 1

As the previous proofs of keyed sponges such as [17,18], the security proof uses
the multi-collision technique for the r-bit part given in [15] and the coefficient
H technique given in [21].

Let F = KSpongePF. Let mmax be the maximum block length of messages, i.e.,
m ≤ mmax. The message length m at the α-th query is denoted by mα, a value x
defined at the α-th query is denoted by x(α). For the β-th offline query-response
pair is denoted by (X(β), Y (β)), i.e., Y (β) = P(X(β)) or X(β) = P−1(Y (β)). Let
σm = (m1 −1)+(m2 −1)+ · · ·+(mq −1) be the total number of message blocks
except for the last blocks by online queries, and σz = q�max the total number of
output blocks. Hence, σ = σm + σz + κ. In this proof, we consider three worlds,
WorldR,WorldM and WorldI , where WorldR is the real world and WorldI is the
ideal one.

WorldR =
(
P

$←− Perm(b) : AF[P ],P,P−1
= 1

)
.

WorldM =
(
P

$←− Perm(b), (F,G) $←− Func(b)mmax−1+�max : AFM [P,F,G],P,P−1
= 1

)
.

WorldI =
(
R

$←− Func(∗, b),P $←− Perm(b) : AR,P,P−1
= 1

)
.

Here, F = (F1, . . . ,Fmmax−1) and G = (G1, . . . ,G�max). FM [P,F,G] is defined in
Algorithm 3. In FM [P,F,G], a random function Fi is used just after absorbing the
i-th message block Mi, and a random function Gi is used just before squeezing
the i-th output block.

Then, we have

Advprf
F (A) = (Pr[WorldR] − Pr[WorldM ]) + (Pr[WorldM ] − Pr[WorldI ]) .

These upper-bounds are given in (12) and (13), and thus we have

Advprf
F (A) ≤ 2σQ + 2.5σ2

2b
+

2r(κ + Q)
2c

+
(

44σ(κ + Q)
2b

)1/2

+ λ(Q, k, r′, b).
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4.2 Upper-Bound of Pr[WorldR ] − Pr[WorldM ]

This proof permits an adversary A to obtain a secret key K and input-output
pairs of the underlying primitives defined by online queries, just after finishing
all queries. Note that this modification does not reduce the advantage of A.
Hence, in WorldR and WorldM , A obtains the following transcript τ :

τ =
(
K, (X(1), Y (1)), . . . , (X(Q), Y (Q)), (U1, V1), . . . , (Uκ, Vκ),

forα ∈ [q] : (S(α)
1 , T

(α)
1 ), . . . , (S(α)

mα−1, T
(α)
mα−1), (H

(α)
0 ,H

(α)
1 ), . . . , (H(α)

�max−1,H
(α)
�max

)
)
.

Note that online query-responses can be obtained from τ , and thus are omitted
from τ . Let TR be the transcript in WorldR obtained by sampling K

$←− {0, 1}k

and P
$←− Perm(b). Let TM be the transcript in WorldM obtained by sampling

K
$←− {0, 1}k, P $←− Perm(b) and (F,G) $←− Func(b)mmax−1+�max . We call τ valid if

Pr[TM = τ ] > 0. Let T be the set of all valid transcripts. Then

Pr[WorldR] − Pr[WorldM ] = SD(TR,TM ) =
1
2

∑
τ∈T

|Pr[TR = τ ] − Pr[TM = τ ]|.

The statistical distance SD(TR,TM ) can be upper-bounded by the following
lemma (the coefficient H technique [21]). In this technique, T is partitioned into
two sets: good transcripts Tgood and bad transcripts Tbad.

Lemma 1. Let 0 ≤ ε ≤ 1 be such that for all τ ∈ Tgood,
Pr[TR=τ ]
Pr[TM=τ ] ≥ 1−ε. Then,

SD(TR,TM ) ≤ Pr[TM ∈ Tbad] + ε.

Good and Bad Transcripts

In WorldM , for each block in F except for key blocks, a distinct random function
is used, whereas in WorldR, for any block in FM (and offline queries), the same
random permutation is used. Moreover, for any distinct inputs to P, the outputs
are distinct, whereas there exists a collision in outputs of a random function.
Hence, Tgood is defined so that input-output pairs with distinct blocks do not
overlap with each other, and no collision occurs in outputs of the underlying
primitives. More precisely, Tbad is defined so that one of the following conditions
is satisfied, and Tgood := T \Tbad (i.e., Tgood is defined so that none of the following
conditions are not satisfied). The following conditions deal with the overlap (the
first seven conditions) and the collision (the last two conditions).

hitst,xy : ∃α ∈ [q], i ∈ [mα − 1], β ∈ [Q] s.t. S
(α)
i = X(β) ∨ T

(α)
i = Y (β)

hitst,uv : ∃α ∈ [q], i ∈ [mα − 1], j ∈ [κ] s.t. S
(α)
i = Uj ∨ T

(α)
i = Vj

hithh,xy : ∃α ∈ [q], i ∈ [�max], β ∈ [Q] s.t. H
(α)
i−1 = X(β) ∨ H

(α)
i = Y (β)

hithh,uv : ∃α ∈ [q], i ∈ [�max], j ∈ [κ] s.t. H
(α)
i−1 = Uj ∨ H

(α)
i = Vj
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hitst,hh : ∃α, β ∈ [q], i ∈ [mα − 1], j ∈ [�max] s.t. S
(α)
i = H

(β)
j−1 ∨ T

(α)
i = H

(β)
j

hitst,st : ∃α, β ∈ [q], i ∈ [mα − 1], j ∈ [mβ − 1]

s.t. i �= j ∧
(
S
(α)
i = S

(β)
j ∨ T

(α)
i = T

(β)
j

)

hithh,hh : ∃α, β ∈ [q], i, j ∈ [0, �max] s.t. i �= j ∧ H
(α)
i = H

(β)
j

collt : ∃α, β ∈ [q], i ∈ [min{mα,mβ} − 1] s.t. S
(α)
i �= S

(β)
i ∧ T

(α)
i = T

(β)
i

collh : ∃α, β ∈ [q], i ∈ [�max] s.t. H
(α)
i−1 �= H

(β)
i−1 ∧ H

(α)
i = H

(β)
i

Upper-Bound of Pr[TM ∈ Tbad]

Firstly, we note that this analysis is in WorldM . Let H :=
⋃q

α

⋃�α

i=1{H
(α)
i } be the

set of all H values except for H0 values. Then, the following events are defined:

hituv,xy : ∃β ∈ [Q] s.t. Vκ = Y (β)

mcollh : ∃H[1], . . . ,H[ρ] ∈ H s.t. msbr(H[1]) = · · · = msbr(H[ρ]),

where ρ is a free parameter which will be defined later in this proof. Let bad =
hitst,xy ∨ hitst,uv ∨ hithh,xy ∨ hithh,uv ∨ hitst,hh ∨ hitst,st ∨ hithh,hh ∨ collt ∨ collh. Then,

Pr[TM ∈ Tbad] = Pr[bad] ≤ Pr[bad|¬(hituv,xy ∨ mcollh)] + Pr[hituv,xy] + Pr[mcollh]
≤ Pr[hitst,xy|¬hituv,xy] + Pr[hitst,uv|¬hituv,xy] + Pr[hithh,xy|¬(hituv,xy ∨ mcollh)]

+ Pr[hithh,uv|¬(hituv,xy ∨ mcollh)] + Pr[hitst,hh|¬hituv,xy] + Pr[hitst,st]
+ Pr[hithh,hh] + Pr[collt] + Pr[collh] + Pr[hituv,xy] + Pr[mcollh].

These upper-bounds are given in (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11)
and thus we have

Pr[TM ∈ Tbad]

≤ 2σmQ

2b
+

2σmκ

2b
+

(
2qQ

2b
+

2(ρ − 1)Q
2c

)
+

(
2qκ

2b
+

2(ρ − 1)κ
2c

)
+

3σmσz

2b

+
σ2
m

2b
+

2σ2
z

2b
+

qσm

2b
+

qσz

2b
+

(
λ(Q, k, r′, c′, b) +

2κQ

2b

)
+ 2r ×

(
e · σz

ρ2r

)ρ

≤ 2σQ + 2σ2

2b
+

2(ρ − 1)(κ + Q)
2c

+ 2r ×
(

e · σ

ρ2r

)ρ

+ λ(Q, k, r′, b).

Putting ρ = max
{

r,
(

2ceσ
2r(κ+Q)

)1/2
}

gives

Pr[TM ∈ Tbad] ≤ 2σQ + 2σ2

2b
+

2r(κ + Q)
2c

+
(

44σ(κ + Q)
2b

)1/2

+ λ(Q, k, r′, b).

• Upper-Bound of Pr[hitst,xy|¬hituv,xy]. First, we fix α ∈ [q], i ∈ [mα − 1], β ∈ [Q]
and upper-bound the probability that S

(α)
i = X(β)∨T

(α)
i = Y (β). In this analysis,

the following cases are considered.
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– The first case is that S
(α)
1 = X(β). In this case, S

(α)
1 = X(β) ⇔ Vκ ⊕

(M (α)
1 ‖0c′

) = X(β). By ¬hituv,xy, Vκ is defined independently of all offline
queries. Since Vκ is randomly drawn from at least 2b − κ values, the proba-
bility that S

(α)
1 = X(β) is satisfied is at most 1/(2b − κ) ≤ 2/2b, assuming

κ ≤ 2b−1.
– The second case is that S

(α)
i = X(β) and i �= 1. In this case, S

(α)
i = X(β) ⇔

T
(α)
i−1 ⊕ (M (α)

i ‖0c′
) = X(β). Since T

(α)
i−1 is randomly drawn from {0, 1}b, the

probability that S
(α)
i = X(β) is satisfied is 1/2b.

– The third case is that T
(α)
i = Y (β). Since T

(α)
i is randomly drawn from {0, 1}b,

the probability that T
(α)
i = Y (β) is satisfied is 1/2b.

By the above analyses, we have

Pr[hitst,xy|¬hituv,xy] ≤ 2qQ

2b
+

q∑
α=1

mα−1∑
i=2

Q

2b
+

q∑
α=1

mα−1∑
i=1

Q

2b

≤ 2qQ

2b
+

2(σm − q)Q
2b

≤ 2σmQ

2b
. (1)

• Upper-Bound of Pr[hitst,uv|¬hituv,xy]. This analysis is the same as that of
Pr[hithh,xy|¬(hituv,xy ∨ mcollh)], where in this case, (Ui, Vi) is considered instead
of (X(i), Y (i)), and thus the upper-bound can be obtained by replacing Q with
κ in (1). Hence, we have

Pr[hitst,uv|¬hituv,xy] ≤ 2σmκ

2b
, assuming κ ≤ 2b−1. (2)

• Upper-Bound of Pr[hithh,xy|¬(hituv,xy ∨ mcollh)]. First, we fix α ∈ [q], i ∈
[�max], β ∈ [Q] and upper-bound the probability that H

(α)
i−1 = X(β)∨H

(α)
i = Y (β)

is satisfied. In this analysis, the following cases are considered.

– The first case is that H
(α)
0 = X(β) and mα = 1. In this case, H

(α)
0 = X(β) ⇔

Vκ ⊕ M
(α)
1 = X(β). By ¬hituv,xy, Vκ is defined independently of all offline

queries. Since Vκ is randomly drawn from at least 2b−κ values, the probability
that H

(α)
0 = X(β) is satisfied is at most 1/(2b−κ) ≤ 2/2b, assuming κ ≤ 2b−1.

– The second case is that H
(α)
0 = X(β) and mα �= 1. In this case, H

(α)
0 =

X(β) ⇔ T
(α)
mα−1 ⊕M

(α)
mα = X(β). Since T

(α)
mα−1 is randomly drawn from {0, 1}b,

the probability that H
(α)
0 = X(β) is satisfied is 1/2b.

– The third case is that H
(α)
i−1 = X(β) and i �= 1. Note that the probability

that H
(α)
i−1 = X(β) is satisfied is upper-bounded by the one that lsbc(H

(α)
i−1) =

lsbc(X(β)). Since H
(α)
i−1 is randomly drawn from {0, 1}b, the probability that

H
(α)
i−1 = X(β) is satisfied is at most 1/2c.

– The forth case is that H
(α)
i = Y (β) and i �= 0. By the same analysis as the

third case, this probability is at most 1/2c.
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Then, we have

Pr[hithh,xy|¬(hituv,xy ∨ mcollh)] ≤ max
{

2qQ

2b
,
qQ

2b
+

2(ρ − 1)Q
2c

}

≤ 2qQ

2b
+

2(ρ − 1)Q
2c

. (3)

Note that the term 2(ρ−1)Q
2c comes from the third and fourth cases. By ¬mcollh,

for each X(β) resp. Y (β), the number of elements in H whose first r bits are equal
to msbr(X(β)) resp. msbr(Y (β)) is at most ρ − 1. Hence, the term is introduced.

• Upper-Bound of Pr[hithh,uv|¬(hituv,xy ∨ mcollh)]. This analysis is the same as
that of Pr[hithh,xy|¬(hituv,xy ∨ mcollh)], where in this case, (Ui, Vi) is considered
instead of (X(i), Y (i)), and thus the upper-bound can be obtained by replacing
Q with κ in (3). Hence, we have

Pr[hithh,uv|¬(hituv,xy ∨ mcollh)] ≤ 2qκ

2b
+

2(ρ − 1)κ
2c

, assumingκ ≤ 2b−1. (4)

• Upper-Bound of Pr[hitst,hh|¬hituv,xy]. First, we fix α, β ∈ [q], i ∈ [mα − 1], j ∈
[�max] and upper-bound the probability that S

(α)
i = H

(β)
j−1 ∨ T

(α)
i = H

(β)
j is

satisfied. Note that in this case, mα ≥ 2 (if mα = 1 then S
(α)
i cannot be defined).

Then the following cases are considered.

– The first case is that S
(α)
1 = H

(β)
0 and mβ = 1. Then S

(α)
1 = H

(β)
0 ⇔

Vκ ⊕ M
(α)
1 = Vκ ⊕ M

(β)
1 ⇔ M

(α)
1 = M

(β)
1 . By mβ = 1, pfpad(M (β)) = M

(β)
1 ,

and M
(α)
1 = M

(β)
1 implies that pfpad(M (α)) = pfpad(M (β))‖M

(α)
2 ‖ · · · ‖M

(α)
mα .

However, since pfpad is prefix-free, this case does not occur.
– The second case is that S

(α)
1 = H

(β)
0 and mβ ≥ 2. Then S

(α)
1 = H

(β)
0 ⇔

Vκ ⊕ M
(α)
1 = T

(β)
mβ−1 ⊕ M

(β)
mβ . Since T

(β)
mβ−1 is randomly drawn from {0, 1}b,

the probability that S
(α)
1 = H

(β)
0 is 1/2b.

– The third case is that S
(α)
1 = H

(β)
j and j ≥ 1. Then S

(α)
1 = H

(β)
j ⇔ Vκ ⊕

M
(α)
1 = H

(β)
j . By ¬hituv,xy, Vκ is defined independently of all offline queries

and is randomly drawn from at least 2b − κ values. Hence, the probability
that S

(α)
1 = H

(β)
j is at most 1/(2b − κ) ≤ 2/2b, assuming κ ≤ 2b−1.

– The four case is that S
(α)
i = H

(β)
0 and i ≥ 2. Then, S

(α)
i = H

(β)
0 ⇔ T

(α)
i−1 ⊕

M
(α)
i = T

(β)
mβ−1 ⊕ M

(β)
mβ .

• If i �= mβ , then T
(α)
i−1 and T

(β)
mβ−1 are independently drawn by different

random functions, thereby the probability that S
(α)
i = H

(β)
0 is 1/2b.

• If i = mβ , then since pfpad is a prefix-free padding, pfpad(M (β)) is not
a prefix of pfpad(M (α)). Hence, there exists a ∈ [0, i] such that M

(α)
a �=

M
(β)
a , that is, there exists a ∈ [i − 1] such that the a-th block inputs

are distinct (i.e., S
(α)
a �= S

(β)
a ) but the (a + 1)-th block inputs are the
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same (i.e., S
(α)
a+1 = S

(β)
a+1) where S

(β)
mβ := H

(β)
0 . Fixing a ∈ [i − 1] with

S
(α)
a �= S

(β)
a , since the outputs T

(α)
a and T

(β)
a are independently drawn,

the probability that S
(α)
a+1 = S

(β)
a+1 is satisfied is at most 1/2b. Hence, the

probability that for some a ∈ [i − 1], S(α)
a = S

(β)
a is satisfied is at most

(i − 1)/2b = (mβ − 1)/2b.
– The fifth case is that S

(α)
i = H

(β)
j−1, i ≥ 2 and j ≥ 2. Then S

(α)
i = H

(β)
j−1 ⇔

T
(α)
i−1 ⊕ M

(α)
i = H

(β)
j−1, where T

(α)
i−1 and H

(β)
j−1 are independently drawn. Hence,

the probability that S
(α)
i = H

(β)
j−1 is satisfied is 1/2b.

– The sixth case is that T
(α)
i = H

(β)
j . Since T

(α)
i and H

(β)
j are independently

drawn by the distinct random functions, the probability that T
(α)
i = H

(β)
j is

satisfied is 1/2b.

By the above analysis, for α, β ∈ [q], the probability that ∃i ∈ [mα − 1], j ∈
[�max] s.t. S

(α)
i = H

(β)
j−1 ∨ T

(α)
i = H

(β)
j is at most

1
2b

+
2�max

2b
+

(mα − 2)(�max − 1)
2b

+
(mα − 2)(�max − 2)

2b
+

(mα − 1)(�max − 1)
2b

,

and thus we have

Pr[hitst,hh|¬hituv,xy] ≤
q∑

α=1

q∑
β=1

(
1
2b

+
2�max

2b
+

3(mα − 1)(�max − 1)
2b

)

≤ q2

2b
+

2qσz

2b
+

3σmσz − 3q(σm + σz) + 3q2

2b
≤ 3σmσz

2b
. (5)

• Upper-Bound of Pr[hitst,st]. We fix α, β ∈ [q], i ∈ [mα − 1], j ∈ [mβ − 1]
with i �= j. First we upper-bound the probability that S

(α)
i = S

(β)
j is satisfied.

Without loss of generality, we assume that j �= 1. Then S
(α)
i = S

(β)
j ⇔ S

(α)
i =

T
(β)
j−1 ⊕ M

(β)
j . Since i �= j, T

(β)
j−1 is drawn independently of S

(α)
i . Hence, the

probability that S
(α)
i = S

(β)
j is satisfied is 1/2b. Next, regarding the probability

that T
(α)
i = T

(β)
j is satisfied, since i �= j, T

(α)
i and T

(β)
j are independently drawn,

thereby this probability is 1/2b.
Finally, we have

Pr[hitst,st] ≤
(

σm

2

)
· 2
2b

≤ σ2
m

2b
. (6)

• Upper-Bound of Pr[hithh,hh]. First, we fix α, β ∈ [q], i, j ∈ [0, �max] with i �= j,
and upper-bound the probability that H

(α)
i = H

(β)
j is satisfied. By i �= j, H

(α)
i

and H
(β)
j are independently drawn, and thus this probability is 1/2b.

Finally, we have

Pr[hithh,hh] ≤
(

q(�max + 1)
2

)
· 1
2b

≤ 0.5(σz + q)2

2b
≤ 2σ2

z

2b
. (7)
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• Upper-Bound of Pr[collt]. Fixing α, β ∈ [q], i ∈ [min{mα,mβ}−1] with S
(α)
i �=

S
(β)
i , since T

(α)
i and T

(β)
i are independently drawn, the probability that T

(α)
i =

T
(β)
i is satisfied is 1/2b. Hence, we have

Pr[collt] ≤
q∑

α=1

q∑
β=1

s.t. α�=β

min{mα,mβ} − 1
2b

≤ qσm

2b
. (8)

• Upper-Bound of Pr[collh]. Fixing α, β ∈ [q], i ∈ [�max] with H
(α)
i−1 �= H

(β)
i−1, since

H
(α)
i and H

(β)
i are independently drawn, the probability that H

(α)
i = H

(β)
i is

satisfied is 1/2b. Hence, we have

Pr[collh] ≤
q∑

α=1

q∑
β=1

s.t. α�=β

�max

2b
≤ qσz

2b
. (9)

• Upper-Bound of Pr[hituv,xy]. hituv,xy means that A makes an offline query whose
query-response pair is (Uκ, Vκ). Since Uκ is defined from the sequence of the
previous blocks (U1, V1), . . . , (Uκ−1, Vκ−1), hituv,xy can be split into the two cases:
the first case denoted by hit→uv,xy is that A has been made queries corresponding
with all previous blocks (U1, V1), . . . , (Uκ−1, Vκ−1), and then makes the query
corresponding with (Uκ, Vκ); the second case denoted by hit�→uv,xy is that A has
not been made queries corresponding with some of the previous blocks, and then
makes the query corresponding with (Uκ, Vκ). More precisely, these two cases are
defined as follows. Note that for i ∈ {1, . . . , κ}, “(Ui, Vi) is defined” means that
A makes an offline query whose query-response pair is (Ui, Vi).

– hit→uv,xy ⇔ ∀i ∈ {2, . . . , κ} : (Ui, Vi) is defined after (Ui−1, Vi−1) is defined.
That is, firstly (U1, V1) is defined, secondly (U2, V2) is defined, . . ., and finally
(Uκ, Vκ) is defined.

– hit �→uv,xy ⇔ ∃i ∈ {2, . . . , κ} s.t. (Ui, Vi) is defined before (Ui−1, Vi−1) is defined.

Since hituv,xy ⇒ hit→uv,xy ∨ hit �→uv,xy, we have Pr[hituv,xy] ≤ Pr[hit→uv,xy] + Pr[hit �→uv,xy].
Regarding the condition hit→uv,xy, this analysis is non-trivial and very complex,

and Gaži et al. [13] analyzed the non-trivial part, and gave the upper-bound
Pr[hit→uv,xy] ≤ λ(Q, k, r′, c′, b). In this proof, the upper-bound is used.

Regarding the condition hit�→uv,xy, this condition implies that there exists a
maximal index i ∈ {1, . . . , κ− 1} such that (Ui+1, Vi+1) is defined, yet (Ui, Vi) is
not defined. Since Ui+1 = Ki‖0c′ ⊕ Vi where Vi is randomly drawn from at least
2b − κ values, we have

Pr[hit �→uv,xy] ≤ κ × Q

2b − κ
≤ 2κQ

2b
, assuming κ ≤ 2b−1.

Finally, the above upper-bounds give

Pr[hituv,xy] ≤ Pr[hit→uv,xy] + Pr[hit�→uv,xy] ≤ λ(Q, k, r′, b) +
2κQ

2b
. (10)
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• Upper-Bound of Pr[mcollh]. Since all elements in H are randomly drawn from
{0, 1}b, we have

Pr[mcollh] ≤ 2r ×
(

σz

ρ

)
×

(
1
2r

)ρ

≤ 2r ×
(

e · σz

ρ2r

)ρ

, (11)

using Starling’s approximation (x! ≥ (x/e)x for any x, where e is Napier’s con-
stant).

Upper-Bound of ε

Let τ ∈ Tgood be a good transcript. For i = {R,M}, let alli be the set of
instantiations of all oracles in Worldi, and let compi(τ) be the set of instantiations
of oracles compatible with τ in Worldi. Then

Pr[TR = τ ] = |compR(τ)|/|allR| and Pr[TM = τ ] = |compM (τ)|/|allM |.

In the analyses, the following notations are used.

– γst
i =

⋃q
α=1{(S(α)

i , T
(α)
i )} for i ∈ [mmax −1]: the set of input-output pairs just

after the i-th message blocks.
– γst =

⋃mmax−1
i=1 γst

i .
– γhh

j =
⋃q

α=1{(H(α)
j−1,H

(α)
j )} for j ∈ [�max]: the set of input-output pairs just

before the j-th output blocks.
– γhh =

⋃�max

j=1 γhh
j .

– γsthh = γst ∪ γhh.
– γxyuv =

⋃Q
β=1{(X(β), Y (β))}∪

⋃κ
i=1{(Ui, Vi)}: the set of offline query-response

pairs and input-output pairs regarding a secret key K.
– γ = γsthh ∪ γxyuv.

First, |allR|, |allM |, |compR(τ)| and |compM (τ)| are counted.

– |allR| is counted. Since K ∈ {0, 1}k and P ∈ Perm(b), we have |allR| =
2k · (2b!).

– |allM | is counted. Since K ∈ {0, 1}k, P ∈ Perm(b), and (F,G) ∈
Func(b)mmax−1+�max we have |allM | = 2k · (2b!) · ((2b)2

b

)mmax+�max−1.
– |compR(τ)| is counted. Since K is uniquely determined, we have |compR(τ)| =

(2b − |γ|)!.
– |compM (τ)| is counted. Since K is uniquely determined, we have

|compM (τ)| = (2b − |γxyuv|)! ·
mmax−1∏

i=1

(2b)2
b−|γst

i | ·
�max∏
j=1

(2b)2
b−|γhh

j |.

By the definition of Tgood, γst
1 , . . . , γst

mmax−1, γ
hh
1 , . . . , γhh

�max
, γxyuv do not overlap

with each other. Hence, |γst| = |γst
1 |+ · · ·+ |γst

mmax−1|, |γhh| = |γhh
1 |+ · · ·+ |γhh

�max
|

and |γsthh| = |γst| + |γhh| are satisfied, and

|compM (τ)| = (2b − |γxyuv|)! · (2b)(mmax−1)2b−|γst| · (2b)�max2
b−|γhh|

= (2b − |γxyuv|)! · (2b)(mmax+�max−1)2b−|γsthh|.
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Finally, by |γ| = |γsthh| + |γxyuv| (γsthh and γxyuv do not overlap with each
other), we have

Pr[TR = τ ]
Pr[TM = τ ]

=
(2b − |γ|)!
2k · (2b!)

· 2k · (2b!) · ((2b)2
b

)mmax+�max−1

(2b − |γxyuv|)! · (2b)(mmax+�max−1)2b−|γsthh|

=
(2b − |γ|)! · (2b)|γsthh|

(2b − |γxyuv|)! ≥ 1,

thereby ε = 0.

Upper-Bound of Pr[WorldR = 1] − Pr[WorldM = 1]

Putting the upper-bounds of Pr[T2 ∈ Tbad] and ε into Lemma 1 gives

Pr[WorldR] − Pr[WorldM ]

≤ 2σQ + 2σ2

2b
+

2r(κ + Q)
2c

+
(

6σ(κ + Q)
2b

)1/2

+ λ(Q, k, r′, b). (12)

4.3 Upper Bound of Pr[WorldM ] − Pr[WorldI ]

First the following collision event in WorldM is defined.

collh ⇔ ∃α, β ∈ {1, . . . , q} with α �= β and ∃i ∈ [0, �max − 1] s.t. H
(α)
i = H

(β)
i .

If collh does not occur, then all H-values are independently drawn. Thus,
all outputs of FM [P,F,G] are randomly and independently drawn, and
Pr[WorldM |¬collh] = Pr[WorldI ]. Hence, we have

Pr[WorldM ]−Pr[WorldI ] ≤ Pr[collh]+Pr[WorldM |¬collh]−Pr[WorldI ] ≤ Pr[collh].

Hereafter, Pr[collh] is upper-bounded.
First, we fix α, β ∈ [q] with α �= β, and upper-bound the probability that

∃i ∈ [0, �max − 1] s.t. H
(α)
i = H

(β)
i In this analysis, the following cases are

considered.

– collh ∧ (H(α)
0 �= H

(β)
0 ):

In this case, there exists i ∈ [�max − 1] such that H
(α)
i−1 �= H

(β)
i−1 and H

(α)
i =

H
(β)
i . Since H

(α)
i and H

(β)
i are independently drawn, the probability that

∃i ∈ [�max − 1] s.t. H
(α)
i = H

(β)
i is at most (�max − 1)/2b.

– collh ∧ (H(α)
0 = H

(β)
0 ) ∧ (mα = mβ):

Since M (α) �= M (β), H
(α)
0 = H

(β)
0 implies that there exists i ∈ [mα − 1] such

that S
(α)
i �= S

(β)
i and S

(α)
i+1 = S

(β)
i+1, where Sδ

mδ
:= H

(δ)
0 for δ ∈ {α, β}. Note

that
S
(α)
i+1 = S

(β)
i+1 ⇔ T

(α)
i ⊕ (M (α)

i+1‖0c′
) = T

(β)
i ⊕ (M (β)

i+1‖0c′
),

where T
(α)
i and T

(β)
i are independently drawn if S

(α)
i �= S

(β)
i . Hence, the

probability that ∃i ∈ [�max − 1] s.t. H
(α)
i = H

(β)
i is at most mα/2b.
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– collh ∧ (H(α)
0 = H

(β)
0 ) ∧ (mα �= mβ):

In this case,

Hα
0 = Hβ

0 ⇔ T
(α)
mα−1 ⊕ (M (α)

mα
‖0c′

) = T
(β)
mβ−1 ⊕ (M (β)

mβ
‖0c′

),

and by mα �= mβ , T
(α)
mα−1 and T

(β)
mβ−1 are independently drawn by distinct

random functions. Hence, the probability that ∃i ∈ [�max−1] s.t. H
(α)
i = H

(β)
i

is 1/2b.

Finally, the above bounds give

Pr[WorldM ] − Pr[WorldI ] ≤
∑

α,β∈[q]
s.t. α�=β

(
min{mα,mβ} + �max − 1

2b

)
≤ qσ

2b+1
. (13)

5 Conclusion

In this paper, we showed that the keyed sponge with any prefix-free padding
KSpongePF achieves the same level of PRF-security as the sandwiched keyed
sponge. Hence, using KSpongePF, the independence between c and q is ensured
without the suffix key that is used in the sandwiched keyed sponge.
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Abstract. We present the first linkable ring signature scheme with both
unconditional anonymity and forward-secure key update: a powerful tool
which has direct applications in elegantly addressing a number of simul-
taneous constraints in remote electronic voting. We propose a compre-
hensive security model, and construct a scheme based on the hardness of
finding discrete logarithms, and (for forward security) inverting bilinear
or multilinear maps of moderate degree to match the time granularity of
forward security. We prove efficient security reductions—which, of inde-
pendent interest, apply to, and are much tighter than, linkable ring sig-
natures without forward security, thereby vastly improving the provable
security of these legacy schemes. If efficient multilinear maps should ever
admit a secure realisation, our contribution would elegantly address a
number of problems heretofore unsolved in the important application of
(multi-election) practical internet voting. Even if multilinear maps never
obtain, our minimal two-epoch construction instantiated from bilinear
maps can be combinatorially boosted to synthesize a polynomial time
granularity, which would be sufficient for internet voting and more.

Keywords: Linkable ring signature · Bilinear map · Multilinear map
Electronic voting · Forward security · Unconditional anonymity

1 Introduction

Ring signatures, and especially linkable ring signatures, garner much interest
in the applied cryptographic community for their promise to simplify certain
aspects of the notoriously hard problem of remote electronic voting, which has
conflicting and sometimes frustrating security requirements. In particular, linka-
bility [18] or the closely related notion of traceability [13] make it easy to detect
when the same signer has signed twice on the same matter, thereby preventing
double spending in an electronic cash system, double voting in the same election.

However, so far these signatures have not assisted in simultaneously resolving
two critical issues in electronic voting. These two issues are: (1) how to register
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voters, and; (2) how to ensure their long term privacy. To address these issues,
an offline key update mechanism would allow the potentially costly registration
of a voter’s public key to happen once, whereafter the corresponding private key
can be refreshed or updated multiple times, efficiently and non-interactively, for
use in subsequent elections. In this context, forward security refers to the notion
that the leakage or compromise of an updated private key will not compromise
one’s privacy in a past election—or let an attacker forge signatures ostensibly
in the past, which could be linked to real votes. For practical electoral systems
in particular, it is important that the public-key update mechanism be efficient
and non-interactive. The ideal public-key update is the identity function, or “no-
op.” The private-key update serves to provide forward security to protect old
elections against future data exposure and compromises.

The related but different notion of unconditional anonymity refers to the
inability, even by a computationally unbounded attacker, to identify a signer
without knowledge of their private key. This notion is important to protect the
voter against future increases in computational power (or cryptanalytic attacks,
or quantum computers), once they have destroyed their private key after it is no
longer needed. Together with linkability, these features make substantially easier
the task of designing a secure and useable remote election protocol. Our forward-
secure linkable ring signature scheme, when dropped into a number of existing
election protocols, directly results in a straightforward and secure electronic
voting solution without the cumbersome and procedurally risky steps that would
normally be necessary to manage a dedicated key for each election.

Unfortunately—as often with the contradictory requirements of voting—it
is easy to convince oneself that anonymity can only hold unconditionally if no
authentic private key for the relevant signing ring is ever leaked, not even after
having been updated. Indeed, if an adversary knows a voter’s authentic private
key, he can always trivially deanonymise their current and future votes using
the linkability feature. The same is true for past votes if a past private key
can be recovered, by brute force or by breaking a hardness assumption, from
a current key. In light of this, we deliberately choose to focus on the problem
of achieving unconditional anonymity against outsiders, but only computational
forward security against insiders in the sense of unforgeability after key update.

1.1 Our Results

We present the first candidate strategy for a linkable ring signature with uncondi-
tional anonymity and forward-secure key update. Such tool would enable signif-
icantly more simple and secure remote electronic voting, even within the frame-
work of existing electronic voting protocols, and open the door to a number of
simplified general anonymous authentication protocols for online systems.

To achieve our result we construct a linkable ring signature from uncondi-
tionally hiding commitments, and make sparing use of a multilinear map [14,17]
to lift it to multiple time periods or “epochs”. Without forward security or key
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update, our results are inspired by the linkable ring scheme from [18]—which we
incidentally vastly improve via much tighter security reductions1.

To get forward security, we build from an n-multilinear map an n-time
one-way private-key update mechanism which requires no public-key update.
We prove the scheme information-theoretically anonymous, and its other secu-
rity properties from Discrete Logarithm and two multilinear-map hardness
assumptions—one of which amount to the neo-classic Multilinear Decoding
Problem [14] and the other is a natural generalisation of Decisional Diffie-
Hellman. Notably, a mere 2-linear map (a.k.a. bilinear pairing) already gives
us forward security for 2 time periods, which is enough for us to combine n-wise
combinatorially to get an n2-epoch system from uncontroversial assumptions.

1.2 Related Work

Group signatures were introduced by Chaum and van Heyst [7]. They allow
the members of a group to generate signatures which can only be verified as
emanating from one authorised signer within that group, with the additional
property that the signature can be “opened” to reveal the true signer. The
ability to open a signature is an important requirement in certain managed
applications, but presents an unacceptable privacy loophole in the context of
electronic voting.2

Ring signatures are a variation of group signatures which do not allow pre-
authorisation of keys nor deanonymisation of signatures, and hence, do not have
those privacy issues. Ring signatures were first presented by Rivest et al. [24] as a
way to leak secrets anonymously. Since then, many variants have been proposed
to suit a large number of applications. For elections, double voting is a major
issue which vanilla ring signatures are not readily able to rectify. Linkable ring
signatures [19] and traceable ring signatures [13] have been proposed as a way
to address this issue. Nevertheless, neither of [13,19] or their variants provide
forward security; hence in a voting application they would require impractically
frequent re-registration of new keys to ensure acceptable levels of privacy.

Subsequent notable results in that area include Liu et al. [18], who presented
a linkable ring signature with unconditional anonymity, but still without for-
ward security. Our scheme addresses this shortcoming, by providing an offline
(non-interactive) private-key-update mechanism with forward security (as well
as much improved security reduction tightness over the previous schemes).

1 The original linkable ring signatures of Liu et al. [18,19] had proofs with losses
exponential in the number of users, due to nested use of the forking lemma [23]
on Pedersen commitments [22] in the random-oracle model. Our updated proofs and
reductions are independent of the number of users, thanks to a single consolidated use
of the forking lemma; and the same techniques directly apply to their construction.

2 In the UK there is a requirement that a judge be able to order a voter’s ballot
revealed. Group signatures would be perfect for such subtle voter intimidation,
though Continentals would of course disapprove.
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Multilinear Maps. Following the blockbuster impact of bilinear maps on cryptog-
raphy, the question of using multilinear maps for cryptographic applications was
first studied at a theoretical level by Boneh and Silverberg [5]. Nearly a decade
later, Garg et al. [14] proposed the first practical candidate construction, based
on lattice problems. There have since been several additional candidates from
lattice- and number-based assumptions, as well as attacks and repair attempts
[6,8,10,15,17], with the side of the “offence” presently having the upper hand.
Our scheme relies on a multilinear generalisation of the Discrete Logarithm prob-
lem, which is a weaker assumption than the myriad of Diffie-Hellman variants
and extensions typically found in cryptographic constructions based on bilinear
or multilinear maps. However, it should be noted that there are no currently
unbroken candidates for multilinear maps, and hence the construction in this
work is currently unrealisable. (Our vastly improved security reductions for this
class of unconditionally anonymous linkable ring signature scheme with or with-
out forward security still apply, though, providing substantial improvements to
the concrete security of [18,19].) We will discuss in Sect. 3.2 the major issues at
hand regarding the known multilinear-map candidate constructions.

Voting Systems. In the world of election systems research, the recent Helios
[1] protocol is, perhaps, the best known secure internet voting scheme. It has
seen a significant variety of expansions and applications [12,25], but one of its
shortcomings is that the voters have to place (too) much trust on the election
authority. Our linkable ring signature construction would fit nicely within the
Helios protocol to enable powerful anonymous authentication and achieve pri-
vacy against the election authority, a property which is not achieved by most
implementations of Helios3. More generally, and beyond election systems, our
new signature scheme can be used as a general rate-limited4 anonymous authen-
tication system with forward secrecy and information-theoretic privacy.

2 Definitions

A forward secure linkable ring signature (FS-LRS) scheme is a tuple of seven
algorithms (Setup, KeyGen, Sign, Verify, Link, PubKeyUpd, and PriKeyUpd).5

– param ← Setup(λ) on security parameter λ, returns a public setup param.
– (ski, pki) ←KeyGen(param) given param returns a key pair (ski, pki).
– σ ← Sign(event, n,pkt, sk,M, t) given an event-id event, a group size n, a

set pkt of n public keys, a private key sk whose corresponding public key is
in pkt, a message M and a time t, produces a signature σ.

3 In its standardasised version [2], Helios relies on a mixnet technique to distribute
the election authority’s ability to deanonymise. Even for Helios implementations that
use this technique, the ability to enforce anonymity in the authentication mechanism
itself would provide stronger privacy guarantees.

4 Rate limitation in the context of authentication refers to an intentional bound on
the number of uses, typically one, that can be made of a credential on a given target.

5 Our definations are fairly direct forward secure variants of Liu et al. [18].
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– accept|reject ← Verify(event, n,pkt,M, σ, t) given an event-id event, a
group size n, a set pkt of n public keys, a message-signature pair (M,σ),
and time t, returns accept or reject. We define a signature σ as valid for
(event, n,pkt,M, t) if Verify outputs accept.

– linked|unlinked ← Link(event, t, n1, n2,pkt1 ,pkt2 ,M1,M2, σ1, σ2) given
an event-id event, time t, two group sizes n1, n2, two sets pkt1 ,pkt2 of
n1, n2 public keys respectively, and two valid signature and message pairs
(M1, σ1,M2, σ2), outputs linked or unlinked.

– Zt+1 ← PubKeyUpd(Zt) given a public key, Z at time t, produces a public
key for time t + 1.

– skt+1 ← PriKeyUpd(skt) given a private key sk at time t, produces the
corresponding private key for time t + 1.

2.1 Correctness Notions

To be functional, an FS-LRS scheme must satisfy the following:

– Verification correctness: Signatures signed correctly will verify.
– Updating correctness: For any time period of the system, the secret key

derived from the private-key update function will create a valid signature
on a ring, verifiable using the public key derived using the public-key update.

– Linking correctness: Two honestly created signatures on the same event and
time period will link if and only if they have the same signer. (This is implied
by the two security notions of linkability and non-slanderability; see below.)

2.2 Security Model

Security of FS-LRS has six aspects: unforgeability, anonymity, linkability, non-
slanderability, forward-secure unforgeability, and forward-secure anonymity. 6

The following oracles model the ability of the adversary to break the scheme:

– pki,t ← J O(t). The Joining Oracle, upon request, adds a new user to the
system, and returns the public key pk of the new user at the current time t.

– ski,t ← CO(pki, t). The Corruption Oracle, on input a previously joined public
key pki, returns the matching secret key ski at the current time t.

– σ′ ← SO(event, n,pkt, pkπ,M, t). The Signing Oracle, on input an event-id
event, a group size n, a set pkt of n public keys, the public key of the signer
pkπ, a message M , and a time t, returns a valid signature σ′.

We omit the time and user subscripts t, i when clear from context. In particular,
our public key does not undergo updating, so pkt will be independent of t.

– h ← H(x). The Random Oracle, on input x, returns h independently and
uniformly at random. If an x is repeated, the same h will be returned again.

6 The last two aspects are generalisations of the first two. We present them all because
the standard variants use weaker assumptions than the forward-secure variants.
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Unforgeability. FS-LRS unforgeability is defined as a game between a chal-
lenger C and an adversary A with access to the oracles J O, CO, SO, and H:

1. C generates and gives A the system parameters param.
2. A queries the oracles polynomially many times using any adaptive strategy.
3. A gives C an event-id event, a group size n, a set pkt of n public keys, a

message M , a time t, and a signature σ.

A wins the game if:

i. Verify(event, n,pkt,M, σ, t) = accept;
ii. all of the public keys in pkt are query outputs of J O;
iii. no public keys in pkt have been input to CO; and
iv. σ is not a query output of SO.

We denote the adversary’s advantage as AdvUnf
A (λ) = Pr[A wins the game].

Definition 1: Unforgeability. An LRS scheme is unforgeable if for all PPT
adversaries A, AdvUnf

A (λ) is negligible.

Unconditional Anonymity. It should not be possible for an adversary A to
tell the public key of the signer with a probability larger than 1/n, where n is the
cardinality of the ring, even if the adversary has unlimited computing resources.
Specifically, FS-LRS unconditional anonymity is defined in a game between a
challenger C and an unbounded adversary A with access to J O:

1. C generates and gives A the system parameters param.
2. A may query J O according to any adaptive strategy.
3. A gives C an event-id e, a time t, a group size n, a set of pkt of n public keys

such that all of the public keys in pkt are query outputs of J O, a message
M , and a time t. Parsing the set pkt as {pk1, . . . , pkn}. C randomly picks π ∈
{1, . . . , n} and computes σπ = Sign(e, n,pkt, skπ,M, t), where skπ is a valid
private key corresponding to pkπ at time t. The signature σπ is given to A.

4. A outputs a guess π′ ∈ {1, . . . , n}.

We denote the adversary’s advantage by AdvAnon
A (λ) = |Pr[π = π′] − 1

n |.

Definition 2: Unconditional Anonymity. An FS-LRS scheme is uncondi-
tionally anonymous if for all unbounded adversaries A, AdvAnon

A (λ) is zero.

Linkability. It should be infeasible for the same signer to generate two signa-
tures for the same ring and event, such that they are determined to be unlinked.
Linkability for an FS-LRS scheme is defined in a game between a challenger C
and an adversary A with access to oracles J O, CO,SO and H:

1. C generates and gives A the system parameters param.
2. A may query the oracles according to any adaptive strategy.
3. A gives C an event-id event, a time t, two sets pkt1 ,pkt2 of public keys of

sizes n1, n2, two messages M1,M2, and two signatures σ1, σ2.
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A wins the game if

i. All of the public keys in pkt are query outputs of J O;
ii. Verify(event, ni,pkti ,Mi, σi,t) = accept for σ1, σ2 not outputs of SO;
iii. At most one query has been made to CO; and
iv. Link(σ1, σ2) = unlinked.

We denote the adversary’s advantage as AdvLink
A (λ) = Pr[A wins the game].

Definition 3: Linkability. An FS-LRS scheme is linkable if for all PPT
adversaries A, AdvLink

A (λ) is negligible.

Non-slanderability. Non-slanderability ensures that no signer can generate a
signature which is determined to be linked with another signature not gener-
ated by the signer. FS-LRS non-slanderabilty is defined in a game between a
challenger C and an adversary A with access to the oracles J O, CO,SO and H:

1. C generates and gives A the system parameters param.
2. A may query the oracles according to any adaptive strategy.
3. A gives C an event-id event, a time t, a group size n, a message M , a set

of n public keys pkt, and the public key of an insider pkπ ∈ pkt such that
pkπ has neither been queried to CO nor included as the insider public key
of any query to SO. C uses the private key skπ corresponding to pkπ to run
Sign(event, n,pkt, skπ,M, t) and to produce a signature σ′ given to A.

4. A queries oracles adaptively, except that pkπ cannot be queried to CO, or
included as the insider public key of any query to SO. In particular, A is
allowed to query any public key which is not pkπ to CO.

5. A outputs n∗, n∗ public keys pk∗
t , a message M∗, and a signature σ∗ �= σ′.

A wins the game if

– Verify(event, n∗,pk∗
t ,M

∗, σ∗, t) = accept on σ∗ not an output of SO;
– all of the public keys in pk∗

t , pkt are query outputs of J O;
– pkπ has not been queried to CO; and
– Link(σ∗, σ′) = linked.

We denote the adversary’s advantage by AdvNS
A (λ) = Pr[A wins the game].

Definition 4: Non-slanderabilty. An FS-LRS scheme is non-slanderable if
for any PPT adversaries A, AdvNS

A (λ) is negligible.

Forward-Secure Unforgeability. Forward-secure unforgeability ensures that
it is not feasible for an adversary with a private key for a time period strictly
greater than t to create valid signatures for any period less than or equal to t.
Forward-secure unforgeability is defined in the following game between a chal-
lenger C and an adversary A given access to the oracles J O, CO,SO and H:

1. C generates and gives A the system parameters param.
2. A may query the oracles according to any adaptive strategy.
3. A gives C an event-id e, a group size n, a set pkt of n public keys, a message

M , a time t and a signature σ.
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A wins the game if

i. Verify(e, n,pkt,M, σ, t) = accept;
ii. all of the public keys in pkt are query outputs of J O;
iii. no public keys in pkt have been input to CO at time t or earlier; and
iv. σ is not a query output of SO.

We denote the adversary’s advantage by AdvFS−Unf
A (λ) = Pr[A wins

the game].

Definition 5: Forward-Secure Unforgability. An FS-LRS scheme is
forward-secure against forgeries if for PPT adversaries A, AdvFS−Unf

A (λ) is
negligible.

Forward-Secure Anonymity. Forward-secure anonymity ensures that it is
not feasible for an adversary with a private key for a time period strictly greater
than t to de-anonymise signatures for any time period less than or equal to t.
Forward-secure anonymity is defined in a game between a challenger C and an
adversary A given access to oracles J O, CO,SO and the random oracle:

1. C generates and gives A the system parameters param.
2. A may query the oracles according to any adaptive strategy.
3. A gives C an event-id e, a time t, a group size n, a set of pkt of n public

keys such that all of the public keys in pkt are query outputs of J O, and
a message M . Parsing the set pkt as {pk1, . . . , pkn}. C randomly picks π ∈
{1, . . . , n}, and computes σπ = Sign(e, n,pkt, skπ,M, t), where skπ is a valid
private key corresponding to pkπ at time t. The signature σπ is given to A.

4. A outputs a guess π′ ∈ {1, . . . , n}.

A wins the game if

i. π = π′;
ii. e and t have never been input together to SO; and
iii no public keys in pkt have been input to CO at time t or earlier.

We denote the adversary’s advantage by AdvFS−Anon
A (λ) = Pr[A wins

the game].

Definition 6: Forward-Secure Anonymity. An FS-LRS scheme is forward-
secure anonymous if for any PPT adversaries A, AdvFS−Anon

A (λ) is negligible.

3 Multilinear Maps

Our notation is similar to that used by Zhandry in [26]. Let E be an l−linear
map over additive cyclic groups [G]1, . . . , [G]l of prime order p, where [G]0 = Zq

and all [G]i for i = 1, . . . , l are homomorphic to (Zq,+). Let [α]i denote the
element α ∈ Zq raised to the level-i group [G]i, for i ∈ (0, . . . , l). Let α ∈R [G]i
denote the random sampling of an element in [G]i. We have access to efficient
functions:
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Addition, Add or +: given two elements [α]i, [β]i returns [α + β]i.
Negation, Neg or −: given one element [α]i returns [−α]i.
Cross-level multiplication or multilinear Map, denoted E : given two elements

[α]i, [β]j , returns [α ∗ β]i+j . The cryptographic security of multilinear maps
requires, among other things, that multiplication within any [G]i be hard for
i > 0.

3.1 Multilinear Assumptions

For convenience, we will prove the security of our construction using the following
hard problem, which we call Equivalent Decoding Problem, and which we prove
to be equivalent to the central Decoding Problem from [14], itself a specific
instance of the Generalised Decoding Problem [14]. We define and recall:

Definition 7 ((κ, h)-Equivalent Decoding Problem ((κ, h)-EDP)). For any
PPT A, Pr[A([α]0, [α∗x]h, [x]κ) = [x]j ] = negl, with j < κ ≤ h and α, x ∈R Zq.

Definition 8 (Multilinear Discrete-log Problem (MDLP) [14]). For any PPT
algorithm A, the probability Pr[A([α]1) = [α]0] is negligible, where α ∈R Zq.

Definition 9 (i-Decoding Problem (i − DP ) [14]). For any PPT algorithm A,
the probability Pr[A([δ]i) = [δ]j ] is negligible, where j < i and δ ∈R Zq.

For the efficiency and correctness of our scheme we let h = l and κ ∈ (1, . . . , l),
where l is the size or height of the multilinear map. We now prove equivalence.

Theorem 10. (κ, h)-EDP is equivalent to i-DP, for i = κ:

Proof. Given an (κ, h)-EDP instance ([α]0, [α ∗ x]h, [x]κ) we simulate an i-DP
instance [δ]i as, [δ]i = [x]κ. Having obtained the output from a successful DP
adversary, A([δ]i) → [δ]j for j < i, we return [δ]j as answer to the EDP instance.

Conversely, given an i-DP instance ([δ]i) we simulate a (κ, h)-DP instance
([α]0, [α ∗ x]h, [x]κ) by sampling [α]0 ∈R Zq, setting [x]κ = [δ]i, and computing
[α∗x]h = E([x]κ, [α]h−κ). Given a successful EDP adversary’s output, A([α]0, [α∗
x]h, [x]κ) → [x]j for j < κ, we return [x]j as answer to the EDP instance. �	

In the same way that the Discrete Log Problem is generalised to Multilinear
Discrete Log Problem (MDLP), the Decisional Diffie-Hellmann problem gener-
alise to Multilinear Decisional Diffie-Hellmann (MDDH) problem. Intuitively,
given three group elements it is infeasible to tell if one is the product of the oth-
ers, provided that the sum of any two levels is greater than maximum allowed.

Definition 11 (Multilinear Decisional Diffie-Hellmann Problem(i, j, κ)-
(MDDH)). For any PPT A, the distinguishing probability Pr[A([α]i, [β]j ,
[γ]κ) = “true” − A([α]i, [β]j , [αβ]κ) = “true”] is negligible, where α, β, γ ∈R Zq

and all pairwise sums of i, j, κ are greater than the maximum map level l.
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3.2 Is Multilinearity Achievable?

Three major multilinear map candidates have been proposed in [10,14,15]. Since
their introduction, they have been the targets of many attacks, patches, and more
attacks that remain unpatched.

One powerful class of attacks on multilinear maps are the so-called “zeroising”
attacks; they run in polynomial time but require the availability of an encoding
of zero in the lower levels of the multilinear ladder [14,16]. There are also sub-
exponential and quantum attacks [3,9,11]. Further to this, recently Miles et al.
introduced a class of “annihilation” attacks on multilinear maps [20].

There are reasons to believe that multilinear maps may be unrealisable. In
particular, their near equivalence to indistinguishability obfuscation [21]—an
extremely powerful tool which in an even stronger variant is known not to exist
[4]—is worrying. Furthermore, Boneh and Silverberg [5] in their original paper on
applications of hypothetical multilinear maps, present several results which cast
doubt on the likeliness of multilinear maps’ existence, and soberingly concluded
that “such maps might have to either come from outside the realm of algebraic
geometry, or occur as unnatural computable maps arising from geometry.”

If multilinear maps fail to be repaired, bilinear maps still give us an efficient 2-
period FS-LRS scheme that can be combinatorially boosted to multiple periods.

4 Construction

Intuition. To ensure unconditional anonymity in spite of linkability, a Pederson
commitment can provide unconditional hiding with computational binding of
the private key in the public key. A multilinear map can then raise and ratchet
the private key at each time period, which provides forward security.

In the signature we use two Fiat-Shamir heuristic on two knowledge-of-
discrete-logarithm proofs, rolled into one. The signer proves firstly that they
know x behind f = dx, and secondly that they know x and y such that gx + hy
is one of the public keys. Random challenges ci serve as decoys for the other pub-
lic keys. Since both the real challenge c and the decoy challenges ci are uniformly
random, an adversary is unable to discern which party signed.

Setup(n): Take as input the number of time periods T ≥ 1. Denote by
t ∈ (0, 1, 2, . . . , T − 1) the current time period. Run a multilinear map setup
algorithm to construct a bounded-level l-multilinear map and obtain its pub-
lic parameters mmpp. We refer to the map’s maximum allowed level as l and
require l ≥ T ≥ 1. Let Hi denote the ith element in a family of hash functions
H such that Hi: {0, 1}∗ → [G]i. Construct [g]0 = H0(“Generator-g”) and [h]l =
Hl(“Generator-h”). The public param are (mmpp, [g]0, [h]l,H,“Generator-
g”,“Generator-h”).

KeyGen: Sample [x]0, [y]0 ∈R [G]0 and let [Z]l = E(E([g]0, [x]0), [1]l) +
E([h]l, [y]0) = [g ∗ x + h ∗ y]l. The public key is pk = [Z]l and initial secret
key sk = ([x]0, [y]0).
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Sign: On input (event, n,pkt, skπ,M, t), with: event some description, n the
ring size, pkt = {pk1, . . . , pkn} = {[Z1]l, . . . , [Zn]l} the ring public keys, skπ

the signer’s secret key with public key pkπ ∈ pkt (w.l.o.g., π ∈ [1, n]), M the
message, and t the time period; the signer (holder of skπ = ([x]t, [y]0)) does the
following:

1. Hash [d]l−t = Hl−t(t||event), and multilinearly map [f ]l = E([d]l−t, [x]t);
2. Sample [rx]t ∈R [G]t and [c1]0, . . . , [cπ−1]0, [cπ+1]0, . . . , [cn]0, [ry]0 ∈R [G]0;
3. Compute [K]l = E([g]l−t, [rx]t) + E([h]l, [ry]0) +

∑n
i=1,i �=π E([Zi]l, [ci]0),

and [K ′]l = E([d]l−t, [rx]t) + E([f ]l,
∑n

i=1,i �=π[ci]0);
4. Find [cπ]0 s.t. [cπ]0 = H0(pkt||event||[f ]l||M ||[K]l||[K ′]l||t) −

∑n
i=1,i �=π[ci]0;

5. Compute [x̃]t = [rx]t − E([cπ]0, [x]t) and [ỹ]0 = [ry]0 − E([cπ]0, [y]0);
6. Output the signature σ = ([f ]l, [x̃]t, [ỹ]0, [c1]0, . . . , [cn]0).

Verify: On input (event, n,pkt,M, σ, t), first let [d]l−t = Hl−t(t||event) and,
using the components of σ = ([f ]l, [x̃]t, [ỹ]0, [c1]0, . . . , [cn]0), compute

[K]l = E([g]l−t, [x̃]t) + E([h]l, [ỹ]0) +
∑n

i=1
E([Zi]l, [ci]0)

[K ′]l = E([d]l−t, [x̃]t) + E([f ]l,
∑n

i=1
[ci]0)

and [c0]0 = H0((pkt||event||[f ]l||M ||[K]l||[k′]l||t))

then check and output whether
∑n

i=1[ci]0 = [c0]0.

Link: On input two signatures σ1 = ([f1]l, ∗) and σ2 = ([f2]l, ∗), two messages
M1 and M2, an event description event, and a time t, first check whether the two
signatures are valid. If yes, output linked if [f1]l = [f2]l; else output unlinked.

Private-Key Update: In a given time period t, to calculate the private key for
time t + 1 < l, do: [x]t+1 = E([1]1, [x]t)

Public-Key Update: The public key does not need to be updated in our scheme.

5 Correctness

Verification Correctness. For verification correctness, it suffices to show that the
verification values K and K ′ calculated by each party are the same. For the K:
[Kv]l = [g ∗ x̃]l +[h∗ ỹ]l +

∑
i∈[n][Zi ∗ci]l = [g ∗rx]l +[h∗ry]l +

∑
i∈[n]\{π}[Zi ∗ci]l

[Ks]l = [g ∗ rx]l + [h ∗ ry]l +
∑

i∈[n]\{π}[Zi ∗ ci]l hence [Ks]l = [Kv]l. For the K ′:
[K ′

v]l = [d ∗ x̃]l + [f ∗
∑

i∈[n] ci]l = [d ∗ rx]l + [f ∗
∑

i∈[n]\{π} ci]l and
[K ′

s]l = [d ∗ rx]l + [f ∗
∑

i∈[n]\{π} ci]l and therefore also [K ′
s]l = [K ′

v]l. �	
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Linking Correctness. For a given event event, time t, and private key [x]t the
linking component, [d]l−t = Hl−t(t||event), [f ]l = E([d]l−t, [x]t), is completely
deterministic. Since the linking component is deterministic, under the above
conditions, given any two signatures a simple equality check on the linking com-
ponent suffices. Conversely, for a given event event, time t, and two different
private keys [x]t and [x′]t the linking element will be different.7

Update Correctness. Given a time period t, to calculate the updated keys for the
next time period using the update function, we observe that the relation between
public and private keys is unchanged. Recall that the use of the pairing produces
the product of the input values at the level of the sum of the input levels. The
only changes to the private keys and public key is [x]t+1 = E([1]2, [x]t), which
simply “raises” x by two levels without changing the encoded value.

6 Security

Theorem 12. The FS-LRS scheme is unforgeable in the ROM, if EDP is hard.

Liu et al. [18,19] reduced unforgeability from discrete log by rewinding and
forking the execution, in the worst case, for every [c]i, causing the success of
their simulation to shrink exponentially in n, the number of users in the ring.
Our proof extracts an EDP solution from the single value

∑n
i=1[ci]0 which means

that we merely have to fork and rewind once. Our reduction is thus independent
of, rather than exponential in, the (user-controlled) parameter n.

Proof. Given an (l, l)-EDP instance ([α]0, [α∗x]l, [x]l), B is asked to output some
[x]j where j < l. Note that [x]t in the secret key at any time period t ≤ T < l in
our scheme will satisfy this bound. B gives A the public key [h]l = [α ∗ x]l and
[g]0 = [α]0. B then simulates the oracles as follows.

– Random Oracles Hi: For query input H0(“GENERATOR-g”), B returns [g]0.
For query input Hl(“GENERATOR-h”), B returns [h]l. For other queries, B
randomly picks [λ]0 ∈R [G]0, sets [a]i = E([λ]0, [1]i) and returns [a]i.

– Joining Oracle J O: B samples [x′]0, [y′]0 ∈R [G]0, lets [Z ′]l = E([g x′]0, [1]l)+
E([h]l, [y′]0), stores the tuple ([Z ′]l, [x′]0, [y′]0), and outputs [Z ′]l.

– Corruption Oracle CO: On input a public key pk which is an output from
J O, B outputs the corresponding private key.

– Signing Oracle SO: On input a signing query for event event, a set of public
keys pkt = {[Z1]l, . . . , [Zn]l}, the public key for the signer [Zπ]l, where π ∈
[1, n], and a message M and time t, B simulates as follows:

– If no query for Hl−t(t||event) has been made yet, carry out the H-query
on input t||event as described above. Set [d]l−t to Hl−t(t||event).

7 While it is possible for two different private keys to have the same public key, violat-
ing the assertion above, this would also break the Pedersen commitments and reveal
the relationship between g and h. It is also possible for the hash function to collide.
These events are assumed of negligible probability.
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– Since B knows the private key for all π, it constructs σ as in the scheme.
– B returns the signature σ = ([f ]l, [x̃]t, [ỹ]0, [c1]0, . . . , [cn]0). A cannot dis-

tinguish B’s simulation from real life, as they have identical distributions.

For one successful simulation, suppose the forgery given by A on some event
event, time t and set of public keys pk

′′
t , is σ1 = ([f1]l, [x̃1]t, [ỹ1]0, [c11]0, . . . ,

[c1n′ ]0). In the random oracle model, A must have made a query Hl−t(t||event),
denoted by [d]l−t, and a query H0(pkt||event||[f ]l||M ||[K]l||[K ′]l||t) where:

[K]l = E([g]l−t, [x̃1]t) + E([h]l, [ỹ1]0) +
∑n

i=1
E([Zi]l, [c1i ]0) and

[K ′]l = E([d]l−t, [x̃1]t) + E([f1]l,
∑n

i=1
[c1i ]0)

After rewinding the execution and answering the random-oracle query
differently, if successful, we get another signature σ2 = ([f1]l, [x̃2]t, [ỹ2]0,
[c21]0, . . . , [c

2
n′ ]0). Note that [f1]l, [K]l, [K ′]l and pkt must be the same, since

we rewind only to the point of the H0 query. In the rewound execution we force
a change in the H0 oracle output to the query which determines

∑n
i=1[ci]; but

for i = [1, 2], the following equation holds because the signatures accept for the
same [K ′]l:

[d ∗ x̃1 + f ∗
n∑

i=1

c1i ]l = [d ∗ x̃2 + f ∗
n∑

i=1

c2i ]l

Therefore we have [x̃1] �= [x̃2] and find a response [x]t to the EDP challenge as:

[x]t =
[gx̃1 +

∑n
i=1 gxic

1
i ]t − [gx̃2 +

∑n
i=1 gxic

2
i ]t

[ỹ2 − ỹ1 −
∑n

i=1 yi(c1i − c2i )]0

Note that the above works when the [x̃]t and [ỹ]0 encode a tuple ([x′]t, [y′]0) �=
([x]t, [y]0), i.e., not one which we already knew. By unconditional anonymity
(see Theorem 13), this will be true except with probability 1/n. By the forking
lemma [23], the chance of each successful rewind simulation is at least ξ/4, where
ξ is the probability that A successfully forges a signature. Hence the probability
that for a given adversary A, we can extract [x]t is at least ξ

4
n−1

n . �	

The next few proofs (other than the forward security ones) are similar to
those of Liu et al. [18] in structure and efficiency. We give them for completeness.

Theorem 13. The FS-LRS scheme is unconditionally anonymous.

Proof. The proof of unconditional anonymity is largely unchanged from [18],
since both schemes rely on Pederson commitments. For each J O query, a value
[Z]l = E([g]0, [x]0) + E([h]l, [y]0) is returned for some random pair ([x]0, [y]0).
The challenge signature is created from the key of a random user in the ring.
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In what follows, we are going to show that the advantage of the adversary
is information-theoretically zero. The proof is divided into three parts. First,
we show that given a signature σ = ([f ]l, [x̃]t, [ỹ]0, [c1]0, . . . , [cπ]0) for a ring
([Z1]l, . . . , [Zn]l) on message M , event event and time t, there exists a matching
private key ([xπ]t, [yπ]0) for each possible public key [Zπ]l, for any π ∈ {1, . . . , n},
that can construct the linking tag [f ]l. That is, [f ]l = E(Hl−t(t||event), [xπ]t) =
E([d]l−t, [xπ]t), where [d]l−t = Hl−t(t||event). Second, given such a private key
([xπ]t, [yπ]0) there exists a tuple ([rxπ

]t, [ryπ
]0) so that σ matches ([xπ]t, [yπ]0)

using randomness ([rxπ
]t, [ryπ

]0). Finally, for any π ∈ {1, . . . , n}, the distribution
of the tuple ([xπ]t, [yπ]0, [rxπ

]t, [ryπ
]0) defined in parts one and two is identical.

Therefore, in the view of the adversary, the signature σ is independent to the
value π, the index of the actual signer. We conclude that even an unbounded
adversary cannot guess the value of π better than at random. In details:

1. Part I. Let x, y be so that [f ]l = E([d]l−t, [x]t) and [g]0 = E([h]0, [y]0). Let
[Zi]l = E([h]0, [zi]l) for i = 1 to n. For each π ∈ {1, . . . , n}, consider the
values

[xπ]t = [x]t, and [yπ]t = [zπ]t − E([xπ]t, [y]0)

Obviously, ([xπ]t, [yπ]t) is a private key corresponding to the public key
[Zπ]l (since [Zπ]l = E([h]l−t, [zπ]t) = E([h]l−t, E([xπ]t, [y]0) + [yπ]t) =
E([g]l−t, [xπ]t) + E([h]l−t, [yπ]t)) and [f ]l = E([d]l−t, [x]t]) = E([d]l−t, [xπ]t).

2. Part II. For each possible ([xπ]t, [yπ]t) defined in Part I, consider the values

[rxπ
]t := [x̃]t + E([cπ]0, [xπ]t), and [ryπ

]t := [ỹ]t + E([cπ]0, [yπ]t),

It can be seen that σ can be created by the private key ([xπ]t, [yπ]t) using the
randomness ([rxπ

]t, [yyπ
]t), for any π ∈ {1, . . . , n}.

3. Part III. The distribution of ([xπ]t, [yπ]t, [rxπ
]t, [yyπ

]t) for each possible π is
identical to that of a signature created by a signer with public key [Zπ]l.

In other words, the signatures σ can be created by any signer equipped with
private key ([xπ]t, [yπ]t) for any π ∈ {1, . . . , n} using randomness ([rxπ

]t, [yyπ
]t).

Even if the unbounded adversary can compute ([xπ]t, [yπ]t, [rxπ
]t, [yyπ

]t) for all
π ∈ [n], it cannot guess, amongst the n possible choices, who the signer is.

We are using the fact that a public key in our construction corresponds to
multiple secret keys. For each public key in the ring of possible signers, there
exists a unique corresponding private key that fits the given linking tag. �	

Theorem 14. The FS-LRS scheme is linkable in the ROM, if the EDP is hard.

Proof. If A can produce two valid and unlinked signatures from just one private
key, we can use this to successfully break EDP. We use the same setting as in
the proof in Theorem12, with the exception that the adversary is given a pair
(x, y) valid for [Z] ∈ pkt as an output of the corruption oracle.
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If given a pair of σi = ([f i]l, [x̃i]t, [ỹi]0, [ci
1]0, . . . , [c

i
n′ ]0) on an event event,

time t and a set of public keys pk
′′
t , then, in the random-oracle model, A must

have made two queries Hi
l−t(t||event) which are denoted by [di]l−t, and two

queries Hi
0(pkt||event||[f i]l||M ||[Ki]l||[K ′i]l||t) where

[K]l = E([g]l−t, [x̃1]t) + E([h]l, [ỹ1]0) +
∑n

i=1
E([Zi]l, [c1i ]0) and

[K ′]l = E([d]l−t, [x̃1]t) + E([f1]l,
∑n

i=1
[c1i ]0)

Since σ1 �= σ2 and they are unlinked, by definition of linkability we have
[f1]l �= [f2]l. Since, by definition of the game, the σi are both valid for the same
time and event, [d1]l−t = Hl−t(t||event) = [d2]l−t. Recall that [f i]l = [d1xi]l,
where we have shown [d1]l−t = [d2]l−t. Hence, [x1]t �= [x2]t. Therefore at most
one [f ]l, and hence σi, encodes the pair (x, y) which we gave to the adversary.
We use the method from Theorem 12 to extract [x]t from the other signature σ′.

The probability that, for a given A, we can extract [x]l is at least ξ
4

n−1
n . �	

Theorem 15. The FS-LRS is non-slanderable in the ROM, if EDP is hard.

Proof. We use the setting of Theorem 12. A can query any oracle other than to
submit a chosen public key pkπ to CO. It then gives B: the key pkπ, a list of public
keys pkt � pkπ (w.l.o.g., we have |pkt| = n), a message M , a description event,
and a time t. In return, B generates a signature σ([f ]l, .) using the standard
method for the joining oracle, and gives it back to A. Since we choose [f ]l = [dx]l
at random for a fixed d we have implicitly defined [x]t at random. A continues
to query various oracles, expect that it is not allowed to submit pkπ to CO.

Suppose A produces another valid signature σ∗ = ([f ′]l, .) that was not an
output from SO but is linkable to σ. Since they are linkable, we have [f ′]l = [f ]l
and hence [x]l

[d]0
= [x]l

[d]0
. Recall that, by definition of the game, σ∗ �= σ

′
which

implies that [x̃∗] �= [x̃]
′

and hence [ỹ∗] �= [ỹ
′
]. We then extract [x]t from σ∗ as

outlined in Theorem 12.
The probability that, for a given adversary A, we can extract [x]l is ξ

4
n−1

n . �	
Theorem 16. The FS-LRS scheme is forward-secure against forgeries in the
random-oracle model, if EDP is hard.

Proof. We show that the ability of the adversary to make corruption queries at
times later than t does not allow it to calculate the private key or forge signatures
at time t, without breaking (κ = t + 1, l)-EDP, and hence the system achieves
forward security for κ ∈ [1, l]. In this proof we start by guessing the break point
t for which the adversary’s forgery σ will be valid.

Given an (κ, l)-EDP instance ([α]0, [α ∗ x]l, [x]κ), B is asked to output some
[x]j where j < κ. B picks [h]0 ∈R [G]0 and sets [h]l = E([h]0, [1]l) . B also chooses
[y]0 ∈R [G]0 and sets [Z]l = [α∗x]l +(E([h]l, [y]0). B simulates the oracles thusly:

– Random Oracles Hi: For query input H0(“GENERATOR-g”), B returns [α]0.
For query input Hl(“GENERATOR-h”), B returns [h]l. For other queries, B
randomly picks [λ]0 ∈R [G]0, sets [a]i = E([λ]0, [1]i) and returns [a]i.
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– Joining Oracle J O: Assume A can only query J O for a maximum n′ times,
where n′ = n+1. W.l.o.g., (1, . . . , n) will be the indices for which B knows the
private keys, and n′ the challenge index. For the first n indices, B generates
the public/private key pair as in the scheme. For index n′, it sets the public
key to [Z]l. Upon the jth query, B returns the matching public key.

– Corruption Oracle CO: On input a public key pki obtained from J O, and a
time t, B checks whether it is corresponding to [1, n], if yes, then B returns
the private key. Otherwise, if time t ≥ κ, B returns ski = ([xi]t, [yi]t) at time
t, otherwise B halts.

– Signing Oracle SO: On input a signing query for event event, a set of public
key pkt = {[Z1]l, . . . , [Zn]l}, the public key for the signer [Zπ]l, where π ∈
[1, n], and a message M , and time t, B simulates as follows:

– If the query of Hl−t(t||event) has not been made, carry out the H-query
of t||event as described above. Set [d]l−t to Hl−t(t||event). Note that B
knows the [λ]0 that corresponds to [d]l−t.

– If [Zπ]l is not corresponding to n′, B knows the private key and computes
the signature according to the algorithm. Otherwise, B sets [f ]l = [dx]l.

– B randomly chooses [x̃]t ∈R [G]t and [ci]0, [ỹ]0 ∈R [G]0 for all i ∈ [1, n]
and sets the H0 oracle output of

H0

(
pkt||event||[f ]l||M ||E([g]l−t, [x̃]t) + E([h]l−t, [ỹ]t) +

∑n

i=1
E([Zi]l, [ci]0)||E([d]l−t, [x̃]t) + E([f ]l,

∑n

i=1
ci)||t

)

– B returns the signature σ = ([f ]l, [x̃]t, [ỹ]t, [c1]0, . . . , [cn]0). A cannot dis-
tinguish between B’s simulation and real life.

For one successful simulation, suppose the forgery returned by A, on an event
event, time t and a set of public keys pk

′′
t , is σ1 = ([f1]l, [x̃1]t, [ỹ1]0, [c11]0, . . . ,

[c1n′ ]0). In the random-oracle model, A must have queried Hl−t(t||event), denoted
by [d]l−t, and queried H0(pk′′||event||[f ]l||M ||[K]l||[K ′]l||t) where

[K]l = E([g]l−t, [x̃1]t) + E([h]l, [ỹ1]0) +
∑n

i=1 E([Zi]l, [c1i ]0) and

[K ′]l = E([d]l−t, [x̃1]t) + E([f1]l,
∑n

i=1[c
1
i ]0)

After a successful rewind we get another σ2 = ([f1]l, [x̃2]t, [ỹ2]0, [c21]0, . . . , [c
2
n′ ]0).

Note that [f1]l and the [K]l, [K ′]l must be the same since we rewind only to the
point of lth query, and that in the rewind we forced a change in H0 =

∑n
i=1[ci].

Recall that for i = [1, 2], by the definitions of x̃,H and K ′:

[x̃i]t = [ri
x]t − [ci

πx′]t =
[K ′]l
[d]0

− [x′Hi]l

We now have two commitments to [x′]l for a fixed [K′]l
[d]0

which we know, and for
different Hi which we also know. We can therefore calculate [x′]t as follows:

[x̃1]t − [x̃2]t
−[H1]0 + [H2]0

=
[K′]l
[d]0

− [x′H1]l − [K′]l
[d]0

+ [x′H2]l
−[H1]0 + [H2]0
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We can find
∑n

κ=1[yκ]t as:

n∑

κ=1

[yκ]t =
([ỹ1]0 + [x̃]t

[h]0
+

∑n
κ=1[gxκc1κ]0

[h]0
) − ([ỹ2]t + [x̃]t

[h]0
+

∑n
κ=1[gxκc2κ]0

[h]0
)

−[H1]0 + [H2]0

We can then calculate [y′]t =
∑n

κ=1[yκ]t −
∑n

κ=1;κ�=π[yκ]t since we know [y]κ for
all but the target.

We now break the simulation into three cases:

Case 1 E([x]′t, [1]κ−t) = [x]κ, in this case [x′]t is a valid answer to the EDP
instance and we succeed.

Case 2 We have extracted from the adversary a pair ([x′]t, [y′]t) which is a valid
solution to the challenge public key (gx + hy) but not the pair ([x]t, [y]t)
which we used to construct it. We now know ([x′]t, [y′]t, [y]t) and wish to find
the challenge answer [x]t, which we calculate as [x]t = [gx′]t+[hy′]t−[hy]t

[g]0
. We

then return [x]t and succeed.
Case 3 The adversary has returned a private key for a public key for which we

already knew the private key. In this case we fail to complete the reduction.

By the forking lemma [23], the chance of each successful rewind simulation
is at least ξ/4, where ξ is the probability that A successfully forges a signature.
Hence, the probability that for a given adversary A we can extract [x]l is 1

n ∗ 1
t ∗

ξ
4 = ξ

4nt , where n is the number of queries to J O and t is the number of time
periods. �	

Theorem 17. The FS-LRS scheme is forward-secure anonymous in the
random-oracle model, if MDDH is hard.

Proof. We show that the ability of the adversary to make corruption queries
at times later than t does not allow it to de-anonymise signatures at time t
or earlier, without breaking (t,l-t+1,l)-MDDH, and hence the system achieves
forward-secure anonymity. In this proof we start by guessing the break point t
at which the adversary’s will choose to be challenged.

Given an MDDH instance ([α]t, [β]l−t+1, [γ]l), B is asked to decide whether
[γ]l = [αβ]l. B picks [h]0, [α]0 ∈R [G]0 and sets [h]l = E([h]0, [1]l). B simulates:

– Random Oracles Hi: For all queries except those outlined below, B randomly
picks [λ]0 ∈R [G]0, sets [a]i = E([λ]0, [1]i) and returns [a]i.

– Joining Oracle J O: B generates a public key and private key pair by choosing
[x′]0, [y]0 ∈R [G]0 and setting [Z]l = [g]0 + E([x′]0, [α]t) + E([h]l, [y]0).

– Corruption Oracle CO: On input a public key pki obtained from J O, and a
time t′, if time t′ ≥ t, B returns ski = ([α × x′

i]t, [yi]t) at time t; else B halts.
– Signing Oracle SO: On input a signing query for event event, a set of public

keys pkt = {[Z1]l, . . . , [Zn]l}, the public key for the signer [Zπ]l where π ∈
[1, n], a message M , and a time t, B simulates as follows:
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– If the query of Hl−t(t||event) has not been made, carry out the H-query
of t||event as described above. Set [d]l−t to Hl−t(t||event). Note that B
knows the [λ]0 that corresponds to [d]l−t. B sets [f ]l = [d∗α ∗x′

π]l, which
it can compute from the challenge [α]t.

– B randomly chooses [x̃]t ∈R [G]t and [ci]0, [ỹ]0 ∈R [G]0 for all i ∈ [1, n]
and sets the H0 oracle output of

H0

(
pkt||event||[f ]l||M ||E([g]l−t, [x̃]t) + E([h]l−t, [ỹ]t) +

∑n
i=1 E([Zi]l, [ci]0)||E([d]l−t, [x̃]t) + E([f ]l,

∑n
i=1ci)||t

)

– B returns the signature σ = ([f ]l, [x̃]t, [ỹ]t, [c1]0, . . . , [cn]0). A cannot dis-
tinguish between B’s simulation and real life.

At some point A requests to be challenged on e, t′, n,pk′
t,M where t′ < t.

W.l.o.g. assume t′ = t − 1. B sets Hl−t+1(e||t) = [β]l−t+1, samples i ∈ [n],
sets [f ]l = [γx′

i]l, and then performs the remaining steps of the signing oracle as
above. Notice that if [γ]l is equal to [αβ]l then this signature is normally formed;
but if [γ]l is a random group element than the linking element is random, while
the rest of the signature is independent of the signer. If A successfully guesses i
then B guesses that [γ] = [αβ], otherwise B guesses that [γ] is random. �	

7 Generalisations and Bilinear Maps

While the basic scheme can natively support T time periods given a multilinear
linear map with a finite number of levels l ∈ [T ,∞), it is rather straightforward to
combine multiple instances of the scheme to achieve a greater number of epochs
without changing the multilinear map. Several combinations are possibles, to
realise a total number of periods polynomial in the time and space complexity
of the combination.

This observation is of particular interest for l = 2, the case of traditional
2-linear or bilinear maps such as the Weil and Tate pairings, which have been
studied extensively and are generally accepted as being cryptographically secure
(barring quantum attacks) without relying on unproven multilinear hardness
assumptions. Details are omitted for lack of space.
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Abstract. An Identity-based encryption (IBE) simplifies key manage-
ment by taking users’ identities as public keys. However, how to dynami-
cally revoke users in an IBE scheme is not a trivial problem. To solve this
problem, IBE scheme with revocation (namely revocable IBE scheme)
has been proposed. Apart from those lattice-based IBE, most of the exist-
ing schemes are based on decisional assumptions over pairing-groups.
In this paper, we propose a revocable IBE scheme based on a weaker
assumption, namely Computational Diffie-Hellman (CDH) assumption
over non-pairing groups. Our revocable IBE scheme was inspired by the
IBE scheme proposed by Döttling and Garg in Crypto2017. Like Döttling
and Garg’s IBE scheme, the key authority maintains a complete binary
tree where every user is assigned to a leaf node. To adapt such an IBE
scheme to a revocable IBE, we update the nodes along the paths of the
revoked users in each time slot. Upon this updating, all revoked users are
forced to be equipped with new encryption keys but without decryption
keys, thus they are unable to perform decryption any more. We proved
that our revocable IBE is adaptive IND-ID-CPA secure in the standard
model. Our scheme serves as the first revocable IBE scheme from the
CDH assumption. Moreover, the size of updating key in each time slot is
only related to the number of newly revoked users in the past time slot.

Keywords: Revocable identity-based encryption · CDH assumption

1 Introduction

The concept of Identity-Based Encryption (IBE) was proposed by Shamir [17] in
1984. In an IBE scheme, the public key of a user can simply be the identity id of
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 265–283, 2018.
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the user, like name, email address, etc. An IBE scheme considers three parties:
key authority, sender and receiver. The key authority is in charge of generating
secret key skid for user id. A sender simply encrypts plaintexts under the receiver’s
identity id and the receiver uses his own secret key skid for decryption. With IBE,
there is no need for senders to ask for authenticated public keys from Public-Key
Infrastructures, hence key management is greatly simplified.

Over the years, there have been many IBE schemes proposed from various
assumptions in the standard model. Most of the assumptions are decisional ones,
like the bilinear Diffie-Hellman assumption [7,13,20] over pairing-groups, or the
decisional learning-with-errors (LWE) assumption from lattices [1,4,8]. Most
recently, a breakthrough work was done by Döttling and Garg [6], who proposed
the first IBE scheme based solely on the Computational Diffie-Hellman (CDH)
assumption over groups free of pairings.

Though IBE enjoys the advantage of easy key management, how to revoke
users in an IBE system is a non-trivial problem. It was Boneh and Franklin [3]
who first proposed revocable IBE (RIBE) to solve the problem. Later, Boldyreva
et al. [2] formalized the definition of selective-ID security and constructed a
more efficient RIBE scheme based on a fuzzy IBE scheme [15]. Then Libert and
Vergnaud proposed the first adaptive-ID secure revocable IBE scheme [11]. In
[16], Seo and Emura strengthened the security model by introducing an addi-
tional important security notion, called Decryption Key Exposure Resistance
(DKER). They also constructed a revocable IBE scheme in the strengthened
model, and the security of this scheme is from the Decisional Bilinear Diffie-
Hellman (DBDH) assumption. Since then, most of the revocable IBE schemes
constructed from pairing groups achieved DKER. For example, in the strength-
ened security model, Lee et al. [9] constructed a revocable IBE scheme via sub-
set difference methods to reduce the size of key updating based on the DBDH
assumption, and Watanabe et al. [19] introduced a new revocable IBE with short
public parameters based on both the Decisional Diffie-Hellman (DDH) assump-
tion and the Augmented Decisional Diffie-Hellman (ADDH) assumption over
pairing-friendly group. Furthermore, Park et al. [14] constructed a revocable IBE
whose key update cost is only O(1), but the scheme relied on multilinear maps.
Without pairing, it seems difficult to achieve DKER. In [5], Chen et al. proposed
the first selective-ID secure revocable IBE scheme from the LWE assumption over
lattices in the traditional security model (without DKER). Later, Takayasu and
Watanabe [18] designed a lattice-based revocable IBE with bounded DKER. In
fact, revocable property is so important that it is studied not only in IBE but also
in Identity-Based Proxy Re-encryption [10], Fine-Grained Encryption of Cloud
Data [21,22] and Attribute-Based Encryption [12]. However bilinear pairings are
essential techniques in these schemes [10,12,21,22].

Note that all the existing RIBE schemes are based on assumptions over
pairing-friendly groups or the LWE assumption over lattices. On the other hand,
Döttling and Garg’s IBE scheme [6] is based on the CDH assumption over non-
pairing group, but it does not consider user revocation. In this paper, we aim to
fill the gap by designing RIBE from the CDH assumption without use of pairing.
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1.1 Our Contributions

In this paper, we propose the first revocable IBE (RIBE) scheme based on the
Computational Diffie-Hellman (CDH) assumption over groups free of pairings.
The corner stone of this scheme is the IBE scheme proposed by Döttling and
Garg [6]. Our RIBE scheme enjoys the following features.

1. Weaker security assumption. The security of our RIBE scheme can be
reduced to the CDH assumption. Hence our scheme serves as the first RIBE
scheme from the CDH assumption over non-pairing groups.

2. Smaller size of key updating. when a time slot begins, the key updating
algorithm of our RIBE will issue updating keys whose size is only linear to
the number of newly revoked users in the past time slot. In comparison, most
of the existing RIBE schemes have to update keys whose number is related
to the number of all revoked users across all the previous time slots.

Table 1. Comparison with RIBE schemes (in the standard model). Here n is the total number of
users, r is the number of all revoked users and Δr is the number of newly revoked users the past
time slot. DKER means decryption key exposure resistance.

IBE Security assumption Pairing free Security model Key updating size DKER

[5] LWE � Selective-IND-ID-CPA O(r log (n/r)) ×
[18] LWE � Selective-IND-ID-CPA O(r log (n/r)) Bounded

[2] DBDH × Selective-IND-ID-CPA O(r log (n/r)) ×
[11] DBDH × Adaptive-IND-ID-CPA O(r log (n/r)) ×
[16] DBDH × Adaptive-IND-ID-CPA O(r log (n/r)) �
[9] DBDH × Adaptive-IND-ID-CPA O(r) �
[19] DDH and ADDH × Adaptive-IND-ID-CPA O(r log (n/r)) �
[14] Multilinear × Selective-IND-ID-CPA O(1) �
Ours CDH � Adaptive-IND-ID-CPA O(Δr(log n − log(Δr))) ×

In Table 1, we compare our RIBE scheme with some existing RIBE schemes.

Remark 1. Döttling and Garg’s IBE makes use of garbled circuits to imple-
ment the underlying cryptographic primitives. Hence it is prohibitive in terms
of efficiency. Our RIBE inherits their idea, hence the efficiency of our RIBE
scheme is also incomparable to the RIBE schemes from bilinear maps. However,
since no RIBE scheme is available from the CDH assumption over non-pairing
groups, our scheme serves as a theoretical exploration in the field of RIBE.

Remark 2. As noted before, achieving DKER seems technically difficult with-
out pairing. Our scheme cannot achieve decryption key exposure resistance
either. We leave it as an open question how to construct a revocable IBE scheme
with DKER from the CDH assumption over non-pairing groups.
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1.2 Paper Organization

In Sect. 2, we collect notations and some basic definitions used in the paper and
present the framework. We illustrate our idea of RIBE in Sect. 3. In Sect. 4, we
construct a revocable IBE scheme based on the computational Diffie-Hellman
assumption and present the correctness and security analysis of the scheme. In
Sect. 5, we show the complexity analysis of our scheme.

2 Preliminaries

2.1 Notations

The security parameter is λ. “PPT” abbreviates “probabilistic polynomial-
time”. We denote by [n] the set {1, · · · , n}, [a, b] the set {a, · · · b}, {0, 1}∗ a
bit-string of arbitrary length, {0, 1}≤� a bit-string of length at most �, ε an
empty string, |v| the length of a bit-string v (|ε| = 0), x||y the concatenation

of two bit-strings x and y, xi denotes the i-th bit of x, x
$← S the process of

sampling the element x from the set S uniformly at random, and a ← X the
process of sampling the element a over the distribution X . By a ← f(·) we mean
that a is the output of a function f . A function negl : N → R is negligible if
for any polynomial p(λ) it holds that negl(λ) < 1/p(λ) for all sufficiently large
λ ∈ N.

2.2 Pseudorandom Functions

Let PRF: K × X → Y be an efficiently computable function. For an adversary
A, define its advantage function as

AdvPRF
A (1λ) := |Pr[b = 1 |k $← K; b ← APRF(k,·)] − Pr[b = 1 | b ← ARF(·)]|,

where RF : X → Y is a truly random function. PRF is a pseudorandom function
(PRF) if the above advantage function AdvPRF

A (1λ) is negligible for any PPT A.

2.3 Revocable Identity-Based Encryption

A revocable IBE (RIBE) consists of seven PPT algorithms RIBE = (RIBE.Setup,
RIBE.KG,RIBE.KU,RIBE.KU,RIBE.Enc,RIBE.Enc,RIBE.R). Let M denote the
message space, ID the identity space and T the space of time slots.

– Setup: The setup algorithm RIBE.Setup is run by the key authority. The
input of the algorithm is a security parameter λ and a maximal number of
users N . The output of this algorithm consists of a pair of key (mpk,msk),
an initial state st=(KL, PL, RL,KU), where KL is the key list, PL is the list of
public information, RL is the list of revoked users and KU is the update key
list. In formula, (mpk,msk, st) ← RIBE.Setup(1λ, N).



Revocable Identity-Based Encryption 269

– Private Key Generation: This algorithm RIBE.KG is run by the key author-
ity which takes as input the key pair (mpk,msk), an identity id and the state
st. The output of this algorithm is a private key skid and an updated state
st′. In formula, (skid, st′) ← RIBE.KG(mpk,msk, id, st).

– Key Update Generation: This algorithm RIBE.KU is run by the authority.
Given the key pair (mpk,msk), an update time t, and a state st, this algorithm
updates the update key list KU and the the list of public information PL. In
formula, st′ ← RIBE.KU(mpk,msk, t, st).

– Decryption key generation: This algorithm RIBE.DK is run by the
receiver. Given the master public key mpk, a private key skid, the update
key list KU and the time slot t, this algorithm outputs a decryption key sk

(t)
id

for time slot t. In formula, sk(t)id ← RIBE.DK(mpk, skid,KU, t).
– Encryption: This algorithm RIBE.Enc is run by the sender. Given the

public key mpk, a public list PL, an identity id, a time slot t and a
message m, this algorithm outputs a ciphertext ct. In formula, ct ←
RIBE.Enc(mpk, id, t,m,PL).

– Decryption: This algorithm RIBE.Enc is run by the receiver. The algorithm
takes as input the master public key mpk, the decryption key sk

(t)
id and the

ciphertext ct, and outputs a message m or a failure symbol ⊥. In formula,
m/⊥ ← RIBE.Dec(mpk, sk

(t)
id , ct).

– Revocation: This algorithm RIBE.R is run by the key authority. Given a
revoked identity id and the time slot t during which id is revoked and a state
st = (KL,PL,RL,KU), this algorithm updates the revocation list RL with
RL ← RL ∪ {(id, t)}. It outputs a new state st′ = (KL,PL,RL,KU).

Correctness. For all (mpk,msk, st) ← RIBE.Setup(1λ, N), all m ∈ M, all iden-
tity id ∈ ID, all time slot t ∈ T , and revocation list RL, for all (skid, st′) ←
RIBE.KG(msk, id, st), st′′ ← RIBE.KU(msk, t, st), and sk

(t)
id ← RIBE.DK(mpk, skid,

KU, t), we have RIBE.Dec(mpk, sk
(t)
id ,RIBE.Enc(mpk, id, t,m,PL)) = m if (id, t) /∈

RL(i.e., id is not revoked at time t) and PL ∈ st′′.
Now we explain how a revocable IBE system works. To setup the system,

the key authority invokes RIBE.Setup to generate master public key mpk, mas-
ter secret key msk and the state st. Then it publishes the public key mpk.
When a user registers in the system with identity id, the key authority invokes
RIBE.KG(msk, id, st) to generate the private key skid for user id. If a user id needs
to be revoked during time slot t, the key authority invokes RIBE.R(id, t, st). Next
it updates the state st. At the beginning of each time slot t, the key authority
might invoke RIBE.KU(msk, t, st) to update keys by updating set KU. Then it
publishes some information about the updated set KU. Meanwhile it may also
publishes some public information PL. During time slot t, when a user wants to
send a message m to another user id, he/she invokes RIBE.Enc(mpk, id, t,m,PL)
to encrypt m to obtain the ciphertext ct, then sends (t, ct) to user id. To decrypt a
ciphertext ct encrypted at time t, the receiver id first invokes RIBE.DK(mpk, skid,

KU, t) to generate its own decryption key sk
(t)
id of time t. The receiver id invokes

RIBE.Dec(mpk, sk
(t)
id , ct) to decrypt the ciphertext and recover the plaintext.
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Remark. In the definition of our RIBE, KL is the key list which stores the
essential information used to generate the update key. PL is a public information
list which is used in the encryption algorithm. In the traditional definition of
RIBE in other works, no PL is defined. However, in our construction, PL will
serves as an essential input to the encryption algorithm and that is the reason
why we define it. Nevertheless, our definition can be regarded as a general one,
while the traditional definition of RIBE can be seen as a special case of PL = ∅.
Security. Now we formalize the security of a revocable IBE. We first consider
three oracles: private key generation oracle KG(·), key update oracle KU and
revocation oracle Rvk(·, ·) which are shown in Table 2. The security of IND-ID-
CPA defines as follows.

Table 2. Three oracles that the adversary can query.

KG(id) :
(skid, st′) ← RIBE.KG(msk, id, st)

Output skid.
Rvk(id, t) :

st′ ← RIBE.R(id, t, st)
st′ := (KL,PL,RL,KU)

Output RL.

KU :
st′ ← RIBE.KU(msk, t, st)
st := st′.
Parse st = (KL,PL,RL,KU)

Output (KU, PL).

Definition 1. Let RIBE = (RIBE.Setup,RIBE.KG, RIBE.KU,RIBE.DK, RIBE.
Enc, RIBE.Dec,RIBE.R) be a revocable IBE scheme. Below describes an experi-
ment between a challenger C and a PPT adversary A.

EXPIND-ID-CPA
A (λ) :

(mpk,msk, st) ← RIBE.Setup(1λ, 1n);
Parse st = (KL,PL,RL,KU);
(M0,M1, id

∗, t∗, stA) ← AKG(·),KU,Rvk(·,·)(mpk);

θ
$← {0, 1};

ct∗ ← RIBE.Enc(mpk, id∗, t∗,Mθ,PL)
θ′ ← AKG(·),KU,Rvk(·,·)(ct∗, stA)
If θ = θ′Return 1; If θ �= θ′Return 0.

The experiment has the following requirements for A.

– The two plaintexts submitted by A have the same length, i.e., |M0| = |M1|.
– The time slot t submitted to KU and Rvk(·, ·) by A is in ascending order.
– If the challenger has published KU at time t, then it is not allowed to query

oracle Rvk(·, t′) with t′ < t.
– If A has queried id∗ to oracle KG(·), then there must be query (id∗, t) to oracle

Rvk(·) satisfies t < t∗, i.e., id∗ must has been revoked before time t∗.

A revocable IBE scheme is IND-ID-CPA secure if for all PPT adversary A, the
following advantage is negligible in the security parameter λ, i.e.,

AdvIND-ID-CPA
RIBE,A (λ) = |Pr[EXPIND-ID-CPA

A (λ) = 1] − 1/2| = negl(λ).
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2.4 Garbled Circuits

A garbled circuits scheme consists of two PPT algorithms (GCircuit,Eval).

– GCircuit(λ,C) → (C̃, {labw,b}w∈inp(C),b∈{0,1}): The algorithm GCircuit takes
a security parameter λ and a circuit C as input. This algorithm outputs
a garbled circuit C̃ and labels {labw,b}w∈inp(C),b∈{0,1} where each labw,b ∈
{0, 1}λ. Here inp(C) represents the set [�] where � is the bit-length of the
input of the circuit C.

– Eval(C̃, {labw,xw
}w∈inp(C)) → y: The algorithm Eval takes as input a garbled

circuit C̃ and a set of label {labw,xw
}w∈inp(C), and it outputs y.

Correctness. In a garbled circuit scheme, for any circuit C and an input x ∈
{0, 1}�, it holds that

Pr[C(x) = Eval(C̃, {labw,xw
}w∈inp(C))] = 1

where (C̃, {labw,b}w∈inp(C),b∈{0,1}) ← GCircuit(1λ,C).
Security. In a garbled circuit scheme, the security means that there is a PPT
simulator Sim such that for any C, x and for any PPT adversary A, the following
advantage of A is negligible in the security parameter λ:

AdvGC
A (λ) = |Pr[A(C̃, {labw,xw}w∈inp(C)) = 1] − Pr[A(Sim(1λ,C(x))) = 1]| = negl(λ),

where (C̃, {labw,b}w∈inp(C),b∈{0,1}) ← GCircuit(1λ,C).

2.5 Computational Diffie-Hellman Problem

Let (G, g, p) ← GGen(1λ) be a group generation algorithm which outputs a cyclic
group G of order p and a generator of G.

Definition 2 [CDH Assumption]. The computational Diffie-Hellman (CDH)
assumption holds w.r.t. GGen, if for any PPT algorithm A its advantage ε in
solving computational Diffie-Hellman (CDH) problem in G is negligible. In for-
mula, Pr

[
A(g, ga, gb) = gab | (G, g, p) ← GGen(1λ); a, b ← Zp

]
= negl(λ).

2.6 Chameleon Encryption

A chameleon encryption scheme has five PPT algorithms CE = (HGen,H,H−1,
HEnc,HDec).

– HGen: The algorithm HGen takes the security parameter λ and a message-
length n as input. This algorithm outputs a key k and a trapdoor t.

– H: The algorithm H takes the key k, a message x ∈ {0, 1}n and a randomness
r as input. This algorithm outputs a hash value h and the length of h is λ.

– H−1: The algorithm H−1 takes a trapdoor t, a previously used message x ∈
{0, 1}n, random coins r and a message x′ ∈ {0, 1}n as input. It outputs r′.

– HEnc: The algorithm HEnc takes a key k, a hash value h, an index i ∈ [n], a
bit b ∈ {0, 1}, and a message m ∈ {0, 1}∗ as input. It outputs a ciphertext ct.
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– HDec: The algorithm HDec takes a key k, a message x ∈ {0, 1}n, a randomness
r and a ciphertext ct as input. It outputs a value m or ⊥.

The chameleon encryption scheme enjoys the following properties:

– Uniformity. For all x, x′ ∈ {0, 1}n, if both r and r′ are chosen uniformly
at random, the two distribution H(k, x; r) and H(k, x′; r′) are statistically
indistinguishable.

– Trapdoor Collisions. For any x, x′ ∈ {0, 1}n and r, if (k, t) ← HGen(1λ, n)
and r′ ← H−1(t, (x, r), x′), then it holds that H(k, x; r) = H(k, x′; r′). More-
over, if r is chosen uniformly and randomly, r′ is statistically close to uniform.

– Correctness. For all x ∈ {0, 1}n, randomness r, index i ∈ [n] and message
m, if (k, t) ← HGen(1λ, n), h ← H(k, x; r) and ct ← HEnc(k, (h, i, xi),m),
then HDec(k, ct, (x, r)) = m

– Security. For a PPT adversary A against a chameleon encryption, consider
the following experiment:

EXPIND-CE
A (λ) :

(k, t) ← HGen(1λ, n).
(x, r, i,m0,m1) ← A(k).

b
$← {0, 1}.

ct ← HEnc(k, (H(k, x; r), i, 1 − xi),mb).
b′ ← A(k, ct, (x, r)).

Output 1 if b = b′ and 0 otherwise.

The security of a chameleon encryption defines as follows: For any PPT
adversary A, the advantage of A in experiment EXPIND-CE

A (λ) satisfies
|Pr[AdvIND-CE

A (λ) = 1] − 1/2| = negl.

In [6], such a chameleon encryption was constructed from the CDH assumption.

3 Idea of Our Revocable IBE Scheme

3.1 Idea of the DG Scheme

In the IBE scheme [6] proposed by Döttling and Garg, say the DG scheme, each
id is an n-bit binary string. In other words, each user can be regarded as a leaf
of a complete binary tree of depth n, which is the length of a user’s identity
id. For each level j ∈ [n] in the tree, the key authority generates a pair of
chameleon encryption key and trapdoor (kj , tdj). As shown in Fig. 1, a leaf v is
attached with a key pair (ekv, dkv), which is the public/secret key of an IND-CPA
secure public-key encryption scheme PKE=(G, E, D), i.e., (ekv, dkv) ← G(1λ). In
addition, a non-leaf node v in the tree is attached with four values: the hash value
hv of this node, the hash value hv||0 of the left child node, the hash value hv||1
of the right child node, a randomness r such that hv = H(k|v|, hv||0||hv||1; rv).
Specially, for |v| = n − 1, (hv||0, hv||1) := (ekv||0, ekv||1). The master public key
of IBE is given by the hash keys (k0, . . . , kn−1) and the hash value hε of the
root. The master secret key is the seed of a pseudorandom function to generate
rv and the trapdoors of the chameleon encryption.
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Key Generation. Each user is assigned to a leaf in the tree according to id.
The secret key is just all the values attached to those nodes on the path from
the root to the leaf. For example, in Fig. 1, if id = 010, then the secret key is
sk010 = ({hε, h0, h1, rε}, {h0, h00, h01, r0}, {h01, ek010, ek011, r01}, dk010).
Encryption. As for encryption, two kinds of circuits are defined.

(1) Q[m](ek) is a circuit with m hardwired and its input is ek. It computes and
outputs the PKE ciphertext of message m under the public-key ek.

(2) P[β ∈ {0, 1}, k, lab](h) is a circuit which hardwires bit β, key k and a serial of
labels lab. It computes and outputs {HEnc(k, (h, j+β·λ, b), labj,b)}j∈[λ],b∈{0,1},
where lab is the short for {labj,b}j∈[λ],b∈{0,1}.

To encrypt a message m under id, the sender generates a series of garbled
circuits from the bottom to the top. Specifically, for level n, it generates Q̃,
the garbled circuit of Q[m], and the corresponding label lab, i.e., (Q̃, lab) ←
GCircuit(1λ,T[m]).
Then, idn, kn−1 and lab are hardwired into circuit Pn−1[idn, kn−1, lab]. Next,
invoke the garbled circuit (P̃n−1, lab

′
) ← GCircuit(1λ, Pn−1[idn, kn−1, lab]).

Let lab := lab
′
. Invoke (P̃n−2, lab

′
) ← GCircuit(1λ, Pn−2[idn−1, kn−2, lab]).

Repeat this procedure and we have (P̃ 0, lab
′
) ← GCircuit(1λ, P 0[id1, k0, lab]).

Recall that lab
′
= {labj,b}j∈[λ],b∈{0,1}. Choose λ labels from lab

′
according to the

λ bits of hε.
The final ciphertext is ct = ({labj,hεj

}j∈[λ], P̃
0, . . . , P̃n−1, T̃).

Fig. 1. The IBE tree of depth n = 3

Decryption. The decryption goes from the top to bottom. It will invoke the
evaluation algorithm Eval of the garbled circuits to obtain chameleon encryption
of labels, and uses the secret key of chameleon encryption scheme to recover the
corresponding label. For the leaf, it will use the decryption algorithm of PKE to
recover the message m.

3.2 Idea of Our Revoked IBE Scheme

Our revoked IBE is based on the original DG scheme. An important obser-
vation of the DG scheme is that among all the elements in the secret key
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Fig. 2. The IBE tree of depth n = 3 when user “000” and “010” has been revoked

skid = ({hv, hv||0, hv||1, rv}v∈V , dkid) of user id, dkid is the most critical element.
Recall that V = {ε, id[1], id[12], . . . , id[12 . . . n−1]} and dkid is the decryption key
of the underlying building block PKE. The sibling of leaf id knows everything
about skid except dkid. This gives us a hint for revocation. To revoke user id,
we can change the decryption key dkid in skid into a new one dk′

id and this fresh
decryption key will not issued to the revoked user id. As long as the essential
element dk′

id is missing, user id will not be able to decrypt anything. Now we
outline how the revocable IBE works.

The tree is updated according to the revoked users.

– If a leaf vid is revoked during time period t, then a new public/secret key pair
will generated with (ek′

id, dk
′
id) ← G(1λ) for this leaf. As a result, hvid

= ekid is
replaced with a fresh value h

(t)
vid := ek′

id. This fresh value will not consistent to
what the father node of vid has. Therefore, we have to change the attachments
of all nodes along the path from the revoked leaf vid to root bottom upward.

– For i from n − 1 down to 0
Let v := vid[12...i]. Choose random coins r

(t)
v ; h

(t)
v := H(h(t)

v||0, h
(t)
v||1, r

(t)
v );

Here h
(t)
v||b := hv||b if h

(t)
v||b is not defined, where b ∈ {0, 1}.

In this way, a new tree is built with root attached with new value
(h(t)

ε , h
(t)
0 , h

(t)
1 , r

(t)
ε ). Note that the hash keys (k0, . . . , kn−1) remain unchanged.

When revocation happens, what a sender does is updating the new hash
value h

(t)
ε , then invoking the encryption algorithm for encryption.

For decryption to go smoothly, the IBE system has to issue updat-
ing keys to users. The updating key include all the information of the
nodes on the paths from revoked leaves to the root, but the new dk

(t)
id

is not issued. In Fig. 2, for example, two users, namely 000 and 010,
are revoked and determine two paths. Then all the nodes along the two
paths are marked with cross. All the nodes are updated with new attach-
ments, but leaf 000 is only attached with a new ek

(t)
000 (without dk

(t)
000) and

leaf 010 is only attached with a new ek
(t)
010 (without dk

(t)
010). The updating
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key are {ε, (h(t)
ε , h

(t)
0 , h

(t)
1 , r

(t)
ε ), 0, (h(t)

0 , h
(t)
00 , h

(t)
01 , r

(t)
0 ), 00, (h(t)

00 , h
(t)
000, h

(t)
001, r

(t)
00 ),

01, (h(t)
01 , h

(t)
010, h

(t)
011, r

(t)
01 ), 000, (h(t)

000 = ek
(t)
000,⊥), 010, (h(t)

010 = ek
(t)
010,⊥)}.

Any legal user is able to update his secret key skid with the new attachments
of nodes along the path from his leaf to the root. For example, the updated
secret key sk

(t)
001 of user 001 is now {ε, (h(t)

ε , h
(t)
0 , h

(t)
1 , r

(t)
ε ), 0, (h(t)

0 , h
(t)
00 , h

(t)
01 , r

(t)
0 ),

00, (h(t)
00 , h

(t)
000, h

(t)
001, r

(t)
00 ), 001, (h001 = ek001, dk001)}. The updated secret key sk

(t)
111

of user 111 is now {ε, (h(t)
ε , h

(t)
0 , h

(t)
1 , r

(t)
ε ), 1, (h1, h10, h11, r1), 11, (h11, h110, h111,

r11), 111, (h111 = ek001, dk111)}.
In this way, any legal user is able to decrypt ciphertexts since he knows

the secret key corresponding to the new tree. Any revoked user id is unable to
implement decryption anymore, since the new dk

(t)
id is missing.

4 Revocable IBE Scheme

In this section, we present our construction of revocable IBE scheme from
chameleon encryption. Let PRF: {0, 1}λ×{0, 1}≤�+n∪{ε} → {0, 1}λ be a pseudo-
random function. Let CE = (HGen,H,H−1,HEnc,HDec) be a chameleon encryp-
tion scheme and PKE = (G,E,D) be an IND-CPA secure public-key encryption
scheme. We denote by id[i] the i-th bit of id and by id[1 · · · i] the first i bits of
id. Define id[1 · · · 0] := ε. We first introduce five subroutines which will be used
repeatedly in our scheme (as shown in Table 3). All of these five subroutines are
run by the key authority. The subroutines NodeGen and LeafGen are invoked by
the key authority in setup algorithm, where NodeGen is used to generate non-leaf
nodes and LeafGen to generate leaves and their parents. Just like [6], given all
chameleon keys, trapdoors, a randomness s, a node v and a length parameter �,
the NodeGen subroutine generates four values stored in node v: the hash value
of the node hv, the hash value of it left-child node hv||0, the hash value of it
right-child node hv||1, and the randomness of this node rv. Given all chameleon
keys kn−1 and trapdoors tdn−1 of the n − 1-th level, a randomness s, a node
v in the n − 1-th level and a length parameter �, the LeafGen subroutine gen-
erates two pairs of public/secret keys (ekv||0, dkv||0), (ekv||1, dkv||1) of the PKE
scheme, and generates the hash value hv and the randomness rv of the node v.
The children of v are two leaves associated by ekv||0 and ekv||1. Each user can
be uniquely represented by a leaf node. The subroutine FindNodes, subroutine
NodeChange and subroutine LeafChange are invoked by the key authority in key
update algorithm. Given a revocation list RL, a time t and the global key list
KL, subroutine FindNodes(RL, t,KL) outputs all leaves which are revoked at time
t and all their ancestor nodes. Given a chameleon key, a chameleon trapdoor, a
node v, two hash values (hv||0, hv||0) of the two children of node v and a random-
ness s, subroutine NodeChange outputs a new hash value and a new randomness
for node v. Given a leaf node v, a time t, a randomness s, subroutine LeafChange
outputs a fresh public key by invoking the key generation algorithm G of PKE.
Construction of RIBE. Now we describe our revocable IBE scheme
(RIBE.Setup, RIBE.KG,RIBE.KU, RIBE.DK,RIBE.Enc,RIBE.Dec,RIBE.R).
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Table 3. Five subroutines run by the key authority.

NodeGen((k0, · · · , kn), (td0, · · · , tdn, s), v ∈ {0, 1}≤n−1 ∪ {ε}, �):
Let i := |v|
hv ← H(ki, 02λ;PRF(s, 0�||v)),
hv||0 ← H(ki+1, 02λ;PRF(s, 0�||v||0)),
hv||1 ← H(ki+1, 02λ;PRF(s, 0�||v||1)).
rv ← H−1(tdi, (02λ,PRF(s, 0�||v)), hv||0||hv||1).
Output (hv, hv||0, hv||1, rv).

LeafGen(kn−1, (tdn−1, s), v ∈ {0, 1}n−1, �):

hv ← H(kn, 02λ;PRF(s, v)),
(ekv||0, dkv||0) ← G(1λ,PRF(s, 0�||v||0)),
(ekv||1, dkv||1) ← G(1λ,PRF(s, 0�||v||1)),
rv ← H−1(tdn−1, (02λ,PRF(s, 0�||v)), ekv||0||ekv||1).
Output ((hv, ekv||0, ekv||1, rv), dkv||0, dkv||1).

FindNodes(RL, t,KL):
Y ← ∅
∀(id, ti) ∈ RL

If ti=t, then add id to Y.
For i = n − 1 to 0: \\ find the ancestors of id ∈ Y.

∀(v, ·, ·) ∈ KL with |v| = i:
If (v||0 ∈ Y) ∨ (v||1 ∈ Y), add v to Y.

Output Y.

NodeChange(k, td, v ∈ {0, 1}≤n−1 ∪ {ε}, hv||0, hv||1, t, s):
h
(t)
v ← H(k, 02λ;PRF(s, t||v)),

r
(t)
v ← H−1(td, (02λ,PRF(s, t||v));hv||0||hv||1).
Output (h(t)

v , hv||0, hv||1,r
(t)
v ).

LeafChange(v ∈ {0, 1}n, t, s):
(ek(t)v , dk

(t)
v ) ← G(1λ,PRF(s, t||v)).

Output (ek(t)v , ⊥).

– Setup RIBE.Setup(1λ, 1n): given a security parameter λ, an integer n where
2n is the maximal number of users that the scheme supports. Define identity
space as ID = {0, 1}n and time space as T = {0, 1}�, and do the following.

1. Sample s
$← {0, 1}λ.

2. For each i ∈ [n], invoke (ki, tdi)
$← HGen(1λ, 2λ).

3. Initialize key list KL := ∅ , public list PL = ∅, key update list KU = ∅ and
revocation list RL := ∅.

4. mpk := (k0, · · · , kn−1, �); st := {KL,PL,RL,KU}; msk := (mpk, td0, · · · ,
tdn−1, s).

5. Output (mpk,msk, st).
– Private Key Generation RIBE.KG(msk, id ∈ {0, 1}n, st)

1. Parse msk = (mpk, td0, · · · , tdn−1, s) and mpk = (k0, · · · , kn−1, �).
2. W := {ε, id[1], · · · , id[1 · · · n − 1]}, where ε is the empty string.
3. For all v ∈ W \ {id[1 · · · n − 1]}:

(hv, hv||0, hv||1, rv) ← NodeGen((k0, · · · , kn−1), (td0, · · · , tdn−1, s), v, �),
KL := KL ∪ {(v, hv, hv||0, hv||1, rv)},
lkv := (hv, hv||0, hv||1, rv).

4. For v = id[1 · · · n − 1]:
(hv, hv||0 = ekv||0, hv||1 = ekv||1, rv, dkv||0, dkv||1) ← LeafGen(kn−1,

(tdn−1, s), v, �),
KL := KL ∪ {(v, hv, ekv||0, ekv||1,rv), (v||0, ekv||0,⊥), (v||1, ekv||1,⊥)},
lkv := (hv, ekv||0, ekv||1, rv).

5. st = {KL,PL,RL,KU} and skid := (t = 0, id, {lkv}v∈W, dkid).
6. Output (skid, st).

– Key Update Generation RIBE.KU(msk, t, st):
1. Parse msk = (mpk, td0, · · · , tdn−1, s) , st = {KL,PL,RL,KU} and mpk =

(k0, · · · , kn−1, �).
2. Y ← FindNodes(RL, t,KL). // Y stores all revoked leaves and their ancestors

3. If Y = ∅, Output(KU,PL) //stay unchanged.
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4. Set key update list KU(t) := ∅.
5. For all node v ∈ Y such that |v| = n: // deal with all leaves in Y

(ek(t)v ,⊥) ← LeafChange(v, t, s),
KU(t) := KU(t) ∪ {(v, ek(t)v ,⊥)}. // new attachments for all leaves in Y

h
(t)
v := ek(t)v .

6. For i = n − 1 to 0: // generate new attachments for all non-leaf nodes in Y

For all node v ∈ Y and |v| = i:
Set j := t, KU(0) := KL.
While(j ≥ 0)

If ∃v||b s.t. (v||b, hv||b, ·, ·, ·) ∈ KU(j),

h
(t)
v||b := hv||b,

Break;
j := j − 1.

(h(t)
v , h

(t)
v||0, h

(t)
v||1,r

(t)
v ) ← NodeChange(ki, tdi, v, h

(t)
v||0, h

(t)
v||1, t, s).

KU(t) := KU(t) ∪ {(v, h
(t)
v , h

(t)
v||0, h

(t)
v||1,r

(t)
v )}.

7. KU := KU ∪ {(t,KU(t))} and PL := PL ∪ {(t, h(t)
ε )}.

8. st := {KL,PL,RL,KU}
9. Output st.

– Decryption Key Generation RIBE.DK(mpk, skid,KU, t):
1. W := {ε, id[1], · · · , id[1 · · · n − 1]}, where ε is the empty string.
2. Parse mpk= (k0, · · · , kn−1, �) and skid = (0, id, {hv, hv||0, hv||1, rv}

v∈W, dkid).
3. From KU retrieve a set Ω := {(̃t,KU(̃t)) | (̃t,KU(̃t)) ∈ KU, 0 ≤ t̃ < t}.
4. For each (̃t,KU(̃t)) ∈ Ω with t̃ in ascending order, does the following:

For i = 0 to n − 1:
v := id[1 · · · i] (Recall id[1 · · · 0] = ε).
If ∃(v, h

(̃t)
v , h

(̃t)
v||0, h

(̃t)
v||1, r

(̃t)
v ) ∈ KU(̃t):

lk(t)v := (h(̃t)
v , h

(̃t)
v||0, h

(̃t)
v||1, r

(̃t)
v ).

5. If ∃(̃t,KU(̃t)) ∈ KU s.t. (id, ek(̃t)v ,⊥) ∈ KU(̃t): \\id is revoked at t̃

Output sk
(t)
id := (t, id, {lk(t)v }v∈W,⊥) .

6. Output sk
(t)
id := (t, id, {lk(t)v }v∈W, dkid)

– Encryption RIBE.Enc(mpk, id, t,m,PL)):
We describe two circuits that will be garbled during the encryption procedure.

• Q[m](ek) : Compute and output E(ek,m).
• P[β ∈ {0, 1}, k, lab](h): Compute and output {HEnc(k, (h, j + β · λ, b),

labj,b)}j∈[λ],b∈{0,1}, where lab is the short for {labj,b}j∈[λ],b∈{0,1}.
Encryption proceeds as follows:
1. Retrieve the last item (̄t, h(̄t)

ε ) from PL. If t < t̄, output ⊥; otherwise
h
(t)
ε := h

(̄t)
ε .

2. Parse mpk= (k0, · · · , kn−1, �).

3. (Q̃, lab) $← GCircuit(1λ,Q[m]).
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4. For i = n − 1 to 0,
(P̃ i, lab

′
) $← GCircuit(1λ,P[id[i + 1], ki, lab]) and set lab := lab

′
.

5. Output ct :=
({

lab
j,h

(t)
ε,j

}

j∈[λ]
, {P̃ 0, · · · , P̃n−1, Q̃}

)
, where h

(t)
ε,j is the jth

bit of h
(t)
ε .

– Decryption RIBE.Dec(mpk, sk
(t)
id , ct)

1. W := {ε, id[1], · · · , id[1 · · · n − 1]}, where ε is the empty string.
2. Parse mpk= (k0, · · · , kn−1, �) and sk

(t)
id = (id, {lk(t)v }v∈W, dkid), where

lk(t)v = (h(t)
v , h

(t)
v||0, h

(t)
v||1, r

(t)
v ).

3. Parse ct :=
({

lab
j,h

(t)
ε,j

}

j∈[λ]
, {P̃ 0, · · · , P̃n−1, Q̃}

)

4. Set y := h
(t)
ε .

5. For i = 0 to n − 1:
Set v := id[1 · · · i] (Recall id[1 · · · 0] = ε);
{cj,b}j∈[λ],b∈{0,1} ← Eval(P̃ i, {labj,yj

}j∈[λ]);
If i �= n − 1, set v′ := id[1 · · · i + 1] and y := h

(t)
v′ , and for each j ∈ [λ],

{labj,yj
}j∈[λ] ← HDec(ki, cj,yj

, (h(t)
v||0||h

(t)
v||1), r

(t)
v ).

If i = n − 1, set y := ekid and for each j ∈ [λ], compute

{labj,yj
}j∈[λ] ← HDec(ki, cj,yj

, (ekv||0||ekv||1) = (h(t)
v||0||h

(t)
v||1), r

(t)
v ).

6. Compute f ← Eval(Q̃, {labj,yj
}j∈[λ]).

7. Output m ← D(dkid, f).
– Revocation RIBE.R(id, t, st):

1. Parse st := {KL,PL,RL,KU}.
2. Update the revocation list by RL := RL ∪ {(id, t)}.

3. Parse ct :=
({

lab
j,h

(t)
ε,j

}

j∈[λ]
, {P̃ 0, · · · , P̃n−1, Q̃}

)
.

4. st := {KL,PL,RL,KU}.
5. Output st.

Remark. It is possible for us to reduce the cost of users’ key updating in our
construction. Now we provide a more efficient variant of decryption key gen-
eration algorithm RIBE.DK’. With this variant algorithm, if a user has already
generated a key sk

(t′)
id at time period t′ where t′ ≤ t, he or she can use sk(t

′)
id as the

input instead of skid and generates the decryption key with lower computational
cost. The algorithm proceeds as follows:
Decryption Key Generation RIBE.DK’(mpk, sk

(t′)
id ,KU, t):

1. W := {ε, id[1], · · · , id[1 · · · n − 1]}, where ε is the empty string.
2. Parse mpk= (k0, · · · , kn−1, �) and sk

(t′)
id = (t′, id, {hv, hv||0, hv||1, rv}v∈W, dkid).

3. If t′ > t, Output ⊥.
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4. If t′ = t, Output sk
(t′)
id .

5. From KU retrieve a set Ω := {(̃t,KU(̃t)) | (̃t,KU(̃t)) ∈ KU, t′ ≤ t̃ < t}.
6. For each (̃t,KU(̃t)) ∈ Ω with t̃ in ascending order, does the following:

For i = 0 to n − 1:
v := id[1 · · · i] (Recall id[1 · · · 0] = ε).
If ∃(v, h

(̃t)
v , h

(̃t)
v||0, h

(̃t)
v||1, r

(̃t)
v ) ∈ KU(̃t):

lk(t)v := (h(̃t)
v , h

(̃t)
v||0, h

(̃t)
v||1, r

(̃t)
v ).

7. If ∃(̃t,KU(̃t)) ∈ KU s.t. (id, ek(̃t)v ,⊥) ∈ KU(̃t): \\id is revoked at t̃

Output sk
(t)
id := (t, id, {lk(t)v }v∈W,⊥).

8. Output sk
(t)
id := (t, id, {lk(t)v }v∈W, dkid).

4.1 Correctness

We first show that our revocable IBE is correct. During the time slot t, the
key updating algorithm RIBE.KU (together with the key generation algorithm
RIBE.KG) uniquely determines a fresh tree of time t. The root of the fresh tree has
attachment (h(t)

ε , h
(t)
0 , h

(t)
1 , r

(t)
ε ). Set W := {ε, id[1], · · · , id[1 · · · n−1]}, where ε is

the empty string. Note that each id uniquely determines a path (from the root of
the tree to the leaf of id). W records all non-leaf nodes on the path. For all nodes
v ∈ W, we have H(k|v|, h

(t)
v||0||h

(t)
v||1; r

(t)
v ) = h

(t)
v , and (h(t)

v||0, h
(t)
v||1) := (ekv||0, ekv||1)

if |v| = n − 1.

Consider the ciphertext ct =
({

lab
�,h

(t)
ε,�

}

�∈[λ]
, {P̃ 0, · · · , P̃n, Q̃}

)
, which is

the output of RIBE.Enc(mpk, id, t,m,PL). Consider the secret key sk
(t)
id := (id,

{lk(t)v }v∈W, dkid), which is the output RIBE.DK. Obviously, sk(t)id is exactly the the
secret key of id in the tree (of time t). As long as the h

(t)
ε used in RIBE.Enc to

generate ct is identical to the h
(t)
ε in lk(t)ε = (h(t)

ε , h
(t)
0 , h

(t)
1 , r

(t)
ε ), the decryption

RIBE.Dec can always recover the plaintext due to the correctness of the DG
scheme.

Below we show the details of the correctness (this analysis is similar to that
in [6]). For all nodes v ∈ W, we have the following facts.

1. {cj,b}j∈[λ],b∈{0,1} := Eval

(
P̃ |v|,

{
lab

j,h
(t)
v,j

}

j∈[λ]

)
= P [id[|v| + 1], k|v|,

{lab′
j,b}j∈[λ],b](h

(t)
v ) = {HEnc(k|v|, (h(t)

v , j+ id[|v|+1] ·λ, b), lab′
j,b)}j∈[λ],b∈{0,1}.

Recall that lab′ := {lab′
j,b}j∈[λ],b∈{0,1} and (lab′, P̃ (|v|+1)) are the output of

GCircuit(1λ,P[id[|v| + 2], k|v|+1, lab
′′]).

2. Due to the correctness of the chameleon encryption, we know that given

(h(t)
v||0, h

(t)
v||1, r

(t)
v ) one can recover

{
lab′

�,h
(t)
v||id[|v|+1],�

}

�∈[λ]

by decrypting

{c
j,h

(t)
v||id[|v|+1],j

}j∈[λ]. And
{
lab′

�,h
(t)
v||id[|v|+1],�

}

�∈[λ]

is the label for the next gar-

bled circuit P̃ (|v|+1).
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3. When |v| = n − 1, we obtain the set of labels
{
labj,ekid,j

}
j∈[λ]

. Recall

that {labj,b}j∈[λ],b∈{0,1} and Q̃ are the output of GCircuit(1λ, Q[m]). And{
labj,ekid,j

}
j∈[λ]

is the result of {labj,b}j∈[λ],b∈{0,1} selected by ekid. Thus,

f := Eval
(
Q̃,

{
labj,ekid,j

}
j∈[λ]

)
= Q[m](ekid) = E(ekid,m).

Due to the correctness of PKE = (G,E,D), given decryption key dkid, one can
always recover the original message m correctly with m ← D(dkid, f).

4.2 Security

In this subsection, we prove that our revocable IBE scheme is IND-ID-CPA
secure. Assume q is a polynomial upper bound for the running-time of an adver-
sary A, and it is also an upper bound for the number of A’s queries (which
contains private key queries, key update queries, and revocation queries).

Theorem 1. Assume that tmax is the size of the time space and 2n be the
maximal number of users. If PRF is a pseudorandom function, the garbled
circuit scheme is secure, the chameleon encryption scheme CE is secure and
PKE = (G,E,D) is IND-CPA secure, the above proposed revocable IBE scheme
is IND-ID-CPA secure. More specifically, for any PPT adversary A issuing at
most q queries, there exist PPT adversaries B1, B2, B3 and B4 such that

AdvIND-ID-CPA
A (λ) ≤ AdvPRF

B1
(λ) + (n + 1) · AdvGC

B2
(λ) + n · λ · AdvCE

B3
(λ)

+(2q + 1) · AdvPKE
B4

(λ). (1)

Proof. Due to the space limitation, we leave the proof in the full version.

5 Performance Analysis of Key Updating

In this section, we analyze the key updating efficiency of our revocable IBE
scheme. Different from an IBE scheme, a revocable IBE scheme has enormous
cost on the publishing updating keys at each time slot. In our RIBE, the number
of updating keys is linear to the number of updated nodes. Therefore, we focus on
the number of updated nodes for the performance. The advantage of our RIBE
lies in the fact that the nodes that needs to updated is only related to the number
Δr of newly revoked users in the past time slot. More precisely, the number of
nodes needs to be updated in each time plot is at most O(Δr(log n − log(Δr))).
If there is no new users revoked in the previous time slot, then key updating is
not necessary at all.

Recall that in the most of RIBE schemes, the size of updating keys is closely
related to the total number r of all the revoked users across all the past slots.
For example, in [2] the size of updated key during each time slot is of order
O(r log (n/r)), where n is the number of users.



Revocable Identity-Based Encryption 281

For simulation, we use Poisson distribution to simulate the number of revoked
users at each time period, where α denotes the expected number of revoked users
in each time slot. We evaluate the number of nodes needing to be updated in
our RIBE and the RIBE in [2]. The simulation results for n = 15 and n = 25
are shown in Figs. 3 and 4 respectively.

Fig. 3. n=15 Fig. 4. n=25
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Abstract. In this paper, we introduce a new cryptographic primitive:
private functional signatures, where functional signing keys skf for func-
tions f derived from master signing key msk which can be used to sign
any message, allow one to sign any message in the range of the underly-
ing function f . Besides, there is an encryption algorithm which takes as
input the master secret key msk to produce a ciphertext cx for message
x. And the signing algorithm applies a signing key skf on the ciphertext
cx to produce a signature σf(x) on the result f(x).

We also formalize the security notions of private functional signa-
tures. Furthermore, we provide a general compiler from any (single-
key) symmetric-key predicate encryption scheme into a single-key pri-
vate functional signature scheme. By instantiating our construction with
schemes for symmetric-key predicate encryption, we obtain private func-
tional signature schemes based on a variety of assumptions (including
the LWE assumption, simple multilinear-maps assumptions, obfuscation
assumptions, and even the existence of any one-way function) offering
various trade-offs between security and efficiency.

Keywords: Functional signature · Functional encryption
Predicate encryption

1 Introduction

While recent ground breaking work has shown how to sign any message in the
range of an arbitrary function by using restricted key that is derived from the
master signing key [BGI14] to work on any plaintext directly, far less is known
about how to achieve such goal when accessing and working on an encrypted
message together with restricted key.

Informally, the problem of how to sign an image resulted from a pre-image
on function f given the encryption of the pre-image and the secondary signing
key for function f , is as follows. Consider the scenario in a clinic with a doctor
c© Springer International Publishing AG, part of Springer Nature 2018
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and a number of lab assistants. The doctor wants to allow his assistants to add
“approval” on the medical reports of his patients and then sign such approved
reports on their behalf only for those medical reports with a certain tag, such as
“signed by the assistant”. Let P be a predicate that outputs 1 on messages with
the proper tag, and 0 on all other messages. In order to delegate the signing
process of this restricted set of messages, doctor would give the assistants a
signing key skf for the following function:

f(m) :=
{

adding Approval on m, P (m) = 1;
⊥, otherwise.

However, considering that the information of patients’ medical reports are
sensitive data, it is not allowed the assistants to have access it firsthand. Instead
of giving the firsthand medical reports m to assistants to work with, doctor
has to encrypt them first and then send the encrypted medical reports cm to
assistants. Now, assistants holding the functional signing key skf and an encryp-
tion of message m, can generate a signature σ for the message f(m) but cannot
learn any additional information about the message m beyond the function value
itself. Moreover, the pair (m,σ) can be published and anyone can check that the
assistants correctly applied f to the original message by verifying that σ is a
signature on the message f(m), which means the signature authenticates the
result of applying f to the original message.

As we all know, in functional signatures (FS) introduced by Boyle et al.
[BGI14] the signing procedure proceeds on the pre-image straightforward while
in our case the pre-image is required not to be shown up as a plaintext but to
be encoded. Therefore, in order to address our problem in the above scenario, in
this paper we define a new primitive called Private Functional Signatures (PFS),
which is able to generate signature for value f(x) by utilizing a functional signing
key skf for f to work on the encryption of x. More specifically, in a PFS scheme,
the authority firstly generates a master signing key msk that can be used to sign
any message, and a public verification key mvk. In addition, there are secondary
functional signing keys skf for functions f derived from msk, which allow one
to sign any message in the range of the underlying function f . Besides, there is
an encryption algorithm which takes as input the master secret key msk and a
plaintext x, and outputs a ciphertext cx. The signing algorithm applies a signing
key skf on the ciphertext cx to produce a signature σf(x) on the result f(x).

We also consider two new properties – namely, function privacy for keys
which intuitively requires that functional signing key reveals no unnecessary
information on its functionality that the signing key used in the signing process is
associated with beyond what is implied by the function value and corresponding
signature in one’s possession, and message privacy for ciphertexts which states
that anyone holding the functional signing key skf and an encryption of some
message m, cannot learn any additional information about the message m other
than the value f(m) and its signature.
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1.1 Our Contributions

In this paper, we define the syntax of private functional signature schemes and
formalize the notions of the security requirement: unforgeability as well as the
efficiency requirement for signatures: succinctness. Besides, we innovatively put
forth two new notions for PFS: function privacy for keys and message privacy for
ciphertexts (see Sect. 3.2 for more details). Then, we propose a general construc-
tion of single-key private functional signature scheme for any class of functions F
from a (single-key) symmetric-key predicate encryption for a larger class of func-
tions F ′, where F ′ contains the function computing the i-th bit of the f ∈ F .
Moreover, our scheme can be instantiated using a variety of existing schemes
based either on the Learning with Errors assumption, on obfuscation assump-
tions, on simple multilinear-maps assumptions, and even on the existence of any
one-way function.

Theorem 1 (Informal). Assuming the existence of a (single-key) symmetric-
key predicate encryption scheme for a class of predicates F ′(as above), there is a
single-key private functional signature scheme for the class of functions F . Note
the scheme has succinct signatures: their size is independent of the size of the
function size, and of the size of the input to the function.

Despite that our scheme can only securely provide a single key, we can repeat
the scheme q times in parallel to obtain a secure scheme against an adversary who
receives q keys, which merely results in the ciphertext size grows linearly with q.
If the single-key PFS is succinct, i.e. the size of the ciphertext is independent of
the size of the circuit, the resulting q-keys PFS scheme is also succinct. Hence,
we mainly focus on the single-key case.

1.2 Related Work

Functional Encryption. Functional encryption (FE), which was formalized
by Boneh et al. in [BSW11], is motivated to realize decrypting the ciphertext
in a more fine-grained manner, allowing tremendous flexibility when accessing
encrypted data. More specifically, in a functional encryption scheme, a trusted
authority holds a master secret key, which allows authority to generate a func-
tional key skf for the function f . Anyone holding the functional key skf and
an encryption cm of some message m, can compute f(m) but cannot learn any
additional information about the message m.

While in our private functional signature scheme, what we realize is to gen-
erate not only the function value f(m) but also the corresponding signature σ
using the functional signing key, which can be considered as the combination
of a functional encryption scheme with a signature scheme – namely, using the
decryption algorithm of FE to obtain the function value first and then signing
on such result to get a signature. From this point of view, our new primitive
PFS is an even stronger notion that integrates both the functionality of FE and
signature in only one building block. On the other hand, by returning back a
signature σ for f(m) which can be seen as a proof to convince any verifier the
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correctness of computation for the result f(m) by verifying that σ is a signature
on the message f(m).

Functional Signature. Functional signatures (FS) introduced by Boyle et al.
[BGI14] is an extension of the classical digital signature, where in addition to a
master signing key that can be used to sign any message, there are secondary
signing keys for functions f (called skf ) derived from the master signing key,
which allow one to produce a signature for any message in the range of f from the
original message. In the literature perspective, our PFS employs an encryption
algorithm to compute a ciphertext of original message, which in turn should be
taken as input to the signing algorithm rather than the original message that is
used in FS.

Besides the unforgeability requirement, Boyle et al. also defined a privacy
notion called function privacy, which captures the idea that the signature should
reveal neither the function f that the secret key used in the signing process
corresponds to, nor the message m that f was applied to. In our PFS, we provide
even stronger notion of privacy: function privacy for keys and message privacy
for ciphertexts respectively, which together imply the so-called function privacy.

1.3 Overview of Our Techniques

In this section, we provide a high-level overview of our techniques. As we point
out in the related work, our PFS can be considered as a combination of a func-
tional encryption scheme with a signature scheme. A natural idea to construct
a PFS would be to integrate the functional secret key skf of FE and the signing
key sik of standard signature scheme as the functional signing key of PFS. How-
ever, such a simple method of combining two kinds of secret keys will lead to
the complete exposure of the real signing key sik. In order to avoid the exposure
of sik in the functional signing key of PFS, we employ the garbled circuit which
is hardwired with sik and performs the signing algorithm of standard signature
scheme.

Concretely, when compute the encryption of a message x, the encrypter firstly
generates a garbled circuit for the (deterministic) signature signing algorithm
S.Sign(sik, ·) with the signing key sik hardcoded in it, meanwhile, she obtains a
set of garbled circuit labels {L0

i , L
1
i }i. In this setting, in order to compute the

signature of f(x), the signer of PFS system who owns the encryption cx and a
signing key skf must obtain the input labels corresponding to f(x), namely, the
labels {Lai

i }i where ai is the i-th bit of f(x).
We can easily find that the functionality of symmetric-key predicate encryp-

tion (PE) is almost what we want, but not sufficient. For simplicity, we prefer
to consider a variant notion of PE (called PE2) that can be simply transformed
from a standard PE. In symmetric-key PE2, the encryption algorithm encrypts a
value x with two messages m0,m1: cx ← PE2(msk, x,m0,m1), where msk is the
master secret key. Then, the key generation algorithm produces a key for a func-
tion f : skf ← PE2.KeyGen(msk, f). Finally, the decryption algorithm evaluating
on cx and skf outputs m0 if f(x) = 0 or outputs m1 if f(x) = 1.
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Now, we describe how the signer gets the label Lai
i corresponding to the

i-th bit of f(x). Firstly, perform PE2.Enc on a pair of messages (L0
i , L

1
i ):

PE2(msk, x, L0
i , L

1
i ), then generate the key corresponding to fi (output the i-th

bit of f on some values): PE2.KeyGen(msk, fi). Finally, the signer runs PE2.Dec
to obtain Lai

i where ai = fi(x). By performing the above process bit by bit,
the signer can naturally get the whole labels of f(x). With these labels and
the garbled circuit corresponding to the signing algorithm, the signer eventually
obtains the signature of f(x).

The security of the PE2 ensures the signer cannot decrypt any other labels,
so she can only obtain the signature of f(x), in addition, the security of the
garbling scheme provides a way of producing an encryption oracle without the
signing key in security proof. In this way, the security reduction of the above
PFS scheme can be easily completed.

1.4 Applications

Privately Search on Encrypted Data with Verifiability. Let us consider
a scenario where a user stores her encrypted files on a service. The user can
then remotely query her data by providing the service with a functional key skf

corresponding to any query f . It seems that FE is sufficient to achieve privately
searching on encrypted data. However, we observe that only when the service
honestly works and returns the corresponding results can the privately search-
ing on encrypted data is achieved. Therefore, we have to provide a verification
mechanism for the results returned by service. Fortunately, by performing our
PFS system which can verify the validity of a message/signature pair returned
by the service via the verification algorithm, the user can be convinced to receive
the right result.

Verifiable Delegation Scheme with Function-Privacy and Input-
Privacy. Another main application of PFS is for verifiable delegation schemes
which need to ensure the privacy of function and input. In this setting, there is
a client who wants to allow a more powerful server to compute a function f on
inputs x both of which are chosen by the client, and be able to verify the result
returned by the server is correct, without revealing function f and input x to
the server. By using our PFS scheme, the client sends the cipertext cx of input
x together with the signing key skf corresponding to f to the server. To prove
y = f(x), the server returns the computation result y as well as the correspond-
ing signature σ, which is a correct result if (y, σ) is verified by the verification
process of PFS. We stress that, due to the function privacy and message privacy
of PFS scheme, the server cannot obtain any information either of function f or
of input x except what the result reveals.
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2 Preliminaries

2.1 Garbled Circuits

Definition 1 (Garbling scheme). A garbling scheme for a family of boolean
circuits C = {C : {0, 1}n → {0, 1}k} is a tuple of PPT algorithms Gb =
(Gb.Garble,Gb.Enc,Gb.Eval) such that

– Gb.Garble(1λ, C) → (Γ, sk) : Takes as input the security parameter λ and a
circuit C ∈ C for some n and k, and outputs the garbled circuit Γ and a secret
key sk.

– Gb.Enc(sk, x) → c : Takes as input x ∈ {0, 1}∗ and outputs an encoding c.
– Gb.Eval(Γ, c) → C(x) : Takes as input a garbled circuit Γ, an encoding c and

outputs a value y which should be C(x).

Correctness. For all sufficiently large security parameters λ, for n = n(λ), k =
k(λ), for all circuits C ∈ C and all x ∈ {0, 1}n,

Pr[(Γ, sk) ← Gb.Garble(1λ, C); c ← Gb.Enc(sk, x);
y ← Gb.Eval(Γ, c) : C(x) = y] = 1 − negl(λ).

Input and Circuit Privacy. Regarding the security of one-time garbled cir-
cuits, we focus on the input privacy, and circuit privacy. Note these two prop-
erties hold with the limitation of one-time evaluation of the circuit, namely the
adversary can receive at most one encoding of an input with regard to a garbled
circuit, and could compromise the security if obtaining more than one encoding.
Below, We provide the one-time security of garbing circuits.

Definition 2 (Input and circuit privacy). A garbling scheme Gb for a family
of boolean circuits C = {C : {0, 1}n → {0, 1}k} is input and circuit private if
there exists a PPT simulator SimGarble, such that for every PPT adversaries A
and D, for all sufficiently large security parameters λ,

| Pr[(x, C, α) ← A(1λ); (Γ, sk) ← Gb.Garble(1λ, C); c ← Gb.Enc(sk, x) : D(α, x, Γ, c) = 1]

− Pr[(x, C, α) ← A(1λ); (Γ̄ , c̄) ← SimGarble(1
λ, C(x), 1|C|, 1|x|) : D(α, x, C, Γ̄ , c̄) = 1]|

= negl(λ),

where n, k, x ∈ {0, 1}n and C ∈ C, and α represents any state information that
A wants to convey to D.

Theorem 2 [Yao82,LP09]. Assuming one-way functions exist, there exists a
Yao (one-time) garbling scheme that is input- and circuit-private for all circuits
over GF(2).

2.2 Symmetric-Key Two-Outcome Predicate Encryption

For our construction, we need to give a slightly modified definition of symmetric-
key predicate encryption which we call symmetric-key two-outcome predicate
encryption. The formal definition of symmetric-key predicate encryption is
referred to Appendix 5.2. We formalize the definition of symmetric-key two-
outcome predicate encryption and the related security notions as follows.
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Definition 3 (Symmetric-Key Two-Outcome Predicate Encryption).
A symmetric-key two-outcome predicate encryption (PE2) for a class of pred-
icates F = {Fl}l∈N represented as boolean circuits with l input bits and
one output bit and an associated message space M is a tuple of algorithms
(PE2.Setup,PE2.KeyGen,PE2.Enc,PE2.Dec) as follows:

– PE2.Setup(1λ) → pmsk : Takes as input a security parameter λ and outputs
a master secret key pmsk.

– PE2.KeyGen(pmsk, f) → skf : Given a master secret key pmsk and a predicate
f ∈ F , outputs a secret key skf corresponding to f .

– PE2.Enc(pmsk, x,m0,m1) → c : Takes as input the master secret key pmsk,
an attribute x ∈ {0, 1}l, for some l, and two messages m0,m1 ∈ M and
outputs a ciphertext c.

– PE2.Dec(skf , c) → m or⊥ : Takes as input a secret key for a predicate and a
ciphertext and outputs m ∈ M or ⊥.

Correctness. For every sufficiently large security parameter λ, all predicates
f ∈ F , all attributes x ∈ {0, 1}l, and all pair of messages m0,m1 ∈ M :

Pr[pmsk ←PE2.Setup(1λ); skf ← PE2.KeyGen(pmsk, f); c ← PE2.Enc(pmsk, x,

m0,m1); m ← PE2.Dec(skf , c) : m = mf(x)] = 1 − negl(λ).

We now define the security for single-key symmetric-key two-outcome predi-
cate encryption. Throughout the paper we regard a pair of attribute and message
as a context. Note we focus on the case that the adversary can only ask a single
key.

Definition 4 (Context hiding (PE2)). Let PE2 be a symmetric-key two-
outcome predicate encryption scheme for the class of predicates F and an asso-
ciated message space M. Let A be a PPT adversary. Consider the following
experiment:

Setup: The challenger runs PE2.Setup(1λ) and keeps pmsk to itself.
Respond the secret key: A gives the predicate f ∈ F , then the challenger
responds with PE2.KeyGen(pmsk, f).
Ciphertext query 1: A can query ciphertexts of some messages at most poly-
nomial times. On the ith ciphertext query, A outputs a tuple (xi ∈ {0, 1}l,m0

i ∈
M,m1

i ∈ M). The challenger responds with PE2.Enc(pmsk, xi,m
0
i ,m

1
i ).

Challenge: A outputs a tuple of (m,m0,m1, x0, x1). The challenger chooses a
random bit b ∈ {0, 1} and responds with

c =

{
PE2.Enc(pmsk, xb,m,mb), if f(xb) = 0,
PE2.Enc(pmsk, xb,mb,m), otherwise.

where f ∈ F is the predicate queried before.
Ciphertext query 2: A adaptively issues additional queries as in Ciphertext
query 1.
Guess: A outputs a guess bit b′.
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The advantage of A is defined as AdvPE2,A = |Pr[b′ = b] − 1/2|. We say the
scheme is single-key context hiding if, for all PPT adversaries A, the advantage
of A in winning the above game is negligible in λ.

Definition 5 (Predicate privacy (PE2)). Let PE2 be a symmetric-key two-
outcome predicate encryption scheme for the class of predicates F and an asso-
ciated message space M. Let A be a PPT adversary. Consider the following
experiment:

Setup: The challenger runs PE2.Setup(1λ) and keeps pmsk to itself.
Ciphertext query 1: A can query ciphertexts of some messages at most poly-
nomial times. On the ith ciphertext query, A outputs a tuple (xi ∈ {0, 1}l,m0

i ∈
M,m1

i ∈ M). The challenger responds with PE2.Enc(pmsk, xi,m
0
i ,m

1
i ).

Challenge: A outputs two predicates f∗
0 , f∗

1 ∈ F such that, for all previous
ciphertext queries xi, f∗

0 (xi) = f∗
1 (xi). The challenger chooses a random bit

b ∈ {0, 1} and responds with PE2.KeyGen(pmsk, f∗
b ).

Ciphertext query 2: A adaptively issues additional queries as in Ciphertext
query 1.
Guess: A outputs a guess bit b′.

The advantage of A is defined as AdvPE2,A = |Pr[b′ = b] − 1/2|. We say the
scheme is predicate private if, for all PPT adversaries A, the advantage of A in
winning the above game is negligible in λ.

Goldwasser et al. [GKP+13] has proven that assuming there is an ABE
scheme for a class of predicates closed under negation, there exists a two-outcome
ABE scheme for the same class of predicates. We can apply the same transforma-
tion to a symmetric-key predicate encryption scheme to obtain a symmetric-key
two-outcome predicate encryption. Due to space constraints, we refer the reader
to [GKP+13] for the concrete techniques of this transformation, and we here
omit the presentation.

3 Private Functional Signatures: Definition and
Construction

We now give a formal definition of a private functional signature scheme, and
explain in more detail the unforgeability, function privacy and message privacy
properties a private functional signature scheme should satisfy.

3.1 Formal Definition

Definition 6 (Private Functional Signature). A private functional sig-
nature scheme (PFS) for a function family F =

{
f : {0, 1}l → {0, 1}n

}
,

where l = l(λ), n = n(λ) consists of algorithms (PFS.Setup,PFS.KeyGen,
PFS.Enc,PFS.Sign,PFS.Verify) :
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– PFS.Setup(1λ) → (msk,mvk) : the setup algorithm takes as input a security
parameter λ and outputs the master secret key msk and the master verification
key mvk.

– PFS.KeyGen(msk, f) → skf : the key generation algorithm takes as input the
master secret key and a function f ∈ F (represented as a circuit), and outputs
a signing key for f .

– PFS.Enc(msk, x) → cx : the encryption algorithm takes as input the master
secret key and a message x ∈ {0, 1}l, and outputs an encryption of x.

– PFS.Sign(skf , cx) → (f(x), σ) : the signing algorithm takes as input the sign-
ing key for a function f ∈ F and an encryption of x, and outputs f(x) and
a signature of f(x).

– PFS.Verify(mvk, x∗, σ) → {0, 1} : the verification algorithm takes as input the
master verification key mvk, a message x∗ and a signature σ, and outputs 1
if the signature is valid.

Correctness. For all f ∈ F , x ∈ {0, 1}l, (msk,mvk) ← PFS.Setup(1λ),
skf ← PFS.KeyGen(msk, f), cx ← PFS.Enc(msk, x), (x∗, σ) ← PFS.Sign(skf , cx),
it holds that PFS.Verify(mvk, x∗, σ) = 1.
Unforgeability. The scheme is single-key unforgeable if the advantage of any
PPT adversary in the following game is negligible:

• The challenger generates (msk,mvk) ← PFS.Setup(1λ), and gives mvk to the
adversary.

• The adversary outputs the function f ∈ F , then the challenger computes
skf ← PFS.KeyGen(msk, f) and returns skf to the adversary.

• The adversary is allowed to query an encryption oracle OEnc and a signing
oracle OSign for at most poly(λ) times. The two oracles are defined as follows:

� OEnc(x): compute cx ← PFS.Enc(msk, x) and output cx.
� OSign(f, x): firstly compute an encryption cx ← PFS.Enc(msk, x) and a

signing key skf ← PFS.KeyGen(msk, f), then generate a signature on
f(x), σ ← PFS.Sign(skf , cx), and output σ.

• The adversary wins the game if it can produce (x̂, σ̂) such that
– PFS.Verify(mvk, x̂, σ̂) = 1.
– there exists no a query x for the OEnc oracle such that x̂ = f(x) for f

which is the function output by adversary in the second step.
– there exists no a (f, x) pair such that (f, x) was a query to the OSign oracle

and x̂ = f(x).

Succinctness. There exists a polynomial p(·) such that for every λ ∈ N, f ∈
F , x ∈ {0, 1}l, it holds with probability 1 over (msk,mvk) ← PFS.Setup(1λ);
skf ← PFS.Key Gen(msk, f); cx ← PFS.Enc(msk, x);σ ← PFS.Sign(skf , cx) that
the resulting signature on f(x) has size |σ| ≤ p(λ, |f(x)|). In particular, the
signature size is independent of the size |x| of the input to the function, and of
the size |f | of a description of the function f .
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3.2 Privacy

In our private functional signature sheme, we discuss two distinct privacy prop-
erties respectively referring to the function and the message. Intuitively, the first
one captures the idea that the signing key skf reveals no unnecessary information
on the function f , which is function privacy for keys. While another property
requires that the encryption cx reveals no information of the underlying mes-
sage x, which we call message privacy for ciphertexts. Formally, the above two
properties are captured by the following definitions.

Definition 7 (Function privacy for keys). The scheme satisfies function
privacy for keys if the advantage of any PPT adversary in the following game is
negligible:

– The challenger firstly generates (msk,mvk) ← PFS.Setup(1λ) and gives mvk
to the adversary.

– The adversary outputs a pair of functions (f0, f1) for which |f0| = |f1|.
– The adversary queries encryptions on the messages (x1, . . . , xk) which satisfy

that f0(xi) = f1(xi) for all i = 1, . . . , k, and receives the encryptions ci ←
PFS.Enc(msk, xi) for i = 1, . . . , k from the challenger. Note that the messages
x1, . . . , xk can be output adaptively.

– The challenger chooses a random bit b ← {0, 1}, then computes sk∗
f ←

PFS.KeyGen (msk, fb) and returns sk∗
f to the adversary.

– The adversary outputs a bit b′, and wins the game if b′ = b.

Definition 8 (Message privacy for ciphertexts). The scheme satisfies mes-
sage privacy for ciphertexts if the advantage of any PPT adversary in the fol-
lowing game is negligible:

– The challenger firstly generates (msk,mvk) ← PFS.Setup(1λ) and gives mvk
to the adversary.

– The adversary outputs a pair of messages (x0, x1) for which |x0| = |x1|.
– The adversary queries signing keys on the functions (f1, . . . , fk) which satisfy

fi(x0) = fi(x1) for all i = 1, . . . , k, then receives the related signing keys
skfi

← PFS.KeyGen(msk, fi) for i = 1, . . . , k from the challenger. Note that
the functions f1, . . . , fk can be output adaptively.

– The challenger chooses a random bit b ← {0, 1}, computes c∗ ←
PFS.Enc(msk, xb) and sends c∗ to the adversary.

– The adversary outputs a bit b′, and wins the game if b′ = b.

We can easily deduce that if a private functional signature scheme satisfies
both the function privacy for keys and the message privacy for ciphertexts, then
the signature of this scheme cannot reveal neither the function f whose corre-
sponding signing key was used in the signing process, nor the message m that f
was applied to.
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4 Construction

In this section, we present our construction of a private functional signature
scheme in detail. Our construction relies on the following three building blocks:

• A two-outcome predicate encryption scheme in symmetric-key setting PE2 =
(PE2.Setup,PE2.KeyGen,PE2.Enc,PE2.Dec).

• A Yao garbling scheme Gb = (Gb.Garble,Gb.Enc,Gb.Eval).
• A deterministic signature scheme S = (S.Gen,S.Sign,S.Verify) with signature

space {0, 1}lsig .

Let g be any one way function, function family F = {f : {0, 1}l →
{0, 1}n}, where l = l(λ), n = n(λ). The construction of PFS = (PFS.Setup,
PFS.KeyGen,PFS.Enc,PFS.Sign,PFS.Verify) proceeds as follows.

– PFS.Setup(1λ) → (msk,mvk) :
Run the setup algorithm for PE2 n times: pmski ← PE2.Setup(1λ) for
i ∈ [n]. Then run the key generation algorithm for signature scheme:
(sik, vk) ← S.Gen(1λ). Output a master secret key msk = (pmsk1, . . . ,
pmskn, sik) and a master verification key mvk = vk.

– PFS.KeyGen(msk, f) → skf :
Let fi(x) is the i-th bit of the computation of f ∈ F on x ∈ {0, 1}l, where i ∈
[n]. Thus, fi : {0, 1}l → {0, 1}. Run the key generation algorithm of PE2 with
different master secret keys for the function fi: skfi

← PE2.KeyGen(pmski, fi)
for i ∈ [n]. Output skf = (skf1 , . . . , skfn

) as the signing key for the function
f .

– PFS.Enc(msk, x) → cx :
Run the Yao garbled circuit generation algorithm to produce a gar-
bled circuit for S’s signing algorithm S.Sign(sik, ·) : {0, 1}n → {0, 1}lsig :
(Γ, {L0

i , L
1
i }n

i=1) ← Gb.Garble(1λ,S.Sign(sik, ·)), where Γ is the garbled cir-
cuit and {L0

i , L
1
i }n

i=1 are the input labels.
Let vk0

i = g(L0
i ), vk1

i = g(L1
i ) for i ∈ [n], set vk := {vk0

i , vk1
i }n

i=1.
Then run encryption algorithm of PE2 with {L0

i , L
1
i }n

i=1 to get ciphertexts
c1, . . . , cn: ci ← PE2.Enc(pmski, x, L0

i , L
1
i ) for i ∈ [n]. Output the ciphertext

cx = (c1, . . . , cn,Γ, vk).
– PFS.Sign(skf , cx) → (f(x), σ) :

Run the PE2 decryption algorithm on the ciphertexts c1, . . . , cn to recover
the corresponding labels: Lai

i ← PE2.Dec(skfi
, ci) for i ∈ [n], where ai is equal

to fi(x1, . . . , xn). Firstly, for i ∈ [n], compute f(x) = a1 . . . an:

ai =

{
0, if g(Lai

i ) = vk0
i ,

1, if g(Lai
i ) = vk1

i .

Then run the garbled circuit evaluation algorithm on the garbled circuit Γ
and the labels Lai

i to compute Gb.Eval(Γ, Lai
1 , . . . , Lan

n ) = S.Sign(sik, a1a2

. . . an) = σ.
Output (f(x), σ).
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– PFS.Verify(mvk, x∗, σ) → {0, 1} :
Run S’s verification algorithm on the pair of (x∗, σ) : S.Verify(vk, x∗, σ) →
{0, 1}.
Output the value of the above verification algorithm.

Correctness. Correctness of our PFS scheme follows directly from the cor-
rectness of the underlying PE2 scheme, the garbling scheme and the signature
scheme.
Succinctness. Succinctness of our private functional signature scheme follows
from the fact that σ = S.Sign(sik, f(x)). That is, the signatures of PFS are
essentially the classical signatures of a standard signature scheme. Thus, the
signature size of our PFS only depends on the size of range of the underly-
ing signature scheme and is independent of the size of the function f and the
input x.

4.1 Unforgeability

In this section, we argue our private functional signature scheme holds the essen-
tial security requirement, namely unforgeability.

Theorem 3. If the signature scheme S is existentially unforgeable under chosen
message attack, and the symmetric-key two-outcome predicate encryption PE2

satisfies context hiding, and the Yao’s garbling scheme Gb is input- and circuit-
private, then PFS as specified above satisfies the unforgeability requirement for
private functional signatures.

Proof. Fix a PPT adversary APFS, and let Q(λ) be a polynomial upper bound
on the number of the queries made by APFS to the oracles OEnc and OSign. Note
that APFS can query a single signing key during the game.

Game 0. ExpG0

PFS,A is the real unforgeability game between the challenger and
APFS.
Game 1. ExpG1

PFS,A is the same as Game 0, except that the way that OSign com-
putes signature on the query (f, x) changes. Specifically, the challenger directly
runs S.Sign with sik to compute the signature: σf(x) ← S.Sign(sik, f(x)), then
returns σf(x) to A.
Game 2. ExpG2

PFS,A is the same as Game 1, except that the ciphertexts of PE2

computed by OEnc change, namely: c̄i ← PE2.Enc(pmpki, x, Lai
i , Lai

i ) for i ∈ [n],
where ai = fi(x), the i-th bit of f(x), and f is the function that APFS queried
for the signing key before. Then set c̄x := (c̄1, . . . , c̄n,Γ, vk).
Game 3. Firstly, let SGb = (SGb

1 ,SGb
2 ) be the simulator for the underlying

garbling scheme for the class of circuits corresponding to S.Sign(sik, ·). ExpG3

PFS,A
is the same as Game 2, except that we employ the simulator SGb instead of the
real garbling algorithm to produce a simulated circuit Γ and the simulated labels
{Li}n

i=1 for every encryption query on x. More precisely, in the OEnc oracle:

1. We run SGb
1 to generate a simulated circuit: (Γ, stateSGb) ← SGb

1 (1λ,
1|S.Sign(sik,·)|).
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2. Then we perform SGb
2 to compute the simulated labels. In detail, OEnc com-

putes the encryption of the query x below:
(a) Firstly, compute the signature of f(x) : σf(x) ← S.Sign(sik, f(x)), where

f is the function that APFS queried for the signing key before.
(b) Then run SGb

2 to compute the simulated labels corresponding to f(x):
{Li}n

i=1 ← SGb
2 (σf(x), 1n, stateSGb).

(c) Next, for i ∈ [n], we compute vk
ai

i = g(Li), vk
1−ai

i = g(ri), where
ai = fi(x), and ri is randomly chosen from {0, 1}|Li|. Set vk :=
{vk

ai

i , vk
1−ai

i }n
i=1.

(d) Now produce the encryption of PE2 with the above simulated labels
{Li}n

i=1: ci ← PE2.Enc(pmpki, x, Li, Li) for i ∈ [n].
3. Finally set cx := (c1, . . . , cn,Γ, vk).

First step: We firstly prove each pair of consecutive games to be computa-
tionally indistinguishable in the following three lemmas: Lemmas 1, 2 and 3 in
Appendix 5.3.
Second step: Now, we prove the advantage for any PPT adversary that wins
in Game 3 is negligible. The proof is given in Appendix 5.4 in detail.
Remark. We stress that if we want a PFS scheme which merely satisfies
the unforgeability requirement, then we can directly replace PE2 with a more
lightweight tool: a two-outcome attribute-based encryption (ABE2) scheme
defined by [GKP+13]. The security of ABE2 ensures that an adversary can
decrypt one of the two messages encrypted in the ciphertext based on the eval-
uation of a predicate f on the attribute, but does not learn anything about the
other message, which is sufficient for the unforgeability proof of a PFS scheme.

4.2 Privacy

According to the construction of our PFS scheme, the ciphertexts of message x
consists of n encryptions of PE2 and a garbled circuit Γ (which is irrelevant to
x). We notice that the message x in our scheme actually acts as the attribute for
n ciphertexts of PE2 scheme. Thus, it is trivial to conclude that context hiding
PE2 certifies the message privacy for ciphertexts of our PFS scheme.

Theorem 4. If the two-outcome predicate encryption PE2 satisfies context hid-
ing, then the above private functional signature scheme holds the property of
message privacy for ciphertexts.

In our PFS scheme, the signing key skf for the function f consists of n related
secret keys skfi

of PE2, where the value of the function fi on a message is the
i-th output of f over the same message. Thus, we can directly deduce that if
the underlying PE2 satisfies predicate privacy, then the signing key of our PFS
scheme holds the function privacy for keys.

Theorem 5. If the two-outcome predicate encryption PE2 satisfies predicate pri-
vacy, then the above private functional signature scheme holds the property of
function privacy for keys.
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4.3 Discussions

We here discuss the instantiations of our PFS scheme. Since garbling schemes and
signature schemes can be constructed from one-way functions, and the under-
lying PE2 can be built from PE which is able to be instantiated from various
assumptions, we conclude that our single-key PFS scheme for all functions can
be instantiated either from LWE assumptions, from obfuscation assumptions,
from simple multilinear-maps assumptions, and even from the existence of any
one-way function.

Although the PFS scheme proposed above is single-key, we can extend it to
a q-keys PFS scheme for any bounded q where the adversary can obtain signing
keys of up to q functions of her choice, by increasing the size of the ciphertexts
linearly with q.

Acknowledgment. This work was supported by National Natural Science Founda-
tion of China [grant number 61472414, 61772514, 61602061], and National Key R&D
Program of China (2017YFB1400700).

5 Appendix

5.1 Signature Schemes

Definition 9 (Signature Scheme). A signature scheme S for a message space
M is a tuple (S.Gen,S.Sign,S.Verify) :

– S.Gen(1λ) → (sik, vk) : Takes as input a security parameter λ, and outputs a
signing and verification key pair (sik, vk).

– S.Sign(sik,m) → σ : Takes as inputs the signing key sik and a message m ∈
M and outputs a string σ which we call the signature of m.

– S.Verify(vk,m, σ) → {0, 1} : Given the verification key vk, a message m, and
signature σ, returns 1 or 0 indicating whether the signature is valid.

Correctness.
∀m ∈ M, (sik, vk) ← S.Gen(1λ), σ ← S.Sign(sik,m),S.Verify(vk,m, σ) → 1.
Unforgeability under chosen message attack.
A signature scheme is unforgeable under chosen message attack if the winning
probability of any PPT adversary in the following game is negligible in the secu-
rity parameter:

• The challenger generates (sik, vk) ← S.Gen(1λ) and gives vk to the adversary.
• The adversary requests signatures from the challenger for a polynomial num-

ber of messages. Once receiving the query m, the challenger computes σ ←
S.Sign(sik,m) and returns σ to the adversary.

• The adversary outputs (m̂, σ̂), and wins if S.Verify(vk, m̂, σ̂) → 1 and the
adversary has not previously queried a signature of m̂ from the challenger.

Lemma 1 [Rom90]. Under the assumption that one-way functions exist, there
exists a signature scheme which is secure against existential forgery under adap-
tive chosen message attacks by polynomial-time algorithms.
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We stress that the definitions of deterministic signature schemes are the same
as signature schemes except that the signing algorithm is deterministic.

5.2 Symmetric-Key Predicate Encryption

We provide the full-fledged definition of predicate encryption in symmetric-key
setting based on [SSW09] with some adaptations, and we present the formal
notions of security for it.

Definition 10 (Symmetric-Key Predicate Encryption). A symmetric-key
predicate encryption (PE) for a class of predicates F = {Fl}l∈N represented as
boolean circuits with l input bits and one output bit and an associated message
space M is a tuple of algorithms (PE.Setup,PE.KeyGen,PE.Enc,PE.Dec) as fol-
lows:

– PE.Setup(1λ) → pmsk : Takes as input a security parameter λ and outputs a
master secret key pmsk.

– PE.KeyGen(pmsk, f) → skf : Given a master secret key pmsk and a predicate
f ∈ F , outputs a secret key skf corresponding to f .

– PE.Enc(pmsk, x,m) → c : Takes as input the master secret key pmsk, an
attribute x ∈ {0, 1}l, and a message m ∈ M and outputs a ciphertext c.

– PE.Dec(skf , c) → m or⊥ : Takes as input a secret key skf for a predicate f
and a ciphertext c and outputs either m ∈ M or ⊥.

Correctness.
For every sufficiently large security parameter λ, all predicates f ∈ F , all
attributes x ∈ {0, 1}l, and all messages m ∈ M :

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

pmsk ← PE.Setup(1λ);
skf ← PE.KeyGen(pmsk, f);
c ← PE.Enc(pmsk, x,m) :

PE.Dec(skf , c) =

{
m, if f(x) = 1,
⊥, otherwise.

⎤
⎥⎥⎥⎥⎥⎥⎦

= 1 − negl(λ).

We now give formal definitions of security for symmetric-key predicate
encryption. Throughout the paper we regard a pair of attribute and message
as a context. Note that we only provide the security definitions for the case
when the adversary can ask a single key because this is all we need for our
results.

Definition 11 (Context hiding (PE)). Let PE be a symmetric-key predicate
encryption scheme for the class of predicates F and an associated message space
M. Let A be a PPT adversary. Consider the following experiment:

Setup: The challenger runs PE.Setup(1λ) and keeps pmsk to itself.
Respond the secret key: A gives the predicate f ∈ F , then the challenger
responds with PE.KeyGen(pmsk, f).
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Ciphertext query 1: A can query ciphertexts of some messages at most polyno-
mial times. On the ith ciphertext query, A outputs a context (xi ∈ {0, 1}l,mi ∈
M). The challenger responds with PE.Enc(pmsk, xi,mi).
Challenge: A outputs two tuples (x∗

0,m
∗
0) and (x∗

1,m
∗
1) where x∗

0, x
∗
1 ∈ {0, 1}l

and satisfies f(x∗
0) = f(x∗

1) = 0 for the previous secret key query f , and
m∗

0,m
∗
1 ∈ M. The challenger chooses a random bit b ∈ {0, 1} and responds

with PE.Enc(pmsk, x∗
b ,m

∗
b).

Ciphertext query 2: A adaptively issues additional queries as in Ciphertext
query 1.
Guess: A outputs a guess bit b′.

The advantage of A is defined as AdvPE,A = |Pr[b′ = b] − 1/2|.
We say the scheme is single-key context hiding if, for all PPT adversaries

A, the advantage of A in winning the above game is negligible in λ.

Definition 12 (Predicate privacy (PE)). Let PE be a symmetric-key predi-
cate encryption scheme for the class of predicates F and an associated message
space M. Let A be a PPT adversary. Consider the following experiment:

Setup: The challenger runs PE.Setup(1λ) and keeps pmsk to itself.
Ciphertext query 1: A can query ciphertexts of some messages at most polyno-
mial times. On the ith ciphertext query, A outputs a context (xi ∈ {0, 1}l,mi ∈
M). The challenger responds with PE.Enc(pmsk, xi,mi).
Challenge: A outputs two predicates f∗

0 , f∗
1 ∈ F such that, for all previous

ciphertext queries xi, f∗
0 (xi) = f∗

1 (xi). The challenger chooses a random bit
b ∈ {0, 1} and responds with PE.KeyGen(pmsk, f∗

b ).
Ciphertext query 2: A adaptively issues additional queries as in Ciphertext
query 1.
Guess: A outputs a guess bit b′.

The advantage of A is defined as AdvPE,A = |Pr[b′ = b] − 1/2|.
We say the scheme is predicate private if, for all PPT adversaries A, the

advantage of A in winning the above game is negligible in λ.

According to the results of [BS15], we conclude that (single-key) symmetric-
key predicate encryption schemes for all functions can be obtained either from
LWE assumptions, from obfuscation assumptions, from simple multilinear-maps
assumptions, and even from the existence of any one-way function (offering var-
ious trade-offs between security and efficiency).

5.3 Proofs in the First Step

Lemma 1. Game 0 and Game 1 are identical.

Despite that the processes are different, both the signature oracles OSign in
Game 0 and Game 1 output the deterministic signature of f(x) on each query
(f, x). Hence, Game 0 and Game 1 are identical.
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Lemma 2. Assuming the underlying PE2 scheme is context hiding, Game 1 and
Game 2 are computationally indistinguishable.

Proof. In Game 1 and Game 2, there are n PE2 encryptions, each with a pair
of independent PE2 keys. To prove Game 1 and Game 2 are computationally
indistinguishable, we firstly prove that they are computationally indistinguish-
able with only one of these encryption. In detail, the argument proceeds in a
standard way with n hybrids, where the hybrid i has the first i ciphertexts as in
Game 1 and the rest n−i as in Game 2, where i = 0, . . . , n. In this setting, hybrid
0 corresponds to Game 2 and Hybrid n corresponds to Game 1. We now firstly
prove that the adjacent hybrids are computationally indistinguishable. Suppose
a PPT adversary A can distinguish Hybrid k − 1 and Hybrid k for k ∈ [n], then
we can use A to construct a PPT adversary BPE2 to break the security of PE2

as follows.

BPE2(1
λ) :

Public parameters. PE2 challenger generates pmsk∗, B views pmsk∗ as
pmskk (Note B can not get pmsk∗). For i ∈ [n]\{k}, B firstly gener-
ates pmski ← PE2.Setup(1λ), then run S.Gen(1λ) → (sik, vk). Set msk :=
(pmsk1, . . . , pmskk−1, pmskk+1, . . . , pmskm),mvk := vk, and give mvk to A.

Private key query. When A queries the signing key for the function f , B
firstly queries PE2 challenger for skfk

, then for i ∈ [n]\{k}, generate skfi
←

PE2.KeyGen(pmski, fi), finally set skf := (skf1 , . . . , skfn
), and return skf to

A.
Encryption queries. A can adaptively query the encryptions for some mes-

sages for Q(λ) times. When receiving the query x from A, BPE2 proceeds the
computations below.
1. Compute (Γ, {L0

i , L
1
i }n

i=1) ← Gb.Garble(1λ,S.Sign(sik, ·)).
2. Let vk0

i = g(L0
i ), vk1

i = g(L1
i ) for i ∈ [n]. Set vk := {vk0

i , vk1
i }n

i=1.
3. Let ai = fi(x), for i ∈ [n], where f is the function that A queried for the

signing key before. Then set m := Lak

k ,m0 := Lak

k ,m1 := L1−ak

k , x0 :=
x, x1 = x, and give the tuple (m,m0,m1, x0, x1) to PE2 challenger.

4. PE2 challenger returns the challenge ciphertext c∗ corresponding to
either m0 or m1. Firstly set ck := c∗, then for i ∈ [1, k − 1], com-
pute ci ← PE2.Enc.(pmski, x, L0

i , L
1
i ); for i ∈ [k + 1, n], compute ci ←

PE2.Enc.(pmski, x, Lai
i , Lai

i ).
5. Set cx := (c1, . . . , ck−1, c

∗, ck+1, . . . , cn,Γ, vk), and return cx to A.
Signature queries. A can adaptively query Q(λ) numbers of signatures. When

B receives the query (f, x) from A, it firstly computes the value f(x), then
generates σf(x) ← S.Sign(sik, f(x)), and returns σf(x) to A.

Forge. Finally, A outputs a signature (x̂, σ̂). If it is a forge for PFS, outputs 1,
and outputs 0 if not.

We notice that when c∗ is the encryption corresponding to m0, the view of A
is as in Hybrid k, when c∗ is the encryption corresponding to m1, the view of
A is as in Hybrid k − 1. Thus, the advantage of BPE2 to break PE2’s security is
the same as A’s advantage to distinguish Hybrid k − 1 and Hybrid k. Since we
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have assumed the underlying PE2 scheme is plaintext privacy, A can distinguish
Hybrid k − 1 and Hybrid k only with a negligible probability ε(1λ). According
to the hybrid argument, for any PPT adversary, the maximal probability to
successfully distinguish Game 1 (Hybrid n) and Game 2 (Hybrid 0) is n · ε(1λ),
which is also a negligible probability. �	
Lemma 3. Assuming the underlying garbling scheme is circuit- and input-
private, Game 2 and Game 3 are computationally indistinguishable.

Proof. Suppose a PPT adversary A can distinguish Game 2 and Game 3, then
use A to construct a PPT adversary B to break the security of the garbling
scheme as follows.

BGb(1λ) :
Public parameters. BGb generates the master keys.

B firstly generates pmski ← PE2.Setup(1λ) for i ∈ [n], then generates
(sik, vk) ← S.Gen(1λ). Set msk := pmsk1, . . . , pmskn, sik,mvk := vk, and give
mvk to A.

Private key query. When A queries the signing key for the function f , BGb com-
putes skfi

← PE2.KeyGen(pmski, fi) for i ∈ [n]. Set skf := (skf1 , . . . , skfn
),

then return skf to A.
Encryption queries. A can adaptively query the encryptions for some messages

for Q(λ) times. When BGb receives the query x from A, it proceeds as follows:
1. BGb provides a circuit C(·) := S.Sign(sik, ·), then receives a garbled circuit

Γ∗ which could be output either of the real algorithm Gb.Garble or of
simulator SGb

1 .
2. BGb queries f(x) then receives a set of labels {L∗

i }n
i=1, which could be the

output either of the real algorithm Gb.Enc or of the simulator SGb
2 .

3. For i ∈ [n], let vkai
i = g(L∗

i ), vk1−ai
i = g(r∗

i ), where r∗
i is randomly chosen

from {0, 1}|L∗
i |, ai = fi(x). Set vk∗ := {vkai

i , vk1−ai
i }n

i=1.
4. Compute c∗ = ({PE2.Enc(pmpki, (x,L∗

i , L
∗
i ))}n

i=1,Γ
∗, vk∗), then return c∗

to A.
Signature queries. A can adaptively query Q(λ) numbers of signatures. When

B receives the query (f, x) from A, it firstly computes the value f(x), then
computes σf(x) ← S.Sign(sik, f(x)), and returns σf(x) to A.

Forge. Finally, A outputs a signature (x̂, σ̂). If it is a forge for PFS, outputs 1,
and outputs 0 if not.

We notice that if (Γ∗, {L∗
i }n

i=1) are outputs of the real garbling scheme, the view
of A is as in Game 2, else if (Γ∗, {L∗

i }n
i=1) are outputs of the SimGarble, the view

of A is as in Game 3. Thus, if A can distinguish Game 2 and Game 3 with
non-negligible probability, BGb is able to output the correct decision with non-
negligible probability. Since we have assumed the underlying garbling scheme is
circuit- and input-private, this is not the case. �	
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5.4 Proof in the Second Step

We use APFS to construct an adversary AS such that, if APFS wins in Game 3
with non-negligible probability, then AS breaks the underlying signature scheme
S, which is assumed to be secure against chosen message attack.

Bunforge
S (1λ) :

Public parameters. B firstly gets verification key vk from the challenger of
S, then computes pmski ← PE2.Setup(1λ) for i ∈ [n]. Set msk := pmsk1, . . . ,
pmskn,mvk := vk, and give mvk to AS.

Private key query. When AS queries the signing key for the function f ,
B computes skfi

← PE2.KeyGen(pmski, fi) for i ∈ [n], then sets skf :=
(skf1 , . . . , skfn

) and returns skf to AS.
Encryption queries. A can adaptively query the encryptions for some messages

for Q(λ) times. When receiving the query x from AS, B proceeds as follows.
1. Use SGb

1 to simulate the garbled circuit: (Γ, stateSGb) ← SGb
1 (1λ, 1|C|).

2. Query the challenger of S for the signature on f(x) and receive back
σf(x), where f is the function that A queried for the signing key before,
then run the simulator SGb

2 to compute the simulated labels: {L̄i}n
i=1 ←

SGb
2 (σf(x), 1|f(x)|, stateSGb).

3. For i ∈ [n], compute vk
ai

i = g(Li), vk
1−ai

i = g(ri), where ri is randomly
chosen from {0, 1}|Li|, ai = fi(x), then set vk := {vk

ai

i , vk
1−ai

i }n
i=1.

4. Produce encryptions of PE2: ci ← PE2.Enc(pmpki, x, Li, Li) for i ∈ [n].
Set cx := (c1, . . . , cn,Γ, vk) and return cx to AS.

Signature queries. A can adaptively query Q(λ) numbers of signatures. When
B receives the query (f, x) from AS, it firstly computes the value f(x), then
queries the challenger of S for signature of f(x). Once receiving back σf(x),
B returns σf(x) to AS.

Forge. Finally, AS outputs a pair (x̂, σ̂), if it is a forge for PFS, then B returns
(x̂, σ̂) as a forge for the signature scheme S.

Obviously, B simulates the same environment for AS perfectly as in the Game
3. Thus, if AS produces a forgery in the Game 3 with non-negligible probability,
then B successfully forges in the underlying signature scheme with non-negligible
probability. But, this is cannot be the case, since we have assumed that S is the
existentially unforgeable against chosen-message attack. From the above discus-
sion and Lemmas 1, 2 and 3, we finally draw the conclusion of Theorem 3 thus
complete the proof. �	
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Abstract. Abusing anonymity has become a severe threat for anony-
mous communication system. Auditing and further tracing the identity
of illegal users become an urgent requirement. Although a large body
of anonymous communication mechanisms have been proposed, there
is almost no research on auditing and supervising. In this paper, we
propose a general construction of linkable group signature to achieve
the anonymity, auditing and tracing functions for communication sender
simultaneously. The general framework is constructed by using basic
cryptography modules of blind signature, public key encryption, trap-
door indicative commitment and signature of knowledge. Furthermore,
we first formally define a new concept called trapdoor indicative commit-
ment, which helps to determine whether two given signatures are signed
by the same member without opening signatures. Finally, we present an
efficient linkable group signature instance. Performance analysis shows
that our instance requires less computation and shorter signature length,
compared with related works, making it suitable for practical applica-
tions.

Keywords: Linkable group signature
Trapdoor indicative commitment · Blind signature
Signature of knowledge

1 Introduction

With the rapid popularity of network applications, more and more people have
concerns on their privacy during communication. Being a main tool to protect
anonymity, anonymous communication has received extensive attentions. Anony-
mous communication is a protocol that makes the eavesdropper incapable to
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obtain or infer the relationship and content between two communication par-
ties by taking a series of measures to conceal the communication relationship.
Anonymous communication technology is widely used in the situation of requir-
ing to protect users’ privacy, such as electronic cash, anonymous e-mail, online
anonymous voting, electronic auction and many other activities.

The concept of anonymous communication was first proposed by David
Chaum in 1981 [11]. He proposed an anonymous communication algorithm based
on the Mix-Net. Since then, various anonymous communication systems have
been emerged. These systems can be mainly divided into two major types accord-
ing to the implementation technology: anonymous communication system based
on rerouting mechanism (including Anonymizer [5], Onion Routing [23], Crowds
[24], Tor [12]) and anonymous communication system based on non-rerouting
mechanism (including DC-Net [9], broadcast [14], ring signature [17], group sig-
nature [26]). Depending on the information to be hidden, there are three types of
anonymous protection: sender anonymity, receiver anonymity, and unlinkability
of sender and receiver. The current research in our paper mainly focuses on the
sender anonymous service.

Group signature, which was first introduced by Chaum and Van Heyst in 1991
[10], also is a technical method to protect sender anonymity in the anonymous
communication system. It allows group members to sign messages on behalf of
a group without revealing any identity information about the members except
for group manager. As we all know, in some anonymous communication circum-
stances such as anonymous credential or electronic cash system, a large number of
illegal users who abused the network are always existing, and the corresponding
illegal behavior needs to be supervised. But how to judge whether an anony-
mous sender is an illegal user? Clearly, a natural way to realize this requirement
can be operated by the group manager using group signature, who can, given
two signatures, open their identities and decide whether they are generated by
the same signer. But, obviously, it is not the perfect approach to this require-
ment. Thus, designing a group signature mechanism that possesses the ability of
auditing different signatures without opening signers’ identities is a meaningful
research.

Compared to group signature, linkable group signature (LGS) additionally
allows an authority to determine if two given signatures are signed by the same
group member without opening the signatures. In 1999, Nakanishi et al. [21]
first proposed the concept of linkable group signature, and applied it in secret
voting protocol to prevent a single person from casting multiple votes. But this
proposed scheme requires no any reliable authority, which couldn’t apply to all
realistic scenarios, especially when some authorities are required to participate.
Besides the authority-free linking approaches, Manulis et al. [20] proposed a
linkable democratic group signature scheme based on the idea of democratic
group signature to achieve higher group member anonymity. But this proposed
scheme needs assigning a unique pseudonym to every group member used for
communicating with the non-member verifier, which will be a huge calculation
when encountering a large group. Afterward, Hwang et al. [16] and Slamanig
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et al. [25] separately constructed a group signature scheme supporting so-called
controllable linkability. In these proposed schemes, a designated linking authority
is added similar to the position of issuer and opener, which is able to decide
whether two given signatures have been issued by the same unknown signer
using the linking key. But in this new mechanism of controllable linkability, the
signing keys of group members are generated by the issuer instead of themselves,
which makes the anonymity property become controllable anonymity rather than
full anonymity. What’s worse, the above proposed schemes only support the
construction based on bilinear pairing or in random oracle. It still remains a
significant challenge to design a generic contribution of linkable group signature
with high security and strong availability.

1.1 Our Contribution

To achieve the auditing and supervising functions for anonymous communication
on the basis of preserving sender’s anonymity, we propose a generic construction
and specific instance of linkable group signature. The contributions of this work
can be summarized as follows.

– We formally refine the notion of linkable group signature and its secu-
rity model. The proposed LGS scheme contains four entities: user, registra-
tion manager, auditing manager and supervision manager. It can effectively
achieve auditing and supervising functions and solve the centralized power of
traditional group manager through separating manager’s ability in this LGS
scheme. Our scheme achieves the security property of full-anonymity, linkable
and full-traceability.

– We present a generic construction of linkable group signature scheme using
basic cryptography modules, including blind signature, public key encryption,
trapdoor indicative commitment and signature of knowledge. Any cryptog-
raphy scheme of these building blocks which meets the pre-defined security
requirements can be combined into a linkable group signature scheme.

– We construct an efficient linkable group signature instance based on the gen-
eral framework and underlying building blocks. This new instance possesses
high security and strong availability. Meanwhile, this process is also a refer-
ence for constructing other LGS instances.

– As a main building block for generic construction, we define a new concept of
trapdoor indicative commitment. It operates against two given commitments,
allowing only authority with trapdoor key to determine whether the two
committed secret values are equal without opening the commitments. The
indicative property is reflected on the output result of 1 or 0.

1.2 Related Work

Anonymous communication, while protecting users’ anonymity, also provide
attackers with the opportunity to use anonymous technology for illegal activ-
ities. Therefore, tracking the identity of malicious user is particularly important.
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As we all know, there have been many mechanisms to implement the sender
anonymity protection. For example, the typical rerouting mechanism represented
by Mix-Net [11], Anonymizer [5], Onion Routing [23] and Crowds [24], and the
typical cryptographic mechanism represented by ring signature [17], group sig-
nature [26], democratic group signature [19] and ad-hoc group signature [13].
Among them, the rerouting mechanism only provides anonymity property with-
out the property of authentication; the ring signature, democratic group signa-
ture and ad-hoc group signature could provide both anonymous and authenti-
cation functions at the same time, but no tracking function is supported when
illegal user exists; the group signature can further implement the operation of
anonymity, authentication, and tracking simultaneously. But how to find illegal
users through audit operations, and then discover the user’s identity to pre-
vent the network abuse? There has not been perfect solution to this problem in
existing work at present.

As indicated above, the concept of group signature was introduced by Chaum
and van Heyst [10], and they also gave the first realizations. Since then, many
other improved schemes were proposed by Pedersen [22] and Camenisch [8]. In
2003, Bellare et al. [2] defined the security requirements of group signature and
presented a security model with full traceability and full anonymity properties
known as BMW security model. Then they strengthened the security model to
include dynamic enrollment of members in 2005 [3]. During that period, Boneh et
al. [4] designed a short group signature in the random oracle model, using a vari-
ant of the security definition of BMW model. Moreover, Groth [15] constructed a
group signature scheme using efficient zero-knowledge proofs for bilinear groups
in the standard model, where each group contains a constant number of group
members. In addition to these schemes, lattice-based group signature scheme
[18] and attribute-based group signature construction [1] were also proposed.

1.3 Paper Organization

The rest of this paper is organized as follows. In Sect. 2, we formalize the def-
inition of trapdoor indicative commitment and the security model. In Sect. 3,
we formalize the definition of linkable group signature and the security model.
In Sect. 4, we present a generic construction of LGS using basic building blocks
and analyze its security. In Sect. 5, we construct a specific LGS instance based
on the proposed generic framework. Finally, in Sect. 6, we conclude this paper.

2 Trapdoor Indicative Commitment

Trapdoor indicative commitment is a new concept we first proposed, which also
is a main building block for generic construction of linkable group signature.
It operates against any two commitments, allowing only user with trapdoor
information can determine whether the two committed secret values are equal
without opening the commitments. The indicative property of this new concept
is reflected on the output result of 1 or 0.
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Trapdoor indicative commitment is a special commitment protocol. We give
the formal definition of trapdoor indicative commitment according to the first
definition of commitment given by Brassard et al. [6].

Definition 1 (Trapdoor Indicative Commitment). A trapdoor indicative
commitment protocol consists of three polynomial time algorithms: key generation
TKeyGen, commit TCom, and indicate TIndic.

(paramic, skic) ← TKeyGen(1k). On input a security parameter 1k, outputs
public parameter paramic and trapdoor key skic.

Cic ← TCom(paramic, s), C ′
ic ← TCom(paramic, s

′). On input public
parameter paramic and committed value s,s′, outputs the commitments Cic =
TCom(paramic, s), C ′

ic = TCom(paramic, s
′).

1/0 ← TIndic(skic, Cic, C
′
ic). On input trapdoor key skic and two commit-

ments Cic, C
′
ic, this algorithm outputs 1 if and only if the corresponding two

committed secret values s, s′ of Cic, C
′
ic are equal, otherwise outputs 0.

Refer to the general commitment protocol, trapdoor indicative commitment
should satisfy the security property of hiding [6]. In addition to that, it should
also satisfy the security property of trapdoor indication.

Hiding. Hiding property means that any malicious recipient can not
obtain any information about the committed secret values during the com-
mitment period. Equivalent to say, for any two committed values s, s′, and
any probabilistic polynomial-time adversary A, Cic generated by the algo-
rithm Cic ← TCom(paramic, s) and C ′

ic generated by the algorithm C ′
ic ←

TCom(paramic, s
′) are indistinguishable. A trapdoor indicative commitment has

the secure property of hiding if for any probabilistic polynomial-time adversary
A, its advantage Adv(A) is negligible in the following experiment.

– Setup. Challenger runs TKeyGen algorithm, outputs public parameters
paramic to A.

– Challenge. A chooses two committed values (s0, s1) of the same length
and sends them to commit oracle machine. The commit oracle machine
chooses a bit b ∈ {0, 1} randomly, then runs TCom algorithm C∗

ic ←
TCom(paramic, sb), and sends the result C∗

ic to A.
– Guess. A outputs a bit b′ ∈ {0, 1} as a guess of b.

Adversary A wins the game if b′ = b. The advantage of A is defined as
Adv(A) = |Pr[b′ = b] − 1/2|.

Trapdoor Indication. Trapdoor Indication property means that only user
with trapdoor information can determine whether the corresponding two com-
mitted secret values are equal without opening the commitments. Equivalent
to say, for any two committed values s, s′, Cic, C

′
ic generated by the algorithm

TCom, when owning the trapdoor key skic, the following formula holds with
overwhelming probability

TIndic(skic, Cic, C
′
ic) =

{
1, s = s′

0, others
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A trapdoor indicative commitment has the secure property of trapdoor indica-
tion if for any probabilistic polynomial-time adversary A, its advantage Adv(A)
is negligible in the following experiment.

– Setup. Challenger runs TKeyGen algorithm, outputs public parameters
paramic to A.

– Challenge. Challenger chooses two committed values (s∗, s′∗) of the same
length and runs TCom algorithm C∗

ic ← TCom(paramic, s
∗), C ′∗

ic ← TCom
(paramic, s

′∗), and sends commitments C∗
ic, C

′∗
ic to A.

– Query. During this phase, A makes a polynomial bounded number of queries
to indicate oracle machine. After given queried commitments (Cic, C

′
ic), the

indicate oracle machine runs algorithm TIndic and sends the result to A.
The only restriction is that adversary A is not allowed to make a indicate
query for (C∗

ic, C
′∗
ic ) nor (C∗

ic, ∗) nor (∗, C ′∗
ic ).

– Guess. A outputs a bit b ∈ {0, 1} as a guess of the indicative result.

Adversary A wins the game if (1) b = 0 when s∗ = s′∗; (2) b = 1 when
s∗ �= s′∗. The advantage of A is defined as Adv(A) = 1

2 Pr[b = 0|s∗ = s′∗] +
1
2 Pr[b = 1|s∗ �= s′∗].

3 Linkable Group Signature

This section first refines the formal definition of linkable group signature, and
then gives the security model.

3.1 System Model

A linkable group signature scheme contains four entities: user, registration man-
ager, auditing manager and supervision manager. The user first registers with
registration manager and then performs an group signature operation. After
given signatures, the auditing manager can determine whether these signatures
from the same user, the supervision manager can further trace to the user’s
identity.

Definition 2 (Linkable group signature). A linkable group signature scheme
(LGS) consists of the following six algorithms: setup Setup, join Join, group
signature GSig, verify GV er, link Link and trace Trace.

(GP,RSK,LSK, TSK) ← Setup(1k): On input a security parameter 1k,
the registration manager, auditing manager and supervision manager run
G(1k) respectively, generate the register key pair (RPK,RSK), link key pair
(LPK,LSK) and trace key pair (TPK, TSK). The system public parameter
GP = (RPK, LPK, TPK).
Cert ← Join(< U(USK,GP ), RM(RSK) >): The Join algorithm is an inter-
active protocol which user U and registration manager RM engaged in.
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– Given system public parameters GP , user U generates (UPK,USK) and
registration parameters γ, then outputs UPK and γ to registration manager
RM ;

– Given user’s public key UPK and registration parameters γ, registration
manager RM generates user’s certificate Cert, then outputs Cert to the user
U . At the same time, record the user identity (UPK,Cert) in the registration
list C.

σ ← GSig(GP,USK,Cert,m): Suppose m ∈ {0, 1}∗. On input the system pub-
lic parameters GP and user’s private key USK, certificate Cert and message m,
outputs the group signature σ.
1/0 ← GV er(GP,m, σ): On input the system public parameters GP , message m
and group signature σ, outputs 1 if and only if the signature is valid, otherwise
outputs 0.
1/0 ← Link(GP,LSK, (m,σ), (m′, σ′)): The auditing manager makes judgment
operation using link private key LSK. On input two valid message-signature
pairs (m,σ), (m′, σ′), outputs 1 if and only if the two signatures come from the
same user, otherwise outputs 0.
(UPK,Cert) ← Trace(GP, TSK, (m,σ)): The supervision manager makes trac-
ing operation using trace private key TSK. On input the valid message-signature
pair (m,σ), outputs the registered user’s public key UPK and certificate Cert.

3.2 Security Definitions

Since the group signature introduced by Chaum and Van Heyst, some secu-
rity requirements have been introduced, such as unforgeability, traceability,
anonymity, unlinkability, exculpability, coalition resistance and framing resis-
tance. However, these requirements are unformalized and overlapping, where
the precise meaning and mutual relationship are not clear. In 2003, Bellare et al.
[2] formulated two core requirements of group signature, called full-anonymity
and full-traceability, making all the other existing requirements are implied by
them. We follow this formal definition of group signature to give a formal defi-
nition of the linkable group signature. A secure linkable group signature scheme
should satisfy the following properties: correctness, full-anonymity, linkability
and full-traceability.

Correctness. An LGS scheme is correct if

(1) Pr[GP ← Setup(1k);σ ← GSig(GP,USK,Cert,m) : GV er(GP,m, σ) =
1] = 1 − ε(λ);

(2) Pr[GP ← Setup(1k);σ ← GSig(GP,USK,Cert,m), σ′ ← GSig(GP,
USK,Cert′,m′), GV er(GP,m, σ) = 1, GV er(GP,m′, σ′) = 1 :
Link(GP,LSK, (m,σ), (m′, σ′) = 1] = 1 − ε(λ);

(3) Pr[GP ← Setup(1k);σ ← GSig(GP,USK,Cert,m), GV er(GP,m, σ) = 1 :
Trace(GP, TSK, σ) = UPK] = 1 − ε(λ).
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These three checks are respectively regarded as verification correctness, link-
ing correctness and tracing correctness.

Full-Anonymity. Full-Anonymity is an fundamental security property in link-
able group signature scheme. The full-anonymity requires that an adversary
without supervision manager’s trace key couldn’t recover the identity of the
signer after given a signature of a message. A bit more formally, any polynomi-
ally time bounded adversary A has only negligible advantage in the following
attack game played with a challenger.

Here, we define a strong adversary capability that may corrupt all the mem-
bers of the group, and the adversary can also query the outputs of Trace algo-
rithm, which is conducted by the supervision manager on arbitrary signatures
of its choice (except the challenge signature).

Setup: Challenger runs Setup algorithm and generates registration man-
ager’s key (RPK,RSK), auditing manager’s key (LPK,LSK) and supervi-
sion manager’s key (TPK, TSK), then it sends the public parameters GP =
(RPK,LPK, TPK) to adversary A.

Query Phase 1: During this phase, adversary A makes a polynomial bounded
number of the following queries to the challenger.

– Join Queries: Adversary A chooses user’s private key USK to request, the
challenger performs the Join algorithm and returns user’s certificate Cert to
Adversary A.

– Trace Queries: Adversary A chooses a signature σ, the challenger answers the
query by performing the Trace algorithm, and sends the registered user’s
public key UPK and certificate Cert to A.

Challenge Phase: A picks two challenge users indicated by their public keys
identities UPK∗

0 , UPK∗
1 , the corresponding private key USK∗

0 , USK∗
1 and a

message m∗. The challenger chooses a bit b ∈ {0, 1} randomly, then computes the
user’s certificate Cert∗ in Join algorithm, and generates the challenge signature
σ∗ = GSig(GP,USK∗

b , Cert∗,m∗)

Query Phase 2: Adversary A makes a polynomial bounded queries as in Phase
1. But the adversary is not allowed to make a Join query for USK∗

0 , USK∗
1 and

Trace query for σ∗ to obtain the associated UPK∗ and certificate Cert∗.

Guess Phase: Eventually, adversary A outputs a bit b′ and it succeeds in this
game if b′ = b.

The advantage of the adversary is defined as AdvFull−Anony
LGS,A = |2Pr[b′ =

b] − 1|.
Definition 3 (Full-Anonymity). An LGS scheme has full-anonymity if for
any polynomial-time adversary A, its advantage AdvFull−Anony

LGS,A is negligible in
the above game.
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Linkability. In case of signer’s malicious behavior, any two signatures (m,σ),
(m′, σ′) should be linked by the auditing manager using link key and judged
whether the given signatures came from the same signer. Linkability requires
that, no adversary A can create valid signatures which cannot be linked by
the auditing manager. A bit more formally, any polynomially time bounded
adversary A has only negligible advantage in the following attack game played
with the challenger.

This game contains the following two attacks: (1) Link algorithm returns
0 under the case of two signatures generated from the same signer; (2) Link
algorithm returns 1 under the case of two signatures generated from different
signers.

Setup: Challenger runs Setup algorithm and generates registration man-
ager’s key (RPK,RSK), auditing manager’s key (LPK,LSK) and supervi-
sion manager’s key (TPK, TSK), then it sends the public parameters GP =
(RPK,LPK, TPK) to adversary A.

Query Phase: During this phase, the adversary makes a polynomial bounded
number of the following queries to the challenger.

– Join Queries: Adversary A is given access to a Join oracle. Adversary A chooses
user’s private key USK to request, the challenger performs the Join algorithm
and returns user’s certificate Cert to adversary A.

– GSig Queries: Adversary A is given access to a GSig oracle. Adversary A
chooses a user’s private key USK, certificate Cert and message m, the chal-
lenger answers the query by performing the GSig algorithm, and sends sig-
nature σ to A.

Challenge Phase: Eventually, adversary A outputs a challenged message-
signature pair (m∗

i , σ
∗
i ), i = 1, 2. The adversary wins if the following any case

occurs.

(1) GV er(GP,m∗
i , σ

∗
i ) = 1, i = 1, 2. Link(GP,LSK, (m∗

1, σ
∗
1), (m

∗
2, σ

∗
2)) = 0:

UPK∗
1 = UPK∗

2 ;
(2) GV er(GP,m∗

i , σ
∗
i ) = 1, i = 1, 2. Link(GP,LSK, (m∗

1, σ
∗
1), (m

∗
2, σ

∗
2)) = 1:

UPK∗
1 �= UPK∗

2 ;

The advantage of the adversary is defined as AdvLink
LGS,A = Pr[A wins].

Definition 4 (Linkability). An LGS scheme has linkability if for any
polynomial-time adversary A, its advantage AdvLink

LGS,A is negligible in the above
game.

Full-Traceability. In case of malicious behavior, signer’s identity UPK should
also be revealed by a designated third party, i.e., the supervision manager. Full-
traceability requires that, no collusion of group members can create a valid
signature which cannot be traced by the supervision manager (even corruption
consisted of the entire group, and the possession of supervision manager’s trace
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key). A bit more formally, any polynomially time bounded adversary A has only
negligible advantage in the following attack game played with the challenger.

Setup: Challenger runs Setup algorithm and generates registration man-
ager’s key (RPK,RSK), auditing manager’s key (LPK,LSK) and supervi-
sion manager’s key (TPK, TSK), then it sends the public parameters GP =
(RPK,LPK, TPK) to adversary A.

Corruption Phase: Adversary A chooses user’s public key UPK to request,
then adds the corrupted group members to list L. Here, L represents the identity
list of corruption group members, and L ⊂ C. At the same time, A can collude
with registration manager and auditing manager. Here, the collusion behavior
means the situation that A can only capture their private key, but not command
them to do some tampering operation.

Query Phase: During this phase, the adversary makes a polynomial bounded
number of the following queries to the challenger.

– Join Queries: Adversary A is given access to a Join oracle. Adversary A chooses
user’s private key USK to request, the challenger performs the Join algorithm
and returns user’s certificate Cert to Adversary A.

– GSig Queries: Adversary A is given access to a GSig oracle. Adversary A
chooses a private key USK, certificate Cert and message m, the challenger
answers the query by performing the GSig algorithm, and sends signature σ
to A.

– Trace Queries: Adversary A chooses a signature σ, the challenger answers the
query by performing the Trace algorithm, and sends the registered user’s
public key UPK to A.

Challenge Phase: Eventually, adversary A outputs a challenge signature σ∗.
The adversary wins if the following any case occurs.

(1) GV er(GP,m∗, σ∗) = 1, Trace(GP, TSK, σ∗) = ⊥;
(2) GV er(GP,m∗, σ∗) = 1, Trace(GP, TSK, σ∗) = UPK∗ /∈ L. Besides, σ∗ was

not queried for Trace Queries.

The advantage of the adversary is defined as AdvFull−Trace
LGS,A = Pr[A wins].

Definition 5 (Full-Traceability). An LGS scheme has full-traceability if for
any polynomial-time adversary A, its advantage AdvFull−Trace

LGS,A is negligible in
the above game.

4 Generic Construction of Linkable Group Signature

This section gives a generic construction of linkable group signature using the
building blocks of trapdoor indicative commitment and blind signatures, public
key encryption, signature of knowledge. Then presents security analysis of the
generic structure.
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4.1 Generic Construction

Let Π1 = (BKeyGen,BSign < Ubs, Sbs >,BV er) represents the blind signature
scheme, where BKeyGen, BSign < Ubs, Sbs >, and BV er are key generation,
blind signature and verify algorithms in this scheme.

Let Π2 = (PKeyGen,Enc,Dec) represents the public key encryption
scheme, where PKeyGen, Enc and Dec are key generation, encrypt and decrypt
algorithms in this scheme.

Let Π3 = (TKeyGen, TCom, TIndic) represents the trapdoor indicative
commitment protocol, where TKeyGen, TCom and TIndic are key generation,
commit and indicate algorithms in this scheme.

Let Π4 = (KSetup,KSign,KV er) represents the signature of knowledge
scheme SK

{
x
∣∣∣L(x)

}
(m), where KSetup, KSign and KV er are setup, signa-

ture and verify algorithms in this scheme.
Define Π = (Setup, Join,GSig,GV er, Link, Trace) is a general structure of

linkable group signature scheme, the specific algorithm is as follows.
(GP, RSK, LSK, TSK) ← Setup(1k): On input a security parameter 1k,

– Registration manager runs BKeyGen algorithm of Π1, generates the register
key pair (RPK,RSK), (RPK,RSK) ← BKeyGen(1k).

– Auditing manager runs TKeyGen algorithm of Π3, generates the link key
pair (LPK,LSK), (LPK,LSK) ← TKeyGen(1k).

– Supervision manager runs PKeyGen algorithm of Π2, generates the trace
key pair (TPK, TSK), (TPK, TSK) ← PKeyGen(1k).

Finally, outputs system public parameter GP = (RPK,LPK, TPK).
Cert ← Join(< U(USK, GP ), RM(RSK) >): User U and registration
manager RM make interaction to complete registration by running Π1 and Π4,
and generate user’s certificate Cert.

1. User chooses private key USK, runs BSign(< U(USK,GP ), RM(RSK) >)
algorithm of Π1 to send blind message of USK to registration manager
and get certificate Cert from the manager as the blind signature, Cert ←
BSign(< U(USK,GP ), RM(RSK) >).

2. Simultaneously, user runs the signature of knowledge SK
{
USK

∣∣∣
L(USK)

}
(γ) of Π4 based on registration parameters γ to prove the correct

blind operation of USK was performed.
3. After given Cert, user runs BV er algorithm of Π1 to verify the validity of

the certificate.
4. User sends the certificate Cert and public key UPK (identity ID) to regis-

tration manager, keeps private key USK. Registration manager adds (UPK,
Cert) to registration list C.

σ ← GSig(GP, USK, Cert, m): Suppose m ∈ {0, 1}∗, user’s group signature
algorithm is divided into the following sections.



Linkable Group Signature for Auditing Anonymous Communication 315

1. Encryption for user’s certificate. Runs Enc algorithm of Π2, (a, b) ← Enc
(Cert, TPK).

2. Trapdoor indicative commitment for user’s private key. Runs TCom algo-
rithm of Π3, d ← TCom(LPK,USK).

3. Signature of knowledge for message m. Runs KSign algorithm of Π4, c ←
KSign(USK,GP,m, a, b, c, d).

Finally, outputs group signature σ = (a, b, c, d).
1/0 ← GV er(GP, m, σ): Verify the validity of group signature.

Runs KV er algorithm of Π4, 1/0 ← KV er(GP,m, σ). The output result 1
expresses the signature is valid.
1/0 ← Link(GP, LSK, (m, σ), (m′, σ′)): Auditing manager performs the
link operation.

1. Given (m,σ), (m′, σ′), auditing manager first runs above GV er algorithm to
verify the validity of given signature. If the signature is invalid, it terminates.

2. Otherwise, for the component d in signature σ and d′ in signature σ′, audit-
ing manager runs TIndic algorithm of Π3, 1/0 ← TIndic(LSK, d, d′). The
output result 1 expresses the two signatures are from the same signer.

(UPK, Cert) ← Trace(GP, TSK, (m, σ)): Supervision manager performs
the trace operation.

1. Given (m,σ), supervision manager first runs above GV er algorithm to verify
the validity of given signature. If the signature is invalid, it terminates.

2. Otherwise, for the component (a, b) in signature σ, supervision manager runs
Dec algorithm of Π2, Cert ← Dec(TSK, (a, b)). At the same time, he runs the
signature of knowledge scheme SK

{
TSK

∣∣∣L(TSK)
}

(σ‖m) of Π4 to prove
the correct certificate is calculated.

3. According to the registration list C given by registration manager, find the
corresponding user identity ID.

4.2 Security Analysis

Theorem 1. The proposed generic LGS construction has full-anonymity if the
public key encryption scheme Π2 is IND-CCA2 secure, the trapdoor indicative
commitment protocol Π3 satisfies hiding property.

Theorem 2. The proposed generic LGS construction has linkability if the blind
signature scheme Π1 satisfies non-forgeability, the trapdoor indicative commit-
ment protocol Π3 satisfies trapdoor indication property, and the signature of
knowledge scheme Π4 is UnfExt secure.

Theorem 3. The proposed generic LGS construction has full-traceability if the
blind signature scheme Π1 satisfies non-forgeability, the signature of knowledge
scheme Π4 is UnfExt secure.

The proof of these theorems can be found in the full version of this paper.
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5 Instantiating Linkable Group Signature

In this section, we construct a specific linkable group signature instance according
to the process of general structure and concrete instances of basic building blocks.
Then give the security and performance analysis of this instance.

5.1 Linkable Group Signature Implementation

According to the given general framework of linkable group signature, we can
combine a specific LGS scheme using the instances of basic building blocks.
(GP, RSK, LSK, TSK) ← Setup(1k): Let ε > 1, k, lg, l1, l2, l̂ be security
parameters, which l̂ = ε(l2 + k)+1, l1, l2, l̂ < lg. G(lg) represents a group cluster
with large order (≈ 2lg ).

– Registration manager runs G(lg), generates the register key pair (RPK,
RSK). Particularly, registration manager generates a RIPE composite num-
ber n, n = pq, p = 2p′ + 1, q = 2q′ + 1. Then chooses a subgroup
G = < g > from Z

∗
n, (g|n) = 1 (i.e.G ⊂ QR(n)), and the order of group

G is p′q′. Chooses random elements z, h ∈ G. Let H : {0, 1}∗ → {0, 1}k

be a collision-resistant hash function. Outputs the public key RPK =
(n, g, z, h,G, lg, l1, l2, l̂, ε, k,H), register key RSK = (p, q).

– Auditing manager runs G(lg), generates the link key pair (LPK,LSK). Par-
ticularly, auditing manager generates a RIPE composite number N , N =
PQ,P = 2P ′ + 1, Q = 2Q′ + 1. Then chooses a subgroup G0 =< g1 >
from Z

∗
N , (g1|N) = 1 (i.e.G0 ⊂ QR(N)), and the order of group G0 is P ′Q′.

Chooses a subgroup G1 of G0, makes the order of group G1 is P ′. Chooses a
random element h1 ∈ G1, then the order of h1 is P ′, the order of g1 is P ′Q′.
Outputs the public key LPK = (N, g1, h1, G0, G1), link key LSK = P ′.

– Supervision manager runs G(lg), generates the trace key pair (TPK, TSK).
Particularly, supervision manager chooses x ∈ {0, · · · , 2lg − 1}, computes
y = gx. Outputs the public key TPK = y, trace key TSK = x.

Finally, outputs system public parameter GP = (RPK,LPK, TPK).
Cert ← Join(< U(USK, GP ), RM(RSK) >): User U and registration
manager RM make interaction to complete registration, and generate user’s
certificate Cert.

1. User randomly chooses ê ∈ {2̂l−1, · · · , 2̂l − 1}, e ∈ {2l1 , · · · , 2l1 + 2l2 − 1},
computes ẽ = eê, z̃ = zê. Then sends ẽ, z̃ to registration manager, making a
non-interactive proof

W = SKDL

{
(α, β)

∣∣∣∣∣
zẽ = z̃α ∧ z̃ = zβ∧

(2̂l − 2ε(l2+k)+1) < α < (2̂l + 2ε(l2+k)+1)

}
(z̃)

to prove that the user correctly generated ẽ, z̃.
2. Registration manager computes u = z̃1/ẽ, and sends u to User.



Linkable Group Signature for Auditing Anonymous Communication 317

3. User verifies z̃ = uẽ (equal to z = ue). Accepting certificate Cert = u if
the equation succeeds. Then sends the certificate Cert and public key UPK
(identity ID) to registration manager, keep private key USK = e.

4. Registration manager adds (ID, u, ẽ, z̃) to registration list C.

σ ← GSig(GP, USK, Cert, m): Suppose m ∈ {0, 1}∗, user constructs a
group signature on the message.

1. Randomly chooses w ← {0, 1}lg , computes a = gw, b = uyw, d = ge
1h

w
1

2. Randomly chooses r1 ∈ {0, 1}ε(l2+k), r2 ∈ {0, 1}ε(lg+l1+k), r3 ∈ {0, 1}ε(lg+k),
computes

t1 = br1(1/y)r2 , t2 = ar1(1/g)r2 , t3 = gr3 , t4 = gr1
1 hr3

1

c = H(g ‖ h ‖ y ‖ z ‖ a ‖ b ‖ d ‖ t1 ‖ t2 ‖ t3 ‖ t4 ‖ m)

s1 = r1 − c(e − 2l1), s2 = r2 − cew, s3 = r3 − cw

3. Finally, outputs the group signature σ = (c, s1, s2, s3, a, b, d).

The above group signature is equivalent to a signature of knowledge on mes-
sage m, which can be denoted as

SKDL

{
(η, ϑ, ξ)

∣∣∣∣∣ z = bη/yϑ ∧ 1 = aη/gϑ ∧ a = gξ ∧ d = gηhξ∧
(2l1 − 2ε(l2+k)+1) < η < (2l1 + 2ε(l2+k)+1)

}
(m)

1/0 ← GV er(GP, m, σ): Perform the Verification of group signature.

1. Computes

t̃1 = zcbs1−c2l1 /ys2 , t̃2 = as1−c2l1 /gs2 , t̃3 = acgs3 , t̃4 = dcgs1−c2l1
1 hs3

1

c′ = H(g ‖ h ‖ y ‖ z ‖ a ‖ b ‖ d ‖ t̃1 ‖ t̃2 ‖ t̃3 ‖ t̃4 ‖ m)

2. If c = c′, accepts the signature, otherwise, rejects it.

1/0 ← Link(GP, LSK, (m, σ), (m′, σ′)): Auditing manager performs the
link operation.

1. Given (m,σ), (m′, σ′), auditing manager first runs above GV er algorithm to
verify the validity of given signature. If the signature is invalid, it terminates.

2. Otherwise, for the component d in signature σ and d′ in signature σ′, auditing
manager judges ( d

d′ )P ′ ?= 1 using the link key. If the equation succeeds, it
implies the two signatures are from the same signer, outputs 1 in this case.
Otherwise, outputs 0.

(UPK, Cert) ← Trace(GP, TSK, (m, σ)): Supervision manager performs
the trace operation.

1. Given (m,σ), supervision manager first runs above GV er algorithm to verify
the validity of given signature. If the signature is invalid, it terminates.
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2. Otherwise, for the component (a, b) in signature σ, supervision manager com-
putes u′ = b/ax using the trace key, and makes a non-interactive proof

SKEQDL

{
(α)

∣∣∣∣∣ y = gα ∧ b/u′ = aα

}
(σ‖m) to prove that he does own the

trace key.
3. After obtaining the certificate u, according to the registration list C given by

registration manager, find the corresponding user’s identity ID.

5.2 Security Analysis of Proposed LGS

According to the formal security definition of linkable group signature in Sect. 3
and related theorems in in Sect. 4, the proposed specific LGS instance satisfies
the security properties of full-anonymity, linkability and full-traceability. The
detailed proof can be found in the full version of this paper.

5.3 Performance Analysis of Proposed LGS

In this section, we analyze the performance of of linkable group signature instance
in the view of the public key, secret key and signature size, the multiplication,
exponentiation and pairing operations, and the security properties that it pos-
sessed. Specifically, we compare these features with existing related work, such
as two typical group signature schemes [4,7] and two typical linkable group sig-
nature schemes [20,21]. The results are given in Tables 1 and 2.

As we can see in Tables 1 and 2, our proposed scheme has a slightly shorter
secret key, signature size and lower computational complexity, but with a slightly

Table 1. Performance comparison with related works.

Scheme |pk| |sk| |σ| Mult. Exp.

GS1 [4] 6|G| 2|Zp| 3|G|+ 6|Zp| 22 30

GS2 [7] 4|G|+ 4lg + k 2lg 3|G|+ k + ε(4lg + 3k) 21 29

LGS [21] 3|G|+ |Zp| |Zp| n + 2|G| 5 + 3n 11 + 7n

LDGS [20] 2|Zp|+ |Zq |+ 3(n + 1)|G| |Zq |+ 3|G| 4|Zp|+ 6|G| 2 3n + 8

Our LGS 4|G|+ 2|Zn|+ 4lg + k 2|Zn| 3|G|+ k + ε(4lg + 3k) 20 27

Table 2. Functionality comparison with related works.

Scheme F-Anony/Anony F-Trace/Trace Link Dynamic-G Ex-Multi

GS1 [4] F-Anony F-Trace × × ×
GS2 [7] Anony Trace × � ×
LGS [21] Anony Trace � � ×
LDGS [20] Anony Trace � � �
Our LGS F-Anony F-Trace � � �
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longer public key size than [4,7,21]. Moreover, it has the security properties
of full-anonymity, full-traceability, linkability, and the properties of dynamic
group, extend to multi-party, which is better than the other schemes. Here,
|pk|,|sk|,|σ| denote the size of public key, secret key and signature; Mult.,Exp.
denote the operations of multiplication and exponentiation; |G| is the size of
group G; |Zp|,|Zq|,|Zn| are the size of Zp,Zq,Zn; n is the maximum number of
group members; lg,k,ε are the size of security parameters. F-Anony means Full-
Anonymity; Anony means Anonymity; F-Trace means Full-Traceability; Trace
means Traceability; Link means Linkability; Dynamic-G means Dynamic Group;
Ex-Multi means Extend to Multi-party.

6 Conclusion

In this paper, we proposed a generic construction and a specific instantiation of
linkable group signature scheme. The generic framework is constructed by using
basic cryptography modules of blind signatures, public key encryption, trapdoor
indicative commitment and signature of knowledge. It could achieve the security
goals of full-anonymity, linkability and full-traceability. Furthermore, we realized
an efficient linkable group signature instantiation based on the process of general
construction. Refer to this construction process, any cryptography scheme of
these building blocks which meets the pre-defined security requirements can be
combined into a linkable group signature instance.
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Abstract. A member of an intelligence agency needs to receive messages
secretly from outside. Except for authorized officers of the agency, no one
knows how the members are organized, even a receiver only knows the
organization of his/her subordinates. However, existing primitives cannot
implement this typical scenario. In this paper, we propose a primitive,
referred to as auditable hierarchy-private public-key encryption (AHPE),
to address the problem. The system has several important properties: the
organization of the members in the agency is hidden from the outside
world, but the members can still communicate with the outside secretly;
if there exists a suspicious behaviour in one of the members, managers
in the system can still discover him/her. Finally, analyses show that the
proposed AHPE scheme is efficient and practical.

Keywords: Hierarchy-private encryption · Auditable · Traceability

1 Introduction

Let us consider a scenario: a member of an intelligence agency needs to receive
messages secretly from the outside world. Except authorized officers of the
agency, no one knows how the receivers are organized, even a receiver can only
know the organization of his/her subordinates. Besides, the content of a message
sending to a member of the agency can only be known by himself and his supe-
riors; However, if there exists a suspicious behaviour in one of the members, an
auditing department of the agency can still discover this behavior; then, a trac-
ing department can trace his/her identity; finally, an authenticating department
can open the content of the message received by the member. In this scenario,
the system has four concerns: (i) the organization of members in the agency is
hidden from outsides; (ii) the receiver of a message is anonymous; (iii) the rights
of management are separated into three parts; (iv) the communication auditing
takes place on the premise of protecting the privacy of all members.
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Let us investigate whether it is possible to implement the above typical sce-
nario by employing existing primitives. The notion of key-privacy encryption
was proposed in [1] who manifested that an eavesdropper in possession of a
ciphertext cannot be able to tell which specific key, out of a set of known public
keys, is the one under which the ciphertext was created, meaning the receiver
is anonymous from the point of view of the adversary. However, key-privacy
encryption achieves only the property of anonymity, but it cannot satisfy the
above multifunction system. Then, group encryption was introduced in [2] who
showed that the identity of a receiver is anonymous within a population of cer-
tified members under the control of a group manager. If a sender of a ciphertext
needs to send a message to a receiver, then he must provide firstly universally
verifiable guarantees that the ciphertext is well-formed, and some registered
group member who will be able to decrypt it. Besides, in some necessary case,
an opening authority can open suspicious ciphertexts, and determine the iden-
tity of the receiver using his private key. Finally, the plaintext should satisfy a
certain relationship such as being a witness for some public relation. Based on
group encryption, Libert et al. [3] proposed a traceable group encryption, which
enjoys the properties of group encryption, and adds an extra property, i.e., the
opening authority can reveal a user-specific trapdoor which makes it possible to
publicly trace all the ciphertexts encrypted for that user without destroying the
anonymity of other ciphertexts. However, there are no hierarchical members in
either group encryption or traceable group encryption. Finally, The notion of
hierarchical identity-based encryption (HIBE) was presented in [4] who demon-
strated that an identity at level k of the hierarchy tree can issue private keys to
its descendant identities, but cannot decrypt messages intended for other iden-
tities. But, in the HIBE scheme, the private key shrinks as the identity depth
increases which reveal the organization of the hierarchical users. Besides, the
receiver of a message is not anonymous. Anonymous hierarchical identity-based
encryption (AHIBE) was proposed in [5] to show fully anonymous ciphertexts
and hierarchical key delegation. However, communication auditing and identity
tracing are not considered in AHIBE scheme.

1.1 Our Contribution

In this work, observing the above gaps, we propose an auditable hierarchy-private
public-key encryption (AHPE) scheme to solve the above problem scenario to
some extent. We first contribute the AHPE system model and its security defi-
nitions. We then present a generic construction and a concrete implementation.
Finally, we prove the security of the AHPE scheme strictly. An additional con-
tribution of our work is a new cryptographic tool called trapdoor distinguishable
commitment.

- System Model and Security Definitions. We propose an AHPE system which
possesses the properties of correctness, IND-CPA security, anonymity, linkability,
traceability, authenticability, and give strict security definitions for them. The
correctness of the AHPE scheme demonstrates that if the participants operate
honestly, then the system will work correctly. The IND-CPA security manifests
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that knowledge of the ciphertext (and length) of some unknown message does not
reveal any additional information on the message that can be feasibly extracted.
The anonymity indicates that the member in the system could receive messages
anonymously. The linkability is that a link manager could audit ciphertexts on
the premise of protecting the privacy of all users. The traceability means that
a trace manager could discover the identity of a receiver from the suspicious
ciphertext provided by the link manager. Finally, the authenticability shows that
an authenticate manager could extract the content of the suspicious message.

- Generic Construction and Concrete Implementation. We construct the
AHPE scheme in a modular way. The building blocks of the AHPE scheme
include a pseudorandom generator [6], a digital signature with adaptive chosen
message security [7], a public key encryption with both CPA security and key-
privacy [1], a zero-knowledge proof [8], a trapdoor distinguishable commitment,
and an extractable commitment [9]. Then, we give an efficient concrete imple-
mentation of the AHPE scheme by using a hash function, an ElGamal digital
signature scheme [10], an ElGamal linear encryption scheme [11], a Σ-protocol
[12], a trapdoor distinguishable commitment scheme, and an extractable com-
mitment scheme.

- Proof and Comparison. According to our security definitions, we prove the
properties of the AHPE scheme rigorously. We demonstrate that if the underlying
cryptographic primitives, i.e., pseudorandom generator, digital signature with
adaptive chosen message security, public key encryption with both CPA security
and key-privacy, zero-knowledge proof, trapdoor distinguishable commitment,
and extractable commitment, are secure, then the AHPE system has correct-
ness, IND-CPA security, anonymity, link security, trace security, and authenti-
cation security. Then, we compare it with related schemes in performance and
functionality.

- Trapdoor Distinguishable Commitment. As the AHPE scheme needs to audit
ciphertexts that sent to users, we introduce a new cryptographic tool, called trap-
door distinguishable commitment, to judge whether the identities of receivers
contained in any two ciphertexts are the same. We define the trapdoor distin-
guishable commitment strictly, present a concrete implementation, and prove its
properties strictly.

1.2 Related Work

The notion of privacy for public key encryption schemes was introduced by
Bellare et al. [1] and formalized as key-privacy encryption. Intuitively, the key-
privacy encryption makes it impossible to pin down the public key of a receiver
from the ciphertext. Then, they proved that the ElGamal scheme [13] provides
key-privacy under chosen-plaintext attack assuming the Decision Diffie-Hellman
problem is hard, and the Cramer-Shoup scheme [14] provides key-privacy under
chosen-ciphertext attack under the same assumption. Based on it, Barth et al.
[15] proposed a mechanism, called private broadcast encryption, to protect the
privacy of users of encrypted file systems and content delivery systems. Similarly,
Ateniese et al. [16] proposed Key-Private Proxy Re-encryption to prevent the
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proxy from learning the private keys or the contents of messages it re-encrypts.
Waters et al. [17] described a new method, called Incomparable Public Key (IPK)
cryptosystem, to protect the anonymity of message receivers in an untrusted
network. However, key-privacy encryption in above schemes can only achieve
anonymity in our problem scenario.

Using key-privacy encryption as a component together with zero-knowledge
proofs, digital signatures, and commitment schemes, Kiayias et al. [2] con-
structed a Group Encryption (GE) cryptosystem. Qin et al. [18] presented
a group encryption mechanism, called group decryption, with non-interactive
proofs and short ciphertexts. In security analysis, their scheme needs random
oracles and interactive assumptions. Meanwhile, Cathalo et al. [19] proposed a
non-interactive group encryption cryptosystem, and proved its security in the
standard model. Based on GE, Libert et al. [3] proposed a Traceable Group
Encryption (TGE) which can trace all the ciphertexts encrypted by a specific
user without abolishing the anonymity of the others’. Both GE and TGE have
the property of managing the member of the system properly, but they do not
consider the organization of the member which is an important goal of our
scheme.

Finally, Hierarchical Identity-Based Encryption (HIBE) scheme was defined
by Horwitz and Lynn [20]. And then, Gentry and Silverberg [21] gave a construc-
tion based on the Bilinear Diffie-Hellman (BDH) assumption in the random ora-
cle model. Canetti et al. [22] demonstrated a HIBE scheme with a (selective-ID)
security proof without random oracles, but it is an inefficient scheme. A subse-
quent construction due to Boneh and Boyen [23] gave an efficient (selective-ID
secure) HIBE based on BDH without random oracles. Boyen and Waters [5]
proposed a provable security HIBE cryptosystem in the standard model, based
on the mild Decision Linear complexity assumption in bilinear groups that fea-
tures fully anonymous ciphertexts and hierarchical key delegation. However, in
above schemes, the length of ciphertexts and private keys, as well as the time
needed for encryption and decryption, grows linearly in the depth of the hierar-
chy which reveals the organization of the members. Boneh et al. [4] presented a
HIBE system where the ciphertext consists of three group elements and decryp-
tion requires two bilinear map computations, regardless of the hierarchy depth.
But the anonymity of the receiver is not considered. In short, existing schemes
could not implement the problem scenario properly. Thus, a system which has
the properties of anonymity, communication auditing, identity tracing, and con-
stant complexity of algorithms still needs to be researched further.

Organization. Section 2 introduces a new concept, called trapdoor distinguish-
able commitment. Section 3 presents a system model and its security definitions.
Section 4 demonstrates a generic construction and a concrete implementation.
Section 5 compares the AHPE scheme with related schemes. Finally, Sect. 6 con-
cludes the paper. For lack of space most proofs are omitted. They will appear in
the full version.
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2 Trapdoor Distinguishable Commitment

As the AHPE scheme needs to audit ciphertexts in auditing stage, we introduce a
new cryptographic tool, called trapdoor distinguishable commitment, to achieve
this target. Consider a scheme TDCOM = (KGen, TDCom, V er,Disting)
where KGen, TDCom, V er, and Disting are probabilistic polynomial-time algo-
rithms and the following experiments:

Exp
Completeness
T DCOM

(1λ)

(pk, sk)←KGen(1λ);

(ψ,ρ)←TDCom(pk,m);

b1←V erify(pk,ψ,ρ,m);

Return b1.

Exp
Binding
A,T DCOM

(1λ)

(pk, sk) ← KGen(1λ);

(ψ, ρ, m) ← A(find, pk);

(ρ′, m′) ← A(find, pk);

If m=m′ ∨ρ=ρ′, abort;

b2 ←V er(pk, ψ, ρ′, m′);
Return b2.

Exp
Hiding
A,T DCOM

(1λ)

(pk, sk) ← KGen(1λ);

(m1,m2,aux)←A(find,pk);

b
R←{0, 1},

(ψ,ρ)←TDCom(pk,mb);

b3 ←A(guess,ψ,pk,aux);

Return b3.

Exp
Disting
T DCOM

(1λ)

(pk, sk) ← KGen(1λ);

(ψ,ρ)←TDCom(pk,m);

(ψ′,ρ′)←TDCom(pk,m′);
b4←Disting(sk,ψ,ψ′);
Return b4.

TDCOM = (KGen, TDCom, V er,Disting) is a trapdoor distinguishable
commitment with completeness, binding, hiding, and distinguishing if there
exists a negligible function μ(·) such that Pr[b1 = 1] > 1 − μ(λ), Pr[b2 = 1] ≤
μ(λ), Pr[b3 = b] ≤ μ(λ), Pr[b4 = true] > 1 − μ(λ).

We provide a concrete implementation for the trapdoor distinguishable com-
mitment. Let G1 and G2 be cyclic groups of prime order p, G1 �= G2, with respec-
tive generators g and h, with a computable bilinear map ê : G1 ×G2 → GT . The
scheme comprises the four algorithms described below:

KGen(p, g, h)

x
R←Z

∗
p; X ← gx;

pk ← (p, g, h, X);

sk ← (p, g, h, x);

Return (pk, sk).

TDCompk(m)

u, v
R←Z

∗
p; U ← gu;

V ← hv ; W ← mvXu;
ψ=(U, V, W ), ρ=(u, v);
Return (ψ, ρ).

V erpk(ψ, ρ, m)

ψ′ ←(gu, hv, mv · Xu);

If ψ′ = ψ,

return 1;

else return 0.

Distingsk(ψ, ψ′)
T ← W · U−x;

T ′ ← W ′ · U
′−x;

ê(T ′, V )
?
= ê(T, V ′);

Return b.

Theorem 1. The above scheme is a trapdoor distinguishable commitment.

3 Auditable Hierarchy-Private Encryption

In this section, we propose a system model and give several security definitions
from different angles that the adversary is likely to attack.

3.1 System Model

The AHPE system has three managers (authentication manager, trace manager,
and link manager) and four other participants (hierarchical users, a sender, a
verifier and a receiver). Trusted by all parties, the authentication manager gen-
erates system parameter, his public key, and a matching main secret key, and
manages the members of the system. The trace manager is capable of tracing
the identity of anonymous receivers. The link manager is capable of counting
the quantity of ciphertexts received by anonymous users without detecting any
other things. The hierarchical users are members of the system. The sender who
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Fig. 1. System model

can be anyone sends messages to legitimate users. The verifier who can be a
gateway verifies the validity of ciphertexts, and broadcasts to users if valid, else
rejects. The receiver receives messages from outsides anonymously.

Formally, an AHPE scheme (see Fig. 1) is a collection of procedures and
protocols that are denoted as SETUP, KGen, JOIN, ENC, 〈P,V〉 , DEC,
LINK, TRACE, AUTH. The procedures are as follows:

– (Param) ← SETUP(1λ). This Probabilistic Polynomial Time (PPT) algo-
rithm which operated by M1 takes as input a security parameter λ, outputs
the system parameter Param.

– (rpk, rsk) ← KGenM1(Param). This PPT algorithm which operated by M1

takes as input the system parameter Param, outputs a register public key
and a matching register private key (rpk, rsk).

– (tpk, tsk) ← KGenM2(Param). This PPT algorithm which operated by M2

takes as input the system parameter Param, outputs a trace public key and
a matching trace private key (tpk, tsk).

– (lpk, lsk) ← KGenM3(Param). This PPT algorithm which operated by M3

takes as input the system parameter Param, outputs a link public key and
a matching link private key (lpk, lsk).

– (pkk,j , skk,j , certk,j) ← JOIN(Param, skk−1,j′ , IDk,j). This protocol which
operated between the M1 and the hierarchical users, takes as input the sys-
tem parameter Param, superior user’s private key skk−1,j′ , and the identity
of register IDk,j , outputs a public key, a private key (pkk,j , skk,j), and a
certificate certk,j .

– (C)←ENC(Param,m, pkk,j , rpk, tpk, lpk). This PPT algorithm which oper-
ated by the sender takes as input the system parameter Param, a message
m, the intended receiver’s public key pkk,j , the three managers’ public key
rpk, tpk, lpk, outputs a ciphertext C in ciphertext space C.

– 〈done|0/1〉 ←〈P(m, pkk,j),V〉 (Param,C, rpk, tpk, lpk). This protocol which
operated between the sender and the gateway will ensure that the ciphertext
is create correctly, and that there exists a member in the system that is
capable of decrypting the ciphertext.

– (m/⊥) ← DEC(Param, [C]oa, skk,j). This Deterministic Polynomial Time
(DPT) algorithm which operated by the anonymous receiver takes as input
the system parameter Param, a substring of the ciphertext [C]oa, the



328 L. Zhong et al.

receiver’s private key skk,j , outputs a message m or ⊥ that signifies an error
in decryption.

– (b) ← LINK(Param, [C]oa, [C ′]oa, lsk). This DPT algorithm which operated
by the link manager takes as input the system parameter Param, two cipher-
text substrings [C]oa, [C ′]oa, the link manager’s private key lsk, outputs a bit
b indicating whether the receivers of any two ciphertexts are the same.

– (pkk,j/⊥) ← TRACE(Param, [C]oa, tsk). This DPT algorithm which oper-
ated by the trace manager takes as input the system parameter Param, a
substring of the ciphertext [C]oa, the trace manager’s private key tsk, outputs
an identity (public key) pkk,j or ⊥ that signifies an error in trace.

– (m/⊥) ← AUTH(Param, [C]oa, rsk). This DPT algorithm which operated
by the authentication manager takes as input the system parameter Param,
a substring of the ciphertext [C]oa, the authentication manager’s master key
rsk, outputs a message m or ⊥ that signifies an error in authentication.

In the above AHPE system, JOIN = 〈Juser, JM1〉 is a protocol between
a prospective hierarchical member uk,j (row k, column j) and the M1. After
an execution of a JOIN protocol the member will get his public/secret-
key pair (pkk,j , skk,j) together with a certificate certk,j . The public key
and the certificate will be published in the public directory database by
the M1. There are four subprocedures in ENC procedure, including a
message encryption procedure ENC1, i.e., C1 = ENC1(Param, pkk,j ,m),
a trapdoor distinguishable commitment procedure TDCOM, i.e., C2 =
TDCOM(Param, lpk, pkk,j), an identity encryption procedure ENC2, i.e.,
C3 = ENC2(Param, tpk, pkk,j), an extractable commitment procedure
ECOM, i.e., C4 = ECOM(Param, rpk,m). Let C = (C1, C2, C3, C4). The
Prove-Verification protocol 〈P,V〉 is a zero-knowledge proof which proves that
the encrypted message in procedure ENC1 and the committed message in pro-
cedure ECOM are identical, and that the public keys used in the message
encryption procedure ENC1, committed in trapdoor distinguishable commit-
ment procedure TDCOM, encrypted in identity encryption procedure ENC2

are all the same. Finally, the procedures DEC, LINK, TRACE, AUTH oper-
ate on different parts (C1, C2, C3, C4) of the ciphertext C to decrypt, to link, to
trace, and to authenticate respectively.

3.2 Security Definitions

In this subsection, we first give three definitions, correctness, and the two secu-
rity related properties of the AHPE, IND-CPA security, and anonymity. Then,
we give three definitions (i.e., link security, trace security, authentication secu-
rity) for each manager respectively. For simulating a two-party protocol we use
the notation: 〈outputA | outputB〉 ← 〈A(inputA), B(inputB)〉 (common−input).
Note that a procedure denotes as bold symbol, such as ENC. For simplicity, in
this section, we will use pk, sk, cert,u denotes pkk,j , skk,j , certk,j ,uk,j ; When it
needs different key pairs and users, we will use (pk0, sk0, cert0) ,(pk1, sk1, cert1)
denotes (pkk,j , skk,j , certk,j), (pkk′,j′ , skk′,j′ , certk′,j′), and use u0, u1 denotes
uk,j ,uk′,j′ .



Auditable Hierarchy-Private Public-Key Encryption 329

Correctness. The AHPE scheme must satisfy the correctness of the following five
aspects concurrently. When the non-interaction zero-knowledge protocol ends
between the sender (prover) and the verifier (gateway), the prover outputs done,
and the gateway can judge the validity of a ciphertext correctly. Associated with
each public key pk is a message space MsgSp(pk) from which a message m is
allowed to be drawn such that m = Dec(sk,Enc(pk,m)). The link manager can
judge the relation between any two ciphertexts correctly. The trace manager
can trace the identity of the anonymous receiver accurately. The authentication
manager can authenticate the content of the message correctly. The correctness
of the AHPE scheme demonstrates that if the sender operates honestly, then the
system will work correctly.

Definition 1 (Correctness). An AHPE scheme is correct if the following “cor-
rectness experiment” return 1 with overwhelming probability.

ExpCorrectness(λ) : (Param)←SETUP(1λ); (rpk,rsk)←KGenM1(Param);
(tpk, tsk) ← KGenM2(Param); (lpk, lsk) ← KGenM3(Param);
〈pk, sk, cert | done〉 ← 〈u,M1(rsk)〉 (Param, rpk);
(C) ← ENC(Param,m, pk, rpk, tpk, lpk);

if

⎛
⎝

〈done | b〉 ← 〈P(m, pk),V〉 (Param,C, rpk, tpk, lpk) : b = true
∧(m=DEC(Param,C1,sk))∧(d←LINK(Param,C2,C

′
2,lsk)) :d=true

∧(pk = TRACE(Param,C3, tsk)) ∧ (m = AUTH(Param,C4, rsk))

⎞
⎠

retuen 1, else return 0.

IND-CPA security. IND-CPA security manifests that knowledge of the cipher-
text (and length) of some unknown message does not reveal any additional infor-
mation on the message that can be feasibly extracted. We think of an adversary
running in two stages. In the find stage, an adversary A takes a public key pk,
and outputs two messages m0,m1 together with some auxiliary information aux.
In the guess stage, the adversary A gets a challenge ciphertext C1 formed by
encrypting at random one of the two messages mb, b ∈ {0, 1} under the pub-
lic key pk, and must say which message was chosen. We said that if an AHPE
system satisfies IND-CPA security, then it can work securely.

Definition 2 (IND-CPA security). An AHPE scheme satisfies IND-CPA secu-
rity if the function AdvIND−CPA

A,ENC1
(·) is negligible in the “IND-CPA security

experiment” below for any adversary A whose time complexity is polynomial
in λ.

EXPIND−CPA
A,ENC1

(1λ) : (Param)←SETUP(1λ);(rpk,rsk)←KGenM1(Param);
(tpk, tsk) ← KGenM2(Param); (lpk, lsk) ← KGenM3(Param);
〈pk,sk,cert|done〉←〈u,M1(rsk)〉 (Param, rpk); (m0,m1,aux)←A(find,pk);

b
r←{0, 1}, C1 ← ENC1(Param, pk,mb); b′ ← A(guess, C1, aux);Return b′.
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For chosen plaintext attack, we define the advantages of the adversary via

AdvIND−CPA
A,ENC1

(1λ) = Pr[EXPAttack−1
A,ENC1

(1λ) = 1] − Pr[EXPAttack−0
A,ENC1

(1λ) = 1]

The term Pr[EXPAttack−1
A,ENC1

(1λ) = 1] denotes a probability of success. Simi-
larly, the term Pr[EXPAttack−0

A,ENC1
(1λ) = 1] means a probability of failure. The suc-

cess probability subtracting the failure probability is the advantage of the adver-
sary A. In this paper, we define the advantage of the adversary/distinguisher all
in this way.

Anonymity. Apart from consistency, the AHPE scheme must satisfy anonymity
which indicates that the adversary knows two public keys corresponding to two
different entities, and gets a ciphertext formed by encrypting a message under
one of these keys. Possession of the ciphertexts should not give the adversary
an advantage in determining under which of the two keys was created. We give
the notion of anonymity under chosen plaintext attack. An adversary A running
in two stages. In the find stage, it takes two public keys pk0, pk1, and outputs
a message m together with some auxiliary information aux. In the guess stage,
it gets a challenge ciphertext C1 formed by encrypting the message m under
one of the two public keys pkb, b ∈ {0, 1}, and must say which public key was
chosen. We said that if an AHPE system satisfies anonymity, then the users in
the system can receive messages anonymously.

Definition 3 (Anonymity). An AHPE scheme satisfies anonymity if the func-
tion AdvAnonymity

A,ENC1
(·) is negligible in the “anonymity experiment” below for any

adversary A whose time complexity is polynomial in λ.

EXPAnonymity
A,ENC1

(1λ)(Param)←SETUP(1λ);(rpk, rsk)←KGenM1(Param);
(tpk, tsk) ← KGenM2(Param); (lpk, lsk) ← KGenM3(Param);
〈pk0, sk0, cert0 | done〉 ← 〈u0,M1(rsk)〉 (Param, rpk);
〈pk1, sk1, cert1 | done〉 ← 〈u1,M1(rsk)〉 (Param, rpk);
(m,aux) ← A(find, pk0, pk1);

b
r←{0, 1}, C1 ← ENC1(Param, pkb,m).b′ ← A(guess, C1, aux);Return b′.

For chosen plaintext attack, we define the advantages of the adversary via

AdvAnonymity
A,ENC1

(1λ) = Pr[EXPAttack−1
A,ENC1

(1λ) = 1] − Pr[EXPAttack−0
A,ENC1

(1λ) = 1]

Link Security. Link security manifests that the adversary has a negligible prob-
ability of linking any two ciphertexts sent to anonymous receivers correctly. We
give the notion of link security under chosen plaintext attack. We think of an
adversary running in two stages. In the find stage, the adversary A signs up two
accounts u0, u1, and obtains two pairs of keys (pk0, sk0), (pk1, sk1) and two cer-
tificates cert0, cert1 together with some auxiliary information aux. In the guess
stage, the adversary A gets two challenge ciphertexts C2, C

′
2 formed by commit-

ting two public keys in sequence under the link public key lpk, and must say
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whether the two public keys in ciphertexts C,C ′ are the same. We said that if
AHPE satisfies link security, then the adversary has a negligible probability of
linking any two ciphertexts accurately.

Definition 4 (Link Security). The AHPE scheme satisfies link security if the
function AdvLink−Security

A,TDCOM (·) is negligible in the “link experiment” below for any
adversary A whose time complexity is polynomial in λ.

EXPLink−Security
A,TDCOM (1λ):(Param)←SETUP(1λ);(rpk, rsk)←KGenM1(Param);

(tpk, tsk) ← KGenM2(Param); (lpk, lsk) ← KGenM3(Param);
〈pk0, sk0, cert0, aux | done〉 ← 〈A(find,u0),M1(rsk)〉 (Param, rpk);
〈pk1, sk1, cert1, aux | done〉 ← 〈A(find,u1),M1(rsk)〉 (Param, rpk);

b
r←{0, 1}, if b = 1,

C2 ← TDCOM(Param, lpk, pk0), C ′
2 ← TDCOM(Param, lpk, pk1).

elseC2 ← TDCOM(Param, lpk, pk0), C ′
2 ← TDCOM(Param, lpk, pk0).

b′ ← A(guess, C2, C
′
2, aux).return b′.

For chosen plaintext attack, we define the advantages of the adversary via

AdvLink−Security
A,TDCOM (1λ)=Pr[EXPAttack−1

A,TDCOM(1λ)=1] −Pr[EXPAttack−0
A,TDCOM(1λ)=1]

Note that as the sender will select two different nonces in the commitment
stage, the commitments C2, C

′
2 will be different even the public key pk0 be com-

mitted twice.

Trace Security. Trace security manifests that the adversary has a negligible
probability of tracing the identity of anonymous receivers correctly. We give the
notion of trace security under chosen plaintext attack. We think of an adversary
running in two stages. In the find stage, the adversary A signs up two accounts
u0,u1, and obtains two pairs of keys (pk0, sk0), (pk1, sk1) and two certificates
cert0, cert1 together with some auxiliary information aux. In the guess stage,
the adversary A gets a challenge ciphertext C3 formed by encrypting at random
one of the two public keys pkb, b ∈ {0, 1} under the trace public key tpk, and must
say which public key was chosen. We said that if the AHPE scheme satisfies trace
security, then the adversary has a negligible probability of tracing the identity
of the receiver precisely.

Definition 5 (Trace Security). The AHPE scheme satisfies trace security if the
function AdvTrace−Security

A,ENC2
(·) is negligible in the “trace experiment” below for

any adversary A whose time complexity is polynomial in λ.

EXPTrace−Security
A,ENC2

(1λ) : (Param)←SETUP(1λ);(rpk,rsk)←KGenM1(Param);
(tpk, tsk) ← KGenM2(Param); (lpk, lsk) ← KGenM3(Param);
〈pk0, sk0, cert0, aux | done〉 ← 〈A(find,u0),M1(rsk)〉 (Param, rpk);
〈pk1, sk1, cert1, aux | done〉 ← 〈A(find,u1),M1(rsk)〉 (Param, rpk);

b
r←{0, 1}, (C3)←ENC2(Param, tpk, pkb); b′ ←A(guess, C3, aux); return b′.
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For chosen plaintext attack, we define the advantages of the adversary via

AdvTrace−Security
A,ENC2

(1λ)=Pr[EXPAttack−1
A,ENC2

(1λ)=1] − Pr[EXPAttack−0
A,ENC2

(1λ)=1]

Authentication Security. Authentication security manifests that the adversary
has a negligible probability of authenticating the content of the message cor-
rectly. We give the notion of authentication security under chosen plaintext
attack. In the find stage, the adversary A takes the public key of the authen-
tication manager rpk, and outputs two messages m0,m1 together with some
auxiliary information aux. In the guess stage, the adversary A gets a commit-
ment C4 formed by committing at random one of the two messages mb, b ∈ {0, 1}
under the authentication public key rpk, and must say which message was com-
mitted. We said that if the AHPE scheme satisfies authentication security, then
the adversary has a negligible probability of authenticating the content of the
message precisely.

Definition 6 (Authentication Security). The AHPE scheme satisfies authenti-
cation security if the function AdvAuth−Security

A,ECOM (·) is negligible in the “authen-
tication security” experiment below for any adversary A whose time complexity
is polynomial in λ.

EXPAuth−Security
A,ECOM (1λ) : (Param)←SETUP(1λ);(rpk,rsk)←KGenM1(Param);

(tpk, tsk) ← KGenM2(Param); (lpk, lsk) ← KGenM3(Param);

(m0,m1, aux) ← A(find, rpk); b
r←{0, 1}, (C4) = ECOM(Param, rpk,mb).

b′ ← A(guess, C4, aux).return b′.

We define the advantages of the adversary via

AdvAuth−Security
A,ECOM (1λ)=Pr[EXPAttack−1

A,ECOM(1λ)=1] − Pr[EXPAttack−0
A,ECOM(1λ)=1]

4 Construction

In this section, we first provide a general description of the AHPE scheme. We
then give a generic construction and a concrete implementation.

4.1 A Bird View

As the adversary wants to obtain receivers’ identity from ciphertexts, the AHPE
scheme should prevent the identity of the receiver from being extracted. We will
employ a public key encryption PE1 = (KGen1, Enc1, Dec1) that satisfies both
IND-CPA security and Key-privacy to achieve this goal. If anonymous users
have suspicious behaviors, the AHPE system can still discover them. In other
words, the AHPE scheme is capable of managing the behaviour of users. We
will employ (1) a trapdoor distinguishable commitment TDCOM to achieve
ciphertexts auditing, (2) a public key encryption algorithm PE2 that satisfies
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IND-CPA security to achieve identity tracing, (3) an extractable commitment
ECOM to achieve message authentication.

In order to show that the encrypted message and the committed message
are identical, we will couple zero-knowledge proof protocol ZK with public key
encryption PE1 and with the extractable commitment scheme ECOM . Besides,
in order to show that the public keys used in public key encryption PE1, com-
mitted in trapdoor distinguishable commitment TDCOM , encrypted in PE2 are
all the same, we will also couple zero-knowledge proof protocol ZK with public
key encryption PE1 with trapdoor distinguishable commitment TDCOM and
with public key encryption PE2.

4.2 Generic Construction

In generic construction we will employ: (1) pseudorandom generator PRG, (2)
digital signature with adaptive chosen message security SIG = (KGen, Sign,
V erify), (3) public key encryption with IND-CPA security and key-privacy
PE1=(KGen1, Enc1,Dec1), and public key encryption with IND-CPA security
PE2 = (KGen2, Enc2,Dec2), (4) zero-knowledge proof protocol ZK{w|(x,w) ∈
R}, (5) extractable commitment ECOM = (KGen,ECom, V erify,Extract),
(6) a new trapdoor distinguishable commitment TDCOM = (KGen, TDCom,
V erify,Disting). The generic construction of the AHPE scheme SETUP,
KGen, JOIN, ENC, 〈P,V〉 , DEC, LINK, TRACE, AUTH is as follows:

SETUP. (i) selects a security parameter λ, and performs the extractable com-
mitment initialization algorithm ECOM.KGen, output the system parame-
ter Param, i.e., Param ← ECOM.KGen(1λ). (ii) selects two hash functions
H,H1 from a Universal One-Way Hash (UOWH) family.

KGen. The procedure KGenM1 will perform the extractable commitment key
generation algorithm to get a register private key and a corresponding public
key, i.e., (rsk, rpk) ← ECOM.KGen(Param).
The procedure KGenM2 will perform the public key encryption key genera-
tion algorithm to get a trace private key and a corresponding public key, i.e.,
(tsk, tpk) ← PE2.KGen2(Param).
The procedure KGenM3 will perform the trapdoor distinguishable commit-
ment key generation algorithm to get a link private key and a corresponding
public key, i.e., (lsk, lpk) ← TDCOM.KGen(Param).

JOIN. Each prospective user uk,j will get an identity IDk,j from the manager
M1, and then send to his superior who will respond with a secret key skk,j

using the public key encryption key generation algorithm PE1.KGen1 which
invoke the pseudorandom generator PRG, i.e., skk,j ← PE1.KGen1(PRG
(skk−1,j′ , IDk,j)). And then, the user will perform the public-key encryp-
tion key generation algorithm PE1.KGen1 to get his public key pkk,j , i.e.,
pkk,j ← PE1.KGen1(skk,j , Param), and send his public key to the manager
M1. Finally, M1 will respond with a certificate certk,j using the signature algo-
rithm SIG.Sign, i.e., certk,j ← SIG.Sign(rsk, pkk,j), and enter the public
key pkk,j into the public database followed by the signature certk,j .
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ENC. Step 1. Encryption. The procedure ENC will work as follows: (i) per-
form public key encryption algorithm PE1.Enc1 to get a message encryption
C1, i.e., C1 ← PE1.Enc1(pkk,j ,m); (ii) perform the trapdoor distinguishable
commitment algorithm TICIOM.TDCom to get a trapdoor distinguishable
commitment C2, i.e., C2 ← TICIOM.TDCom(lsk, pkk,j); (iii) perform the
public key encryption algorithm PE2.Enc2 to get a receriver’s public key
encryption C3, i.e., C3 ← PE2.Enc2 (tsk, pkk,j); (iv) perform the extractable
commitment algorithm ECOM.ECom to get a message commitment C4, i.e.,
C4 ← ECOM.ECom(rsk,m). Step 2. Zero-knowledge Proof. The sender will
engage in a protocol 〈P,V〉 using zero-knowledge Proof ZK to prove that
the encrypted message and the committed message are identical, and that
the public keys used in the message encryption algorithm Enc1, commit-
ted in trapdoor distinguishable commitment algorithm TDCom, encrypted
in identity encryption algorithm Enc2 are all the same. This is the protocol
between the sender (prover) and a verifier (gateway).

ZK

{
m,pkk,j

∣∣∣∣
C1←PE1.Enc1(pkk,j ,m), C2←TDCOM.TDCom(lsk,pkk,j),

C3←PE2.Enc2(tsk,pkk,j), C4←ECOM.ECom(rsk,m)

}

〈P,V〉 . The verifier (gateway) will check the validity of the ciphertext using
zero-knowledge proof ZK, and broadcast it to users if valid, or else reject.

DEC. The procedure DEC will perform the decryption algorithm PE1.Dec1
to get a plaintext m for the ciphertext C1, i.e., m ← PE1.Dec1(skk,j , C1).
Besides, the receiver can also decrypt the ciphertexts of his subordinates for
he can calculate the private keys of them.

LINK. It will perform the distinguishing algorithm TDCOM.Disting
for any two trapdoor distinguishable commitments C2, C

′
2, i.e., b ←

TDCOM.Disting (lsk, C2, C
′
2).

TRACE. It will perform the decryption algorithm PE2.Dec2 for the ciphertext
C3, i.e., pkk,j ← PE2.Dec2(tsk, C3).

AUTH. It will perform the extracting algorithm ECOM.Extract for the
extractable commitment C4, i.e., m ← ECOM.Extract(rsk, C4). This ends
the generic construction.

Theorem 2 The AHPE scheme above satisfies (i) Correctness, given that all
involved primitives, i.e., SIG, PK1, PK2 are correct, and TDCOM , ECOM ,
ZK satisfy completeness. (ii) Anonymity, given that PK1 satisfies key-privacy,
ZK satisfies zero-knowledge. (iii) IND-CPA security, given that PK1 satis-
fies IND-CPA security, ZK satisfies zero-knowledge. (iv) Link Security, given
that TDCOM satisfies hiding, ZK satisfies zero-knowledge. (v) Trace Security,
given that PK2 satisfies IND-CPA security, ZK satisfies zero-knowledge. (vi)
Authentication Security, given that ECOM satisfies hiding, ZK satisfies zero-
knowledge.

4.3 Concrete Implementation

A concrete implementation of the AHPE scheme is as follows:
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Fig. 2. Hierarchical key distribution

SETUP. (i) selects a security parameter λ ∈ Z
+, and perform the extractable

commitment initialization algorithm ECOM.KGen which generates two
groups G1,G2 of prime order p, 2λ−1 < p < 2λ, i.e., G1,G2

R← SETUP (1λ),
|G1| = |G2| = p, such that G1 �= G2 in which the DDH problem is hard, and
ê : G1 × G2 → GT a bilinear map between them. And then selects a gener-
ator g of G1 and a generator h of G2, thus ê(g, h) is a generator of GT ; (ii)
selects two hash functions H,H1 from a Universal One-Way Hash (UOWH)
family such that H : {0, 1}3p → {0, 1}2p, H1 : {0, 1}∗ → {0, 1}p; The system
parameters are given by Param = (p, g, h, ê,H,H1).

KGen. The procedure KGenM1 will perform the extractable commitment key
generation ECOM.KGen algorithm which selects rsk = (α1, β1)

R←(Z∗
p,Z

∗
p),

and sets rpk = (A1, B1) ← (gα1 , gβ1).
The procedure KGenM2 will perform the public key encryption key genera-
tion algorithm PE2.KGen2 which selects tsk = (α2, β2)

R←(Z∗
p,Z

∗
p), and sets

tpk = (A2, B2) ← (gα2 , gβ2).
The procedure KGenM3 will perform the trapdoor distinguishable commit-
ment key generation algorithm TDCOM.KGen which selects lsk = α3

R←Z
∗
p,

and sets lpk = A3 ← gα3 . Note that the generator h of G2 is not used in
procedures KGen and JOIN. It is only used in procedures ENC, LINK.

JOIN. Each prospective user uk,j will get an identity IDk,j ∈ Z
∗
p, (1 ≤ k ≤

l, j ≥ 1) from the manager M1.
1. When receiving an identity ID1,1 from the root user u1,1, the authen-
tication manager M1 will execute the public key encryption key genera-
tion algorithm PE1.KGen1 which invoke the hash function H, i.e., r1,1 ←
PE1.KGen1(H(α1, β1, ID1,1)) ∈ Z

∗
2p, and send r1,1 to the root user u1,1. The

root user u1,1 will take r1,1 as private key, i.e., (x1,1, y1,1) ← r1,1, and per-
form a public key encryption key generation algorithm PE1.KGen1 to get
his public key, i.e., (X1,1, Y1,1) ← (gx1,1 , gy1,1).
2. Similarly, when receiving an identity ID2,i from the user u2,i, the
root user u1,1 will execute the public key encryption key generation
algorithm PE1.KGen1 which invoke the hash function H, i.e., r2,i ←
KGen1(H(x1,1, y1,1, ID2,i)) ∈ Z

∗
2p, and send r2,i to the user u2,i. The user

u2,i will take r2,i as private key, i.e., (x2,i, y2,i) ← r2,i, and perform a public-
key encryption key generation algorithm PE1.KGen1 to get his public key,
i.e., (X2,i, Y2,i) ← (gx2,i , gy2,i).
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3. The private key of an arbitrary user uk,j will be (xk,j , yk,j) ← rk,j where
rk,j ← PE1.KGen1(H(xk−1,j′ , yk−1,j′ , IDk,j)) ∈ Z

∗
2p sent by his superior

uk−1,j′ . Then, he performs a public key encryption key generation algorithm
PE1.KGen1 to get his public key, i.e., (Xk,j , Yk,j) ← (gxk,j , gyk,j ). See Fig. 2
the hierarchical key distribution of the users.
After getting a key pairs, the user uk,j will engage with the M1 in a proof of
membership for the validity of (Xk,j , Yk,j). Upon acceptance the M1 will per-
form the signature algorithm SIG.Sign, i.e., X̃k,j ← (gu mod p, (H1(Xk,j) −
α1 · gu mod p)u−1 mod (p − 1)), Ỹk,j ← (gv mod p, (H1(Yk,j) − α1 · gv mod
p)v−1 mod (p−1)), and return a certificate certk,j = (X̃k,j , Ỹk,j). Finally, M1

will enter (Xk,j , Yk,j) and certk,j into the public database.
ENC. Step 1. Encryption. For reducing the length of ciphertexts, we integrate

some common parameters. Given a plaintext m ∈ G1 and a public key pkk,j

of a user uk,j , the procedure ENC selects s1, s2, s3, s4
R←Z

∗
p, and sets

C1,1 ← gs1 , C1,2 ← gs2 , C1,3 ← m · Xs1
k,jY

s2
k,j ,

C2,1 ← gs3 , C2,2 ← gs4 , C2,3 ← hs3 ,
C3,1 ← Xs3

k,j · As4
3 , C3,2 ← Xk,j · As3

2 Bs4
2 , C3,3 ← m · As3

1 Bs4
1 .

Let C0 = (C1,1,C1,2,C1,3,C2,1,C2,2,C2,3,C3,1,C3,2,C3,3), C1 = (C1,1,C1,2,C1,3),
C2 = (C2,2,C2,3,C3,1), C3 = (C2,1,C2,2,C3,2), C4 = (C2,1,C2,2,C3,3). It can be
seen that C1 is a public key encryption output by algorithm PE1.Enc1, C2

is a trapdoor distinguishable commitment output by TICIOM.TDCom, C3

is an identity encryption ciphertext output by algorithm PE2.Enc2, C4 is a
commitment output by algorithm ECOM.ECom. Note that among above all
ciphertexts, only C2,3 ∈ G2.
Step 2. Zero-knowledge Proof. The sender will engage in a protocol 〈P,V〉
using zero-knowledge proof ZK to prove that the encrypted message and
the committed message are identical, and that the public keys used in pub-
lic key encryption algorithm Enc1, committed in trapdoor distinguishable
commitment algorithm TDCom, encrypted in identity encryption algorithm
Enc2 are all the same. This is the protocol between the sender (prover) and
a verifier (gateway). We denote the protocol by

ZK

⎧⎨
⎩

m,Xk,j ,Yk,j ,
s1,s2,s3,s4

∣∣∣∣∣
C1,1←gs1 , C1,2←gs2 , C1,3←mXs1

k,jY
s2
k,j ,

C2,1←gs3 , C2,2 ← gs4 , C2,3←hs3 ,
C3,1←Xs3

k,jA
s4
3 , C3,2←Xk,jA

s3
2 Bs4

2 , C3,3←mAs3
1 Bs4

1

⎫⎬
⎭

The zero-knowledge proof protocol 〈P,V〉 is as follows.
1. The sender will select m′,Xk′,j′ , Yk′,j′

R←G1,s′
1, s

′
2, s

′
3, s

′
4

R←Z
∗
p, and com-

pute C ′
1,1 ← gs′

1 , C ′
1,2 ← gs′

2 , C ′
1,3 ← m′ · X

s′
1

k′,j′Y
s′
2

k′,j′ , C ′
2,1 ← gs′

3 ,

C ′
2,2 ← gs′

4 , C ′
2,3 ← hs′

3 , C ′
3,1 ← X

s′
3

k′,j′ ·As′
4

3 , C ′
3,2 ← Xk′,j′ ·As′

3
2 B

s′
4

2 , C ′
3,3 ←

m · A
s′
3

1 B
s′
4

1 . Let C ′
0 = (C ′

1,1, C
′
1,2, C ′

1,3, C
′
2,1, C

′
2,2, C

′
2,3, C

′
3,1, C

′
3,2, C

′
3,3).

2. Then, he will compute τ ← H1(C0, C
′
0).



Auditable Hierarchy-Private Public-Key Encryption 337

3. Finally, he will compute σ1 ← m′ · mτ mod p, σ2 ← Xk′,j′ · Xτ
k,j mod p,

σ3 ← Yk′,j′ ·Y τ
k,j mod p, σ4 ← s′

1+τ ·s1 mod p, σ5 ← s′
2+τ ·s2 mod p, σ6 ←

s′
3+τ ·s3 mod p, σ7 ← s′

4+τ ·s4 mod p. Let σ0 = (σ1, σ2, σ3, σ4, σ5, σ6, σ7),
and sends(C ′

0, τ, σ0) to the verifier (gateway).

4. The verifier will check that Cτ
1,1 · C ′

1,1

?=Aσ4
1 , Cτ

1,2 · C ′
1,2

?=Bσ5
1 , Cτ

1,3 ·
C ′

1,3

?= σ1σ2σ3, Cτ
2,1 · C ′

2,1

?= gσ6 , Cτ
2,2 · C ′

2,2

?= gσ7 , Cτ
2,3 · C ′

2,3

?=hσ6 , Cτ
3,1 ·

C ′
3,1

?= σ2 · Aσ7
3 , Cτ

3,2 · C ′
3,2

?=σ2 · Aσ6
2 · Bσ7

2 , Cτ
3,3 · C ′

3,3

?=σ1 · Aσ6
1 · Bσ7

1

Thus, the ciphertext sent to an arbitrary user is uk,j is C = (C0, C
′
0, τ, σ0). In

the AHPE system, we consider that a non-interactive zero-knowledge proof
is more reasonable for it can even prevent the privacy of a sender from being
detected by the verifier (gateway) and the adversary.

〈P,V〉 . The verifier (gateway) will output 1, and broadcast it to users if all above
checks hold, else output 0, and reject.

DEC. The procedure DEC will perform the decryption algorithm PE1.Dec1 to
get a plaintext m for the ciphertext C1, i.e., m ← C1,3 · C

−xk,j

1,1 · C
−yk,j

1,2 .
LINK. It will perform the distinguishing algorithm TDCOM.Disting for any

two trapdoor distinguishable commitments C2, C
′
2, i.e., Ctem ← C3,1 · C−α3

2,2 ,

C ′
tem ← C ′

3,1 ·C ′−α3
2,2 , ê(C ′

tem, C2,3)
?= ê(Ctem, C ′

2,3). If the equation holds, then
outputs 1, which means that the public keys contained in the ciphertexts are
the same, i.e., Xk′,j′ = Xk,j , else outputs 0.

TRACE. It will perform the decryption algorithm PE2.Dec2 for the ciphertext
C3, i.e., Xk,j ← C3,2 · C−α2

2,1 · C−β2
2,2 .

AUTH. It will perform the extracting algorithm ECOM.Extract for the
extractable commitment C4, i.e., m ← C3,3 · C−α1

2,1 · C−β1
2,2 . This ends the

instance.

Corollary 1. The AHPE scheme above satisfies (i) Correctness; (iii)
Anonymity and (iv) IND-CPA security, both properties under the DLP assump-
tion; (v) Link Security, under the DDH assumption; (vi) Trace Security and (vii)
Authentication Security, both properties under the DLP assumption.

Theorem 3 The link manager M3 in above AHPE scheme is unaware of any-
thing, excepts linkability.

5 Comparison

In Tables 1 and 2 we compare our AHPE scheme with related schemes in [1–5].
In Table 1 the second to the fourth columns show the size of the secret key, the
public key and the ciphertext. The fifth and sixth columns show the computation
complexity of encryption and decryption algorithms respectively. In Table 2 the
second to the seventh columns show the functionalities of the schemes, i.e., hier-
archy, anonymity, link, trace, constant ciphertext. The eighth and last columns
show the securities of the schemes and the underlying assumptions for guarantee-
ing the security respectively. It can be learnt from Table 1 that our scheme has a
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slightly shorter secret key, public key, ciphertext and lower computational com-
plexity than [2–5]. But, it has longer secret key, public key, ciphertext and higher
computational complexity than [1] which only has anonymity. From Table 2,
it can be seen that our AHPE scheme has the properties of private hierarchy,
anonymity, linkability, traceability, authenticability, constant ciphertext which is
better than [1–5]. But, it only has IND-CPA security without INC-CCA2 secu-
rity. However, the AHPE scheme can also achieve IND-CCA2 security based
on Cramer-Shoup cryptosystem [14] with the disadvantage that it has a longer
secret key, public key, ciphertext than [2,3].

Table 1. Performance comparison with related works

|sk| |pk| |C| Enc Dec

KPE [1] 1|Zp|/5|Zp| |G|/5|G| 2|G|/4|G| 2E/5E 1E/3E

GE [2] 5|Zp| 3|G| 25|G| 37E 5E

TGE [3] 5|Zp| 4|G| 35|G| 47E 3E+ 12P

HIBE [4] (2D − L)|G| L|Zp| 3|G| (L + 2)E + 1P 2P

AHIBE [5] (2D + 5)|G| (L + 1)|Zp| (2D + 7)|G| (2L + 6)E (D + 3)P

AHPE 2|Zp| 2|G| 8|Zp| + 18|G| 29E 21E

|sk|, |pk|, |C|: the size of the secret key, public key, ciphertext of users; L: the hierarchy’s
level; D: the hierarchy’s maximum depth; P: pairing maps; E: exponent; There are two
schemes in [1] with different |sk|, |pk|, |C| etc.

Table 2. Functionality comparison with related works

Hie Ano Link Trace Auth Con Security Assumption

KPE [1] ✕ ✓ ✕ ✕ ✕ ✓ CPA/CCA2 DDH

GE [2] ✕ ✓ ✕ ✕ ✕ ✓ CCA2 DDHSQNR

TGE [3] ✕ ✓ ✕ ✓ ✕ ✓ CCA2 q-SFP,D3DH,DLP

HIBE [4] ✓ ✕ ✕ ✕ ✕ ✓ CPA,CCA1 BDHE

AHIBE [5] ✓ ✓ ✕ ✕ ✕ ✕ CPA D-BDH,DLP

AHPE ✓ ✓ ✓ ✓ ✓ ✓ CPA DDH

Hie: Hierarchy; Ano: Anonymity; Auth: Authentication; Con: Constant Ciphertext;
CPA: IND-CPA; CCA1: IND-CCA1; CCA2: IND-CCA2

6 Conclusion

We proposed a new cryptographic primitive, referred to as auditable hierarchy-
private public-key encryption (AHPE) which is better than group encryp-
tion, hierarchical identity-based encryption, and key-privacy encryption. The
AHPE scheme could discovery malicious users on the premise of protecting the
anonymity of all of them, and then trace the identities of malicious users, and
authenticate the contents of the messages. Thus, it is an multifunctional and
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practical management system. We gave a generic construction and a concrete
implementation, and proved its correctness, IND-CPA security, anonymity, link-
ability, traceability, and authenticability strictly. The private key, public key,
ciphertext, and computation overhead in the AHPE system are constant which
hides the hierarchy of all users. Finally, analyses show that the proposed AHPE
scheme is efficient and practical.
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Abstract. Public-key encryption with keyword search (PEKS) enables
us to search over encrypted data, and is expected to be used between
a cloud server and users’ devices such as laptops or smartphones. How-
ever, those devices might be lost accidentally or be stolen. In this paper,
we deal with such a key-exposure problem on PEKS, and introduce a
concept of PEKS with key-updating functionality, which we call key-
updatable PEKS (KU-PEKS). Specifically, we propose two models of
KU-PEKS: The key-evolution model and the key-insulation model. In
the key-evolution model, a pair of public and secret keys can be updated
if needed (e.g., the secret key is exposed). In the key-insulation model,
a public key remains fixed while a secret key can be updated if needed.
The former model makes a construction simple and more efficient than
the latter model. On the other hand, the latter model is preferable for
practical use since a user never updates his/her public key. We show con-
structions of a KU-PEKS scheme in each model in a black-box manner.
We also give an experimental result for the most efficient instantiation,
and show our proposal is practical.

Keywords: Searchable encryption
Public-key encryption with keyword search
Key-updating functionality

1 Introduction

Public-key encryption with keyword search (PEKS), proposed by Boneh et al. [5],
enables a user to search over encrypted data by keywords in a privacy-preserving
way. PEKS is one of the efficient solutions to the problem of constructing a pri-
vate information retrieval (PIR) system [11]; for example, PEKS can be applied
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in a searching system on an e-mail server. E-mails and keywords related to each
e-mail such as “urgent” are encrypted by S/MIME and PEKS, respectively, and
both are stored in a database connected to the server. A user who wants to
search for a keyword generates a trapdoor of the keyword, and the server can
check whether or not each stored e-mail contains the keyword while the server
can get only negligible information on the e-mails and the keyword.

The Internet of things (IoT), where secure environments are not necessarily
assured, is more and more becoming a reality. In particular, small devices such
as smartphones in the IoT are becoming popular communication tools. It is
quite convenient, however, such devices might be accidentally lost or be stolen.
Besides, side-channel attacks (e.g., [20]) are ones of the powerful attacks that
directly leaks secret information such as secret keys. We are interested in such
a key exposure problem, and tackle the problem on PEKS in this paper. In
fact, according to the NIST guideline SP800-57 [23], “re-keying”, which we call
“key update” in this paper, is one of the important factors affecting the length
of a cryptoperiod.1 Therefore, it is important to investigate the key-updating
functionality for PEKS, however, to the best of our knowledge, there are only a
few researches on it thus far. Abdalla et al. [1] considered public-key encryption
with temporary keyword search (PETKS), which the server can search over
ciphertexts encrypted at a time period by using a trapdoor generated at the
same time period. Namely, the trapdoor is available during only the time period,
and therefore it reduces information leaked to the server. However, PETKS does
not have key-updating functionality. Tang [24] proposed a PEKS scheme secure
against the key exposure problem in the sense of forward security (not a PEKS
scheme with certain key-updating functionality). The security relies on non-
standard assumptions in composite-order groups, and therefore the resulting
scheme is inefficient.

1.1 Our Contribution

In this paper, we introduce key-updatable public-key encryption with keyword
search (KU-PEKS), which is the first PEKS with key-updating functionality.
We require that: (1) Secret keys can be updated and it is hard to derive updated
keys from exposed secret keys; (2) trapdoors generated from updated keys can
be used to search over ciphertexts even if they are encrypted before the update;
and (3) trapdoors generated from exposed keys are useless to search for key-
words encrypted after the keys are update. Specifically, we propose two models
of KU-PEKS: a key-evolution model and a key-insulation model. The former
model is one of the most likely models of KU-PEKS, and the latter model is
based on key-insulated cryptography introduced by Dodis et al. [13]. Whereas
we realize (2) and (3) by (unidirectionally) updating ciphertexts in both models,
we take different approaches to achieving (1) in the two models. We elaborate
the difference as follows.
1 A cryptoperiod [23] means that the time span during which a specific key is autho-

rized for use or in which the keys for a given system or application may remain in
effect.
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In the key-evolution model, a pair of a public and secret key can be updated
if the secret key is exposed. This model makes a construction simple and efficient
while not only the secret key but the public key have to be updated. Actually,
we construct a KU-PEKS scheme in this model from any public-key encryption
(PKE) scheme and any PEKS scheme in a black-box manner, and show that its
instantiation (secure in the random oracle model) employing the ElGamal PKE
[15] and a PEKS scheme from the Boneh-Franklin identity-based encryption
(IBE) [6], is efficient in the sense of both theory and practical use (see Sect. 5).
By employing existing anonymous IBE schemes secure in the standard model
(e.g., [19,21]) instead of the Boneh-Franklin IBE, we also obtain an instantiation
of the generic construction without random oracles.

In the key-insulation model, a public key remains fixed while a secret key can
be updated if it is exposed. Namely, this model is more practical than the key-
evolution model in the sense of practical use. To give a generic construction of
a KU-PEKS scheme, we introduce a new key-insulated cryptographic protocol,
a key-insulated identity-based encryption for master keys (MIKE), which has
similar key-insulated functionality to key-insulated IBE [18,26]. MIKE realizes
the key-insulated functionality for master keys. A master key at a time period i
generates users’ decryption key at i, which can be used to decrypt ciphertexts
encrypted at i. Even if a master key at a time period i is exposed, it does
not affect master keys at other time periods (i.e., no information on master and
decryption keys at other time periods is leaked from the exposed master key). We
construct an anonymous MIKE scheme from symmetric external Diffie-Hellman
(SXDH) assumption. We believe this new primitive is of independent interest.
Then, we show a generic construction of a KU-PEKS scheme in this model from
any key-insulated PKE (KI-PKE) [13,26] and any anonymous MIKE scheme.

The Difficulty to Update Ciphertexts and Our Approach. In Abdalla et
al.’s transformation, an encryption algorithm is realized by executing an encryp-
tion algorithm of IBE with a keyword w, which is regarded as an identity, and
the test algorithm is realized by decrypting the ciphertext with a decryption key
for the identity w. Therefore, one of the promising approaches to constructing
a KU-PEKS scheme without revealing w itself is to use a 2-level anonymous
hierarchical IBE (HIBE) scheme. Namely, we use the encryption algorithm of
the IBE scheme with an identity vector (w, i) to realize the encryption algorithm
for a keyword w at a time period i. Ciphertexts generated in such a way can be
decrypted with a decryption key for (w, i), and therefore we can realize KE.Test
in the same way as Abdalla et al.’s transformation. However, it is generally diffi-
cult to change an identity vector (w, i) of any IBE ciphertext with (w, i′) (unless
decrypting it). Actually, if there exists such an algorithm, the security of IBE is
immediately broken.

We resolve this problem by re-encrypting w when updating ciphertexts, i.e.,
we allow the server to decrypt old ciphertexts and re-encrypt them with the
current time period when updating them. In fact, this construction methodol-
ogy does not violate our security definitions since the strongest adversary also
obtains all the keywords encrypted before the target time period. In other words,
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the adversary has all the exposed secret keys, and therefore can decrypt all the
old ciphertexts. Hence, taking into account the server that has the maximum
information, we can say that the proposed re-encryption algorithm does not
reveal information more than necessary. Note that the adversary cannot decrypt
the latest (or newest) ciphertexts, and thus our construction provides security at
the same level as ordinary PEKS [1,5] even if the adversary gets as much infor-
mation as possible. Namely, the latest ciphertexts do not reveal any information
on the underlying keywords. Nonetheless, it is better to realize the re-encryption
algorithm without revealing w itself. We leave this obstacle as an open problem.

1.2 Related Works

The privacy of keywords have been mainly discussed as the security require-
ment of PEKS (e.g., [1,5]). Namely, a basic security requirement of PEKS is
that the encrypted keyword in the database does not reveal any information
about the keyword unless a trapdoor of the keyword is available. In addition,
various functionalities/security notions such as removing secure channels [2] and
security against keyword guessing attacks [7] have been considered. In partic-
ular, Emura et al. [16] considered revocation functionality for trapdoors. How-
ever, their scheme support neither revocation nor key-updating functionalities
for users’ secret keys.

In the context of other cryptographic protocols such as PKE and IBE, a lot
of researchers have tackled various kinds of researches related to key-updating
functionality. Canetti et al. [8] introduced forward-secure PKE. In forward-secure
PKE, the exposure of a secret key in period i does not affect on the secrecy of
secret keys before the period i. Dodis et al. [13] introduced KI-PKE, which
was mentioned above. In KI-PKE, a receiver has two kinds of secret keys, a
decryption key and a helper key, which are stored in a different devices, e.g., a
smartphone and USB pen drive. The decryption key is updated by the help of the
helper key, and if the decryption key at time period i is exposed, no information
on decryption keys at other time periods is leaked. Dodis et al. [12] proposed
intrusion-resilient PKE, which realizes the both functionalities of forward-secure
PKE and KI-PKE at the cost of efficiency.

We remark that proxy re-encryption (PRE) [3], especially, identity-based
PRE (IB-PRE) [17] also has similar re-encrypting functionality. It might be
possible to construct KU-PEKS from IB-PRE by regarding users as time peri-
ods. Namely, we might realize the functionality by re-encrypting ciphertexts
for a time period j to that for a time period i. However, we need a multi-hop
and unidirectional anonymous IB-PRE scheme to satisfy our requirements, and
unfortunately, no such scheme is known.

2 Preliminaries

In this section, we define some notations and cryptographic primitive except for
public-key encryption (PKE), since we believe readers are familiar with it.
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ExpCKAPEKS,A(1λ)

parpeks ← Setuppeks(1
λ)

(msk,mpk) ← KeyGenpeks(parpeks)

(w∗
0 , w∗

1 , state) ← AOtd(parpeks,mpk)

b
$← {0, 1}, ct∗w∗

b
← Encpeks(mpk, w∗

b )

b ← AOtd(state, ct∗w∗
b
)

If b = b return 1 else return 0

Fig. 1. The IND-CKA game for PEKS.
The adversary A can access an oracle
Otd which receives w(/∈ {w∗

0 , w∗
1}), and

returns Trapdoorpeks(msk, w).

ExpConsPEKS,A(1λ)

parpeks ← Setuppeks(1
λ)

(msk,mpk) ← KeyGenpeks(parpeks)

(w∗
0 , w∗

1) ← A(parpeks,mpk)

ct∗w∗
0

← Encpeks(mpk, w∗
0)

tw∗
1

← Trapdoorpeks(msk, w∗
1)

If
Testpeks(tw∗

1
, ctw∗

0
) = 1

∧ w∗
0 = w∗

1
return 1

else return 0

Fig. 2. The Computational Consistency
game for PEKS.

Notation. If A is a probabilistic polynomial time (PPT) algorithm, x ← A(y)
denotes assigning y to the input A on an output x. Also, x ← AO(y) denotes
the A uses oracle O to output x. If S is a finite set, x

$← S denotes that x is
chosen uniformly at random from S. Throughout of this paper, let T be a set of
time periods, and we write T := {1, 2, . . . ,poly(λ)} for simplicity.

2.1 Public-Key Encryption with Keyword Search

Public-key encryption with keyword search (PEKS) PEKS = (Setuppeks,
KeyGenpeks, Encpeks,Trapdoorpeks,Testpeks) is defined as follows.

– Setuppeks(1λ) → parpeks: Setuppeks takes a security parameter 1λ as input,
and outputs a public parameter parpeks.

– KeyGenpeks(parpeks) → (mpk,msk): KeyGenpeks takes parpeks as input, and
outputs a public key mpk and a secret key msk.

– Encpeks(mpk, w) → ctw: Encpeks takes mpk and a keyword w ∈ W as input,
and outputs a ciphertext ctw, where W is a keyword space determined by
security parameters.

– Trapdoorpeks(mpk,msk, w′) → tw′ : Trapdoorpeks takes mpk, msk, and a key-
word w′ ∈ W as input, and outputs a trapdoor tw′ .

– Testpeks(mpk, tw′ , ctw) → 1 or 0: Testpeks takes mpk, tw′ , and ctw as input,
and outputs 1, which indicates “keyword match”, or 0.

PEKS requires the following correctness: For all λ ∈ N, all w ∈ W, parpeks ←
Setuppeks(1λ), all (msk, mpk) ← KeyGenpeks(parpeks), it holds Testpeks(mpk, tw,
Encpeks(mpk, w)) → 1, where tw ← Trapdoorpeks(mpk,msk, w).

Figures 1 and 2 show security games of PEKS, indistinguishability against
chosen keyword attacks (IND-CKA) and Computational Consistency, respectively.
In both games, A is required to output (w∗

0 , w
∗
1) such that |w∗

0 | = |w∗
1 |.



346 H. Anada et al.

ExpKI-CPAKIE,A(1λ)

(EK,DK0,HK) ← KIKG(1λ), (m∗
0, m

∗
1, i

∗, state) ← AO(EK) s.t. |m∗
0| = |m∗

1|

b
$← {0, 1}, C∗

i∗,b ← KIE(EK, m∗
b , i∗), b ← AO(state,C∗

i∗,b)

If b = b return 1 else return 0

Fig. 3. The IND-KI-CPA game.

Definition 1 (IND-CKA [1]). PEKS is said to be IND-CKA secure if for all
PPT adversaries A, AdvCKAPEKS,A(1λ) := |Pr[ExpCKAPEKS,A(1λ) = 1] − 1/2| is negli-
gible in λ.

Definition 2 (Computational Consistency [1]). PEKS is said to meet Com-
putational Consistency if for all PPT adversaries A, its advantage defined by
AdvConsPEKS,A(1λ) := Pr[ExpConsPEKS,A(1λ) = 1] is negligible in λ.

2.2 Key-Insulated Public-Key Encryption

Key-insulated public-key encryption (KI-PKE) KIE = (KIKG,KIUG,KIU,KIE,
KID) is defined as follows.

– KIKG(1λ) → (EK,DK0,HK): KIKG takes a security parameter 1λ as input, and
outputs an encryption key EK, an initial decryption key DK0, and a helper
key HK.

– KIUG(HK, i) → UPi: KIUG takes HK and a time period i ∈ T as input, and
outputs update information UPi.

– KIU(DKi′ ,UPi) → DKi: KIU takes DKi′ at a time period i′ ∈ T and UPi as
input, and outputs an updated decryption key DKi at a time period i ∈ T .

– KIE(EK,m, i) → Ci: KIE takes EK, a plaintext m ∈ M, and a current time
period i ∈ T as input, and outputs a ciphertext Ci at i, where M is a plaintext
space determined by λ.

– KID(DKi,Ci) → m or ⊥: KID takes DKi at a time period i ∈ T and Ci at the
same time period as input, and outputs m or ⊥, where ⊥ indicates decryption
failure.

KIE requires the following correctness: For all λ ∈ N, all m ∈ M,
all (EK,DK0,HK) ← KIKG(1λ), and all i ∈ T , it holds that KID(DKi,
KIE(EK,m, i)) = m, where DKi is any decryption key at i correctly generated
by KIUG and KIU.

We describe a security notion of indistinguishability against chosen plaintext
attacks for KI-PKE (IND-KI-CPA). Let A be a PPT adversary, and we consider
an experiment ExpKI-CPAKIE,A(1λ) in Fig. 3. A can access an oracle O: Let L := ∅.
For a query i ∈ T ∪ {�}, O returns DKi by computing KIU(DK0,KIUG(HK, i)) if
i /∈ T \ {i∗} and � /∈ L and adds i to L. Else if i = � and L = ∅, it returns HK
and adds � to L. Otherwise, it returns ⊥. It means that A can obtain either (a
number of) decryption keys or the helper key (not both).
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Definition 3 (IND-KI-CPA [13]). KIE is said to be IND-KI-CPA secure if for all
PPT adversaries A, AdvKI-CPAKIE,A(1λ) := |Pr[ExpKI-CPAKIE,A(1λ) = 1] − 1/2| is negligible
in λ.

3 KU-PEKS in the Key-Evolution Model

We introduce the first framework of KU-PEKS, which is called a key-evolution
model. Roughly speaking, in this model, both of a public key and secret key are
updated periodically. We believe that this is one of the most likely models that
ones naturally come up with “PEKS with key-updating functionality”.

3.1 Model

KU-PEKS in the key-evolution model is executed as follows. A user first runs
KE.Setup to generate a public key pk1 and a secret key sk1. An i-th key
pair (pki, ski) can be updated by KE.Upd if ski is exposed, and the user gets
an updated key pair (pki+1, ski+1) and a re-encryption key rki→i+1. The re-
encryption key is sent to the server via a secure channel (we will explain how
to use rki→i+1 later). Suppose that the current time-period is i. As in PEKS,
another user who wants to store an encrypted keyword in a server executes
KE.Enc with i-th public key pki and a keyword w, and gets a ciphertext (or,
an encrypted keyword) c

(0)
w,i, which is stored in the server. To search a keyword

w′, the user runs KE.Trapdoor with ski and w′ and gets a trapdoor tw′,i, which
is sent to the server via the secure channel. The server uses tw′,i to search the
stored ciphertexts by the keyword w′. Specifically, it runs KE.Test with tw′,i and
c
(k)
w,j such that j + k = i, where j indicates a time period when it is generated

and k indicates the number of updates. KE.Test outputs 1 if w′ = w holds (i.e.,
the search keyword matches the encrypted keyword), or outputs 0 otherwise.
Note that the server only gets correct search results if and only if j + k = i. In
other words, KE.Test never outputs 1 if a trapdoor input to KE.Test is old, i.e.,
j +k > i. The server returns the search result to the user. The server can update
ciphertexts encrypted in the previous time period by using re-encryption keys.
More specifically, the server updates a ciphertext c

(k)
w,j such that j + k = i,

by running KE.ReEnc with rki→i+1, and gets an updated ciphertext c
(k+1)
w,j .

We formally define KU-PEKS in the key-evolution model Πke = (KE.Setup,
KE.Upd,KE.Enc,KE.ReEnc,KE.Trapdoor,KE.Test).

– KE.Setup(1λ) → (pk1, sk1): KE.Setup takes security parameter 1λ as input,
and outputs an initial key pair (pk1, sk1).

– KE.Upd(pki, ski) → (pki+1, ski+1, rki→i+1): KE.Upd takes a key pair (ski, pki)
at a time period i ∈ T as input, and outputs an updated key pair (pki+1,
ski+1) at a next time period i + 1 ∈ T and a re-encryption key rki→i+1.

– KE.Enc(pki, w) → c
(0)
w,i: KE.Enc takes pki and a keyword w ∈ W as input,

and outputs a ciphertext c(0)w,i. The superscript of the ciphertext indicates the
number of updates. Namely, at this point it is 0.
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ExpKE-CKAΠke,A (1λ)

ctr := 1, (pk1, sk1) ← KE.Setup(1λ)

(w∗
0 , w∗

1 , state) ← AOkg,Okl,Otd(pk1)

b
$← {0, 1}, c

(0)
w∗

b
,ctr ← KE.Enc(pkctr, w

∗
b )

b ← AOkl,Otd(state, c(0)w∗
b

,ctr)

If b = b return 1 else return 0

Fig. 4. The IND-KE-CKA game. A is
required to output (w∗

0 , w∗
1) such that

|w∗
0 | = |w∗

1 |.

ExpKE-ConsΠke,A (1λ)

ctr := 1, (pk1, sk1) ← KE.Setup(1λ)

(w∗
0 , w∗

1 , i∗state) ← AOkg,Okl(pk1)

c
(0)
w∗

0 ,ctr ← KE.Enc(pkctr, w
∗
0)

tdw∗
1 ,i∗ ← KE.Trapdoor(pki∗ , ski∗ , w∗

1)

If
KE.Test(tdw∗

1 ,i∗ , cw∗
0 ,ctr) = 1

w∗
0 = w∗

1

return 1 else return 0

Fig. 5. The KE-Computational Consis-
tency game. A is required to output
(w∗

0 , w∗
1 , i∗) such that |w∗

0 | = |w∗
1 |, and

i∗ ≤ ctr.

– KE.ReEnc(pki+1, rki→i+1, c
(k)
w,j) → c

(k+1)
w,j or ⊥: KE.ReEnc takes pki+1, rki→i+1

and c
(k)
w,j as input, and outputs an updated ciphertext c

(k+1)
w,j if j + k = i

holds.2 Otherwise, it outputs ⊥.
– KE.Trapdoor(pki, ski, w

′) → tw′,i: KE.Trapdoor takes pki, ski, and a keyword
w′ ∈ W as input, and outputs a trapdoor tw′,i (at time period i ∈ T ).

– KE.Test(pki, tw′,i, c
(k)
w,j) → 1 or 0: KE.Test takes pki, tw′,i, and c

(k)
w,j as input,

and if w = w′ and j + k = i, it returns 1. Otherwise, it returns 0.

Πke requires the following correctness. For all λ ∈ N, all i ∈ T , all j ∈
{
1, . . . ,

i − 1
}
, all (pk1, sk1) ← KE.Setup(1λ), all (pk�, sk�, rk�−1→�) ← KE.Upd(pk�−1,

sk�−1) with 2 ≤ � ≤ i, and all w ∈ W, it holds KE.Test(pki,KE.Trapdoor(pki,

ski, w), c
(i−j)
w,j ) → 1, where c

(i−j)
w,j ← KE.ReEnc(pki, rki−1→i,KE.ReEnc(· · ·

KE.ReEnc(pkj+1, rkj→j+1,KE.Enc(pkj , w)) · · · )). It means that KE.Test always
outputs 1 if the search keyword matches the encrypted keyword and the cipher-
text is generated at j and updated i− j times when the version of the secret key
is i.

We next define security of KU-PEKS in the key-evolution model. We con-
sider security against an honest-but-curious server that obtains all leaked secret
keys and re-encryption keys. As in traditional PEKS, we consider notions of
indistinguishability against chosen keyword attacks in the key-evolution model
(IND-KE-CKA) and computational consistency in the key-evolution model (KE-
Computational Consistency).

Let A be a PPT adversary. First, we define experiments of those notions
in Figs. 4 and 5, respectively. A can access a set of the following oracles
{Okg,Okl,Otd}.

2 For simplicity, we assume that the information of i, j, and k is attached to tw′,i and

c
(k)
w,j .
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Okg: Initially, it sets SK := ∅. For a query from A, it computes (pkctr+1, skctr+1,
rkctr→ctr+1) ← KE.Upd(pkctr, skctr), and returns (pkctr+1, rkctr→ctr+1) to A.
It adds skctr+1 to SK, and finally sets ctr := ctr + 1.

Okl: For a query i ∈ T , it returns ski ∈ SK if i < ctr. Otherwise, it returns ⊥.
Note that this oracle captures key leakage.

Otd: For a query (w, i) ∈ W × T , it returns KE.Trapdoor(ski, w) if i ≤ ctr and
(w, i) /∈ {(w∗

0 , ctr), (w
∗
1 , ctr)}. Otherwise, it returns ⊥.

Definition 4 (IND-KE-CKA). Πke is said to be IND-KE-CKA secure if for all
PPT adversaries A, AdvKE-CKAΠke,A (1λ) := |Pr[ExpKE-CKAΠke,A (1λ) = 1]−1/2| is negligible
in λ.

Definition 5 (KE-Computational Consistency). Πke is said to meet KE-
Computational Consistency if for all PPT adversaries A, AdvKE-ConsΠke,A (1λ) :=
Pr[ExpKE-ConsΠke,A (1λ) = 1] is negligible in λ.

3.2 Generic Construction from PKE and PEKS

In this section, we show a generic construction of a KU-PEKS scheme
Πke in the key-evolution model from any PKE scheme PKE and
any traditional PEKS scheme PEKS. Let PKE = (PG,G,E,D) and
PEKS = (Setuppeks,KeyGenpeks, Encpeks,Trapdoorpeks,Testpeks) be a PKE
scheme and a PEKS scheme, respectively. Our construction of Πke =
(KE.Setup,KE.Upd,KE.Enc,KE.ReEnc,KE.Trapdoor, KE.Test) is given in Fig. 6.
The security of Πke can be proved, however we omit the proof due to the page
limitation.

Theorem 1. If PKE is IND-CPA secure and PEKS is IND-CKA secure and
meets Computational Consistency, the construction given in Fig. 6 is IND-KE-CKA
secure and meets KE-Computational Consistency.

4 KU-PEKS in the Key-Insulation Model

Taking into account practical use, it is desirable to keep the same public key
while secret keys are updated. In this section, we adopt a concept of key-insulated
cryptography [13,14], which is one of the well-known cryptographic solutions to
the key exposure problem, and propose a key-insulation model as another model
of KU-PEKS. The key-insulation model achieves the property that a public key
remains the same while a secret key is updated.

4.1 Model

A key-insulated protocol is said to have random access key updates [10] if one
can update any old secret key to the latest version, more generally, if one can
update a secret key from any time period j ∈ T to any time period i ∈ T . Since
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KE.Setup(1λ):

parpke ← PG(1λ)
parpeks ← Setuppeks(1

λ)
(ek1, dk1) ← G(parpke)
(mpk1,msk1) ← KeyGenpeks(parpeks)
pk1 := (parpke, parpeks, ek1,mpk1)
sk1 := (dk1,msk1)
return (pk1, sk1)

KE.Upd(pki, ski):

parse pki = (parpke, parpeks, eki,mpki)
parse ski = (dki,mski)
(eki+1, dki+1) ← G(parpke)
(mpki+1,mski+1) ← KeyGenpeks(parpeks)
pki+1 := (parpke, parpeks, eki+1,mpki+1)
ski+1 := (dki+1,mski+1)
rki→i+1 := dki

return (pki+1, ski+1, rki→i+1)

KE.Enc(pki, w):

parse pki = (parpke, parpeks, eki,mpki)
cti ← E(eki, w)
// M (of PKE) := W (of PEKS)
ctw,i ← Encpeks(mpki, w)
c
(0)
w,i := (cti, ctw,i)
return c

(0)
w,i

KE.ReEnc(pki+1, rki→i+1, c
(k)
w,j):

parse rki→i+1 = (eki+1,mpki+1, dki)
parse c

(0)
w,i = (cti, ctw,i)

if i = j + k
return ⊥

else
w ← D(dki, cti)
c
(k+1)
w,j ← KE.Enc(pki+1, w)
// Run KE.Enc constructed as above

return c
(k+1)
w,j

KE.Trapdoor(pki, ski, w ):

parse ski = (dki,mski)
tw ,i ← Trapdoorpeks(mpki,mski, w )
return tw ,i

KE.Test(pki, tw ,i, c
(k)
w,j):

parse c
(k)
w,j = (ctj+k, ctw,j+k)

if i = j + k
return 0

else if 1 ← Testpeks(mpki, tw ,i, ctw,i)
return 1

else if 0 ← Testpeks(mpki, tw ,i, ctw,i)
return 0

Fig. 6. A generic construction of Πke from PKE and PEKS.

the functionality of random access key updates is a basic requirement in key-
insulated cryptography, we also consider it in this paper. Therefore, it eliminates
the need for sequentially updating keys (i.e., ski−1 → ski), and therefore allows
the server to manage only one “global” time-period set T among all users (e.g.,
t1 := 11/7/2018, t2 := 12/7/2018, . . .), whereas in the key-evolution model, the
server has to manage different time-period sets per each user (i.e., a time period
set is a counter of updates for each user). We also model re-encryption keys so
that it updates ciphertexts from any time period to any time period since secret
keys are not sequentially updated.

KU-PEKS in the key-insulation model is executed as follows. A user first
runs KI.Setup to generate a public key pk, an initial secret key sk0, and a helper
key hk. sk0 is stored in a powerful but insecure device such as smartphones, and
hk is stored in a physically-secure but computationally-limited device such as
USB pen drives. A secret key ski′ at a time period i′ ∈ T is periodically updated
by Δ-Gen and KI.Upd. Specifically, the user uses the physically-secure devise
and runs Δ-Gen with hk to get update information δi. The user then executes
KI.Upd with δi, and updates ski′ to ski. KI.Upd also outputs a re-encryption key
rki at the same time, and rki is sent to the server via a secure channel. Since an
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adversary cannot get both of the helper key hk and (a number of) decryption
keys {ski1 , ski2 , . . . , skiq}, A can execute neither Δ-Gen nor KI.Upd (see security
definition for details). The flows of encryption, trapdoor generation, test, and re-
encryption are almost the same as KU-PEKS in the key-evolution model (Note
that any old ciphertext ctw,j (j < i) can be updated by rki in this model).
We formally define KU-PEKS in the key-insulation model Πki = (KI.Setup,
Δ-Gen,KI.Upd,KI.Enc,KI.ReEnc,KI.Trapdoor,KI.Test).

– KI.Setup(1λ) → (pk, sk0, hk): KI.Setup takes security parameter 1λ as input,
and outputs a public key pk, an initial secret key sk0, and a helper key hk.

– Δ-Gen(pk, hk, i) → δi: Δ-Gen takes pk, hk, and a time period i ∈ T as input,
and outputs update information δi at i.

– KI.Upd(pk, ski′ , δi) → (ski, rki): KI.Upd takes pk, ski′ at a time period i′ ∈ T
and δi at i ∈ T as input, and outputs an updated secret key ski and a re-
encryption key rki.

– KI.Enc(pk, w, i) → cw,i: KI.Enc takes pk, a keyword w ∈ W, and a current
time period i ∈ T as input, and outputs a ciphertext cw,i.

– KI.ReEnc(pk, rki, cw,j) → cw,i or ⊥: KI.ReEnc takes pk, rki at i ∈ T , and
a ciphertext cw,j encrypted at j ∈ T as input, and outputs an updated
ciphertext cw,i at i.

– KI.Trapdoor(pk, ski, w
′) → tdw′,i: KI.Trapdoor takes pk, ski at i ∈ T , and a

keyword w′ ∈ W as input, and outputs a trapdoor tdw′,i at i.
– KI.Test(pk, tdw′,i, cw,i) → 1 or 0: KI.Test takes pk, tdw′,i, and cw,i as input,

and if w = w′, it returns 1. Otherwise, it returns 0.

Πki requires the following correctness. For all λ ∈ N, all i, j ∈ T , all (pk, sk0,
hk) ← KI.Setup(1λ), and all w ∈ W, it holds KI.Test(pk,KI.Trapdoor(pk, ski, w),
cw,i) → 1, where ski is any secret key correctly updated from sk0, and cw,i is: (i) if
j = i, cw,i ← KI.Enc(pk, w, i); (ii) if j 	= i, cw,i ← KI.ReEnc(pk, rki,KI.ReEnc(· · ·
KI.Enc(pk, w, j) · · · )). It means that KI.Test always outputs 1 if the search key-
word matches the encrypted keyword and the ciphertext is (correctly updated
to) the same version of the secret key.

We next define security of KU-PEKS in the key-insulation model. As in
the key-evolution model, we consider security against an honest-but-curious
server that obtains all leaked secret keys and re-encryption keys, that is, we
define notions of indistinguishability against chosen keyword attacks in the
key-insulation model (IND-KI-CKA) and computational consistency in the key-
insulation model (KI-Computational Consistency). Let A be a PPT adversary.
First, we define experiments of those notions in Figs. 7 and 8, respectively. In
both games, A is required to output (w∗

0 , w
∗
1) such that |w∗

0 | = |w∗
1 |. A can access

sets of the following oracles Okl,Ork,Otd. Initially, let L := ∅ and RK := ∅.

Okl: For a query i ∈ T ∪ {�}, if i /∈ T \ {i∗} and � /∈ L, it computes (ski, rki) ←
KI.Upd(pk, sk0,Δ-Gen(pk, hk, i)), returns ski, and adds i and rki to L and
RK, respectively. Else if i = � and L = ∅, it then returns hk and adds � to
L. Otherwise, it returns ⊥. Note that this oracle captures key leakage, and
A obtains either (a number of) decryption keys or the helper key during
the game.
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ExpKI-CKAΠki,A (1λ)

(pk, sk0, hk) ← KI.Setup(1λ)

(w∗
0 , w∗

1 , i∗, state) ← AOkl,Ork,Otd(pk)

b
$← {0, 1}

cw∗
b

,i∗ ← KI.Enc(pk, w∗
b , i∗)

b ← AOkl,Ork,Otd(state, cw∗
b

,i∗)

If b = b return 1 else return 0

Fig. 7. The IND-KI-CKA game.

ExpKI-ConsΠki,A (1λ)

(pk, sk0, hk) ← KI.Setup(1λ)

(w∗
0 , w∗

1 , i∗, j∗, state) ← AOkl,Ork(pk)

cw∗
0 ,i∗ ← KI.Enc(pk, w∗

0 , i∗),

δj∗ ← Δ-Gen(pk, hk, j∗)

(skj∗ , rkj∗) ← KI.Upd(sk0, δj∗)

tdw∗
1 ,j∗ ← KI.Trapdoor(pk, skj∗ , w∗

1)

If
KE.Test(tdw∗

1 ,j∗ , cw∗
0 ,i∗) = 1

w∗
0 = w∗

1

return 1 else return 0

Fig. 8. The KI-Computational Consistency
game.

Ork: For a query i ∈ T , it returns rki ∈ RK if i ∈ L.3

Otd: For a query (w, i) ∈ W × T , it returns KI.Trapdoor(pk, ski, w) if (w, i) /∈
{(w∗

0 , i
∗), (w∗

1 , i
∗)}. Otherwise, it returns ⊥.

Definition 6 (IND-KI-CKA). Πki is said to be IND-KI-CKA secure if for all
PPT adversaries A, AdvKI-CKAΠki,A (1λ) := |Pr[ExpKI-CKAΠki,A (1λ) = 1]− 1/2| is negligible
in λ.

Definition 7 (KI-Computational Consistency). Πki is said to meet KI-
Computational Consistency if for all PPT adversaries A, AdvKI-ConsΠki,A (1λ) :=
Pr[ExpKI-ConsΠki,A (1λ) = 1] is negligible in λ.

4.2 Building Block: Anonymous Key-Insulated IBE for Master
Keys

Abdalla et al. [1] showed the transformation from an anonymous IBE scheme to
a PEKS scheme. We take a similar strategy to the key-evolution model. Namely,
we consider a transformation from an anonymous IBE scheme with certain key-
insulated functionality to a KU-PEKS scheme (in the key-insulation model).
Key-insulated IBE (KI-IBE, or IKE for short) [18,26] is a promising candidate,
however, the existing scheme is (i) not anonymous, and (ii) the key-insulated
functionality is insufficient to realize key-insulated functionality of KU-PEKS.
Let us elaborate (ii). In the Abdalla et al. transformation, a master key of an IBE
scheme turns to be a secret key of the resulting PEKS scheme, and secret keys of
the IBE scheme are used as trapdoors of the PEKS scheme. However, the existing
KI-IBE schemes [18,26] have key-insulated functionality for users’ secret keys.
Therefore, if we apply the the Abdalla et al. transformation to IKE, then we get
3 For simplicity, we assume A issues i ∈ T to Ork after A issues i to Okl except

�L = {�} (i.e., A obtains hk from Okl).
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ExpID-KI-CPA
MIKE,A(1λ)

(prms,mk0,mhk) ← Init(1λ)

(m∗
0, m

∗
1, T

∗, I∗, state) ← AO(prms)

b
$← {0, 1}

ctT∗,I∗ ← IBEnc(prms, m∗
b , T∗, I∗)

b ← AOext,Oleak(state, ctT∗,I∗)

If b = b return 1 else return 0

Fig. 9. The IND-ID-KI-CPA game. A is
required to output (m∗

0, m
∗
1) such that

|m∗
0| = |m∗

1|.

ExpANO-KI-CPA
MIKE,A (1λ)

(prms,mk0,mhk) ← Init(1λ)

(m∗, T∗, I∗
0, I

∗
1, state) ← AO(prms)

b
$← {0, 1}

ctT∗,I∗
b

← IBEnc(prms, m∗, T∗, I∗
b)

b ← AOext,Oleak(state, ctT∗,I∗
b
)

If b = b return 1 else return 0

Fig. 10. The ANO-ID-KI-CPA game.

PEKS with key-insulated functionality for trapdoors. Actually, Emura et al. [16]
applied the Abdalla et al. transformation from a revocable IBE scheme [4], which
is an IBE enabling ones to revoke secret keys, to a PEKS scheme with revoca-
tion functionality for trapdoors. Therefore, we introduce a new key-insulated
cryptographic primitive, IKE for master keys (MIKE for short). Roughly speak-
ing, MIKE captures leakage of a master key, whereas IKE focuses on leakage
of users’ secret keys. This primitive may be of independent interest. We also
consider the anonymity of MIKE. We can give a concrete construction of this
new primitive from the symmetric external Diffie-Hellman (SXDH) assumption
(without random oracles), however, due to page limitation we will give it in the
full version.

A MIKE scheme MIKE consists of six-tuple algorithms (Setup, UpdGen,
MKUpd, KG, IBEnc, IBDec) defined as follows.

– Init(1λ) → (prms,mk0,mhk): Init takes a security parameter 1λ as input, and
outputs a public parameter prms, an initial master secret key mk0, and a
master helper key mhk.

– UpdGen(prms,mhk, T) → upT: UpdGen takes prms, mhk, and a time period
T ∈ T as input, and outputs update information upT for T.

– MKUpd(prms,mkT′ , upT) → mkT: MKUpd takes prms, mkT′ , and upT as input,
and outputs an updated master key mkT.

– KG(prms,mkT, I) → dkT,I: KG takes prms, mkT, and an identity I ∈ I as input,
and outputs a decryption key dkT,I for I at the time period T.

– IBEnc(prms,m, T, I) → ctT,I: IBEnc takes prms, a plaintext m ∈ M, a current
time period T, I ∈ I as input, and then outputs a ciphertext ctT,I.

– IBDec(prms, dkT,I, ctT,I) → m or ⊥: IBDec takes prms, dkT,I, and ctT,I as input
and then outputs m or ⊥.

MIKE requires the following correctness: For all λ ∈ N, all (prms,mk0,mhk) ←
Init(λ), all M ∈ M, all I ∈ I, all T, T′ ∈ T , it holds that M ← IBDec(prms,
KG(prms,MKUpd(prms,mkT′ ,UpdGen(prms,mhk, T)), I), IBEnc(prms,M, T, I)).



354 H. Anada et al.

We consider two kinds of security notions of MIKE, indistinguishability
against key exposure and chosen plaintext attacks for MIKE (IND-ID-KI-CPA)
and anonymity for MIKE (ANO-ID-KI-CPA). Let A be a PPT adversary. First,
we define experiments of those notions in Figs. 9 and 10, respectively. A can
access the following set of two oracles O := {Oext,Oleak}, which is defined as
follows.

Oext: For a query (T, I) ∈ T ×I from A, it recalls mkT if it is already generated.
Otherwise, it computes mkT ← MKUpd(mk0,UpdGen(mhk, T)), and stores
it. It then returns KG(mkT, I) if (T, I) 	= (T∗, I∗) in ExpID-KI-CPA

MIKE,A(1λ) (if
(T, I) ∈ {(T∗, I∗

0), (T
∗, I∗

1)} in ExpANO-KI-CPA
MIKE,A (1λ)).

Oleak: Let L := ∅ be an initial list. For a query T ∈ T ∪ {�}, it returns mkT if
T /∈ T \ {T∗} and � /∈ L, and adds T to L.4 Else if T = � and L = ∅, it
returns mhk, and adds � to L. Otherwise, it returns ⊥.

Definition 8 (IND-ID-KI-CPA). MIKE is said to be IND-ID-KI-CPA secure if
for all PPT adversaries A, AdvID-KI-CPA

MIKE,A(1λ) := |Pr[ExpID-KI-CPA
MIKE,A(1λ) = 1] − 1/2|

is negligible in λ.

Definition 9 (ANO-ID-KI-CPA). MIKE is said to be ANO-ID-KI-CPA secure
if for all PPT adversaries A, AdvANO-KI-CPA

MIKE,A (1λ) := |Pr[ExpANO-KI-CPA
MIKE,A (1λ) =

1] − 1/2| is negligible in λ.

4.3 Generic Construction from KI-PKE and MIKE

In this section, we show a generic construction of a KU-PEKS scheme Πki in
the key-insulation model from any KI-PKE scheme KIE and any MIKE scheme
MIKE . Basically, we can construct Πki in a similar way to the generic construc-
tion of Πke in Sect. 3.2. However, the construction only achieves sequential key
updates, that is, a re-encryption key rki at i ∈ T can be used for only updating
a ciphertext cw,i−1 encrypted in the previous period i − 1 ∈ T . To achieve ran-
dom access updates, i.e., to realize update a ciphertext cw,j at any time period
j ∈ T to cw,i at any time period i ∈ T , we adopt theKUNode algorithm (or, the
complete subtree (CS) method), which was used for broadcast encryption [22],
revocable IBE [4], and so forth. The KUNode algorithm is usually used for effi-
ciently revoking malicious users, whereas we would like to use it to efficiently
realize random access updates. Therefore, we modify the KUNode algorithm to
fit our purpose as follows (see [4,22] for the original KUNode algorithm).
The ModifiedKUNodeAlgorithm. Let BTGen be an algorithm that takes N as
input, and outputs a binary tree BT with N leaves, where N is a power of
two for simplicity. Each time period i ∈ T is assigned to a leaf node, and the
corresponding i-th leaf node is denoted by ηi. For the sake of simplicity, we
assume N = |T |. Now the depth of BT is log |T | + 1, and the number of all

4 If mkT is not stored, the oracle generates it by MKUpd(mk0,UpdGen(mhk, T)) and
stored it.
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KI.Setup(1λ):

BT ← BTGen(|T |)
(EK,DK0,HK) ← KIKG(1λ)
(prms,mk0,mhk) ← Init(1λ)
pk := (BT,EK, prms)
sk0 := (DK0,mk0)
hk := (HK,mhk)
return (pk, sk0, hk)

Δ-Gen(pk, hk, i):

parse pk = (BT,EK, prms)
parse hk = (HK,mhk)
∀ ∈ KUNode(BT, i)

UP ← KIUG(HK, )
upi ← UpdGen(prms,mhk, i)
δi := ({UP } ∈KUNode(BT,i), upi)
return δi

KI.Upd(pk, ski , δi):

parse pk = (BT,EK, prms)
parse ski = (DK0,mki )
parse δi = ({UP } ∈KUNode(BT,i), upi)
∀ ∈ KUNode(BT, i)

DK ← KIUG(DK0,UP )
mki ← MKUpd(prms,mki , upi)
ski := (DK0,mki)
rki := ({DK } ∈KUNode(BT,i))
return (ski, rki)

KI.Enc(pk, w, i):

parse pk = (BT,EK, prms)
∀ ∈ Path(BT, θLab(i)) \ {1}

ct ← KIE(EK, )
R

$← M
// M: the plaintext space of MIKE
cti,w ← IBEnc(prms, R, i, w)
cw,i := (R, {ct } ∈Path(BT,θLab(i)), cti,w)
return cw,i

KI.ReEnc(pk, rki, cw,j):

parse rki = ({DK } ∈Θi)
// Θi = KUNode(BT, i)
parse cw,j = (R, {ct } ∈Θj , ctj,w)
// Θj = Path(BT, θLab(j))
if Θi ∩ Θj = ∅
// It occurs if and only if i ≤ j

return ⊥
else

{ ∗} := Θi ∩ Θj

// It contains exactly one element
w ← KID(DK ∗ , ct ∗)
cw,i ← KI.Enc(pk, w, i)
// Run KI.Enc constructed as above

return cw,i

KI.Trapdoor(pk, ski, w ):

parse pk = (BT,EK, prms)
parse ski = (DK0, {DK } ∈Θi ,mki)
dki,w ← KG(prms,mki, w )
tw ,i := dki,w

return tw ,i

KI.Test(pk, tw ,i, cw,j :

parse pk = (BT,EK, prms)
parse cw,j = ({R, ct } ∈Θj , ctj,w)
if i = j

return 0
else if R = IBDec(prms, tw ,i, ctj,w)

return 1
else if R = IBDec(prms, tw ,i, ctj,w)

return 0

Fig. 11. A generic construction of Πki from KIE and MIKE .

nodes is 2log |T |+1 − 1 = 2|T | − 1. Path(BT, ηi) denotes a set of nodes on the
path from a root node to ηi. Note that it includes the root node and ηi. The
modified KUNode(BT, i) algorithm takes as input a binary tree BT and a time
period i ∈ T , and outputs a set of nodes. The modified KUNode(BT, i) algorithm
is executed as follows. It sets X := ∅ . For each non-leaf node θ ∈ Path(BT, ηi), it
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Table 1. Efficiency comparison among instantiations of the proposed schemes. #pk,
#sk, #rk, #td, and #c denote the sizes of public keys, secret keys, re-encryption keys,
trapdoors, and ciphertexts, respectively, and Asmp. stands for assumptions. [a, b, c, d]
means that the parameter contains a elements of Zp, b elements of G1, c elements of
G2, and d elements of GT . We set t := log |T |. We assume the plaintext space of the
underlying Bone-Franklin IBE in Π rom

ke is Zp.

pk is fixed? #pk #sk #rk #td #c Asmp.

Πrom
ke No [0, 4, 0, 0] [2, 0, 0, 0] [1, 0, 0, 0] [0, 1, 0, 0] [2, 3, 0, 0] DDH1, DBDH

Πstd
ke No [0, 7, 0, 1] [9, 0, 1, 0] [1, 0, 0, 0] [0, 0, 5, 0] [1, 5, 0, 1] SXDH

Πstd
ki Yes [0, 13, 7, 1] [8, 0, 17, 0] [0, 0, O(t), 0] [0, 0, 5, 0] [2t + 1, 3t + 3, 0, t + 1] SXDH

Table 2. Running time of core algorithms of Πrom
ke (unit: msec). Processor: 3.40 GHz

Intel Core i7-3770, Memory: 31GB, OS: Linux (Ubuntu 15.04, kernel 3.19.0-15-generic).

KE.Enc KE.Trapdoor KE.Test

11.20 1.04 4.71

adds the left child θL of θ to X if θL /∈ Path(BT, ηi). Finally, it outputs X . Note
that the size of X is O(log |T |).

We are ready to show our construction. Let KIE = (KIKG,KIUG,
KIU,KIE,KID) and MIKE = (Init,UpdGen,MKUpd,KG, IBEnc, IBDec) be a
KI-PKE scheme with a set of time periods T̂ such that |T̂ | = 2|T | −
1 and a MIKE scheme with T , respectively. Our construction of Πki =
(KI.Setup,Δ-Gen,KI.Upd,KI.Enc, KI.ReEnc,KI.Trapdoor,KI.Test) is given in
Fig. 11. In this construction, we consider the following function Lab : i ∈ T 
→
i + |T | − 1 ∈ Z for the modified KUNode algorithm. First, we label each node of
BT as θi (1 ≤ i ≤ 2|T |−1) from the root node. Hence, the root node is θ1 and leaf
nodes are θ|T |, . . . , θ2|T |−1. Then, each time period i ∈ T is stored in a leaf node
θLab(i), and we write ηi := θLab(i). Moreover, in the construction, Path(BT, ηi)
and KUNode(BT, i) are regarded as a set of indices of the corresponding nodes
for readability. Namely, we write {1, j1, j2, . . . , Lab(i)} = Path(BT, ηi) and
{h1, h2, . . . , hk} = KUNode(BT, i), instead of {θ1, θj1 , θj2 , . . . , θLab(i)(= ηi)} =
Path(BT, ηi) and {θh1 , θh2 , . . . , θhk

} = KUNode(BT, i), respectively. We obtain the
following theorem, and omit the proof since it can be proved in a way similar to
Theorem 1.

Theorem 2. If KIE is IND-KI-CPA secure and MIKE is IND-ID-KI-CPA
secure and ANO-ID-KI-CPA secure, the proposed construction given in Fig. 11
is IND-KI-CKA secure and meets KI-Computational Consistency.

5 Efficiency Comparison and Implementation

Table 1 shows efficiency comparisons among three instantiations of our schemes,
called Π rom

ke , Πstd
ke , and Πstd

ki , respectively. Π rom
ke , which is an instantiation with the
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ElGamal PKE [15] on G1 and the Boneh-Franklin IBE [6], is secure in the key-
evolution model with random oracles. Πstd

ke is an instantiation with the ElGamal
PKE on G1 and the Jutla-Roy IBE [19], and hence is secure in the key-evolution
model without random oracles. Πstd

ki is an instantiation in the key-insulation
model with the Watanabe-Shikata KI-PKE [26], which is the most efficient KI-
PKE scheme, and a direct construction of an anonymous MIKE scheme, which
will appear in the full version. All the instantiations are secure under the simple
assumptions such as the DDH1 (DDH on G1), DBDH, and SXDH assumptions.
The first one achieves the most efficient parameters, though the security relies
on random oracles. The third one is less efficient than the other two, however
it does not require to update public keys. Furthermore, the server only manage
global T , whereas T is regarded as just “updating counter” in the key-evolution
model. Namely, considering the multi-user setting, the server has to manage each
T per user in the key-evolution model.

Table 2 shows an experimental result for the most efficient scheme, i.e., Π rom
ke ,

using the software library TEPLA [25]. We use the Enron Email Dataset [9],
which contains 517,401 e-mails and the average size of them is 2.68 Kbytes, as test
data. We here give only core algorithms of KU-PEKS in the key-evolution model,
KE.Enc, KE.Trapdoor, and KE.Test, since key generation/updating algorithms are
not relatively frequently executed, and KE.ReEnc is almost the same as KE.Enc.
Note that usual libraries for a pairing cryptosystem like TEPLA [25] are not
designed for parallel processing, hence the running time directly depends on
the clock frequency of processors. Therefore, for instance, Cortex-M7 CPU by
ARM, which is suitable for an embedded device on IoT, is 300 MHz, and hence
the running time of KE.Enc and KE.Trapdoor can be estimated as 127.0 and
11.8 msec, respectively, which seem acceptable in our scenario (i.e., PEKS with
key-updating functionality for IoT devices).
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Abstract. Anonymous Identity-Based Encryption can protect privacy
of the receiver. However, there are some situations that we need to
recover the identity of the receiver, for example a dispute occurs or
the privacy mechanism is abused. In this paper, we propose a new con-
cept, referred to as Anonymous Identity-Based Encryption with Identity
Recovery (AIBEIR), which is an anonymous IBE with identity recovery
property. There is a party called the Identity Recovery Manager (IRM)
who has a secret key to recover the identity from the ciphertext in our
scheme. We construct it with an anonymous IBE and a special IBE which
we call it testable IBE. In order to ensure the semantic security in the case
where the identity recovery manager is an adversary, we define a stronger
semantic security model in which the adversary is given the secret key
of the identity recovery manager. To our knowledge, we propose the first
AIBEIR scheme and prove the security in our defined model.

Keywords: IBE · Anonymous · Identity recovery · Testable

1 Introduction

Public key encryption is one of the most important primitives in cryptography,
which was presented in the great paper titled “New Directions in Cryptograph”
in 1976 [DH76]. Public key encryption solves the problem that the sender and the
receiver should share a common secret key which is not known to the adversary
before communicating. One of the disadvantages in public key encryption is
using certificate to bind the public key to the identity of its owner. The issue of
management of certificates is complex and cumbersome.

In 1984, Shamir [Sha84] introduced the concept of Identity-Based Encryp-
tion (IBE) which solved the problem. IBE is a generalization of public key
encryption where the public key of a user can be arbitrary string such as an
e-mail address. The first realizations of IBE are given by [SOK00,BF01] using
groups equipped with bilinear maps. Since then, realizations from bilinear maps

c© Springer International Publishing AG, part of Springer Nature 2018
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[BB04a,BB04b,Wat05,Gen06,Wat09], from quadratic residues modulo compos-
ite [Coc01,BGH07], from lattices [GPV08,CHKP10,ABB10,Boy10] and from
the computational Diffie-Hellman assumption [DG17] have been proposed.

In order to protect the privacy of the receiver, Boyen [Boy03] first explic-
itly stated the concept of anonymous IBE1, where the ciphertext does not leak
the identity of the recipient. In fact, [BF01] is the first anonymous IBE scheme
although they did not state it explicitly. Since then, there are some follow-up
works realized from bilinear maps, from quadratic residues modulo compos-
ite [AG09], from lattices [GPV08,ABB10] and from the computational Diffie-
Hellman assumption [BLSV17].

Anonymous IBE protects the privacy of the message and the receiver’s iden-
tity in the meantime, but we can only recover the message. However, there are
some situations where we need to recover the identity of the receiver, for example
a dispute occurs or the privacy mechanism is abused. In a mail system, there is a
need to keep the receiver anonymous for everyone except the mail sever who will
forward the mail to the receiver. So can we extract the identity from an anony-
mous IBE ciphertext with some secret information? In this paper, we present a
new primitive called anonymous identity-based encryption with identity recovery
(AIBEIR) which can solve this problem. AIBEIR is a special anonymous IBE
which has an additional property that the identity recovery manager can recover
the identity with a secret key. But the identity recovery manager can not get any
information of the message from the ciphertext. Formally, AIBEIR is semantic
secure even when the identity recovery manager is the adversary.

1.1 Our Contributions

We propose a new cryptographic primitive called anonymous IBE with identity
recovery. We first define the model and security notions of AIBEIR. We then
present a method to convert an anonymous IBE into AIBEIR with the help of
testable IBE and prove that the new scheme satisfies the security we defined.
A testable IBE is an IBE which can test whether ciphertext c is a ciphertext
under identity id given c and id. It is obvious that a testable IBE is not anony-
mous. We will show that [BB04a,Wat05] and their variations are testable IBEs.
AIBEIR consists of four parties, a Private Key Generator (PKG), an Identity
Recovery Manager (IRM), a sender, and a receiver. There are five procedures
in an AIBEIR scheme. They are setup procedure, extract procedure, encrypt
procedure, decrypt procedure and recover procedure.

Besides correctness and anonymity, we introduce two new security notions in
AIBEIR. The first is a stronger semantic security, where the identity recovery
manager is the adversary. The second is recovery, which ensures that the recovery
is reliable and no adversary can fool the identity recovery manager. Finally, We
prove the security of our concrete AIBEIR scheme according to our security

1 In fact, Boyen gave an ID-based signcryption with a formalization of sender and
recipient anonymity.
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notions. To the best of our knowledge, our construction is the first anonymous
IBE scheme with the identity recovery property.

To construct an AIBEIR scheme, we first encrypt the plaintext by a testable
IBE and encrypt the testable IBE ciphertext using an anonymous IBE. Moreover,
we encrypt the receiver’s identity under the recovery manager’s identity. The
anonymity is guaranteed by the anonymous IBE and the stronger CPA security
is guaranteed by the security of the testable IBE. Given the master secret key
of the anonymous IBE, identity recovery manager obtains the identity and the
testable IBE ciphertext by decrypting corresponding ciphertext, respectively.
Then, check whether the testable IBE ciphertext is under the identity and output
the identity if the test algorithm outputs 1.

1.2 Related Work

Identity-based cryptosystems were introduced by Shamir [Sha84]. The first real-
izations of IBE were given by Boneh and Franklin [BF01] and Sakai et al.
[SOK00]. Boneh and Franklin gave the security model and their proposal is
the first anonymous IBE. The anonymity was first noticed by Boyen [Boy03].
Another view of Anonymous IBE is as a combination of identity-based encryp-
tion with the property of key privacy, which was introduced by Bellare et al.
[BBDP01]. A similar concept called Identity-Based Group Encryption (IBGE)
was presented by Luo et al. [LRL+16]. Traceability in their scheme is similar to
recovery in ours. But there are some differences between IBGE and AIBEIR. On
the one hand, we do not have Verify algorithm which is used to verify whether
the ciphertext belongs to the group. On the other hand, our construction is
implemented by IBEs while they utilized PKE, IBE and ZKP (Zero-Knowledge
Proofs) to construct their scheme. We do not think their scheme is a “pure” IBE
because of the use of PKE. Recently, [GSRD17] pointed that the zero-knowledge
proof used in [LRL+16] leaks much more information, due to which the verifier
who is honest but curious will be able to identify the designated recipient. They
proposed a construction with six random oracles.

2 Preliminaries and Definitions

We denote s
$←− S as the operation of assigning to s an element selected uniformly

at random from set S. The notation x ← A( · ) denotes the operation of running
an algorithm A with some given input and assigning the output to x. A function
negl: N → R is negligible if for every positive polynomial poly and sufficiently
large λ, it holds that negl(λ) < 1/poly(λ). We use 0 to denote the zero vector
whose length is dependent on the context.

2.1 Bilinear Groups

Let G1, G2 and GT be multiplicative cyclic groups of prime order p. Let g1, g2
be generators of groups G1 and G2, respectively, and e : G1 × G2 → GT be a
bilinear map that holds the following features:
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– Bilinearity: e(ua, vb) = e(u, v)ab for all u ∈ G1, v ∈ G2 and a, b ∈ Zp.
– Non-degeneracy: e(g1, g2) �= 1GT

.
– Computability: there exists an efficient algorithm to compute e(u, v) for any

input pair u ∈ G1, v ∈ G2.

We assume a symmetric bilinear map such that G1 = G2 = G and g1 = g2 = g.

2.2 Identity-Based Encryption

Let 1λ be a security parameter. An identity-based encryption is a tuple of algo-
rithms ΠIBE = (IBE.Setup, IBE.Extract, IBE.Encrypt, IBE.Decrypt) with the fol-
lowing properties:

• Setup(1λ): This is a polynomial time algorithm which takes as input 1λ and
outputs the system parameter mpk and a master secret key msk.

• Extract(id,msk): This is a polynomial time algorithm which takes as input
user’s identity id and master secret key msk, and outputs the user’s corre-
sponding private key skid.

• Encrypt(m, id,mpk): This is a polynomial time algorithm which takes as input
a message m in the message space, system parameter mpk, the receiver’s
identity id and outputs a ciphertext c in the ciphertext space.

• Decrypt(mpk, c, skid): This is a polynomial time algorithm which takes as
input system parameter mpk, ciphertext c, user’s private key skid, outputs
the message m in the message space.

Correctness. We require correctness of decryption: that is, for all λ, all
identity id in the identity space, all m in the specified message space,
Pr[Decrypt(mpk, skid,Encrypt(m, id,mpk)) = m] = 1 − negl(λ) holds, where
the probability is taken over the randomness of the algorithms.

Anonymity and Semantic Security. When the ciphertext can not reveal
information of the message, we say that the cryptosystem is chosen-plaintext
secure. We say that the cryptosystem is anonymous if the ciphertext can not
reveal information of the identity of the receiver. We combine these two notions.

Definition 1. An IBE scheme is anonymous against chosen-identity and
chosen-plaintext attacks if there does not exist any polynomial adversary A who
has non-negligible advantage in the following game:

Setup: The challenger takes as input a security parameter 1λ and runs the
Setup algorithm of the IBE. It provides A with the system parameters mpk
while keeping the master secret key msk to itself.

Phase 1: The adversary A can make any polynomial key-extraction queries
defined as follows: key-extraction query (id): The adversary A can choose an
identity id and sends it to the challenger. The challenger generates a secret key
skid of id and returns it to A.
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Challenge: When A decides that Phase 1 is complete, it chooses two equal-
length plaintexts m0,m1 and two identities id0, id1 under the constraint that
they have not been asked for the private keys. The challenger chooses uniformly
at random two bits b ∈ {0, 1}, γ ∈ {0, 1} and sends a ciphertext c∗ of mb as the
challenge ciphertext under idγ to A.

Phase 2: The adversary A can also make queries just like Phase 1 except that
it cannot make a key-extraction query of either id0 or id1.

Guess: A outputs a guess (b
′
, γ

′
) of (b, γ).

We define the advantage of the adversary A as AdvA = |Pr[b = b
′ ∧ γ =

γ
′
] − 1

4 |.

2.3 Testable Identity-Based Encryption

Definition 2. An Identity-Based Encryption is testable if the ciphertext c can
be partitioned into two parts c0 and c1 where c0 contains information of the
identity but no information of the message while c1 contains information of
the message but no information of the identity. Additionally, there exists an
algorithm Test(·, ·) which takes as input c0 and an identity id and returns 1 if c0
is a part of a valid cipertext under id and 0 otherwise.

Some realizations of IBE from bilinear maps such as [BB04a,Wat05] satisfy the
definition of testable IBE. We will prove that the scheme in [Wat05] is a testable
IBE.

Let G be a group of prime order, p, for which there exists an efficiently
computable bilinear map into G1. Additionally, let e : G × G → G1 denote
the bilinear map and g be the corresponding generator. The size of the group is
determined by the security parameter. Identities will be represented as bit strings
of length n, a separate parameter unrelated to p. The construction follows.

Setup. The system parameters are generated as follows. We choose a random
generator, g ∈ G and g2 randomly in G. We choose a secret α ∈ Zp and set
g1 = gα. Further, choose a random value u

′ ∈ G and a random n−length vector
U = (ui), whose elements are chosen at random from G. The published public
parameters are g, g1, g2, u

′
, and U . The master secret key is gα

2 .

Key Generation. Let v be a n-bit string representing an identity, vi denote the
ith bit of v, and V ⊆ {1, . . . , n} be the set of all i for which vi = 1. (That is V is
the set of indices for which the bit string v is set to 1.) A private key for identity
v is generated as follows. First, a random r ∈ Zp is chosen. Then the private key
is constructed as:

dv = (gα
2 (u

′ ∏

i∈V
ui)r, gr)

Encryption. A message M ∈ G1 is encrypted for an identity v as follows. A value
t ∈ Zp is chosen at random. The ciphertext is then constructed as:
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C = (e(g1, g2)tM, gt, (u
′ ∏

i∈V
ui)t)

Decryption. Let C = (C1, C2, C3) be a valid encryption of M under the identity
v. Then C can be decrypted by dv = (d1, d2) as:

C1
e(d2, C3)

e(d1, C2)
= (e(g1, g2)t

M)

e(gr, (u
′ ∏

i∈V
ui)

t)

e(gα
2 (u

′ ∏

i∈V
ui)

r), gt
) = (e(g1, g2)t

M)

e(g, (u
′ ∏

i∈V
ui)

rt))

e(g1, g2)te((u
′ ∏

i∈V
ui)

rt, g)
= M

We can also define a Test algorithm as follows:

Test. Let C = (C1, C2, C3) be a valid encryption under the identity v. Let v
′

be a n bit string representing an identity, v
′
i denote the ith bit of v

′
, and

V ′ ⊆ {1, . . . , n} be the set of all i for which v
′
i = 1. Output 1 if e(g, C3) =

e(C2, (u
′ ∏

i∈V′
ui)) and ⊥ otherwise. In fact, (C1, C2) contain the information of

the message and no information of the identity. C3 contains information of the
identity but no information of the message. So it is a testable IBE.

3 Anonymous Identity-Based Encryption with Identity
Recovery

Let λ be a security parameter. An anonymous identity-based encryp-
tion with recovery is a tuple of algorithms ΠAIBEIR = (AIBEIR.Setup,
AIBEIR.Extract, AIBEIR.ncrypt, AIBEIR.Decrypt, AIBEIR.Recover) with the fol-
lowing properties:

• Setup(1λ): This is a polynomial time algorithm which takes as input 1λ and
outputs the system parameter mpk, a master secret key msk and secret key of
the identity recovery manager skIRM . Then PKG sends skIRM to the identity
recovery manager in a secret channel. It is operated by PKG.

• Extract(id,msk): This is a polynomial time algorithm which takes as input a
user’s identity id and msk, outputs the user’s corresponding private key skid.

• Encrypt(m,mpk, id): This is a polynomial time algorithm which takes as
input a message m in a specified message space, system parameter mpk,
the receiver’s identity id and outputs a ciphertext c in the ciphertext space.
It is operated by the sender.

• Decrypt(mpk, c, skid): This is a polynomial time algorithm which takes as
input system parameter mpk, ciphertext c, user’s private key skid, outputs
the message m in the message space. It is operated by the receiver.

• Recover(c, skIRM ): The identity recovery manager outputs an identity id if c
is a valid cipertext under id and ⊥ otherwise. It is operated by the identity
recovery manager.

Correctness. We say that ΠAIBEIR is correct if it satisfies the following two
properties:
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• Decryption correctness: For any id in identity space and m in a speci-
fied message space, Pr[AIBEIR.Decrypt(skid, AIBEIR.Encrypt(m, id,mpk)) =
m] = 1 − negl(λ).

• Recovery correctness: For any valid ciphertext c = AIBEIR.Encrypt(m, id,
mpk), Pr[Recover(skIRM , c) = id] = 1 − negl(λ).

Anonymity. The anonymity of AIBEIR is the same as Definition 1.

Stronger Semantic Security. In the semantic security model of IBE, adver-
sary has no information about the master secret key msk. But in the definition of
our AIBEIR scheme, the identity recovery manager holds skIRM which makes it
more powerful. So if the identity recovery manager is the adversary, the semantic
security model of IBE is not feasible. We define a stronger semantic security as
follows:

Definition 3. An AIBEIR scheme is strongly semantic secure against chosen-
identity and chosen-plaintext attacks if there does not exist any polynomial adver-
sary A who have non-negligible advantage in the game below:

Setup: The challenger takes as input a security parameter 1λ and runs the Setup
algorithm of the AIBEIR. It provides A with the system parameters mpk and
skIRM while keeping the master secret key msk to itself.

Phase 1: The adversary A can make any polynomial key-extraction queries
defined as follows: key-extraction query (id): A can choose an identity id and
send it to the challenger. The challenger generates secret key skid and returns
it to A.

Challenge: When A decides that Phase 1 is complete, it chooses two equal-
length plaintexts m0,m1 and an identity id∗ under the constraint that it has
not asked for the private key and sends them to the challenger. The chal-
lenger chooses uniformly at random a bit b ∈ {0, 1} and sends a ciphertext
c∗ = Encrypt(mb, id

∗,mpk) as the challenge ciphertext to A.

Phase 2: A can also make queries just like Phase 1 except that it cannot make
a key-extraction query of id∗.

Guess: A outputs a guess b
′
of b.

We define the advantage of adversary A as AdvA = |Pr[b = b
′
] − 1

2 |.
Recovery. An AIBEIR scheme is recoverable if Recover algorithm can always
extract the right identity from a valid ciphertext and output ⊥ when the input
is an invalid ciphertext.

Definition 4. An AIBEIR scheme is recoverable if there does not exist any PPT
adversary A who wins the following game with non-negligible probability.

Setup: The challenger takes as input a security parameter 1λ and runs the Setup
algorithm of the AIBEIR. It provides A with the system parameters mpk while
keeping the master secret key msk and skIRM to itself.
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Monitor Phase: The adversary A can query recover oracle and key-extraction
oracle.

Challenge: When A decides that Monitor Phase is complete, the adversary
sends c∗ to the challenger. The challenger sends the output of Recover algorithm
to A.

Output: A wins the game if the output of Recover(c∗, skIRM ) is ⊥ or id while c∗

is a valid ciphertext under id
′
where id �= id

′
or the output of Recover(c∗, skIRM )

is id while c∗ is not a valid ciphertext. Here we require id has not been asked as
a key-extraction query for the need to prove the security.

4 A Construction from Anonymous IBE and Testable
IBE

In this section, we present our construction of AIBEIR from anonymous IBE
and testable IBE. Let Π1 = (A-IBE.Setup, A-IBE.Enc, A-IBE.Dec, A-IBE.Extract)
be an anonymous IBE scheme, Π2 = (T-IBE.Setup, T-IBE.Enc, T-IBE.Dec,
T-IBE.Extract, T-IBE.Test) be a testable IBE scheme. Let idε denote the iden-
tity of the identity recovery manager in scheme Π2. Then, we can construct an
AIBEIR scheme Π as follows:

4.1 The Construction

We describe our AIBEIR scheme (AIBEIR.Setup, AIBEIR.Extract, AIBEIR.Enc
-rypt, AIBEIR.Decrypt, AIBEIR.Recover) as follows:

• Setup(1λ): Run the Setup algorithms of A-IBE and T-IBE and obtain (MPKA,
MSKA) ← A-IBE.Setup(1λ), (MPKT ,MSKT ) ← T-IBE.Setup(1λ), respec-
tively. Compute SKT,idε

= T-IBE.Extract(MSKT , idε). (mpk,msk) =
((MPKA,MPKT ), (MSKA,MSKT )), skIRM = (MSKA, SKT,idε

).
• Extract(id,msk): Run the Extract algorithms of A-IBE and T-IBE

and obtain SKA,id = A-IBE.Extract(id,MSKA) and SKT,id =
T-IBE.Extract(id,MSKT ), respectively. Output skid = (SKA,id, SKT,id).

• Encrypt(m, id,mpk): Run the Encrypt algorithms of A-IBE and T-IBE and
obtain (c0, c1) = T-IBE.Enc(m, id,MPKT ), c2 = A-IBE.Enc(c0, id,MPKA)
and c3 = T-IBE.Enc(id, idε,MPKT ). Output c = (c1, c2, c3).

• Decrypt(mpk, c, skid): Parse c as c1, c2 and c3. Then compute c0 =
A-IBE.Dec(c2, SKA,id), m = T-IBE.Dec(c0||c1, SKT,id).

• Recover(c, skIRM ): Parse c as c1, c2 and c3. Parse skIRM as MSKA

and SKT,idε
. Then compute id = T-IBE.Dec(c3, SKT,idε

) and SKA,id =
A-IBE.Extract(id,MSKA). Take as input SKA,id and c2, obtain the ciper-
text c0 by running the Decrypt algorithm of A-IBE.Dec(SKA,id, c2). Finally,
output id if T-IBE.Test(id, c0) = 1, and ⊥ otherwise.

Remark 1. Here the message space of Π1 includes the ciphertext space of Π2.
We set the intersection of identity space of Π1 and Π2 as the identity space of
Π.
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4.2 Correctness

Theorem 1. If Π1 is a correct anonymous IBE scheme and Π2 is a correct
testable IBE scheme then Π is a correct AIBEIR scheme.

• Decryption correctness: The decryption correctness is guaranteed by the
decryption correctness of Π1 and Π2.

• Recovery correctness: The recovery correctness is guaranteed by the
decryption correctness of Π1, Π2 and test correctness of Π2.

4.3 Anonymity

Theorem 2. If Π1 is an IBE scheme which is anonymous against adaptively
chosen-identity and chosen-plaintext attacks and Π2 is a testable IBE scheme
which is fully secure against chosen-identity and chosen-plaintext attacks, then
Π is an AIBEIR scheme which is anonymous against adaptively chosen-identity
and chosen-plaintext attacks.2

Proof. We prove the above theorem by hybrid arguments.

H0: This hybrid is the real experiment in the Definition 1. The logic of the
challenger is shown as follows:
initialization:

(MPKA,MSKA) ← A-IBE.Setup(1λ), (MPKT ,MSKT ) ← T-IBE.Setup(1λ)
(mpk,msk) = ((MPKA,MPKT ), (MSKA,MSKT ))
SKT,idε

= T-IBE.Extract(MSKT , idε), skIRM = (MSKA, SKT,idε
)

send mpk to A
upon receiving a secret key query(id):

SKA,id = A-IBE.Extract(id,MSKA) and SKT,id = T-IBE.Extract(id,MSKT )
send skid = (SKA,id, SKT,id) to A

upon receiving the challenge query (m0,m1, id0, id1):

b
$←− {0, 1}, γ

$←− {0, 1},

(1) (c0, c1) = T-IBE.Enc(mb, idγ ,MPKT )
(2) c2 = A-IBE.Enc(c0, idγ ,MPKA)
(3) c3 = T-IBE.Enc(idγ , idε,MPKT )

send c = (c1, c2, c3) to A.

H1: In this hybrid, it is identical to H0 except that we just change how the
challenge ciphertext is generated. We replace the lines marked (1) in H0 as
follows:

c0, c1 = T-IBE.Enc(0, idγ ,MPKT )
3.

2 Here the adversary can not be the identity recovery manager and has PPT power.
3 Here 0 has the same length with m0 and m1.
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H2: Compared to H1, we replace the lines marked (2) in H0 as follows:

c2 = A-IBE.Enc(0, idγ ,MPKA)
4.

H3: Same as H2, except we replace the lines marked (2) in H0 as follows:

We just randomly choose id from identity space except id0 and id1. We then
set c2 = A-IBE.Enc(0, id,MPKA).

H4: Identical to H3, except we replace the lines marked (3) in H0 as follows:

We just set c3 as T-IBE.Enc(0, idε,MPKT )
5.

It is easy to know that the challenge ciphertext in H4 contains no information
about b and γ. So the advantage of A in H4 is 1

4 . We prove the above theorem
by showing that H0 ≈ H1 ≈ H2 ≈ H3 ≈ H4 through the following lemmas.

Lemma 1. Any PPT adversary cannot distinguish H0 and H1, if scheme Π2

is fully secure against adaptively chosen-identity and chosen-plaintext attacks.

Proof. We can construct a simulator B to break the full security against chosen-
identity and chosen-plaintext attacks of scheme Π2, if there is an adversary A
who can distinguish H0 and H1.

Setup: The challenger takes as input a security parameter 1λ and runs the
Setup algorithm of Π2. It provides B with the system parameters MPKT while
keeping the master secret key MSKT to itself. B computes (MPKA,MSKA) ←
A-IBE.Setup(1λ), and sends MPK = (MPKA,MPKT ) to A.

Phase 1: When the adversary A makes key-extraction query and sends an iden-
tity id to B, B just forwards it as the key-extraction query to the challenger. The
challenger sends SKT,id to B. B computes SKA,id = A-IBE.Extract(id,MSKA)
and sends skid = (SKA,id, SKT,id) to A.

Challenge: A chooses id0 and id1 under the constraint that they have not been
asked for the private keys and two equal-length messages m0,m1 and sends them
to B. B just chooses randomly two bits b and γ and sends (mb,0, idγ) to the chal-
lenger. The challenger chooses uniformly at random a bit b

′
and sends c0, c1 =

T-IBE.Enc(m, idγ ,MPKT ) to B. If b
′
= 0, m = mb. If b

′
= 1, m = 0. B obtains

c2, c3 by running A-IBE.Enc(c0, idγ ,MPKA) and T-IBE.Enc(idγ , idε,MPKT )
respectively. B just sends c∗ = (c1, c2, c3) to A.

Phase 2: A makes key-extraction queries except id0, id1. B answers queries just
like Phase 1.

Guess: A sends a bit b̄ as a guess of Hb̄ to B. B just forwards it to the challenger.
The view of A is identical to H0 if b

′
= 0 and to H1 if b

′
= 1. Thus, by the

semantic security of scheme Π2, we can conclude that H0 ≈ H1.
4 Here 0 has the same length with c0.
5 Here 0 has the same length with idγ .
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Lemma 2. Any PPT adversary cannot distinguish H1 and H2, if scheme Π1

is anonymous against adaptive-identity, chosen-plaintext attacks.

Proof. Given a PPT adversary A who can distinguish H1 and H2, we can con-
struct a simulator B attacking the anonymous security of Π1 against adaptive-
identity, chosen-plaintext attacks.

Setup: The challenger takes as input a security parameter 1λ and runs the
Setup algorithm of Π1. It provides B with the system parameters MPKA while
keeping the master secret key MSKA to itself. B computes (MPKT ,MSKT ) ←
T-IBE.Setup(1λ), and sends MPK = (MPKA,MPKT ) to A.

Phase 1: When A makes key-extraction query and sends an identity id to B,
B just forwards id as the key-extraction query to the challenger. The challenger
sends SKA,id to B. B runs SKT,id = T-IBE.Extract(id,MSKT ) and sends skid =
(SKA,id, SKT,id) to A.

Challenge: A chooses two equal-length plaintexts m0,m1 and two identities
id0, id1 under the constraint that they have not been asked for the private keys
and sends them to B. B chooses uniformly at random a bit γ

′ ∈ {0, 1} and com-
putes c0, c1 = T-IBE.Enc(0, idγ′ ,MPKT ), c3 = T-IBE.Enc(idγ′ , idε,MPKT ).
B sends (c0,0, idγ′ , idγ′ ) to the challenger. The challenger chooses uni-
formly at random a bit γ and a bit b. If b = 0, the challenger sends
c2 = A-IBE.Enc(c0, idγ′ ,MPKA) to B. If b = 1, the challenger sends c2 =
A-IBE.Enc(0, idγ′ ,MPKA) to B. B sends (c1, c2, c3) to A.

Phase 2: B answers queries just like Phase 1, but id0 and id1 cannot be queried.

Guess: A sends a bit b̄ as a guess of Hb̄+1 to B. B randomly choose a bit γ and
sends b̄ and γ to the challenger.

If b = 0, the view of A is identical to H1. If b = 1, the view of A is identical
to H2. We can see that H1 ≈ H2 by the anonymity of Π1.

Lemma 3. Any PPT adversary cannot distinguish H2 and H3, if scheme Π1 is
anonymous secure against adaptively chosen-identity, chosen-plaintext attacks.

Proof. Given a PPT adversary A who can distinguish H2 and H3, we can con-
struct a simulator B attacking the anonymous security of Π1 against adaptively
chosen-identity, chosen-plaintext attacks.

Setup: The challenger takes as input a security parameter 1λ and runs the
Setup algorithm of Π1. It provides B with the system parameters MPKA while
keeping the master secret key MSKA to itself. B computes (MPKT ,MSKT ) ←
T-IBE.Setup(1λ), and sends mpk = (MPKA,MPKT ) to A.

Phase 1: When the adversary A makes key-extraction query and sends an
identity id to B, B just forwards id as the key-extraction query to the challenger.
The challenger sends SKA,id to B. B obtains SKT,id = T-IBE.Extract(id,MSKT )
and sends skid = (SKA,id, SKT,id) to A.
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Challenge: A chooses two equal-length plaintexts m0,m1 and two identities
id0, id1 under the constraint that they have not been asked for the private keys
and sends them to B. B chooses uniformly at random a bit γ

′ ∈ {0, 1} and com-
putes c0, c1 = T-IBE.Enc(0, idγ′ ,MPKT ), c3 = T-IBE.Enc(idγ′ , idε,MPKT ).
B randomly chooses an identity id from identity space except id0, id1
and sends (0,0, idγ′ , id) to the challenger. The challenger chooses uni-
formly at random a bit γ and a bit b. If γ = 0, the challenger sends
c2 = A-IBE.Enc(0, idγ′ ,MPKA) toB. If γ = 1, the challenger sends c2 =
A-IBE.Enc(0, id,MPKA) to B. B sends (c1, c2, c3) to A.

Phase 2: B answers queries just like Phase 1, but id0 and id1 cannot be asked.

Guess: A sends a bit γ̄ as a guess of Hγ̄+2 to B. B randomly choose a bit b̄ and
sends γ̄ and b̄ to the challenger.

If γ = 0, the view of A is identical in H2. If γ = 1, the view of A is identical in
H3. The probability that A can distinguish H2 and H3 equals |Pr[γ̄ = γ]− 1

2 | =
|2(14 +negl(n)− 1

2 |) = negl(n) because of the anonymity of Π1. So the conclusion
is that H2 ≈ H3.

Lemma 4. Any PPT adversary cannot distinguish H3 and H4, if scheme Π2

is secure against chosen-identity and chosen-plaintext attacks.

Proof. Given a PPT adversary A which can distinguish H3 and H4, we can
construct a simulator B attacking the semantic security of Π2 against chosen-
identity and chosen-plaintext attacks.

Setup: The challenger takes as input a security parameter 1λ and runs the Setup
algorithm of Π2 and obtains (MPKT ,MSKT ). It sends MPKT to B and keeps
MSKT to itself. B computes (MPKA,MSKA) ← A-IBE.Setup(1λ) and sends
mpk = (MPKA,MPKT ) to A.

Phase 1: When the adversary A makes key-extraction query and sends an iden-
tity id to B, B just forwards it as the key-extraction query to the challenger. The
challenger sends MSKT,id to B. B computes SKA,id = A-IBE.Extract(id,MSKA)
and sends skid = (SKA,id, SKT,id) to A.

Challenge: A chooses two equal-length plaintexts m0,m1 and two identities
id0, id1 under the constraint that they have not been asked for the private keys
and sends them to B. B chooses uniformly at random a bit γ ∈ {0, 1} and com-
putes c0, c1 = T-IBE.Enc(0, idγ ,MPKT ). B randomly chooses an identity id from
the identity space except id0, id1 and computes c2 = A-IBE.Enc(0, id,MPKA).
B sends (idγ ,0, idε)to the challenger. The challenger chooses uniformly at ran-
dom a bit b and sends c3 to B. c3 = T-IBE.Enc(idγ , idε,MPKT ), if b = 0.
c3 = T-IBE.Enc(0, idε,MPKT ), if b = 1. B just sends c∗ = (c1, c2, c3) to A.

Phase 2: A makes key-extraction queries except id0, id1. B answers queries just
like Phase 1.

The view of A is identical to H3 if b = 0, and H4 otherwise. The probability
that the adversary can distinguish H3 and H4 equals the advantage of B breaking
the semantic security of Π2. So we can draw the conclusion that H3 ≈ H4.
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Having proved the above lemmas, we have completed the proof of Theorem2.

4.4 Stronger Semantic Security

Theorem 3. The AIBEIR scheme Π is strongly semantic secure if Π2 is
semantic secure against chosen-identity and chosen-plaintext attack.

Proof. We can construct a simulator B breaking semantic security of Π2 if there
exists an adversary A breaking the stronger semantic security of Π.

Setup: The challenger takes as input a security parameter 1λ and runs the
Setup algorithm of Π2 and obtains (MPKT ,MSKT ). It sends MPKT to B
and keeps MSKT to itself. B computes (MPKA,MSKA) ← A-IBE.Setup(1λ).
B obtains SKT,idε

by making the secret key query of idε to the challenger and
sends mpk = (MPKA,MPKT ) and skIRM = (MSKA, SKT,idε

) to A.

Phase 1: When the adversary A makes key-extraction query and sends an iden-
tity id to B, B just forwards it as the key-extraction query to the challenger. The
challenger sends MSKT,id to B. B computes SKA,id = A-IBE.Extract(id,MSKA)
and sends skid = (SKA,id, SKT,id) to A.

Challenge: A chooses two equal-length plaintexts m0,m1 and an identity id∗

under the constraint that it has not been asked for the private key and sends them
to B. B just forwards (m0,m1, id

∗) to the challenger. The challenger randomly
chooses a bit b and sends (c∗

0, c
∗
1) = T-IBE.Enc(mb, id

∗,MPKT ). B computes
c∗
2 = A-IBE.Enc(c∗

0, id
∗,MPKA), c∗

3 = T-IBE.Enc(id∗, idε,MPKT ) and sends
c∗ = (c∗

1, c
∗
2, c

∗
3) to A.

Phase 2: A makes key-extraction queries except id∗. B answers queries just like
Phase 1.

Guess: B just forwards the output of A to the challenger.
If A wins, we can see A as a distinguish oracle. When B obtains the challenge

ciphertext from challenger, B just encrypts it by the Encrypt algorithm of A-IBE
and sends it to A. We can see that the probability that A breaks the stronger
semantic security equals the probability that B breaks the semantic security of
Π2.

4.5 Recovery

Theorem 4. If the testable IBE scheme Π2 is fully secure against adaptive-
identity and chosen ciphertext attack, then the AIBEIR scheme Π satisfies recov-
ery.

Proof. If the adversary wins in the recovery experiment, there are two conditions:
(1) the adversary outputs a valid AIBEIR ciphertext but the challenger output ⊥
or a wrong identity. This will not happen, which is guaranteed by the correctness
of Recover algorithm. (2) the adversary outputs an invalid AIBEIR ciphertext
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but the challenger does not output ⊥. We just consider the case where (c1, c2, c3)
is a valid ciphertxt. In fact, if (c1, c2) is not a valid ciphertext, the receiver cannot
decrypt correctly using its secret key. And if c3 is not a valid T-IBE ciphertext
under idε, challenger will output ⊥.

If (c1, c2) is a valid ciphertext under id and c3 is a testable IBE ciphertext
of a different identity îd under idε, we can show that the identity recovery man-
ager will return ⊥ with overwhelming probability. In fact, if there exists a PPT
adversary A who can fool the identity recovery manager in the recovery game, we
can construct a simulator S attacking Π2 in adaptive-identity, chosen-plaintext
attack.

Setup: The challenger takes as input a security parameter 1λ and runs the
Setup algorithm of Π2. It provides B with the system parameters MPKT while
keeping the master secret key MSKT to itself. B computes (MPKA,MSKA) ←
A-IBE.Setup(1λ) and sends mpk = (MPKA,MPKT ) to A.

Phase 1: When the adversary A makes the key-extraction queries, B just for-
wards the identity queried by A to the challenger and obtains SKT,id from
the challenger. B obtains SKA,id = A-IBE.Extract(id,MSKA) and sends skid =
(SKA,id, SKT,id) to A. When A makes recover query, B gets SKT,idε

by making
secret key query of idε to the challenger and obtains id by decrypting c3 using
SKT,idε

. B computes SKA,id = A-IBE.Extract(id,MSKA) and then obtains c0
by running Dec algorithm of A-IBE. B computes h = T-IBE.Test(c0, id), and
sends id to A if h = 1, and ⊥ otherwise. We say A wins if it outputs a valid
“double-encrypt” IBE ciphertext(i.e. c1, c2) under id1 and a valid testable IBE
ciphertext(i.e. c3) of id2 which pass the recover algorithm6(A can output the
randomness used in the encrypt algorithm to show it). Here we constrain that
id1 has not been queried the private key before. B obtains SKT,id2 by making
the secret key query of id2.

Challenge: B randomly chooses two equal-length message m0,m1 and sends
m0,m1 and id1 to challenger. Challenger randomly chooses a bit b ∈ {0, 1} and
obtains (c0, c1) = T-IBE.Enc(mb, id1,MPKT ).

Phase 2: B makes some queries to key-extraction oracle. In fact, B does not
need to query now.

Guess: B computes c2 = A-IBE.Enc(c0, id1,MPKA) and obtains c
′
0 which is a

part of ciphertext under id2 by decrypting c2 using SKA,id2 . Then B obtains m

by decrypting c
′
0, c1 using SKT,id2 . B outputs 0 if m = m0 and 1 otherwise.

5 Conclusion

We define a new primitive called AIBEIR and construct it using double encryp-
tion with an anonymous IBE and a testable IBE. AIBEIR is anonymous for all
6 This means we can obtain a T-IBE ciphertext under id2 by decrypting the “double-

encrypt” ciphertext under id1 using SKA,id2 .
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users except the identity recovery manager who can recover the identity from
the ciphertext. But the identity recovery manager can not obtain information
about plaintext from ciphertext even holding an identity recover secret key. To
our knowledge, [BB04a,Wat05] and their variations satisfy our testable IBE def-
inition. We leave as an open problem the question of constructing testable IBE
from other standard assumptions, such as lattice. Another interesting area of
research is to construct more practical AIBEIR schemes.
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Abstract. Subversion attacks against cryptosystems have already
received wide attentions since several decades ago, while the Snowden
revelations in 2013 reemphasized the need to further exploring poten-
tial avenues for undermining the cryptography in practice. In this work,
inspired by the kleptographic attacks introduced by Young and Yung in
1990s [Crypto’96], we initiate a formal study of asymmetric subversion
attacks against signature schemes. Our contributions can be summarized
as follows.

– We provide a formal definition of asymmetric subversion model for
signature schemes. Our asymmetric model improves the existing
symmetric subversion model proposed by Ateniese, Magri and Ven-
turi [CCS’15] in the sense that the undetectability is strengthened
and the signing key recoverability is defined as a strong subversion
attack goal.

– We introduce a special type of signature schemes that are splittable
and show how to universally mount the subversion attack against
such signature schemes in the asymmetric subversion model. Com-
pared with the symmetric attacks introduced by Ateniese, Magri and
Venturi [CCS’15], our proposed attack enables much more efficient
key recovery that is independent of the signing key size.

Our asymmetric subversion framework is somewhat conceptually simple
but well demonstrates that subversion attacks against signature schemes
could be quite practical, and thus increases awareness and spurs the
search for deterrents.

Keywords: Asymmetric subversion attacks · Splittable signature
Undetectability · Key recovery

1 Introduction

Cryptography has been widely considered as a useful tool to modern informa-
tion security. However, the revelations of Edward Snowden demonstrated [1–3]
that this is not always the case. Precisely, cryptography in practice may be sur-
reptitiously weakened by inserting backdoors into the security system. As these
backdoors could make the system far less secure as thought and even completely
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 376–395, 2018.
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broken, the system user’s secret communications may become accessible to the
attacker who inserts the backdoor. What is worse, due to the extreme complex-
ity of modern cryptographic implementation, these backdoors are difficult to be
detected for even cryptographic experts and thus distinctly transparent to the
typical user. Inspired by this issue, a new research direction known as Post-
Snowden cryptography has arisen in recent years with the aim of safeguarding
user privacy in face of possibly subverted cryptographic systems in the real world.

Subversion attacks against the cryptographic systems have already received
wide attentions since several decades ago [4–9], while the Snowden revelations
in 2013 reemphasized the need to further exploring potential avenues for, and
defenses against, undermining the cryptography in practice. In particular, sub-
version attacks have been formally studied in the context of various crypto-
graphic primitives. In 2013, Bellare et al. initiated the study of algorithm substi-
tution attack (ASA) against symmetric encryption where the backdoor is embed-
ded in a symmetric manner [10]. A stateful subversion attack namely biased
ciphertext attack is proposed against all randomized encryption schemes that are
coin-injective. As a countermeasure, they showed how to construct unique cipher-
text schemes that are deterministic and thus subversion-resilient. To make the
previous subversion attack stateless and applicable to all randomized schemes,
Bellare et al. presented a stateless ASA that breaks all randomized symmetric
encryption [11].

Regarding digital signature schemes, Ateniese et al. provided a formal treat-
ment to the security of signatures against subversion attacks [12]. They showed
how to mount symmetric subversion attacks on coin-injective schemes and
coin-extractable schemes respectively. To defend such attacks, unique signature
schemes are proposed and shown secure against certain subversion attacks that
are of verifiability condition. They also illustrated that any re-randomizable sig-
nature scheme equipped with an un-tramperable cryptographic reverse firewall
of self-destruct capability [20] is resilient against arbitrary subversion attacks.
As depicted by Ateniese et al. [12], the central idea of their biased-randomness
attack against coin-injective signature schemes essentially shares the spirit of
the work by Bellare et al. [10]. That is, an attacker embeds a trapdoor key of a
pseudorandom function in the subverted signing algorithm so that upon signing
a message, the randomness is biased in a way that the produced signature under
the signing key sk leaks one bit of sk to the attacker. Precisely, the one-bit out-
put of the keyed pseudorandom function that takes the i-th signature as input is
exactly the i-th bit of the signing key sk. Therefore, after obtaining signatures
of number |sk|, the attacker is able to recover the whole signing key and thus
breaks the signature scheme.

Motivations of This Work. One can note that the aforementioned subversion
attack is stateful as the subverted signature algorithm needs to maintain a state
of logarithmic size to represent which bit of the signing key is to be exfiltrated
when signing a new message. Moreover, the subversion attack is symmetric,
which means that anyone who knows the embedded trapdoor key could recover
the signing key after obtaining enough number of signatures. We insist that such
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a stateful symmetric subversion attack may be undesirable or less attractive to
attackers in the real world due to the following reasons.

– As already indicated by the authors [12], maintaining state might be a strong
assumption, since original signature scheme is typically stateless. Moreover,
a state reset (e.g., a system reboot) would render the attack detectable [11].

– In order to recover the whole signing key correctly, the attacker needs to
successfully capture all sequential signatures (of number |sk|) in the correct
order. This seems impractical, since collecting all signatures sequentially is
quite a strong requirement. In particular, the recovered signing key would
be incorrect once the state maintained by the attacker is not fully consistent
with the subverted algorithm.

– Another drawback of the aforementioned attack in our view is that obtaining
the symmetric subversion key would enable anyone, not only the attacker,
to break the signature scheme that are embedded with the same subversion
key. In fact, a code inverse analyst can easily recover the trapdoor key and
thereafter becomes able to break all subverted signature schemes in the same
way as the attacker does. In another aspect, such a code inverse analyse also
renders the attack detectable.

Motivated by the aforementioned limitations of the state-of-the-art subver-
sion attacks on signature schemes, we ask the following question in this work.

How to mount subversion attacks on signature schemes in such a way that,
(1) the subverted signing algorithm is stateless, (2) the required signature number
for recovering the whole signing key is constant, and (3) the attack is undetectable
even with the subversion key?

We believe that subversion attacks meeting such three properties are more
practical and attractive in the reality. The property (2) means that the number
of sequential signatures required to recover the whole signing key is independent
of the signing key size, and the property (3) says that the subversion attack is
asymmetric so that obtaining the embedded trapdoor key does not help detect
the attack in any way. We claim that our intention is to further demonstrate the
power of subversion attack in the reality and thus increase awareness and spur
the search for effective countermeasures.

Remark. It is worth noting that in the work [12], the authors mentioned that
their proposed biased-randomness attack could be made completely stateless
under the assumption that the message space is polynomial and that the adver-
sary can control the input messages, as in this case the input message could be
meanwhile interpreted as the counter. However, such an assumption may be not
reasonable in practice as the subverted signing algorithm is usually out of the
attacker’s control after it is deployed. Moreover, even the attacker can control
the input message, it still remains unknown how to achieve the property (2)
and (3). One may wonder that the work [11] by Bellare et al. may also provide
a potential solution to achieve stateless attack. Indeed, the subversion attack
could be made stateless by adapting the pseudorandom function defined in the
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work [11]. However, such a subversion attack still exfiltrates the signing key bit
by bit and thus does not meet property (2). Property (3) does not hold either
as the attack is still in a symmetric manner. We notice that Bellare et al. pro-
posed the definition of asymmetric subversion attack in the work [10] but they
did not show how to mount such an attack on the encryption schemes. In fact,
they mentioned that it is an interesting open problem to extend their attacks to
break randomized, stateless schemes in the asymmetric setting.

1.1 Overview of Our Contributions

In this work, we address the aforementioned problem via formally demonstrating
that subversion attacks on signature schemes could be done better in some sense.
Our central idea is essentially inspired by the kleptographic attacks proposed by
Young and Yung [7] in 1990s. Following the line of recent works on subversion
attacks against various cryptographic primitives [10–12], our work could be also
viewed as a modern taken of Young and Yung’s kleptographic attacks against
signature schemes in the context of subversion attacks.

Particularly, we propose a strong asymmetric subversion attack (AS-SA)
against signature schemes that are of a certain form and rigorously prove that
it is stateless and could effectively recover the whole signing key from only two
successive signatures regardless of the signing key size. Before we describe our
results, we briefly introduce the asymmetric subversion model for signatures.

Asymmetric Subversion Model for Signatures. Our first contribution is to
introduce and formalize the asymmetric subversion model for signature schemes.
It is worth mentioning that Ateniese et al. defined a symmetric subversion attack
for signature schemes [12]. However, as discussed by Bellare et al. in [10], such a
symmetric subversion model may not be desirable to the attacker as any reverse
engineer who discovers the subversion key from a deployed subverted cryptosys-
tem will has the same cryptographic ability as the attacker. To eliminate such
a limitation, an asymmetric subversion model for symmetric encryption scheme
was defined in [10]. In this work, we explore the asymmetric subversion model
for signature schemes.

Our defined AS-SA model for signatures has the following features.

– Asymmetric Subversion. Unlike the existing symmetric subversion model for
signatures where only a symmetric subversion key is involved [12], our defined
AS-SA model considers a different attack where the attacker adopts a sub-
version key pair (pskM, sskM). Particularly, the public subversion key pskM
is embedded in the subverted cryptosystem while the secret subversion key
sskM is required for mounting a successful subversion attack. As mentioned
above, such a subversion attack may be more desirable to the attacker in the
real world as obtaining the embedded subversion key pskM only does not
provides others with the same cryptographic capabilities as the attacker.

– Strong Secret Undetectability. By undetectability, we mean that a normal
user with the algorithm output cannot tell whether it is produced by the
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subverted or the honest algorithm1. The work by Ateniese et al. [12] considers
the notion of secret undetectability which means that the undetectability still
holds for a strong detector who knows the underlying signing key. In this
work, we consider a stronger detector who may has the knowledge of the
public subversion key. Precisely, we further strengthen the model [12] via
defining a stronger notion called strong secret undetectability which indicates
that the subversion is undetectable to a strong detector who not only knows
the underlying signing key but also reveals the public subversion key. We
insist such a stronger notion is meaningful as in reality a detector could
indeed possibly obtain the public subversion key (e.g., via code analysis).

– Signing Key Recoverability. The subversion model by Ateniese et al. [12]
mainly considered two security notions namely indistinguishability and imper-
sonation under chosen-message attacks for two different adversarial goals
respectively. However, as mentioned by Bellare et al. in [10], such a notion
is a strong measure for security but a weak one for attacks as achieving it
provides high security, but violating it entails little loss. Therefore, similar to
the work [11] which defined key recover for subversion against encryption, we
also target and formalize key recovery in our proposed model for signature.
Particularly, the key recovery notion is a strong goal of our defined AS-SA
which means that a successful subversion attack should final recover the whole
signing key.

Mounting AS-SA on Splittable Signatures. Our second contribution is to
present a universal AS-SA on signatures of certain structure. We formally show
that the proposed asymmetric subversion attack could be of both strong secret
undetectability and effective key recovery as long as the signature structure falls
within the framework of so-called splittable signature. Before describing the AS-
SA, we briefly introduce the concept of splittable signature.

Splittable Signature. Roughly speaking, a signature σ is splittable if the sig-
nature consists of two separated components, i.e., σ = (σR, σM ) where σR is
the randomness-binded component that is usually an encrypted form of the ran-
domness (not necessarily decryptable) and σM is the message-binded component
that contains the randomness, signing key and the message. Besides, a splittable
signature scheme should meet the following properties.

– Randomness Exchangeability. This is mainly related to the randomness-
binded component of the signature. Precisely, by randomness exchangeabil-
ity, we mean that there exists an efficient randomness derivation algorithm
namely RanDer that the output of RanDer taking as input σR1 (randomness-
binded component of r1) and another randomness r2 equals to the output
of RanDer taking as input σR2 (randomness-binded component of r2) and
r1. However, given (σR1 , σR2) only, one cannot compute the above value. We
remark that such a property essentially implies a non-interactive key exchange
where each party picks a randomness, exchanges its encrypted form, and
finally derives a common secret key.

1 In this work, honest algorithms are referred to as algorithms that are not subverted.
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– Secret Recoverability. This is mainly related to the message-binded compo-
nent of the signature. A signature is called secret recoverability if given the
underlying randomness involved in randomness-binded component, one can
derive the signing key from the corresponding message-binded component of
the signature. As will be shown later, such a property is essential to the sub-
version attack proposed in this work. Particularly, the way to leak the signing
key in our subversion attack is by revealing the randomness. More details will
follow.

A Universal AS-SA on Splittable Signatures. We then present a universal AS-SA
on splittable signature. Compared to the existing subversion attack against sig-
natures [12], our attack is stateless2 and only two signatures generated from two
successive sessions are required for recovering the whole signing key regardless
of its size. Below is an overview of our central idea.

As stated above, due to the secret recoverability of the splittable signature,
one could easily recover the signing key if he knows the randomness involved
in the message-binded component of the signature. In our attack, we propose
an approach to enable the subverted signing algorithm to undetectably reveal
the randomness used for the signature generation to the outside attacker. The
main idea of our approach is to utilize the property of randomness exchange-
ability. Precisely, the attacker picks a randomness as the secret subversion key
sskM, and compute its randomness-binded component as the public subversion
key pskM. The attacker inserts pskM into the subverted algorithm and keeps
sskM secretly. Suppose that ri is the randomness used for the i-th subverted
signing session (i ≥ 2). The only difference between the subverted algorithm and
the normal algorithm is the generation of the randomness when signing a new
message. Instead of choosing the randomness randomly, the randomness ri in the
subverted algorithm is actually the hash value of the output of RanDer that takes
pskM and the randomness ri−1 as input. Due to the randomness exchangeability
of the splittable signature, the attacker is able to recover ri in a asymmetric way
by running RanDer that takes the randomness-binded component of the i-1-th
signature and sskMas input, and outputs the hash value of the corresponding
output.

One could note that our proposed attack admits very efficient key recovery
as the attacker can derive the signing key with probability of almost 1 from two
successive signatures. One may wonder whether storing the previous session’s
randomness is practical or not in the reality. We insist that the randomness ri−1

could be copied and stored in the machine’s volatile memory and erased after
i-th session execution completes. We also formally prove that such an attack is
of strong secret undetectability in the random oracle model. That is, even with
the public subversion key pskM and the normal signing/verification key pair,
the detector is still unable to figure out which algorithm is chosen as he does not

2 Although the subverted algorithm needs to take as input the randomness used in
the previous session, we insist that it is typically not an internal state that should
be always maintained by the algorithm.
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know either the randomness of the previous session or the secret subversion key
sskM and thus the randomness of the current session is random from his view
point.

Instantiations. To illustrate the feasibility of our universal framework of AS-SA
on signatures, we demonstrate that many existing signature schemes indeed fall
within our defined splittable structure. Particularly, all ElGamal-like signature
schemes [13–16] and Waters signature scheme [17] belong to this type. Moreover,
we also show that identity-based signatures such as Schnorr IBS [13], Paterson
IBS [18], and Zhang’s ID-Based Blind Signature (Schnorr type) [19] are also of
splittable structure and thus are subject to our proposed attack.

Comparisons with Kleptographic Attacks Against Signatures [7]. The
idea of asymmetric backdoor originally appeared in the filed of kleptography
which was proposed by Young and Yung in the 1990s [7]. Particularly, they
introduced the concept of secretly embedded tradpdoor with universal protec-
tion (SETUP) attack and mainly explored how to use public-key technique to
launch such strong kleptographic attacks against various cryptographic prim-
itives, such as RSA key generation, public-key encryption, Diffie-Hellman key
exchange, signature schemes, and other cryptographic algorithms and proto-
cols [7–9]. In this work, we purely focus on subversion attacks against signature
schemes. To provide a more formal asymmetric subversion model for signature
schemes, we explicitly define strong secret undetectability and signing key recov-
erability as two key properties of asymmetric attacks against signature schemes.
These also form the basis of formal analysis of our proposed subversion attack
framework. Additionally, our definition of splittable signature well illustrates the
structure feature of signatures that inherently suffer from asymmetric subversion
attacks, and thus provides a general principle for checking whether a signature
scheme is subject to our proposed strong asymmetric subversion attack. In fact,
instead of only focusing on typical signature schemes as in [9], in this work we
additionally show that our proposed attack also works for identity-based signa-
ture schemes as long as they are of splittable structure.

Organization. Section 2 is about preliminaries, including notations, definitions
about signature schemes. Then we introduce the model of AS-SA for signature
schemes in Sect. 3. Definitions about splittable signature schemes are put for-
ward and a universal AS-SA is also introduced with instantiations in Sect. 4. We
discuss several countermeasures to achieve subversion resilience in Sect. 5, and
draw a conclusion in Sect. 6.

2 Preliminaries

2.1 Notations

Here are some explanations of notations all over the paper. If S is a sample space
then x

$←− S denotes selecting a random element x from S.
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2.2 Cryptographic Hardness Assumptions

Computational Diffie-Hellman (CDH) Assumption. Let G be a group
with prime order p and g is the generator. Given ga, gb ∈ G where a, b ∈ Zp, there
is no polynomial time algorithm can compute gab with non-negligible probability.

Bilinear Diffie-Hellman (BDH) Assumption. Let G1, G2 be two groups
of prime order p. Let e : G1 × G1 → G2 be an admissible bilinear map and
let P be a generator of G1. Given P, aP, bP, cP for some a, b, c ∈ Zp, there is
no polynomial time algorithm can compute W = e(P, P )abc ∈ G2 with non-
negligible probability.

2.3 Signature Schemes

A signature scheme Π includes a tuple of PPT (probabilistic polynomial-time)
algorithms (KeyGen, Sign, Vrfy), which are defined as follows:

– KeyGen: takes as input a security parameter k and outputs a key pair (vk, sk),
where vk is the verification key, and sk is the signing key.

– Sign: takes as input a signing key sk, and a message m, outputs a signature
σ ← Sign(sk,m).

– Vrfy: takes as input a verification key vk, a message m and a signature σ. It
outputs a bit b. If σ is a valid signature, b is equal to 1. On the contrary, b is
equal to 0.

A signature scheme should satisfy the correctness condition which is defined
as follows.

Definition 1 (Correctness). Let Π = (KeyGen,Sign,Vrfy) be a signature scheme.
We say that Π satisfies vc-correctness if for all m:

Pr[Vrfy(vk, (m,Sign(sk,m))) = 1 : (vk, sk) ← KeyGen(1k)] � 1 − vc

where vc is negligible.

A signature scheme is secure if there is no adversary who can forge the
signature on a new message.

Definition 2 (Existential Unforgeability). Let Π = (KeyGen,Sign,Vrfy) be a sig-
nature scheme. We say that Π is (t, q, ε)-existential unforgeable under chosen-
message attacks (EUF-CMA) if for all PPT malicious adversaries A running in
time t it holds:

Pr[Vrfy(vk, (m∗, σ∗)) = 1 ∧ m∗ /∈ T : (vk, sk) ← KeyGen(1n);

(m∗, σ∗) ← ASign(sk,·)(vk)] � ε

where T = {m1, · · ·,mt} denotes the set of queries to the signing oracle. ε is
negligible, then we say Π is EUF-CMA.
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3 Asymmetric Subversion Model for Signature Schemes

In this section, we formalize the concept of asymmetric subversion attack (AS-
SA) and the asymmetric subversion model for signature schemes. We will first
give an overview of the AS-SA and then formally describe its two key properties,
namely strong secret undetectability and signing key recoverability.

3.1 An Overview

An asymmetric subversion attack (AS-SA) against signature schemes requires
a public/private subversion key pair. Particularly, the public subversion key is
embedded in the signing algorithms and the secret subversion key is hold by
the attacker for recovering the signing key. Formally, via running (vkV , skV) $←−
KeyGen, the user V gets his own verification key vkV and signing key skV . The
subversion attacker M runs the subversion key generation algorithm K̃eyGen
and obtains the subversion key pair (pskM, sskM). When signing a message
m, the subverted signing algorithm ˜Sign, takes the signing key skV , the public
subversion key pskM, and the message m as input and outputs a signature σ.
Given the signature σ, the underlying message m and the secret subversion key
sskM, the goal of the attacker M is to recover the signing key skV via running
algorithm Recv. The signature verification algorithm is the same as a normal
one.

3.2 Strong Secret Undetectability

Let Π = (KeyGen,Sign,Vrfy) be a signature scheme, and consider the following
experiment AS-SAIND

A,Π(k) for a detector A (a normal user).

– Setup: KeyGen(1k) is run to obtain keys (vkV , skV) and K̃eyGen(1k) is run
to obtain AS-SA attacker M’s subversion key pair (pskM, sskM). Then
(vkV , skV , pskM) are given to A.

– Challenge: M chooses a random bit b ∈ {0, 1}. If b = 1 then signature
query oracle SignProc(m) returns σ ← Sign(skV ,m). Otherwise, SignProc(m)
returns σ ← ˜Sign(pskM, skV ,m).

– Query: A is given access to the signing oracle SignProc(·).
– Guess: Once the adversary A decides that Query is over, it outputs a bit b′.

The output of the experiment is defined to be 1 if b′ = b, and 0 otherwise.

Definition 3 (Strong Secret Undetectability (SSU)). The AS-SA on sig-
nature scheme Π = (KeyGen,Sign,Vrfy) is of ε(k)-SSU under chosen-message
attacks if for all PPT distinguisher A, there exists a function ε(k) such that:

Pr[AS-SAIND
A,Π(k) = 1] ≤ 1

2
+ ε(k)

In particular, we say that AS-SA on Π is of strong secret undetectability if ε(k)
is a negligible function.
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One can note that compared with symmetric subversion attack, our defined
AS-SA captures stronger undetectability. Precisely, even if a reverse analyst man-
ages to get the embedded public subversion key pskM, he is still unable to detect
other subverted system embedded with the same subversion key in a black-box
manner, let alone breaking the signature scheme security. Unfortunately, for
symmetric subversion attack, anyone (not only the attacker) could easily break
those subverted signature schemes once he obtains the subversion key. We insist
that such a difference make our proposed AS-SA more meaningful as in the real
life a simple code analysis could reveal the embedded subversion key. Therefore,
a subversion attack of strong secret undetectability could be more desirable to
the attacker in the reality.

3.3 Signing Key Recoverability

Let Π = (KeyGen,Sign,Vrfy) be a signature scheme, and consider the following
experiment AS-SAKR

M,Π(k) for an AS-SA attacker M.

– Setup: KeyGen(1k) is run to obtain user V’s keys (vkV , skV) and K̃eyGen(1k)
is run to obtain the subversion key pair of the adversary M as (pskM, sskM).
Then (pskM, sskM, vkV) are given to the adversary M.

– Challenge: The adversary M could query the subverted signing key oracle
˜Sign. Upon each query, the algorithm ˜Sign returns a message/signature pair
(m,σm) to M. M could repeat this phase for many times.

– Recovery: Finally, M recovers the secret key k. The output of the experiment
is defined to be 1 if skV = k, and 0 otherwise.

Definition 4 (Signing Key Recoverability). An AS-SA on signature scheme
Π = (KeyGen, Sign,Vrfy) is 1-v(k)-recoverable if for all PPT subversion attacker
adversaries M, there exists a function v(k) such that:

Pr[AS-SAKR
M,Π(k) = 1] � 1 − v(k)

In particular, we say that the AS-SA on Π is key recoverable if v(k) is negligible.
We remark that the success of our AS-SA does not rely on the fact that the

attacker picks or controls the input message of the subverted signing algorithm.
That is, our AS-SA will succeed for all message distribution. As indicated by
Bellare et al. [11], such an attack is more powerful in reality.

4 Mounting AS-SA on Signature Schemes

In this section, we introduce a new notion of splittable signature schemes and
then show how to mount AS-SA on splittable signatures.
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4.1 Definitions of Splittable Signatures

The splittable signature scheme is a special type of signature schemes and also
consists of algorithms (KeyGen, Sign, Vrfy) which are defined as follows.

– KeyGen: takes as input a security parameter k and outputs a pair of keys
(vk, sk), where vk is the verification key and sk is the signing key.

– Sign: consists of two sub-algorithms that generate different components of the
signature.

• SignR: takes as input a randomness r and outputs the randomness-binded
component σR ← SignR(r).

• SignM : takes as input the random r and the message m, outputs the
message-binded component σM ← SignM (sk,m, r).

– Vrfy: takes as input a verification key vk, a message m and a signature σ =
(σR, σM ), and outputs a bit b, with b = 1 meaning signature pair VALID and
b = 0 INVALID.

A splittable signature scheme should also satisfy the following two properties.

Definition 5 (Randomness Exchangeability). Let Π = (KeyGen, Sign,
Vrfy) be a splittable signature scheme. We say that Π is (ε1(k), ε2(k))-
randomness exchangeable if there exists a randomness derivation algorithm
RanDer so that for any two randomness r1, r2, and σR1 ← SignR(r1), σR2 ←
SignR(r2),

Pr[RanDer(σR2 , r1) �= RanDer(σR1 , r2)] � ε1(k),

and for any PPT algorithm A,

AdvA,Π(k) � Pr[A(σR1 , σR2) = RanDer(σR2 , r1)] � ε2(k).

Here we implicitly assume that the public parameters are part of the input of
algorithm RanDer and A.

Another property of splittable signature is called secret recoverability which
is defined as follow.

Definition 6 (Secret Recoverability). Let Π = (KeyGen, Sign, Vrfy) be a
splittable signature scheme and (vk, sk) ← KeyGen(1k). We say that Π is vz-
secret recoverable if for all message m, and σM ← SignM (sk,m, r),

Pr[k ← Recv(σM , σR, r,m) : k = sk] � 1 − vz

where the probability is taken over the randomness of Sign in Π.

4.2 A Universal AS-SA on Splittable Signature Schemes

We then propose a universal AS-SA on splittable signature scheme. The proce-
dure is depicted in Fig. 1. Below we show that such a universal AS-SA is of both
strong secret undetectability and signing key recoverability.
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Let Π = (KeyGen,Sign,Vrfy) be a splittable signature scheme and H : {0, 1}∗ → R where
R is the randomness space for the sub-algorithm SignR. AS-SA on Π consists of a set of
algorithms, where each algorithm behaves as follows:

– Setup : KeyGen generates the signing/verification key pair (sk, vk), and ˜KeyGen exe-
cutes by picking sskM

$←− R and computing pskM = SignR(sskM), and then sets the
subversion key pair as (pskM, sskM).

– S̃ign : consists of two sub-algorithms, i.e., S̃ignR and S̃ignM working as follows.
• ˜SignR : Given the number ri−1, pskM, computes the randomness ri as

ti = RanDer(pskM, ri−1), ri = H(ti)

Then computes σRi ← SignR(ri−1).
• ˜SignM : Given ri, sk, and a message mi, computes σMi ← SignM (sk, mi, ri).

Then the signature σ = (σRi , σMi).

Signing Key Recovery. The attacker recovers the signing key of the user using the algorithm
RanDer and Recv as follows.

ti = RanDer(σRi−1 , sskM), ri = H(ti)

sk ← Recv(σMi , ri, mi).

Fig. 1. A universal AS-SA on splittable signature scheme

GAMES G0-G2

1: (vkV , skV) ← KeyGen(1k);

2: (pskM, sskM) ← ˜KeyGen(1k);

3: r0
$←− Zp;

4: b
$←− {0, 1};

5: b′ ← AH,SignProc(vkV , skV , pskM);
6: return b

?= b′;

H(t) · · · · · · · · · · · · G1-G2(line 7-10)
7: if ∃r s.t. (t, r) ∈ LH

8: return r;
9: r

$←− Zp;
10: LH := LH ∪ {(t, r)};

SignProc(mi)
11: if b = 1
12: r

$←− Zp;
13: σRi ← SignR(r);
14: σMi ← SignM (r, skV , mi);
15: else if i = 0 · · · · · · G0-G1(line 15-24)
16: σRi ← SignR(ri);
17: σMi ← SignM (ri, skV , mi);
18: else if i = 1
19: σRi ← S̃ignR(pskM, ri−1);

20: σMi ← S̃ignM (pskM, ri−1, skV , mi);
21: else
22: ri−1 ← H(RanDer(pskM, ri−2));

23: σRi ← S̃ignR(pskM, ri−1);

24: σMi ← S̃ignM (pskM, ri−1, skV , mi);
25: else · · · · · · · · · · · · · · · G2(line 25-28)
26: r′ $←− Zp;
27: σRi ← SignR(r′);
28: σMi = R;
29: return σi = (σRi, σMi);

Fig. 2. The description of game G0−G2
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Theorem 1. Let Π be a (ε1(k), ε2(k))-randomness exchangeable splittable sig-
nature scheme, and A is a detector that makes q signature queries and has
advantage εIND in detecting AS-SA on splittable signature scheme Π. Then we
have

εIND ≤ (q − 1)ε2(k).

Proof. We now give a proof of the undetectability of AS-SA on splittable signa-
ture scheme using a sequence of games. We define Si to be the event that b = b′

in Game i.
Fix a distinguishing adversary A, the game G0−G2 is described in Fig. 2.
In game G0, the adversary A’s advantage εIND = |Pr[S0] − 1/2|.
We make a change in game G1. Challenger in game G1 responds to A’s hash

query t by finding the corresponding tuple 〈t, r〉 in H-list LH and returning r. If
tuple 〈t, ·〉 doesn’t exist, a random r ←R Zp is returned to A and tuple 〈t, r〉 is
recorded in H-list. This change is only conceptual. So, Pr[S0] − Pr[S1] = 0.

Game G2 is the same game as Game G1, except that we replace part
of SignProc. In game G2, σRi ← SignR(r) has the same distribution with
σRi ← SignR(r′). Similarly, since R is a random element of range of SignM , it
is computationally hard to distinguish σMi ← SignM (r, skV ,mi) from σMi = R.
So, adversary A in game G2 will not note the difference of σ in both cases, then
Pr[S2] = 1/2.

Game G1 and G2 proceed identically until A queries t, where H(t) ∈ {ri|i =
1, 2, . . . , q − 1} and q is the times of signature queries made by A. Let QUERY1

and QUERY2 be the events that above case occurs in game G1 and G2. Since
QUERY1 = QUERY2 and S1 ∧¬QUERY1 = S2 ∧¬QUERY2, by difference lemma,
we have |Pr[S1] − Pr[S2]| ≤ Pr[QUERY1].

Next, we argue that Pr[QUERY1] ≤ (q − 1)ε2(k). We show how to construct
an algorithm B that breaks the randomness exchangeability of Π and perfectly
simulates Game G1 for A. Pick two randomness r∗

1 , r∗
2

$←− Zp, and compute
σR∗

1
← SignR(r∗

1), σR∗
2

← SignR(r∗
2). Algorithm B is given σR∗

1
and σR∗

2
. Its goal

is to output RanDer(σR∗
1
, r∗

2) (or RanDer(σR∗
2
, r∗

1)). B simulates the challenger
and interacts with A as shown in Fig. 3.

Let QUERY[ri] be the event that A queries ti, where ri = H(ti). Once
QUERY[ri] happened in game G1, ti+1, . . . , tq−1 are known to A. So, without
loss of generality, we focus on the ti with the smallest index i queried by A in
event QUERY1. Since the distribution of ti, i ∈ {1, . . . , q − 1}, is independent to
each other, then we have Pr[QUERY1] = (q − 1)Pr[QUERY[ri]].

If QUERY[r1] happened in game G1, then there exists an entry 〈·, r1〉
satisfying σR = SignR(r1) and B returns the correct RanDer(pskM, r1) =
RanDer(σR∗

1
, r∗

2) with probability 1. So,

Pr[QUERY[r1]] ≤ ε2(k).

Combining equations above, we have εIND ≤ (q − 1)ε2(k).
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Theorem 2. Let Π be a (ε1(k), ε2(k))-randomness exchangeable and vz(k)-
secret recoverable splittable signature scheme. An attacker who mounts an AS-
SA described in Fig. 1 on Π will recover the signing key with probability at least
1 − (ε1(k) + vz(k)).

The above theorem could be straightforwardly obtained and thus we omit
the analysis details here.

B(σR∗
1
, σR∗

2
)

1: (vkV , skV) ← KeyGen(1k);
2: pskM = σR∗

1
;

3: r0
$←− Zp;

4: b
$←− {0, 1};

5: b′ ← AH,SignProc(vkV , skV , pskM);
6: 〈t, r〉 ← LH;
7: return RanDer(σR∗

1
, r);

H(t)
8: if ∃r s.t. (t, r) ∈ LH

9: return r;
10: r

$←− Zp;
11: LH := LH ∪ {(t, r)};

SignProc(mi)
12: if b = 1
13: r

$←− Zp;
14: σRi ← SignR(r);
15: σMi ← SignM (r, skV , mi);
16: else if i = 0
17: σRi ← SignR(ri);
18: σMi ← SignM (ri, skV , mi);
19: else if i = 1
20: σRi = σR;
21: σMi = R;
22: else
23: ri−1 ← H(RanDer(pskM, ri−2));

24: σRi ← S̃ignR(pskM, ri−1);

25: σMi ← S̃ignM (pskM, ri−1, skV , mi);
26: return σi = (σRi, σMi);

Fig. 3. Algorithm B that breaks the randomness exchangeability of Π

Remark. It is worth noting that in Fig. 1, i in ri−1 should be greater than 1, and
r1 is randomly chosen as a normal algorithm does. Moreover, as shown later, for
some other signature schemes, such as identity-based signature schemes, there
are subtle differences in the above attack steps due to the slight difference in the
scheme algorithms.

4.3 Instantiations

In this subsection, we instantiate the AS-SA framework with concrete splittable
signature schemes. We find that the following signature schemes satisfy the split-
table structure.

– All ElGamal-like signature schemes. For examples, Schnorr described in Fig. 4
[13], DSA [14], all modified ElGlmal signature schemes [15,16].

– Waters signature scheme depicted in Fig. 5 [17].
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Schnorr signature scheme

– KeyGen: Let G be a cyclic group of prime order p and g be its generator. Let H :
{0, 1}∗ → Zp be a collision-resilient hash function. Choose a secret α ∈ Z

∗
p as the

signing key sk, then compute the verification key vk = u = gα.
– Sign:

• SignR : Choose a random r ∈ Z
∗
p, then the signature related to r is σR = gr .

• SignM : Take as input a message m, then compute e = H(σR ‖ m). The signature
related to the message is σM = r − αe.

– Vrfy: Compute e = H(σR ‖ m). And verify whether σR = gσM ue or not.

Fig. 4. Schnorr signature scheme [13]

Waters signature scheme

– KeyGen: Let G be a cyclic group of prime order p and g be its generator. Choose a
secret α ∈ Z

∗
p randomly, choose g2, u

′, g1 = gα in G. Choose a random n-length vector
U = (ui) whose elements are chosen at G randomly. The verification key is g, g1, g2, u

′,
U , and the signing key is gα

2 .
– Sign:

• SignR : Choose a random r ∈ Z
∗
p, then the signature related to r is σR = gr .

• SignM : m is an n-bit message and mi denotes the i-th bit of m, and M ⊆
{1, · · · , n} be the set of all i for which mi = 1. Then the signature related to the
message is σM = gα

2 (u
′ ∏

i∈M
ui)r .

– Vrfy: Verify whether e(σ1, g)/e(σ2, u
′

i∈M
ui) = e(g1, g2) or not.

Fig. 5. Waters signature scheme [17]

Paterson’s signature scheme

– Setup: LetG be a cyclic group of prime order p andP be its generator. LetH1 : {0, 1}∗ →
G,H2 : {0, 1}∗ → Z

∗
p and H3 : {0, 1}∗ → Z

∗
p be cryptographic hash functions. Choose

a secret s ∈ Z
∗
p randomly, and set Ppub = sP . Ppub is the master public key and s is the

master secret key.
– Extract: For the given public identity ID ∈ {0, 1}∗ of the signer, compute the signer’s

verification key QID = H1(ID), and signing key SID = sQID.
– Sign:

• SignR : Choose a random r ∈ Z
∗
p, then the signature related to r is σR = rP .

• SignM : Take as input a message m, then compute the signature related to the mes-
sage is σM = r−1(H2(m)P + H3(σR)SID).

– Vrfy: Verify whether e(σR, σM ) = e(P, P )H2(m)e(Ppub, QID)H3(σR) or not.

Fig. 6. Paterson signature scheme [18]
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ID-Based Blind Signature Scheme (Schnorr type)

– Setup: Let G be a cyclic group of prime order p and P be its generator. Let H : {0, 1}∗ →
Z

∗
p and H1 : {0, 1}∗ → G be two cryptographic hash functions. Choose a secret s ∈ Z

∗
p

randomly as the master secret key, and computes Ppub = sP as the master public key.
– Extract: For the given public identity ID ∈ {0, 1}∗ of the signer, compute the signer’s

verification key QID = H1(ID), and signing key SID = sQID.
– Sign:

User Signer
R←−−−−−−−− R = rP, r ∈ Zq

a, b
$←− Z

∗
p

t = e(bQID + R + aP, Ppub)

c = H(m, t) + b
c−−−−−−−−→
S←−−−−−−−− S = cSID + rPpub

c′ = c − b, S′ = S + aPpub

The signature of message m is (c′, S′).
– Vrfy: Verify whether c′ = H(m, e(S′, P )e(QID, Ppub)−c′

) or not.

Fig. 7. ID-based blind signature scheme (Schnorr type) [19]

Table 1. Instantiations of splittable signatures

Signature schemes RanDer(σR, r′) Recv(σM , σR, r, m)

ElGamal-like [13–16] (σR)r
′

(r − σM ) · (H(σR ‖ m))−1 = α = sk

Waters [17] σ−1
M · (u′ ∏

i∈M
ui)

r = gα
2 = sk

Paterson’s IBS [18] e(Ppub, σR)r
′

(r · σM − H2(m) · P ) · (H3(σR))−1 = SID

ID-based blind signature [19] (S − r · Ppub) · c−1 = SID

– We remark that some identity-based signature schemes also belong to
the splittable structure. Concretely, Schnorr IBS [13], Paterson’s signature
scheme in Fig. 6 [18], ID-Based Blind Signature Scheme (Schnorr type)
in Fig. 7 [19]. Since identity-based signature scheme consists of four algo-
rithms (Setup, Extract, Sign, Vrfy), one can regard the first two algorithms
(Setup, Extract) as the algorithm KeyGen of splittable signature.

Details of algorithms RanDer and Recv on different signature schemes listed
above are described in Table 1. We point out that for the ID-based blind signature
scheme [19], we consider σR = R, σM = (c, S) so that it is consistent with the
splittable structure. In particular, the algorithm Recv takes S, c and r as inputs
instead of S′ and c′, as S and c are transformed on public channel and thus
are accessible to the attacker. Also, we remark that for the above two identity-
based signature schemes [18,19], the algorithm RanDer also takes the system
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master public key as input. One could verify that all signatures schemes are of
randomness exchangeability. Particularly, typical signature schemes [13–17] rely
on the CDH assumption while identity-based signature schemes [13,18,19] rely
on the BDH assumption.

5 Subversion-Resilient Signatures

In this section, we discuss some potential countermeasures to defend the afore-
mentioned subversion attacks against signatures. Essentially, similar to exist-
ing subversion attacks against signatures, our proposed subversion framework
also mainly relies on the biased choice of randomness involved in the sign-
ing algorithm. Therefore, existing approaches (e.g., [12,20–22]) for constructing
subversion-resilient signatures could also be adopted to prevent the asymmet-
ric subversion attacks proposed in this work. Below we briefly review the main
progress on the line of constructing subversion-resilient signatures. More details
are please referred to the related literature.

Unique Signature. To resist subversion attacks against signature schemes,
Atenises et al. [12] showed that fully deterministic schemes with unique sig-
natures could achieve meaningful security against randomness-based subver-
sion attacks of so-called (relaxed) verifiability condition. A signature scheme
is unique if for each message, there exists only a single corresponding signature
valid under a honestly generated verification key. Intuitively, since the unique
signature scheme does not involve the randomness for signing message, all afore-
mentioned subversion attacks will not work any more.

Signature Schemes with Reverse Firewalls. Atenises et al. [12] also considered
security of signature schemes against strong subversion attack which may arbi-
trarily tamper the signing algorithm and thus the verifiability condition does not
necessarily hold. Particularly, they showed that by using the so-called crypto-
graphic reverse firewall [20,23,24], one can achieve the ambitious goal of protect-
ing signature schemes against arbitrary subversion attacks. Roughly speaking, a
reverse firewall for a signature scheme is an online external party that intercepts
and modifies the signature produced by the signing algorithm before it is sent out
to the outside. Atenises et al. [12] proved that every re-randomizable signature
scheme [25] admits such a reverse firewall that preserves unforgeability against
arbitrary subversion attacks if the reverse firewall is of self-destruct capability. It
is worth noting that the Waters signature [17] is re-randomizable and thus one
could build a reverse firewall to preserve its security against subversion attacks.

Self-Guarding Signature Schemes. Motivated by removing the external parties,
Fischlin and Mazaheri [21] provided an alternative approach to reverse firewalls.
Instead of relying on the ability of reverse firewall to randomize subverted sig-
natures, a self-guarding signature scheme could use information gathered from
the secure initial phase when the algorithm is still not subverted to do the re-
randomization. They proposed a self-guarding signature scheme which was built
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upon any deterministic signature scheme and showed that it self-guards against
stateless subversion attacks.

Split-Program Based Signature Schemes. In recent works by Russell et al.
[22,26,27], a split-program approach is proposed to prevent instance rejection-
sampling attacks. The central idea is to split the algorithm into deterministic and
probabilistic blocks that could be individually tested by the so-called watchdog.
Precisely, they considered the complete subversion against the signature scheme
where the key generation and verification algorithms may be also subverted. To
deal with this issue, they showed how to construct a subversion-resilient signa-
ture with an online watchdog in the split-program model.

6 Conclusions

In this work, we explored strong subversion attacks against signature schemes.
We formalized the asymmetric subversion model for signature schemes and pro-
posed a universal subversion attack on signature schemes of so-called splittable
structure. We then proved that our presented subversion attack is strong unde-
tectable and more effective than that proposed in the literature.
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Abstract. Cloud storage auditing is a crucial service that provides
integrity checking for clients’ data in the cloud server. However, if the
client’s auditing secret key is exposed, the malicious cloud server can
tamper even throw away the client’s data without being detected. In
this paper, we propose an intrusion-resilient public auditing protocol
that can reduce the damage caused by key exposure. In our protocol,
the auditing secret key is managed by the client with the help of a third
party auditor (TPA), who cannot compute the client’s auditing secret
key. Our protocol divides the lifetime of file stored on cloud into several
time periods, and each time period is further divided into several refresh-
ing periods. We show that our protocol is secure (i.e., backward security
and forward security) against the adversary as long as the client and
TPA are compromised in different refreshing period. Our protocol still
captures the forward security when the client and TPA are compromised
in the same refreshing period.

Keywords: Key exposure · Intrusion-resilient · Cloud computing
Cloud storage auditing

1 Introduction

Cloud storage attracts many individuals and enterprises putting their data on
the cloud server. However, after uploading their data to the cloud server, the
clients usually delete locally stored data. Therefore, whether the data on the
cloud server is under well preservation is a significant security problems, i.e., the
problem of data’s integrity.

In 2007, Ateniese et al. firstly put forward PDP (Provable Data Possession),
which intended to ensure the data possession stored on untrusted servers [1].
Using the method of random sample and homomorphic linear authenticators
(HLA), this scheme can verify integrity of outsourced data. Juels et al. proposed
Proof of Retrievability (PoR) [8]. With the technologies of spot checking and
error correcting codes, PoR can ensure not only the data’s possession but also
the data’s retrievability. Shacham and Waters [10] gave an improved PoR, which
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is able to support stateless verification. During the past few years, different
fields about auditing has been researched, such as data dynamic problem [13,21],
privacy protection problem of clients’ data [12,14], the data sharing [11,20], and
cloud data’s multi-copies [2,4]. Recently, several key-exposure resilient cloud
storage auditing protocols have been proposed in last few years [15–17]. If a
malicious cloud server has the secret key of the client, it can conceal loss of
a client’s data to maintain its fame, even deliberately delete the data that are
rarely accessed for the sake of storage saving. It’s necessary to study key-exposure
resilient cloud storage auditing protocol.

Yu et al. [16] firstly investigate the key-exposure resilient cloud storage audit-
ing protocol which divided the lifetime of the file stored on cloud server into
discrete time periods. The client’s auditing secret key, which is used to generate
files’ auditing authenticators, will be updated during each time period, and the
forward security of auditing secret key is preserved [16]. In 2016, a protocol to
outsource key update to TPA was proposed, which reduced the client’s compu-
tation overhead [15]. However, in [15,16] the client updates its auditing secret
key by itself. If the client is compromised, the adversary could update the audit-
ing secret key and then forge the file authenticators after the key-exposed time
period, i.e., these protocols [15,16] cannot realize the backward security of the
auditing secret key.

In 2017, Yu and Wang [17] proposed a strong key-exposure resilient auditing
protocol, which preserved not only the forward security but also the backward
security of the auditing secret key. In their protocol, the secret value to update
auditing secret keys is split into two parts, one is given to TPA, and the other
one is kept by the client itself. So TPA has a new task that is helping the client
update its auditing secret keys, besides providing auditing service that is similar
to [16]. It should be noted that TPA is incapable of computing the auditing
secret key for it does not know the client’s secret part. If only the client is
compromised, the adversary cannot compute auditing secret key for it is unable
get the update token generated by TPA’s secret part. However, each part of
the secret value that TPA and the client hold are unchangeable in the protocol.
Therefore, as long as the adversary compromises the client and TPA during the
lifetime of the auditing protocol, the adversary can update the auditing secret
key of every time periods without being disclosed.

1.1 Our Contributions

We found that if the adversary can compromise both the client and TPA, no
auditing protocol proposed in the literature is secure. Therefore, in this paper,
we propose an intrusion-resilient public auditing protocol to address this security
problem. This protocol can preserve the auditing security if the client and TPA
are compromised in different refreshing periods. The proposed protocol divides
each time period into several refreshing periods. During each time period, TPA
and the client perform one time key update algorithm to update the auditing
secret key which is used to compute file’s auditing authenticator of the next
time period. Different from the protocol [17], TPA and the client perform one
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time key refresh algorithm during each refreshing period to update TPA and
the client’s secret parts which is used to update the auditing secret key. The
key refresh algorithm makes our protocol avoid the problem in [17]. The major
contributions of this paper are as shown below:

1. We propose an intrusion-resilient public auditing protocol, where the secret
value to update auditing secret keys is also split into two parts, one is given
to TPA, and the other is kept by the client itself. In each refresh period,
we choose a random number, and then TPA and client accordingly refresh
their secret parts using the random number. One multiples its secret part by
the random number, while the other divides its secret part by the random
number. The secret value can be recovered jointly from the secret parts of
the client and TPA in the same refreshing period. If the adversary compro-
mises client and TPA respectively during different refreshing periods, it can’t
obtain other auditing secret keys except the refreshing period that the client
is compromised. Therefore, the proposed protocol further alleviates the harm
of key exposure on cloud storage auditing.

2. We give a formalized definition and security model for proposed protocol. In
security model, adversary can query key update tokens, key refresh tokens,
secret keys of the client and TPA for all time periods, except an unexposed
time period. The computation overhead and communication overhead are
analyzed through numerical analysis.

The remaining part of this paper is organized as follows: we give the model
of our system, definition of the protocol, the security model and preliminaries
in Sect. 2. A concrete protocol is elaborated in Sect. 3. Security proof and per-
formance analysis are respectively shown in Sects. 4 and 5. Ultimately, paper’s
conclusion is Sect. 6.

2 Definitions and Preliminaries

2.1 System Model

The intrusion-resilient cloud storage auditing system in Fig. 1 includes three
parties: the cloud server, the client, and TPA. The cloud server provides storage
service and data access for clients. The client can compute authenticators of files,
upload authenticators and files to the cloud server and delete corresponding data
from its own storage space. TPA, a trusted organization, that is governed by
the government, plays two roles in this system. One role is to provide impartial
auditing service for clients. The other is to correctly assist clients to update their
auditing secret keys. Similar with previous works, TPA is honest for auditing
service for clients. Besides, we assume that TPA is trustworthy for assisting
clients to update secret keys.
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Fig. 1. System model

2.2 Definition of Intrusion-Resilient Public Auditing Protocol

In this proposed protocol, each time period t is divided into RN(t) refreshing
periods that are marked with r, i.e. r ∈ [0, RN(t) − 1]. Following the prior work
[5], key update algorithm is executed promptly after key generates, as well as
key refresh algorithm promptly after key updates, so as to the keys with t = 0
or r = 0 are never used. The proposed protocol is composed of the following six
algorithms:

(1) SysSetup(1k, T ) → (SKC0.0, SKT0.0, PK): the system setup algorithm is
probabilistic and the client runs this algorithm. The input is security param-
eter 1k and the number of periods T . The output is the client’s initial secret
key SKC0.0, TPA’s preliminary secret key SKT0.0, as well as public key
PK.

(2) KeyUpd(SKTt.r, SKCt.r, PK, t) → (SKTt+1.0, SKCt+1.0): the key update
algorithm is probabilistic. TPA and the client interactively run this algo-
rithm. The input is TPA’s secret key SKTt.r, the client’s secret key SKCt.r,
public key PK and time period t. Specifically, TPA generates key update
token TUt to help the client update its secret key. The outputs is TPA’s
secret key SKTt+1.0 and the client’s secret key SKCt+1.0 for the next time
period.

(3) KeyRef(SKTt.r, SKCt.r, PK, t) → (SKTt.r+1, SKCt.r+1): the key refresh
algorithm is probabilistic. TPA and the client interactively run this algo-
rithm. The input is TPA’s secret key SKTt.r, the client’s secret key SKCt.r,
public key PK, and time period t. Specifically, TPA generates key refresh
token TRt.r to help the client refresh its secret key. The output is TPA’s
secret key SKTt.r+1 and the client’s secret key SKCt.r+1 for the next refresh
period.

(4) AuthGen(SKCt.r, PK,F, t) → (Φ): the authenticator generation algorithm
is probabilistic and the client runs this algorithm. The input is the client’s
secret key SKCt.r, a file F that will be stored on cloud server, public key
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PK, and time period t. The output is authenticator set Φ of file F in time
period t.

(5) ProofGen(Chal, F, Φ, PK, t) → (P ): the storage proof generation algorithm
is probabilistic and the cloud server runs this algorithm. The input is the
challenge Chal issued by TPA, the file F , authenticator set Φ, public key
PK, and time period t. The output is proof P of possession of file F .

(6) ProofVerify(P,Chal, PK, t) → (′′T ′′or′′F ′′): TPA runs this deterministic
proof verifying algorithm. The input is proof P , challenge Chal, public key
PK, and time period t. The output is ′′Ture′′ or ′′False′′.

2.3 Definition of Security

Similar with [5]. We use SKC∗, SKT ∗, TU∗, TR∗ to denote the client’s secret
keys, TPA’s secret keys, key update tokens, and key refresh tokens in all time
periods respectively. File F stored in the cloud server is divided into n blocks
mi(i = 1, · · · , n). The probabilistic polynomial-time adversary can steal these
messages, so the oracles are as shown below.

– Authenticator oracle. Inputting some block mi of file F in time period t, this
oracle outputs the authenticator of block mi.

– Osec. This is a key exposure oracle, which is based on SKC∗, SKT ∗,
TU∗, TR∗. The adversary inputs (′′s′′, t.r), (′′b′′, t.r), (′′u′′, t), (′′r′′, t.r), then
obtains SKCt.r, SKTt.r, TUt and TRt+1.0, TRt.r respectively, which are
shown below.

1. Inputting (′′s′′, t.r), obtains SKCt.r;
2. Inputting (′′b′′, t.r), obtains SKTt.r;
3. Inputting (′′u′′, t), obtains TUt and TRt+1.0;
4. Inputting (′′r′′, t.r), obtains TRt.r.

Compromising of the client or TPA and obtaining key update or refresh tokens
are included in this oracle’s queries.

Assume Q is a set of secret key queries, we define SKCt.r is Q − exposed
when at least one of these cases happens:

(1) (′′s′′, t.r) ∈ Q
(2) r > 1, (′′r′′, t.(r − 1)) ∈ Q, and SKCt.r−1 is Q − exposed
(3) r = 1, (′′u′′, t − 1) ∈ Q, and SKC(t−1).RN(t−1) is Q − exposed

If SKCt.r is Q − exposed, authenticators of file F in period t can be forged.
When SKTt.r and SKCt.r are simultaneously Q − exposed, the adversary can
execute key update and key refresh algorithms itself and forge authenticators
of file F in every time period t

′
> t. Therefore, we say proposed protocol is

(t,Q) − compromised when SKCt.r is Q − exposed or SKTt′.r and SKCt′.r are
simultaneously Q − exposed of which t′ < t.
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The following game describes an adversary against the security of intrusion-
resilient cloud storage auditing protocol. If the adversary can forge authentica-
tors of some block mi(i = 1, · · · , n) of file F in t∗, and neither the protocol is
(t∗, Q) − compromised nor the adversary executes the authenticator query of
mi, we say the adversary succeeds. The game includes these phases:

(1) Setup phase. The challenger sets t = 0 and executes SysSetup algorithm
to obtain client’s secret key SKC0.0, TPA’s key SKT0.0, as well as PK.
Challenger sends the adversary the public key PK.

(2) Query phase. We allow adversary to query TU∗, SKT ∗, SKC∗, TR∗ and
authenticators adaptively. Set current time period is t.
(a) Osec queries. The adversary can adaptively query secret key of client,

secret key of TPA, key update tokens, key refresh tokens in time period t
and query Osec. The challenger sends the corresponding secret messages
to the adversary.

(b) Authenticator queries. The adversary can select a series of blocks of
m1,m2, · · · ,mn and send them to the challenger. The challenger com-
putes authenticators of these blocks in time period t and sends these
authenticators to the adversary. The adversary stores all blocks of file
F = (m1,m2, · · · ,mn) and their authenticators.
Subsequently, let current time period t := t+1. Before every time period
ends, adversary is permitted to continue this query phase or enter the
next phase.

(3) Challenge phase. The challenger picks period t∗, the proposed protocol is not
(t∗, Q) − compromised in t∗ and Chal = {i, vi}i∈I(I = {s1, s2, · · · , sc}, 1 ≤
sl ≤ n, 1 ≤ l ≤ c, 1 ≤ c ≤ n). The challenger sends Chal to adversary and
asks for providing possession proof P for file F = (m1,m2, · · · ,mn) under
Chal for blocks ms1 ,ms2 , · · · ,msc

in time period t∗.
4) Forgery phase. A possession proof P is generated by the adversary

in time period t∗, which is for the blocks in Chal. The adversary
sends P to the challenger, which is then verified by the challenger. If
ProofVerify(P,Chal, PK, t∗) outputs ′′True′′, we say the adversary wins.

Without owing all blocks indicated by Chal, adversary can’t forge a valid pos-
session proof in time period t as long as the proposed protocol is not (t,Q) −
compromised, except that it puzzles out all missing blocks. We allow adversary
to query all blocks’ authenticators of file F in all time periods. Besides, the adver-
sary can adaptively query secret messages of set SKC∗, SKT ∗, TU∗, TR∗ for all
time periods so long as not making the proposed protocol (t∗, Q)−compromised.
The adversary’s goal is forging a valid possession proof P in time period t∗ for
blocks in Chal. The following definition shows that if an adversary’s proof is
valid in time period t∗, then we can use a knowledge extractor to extract the
challenged file blocks.

Definition 1 (Intrusion-resilient Auditing). We say an auditing protocol
for cloud storage is intrusion-resilient when these conditions are met: whenever
the challenger accepts the adversary’s proof in above game with probability that
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is non-negligible, then except possibly with negligible probability, we are able to
find a knowledge extractor which is able to extract all the file blocks that are
challenged.

The following definition shows detectability of the proposed auditing protocol.
It ensures that the cloud stores the unchallenged blocks with a high probability.

Definition 2 (Detectability). The intrusion-resilient auditing protocol is
(q, p) detectable (0 < q, p < 1), if bad blocks are checked with probability that
is at least p, given a fraction q of bad blocks.

2.4 Preliminaries

(1) Bilinear Map: G1 and G2 are two multiplicative cyclic groups with prime
order q. If ê : G1 × G1 → G2 meets these conditions, we call it bilinear map:
(a) Bilinearity: ∀g1, g2 ∈ G1 and ∀a, b ∈ Z∗

q , ê(ga
1 , gb

2) = ê(g1, g2)ab.
(b) Non-degeneracy: g1, g2 are generators in G1, ê(g1, g2) �= 1.
(c) Computability: ê(g1, g2) can be computed using an efficient algorithm.

(2) CDH Problem: Given (g, ga, gb), compute gab, where a, b ∈ Z∗
q and g is a

generator in multiplicative group G1 with order q .

3 The Proposed Protocol

3.1 Technique Explanation

In this section, we give the representation of time period firstly, explain symbols
about time periods and secret keys secondly, and describe the procedure of key
update between TPA and the client finally.

Time Period Representation. Similar with [3,6,7,18,19], we take advantage
of a full binary tree structure with depth l + 1, and divide the lifetime of file F
stored on cloud server into T = 2l discrete time periods, from 0 to T − 1. Each
time period t is further divided into RN(t) refreshing periods that are marked
with r. We set t1.r1 = t2.r2 when t1 = t2 and r1 = r2, t1.r1 < t2.r2 when t1 < t2
or when t1 = t2 and r1 < r2, which is shown in Fig. 2. Time periods are matched
with the tree’s leaf nodes from the most left to the most right. The node of the
binary tree is labelled with binary string ω, and we call the node with label ω
as ′′node ω′′ for simplification. A non-leaf node ω’s left child and right child are
represented by binary string ω0 and ω1 respectively. Node 〈t〉 is the leaf node
corresponding to time period t, and 〈t〉 is a binary string with length l.
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…

Time period 0 Time period t …… Time period T-1……

r=0 r=1 r=RN(t)-1

Fig. 2. Time period and refreshing period

Symbol Explanation. In the binary tree, each leaf node 〈t〉 has one secret
value S〈t〉 ∈ G1, and S〈t〉 is the client’s auditing secret key in time period t.
Each non-leaf node ω has two values Rω, Sω ∈ G1. Rω is a verification value
to verify file authenticators, and Sω is a secret value to compute its children’s
secret value. When node ω is the root node which is labelled with an empty
string ε, we have Sε = 1. For each node ω, we define three sets θ(β, ω), ϕ(ω)
and Ωβ,ω. Set θ(β, ω) contains node ω’s ancestor on the route from node β to
ω, and set ϕ(ω) contains the right siblings of nodes on the route from root
to node ω. Set Ωβ,ω = {Rπ|π ∈ θ(β, ω)} contains verification value of each
node in the set θ(β, ω). If β is the root node, θ(β, ω) and Ωβ,ω are taken as
θ(ω) and Ωω respectively. For every leaf node 〈t〉, we additionally define a set
Sec〈t〉 = {Sω|ω ∈ ϕ(〈t〉)}, that contains the secret value of each node in the set
ϕ(〈t〉). Set Sec〈t〉 is used to compute auditing secret key S〈t+1〉 for the next time
period. Every value Sω in Sec〈t〉 is divided into two parts, i.e. Sω = S

′
ω · S

′′
ω ,

and Sec
′
〈t〉 = {S

′
ω|ω ∈ ϕ(〈t〉)}, Sec

′′
〈t〉 = {S

′′
ω |ω ∈ ϕ(〈t〉)}. TPA’s secret key in

time period t is SKTt.r = Sec
′
〈t〉, and the client’s secret key in time period t is

SKCt.r = {S〈t〉, Ω〈t〉,Sec
′′
〈t〉}. These symbols are concluded in Table 1.

Figure 3 gives an example to explain some symbols. In this example, the
depth of binary tree is 4, and l = 3, thus the number of time periods T is 8,
from 0 to 7. We label the left child of root with binary string ω = 0, node 0’s left
child with ω0 = 00 and right child with ω1 = 01. Node 0 has two values R0, S0,
and S0 is used to compute secret values S00 and S01.

The leaf node 000 has value S000, which is the client’s auditing secret key for
the time period 0. At the same time, node 000 has four sets θ(β, 000), Ωβ,000,
ϕ(000),Sec000. We have ϕ(000) = {node 1,node 01,node 001}, Sec000 = {S1, S01

, S001}. If node β is root ε, sets θ(β, 000) = θ(000) = {node ε, node 0,node 00}
and Ωβ,000 = Ω000 = {Rε, R0, R00}. In time period 0, the secret key of the client
is SKC0.r = {S000, Ω000,Sec

′′
000}, in which Sec

′′
〈0〉={S1

′′
, S01

′′
, S001

′′} and TPA’s

secret key is SKT0.r = Sec
′
000, in which Sec

′
000={S1

′
, S01

′
, S001

′}. Secret values
S1, S01, S001 in Sec000 is respectively product of corresponding factors in Sec

′
000

and Sec
′′
000, i.e. S1 = S1

′ · S1

′′
,S01 = S01

′ · S01

′′
, S001 = S001

′ · S001

′′
.

Key Update. The key update at the end of time period t can be describe
as following. Assume the client’s secret key is SKCt.r = {S〈t〉, Ω〈t〉,Sec

′′
〈t〉}, and

TPA’s secret key is SKTt.r = Sec
′
〈t〉. We have 〈t〉 = t1t2 · · · tl, and the key update

is executed according to the value of binary bit tl.
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Table 1. Symbol explanation

Symbol Meaning

SKTt.r The secret key of TPA at time period t after r times refreshes

SKCt.r The secret value of the client at time period t after r times refreshes

TUt Key update token generated by TPA at the end of time period t

TRt.r Key refresh token generated by TPA after the (r + 1) − th refreshing

T The total time periods

ω The binary string remarks a node of the binary tree

ω0 The binary string remarks left child of node ω

ω1 The binary string remarks right child of node ω

〈t〉 The binary string of leaf node corresponding to time period t

Rω The verification value of tree node whose binary string is ω

Sω The secret value of tree node ω

Ω〈t〉 The verification value set of tree nodes in the route from root to leaf node 〈t〉
ϕ(〈t〉) The set of right siblings of nodes on the route from root to leaf node 〈t〉
Sec〈t〉 The set of secret values of nodes in ϕ(〈t〉)
θ(β, ω) The set of node ω’s ancestors on the route from node β to ω

Fig. 3. An example of key construction with l = 3
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In the case tl = 0. Node 〈t〉 is a left leaf node and node 〈t + 1〉 is the right
sibling of node 〈t〉, i.e. 〈t + 1〉 = t1t2 · · · tl−11. Therefore, TPA can find S

′
〈t+1〉 in

set Sec
′
〈t〉, and the client can find S

′′
〈t+1〉 in set Sec

′′
〈t〉. TPA sets the key update

token TU〈t〉 = {S
′
〈t+1〉} and sends TU〈t〉 to the client. After receiving TU〈t〉, the

client computes S〈t+1〉 = S
′
〈t+1〉 · S

′′
〈t+1〉, that is the auditing secret key in time

period t + 1. In time period t + 1, TPA’s secret key is SKTt+1.0 = Sec
′
〈t+1〉,

and the client’s secret key is SKCt+1.0 = {S〈t+1〉, Ω〈t+1〉,Sec
′′
〈t+1〉}, where

Sec
′
〈t+1〉 = Sec

′
〈t〉 \{S

′
〈t+1〉} and Sec

′′
〈t+1〉 = Sec

′′
〈t〉 \{S

′′
〈t+1〉}. Because node 〈t + 1〉

is the right sibling of node 〈t〉, the verification value set in time period t+1 does
not change, i.e. Ω〈t+1〉 = Ω〈t〉.

In the case tl = 1. Node 〈t〉 is a right leaf node and node 〈t + 1〉 is a left leaf
node. TPA gets i that is the largest value satisfying ti = 0, then the nearest com-
mon ancestor of node 〈t〉 and 〈t + 1〉 is node t1t2 · · · ti−1. Node β = t1t2 · · · ti−10
is the left child of node t1t2 · · · ti−1, while node ω = t1t2 · · · ti−11 is the right
child. Therefore, TPA and the client can find S

′
ω ∈ Sec

′
〈t〉, S

′′
ω ∈ Sec

′′
〈t〉 respec-

tively. TPA sets its secret key Sec
′
〈t+1〉 = Sec

′
〈t〉 \{S

′
ω} for time period t + 1, and

the client sets Sec
′′
〈t+1〉 = Sec

′′
〈t〉 \{S

′′
ω}. Then, the client cooperates with TPA to

compute secrets for time period t + 1 according to the following three steps.

(a). For each node π in the set θ(ω, 〈t + 1〉), TPA randomly selects ρ
′
π ∈ Z∗

q .

Then, TPA computes node π’s verification value part R
′
π = gρ

′
π , left child’s

secret value part S
′
π0 = S

′
π · H1(π0)ρ

′
π and right child’s secret value part

S
′
π1 = S

′
π · H1(π1)ρ

′
π . TPA then sets Sec

′
〈t+1〉 = Sec

′
〈t+1〉 ∪{S

′
π1}. When

node π is the parent of node 〈t + 1〉, TPA obtains its secret value part
S

′
〈t+1〉 = S

′
π0 for time period t + 1.

For each node π in the set θ(ω, 〈t + 1〉), the client randomly selects ρ
′′
π ∈ Z∗

q .

Then, the client computes node π’s verification value part R
′′
π = gρ

′′
π , left

child’s secret value part S
′′
π0 = S

′′
π · H1(π0)ρ

′′
π and right child’s secret value

part S
′′
π1 = S

′′
π · H1(π1)ρ

′′
π . The client then sets Sec

′′
〈t+1〉 = Sec

′′
〈t+1〉 ∪{S

′′
π1}.

When node π is the parent of node 〈t + 1〉, the client obtains its secret value
part S

′′
〈t+1〉 = S

′′
π0 for time period t + 1.

(b). TPA obtains its secret key SKTt+1.0 = Sec
′
〈t+1〉 in time period t + 1 and

the verification value part set Ω
′
ω,〈t+1〉 = {R

′
π|π ∈ θ(ω, 〈t + 1〉)}, where

θ(ω, 〈t + 1〉) contains node 〈t + 1〉’s ancestors on the route from node ω to
〈t + 1〉. Finally, TPA sets key update token TU〈t〉 = {S

′
〈t+1〉, Ω

′
ω,〈t+1〉} and

sends TU〈t〉 to the client.
After receiving TU〈t〉, the client gets R

′
π from set Ω

′
ω,〈t+1〉 and computes

verification value Rπ = R
′
π · R

′′
π for π ∈ θ(ω, 〈t + 1〉). The client then sets

verification value set Ω〈t〉 = Ω〈t〉∪{Rπ}. Because θ(β, 〈t〉) is not used during
the time period t + 1, the verification value set Ωβ,〈t〉 should be removed,



Intrusion-Resilient Public Auditing Protocol 409

where node β is the left sibling of node ω. Finally, the client gets Ω〈t+1〉 =
Ω〈t〉 \ Ωβ,〈t〉, where Ω〈t+1〉 is the set of verification values of nodes on the
route from root to node 〈t + 1〉.

(c). The client computes auditing secret key S〈t+1〉 = S
′
〈t+1〉 · S′′

〈t+1〉 of leaf node
〈t + 1〉. Thus the client’s secret key in time period t + 1 is SKCt+1.0 =
{S〈t+1〉, Ω〈t+1〉,Sec

′′
〈t+1〉}.

Finally, TPA and the client delete key update token TU〈t+1〉, all random values
and secret value parts of left child generated in step b.

3.2 Description of the Proposed Protocol

Similar with previous auditing protocols [15–17], we adopt a digital signature
SSig to compute the file tag for file F ’s unique identifier name, verification value
set Ω〈t〉, and time period t. The client divides file F into blocks m1, · · · ,mn ∈ Z∗

q .
The proposed protocol contains six algorithms as follows:

(1) SysSetup. The input is the number of time periods T and security parameter
k.
(a) The client obtains two cycle groups G1, G2 whose orders are both prime

q and bilinear pairing ê : G1 × G1 → G2. Then it chooses genera-
tors g, u ∈ G1 and two cryptographic hash functions H1 : {0, 1}∗ →
G1, H2 : {0, 1}∗ × G1 → G1. The client sets public key PK =
(G1, G2,H1,H2, ê, g, u).

(b) For each node π in the set θ(〈0〉), the client randomly selects ρπ ∈ Z∗
q .

Then, the client computes node π’s verification value Rπ = gρπ , left
child’s secret value Sπ0 = Sπ · H1(π0)ρπ and right child’s secret value
Sπ1 = Sπ ·H1(π1)ρπ . It’s noticed that Sπ = 1, when node π is root node.
When node π is the parent of node 〈0〉, the client obtains auditing secret
key S〈0〉 = Sπ0 for time period 0.

(c) The client obtains its verification value set Ω〈0〉 = {Rπ|π ∈ θ(〈0〉)},
where θ(〈0〉) contains node 〈0〉’s ancestors until root. The client then
sets Sec〈0〉 = {Sπ|π ∈ ϕ(〈0〉)}, which is used to compute secret values
for next time period. ϕ(〈0〉) includes right sibling of each node in the
path from root to node 〈0〉.

(d) For each node ω in the set ϕ(〈0〉), the client randomly chooses S
′
ω

and S
′′
ω that satisfie Sω = S

′
ω ·S′′

ω, and then sets Sec
′
〈0〉 = {S

′
ω|ω ∈

ϕ(〈0〉)} and Sec
′′
〈0〉 = {S

′′
ω |ω ∈ ϕ(〈0〉)}. In time period 0, TPA’s secret

key is SKT0.0 = Sec
′
〈0〉, and the client’s secret key is SKC0.0 =

{S〈0〉, Ω〈0〉,Sec
′′
〈0〉}. S〈0〉 is current time period’s auditing secret key to

generate file auditing authenticator in AuthGen algorithm. Set Ω〈0〉 is
used to verify the file authenticators in ProofVerify algorithm. Sets Sec

′
〈0〉

and Sec
′′
〈0〉 are used to compute secret value to update auditing secret

key for next time period. The client sends SKT0.0 to TPA secretly, and
then deletes any values except SKC0.0.
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(2) KeyUpd. The input is secret key SKTt.(RN(t)−1), SKCt.(RN(t)−1), public key
PK and time period t. t.(RN(t)−1) represents that the secret keys of client
and TPA are in the last refreshing period of time period t. The key update
procedure is the same as Key Update described in Sect. 3.1.

(3) KeyRef. Input secret keys SKTt.r, SKCt.r that have been refreshed r times
in time period t, public key PK and time period t. SKTt.r = Sec

′
〈t〉 =

{S
′
ω|ω ∈ ϕ(〈t〉)} is TPA’s secret key. The client’s secret key is SKCt.r =

{S〈t〉, Ω〈t〉,Sec
′′
〈t〉}, where Sec

′′
〈t〉 = {S

′′
ω |ω ∈ ϕ(〈t〉)}.

(a) For every node ω ∈ ϕ(〈t〉), TPA randomly selects Xω ∈ G1 and sets
S

′
ω := S

′
ω · Xω. Then TPA’s secret key is SKTt.r+1 = {S

′
ω|ω ∈ ϕ(〈t〉)},

and key refresh token is TRt.r = {Xω|ω ∈ ϕ(t)}. TPA then sends TRt.r

to the client.
After receiving key refreshing token TRt.r, the client computes S

′′
ω :=

S
′′
ω · X−1

ω for every node ω ∈ ϕ(〈t〉). The client’s new secret key for next
refresh period is SKCt.r+1 = {S〈t〉, Ω〈t〉,Sec

′′
〈t〉}, where the secret value

set is Sec
′′
〈t〉 = {S

′′
ω |ω ∈ ϕ(〈t〉)}.

(b) TPA and the client deletes TRt.r from local.
(4) AuthGen. The input is current time period t, client’s secret key SKCt.r =

{S〈t〉, Ω〈t〉,Sec
′′
〈t〉}, a file F = {m1,m2, · · · ,mn} that will be uploaded to the

cloud in time period t, and public key PK.
(a) The client randomly selects name ∈ Z∗

q as the unique identifier of
F , and uses signature algorithm SSig to compute a file tag σ =
SSig(Ω〈t〉, name, t). The client selects a random number r ∈ Z∗

q ,
and then computes U = gr and F ’s auditing authenticator δi =
H2(name||i||t, U)r · S〈t〉 � urmi for every block mi, i ∈ [1, n].

(b) The authenticator set of file F in time period t is Φ =
{t, U, {δi}1≤i≤n, Ω〈t〉}. The client sends file F , file tag σ, and authen-
ticator set Φ to the cloud server.

(5) ProofGen. TPA issues a challenge Chal = {(i, vi)}i∈I to the cloud server,
where vi ∈ Z∗

q , and I = {s1, · · · , sc} is a subset of [1, n], c is the number of
challenged blocks of file F .
After inputting challenge Chal, file F , F ’s authenticator set Φ =
(t, U, {δi}1≤i≤n, Ω〈t〉), the cloud server computes δ =

∏
i∈I δvi

i , μ =
∑

i∈I vimi. The cloud server sets proof P =
{
t, U, δ, μ,Ω〈t〉

}
, and sends

(P, σ) to TPA as the response of TPA’s challenge.
(6) ProofVerify. The input is proof P , file tag σ, a challenge Chal, public key

PK and time period t.
TPA firstly checks the file tag σ to verify whether name, t,Ω〈t〉 is integrated.
If name, t,Ω〈t〉 is integrated, TPA checks whether the following equation
holds:

ê(U, uμ
∏

i∈I
H2(name||i||t, U)vi)·

∏

π,β∈θ(〈t〉)
β is π′s child

ê(Rπ,H1(β)
∑

i∈I vi) = ê(g, δ)
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TPA sends ′′True′′ to the client if the equation holds. Otherwise, TPA sends
′′False′′ to the client.

4 Security Analysis

Theorem 1 (Correctness). The ProofVerify algorithm must outputs ′′True′′

for a valid proof P and corresponding challenge Chal.

Proof: The proposed protocol is correct because the following equation holds:

ê(U, uμ
∏

i∈I
H2(name||i||t, U)vi) ·

∏

π∈θ(〈t〉)
β is π′s child

ê(Rπ,H1(β)
∑

i∈I vi)

= ê(g, urμ
∏

i∈I
H2(name||i||t, U)rvi) · ê(g,

∏

π∈θ(〈t〉)
β is π′s child

H1(β)ρπ·∑i∈I vi)

= ê(g, ur
∑

i∈I vimi

∏

i∈I
H2(name||i||t, U)rvi) · ê(g, S〈t〉

∑
i∈I vi)

= ê(g,
∏

i∈I
urmivi · H2(name||i||t, U)rvi · S〈t〉

vi)

= ê(g,
∏

i∈I
urmi · H2(name||i||t, U)r · S〈t〉)

vi

= ê(g,
∏

i∈I
δi

vi

) = ê(g, δ)

Theorem 2 (Intrusion-resilience). The proposed protocol is intrusion-
resilient, provided digital signature SSig is existentially unforgeable and CDH
problem in G1 is hard.

Proof: We define five games, and prove that the difference of adversary’s success
probabilities in these games is negligible.

Game0: Game0 is the same as the game defined in Sect. 2.
Game1: Apart from one difference, Game1 is analogous to Game0. The chal-

lenger maintains the list that contains file tags included in the authenticator set.
If adversary generates a valid file tag that isn’t generated by challenger but by
signature scheme SSig, the challenger aborts.

Analysis: Analysis of this game is analogous to the analysis in [10]. Clearly,
if the probability that the challenger aborts is non-negligible, taking advantage
of the adversary, we can find a forger that can break SSig. Therefore, name, t
and each value of Ω〈t〉 are all issued by the challenger.

Game2: Apart from one difference, Game2 is analogous to Game1. The chal-
lenger maintains the list that contains response to the adversary’s queries for
authenticators. If adversary wins in Game2, but U that the adversary computed
does not equal to the U in the list of Φ = (t, U, {δi}1≤i≤n, Ω〈t〉) that the chal-
lenger stores, then the challenger aborts.
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Analysis: If the challenger aborts, there exists a simulator that can work
out CDH problem with a non-negligible probability. The action of the sim-
ulator is similar with the action of the challenger in Game1. Thus U in
P = (t∗, U, δ, μ,Ω〈t∗〉) must be correct. This implies that there exists negligible
difference between probabilities of adversary’s success in Game1 and Game2.

Game3: Apart from one difference, Game3 is analogous to Game2. A list is
maintained by the challenger, which contains answers to authenticator queries.
The challenger watches each interaction. If in one interaction adversary succeeds
in Game3 but the δ in its proof isn’t equal to δ =

∏
i∈I δvi

i , then the challenger
aborts.

Analysis: Assume the challenger aborts at time period t∗ under the file F
named name that contains blocks m1, · · · ,mn, the authenticator set generated
by the challenger is Φ = (t∗, U, {δi}1≤i≤n, Ω〈t∗〉). Assume the challenge which
forces the challenger to abort is (t∗, Chal = {i, vi}i∈I), and the proof responded
by adversary is P = (t∗, U, δ

′
, μ

′
, Ω〈t∗〉). Assume P = (t∗, U, δ, μ,Ω〈t∗〉) is

responded by honest party. For the honest party’s proof P , the following equation
holds

ê(U, uμ
∏

i∈I
H2(name||i||t, U)vi)·

∏

π,β∈θ(〈t〉)
β is π′s child

ê(Rπ,H1(β)
∑

i∈I vi) = ê(g, δ)

For the adversary’s proof that makes the challenger abort, we have δ �= δ
′
, but

the following equation holds:

ê(U, uμ
′ ∏

i∈I
H2(name||i||t, U)vi)·

∏

π,β∈θ(〈t〉)
β is π′s child

ê(Rπ,H1(β)
∑

i∈I vi) = ê(g, δ
′
)

Compared with equation in Theorem 1, we have μ �= μ
′
, otherwise, it implies

that δ = δ
′
. Let Δμ = μ

′ − μ. If the challenger aborts, there exists a simulator
that can work out CDH problem with a non-negligible probability.

Therefore, there exists negligible difference between probabilities of adver-
sary’s success in Game2 and Game3.

Game4: Game4 is analogous to Game3, except with one difference. In Game4,
the challenger watches each interaction. If adversary succeeds in one interaction
but μ in its proof is not the same as μ =

∑
i∈I vimi, then the challenger aborts.

Analysis: Assume the challenger’s abort happens in time period t∗ and the
file named name contains blocks m1, · · · ,mn, and the authenticator set gen-
erated by the challenger is Φ = (t∗, U, {δi}1≤i≤n, Ω〈t∗〉). Assume the challenge
that forces the challenger to abort is (t∗, Chal = {i, vi}i∈I), and the adversary’s
proof is P = (t∗, U, δ

′
, μ

′
, Ω〈t∗〉). Let the response generated by an honest party

be P = (t∗, U, δ, μ, Ω〈t∗〉). From Game3, we can know δ = δ
′
. Let Δμ = μ

′ − μ,
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and Δμ �= 0. If the challenger aborts, there exists a simulator that can work out
discrete logarithm problem with a non-negligible probability.

Therefore, there exists negligible difference between probabilities of adver-
sary’s success in Game3 and Game4. In conclusion, there are only negligible
differences of the probabilities of adversary’s success in above five games.

Because CDH problem can be reduced to discrete logarithm problem, TPA
will reject unless the cloud server responds correct values in P = (t, U, δ, μ,Ω〈t〉)
as long as digital signature SSig is existentially unforgeable and CDH problem
in G1 is hard.

If the cloud server passes the verification with correct P = (t, U, δ, μ,Ω〈t〉), we
are able to find a knowledge extractor which is able to extract all the file blocks
ms1 , · · · ,msc

that are challenged. The method is the same as that in [3]. Execut-
ing the proposed protocol’s auditing challenge on the same blocks ms1 , · · · ,msc

for c times by selecting independent coefficients v1, · · · , vc, c linear equations that
are independent will be obtained by the extractor in variables ms1 , · · · ,msc

. The
extractor can extract ms1 , · · · ,msc

by solving these equations. Thus, we finish
the proof of Theorem 2.

Theorem 3 (Detectability). The proposed protocol is ( b
a , 1−(

a−b
a

)c
) detect-

able if the file stored on the cloud server is divided into a blocks and has b
bad blocks, which are modified or deleted by the adversary, and c blocks are
challenged.

Proof: Assume a file divided into a blocks is stored on the cloud server, which
has b bad blocks that are modified or deleted by the adversary, and c blocks
are challenged. Bad blocks are found out if and only if at least one bad block is
included in challenged blocks. Assume challenged blocks contains Y bad blocks.
Challenged blocks contains more than one bad block with probability PY . So

PY = P {Y ≥ 1}
= 1 − P {Y = 0}
= 1 − a − b

a
· a − 1 − b

a − 1
· · · · · a − c + 1 − b

a − c + 1

We can get PY ≥ 1 − (
a−b

a

)c
. Thus, this cloud storage auditing protocol is(

b
n , 1 − (

a−b
a

)c
)

detectable.

5 Performance Analysis

We show comparison of computation overhead in Table 2. The overhead of
AuthenGen and ProofGen algorithm of our protocol is the same as protocols
in [16,17], while the overhead of SysSetup, KeyUpdate, KeyRefresh, ProofVerify
algorithms are a little higher. However, previous protocols cannot remain secure
when both TPA and the client are compromised. Our protocol can remain secure
as long as the client and TPA are not be compromised in the same refreshing
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period. Therefore, it’s acceptable for our protocol to have more computation
overhead to attain higher security. In Table 2, Exp represents one exponentiation
operation in G1, Pair represents one bilinear pairing from G1 to G2, and Mul
represents one multiplication operation in G1.

Other operations such as the operations on Z∗
q and G2, set operations, and

hashing operations are ignored because the overhead of these operations is negli-
gible. As shown in Table 2, the overhead of SysSetup algorithm is logarithmic in
T and a little bit higher than the other three protocols, but SysSetup algorithm
will be executed only once in the whole lifetime of our protocol. The overhead
of KeyUpdate algorithm is logarithmic in T , but this is the worst-case compu-
tation overhead. In half of time periods, it only requires some set operations.
The KeyRefresh algorithm only requires some multiplication operations in G1.
ProofVerify algorithm of our protocol executes more pairing computation than
other protocols.

Table 2. Computation overhead

Protocols Sys-
Steup

Key-
Update

Key-
Refresh

Auth-
Gen

Proof-
Gen

Proof-
Verify

The
proposed
protocol

(logT )·3 ·
Exp

(logT )·3 ·
Exp

(logT )· Mul 3 · Exp c · Exp (c + 1 + logT ) ·
Exp+(2 +
logT ) · Pair

Protocol
in[16]

2 · Exp 4 · Exp − 3 · Exp c · Exp (c+1+log(T +
2))·Exp+3·Pair

Protocol
in [17]

2 · Exp Exp − 3 · Exp c · Exp (c + 2) ·
Exp+3 · Pair

In Table 3, |G1| represents the length of on element in group G1, |Z∗
q | repre-

sents the length of one element in Z∗
q . The communication overhead of KeyUp-

date and KeyRefresh are logarithmic in T . The challenge overhead is the same as
protocols in [16,17]. The proof overhead is the same as [16], and is logarithmic
in T .

Table 3. Communication overhead

Protocols KeyUpdate KeyRefresh Challenge Proof

The proposed protocol (logT ) · |G1| (logT ) · |G1| c · |Z∗
q | (logT + 2) · |G1| + |Z∗

q |
Protocol in [16] − − c · |Z∗

q | (logT + 2) · |G1| + |Z∗
q |

Protocol in [17] |G1| − c · |Z∗
q | 2 · |G1| + |Z∗

q |

6 Conclusion

We proposed an intrusion-resilient cloud storage auditing protocol that reduces
the damage caused by key exposure. As long as the client and TPA are not
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compromised in the same refreshing period, the adversary is unable to compute
the client’s auditing secret keys. The security of the proposed protocol is also be
proved through formal security proof. The performance of the proposed protocol
is evaluated through numerical analysis.
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Abstract. Computation outsourcing is a vital cloud service that can
be provided for users. Using the cloud to address complex computa-
tions is crucial to users with lightweight devices. However, computations
may not be correctly executed by the cloud due to monetary reasons. In
this paper, we propose a secure publicly verifiable computation scheme
in cloud computing, which is designed based on the polynomial com-
mitment. Owing to the public key de-commitment of the polynomial
commitment, our scheme can provide public verifiability for computa-
tion results. Security analysis shows that the proposed scheme is correct
and can support public verifiability. Comparison and simulation results
reveal that our scheme can be performed with low computational cost
compared to previous schemes.

Keywords: Computation outsourcing · Verifiable computation
Polynomial commitment · Public verifiability

1 Introduction

Cloud computing is an Internet-based technology, which has been developed with
computer techniques [3,20]. The cloud consists of many distributed servers that
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can provide various consumer services [8,24,36], such as multimedia entertain-
ment, real-time information sharing and remote medical treatment [10,11,16,19].
Cloud consumers can enjoy cloud services via the Internet anywhere and any-
time [5,17,21,30,33], and cloud servers are managed by a cloud service provider
(CSP) [20,22]. Clients must pay for their usage in a pay-as-you-use manner
[12,28]. Although it is not free to use the cloud, the charge for cloud usage is
not expensive compared to traditional storage and computing devices. Accord-
ing to the latest price on the Amazon web site, the price for a general solid
state drive (SSD) is $ 0.10/GB1. More importantly, exploiting the cloud to store
data and execute computations can reduce hardware and software investments
[7,14,23,25,29,35], which brings great economic benefits to individuals, compa-
nies, and organizations.

With the development of the Internet and cloud computing, numerous cloud-
based remote services have been generated. Computation outsourcing is an
important cloud service. Resource-limited users can delegate the cloud to execute
complex computations for themselves [4,6,14,32,37,38]. Many fields rely on the
cloud to execute computations based on the stored data [15,18]. For example,
the weather bureau uses statistical rainfall, snowfall or disastrous climate data
for years past to infer the probability of corresponding abnormal weather in each
season of the next year. Doctors use the cloud to assess patient disease data and
evaluate the seasonality of common diseases.

The particularity of cloud computing determines that the design of computa-
tion outsourcing schemes faces many security issues [9,27,31]. On the one hand,
the cloud may attack the stored data, which will result in wrong outputs for out-
sourced computations. On the other hand, the cloud may discard infrequently
used data in order to save storage resources. When one user wants to use the cor-
responding data for computation, the cloud randomly selects a result or uses a
previous computational result to cheat the user. Hence, designing a computation
outsourcing scheme with verifiability is necessary [2,26]. In recent years, many
researchers have devoted themselves to the research of verifiable computation
[18,34,37,38]. To enhance the security of the system, some researchers designed
verifiable computation schemes with public verifiability [1,26,32], which is more
practical in real-world computation outsourcing systems. However, the existing
verifiable schemes mainly focus on the study of homomorphic encryption, which
brings great computational cost to the system. Moreover, users also need to par-
ticipate in the verification process, which affects the security and efficiency of
the system. Therefore, it is necessary to design a novel secure publicly verifiable
computation system with high efficiency for cloud computing.

In this paper, by taking advantage of the polynomial commitment, we propose
a secure publicly verifiable computation scheme for cloud computing. The main
contributions of this paper are as follows:

– Due to the utilization of the polynomial commitment, computational results
of the cloud in the proposed scheme can be securely verified by the trusted
agency (TA) on behalf of users.

1 https://aws.amazon.com/cn/pricing/.

https://aws.amazon.com/cn/pricing/
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– The proposed scheme can provide public verifiability for computational
results. In other words, any entity can delegate the TA to verify the cor-
rectness of the computational results using the public key.

– The input and computation polynomial are independent of the system effi-
ciency; the data size and computation polynomial degree do not introduce
additional burdens into the system.

The remainder of this paper is organized as follows. Section 2 presents work
related to the proposed scheme. Section 3 lists some preliminaries used in the
proposed scheme. Section 4 describes the system model of the proposed scheme as
well as the threat model and the design goals. Section 5 introduces the proposed
scheme in detail, and Sect. 6 provides the security and performance analyses.
The conclusion of this paper is given in Sect. 7.

2 Related Work

In verifiable computation research, many related schemes have been proposed
[18,34,37,38]. In [37], Zhou et al. proposed a secure and verifiable outsourcing
of exponentiation operations in cloud computing. In the outsourcing phase, the
scheme only needed a very limited number of modular multiplications at the local
side, which is very efficient such that the scheme can be performed on lightweight
mobile devices. Moreover, the scheme by Zhou et al. can provide a verification
mechanism for users to check the validity of computational results. To solve the
problem of privacy leakage, Zhuo et al. in [38] proposed a privacy-preserving
verifiable set operation in big data. In Zhuo et al.’s scheme, users can verify the
correctness of the operation result with privacy preservation. Meanwhile, Zhuo
et al. extended their scheme to support the data preprocess and the batch verifi-
cation, which greatly reduces the computational cost of the system. In [18], Liu
et al. proposed an efficient privacy-preserving outsourced computation scheme
over public data, which allows users to outsource complex computations over
public data to the cloud. Note that this scheme is designed based on switchable
homomorphic encryption, and the privacy of the computational function and
its outputs can be preserved during the computation outsourcing. To address
the problem of key updates in cloud auditing, Yu et al. in [34] used verifiable
computation outsourcing in the design of cloud storage auditing with verifiable
outsourcing of key updates. The tasks of key updating are safely outsourced to a
third-party auditor (TPA). The secret key in the TPA is stored in an encrypted
form, so when one user wants to upload data to the cloud, he/she needs to
download the encrypted key and then decrypt it. In addition, the user can verify
whether the secret key has been updated by the TPA.

To meet practical requirements and enhance system security, some
researchers proposed outsourced computation schemes with public verifiability
[1,26,32]. Alderman et al. in [1] proposed a revocable publicly verifiable compu-
tation scheme, which can revoke a cheating server from the system. To process
key generation and key distribution, Alderman et al. introduced a key distri-
bution center (KDC) in their scheme. The KDC can verify the correctness of



420 J. Shen et al.

results from the cloud; furthermore, the KDC is a trusted entity that can exe-
cute server revocation in the system. In [32], Wang et al. proposed a secure
collaborative publicly verifiable computation scheme to strengthen the flexibil-
ity of the computation outsourcing system. By taking advantage of an algebraic
operation structure, the scheme by Wang et al. can construct a target function
based on previous functions and the function of the private cloud. Moreover, this
scheme allows the private cloud to verify the integrity of the target function and
allows users check the correctness of the results. In [26], Song et al. proposed a
verification scheme for polynomial evaluation based on the homomorphic verifi-
able computation tag structure, which can be used in multiple data sources with
public verifiability. In addition, the scheme is more efficient, and the computa-
tional cost of the client side is independent of the input and polynomial sizes,
making it very suitable for the mobile environment.

3 Preliminaries

In this section, the preliminaries of the proposed scheme are introduced. First,
the bilinear pairing used to construct the proposed scheme is presented. Then,
the technology of the polynomial commitment is briefly introduced.

3.1 Bilinear Pairing

Let G1 and G2 be two multiplicative groups of prime order q. The bilinear pairing
can be denoted as ê: G1×G1→G2. Suppose that P, Q ∈ G1, x, y ∈ Z

∗
q and G

is the generator of G1. Three properties of the bilinear pairing are shown in the
following:

– Bilinear: ê(Px,Qy)= ê(P, Q)xy.
– Non-degenerate: ê(G, G) �= 1.
– Computable: ê(P, Q) can be computed by an algorithm.

3.2 Polynomial Commitment

The technology of the polynomial commitment [13] can be used in the design
of verifiable schemes. Here, the process of the polynomial commitment is briefly
introduced as follows:

– Setup(1θ, t): This process generates the secret key and the public key, sup-
posing that a trusted entity in the system executes this process. Here, t is
the degree of the polynomial.

– Commit(PK, φ(x)): This process has two functionalities. First, this process
computes a commitment for polynomial φ(x). Second, this process generates
a de-commitment key dk for the system.

– Open(PK, C, dk): This process uses dk to de-commitment commitment C.
– VerifyPoly(PK, C, φ(x), i, dk): The verifier verifies the correctness of com-

mitment C according to PK, φ(x), i and dk.
– VerifyEval(PK, C, i, φ(x),wi): This process verifies whether φ(x) is the eval-

uation of the polynomial committed in commitment C.
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4 Problem Statement

The system model and the threat model are formalized in this section. In addi-
tion, the design goals of the proposed scheme are introduced.

Fig. 1. The system model

4.1 The System Model

Three types of entities are included in our verifiable computation system, which
are the Trusted Agency (TA), Users and Cloud Platform. The system model is
shown in Fig. 1. A detailed introduction of these entities is given below:

– Trusted Agency (TA): The TA is a fully trusted entity in the system. The main
task of the TA is to assist the user in verifying computational results from the
cloud. Moreover, the TA is responsible for generating polynomials, security
parameters and the computation polynomial for the system. In addition, the
TA can also verify the correctness of computational results on behalf of users.

– Users: Users are cloud consumers who use cloud services via the Internet. In
the proposed scheme, users upload their data to the cloud server and delegate
computation tasks to the cloud. Users use computation services, paid for in
a pay-per-use manner. Note that the computing capability and the storage
resources of users are limited.

– Cloud Platform: The cloud platform consists of many distributed servers.
These servers are connected through the network. The cloud platform pro-
vides various services for cloud users. Compared to the TA, the cloud platform
is semi-trusted. The cloud platform has powerful computing capability, and
it can execute computation tasks for users using the corresponding data and
the computation polynomial.
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4.2 Threat Model

In the proposed system, the cloud is responsible for storing user data and helping
users process the data. However, the cloud is curious-but-honest. Moreover, some
corrupted users or external adversaries may collaborate with the cloud to attack
a system [26]. In this paper, three potential threats are considered, as listed
below.

– Data Corruption: The cloud server could corrupt data due to monetary rea-
sons. Moreover, outside adversaries could destroy or modify data in the cloud.
The cloud does not care about the correctness of the stored data unless the
appearance of the corrupted data affects the CSP’s interests. Corrupted data
in the cloud may lead to wrong computational results.

– Incorrect Outputs: Incorrect outputs may be caused by wrong or incomplete
inputs. The cloud server may use previous computational results or other
randomly selected parameters as outputs to cheat users.

– Forgery Attack: The cloud server, corrupted users or other outside adver-
saries may forge computational results or verification requests for the TA to
attempt to pass verification. The threat of forgery attack may influence the
trustworthiness of other uncorrupted cloud servers and users in the system.

4.3 Design Goals

In this paper, we propose a secure verifiable computation scheme for cloud com-
puting. The design goals of our scheme are as follows:

– Correctness: The TA can verify the correctness of computational results under
the security threats mentioned above. In other words, regardless of whether
the current computational result is correct or not, the TA can verify the
result.

– Public Verifiability: The verifiable computation scheme should support public
verifiability. That is, any user or entity in the system can request the TA to
verify the correctness of computational results from the cloud using public
parameters or keys.

– Efficiency: The verifiable computation scheme can be executed with a low
computational cost. Note that most computing tasks are delegated to the
cloud and the TA. The user side only needs to generate the necessary security
parameters and keys after his/her data are outsourced to the cloud. Moreover,
the computation polynomial and the system input are independent of the
system efficiency.

5 The Proposed Scheme

In this section, the proposed scheme is described in detail. The process of the
proposed scheme can be found in Fig. 2. A detailed introduction of our scheme
is given below:
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Fig. 2. The process of the proposed scheme

(1) Users rely on the cloud to store and compute their data. In general, the data
are encrypted by users and then uploaded to the cloud. Suppose that one
user Ui uploads his/her data M to the cloud. The data of M are divided into
n blocks, and the corresponding block indexes are I1, I2, · · ·, In.

(2) The TA defines a polynomial F (x) =
n
∑

i,j=1

ci · xej , which is used to execute

computations with the data for users. Note that ci and ej are constants
defined by users. The polynomial of F (x) is sent to the cloud. Meanwhile,
the TA generates a polynomial α(x) ∈ Zq[x] for further computational result
verification, where q is a big prime order. Suppose that the degree of α(x) is
t. Accordingly, coefficients of α(x) can be denoted as αi, where 0 ≤ i ≤ t.

(3) If Ui wants to compute mi, he/she needs to define constants ci and ej accord-
ing to his/her computation demands. Meanwhile, Ui needs to generate a
computation request that contains the corresponding index information of
the data block. The constants and the computation request are sent to the
cloud. After the cloud receives the computation request, the cloud computes
mi using computation polynomial F (x). Assuming that the computational
result of mi is Ri, the computational result Ri is sent to Ui and the TA.
Upon receiving Ri, the TA generates a security parameter λi ∈ Zq based on
the data block information and α(λi) = Ri. The parameter of λi is saved
locally by the TA for further computational result verification.

(4) If Ui wants to check the correctness of the computational result Ri, he/she
needs to generate a request for the TA to setup the verification mechanism.
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Suppose that Ui randomly chooses ri from Z
∗
q , and let {ê, G1, G2, P, Pri} be

the public key for the computational result verification. Then, Ui generates
a verification request ReqRi

according to the computational result Ri and
sends ReqRi

and ri to the TA in a secure channel.
(5) Upon receiving the verification request from Ui, the TA selects a polynomial

β(x) ∈ Zq[x] and computes a polynomial commitment for the verification as
C = Pα(ri) · Qβ(ri), where C ∈ G1. Then, the TA computes two polynomials
Aλi

(x) = α(x)−α(λi)
x−λi

and Bλi
(x) = β(x)−β(λi)

x−λi
for λi. Meanwhile, the TA

computes two auxiliary polynomial commitments C1
λi

= Pα(λi) · Qβ(λi) and
C2

λi
= PAλi

(ri) · QBλi
(ri) based on the above two polynomials for parameter

λi.
(6) In the verification phase, Ui can use the public key and commitments to

verify the correctness of computational result Ri. The verification equation
is as follows:

ê(C,P) ?= ê(C1
λi

,P) · ê(C2
λi

,Pri
/Pλi)

If the left-hand side of the above verification equation equals the right-hand
side, then the computational result Ri is correct. Otherwise, the cloud server
or the corresponding data are corrupted.

6 Security Analysis and Performance Analysis

The security analysis and performance analysis are introduced in this section.
In the security analysis, the correctness and public verifiability of the proposed
scheme are proved. In the performance analysis, the simulation of our scheme
and its comparison with previous schemes are given.

6.1 Security Analysis

Theorem 1. The proposed scheme is correct in verifying the correctness of com-
putational results.

Proof. Per the description of the scheme in Sect. 5, Ui can determine that the
verification of this scheme is correct if the verification equation holds. The
right-hand side of the verification equation can be computed as ê(C1

λi
,P) ·

ê(C2
λi

,Pri
/Pλi) = ê(Pα(λi)Qβ(λi),P) · ê(PAλi

(ri)QBλi
(ri),Pri−λi). Assuming

that Q = Pκ, we can obtain

ê(Pα(λi)Pκ·β(λi),P) · ê(PAλi
(ri)Pκ·Bλi

(ri),Pri−λi)
= ê(Pα(λi)+κ·β(λi),P) · ê(PAλi

(ri)+κ·Bλi
(ri),Pri−λi)

= ê(P,P)(α(λi)+κ·β(λi))+(Aλi
(ri)+κ·Bλi

(ri))·(ri−λi)

Note that Aλi
(ri) + κ · Bλi

(ri) = α(ri)−α(λi)
ri−λi

+ κ · β(ri)−β(λi)
ri−λi

. Then, (Aλi
(λi) +

κ · Bλi
(λi)) · (ri − λi) can be computed as follows:

(Aλi
(λi) + κ · Bλi

(λi)) · (ri − λi)
= (α(ri)−α(λi)

ri−λi
+ κ · β(ri)−β(λi)

ri−λi
) · (ri − λi)

= α(ri) − α(λi) + κ · (β(ri) − β(λi))
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According to the computational result of (Aλi
(λi) + κ · Bλi

(λi)) · (ri − λi), we
can obtain

(α(λi) + κ · β(λi)) + (Aλi
(λi) + κ · Bλi

(λi)) · (ri − λi)
= (α(λi) + κ · β(λi)) + α(ri) − α(λi) + κ · (β(ri) − β(λi))
= α(ri) + κ · β(ri)

The result of the right-hand side of the verification equation can be computed
as ê(P,P)α(ri)+κ·β(ri) = ê(Pα(ri)+κ·β(ri),P) = ê(Pα(ri)Qβ(ri),P). As mentioned
above, we have C = Pα(ri) · Qβ(ri). That is, the verification equation holds.
Hence, it can be determined that the verification process of this paper is correct.

�

Theorem 2. The proposed scheme supports public verifiability for computa-
tional results.

Proof. In the phase of computational result verification, Ui can check the cor-
rectness of computational result Ri using public key P, Pri and commitments
C, C1

λi
and C2

λi
. That is, any entity can use the public key to delegate the TA

to verify the correctness of computational results. Thus, the proposed scheme
supports public verifiability. �

6.2 Performance Analysis

The performance of the proposed scheme is analyzed in this subsection. We
compare our scheme with two previous schemes [18,26] in terms of comparison
analysis and simulation analysis.

(1) Comparison Analysis
For convenience of the performance comparison, we use the symbols P ., M .,
E., A. and H. to denote the operations of pairing, multiplication, exponen-
tiation, addition and hash. The comparison result is shown in Table 1. From
the comparison result, we can find that the computational cost of our scheme
is 3P .+(6+n)E.+(10+n)M .+(4+n)A.. Note that symbol n is the degree of
the computation polynomial. Table 1 shows that our scheme and the scheme
of Song et al. have relatively the same computational cost for exponentia-
tion, multiplication and addition if n is large enough. However, the cost of
pairing in the scheme by Song et al. is higher than that in our scheme. More
importantly, Song et al.’s scheme has hash operations that greatly increase
the computational cost of the system, so our scheme is more efficient than
their scheme. Compared to the computational cost of the scheme by Liu et al.
[18], it is obvious that our scheme has less cost for exponentiation, multi-
plication and addition. The computational cost of pairing in our scheme is
negligible because n is very large in practical verifiable computation systems,



426 J. Shen et al.

Table 1. Comparison of computational cost

Scheme Computational cost Public verifiability

Song et al.’s scheme [26] 4P .+(7+n)E.+2H.+(4+n)M .+(7+n)A. Y

Liu et al.’s scheme [18] (14+3n)E.+(18+4n)M .+(8+n)A. N

Our scheme 3P .+(6+n)E.+(10+n)M .+(4+n)A. Y

*P.: Pairing; M.: Multiplication; n.: Degree of the computation polynomial
*E.: Exponentiation; A: Addition; H.: Hash.

which determines that Liu et al.’s scheme has much higher computational
cost than our scheme. In addition, the support for public verifiability in the
two schemes and our scheme is also listed in Table 1. From the comparison
result, it can be summarized that our scheme can be performed with public
verifiability and less computational cost compared to the schemes of Song
et al. and Liu et al.

(2) Simulation Analysis
The proposed scheme and the two similar schemes [18,26] are simulated in
an experimental platform configured by the GMP Library (GMP-6.1.2) and
the PBC Library (pbc-0.5.14). The experimental platform is constructed on
a Linux system with 8 GB RAM and 2.6 GHz CPU. To simulate our scheme
and the two similar schemes on the experimental platform, we set the degree
number of the computation polynomial to 100. Because the computation
tasks are executed by the cloud using the computation polynomial, the input
size does not affect the system efficiency. We use different data sizes as
the input for computation polynomial F (x). The simulation results of the
computation polynomial under different data sizes are shown in Fig. 3, from
which we determine that the computational time difference under various
data sizes is very small. That is, the computational time is relatively constant
when the system inputs data of different sizes. Hence, the simulation results
of the computation polynomial under different input sizes meet the efficiency
design goal.

Figure 4 shows the simulation result of the proposed scheme and the two
similar schemes [18,26]. Note that the x -axis of Fig. 4 is computing counts. From
Fig. 4, we find that the computational times of our scheme and the two similar
schemes increase linearly with the increase of computing counts. However, for
the same counts, the computational time of our scheme is always less than those
of the two similar schemes. Hence, our scheme is more efficient than those by
Liu et al. [18] and Song et al. [26].
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Fig. 3. Simulation result of the computation polynomial

Fig. 4. Simulation results of our scheme and the two similar schemes

7 Conclusion

In this paper, we propose a secure publicly verifiable computation scheme based
on the polynomial commitment in cloud computing. In our scheme, the public
key can be used to verify computation results from the cloud. In other words,
our scheme supports public verifiability. The correctness and public verifiability
are proved in the security analysis, which meets the design goals of the proposed
scheme. In the performance analysis, we compare our scheme with those by Liu
et al. [18] and Song et al. [26]. From the comparison result, it can be determined
that our scheme is more efficient than the similar schemes. In addition, the
simulation result shows that our scheme indeed uses less computational time
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compared to the similar schemes. Hence, it can be summarized that our scheme
can be well used for publicly verifiable computation in cloud computing.
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Abstract. It has been widely recognized as a challenge to carry out
data analysis and meanwhile preserve its privacy in the cloud. In this
work, we mainly focus on a well-known data analysis approach namely
association rule mining. We found that the data privacy in this mining
approach have not been well considered so far. To address this problem,
we propose a scheme for privacy-preserving association rule mining on
outsourced cloud data which are uploaded from multiple parties in a
twin-cloud architecture. In particular, we mainly consider the scenario
where the data owners and miners have different encryption keys that are
kept secret from each other and also from the cloud server. Our scheme
is constructed by a set of well-designed two-party secure computation
algorithms, which not only preserve the data confidentiality and query
privacy but also allow the data owner to be offline during the data min-
ing. Compared with the state-of-art works, our scheme not only achieves
higher level privacy but also reduces the computation cost of data
owners.

Keywords: Association rule mining · Frequent itemset mining
Privacy preserving outsourcing · Cloud computing

1 Introduction

Cloud computing has attracted more and more attentions due to its capability of
supporting real-time and massive data storing and processing. For a long time, it
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has been a growing interest in the paradigm of data mining as a service in cloud
computing [1–5]. Since internet giants such as Google and Amazon can collect
large-scale data from millions of users and devices, mining on cloud data can
also dramatically improve the accuracy and effectiveness of mining. However,
when uploading data to cloud service provider, users lose control of their data.
Therefore, even though outsourcing data storage and data mining benefit from
the scale of economy, it comes with the privacy and security issues.

In this work, we mainly consider the security and privacy problems exist-
ing in mining association rule on the outsourced cloud data. Frequent itemset
mining, key of association rule, is a popular data mining approach, which is usu-
ally employed to discover frequently co-occurring data items and relationships
between data items in large transaction databases. These techniques have been
widely used in market prediction, intrusion detection, network traffic manage-
ment and so on. For instance, if customers are buying bread, how likely are they
going to buy beer (and what kind of beer) on the same trip to the supermarket?
Such information can help retailers do selective marketing and arrange their shelf
space for increasing sales. Kantarcioglu and Clifton [6] and Vaidya and Clifton
[7] first identified and addressed privacy issues in horizontally and vertically par-
titioned databases. Due to the increase of data security and privacy demanding,
researchers have proposed various methods on privacy-preserving association rule
mining. These works can be roughly divided into randomization-based schemes
and cryptography-based schemes. Despite the high efficiency in randomization-
based schemes, they suffer from the inaccuracy of mining result for adding ran-
dom noise to the raw data. Compared with the randomization-based scheme, the
cryptography-based scheme can apply stronger security level and accurate min-
ing result. Recently, Yi et al. [4] have proposed a privacy-preserving association
rule mining scheme on the outsourced cloud data encrypted by using ElGa-
mal homomorphic encryption scheme [8]. However, the communication cost was
huge due to the fact that their scheme needs n cloud servers to cooperate with
each other. Qiu et al. [1] proposed a framework for privacy-preserving frequent
itemset mining on encrypted cloud data in the twin-cloud architecture. Both of
Yi et al. [4] and Qiu et al. [1] designed three different privacy level protocols,
which achieved item privacy, transaction privacy and database privacy respec-
tively. However, even in the highest security level, the mining result was still in
plaintext form to the cloud server. Li et al. [9] proposed a privacy-preserving
association rules mining system on vertically partitioned databases via a sym-
metric homomorphic encryption scheme. Their scheme achieved high efficiency,
but the data owners in that scheme need to stay online during the mining process
and some information about the raw data may be revealed.

Motivating Scenario. In this paper, we mainly consider a scenario where a
higher privacy level is required. In most cases, the mining result is miner’s per-
sonal property, which should be kept secret to any other entities including the
untrusted cloud server. For example, if the mining result from business data
is enterprise’s market prediction, leaking this information to competitors will
damage this enterprise’s profits. In our scenario, it is required that both the raw
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data outsourced by the data owners and the mining result for the miner are
confidential to the cloud server. Moreover, we consider a large number of data
owners and miners in our system, and hence supporting offline users is desirable
for improving the system’s scalability. In addition, we insist that the frequent
itemset mining is the cornerstone for association rule mining. Only mining fre-
quent itemset is not enough to get the strong association rule, which is the key
to find the relationship among itemsets. Overall speaking, in this work, we aim
at designing a secure scheme, which supports that, (1) the raw data and the
mining result are protected from other entities; (2) offline users and; (3) mining
both the frequent itemset and association rule simultaneously.

Our Contributions. In this paper, we propose a privacy-preserving association
rule mining scheme in the twin-cloud architecture. The contributions of this
paper are four-fold, namely:

• To our best knowledge, this is the first work that studies privacy-preserving
association rule mining on encrypted data under different keys. Our proposed
scheme allows different data owners to outsource their data with different
encryption keys to the cloud server for secure storage and processing.

• We build a set of cryptographic blocks for privacy-preserving association rule
mining based on BCP cryptosystem [10], which play the cornerstone of our
system.

• Based on the cryptographic blocks proposed, we construct a privacy-
preserving association rule scheme with multiple keys. And we also prove
that our scheme is secure under the semi-honest model.

• We show that our scheme can indeed achieve higher privacy level than most
of the recent works [1,4,9]. And also, we fully prove the security of our scheme
under the semi-honest mode.

We make a comparison between our work and the most recent works [1,4,9],
which is shown in Table 1. In Qiu et al.’s work [1] and Yi et al.’s work [4], they
proposed three different privacy level protocols. Here, we just compare their
highest privacy level protocol with ours. Yi et al.’s work [4] and Qiu et al.’s work
[1] can only support frequent itemset mining. Both of their works cannot protect
the miner’s mining result privacy. Moreover, the data owners’ computation cost
is highest. Li et al.’s [9] algorithm is the most efficient but cannot support the
offline data owners. More importantly, their work can only achieve partial data
privacy.

Related Work. Data perturbation is widely used to protect sensitive informa-
tion when outsourcing data mining of association rule. This randomization-based
approach can be used to protect the raw data but cannot protect the mining
results. Randomization-based approach [3,5] may have unpredictable impacts on
data mining precision, due to the random noise added to the raw data. Differ-
ential privacy is used to protect privacy mining the association rule. However,
the key limitation of such solutions is that the mining results are not accurate
with 100%.
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Table 1. Comparison summary

Algorithm Support
FIMa

Support
ARMb

Support
Offline

D.
Privacyc

M.R.
Privacyd

DO Coste Support
multi-key

[4] Yes No Yes Yes No Medium No

[9] Yes Yes No Partial Yes Low No

[1] Yes No Yes Yes No High No

Ours Yes Yes Yes Yes Yes Medium Yes
aFIM means Frequent Itemset Mining.
bARM means Association Rule Mining.
cD.Privacy means Data Privacy.
dM.R.Privacy means Mining Result Privacy.
eDO Cost means Data owner’s computation cost.

Compared with randomization-based approaches, cryptography-based
approaches usually provide a well-defined security model and an exact min-
ing result for privacy-preserving data mining. Earlier works [6,7] are not effi-
cient enough for the practical requirement facing the prevalent of large scale
datasets. Dong and Chen [11] employed an efficient inner product protocol [12]
for evaluating association rule mining. But this solution is a two-party protocol,
which involves extensive interactions. Lai et al. [13] first proposed a semanti-
cally secure solution for outsourcing association rule mining with both privacy
and mining privacy, but the efficiency is still undesirable for the practice. Yi
et al. [4] proposed a privacy-preserving association rule mining in cloud com-
puting. To mine association rule from its data, the user outsources the task to
n(≥ 2) “semi-honest” servers, which cooperate to perform mining algorithm on
encrypted data and return encrypted association rules to the user. In his work
n(≥ 2) servers are needed which cause huge communication cost. Li et al. [9]
proposed a privacy-preserving outsourced association rule mining on vertically
partitioned databases. However, their solution still leaks information about the
raw data. Most recently, Qiu et al. [1] proposed a privacy-preserving frequent
itemset mining scheme on outsourced encrypted cloud data. In their work, they
proposed three different privacy level protocols. In their privacy level I protocol,
only the transaction database in the cloud is encrypted while the miner’s query
is in plaintext. This protocol work quite efficiently but without protecting the
query’s privacy. In their protocol II and protocol III, the miner’s query is pro-
tected or partial protected, but the mining result is known to cloud. For adopting
time consuming homomorphic cryptosystem BGN [14], the computation cost of
data owners is quite large in protocol II.

2 Preliminaries

In this section, we introduce essential preliminary concepts which serve as the
basis of our scheme. Table 2 lists the key notations used throughout this paper.
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2.1 Frequent Itemset Mining and Association Rule Mining

Frequent itemset mining, the key of association rule mining, is first proposed
by Agrawal et al. [15]. Given a set of items, and a transaction databases over
these items, frequent itemsets are items which appear with frequency more than
a given number. In the following, we give the specific definition of this concept.

Table 2. Notation used

Notations Definition

pkDOi/skDOi Public/private key of data owner i

pkM/skM Public/private key of miner

pkΣ The product of all the data owners and miner’s public key

[[x]]pk Encrypted data x under pk

MK Master key of BCP cryptosystem

mDec(pk,MK)(X) Decrypt X with the master key

|x| Bit length of x

supp(X) Support of X

conf(X) Confidence of X

SMAD Secure multiplication across domain

SCAD Secure comparison across domain

SC Secure comparison

SIP Secure inner product

SFIM Secure frequent itemset mining

Definition 1 (Frequent Itemset). Let I = {i1, · · · , im} be a set of items.
A transaction T is a set of items. A transaction database is denoted as T =
{t1, · · · , tm}, where m is the total number of transactions. An itemset X ⊆ I
is a set of items from I. If X ⊆ ti, X is contained by a transaction ti.
The support of itemset X, is the number of transactions containing X in T ,
which is referred as supp(X). suppmin is the user-defined minimum threshold.
If supp(X) ≥ suppmin, X is the frequent itemset.

The purpose of the frequent itemset mining is to discover the frequency of the
item/itemsets, which will further be used to find the relationship of two items.
Generally, the relationship between two items are measured by support and
confidence. An association rule is of the form X ⇒ Y where X,Y ⊂ I and
X ∩ Y = ∅. The supp(X ⇒ Y ), support of the rule X ⇒ Y , is the number of
the transactions containing X ∪ Y . The confidence of rule X ⇒ Y is a measure
of the relation between two items, denoted by conf(X ⇒ Y ) = supp(X ⇒
Y )/supp(X).
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Definition 2 (Strong Association Rule). Assume a minimum support
threshold suppmin and a minimum confidence threshold confmin are given. The
rule X ⇒ Y is strong iff supp(X ⇒ Y ) ≥ suppmin and conf(X ⇒ Y ) ≥
confmin.

Here, we illustrate the above two definition by the following example. A
transaction dataset T is given in Table 3. All the items are presented as boolean
types, i.e., an item is described as absent by 0, otherwise by 1. Suppose that, if
X = {Coke}, and Y = {Milk}, we can represent X ∪ Y as q = (0, 1, 1, 0). We
want to find out that whether Coke ⇒ Milk is a strong association rule or not.
First, we make an inner product vi = q · ti , where ti , i ∈ (1, · · · , 5) is the row
in the table. It can be easily got that only v1 and v3 are equal to 2. Therefore,
supp(X ⇒ Y ) = 2. If supp(X ⇒ Y ) < suppmin, we can conclude that X ⇒ Y is
not the strong rule, because X ∪ Y is not a frequent itemset. Here, assume that
suppmin = 2, thus X ∪ Y is a frequent itemset. Next, we can calculate supp(X)
in the same way. In Table 3, it can be easily calculated that supp(X ⇒ Y ) = 2
and supp(X) = 3. Therefore, we can easily get conf(X ⇒ Y ) = 2/3. If the
conf(X ⇒ Y ) ≥ confmin, X ⇒ Y is the strong association rule. Otherwise, it’s
not.

Table 3. Market-basket transaction dataset T

ID Bread Coke Milk Beer

1 1 1 1 0

2 1 0 0 1

3 0 1 1 1

4 1 1 0 1

5 0 0 1 0

2.2 BCP Cryptosystem

BCP Cryptosystem is an additively homomorphic cryptosystem, proposed by
Bresson et al. [10]. BCP is a double decryption mechanism, meaning that it
offers two independent decryption mechanisms. The most prominent character-
istic of such scheme is that if given the master key of this cryptosystem, any
given ciphertext can be successfully decrypted. The BCP cryptosystem works as
follows:

Setup(κ): Given a security parameter κ, choose a safe-prime RSA-modulus N =
pq (i.e., p = 2p′ + 1 and q = 2q′ + 1 for distinct primes p′ and q′, respectively)
of bitlength κ. In the following, we use |N | to denote the length of N . Then
a random element g ∈ Z

∗
N2 with order pp′qq′ is picked, such that gp′q′

mod
N2 = 1+λN for λ ∈ [1, N−1]. Thus, the algorithm outputs the public parameter
PP and the master key MK as follows, PP = (N,λ, g) and MK = (p′, q′).
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KeyGen(PP): Randomly pick a ∈ Z
∗
N2 and compute h = ga mod N2. Then,

output the public key pk = h and secret key sk = a.
Enc(PP,pk)(m): For a given plaintext m ∈ ZN , randomly pick r ∈ ZN2 , then

output the ciphtext (A,B) as A = gr mod N2, B = hr(1 + mN) mod N2.
Dec(PP,sk)(A,B): The plaintext of the given ciphtext (A,B) and secret key

sk = a, can be calculated as m = (B/(Aa) − 1 mod N2)/N .
mDec(PP,pk,MK)(A,B): Using the master secret key MK of this cryptosys-

tem, the plaintext of the above ciphtertext (A,B) can be calculated as follows.
First compute a mod N as a mod N = (hp′q′ − 1 mod N2)/N · k−1 mod N ,
where k−1 denotes the inverse of k modulo N . Then r mod N can be com-
puted as r mod N = (Ap′q′ − 1 modN2)/N · k−1 mod N . Therefore, the when
a and r is obtained, the plaintext can be easily get by the following equation,
m = ((B/gar)p′q′ − 1 mod N2)/N ·(p′q′)−1 mod N , where (p′q′)−1 is the inverse
of p′q′ modulo N .

The BCP cryptosystem is additively homomorphic, which can be verified
as Decsk ([[m1]]pk · [[m2]]pk) = m1 + m2. Note that for any given m, k ∈ ZN ,
we can easily get ([[m]]pk)k = [[k · m]]pk. Moreover, if k = N − 1, we can get
([[m]]pk)N−1 = [[−m]]pk. In this paper, for simplicity we use [[m]]pk instead of
Enc(PP,pk)(m). More proofs of the correctness and semantic security of the
BCP cryptosystem can be found in [10].

3 System Model and Design Goal

3.1 Problem Statement

Suppose that the cloud service provider has collected a large set of encrypted
transactions from data owners. A miner, who has limited transactions, wants to
mine the frequent itemsets. If mining from his own transaction database, the
mining results may not be accurate. Therefore, he need make some queries to
cloud to find out whether the itemsets in his own database are frequent or not
in cloud’s database which is much larger. We follow the same assumption in
previous sections that each transaction is represented as a binary vector, and a
mining query is represented as another binary vector.

3.2 System Model

In our system, we focus on preserving privacy association rule mining on the
cloud. Specifically, we define the system model by dividing this system into
five parties: Key Generation Center (KGC), Evaluator, Cloud Service Provider
(CSP), Data Owners (DO) and Miner. The overall system model of our preserv-
ing privacy association rule mining system can be found in Fig. 1.

(1) Key Generation Center: The trusted KGC is responsible for generating
and managing both public and private keys for every party in our system
(See 1©).
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Fig. 1. System model

(2) Data Owners: Generally, the DOs use their public key to encrypt their
sensitive data, before uploading them to the CSP (See 2©).

(3) Cloud Service Provider: CSP has massive storage space. It could store
and manage data outsourced from all the DOs (See 2©). In addition, CSP has
some computation abilities to perform some calculations over the outsourced
data. In our system, the CSP provides the service of association rule mining
for the miners through cooperating with Evaluator (See 4©).

(4) Evaluator: Evaluator provides online computation in our system. It has the
master key of the BCP cryptosystem. In our system, the CSP need cooperate
with the Evaluator to mine the frequent itemsets and association rules (See
4©).

(5) Miner: In our system, Miner is the data mining service user. Data owner
can also be a miner. The miner has some transaction itemsets. The goal of
the miner is to find the frequent itemsets and strong association rules for his
limited dataset. To achieve this purpose, he sends the encrypted itemsets to
the CSP to find out whether they are frequent or not (See 3©). The mining
results obtained from the CSP can only be decrypted by miner himself (See
5©).

Note that the Evaluator is an essential part in our system. On one hand,
since BCP cryptosystem is not fully homomorphic, a CSP alone cannot perform
various compute operations. On the other hand, this twin-cloud architecture
composed by CSP and Evaluator, can minimize the interactions between the
request users and the cloud servers while the one cloud cannot [16]. In this
scheme, the Miner only sends encrypted queries and then remains offline until
receiving the encrypted mining results.
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3.3 Threat Model

In our threat model, we assume the KGC is fully trusted by all the entities. On
the other hand, CSP, Evaluator, DOs and Miner are curious-but-honest entities,
which means that these entities intend to follow the protocols strictly and return
correct computation results, but may try to infer the private information of other
parties according to the data received and held. In addition, we also assume that
the CSP and Evaluator don’t conclude with each other. Now, we introduce an
active adversary A in this model. The goal of A is to get the original data from
the DOs and the Miner. What’s more, A also wants to know the Miner’s final
mining results. Such an adversary has the following capabilities:

(1) A may eavesdrop all communication to obtain the encrypted data.
(2) A may compromise CSP and try to obtain all the plaintext value of the

ciphertext uploaded by the DOs and all the intermediate results sent by
Evaluator during the executing an interactive protocol.

(3) A may compromise one or more DOs to obtain their decryption abilities.

The adversary A is restricted from comprising (1) Evaluator, (2) all the DOs
and (3) the Miner. Here we remark that such restrictions are typical and widely
used in adversary model used in cryptographic protocols [1,16,17].

3.4 Design Goals

Under the aforementioned system model and attack model, our design goal is
the following four objects.

(1) The security and privacy should be guaranteed. The data uploaded by the
DOs, the query information from the Miner and the mining result from the
encrypted data contains sensitive data of themselves which could not be dis-
closed to the CSP, Evaluator or A. Meanwhile, the access pattern shouldn’t
be revealed and inferred by CSP, Evaluator or A either. Access pattern is
defined as the original encrypted input corresponding to the computed value,
e.g., the comparison result, the most frequent class label, etc.

(2) Data query result’s accuracy should be guaranteed. It is also really important
that the mining accuracy must be guaranteed when applying the privacy-
preserving strategy. Therefore, the proposed system should achieve same
accuracy compared with the non-privacy-preserving data mining system.

(3) Low communication overhead and efficiency of computation should be guar-
anteed. Consider the real-time requirements of online service and the diver-
sity of terminals, the proposed scheme should have low overhead in terms
of communication and computation. Especially, the DOs and the Miners in
our system are usually resource-constrained users, their computation and
communication cost should be as small as possible.

(4) Offline DOs and miners should be supported. After outsourcing the
encrypted data, the DOs should be offline. There are many miners involved
in our system. Therefore, supporting offline DOs and miners is rather nec-
essary in terms of the system’s scalability.
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4 Privacy-Preserving Frequent Itemset Mining
and Association Rule Mining

4.1 Setup

Recall that in Sect. 3 we have stated that the CSP holds a set of encrypted trans-
actions from multiple DOs. Suppose we have η DOs in our system. The KGC
generates pairs of the public and private keys (pkDOi

, skDOi
), i = 1, 2, · · · , η

and pkM , skM . Then, KGC distributes the individual public-private key pair
(pkDOi

, skDOi
) to the DO i and (pkM , skM ) to the miner, respectively. Mean-

while, the strong private key is sent to the Evaluator. Moreover, all the entities’
public keys are known to the others.

After receiving the public-private key pair from the KGC, the DOs encrypt
every record pi in his own database, and outsource these encrypted data to the
CSP. So far, the work of the DOs’ is over, meaning that all the DOs can remain
offline from now on.

4.2 Privacy-Preserving Building Blocks

In this section, we propose a set of privacy-preserving building blocks, includ-
ing secure multiplication accross domains algorithm, secure inner product cal-
culation algorithm, secure comparison accross domains algorithm and secure
comparison. In Andreas et al ’s work [18], they have proposed KeyProd and
TransDec algorithm in the similiar system model based on BCP. KeyProd
and TransDec can be used to transform the encryptions under pkDOi

or pkM

into encryption under pkΣ =
m∏

i=1

pkDOipkM or vice verse. For more details of

these algorithms, please see [18]. These cryptographic blocks, proposed in this
paper and Andreas et al.’s work [18], serve as the basic constructions of our
privacy-preserving association rule mining system.

Secure Multiplication Across Domains. Note that Andreas et al. [18] have
proposed a secure multiple protocol (i.e., Mult.) based on BCP cryptosystem.
Here, we present the secure multiplication across different encryption domains
with the similar idea. For simplicity and readability, we use [[x]]pkDO

instead of
[[x]]pkDOi

in the following context. Suppose that CSP has encrypted data [[x]]pkDO

and [[y]]pkM
. The goal of secure multiplication across domains (SMAD) algo-

rithm is to calculate [[xy]]pkΣ
. We introduce the details of our SMAD algorithm

as follows.

Step 1 (CSP): (1) a, b, c, d
R←− ZN .

(2) X0 = [[x]]pkDO
· [[a]]pkDO

, Y0 = [[y]]pkM
· [[b]]pkM

, X1 = [[x]]bpkDO
· [[c]]pkDO

,
Y1 = [[y]]apkM

· [[d]]pkM
.

(3) Send X0, Y0, X1 and Y1 to Evaluator.
Step
2 (Evaluator): (1) z0 ← mDec(pkDO,MK)(X0), z1 ← mDec(pkM ,MK)(Y0),
z2 ← mDec(pkDO,MK)(X1), z3 ← mDec(pkM ,MK)(Y1).
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(2) Z1 ← [[z0 · z1]]pkΣ
, Z2 ← [[z2]]N−1

pkΣ
, Z3 ← [[z3]]N−1

pkΣ
.

(3) Send Z1, Z2, Z3 to CSP.
Step 3 (CSP): (1) S1 ← ([[a · b]]pkΣ

)N−1, S2 ← [[c]]pkΣ
, S3 ← [[d]]pkΣ

.
(2) [[xy]]pkΣ

← Z1 · Z2 · Z3 · S1 · S2 · S3.

Remark. The basic idea of SMAD is based on the following equation, i.e.,
xy = (x + a)(y + b) − (bx + c) − (ay + d) − ab + (c + d).

Secure Inner Product. Suppose that CSP has an encrypted data vector
[[x]]pkDO

= ([[x1]]pkDO
, · · · , [[xn]]pkDO

) and an encrypted data vector [[y]]pkM
=

([[y1]]pkM
, · · · , [[yn]]pkM

). For every [[xi]]pkDO
and [[yi]]pkM

, CSP and Evaluator
run SMAD algorithm to get [[xiyi]]pkΣ

. Then, CSP multiplies all the encrypted
data. Thus, CSP can obtain [[x · y]]pkΣ

= (x1y1 + · · · + xnyn)pkΣ
.

Secure Comparison Across Domains. Suppose that CSP has two encrypted
data [[x]]pkM

and [[y]]pkΣ
, where where x, y ≤ 2l, l < |N |/2 − 1. The purpose of

CSP is to find out whether [[x]]pkM
is larger than [[y]]pkΣ

or not, without leaking
the original value of x and y to Evaluator.

Step 1 (CSP): (1) A ← ([[x]]pkM
)2 · [[1]]pkM

, B ← ([[y]]pkΣ
)2.

(2) Randomly pick a
R←− {0, 1}, C ← Aa(N−1), D ← B(1−a)(N−1).

(3) Randomly choose ra, rb
R←− ZN , and calculate C ′ ← C · [[ra]]pkM

, D′ ←
D · [[rb]]pkΣ

. Send C ′ and D′ to Evaluator.
Step 2 (Evaluator): (1) c′ ← mDec(pkM ,MK)(C ′), d′ ← mDec(pkΣ ,MK)(D′).
(2) Calculate E ← [[c′ + d′]]pkΣ

, then send E to CSP.
Step 3 (CSP): (1) F ← E · ([[ra + rb]]pkΣ

)N−1.

(2) Randomly choose r1, r2, where r1, r2
R←− {1, · · · , 2l}, r2  r1, and calculate

F ′ ← F r1 · [[r2]]pkΣ
. Send F ′ to Evaluator.

Step 4 (Evaluator): (1) z ← mDec(pkΣ ,MK)(F ′).
(2) If z < N/2, δ ← 1 else δ ← 0. Send [[δ]]pkΣ

.
Step 5 (CSP): If a = 0, [[t]]pkΣ

= [[δ]]pkΣ
. Else, [[t]]pkΣ

← [[1]]pkΣ
· ([[δ]]pkΣ

)N−1.

Finally, CSP gets the encrypted comparison result [[t]]pkM
. If t = 1, it means

x ≥ y. Otherwise, it shows x < y.

Discussion. In the secure comparison algorithm of Qiu et al ’s work [1], the
CSP sends [[r(x−y)]] directly to Evaluator ([[x]] means the encryption of x under
paillier [19]). There are several problems. First, if the decryption is 0, Evaluator
could easily know x = y. Second, according to the decryption is smaller than
N/2, the evaluator can infer whether x is smaller than y or not. Thus, we
can conclude that, the comparison result is leaked to Evaluator in the secure
comparison algorithm in Qiu et al ’s work [1]. Moreover, if x − y is a small
number, the adversary A may infer the relationship of x and y according to the
factoring result of r(x − y), i.e., one large prime and a small number. Therefore,
we can conclude the comparison algorithm in Qiu et al.’s work [1] is not secure
to the adversary either. On one hand, in order to avoid showing the relationship
of x and y, CSP should send [[r1(x′ −y′)]]pkΣ

or [[r1(y′ −x′)]]pkΣ
randomly, where
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x′ = 2x + 1 and y′ = 2y. If x > y, it is obvious that x′ > y′ or vice verse. On
the other hand, to keep the comparison result from the factoring of r1(x′ − y′),
CSP also blinds r1(x′ − y′) with a small random number r2, i.e., r1(x′ − y′) + r2
before sending it to Evaluator. Since r2  r1, blinding such a number dose not
influence the comparison result of x and y.

Secure Comparison. We follow the same idea of SCAD to design the SC
algorithm. Suppose that CSP has two encrypted data [[x]]pkΣ

and [[y]]pkΣ
, where

x, y ≤ 2l, l < |N |/2 − 1. The purpose of CSP is to find out whether [[x]]pkΣ

is larger than [[y]]pkΣ
or not, without leaking the original value of x and y to

Evaluator. The details of the SC is as follows.

Step 1 (CSP): (1) Calculate A ← ([[x]]pkΣ
)2 · [[1]]pkΣ

, B ← ([[y]]pkΣ
)2.

(2)Randomly pick a
R←− {0, 1}, C ← Aa(N−1) · B(1−a)(N−1).

(3) Randomly choose r1, r2, where r1, r2
R←− {1, · · · , 2l}, r2  r1, and calculate

D ← Cr1 · [[r2]]pkΣ
. Send D to Evaluator.

Step 2 (Evaluator): (1) z ← mDec(pkΣ ,MK)(D).
(2) If z < N/2, δ ← 1 else δ ← 0. Send [[δ]]pkΣ

.
Step 3 (CSP): If a = 0, [[t]]pkΣ

← [[δ]]pkΣ
. Else, [[t]]pkΣ

← [[1]]pkΣ
· ([[δ]]pkΣ

)N−1.

At the end of the algorithm, CSP gets the encrypted comparison result, i.e.,
[[t]]pkΣ

. If t = 1, it means x ≥ y. Otherwise, we can conclude x < y.

4.3 Secure Frequent Itemset Mining

CSP, Evaluator and Miner together run this secure frequent itemset min-
ing algorithm. At the end of the algorithm, Miner gets the encrypted min-
ing results. If the decrypted data is 1, it means that the query itemset is
frequent. Otherwise, it is not. Assume that CSP holds m encrypted trans-
actions data C = {C1, · · · ,Cm }, where Cj = ([[cj,1]]pkDOi

, · · · , [[cj,n]]pkDOi
),

i ∈ (1, · · · , η), j ∈ (1, · · · ,m). Miner has the encrypted mining request Q
and [[z]]pkM

as well as the encrypted minimum support [[suppmin]]pkM
, where

Q = ([[q1]]pkM
, · · · , [[qn]]pkM

), z is the number of the 1s in Q. Evaluator has the
master key MK.

Step 1 (DO): Each DO encrypts his transactions with his own public key and
sends the encrypted data to CSP. Thus, CSP gets m encrypted transactions data
C = {C1, · · · ,Cm }, where Cj = ([[cj,1]]pkDOi

, · · · , [[cj,n]]pkDOi
), i ∈ (1, · · · , η),

j ∈ (1, · · · ,m).
Step 2 (Miner): The miner uses pkM to encrypt his mining quest
and minimum support, thus obtaining Q, [[z]]pkM

and [[suppmin]]pkM
, where

Q = ([[q1]]pkM
, · · · , [[qn]]pkM

), z is the number of the 1s in Q. Miner sends
{Q, [[z]]pkM

, [[suppmin]]pkM
} to CSP.

Step 3 (CSP): CSP selects a dummy transactions set D = {D1, · · · ,Dk},
where Dl = (dl,1, · · · , dl,n), dl,t ∈ {0, 1}, l ∈ {1, · · · , k} and t ∈ {1, · · · , n}. CSP
randomly chooses a DO’s public key pkDOi

to encrypt every Dl. Then, CSP
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combines the transactions C uploaded by DOs with the dummy transaction set
D, which can be denoted as E = C

⋃
D, and E = {E1, · · · ,Ek}. Finally, CSP

runs a secret permutation function on E, E′ = π(E).
Step 4 (CSP and Evaluator): CSP and Evaluator run Keyprod together
on [[z]]pkM

to get [[z]]pkΣ
. After that, CSP and Evaluator run SIP together on

every transaction in the permuted database and miner’s query. Thus, CSP gets
[[xi]]pkΣ

, i ∈ (1, · · · ,m + k) at the end of every round of SIP.
Step 5 (CSP): For every [[xi]]pkΣ

, CSP randomly chooses an αi from Zn,
and calculates [[wi]]pkΣ

← αi([[xi]]pkΣ
· ([[z]]pkΣ

)(N−1)). Then, CSP sends W =
{[[w1]]pkΣ

, · · · , [[wm+k]]pkΣ
} it to Evaluator.

Step 6 (Evaluator): Given W , the Evaluator uses MK to decrypt every
[[wi]]pkΣ

. If wi = 0, set vi = 1, else vi = 0. Then, he encrypts every vi, before
sending V = ([[v1]]pkΣ

, · · · , [[vm+k]]pkΣ
) to CSP.

Step 7 (CSP): On receiving V ′, CSP computes V = π−1(V ), then he removes

the dummy results and calculates [[u]]pkΣ
=

m∏

i=1

v′
i.

Step 8 (CSP and Evaluator): CSP and Evaluator run SCAD together on
[[suppmin]]pkM

and [[u]]pkΣ
and obtain the encrypted comparison result [[t]]pkΣ

.
After that, CSP gets [[t]]pkM

through running TransDec with Evaluator. CSP
sends it to Miner.
Step 9 (Miner): Miner decrypts the [[t]]pkM

. If t = 1, the query itemset is
frequent, else it is not.

Remark. In our SFIM, the dummy transactions are needed. Without the
dummy transactions, Evaluator can deduce the support of q by counting the
number of 0s in W . With these dummy transactions, the support of q will be
covered. Since, CSP knows the inverse of the permutation function, he can use
it to remove the dummy results thus getting the original support of q.

Discussion. In Step 6 of our SFIM, Evaluator encrypts vi by pkΣ rather than
pkM . If using pkM , in Step 8, CSP and Evaluator run SC instead of SCAD.
However, the miner in our system is “honest-but-curious”. If vi is encrypted by
pkM , it could be leaked to Miner, which shouldn’t be known to him. To protect
DOs’ data privacy, all the intermediate data should be encrypted by pkΣ . For
the reason that no one has private key of pkΣ , only Evaluator is capable of
decrypting the data encrypted by pkΣ .

4.4 Secure Association Rule Mining

Getting frequent itemsets is not enough for Miner to figure out the relationship
between the itemset. In the following context, we will describe how to securely
mine association rule from the frequent itemsets. In our algorithm, the Miner is
supposed to have the threshold of confidence, i.e., confmin. If the Miner expects
to know whether X ⇒ Y is strong or not, CSP just needs to give him supp(X)
and supp(X ∪ Y ). Assume that CSP has m encrypted transactions data C =
{C1, · · · ,Cm }, where Cj = ([[cj,1]]pkDOi

, · · · , [[cj,n]]pkDOi
), i ∈ (1, · · · , η), j ∈
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(1, · · · ,m). The CSP also has the support of query [[u]]pkΣ
from SFIM. Miner

has the frequent itemset f and the threshold of confidence α/β, where f =
([[f1]]pkM

, · · · , [[fn]]pkM
). Please note that, for the easiness and convenience of

comparison, we denote the threshold of confidence as α/β. Evaluator has the
master key MK. The details of our SARM is given as follows.

Step 1 (Miner): (1) Get the sets of f ’s nonvoid proper subset H, where H =
{h1, · · · ,h2z−2} 1. Suppose that the number of 1s in hi is ki.
(2) Encrypt every hi , ki, α and β, where i ∈ (1, · · · , 2z − 2). Send them to CSP.
Step 2: For each i = 1 to 2z − 2,
(CSP and Evaluator): (1) The same procedure as in SFIM from Step 3 to
Step 7. At the end, CSP gets [[ui]]pkΣ

.
(2) [[τi]]pkΣ

← SMAD([[β]]pkM
, [[u]]pkΣ

), [[εi]]pkΣ
← SMAD([[α]]pkM

, [[ui]]pkΣ
).

(3) [[γi]]pkM
← SC([[τi]]pkΣ

, [[εi]]pkΣ
). Send [[γi]]pkM

to the miner.
Miner: (1) γi ← DecskM

([[γi]]pkM
).

(2) If γi = 1, If γi = 1, hi ⇒ (f −hi) is a strong association rule. Else, it is not.

5 Security Analysis

5.1 Security of Cryptographic Blocks

In this section, we prove the security of SMAD, SIP, SCAD, and SC. First,
we give the definition of security in the semi-honest model in [16,20].

Definition 3 (Security in the Semi-Honest Model [20]). Let ai be the
input of party Pi, Πi(π) be Pi’s execution image of the protocol π and bi be the
output for party Pi computed from π. Then π is secure if Πi(π) can be simulated
from ai and bi such that distribution of the simulated image is computationally
indistinguishable from Πi(π) (More details can be found in [20]).

From Definition 3, we can conclude that the simulated execution image and the
actual execution image should be computational indistinguishable when proving
the security of these cryptographic blocks. In our scheme, the execution image
generally includes the data exchanged and the information computed from these
data.

Theorem 1. The SMAD proposed is secure under semi-honest model.

Proof. Here, let the execution image of Evaluator be denoted by ΠEvaluator

(SMAD) which is given by ΠEvaluator(SMAD) =
{
(X0, z0), (X1, z1), (Y0, z2),

(Y1, z3)
}

where z0 = x + a, z1 = y + b, z2 = bx + c and z3 = ay + d

1 For example, if f = {1, 1, 1, 0} which means {X,Y, Z}. The sets of f ’s nonvoid proper
subset is H = {{X}, {Y } {Z}, {X,Y }, {X,Z}, {Y, Z}}, which can be represent as

H = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}, {1, 1, 0, 0}, {1, 0, 1, 0}, {0, 1, 1, 0}}.
.
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are derived by decrypting X0, X1, X2 and X3 respectively. Note that a,
b, c, d are random numbers in ZN . We assume that ΠS

Evaluator(SMAD) =
{(X ′

0, z
′
0), (X

′
1, z

′
1), (Y

′
0 , z′

2), (Y
′
1 , z′

3)} where all the elements are randomly gener-
ated from ZN . Since BCP is a semantic secure encryption scheme, (Xi, zi) is com-
putationally indistinguishable from (X ′

i, z
′
i), i ∈ (0, 1, 2, 3). Meanwhile, as every

z′
i is randomly chosen from ZN , zi is computationally indistinguishable from zi.

Based on the above analysis, we can draw a conclusion that ΠEvaluator(SMAD)
is indistinguishable from ΠS

Evaluator(SMAD).
The proof of CSP is analogous to Evaluator. Combining the above analysis,

we can confirm that SMAD is secure under the semi-honest model.

Theorem 2. The SIP is secure under semi-honest model.

Proof. Our SIP is based on SMAD. Since we have proven the security of
SMAD, we can conclude that SIP is secure too.

Theorem 3. The SCAD proposed is secure under semi-honest model.

Proof. According to SCAD, the execution image of SCAD for Evaluator can be
denoted by ΠEvaluator(SCAD), which is ΠEvaluator(SCAD) = {(C ′, c′), (D′, d′),
(F ′, z), δ} where c′ = (−1)a · (2x + 1) + ra, d′ = (−1)1−a · (2y) + rb,
z = r1((−1)a · (2x + 1) + (−1)1−a · (2y)) + r2 are separately derived from
the decryption of C ′, D′, F . Note that a is a random number from (0, 1),
ra, rb are random numbers form ZN , and r1, r2 is a random number from
{1, · · · , 2l}, 22l+1 < N/2, r1  r2. In addition, δ is the comparison result
from z. We assume ΠS

Evaluator(SCAD) = {(C ′′, c′′), (D′′, d′′), (F ′′, z′), δ′} where
(C ′′, c′′), (D′′, d′′), (F ′′, z′) are randomly generated from ZN , and δ′ is set to 1
or 0 according to the randomly tossed coin. Since BCP is a semantically secure
encryption scheme, (C ′, c′), (D′, d′), (F ′, z) are computationally indistinguish-
able from (C ′′, c′′), (D′′, d′′), (F ′′, z′). Furthermore, because the element a is
randomly chosen from {0, 1}, δ is either 0 or 1 with equal probability. Thus,
δ is computationally indistinguishable from δ′. Combining the above results,
we can claim that ΠEvaluator(SCAD) is computationally indistinguishable from
ΠS

Evaluator(SCAD).
On the other hand, the execution image of CSP, denoted by ΠCSP (SCAD),

is given by ΠEvaluator(SCAD) = {E, [[δ]]pkΣ
}. Let the simulated image of CSP

be given by ΠS
Evaluator(SCAD) = {E′, α}, where E′, α are random numbers

from ZN . Since BCP is semantically secure encryption scheme, E, and [[δ]]pkΣ

are computationally indistinguishable from E′, and α. Thus, we can conclude
that ΠCSP (SCAD) is computationally indistinguishable from ΠS

CSP (SCAD).
Based on the above analysis, we can claim that SCAD is secure under the

semi-honest model.

Theorem 4. The SC described is secure under semi-honest model.

Proof. Since SC is designed by the similar idea of SCAD, we can easily get the
proof from Theorem 3.
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5.2 Security of SFIM and SARM

Theorem 5. The SFIM proposed is secure under semi-honest model and also
can preserve the data confidentiality and query privacy against active adversary.

Proof. In the similar maner we can prove that our SFIM is secure under the
semi-honest model firstly. In Step 1 to Step 2, DOs and Miner send C and Q,
[[z]]pkM

, [[suppmin]]pkM
to CSP. Due to the semantic security of BCP, the semi-

honest CSP has no advantage to distinguish them from random numbers from
ZN . In Step 3, the CSP randomly chooses a dummy transactions set and encrypts
it with a random public key from DOs. Then, he mixes it with the original
dataset uploaded from DOs. After that, CSP and Evaluator run the SIP. Since
the Evaluator cannot distinguish the original dataset and the dummy data and
the security proof of SIP, we can confirm the protocol is secure in Step 3 and
Step 4. Furthermore, the data operation in Step 5 to Step 7 is similar to the
process of SMAD, all the exchanged messages are in encrypted format, and
each value deduced by CSP and Evaluator is blinded by random numbers. In
Step 8, the SCAD, TransDec are adopted as the fundamental building blocks,
which has been proved secure in previous section and [18]. In Step 9, CSP and
Miner just deal with encrypted data, the security is from the semantic security
of BCP. As a result, we can easily conclude that our SFIM is secure under the
semi-honest model.

Next, we discuss the data confidentiality and query privacy against an active
adversary A. Assume that A eavesdrops the transmission link between DOs and
CSP, the encrypted database and all the intermediate data is got by A. Because
all the data is encrypted by BCP, A cannot get the original data. If A comprises
some DOs and gets their private keys, they still cannot decrypt the Miner’s query
since the encryption key is different. As long as the evaluator is not comprised
all the data confidentiality and query privacy defined is satisfied.

As a result, we can claim that our SFIM is secure under semi-honest model
and also can preserve the data confidentiality and query privacy against active
adversary.

Theorem 6. The SARM described in Sect. 4.4 is secure under semi-honest
model and also can preserve the data confidentiality and query privacy against
active adversary.

It is worth noting that the proofs are similar to Theorem 5 and hence we omit
it due to the space limitation.

6 Performance Analysis

In this section, we evaluate the performance of our scheme. In [10], the author
also proposed a variant of the original BCP cryptosystem, where the randomness
r is chosen in a smaller set, namely in ZN rather than ZN2 . The variant of
the original BCP cryptosystem is secure based on the Small Decisional Diffie-
Hellman Assumption (S-DDH) over a squared composite modulus of the form
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N = pq. (More details of S-DDH and the security analysis can be found in [10])
In this section, we will analyse the performance of our system based on BCP
and the variant of BCP.

6.1 Experiment Analysis

The performance evaluations of the proposed system are tested on five laptop
computers running Windows 8.1 with Intel Core I5-5200U 2.20 GHz CPU and
4 GB RAM. We implement BCP and its variant cryptosystem by BigInteger
Class in Java development kit, and using this to implement our computation
protocols. Specially, two of them are acted as the DOs, which encrypt the data
and upload them to CSP; one is used as the Miner, and the rest of them are
leveraged as the CSP and Evaluator respectively. In our experiment, we first
test the efficiency of our cryptographic blocks. Then, we make an efficiency
comparison with the most recent work [1] over the same chess database2 as
our transaction dataset, which totally has 3196 transactions and 75 attributes.
Moreover, we analyse the performance of the schemes by varying parameters.

Table 4. Performance of cryptographic blocks (100-times for average, 80-bits security
level)

Algorithm CSP
Compute.

Evaluator
Compute.

CSP Commu. Evaluator
Commu.

SMAD 0.391 s 0.368 s 1.998 KB 1.499 KB

SCAD 0.398 0.214 s 1.498 KB 0.999 KB

SC 0.137 0.098 s 0.498 KB 0.499 KB

SIP (10 bits Vector) 3.951 s 3.822 s 19.991 KB 14.991 KB

Efficiency of Cryptographic Blocks. We first evaluate the performance of
the basic cryptographic blocks, which can be seen in Table 4. For the BCP algo-
rithm, we denote N as 1024 bits to achieve 80-bit security [21] levels. We can
observe from Table 4 that in the SMAD algorithm the computation of CSP costs
0.391 s and he sends 1.998 KB data when communicating with Evaluator, while
Evaluator needs 0.368 s to complete the computation and the communication
will cost 1.499 KB. Moreover, in the SCAD algorithm, the CSP needs 0.398 s to
compute and send 1.498 KB data to Evaluator, while the Evaluator needs 0.214 s
to compute and send 0.999 KB data. In the SC algorithm, the CSP costs 0.137 s
for computing and sends 0.498 KB data to Evaluator, while the Evaluator needs
0.098 s to compute and send 0.499 KB data. We also test SIP over two 10-bit
vectors, we can see from Table 4, the cost of CSP and Evaluator is almost ten
times of single SMAD.

We also test our scheme based on the variant of the BCP cryptosystem. The
running result can be found in Table 5.
2 http://fimi.ua.ac.be/data/.

http://fimi.ua.ac.be/data/
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Table 5. Performance of cryptographic blocks based on the variant BCP (100-times
for average, 80-bits security level)

Algorithm CSP
Compute.

Evaluator
Compute.

CSP Commu. Evaluator
Commu.

SMAD 0.297 s 0.251 s 1.998 KB 1.498 KB

SCAD 0.254 0.171 s 1.499 KB 0.999 KB

SC 0.083 0.063 s 0.499 KB 0.499 KB

SIP (10 bits Vector) 2.301 s 3.102 s 19.981 KB 14.989 KB

Efficiency Comparison. For a fair comparison, we also implement Qiu et al.’s
work [1] in Java by BigInteger Class in Java development kit and JPBC library3.
We choose | p |= 160 bits with at least 80-bit security with Type A pairing in
BGN and N as 1024 bits in Paillier [19]. We first make a comparison about the
data encryption and uploading and then the frequent itemset mining protocol is
compared.

Performance of Data Encryption and Uploading. Note that the data
encryption is done in off-line by the DOs. In most conditions, the DOs are
resource-constrained users. The performance of data encryption is shown in
Fig. 2(a) and the uploading communication costs are shown Fig. 2(b).

As shown in Fig. 2, the running time of data encryption by BCP is much
less than BGN, and the BCP variant’s is more less, while both of them are
higher than the Paillier’s running time. The communication cost of BCP and
BCP varinat is almost same which is larger than Paillier and BGN. Since most
of the DOs are resource-constrained, our scheme extensively reduce the DOs’
computation cost than [1]’s protocol 2, but with slight higher communication
cost.
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Fig. 2. Performance of data owner

3 http://gas.unisa.it/projects/jpbc.
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Table 6. Cloud computation time (in minutes) of frequent itemset mining

Protocol 2 Our protocol based on BCP Our protocol based on BCP variant

1354.021 4321.612 2930.398

Performance of Frequent Itemset Mining. We test the cloud’s (including
CSP and Evaluator) running time in our scheme and [1]’s protocol on the Chess
dataset. The overall running time is shown in Table 6. In our experiment, the
size of dummy transactions in all of the protocols is m/2. From Table 6, we can
conclude that our protocol is slower than [1]’s protocol 2. Since our protocol
achieves higher privacy level, we think it is reasonable. In addition, if we use the
BCP variant as the basic cryptosystem in our scheme, the running time can be
largely reduced. What’s more, the cloud is usually has “unlimited” computing
resource and power, the running time of our scheme can be dramatically reduced
in real cloud system.

7 Conclusions

In this paper, we propose a practical privacy-preserving frequent itemset mining
and association rule mining protocol on encrypted cloud data. Compared with
the state-of-art works, our scheme achieves higher privacy level, and also reduces
the data owners’ computation cost. The computation cost in cloud is higher than
Qiu et al.’s work [1]. Since the cloud has massive computation resource, the
computation time in real cloud service will be quite small. In our future work,
we will focus on further improving the efficiency of our scheme.
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Abstract. In PKC’08, Plantard, Susilo and Win proposed a lattice-
based signature scheme, whose security is based on the hardness of the
closest vector problem with the infinity norm (CVP∞). This signature
scheme was proposed as a countermeasure against the Nguyen-Regev
attack, which improves the security and the efficiency of the Goldreich,
Goldwasser and Halevi scheme (GGH). Furthermore, to resist potential
side channel attacks, the authors suggested modifying the determinis-
tic signing algorithm to be randomized. In this paper, we propose a
chosen message attack against the randomized version. Note that the
randomized signing algorithm will generate different signature vectors in
a relatively small cube for the same message, so the difference of any two
signature vectors will be relatively short lattice vector. Once collecting
enough such short difference vectors, we can recover the whole or the
partial secret key by lattice reduction algorithms, which implies that the
randomized version is insecure under the chosen message attack.

Keywords: Lattice-based cryptography · Signature schemes
Lattice reduction

1 Introduction

It is well known that classical cryptography is vulnerable to quantum com-
puters since Shor’s algorithm [21] will solve the integer factorization and the

This work was supported in part by the NNSF of China (No. 61572490 and No.
11471314), and in part by the National Center for Mathematics and Interdisciplinary
Sciences, CAS.

c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 455–466, 2018.
https://doi.org/10.1007/978-3-319-93638-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93638-3_26&domain=pdf


456 H. Li et al.

logarithm discrete problems efficiently. This has motivated the development of
post-quantum cryptography, especially lattice-based cryptosystems. In general,
the security of lattice-based cryptosystems is always related to some hard com-
putational problems in lattices, such as the Shortest Vector Problem (SVP) and
the Closest Vector Problem (CVP).

As important cryptographic primitives, several lattice-based digital signa-
ture schemes have been proposed in recent years, such as [5,8–10,19]. In 1997,
Goldreich et al. [9] proposed the GGH signature scheme based on lattices, whose
security is related to the hardness of approximate CVP. In fact, GGH is not only
a concrete signature scheme, but also a general framework to construct lattice-
based digital signature schemes. The GGH framework consists of a good lattice
basis G, a bad basis B for the same lattice and a reduction algorithm as the
signing algorithm. Usually, the good basis is used as the secret key, with which
the reduction algorithm can efficiently output an approximation for the closest
vector of a target vector corresponding to the message. Such approximation is
the signature of the message. The bad basis is published as the public key, with
which one can check if the signature is in the lattice and close enough to the tar-
get vector. In GGH scheme, they used a nearly orthogonal basis G as the good
basis, a random basis as the bad basis B, and Babai’s rounding-off algorithm
[2] as the reduction algorithm.

Based on GGH framework, Hoffstein et al. [11] presented the NTRUSign as a
more efficient lattice-based signature scheme. They used some special short basis
as a good basis, a “random” basis as the bad basis B, and Babai’s rounding-off
algorithm as the reduction algorithm.

However, Nguyen and Regev [18] proposed a clever method to recover the
secret key of the GGH signature scheme and NTRUSign by studying the paral-
lelepiped of the lattice. More precisely, by collecting enough message-signature
pairs, they can obtain many samples uniformly distributed in the parallelepiped
due to Babai’s rounding-off algorithm employed as reduction algorithm in this
two signature schemes. Then with these samples, they can finally recover the par-
allelepiped which leaks the good basis. They also pointed out that even taking
Babai’s nearest plane algorithm [2] as the signing algorithm, these two schemes
are still insecure. Later, Ducas and Nguyen [7] proposed some method to analyze
some countermeasures against the Nguyen-Regev attack.

By the Nguyen-Regev attack, it seems that the security of GGH type signa-
ture schemes depends heavily on the reduction algorithms. To resist such attack,
at least two different reduction algorithms have been proposed. In 2008, Gentry
et al. [8] presented a Gaussian sample algorithm similar to [12]. Based on such
a random vector-sampling algorithm, Gentry, Peikert and Vaikuntanathan con-
structed a signature scheme, with a short trap-door basis as the private key and
a long basis as the public key. Since the lattice vectors outputted by the new
sampling algorithm do not reveal the trap-door, the signature scheme of Gen-
try, Peikert and Vaikuntanathan can be proved to be secure under the chosen
message attack (CMA).
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In 2008, Plantard et al. [19] proposed another signature scheme at PKC’08
to resist the Nguyen-Regev attack. They employed a special type of lattices
as the good basis which has a basis that can be written into the sum of a
diagonal matrix and a ternary random matrix. With such a basis, they proposed
a reduction algorithm to reduce any vector into a small cube. Since the cube is
public and it seems hard to recover the private basis from the cube, the authors
claimed that their scheme can resist the Nguyen-Regev attack well.

As pointed out by Plantard, Susilo, and Win, since their reduction algorithm
is deterministic, the scheme may suffer some potential side channel attacks. To
make the scheme more secure, they modified their reduction algorithm to be
randomized.

In this paper, we show that the randomized version of the PSW signature
scheme is insecure under the CMA model. Simply speaking, note that when we
query the signing oracle with the single message m for many times, we will
usually obtain different signature vectors w1,w2, · · · ,wk with k ≥ 2. Denote by
H(m) the hash vector of the message m. Note that, in the PSW scheme, the
difference wi − H(m), 1 ≤ i ≤ k are all in the given lattice. It is easy to see
that wi − wj , 1 ≤ i < j ≤ k are all in the lattice. Note that each signature
wi is contained in a relatively small cube, then their difference vectors wi −wj

are relatively short. Once we obtain many such difference vectors, the Z-linear
combinations of these vectors will span the given lattice with high probability.
By using the lattice reduction algorithms such as LLL [13] and BKZ [4,20] to
these short difference vectors, we could obtain a much shorter basis, which may
leak the good basis in this signature scheme. In fact, we find that for dimension
less than 400, BKZ-20 will recover all or partial rows of the good basis in our
experiments.

To fix the randomized version of the PSW signature scheme, we will give two
methods as presented in [8]. The first method is to store the message-signature
pairs locally. When signing a message, we first check whether the message is in
storage or not. If the message is in storage, we output the stored corresponding
signature, otherwise, we apply the randomized reduction algorithm to generate
a signature. The second method is using the randomized reduction algorithm
to generate the signature for the hash value of a message and some additional
random number instead of the hash value of just the message.

Roadmap. The remainder of the paper is organized as follows. First we present
some notations and preliminaries on lattices and hard problems in Sect. 2. Then
we describe the Plantard, Susilo, and Win signature scheme in Sect. 3. Finally we
describe our attacks and some experimental results in detail in Sect. 4, and some
strategies to fix the randomized version of PSW signature scheme are discussed
in Sect. 5.
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2 Preliminaries

Denote by R, Z the real number field and the integer ring respectively. For a
vector v = (v1, v2, · · · , vn) ∈ R

n, denote by vi its i-th component and denote by
‖v‖ =

√
v2
1 + v2

2 + · · · + v2
n its length.

2.1 Lattices

A lattice Λ is a discrete subgroup of R
n. Equivalently, a lattice is a Z-linear

combinations of m linearly independent vectors in R
n. The set of these linearly

independent vectors is called a basis of Λ. Given a matrix B ∈ Z
m×n, we denote

by Λ(B) the lattice spanned by the row vectors of B. That is,

Λ(B) =
{ m∑

i=1

xibi|xi ∈ Z, 1 ≤ i ≤ m
}

,

where bi is the i-th row of B. If the rows of B are linearly independent, we call
B a basis of Λ(B). For a basis B, we denote by det (Λ(B)) the determinant of
the lattice Λ(B) as

√
det (BBT ).

A lattice Λ(B) may have many bases. If B is a nonsingular square matrix
with all entries in Z, then Λ(B) has a special basis in Hermite Normal Form. In
general, a nonsingular square matrix H = (hij) ∈ Z

n×n is in Hermite Normal
Form if

(1) hij = 0 for 1 ≤ j < i ≤ n;
(2) hii > 0 for 1 ≤ i ≤ n;
(3) 0 ≤ hij < hjj for 1 ≤ i < j ≤ n.

Hermite Normal Form of any integer matrix can be computed in polynomial
time, and Micciancio [15] suggested publishing the Hermite Normal Form as the
public key which will improve the security of some lattice-based cryptosystems.

2.2 Lattice Problems and Algorithms

In lattice theory, the Shortest Vector Problem (SVP) and the Closest Vector
Problem (CVP) are two famous computational problems which have been proved
to be NP-hard [1,3]. Given a lattice basis B ∈ Z

m×n, the shortest vector problem
aims to find a nonzero shortest vector in Λ(B), and the closest vector problem
aims to find the closest vector to a target vector t ∈ Z

n. We denote by λ1(Λ(B))
the length of the shortest nonzero lattice vectors in the lattice Λ(B).

The approximation versions of SVP and CVP are usually used to evaluate
the security for lattice-based schemes. For the approximation of SVP, we need to
find a lattice vector v such that ‖v‖ ≤ γλ1, and for the approximation of CVP,
our aim is to find a lattice vector w satisfying ‖w − t‖ ≤ γ minv∈Λ(B ) ‖v − t‖
with γ ≥ 1.

Some polynomial-time algorithms have been presented to solve approximate
SVP and approximate CVP with exponentially large factor γ, such as LLL [13],
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BKZ [4,20] for the approximate SVP and Babai’s nearest plane algorithm [2] for
approximate CVP.

LLL algorithm is a polynomial-time lattice reduction algorithm which was
presented in [13]. An important property of this algorithm is the output vectors
are relatively short. Furthermore, in practice, the output of LLL algorithm is
much better than the theoretical analysis.

Blockwise Korkine-Zolotarev (BKZ) algorithm [4,20] is also a widely used
lattice reduction algorithm in the analysis for lattice-based cryptosystems. In
general, BKZ algorithm has an additional parameter β ≥ 2 as the block size. In
the process of BKZ algorithm, a subalgorithm which finds the shortest vector
of the projective lattice with dimension β is called at each iteration. Generally
speaking, BKZ algorithm will cost more time than LLL, but the output will be
much shorter than that of LLL when β becomes larger.

3 The PSW Digital Signature Scheme

In PKC’08, Plantard et al. [19] proposed a new digital signature based on CVP∞,
which was claimed to be a countermeasure against the Nguyen-Regev attack.

3.1 The Original Signature Scheme

The original PSW signature scheme consists of three main steps as the following:

Setup
1. Choose an integer n.
2. Compute a random matrix M ∈ {−1, 0, 1}n×n.
3. Compute d = �2ρ(M) + 1� and D = dIn, where ρ(M) is the maximum of

the absolute value of the eigenvalues of M .
4. Compute the Hermite Normal Form H of the basis D − M .
5. The public key is (D,H), and the secret key is M .

To sign a message m ∈ {0, 1}∗, one does the following.

Sign
1. Compute the vector v = H(m) ∈ Z

n where H is a hash function which maps
m to {x ∈ Z

n||xi| < d2, 1 ≤ i ≤ n}.
2. By Algorithm 1, compute w as the signature of m.

To verify a message-signature pair (m,w), one does the following.

Verify
1. Check if |wi| < d, 1 ≤ i ≤ n.
2. Compute the vector H(m) ∈ Z

n.
3. Check if the vector H(m) − w is in the lattice of basis H.
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Algorithm 1. Signing algorithm
Input: A vector v ∈ Z

n, the matrix D and M obtained in the Setup step.
Output: A vector w ∈ Z

n such that w ≡ v (mod Λ(D − M )) and |wi| < d for all
i = 1, 2, · · · , n.

1: w ← v
2: i ← 1
3: k ← 0
4: while k < n do
5: k ← 0
6: q ← �wi

d
�;

7: wi ← wi − qd
8: for j ← 1 to n do
9: wi+j mod n ← wi+j mod n + qMi,i+j mod n

10: if |wi+j mod n| < d then
11: k ← k + 1
12: end if
13: end for
14: i ← i + 1 mod n
15: end while
16: return w

Algorithm 2. Randomized signing algorithm
Input: A vector v ∈ Z

n, the matrix D and M obtained in the Setup step.
Output: A vector w ∈ Z

n such that w ≡ v (mod Λ(D − M )) and |wi| < d for all
i = 1, 2, · · · , n.

1: w ← v
2: i

$←− {1, 2, · · · , n}
3: k ← 0
4: while k < n do
5: k ← 0
6: q ← �wi

d
�;

7: wi ← wi − qd
8: for j ← 1 to n do
9: wi+j mod n ← wi+j mod n + qMi,i+j mod n

10: if |wi+j mod n| < d then
11: k ← k + 1
12: end if
13: end for
14: i ← i + 1 mod n
15: end while
16: return w

3.2 The Randomized Version of PSW Signature Scheme

As pointed out by Plantard, Susilo, and Win, since the reduction algorithm is
deterministic, the original PSW scheme may suffer some potential side channel
attacks. To resist the potential side channel attacks, they suggest using the
following randomized algorithm (Algorithm 2) as the signing algorithm.
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4 The Chosen Message Attack Against the Randomized
Version of PSW Scheme

4.1 Key Idea of Our Chosen Message Attack

As we can see, in the randomized version of the PSW signature scheme, the
signature vectors for the same message may not be unique. Therefore, in the
CMA model, if we query the randomized signing oracle with the same message
m, we may obtain different signature vectors w1,w2, · · · ,wk where k ≥ 2. Note
that wi − H(m), 1 ≤ i ≤ k are all in the lattice, and so are their difference
vectors

(wi − H(m)) − (wj − H(m)) = wi − wj ,

where 1 ≤ i ≤ j ≤ k.
Since each component of wi is in (−d, d), we know that each component of

wi − wj is in (−2d, 2d). Since d ∈ Θ(
√

n) as stated in [19], the lattice vectors
wi − wj ’s are very short.

Once we obtain many such short difference vectors, the Z-linear combinations
of these vectors will span the lattice Λ(D − M). By using the lattice reduction
algorithms such as LLL and BKZ to the set of short generators, we expect to
obtain a much shorter basis, which may leak the private key.

We present the framework of our attack as the following:

1. Generate some messages m1,m2, · · · randomly;
2. For any message mj ∈ {m1,m2, · · · }, querying the signing oracle for several

times to obtain many different signatures {wj1,wj2, · · · ,wjk} with k ≥ 2;
3. Collect enough difference vectors wji − wj1’s such that they can span the

lattice Λ(D − M). Denote by L the set of these wji − wj1’s;
4. Use lattice basis reduction algorithm to L to output a square matrix LL, and

expect to obtain some information about the private key.

4.2 Our Strategy to Collect the Difference Vectors

To collect the difference vectors, we have to decide how many messages we will
choose in Step 1 and how many signatures for one message we will query with
the oracle in Step 2. Below we give a very simple but efficient strategy, that is,
for one message we query as many different signatures as possible and we choose
as few messages as possible to satisfy Step 3.

Note that for every message, the signing algorithm (Algorithm 2) will gen-
erate at most n different signatures since there are n choices for the index i.
Assume there were exactly n different signatures, then it is natural to ask how
many times we query the signing oracle to collect all these signatures. Since
every signature is uniformly randomly returned by the oracle, by the classical
result for Coupon Collector’s Problem [16,17], it can be easily concluded that
the expectation of this number is

n(1 +
1
2

+ · · · +
1
n

) = n ln n + γn +
1
2

+ O(
1
n

),
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where γ ≈ 0.5772156649 is the Euler’s constant. Hence, we can query one mes-
sage for 
n log n� times, and then we know that the probability of collecting all
the n signatures is greater than 1 − n− 1

ln 2+1 [16,17]. When n ≥ 100, this value
is greater than 0.85, which is acceptable.

Therefore, in our attack we query 
n log n� signatures for each message, and
choose random messages until we collect enough difference vectors, then applying
LLL and BKZ to obtain a short basis for the lattice.

We present the attack as Algorithm 3.

Algorithm 3. Chosen message attack against the randomized version of PSW
scheme
Input: The public key H , the randomized signing oracle O and a message generator

G to generate the messages randomly.
Output: A set of short basis for Λ(H).
1: Let LL be a zero matrix of n × n
2: while detLL/ detH ! = 1 and detLL/ detH ! = −1 do
3: W = {}
4: m ← G
5: for i ← 1 to �n log n� do
6: w ← O(m)
7: If w is not in W, append w to W
8: end for
9: Collect all w1 − wi, 1 ≤ i ≤ |W | to append to the matrix LL

10: LL ← the last n rows of LLL(LL) (since LLL algorithm puts linearly indepen-
dent vectors in the last rows)

11: end while
12: B ← LatticeReduction(LL)
13: Check whether B leaks the private key or not.

4.3 Experimental Results

In our experiments, we used SageMath 7.5.1 [23] to implement our attacks, and
the LLL’s parameter is set to the default value. For BKZ algorithm, we set the
parameter “algorithm” as “NTL” to call the NTL library [22] to implement this
algorithm. All experiments were run on a machine with Intel(R) Xeon(R) CPU
E5-2620 v4 @2.1 GHz.

We chose the dimension n to be 200, 300, 400, and for any dimension we
chose 5 randomized generated instances. For the lattice reduction algorithms, we
used LLL algorithm, BKZ-10, and BKZ-20 respectively. The results are listed in
Table 1.

We would like to point out a natural attempt to recover the rows of D −M
is by applying lattice basis reduction algorithm on the public key H directly,
since every row of D−M is very short. However, for just dimension n = 165 in
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Table 1. Experimental results for our attack

dim 200 300 400

#msg 3 2 3 2 3 3 2 2 2 2 3 4 3 2 3

#sig 4587 3058 4587 3058 4587 7407 4938 4938 4938 4938 10374 13832 10374 6916 10374

LLL A P(22) A A P(32) N N N N N N N N N N

BKZ10 A A A A A N N P(3) N N N N N N N

BKZ20 A A A A A A N A P(4) P(22) N P(2) N N N
a dim: The dimension of the lattice Λ(D − M );
b #msg: The number of messages we need to span the lattice Λ(D − M );
c #sig: The number of signatures we need;
d N: The lattice reduction algorithm can not recover any rows of the matrix D − M ;
e A: The lattice reduction algorithm can recover all rows of the matrix D − M ;
f P: The lattice reduction algorithm can recover partial rows of the matrix D − M , and the number in

the bracket is the number of rows we recovered.

our experiments, we could not recover any row of D−M when we even applied
BKZ-20 on the public key H directly.

In contrast, with our attack, for the dimension n = 200, LLL algorithm could
recover all (or partial) rows of D − M , and BKZ-10 could recover all the rows
of D − M for our instances. For the dimension n = 300, we could recover all
rows of D−M in 2 instances and partial rows in 2 instances when BKZ-20 was
used.

For the dimension n = 400, we just obtain partial rows in D − M for only
one instance with BKZ-20 algorithm. Employing BKZ algorithm with bigger
blocksize, we may obtain more rows.

However, we would like to point out that even only partial rows are recovered,
the randomized version of the PSW signature scheme is not secure. Since the
messages are all generated randomly, we may expect to recover all the rows of
the matrix D − M by repeating our attack several times.

Remark 1. Once obtaining a short basis, we can also recover the matrix M
by finding some lattice vector close to (0, · · · , d, · · · , 0). Using some strategies
in [14] to solve the Bounded Distance Decoding (BDD) problem may improve
our results.

Remark 2. We would like to point out that the strategy to collect the difference
vectors also plays an important role in our attack. Another natural strategy is to
query the signing oracle just twice for each message and collect enough difference
vectors to mount the attack. However, the new strategy did not work so well
as Algorithm 3. For dimension n = 180 and larger dimensions, we could never
recover any rows of the matrix D−M by using this strategy in our experiments.

5 Possible Ways to Fix the Randomized Version

There are two possible ways to fix the randomized version similar to the strategies
in [8].

The first way is to store the message-signature pairs locally, which seems a
bit impractical. In detail, once given a message m, we will modify the Sign step
as the following:
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Sign
1. Check whether m has been signed or not.
2. If m is stored locally, return the locally stored signature w corresponding to

m.
3. Otherwise, use Algorithm 2 to output a signature w and store (m,w) locally.

The second way is to add some random number to the hash function. This
strategy is usually used in the hash-then-sign schemes. Since the original PSW
scheme has no security proof and we do not know the exact hardness of CVP∞
over the PSW instances, we can not present some formal security proof for this
fixed version, but just present it as the following:

Sign
1. Choose r ← {0, 1}n at random.
2. Compute the vector v = H(m||r), where H maps (m||r) to the area

(−d2, d2)n.
3. Applying Algorithm 2, compute the signature w.

Once given the signature (m, r,w), we will modify the Verify step as below.

Verify
1. Check if |wi| < d for 1 ≤ i ≤ n.
2. Compute the vector H(m||r).
3. Check whether the vector H(m||r) − w ∈ Λ(H) or not.

6 Conclusions and Open Problems

In this paper, we show that the randomized PSW signature scheme is not secure
under the chosen message attack at least for dimension less than or equal to
400. However, for the scheme with bigger dimension which becomes less efficient
apparently, it seems that we need the BKZ algorithm with bigger blocksize to
recover the private key. In fact, our attack reveals that the storage of previous
signature or the use of random nonce employed in the randomized signature
scheme is crucial.

However, there are still some unsolved theoretical problems, such as present-
ing a theoretical reason why the strategy in Remark 2 does not work as well as
Algorithm 3. The lattice vectors we collected by the two strategies have almost
the same length. However, Algorithm 3 usually succeeded, whereas the strategy
in Remark 2 always failed when the dimension is between 200 and 400. It seems
a bit strange. We conjecture the reason may relate to the fact that the lattice
vectors collected with the strategy in Remark 2 seems more “independent” and
“random”, but we can not present a rigorous analysis.

Moreover, we tried to apply our attack to analyze the security of some sig-
nature schemes with GPV algorithm [8] as the signing algorithm, such as [6].
However, we could only recover the private key with dimension 128 for [6], but
failed for larger dimensions such as 256. This phenomenon also lacks theoretical
explanation.
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Hence, the theory about how the lattice basis reduction algorithm behaves
with shorter input should be further studied. Usually, we measure the quality of
the output for the lattice basis reduction algorithm with the determinant of the
input lattice (such as Gauss heuristic), but it can be expected that with shorter
input, we can have shorter output, although the determinant keeps the same. A
natural problem is if there is some tight relation between the length of output
and input on average, with which we can describe the attack more rigorously in
theory.
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Abstract. Key Exchange (KE) from RLWE (Ring-Learning with
Errors) is a potential alternative to Diffie-Hellman (DH) in a post quan-
tum setting. Key leakage with RLWE key exchange protocols in the
context of key reuse has already been pointed out in previous work. The
initial attack described by Fluhrer is designed in such a way that it only
works on Peikert’s KE protocol and its variants that derives the shared
secret from the most significant bits of the approximately equal keys
computed by both parties. It does not work on Ding’s key exchange that
uses the least significant bits to derive a shared key. The Signal leak-
age attack relies on changes in the signal sent by the responder reusing
his key, in a sequence of key exchange sessions initiated by an attacker
with a malformed key. A possible defense against this attack would be
to require the initiator of a key exchange to send the signal, which is the
one pass case of the KE protocol. In this work, we describe a new attack
on Ding’s one pass case without relying on the signal function output
but using only the information of whether the final key of both parties
agree. We also use LLL reduction to create the adversary’s keys in such
a way that the party being compromised cannot identify the attack in
trivial ways. This completes the series of attacks on RLWE key exchange
with key reuse for all variants in both cases of the initiator and responder
sending the signal. Moreover, we show that the previous Signal leakage
attack can be made more efficient with fewer queries and how it can be
extended to Peikert’s key exchange, which was used in the BCNS imple-
mentation and integrated with TLS and a variant used in the New Hope
implementation.

Keywords: RLWE · Key exchange · Post quantum · Key reuse
Active attacks

1 Introduction

Post-quantum cryptography refers to cryptographic algorithms (usually public
key algorithms) that are thought to be secure against an attack by a quantum
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computer. According to studies, a sufficiently large quantum computer can effi-
ciently break most widely used public-key algorithms such as RSA and ECDSA.
In 1994, Shor devised a quantum algorithm [24] that can be used to solve the
Discrete Log Problem (the hardness of which the security of different variants
of Diffie-Hellman (DH) key exchange algorithms are based on) in polynomial
time with quantum computers [24]. This led to the search for quantum resis-
tant cryptographic protocols. Cryptographic primitives that are believed to be
resistant to quantum computer attacks include Multivariate, Hash based, Code
based and Lattice based, that have their security based on mathematical prob-
lems that are hard to solve with currently known efficient quantum algorithms.
In the recent years, lattice based cryptographic primitives have proven to have
versatile applications in Key Exchange, Signature, FHE (Fully Homomorphic
Encryption) and more. Key Exchange protocols allow two or more participants
to derive a shared cryptographic key, often used for authenticated encryption.
RLWE (Ring-Learning With Errors) key exchange is a lattice based variant of
DH type protocol that also has properties like quantum resistance, forward and
provable security that makes it a desirable replacement for currently used DH
protocols. In RLWE key exchange, the two parties in a key exchange initially
compute approximately equal values, after which one of the parties sends infor-
mation about the interval in which its computation of the key value lies, to the
other party. Then, both the parties use this information to derive a final shared
secret. This additional information, referred to as the signal was exploited by
active adversaries to retrieve the secret of a reused key as shown in [9] and applies
to the RLWE based key exchange protocol in [14] and all its variants [3,5,22].
The signal function attack works when the responder (party that reuses its
key) sends the signal and can be defended against by requiring the initiator to
send the signal. In this work, we explore a new and more sophisticated attack
to recover the secret without using the signal function output by querying the
party with reused key for mismatch of the final shared key. The attack is set up
for the one pass case of the protocol, when the initiator (instead of the respon-
der) performing the key exchange sends the signal to the other party. The other
details of the KE protocol remains the same as the two pass case. This work
is an attack description on the KE protocol in [14] which uses the least signif-
icant bits of the computed keys to derive a shared secret key. The work in [10]
focuses on an attack on KE protocol in [22] and its variants [3,5] that uses the
most significant bits to derive the shared key. With this attack description, we
show that all RLWE based KE protocols are vulnerable to attacks when keys
are reused, excluding the ones designed as IND-CCA KEMs (Key Encapsulation
Mechanism).

1.1 Previous Work

Key leakage in RLWE based key exchange with key reuse was pointed out in
[15] but without any concrete description of an attack to exploit the leakage. An
attack was described by Fluhrer in [10] with the attack strategy that tries to
use the agreement of final shared key to derive information about the secret but
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does not work in the case of [14] where the final shared key is derived from the
least significant bits.

Another attack presented in [13] is executed on the one pass case of the
Authenticated Key Exchange protocol from RLWE in [25] and exploits properties
of the CRT (Chinese Remainder Theorem) basis of Rq. It recovers every CRT
coefficient of the secret s of a key p = as + 2e in order to recover s, with an
attack complexity of q−1

2 (δ.qδ + q − δ.q
n ), where δ is a moderately large constant.

The signal function attack is used to recover information about the secret of
a reused key in an attack description in [9]. It works by looking at the number of
times the signal value of the key computation kB changes when varying k across
all values in Zq in the adversary’s public key of pA = asA + keA. The number of
signal changes is expected to be exactly 2 times the secret value by the choice
of sA, eA and the definition of the signal region. The secret is recovered with 2q
queries to the party with the reused key.

1.2 Our Contributions

We present a new attack on RLWE based key exchange in the context of key
reuse. We focus on the one pass case of the KE protocol since the other case
can already be attacked with previous work. Thus, having the initiator send the
signal is not a possible defense against attacks with key reuse and unsuccessful
key exchange sessions can be used to reveal information about the secret. We
carefully work through the details of the adversary’s queries and perform an
attack with query complexity O(n2α). The query complexity is independent
of q, making it more efficient than the signal function attack. Here, α is the
standard deviation of the error distribution. The goal of the work is to show
that RLWE keys when reused in key exchange can always be exploited and
broken. The success of such attacks comes from the hardness of distinguishing
RLWE samples from uniform. Section 3 reviews definitions and results that are
relevant to indistinguishability of RLWE samples. We have verified the success
of our attacks with experiments.

This attack does not rely on the leakage of the signal and can still be applied
to protocols in the case that the initiator is required to send the signal to avoid
the signal function attack. Although the attack approach is similar to [10] in
using key mismatch to compromise the secret, we use a different strategy for the
attack. In [10], the attack focuses on key exchange protocols that derive the most
significant bits of the approximately equal key computed. The approach is to
query for the boundary between 0 and 1, corresponding to the signal quadrants
defined in the protocol. But this does not work in the case of key exchange
protocols that use the least significant bit to derive the final shared key. In our
attack, the attacker forces the other party to reveal information about the secret
from the final key mismatch. In practice, this is possible because a key mismatch
results in an unsuccessful key exchange. So, if the attacker uses his computation
of the key, he cannot decrypt a message from the other party or does not get a
desired response from the other party. The attacker creates his public key in such
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a way that mismatch in the final shared key is linked with a change in sign of a
particular coefficient of the intermediate (approximately equal) key computed.

We choose a secret sA for the adversary such that the n − 1-th coordinate of
the key computation is small, by solving linear equations involving the reused
public key pB = asB +2eB . Here, pB is an RLWE public key with secrets sB , eB

sampled from an error distribution and a uniform randomly sampled from the
ring. To recover useful information using success or failure of a session, the
attacker’s secret needs to be small. This is because the attacker only checks for
match or mismatch of final key in one coordinate to recover the secret sB but
with a key exchange session failure, the attacker cannot know which coordinates
of the key did not match. So, keeping sA small ensures that the other coordinates
are computed following the protocol and matches for both parties, implying that
a key exchange session success or failure relies on match or mismatch of the
specific coordinate of the final key. To ensure that sA is small, we apply the
LLL reduction algorithm on the solution space of the system of linear equations
solved. We refer to this work as a complete attack since it fills the gap on
available attacks for all variants of RLWE based KE protocols and both cases
where the initiator and responder sends the signal. We also discuss the signal
function attack to make it more efficient in terms of the query complexity. Later,
we discuss about extending the signal attack to the key exchange in [22] which
follows the same approach as in [14] and uses a slightly different signal function,
referred to as the cross rounding function. The BCNS implementation uses the
key exchange in [22]. The New Hope implementation uses a modified version
with a different error distribution and error reconciliation, and was tested in
Google Chrome Canary browser for its post quantum experiment [1].

2 Organization

In Sect. 3, We discuss some background on RLWE and the functions used in
the key exchange protocol. The protocol being attacked is reviewed in Sect. 4.
The attack is described in Sect. 5, which is divided into two parts - simplified
and improved. The simplified attack aims at providing a basic understanding
of the attack assuming that the attacker’s secret is 0. The improved attack
further builds on the simplified case to describe the actual attack strategy. Other
subsections of this attack section discusses query complexity and experiments we
performed to verify the attack. Section 6 reviews the signal function attack and
describes how it can be applied to the KE protocol in [22]. Section 7 discusses
about reducing the query complexity of the signal function attack.

3 Preliminaries

3.1 Notation

Let n be an integer and a power of 2. Define f(x) = xn + 1 and consider the
ring R := Z[x]/〈f(x)〉. For any positive integer q, we define the ring Rq =
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Zq[x]/〈f(x)〉 analogously, where the ring of polynomials over Z (respectively
Zq = Z/qZ) we denote by Z[x] (respectively Zq[x]). Let χα denote the Discrete
Gaussian distribution on Rq, naturally induced by that over Z

n with standard
deviation α. A polynomial p ∈ R (or Rq) can be alternatively represented in
vector form (p0, . . . , pn−1) corresponding to its coefficients and p[i] = pi denotes
the i-th coefficient of the polynomial. Let the norm ‖p‖ of a polynomial p ∈ R
(or Rq) be defined as the norm of the corresponding coefficient vector in Z (or
Zq). For a vector v = (v0, . . . , vn−1) in R

n or C
n and p ∈ [1,∞), we define the

�p norm as ‖v‖p = (
∑n−1

i=0 |vi|p)1/p and the �∞ norm as ‖v‖∞ = maxi∈[n]|vi|.
The �2 norm corresponds to the �p norm with p = 2 and is denoted as ‖.‖ in this
paper. In applying the norms, we assume the coefficient embedding of elements
from R to R

n. For any element s =
∑n−1

i=0 six
i of R, we can embed this element

into R
n as the vector (s0, . . . sn−1).

3.2 Learning with Errors and RLWE

A Lattice L(b1, . . . , bn) = {∑n
i=1 xibi|xi ∈ Z} is formed by integer linear com-

binations of n linearly independent vectors b1, . . . , bn ∈ R
n called the “Lattice

Basis”. In 1996, Ajtai’s seminal result [2] heralded the use of lattices for con-
structing cryptographic systems, with the security based on hardness of problems
such as the Shortest Vector Problem (SVP) and Closest Vector Problem (CVP).
The Learning with Errors (LWE) problem introduced by Oded Regev in 2005
[23] is a generalization of the parity-learning problem. The reduction from solv-
ing hard problems in lattices in the worst case to solving LWE in the average
case provides strong security guarantees for LWE based cryptosystems, yet it is
not efficient enough for practical applications due to its large key sizes of O(n2).
Ring-Learning with Errors (RLWE) is the version of LWE in the ring setting,
that overcomes the efficiency disadvantages of LWE. Similar to LWE, there is a
quantum reduction from solving worst case lattice problems in ideal lattices to
solving the RLWE problem in average case. The search version of RLWE is to
find a secret s in Rq given (a, as+e) for polynomial number of samples, where a
is sampled uniform from Rq and e is sampled according to the error distribution
χα. An equivalent problem of the search version is the decision version which is
commonly used for security proof of cryptographic algorithms based on RLWE.
Let As,χα

denote the distribution of the pair (a, as + e), where a, s is sampled
uniformly from Rq and e is sampled according to the error distribution χα. The
decision version of the RLWE problem is to distinguish As,χα

from the uniform
distribution on Rq × Rq with polynomial number of samples. We provide the
definition of the Discrete Gaussian distribution (error distribution) here:

Discrete Gaussian Distribution

Definition 1. [25] For any positive real α ∈ R, and vectors c ∈ R
n, the con-

tinuous Gaussian distribution over R
n with standard deviation α centered at c

is defined by the probability function ρα,c(x) = ( 1√
2πα

)nexp(−‖x−c‖2

2α2 ). For inte-
ger vectors c ∈ R

n, let ρα,c(Zn) =
∑

x∈Zn ρα,c(x). Then, we define the Discrete
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Gaussian distribution over Z
n as DZn,α,c(x) = ρα,c(x)

ρα,c(Zn) , where x ∈ Z
n. The

subscripts α and c are taken to be 1 and 0 (respectively) when omitted.

In practice, we use a Spherical Gaussian distribution where each coordinate
is sampled independently from a one dimensional Discrete Gaussian distribution
DZ,α.

We recall two useful lemmas here:

Lemma 1 ([25]). Let f(x) and R be defined as above. Then, for any s, t ∈ R,
we have ‖s · t‖ ≤ √

n · ‖s‖ · ‖t‖ and ‖s · t‖∞ ≤ n · ‖s‖∞ · ‖t‖∞.

Lemma 2 ([12,19]). For any real number α = ω(
√

log n), we have
Prx←χα

[‖x‖ > α
√

n] ≤ 2−n+1.

The normal form [6,7] of the RLWE problem is by modifying the above
definition by choosing s from the error distribution χα rather than uniformly. It
has been proven that the ring-LWE assumption still holds even with this variant
[4,18].

Proposition 1 ([18]). Let n be a power of 2, let α be a real number in (0, 1), and
q a prime such that q mod 2n = 1 and αq > ω(

√
log n). Define R = Z[x]/〈xn+1〉

as above. Then there exists a polynomial time quantum reduction from Õ(
√

n/α)-
SIVP (Short Independent Vectors Problem) in the worst case to average-case
RLWEq,β with � samples, where β = αq · (n�/ log(n�))1/4.

For the Key Exchange from RLWE presented in [14], the signal function is
required for the two parties in the key exchange to derive a final shared key. The
signal function is usually sent by the responding party to the initiator of the key
exchange, which gives additional information about whether the respondent’s
key computed lies in a specific region. The case when the initiator sends the
signal is the One pass protocol. It is formally defined as follows:

Definition 2. Signal function: Given Zq = {− q−1
2 , . . . , q−1

2 } and the middle
subset E := {−	 q

4
, . . . , 	 q
4�}, we define Sig as the characteristic function of the

complement of E: Sig(v) = 0 if v ∈ E and 1 otherwise.

Definition 3. The final key is derived using the Mod2 function (Reconciliation)
defined as below: Mod2 : Zq × {0, 1} → {0, 1}: Mod2(v, w) = (v + w · q−1

2 ) mod
q mod 2.

To discuss the key exchange in [22], we recall the following definitions: Let
I0 := {0, 1, . . . 	 q

4�−1}, I1 := {−	 q
4
, . . .−1} and E′ := [− q

8 , q
8 )∩Z. Let I ′

0 = q
2+I0

and I ′
1 = q

2 + I1.

Definition 4. The cross rounding function, < · >2: Zq → Z2 is defined as
< v >2:= 	 4

q · v
 mod 2.

Definition 5. The randomization function dbl : Zq → Z2q, which is used in the
case of an odd modulus q is defined as dbl(v) = 2v − ē, where ē is uniformly
random modulo 2. In practice, ē is chosen such that Pr(ē = 0) = 1

2 and Pr(ē =
±1) = 1

4 .
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Definition 6. The final key derivation of the initiator of the key exchange uses
the reconciliation function, rec : Zq × Z2 → Z2 which is defined as

rec(w, b) =

{
0 w ∈ Ib + E (mod q),
1 otherwise.

Definition 7. The Modular rounding function 	·�2 : Zq → Z2, is defined as
	x�2 = 	 2

q · x� mod 2.

4 The Protocol

Let the notations be as defined in Sect. 3. Generate the parameters q, n, α for
the protocol and choose public a ← Rq uniformly. We recall the key exchange
protocol in [14] in the Figs. 1 and 2.

Party A Party B

Sample sA, eA ← χα

Secret Key: sA ∈ Rq

Public Key: a, pA = asA + 2eA ∈ Rq

Sample sB , eB ← χα

Secret Key: sB ∈ Rq

Public Key: a, pB = asB + 2eB ∈ Rq

Sample gB ← χα

Set kB = pAsB + 2gB

Find wB = Sig(kB) ∈ {0, 1}n

Sample gA ← χα

Set kA = pBsA + 2gA

skA = Mod2(kA, wB) ∈ {0, 1}n skB = Mod2(kB , wB) ∈ {0, 1}n

pA

pB , wB

Fig. 1. Protocol from [14]

5 New Attack Using Key Mismatch - One Pass Case

Suppose that party B reuses its public key pB and A is an active adversary
with the knowledge of pB and with the ability to initiate multiple key exchange
sessions to query party B. We present an attack in the one pass case of the
KE protocol, in which the adversary can initiate multiple key exchange sessions
with party B and use key mismatch in each session to retrieve the secret sB.
We use the notation pA for the public key of the adversary and sA, eA for the
corresponding secret and error respectively.
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Party A Party B

Sample sA, eA ← χα

Secret Key: sA ∈ Rq

Public Key: a, pA = asA + 2eA ∈ Rq

Sample sB , eB ← χα

Secret Key: sB ∈ Rq

Public Key: a, pB = asB + 2eB ∈ Rq

Sample gB ← χα

Set kB = pAsB + 2gB

Sample gA ← χα

Set kA = pBsA + 2gA

Compute wA = Sig(kA) ∈ {0, 1}n

skA = Mod2(kA, wA) ∈ {0, 1}n skB = Mod2(kB , wA) ∈ {0, 1}n

pA, wA

Fig. 2. Protocol from [14] - One pass case

5.1 Simplified Attack

We first consider the simpler case when party B does not add the error term gB

to its key computation kB , to explain the attack strategy and then extend to
the case of adding the noise.

Choice of sA and eA: The attacker chooses sA to be 0 in Rq (This is later
improved by choosing sA to be non-zero so that party B cannot verify that pA
is malformed trivially). For recovering the i-th coefficient sB [i], the attacker A
chooses an eA with coefficient vector that consists of all zeros, except for the
coordinate n − 1 − i, for which it is 1, and coordinate n − 1 − j, which is a small
integer k. So, we have eA[i] = 0 for all i = 0, . . . n−1 except i = n−1−i, n−1−j
and eA[n−1− i] = 1, eA[n−1− j] = k. He then performs the protocol honestly,
except that he deliberately flips bit n − 1 of the signal vector wA that he sends.
The index j is chosen such that sB [j] = ±1. Thus, the attacker first needs to
identify such a j. This is explained in Sect. 5.4.

Remark 1. The attacker can actually flip any bit of the signal wA and use the
corresponding index of the final shared key to look for mismatch to recover the
secret; we use the bit n − 1 because that allows us to ignore the complications
with signs during polynomial multiplication in the ring, simplifying the attack.
For example, if we want to use the 0-th coefficient of the final shared key to
recover value of sB [i], we can choose the (n − i)-th coordinate of the coefficient
vector of eA to be −1 and (n − j)-th coordinate to be −k and flip the 0-th bit
of the signal wA that he sends.

If we look at party B’s computation of the key kB , we have kB = sBpA which
results in kB [n − 1] = 2sB [i] + 2ksB [j] = 2sB [i] + 2k by the choice of sA, eA of
the attacker. Since the (n − 1)-th coordinate of the signal wA received from the
attacker is flipped to be 1, we have skB [n − 1] = kB [n − 1] + q−1

2 mod q mod 2.
Also, the attacker’s final shared key is skA = 0 since sA = 0.

Constructing Oracle B: We build an oracle B that performs the action of party B
and the adversary A has access to this oracle to make multiple queries. B takes
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(pA, wA, skA) as input where pA, skA corresponds to the public key and the final
shared key respectively of A. wA corresponds to the signal sent by A with the
n−1 bit flipped to 1. The oracle computes kB = pAsB and skB = Mod2(kB , wA).
B then outputs 1 if skB = skA and 0 otherwise.

From the construction of the oracle, it is clear that the oracle indicates if a key
exchange session is successful or not. Then the attacker can invoke the oracle
B with pA corresponding to different values of k to check for key mismatch.
Because the attacker performs the protocol mostly honestly (and both sA and
eA qualify as small vectors until k remains small), the attacker can compute the
value skB , except for index n − 1, for which he flips the signal bit. The attacker
can then determine the value of that bit by guessing a skB that has a 0 in that
position and the computed values elsewhere (In the case of sA = 0, all other
index values are also 0 but this is not the case when sA is not 0), and checking
with the oracle B to see if his guess was correct.

Flipping the signal bit allows the attacker to force party B to change the
parity of the final skB [n − 1] before the mod 2 operation, in every instantiation
of a session with the attacker. This is useful in associating a change in output
of B with a change from positive to negative values of kB [n − 1] or vice versa as
explained here:

Notice that the terms 2sB [i] + 2k of skB [n − 1] are even and also from
the usual choice of parameters for RLWE (following from Lemma 1) such that
q = 1 mod 2n, we have q−1

2 to be even. Thus, if sB[i] is negative, we have
skB [n − 1] = 0 as long as 2sB [i] + 2k is negative and there is no change in the
parity. So, a query to B with these values of (pA, wA, skA) results in an output
of 1. As k increases in value, we can see that kB [n − 1] changes from negative
to positive values. As this happens, we have skB [n − 1] = 1 since the addition
of q−1

2 to a positive value changes its parity by the representation of Zq to be
{− q−1

2 . . . q−1
2 } and the output of B becomes 0. So, a change from negative to

positive values of kB [n − 1] results in a change of output from 1 to 0 of B.
Also, if sB [i] is negative, then as k varies, kB [n−1] changes from negative to

positive values at the point when 2k is greater than the absolute value of 2sB [i]
i.e, k > |sB [i]|. Thus, the k value when there is a change in output of B reveals
the value of sB[i].

But if sB[i] is positive, skB does not change parity until k takes on larger
values (change only occurs when 2sB [i]+2k > q by the representation of Zq). As
k becomes large, the output of B is no longer reliable to indicate the difference
in the n − 1-th index since the errors amplify and other indexes of skB are
not guaranteed to match with that of skA. To handle this, the query that the
attacker sends modifies the eA chosen above so that eA[n − 1 − j] = −k, when
sB [i] is positive.

So if sB [i] is positive, then we have kB [n − 1] = 2sB [i] − 2k and this value
changes from positive to negative as k increases when k > sB [i]. Also, skB [n −
1] = 1 as long as kB [n−1] is positive because of the change in parity of skB [n−1]
caused by adding q−1

2 and results in the output of B to be 0. As the value changes
to negative, the output of B changes to 1.
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The attack can be summarized with the following steps for every coefficient
i of the secret sB , i from 0 to n − 1:

Step 1: The first step is to create an eA as described above and thus involves
identifying a j such that sB [j] = ±1. This is discussed in detail in
Sect. 5.4. The consequent steps here assume that the attacker succeeds
in finding such a j.

Step 2: Now, the attacker needs to resolve the sign of sB[i] to create queries
accordingly. The attacker queries B with pA, wA, skA. Here, pA = 2eA
corresponds to eA[n−1−j] = k = 0 and will result in kB [n−1] = 2sB [i].
wA and skA correspond to the signal with the last bit flipped to 1 and
final shared key of the attacker with the guess for the n − 1 coefficient
to be 0, respectively. This can be used by the attacker to determine the
sign of sB[i] since the sign of kB [n − 1] and sB [i] are the same. If the
output is 1 (i.e, the final keys match), the attacker concludes that the
sign of sB [i] is negative and if the output is 0, then the sign is positive.
One problem here is that if the coefficient value is 0, the output of B
would still be 1. So, to identify 0 values, the attacker can query again
corresponding to k = 0 but with eA[n − 1 − i] = −1 which results in
kB [n − 1] = −2sB [i]. If the output of B remains the same for both
queries for a coefficient, then the coefficient value has to be 0.

Step 3: If sB[i] is negative, as inferred from the previous step, the attacker
creates eB with eA[n − 1 − j] = k and varies k over values from 0 until
there is a change in the output of B. If sB is positive, eB is created
with eA[n − 1 − j] = −k.

Step 4: Looking for the k value when the output of B changes from 0 to 1
reveals the exact value of a negative sB [i] and a change from 1 to 0
reveals the value of a positive sB [i].
Note here that the output of B only gives information about whether
the final shared key of both parties agree or not. It is not possible
for the attacker to know which coordinates of the final key match and
which ones don’t. But the attack works since a change in the output
bit of B for smaller values of k would mean that it is caused by the
n − 1-th index by the bit flip in the signal as sA and eA remain small.
As k becomes larger, there is no assurance for the keys to match in the
other indexes.

Step 5: The recovered secret sB can be verified by checking the distribution of
pB − asB .

Remark 2. Consider the case sA[j] = −1; by following the above logic, the
attacker can flip the sign of k in eA to recover sB [i].

As we can repeat the above process for all i, this means we can read party
B’s secret key directly. The attack for one query is shown in Fig. 3 to recover a
negative sB [i]. Here, the adversary computes skA = 0 and B computes skB = 0
until kB [n − 1] is negative.
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Adversary A Party B

Choose sA = 0, eA = 0
Set eA[n−1− i] = 1, eA[n−1− j] = k
Public Key: a, pA = asA + 2eA ∈ Rq

Reused Public Key: a, pB = asB +
2eB ∈ Rq

Set kA = pBsA
Compute wA = Sig(kA) ∈ {0, 1}n

Flip wA[n − 1] = 1

Compute kB = pAsB

skA = Mod2(kA, wA) ∈ {0, 1}n skB = Mod2(kB , wA) ∈ {0, 1}n

pA, wA

Fig. 3. One instance of the attack in the simplified case choosing Adversary’s secret
sA = 0, when error gB is not added to the key computation kB

5.2 Extending the Attack When Adding the Error gB

In this case, the number of queries required to recover sB [i] increases compared
to the steps above, due to the complexity involved in eliminating the effect of
the noise gB [n − 1]. The strategy here is to look at the distribution of k values
when there is a change in the output of B, while running the attack on the same
coefficient of sB multiple times. The error gB [n−1] fluctuates kB but the k value
when kB changes from positive to negative or vice versa is centered around the
actual value of sB [i] since gB [n−1] values are sampled from an error distribution
(Discrete Gaussian) centered at 0. The oracle B can be modified to be contructed
as follows:

Constructing Oracle B: B takes p,w, sk as input where p, sk corresponds to
the public key and the final shared key respectively of A. The oracle computes
kB = psB + 2gB , where gB ← χα and skB = Mod2(kB , w). B then outputs 1 if
skB = sk and 0 otherwise.

Thus, the steps for the attack in this case are the same as above except that
step 3 is repeated a constant number of times and the distribution of k values
reveal the exact value of sB[i] for every coefficient i. For step 2, the attacker
queries by modifying (n − 1 − i)-th coordinate to be 2 so that kB [n − 1] =
4sB [i] ± 2k + 2gB [n − 1] to override the effect of gB [n − 1] on the sign.

In our experiments, we queried for the same sB [i] coefficient 1000 times and
derived the value from the distribution of k values corresponding to a change
in output of B, obtained from each run. The number of runs 1000 is chosen to
derive a reasonable number of samples for analyzing the distribution of k with a
certain confidence level and is independent of the choice of parameters n, q, α for
the protocol. For a confidence level of 95%, we estimated the number of samples
to be ≈ 1000 with margin of error 3%. From the description of the attack, the
distribution of k obtained for a coefficient value of 7 (on the top) and −3 (on
the bottom) are shown in Fig. 4.

The attacker can generate the distribution of k corresponding to different
values of a coefficient by running an initial attack, choosing a pB himself and
then perform the actual attack on party B.
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Fig. 4. Comparison of distribution of k while recovering coefficients 7 and −3 respec-
tively

5.3 Improved Attack

Finally, a simple randomness check at party B’s end could protect B from this
attack, as the public key is just all 0s and non-zero in 2 coordinates. To avoid this,
we perform the attack when the attacker’s public key is of the form asA + 2eA
with sA chosen as follows. We believe that this makes it more difficult for party
B to identify the attack.

We choose sA to be such that pBsA[n−1] = 0. This way we can obtain an sA
such that for the index n−1, the value of asBsA is small since pBsA = asBsA +
2eBsA, where eBsA is small. We require such a sA so that the asBsA[n−1] term
in kB [n−1] cannot override 2sB [i]+2k and the attack strategy can still be used.
Since pB is known to the adversary, he can solve the polynomial equation to find
sA such that pBsA[n−1] = 0. However, such an sA is not necessarily small. If sA
is not small, the errors amplify in the final key computed by the adversary and
party B and the two final keys need not necessarily match. Thus, the adversary
can no longer guess the final key computation of party B. To handle this, we use
LLL reduction on the solution space of the equation pBsA[n − 1] = 0 to derive
a small sA that satisfies the equation. We achieved this in our implementation
using Magma.

B’s computation of kB yields kB [n−1] = asBsA[n−1]+2(sB [i]+k+gB [n−1]).
Then, the attacker can perform the following process to recover the secret sB[i]:

Step 1: To determine the sign of sB[i], the attacker queries with eA such that
eA[n − 1 − i] = 4 and eA[n − 1 − j] = k = 0, so that the key kB

can override the effect of asBsA[n − 1] and gB [n − 1] on the sign of
sB [i]. This is possible since we know that asBsA[n− 1] is small, by the
choice of sA. Querying B a constant number of times, further counters
the effect of gB [n − 1] and reveals the sign of sB [i]. If the output of B
is 1, then sB[i] is negative and if B output is 0, then sB [i] is positive.
Querying again with eA[n−1−i] = −4 resolves the 0 value coordinates
of sB .

Step 2: Run the attack to obtain k value, denote k1 that recovers the value of
asBsA[n − 1] + sB [i].

Step 3: Repeat the attack by modifying eA such that eA[n − 1 − i] = 2, which
results in party B’s computation of kB [n−1] = asBsA[n−1]+2(2s[Bi]+
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k + gB [n− 1]). Recover k (denote k2) value corresponding to change in
output of B, hence recovering asBsA[n − 1] + 2sB [i].

Step 4: Compute k2 − k1 to recover the value sB [i].

There is one possibility in the above attack that asAsB [n−1] = −2sB [i] in which
case kB [n − 1] = 2k + 2gB [n − 1]. In this case, as we increase k, the mismatch
of final keys does not reveal the value of sB [i]. This case can be identified by
querying with k = −1 and checking if the output of B is different from the
output corresponding to k = 0. Recovering every coefficient of sB by running
the attack recovers the secret. With this section, we show that there are other
possible ways to improve the attack and it seems to be very difficult to prevent
it by just checking the randomness.

5.4 Determining Index j Such that sB [j] = 1

If sB [j] = 0, then modifying k doesn’t affect index n − 1 at all and thus can be
easily identified. Also, this case is already identified while determining the sign
of the coefficients.

We repeat for each coefficient j of sB , the following procedure until a j such
that sB [j] = 1 is identified, starting with the first positive coefficient, denote
j1. Since we can already determine the signs of every coefficient, it is enough to
check through only the positive coefficients for value 1.

Step 1: Start with j = j1. Assuming sB[j1] = 1, perform the attack on other
coefficients of sB .

If sB[j1] = 1, then running the attack would yield the correct secret sB. We
can verify that this value of sB recovered is actually the secret by verifying the
distribution of pB − asB . This is possible since a, pB are known and asB can
be computed using the recovered sB . Now, suppose sB [j1] > 1, the key kB of
party B recovers very small values since kB = asAsB[n−1]+2sB [i]+2ksB [j1]+
2gB [n − 1] changes from negative to positive faster when sB [j1] is greater than
1 and sB [i] is negative. The same logic applies for sB[i] positive. Thus, all the
coefficients recovered are very small and pB −asB computed with this recovered
sB does not follow the error distribution.

Step 2: Repeat Step 1 through all positive coefficients until a j such that
sB [j] = 1 is found.

If none of the positive coefficients are 1, then we can follow the same process
with a different eA (sign of k flipped) to check through the negative coefficients
to find a j such that sB[j] = −1.

Remark 3. There exists an index j such that s[j] = ±1 with high probability
when s ← χα.

Since the error distribution χα used is the Discrete Gaussian distribution and
we use the polynomial representation with two power cyclotomics, sampling an
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element s ∈ Rq is equivalent to sampling each coordinate of its coefficient vector
as a one dimensional Discrete Gaussian. The probability density function of the
continuous one dimensional Gaussian distribution with mean 0 and standard
deviation α is given by φα(x) = 1√

2πα
e−x2/2α2

.
For the parameter choice used in the experiments with q = 12289, α =

2.828, n = 1024, we have the probability of a coefficient s[i] of s ← χα to be ±1
given by

Pr(s[i] = ±1) =

∑
z=1 mod q ρα(z)
∑

y∈Z
ρα(y)

+

∑
z=−1 mod q ρα(z)
∑

y∈Z
ρα(y)

=

∑∞
k=−∞

1√
2π(2.828)

e
− (12289∗k+1)2

2(2.828)2

∑∞
y=−∞

1√
2π(2.828)

e
− y2

2(2.828)2

+

∑∞
k=−∞

1√
2π(2.828)

e
− (12289∗k−1)2

2(2.828)2

∑∞
y=−∞

1√
2π(2.828)

e
− y2

2(2.828)2

≈ 0.265038

So, the failure probability of the vector s sampled from the error distribution
not having a coefficient ±1 is given by (1 − 0.265038)1024 � 0. This can also be
verified in general when n is large and α is small.

In the extreme case that there does not exist an index j for which s[j] = 1,
the attack can still be performed by choosing 2 indexes j1, j2 such that sB [j1] +
sB [j2] = 1. In this case, the public key of the attacker would be pA = asA + eA
where the vector eA has k in the n − 1 − j1 and n − 1 − j2 coordinates and 1 in
the (n− 1− i) coordinate. Thus, we have pAsB[n− 1] = asAsB [n− 1]+ 2sB [i] +
2k(sB [j1] + sB [j2]) = 2sB [i] + 2k.

5.5 Adversary Query Complexity

To compute the query complexity of the attack, we compute the query com-
plexity of each phase of the attack: (1) Determining the sign of each coefficient,
(2) Determining index j such that sB [j] = ±1, (3) Determining a coefficient
value sB [i] when the error term gB is added to the key kB of party B when the
attacker’s secret sA = 0, (4) Recovering (using query complexity of 1, 2 and 3)
the secret sB with sA non-zero.

(1) The sign is determined by querying with pA corresponding to k = 0 a small
constant number of times (in our experiments, 10 queries were sufficient).
Thus, the query complexity here is constant for each coefficient, so the query
complexity to recover the signs of all the coefficients of sB is 2c′n ≈ 20n,
where c′ is a constant.

(2) sB is sampled from the error distribution that has standard deviation α.
So, to determine each coefficient, we need at most tα queries, where t is
a constant. Thus, to recover complete sB , we need ntα queries. Since the
error distribution we consider is the Discrete Gaussian and 99% of the
values lie within 3 standard deviations of the mean, in our experiments with
α = 2.828, we run 16 queries for each coefficient, allowing for fluctuations
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when error gB is added. Also, this is run at least 1000 times to get the
distribution of k, as described in Sect. 5.1 in attack extension. Thus, the
attack complexity in this case would be 1000ntα = Cnα, where C is the
constant = 1000t.

(3) Recovering the secret with sA of attacker non-zero: This is the actual attack
performed. In this case, the complete attack is run twice with different eA.
So, the number of queries required is 2Cnα.

(4) Determining index j such that sB [j] = 1: This requires running the attack
for every coefficient i assuming that sB [j] = 1 starting with the first positive
coefficient until such a j is found. So, the best case query complexity is
2Cnα, when the first positive coefficient turns out to be the required index
with sB [j] = 1 The same applies for searching −1. The worst case query
complexity is 2Cn2α.

Thus the query complexity of the complete attack would be 2c′n+ 2Cn2α ≈
O(n2α) in the worst case and 2c′n + 2Cnα ≈ O(nα) in the best case.

5.6 Experiments

We have run experiments to verify the attack strategy. We use parameters n =
1024, q = 12289, α = 2.828, used in [3] implementation. We used C++ with NTL
and pB value hard coded to be fixed for the experiments on a Windows 10, 64 bit
system equipped with a 2.40 GHz Intel(R) Core(TM) i7-4700MQ CPU and 8 GB
RAM. The LLL reduction to find an appropriate short secret sA of the attacker
was executed using Magma1. In our preliminary experiments, with the attacker’s
key of the form p = asA +2eA, sA non-zero chosen as described above, the time
taken for running 1000 queries for one coefficient value to get the distribution of
k is 35.1 mins with FFT for polynomial multiplication without any optimization.
This time taken is to run 16000 queries to party B with queries varying k from
0 to 15 are run 1000 times to get the distribution of k for one coefficient.

6 Extending Signal Function Attack

Protocol Review: We note that the signal function attack can also be extended
to the key exchange by Peikert [22] that was implemented in [5]. We review the
key exchange protocol in [22] that uses the cross rounding function (Signal) for
sending the additional information to compute the final shared key. Please refer
to Sect. 3 for notations and definitions of the functions used in the protocol. The
key exchange is as described below:

Party A: Set pA = asA + eA, where sA, eA ← χα and publish pA.
Party B: On receiving pA, choose sB , eB , gB ← χα and compute pB = asB+eB .

Then to obtain the shared key, compute kB = pAsB + gB . Let k̄B =
dbl(kB), wB =< k̄B >2 and output pB , wB to party A. The final
shared key is skB = 	k̄B�2.

1 https://github.com/Saras16/PaperMagmaCode.

https://github.com/Saras16/PaperMagmaCode
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Fig. 5. Comparison of signal in the two RLWE based key exchange protocols in [14,22].

Party A: To finish the key exchange, compute kA = pBsA and the final shared
key skA = rec(2kA, wB) (Fig. 5).

The Attack: The attack here is very similar to the attack using the signal
function in [9]. In this case, the additional information required for agreeing on
the final shared key skA, skB is achieved by party B sending the value of the
cross rounding function < . >2. By definition, <v>2 returns 0 when v ∈ I0, I

′
0

and 1 when v ∈ I1, I
′
1, where the sets I0, I

′
0, I1 and I ′

1 are as defined in Sect. 3.
Thus, we refer to the output wB of the cross rounding function <k̄B>2 as the
signal. The variation here, compared to the signal function in [14] is that the
signal regions are defined as quadrants as opposed to E,Ec in Definition 2 and
the signal function is applied on dbl(kB). The dbl function is applied on kB in
the protocol to remove bias when q is odd, which is usually the case in RLWE
instantiations.

The strategy behind the initial signal function attack is that when the
attacker’s key is chosen in such a way that party B’s computation of kB = ksB

for k values ranging over all values in Zq, kB [i] value varies in multiples of sB [i]
and the number of signal changes is exactly 2sB [i] for every coefficient i. This is
because there are 2 boundary points (from the way the signal regions E,Ec are
defined) where the signal bit flips.

In the key exchange described above, the cross rounding function divides
Zq into quadrants resulting in 4 boundary points where the value of the signal
flips. Thus, following the same approach as the signal function attack in [9],
the number of signal changes while using the cross rounding function is exactly
4sB [i], for every coefficient i. So, the secret can be compromised in 2q queries to
the honest party reusing the key. Essentially we get the signal values of party B’s
secret with the error 2gB − ē causing fluctuations in the signal changes with this
protocol as well. This can be handled by not counting the fluctuations as signal
changes. The fluctuations are easier to identify since the changes are within a
smaller interval.

7 Signal Function Attack with Reduced Query
Complexity

The signal function attack works by counting the number of times the signal bit
Sig(kB) changes for each coefficient of kB , for k across all values of Zq in the
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public key pA = asA + keA of the adversary. The adversary specifically chooses
sA to be 0 and eA to be 1 in Rq in the simplified form of the attack. A then
queries with his public key as (1 + x)pA to eliminate the ambiguity of the ±
sign of the coefficients recovered from previous queries and determine the exact
values. The attack is also then extended to the case when sA is sampled from the
error distribution χα so that the adversary’s public key pA is an RLWE sample
indistinguishable from uniform. This attack requires 2q queries to party B to
extract the exact value of the secret sB . For a detailed description of the attack,
refer to [9].

We now show that the attack can be more efficient with fewer queries. This
comes from the observation that it is not necessary to vary k through all the
values of Zq to determine the value of sB accurately. For each coefficient of the
secret sB[i], as k varies from 0 to q−1, the key value kB [i] changes in multiples of
sB [i]. Thus, depending on the value of sB [i], the period of signal change varies
and this can be used to perform the attack more efficiently. We consider the
different cases of the protocol here to see how fewer queries can still successfully
recover the secret.

Case 1: First, we consider the simplified case when the error term gB is not
added to the key computation kB and the secret of the adversary sA is
0, with public key pA = k. It is then clear that determining the first k
value when the signal changes gives the value of sB [i] upto ± sign since
the first flip of the signal bit happens when k changes from 	 q

4sB [i]� to
	 q
4sB [i]�+1 by the definition of the signal region E,Ec. Also, instead of

querying for each coefficient separately, we can query for all coefficients
at once varying k from 0 to q/4 + 2. This is because the smaller sB [i]
values need more number of queries for counting the first signal change.
For example, sB [i] = ±1 needs q/4+2 queries, sB [i] = ±2 needs q/4+1
queries and so on. Again using q/4 + 2 queries to party B with public
key of adversary pA = (1 + x)k, the ambiguity of ± sign is resolved.
Thus, the adversary can recover sB with 2(q/4 + 2) = q/2 + 4 queries
thus reducing the query complexity by a factor of 1/4 compared to
previous complexity of 2q described above.

Case 2: This is the case of the original protocol where the adversary only
slightly deviates from the protocol by choosing eA = 1, sA is chosen
according to the error distribution χα and pA = asA+keA = asA+k so
that an attacker’s public key cannot be distinguished from uniform. In
this case, we cannot use the first k where the signal flips to determine
the value of sB since kB = asAsB + ksB + 2gB ; For every coefficient i,
we have asAsB [i] as a constant value that is unknown to the adversary
along with the noise gB , added to ksB [i]. In order to count the number
of signal changes here, the attacker varies k starting with k = 0 and
records the first signal change at k = k1. Then he can vary k for nega-
tive values and record the first signal change in this direction at k = k2.
Now, k1 − k2 is the span of the region E or Ec in multiples of sB [i].
Thus, 	 q

2(k1−k2)
� reveals the value of sB[i] upto ± sign since the period
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of the signal change is k1 − k2. When the error gB is added to the key
computation kB , the signal change does not happen in specific intervals
due to the fluctuations. Here, we can query a small constant number
of times more than q/2 until the signal stabilizes after a change. Thus,
with q

2 +c queries where c is a small constant, we can recover sB[i] upto
sign. c is small since the values stabilize when k increases and ksB [i] is
away from the boundary points. So, to recover the exact value of the
secret requires q + c queries.

This is further illustrated with the help of an example in the full version of
paper.

8 Conclusion

In this work, we have presented a new attack on the RLWE key exchange show-
ing that even an unsuccessful key exchange session, when the final computed
keys of both parties do not match can be used to recover the secret of a fixed
public key. We also extend a previous attack based on the signal function to the
KE protocol described in [22]. This shows that reuse of keys should always be
avoided while replacing a key exchange protocol based on RLWE as a potential
post-quantum alternative. This does not apply to the case of IND-CCA KEMs
using the Fujisaki-Okamoto transformation. We also note that in the New Hope
implementation, the public a is chosen at random for every new key exchange
session. However, the active attacks on the KE protocols rely on the fact that
the public key is reused in certain Internet protocols. So, even if the New Hope
implementation is integrated into such protocols, a new a might not be chosen
for every key exchange session as suggested in the work and hence is vulnerable
to such attacks. The security risk associated with key reuse is acknowledged in
the works of New Hope and [22].

Acknowledgements. Jintai Ding and Saraswathy RV would like to thank NSF and
US Air Force for its partial support.
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Abstract. Extension Field Cancellation (EFC) was proposed by Alan
et al. at PQCrypto 2016 as a new trapdoor for constructing secure multi-
variate encryption cryptographic schemes. Along with this trapdoor, two
schemes EFC−

p and EFC−
pt2

that apply this trapdoor and some mod-
ifiers were proposed. Though their security seems to be high enough,
their decryption efficiency has room for improvement. In this paper, we
introduce a new and more efficient decryption approach for EFC−

p and
EFC−

pt2
, which manages to avoid all redundant computation involved

in the original decryption algorithms, and theoretically speed up the
decryption process of EFC−

p and EFC−
pt2

by around 3.4 and 8.5 times,
respectively, under 128-bit security parameters with our new designed
private keys for them. Meanwhile, our approach does not interfere with
the public key, so the security remains the same. The implementation
results of both decryption algorithms for EFC−

p and EFC−
pt2

are also
provided.

Keywords: Multivariate cryptography · Extension field cancellation
Decryption algorithm · Minus

1 Introduction

In 1994, Shor [17] introduced an algorithm that can solve the integer factor-
ization problem and the discrete logarithm problem in polynomial time on a
quantum computer. Hence once large-scale quantum computers are put into use,
the currently used public key cryptosystems such as RSA [16] and ECC [9] will
be totally broken. The cryptology research community is seeking for alternative
cryptosystems that are secure in the quantum era. Specially, the National Insti-
tute of Standards and Technology (NIST) [11] in the United States is calling for
post-quantum cryptosystems (PQC) proposals to be standardized. It has also
c© Springer International Publishing AG, part of Springer Nature 2018
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been emphasized by the National Security Agency (NSA) [6] on their plan for
switching to quantum resistant algorithms in the future.

According to NIST [11], multivariate cryptography is one of the main can-
didates for PQC. Multivariate cryptography is in general very fast and requires
only modest computational resources, which makes it attractive for its use on low
cost devices such as smart cards and RFID chips [1,2]. One traditional method
for building a multivariate scheme is to construct an easy-to-invert quadratic
polynomial map F ∈ F[x1, . . . , xn]m over a finite field F as the central map. One
can also construct the central map F by first choosing a map from an extension
field E of F and then mapping down to F. The public key P is generated by hid-
ing the central map F with two secret invertible linear or affine maps S and T ,
i.e., P = T ◦ F ◦ S. Therefore, the public key consists of quadratic polynomials.
The security basis of multivariate cryptographic systems is the MQ-Problem,
which aims to solve a given system of multivariate quadratic polynomials over
a certain finite field, and this problem (for m ≈ n) is generally considered to be
an NP-hard problem [15]. To investigate the hardness of the MQ-problem, the
MQ challenge is currently being held [21].

Since the first multivariate cryptosystem MI [10] was proposed, many multi-
variate cryptosystems inheriting its construction have been proposed. As multi-
variate signature schemes, UOV [8] and Rainbow [5] have drawn great attention
in cryptography community. UOV has been standing secure for almost 20 years,
and as its improved version, Rainbow is considered as a very promising signa-
ture scheme for post-quantum cryptography. Moreover, in order to put UOV
and Rainbow into practical use, many efficient implementation on IoT devices
of UOV [1,4] and Rainbow [2,19] have been devised. On the other hand, many
attempts of constructing secure multivariate encryption schemes have also been
made, such as HFE [13], ABC [20], ZHFE [14], SRP [22] and EFC [18]. Most of
them were proven to be insecure by many different attacks, such as MinRank [7],
HighRank [3], Linearization [12]. Nevertheless, ABC and EFC are still standing
secure.

At PQCrypto 2016, Szepieniec et al. [18] proposed a new type of trapdoor
called Extension Field Cancellation (EFC), and two encryption schemes EFC−

p

and EFC−
pt2 . They use both matrix multiplications as in the ABC [20] scheme and

extension field structure as in MI [10], HFE [13] and ZHFE [14]. By utilizing the
commutativity property in the extension field, the decryption process of EFC−

p

and EFC−
pt2 can be done by solving linear systems. This combination makes

EFC secure against all current attacks and become one of the main candidates
for multivariate encryption systems at the moment.

In this paper, we break down the operations involved in the key generation
and decryption processes, and introduce a more efficient decryption approach
for EFC−

p and EFC−
pt2 . The decryption algorithms for EFC−

p and EFC−
pt2 rely

on the bilinear relation between the plaintext and an augmented ciphertext,
that is the concatenation of ciphertext and the values of the removed poly-
nomials by the minus modifier. This bilinear relation is used for constructing
linear systems in the decryption process of EFC−

p and EFC−
pt2 . The values of the
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removed polynomials have to be exhaustively searched until the correct values
are found. For each guess, the linear system derived from the bilinear relation
has to be reconstructed, which indicates redundant computations. Our proposed
decryption algorithms aim to separate the computation of constructing the lin-
ear system into two kinds of computations. One is the computation involving the
plaintext and the ciphertext. The other one is computation involving the plain-
text and the guessed values. Therefore, the repetitive computation involving the
plaintext and the ciphertext can be avoided.

This paper is structured as follows. In Sect. 2, we recall the construction
of EFC−

p and EFC−
pt2 , and their decryption algorithms in [18]. In Sect. 3, we

introduce our proposed new decryption algorithms for EFC−
p and EFC−

pt2 , and
end it with a comparison between the original decryption approach and our
proposed new one. Finally, We conclude the paper in Sect. 4.

2 Extension Field Cancellation (EFC)

EFC is one of the few multivariate cryptographic trapdoors that still remain
secure. Although this trapdoor is exposed under bilinear attack, MinRank attack
and differential attack, its modified versions, EFC−

p and EFC−
pt2 , manage to avoid

all of those threats. EFC−
p is constructed by applying minus and projection modi-

fiers to EFC. Minus modifier increases the rank of the quadratic forms associated
with the central map polynomials over the extension field, which makes MinRank
attack and direct algebraic attack more difficult to practice. Projection modi-
fier is used to avoid the potential differential attack. The minus modifier affects
the performance of decryption process drastically when the number of removed
polynomials from the public key is large. Under this circumstances, EFC−

pt2 was
proposed, which is basically EFC−

p with frobenius tail. It increases the rank
of the quadratic forms associated with the central map polynomials over the
extension field, that enables us to use a smaller number of removed polynomials.
Therefore, it results in a significant speedup on the decryption algorithm. More
cryptanalysis of EFC−

p and EFC−
pt2 can be found in [18].

In this section, we recall the constructions of EFC−
p and EFC−

pt2 [18], and
the original decryption algorithms designed for them.

2.1 Notations

Let F be a finite field of q elements. Given a positive integer n, x1, . . . , xn are
n variables over F, and define x = (x1, . . . , xn). E denotes a degree n extension
field of F. Denote the set of all n × m matrices by F

n×m. Matrices are denoted
by capital letters, vectors are denoted by bold lowercase letters, and all vectors
are treated as row vectors. The i-th entry of a vector v is denoted by vi, the
i-th row of a matrix M is denoted by Mi. For a matrix M , M[i,j;k,s] denotes a
submatrix of M formed by i-th to j-th rows, and k-th to s-th columns.
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Choose {θ1, . . . , θn} as a basis for E/F, let b = (θ1, . . . , θn) ∈ E
n, and define

an isomorphism ϕ : Fn � v �→ vb� ∈ E. For A ∈ F
n×n, and v = (v1, . . . , vn) ∈

F
n, define α(v) = ϕ(vA) ∈ E. The multiplication by α(v) is an F-endomorphism

on E. This endomorphism is identified with an endomorphism on F
n by the

isomorphism ϕ. The matrix corresponding to this endomorphism is denoted by
αm(v) ∈ F

n×n. For a matrix B ∈ F
n×n and v ∈ F

n, we define β(v) and βm(v)
in the same way as α(v) and αm(v). For a positive integer a, πa stands for the
following map:

πa : F2n � (v1, · · · , v2n) �→ (v1, · · · , v2n−a) ∈ F
2n−a.

2.2 Construction of the EFC−
p Schemes

– Key Generation

Given a prime number n, randomly choose A,B ∈ F
n×n of rank n − 1 such that

the intersection of the kernel spaces of A and B is the zero subspace. Randomly
choose two invertible linear maps S : Fn → F

n and T : F2n → F
2n, we denote

the matrices associated to these linear maps by S ∈ F
n×n, T ∈ F

2n×2n, i.e.
S(x) = xS. The central map F for EFC−

p is

F : Fn � x �→ (x · αm(x), x · βm(x)) ∈ F
2n.

The public key for EFC−
p is given by

P = (p1, · · · , p2n−a) = πa ◦ T ◦ F ◦ S : Fn → F
2n−a,

where pi (1 ≤ i ≤ 2n − a) are quadratic polynomials in x1, . . . , xn over F.
Next we take a look at the explicit form of the central map F . Since α(x) ∈ E,

it can be represented with basis {θ1, . . . , θn}, i.e. α(x) = xAb�. Let αi = Aib� ∈
E for 1 ≤ i ≤ n, then we have α(x) =

∑n
i=1 xiαi. Define matrices C(i) ∈ F

n×n

by (C(i))�
j = ϕ−1(αiθj) for 1 ≤ i, j ≤ n. It is easy to check that C(i) satisfies

bC(i) = αib for 1 ≤ i ≤ n, which indicates αm(x) =
∑n

i=1 xiC
(i). Similarly, we

define matrices D(i) ∈ F
n×n for 1 ≤ i ≤ n and they satisfy βm(x) =

∑n
i=1 xiD

(i).
Therefore, the explicit form of F is

F : Fn � x �→
(

x ·
(

n∑

i=1

C(i)xi

)

, x ·
(

n∑

i=1

D(i)xi

))

∈ F
2n.

– Encryption

Given the public key P and a plaintext z ∈ F
n, its ciphertext is c = P(z) ∈ F

2n.

– Decryption

Given the private key {A,B,S, T } and a ciphertext c ∈ F
2n−a, we find the

plaintext z ∈ F
n such that P(z) = c. First, we need to guess the value v from
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F
a for the deleted polynomials by πa. Second, we compute F

n ×F
n � (d1,d2) =

d = T −1(c,v). Next we invert the map F by solving the linear system

d2αm(x) = d1βm(x), (1)

and obtain a solution h ∈ F
n. Finally, if F(h) = (d1,d2), then we obtain the

plaintext by z = S−1(h). The loop of guessing the value v from F
a terminates

when the correct plaintext z is found. The details are shown in Algorithm1.

Algorithm 1. Decryption algorithm for EFC−
p

Input : A ciphertext c ∈ F
2n−a,

The private key A, B, S ∈ F
n×n and T ∈ F

2n×2n.
Output: The plaintext z ∈ F

n.

1 Sinv ← S−1, Tinv ← T −1

2 Generate αm(x), βm(x) and F from A, B
3 for v ∈ F

a do
4 F

n × F
n � (d1,d2) = d ← (c,v) · Tinv

5 construct a linear system d2 · αm(x) − d2 · βm(x) = 0
6 solve d2 · αm(x) − d2 · βm(x) = 0, and choose a solution h ∈ F

n

7 if F(h) = d then
8 break

9 F
n � z ← h · Sinv

10 Return z.

Regrading the complexity of this decryption algorithm, we have the following
proposition:

Proposition 1. The number of F-additions and F-multiplications involved in
the decryption algorithm for EFC−

p are

4n4 +
3
2
n3 − 5

2
n +

qa

2
(
13
3

n3 +
7
2
n2 − 29

6
n), and

4n4 +
15
2

n3 +
1
2
n2 − n +

qa

2
(
13
3

n3 + 7n2 − 1
3
n),

(2)

respectively.

Proof. Let [+]F denotes F-addition, and [×]F denotes F-multiplication of F. We
recall the complexity of Gaussian Elimination, and multiplication in E. For an

input of n × m (m ≥ n) matrix over F, Gaussian Elimination requires
n−1∑

i=1

(n −

i)(m−i) [+]F and
n−1∑

i=1

(n−i)(m−i)+
n−1∑

i=1

(n−i) [×]F. For any a, b ∈ E, represented

in basis {θ1, . . . , θn}, a · b requires (n − 1)(2n − 1) [+]F and 2n2 [×]F.
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Now we analyze the complexity based on the Algorithm 1.
In step 1, computing T−1 requires n(20n2−12n+1)

3 [+]F and 2n(10n2−3n−1)
3 [×]F,

and computing S−1 requires n(5n2−6n+1)
6 [+]F and n(5n2−3n−2)

6 [×]F. In step 2,
to obtain αm(x), we need to compute α(x) =

∑n
i=1 xiαi, where αi = Aib� (1 ≤

i ≤ n), and this requires n(n − 1) [+]F and n2 [×]F. Then we need to compute
αib for 1 ≤ i ≤ n, which indicates n2 [×]E, and it requires n2(n − 1)(2n − 1)
[+]F and 2n4 [×]F. Same complexity holds for obtaining βm(x).

From step 3 to step 8, we enter a loop of size qa. In step 4, (c,v) · Tinv

requires 2n(2n − 1) [+]F and 4n2 [×]F. In step 5, constructing the linear system
needs 2n3 − n2 [+]F and 2n3 [×]F. In step 6, solving the linear system with
Gaussian Elimination requires n(n−1)(2n+5)

6 [+]F and n(n2+3n−1)
3 [×]F. In step 7,

verifying whether F(h) = d holds costs 2n(n2 − 1) [+]F and 2n2(n + 1) [×]F.
The loop terminates in step 8 after an average of qa

2 times. Therefore, the loop
costs qa

2 ( 133 n3 + 7
2n2 − 29

6 n) [+]F and qa

2 ( 133 n3 + 7n2 − 1
3n) [×]F in average.

In step 9, computing h · Sinv needs n(n − 1) [+]F and n2 [×]F.
Since step 1, step 2 and step 9 together costs 4n2 + 3

2n3 − 5
2n [+]F and

4n2 + 15
2 n3 + 1

2n2 −n [×]F, the total cost of this decryption algorithm is Eq. (2).
This completes the proof. 
�

2.3 Construction of the EFC−
pt2 Scheme

– Key Generation

Choose the secret key A,B and S, T as in EFC−
p . The central map F for EFC−

pt2

is

F : Fn � x �→
(
xαm(x) + ϕ−1(β(x)3), xβm(x) + ϕ−1(α(x)3)

)
∈ F

2n. (3)

The public key for EFC−
pt2 is P = (p1, . . . , p2n−a) = πa ◦T ◦F ◦S : Fn → F

2n−a.
The private key consists of A,B and S, T .

Remark 1. Let q be the cardinality of F, then E � x �→ xqi ∈ E is a linear
map over F for any i ∈ N. In order to let ϕ−1(α(x)3) and ϕ−1(β(x)3) become
quadratic polynomials, we need to let F be the finite field of 2 elements.

We take a look at the explicit structure of (3) using b = (θ1, . . . , θn). Since
x·αm(x) and x·βm(x) can be represented in the same way as in Sect. 2.2, we show
the explicit form of ϕ−1(α(x)) and ϕ−1(β(x)) here. Let Θ = b�b ∈ E

n×n and
ϕ−1(Θ) = (Θ1, . . . , Θn) ∈ (Fn×n)n. Define a matrix Δ ∈ F

n×n by Δi = ϕ−1(θ2i ).
Then α(x)3 can be represented as

α(x)3 = α(x)2 · α(x) = xA

⎛

⎜
⎝

θ21
...

θ2n

⎞

⎟
⎠ · b(xA)�

= xAΔΘ(xA)� =
n∑

i=1

θi · xAΔΘi(xA)�.
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β(x)3 can be represented in the same way. Therefore, we have

ϕ−1(α(x)3) = (xAΔΘ1(xA)�, . . . ,xAΔΘn(xA)�),

ϕ−1(β(x)3) = (xBΔΘ1(xB)�, . . . ,xBΔΘn(xB)�).

– Encryption

Given the public key P and a plaintext z ∈ F
n, the ciphertext is c = P(z) ∈

F
2n−a.

– Decryption

Before showing the decryption process for EFC−
pt2 , we take a look at how to

invert the central map F . Which requires solving the system F(x) = d ∈ F
2n,

i.e.
x · αm(x) + ϕ−1(β(x)3) = d1,

x · βm(x) + ϕ−1(α(x)3) = d2,
(4)

where d = (d1,d2) ∈ F
n × F

n. By definition of αm(x) in Sect. 2.1, the equation
ϕ(x · αm(x)) = ϕ(x)α(x) holds. Thus (4) is equivalent to

ϕ(x)α(x) + β(x)3 = ϕ(d1),

ϕ(x)β(x) + α(x)3 = ϕ(d2),

from which the following system can be constructed:

d2αm(x) − d1βm(x) = ϕ−1(α(x)4 − β(x)4). (5)

Define a matrix Λ ∈ F
n×n by Λi = ϕ−1(θ4i ) for 1 ≤ i ≤ n, and apply it to (5).

Then (5) turns into

d2αm(x) − d1βm(x) = x(A − B)Λ, (6)

which is a linear system in x.
Now we explain the decryption process of EFC−

pt2 . Given the private key
{A,B,S, T } and a ciphertext c ∈ F

2n−a, we find the plaintext z ∈ F
n, such

that P(z) = c. First, we need to guess the value v from F
a for the deleted

polynomials by πa. Second, we compute F
n × F

n � (d1,d2) = d = T −1(c,v).
Next we invert the map F by solving the linear system (6), and obtain a solution
h ∈ F

n. Finally, if F(h) = d, then we obtain the plaintext by z = S−1(h). The
guessing of v from F

a terminates when the correct plaintext z is found. The
details are shown in Algorithm2.

We analyze the complexity of the decryption algorithm for EFC−
pt2 adopting

the same approach as in the proof of Proposition 1, and obtain the number of F-
additions and F-multiplications involved in the decryption algorithm for EFC−

pt2

as
4n4 +

11
2

n3 − 6n2 − 1
2
n +

qa

2
(
16
3

n3 +
5
2
n2 − 29

6
n) and

4n4 +
23
2

n3 +
1
2
n2 − n +

qa

2
(
16
3

n3 + 7n2 − 1
3
n),

(7)

respectively.
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Algorithm 2. Decryption algorithm for EFC−
pt2

Input : b = (θ1, . . . , θn) ∈ E
n. A ciphertext c ∈ F

2n−a,
The private key A, B, S ∈ F

n×n and T ∈ F
2n×2n.

Output: The plaintext z ∈ F
n.

1 Sinv ← S−1, Tinv ← T −1

2 Define Λ ∈ F
n×n by Λi = ϕ−1(θ4

i )
3 Generate αm(x), βm(x) and F from A, B
4 for v ∈ F

a do
5 F

n × F
n � (d1,d2) = d ← (c,v) · Tinv

6 construct a linear system d2αm(x) − d1βm(x) = x(A − B)Λ
7 solve d2αm(x) − d1βm(x) = x(A − B)Λ and choose a solution h ∈ F

n

8 if F(h) = d then
9 break

10 F
n � z ← h · Sinv

11 Return z.

3 Our Proposed Efficient Decryption Algorithms
for EFC−

p and EFC−
pt2

In this section, we introduce our new decryption algorithms for EFC−
p and

EFC−
pt2 .

3.1 New Decryption Algorithm for EFC−
p

The new decryption algorithm is derived from linearization equations, which rep-
resent a relation between the plaintext and ciphertext. We start with developing
a new decryption algorithm for EFC−

p without applying the minus modifier, i.e.
EFCp.

Recall the linear system (1) for inverting the central map of EFC−
p

d2αm(x) − d1βm(x) = 0,

which is equivalent to

α(x)ϕ(d2) − β(x)ϕ(d1)

= xAb� · bd�
2 − xBb� · bd�

1 = 0.

Let Θ = b�b and (Θ1, . . . , Θn) = ϕ−1(Θ), then from this equation, we can
obtain linearization equations corresponding to the central map of EFC−

p as
follows:

xAΘi(0n, In)d� − xBΘi(In, 0n)d� = 0, (1 ≤ i ≤ n), (8)

where d = (d1,d2). Let c ∈ F
2n be a ciphertext of EFCp, then c = T (d).

Apply the linear maps S and T to Eq. (8), we obtain the linearization equations
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between a plaintext x and c as

xSAΘi(0n, In)(cT−1)� − xSBΘi(In, 0n)(cT−1)� = 0. (9)

For a ciphertext c of EFCp, its corresponding plaintext can be found by solving
Eq. (9).

Next we show how to represent Eq. (9) into one simple equation. Let T1 =
(T−1

[1,2n;1,n])
� ∈ F

n×2n, and T2 = (T−1
[1,2n;n+1,2n])

� ∈ F
n×2n. Apply T1, T2 to

Eq. (9), we have

x(SAΘiT2 − SBΘiT1)c� = 0, (1 ≤ i ≤ n). (10)

Let N (i) = (SAΘiT2 − SBΘiT1)� ∈ F
2n×n, and define matrices U (j) by U

(j)
i =

N
(i)
j for 1 ≤ j ≤ 2n and 1 ≤ i ≤ n. Then Eq. (10) turns into one simple equation

(c1U (1) + · · · + c2nU (2n)) · x� = 0. (11)

This equation indicates that as long as we have the set Ψ = (U (1), . . . , U (2n)),
the decryption process of EFCp can be reduced into the computation of the right
kernel space of c1U

(1) + . . . + c2nU (2n).

Remark 2. Since in our new decryption algorithm, only the ciphertext c and
U (1), . . . , U (2n) are necessary, we intend to save Ψ = (U (1), . . . , U (2n)) as the
new private key for EFC−

p , which is 2n/7 times larger than the original private
key. The details for generating Ψ is shown in Algorithm 3.

Algorithm 3. New private key generation for EFC−
p

Input : b = (θ1, · · · , θn), the private key A, B, S ∈ F
n×n and T ∈ F

2n×2n.
Output: New private key Ψ = (U (i), · · · , U (2n)) ∈ (Fn×n)2n.

1 Θ ← b� · b, (Θ1, . . . , Θn) ← ϕ−1(Θ)

2 T1 ← (T −1
[1,2n;1,n])

� ∈ F
n×2n, T2 ← (T −1

[1,2n;n+1,2n])
� ∈ F

n×2n

3 for i ← 1 to n do

4 N (i) ← (SAΘiT2 − SBΘiT1)
� ∈ F

2n×n

5 for j ← 1 to 2n and i ← 1 to n do

6 U
(j)
i ← N

(i)
j

7 Return Ψ = (U (1), . . . , U (2n)).

Now we explain our proposed decryption algorithm for EFC−
p . First, we com-

pute L =
∑2n−a

i=1 ciU
(i). Second, we guess the values for the deleted polynomials

by πa from F
a, and denote these values by v = (v1, · · · , va). Next, we compute

the right kernel space ker = ker(L +
∑a

i=1 viU
(2n−a+i)). Finally, we check if
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Algorithm 4. Proposed decryption algorithm for EFC−
p

Input : The new private key Ψ = (U (1), · · · , U (2n)) ∈ (Fn×n)2n,
the public key P, a ciphertext c = (c1, · · · , c2n−a) ∈ F

2n−a.
Output: The plaintext z ∈ F

n s.t. P(z) = c.

1 L ← ∑2n−a
i=1 ciU

(i)

2 for v = (v1, . . . , va) ∈ F
a do

3 H ← L +
∑a

i=1 viU
(2n−a+i)

4 ker ← RightKer(H)
5 for z ∈ ker do
6 if P(z) = c then
7 Return z
8 break

there exists z ∈ ker, such that P(z) = c holds. If so, then z is the plaintext, oth-
erwise, go back to the guessing step and start over. The details of this decryption
process is shown in Algorithm 4.

Regarding the complexity of the new decryption algorithm for EFC−
p , we

have the following proposition.

Proposition 2. The number of field additions and multiplications involved in
the new decryption for EFC−

p are

2n3 − (a + 1)n2 +
qa

2
(
7
3
n3 +

1
2
n2 − 17

6
n) and

2n3 − an2 +
qa

2
(
7
3
n3 + 3n2 − (a +

1
3
)n),

(12)

respectively.

Proof. Let [+]F denote F-addition, and [×]F denote the F-multiplication. We
analyze the complexity based on Algorithm4.

In step 1,
∑2n−a

i=1 ciU
(i) requires n2(2n − a − 1) [+]F and n2(2n − a) [×]F.

From step 2 to 8, we enter a loop of size qa. In step 3, L +
∑a

i=1 viU
(2n−a+i)

costs an2 [+]F and an2 [×]F. In step 4, finding the right kernel of H requires
n(n−1)(2n+5)

6 [+]F and n(n2+3n−1)
3 [×]F. In step 6, verifying the solution requires

(2n − a)(n2 − 1) [+]F and (2n − a)(n2 + n) [×]F. In step 8, the loop terminates
after an average of qa

2 times. Therefore, the loop requires qa

2 ( 73n3 + 1
2n2 − 17

6 n)
[+]F and qa

2 ( 73n3 + 3n2 − (a + 1
3 )n) [×]F in average.

Therefore, the total cost of this decryption algorithm is Eq. (12). This com-
pletes the proof. 
�

3.2 New Decryption Algorithm for EFC−
pt2

Same as EFC−
p , the new decryption algorithm for EFC−

pt2 also derives from lin-
earization equations. We first consider the new decryption algorithm for EFC−

pt2
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without applying the minus modifier, i.e. EFCpt2 . Recall in Sect. 2.3, inverting
the central map of EFC−

pt2 requires solving the linear system

d2αm(x) − d1βm(x) = x(A − B)Λ, (13)

where Λ ∈ F
n×n, Λi = ϕ−1(θ4i ) for 1 ≤ i ≤ n. Apply isomorphism ϕ to the both

sides of Eq. (13), we have

ϕ(d2)α(x) − ϕ(d1)β(x) = ϕ(x(A − B)Λ). (14)

Let Θ = b�b, (Θ1, . . . , Θn) = ϕ−1(Θ), and apply ϕ−1 on both sides of Eq. (14).
Then we have

xAΘi(0n In)d� − xBΘi(In 0n)d� − (x(A − B)Λ)i = 0, (1 ≤ i ≤ n), (15)

which are the linearization equations for the central map of EFCpt2 . Let c ∈ F
2n

be a ciphertext of EFCt2 , then c = T (d). Applying linear maps S and T on
(15) gives us the linearization equations of a plaintext x and a ciphertext c for
EFCpt2 ,

xSAΘi(0n In)(cT−1)� − xSBΘi(In 0n)(cT−1)� − (xS(A − B)Λ)i = 0. (16)

Next we show how to represent Eq. (16) into one simple equation. Let T1 =
(T−1

[1,2n;1,n])
� ∈ F

n×2n, and T2 = (T−1
[1,2n;n+1,2n])

� ∈ F
n×2n. Applying T1, T2 on

Eq. (16) yields

x(SAΘiT2 − SBΘiT1)c� − (xS(A − B)Λ)i, (1 ≤ i ≤ n). (17)

Let M = S(A − B)Λ ∈ F
n×n, N (i) = (SAΘiT2 − SBΘiT1) ∈ F

n×2n, and define
matrices U (j) by U

(j)
i = N

(i)
j for 1 ≤ j ≤ 2n and 1 ≤ i ≤ n. Then (17) can be

rearranged into

(c1U (1) + · · · + c2nU (2n) − M�) · x� = 0. (18)

This equation indicates that the decryption of EFCpt2 can be reduced to the
computation of the right kernel space of c1U

(1) + · · · + c2nU (2n) − M�.

Remark 3. Similar to EFC−
p , we save Ψ = (U (1), . . . , U (2n),M) as the new pri-

vate key for EFC−
pt2 , which is (2n + 1)/7 times larger than the original private

key. The details for generating Ψ is shown in Algorithm 5.

Now we explain the new decryption algorithm for EFC−
pt2 . First, we compute

L = (
∑2n−a

i=1 ciU
(i) −M�) ∈ F

n×n. Second, we guess the values of the deleted
polynomials by πa, denote them by v = (v1, . . . , va) ∈ F

a. Then we compute the
right kernel ker = ker(L +

∑a
i=1 viU

(2n−a+i)). Finally, we check if there exists
z ∈ ker, such that P(z) = c holds. If so, then z is the plaintext. Otherwise, go
back to the guessing step and start over. The details of this algorithm is shown
in Algorithm 6.



498 Y. Wang et al.

Algorithm 5. New private key generation for EFC−
pt2

Input : b = (θ1, · · · , θn), the private key A, B, S ∈ F
n×n and T ∈ F

2n×2n.
Output: New private key Ψ = (U (i), · · · , U (2n), M) ∈ (Fn×n)2n+1.

1 Θ ← b� · b, (Θ1, . . . , Θn) ← ϕ−1(Θ)

2 T1 ← (T −1
[1,2n;1,n])

� ∈ F
n×2n, T2 ← (T −1

[1,2n;n+1,2n])
� ∈ F

n×2n

3 Define Λ ∈ F
n×n, where Λi = ϕ−1(θ4

i )
4 M ← S(A − B)Λ
5 for i ← 1 to n do

6 N (i) ← (SAΘiT2 − SBΘiT1)
� ∈ F

2n×n

7 for j ← 1 to 2n and i ← 1 to n do

8 U
(j)
i ← N

(i)
j

9 Return Ψ = (U (1), . . . , U (2n), M)

Algorithm 6. New decryption algorithm for EFC−
pt2

Input : The new private key Ψ = (U (1), · · · , U (2n), M) ∈ (Fn×n)2n+1,
the public key P, a ciphertext c = (c1, · · · , c2n−a) ∈ F

2n−a.
Output: The plaintext z ∈ F

n s.t. P(z) = c.

1 L ← ∑2n−a
i=1 ciU

(i) − M�

2 for v = (v1, . . . , va) ∈ F
a do

3 H ← L +
∑a

i=1 viU
(2n−a+i);

4 ker ← RightKer(H)
5 for z ∈ ker do
6 if P(z) = c then
7 Return z
8 break

We can analyze the complexity of the decryption algorithm for EFCpt2 using
the same approach as in the proof of Proposition 2. The number of F-additions
and F-multiplications involved in the new decryption algorithm for EFC−

pt2 are

2n3 − an2 +
qa

2
(
7
3
n3 +

1
2
n2 − 17

6
n) and

2n3 − an2 +
qa

2
(
7
3
n3 + 3n2 − (a +

1
3
)n),

(19)

respectively.

3.3 Implementation and Comparison

We compare the new and the original decryption algorithms under estimated
128-bit security parameter for EFC−

p and EFC−
pt2 . We counted the number of

field additions ([+]F) and multiplications ([×]F) involved in EFC−
p and EFC−

pt2
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for both original and our new decryption algorithms in (2), (7), (12) and (19).
Since for q = 2, [+]F is equivalent to one logical XOR operation, and [×]F
is equivalent to one logical AND operation, we can regard the complexity of
all decryption algorithms as the summation of number of F-additions and F-
multiplications. Therefore, under 128-bit security parameter, we conclude that
theoretically our new decryption algorithms are 3.4 times faster for EFC−

p and
8.5 times faster for EFC−

pt2 than the original decryption algorithms. In practice,
shown by our implementation on a 2.6 GHz Intel R© CoreTM i5-4300U CPU with
Magma (version 2.22-7) (see Table 1), our decryption algorithms are 6.0 and 5.3
times faster than the original ones for EFC−

p and EFC−
pt2 , respectively.

Since the public keys for EFC−
p and EFC−

pt2 remain the same using our pro-
posed decryption algorithms, their security also remains the same. As for the
private key, to match with our proposed decryption algorithms, we use new pri-
vate keys, which is 2n/7 times larger for EFC−

p , and (2n + 1)/7 times larger for
EFC−

pt2 compared to the original private keys.

Table 1. Timing comparison between original EFC−
p , EFC−

pt2
with new EFC−

p , EFC−
pt2

under 128-bit security parameter

Scheme (q, n, a) KeyGen.(s) Enc.(s) Dec.(s) #[+]F +#[×]F
a in decryption

Original EFC−
p (2, 467, 10) 6.200 0.007 4.769 8.34× 1011

EFC−
pt2

(2, 467, 8) 6.860 0.007 1.180 5.22× 1011

New EFC−
p (2, 467, 10) 6.140 0.007 0.789 2.44× 1011

EFC−
pt2

(2, 467, 8) 6.660 0.007 0.223 0.61× 1011

aSummation of number of F-additions and F-multiplications

4 Conclusion

Extension Field Cancellation, as a new type of trapdoor for constructing multi-
variate encryption schemes, is one of the few trapdoors that remains secure. Two
encryption schemes, EFC−

p and EFC−
pt2 were proposed along with this trapdoor.

We focus on their efficiency in this paper, and propose new decryption algo-
rithms for them, that manage to theoretically speed up the decryption processes
of EFC−

p and EFC−
pt2 by 3.4 and 8.5 times, respectively, under our estimated

128-bit security parameters. Our implementation of EFC−
p and EFC−

pt2 under
128-bit parameter approximately matches this estimation. Meanwhile, our algo-
rithms do not change their public keys, which indicates their security remain
the same. In addition, our decryption algorithms are used coupling with our
new designed private keys for EFC−

p and EFC−
pt2 . The new private keys are 2n/7

and (2n + 1)/7 times larger for EFC−
p and EFC−

pt2 than their original private
keys respectively. Considering the size of the private key is not a crucial factor
for the performance of public key cryptography, and the combination of our new
algorithms and new private keys simplifies the decryption processes of EFC−

p
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and EFC−
pt2 drastically, our proposed decryption algorithms are indeed more

efficient.
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Abstract. Universal accumulator provides a way to accumulate a set
of elements into one. For each element accumulated, it can provide a
short membership (resp. nonmembership) witness to attest the fact that
the element has been (resp. has not been) accumulated. When combined
with a suitable zero-knowledge proof system, it can be used to construct
many privacy-preserving applications. However, existing universal accu-
mulators are usually based on non-standard assumptions, e.g., the Strong
RSA assumption and the Strong Diffie-Hellman assumptions, and are
not secure against quantum attacks. In this paper, we propose the first
lattice-based universal accumulator from standard lattice-based assump-
tions. The starting point of our work is the lattice-based accumulator
with Merkle-tree structure proposed by Libert et al. (Eurocrypt’16). We
present a novel method to generate short witnesses for non-accumulated
members in a Merkle-tree, and give the construction of universal accu-
mulator. Besides, we also propose the first zero-knowledge arguments to
prove the possession of the nonmembership witness of a non-accumulated
value in the lattice-based setting via the abstract Stern’s protocol of Lib-
ert et al. (Asiacrypt’17). Moreover, our proposed universal accumulator
can be used to construct many privacy-preserving cryptographic primi-
tives, such as group signature and anonymous credential.

Keywords: Lattice-based universal accumulator
Zero-knowledge arguments of nonmembership
Abstract stern-like protocol

1 Introduction

Introduced by Benaloh and de Mare [6], cryptographic accumulator provides
a way to combine a set of values into one, and simultaneously offers a short
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 502–519, 2018.
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witness for a given value which is accumulated. Since its introduction, accu-
mulator has found many applications, including time-stamping [6], membership
testing [6,22], anonymous credential [1,10,11,22,27], group signature [22,25,37],
ring signature [25], fail-stop signature [4], anonymous authentication [15], digital
cash [3,12,33,35], anonymous attestation [22], certificate revocation [19], etc.

Subsequently, many extensions have been introduced. Among them,
Camenisch and Lysyanskaya [11] introduce the notion of dynamic accumula-
tor which allows one to dynamically add and delete a value to and from the
accumulator in a way that witnesses of existing elements can be updated effi-
ciently. Later, Li et al. [22] propose universal accumulator which can also provide
nonmembership proof for an element which is not accumulated. Compared with
dynamic accumulator presented in [11], universal accumulator additionally pro-
vides efficient nonmembership proof, but it does not allow values to be added
to and deleted from the accumulator dynamically. Despite lacking the function-
ality of dynamical update, universal accumulator is preferable in cases where
nonmembership witness is desirable, as in the following example.

Suppose there is an online forum, where only legitimate users can post mes-
sages. Once a current legitimate user misbehaves, the forum manager can flag
this user with a label “malicious” and forbid his or her right to post for a while,
such as one day. To do this, the forum manager can maintain a list of malicious
users, and update it every day. Certainly, registration before the first access of
each user is needed. Then for any user who wish to post a message on this forum,
besides proof of membership, he or she also needs to provide proof that he/she
is not on the list of malicious users.

However, until now, the realizations of universal accumulator are mainly
based on two types of non-standard number theoretic assumptions. The first
type [22] relies on the group of hidden order, such as Strong RSA assumption.
The schemes based on this assumption usually have short public parameter but
only permit primes to be accumulated. The second type [2,13] bases on bilin-
ear map assumptions, including Strong Diffie-Hellman assumption. While there
exists some hash-based constructions of universal accumulator [7–9], the adop-
tion of hash tree structure made them hardly compatible with efficient zero-
knowledge proof. Without a suitable zero-knowledge proof for proving various
facts about the accumulated values, they would not be as useful as the afore-
mentioned accumulators.

To the best of our knowledge, there is no construction of lattice-based univer-
sal accumulator. As lattice-based cryptography is promising in the post-quantum
era due to its attractive properties including strong security from the worst-case
hard problem, presumed resistance to quantum attacks [34], we design a lattice-
based construction of universal accumulator with compatible zero-knowledge
proofs.

1.1 Our Contribution

The contribution of this work can be summarized as follows:
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– The first construction of lattice-based universal accumulator. We propose the
first lattice-based universal accumulator, which can provide a short witness
for an accumulated value and a short witness for a non-accumulated value.

– The first zero-knowledge arguments of nonmembership in the lattice-based set-
ting. We introduce zero-knowledge arguments of knowledge (ZKAoK) for prov-
ing the possession of the nonmembership witness of a non-accumulated value.

Overview of Our Idea. Our Merkle-tree based accumulator considered accumu-
lated set which is sorted. Then for any value not in the accumulated set, it must
belong to an open interval formed by two adjacent values in the set. Then we
pick the sibling paths of the two sibling leaves (denoting the two interval bound-
ary values) to the root in the tree to be witness. In order to show that a given
value is not accumulated, we need to prove two things in zero-knowledge: (1)
the given value is between two sibling leaves in the witness; (2) the knowledge
of a hash chain (via the method introduced in [25]). While the above approach
appears to be very similar to the lattice-based Merkle-tree accumulator [25], the
construction of the Merkle-tree in our paper is different to prevent revealing
relationships between the given nonmember value and member values.

1.2 Related Work

Lattice-Based Cryptographic Accumulator. Libert et al. [25] propose the first
Merkle-tree based accumulator with efficient zero-knowledge argument of mem-
bership from standard lattice assumption. Recently, Ling et al. [30] introduce a
lattice-based dynamic accumulator on Merkle-tree structure.

Lattice-Based Zero-Knowledge Proofs. Many zero-knowledge proofs systems
suitable for the lattice-related language have been designed based on Schnorr-like
approach [31,32] and Stern-like approach [23,25,28].

Despite being less efficient, the Stern-like approach results in protocol fea-
turing perfect completeness and allows extraction of witnesses satisfying the
original constraints. It is originally presented in [36] and first introduced into
the lattice-based setting by Kawachi et al. in [20]. The original version can only
give proofs for the binary vectors with fixed hamming weight. This restriction is
later loosened by Ling et al. [28] who construct a statistical zero-knowledge proof
of knowledge for any vector x whose infinity norm is less than β and satisfies the
form P · x = v mod p via the proposed decomposition-extension technique. To
support more advanced relations, extensive works have been done [21,23–25,29].
In particular, Libert et al. [25] introduce a method to prove the knowledge of a
hash chain in a tree from the secret leaf to the public root in a zero-knowledge
way. Some works [23,26] are also done for the utilization of the Stern’s protocol
in an abstract and generalized manner.

1.3 Organization of This Work

In Sect. 2, we give the preliminaries needed in this paper. Our construction of
universal accumulator as well as the corresponding ZKAoK are given in Sect. 3.



Lattice-Based Universal Accumulator with Nonmembership Arguments 505

In Sect. 4, we introduce an application of our universal accumulator, namely, a
fully dynamic group signature scheme.

2 Preliminaries

Notations. Throughout this paper, we will use bold lower-case letters (e.g. v) to
denote vectors, and use bold upper-case letters (e.g. A) to denote matrices. All
vectors in this paper are column vectors. All elements in vectors and matrices
are integers unless otherwise stated. For a vector v of length n, we use ‖v‖1 to
denote the 1 norm of v, and we use v[i] to denote the ith element of v where
i ∈ [0, n − 1]. For a bit b, we use b̄ to denote the negation of b. Let S be a finite

set, then we use s
$← S to denote sampling element s uniformly from set S. Also,

for a distribution D, we use d ← D to denote sampling d according to D. We
write negl(·) to denote a negligible function. Let R be a binary relation, we use
LR to denote the language characterized by R.

2.1 Cryptographic Assumption

Definition 1 (SIS [17]). The SIS∞
n,m,q,β problem is defined as follows: given uni-

formly random matrix A ∈ Zn×m
q , find a non-zero vector x ∈ Zm such that

||x||∞ ≤ β and A · x = 0 mod q.

If m,β = poly(n), and q ≥ β · Õ(
√

n), then SIS∞
n,m,q,β problem is at least as

hard as the worst-case lattice problem SIVPγ for some γ = β · Õ(
√

nm) [17]. In
particular, the SIS∞

n,m,q,1 problem is at least as hard as SIVPÕ(n), when β = 1,
q = Õ(n), m = 2n�log q	 [25].

2.2 Universal Accumulator

Universal accumulator is first proposed in [22] and formalized by [14]. In this
paper, we recall the scheme without trapdoor, and use type ∈{0, 1} to indicate
whether the given witness is a membership (type = 0) or nonmembership (type
= 1) witness. The universal accumulator is defined as follows:

Setup(n) → pp. The algorithm takes as input a security parameter n, outputs
the public parameter pp.

Accpp(R) → u. On input an accumulated set R = {d0,d1, . . . ,dN−1} with size
N , the algorithm outputs the accumulator value u.

Witnesspp(d, R, type) → w or ⊥. The algorithm outputs a type of witness w for
d according to the value of type. It outputs ⊥ if d /∈ R ∧ type = 0 or d ∈ R
∧ type = 1.

Verifypp(d,u, w, type) → 0 or 1. The algorithm outputs 1 if the following two
cases happen:
1. If type = 0, and w is a witness for d ∈ R;
2. If type = 1, and w is a witness for d /∈ R.

Otherwise, output 0.
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Correctness. The correctness requires that for all pp ← NM-Setup(n), the fol-
lowing equations hold:

1. for all d ∈ R, Verifypp(d,Accpp(R),Witnesspp(d, R, 0), 0) = 1;
2. for all d /∈ R, Verifypp(d,Accpp(R),Witnesspp(d, R, 1), 1) = 1.

Security Definition. A universal accumulator scheme defined above is secure if
for all probabilistic polynomial-time adversary A, the following equation hold:

Pr

⎡
⎢⎢⎢⎣

pp ← NM-Setup(n); (R,d∗,w∗, type) ← A(pp) :
d∗ ∈ R ∧ Verifypp(d

∗,Accpp(R),w∗, type = 1) = 1
or

d∗ /∈ R ∧ Verifypp(d
∗,Accpp(R),w∗, type = 0) = 1

⎤
⎥⎥⎥⎦ = negl(n),

where negl(n) is a negligible function about n. In other words, the security says
that it is computationally infeasible to prove that a value d∗ is not accumulated
in the value u if it is or a value d∗ is accumulated in the value u if it is not.

2.3 Abstract Stern’s Protocol

Abstract Stern’s protocol [26] is a type of ZKAoK system (description given in
AppendixA) capturing the following relations. Let ni and di ≥ ni be positive
integers. For public matrices {Pi ∈ Zni×di

qi
}i∈[1,n], and vectors vi ∈ Zni

qi
, the

prover argues in zero-knowledge the possession of mutually related integer vec-
tors {xi ∈ {−1, 0, 1}di}i∈[1,n] such that:

∀i ∈ [1, n] : Pi · xi = vi mod qi.

Let d = d1 + d2 + . . . + dn, and x = (x1||x2|| . . . ||xn). Assume VALID is a
subset of {−1, 0, 1}d, and S be a finite set such that one can associate every
π ∈ S with a permutation Tπ of d elements which satisfies the conditions (1),
then we can get Lemma 1.

{
x ∈ VALID ⇐⇒ Tπ(x) ∈ VALID;
If x ∈ VALID and π is uniform in S, then Tπ(x) is uniform in VALID.

(1)

Lemma 1 (Theorem 1 in [26]). The constructed abstract Stern’s protocol
shown in Fig. 1 is a statistical ZKAoK with perfect completeness, soundness error
2/3, and communication cost O(Σn

i=1di · log qi). In particular:

– There exists an efficient simulator that, on input {Pi,vi}i∈[1,n], outputs an
accepted transcript which is statistically close to that produced by the real
prover.

– There exists an efficient knowledge extractor that, on input a commitment
CMT and 3 valid response (RSP1, RSP2, RSP3) to all 3 possible values of
the challenger Ch, outputs x′ = (x′

1, · · · ,x′
n) ∈ VALID such that Pi · x′

i =
vi mod qi for all i ∈ [1, n].
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1. Commitment: Prover P sample π
$← S, r1

$← Zd1
q1 , . . ., rn

$← Zdn
qn , and com-

putes r = (r1|| . . . ||rn), z = x� r. Then P samples ρ1, ρ2, ρ3 for commitment
COM, then computes and sends CMT = {C1, C2, C3} to verifier V, where

C1 = COM(π, {Pi · ri mod qi}i∈[1,n]; ρ1)

C2 = COM(Tπ(r); ρ2)

C3 = COM(Tπ(z); ρ3).

2. Challenge: Verifier V picks a uniformly random challenge Ch
$← {1, 2, 3},

and sends it to P.
3. Response: According to the Ch, P reveals different commitments via sending

RSP in the following way:
– Ch = 1 : let tx = Tπ(x), tr = Tπ(r), RSP = (tx, tr, ρ2, ρ3).
– Ch = 2 : let π2 = π, w = z, RSP = (π2, w, ρ1, ρ3).
– Ch = 3 : let π3 = π, RSP = (π3, r, ρ1, ρ2).

Verification: Once receiving RSP , verifier V checks as follows:

– Ch = 1 : check that tx is VALID, C2 = COM(tr; ρ2), C3 = COM(tx � tr; ρ3).
– Ch = 2 : parse w = (w1|| . . . ||wn), where wi ∈ Zdi

qi for all i ∈ [1, n],
then check that C1 = COM(π2, {Pi · wi − vi mod qi}i∈[1,n]; ρ1), and C3 =
COM(Tπ2(w); ρ3).

– Ch = 3 : parse r = (r1|| . . . ||rn), then check that C1 = COM(π3, {Pi · ri mod
qi}i∈[1,n]; ρ1), and C2= COM(Tπ3(r); ρ2).

In each case, V outputs 1 if and only if all conditions hold.

Fig. 1. Abstract Stern’s protocol. COM denotes the statistically hiding and computa-
tionally binding string commitment scheme in [20]. ‘�’ is the modular addition opera-
tor, such that z = ((x1 � r1) mod q1)|| . . . ||(xn � rn) mod qn)).

Therefore, to employ the abstract Stern’s protocol to prove a statement, one
needs to first transform the statement into the form of Pi ·xi = vi mod qi with a
specifically designed witness set VALID, then specify the set S and permutations
of d elements {Tπ, π ∈ S} which can make conditions (1) hold. In this way, a
ZKAoK can be constructed via the framework of abstract Stern’s protocol.

3 Lattice-Based Universal Accumulator

In this section, we present our construction of a universal accumulator, that is, an
accumulator with membership and nonmemberhship proof. Our starting point
is the accumulator from Libert et al. [25]. Here we show how to create nonmem-
bership proof. For completeness, we separate the part of accumulator for non-
membership from universal accumulator, and give its definition in AppendixB.

Throughout this section, we work with these positive integers, n, q, k, and m,
where n is used as security parameter, q is Õ(n1.5), k = �log q	, and m = 2nk.
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Besides, for any vector v ∈ Zn
q , and its binary representation bin(v) ∈

{0, 1}nk, we have G · bin(v) = v, where matrix G is defined as follows:

G =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 2 22 . . . 2k−1

1 2 22 . . . 2k−1

. . .
1 2 22 . . . 2k−1

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

∈ Zn×nk
q .

In order to assign a unique value for each binary vector with length nk, we
define the notion of integer value. The integer value Int(v) of a binary vector
bin(v) ∈ {0, 1}nk is computed as

Int(v) = (1 2 22 23 . . . 2(nk−1)) · bin(v),

where we label (1 2 22 23 . . . 2(nk−1)) as G′ in the following contents.

3.1 Our Construction of Accumulator for Nonmembership

In this section, we give our solution for nonmembership via constructing a
Merkle-tree with 2�+1 leaves, where � is a positive integer. Similar to [25],
our Merkle-tree is based on a family of lattice-based collision-resilient hash
function H = {hA|A = [A0||A1],A0,A1 ∈ Zn×nk

q }, mapping from {0, 1}nk

× {0, 1}nk to {0, 1}nk. For any (u0,u1) ∈ {0, 1}nk × {0, 1}nk, hA(u0,u1) =
bin(A0 · u0 + A1 · u1 mod q) ∈ {0, 1}nk.

Our construction of accumulator for nonmembership consists of four algo-
rithms. Besides, for any input accumulated set S with size N = 2� − 1, two
auxiliary nodes are additionally chosen, denoted as First and Last.

NM-Setup(n). Pick A $← Zn×m
q , First = 0nk, and Last = 1nk. Then output pp

= {A, First, Last}.
NM-Accpp(S). The algorithm takes input an accumulated set S={x1, . . ., xN},

where each element xi ∈ {0, 1}nk \ {0nk,1nk} (i ∈ [1, N ]), and proceeds as
follows:
1. Sort Inputs. First sort S in ascending order via the corresponding integer

value Int(xj) (within 2nk) of each element xj , and let (x′
1, . . ., x′

N ) be the
sorting result.

2. Assign Values. Let (u0, u1, u2, . . ., u2�+1−1) be 2N +2 = 2�+1 variables.
Then we assign value for each variable as follows:

– u0 = First;
– for j = 1 to N , uj = x′

j ;
– for j = N + 1 to 2N , uj = x′

j−N ;
– u2�+1−1 = Last.

In addition, for each j ∈ [0, (2�+1 − 1)], let (j1, j2, . . . , j�+1) be its binary
representation string, then uj = uj1,j2,...,j�+1 .

3. Construct Tree. Then construct a tree with depth (� + 1) based on the
leaves (u0, u1, u2, . . ., u2�+1−1).
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– At any depth i ∈ [1, �], for each (b1, b2, . . . , bi) ∈ {0, 1}i, each node
ub1,b2,...,bi

is defined as

ub1,b2,...,bi
= hA(ub1,b2,...,bi,0,ub1,b2,...,bi,1);

– At depth 0, the root node is u = hA(u0,u1).
The algorithm outputs the nonmembership accumulator value u.

NM-Witnesspp(S,d), where d /∈ S.
Let Int(d) be the integer value of d. First find two sibling leaves (ub1,...,b�,0,
ub1,...,b�,1) in the tree such that

Int(ub1,b2,...,b�,0) < Int(d) < Int(ub1,b2,...,b�,1).

Then return the witness for d as follows.

w = ((b1, b2, . . . , b�), (ub1,b2,...,b�,0,ub1,b2,...,b�,1,

ub1,b2,...,b̄�
, . . . ,ub1,b̄2 ,ub̄1)) ∈ {0, 1}� × ({0, 1}nk)�+2.

NM-Verifypp(u,d, w). Assume the witness w is of the form w = ((b1, b2, . . ., b�),
(w�,1, w�,2, w�, w�−1, . . ., w1)).

– First check whether Int(w�,1) < Int(d) < Int(w�,2).
– If yes, then compute v� = hA(w�,1,w�,2), and

∀i ∈ {� − 1, � − 2, . . . , 1, 0} : vi =
{

hA(vi+1,wi+1) if bi+1 = 0
hA(wi+1,vi+1) if bi+1 = 1 .

Finally, the algorithm returns 1 if v0 equals u. Otherwise, returns 0.

Then we give an example of a tree with 23 leaves, where the size of the accumu-
lated set is 3, and denote the set as S = {x1,x2, x3}. For simplicity, we assume
that elements in S are in ascending order. Then the tree is shown in Fig. 2.

Correctness. The correctness of the above construction requires that for any
binary string d ∈{0, 1}nk\{0 . . . 0, 1 . . . 1}, d /∈ S, and u ← NM-Accpp(S), com-
putes witness w ← NM-Witnesspp(S,d), NM-Verifypp(u, d, w) = 1. We also argue
that for any d, its witness w is unique in the above Merkle-tree.

Since set S is sorted via the integer value of each element in NM-Accpp

algorithm, here we directly assume that S = {x1, . . . ,xN} be a sorted binary
string set, and each element inside is different. We use interval Ii to denote the
open interval (Int(xi−1), Int(xi)), which is illustrated in Fig. 3. Observe that value
Int(d) must fall into one and only one interval Ii in Fig. 3 since d /∈ S. Then the
corresponding elements in S, namely xi and xi+1, constitute the first two nodes
(sibling leaves) in the witness. Since we require them to be sibling leaves in the
tree T , then we choose the corresponding sibling leaves uj and uj+1 based on
Ii. If i is even, then choose uN+i−1 and uN+i, and the siblings of each node in
the path from them to root to be witness. Otherwise, picks ui−1 and ui, and the
siblings of each node in the path from them to root.

Regarding the security of our construction, we have the following theorem.
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u000 u001 u010 u011 u100 u101 u110 u111

First x1 x2 x3 x1 x2 x3 Lastd

u00 u01 u10 u11

u0 u1

u

Fig. 2. A Merkle-tree with 23 leaves, which accumulates the data blocks in the set
S = {x1, x2, x3} with ascending integer values, into an accumulator value u. In addi-
tion, the bit string (01) and the gray nodes consist the witness for a node d, which is
not accumulated in u, and Int(x2) < Int(d) < Int(x3).

x1I1 I2 x2 I3 x3 I4 x4 · · · IN xN

Fig. 3. Illustration of correctness.

Theorem 1. Under the hardness of SIS problem, the construction for nonmem-
bership witness presented above is secure.

Proof. Assume that there exists an adversary B who can break the security of the
above accumulator scheme. Then we can construct another algorithm which can
break the collision-resilient property of the hash function h used in the scheme,
whose hardness is based on the SIS problem.

Given the public parameter pp = (A,First,Last) output by NM-Setup(n),
B outputs (S∗,d∗, w∗) such that d∗ ∈ S∗, and algorithm NM-Verifypp(
NM-Accpp(S∗), d∗, w∗) = 1, where w∗ is in the form ((b∗

1, b∗
2, . . ., b∗

� ), (w∗
�,1,

w∗
�,2, w∗

� , w∗
�−1, . . ., w∗

1)).
Since NM-Verifypp(NM-Accpp(S∗), d∗, w∗) = 1, hence Int(w∗

�,1) < Int(d∗) <
Int (w∗

�,2), which implies that d∗ �= w∗
�,1 and d∗ �= w∗

�,2. Let v∗
� , v∗

�−1, v∗
�−2, . . .,

v∗
0 be the path computed by algorithm NM-Verifypp. We also set v∗

�,0 = w∗
�,1,

and v∗
�,1 = w∗

�,2. Then v∗
0 must be equal to u.

Next we construct the Merkle-tree T ∗ based on the sorted set S∗,Frist,
and Last. Notably, each node in T ∗ is represented via ui. Recall that (b∗

1,
b∗
2, . . ., b∗

� ) is the bit string contained in w∗. Let ub∗
1 ,b∗

2 ,...,b∗
� ,0, ub∗

1 ,b∗
2 ,...,b∗

� ,1,
ub∗

1 ,b∗
2 ,...,b∗

�
,ub∗

1 ,b∗
2 ,...,b∗

�−1
,. . ., ub∗

1
, u be the path from leaves ub∗

1 ,b∗
2 ,...,b∗

� ,0 and
ub∗

1 ,b∗
2 ,...,b∗

� ,1 to root u. Notably, d∗ must be equal to either ub∗
1 ,b∗

2 ,...,b∗
� ,0 or
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ub∗
1 ,b∗

2 ,...,b∗
� ,1 since d∗ ∈ S∗. In this way, we get two paths, they are

Path1 : v∗
�,0,v

∗
�,1,v

∗
� ,v∗

�−1,v
∗
�−2, . . . ,v

∗
1,v

∗
0

Path2 : ub∗
1 ,b∗

2 ,...,b∗
� ,0,ub∗

1 ,b∗
2 ,...,b∗

� ,1,ub∗
1 ,b∗

2 ,...,b∗
�
,ub∗

1 ,b∗
2 ,...,b∗

�−1
, . . . ,ub∗

1
,u

Comparing Path1 and Path2, we can find the smallest integer k ∈ [1, � + 1]
such that v∗

k �= ub∗
1 ,b∗

2 ,...,b∗
k
. Notably, in the case k= � + 1, we mean either v�,0

�= ub∗
1 ,b∗

2 ,...,b∗
� ,0 or v�,1 �= ub∗

1 ,b∗
2 ,...,b∗

� ,1 or both. In this way, we find a collision for
hA for v∗

k−1.

3.2 Zero-Knowledge Argument of Knowledge of Nonmembership
Witness

In this section, we give a ZKAoK to prove the possession of the nonmembership
witness of a non-accumulated value. More specifically, given common inputs (pp
= (A,First,Last), u), prover P convinces verifier V that he has (d, w) such that
NM-Verifypp (u, d, w) = 1. The relevant relation is defined as Rnm:

Rnm =

⎧
⎪⎨
⎪⎩

((pp,u) ∈ (Zn×m
q × 0nk × 1nk × {0, 1}nk);

d ∈ {0, 1}nk, w ∈ {0, 1}� × ({0, 1}nk)�+2) :
NM-Verifypp(u,d, w) = 1

⎫
⎪⎬
⎪⎭

.

Overview of Our Argument. Assume w is of the form ((b1, b2, . . ., b�), (w�,1,
w�,2, w�, w�−1, . . ., w1)). Observe that for any (d, w), algorithm NM-Verifypp(u,
d, w) = 1 if and only if the following two requirements being satisfied:

1. The integer value of d belongs to the open interval (Int(w�,1), Int(w�,2)),
namely

Int(w�,1) < Int(d) < Int(w�,2). (2)

2. The path computed by NM-Verifypp(u, d, w) satisfies v0 = u, and

v� = hA(w�,1,w�,2),

∀i ∈ {� − 1, � − 2, . . . , 1, 0} : vi =
{

hA(vi+1,wi+1) if bi+1 = 0
hA(wi+1,vi+1) if bi+1 = 1 .

(3)

Roughly speaking, our proof can be reduced to proving the above two require-
ments in zero-knowledge. Before going into details, we first give a brief sketch
about the techniques used in our proof. Based on the observation that if we can
adjust each requirement into the form of Pi · xi = vi mod qi, and define the
valid set and permutation set for the two requirements satisfying the condition
(1), then we can use the abstract Stern’s protocol [26] to get the zero-knowledge
arguments protocol. For the first requirement, we observe that for any vector u,
v ∈ {0, 1}nk, if Int(u) < Int(v), then there is one and only one binary vector
diff ∈ {0, 1}nk, such that Int(v) - Int(u) − Int(diff) = 1 mod (2qn). This part
can also be used as range proof of integer values. For the second requirement,
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we need to provide membership proof to sibling leaves w�,1 and w�,2, which can
utilize the technique of membership proof presented by Libert et al. in [25] based
on modulus q.

In the following contents, we first transform the above requirements into
the linear form P · x = v mod q, then define the corresponding valid set and
permutation set for the abstract Stern’s protocol.

Transformation of Requirement (2). Observe that for any vector v ∈
{0, 1}nk, its integer value is within the set {0, 1, 2, 3, . . ., 2nk-1 }. Then for any
three vectors v1, v2, v3 ∈ {0, 1}nk, if Int(v1) − Int(v2) − Int(v3) = 1 mod (2qn),
then we can get that Int(v1) > Int(v2) mod qn. According to this observation,
we can equivalently rewrite condition (2) to be

⎧
⎪⎪⎨
⎪⎪⎩

Int(w�,1) < Int(d) mod qn

⇔ Int(d) − Int(w�,1) − 1 = Int(diff1) mod 2qn;
Int(d) < Int(w�,2) mod qn

⇔ Int(w�,2) − Int(d) − 1 = Int(diff2) mod 2qn,

(4)

where vectors diff1, diff2 ∈ {0, 1}nk are binary vectors of the differences.
Since for any binary vector v, we have Int(v) = G′·v, then requirement (2)

can be equivalently rewritten as
{
G′ · d − G′ · w�,1 − G′ · diff1 = 1 mod 2qn;
G′ · w�,2 − G′ · d − G′ · diff2 = 1 mod 2qn.

(5)

Transformation of Requirement (3). Before going into details, we first recall
some notations and techniques introduced in [25].

– Bnk
m is used to denote the set of all vectors in {0, 1}m with hamming weight

nk. Besides, we denote Sm the set of all permutations of all m elements.

– Let ext(b,v) denote the vector z ∈{0, 1}2i of the form z =
(

b̄ · v
b · v

)
, where v

∈ {0, 1}i (i ∈ {nk,m}), and b ∈ {0, 1}.
– For any b ∈ {0, 1}, and for any π∈Sm, let Fb,π be the permutation on vector

z =
(
z0
z1

)
∈ {0, 1}2m with two blocks of size m, which is defined as Fb,π =

(
π(zb)
π(zb̄)

)
.

Next, via the same transformation strategy presented in [25], the second
requirement (3) can be equivalently rewritten to be

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A ·
(
w�,1

w�,2

)
− G · v� = 0 mod q;

∀i ∈ [1, �] : zi = ext(bi,vi),yi = ext(b̄i,wi);
∀i ∈ [1, � − 1] : A · zi+1 + A · yi+1 − G · vi = 0 mod q;
A · z1 + A · y1 = G · u mod q.

(6)
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Until now, NM-Verify(u,d, w) =1 equals the Eqs. (5) and (6) hold. Beside
the above transformations, extension technique presented in [28] is also needed,
which does the follows:

– Matrix extension: A = [A0||A1] is modified to be A∗ = [A0||0n×nk||A1

||0n×nk], G is modified to be G∗ = [G||0n×nk], and G′ is modified to be G
′′

= [G′||01×nk].
– Vector extension: all w�,0,w�,1, . . . ,w1,v�,v�−1, . . . ,v1, d, diff1, diff2 are

extended into w∗
�,0, w∗

�,1, . . ., w∗
1, v∗

� , v∗
�−1, . . ., v∗

1, d∗, diff∗
1, diff∗

2 ∈ Bnk
m

respectively. For each vector, this is done by appending it with a binary vector
of length nk with the restriction that the resulted vector’s Hamming weight
is nk.

Then Eqs. (5) and (6) can be equivalently written as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

G′′ · d∗ − G′′ · w∗
�,1 − G′′ · diff∗

1 = 1 mod 2qn,

G′′ · w∗
�,2 − G′′ · d∗ − G′′ · diff∗

2 = 1 mod 2qn,

A∗ ·
(
w∗

�,1

w∗
�,2

)
− G∗ · v∗

� = 0 mod q,

∀i ∈ [1, �] : zi = ext(bi,v∗
i ),yi = ext(b̄i,w∗

i ),
∀i ∈ [1, � − 1] : A∗ · zi+1 + A∗ · yi+1 − G∗ · v∗

i = 0 mod q;
A∗ · z1 + A∗ · y1 = G · u mod q.

(7)

Upon the above preparation, the interactive protocol can be summarized as
follows.

Common inputs: Matrices G′′, A∗, G∗, G, and vector u.
Prover’s inputs: (diff∗

1,diff∗
2,d

∗), (b1, . . . , b�),(w∗
�,1, w

∗
�,2,w

∗
� , . . ., w∗

1), (v∗
� , . . .,

v∗
1), (z�, . . ., z1), (y�, . . . ,y1)

Prover’s goal: prove the following things in a zero-knowledge manner. (1) w∗
�,1,

w∗
�,2 ∈ Bnk

m ; (2) for all i ∈ [1, �], v∗
i , w∗

i ∈ Bnk
m , and zi = ext(bi,v∗

i ), yi =
ext(b̄i,w∗

i ); (3) Eq. (7) hold.

Let x = (diff∗
1 ‖ diff∗

2 ‖ d∗ ‖ w∗
�,1 ‖ w∗

�,2 ‖ v∗
� ‖ z� ‖ y� ‖ . . . ‖ v∗

1 ‖ z1 ‖ y1).
Next, we specify the definition of set VALID, set S and the associated permutation
Tπ for x which satisfy conditions (1).

Let VALID be the set of all vectors in {0, 1}5m+5m� with the same form of
vector x, where

– diff∗
1,diff∗

2,d
∗,w∗

�,1,w
∗
�,2,v

∗
� ,v∗

�−1 . . . ,v∗
1 ∈ Bnk

m ;
– for all j ∈ [1, �] (zi ∈ (Bnk

m ×0m)∧yi ∈ (0m ×Bnk
m )) or (zi ∈ (0m ×Bnk

m )∧yi ∈
(Bnk

m × 0m)).

The set S as well as the permutation {Tπ : π ∈ S} is defined as follows:

– S =

(5+2�)︷ ︸︸ ︷
Sm × Sm × . . . × Sm, where Sm is the set of all permutations for m

elements.
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– For each π = (π1, π2, π3, π4, π5, . . . , π5+2�) ∈ S, where each πi ∈ Sm (i ∈
[1, 5 + 2�]), and for each x = ( diff1, diff1, d, w�,1, w�,2,v�, z�,y�,v�−1,. . .,
z1,y1), where diff1, diff1, d, w�,1, w�,2, v�, v�−1, . . ., v1 are with length m,

and each other vector has length 2m. For zi ∈ x, we denote it as zi=
(
zi,1

zi,2

)
,

where zi,1 and zi,2 have m elements respectively. We denote yi =
(
yi,1

yi,2

)

similarly. The main technique used in the follows is that each pair of vi and
zi shares an identical permutation. Pick b�, b�−1, . . ., b1

$← {0, 1}.

Tπ(x) = π1(diff1) ‖ π2(diff2) ‖ π3(d) ‖ π4(w�,1)||π5(w�,2) ‖ π6(v�) ‖(
π6(z�,(1+b�))
π6(z�,(2−b�))

)
‖

(
π7(y�,(1+b�))
π7(y�,(2−b�))

)
‖ π8(v�−1) ‖

(
π8(z�−1,(1+b�−1))
π8(z�−1,(2−b�−1))

)
‖

(
π9(y�−1,(1+b�−1))
π9(y�−1,(2−b�−1))

)
‖ . . . . . . ‖

(
π5+2�(y1,1+b1)
π5+2�(y1,2−b1)

)
.

Thanks to the useful equivalences introduced in [25], which state that

– For any vector v ∈ {0, 1}m, and π ∈ Sm, we have

v ∈ Bnk
m ⇐⇒ π(v) ∈ Bnk

m ;

– For any vector v,w ∈ {0, 1}m, c, b ∈ {0, 1}, π, φ ∈ Sm, we have

z = ext(c,v) ∧ v ∈ Bnk
m ⇐⇒ Fb,π(z) = ext(c ⊕ b, π(v)) ∧ π(v) ∈ Bnk

m

y = ext(c̄,w) ∧ w ∈ Bnk
m ⇐⇒ Fb̄,φ(y) = ext(c ⊕ b, φ(w)) ∧ φ(w) ∈ Bnk

m .

We can get that x ∈ VALID if and only if Tπ(x) ∈ VALID. Besides, if π is
uniformly chosen from S, then Tπ(x) is uniformly distributed in VALID. In this
way, we can run the abstract Stern’s protocol [26] to prove the knowledge of x
satisfying all requirements stated in Prover’s goal.

4 Application of Our Accumulator

As an independent interest, we give a brief introduction about one potential
application of our above proposed accumulator, i.e. fully dynamic group signa-
ture. Unlike a static group signature, a fully dynamic group signature should
enable the users dynamical joining and user revocation. Our idea is that we
construct two Merkle-trees in our constructed dynamic group signature scheme,
one is for membership proof and another one is for non-membership proof. In
the following, we call the Merkle-tree used for membership proof as T1, and the
Merkle-tree used for nonmembership proof as T2.

Firstly, group manager computes enough number of chameleon hash values,
and use them as the leaves to construct the Merkle-tree T1. Once a user is
joining, group manager opens a non-designed chameleon hash values to be the
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user’s public key. Notably, in our scheme, the joining operation of a user won’t
affect the root value of T1, and once a chameleon hash value is open, it won’t
change forever.

As mentioned before, T2 is the tree whose leaves are all users who have been
revoked, which is constructed via the method presented in Sect. 3. When group
manger wants to revoke a user at some time, he can just add this user to be a
leaf in T2, and this process needs to reconstruct T2.

Then any member wants to produce a group signature, he needs to give two
types of proofs. The first one is to prove that he is a member in T1, this can be
done via utilizing the technique presented in [25]. The second type of proof is to
prove that he is not a member in the second tree T2 via our technique. Then if
these two parts are both valid, we say the signature is valid.

Recently, Ling et al. [30] present a fully dynamic group signature from updat-
able Merkle-tree accumulator where the cost of adding and deleting element is
logarithmic size in the number of group member. In our scheme, via the help of
the chameleon hash function, the complexity of adding a node is O(1), which
needs to utilize a trapdoor of the chameleon hash function. While every time
the group manager issue a new revoked list, he needs to reconstruct the second
accumulator (based on revoked members) for nonmembership proof. Hence the
cost of deleting is the cost for constructing a Merkle-tree for the revoked set,
which is worse than [30]. Besides, the signature size of our scheme is not as com-
pact as [30]. However, we argue that our fully dynamic group signature fits for
the scenario that user’s status frequently changes (either be valid or revoked) in
different time period, and the revoked list periodically updates.
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A Zero-Knowledge Arguments of Knowledge

Zero-knowledge arguments of knowledge [18] (ZKAoK) is an interactive protocol
where a prover can convince the verifier that he possesses the witness for a
statement in a NP relation without revealing any information about the witness.
Moreover, we require it to have the following security properties [18]:

Completeness. The prover can convince the verifier if he knows a witness tes-
tifying to the truth of the statement.

Soundness. A malicious prover cannot convince the verifier if the statement is
false.

Zero-knowledege. A malicious verifier can know nothing but the statement is
true from the proof.
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Extractability. A probabilistic polynomial time extractor can extract the wit-
ness for a true statement from a convincing argument made by prover.

In addition, as mentioned in [16], also known as Fiat-Shamir heuristic, a three
round public-coin interactive ZKAoK can be transformed into a non-interactive
one in the random oracle model. We refer reader to [5] for the security analysis
Fiat-Shamir heuristic.

B Accumulator for Nonmembership

Observe that a universal accumulator concerns two types of witness, one is the
witness for membership and another is the witness for nonmembership, where
the first part is the original definition of accumulator. We refer the reader to
Definition 1 in [14] for the formal definition of accumulator (for membership).
For the part about nonmembership, we separate the scheme for it as follows:

Accumulator for Nonmembership. An accumulator for nonmembership is
consisted of a tuple algorithms (NM-Setup, NM-Acc, NM-Witness, NM-Verify)
given below:

NM-Setup(n) → pp. The algorithm takes as input a security parameter n, outputs
the public parameter pp.

NM-Accpp(R) → u. On input a set R = {d0,d1, . . . ,dN−1} with size N , the
algorithm outputs the accumulator value u.

NM-Witnesspp(d, R) → w. On input a set R and a value d, if d ∈ R, then outputs
⊥. Otherwise, outputs a witness w for the fact that d is not accumulated in
the output of NM-Accpp(R).

NM-Verifypp(u,d, w) → {0, 1}. The algorithm outputs 1 if witness w can prove
that d is not accumulated into u. Otherwise, outputs 0.

Correctness. The correctness requires that for all pp ← NM-Setup(n), the fol-
lowing equation holds for all d /∈ R:

NM-Verifypp(NM-Accpp(R),d,NM-Witnesspp(d, R)) = 1.

Security Definition. An accumulator for non-membership is secure if for all prob-
abilistic polynomial-time adversary A,

Pr[pp ← NM-Setup(n); (L, d∗,w∗) ← A(pp) : d∗ ∈ L∧
NM-Verifypp(NM-Accpp(L), d∗,w∗) = 1] = negl(n),

where negl(n) is a negligible function about n. In other words, the security says
that it is computationally infeasible to prove that a value d∗ is not accumulated
in the value u if it is.

It is obviously that if we run the algorithms of accumulator and accumulator
for nonmembership independently, then the combination of these two parts can
give a universal accumulator. More precisely, let (M-Setup, M-Acc, M-Witness,
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M-Verify) be an accumulator scheme, and (NM-Setup, NM-Acc, NM-Witness,
NM-Verify) be an accumulator for nonmembership scheme, then a universal accu-
mulator scheme (Setup, Acc,Witness,Verify) can be constructed as follows:

Setup(n). Run ppm←M-Setup(n), ppnm←NM-Setup(n). Output pp = (ppm,
ppnm).

Accpp(R). Run um←M-Accppm
(R), unm←NM-Accppnm

(R). Return (um, unm).
Witnesspp(d, R, type). If type = 0, run wm ← M-Witnessppm

(d, R), and return
wm. Otherwise, run wnm←NM-Witnessppnm

(d, R), and return the output.
Verifypp(d,u, w, type). If type = 0, then recall M-Verifyppm

(u,d, w), and return
the output. Otherwise, run NM-Verifyppnm

(u,d, w) and return the output.

Both the correctness and the security can be reduced to underlying primitives
(accumulator and accumulator for nonmembership) straightforwardly, and we
just omit the details here.
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Abstract. Dual receiver encryption (DRE), proposed by Diament et al.
at ACM CCS 2004, is a special extension notion of public-key encryp-
tion, which enables two independent receivers to decrypt a ciphertext
into a same plaintext. This primitive is quite useful in designing com-
bined public key cryptosystems and denial of service attack-resilient
protocols. Up till now, a series of DRE schemes are constructed with
bilinear pairing groups. In this work, we introduce the first construction
of lattice-based DRE. Our scheme is secure against chosen-ciphertext
attacks from the standard Learning with Errors (LWE) assumption with
a public key of bit-size about 2nm log q, where m and q are small poly-
nomials in n. Additionally, for the DRE notion in the identity-based
setting, identity-based DRE (ID-DRE), we also give a lattice-based ID-
DRE scheme that achieves chosen-plaintext and adaptively chosen iden-
tity security based on the LWE assumption with public parameter size
about (2� + 1)nm log q, where � is the bit-size of the identity in the
scheme.

Keywords: Lattices · Dual receiver encryption
Identity-based dual receiver encryption · Learning with errors

1 Introduction

The notion of dual receiver encryption (DRE), formlized by Diament et al. [8]
at ACM CCS 2004, is an extension version of public key encryption, in which a
ciphertext can be decrypted into the same plaintext by two independent users.
More precisely, in a DRE scheme, the encryption algorithm takes as input a
message M and two receivers’ independently generated public keys pk1 and pk2
and produces a ciphertext c. Once the receivers receive the ciphertext c, either
of them can decrypt c and obtain the message M using their respective secret
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key. With such a DRE primitive, one can obtain a combined public key cryp-
tosystem or design a denial of service attack-resilient protocol [8]. A decade
later, in CT-RSA 2014, Chow et al. [6] refined the syntax of DRE and appended
some appealing features for DRE. Recently, to simplify the difficulty of certifi-
cate management in traditional certificate-based DRE schemes, Zhang et al. [21]
extended the DRE concept into the identity-based setting by introducing the
identity-based dual receiver encryption (ID-DRE) notion.

In [8], Diament et al. presented the first DRE scheme by transforming the
three-party one-round Diffie-Hellman key exchange scheme by Joux [11], and
also proved that it is indistinguishable secure against chosen ciphertext attacks
(CCA). However, their scheme relied on the existence of random oracle heuristic
(RO), where a DRE that proven to be secure in the RO model may turn into
insecure one when the RO is instantiated by an actual hash function in practice.
Hence, Youn and Smith [20] began with attempting to give a provably secure
DRE scheme in the standard model by combining a adaptively CCA secure
encryption scheme and a non-interactive zero-knowledge protocol, while suffered
low efficiency due to the prohibitively huge proof size. Later on, Chow et al.
[6] proposed a CCA secure DRE scheme via combining a selective-tag weakly
CCA-secure tag-based DRE (based on the tag-based encryption scheme in [13])
and a strong one-time signature scheme, as well as other DRE instantiations
for non-malleable and other properties1. Recently, Zhang et al. [21] constructed
two provably secure ID-DRE schemes against adaptively chosen plaintext or
ciphertext and chosen identity attacks based on an identity-based encryption
scheme in [19].

However, it is worth noticing that all the existing concrete (ID-)DRE schemes
are constructed over bilinear pairing groups. Moreover, recent advances in quan-
tum computing have triggered widespread interest in developing post-quantum
cryptographic schemes. Therefore in this work, inspired by the appealing poten-
tials of DRE, we consider (identity-based) dual receiver encryption notion in the
context of lattice-based cryptography due to its conjectured resistance against
quantum adversaries.

1.1 Our Contributions

We introduce the first construction of DRE and ID-DRE from lattices. Our two
schemes are constructed in the standard model and satisfy chosen-ciphertext or
chosen-plaintext security, which are both based on the hardness of the Learning
With Errors (LWE) problem. Specifically, based on the beautiful work of Agrawal
et al. [1], our works are stated as follows.

• We construct a secure DRE scheme against chosen-ciphertext attacks from the
standard Learning with Errors assumption with a public key of bit-size about

1 Note that Chow et al. [6] also gave two generic DRE constructions: one is combining
Naor-Yung “two-key” paradigm [14] with Groth-Sahai proof system [10], the other
is from lossy trapdoor functions [15].
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2nm log q, where m and q are small polynomials in n. In order to encrypt a
n-bit message, the ciphertext consists of two parts: one is a (n+4m) log q-bit
ciphertext which is an encryption of the message, the other is a one-time
signature of the first part.

• Additionally, we construct a secure ID-DRE scheme against chosen-plaintext
and adaptively chosen-identity attacks from the same assumption. As a result,
the public parameter of our ID-DRE achieves (2�+1)nm log q bit-size, where
� is the bit-size of the identity. In order to encrypt a n-bit message, the bit-
size of ciphertext will become (n + 3m) log q. Note that one can still get two
ID-DRE schemes with more compact public parameters via relying on other
lattice-based IBE works that achieved short public parameter sizes, which is
formally discussed in Sect. 4.3.

Organization. The rest of this paper is organized as follows. In AppendixA and
Sect. 2, we recall some lattice background, dual-receiver encryption and identity-
based dual-receiver encryption. Our DRE construction and its proof are pre-
sented in Sect. 3, and ID-DRE construction along with its proof are described in
Sect. 4. In Sect. 5, we give a conclusion.

2 Preliminaries

Notations. Let λ be the security parameter, and all other quantities are implic-
itly dependent on λ. Let negl(λ) denote a negligible function and poly(λ) denote
unspecified function f(λ) = O(λc) for a constant c. For n ∈ N, we use [n] to
denote a set {1, · · · , n}. And for integer q ≥ 2, Zq denotes the quotient ring of
integer modulo q. We use bold capital letters to denote matrices, such as A,B,
and bold lowercase letters to denote column vectors, such as x,y. The notations
A� and [A|B] denote the transpose of the matrix A and the matrix of concate-
nating A and B, respectively. Additionally, we use (a)i, (A)i to denote the i-th
element, column of a, A. In denotes the n×n identity matrix and Invn denotes
the set of invertible matrices in Z

n×n
q .

2.1 Encoding Vectors into Matrices

In [7], Cramer and Damg̊ard described an encoding function Ht,F that maps a
domain F

t to matrices in F
t×t with certain, strongly injective properties, where

F is a field. For a polynomial g ∈ F[X] of degree less than t − 1, coeff(g) ∈ F
t is

the t- vector of coefficients of g. Let f be a polynomial of degree t in F[X] that
is irreducible. Then for g ∈ F[X], the polynomial g mod f has degree at most
t − 1, so coeff(g mod f) ∈ F

t. Now, for an input h = (h0, h1, · · · , ht−1)� ∈ F
t

define the polynomial gh(X) =
∑t−1

i=0 hix
i ∈ F[X]. Define Ht,F(h) as

Ht,F(h) :=

⎛

⎜
⎜
⎜
⎝

coeff(gh mod f)�

coeff(x · gh mod f)�
...

coeff(xt−1 · gh mod f)�

⎞

⎟
⎟
⎟
⎠

∈ F
t×t.
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From here on, we take F := Zq for a prime q. As stated in [4], it is easy to verify
that Ht,q : Zt

q → Z
t×t
q obeys the following properties:

• Ht,q(ah1 + bh2) = a · Ht,q(h1) + b · Ht,q(h2) for any a, b ∈ Zq,h1,h2 ∈ Zt
q.

• For any vector h �= 0, Ht,q(h) is invertible, and Ht,q(0) = 0.

In [1], according to function Ht,q, Agrawal et al. defined the following equa-
tion HABB : Z�

q → Z
n×n: For x = (x1, · · · , x�)� ∈ Z

�
q,

HABB(x) = In +
�∑

i=1

xi · Ht,q(hi) ⊗ In/t,

where hi
$← Zt

q for i ∈ {1, · · · , �}, and assume that n is a multiple of t. Then,
they implicitly presented the following lemma. However, they did not give a
complete proof.

Lemma 1. For any integers �, t, n, and a prime q, let HABB be the hash function
family defined as above. Then for any fixed set S ⊆ Z

�
q, |S| ≤ Q, and any x ∈

Z
�
q\S, we have

Pr [HABB(x) = 0 ∧ (∀x′ ∈ S,HABB(x′) ∈ Invn)] ∈
(

1
qt

(1 − Q

qt
),

1
qt

)

.

Proof. For a vector e1 = (1, 0, · · · , 0)� ∈ Z
t
q, we have Ht,q(e1) = It. For x =

(x1, · · · , x�)� ∈ Z
�
q, let S0 be the set of functions in HABB such that HABB(x) =

0. It is straightforward to verify that the following equation holds:

HABB(x) = In +
�∑

i=1

xi · Ht,q(hi) ⊗ In/t =

(

It +
�∑

i=1

xi · Ht,q(hi)

)

⊗ In/t

=

(

Ht,q(e1)+
�∑

i=1

xi · Ht,q(hi)

)

⊗ In/t = Ht,q

(

e1 +
�∑

i=1

xihi

)

⊗ In/t.

By a simple observation, we have HABB(x) = 0 if and only if
∑�

i=1 xihi = −e1.
As a result, we can get |S0| = q(�−1)t. In the same way, we can get |S ′

i| = q(�−1)t,
where S ′

i is the set of functions HABB such that HABB(x′
i) = 0 for x′

i ∈ S =
{x′

1, · · · ,x′
|S|}. Moreover, |S0 ∩ S ′

i| ≤ q(�−2)t for i ∈ {1, · · · , |S|}. The set of
functions in HABB such that HABB(x) = 0 and ∀x′ ∈ S,HABB(x′) ∈ Invn is
exactly S̃ = S0 \ {S ′

1 ∪ · · · ∪ S ′
|S|}. Now, we have

∣
∣
∣S̃
∣
∣
∣ =

∣
∣
∣S0 \ {S ′

1 ∪ · · · ∪ S ′
|S|}

∣
∣
∣ ≥ |S0| −

|S|∑

i=1

|S0 ∩ S ′
i| ≥ q(�−1)t − Qq(�−2)t.

Therefore the above probability holds with |S̃|/qt� is at least 1
qt (1− Q

qt ). And the

probability is at most 1
qt since |S̃| ≤ |S0| = q(�−1)t. ��
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2.2 (Identity-Based) Dual Receiver Encryption

Dual Receiver Encryption [8]. A DRE scheme consists of the following four
algorithms:

• CGenDRE(1λ) → crs: The randomized common reference string (CRS) gener-
ation algorithm takes as input a security parameter λ and outputs a CRS
crs.

• GenDRE(crs) → (pk, sk): The randomized key generation algorithm takes as
input crs and outputs a public/secret key pair (pk, sk). We regard (pk1, sk1)
and (pk2, sk2) as the key pairs of two independent users. Without loss of
generality, we assume pk1 <d pk2, where <d is a “less-than” operator based
on lexicographic order throughout this paper.

• EncDRE(crs, pk1, pk2,M) → c: The randomized encryption algorithm takes as
input crs, two public keys pk1 and pk2 (such that pk1 <d pk2) and a message
M , and outputs a ciphertext c.

• DecDRE(crs, pk1, pk2, skj , c) → M : The deterministic decryption algorithm
takes two public keys pk1 and pk2 (such that pk1 <d pk2), one of the secret
keys skj (j ∈ {1, 2}), and a ciphertext c as input, and outputs a message M
(which may be the special symbol ⊥).

Correctness. For consistency, we require that, if crs ← CGenDRE(1λ), (pk1, sk1) ←
GenDRE(crs) and (pk2, sk2) ← GenDRE(crs), and c ← EncDRE(crs, pk1, pk2,M),
then we have the probability

Pr [DecDRE(crs, pk1, pk2, sk1, c) = DecDRE(crs, pk1, pk2, sk2, c) = M ] = 1−negl(λ).

Security. A DRE scheme is said to be indistinguishable against chosen-ciphertext
attacks (IND-CCA) if for any PPT adversary A,

Advind−cca
DRE,A(1λ) =

∣
∣
∣
∣Pr

[
Expind−cca

DRE,A(1λ) = 1
]

− 1
2

∣
∣
∣
∣

is negligible in λ.

Identity-Based Dual Receiver Encryption [21]. An ID-DRE scheme con-
sists of the following four algorithms:

• SetupID(1λ) → (PP,Msk). The setup algorithm takes in a security parameter
1λ as input. It outputs public parameters PP and a master secret key Msk.

• KeyGenID(PP,Msk, id1st, id2nd ∈ ID) → skid1st , skid2nd
. The key genera-

tion algorithm takes public parameters PP , master secret key Msk, and two
identities id1st, id2nd as input. It outputs skid1st as the secret key for the first
receiver id1st, and skid2nd

for the second receiver id2nd.
• EncID(PP, id1st, id2nd,M) → c. The encryption algorithm takes in public

parameters PP , two identities id1st and id2nd, and a message M as input. It
outputs a ciphertext c.

• DecID(PP, c, skidj
) → M . The decryption algorithm takes in public param-

eters PP , a ciphertext c, and one secret key skidj
as input, where j ∈

{1st, 2nd}. It outputs a message M .
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Experiment Expind−cca
DRE,A(1λ) :

crs
$← CGenDRE(1λ);

(pkj , skj)
$← GenDRE(crs) for j ∈ 1, 2;

(M0, M1, s)
$← ADecDRE(skj ,c)(crs, pk1, pk2);

b
$← {0, 1}, c� $← EncDRE(crs, pk1, pk2, Mb);

b′ $← ADecDRE(skj ,c)∧c �=c�

(c�, s);
if b′ = b then return 1 else return 0.

Experiment Expind−id−cpa
ID−DRE,A(1λ) :

(PP, Msk) $← SetupID(1
λ)

(id�
1st, id

�
2nd, M0, M1, s)

$← AKeyGenID(PP,Msk,id1st,id2nd)(PP );

b
$← {0, 1},c� $← EncID(PP, id�

1st, id
�
2nd, Mb);

b′ $← AKeyGenID(PP,Msk,id1st,id2nd)∧idj �=id�
j,j=1st,2nd(c�, s);

if b′ = b then return 1 else return 0.

Fig. 1. IND-CCA security for DRE and IND-ID-CPA security for ID-DRE

Correctness. For all (PP,Msk) $← SetupID(1λ), all identities idj ∈ ID, all
messages M , all skidj

← KeyGenID(PP,Msk, idj), all c ← EncID(PP, id1st,
id2nd,M), we have

Pr[DecID(PP, skid1st , c) = DecID(PP, skid2nd
, c) = M ] = 1 − negl(λ).

Security. An ID-DRE scheme is said to be indistinguishable against chosen-
plaintext and adaptively chosen-identity attacks (IND-ID-CPA) if for any PPT
adversary A,

Advind−id−cpa
ID−DRE,A(1λ) =

∣
∣
∣
∣Pr

[
Expind−id−cpa

ID−DRE,A(1λ) = 1
]

− 1
2

∣
∣
∣
∣

is negligible in λ.

The Relation Between DRE and Broadcast Encryption. As studied in [6,21], the
(ID-) DRE can be viewed as a special instance of a dynamic (ID-) broadcast
encryption primitive that supports multiple recipients in an encryption system.
Different from (ID-) broadcast encryption schemes usually relying on strong
security assumptions or/and random oracle heuristic [18], (ID-) DRE aims to
give a more straightforward understanding and direct construction under simple
assumptions in the standard model. In general, broadcast encryption is more
expensive than dual-receiver encryption.

3 Dual Receiver Encryption Construction

Our scheme relies upon a strongly unforgeable one-time signature scheme
OT S = (GenOTS,SigOTS,VrfOTS) whose verification key is exactly λ bits long.
The description of our DRE scheme DRE is as follows.
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• CGenDRE(1λ). On input a security parameter λ, algorithm CGenDRE sets the
parameters n,m, q as specified in Fig. 2. Then it selects a uniformly random
matrix U ∈ Z

n×n
q . Finally it outputs a CRS crs = (n,m, q,U).

• GenDRE(crs). For user j ∈ {1, 2}, this algorithm generates a pair matrices
(Aj ,TAj

) ∈ Z
n×m
q ×Z

m×m
q by running TrapGen(1n, 1m, q) and selects a ran-

dom matrix Bj
$← Z

n×m
q . Finally, it outputs

pkj = (Aj ,Bj) and skj = TAj
.

• EncDRE(crs, pk1, pk2,m ∈ {0, 1}n). It first obtains a pair (vk, sk) by running
GenOTS(1λ) and computes C1 = [A1|B1 + Hn,q(vk) · G] ∈ Z

n×2m
q , C2 =

[A2|B2 + Hn,q(vk) · G] ∈ Z
n×2m
q . Then, it picks s $← Z

n
q , ẽ0

$← DZn,αq, and

e1,1, e2,1, e1,2, e2,2
$← DZm,α′q. Finally, it computes and returns the ciphertext

c = (vk, c0, c1, c2, δ), where δ = SigOTS(sk, (c0, c1, c2)) and

c0 = U�s + ẽ0 +
⌈q

2

⌉
· m ∈ Z

n
q ,

c1 = C�
1 s +

[
e1,1

e1,2

]

∈ Z
2m
q , c2 = C�

2 s +
[
e2,1

e2,2

]

∈ Z
2m
q .

• DecDRE(crs, pk1, pk2, sk1, c). To decrypt a ciphertext c = (vk, c0, c1, c2, δ) with
a private key sk1 = TA1 , the algorithm DecDRE performs each of the following
steps:
(1) it runs VrfOTS(vk, (c0, c1, c2), δ), outputs ⊥ if VrfOTS rejects;
(2) for i ∈ {1, · · · , n}, it runs SampleLeft(A1,B1+Hn,q(vk) ·G, (U)i,TA1 , σ)

to obtain (E1)i, i.e., it obtains E1 ∈ Z
2m×n
q such that C1 · E1 = U;

(3) it computes b = c0 − E�
1 c1 and treats each element of b =

[(b)1, · · · , (b)n]� as an integer in Z, and sets (m)i = 1 if
∣
∣(b)i − � q

2�
∣
∣ <

� q
4�, else (m)i = 0, where i ∈ {1, · · · , n}.

(4) finally, it returns the plaintext m = [(m)1, · · · , (m)n]�.

3.1 Correctness and Parameter Selection

In order to satisfy the correctness requirement and make the security proof work,
we need that

◦ for i ∈ {1, · · · , n}, the error term is bounded by
∣
∣
∣
∣(ẽ0)i − (E)�

i

[
e1,1

e1,2

]∣
∣
∣
∣ ≤ αq

√
m + (σ

√
2m) · (α′q

√
2m) < q/4.

◦ TrapGen in Lemma 12 (Item 1) can work (m ≥ 6n�log q�), and it returns TA

satisfying ‖T̃A‖ ≥ O(
√

n log q).
◦ the Leftover Hash Lemma in Lemma 12 (Item 4) can be applied to the security

proof (m > (n + 1) log q + ω(log n)).
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◦ SampleLeft in Lemma 12 (Item 2) can operate (σ ≥ ‖T̃A‖ · ω(
√

log m) =
O(

√
n log q) · ω(

√
log m)).

◦ SampleRight in Lemma 12 (Item 3) can operate (σ ≥ ‖T̃G‖·s1(Rj)·ω(
√

log m),
for j = 1, 2).

◦ ReRand (Lemma 13) in the security proof can operate (αq > ω(
√

log m),
and α′q/(2αq) > s1([Im|Rj ]�), where s1([Im|Rj ]�) ≤ (1 + s1(Rj)) ≤
(1 + 12

√
2m), for j = 1, 2.

To satisfy the above requirements, we set the parameters in Fig. 2.

Parameters Description Setting
λ security parameter
n PK-matrix row number n = λ
m PK-matrix column number 6n log q

σ SampleLeft,SampleRight width 12
√
10m · ω(

√
logn)

q modulus 96
√
5m3/2nω(

√
logn)

αq error width 2
√
2n

α′q error width 96
√

mn

Fig. 2. Parameter selection of DRE construction

3.2 Security Proof

Theorem 1. If OT S is a strongly existential unforgeable one-time signature
scheme and the DLWEq,n,n+2m,α assumption holds, then the above scheme DRE
is a secure DRE against chosen-ciphertext attacks.

Proof (of Theorem 1). Assume A is a probabilistic polonomial time (PPT)
adversary attacks DRE in a chosen-ciphertext attack. If
VrfOTS(vk, (c0, c1, c2), δ) = 1, we say the ciphertext c = (vk, (c0, c1, c2), δ) is
valid. Let c� denote the challenge ciphertext (vk�, (c�

0, c
�
1, c

�
2), δ

�) received by A
during a particular run of the experiment, and let Forge denote the event that
A submits a valid ciphertext (vk�, (c0, c1, c2), δ) to the decryption oracle (we
assume that vk� is chosen at the outer of the experiment so this well-defined
even before A is given c�.) According to the security of OT S, Pr [Forge] is neg-
ligible. We then prove the following lemma:

Lemma 2.
∣
∣
∣Pr

[
Expind−cca

DRE,A (1λ) = 1 ∧ Forge
]

+ 1
2 Pr [Forge] − 1

2

∣
∣
∣ is negligible, if

assuming that the DLWEq,n,n+2m,α assumption holds.
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To see that this implies the theorem, note that

Advind−cca
DRE,A (1λ) =

∣
∣
∣
∣
Pr

[

Expind−cca
DRE,A (1λ) = 1

]

− 1

2

∣
∣
∣
∣

≤
∣
∣
∣
∣
Pr

[

Expind−cca
DRE,A (1λ) = 1 ∧ Forge

]

− 1

2
Pr [Forge]

∣
∣
∣
∣

+

∣
∣
∣
∣
Pr

[

Expind−cca
DRE,A (1λ) = 1 ∧ Forge

]

+
1

2
Pr [Forge] − 1

2

∣
∣
∣
∣

≤1

2
Pr [Forge] +

∣
∣
∣
∣
Pr

[

Expind−cca
DRE,A (1λ) = 1 ∧ Forge

]

+
1

2
Pr [Forge] − 1

2

∣
∣
∣
∣
.

Proof (of Lemma 2). We sketch the proof via a sequence of games. The games
involve the challenger and an adversary A. In the following, we define Xκ as the
event that the challenger outputs 1 in Gameκ, for κ ∈ {1, 2, 3, 4, 5}.

Game1: This game is the original experiment Expind−cca
DRE,A (1λ) except that when

the adversary A submits a valid ciphertext (vk�, (c0, c1, c2), δ) to the decryp-
tion oracle, the challenger outputs a random bit. It is easy to see that

∣
∣
∣
∣Pr [X1] − 1

2

∣
∣
∣
∣ =

∣
∣
∣
∣Pr

[
Expind−cca

DRE,A (1λ) = 1 ∧ Forge
]

+
1
2

Pr [Forge] − 1
2

∣
∣
∣
∣ .

Game2: This game is identical to Game1 except that the challenger changes
(1) the generation of public keys pk1, pk2: the challenger selects random
matrices A1,A2 ∈ Z

n×m
q instead of running TrapGen, and random matri-

ces R1,R2 ∈ {−1, 1}m×m; then, the challenger computes B1 = A1R1 −
Hn,q(vk�)G,B2 = A2R2 − Hn,q(vk�)G ∈ Z

n×m
q . (2) the decryption oracle:

when A submits a valid ciphertext (vk �= vk�, (c0, c1, c2), δ), the challenger
generates E1 by running SampleRight(A1,G,R1,Hn,q(vk−vk�), (U)i,TG, σ)
(In the similar way, the challenger can obtain E2 by running the algorithm
SampleRight(A1,G,R2,Hn,q(vk − vk�), (U)i,TG, σ) ) instead of SampleLeft,
for i ∈ {1, · · · , n}. Note that the following equation holds:

c�
0 = U�s + ẽ0 +

⌈q

2

⌉
· mb,

c�
1 =

[
(A1)�s + e1,1

(R1)�(A1)�s + e1,2

]

, c�
2 =

[
(A2)�s + e2,1

(R2)�(A2)�s + e2,2

]

,

where ẽ0
$← DZn,αq and e1,1, e1,2, e2,1, e2,2

$← DZm,α′q.
Game3: In this game, the challenger changes the way that the challenge cipher-

text c� is created: the challenger first picks s $← Z
n
q , ẽ0

$← DZn,αq, ẽ1,1, ẽ2,1
$←

DZm,αq and sets w = U�s + ẽ0,b1 = (A1)�s + ẽ1,1,b2 = (A2)�s + ẽ2,1.
Then, it computes

c�
0 = w +

⌈ q

2

⌉

· mb,

c�
1 = ReRand

([
Im

(R1)
�

]

,b1, αq,
α′q
2αq

)

, c�
2 = ReRand

([
Im

(R2)
�

]

,b2, αq,
α′q
2αq

)

.
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Game4: In this game, the challenger changes the way that the challenge cipher-
text c� is created: the challenger first picks random vectors w $← Z

n
q , b̃1

$←
Z

m
q , b̃2

$← Z
m
q , ẽ1,1, ẽ2,1

$← DZm,αq and sets b1 = b̃1 + ẽ1,1,b2 = b̃2 + ẽ2,1.
Then, it computes

c�
0 = w +

⌈ q

2

⌉

· mb,

c�
1 = ReRand

([
Im

(R1)
�

]

,b1, αq,
α′q
2αq

)

, c�
2 = ReRand

([
Im

(R2)
�

]

,b2, αq,
α′q
2αq

)

.

Game5: In this game, the challenger changes the way that the challenge cipher-
text c� is created: the challenger first picks w $← Z

n
q , b̃1

$← Z
m
q , b̃2

$←
Z

m
q , e1,1, e1,2, e2,1, e2,2

$← DZm,α′q and computes

c�
0 = w +

⌈q

2

⌉
· mb,

c�
1 =

[
b̃1 + e1,1

(R1)�b̃1 + e1,2

]

, c�
2 =

[
b̃2 + e2,1

(R2)�b̃2 + e2,2

]

.

Analysis of Games. We use the following lemmas to give a analysis between
each adjacent games.

Lemma 3. Game1 and Game2 are statistically indistinguishable.

Lemma 4. Game2 and Game3 are identically distributed, and Game4 and
Game5 are identically distributed.

Lemma 5. Assume the DLWEq,n,n+2m,α assumption holds, Game3 and
Game4 are computationally indistinguishable.

Complete the Proof of Theorem 1. It is obvious that Pr[X5] = 1
2 , this is

because the challenge bit b is independent of the A’s view. From Lemmas 3 to
5, we know that

Pr[X1] ≈ Pr[X2],Pr[X2] = Pr[X3],Pr[X4] = Pr[X5].

From Lemma 5, we know that

|Pr[X3] − Pr[X4]| =
∣
∣
∣
∣Pr[X4] − 1

2

∣
∣
∣
∣ ≤ DLWEq,n,n+2m,α,

which implies
∣
∣Pr [X1] − 1

2

∣
∣ ≤ DLWEq,n,n+2m,α − negl(λ). ����

4 Identity-Based Dual Receiver Encryption Construction
from Lattice

Assume an identity space ID = {−1, 1}� (In general, ID-DRE needs to support
n-bit length identity, i.e., � = n) and a message space M = {0, 1}n, our ID-DRE
scheme ID − DRE consists of the following four algorithms:
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• SetupID(1λ) → (PP,Msk) : On input a security parameter λ, it sets the
parameters n,m, q as specified in Fig. 3. Then it obtains a pair matrices
(A,TA) ∈ Z

n×m
q × Z

m×m
q by running TrapGen(1n, 1m, q) and selects a uni-

formly random matrix U ∈ Z
n×n
q ,A1

i ,A
2
i ∈ Z

n×m
q , where i ∈ {1, · · · , n}.

Finally it outputs PP = (n,m, q,A,A1
i ,A

2
i ,U) and Msk = TA.

• KeyGenID(PP,Msk, id1st, id2nd ∈ ID) → skid1st , skid2nd
: On input public

parameters PP , a master key Msk, and identities id1st, id2nd, it first com-
putes Aid1 =

∑n
i=1(id1st)i · A1

i + G,Aid2 =
∑n

i=1(id2nd)i · A2
i + G. Then

for i ∈ {1, · · · , n}, it runs SampleLeft(A,Aid1 , (U)i,TA, σ) to obtain (Eid1)i

and sets skid1st = Eid1 ∈ Z
2m×n
q . Similarly, it can obtain skid2nd

= Eid2 such
that [A|Aid2 ] · Eid2 = U.

• EncID(PP, id1st, id2nd,m) → c. It computes Aid1 ,Aid2 as above. Then, it

picks s $← Z
n
q , ẽ0

$← DZn,αq, and e1,1, e2,1, e1,2, e2,2
$← DZm,α′q. Finally, it

computes and returns the ciphertext c = (c0, c1), where

c0 = U�s + e0 +
⌈q

2

⌉
· m ∈ Z

n
q ,

c1 =

⎡

⎣
c1,1

c1,2

c1,3

⎤

⎦ =

⎡

⎣
A�

(Aid1)
�

(Aid2)
�

⎤

⎦ s +

⎡

⎣
e1,1

e1,2

e1,3

⎤

⎦ ∈ Z
3m
q ,

• DecID(PP, skidj
, c) → m. To decrypt a ciphertext c = (c0, c1) with a private

key skid1st = Eid1 , it computes b = c0 − E�
id1

·
[
c1,1

c1,2

]

and regards each

coordinate of b = [(b)1, · · · , (b)n]� as an integer in Z, and sets (m)i = 1 if∣
∣(b)i − � q

2�
∣
∣ < � q

4�; otherwise sets (m)i = 0 where i ∈ {1, · · · , n}. Finally, it
returns a plaintext m = [(m)1, · · · , (m)n]�.

4.1 Correctness and Parameter Selection

In order to satisfy the correctness requirement and make the security proof work
(which is very similar to Subsect. 3.1), we set the parameters in Fig. 3.

Parameters Description Setting
λ security parameter
n PK-matrix row number n = λ
m PK-matrix column number 6n log q
� length of identity n

σ SampleLeft,SampleRight width 12
√
10mn · ω(

√
logn)

q modulus O(m2n5/2ω(
√
logn))

αq error width 2
√
2n

α′q error width 192n3/2√m

Fig. 3. Parameter selection of ID-DRE construction
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4.2 Security Proof

Theorem 2. If the DLWEq,n,n+m,α assumption holds, then the above scheme
ID-DRE is a secure ID-DRE scheme against chosen-plaintext and adaptively
chosen-identity attacks.

Proof (of Theorem 2). We prove the theorem with showing that if a PPT
adversary A can break our ID-DRE scheme with a non-negligible advan-
tage ε (i.e., success probability 1

2 + ε), then there exists a reduction that can
break the DLWEq,n,n+m,α assumption with an advantage poly(ε) − negl(1λ).
Let Q = Q(λ) be the upper bound of the number of KeyGenID queries and
I∗ = {(id∗

1st, id
∗
2nd), (id

j
1st, id

j
2nd)j∈[Q]} be the challenge ID along with the

queried ID’s.
We formally give the proof via a sequence of games and define Xκ as the

event that the challenger outputs 1 in Gameκ, for κ ∈ {0, 1, 2, 3, 4, 5, 6}.

Game0: This game is the original experiment Expind−id−cpa
ID−DRE,A(1λ) in Fig. 1. It is

easy to see that

ε =
∣
∣
∣
∣Pr [X0] − 1

2

∣
∣
∣
∣ =

∣
∣
∣
∣Pr

[
Expind−id−cpa

ID−DRE,A(1λ) = 1
]

− 1
2

∣
∣
∣
∣ .

Game1: This game is as same as Game0 except that we add an abort event that
is independent of the adversary’s view. Let n, �, q be the parameters as in the
scheme’s setup algorithm and the challenger selects t = �logq(2Q/ε)�, hence
we have qt ≥ 2Q/ε ≥ qt−1. Then the challenger chooses 2n random integer
vectors h1

i ,h
2
i ∈ Z

t
q and defines two functions H1

ABB,H2
ABB : ID → Z

n×n
q as

follows: ∀id ∈ ID,

H1
ABB(id) = In+

n∑

i=1

(id)i·H(h1
i )⊗In/t,H2

ABB(id) = In+
n∑

i=1

(id)i·H(h2
i )⊗In/t.

We then describe how the challenger behaves in Game1 as follows:
• Setup: The same as Game0 except that the challenger keeps the hash

functions H1
ABB and H2

ABB passed from the experiment.
• Secret key and ciphertext query: The challenger responds to secret

key queries for identities and challenge ciphertext query (with a random
bit b ∈ {0, 1}) as same as that in Game0.

• Gauss: When the adversary returns a bit b′, the challenger checks if

H2
ABB(id�

1st) = 0,H2
ABB(idj

1st) ∈ Invn

H2
ABB(id�

2nd) = 0,H2
ABB(idj

2nd) ∈ Invn

for j ∈ {1, · · · , Q} where Invn denotes invertible matrices in Zn×n
q . If the

condition does not hold, the challenger outputs a random bit b ∈ {0, 1},
namely we say the challenger aborts the game.
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Note that A never sees the random hash functions H1
ABB and H2

ABB, and has
no idea if an abort event took place. While it is convenient to describe the
abort action at the end of the game, nothing would change if the challenger
aborts the game as soon as the abort condition becomes true.

Game2: This game is as same as Game1 except that we slightly change the
way that the challenger generates the matrices A1

i ,A
1
i for i ∈ {1, · · · , n}.

Taking t as t = �logq 2Q/ε�, we thus have qt ≥ 2Q/ε ≥ qt−1. Assume n is
a multiple of t. For i = 1, · · · , n, the challenger chooses 2n random integer
vectors h1

i ,h
2
i ∈ Z

t
q and random matrices R1

i ,R
2
i ∈ {−1, 1}m×m. Then it sets

A1
i = AR1

i + (Ht,q(h1
i ) ⊗ In/t) · G,A2

i = AR2
i + (Ht,q(h2

i ) ⊗ In/t) · G.
Game3: This game is identical to Game2 except that the challenger chooses

a random matrix A instead of running TrapGen and responds to private key
queries by involving the algorithm SampleRight instead of SampleLeft. To
respond to a private key query for id1st, id2nd, the challenger needs short
vectors (Eid1)i ∈ ∧(U)i

q ([A|Aid1 ]) and (Eid2)i ∈ ∧(U)i
q ([A|Aid2 ]), where

Aid1 =
n∑

i=1

(id1st)i · A1
i + G = A

(
n∑

i=1

(id1st)i · R1
i

)

+ H1
ABB(id1st) · G;

Aid2 =
n∑

i=1

(id2nd)i · A2
i + G = A

(
n∑

i=1

(id2nd)i · R2
i

)

+ H2
ABB(id2nd) · G.

If H1
ABB(id1st) /∈ Invn or H2

ABB(id2nd) /∈ Invn, the challenger aborts this
game and returns a random bit. Otherwise, the challenger responds the pri-
vate key query by running

SampleRight(A,G,

n∑

i=1

(id1st)i R
1
i ,H1

ABB(id1st), (U)i,TG, σ), to get Eid1 ,

SampleRight(A,G,

n∑

i=1

(id2nd)i R
2
i ,H2

ABB(id2nd), (U)i,TG, σ), to get Eid2 ,

for i ∈ {1, · · · , n}. Since H1
ABB(id�

1st) = 0,H2
ABB(id�

2nd) = 0, it holds:

c�
0 = U�s + ẽ0 +

⌈q

2

⌉
· mb, c�

1 =

⎡

⎢
⎣

A�s + e1,1(∑n
i=1(id

�
1st)i · R1

i

)�
A�s + e1,2(∑n

i=1(id
�
2nd)i · R2

i

)�
A�s + e1,2

⎤

⎥
⎦ ,

where ẽ0
$← DZn,αq, e1,1, e1,2, e1,3

$← DZm,α′q.
Game4: In this game, the challenge ciphertext is generated as follows: it chooses

s $← Z
n
q , ẽ0

$← DZn,αq, ẽ1
$← DZm,αq and sets w = U�s + ẽ0,b = A�s + ẽ1.

Then, it computes

c�
0 = w +

⌈q

2

⌉
· mb, c�

1 = ReRand

⎛

⎜
⎝

⎡

⎢
⎣

Im(∑n
i=1(id

�
1st)i · R1

i

)�
(∑n

i=1(id
�
2nd)i · R2

i

)�

⎤

⎥
⎦ ,b, αq,

α′q
2αq

⎞

⎟
⎠ .
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Game5: In this game, the challenge ciphertext is generated as follows: it first
picks random vectors w $← Z

n
q , b̃ $← Z

m
q , ẽ1

$← DZm,αq and sets b = b̃ + ẽ1.
Then, it computes

c�
0 = w +

⌈q

2

⌉
· mb, c�

1 = ReRand

⎛

⎜
⎝

⎡

⎢
⎣

Im(∑n
i=1(id

�
1st)i · R1

i

)�
(∑n

i=1(id
�
2nd)i · R2

i

)�

⎤

⎥
⎦ ,b, αq,

α′q
2αq

⎞

⎟
⎠ .

Game6: In this game, the challenge ciphertext is generated as follows: it first
picks w $← Z

n
q , b̃ $← Z

m
q and e1,1, e1,2, e1,3

$← DZm,α′q and computes

c�
0 = w +

⌈q

2

⌉
· mb, c�

1 =

⎡

⎢
⎣

b̃ + e1,1

(
∑n

i=1(id
�
1st)i · R1

i )
�b̃ + e1,2

(
∑n

i=1(id
�
2nd)i · R2

i )
�b̃ + e1,3

⎤

⎥
⎦ .

Analysis of Games. We use the following lemmas to give a analysis between
each adjacent games.

The only difference between Game1 and Game0 is the abort event. We use
Lemma 28 in [1] to argue that the adversary still has a non-negligible advantage
in Game1 even though the abort event happens.

Lemma 6 ([1]). Let I∗ be a (Q + 1)-ID tuple {id∗, {idj}j∈[Q]} denoted the
challenge ID along with the queried ID’s, and η(I∗) be the probability that an
abort event does not happen in Game1. Let ηmax = max η(I∗) and ηmin =
min η(I∗). For κ = 0, 1, we let Xκ be the event that the challenger returns 1
as the output of Gameκ. Then, we have

∣
∣Pr[X1] − 1

2

∣
∣ ≥ ηmin

∣
∣Pr[X0] − 1

2

∣
∣ −

1
2 (ηmax − ηmin).

Lemma 7. Let ε =
∣
∣Pr [X0] − 1

2

∣
∣, then

∣
∣Pr[X1] − 1

2

∣
∣ ≥ ε3

64q2Q2 .

Lemma 8. Game1 and Game2 are statistically indistinguishable.

Lemma 9. Game2 and Game3 are statistically indistinguishable.

Lemma 10. Game3 and Game4 are identically distributed, and Game5 and
Game6 are identically distributed.

Lemma 11. Assume the DLWEq,n,n+m,α assumption holds, Game4 and
Game5 are computationally indistinguishable.

Complete the Proof of Theorem 2. It is obvious that Pr[X6] = 1
2 , this is

because the challenge bit b is independent of the A’s view. From Lemmas 7 to
10, we know that

Pr[X1] ≈ Pr[X2],Pr[X2] ≈ Pr[X3],Pr[X3] = Pr[X4],Pr[X5] = Pr[X6]. (1)
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From Lemma 11, we know that

|Pr[X4] − Pr[X5]| =
∣
∣
∣
∣Pr[X4] − 1

2

∣
∣
∣
∣ ≤ DLWEq,n,n+m,α,

which implies DLWEq,n,n+m,α ≥ ε3

64q2Q2 − negl(λ), according to Lemma 7 and
Eq. 1. ����

4.3 Extension: ID-DRE with More Compact Parameters

As mentioned above, our ID-DRE scheme is based on the beautiful work of
Agrawal et al. [1], i.e., an adaptively secure identity-based encryption (IBE)
scheme. However, one drawback of Agarwal et al.’s adaptive secure IBE scheme
[1] is the large public parameter sizes: namely, the public parameters contain
� + 1 matrices composed of n × m elements, where � is the size of the bit-string
representing identities. As a result, the public parameters in our ID-DRE scheme
contain 2 · � + 1 matrices composed of n × m elements.

In [17], Singh et al. considered identities as one chunk rather than bit-by-bit.
In fact, the maximum of the above chunk is a number in Zq, so that they can
reduce the number of the matrices in the scheme by a factor at most log q, while
encryption and decryption are almost as efficient as that in [1]. Applying their
technique (they called “Blocking Technique”) to our construction, we can get
an ID-DRE scheme with more compact public parameter sizes. More precisely,
we can get a more efficient ID-DRE scheme in which there exist only 2 · �

log q + 1
matrices composed of n × m elements, or about O( n

log n ) matrices (since l = n

and q is a polynomial of n).
Based the IBE schemes in [1,17], Apon et al. [4] proposed an identity-based

encryption scheme which only needs O( n
log2 n

) public matrices to support n-bit
length identity. The reason why the number of the matrices in their scheme is
less about log n times than that of the IBE scheme in [17] is that they used
a different gadget matrix Ĝ and flattening function Ĝ−1 in logarithmic (log n)
base instead of the usual gadget matrix G and flattening function G−1 in 2
base. Note that the encryption and decryption of the IBE scheme in [4] are less
efficient than that in [1,17], this is because the flattening function Ĝ−1 is much
slower than G−1. Applying their technique to our construction, we can get a
more efficient ID-DRE scheme in which there exist about O( n

log2 n
) matrices.

Overall, we can further obtain more compact ID-DRE schemes from the IBE
schemes in [4,17].

5 Conclusion

The learning with errors (LWE) problem is a promising cryptographic primitive
that is believed to be resistant to attacks by quantum computers. Under this
assumption, we construct a dual-receiver encryption scheme with a CCA security.
Additionally, for the DRE notion in the identity-based setting, namely ID-DRE,
we also give a lattice-based ID-DRE scheme that achieves IND-ID-CPA security.
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Appendix A: Lattice Background

For positive integers q, n,m, and a matrix A ∈ Z
n×m
q , the m-dimensional integer

lattices are defined as: Λq(A) = {y : y = A�s for some s ∈ Z
n} and Λ⊥

q (A) =
{y : Ay = 0 mod q}.

Let S be a set of vectors S = {s1, · · · , sn} in R
m. We use S̃ = {s̃1, · · · , s̃n}

to denote the Gram-Schmidt orthogonalization of the vectors s1, · · · , sn in that
order, and ‖S‖ to denote the length of the longest vector in S. For a real-valued
matrix R, let s1(R) = max‖u‖=1 ‖Ru‖ (respectively, ‖R‖∞ = max ‖ri‖∞)
denote the operator norm (respectively, infinity norm) of R.

For x ∈ Λ, define the Gaussian function ρs,c(x) over Λ ⊆ Z
m centered

at c ∈ R
m with parameter s > 0 as ρs,c(x) = exp(−π||x − c||/s2). Let

ρs,c(Λ) =
∑

x∈Λ ρs,c(x), and define the discrete Gaussian distribution over Λ

as DΛ,s,c(x) = ρs,c(x)
ρs,c(Λ) , where x ∈ Λ. For simplicity, ρs,0 and DΛ,s,0 are abbrevi-

ated as ρs and DΛ,s, respectively.

Learning with Errors Assumption. The learning with errors problem,
denoted by LWEq,n,m,α, was first proposed by Regev [16]. For integer n,m =
m(n), a prime integer q > 2, an error rate α ∈ (0, 1), the LWE problem
LWEq,n,m,α is to distinguish the following pairs of distributions: {A,A�s + e}
and {A,u}, where A $← Z

n×m
q , s $← Z

n
q ,u $← Z

m
q and e $← DZm,αq. Regev

[16] showed that solving decisional LWEq,n,m,α (denoted by DLWEq,n,m,α) for
αq > 2

√
2n is (quantumly) as hard as approximating the SIVP and GapSVP

problems to within Õ(n/α) factors in the worst case.

Lemma 12. Let p, q, n,m be positive integers with q ≥ p ≥ 2 and q prime.
There exists PPT algorithms such that

• ([2,3]): TrapGen(1n, 1m, q) a randomized algorithm that, when m ≥ 6n�log q�,
outputs a pair (A,TA) ∈ Z

n×m
q × Z

m×m such that A is statistically close to
uniform in Z

n×m
q and TA is a basis of Λ⊥

q (A), satisfying ‖T̃A‖ ≤ O(
√

n log q)
with overwhelming probability.

• ([5]): SampleLeft(A,B,u,TA, σ) a randomized algorithm that, given a full
rank matrix A ∈ Z

n×m
q , a matrix B ∈ Z

n×m
q , a basis TA of Λ⊥

q (A), a vector
u ∈ Z

n
q and σ ≥ ‖T̃A‖ ·ω(

√
log m), then outputs a vector r ∈ Z

2m
q distributed

statistically close to DΛu
q (F),σ where F = [A|B].
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• ([1]): SampleRight(A,G,R,S,u,TG, σ) a randomized algorithm that, given
a full rank matrix A ∈ Z

n×m
q , a matrix R ∈ Z

m×m
q , an invertible matrix

S ∈ Z
n×n
q , a vector u ∈ Z

n
q and σ ≥ ‖T̃G‖ ·s1(R) ·ω(

√
log m), then it outputs

a vector r ∈ Z
2m
q statistically close to DΛu

q (F),σ where F = [A|AR + SG].
• (Generalized Leftover Hash Lemma [1,9]): For m > (n+1) log q+ω(log n) and

prime q > 2, let R $← {−1, 1}m×k and A $← Z
n×m
q ,B $← Z

n×k
q be uniformly

random matrices. Then the distribution (A,AR,R�w) is negl(n)-close to the
distribution (A,B,R�w) for all vector w ∈ Z

m
q . When w is always 0, this

lemma is called Leftover Hash Lemma.

In [12], Katsuamta and Yamada introduced the “Noise Rerandomization” lemma
which plays an important role in the security proof because of creating a well
distributed challenge ciphertext.

Lemma 13 (Noise Rerandomization [12]). Let q, w,m be positive integers
and r a positive real number with r > max{ω(

√
log m), ω(

√
log w)}. For arbitrary

column vector b ∈ Z
m
q , vector e chosen from DZm,r, any matrix V ∈ Z

w×m and
positive real number σ > s1(V), there exists a PPT algorithm ReRand(V,b +
e, r, σ) that outputs b′ = Vb + e′ ∈ Z

w where e′ is distributed statistically close
to DZw,2rσ.

Appendix B: Signature

Definition 1 (Signature Scheme). A signature scheme is a triple of proba-
bilistic polynomial-time algorithms as follows:

• Gen(1λ) outputs a verification key vk and a signing key sk.
• Sign(sk, μ), given sk and a message μ ∈ {0, 1}�, outputs a signature σ ∈

{0, 1}�.
• Ver(vk, μ, σ) either accepts or rejects the signature σ for message μ.

The correctness requirement is: for any message μ ∈ M, and for (vk, sk) $←
Gen(1λ), σ

$← Sign(sk;μ), Ver(vk, μ, σ) should accept with overwhelming proba-
bility (over all the randomness of the experiment).

The notion of security that we require for our IND-CCA DRE construction
is strong existential unforgeability under a one-time chosen-message attack. The
attack is defined as follows: generate (vk, sk) $← Gen(1λ) and give vk to the

adversary A, then A outputs a message μ. Generate σ
$← Sign(sk, μ) and give σ

to A. The advantage of A in the attack is the probability that it outputs some
(μ�, σ�) �= (μ, σ) such that Ver(vk, μ�, σ�) accepts. We say that the signature
scheme is secure if for every PPT adversary A, its advantage in the attack is
negl(λ).
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Abstract. An Identity-Based Hash Proof System (IB-HPS) is a funda-
mental and important primitive, which is widely adapted to construct a
number of cryptographic schemes and protocols, especially for leakage-
resilient ones. Therefore it is significant to instantiate IB-HPSs from
various assumptions. However, all existing IB-HPSs based on lattices are
set only in the random oracle model. Thus, proposing an IB-HPS from
lattices in the standard model is an essential and interesting work.

In this paper, we introduce a much more compact definition for
an anonymous IB-HPS, defining computational indistinguishability of
valid/invalid ciphertexts and anonymity of identity simultaneously.
Then, through utilizing the technique for delegating a short lattice basis
due to Agrawal et al. in CRYPTO 2010 and the property of the smooth-
ing parameter over random lattices, we present a new construction of
IB-HPS in the standard model. Furthermore, we show that our new
construction is selectively secure and anonymous based on the standard
learning with errors (LWE) assumption in the standard model.

Keywords: Identity-Based Hash Proof System · Smooth
Anonymous · Selective · Lattice · Standard model

1 Introduction

Since first presented by Boneh et al. in FOCS 2007 [7] and formally defined
by Alwen et al. in Eurocrypt 2010 [3], an Identity-Based Hash Proof System
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(IB-HPS) has become a widely used primitive in the field of cryptography,
which is a generalization of the concept of hash proof system due to [21]
to the identity-based setting. Besides its usage for leakage-resistant public-
key encryption schemes in the bounded-retrieval model, an IB-HPS has also
found many other cryptographic applications, such as identity-based encryp-
tion (IBE) schemes secure against chosen plaintext attacks (CPA) [3], IBE
schemes secure against adaptive chosen ciphertext attacks (CCA2) [6,7], CCA2-
secure identity-based key encapsulation mechanisms (IB-KEM) based on search
assumptions [16] and practical leakage-resilient IBE schemes [20].

Similar to the description of hash proof systems (HPS) in [21,24,27], an
IB-HPS consists of two basic components: a subset membership problem and
a projective hash family. And it is convenient to view an IB-HPS as an IB-
KEM1, except that an IB-HPS has two different encapsulation algorithms: Encap
generates a valid ciphertext c together with the corresponding encapsulated key
k while the other Encap∗ generates only an invalid ciphertext c′. In this case,
subset membership problem can also be renamed as indistinguishability between
valid and invalid ciphertexts. More specifically, given a finite ciphertext set C
and a valid ciphertext subset V ⊆ C, it is computationally hard to distinguish
a random valid ciphertext c ∈ V from a random invalid ciphertext c′ ∈ V ′ ⊆ C,
where V ∩ V ′ = ∅.

A projective hash family in an IB-HPS is denoted by decapsulation functions
Decapskid

mapping C to some set K, which has two important properties: cor-
rectness and smoothness. Here, id is an identity for a user, and skid is extracted
from id through using the master secret key of this identity-based setting. When
evaluated on a valid ciphertext c ∈ V , Decapskid

(c) will output the same encap-
sulated key k as Encap does with overwhelming probability, which is always
called as correctness. For an invalid ciphertext c′ ∈ V ′, the smoothness prop-
erty states that Decapskid

(c′) is independent of id. More precisely, the value
Decapskid

(c′) is statistically uniform even with id and c′.
As a powerful primitive for cryptographic researches, the construction of IB-

HPSs has already attracted a lot of attentions. As known, many previous works
succeeded in constructing IB-HPSs based on various classical assumptions, such
as truncated augmented bilinear Diffie-Hellman exponent (q-TABDHE) assump-
tion [3], Quadratic Residuosity assumption [3,7], decisional bilinear Diffie-
Hellman assumption [20], subgroup decision assumption in composite order bilin-
ear group [20] and decisional square bilinear Diffie-Hellman assumption [17].
In contrast, only a handful of hash proof systems are known based on post-
quantum assumptions, for instance lattice-based assumptions. Compared with

1 In order to understand the difference between the concepts of an IB-HPS and an
IB-KEM, one can refer to the similar relationship between a HPS and a KEM in
the public-key setting. A HPS can always be viewed as a KEM in the modular con-
struction of public-key encryption schemes. Besides, a HPS is a basic cryptographic
primitive, which can be furthermore construct many protocols in different applica-
tions [9–15]. However, a KEM can be utilized only in the encryption schemes for
message transmission.
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other assumptions, lattice-based ones enjoy several advantages: worst-case to
average-case hardness reduction, much higher asymptotic efficiency and resis-
tance so far to quantum attacks.

The first IB-HPS from lattice-based assumptions was given by Alwen et al.
in [3], which was a slight variant of the IBE scheme presented in [23]. To do this,
they used vectors close to certain random lattice Λ(A) and randomly chosen
vectors in Z

m
q as one part of valid ciphertexts and invalid ciphertexts respectively,

where A is a random matrix in Z
m×n
q . According to the basic lattice theory,

the intersection of valid and invalid ciphertext sets can be set to be empty
with overwhelming probability. Similarly, several IB-HPSs based on the LWE
assumption have also be described in [16,17].

Notice that all existing IB-HPSs based on lattices are set only in the ran-
dom oracle model and have to use a subexponential modulus q to ensure both
correctness and smoothness properties. We should also remark that there is no
straightforward transformation from an IBE to an IB-HPS, although both con-
cepts have certain similarities and an IB-HPS essentially implies an IBE scheme.
One of main reasons for this case is that the security model of an IBE scheme
only allow the adversary to query identity secret key for non-challenge identi-
ties, but an IB-HPS allows to query all identities even including the adaptive
challenge identities.

As known, polynomial moduli, standard model and adaptive security are
always the much more popular settings in the field of cryptographic researches.
Therefore it should be a significant work to propose such an adaptive IB-HPS
with a polynomial modulus in the standard model. Unfortunately, no one know
how to give such a construction based on lattices. In particular, existing lattice-
based adaptive simulation technologies for IBE schemes in [1,8] and their fol-
lowups can not be used to simulate the secret key of the challenge identity in
the adaptive way. To approach this significant target more closely, we propose
a new selective IB-HPS based on lattices in the standard model but still with
subexponential moduli for correctness and smoothness.

1.1 Our Contributions

In this paper, our main contribution is a selective IB-HPS with anonymity based
on the LWE assumption in the standard model but still with a subexponential
modulus. Along the way, we develop the much more compact definition for an
anonymous IB-HPS. More formally, our contributions in this paper can be listed
in the following way.

First, we introduce a much more compact definition for an anonymous IB-
HPS, defining computational indistinguishability of valid/invalid ciphertexts and
anonymity of identity simultaneously. This explicitly implies that anonymity
does not need an individual proof again.

Second, we propose a selectively secure IB-HPS in the standard model. As
we know, it should be the first construction in the standard model, even it is
just selectively secure and still have to use a subexponential modulus, and the
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Table 1. Rough Comparison with other Identity-Based Hash Proof Systems based
on LWE (Although there are many different IB-HPSs from different assumptions in
[3,16,17], here we only focus on their lattice-based constructions. Here we use [3,16,17]
to denote their constructions from the LWE assumption. And use |mpk| to denote the
bit-size of the master public key. |msk| and |skid| are the bit-sizes of the master secret
key and the identity secret key, respectively. Two columns in Encap and Decap are the
related computation overheads. n is the main security parameter, and m is a function of
n. We let the subexponential modulus to be 2nc

with certain constant 0 < c < 1. Hence
its bit-length is denoted as nc. Similarly, the bit-length of the polynomial modulus is
denoted as O(log n).)

|mpk| |msk| |skid| Encap

[3] mn1+c m2nc mnc O((m + 1)n2c+1)

[16] mn1+c m2nc mnc O((m + 1)n2c+1)

[17] mn1+c m2nc mnc O((m + 1)n2c+1)

Our IB-HPS
in Sect. 3

mn1+c(2m +
1) +n1+c

m2nc mnc (O(m3n) + O(m2n2))
·O(log2 n)

Decap Ciphertext size Security Model

[3] O(mn2c) (m + 1)nc Adaptive Random oracle

[16] O(mn2c) (m + 1)nc Adaptive Random oracle

[17] O(mn2c) (m + 1)nc Adaptive Random oracle

Our IB-HPS
in Sect. 3

O(mn2c) (m + 1)nc Selective Standard model

size of master public key becomes much larger than others in the random oracle
model. In Table 1, we give a rough comparison of IB-HPSs based on the LWE
assumption.

1.2 Our Technologies

In this section, we present the detailed technologies used for our new IB-HPS
based on the LWE assumption.

For the IB-HPS from lattices in the standard model, we need to show the
computational indistinguishability of valid/invalid ciphertexts in the standard
model. Here, we use several core technologies introduced in [2] to establish a
reduction from the LWE problem. More specifically, all identities are denoted by
bit strings of length d. And every bit in different positions is corresponding to
a different Zq-invertible matrix with low norm columns. We also use two algo-
rithms BasisDel and SampleRwithBasis to simulate the trapdoors for arbitrary
identities except the challenge identity, and answer the corresponding identity
secret key queries.

Besides these, we utilize the algorithm SampleGaussian and the property of
the smoothing parameter over random lattices to generate the public vector in
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the master public key, which are further used to answer the secret key query for
the challenge identity.

Moreover, for our new construction in the standard model, we try to view this
decapsulation function as an universal hash function, and use random extractors
to show the smoothness property.

1.3 Other Related Work

Until now, there exists other variants of IB-HPS. Chen et al. introduce the
concept of identity-based extractable hash proof system, which is an extension of
extractable hash proof system proposed by Wee in CRYPTO 2010. This primitive
can be used to build and interpret CCA-secure IBE schemes and IB-KEMs based
on search assumptions [18,19].

1.4 Paper Organization

This paper is organized as follows. In Sect. 2, we present several useful notations,
definitions and lemmas. We then describe our new anonymous IB-HPS based on
lattices in the standard model in Sect. 3. Due to the limited space, the detailed
definition on an anonymous IB-HPS is presented in Appendix.

2 Preliminaries

2.1 Notations

We write N as the set of integers and R as real numbers. In this paper, n ∈ N is
treated as the main security parameter. We denote log as the logarithm to the
base 2. Use O(f(n)) to denote the set of functions growing equivalent to cf(n)
for certain hidden parameter c > 0, and ω(f(n)) grows faster than cf(n) for
any constant parameter c > 0. If f(n) = O(g(n) · logc n) for certain parameter
c > 0, we can write f(n) = Õ(n). A negligible function, denoted by negl(n), is a
function f(n) > 0 such that f(n) < 1/nc for any c > 0 and all sufficiently large
n. We call a probability to be overwhelming if it is 1 − negl(n).

For any real number x ∈ R, �x� denotes the largest integer not greater than x,
�x	 denote the smallest integer not less than x, and �x	 denotes a nearest integer
to �x + 1/2�. We use bold lower case letter (e.g., x) to denote column vectors,
and bold upper case letters (e.g., A) to denote matrices. For a vector x, its
Euclidean norm (also known as the �2 norm) is defined to be ‖x‖ = (

∑
i x2

i )
1/2.

For a matrix A, its ith column vector is denoted by ai and its transposition
is denoted by AT . The Euclidean norm of a matrix is the norm of its longest
column: ‖A‖ = maxi‖ai‖.

For a set D, we denote by u ← D the operation of sampling a uniformly
random element u from the set D, and represent |u| as the bit length of u. For
an integer v ∈ N, we use Uv to denote the uniform distribution over {0, 1}v. Given
a algorithm or function f(·), we use y ← f(x) to denote y as the output of f and
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x as input. For a distribution X, we denote by x ← X the operation of sampling
a random u according to the distribution X. Given two different distributions X
and Y over a countable domain D, we can define their statistical distance to be
SD(X,Y ) = 1

2

∑
d∈D |X(d) − Y (d)|. Moreover, if SD(X,Y ) is negligible in n, we

say that both distributions are statistically close. For a random variable x ∈ X,
its min-entropy is H∞(x) = − log(maxx0∈X Pr[x = x0]).

2.2 Extractors and Leftover-Hash Lemma

Definition 1 ([3], Definition 2.1). An efficient randomized function
Ext:{0, 1}u × {0, 1}t → {0, 1}v is called to be an (m, ε)-extractor if for all
x ∈ {0, 1}u such that H∞(x) ≥ m, it holds that SD((h,Ext(x;h)), (h, u0)) ≤ ε,
where h ← {0, 1}t and u0 ← Uv.

Definition 2 ([3], Definition 2.2). A family H : {0, 1}u → {0, 1}v is called
to be a ρ-universal hash family if for any m1 �= m2 ∈ {0, 1}u, it holds that
Prh←H [h(m1) = h(m2)] ≤ ρ.

Lemma 1 ([3], Lemma 2.2). Given a ρ-universal hash family H : {0, 1}u →
{0, 1}v, the randomized extractor Ext(x;h) with h ← H is an (m, ε)-extractor
as long as m ≥ v + 2 log(1/ε) − 1 and ρ ≤ 1

2v (1 + ε2).

2.3 Lattices

Let B = (b1, . . . ,bm) ⊂ R
m consist of m linearly independent vectors. The

m-dimensional lattice Λ generated by the basis B is Λ = L(B) = {Bc =
∑

i∈[m] ci·bi : c ∈ Z
m}. We let B̃ denote the Gram-Schmidt orthogonalization

of B, and ‖B̃‖ is the length of the longest vector in it.
The minimum distance λ1(Λ) of a lattice Λ is the length in the Euclidean

�2 norm of the shortest nonzero vector: λ1(Λ) = min0 �=x∈Λ ‖x‖. For an approx-
imation factor γ = γ(n) > 1, we define the problem of GapSVPγ as follows:
given a basis B of an m-dimensional lattice Λ = L(B) and a positive number d,
distinguish between the case where λ1(Λ) ≤ d and the case where λ1(Λ) ≥ γd.

Let A ∈ Z
m×n
q for three positive integers m, n, q, where m and q are functions

of n. Then we consider the following two kinds of full-rank m-dimensional q-
ary integer lattices defined by A: Λ⊥

q (A) = {e ∈ Z
m : ATe = 0 mod q} and

Λq(A) = {y ∈ Z
m : ∃ s ∈ Z

n
q s.t.y = As mod q}.

According to their definitions, it can be seen that Λ⊥(A) and Λ(A) are dual
lattices, up to a q scaling factor: Λ⊥(A) = qΛ(A)∗ and vice-versa.

We need the following two basic lemmas for our construction.

Lemma 2 ([23], implicit in Lemma 5.3). For any integers n ≥ 1, prime
q ≥ 2, let m ≥ 2n log q. Then for all but an at most q−n fraction of A ∈ Z

m×n
q ,

we have λ1(Λ(A)) ≥ q/4.
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Lemma 3 ([4,5,23]). For any integers n ≥ 1, q ≥ 2, and sufficiently large
m = �6n log q	, there is a probabilistic polynomial-time algorithm TrapGen(q, n)
outputting (A ∈ Z

m×n
q ,TA ∈ Z

m×m) such that the distribution of A is statis-
tically close to the uniform distribution over Z

m×n
q and TA is a short basis for

Λ⊥
q (A) satisfying ‖T̃A‖ ≤ O(

√
n log q) and ‖TA‖ ≤ O(n log q) with overwhelm-

ing probability in n.

2.4 Gaussians on Lattices

For any real number r > 0, we define the Gaussian function on R
n centered

at c with parameter r to be: ∀x ∈ R
n, ρr,c(x) = exp(−π‖x − c‖2

/
r2). Usually,

subscript r and c are omitted, when both of them are taken to be 1 and 0,
respectively. For any discrete set A ⊆ R

n, this definition can be extended to be
ρr,c(A) =

∑
x∈A ρr,c(x). For any c ∈ R

n , r > 0, and n-dimensional lattice Λ, the
discrete Gaussian distribution over Λ is defined as: ∀x ∈ Λ,DΛ,r,c(x) = ρr,c(x)

ρr,c(Λ) .

Lemma 4 ([2], Lemma 7). Let A and TA be a pair of matrices output by
TrapGen(q, n), and r � ‖T̃A‖ · ω(

√
log m). Then for c ∈ R

m and u ∈ Z
n
q , we

have:

1. Pr[x ← DΛu
q (A),r : ‖x‖ > r

√
m] ≤ negl(n).

2. There exists a probabilistic polynomial-time algorithm SampleGaussian
(A,TA, r, c) that outputs a sample from a distribution statistically close to
DΛ,r,c.

3. There exists a probabilistic polynomial-time algorithm SamplePre
(A,TA,u, r) that outputs a sample from a distribution statistically close to
DΛu

q (A),r.

We also need use the following min-entropy on the output of SamplePre.

Lemma 5 ([3], Lemma D.2). Given a pair matrices (A,TA) output by Trap
-Gen(q, n) and a vector u ∈ Z

n
q , for constant c > 0 and r > ‖T̃A‖ω(

√
log m),

let e ←Sample -Pre(A,TA,u, r), it holds that H∞(e) ≥ m(log(r) − log(mc)).

We also recall the notion of the smoothing parameter in [26].

Definition 3 ([26], Definition 3.1). For any lattice Λ and real number ε > 0,
the smoothing parameter ηε(Λ) is defined to be the smallest positive real number
s > 0 such that ρ1/s(Λ∗ \ 0) ≤ ε.

We will use a bound on the smoothing parameter due to [29], which is relevant
to the minimum distance of the dual lattice in the �2 norm.

Lemma 6 ([29], implicit in Lemma 3.5). For any lattice Λ of dimension

m and any real ε > 0, ηε(Λ) ≤
√

m log(2m(1+1/ε))/π

λ1(Λ∗) . Then for any function
ω(

√
log m), there exists a negligible ε(m) such that ηε(Λ) ≤ ω(

√
log m)/λ1(Λ∗).
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We now recall an important facts on q-ary random lattices that will be used
to prove the anonymous indistinguishability for our new construction.

Lemma 7 ([23], Lemma 5.2). Let ε ∈ (0, 1/2) and r ≥ ηε(Λ⊥(A)) and assume
the columns of AT generate Z

n
q . Then for e ← DZm,r, the distance between

u = ATe mod q and uniform over Z
n
q is less than 2ε.

A matrix R ∈ Z
m×m is said to be Zq-invertible if R mod q is invert-

ible in Z
m×m
q . Similar to [2], our new constructions make use of Zq-invertible

matrices R ∈ Z
m×m where all the columns of R are low norm. Let σR :=√

n log q · ω(
√

log m). We define Dm×m as (DZm,σR
)m×m with the restriction on

the resulting matrix being Zq-invertible. In fact, Dm×m can be sampled by an
efficient algorithm.

Lemma 8 ([2], in Sect. 4). There is a probabilistic polynomial-time algorithm
SampleR(1m) that samples matrices from a distribution statistically close to
Dm×m.

We also need use two efficient algorithms BasisDel and SampleRwithBasis
to generate identity secret key and prove the anonymous indistinguishability for
our new construction in the standard model.

Lemma 9 ([2], Theorem 14). Let A ∈ Z
m×n
q and TA ∈ Z

m×m be a
pair of matrices output by TrapGen(q, n), let R be a Zq-invertible matrix
sampled from Dm×m (or a product of such matrix), and r satisfy r >

‖T̃A‖ · σR
√

mω(
√

log3/2 m). There is a probabilistic polynomial-time algorithm
BasisDel(A,R,TA, r) that outputs a basis TB of Λ⊥

q (B) where B = AR−1 such
that ‖T̃B‖ ≤ r

√
m.

If R is a product of � matrices sampled from Dm×m, then the bound on σ

degrades to r > ‖T̃A‖ · (σR
√

mω(log1/2 m))	 · ω(
√

log m).

Lemma 10 ([2], Theorem 15). Let m > 2n log q, and let q > 2 be a prime.
Then for all but at most q−n fraction of A ∈ Z

m×n
q , there is a probabilistic

polynomial-time algorithm SampleRwithBasis(A) that outputs a matrix R ∈
Z

m×m sampled from a distribution statistically close to Dm×m and a basis TB

of Λ⊥
q (AR−1) satisfies ‖T̃B‖ ≤ σR/ω(

√
log m) with overwhelming probability.

2.5 Learning with Errors (LWE)

Given an integer q ≥ 2 and a probability distribution χ over Zq, an integer
dimension n > 0 and a vector s ∈ Z

n
q , define As,χ as the distribution obtained

by sampling a ∈ Z
n
q uniformly at random and x ← χ, and then outputting

(a,aT · s + x) ∈ Z
n
q × Zq.

Definition 4 (LWE). Given an integer q = q(n) and an error distribution χ =
χ(n) on Zq, the decisional version of the LWE problem, denoted by DLWEn,q,χ,
is to distinguish (with a non-negligible advantage) between an oracle returning
independent samples from As,χ for a uniformly random s ∈ Z

n
q and an oracle

returning independent samples from the uniform distribution on Z
n
q × Zq.
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The decisional version of the LWE problem can also be described as the
following matrix forms: for a uniformly random matrix A ∈ Z

m×n
q with

m = poly(n), an LWE secret vector s ← Z
n
q and an error vector e ← χm,

the DLWEm,n,q,χ problem is to distinguish between (A,As + e) and (A,u),
where u is a uniformly random vector in Z

m
q .

Gaussian Error Distribution ψ̄β. In this paper, we treat the error distribution
χ = χ(n) on Zq as a variant of Gaussian. For any r > 0, a one-dimensional
Gaussian distribution over R has density function Dr(x) = 1/r · exp(−π(x/r)2).
For β > 0, define ψβ to be the Gaussian distribution with mean 0 and standard
deviation β/

√
2π. The distribution of ψ̄β is the discretization of ψβ over Zq, that

is obtained by choosing y ← Dβ and outputting �q · y	(modq).
The hardness of the DLWE problem with certain parameters can be based on

standard worst-case lattice problem, which can be described in detail as follows.

Lemma 11 ([28], Theorem 1.1). Let n, q ≥ 1 be integers and β ∈ (0, 1) be a
real number such that βq ≥ 2

√
n. Then there exists a quantum reduction from

the n-dimensional GapSVPÕ(n/β) problem in the worst-case to the DLWEn,q,χ

problem in the average case.

Here we recall a basic fact on Gaussian error distribution ψ̄β .

Lemma 12 ([22], Lemma B.1). Let β > 0 and q ∈ Z, and let x ∈ Z
n be an

arbitrary vector and y ← ψ̄n
β , then with overwhelming probability over the choice

of y, it holds |〈x,y〉| � ‖x‖ · βq · ω(
√

log n).

Notice that for any y ← ψ̄n
β , there always exists a unit vector x ∈ Z

n with
the same direction as y. Hence, this lemma shows that for y ← ψ̄n

β , ‖y‖ ≤
βq · ω(

√
log n) holds with all but negligible probability in n.

Note that for A ∈ Z
m×n
q with m ≥ 2n log q, the lattice Λ(A) is very sparse.

Lemma 13 ([25], implicit in Lemma 1). For all but a negligible fraction of
matrices A ∈ Z

m×n
q with m ≥ 2n log q, we have Pr

x←Zm
q

[
dist(x, Λ(A)) � √

q
/
4
]

�
1

q(n+m)/2 .

3 Selectively Secure Construction in the Standard Model

Our new selectively secure construction is similar to the selective secure hier-
archical IBE scheme due to Agrawal et al. in [2]. However, in order to prove it
correctly, we make one main modification: sample a short vector as the identity
secret key rather than a short basis.
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3.1 Construction

This construction uses several parameters which will be described in detail in
Sect. 3.2. Besides the security parameter n, the bit-length d of an identity is also
a basic parameter, which means all other parameters are functions of n and d.

Setup(1n): For an identity set ID composed of length d bit strings2, run
the algorithm TrapGen(q, n) to generate a random matrix A ∈ Z

m×n
q

together with a short basis TA ∈ Z
m×m for Λ⊥

q (A). Choose 2d matrices
R1,0,R1,1, . . . ,Rd,0,Rd,1 from the distribution Dm×m using the algorithm Sam-
pleR(1m) in Lemma 8. Given a random vector u0 ∈ Z

n
q , output mpk =

(A,u0,R1,0,R1,1, . . . ,Rd,0,Rd,1), msk = (TA).

KeyGen(id,msk): For any identity id = (id1, . . . , idd) ∈ {0, 1}d, compute Fid =
AT (R1,id1)

−1(R2,id2)
−1 · · · (Rd,idd

)−1 ∈ Z
n×m
q , and run the basis delegation

algorithm BasisDel(A,R,TA, σ) to output a short random basis TB of Λ⊥
q (Fid),

where R = Rd,idd
Rd−1,idd−1 · · · R2,id2R1,id1 . Furthermore, choose a gaussian

parameter τ , and run SamplePre(Fid,TB,u0, τ) to sample v ← DΛ
u0
q (Fid),τ

such that Fid · v = u0 mod q. Finally, set the identity secret key skid to be the
vector v.

Encap(id): For an identity id = (id1, . . . , idd) ∈ {0, 1}d, compute the matrix
Fid just as the above key generation algorithm. Sample s ← Z

n
q , error vector

e ← ψ̄m
β and integer v ← Zq. Compute x = FT

id ·s+e mod q ∈ Z
m
q . If |v−uT

0 ·s| ≤
q−1
4 , set k = 1 else set k = 0. Output c := (x, v) and the decapsulated key k

simultaneously.

Encap∗(id): Sample x ← Z
m
q and integer v ← Zq. Output c := (x, v).

Decap(c, skid): Given c := (x, v) and skid := v ∈ Z
m
q , compute 〈v,x〉 mod q.

If |v − vT · x| ≤ q−1
4 , then output k = 1. Otherwise output k = 0.

Similar to prior existing lattice-based hash proof systems presented in [3,
16,17], we let q to be a subexponential function in n and K = {0, 1}. In fact,
the above set K = {0, 1} can be easily extended to k = {0, 1}l by choosing
as the random vectors in master public key l vectors (u1

0, . . . ,u
l
0) unifromly

and independently from Z
n
q , and outputing as the identity secret key vi ←

D
Λ

ui
0

q (Fid),τ
for 1 ≤ i ≤ l.

3.2 Parameter Setting

Notice that for the system to work correctly, we need that:

– The algorithm TrapGen can work, which means m > 6n log q and results in
‖T̃A‖ ≤ O(

√
n log q) by Lemma 3.

2 More strictly, we need first choose a collision-resilient hash function h : {0, 1}∗ →
{0, 1}d, then map arbitrary identity, such as email address, phone number and pass-
port number, to the bit strings of length d.
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– The algorithm BasisDel used in KeyGen can work, which means σ > ‖T̃A‖ ·
(σR

√
mω(log1/2 m))dω(log m), and results in ‖T̃B‖ ≤ σ

√
m by Lemma 9.

– The algorithm SamplePre used in KeyGen can work, which means τ ≥
σ
√

mω(
√

log m)(≥ ‖T̃B‖ω(
√

log m)) and results in v ← DΛ
u0
q (Fid),τ

by
Lemma 4. Hence, we have ‖v‖ ≤ √

mτ except with a negligible probability.
– The reduction for the LWE problem can work, which means βq > 2

√
n by

Lemma 11.
– The intersection of valid and invalid ciphertext sets should be empty with

overwhelming probability, which means the norm of error vector e ← ψ̄m
β

should less than
√

q/4 with overwhelming probability by Lemma13. It suffices
to set βqω(

√
log m) <

√
q/4 according to Lemma 12.

To satisfy all above requirements, for instance, we can set the parameters as
follows:

m = O(dn log n), q = 2ω(log n), σ = m
3
2d+ 1

2 · ω(log2d n),

τ = σ
√

2πm · ω(
√

log m), β = [σm
√

2n · ω(log m)]−1
(1)

3.3 Proof for IB-HPS in Sect. 3

Theorem 1. Let n be the security parameter, d denote the bit length of any
id ∈ ID, and all parameters are set as above Eq. (1). Then the above HPS is
smooth under the DLWE assumption.

Proof. The whole proof can be divided into three parts: correctness, indistin-
guishability, and smoothness.

Lemma 14 (Correctness). For the above parameters in IB-HPS, the con-
struction is correct.

We defer the proof of the above lemma for correctness to AppendixB due to the
limited space.

Lemma 15 (Anonymous Indistinguishability). For the above parameters
in IB-HPS, the corresponding valid/invalid ciphertexts are computationally
indistinguishable.

Proof. According to the definition of anonymous indistinguishability of
valid/inv-alid ciphertexts in AppendixA, we prove this lemma by using a reduc-
tion from the DLWE assumption. This means if there exists an efficient algorithm
A distinguishing a valid ciphertext regarding to certain id and a random invalid
ciphertext with a non-negligible advantage, we can construct another algorithm
B solving the DLWE problem with almost the same advantage.

Suppose B is given an oracle O which returns the LWE challenge (a, b) ∈ Z
n
q ×

Zq. After making m queries to O, it receives {(ai, bi)}i∈[m], and then constructs
a matrix A0 ∈ Z

m×n
q whose i-th column is set to be ai and the challenge vector
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b = (b1, . . . , bm) ∈ Z
m
q . As we only consider the selective security here, an

identity id∗ = (id1, . . . , idd) will be sent in advance to B as the challenge identity.
For setup, B first samples random matrices R1,id1 ,R2,id2 , . . . ,

Rd,idd
← Dm×m by using the algorithm SampleR(1m) and sets AT =

AT
0 Rd,idd

· · ·R2,id2R1,id1 ∈ Z
n×m
q . In fact, the matrix A should be uniform

over Z
m×n
q since A0 is uniform and all the Ri,idi

mod q are invertible.
B then samples a vector v0 ← DZm,τ by using the algorithm SampleGaus-

sian with the canonical basis of Zm×m as the trapdoor basis. Note that for our
parameter setting τ = σ

√
2πmω(log m) ≥ ω(

√
log m) in (1), the above sample

for v0 could be implemented efficiently. Furthermore, B sets u0 = AT
0 ·v0 mod q.

According to Lemmas 2, 6 and 7 together with our parameter setting for τ in
(1), the distribution of u0 should be statistically close to uniform over Z

n
q .

Next, B set d new matrices as Fi = ATR−1
1,id1

· · ·R−1
i,idi

for i = 0, . . . , (d −
1). Given each matrix Fi, B can invoke the algorithm SampleRwithBasis(Fi)
in Lemma 10 to get a matrix Ri,1−idi

and a corresponding short basis Ti for
Λ⊥

q (Fi · (R−1
i,1−idi

)).
Finally, B sends to the adversary A the following parameters PP = (A,u0,

R1,0,R1,1, . . . ,Rd,0,Rd,1). It is also clear that the distribution of PP is statis-
tically close to that of real master public key mpk. Hence, this simulation for
setup is completely legitimate.

For test stage 1, B needs to compute identity secret keys skid for any
id ∈ ID, which can be divided into two parts. First, for queries on id �=
id∗, without loss of generality, assume j ∈ {1, . . . , d} to be the minimum
index such that the corresponding bits of id and id∗ are different, and
denote (id′

j+1, . . . , id
′
d) as the latter (d − j) bits of id. As we have ana-

lyzed above for setup, the known matrix Tj should be a short basis for
Λ⊥

q (Fj · (R−1
j,1−idj

)). Then according to the Lemma 9, B invokes the algorithm
BasisDel(Fj · (R−1

j,1−idj
),R,Tj , σj) with R = Rd,id′

d
Rd−1,id′

d−1
· · ·Rj+1,id′

j+1

and σj = m
3
2 j+ 1

2 · ω(log2j n), and attain a short basis Tid for Fid = Fj ·
(R−1

j,1−idj
)R−1 = AR−1

1,id1
· · ·R−1

j−1,idj−1
R−1

j,1−idj
R−1

j+1,id′
j+1

R−1
j+2,id′

j+2
· · ·R−1

d,id′
d
.

Finally, B runs the algorithm SamplePre(Fid,Tid,u0, τ) to sample v such that
Fid · v = u0 mod q, and responds with skid = v. Notice that for our parameters
setting in (1), all these computations could be efficiently completed. As a result,
this response for query on id �= id∗ should be completely legitimate according
to Lemmas 4 and 9.

Second, for the query on id∗ = (id1, . . . , idd), B computes Fid∗ = ATR−1
1,id1

R−1
2,id2

· · ·R−1
d,idd

= AT
0 . Clearly, we do not know any short basis for Λ⊥

q (A0),
and it can not be simulated as above since id∗ is just the challenge identity.
Fortunately, however, B can respond directly with the above v0 ∈ DZm,τ . Since
u0 = AT

0 · v0 = Fid∗ · v0 mod q, this response for query on id∗ should be
completely legitimate.

For challenge, B first choose v ← Zq returns c = (b, v) where b is the LWE
challenge vector for B.
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For test stage 2, B answers the queries as he did in the above test stage 1.
Finally, B outputs the same guess bit as A does.

It is easy to see that if O is a LWE oracle, then the challenge ciphertext
returned by B should be a valid ciphertext for the challenge identity id∗. Oth-
erwise, the challenge ciphertext should be a random invalid ciphertext. As a
result, the advantage of B in breaking the LWE assumption is almost the same
to the advantage of A in distinguishing valid and invalid ciphertexts in the above
selective identity game.

Lemma 16 (Smoothness). For the above parameters in IB-HPS, the con-
struction is smooth.

We defer the proof of the above lemma for smoothness to AppendixC due
to the limited space.

At last, the above three lemmas conclude the proof of Theorem 1.

4 Conclusion

In this paper, we present an anonymous and selective IB-HPS based on the LWE
assumption in the standard model but still with a subexponential modulus. And
the master public key consists of many matrixes, resulting in too many overheads
in storage and computation. It should be an interesting work to construct more
efficient adaptive IB-HPS from lattices in the standard model.

Acknowledgments. We would like to thank anonymous reviewers for their cre-
ative comments on this paper. This work is supported by the National Key R&D
Program of China(No. 2017YFB0802000), the National Natural Science Foundation
of China (61772326, 61572303, 61602290), NSFC Research Fund for International
Young Scientists (61750110528), National Cryptography Development Fund during the
13th Five-year Plan Period (MMJJ20170216), the Foundation of State Key Labora-
tory of Information Security (2017-MS-03) and the Fundamental Research Funds for
the Central Universities (GK201603084, GK201603092, GK201603093, GK201702004,
GK201703062).

Appendix

A Anonymous Identity-Based Hash Proof Systems

Formally, an anonymous IB-HPS consists of five probabilistic polynomial-time
algorithms (Setup, KeyGen, Encap, Encap∗, Decap) as follows.

– Setup(1n): given security parameter n as an input, output a pair of the master
public key mpk and master secret key msk. The master public key mpk also
defines an identity set ID, a symmetric key set K, and two ciphertext sets C
and V .
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– KeyGen(id,msk,mpk): for any identity id ∈ ID, sample an identity secret
key skid.

– Encap(id,mpk): for any identity id ∈ ID, this valid encapsulation algorithm
outputs a pair (c, k) where c ∈ V is a valid ciphertext, and k ∈ K is the
encapsulated-key.

– Encap∗(id,mpk): for any identity id ∈ ID, this alternative invalid encapsu-
lation algorithm samples an invalid ciphertext c ∈ V ′.

– Decap(skid, c,mpk): take as input a secret key skid ∈ SK and a ciphertext
c ∈ C, then output the encapsulated symmetric key k.

We remark that an anonymous IB-HPS should have the following three prop-
erties.

I. Correctness of decapsulation. For any (mpk,msk) output by
Setup(1n), any id ∈ ID, it holds

Pr[k �= k′|skid ← KeyGen(id,msk,mpk), (c, k) ← Encap(id,mpk),
k′ = Decap(skid, c,mpk)] ≤ negl(n).

II. Anonymous indistinguishability of valid/invalid ciphertext. This
means that the two random ciphertexts c0 ∈ V and c1 ∈ V ′ are computationally
indistinguishable, where C, V and V ′ are defined by the master public-key mpk.
More formally, this indistinguishability is always described by the following game
between an adversary A and a challenger C.

– Setup: The challenger C gets a pair of (mpk,msk) by running Setup(1n), and
sends mpk to A.

– Test Stage 1: A adaptively queries the challenger C with id ∈ ID. Then C
responds with skid.

– Challenge Stage: A chooses an arbitrary challenge identity id∗ ∈ ID. Then C
selects b ← {0, 1}. If b = 0, C gets c ←Encap(id∗,mpk). Otherwise, C choose
a random c ← C\V . Finally, C returns c to V.

– Test Stage 2: A adaptively queries the challenger C with id ∈ ID. And then
C responds with skid.

– Output: The adversary A outputs a bit b′ ∈ {0, 1} as the output of the game.

The adversary A wins the game if b = b′.
Notice that in test stages the challenger computes skid for the first time

that id is queried, then returns the same skid for the latter queries on the same
id ∈ ID. And the challenge identity id∗ might also be queried in Test Stage 1
and Test Stage 2. We define the advantage of A in distinguishing valid/invalid
ciphertexts to be Adv(IB − HPS,A) = |Pr[A wins] − 1/2|. We require that
Adv(IB − HPS,A) ≤ negl(n).

III. Smoothness. Besides the above two properties, we also need one infor-
mation theoretic property. This ensures that for any one only with public param-
eters the decapsulation of invalid ciphertext c ∈ V ′ under skid will be statistically
uniform. More formally, we define the smoothness as follows.
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Definition 5 (Smooth IB-HPS). We say an anonymous IB-HPS is smooth
if, for any fixed values of mpk,msk output by Setup(1n), any id ∈ ID, it holds
SD((c, k), (c, k′)) ≤ negl(n), where c ← Encap∗(id,mpk), k′ ← U|k| and k is
output by first choosing skid ← KeyGen(id,msk,mpk) and then computing k =
Decap(c, skid,mpk).

Similar to identity-based encryption schemes, IB-HPSs can also be divided
into two types: selectively secure ones and adaptively secure ones. We call it to be
selectively secure, if the challenge identity in the above indistinguishability game
has to be sent to the challenger C in advance. Adaptive security implies that the
adversary can adaptively choose arbitrary challenge identity in the above game.

B Proof of Lemma 13

Given a matrix Fid ← Z
n×m
q , and a vector x ∈ Z

m
q output by Encap, there exists

one vector s ∈ Z
n
q and some error vector e ← ψ̄m

β such that x = FT
ids+ e mod q.

Therefore,

< v,x > modq = < v,x = As + e > modq = (< v,As > + < v, e >) mod q

= (< vTA, s > + < v, e >) mod q = (< y, s > + < v, e >) mod q

Then since v ← DΛ
u0
q (Fid),τ

, it holds that ‖v‖ � τ
√

m. According to the
definition of ψ̄β , ei = q ·ti mod q, where ti are independent normal variables with
mean 0 and variance β2

/
2π. Then ‖e − t‖ � √

m/2, and by Cauchy-Schwarz
inequality, 〈v, e〉 is at most τm/2 away from 〈v, t〉. Furthermore, since ti are
independent, 〈v, t〉 is distributed as a normal variable with mean 0 and standard
deviation ‖v‖·β/√

2π � τ
√

m·β/√
2π � 1

/√
2n. Therefore by the tail inequality

on normal variables, the probability that |〈v, t〉| > 1 is negligible. Thus the
probability that |〈v, e〉| > τm/2 + 1 is negligible as well.

For correctness it is sufficient to show that Decap will output the wrong bit
with at most negligible probability. This happens if and only if one of 〈v,x〉 and
〈u0, s〉 is further than q−1

4 from v. Let � = |τm/2 + 1|, then there are 2� values
of v such that the wrong bit is output. According to our parameter setting, � is
a polynomial in n. And since q = 2ω(log n), 2�/q is negligible in n. As a result,
for any (x, v) output by Encap both related bits b output by Encap and Decap
are equivalent with overwhelming probability.

C Proof of Lemma 15

According to the corresponding definition, we need to prove that for any c ←
Encap∗(id,mpk), it holds

SD((c, k), (c, k′)) ≤ negl(n), (2)
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where k is a decapsulation of c, i.e., k = Decap(skid, c)3 and k′ ← U|k|. Hence,
the above Eq. (2) can be rewritten as

SD((c,Decap(skid, c)), (c, k′)) ≤ negl(n), (3)

Notice that as an output of the algorithm SamplePre, skid := v has a lower
bound on its min-entropy by Lemma5. In this case, if Decap can also be treated
as an universal hash family indexed by c with low collision probability, it is
possible to prove the above (3) through Lemma 1. Hence, let us further analyze
the two conditions for Lemma 1: min-entropy and collision probability. Details
follow.

Firstly, according to the Lemma 5, it holds H∞(v) ≥ m(log(τ)− log(mc)) for
a constant c > 0. Considering the above parameter setting in (1), we can get

H∞(v) ≥ m log(
τ

mc
)

= m log(m
3
2d+ 1

2−c
√

2πm · ω(log2d n) · ω(
√

log m))

≥ m log(m · ω(log2d n))
≥ ω(log n).

(4)

Secondly, for any fixed id ∈ ID and different v �= v′ such that Fidv =
Fidv′ mod q, we compute

ρ = Pr
c←Encap∗(id)

[Decap(c,v) = Decap(c,v′)]. (5)

Note also that for any invalid ciphertext c := (x, v) with x = (x1, . . . , xm) ∈ Z
m
q ,

the output of Decap(c,v) depends on the value 〈v,x〉. As a result, the compu-
tation in (5) can be divided into two steps. We first determine the distribution
of the value � = |〈v,x〉 − 〈v′,x〉| = |〈v − v′,x〉|. Then calculate the collision
probability conditioned on each �.

For two different vector v = (v1, . . . , vm) and v′ = (v′
1, . . . , v

′
m), we denote

i ∈ [m] as the indexes where vi �= v′
i. Then we have � =| ∑

i

(vi − v′
i)xi | . Since

q is a prime, there should be a bijection between xi and �, which implies that �
should also be uniform over Zq.

Then we try to compute ρ conditioned on each value of �. According to
the above analysis for correctness, collision could be viewed as a complement
event for decapsulation fail. Thus, for �0 ∈ [(q−1)/2] the corresponding collision
probability ρ	0 should be 1 − (2�0)/q. Thus for Eq. (5) we have:

ρ =
q−1∑

	0=0

ρ	0 · Pr[� = �0] =
1
q

+ 2
(q−1)/2∑

	0=0

ρ	0 · Pr[� = �0] =
1
q

+
2
q

(q−1)/2∑

	0=0

ρ	0

=
1
q

+
2
q

(q−1)/2∑

	0=0

(1 − 2d

q
) =

1
2

+
1

2q2
.

(6)

3 Here it is more convenient for us to view mpk as an implicit parameter. This is
because all different decapsulation algorithms have the same mpk as input.
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Thus, it is reasonable to see Decap as a ρ-universal hash family according to the
Definition 2.

We also notice that the above Eqs. (4) and (6) can be used to prove Eq. (3)
directly through Lemma 1, where the corresponding parameters v and ε should
be set to be 1 and 1/q, respectively. As a result, our IB-HPS is smooth.
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Abstract. In this paper, we construct a Lattice-based one-time Link-
able Ring Signature (L2RS) scheme, which enables the public to verify
if two or more signatures were generated by same signatory, whilst still
preserving the anonymity of the signatory. The L2RS provides uncondi-
tional anonymity and security guarantees under the Ring Short Integer
Solution (Ring-SIS) lattice hardness assumption. The proposed L2RS
scheme is extended to be applied in a protocol that we called Lattice Ring
Confidential transaction (Lattice RingCT) v1.0, which forms the foun-
dation of the privacy-preserving protocol in any post-quantum secure
cryptocurrency such as Hcash.

Keywords: Linkable ring signature · Lattice-based cryptography
Post-quantum cryptography · Cryptocurrencies

1 Introduction

The notion of a Ring Signature scheme was initially formalised in [1]. This
scheme allows signing a message on behalf of a spontaneous group of signers,
while preserving the anonymity of the signer. The creation of a ring signature
does not require members of a group to cooperate, meaning that this scheme
will not longer have a manager who eventually can reveal the identity of the
signer, and thus the anonymity will be unconditionally preserved. This approach
was a remarkable security improvement when compared with the group signa-
ture scheme [2] where a group manager was part of its construction. Later, an
extended property called Linkability was introduced in a ring signature scheme,
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under the name of Linkable Spontaneous Anonymous Group but is now known as
Linkable Ring Signature [3]. The linkability property of ring signatures allows one
to detect if two signatures were generated by the same signer (using the same
private-key) whilst still preserving their anonymity. This scheme was proved
to be secure under the discrete logarithm assumption and in Random Oracle
Model (ROM). In comparison with previous unlinkable ring signature schemes,
this scheme adds an efficient algorithm to verify the linkability property. Each
signature (σ) is accompanied by a label (or tag), which is computed based on
the signer’s private key and a hash function modelled as a random oracle in a
deterministic manner. The label can be used by the linking algorithm the check
whether two signatures are created by the same signer. Specifically, if the labels
accompanying two signatures are the same, it means that the two signatures are
created by the same signer. This particular feature opens the possibility of many
practical scenarios [4], such as, cryptocurrency, in particular the RingCT confi-
dential transaction protocol adapted in Monero cryptocurrency [5], and e-voting
applications.

Nevertheless, the above ring signature schemes are based on classical number-
theory mathematical assumptions, for instance, the hardness of discrete loga-
rithm [6] and factoring large numbers [7]. As a consequence, they are believed to
be vulnerable with the onset of powerful quantum computers [8]. This situation
has sparked the primarily motivation of researchers in the area of post-quantum
cryptography to construct secure approaches against these type of computers.
Among the alternatives, lattice-based cryptography has attracted the attention
of this field due to its distinguishing features and new applications. Algorithms
based on lattices tend to be efficient, simple, highly parallelisable and provide
strong provable security guarantees [9].

1.1 Contribution

– We construct a Lattice-based one-time Linkable Ring Signature (L2RS)
scheme. Our L2RS is a generalisation of the BLISS [10] scheme which is
currently one of the practical lattice digital signatures. L2RS provides uncon-
ditional anonymity as well as unforgeability security guarantees under the
hardness of standard lattice assumptions.

– We devise a new cryptocurrency privacy-preserving protocol that we call Lat-
tice RingCT v1.0. This protocol employs our proposed post-quantum L2RS
as a fundamental building block along with a homomorphic commitment
primitive to provide post-quantum secure confidential transactions which
forms the foundation of the privacy-preserving protocol for blockchain cryp-
tocurrencies, such as Hcash.

This paper is organised in eight parts, including the introduction. Section 2
gives a brief background of the current linkable ring signature approaches. After
describing the technical description used in Sect. 3 and the security model in
Sect. 4, this research shows the construction of the L2RS scheme in Sect. 5 along
with the security analysis in Sect. 6. In Sect. 7, we present an application of this



560 W. A. Alberto Torres et al.

L2RS in a cryptocurrency protocol that we called Lattice RingCT v1.0. Finally,
a performance analysis of these proposals is presented in Sect. 8.

2 Related Work

Linkable Ring Signature (LRS) primitive is receiving attention thanks to its dis-
tinguishing capabilities of anonymously detecting if two linkable ring signatures
are being signed by same signatory. Most of the current linkable ring signature
schemes along with different variants [3,11–18] rely on the hardness assumptions
of classical cryptography. Technically, this primitive uses a linkability tag that
has a secure relationship with the signer’s publick-key, then the LRS uses this tag
to verify whether or not a singer signs two signatures. Monero, a cryptocurrency
application, exploits this property to prevent double spending while keeping the
user’s anonymity [5].

However, this primitive and its variants will be vulnerable to quantum attacks
[8]. This situation has led to a new area in the field of cryptography called Post-
Quantum Cryptography, aimed at constructing new cryptographic algorithms
that are intractable even in the presence of powerful quantum computers. Among
the current post-quantum cryptographic proposals [19], lattice-based cryptogra-
phy has attracted the attention of cryptographers. It is a candidate to be stan-
dardised as a post-quantum cryptography solution due to its efficiency, paral-
lelism, uniqueness and strong security assurances under the worst-case hardness
of lattice problems, which is significantly better than the average-case hardness
of other cryptographic constructions [9].

Digital signatures which are constructed based on lattice-based cryptography
can be categorised into GGH/NTRUSign [20,21], Hash-and-sign [22] and Fiat-
Shamir signatures [23]. Fiat-Shamir transformation [24] is used by the Bimodal
Lattice Signature Scheme (BLISS) [10], which is currently one of the most prac-
tical lattice-based digital signature schemes. BLISS has been constructed using
the following well known lattice-based cryptography problems, the Short Integer
Solution (SIS) [25], Ring-SIS [26] and the Ring-LWE (Learning With Errors)
[27] problems1. The Ring-SIS version of BLISS offers practical runtime and key
sizes. Moreover, this scheme uses a probabilistic test based on rejection sampling
technique to make the distribution of the private-key independent, an important
property that completely hides the private-key from any adversary.

Several lattice-based ring signatures schemes have been proposed in [28–30]
and there were recently three LRS proposals based on lattice-based cryptog-
raphy. The first of these constructions [31], is based on the development of a
lattice-based weak Pseudo Random Function (wPRF), an accumulator scheme
(Acc) and a framework named as Zero-Knowledge Arguments of Knowledge
(ZKAoK). These techniques are used to construct LRS schemes where the secu-
rity guarantees for the LRS properties’ unforgeability, anonymity, linkability and
non-slanderability rely on the lattice problems. The second lattice LRS scheme
1 The Ring-SIS and Ring-LWE refer to the Ring mathematical structure and differ

from the Ring in the Ring Signature scheme.
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[32], uses ideal lattices along with a lattice-based homomorphic commitment in
its construction. The security properties are based on the hardness of lattices;
however, there is no discussion as to how to secure the scheme in terms of non-
slanderability. This scheme is shown to be used in a cryptocurrency application.
The last lattice LRS proposal [33], is devised using lattice-based variants named
Module-SIS and Module-LWE problems and its security properties rely on the
lattice assumptions.

Our (L2RS) scheme was designed independently and concurrently with
[33]. The schemes share similar features, but our scheme offers unconditional
anonymity. The construction of this work, which we call Lattice-based one-time
Linkable Ring Signature (L2RS), is an extension of BLISS, a demonstrated prac-
tical lattice-based digital signature [10]. It is secure in terms of unforgeability,
linkability and non-slanderability under the lattice hardness of the Ring-SIS
problem and unlike the above Lattice-based LRS schemes [31–33], the L2RS
scheme achieves unconditional anonymity, meaning that this scheme will be
secure even if an adversary has unlimited computational resources and time.
As an application of this construction, we designed the Lattice RingCT v1.0,
a cryptocurrency protocol that provides confidential transactions and which its
security guarantees rely on our post-quantum cryptographic L2RS scheme.

3 Preliminaries

The ring R = Z[x]/f(x) is a degree-n polynomial ring, where f(x) is a poly-
nomial of degree of n. The ring Rq is then defined to be the quotient ring
Rq = R/(qR) = Zq[x]/f(x), where Zq denotes the set of all positive inte-
gers modulo q (a prime number q = 1 mod 2n) in the interval [−q/2, q/2] and
f(x) = xn +1 where n is a power of 2. The challenge Sn,κ, is the set of all binary
vectors of length n and weight κ. Two hash functions modeled as Random Ora-
cle Model (ROM), H1 with range Sn,κ ⊆ R2q, and H2 with range R1×(m−1)

q .
When we use x ← D, it means that x is chosen from the distribution D, and
y ← Rq means that y is chosen uniformly at random according to Rq. Matrices
are written in bold upper case letters whereas vectors are represented in bold
lower case letters, where vectors are column vectors and vT is the transpose
of the vector v. The hardness assumption of this work is the Ring-SIS (Short
Integer Solution) problem and this is defined as follows.

Definition 1 (R-SISK
q,n,m,β problem). (Based on [10], Definition 2.3). Let

denote K some uniform distribution over the ring Rn×m
q . Given a random matrix

A ∈ Rn×m
q sampled from K distribution, find a non-zero vector v ∈ Rm

q such
that Av = 0 and ‖v‖2 ≤ β, where ‖ · ‖2 denotes the Euclidean norm.

Lemma 1 (Leftover Hash Lemma (LHL)). (Based on [10], Lemma B.1).
Let H be a universal hash family of hash functions from X to Y. If h ← H and
x ← X are chosen uniformly and independently, then the statistical distance

between (h,h(x)) and the uniform distribution on H × Y is at most
1
2

√|Y |/|X|.
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Remark 1. We use this lemma for a SIS family of hash function H(S0) = A′
0 ·

S0 ∈ Rq,with S0 ∈ DomS0 , where each function is indexed by A′
0 ∈ R1×(m−1)

q .
The DomS0 ⊆ R1×(m−1)

q consists of a vector of Rq elements with coefficients in

set Γ
def= (−2γ , 2γ). This is a universal hash family if s − s′ is invertible in Rq

for all distinct pairs s, s′ in Γn ⊆ Rq. This can be guaranteed by appropriate
choice q of Rq, e.g. as shown in ([34], Corollary 1.2), it is sufficient to use q such
that f(x) = xn + 1 factors into k irreducible factors mod q and 2γ < 1√

k
· q1/k.

We assume that Rq is chosen to satisfy this condition.

Lemma 2 (Rejection Sampling). (Based on [10], Lemma 2.1). Let V be an
arbitrary set, and h : V → R and f : Zm → R be probability distributions. If
gv : Zm → R is a family of probability distributions indexed by v ∈ V with the
property that there exists a M ∈ R such that ∀v ∈ V,∀v ∈ Z

m,M · gv(z) ≥ f(z).
Then the output distributions of the following two algorithms are identical:

1. v ← h, z ← gv, output(z, v) with probability f(z)/(M · gv(z)).
2. v ← h, z ← f, output(z, v) with probability 1/M.

Definition 2 (Gaussian Distribution). The discrete Gaussian distribu-
tion over Z

m with standard deviation σ ∈ R and center at zero, is defined
by Dm

σ (x) = ρσ(x)/ρσ(Zm), where ρσ is m dimensional Gaussian function
ρσ(x) = exp

(
−‖x‖2

2σ2

)
.

4 Security Model

4.1 Structure of Lattice-Based One-Time Linkable Ring Signature
(L2RS)

A L2RS scheme has five PPT algorithms (Setup, KeyGen, SigGen, SigVer,
SigLink). In addition, the correctness of this scheme is satisfied by the Signature
correctness SigGen Correctness and the Linkability correctness SigLink Correct-
ness. These algorithms are defined as follows:

– Setup: a PPT algorithm that takes the security parameter λ and produces
the Public Parameters (Pub-Params).

– KeyGen: a PPT algorithm that by taking the Pub-Params, it produces a pair
of keys: the public-key and the private-key.

– SigGen: a PPT algorithm that receives a singer π’s private-key, a message
μ and the list of users’ public-keys in the ring signature L, and outputs a
signature σL(μ).

– SigVer: a PPT algorithm that takes a signature σL(μ), a list of public-keys L
and the message μ, and it verifies if this signature was legitimately created,
this algorithm outputs either: Accept or Reject.

– SigLink: a PPT algorithm that inputs two valid signatures σL(μ1) and
σL(μ2) and it anonymously determines if these signatures were produced by
same signer π. Thus, this algorithm has a deterministic output: Linked or
Unlinked.
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Correctness requirements:

– SigGen Correctness: this guarantees that valid signatures signed by honest
signers will be accepted with overwhelming probability by a verifier.

– SigLink Correctness: this ensures that if two signatures σL(μ1) and σL(μ2) are
signed by an honest signer π, SigLink will output Linked with overwhelming
probability.

4.2 Oracles for Adversaries

The following oracles will be available to any adversary who tries to break the
security of an L2RS scheme:

1. Ai ← J O(⊥). The Joining Oracle, on request, adds a new user to the system.
It returns the public-key A ∈ R1×m

2q of the new user.
2. Si ← CO(Ai). The Corruption Oracle, on input a public-key Ai ∈ R1×m

2q that
is a query output of J O, returns the corresponding private-key Si ∈ Rm×1

q .
3. σ′

L(μ) ← SO(w,L,Aπ, μ). The Signing Oracle, a group size w, a set L of w
public-keys, the public-key of the signer Aπ, and a message μ, returns a valid
signature σ′

L(μ).

4.3 Threat Model

– One-time Unforgeability. One time unforgeability for the L2RS scheme
is defined in the following game between a simulator S and an adversary A
who has access to the oracles J O, CO, SO and the random oracle:
1. S generates and gives the list of public-keys L to A.
2. A may query the oracles according to any adaptive strategy.
3. A gives S a ring signature size w, a set L of w public-keys, a message μ

and a signature σL(μ).

A wins the game if:
• Verify(w,L, μ, σL(μ)) = accept.
• All of the public-keys in L are query outputs of J O.
• No public-key in L have been input to CO.
• σL(μ) is not a query output of SO.
• No signing key Aπ was queried more than once to SO.

The advantage of the one-time unforgeability in the L2RS scheme is denoted by

Advantageot−unf
A (λ) = Pr[A wins the game ]

Definition 3 (One-Time Unforgeability). The L2RS scheme is one-time
unforgeable if for all PPT adversary A, Advantageot−unf

A (λ) is negligible.
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– Unconditional Anonymity. It should not be possible for an adversary A
to tell the public-key of the signer with a probability larger than 1/w, where
w is the cardinality of the ring signature, even assuming that the adversary
has unlimited computing resources.
Unconditional anonymity for L2RS schemes is defined in the following game
between a simulator S and an unbounded adversary A who has access to the
oracle J O.
1. S generates and gives the list of public-keys L to A.
2. A may query J O according to any adaptive strategy.
3. A gives S, a group size w, a set L of w public-keys which are the out-

puts of J O, a message μ. Parse the set L as {A1, . . . ,Aw}. S randomly
picks π ∈ {1, . . . , w} and computes σπ = Sign(w,L,Sπ, μ), where Sπ is a
corresponding private-key of Aπ. Then, σπ is given to A.

4. A outputs a guess π′ ∈ {1, . . . , w}.
The anonymity advantage of the L2RS scheme is denoted by

AdvantageAnon
A (λ) =

∣∣∣ Pr[π′ = π] − 1
w

∣∣∣

Definition 4 (Unconditional Anonymity). The L2RS scheme is uncondi-
tional anonymous if for any unbounded adversary A, AdvantageAnon

A (λ) is zero.

– Linkability. It should be infeasible for a signer to generate two signatures
such that they are determined unlinked using the SigLink algorithm. In this
scenario, the adversary attempts to generate two signatures, using only one
private-key Sπ. To describe this, we use the interaction between a simulator
S and an adversary A:
1. The A queries the J O multiple times and CO only once to get the private-

key Sπ, corresponding to the public-key Aπ.
2. The A outputs two signatures σL(μ) and σ′

L′(μ′) and two lists of public-
keys L and L′.

the A wins the game if:
• The public-keys in L and L′ are outputs of J O.
• By calling SigVer on input σL(μ) and σ′

L′(μ′), it outputs Accept on both
inputs.

• Finally, it gets Unlinked, when calling SigLink on input σL(μ) and
σ′

L′(μ′).
Thus the advantage of the linkability in the L2RS scheme is denoted by

AdvantageLink
A (λ) = Pr[A wins the game].

Definition 5 (Linkability). The L2RS scheme is linkable if for all PPT adver-
sary A, AdvantageLink

A is negligible.

– Non-slanderability. It should be infeasible for an adversary to generate a
valid signature that is linked with respect to a signature created by an honest
user. This means that an adversary can frame an honest user for signing a
valid signature so the adversary can produce another valid signature such
that the SigLink algorithm outputs Linked. To describe this, we use the
interaction between a simulator S and an adversary A:
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1. The S generates and gives the list of public-keys L to A.
2. The A queries the J O and CO to obtain Aπ and Sπ, respectively.
3. A gives the generated parameters to S.
4. S uses the private-key Sπ and calls the SO to output a valid signature

σL(μ), which is given to A.
5. The A uses the remaining keys of the ring signature (w − 1) to create a

second signature σ′
L(μ) by calling the SO algorithm.

the A wins the game if:
• The verification algorithm SigVer, on input σL(μ) and σ′

L(μ), outputs
Accept.

• The keys Aπ and Sπ were not used to generated the second signature
σ′

L(μ).
• When calling the SigLink on input σL(μ) and σ′

L(μ), it outputs Linked.
Thus the advantage of the non-slanderability in the L2RS scheme is denoted
by

AdvantageNS
A (λ) = Pr[A wins the game].

Definition 6 (Non-Slanderability). The L2RS scheme is non-slanderable if
for all PPT adversary A, AdvantageNS

A is negligible.

5 Our Proposed L2RS Scheme

5.1 Setup

By receiving the security parameter λ, this L2RS.Setup algorithm randomly
chooses A′

0 = (a0,1, . . . ,a0,m−1) ← R1×(m−1)
q and H′

0 = (h0,1, . . . ,h0,m−1) ←
R1×(m−1)

q . This outputs the public parameters (Pub-Params): A′
0 and H′

0.

Remark 2. To prevent malicious attack, L2RS.Setup incorporates a trapdoor in
A′

0 or H′
0, in practice L2RS.Setup would generate A′

0 and H′
0 based on the

cryptographic Hash function H2 evaluated of two distinct and fixed constants.

Definition 7 (Function L2RS.Lift). This function maps R1×m
q to R1×m

2q

with respect to a public parameter A′
0 ∈ R1×(m−1)

q . Given a′
1 ∈ Rq, we let

L2RS.Lift(A′
0,a

′
1) � (2 · A′

0,−2 · a′
1 + q mod 2q) ∈ R1×m

2q .

5.2 Key Generation - KeyGen

This algorithm receives the public parameters Pub-Params: A′
0 and H′

0.

1. To generate a key pair in Rq, we:
– Pick (s0,1, . . . , s0,m−1), where every component is chosen uniformly and

independently with coefficients in (−2γ , 2γ).
– Define ST

0 = (s0,1, . . . , s0,m−1) ∈ R1×(m−1)
q , and let ST = (ST

0 , 1) ∈
R1×m

q .
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– Compute a′
1 = A′

0 · S0 mod q ∈ Rq.
– Return (A′

0,a
′
1) ∈ R1×m

q , (ST
0 , 1) ∈ R1×m

2q .
2. The L2RS.Lift function is used to compute and return: A = (A0,a1) =

L2RS.Lift(A′
0,a

′
1) = (2 · A′

0,−2 · a′
1 + q mod 2q) ∈ R1×m

2q .
3. In the private-key ST = (ST

0 , 1) ∈ R1×m
q , we consider S0 an element in R2q,

so that this returns the private-key S ∈ Rm×1
2q .

Note that A · S = q ∈ R2q. The list of the users’ public-keys is defined as
L = {A1, . . . ,Aw}, where w is the number of users in the ring signature scheme.
This KeyGen algorithm is described in the following Algorithm1:

Algorithm 1. L2RS Algorithm - Key pair generation (A,S)
Input: The public parameters Pub-Params: A′

0 and H′
0 .

Output: (A,S), where A is the public-key and S is the private-key.
1: procedure L2RS.KeyGen(Pub-Params)

2: Let ST
0 = (s0,1, . . . , s0,m−1) ∈ R1×(m−1)

q , where s0,i ← (−2γ , 2γ)n, for 1 ≤ i ≤
m − 1

3: Let ST = (ST
0 , 1) ∈ R1×m

q .
4: Compute a′

1 = A′
0 · S0 mod q ∈ Rq.

5: Call function L2RS.Lift(A′
0,a

′
1), and it returns A = (A0,a1) = (2 ·A′

0, −2 ·a′
1 +

q mod 2q) ∈ R1×m
2q

6: Remark: A · S = q ∈ R2q, where S ∈ Rm×1
2q .

7: return (A,S).

5.3 Signature Generation - SigGen

The SigGen algorithm inputs the user’s private-key Sπ, the message μ, the list
of user’s public-keys L, and will output the signature σL(μ). We call π the index
in {1, . . . , w} of the user or signatory who wants to sign a message μ. For a
message μ ∈ {0, 1}∗, the fixed list of public-keys L and the private-key Sπ which
corresponds to Aπ with 1 ≤ π ≤ w; the following computations are performed:

1. We define the linkability tag as H =
(
H0,h1

)
, where H0 is a fixed public

parameter for all users: H0 = 2 ·H′
0 ∈ R1×(m−1)

2q , and h1 = −H0 · Sπ,0 + q ∈
R2q, where ST

π =
(
ST

π,0, 1
) ∈ R1×m

2q , such that H · Sπ = q ∈ R2q.
2. By choosing a random vector uπ = (u1, . . . , um)T , where ui ← Dn

σ , for 1 ≤
i ≤ m, we calculate cπ+1 = H1

(
L,H, μ,Aπ · uπ,H · uπ

)
.

3. We choose random vector ti = (ti,1, . . . , ti,m)T , where ti,j ← Dn
σ , for 1 ≤

j ≤ m, then for (i = π + 1, . . . , w, 1, 2, . . . , π − 1), we compute ci+1 =
H1

(
L,H, μ,Ai · ti + q · ci,H · ti + q · ci

)
.

4. Select a random bit b ∈ {0, 1} and finally compute tπ = u + Sπ · cπ · (−1)b

using rejection sampling (Definition 2).
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5. Output the signature σL(μ) =
(
c1, t1, . . . , tw,H

)
.

A formal description of this algorithm is shown in Algorithm2.

Algorithm 2. L2RS Algorithm - Signature Generation σL(μ)
Input: Sπ, μ, L, where L = {A1, . . . ,Aw}.

Output: σL(μ) =
(
c1, t1, . . . , tw,H

)

1: procedure L2RS.SigGen(Sπ, μ, L)
2: Set H = (H0,h1), where H0 = 2 · H′

0 and h1 = −H0 · Sπ,0 + q mod 2q
3: Let u = (u1, . . . , um)T , where ui ← Dn

σ , for 1 ≤ i ≤ m.

4: Compute cπ+1 = H1

(
L,H, μ,Aπ · u,H · u

)
.

5: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
6: Let ti = (ti,1, . . . , ti,m)T , where ti,j ← Dn

σ , for 1 ≤ j ≤ m.

7: Compute ci+1 = H1

(
L,H, μ,Ai · ti + q · ci,H · ti + q · ci

)
.

8: Choose b ← {0, 1}.
9: Let tπ ← u + Sπ · cπ · (−1)b.

10: Continue with prob.
1

M exp

(
− ‖Sπ · cπ‖2

2σ2

)
cosh

( 〈tπ,Sπ · cπ〉
σ2

) otherwise

Restart.
11: return σL(μ) =

(
c1, t1, . . . , tw,H

)
.

5.4 Signature Verification - SigVer

The SigVer algorithm receives the signature σL(μ) along with the message μ and
the fixed list L, and will output a decisional verification answer: whether accept
or reject the signature (see Algorithm 3). The signature σL(μ) can be publicly
validated by computing H = (H0,h1) in ci+1 for (i = 1, . . . , w), and it is verified
and only accepted under the following four conditions: ‖ti‖2 ≤ B2 for 1 ≤ i ≤ w,
‖ti‖∞ < q/4 for 1 ≤ i ≤ w, c1 = H1

(
L,H, μ,Aw · tw + q · cw,H · tw + q · cw

)

and H0 = 2 · H′
0.

Theorem 1. Let q > 2η
√

mσ and σL(μ) =
(
c1, t1, . . . , tw,H

)
be generated

based on Algorithm2 such that ‖ti‖∞ ≤ q/4, for 1 ≤ i ≤ m. Then the output of
Algorithm3 on input σL(μ) is Accept with probability 1 − 2−λ.

Note that η is chosen such that ‖ti‖ ≤ q/2 is verified with probability 1 − 2−λ

for all 1 ≤ i ≤ w. The proof of this theorem will be given in the full version.
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Algorithm 3. L2RS Algorithm - Signature Verification

Input: σL(μ) =
(
c1, t1, . . . , tw,H

)
, L, μ

Output: Accept or Reject
1: procedure L2RS.SigVer(σL(μ))
2: if H = (H0,h1) and H0 = 2 · H′

0 then Continue
3: for (i = 1, . . . , w) do

4: if ci+1 = H1

(
L,H, μ,Ai · ti + q · ci,H · ti + q · ci

)
then Continue

5: else if ‖ti‖2 ≤ B2 then Continue
6: else if ‖ti‖∞ < q/4 then Continue

7: else if c1 = H1

(
L,H, μ,Aw · tw + q · cw,H · tw + q · cw

)
then Accept

8: else Reject

9: return Accept or Reject

5.5 Signature Linkability - SigLink

The SigLink algorithm, illustrated in Algorithm4, takes two signatures as its
input σL(μ1) and σL(μ2) and it outputs Linked if these signatures were gen-
erated by same signatory, it will output Unlinked otherwise. For a fixed
list of public-keys L and given two signatures: σL(μ1) and σL(μ2), with the
list L which can be described as: σL(μ1) =

(
c1,μ1 , t1,μ1 , . . . , tw,μ1 ,Hμ1

)
and

σL(μ2) =
(
c1,μ2 , t1,μ2 , . . . , tw,μ2 ,Hμ2

)
.

These two signatures must be successfully accepted by the SigVer algorithm,
then one can verify that the linkability property can be achieved if the linkability
tags (Hμ1 and Hμ2) of the above signatures σL(μ1) and σL(μ2) are equal.
The correctness proofs of L2RS.SigGen and L2RS.SigLink are given in [35].

6 Security Analysis

Theorem 2 (One-Time Unforgeability). Suppose
√

q2n

2(γ+1)·(m−1)·n is negli-
gible in n and 1

|Sn,κ| is negligible and y = h is polynomial in n, where h denotes

Algorithm 4. L2RS Algorithm - Signature Linkability
Input: σL(μ1) and σL(μ2)
Output: Linked or Unlinked
1: procedure L2RS.SigLink(σL(μ1), σL(μ2))

2: if
(
L2RS.SigVer(σL(μ1)) = Accept and L2RS.SigVer(σL(μ2)) = Accept

)
then

Continue [
3: else if Hμ1 = Hμ2 then Linked
4: else Unlinked ]

5: return Linked or Unlinked
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the number of queries to the random oracle H1. If there is a PPT algorithm
against one-time unforgeability of L2RS with non-negligible probability δ, then
there exist a PPT algorithm that can extract a solution to the R-SISK

q,n,m,β

problem (for β = 2B2) with non-negligible probability
(

δ − 1
|Sn,κ|

)
·
(

δ− 1
|Sn,κ|
y −

1
|Sn,κ|

)
−

√
q2n

2(γ+1)·(m−1)·n .

Proof. The proof is given in the full version [35].

Theorem 3 (Anonymity). Suppose
√

q2n

2(γ+1)·(m−1)·n is negligible in n with an
attack against the unconditional anonymity that makes h queries to the random
oracle H1, where h, w are polynomial in n, then the L2RS scheme is uncondi-
tionally secure as defined in Definition 4.

Proof. The proof is given in the full version [35].

Theorem 4 (Linkability). The L2RS scheme is linkable in the random oracle
model if the R-SISK

q,n,m,β problem is hard.

Proof The proof is given in the full version [35].

Theorem 5 (Non-Slanderability). For any linkable ring signature, if it sat-
isfies unforgeability and unlinkability, then it satisfies non-slanderability.

Proof. The proof is given in the full version [35].

Corollary 1 (Non-Slanderability). The L2RS scheme is non-slanderable
under the assumptions of Theorems 2 and 4.

7 Lattice RingCT v1.0 Protocol

This protocol can be regarded as the lattice analogy of the original Ring CT
protocol [5], and is constructed based on our L2RS scheme described in Sect. 5.
Its algorithms are defined as follows (we follow the definition given in [36]):

– Setup: this PPT algorithm uses L2RS.Setup where it takes the security param-
eter λ and outputs the public parameters.

– KeyGen: this PPT algorithm uses L2RS.KeyGen, it receives the public param-
eters and produces a pair of keys, the public-key and the private-key.

– Mint: a PPT algorithm that is used to generate new coins. This algorithm
receives the public-key A and the amount a, and it outputs a coin cn along
with its associated coin-key ck. An account is formed using the public-key
A and the coin cn. Likewise, the private-key S along with the coin-key ck is
used for the spending authorization.
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– Spend: a PPT algorithm, which is used to generate the linkable ring signature,
receives the fixed list of users’ public-keys in the ring signature L, the Output
Wallet OW and some transaction string m ∈ {0, 1}∗, these three parameter
constitute the transaction TX. This algorithm outputs the signature σL(μ)
along with the TX.

– Verify: a deterministic PPT algorithm that takes as input the signature σL(μ)
and the TX, it outputs either: Accept or Reject.

7.1 Scheme Construction

Our Lattice RingCT scheme requires homomorphic commitment (Com) as an
additional primitive. It is a cryptographic technique used to provide confidential
transactions, in particular cryptocurrencies [5]. This primitive allows one party
to commit to a chosen value while keeping it secret to other parties, then this
committed value can be revealed later. This model is restricted to have one Input
Wallet (IW ) that will be spent into one Output Wallet (OW) only. We use the
structure of the L2RS.KeyGen scheme Algorithm 1, where the public parameter
A′

0 ∈ R1×(m−1)
q is used to commit to a scalar message m ∈ Domm ⊆ Rq with

Domm = [0, . . . , 2	−1] ⊆ Z. This property is defined as ComA′
0
(m,S0) = A′

0 ·
S0 + m, where S0 ∈ DomS0 ⊆ R(m−1)×1

q is the randomness. The properties of
the homomorphic operations are also defined as:

ComA′
0
(m1,S0) ⊕ ComA′

0
(m2,S′

0) � ComA′
0
(m1,S0) + ComA′

0
(m2,S′

0) mod q

= ComA′
0
(m1 + m2,S0 + S′

0) mod q, (1)

ComA′
0
(m1,S0)  ComA′

0
(m2,S′

0) � ComA′
0
(m1,S0) − ComA′

0
(m2,S′

0) mod q

= ComA′
0
(m1 − m2,S0 − S′

0) mod q, (2)

where m1,m2 ∈ Rq; and S0,S′
0 ∈ R(m−1)×1

q . The integers m1,m2 ∈ Z are
encoded in binary as coefficient vectors m1 = (m1,0, . . . ,m1,	−1, 0, . . . , 0) ∈
{0, 1}n and m2 = (m2,0, . . . ,m2,	−1, 0, . . . , 0) ∈ {0, 1}n where mj =

∑	−1
i=0(mj,i ·

2i), with mj,i ∈ {0, 1} and j ∈ {0, 1}, and m = m1 − m2 = (m1,0 −
m2,0, . . . ,m1,	−1 − m2,	−1, 0, . . . , 0) ∈ {−1, 0, 1}n. The difference between these
vectors is zero ∈ Rq if m1 = m2, non-zero otherwise. Hence the commitment is
done to bits.

The construction of the Lattice RingCT v1.0 algorithm has the following steps:

1. (Pub-Params) ← Setup(λ): On input security parameter λ, this algorithm
calls L2RS.Setup and outputs the public parameters, A′

0 and H′
0.

2. (Ain,Sin) ← KeyGen(Pub-Params): Given the public parameters, we call
L2RS.KeyGen to generate the pair of keys. Thus it outputs the IW pair of
keys (Ain,Sin), where Ain ∈ R1×m

2q is the public-key (or one-time address)
and Sin = (S0, 1) ∈ DomS0 ⊆ Rm×1

2q is the private-key. The commitment of
the KeyGen is defined as a′

1(in) = A′
0 ·S0(in) mod q ∈ Rq = ComA′

0

(
0,S0(in)

)
.
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3. (cn′, ck′) ← Mint(Ain, ain): It receives a valid one-time address Ain as well
as an input amount ain ∈ B

n
w, where B = {0, 1}. Then, to create a coin cn′

in,
this algorithm chooses a coin-key ck′

in ∈ DomS0 , where every component
is chosen uniformly and independently with coefficients in (−2γ , 2γ). Then,
the commitment is computed as cn′

in = ComA′
0
(ain, ck′

in) and it returns
(cn′

in, ck′
in). An account constitutes

(
a′
1(in), cn

′
in

) ∈ Rq × Rq.
4. (TX, σL′(μ)) ← Spend(μ,OW ): This algorithm follows the steps:

(a) A new coin for the OW is created by the spender. It generates
ck′

out ∈ DomS0 , where every component is chosen uniformly and inde-
pendently with coefficients in (−2γ , 2γ), then it is computed cn′

out =
ComA′

0

(
aout, ck′

out

)
. The new OW is set as

(
a′
1(out), cn

′
out

) ∈ Rq × Rq.
(b) A transaction string μ ∈ {0, 1}∗ defines the ring signature message.
(c) The list of the ring signature is constructed as L′ =

{(
â′
1(in),i, cn

′
in,i

)} ∈
Rq × Rq for 1 ≤ i ≤ w with w being the size of the ring signature, its
components are produced as:

– â′
1(in),i = a′

1(in),i + cn′
in,i − cn′

out,i = ComA′
0

(
ain,i − aout,S0(in),i +

ck′
in,i − ck′

out

)
.

– cn′
in,i = ComA′

0

(
ain,i, ck′

in,i

)
.

(d) We call the L2RS.Lift() function (Definition 7) to lift L′ from R1×m
q to

R1×m
2q :
– L′ =

{(
L2RS.Lift

(
A′

0, â
′
1(in),i

)
, L2RS.Lift

(
A′

0, cn
′
in,i

))}
=

{(
Â1(in),i,

CNin,i

)} ∈ R1×m
2q × R1×m

2q , for 1 ≤ i ≤ w.
– The private-key of π is in the form of S′′

in,π =
(
Sin,π,CKin,π

) ∈
Rm×1

2q × Rm×1
2q , where:

• Sin,π =
(
S0(in,π) + ck′

in,π − ck′
out,π

) ∈ Rm×1
2q .

• CKin,π =
(
ck′

in,π, 1
) ∈ Rm×1

2q .
(e) By calling the L2RS-DoubleSignGen

(
S′′

in,π, L′, μ
)
, Algorithm 5, we create

the ring signature σL′(μ) =

(

c1,
(
t1, . . . , tw

t′
1, . . . , t

′
w

)
,H

)

.

(f) We set the transaction TX = (μ,L′, OW ).
(g) This algorithm ultimately outputs TX and σL′(μ).

5. (Accept/Reject) ← Verify
(
TX, σL′(μ)

)
: This algorithm calls L2RS-

DoubleSigVer
(
σL′(μ)

)
, using Algorithm 6 and will return either Accept or

Reject.

This construction as stated supports one-IW to one-OW and thus in this case
the range proof [5] is not needed. In the full version of this work [35], we will
provide more details for the correctness and the security analysis of the hiding
and binding property. The full version will also extend the Lattice RingCT v1.0
scheme to support Multiple-Inputs to Multiple-Outputs (MIMO) wallets, and
therefore a range proof will be given.
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Algorithm 5. L2RS-DoubleSignGen Algorithm - Signature Generation σL′(μ)

Input: S′′
in,π, μ, L′, where S′′

in,π =
(
Sin,π,CKin,π

)
and L′ =

{(
Â1(in),i,CNin,i

)}w

i=1

Output: σL′(μ) =

(
c1,

(
t1, . . . , tw

t′
1, . . . , t

′
w

)
,H

)

1: procedure L2RS.DoubleSignGen(S′′
in,π, μ, L′)

2: Set H = (H0,h1), where H0 = 2 · H′
0 and h1 = −H0 · Sπ,0 + q mod 2q

3: for (1 ≤ i ≤ m) do
4: Let u = (u1, . . . , um)T , where ui ← Dn

σ .
5: Let u′ = (u′

1, . . . , u
′
m)T , where u′

i ← Dn
σ .

6: Compute cπ+1 = H1

(
L,H, μ, Â1(in),π · u,CNin,π · u′,H · u

)
.

7: for (i = π + 1, π + 2, . . . , w, 1, 2, . . . , π − 1) do
8: for (1 ≤ j ≤ m) do
9: Let ti = (ti,1, . . . , ti,m)T , where ti,j ← Dn

σ .
10: Let t′

i = (t′
i,1, . . . , t

′
i,m)T , where t′

i,j ← Dn
σ .

11: Compute ci+1 = H1

(
L,H, μ, Â1(in),i ·ti+q·ci,CNin,i ·t′

i+q·ci,H·ti+q·ci

)
.

12: Choose b ← {0, 1} and b′ ← {0, 1}.
13: Let tπ ← u + Sin,π · cπ · (−1)b.

14: Continue with prob.
1

M exp

(
− ‖Sin,π · cπ‖2

2σ2

)
cosh

( 〈tπ,Sin,π · cπ〉
σ2

) other-

wise Restart.
15: Let t′

π ← u′ + CKin,π · cπ · (−1)b′
.

16: Continue with prob.
1

M exp

(
− ‖CKin,π · cπ‖2

2σ2

)
cosh

( 〈t′
π,CKin,π · cπ〉

σ2

)

otherwise Restart.

17: return σL′(μ) =

(
c1,

(
t1, . . . , tw

t′
1, . . . , t

′
w

)
,H

)
.

8 Performance Analysis

We proposed a set of parameters (Table 1) to implement the L2RS and Lattice
RingCT v1.0 schemes. They are secure against direct lattice attacks in terms of
the BKZ algorithm Hermite factor δ, using the value of δ = 1.007, based on the
BKZ 2.0 complexity estimates with pruning enumeration-based Shortest Vector
Problem (SVP) [37], this might give 90–100 bits of security. We use the conditions
stated in the L2RS.SigVer algorithm and in the security analysis (Sect. 6) with
γ = 0 and α = 0.5. This analysis turns out signatures sizes of 53 KB and 60 KB
for L2RS and Lattice RingCT v1.0, respectively, when the number of signers
in a ring signature (w) is 1. The size of the pair of keys in L2RS is 0.592 KB
(private-key) and 1.252 KB (public-key), whereas this size in Lattice RingCT
v1.0 is 1.184 KB (private-key) and 1.12 KB (public-key).
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Algorithm 6. L2RS-DoubleSigVer Algorithm - Signature Verification

Input: TX = (μ, L′, OW ), σL′(μ) =

(
c1,

(
t1, . . . , tw

t′
1, . . . , t

′
w

)
,H

)
, where L′ =

{(
Â1(in),i,CNin,i

)}w

i=1
Output: Accept or Reject
1: procedure L2RS.DoubleSigVer(σL′(μ))
2: if H = (H0,h1) and H0 = 2 · H′

0 then Continue
3: for (i = 1, . . . , w) do

4: if ci+1 = H1

(
L,H, μ, Â1(in),i · ti + q ·ci,CNin,i · t′

i + q ·ci,H · ti + q ·ci

)

then Continue
5: else if ‖ti‖2 ≤ B2 and ‖t′

i‖2 ≤ B2 then Continue
6: else if ‖ti‖∞ < q/4 and ‖t′

i‖∞ < q/4 then Continue

7: else if c1 = H1

(
L,H, μ, Â1(in),i ·tw +q ·cw,CNin,w ·t′

w +q ·cw,H ·tw +q ·cw

)

then Accept
8: else Reject

9: return Accept or Reject

Table 1. Selected parameters for L2RS and Lattice RingCT v1.0

Name of the scheme L2RS Lattice-RingCT v1.0

Security parameter (λ) 100 100

n 128 128

κ 32 32

m 73 73

η 2.1 2.1

‖Sc‖ 546.8 546.8

σ 273.4 273.4

log(β) 13.429 13.429

log(q) 35 35

Signature size (w = 1) 51 KB 60 KB

Signature size (w = 5) 89 KB 136 KB

Signature size (w = 10) 136 KB 231 KB

Signature size (w = 15) 183 KB 325 KB

Private-key size 0.592 KB 1.184 KB

Public-key size 1.152 KB 1.12 KB
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Abstract. A contactless payment lets a card holder execute payment
without any interaction (e.g., entering PIN or signing) between the ter-
minal and the card holder. Even though the security is the first priority
in a payment system, the formal security model of contactless payment
does not exist. Therefore, in this paper, we design an adversarial model
and define formally the contactless-payment security against malicious
cards and malicious terminals including relay attacks. Accordingly, we
design a contactless-payment protocol and show its security in our secu-
rity model. At the end, we analyze EMV-contactless which is a commonly
used specification by most of the mobile contactless-payment systems
and credit cards in Europe. We find that it is not secure against mali-
cious cards. We also prove its security against malicious terminals in our
model. This type of cryptographic proof has not been done before for
the EMV specification.

1 Introduction

A contactless payment (CP) system is a payment method using a card or a
device, that allows a user to pay at a point of sale by holding the card/device
near a contactless terminal. There are two main ways of performing a contactless
transaction: with a card or with a smartphone.

CP technologies advanced quickly in recent years. Therefore, the CP market
size is expected to grow from USD 6.70 Billion in 2016 to USD 17.56 Billion by
2021 [1]. One of the reasons of this development is based on the convenience of
the payment process (e.g., users do not need to type a PIN code (or sign a bill)
and wait for the verification process of the PIN). The first CP was implemented
in 1995 by Seoul Bus Transport and since then many leading companies (Apple,
Google, Samsung) started to integrate a CP process into smartphones. The first
(contactless) payment system launched by a leading company is Google Wallet
in 2011. Then, Apple Pay and Samsung Pay followed suit in 2014 and 2015,
respectively. Also in 2015, Google announced a new contactless system, Android
Pay. Classic CP systems use cards. A majority of them now follow EMV con-
tactless specifications, written by EMVCo [3], a consortium created by payment
companies, like Visa and Mastercard. The USA has migrated from old magnetic
reader terminals to new EMV compliant ones, already used in Europe.

Despite the big developments in this technology, we realize that some impor-
tant functionalities such as secure processing of payments have not been consid-
ered formally. No standard security model was provided for CP. Some pre-play
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 579–597, 2018.
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attacks were detected for EMV because of poor random generation [7,8]. Roland
and Langer [23] discovered a cloning attack for EMV contactless payment cards
since the contactless payment permits an attacker to learn the necessary data
for cloning. The cloned cards can then be used to perform EMV Mag-Stripe
transactions at any EMV contactless payment terminal. Another type of pre-
play attack [8] was discovered which relies on the fact that EMV do not impose
any encryption between merchant and acquirer, or between acquirer and issuer.

The most important attack specific for EMV-contactless (and also most of
the contactless applications) is relay attack which has shown up for a while
ago [17–19,22,28]. A relay attack in an EMV-contactless payment can be run
as follows: the man-in-the-middle (MiM) adversary makes payment by relaying
messages from a card to a terminal and vice versa, while terminal and the card
think that they communicate with each other. Chothia et al. [14] remark that
the first version of EMVco is vulnerable to relay attacks and provide a solution
for this. The current EMVco [3], therefore, take precaution partly against relay
attacks using the solution proposed by Chothia et al. [14]. It is “partly” because
the solution they use is software based where the terminal does not require a
specific hardware. So, it protects against relatively trivial adversaries but does
not protect against the adversaries using a sophisticated hardware [15,18]. To
defend this level of security that they provide against relay attacks, Chothia et
al. [14] say that “Considering that contactless payments are limited to small
amounts, the cost of the hardware would be a disincentive for criminals”. How-
ever, limiting to small amounts does not necessarily mean that the relay attack
outcome will be also a small amount. An attacker in a crowded area (e.g., metro,
concert, museum) can execute many numbers of relay attacks and increase its
outcome. In addition, some cards are limited to some small amounts in their
issued country currency, but when they are abroad this limit is removed because
the conversion from the issued country currency to currency in the current coun-
try cannot be computed. Besides this, the solution provided by Chothia et al. [14]
for EMV-contactless does not protect against malicious cards who can execute
relay attacks in a different way than MiM-adversaries such as:

Distance Fraud (DF): A malicious far-away card tries to prove that he is close
enough to the terminal to make the verifier accept the payment.

Distance Hijacking (DH) [16]: A far-away malicious prover takes advantage of
some honest and active provers who are close to the verifier to make the verifier
grant privileges to the far-away prover.

Preventing against DF and DH in payment protocols is important as well.
For example, a DF or DH attack can be harmful to a bank in the following
case: A credit card holder makes a payment while he is far-away from a POS
machine. Then, he asks for a reimbursement of the payment from his bank by
claiming that he did not make the payment and he was probably exposed to
relay attack or cloning attack. While doing this, he can prove that he was not
at the place where the payment has been executed (e.g., showing that he was in
another city).
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The most promising solution against MiM, DH or DF is distance bound-
ing (DB) [11]. In DB, a verifier determines the distance of a prover who wants
to authenticate. If the distance of a prover is close enough, the verifier will be
sure of the nonexistence of relay attack during the protocol execution. Appar-
ently, it is necessary to utilize a secure distance bounding [6,9,10,12,20,24–27]
in contactless payment.

Our Contributions: Considering all these attacks and the missing formalism, we
design a new security model for CP protocols and design a secure contactless-
payment protocol. In more detail, our contributions are as follows:

– We formally define CP between parties: an issuer, a terminal, a card. Then,
we give two security definitions for malicious cards and for malicious terminals
in the adversarial and communication model that we define.

– We construct a secure CP protocol (ClessPay) against malicious cards and
malicious terminals. ClessPay uses a distance bounding protocol to protect
against relay attacks by malicious cards and MiM-adversaries. We proved
formally the security of ClessPay in our security model.

– We analyze EMV-contactless protocol in our model. We give some vulner-
abilities on this against malicious cards. We prove the security of EMV-
contactless protocol against malicious terminal formally. This type of formal
cryptographic analysis is the first for EMV-contactless protocol.

2 Definitions

2.1 Contactless Payment

According to the EMV specifications [2], a (contactless) payment system consists
of a card holder, a merchant, an acquirer, an issuer, a payment system, a card
and a terminal. Our definitions do not include certification by the payment
system, communication between merchant-acquirer and terminal-acquirer. We
assume that the setup between payment components has been established. For
the sake of simplicity, we assume the terminal represents both the terminal and
the acquirer in the payment system and all cards are issued by one issuer.

The Issuer: It issues a personalized card to the card holder. The cards may
contact with the issuer during the payment process (in online transactions) for
the verification of the payment data. It also gives reimbursements of completed
transactions to the acquirer. Each issuer has its policy function Policy to approve
or disapprove a transaction. We assume that the issuer has a database DataB
which stores the card information. DataB consists of tuples (Public Key, Card
Information) of each card. Card information (CI) may consist of transaction list,
the balance or the card limit.
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Cards: They have a technology (e.g. NFC, Bluetooth) to communicate with a
payment terminal without any contact. In CP, cards are the components which
interact with a payment terminal to execute a payment with a certain amount.
They include a unique card number. They also store a secret/public key pair
in their tamper-resistant module and the issuer’s public key. In this paper, we
exclude card numbers in our definitions for simplicity. In our definitions, cards
are identified with their public keys.

Terminals: Terminals interact with both cards and their issuers via acquirers.
They receive an order of payment from a card and validate the payment together
with the issuer of the card.

Definition 1 (Contactless Payment (CP)). A CP consists of algo-
rithms for cards, terminals and issuers. They respectively run the algo-
rithms C(skC , pkC , pkI), T (pkI , τT ) and I(skI , pkI ,DataB). Here, (skC , pkC)
and (skI , pkI) are the secret/public key pair of C and I, respectively. They are
generated by the algorithms GC(1n) and GI(1n) where n is a security param-
eter. DataB is the database for cards’ information. I includes a subroutine
Policy(pkC , CI, τI) where CI represents the card information of a card with pkC .
In the end, I outputs OutI ∈ {0, 1} and privately outputs POutI = (pkC , idI , τI).
Similarly, T outputs OutT ∈ {0, 1}1 and private output POutT = (pkC , idT , τT )
and C privately outputs POutC = (idC , τC). Here, τ is the transaction (τT , τI and
τC are the values seen by the terminal, the issuer and the card), id is the iden-
tifier of the transaction (idT , idI and idC are similarly defined) and φ ∈ {0, 1}
shows the approval or disapproval of the transaction.

The algorithm Policy depends on the policy of the transaction approval by
the issuer. So, we can consider it as an algorithm which decides if a transaction
τI is possible for the card with pkC and CI.

We note that OutI and Policy(pkC , CI, τI) can be different. OutI (similarly
OutT ) shows the result of the CP which can be either accepting or canceling the
payment. However, Policy(pkC , CI, τI) shows only if the card with pkC is able to
do the payment. For example, even though the payment is canceled (OutI = 0)
by the issuer, the issuer can approve the payment (Policy(pkC , CI, τI) = 1). It
means that the card is able to this payment but the payment process is canceled
(e.g., because of malicious behaviors).

Definition 2 (Correctness of CP)). A contactless payment is correct for all
B, transactions τ , database DataB, CI, and generated key pairs (skC , pkC) and
(skI , pkI) if

– the algorithms C, T and I are run,
– T starts a transaction τ ,
– there exists a C whose distance from T is at most B,
– (pkC , CI) is in DataB of an issuer I,

1 OutI = 0 or OutT = 0 mean canceling and OutI = 1 or OutT = 1 mean accepting.
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then there exists id such that probability of (OutT = OutI = Policy(pkC , CI, τ))∧
(POutT = POutI = (pkC , id, τ)) ∧ (POutC = (id, τ)) is 1.

The output of T has to depend on the output of I because actually I is in the
position to decide if the transaction is possible with the card (in fact an honest
card cannot know if the transaction is possible).

Adversarial and Communication Model: In contactless payment, we consider
the similar adversarial and communication model with the access control (AC)
security model by Kılınç and Vaudenay [21]. The parties in AC: a controller, a
reader, a tag correspond to the parties contactless payment: an issuer, a terminal,
a card, respectively. Differently than AC, in the contactless-payment adversarial
model, terminals can be malicious. In a nutshell, the model is as follows:

– The communication between T and I is secure and authenticated. The adver-
sary cannot attack this part of the communication.

– The communication between the parties is limited by the speed of light.
– All parties have polynomially many instances. An instance of a party is an

execution of its corresponding algorithm at a given location. Instances of
honest parties cannot be run in parallel.

– The adversaries can change the location of honest instances (but they move
at a limited speed) or can activate them (See [21] for details).

– Adversaries can create the database.
– Adversaries can change the destination of messages.

Definition 3 (Security in Contactless Payment with Malicious Cards).
The security game is as follows:

– Run GI(1n) → (skI , pkI) and GC(1n) → (skCi
, pkCi

) for the issuer and each
card Ci and give the public keys to the adversary.

– The adversary creates instances of cards (Ci’s) and the terminals at some
locations of his choice. There is a distinguished terminal T (T is honest).

– The adversary sets a database DataB of the issuer. The issuer instance I
which communicates with T is the distinguished issuer.

– The adversary creates the instances of himself (malicious cards or terminals)
which can run independently and communicate together.

We denote POutI = (pk′
C , idI , τI) and POutT = (pk′′

C , idT , τT ) the private out-
puts of I and T . Following our communication model, the game ends when T
outputs OutT . A contactless payment is secure, if the adversary wins this game
with negligible probability. The adversary wins the game if OutT = 1 and at least
one of the following conditions are satisfied:

1. (pk′
C , .) /∈ DataB,

2. pk′
C ∈ {pkCi

} and the distance between any C holding pk and T is more than
B during the execution of the protocol with idT ,

3. pk′
C /∈ {pkCi

} and no instance of the adversary is close to T during the
execution of the contactless payment protocol with T and I.
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4. (pk′
C , idI , τI) �= (pk′

C , idT , τT ),
5. pk′

C ∈ {pkCi
} and there exists no card with pk′

C and POutC = (idI , τI).

Remarks: The first winning condition shows that a card which does not belong
DataB should not authenticate. The second and the third conditions are to
protect against MiM and DH (DF as well), respectively. Finally, the last two
conditions are to be sure that the transaction that I and T approve and complete,
and the transaction that I and an honest C approve and complete are the same.

Definition 4 (Security in Contactless Payment with Malicious Termi-
nals). The security game is as follows:

– Run the key generation algorithms GI(1n) → (skI , pkI) and GC(1n) →
(skCi

, pkCi
) for the issuer I and each card Ci and give away public keys.

– The adversary creates instances of Ci and the terminals at some locations of
his choice. There is a distinguished instance I.

– The adversary sets a database DataB.
– The adversary creates the instances of himself which can run independently

and communicate together (as malicious cards or malicious terminals).

At the end of the game I outputs OutI and POutI = (pk′
C , idI , τI). A contact-

less payment is secure, if the adversary wins this game with negligible probability.
The adversary wins the game:

1. if OutI = 1 and if at least one of the following conditions are satisfied:
(a) (pk′

C , .) /∈ DataB,
(b) pk′

C ∈ {pkCi
} and there exists no card with pk′

C which outputs (idI , τI),
(c) pk′

C ∈ {pkCi
} and the instance of this card with pk′

C having (idI , τI) has
distance from the adversary and any honest terminal more than B.

2. or if there exists an honest card instance with pkC ∈ {pkCi
} which privately

outputs POutC = (idC , τC) and there exists an issuer instance which has
Policy(pkC , CI, τC) = 0 and idC .

The proximity condition (1c) has not been considered by any of the payment
systems before. Actually, even though we make sure that the payment can be
approved only when the terminal is close to the card, we still cannot prevent
a malicious terminal to execute a payment unbeknown to a card holder. For
example, a malicious terminal can be moved close to a card while the card is
not at the shop. This means 1c does not prevent the malicious intention of the
terminals. If we can be sure that the terminals can be run in a certain loca-
tion, then we can guarantee the security against malicious terminals with the
proximity condition. This can be possible by using position-based cryptography
[13], but current terminals do not support this. Therefore, in our protocol, we
eliminate 1c. We call almost-secure against malicious terminals if a pro-
tocol is secure without the condition 1c in Definition 4. The condition 2 is to
prevent honest cards to make payment even though the issuer does not approve
it. For example, this condition prevents attacks where malicious terminals make
a card pay (maybe without the knowledge of the honest card) for a big amount
of money where normally the issuer would not let this amount of payment.
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2.2 Preliminaries About Public Key Distance Bounding

We give security definitions (MiM, DF, DH) of public-key distance bounding. In
CP, the terminal represents the verifier in DB because the issuer is not at the
position to determine the distance of cards and the card represents the prover.

Definition 5 (Public key DB Protocol [20,26]). A public key DB proto-
col is a two-party probabilistic polynomial-time (PPT) protocol and it consists
of a tuple (KP ,KV , V, P,B). Here, KP is the key generation algorithm of the
prover algorithm P and outputs secret/public key pair (skP , pkP ). KV is the key
generation algorithm of the verifier algorithm V and outputs secret/public key
pair (skV , pkV ). B is the distance bound. P (skP , pkP , pkV ) and V (skV , pkV ) are
interactive algorithms. At the end of the protocol, V (skV , pkV ) outputs OutV
and privately outputs POutV = pkP . If OutV = 1, then V accepts. If OutV = 0,
then V rejects. A public-key DB protocol is correct if and only if under honest
execution, whenever a verifier V and a close (to V ) prover P run the distance
bounding protocol, then V outputs OutV = 1 and POutV = pkP .

We use the same adversarial and communication model as in contactless-
payment where the provers are cards and the verifiers are terminals.

Definition 6 (MiM security [26]). The game begins by running the key gen-
erations algorithms KV and KP . They output (skV , pkV ) and (skP , pkP ), respec-
tively. The public keys pkV and pkP are given to the adversary. In the game, we
have polynomially many verifier instances where one of them is the distinguished
one V and polynomially many honest prover instances which are far away from
V. The adversary with its instances can be at any location. The adversary wins
if V outputs OutV = 1 and POutV = pkP . A DB protocol is MiM-secure if for
any such game, the probability of an adversary to win is negligible.

Definition 7 (Distance fraud [26]). The game begins by running the key
generation algorithm KV . It outputs (skV , pkV ). The public key pkV is given
to the adversary. The adversary generates its secret/public key pair (skP , pkP )
with using an arbitrary algorithm K∗

P . In the game, we have polynomially many
verifier instances including the distinguished one V and instances of an adversary
(prover instances). The adversary wins if V outputs OutV = 1 and POutV = pkP

when there is no close party to V. A DB protocol is DF-secure, if for any such
game, the adversary wins with negligible probability.

Definition 8 (Distance hijacking [26]). The game includes polynomially
many verifier instances V, V1, V2, . . ., a far away adversary P, and hon-
est prover instances P′,P′

1,P
′
2 . . .. In this game, we consider a DB proto-

col (KP ,KV , V, P,B) with phases: initialization, a challenge and a verification
phases. A DB protocol is DH-secure if for all PPT algorithms K∗

P and A, the
probability of P to win the following game is negligible.

– The game runs KV → (skV , pkV ) for the verifier and KP ′ → (skP ′ , pkP ′) for
the honest prover.
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– The adversary runs K∗
P (pkP ′ , pkV ) → (skP , pkP ).

– The game aborts, if pkP = pkP ′ . Otherwise, instances of P run the adversarial
algorithm A, the honest prover instances P′,P′

1,P
′
2, . . . run P (skp′ , pkV ), the

verifier instances V, V1, V2, . . . run V (skV , pkV ).
– P interacts with P′,P′

1,P
′
2, . . . and V, V1, V2, . . . during the initialization phase

of V and P′ concurrently.
– P′ and V continue interacting with each other in their challenge phase and P

remains passive but it sees the exchanged messages.
– P interacts with P′,P′

1,P
′
2, . . . and V, V1, V2, . . . in the verification phase.

The adversary wins if V outputs OutV = 1 and POutV = pkP .

The initialization and verification phase do not have any specific definition
but the challenge phase corresponds to the phase where the challenge/response
exchanges occur. It is the time critical phase meaning that the verifier determines
the proximity of the responses by checking the response time (i.e., If the responses
arrived on time, the prover is accepted. Otherwise, it is rejected.).

3 Contactless Payment Protocol

In this section, we construct a secure CP protocol from a public-key distance
bounding DB = (KP ,KV , V, P,B), an encryption scheme (Enc,Dec) and a sig-
nature scheme (Sign,Verify).

I(skI , pkI , DataB) T (pkI , τ) C(skC , pkC , pkI)

Initialization pick r

KV (1n) → (skV , pkV )
τ,pkV−−−−−−→ KP (1n; r) → (skP , pkP )
id,pkC←−−−−−− pick id

V (skV , pkV ) → OutV , pkP
DB←−−−−−→ P (skP , pkP , pkV )

if OutV = 0: cancel
Approval

φ = ∃(pkC , CI) ∈ DataB
pkC ,pkP ,id,τ←−−−−−−−−−

s.t. Policy(pkC , CI, τ) → 1
if φ = False: cancel

SI = signskIs
(id, τ, pkC)

SI−−−−−−→ SI−−−−−−→ if ¬VerifypkIs
(SI , id, τ, pkC) :

cancel
Completion

SC = signskC
(id, τ, r)

SC , r = DecskIe
(EC)

EC←−−−−−− EC←−−−−−− EC = EncpkIe
(SC , r)

KP (1n; r) → (sk, pk) POutC = (id, τ)
if ¬VerifypkC

(SC , id, τ, r)
∨pkP �= pk: cancel

OutI = 1
OutI−−−−−−→ OutT = OutI

if OutT = 0: cancel
POutI = (pkC , id, τ) POutT = (pkC , id, τ)

Fig. 1. The ClessPay protocol.
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3.1 ClessPay

The protocol ClessPay (See Fig. 1) starts after the terminal T creates a trans-
action τ and connects with a card C. We do not give the details of τ since it
depends on the payment system.

In our protocol, we use signature schemes and an encryption scheme. There-
fore, some secret/public key pairs are generated by using their key genera-
tion algorithms. More specifically, the key generation algorithm GI generates
a secret/public key pair (skI , pkI) = ((skIs , skIe), (pkIs , pkIe)) where (skIs , pkIs)
is generated by the key generation algorithm of the signature scheme used by
issuers and (skIe , pkIe) is generated by the key generation algorithm of the
encryption scheme. The key generation algorithm GC generates a secret/public
key pair (skC , pkC) using the key generation algorithm of the signature scheme
used by cards. ClessPay consists of the following phases:

Initialization Phase: This phase is executed by T and C. If this phase cannot
be completed successfully, then T cancels the transaction.

T and C generate ephemeral secret/public key pairs for the distance bounding
protocol DB = (KP ,KV , V, P,B). So, C first picks the random coins r and runs
the deterministic algorithm KP (1n; r) to generate (skP , pkP ). Here, what C does
is equivalent to running KP (1n). C needs to generate the random coins used in
KP (1n) because they will be needed in the last phase as a one-time proof for
having generated pkP . Then, T runs KV (1n) to obtain (skV , pkV ) used for DB. T
sends τ and pkV to C. After receiving them, C picks an identifier id and replies
with id and pkC to introduce itself.

T and C start the distance bounding protocol so that T determines the
distance of C. Therefore, T runs the verifier algorithm V (skV , pkV ) of DB and
C runs the prover algorithm P (skP , pkP , pkV ) of DB. At the end, V outputs
OutV which shows if C is close or not and private output POutP = pkP . If
OutV = 0, then T cancels the transaction. Otherwise, they continue with the
next phase. Remark that, T still does not know if the card whose distance is
determined is an authorized card because C has not authenticated itself with its
(static) public key pkC yet.

Approval Phase: This phase aims to check with the issuer whether the card
can execute the transaction. T first sends pkC , pkP , id, τ to I. I checks if the
card with pkC is in DataB. If it is in DataB, it retrieves the card information of
the card (CI) and runs the algorithm Policy(pkC , CI, τ) which outputs 1 if the
card has the privilege to execute τ2. If this algorithm returns 0, the transaction
is canceled. Otherwise, I approves the transaction.

If it is approved, I signs with skIs the message (id, τ, pkC). This signature is
necessary for cards to be sure that they are approved for the payment. Then,
it sends this signature SI to T and T relays it to C. C runs the verification
2 The Policy checks the execution right of a card depending on the bank policy. So,

we do not discuss about how this verification happens.
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algorithm of the signature scheme VerifypkIs
(SI , id, τ, pkC) to be sure that C

and I have the same id, τ, pkC . If C verifies SI , then the next phase begins.
Otherwise, C cancels.

Completion Phase: In this phase, the execution of the transaction τ with id
is completed by I, T and C. First, C signs the message id, τ, r with skC as a
proof of execution of the payment. The reason of signing r is showing that C
took part in the DB protocol. Then, it encrypts the signature SC and r by using
the key pkIe . The reason of the encryption is to hide r. At the end, C sends
the encryption (EC) to T . T relays it to I. At this point, the transaction is
completed for C and it privately outputs (id, τ).

In order to obtain SC and r, I first decrypts EC with skIe . I verifies that
r generates pkP by running KP (1n; r). If it is verified, it also verifies SC with
VerifypkC (SC , id, τ, r). If the signature is valid, then it sends OutI = 1 to T and
privately outputs (pkC , id, τ). Otherwise, I cancels the transaction.

Cancel the Transaction: As it can be seen in the protocol, the cancellation can
be done by I, T or C. In the case of timeout, parties cancel as well. When I
cancels, it sets OutI = 0 and sends OutI to T . Then, T cancels as well. When
T cancels, it sets OutT = 0 and terminates. When C cancels, it sends a cancel
message to T and terminates with POutC =⊥.

3.2 Security

Theorem 1. Assuming that DB = (KP ,KV , V, P,B) is DF secure (Defini-
tion 7), DH-secure (Definition 8) and MiM-secure (Definition 6), the encryption
scheme is IND-CCA secure and the signature scheme used by cards is secure
against the existential forgery under no message attacks (EF-0MA), ClessPay is
secure against malicious cards (Definition 3).

Proof. We define a sequence of games Γi where we denote pi as a success proba-
bility of winning Γi. We assume that we have honest cards {C1, C2, . . . , Ck} and
their public keys are in a set {pkCi

}.
Γ0 : The instances of the issuer, terminals and cards play the game in Def-

inition 3. There is a distinguished terminal instance T which privately outputs
POutT = (pk′′

C , idT , τT ) and in which the V protocol outputs POutV = pk′
P ,

and a distinguished issuer I which communicates with T and privately outputs
POutI = (pk′

C , idI , τI). In Γ0, the adversary cannot win with the first condi-
tion in Definition 3 because I always cancels the transaction if (pk′

C , .) /∈ DataB.
Γ1 : It is the same game as Γ0 except that (pk′

C , idI , τI) is always equal
(pk′′

C , idT , τT ). Because of our secure and authenticated channel assumption
between T and I and because of the honesty of T , they have the same public-key,
identifier and the transaction. Besides, T outputs 1, if I outputs 1. So, p1 = p0.
In Γ1, the adversary cannot win with the fourth condition in Definition 3.

Γ2 : It is the same game as in Γ1 except that instances of honest cards do not
sign and they encrypt a random message. Basically, each stores the ciphertext
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together with the identifier, transaction and static/ephemeral public keys to a
table. I does not decrypt such random ciphertexts and retrieves their data from
the table. More specifically, we simulate them as follows:

C (skC , pkC , pkI )
... (unchanged until sign)
pick R
EC = EncpkIe

(R)

store (EC , id, τ, pkC , pkP ) in TableE
send EC

POutC = (id, τ)

I(skI , pkI , DataB)
... (unchanged until the reception of EC)
if (EC , id, τ, pkC , .) ∈ TableE:

retrieve pk s.t. (EC , id, τ, pkC , pk)∈ TableE
if pk �= pkP : cancel
OutI = 1,POutI = (pkC , id, τ)

else: the same as after receiving EC

We can easily show Γ1 and Γ2 are indistinguishable by using the IND-CCA
security of the encryption scheme. So, |p2 − p1| is negligible. Remark that the
random coins of the honest cards are not used in Γ2.

Γ3 : It is the same game as Γ2 except that OutV = 0 after the execution of
V (skV , pkV ) if one of the situations happens:

1. no party is close to T ,
2. pk′

P is generated by no honest card and there is no adversary close to T ,
3. pk′

P is generated by an honest card but it has no instance close to T .

Γ3 and Γ2 are indistinguishable because the probability that OutV = 1
if one of the situations above happens is negligible. OutV = 1 when the 1st

situation happens with negligible probability due to the DF-security of DB.
OutV = 1 when the 2nd situation happens with negligible probability due to the
DH-security of DB. OutV = 1 when the 3rd situation happens with negligible
probability due to the MiM-security of DB. Note that we can simulate an honest
card instance in Γ3 by using a prover instance in the MiM-game because r is not
used by honest card instances. Therefore, |p3 − p2| is negligible.

Γ4 : It is the same game as in Γ3 except that I cancels after decrypting and
obtaining the random coins r where KP (1n; r) → (skP , pkP ) and (skP , pkP ) is
generated by an honest card instance.

I(skI , pkI , DataB)

... (unchanged until the reception of EC)
if (EC , id, τ, pkC , .) ∈ TableE: retrieve pk s.t. (EC , id, τ, pkC , pk)∈ TableE

if pk �= pkP : cancel
OutI = 1,POutI = (pkC , idT , τT )

else: SC , r = DecskI (EC), KP (1n; r) → (sk, pk)

if (sk, pk) is generated by an honest instance: cancel
else if ¬Verify(SC , id, τ, r) ∨ pkP �= pk: cancel
OutI = 1,POutI = (pkC , id, τ)

We can easily prove that if there exists an adversary with pkC in Γ3 which
obtains a randomness r generating the secret/public key pair used by an hon-
est instance, then we can construct another adversary which breaks the MiM-
security of DB. Clearly, during the simulation of Γ3, if I gets r, then it generates
the corresponding secret key of the prover in MiM-game and breaks the MiM-
security. Since receiving such r in Γ4 is negligible, |p4 − p3| is negligible.

Now, we show that the adversary cannot win with the third condition in
Γ4. If the adversary wins with this in Γ4, it means that pk′

C /∈ {pkCi
} and no

instance of the adversary is close to T during the execution of the CP protocol
with T and I. Due to the condition 2 in the reduction of Γ3, pkP must be
generated by an honest card (otherwise, T cancels). However, in Γ4, it is not
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possible to have OutI = 1 while pkC /∈ {pkCi
} and pkP is generated by an honest

card instance (check the dashed underlined parts in the simulation of I). So, it
is not possible that OutI = 1, if the game is in the third condition.

Since only condition 2 and 5 of Definition 3 remain to win in Γ3, we can
assume that pkC ∈ {pkCi

}.
Γ5 : It is the same game as Γ4 except we simulate Verify algorithm with

Verify′ such that it only accepts the signature of malicious cards. It does not
accept the signatures of honest cards’ instances.

The only difference in Verify and Verify′ is in the case of pkC ∈ {pkCi
}. In this

case, while Verify returns the output of the verification of the signature, Verify′

returns 0. In Γ5 and Γ4, no honest cards’ instances generate a signature. So, the
only difference between Γ4 and Γ5 happens when I obtains a forged signature
of an honest card instance.

Thanks to EF-0MA security of the signature, we can easily show that forging
a signature of any honest cards happens with a negligible probability to prove
that Γ5 and Γ4 are indistinguishable.

Remark that in Γ5, I have OutI = 1, if and only if (EC , idT , τT , pk′
C , pk′

P ) is
in TableE. So, we can assume that (EC , idT , τT , pk′

C , pk′
P ) ∈ TableE.

If the adversary wins with the condition 2 in Γ5, then pk′
C ∈ {pkCi

} and the
distance between any C holding pk′

C and T is more than B during the execution
of the protocol with idT . Due to condition 3 in Γ3, pk′

P must not been generated
by C. So, (EC , idT , τT , pk′

C , pk′
P , .) cannot be in TableE which contradicts with

our assumption. Hence, the adversary cannot win with the second condition.
If the adversary wins with the fifth condition, then it means that pk′

C ∈
{pkCi

} and there exists no card with pk′
C which privately outputs idI , τI . Then,

it means that (EC , idT , τT , pk′
C , pk′

P , .) /∈ TableE since no honest card instance
has (idT , τT ). This contradicts with our assumption. Therefore, the adversary
cannot win with the fifth condition. Remark that in Γ5, the adversary cannot
win the game So, p5 is negligible meaning that p0 is negligible. ��

Theorem 2. Assuming that the signature schemes used are existential forgery
chosen message attack (EF-CMA) secure then ClessPay is almost-secure
against malicious terminal (Definition 4).

Proof. We recall that in almost-security, we do not need to consider condition
1c of Definition 4 .

Γ0 : The instances of the issuer, terminals and cards play the game in Defi-
nition 4. We have a distinguished issuer instance I which outputs (pk′

C , idI , τI).
Remark that in Γ0, the adversary cannot win with condition 1a ((pk′

C , .) /∈
DataB) because I rejects the cards which are not in DataB.

Γ1 : It is the same game as Γ2 except that no id selected by an honest card
instance repeats. Clearly, |p1 − p0| is negligible.

Γ2 : It is the same game as Γ1 except that we simulate I and its instances
while generating the signature and honest cards’ instances in the verification of
this signature as follows:
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I(skI , pkI , DataB)
SI = signskIs

(id, τ, pkC)

store (SI , id, τ, pkC) in Table1
send SI

Verify′
pkIs

(S, id, τ , pkC )

if (S, id, τ, pkC) in Table1
return 1

else: return 0

|p2 − p1| is negligible.
The output of issuer instance is the same as issuer instances in Γ1. Therefore,

we have a perfect simulation for it. The only difference happens when honest
cards’ instances in Γ1 receive a valid signature verified by pkIs and not in Table 1.
In this case, honest cards in Γ1 verify the signature but they do not in Γ2.
Otherwise, the simulations of them are perfect. We can easily show that the
probability of generating a valid signature which is not in the Table 1 is negligible
in Γ2 thanks to EF-CMA security of the signature scheme. We can use the public
key received from the signing game as a public key of the issuer and simulate
signatures of issuer instances by using the signing game. Note that skIs is not
used in the simulation but the signature generation, so we can simulate the rest
of the protocol perfectly. Therefore, |p2 − p1| is negligible.

The adversary cannot win the game with condition 2 in Definition 4.
Assume that the adversary wins with this. It implies that (., idC , τC , pkC) /∈
Table 1 since idC is unique. So, no honest card instance outputs (idC , τC) in this
case.

Γ3 : It is the same game as Γ2 except we simulate honest cards’ instances
while generating the signature and I in the verification of it as follows:

C (skC , pkC , DataB)
SC = signskC

(id, τ, r)

store (SC , pkC , id, τ, r) in Table2
EC = EncpkIe

(SC , r)

send EC

Verify′′
pkC

(S, idI , τI , pkC , r)

if (S, pkC , id, τ, r) in Table2
return 1

else: return 0

The only difference is the output of Verify′′ and Verify when a forged signature
received. To show the indistinguishability of Γ2 and Γ3, we can EF-CMA security
of the signature scheme. So, |p3 − p2| is negligible.

Remark that in this game, the adversary cannot win with the condition 1b.
If I outputs (pk′

C , idI , τI), it means that an honest card instance with pk′
C added

(S, pk′
C , idI , τI , .) in Table2 and outputted (idI , τI). Hence, in Γ3, the adversary

cannot win. So, p0 is negligible. ��

We recommend using Eff-pkDB [20] as a public-key DB in ClessPay since it
is shown that it is the most efficient public-key DB protocol having the necessary
security requirements for ClessPay. It requires one exponentiation and hashing.

The assumption on the signature scheme used by cards differ in Theorem 1
(EF-0MA) and Theorem2 (EF-CMA). Hence, it looks like to have security
against both terminals and cards we need DF, DH, MiM-secure DB protocol,
IND-CCA secure encryption scheme, and EF-CMA secure signature schemes.
However, we could have the almost security against malicious terminal if we
have the following assumptions in Theorem2: the encryption scheme is IND-
CCA secure and the signature scheme used by cards is EF-0MA secure. In this
case, the proof of Theorem 2 would need the same games Γ2 and Γ5 in the
proof of Theorem1 instead of Γ3 in the proof of Theorem 2. So, actually, to have
full security in ClessPay, we need DF, DH, MiM-secure DB protocol, IND-CCA
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secure encryption scheme, EF-CMA secure signature for issuers, and EF-0MA
secure signature for cards.

4 EMV Analysis

EMV key setting is different than our contactless payment key setting because it
has a symmetric key shared between the card and its issuer as well as asymmetric
keys. An issuer I has secret/public key pair SI/PI . It also has a master symmetric
key MKAC . A card C shares MKAC with its issuer I. It has public/secret key
pair PIC and SIC . PIC is signed by I’s private key SI . C stores certified PI .
We assume that the terminal T knows the public key of the certificate authority
(CA) to verify PI and so PIC . We also assume that the channel between I and
T is authenticated.

For the sake of simplicity, in our description, we assume that C knows all
terminal related information and the authentication method. T also knows the
card related information.

EMV contactless session consists of four phases without card holder (user)
verification method:

Contact Establishment with NFC Card: T detects C.

Transaction Initialization: T sends the transaction τ to C. Then, C responds
with its public key PIC and card information such as PAN and expiration date
(ED). If T verifies PIC , it continues.

Relay Resistance Protocol [3]: This protocol is executed if C and T support
it. Here, we assume that they support this feature. T picks a random number
R1 and sends this to C. C responses with another random number R2. It also
sends timing estimates (timings): Min and Max Time For Processing, Device
Estimated Transmission Time. Then, T checks if the total time passed after
sending R1 exceeds the limit (let’s call it B). If the total time does not exceed
B, then the next phase begins. Otherwise, the transaction is canceled.

Data Authentication: There are three type of authentication methods in EMV:
Static Data Authentication (SDA), Dynamic Data Authentication (DDA) and
Combined Data Authentication (CDA). Because of some weaknesses in SDA and
DDA (replay attacks and wedge attacks), we consider CDA which is combined
with the next phase.

Transaction: T sends a random number UNT to request a cryptogram genera-
tion from C. In EMV, three type of cryptograms exist: Transaction Certificate
(TC), Authorization Request Cryptogram (ARQC), Application Authentication
Cryptogram (AAC). Here, we consider the online verification where T requests
ARQC. TC is used for the offline verification by the issuer and AAC is used to
cancel the transaction.
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Online Verification: C increases its counter ATC and generates a secret key
SKAC by using ATC and MKAC . Then, it generates the cryptogram ARQC: a
MAC of UNT , ATC, τ with using SKAC . C sends the cryptogram AC to T and
T relays it to I with the card information. I verifies ARQC and possibly validate
the information of C. If ARQC passes verification and card is validated for the
transaction, then ARC = 1 and I generates a MAC of ARQC and ARC with
the secret key SKAC . This MAC is called as ARPC. I sends ARPC with the
message to T and T relays it to C if ARC = 1. Otherwise, it cancels. C verifies
ARPC. If the verification and ARC is 1 then C generates the second cryptogram
TC. TC is a MAC of CDOL2’s objects with SKAC (See [4], Table 26)

to show transaction is complete. Also, it picks a random number UNC and
signs UNC , UNT , ATC, TC, timings,R1, R2 with SIC . C At the end, C sends
the signature and TC to T .

Terminal checks if the signature and the data signed are valid. Later, the
terminal contacts with the issuer to receive the reimbursement and gives TC as
a proof of transaction completion by the card. In this case, the issuer verifies
TC to execute the reimbursement.

EMV in Our Model: The EMV protocol can have the following maps to have the
same structure as in Definition 1: (skC , pkC) = ((MKAC , SIC), PIC), (skI , pkI) =
((MKAC , SI), PI), id = ATC, Policy(pkC , CI, id, τ) = ARC, OutT = approval/
decline, OutI = Verify(TC,UNT , ATC, τ), POutI = (PIC , ATC, τ), POutT =
(PIC , ATC, τ) and POutC = (ATC, τ).

Security Against Malicious Terminal in EMV: Clearly, the EMV protocol
is not secure according to Definition 4 since the malicious terminal can approve
relay resistance protocol without considering the distance of C. However, it is
almost-secure against malicious terminals. We prove this as follows:

Theorem 3. Assuming that MAC is EF-CMA secure and Gen is a pseudo-
random permutation, then EMV protocol is almost-secure against malicious ter-
minals (Definition 4).

Proof. Γ0 : The instances of the issuer, terminals and cards play the game in Defi-
nition 4. We have a distinguished issuer instance I which outputs (PIC , ATC, τI).
In Γ0, there exists at most one card instance with PIC seeing ATC as ATC is a
counter and incremented by each new instance. Let’s call this instance as C.

Γ1 : It is the same game as Γ0 except that the honest card instances picks
a random SK ′

AC instead of generating it with Gen(MK ′, ATC) and stores the
random SK ′

AC in Table 1 as (MK ′, ATC ′, SK ′
AC). If an issuer instance receives

card information belongs to an honest card then it retrieves SK ′
AC from Table 1.

Since Gen is pseudo-random permutation, |p1 − p0| is negligible.
Γ2 : It is the same game as Γ1 except that we simulate MAC generation of

honest cards and verification of MACs of honest cards’ instances by the issuer
as follows:
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I(P ′
I C , S ′

I C , P ′
I , M K ′

A C )

ATC′ = ATC′ + 1
pick SK′

AC
store (MK′

AC , ATC′, SK′
AC)

ARQC = MACSK′
AC

(UNT , ATC′, τ)

store (SK′
AC , UN ′

T , ATC′, τ ′, ARQC) in TableARQC

rest is the same until TC/AAC generation
if ARC = 1 and Verify(ARPC′, SK′

AC):
TC = MACSK′

AC
(UNT , ATC′, τ)

store (SK′
AC , UN ′

T , ATC′, τ ′, TC) in TableTC

else:
AAC = MACSK′

AC
(UNT , ATC′, τ)

store (SK′
AC , UN ′

T , ATC′, τ ′, AAC) in TableAAC

Verify′(AC, SKA C )

if (SKAC , UNT , ATC, τ, AC) ∈
TableAC

return 1
else: return 0

Γ2 is indistinguishable from Γ1 because of the security of MAC. The similar
reduction in the proof of Theorem1 from Γ4 to Γ5 can be used to prove the
indistinguishably. So, |p2 − p1| is negligible.

Γ3 : It is the same game with Γ2 except that I generates ARPC and then
stores it to TableARPC (similar storing as in Γ2). Then, the honest cards verify
ARPC by checking if it is in the TableARPC . Γ3 is indistinguishable from Γ2

because of the security of MAC. So, |p3 − p2| is negligible.
Clearly, in Γ3, the adversary cannot win with the condition 1b because I

privately outputs (PIC , ATC, τ) if and only if the card with PIC outputs ATC, τ .
In addition, it cannot win with the condition 2 because if ARC �= 1, then no

honest card outputs ATC, τ and if an honest card receives a valid ARPC having
ARC = 1, then it means that ARPC is in TableARPC . So, I has (PIC , ATC, τ).
Since the adversary cannot win in Γ3, p0 is negligible. ��

However, there exists another problem in EMV related to ATC which is not
considered in our model. It can be explained as follows: ATC is 16-bit number
and incremented at the beginning of each session. If ATC reaches the limit which
65535, then the card is not valid anymore because EMV specification does not let
rotating the counter due to the security reasons. According to EMV specification
[4] if cards are used normally, it will approach the limit (65,535) transaction limit
not so fast (60 per day every day for a 3-year card). However, an attacker who
does not aim to make a payment but aims to invalidate the card can trigger the
card at most 65,535 times. Then, the card cannot be used anymore.

Security Against Malicious Card in EMV: Unfortunately, EMV is not
secure against malicious cards. In the followings, we show that an adversary can
win with the second, third and fourth condition in Definition 3.

Fake Transaction Attack: This attack comes from the fact that T cannot val-
idate TC in the signature SDAD because it does not have SKAC . Therefore,
a malicious card can generate an invalid TC ′ in the last cryptogram generation
process and use this cryptogram while generating this signature. Then, the ter-
minal will approve the payment because the signature is correct. However, TC ′

is not valid. So, when T contacts with I, I cannot validate TC ′. In this case, the
malicious card succeeds to break the security of EMV with breaking the fourth
condition of Definition 3 because I cancels while T does not.
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Distance Fraud Attack: A malicious card can initiate a payment process with
T , while it is not close T . In this case, it can send R2 before seeing R1 in order
to reply early enough. In this case, T thinks that the card is close. Here, the
malicious card succeeds to break the security of EMV with breaking the third
condition of Definition 3. This type of attack is dangerous for an EMV payment
because the malicious card can claim later that it does not do the payment by
showing that it was in somewhere else.

MiM Attack: The relay resistance protocol in EMV constructed to prevent relay
attacks by a MiM-adversary. In this attack scenario, a MiM-adversary relays
the messages between the card and the terminal to do the payment without the
card’s consent. The relay resistance protocol aims to prevent it by checking the
distance of the card. The assumption on its security based on the fact that the
adversary cannot relay the messages faster than the speed of light. Therefore,
the adversary cannot succeed to pass the relay resistance protocol because it
cannot guess R2 before R2 is picked by the card. However, it has been shown
that with guessing attacks [15] the security against relay attacks is breakable for
the protocols with single challenge/response bit strings exchanges. In addition,
Chothia et al. [14] have already explained this vulnerability.

5 Conclusion

In this paper, we concentrated on formalism of CP system. In this direction,
we formally define contactless payment by defining the inputs and outputs of
the algorithms of issuers, terminals and cards. Based on this definition, we gave
two security definitions against malicious cards and malicious terminals. We also
considered relay attacks which are very common attacks in CP.

We also designed a contactless-payment protocol ClessPay in our model.
In this protocol, the terminal determines the distance of the card by using a
secure public-key distance bounding protocol to prevent the relay attack and
then the rest of the protocol continues with the authentication of the card and the
issuer. We proved the security of ClessPay against malicious cards and malicious
terminals formally.

Finally, we analyzed current EMV-contactless protocol [5] in our model. We
realized that it is not secure against malicious cards because MiM-attack and
DF-attack which are based on relay attacks. In addition to this, we formally
proved that EMV-contactless protocol is secure against malicious terminals. Our
analysis is the first formal cryptographic analysis of EMV-contactless protocol.

If we compare ClessPay and EMVCo in regard to cryptographic computa-
tions executed by the cards, we see that EMVCo is slightly more efficient since
public-key operations are less in EMVCo. A card in EMVCo has to compute two
MAC, verify one MAC and generate one signature. While a card in ClessPay has
to compute one public-key encryption, generate one signature and verify one sig-
nature. However, to have the highest level of the security, it is the price to pay
and with a dedicated hardware on smart cards, this price is not so high. As a
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future work, assuming that changing completely EMV specification is very hard,
we can recommend some adaptations on EMVCo to have full security without
not so much change in the basic structure of the protocol.
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Abstract. Anonymous Distance-Bounding (DB) protocols allow a
prover to convince a verifier that they are within a distance bound from
the verifier, without revealing their identity. This is an attractive prop-
erty that enables the prover to enjoy proximity based services while pre-
serving their privacy. Combination of anonymity and distance-bounding
however introduces new security challenges. We show two new realistic
attacks, using directional antenna and the collusion of multiple users,
that breaks all existing anonymous DB protocols, and propose a new
security model that captures these new attacks. We construct a protocol
with provable security in this new model and discuss directions for future
research.

1 Introduction

Distance upper bounding (DB) protocols were first proposed in [16] to provide
security against Man-in- the-Middle (MiM) attack in authentication protocols,
and later found wide applications in location and proximity based services [9,13,
17,22]. Early DB protocols use a symmetric key shared by the prover and the
verifier, and so the prover’s identity is always known to the verifier.

To alleviate the prover’s identifiability by the verifier, public key DB and
anonymous public key DB protocols have been proposed [4,25]. The focus of
this paper is on anonymous DB protocols. In these protocols there are three
types of participants: provers that represent the registered users of the system
and have registered secret keys, an honest verifier who knows the public keys of
the provers, and actors who are unregistered participants of the system, but try
to be accepted by the verifier, or help a dishonest prover to get accepted. A secure
DB protocol estimates the distance between the prover and the verifier using a
fast challenge-response phase, during which the round trip time of a sequence
of challenges and their corresponding responses is measured to estimate the dis-
tance of the prover to the verifier. The prover’s claim is accepted if the estimated
distance is below a distance bound D. The prover must immediately respond to a
received challenge, otherwise their distance estimation will be enlarged. To allow
timely response, the prover pre-computes a challenge-response table using their
secret key and nonces that are exchanged during the initialization phase of the
protocol. This reduces the response calculation to a simple table lookup. Par-
ticipants closer than D to the verifier are called close-by participants, and those
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 598–616, 2018.
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who are farther than D, are called as far-away participants. Widely considered
attacks against public key DB protocols are;

(A1) Distance-Fraud [10]; where a dishonest far-away prover tries to be accepted
in the protocol.

(A2) Mafia-Fraud (MF) [16]; a close-by actor tries to use the communications
of a far-away honest prover to succeed in the protocol. A special case of this
attack where the far-away prover is not active, is impersonation attack [5].

(A3) Terrorist-Fraud (TF) [16]; a dishonest far-away prover colludes with a close-
by actor, in order to succeed in the protocol. In original TF-resistance defini-
tion, it is assumed that the prover does not leak their secret key to the actor.
In recent TF-resistance [24] however, the key leakage is allowed, but success
of the TF attack requires negligible improvement in future impersonation
attacks by the actor.

Anonymous DB protocols prove that the distance of a registered user is less
than the prescribed bound without revealing the prover’s identity. Security of
anonymous DB protocols has been formalized [4,6,11] against DF, MF and TF.
These models have subtle differences in defining TF attack which is the strongest
attack against DB protocols. In all these models, that we call single-user model,
an attack involves at most a single corrupted registered user (MF attack involves
outsiders only), possibly helped by an actor (non-registered user).

Our Contributions: We introduce two new attacks, propose a model that
captures these attacks and construct a protocol with provable security in this
model.

Attacks. In the first attack a malicious prover uses a directional antenna with
a narrow beam to aim messages towards the verifier. In Sect. 3.1 we show that
using directional antennas by malicious provers can break all existing anonymous
DB protocols. The use of directional antennas in consumer devices has grown
tremendously in recent years [1] and so the attack poses a realistic threat to
these systems.

The second attack considers collusion of multiple registered users. These
attacks are not applicable to protocols in which users secret keys are independent
of each other and a protocol transcript can be linked to the corresponding user’s
secret key. In such settings combining protocol transcripts of multiple users would
not be helpful to the attackers. In anonymous DB protocols however, users’
private keys are generated using a master key and depending on the protocol
design, combining protocol transcripts of multiple users help in generating a new
valid transcript and so a successful attack. In Sect. 3.2 we show that collusion
TF attack can be used to subvert traceability function of an anonymous DB
protocol. Traceability is an integral part of anonymous DB protocols that ensures
user accountability by allowing to “open” a transcript and identify the user, if
required. In this attack, a close-by user can interact with the verifier to get
accepted, while using credentials of a far-away user, and so during the opening
phase a far-away user (who can reject the opening results) be identified.
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Model. We propose a formal model that captures the above two new classes
of attacks. Our formalization uses a cryptographic approach and models an
anonymous DB protocol as a cryptographic identification protocol [15] where
the prover, in addition to proving their cryptographic credentials, prove that
they are within a distance bound from the verifier. We formalize anonymity in
terms of the prover’s indistinguishability from protocol transcript.

Construction. We construct an anonymous DB protocol and prove its security in
our proposed model. This scheme is a modular construction that adds anonymity
and security in the new model to a public-key DB protocol with provable secu-
rity in the single-user DBID model (See Sect. 5), by using an anonymous group
identification with revocable anonymity. The public key DB protocol in our
construction is ProProx [25], whose security in the single-user DBID model was
proven in [2]. The group identification uses Goldwasser-Micali cryptosystem [19]
to hide the user’s identity information

Paper Organization. Section 2 presents preliminaries. Section 3.1 proposes a
new directional TF attack that breaks all existing anonymous DB protocols.
Section 3.2 proposes collusion DB attacks that extend traditional DB attacks to
include multiple users. Section 4 presents our model, Sect. 5 gives the construc-
tion and Sect. 6 concludes the paper.

2 Preliminaries

In this section we introduce the primitives that are used in our model and con-
structions.

A Σ-protocol is a 3-message cryptographic protocol between a prover P and
a verifier V , that allows P to prove validity of a statement to V . The two parties
have a common input y, and P has a private input x for which the relation
R(x, y) holds. Σ-protocol is used in many important cryptographic systems
[14,18,20,21,23].

Definition 1 (Σ-protocol). Prover P and verifier V execute three algorithms
(Commit, Response, Check) using inputs (x, y) and (y), respectively. x is private
and y is public.

Let C, H and R denote three sets: C is the set of possible inputs that is chosen
by the prover; H is the set of possible challenges chosen by the verifier; and R

is the set of possible responses of the prover. The steps of the protocol are as
follows:

1. P randomly chooses a ∈ C and computes the commitment A = Commit(a). P
sends A to V .

2. Challenge/Response is a pair of messages:
(a) V randomly chooses a challenge c ∈ H and sends it to P ,
(b) P computes r = Response(x, a, c) ∈ R, and sends it to V ,

3. V calculates ret = Check(y, c, r, A), where ret ∈ {accept, reject}.
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At the end of the protocol, V outputs OutV = 1 if ret = accept, and OutV = 0
if ret = reject.

Here we define a more general form of Σ-protocols, called Σ∗-protocols, in
which the verifier consecutively sends multiple challenges, each after (except for
the first challenge) receiving the response to the previous challenges.

Definition 2 (Σ∗-protocol). A prover P and verifier V run the following
Let C, H and R denote three sets defined as follows. C is the set of possible

input that is chosen by the prover; H is the set of possible challenges chosen by
the verifier; and R is the set of possible responses of the prover. The steps of the
protocol are as follows:

1. P randomly chooses a ∈ C, computes the commitment A = Commit(a), and
sends A to V .

2. Challenge and Response messages that are defined as follows:
(a) V randomly chooses a challenge c ∈ H and sends it to P ,
(b) P computes r = Response(x, a, c, ¬c) ∈ R, where ¬c is the list of previous

challenges before c, and sends it to V ,
Steps 2(a) and 2(b) may be repeated a number of times.

3. V calculates ret = Check(y, [c], [r], A), where ret ∈ {accept, reject} and [c]
and [r] are lists of all challenges and responses, respectively.

At the end of the protocol, V outputs OutV = 1 if ret = accept, and OutV = 0
otherwise.

In a cryptographic identification scheme (ID), a prover P convinces a verifier
V that they know a witness x related to a public value y. A witness satisfies a
relation R(x, y) with the public value y.

The scheme is specified by the tuple ID = (KeyGen,Π). The key generation
algorithm (x, y) ← KetGen(1λ) is a PPT (probabilistic polynomial time) algo-
rithm that takes the security parameter λ and generates a key pair (x, y). Π is an
interactive protocol between the prover and the verifier, each an interactive PPT
algorithm. The prover P (x, y) and the verifier V (y) take the values (x, y) and y
respectively, as input. At the end of the protocol, the verifier returns accept or
reject. The protocol Π = (Commit, Response, Check) consists of two PPT algo-
rithms Commit and Response, and a function Check, as defined in Definition 1.

An ID scheme is correct if the Check function outputs accept if R(x, y) holds,
and reject otherwise. An ID scheme is secure if an adversary with access to
a set of valid transcripts T = {(A, [c], [r])}, cannot generate a valid transcript
(A′, [c′], [r′]) for a c′ that has not appeared in T. Note that a transcript (A, [c], [r])
is valid according to public-key y, if the function Check(y, [c], [r], A) returns
accept.

2.1 DBID

DBID model [2] is a security model for public-key DB protocols, that is based on
cryptographic identification schemes.
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Definition 3 (DBID). Let λ ∈ N denote the security parameter. A distance-
bounding identification (DBID) is a tuple (X, Y, S, P,D, pnoise, Init, KeyGen,Π,
Revoke), where;

(I) X and Y are sets of possible master and public keys of the system, chosen
based on the security parameter λ. The system’s master key msk ∈ X, and
the public key gpk ∈ Y are generated using (msk, gpk) ← Init(1λ) algorithm;

(II) S and P are sets of possible (private, public) key pairs of users, with their
sizes chosen according to the security parameter λ. A (private, public) key
pair is generated using (sk, pk) ← KeyGen(1λ,msk, gpk) algorithm;

(III) Π is a Σ∗-protocol (Definition 2) between a prover P (sk, pk) and the verifier
V (pk), that convinces the verifier that the prover is located within the distance
bound D ∈ R of the verifier.

(IV) The transmitted bits of a fast challenge and response round in Π protocol
are affected by noise, where pnoise ∈ [0, 1] is the probability of a bit flip on
each fast challenge-response message.

(V) Revoke(msk, gpk, i) is an algorithm that removes the corresponding user ui

from the system and updates the group public key accordingly.

At the end of the protocol Π, V outputs OutV = 1 if they accept, or 0 if they
reject.

In this model, the initialization (Init) and key generation (KeyGen) are run by
a trusted party. The distance bounding protocol of a DBID scheme is denoted
by DBID.Π, and in each run involves a single active user that is represented by
multiple provers, sharing the same secret key. For honest users, only a single
prover is active in a protocol run. For corrupted users, no restriction on the
number of active provers exists.

In our construction we consider DBID schemes for which public and pri-
vate keys of the users are generated using Goldwasser-Micali (probabilistic) [19]
encryption system. We refer to DBID schemes with this property as DBIDGM. An
example of DBIDGM scheme is ProProx [25].

Security properties of DBID schemes are:

– Completeness: in the absence of an adversary, the verifier accepts an exe-
cution of Π with high probability when the prover is within the distance
bound.

– Soundness: the success chance of a close-by adversary who is trying to take
advantage of sessions of a far-away honest prover or a close-by inactive prover,
is negligible.

– DF resistance: the verifier rejects an execution of Π with high probability
if there is no close-by prover.

– TF resistance: if a dishonest far-away prover and a close-by helper succeeds
in an execution of Π, then the helper can impersonate the prover in future Π
executions with high probability.

We omit the formal definition of these properties (that have appeared in [2])
and present them in an expanded form in the formalization of anonymous DB
in Sect. 4.
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3 New Attacks on Anonymous DB Protocols

Here two new classes of attacks on anonymous DB protocols are presented.

3.1 Directional TF Attack on Anonymous DB

DB protocols consist of two slow phases, one during protocol initialization and
one during the final verification, and a fast challenge-response phase that is
used for time (and so distance) measurement. By using a directional antenna, a
malicious prover can target the messages such that the initialization messages are
only received by the verifier and not the helper. This strategy allows the prover
to send the whole challenge and response table of a protocol run to the helper,
and so take advantage of the helper’s location, without leaking their complete
long term key. Thus the prover can succeed in TF attack. Note that the prover
is not leaking its identity to the helper. Figure 1 shows a directional TF, where
the helper H does not receive the initialization phase messages that are sent by
a malicious prover P ∗ to V because of the use of a directional antenna (orange
ribbon in Fig. 1). Before starting of the fast-phase, P ∗ sends the fast challenge-
response table to H, and make H in-charge of responding to the fast-phase
challenges.

V
D

(3)
fast

pha
se

V
D

st p
has

e
(1) slow phase

H

P∗

(2) fast resp.

Fig. 1. Directional TF (Color figure online)

Now we show a specific directional TF attack against SPADE [11] in this
section, and propose similar attacks against PDB [4] and TREAD [6] in the full
version paper [3]. SPADE [11] is an anonymous DB system that use a group sig-
nature GSignskp

() to register users in an authorized group. A registered user can
use their credentials to participate in the protocol without leaking their iden-
tity, hence ensuring anonymity. Figure 2 presents a summary of the Π distance
bounding protocol of SPADE scheme.

Attack. P sends to V the slow phase message e to V using directional antenna.
Before starting the fast phase, P sends the fast challenge-response table, ∀i ∈
{1, ...,λ} : (ai, ai⊕NPi⊕mi), to H in order to make it capable of responding V ’s
challenges correctly. The collusion of P and H makes V to accept (i.e., OutV = 1)
and this is without P sending to H any information that is dependent on the



604 A. Ahmadi et al.

secret key of P (i.e., skP). The secret key of P is required for generation of
correct message e, which will not be known by H.

[3, Lemma 2] shows that the fast challenge-response table does not leak
any information about the prover’s long-term secret skP. (Intuitively this is
because the table is generated using random values that are independent of
skP.) Since the long term key is not leaked, the helper’s success chance in a
future impersonation attack will not improve, which is required for a successful
TF attack (See Property 4).

Fig. 2. Π protocol of SPADE scheme. (GSignsk, GV erifypk) is a group signature scheme.
(Encpk, Decsk) is a secure public-key encryption scheme. PRF : Z

λ
2 × Z

λ
2 → Z

λ
2 is a

pseudo-random function. λ is the security parameter. NP and (NV,m) are nonce values
of prover and verifier, (ci, ri) is a pair of challenge and response.

In all existing anonymous DB protocols, the fast challenge-response table
does not determine the prover’s credential with overwhelming probability. Direc-
tional TF attack allows the prover to limit the view of helper to the fast challenge-
response table and so TF succeeds because the leaked information to the helper,
does not allow the helper to succeed in a future attack individually, as required
by the definition of TF attacks (see Property 4).
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3.2 Collusion TF on Anonymous DB

In the following, it will be shown that in anonymous DB protocols collusion
of multiple registered users must be considered also. In traditional DB protocol
attacks, only the collusion of a single registered user and an actor (non-registered
user) is considered. There is no need to consider collusion of multiple users in
traditional DB as their secret keys are assumed to be independent and protocol
transcript are linkable to a user.

We consider two types of collusion TF shown in Fig. 3a and b. In collusion
TF type 1 attack, both colluding users are outside the bound and use a helper
that is inside the bound. In collusion TF type 2, the helper can be a prover
of a user, that tries to help the far-away provers of another user. Note that in
type 2 attack there is a close-by prover P∗

2 who can succeed in the protocol by
themselves. However by colluding with P∗

1, can succeed without being traced!
(This attack also works in public-key DB protocols such as [12], where users
choose their own private-keys, and so can collude and choose related keys that
leads to the success of the above attack.)

H

VP∗
1(x1)

P∗
2(x2)

D

(a) Collusion TF Type 1

P∗
2(x2)

VP∗
1(x1) D

(b) Collusion TF Type 2

Fig. 3. Collusion TF attacks

Both collusions can be used to increase the success chance of the attacker.
Here we show how Collusion TF Type 2 (Fig. 3b) can break a protocol that
is secure against TF in a single-user security model. As noted in Sect. 3.1, all
existing anonymous DB protocols are vulnerable to single-user TF attack (direc-
tional TF) and so to show that protection against single-user TF attack does
not imply security against collusion TF attack, we first modify SPADE protocol
to make it (intuitively) secure against single-user TF attacks (given in Sect. 3.1),
and then describe how a multi-user collusion TF attack succeeds against the
modified protocol.

SPADE∗ (modified SPADE). We modify the challenge-response table of SPADE

protocol to the following: ri =

{
ai if ci = 0
ai ⊕ xi if ci = 1

, where x is part of the prover

secret-key that is chosen independent of skP, and |x| = λ. The verification phase
will also be revised to accommodate this change and allow the verifier can check
if the correct parameters are used in the challenge-response table.

The challenge-response table of SPADE∗ contains the secret-key of the prover,
which makes the protocol intuitively secure against single-user TF attacks (let’s
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assume that). Here if the whole table is leaked to the helper, the helper can learn
the secret key of the (malicious) prover by XORing the two response bits of each
challenge. Now we propose a collusion TF Type 2 (Fig. 3b) against SPADE∗;

Collusion TF Type 2 Attack : First, P∗
1(x1) runs the “Initialization” phase of

SPADE∗ with the verifier from outside the distance bound, and sends a to P∗
2(x2).

Then P∗
2(x2) runs the challenge-response and verification phase with the verifier

from inside the distance bound with its own credentials (x2).
The intuition for the attack is that the challenge-response table is not linked

to the long-term secret key of the user (group signature key). The verifier sees
σ which is the group signature of the far-away prover P∗

1, but runs the distance
bounding phase using a key that is not related to group signature key. Thus the
tracing authority will link the session to x1, which is a violation of TF-resistance
(Property 4).

4 Anonymous DB Model

Firstly the settings of the system are defined, i.e., entities and how they commu-
nicate, protocol and view of an entity, adversary and their capability. Then we
provide a definition of anonymous distance-bounding (AnonDB) and also describe
AnonDB experiment, which captures an AnonDB scheme in execution. Finally, we
formalize six security properties (Completeness, MiM-resistance, DF-resistance,
Soundness, Traceability, Anonymity) of anonymous distance-bounding systems
based on a game (AnonDB game), which is an AnonDB experiment played between
a challenger and an adversary.

Entities. There are m users in the system U = {u1, . . . , um}. Each user in the
system can have multiple provers, which captures the practical scenario of a
single person having multiple devices. We denote the list of provers for a user ui

as Pi. Thus, there are m lists of provers forming the prover set P = {P1, . . . ,Pm}.
A trusted group manger generates the public parameters of the system, reg-

isters users and issues a unique group membership certificate to each user. A
user ui (1 ≤ i ≤ m) is identifiable by their certificate. The certificate, that must
be kept secret, forms the secret input of the user in proving their membership
in the group. The certificate of user ui is shared by all provers of the list Pi.

There are three types of participants in the system: provers (P), verifiers
(V) (a singleton set), and actors (H), called helpers in TF attack. V and H

have access to only the public parameters of the system. Each participant has
a location loc = (x, y) ∈ R × R, that is an element of a metric space equipped
with Euclidean distance, and is fixed during the protocol. The distance function
d(loc1, loc2) returns the distance between any two locations. Message travel time
between locations loc1 and loc2 is d(loc1,loc2)

L , where L is the speed of light. A
bit sent over the channel may flip with probability pnoise (0 ≤ pnoise ≤ 1).
Participants, if located within a predefined distance bound D from V, are called
close-by participants, otherwise they are called far-away participants.
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Communication Structure. Each participant is equipped with a directional
and an omni-directional antennas. Having directional antennas enables them to
choose the angle of the transmission beam such that only the intended partici-
pants receive them.

View. The view of an entity at any point (in time) of a protocol consists of: all
the inputs of the entity (including random coin tosses) and the set of messages
received by that entity up to that point. Any instance of receiving message is
called an event. V iewΓ

x (e) is a random variable that denotes the view of an entity
x right after the event e in protocol Γ. V iewΓ

x denotes the view of x at the end
of the protocol Γ, i.e., V iewΓ

x = V iewΓ
x (elast) where elast is the last event in Γ.

Adversary. An adversary can corrupt any subset of participants X∗ ⊂ P∪V∪H.
Corrupting one prover from a prover subset (e.g., x ∈ Pj) effectively corrupts
the whole subset, since all members of that subset share the same certificate
(of user uj). Provers of uncorrupted subset follow the protocol, and only one
prover from the subset executes the protocol at a time. Provers of corrupted
subset are not restricted to do this. For each security property, the adversary has
certain goals, which is reflected as restrictions of X∗; in Completeness X∗ = ∅, in
Soundness X∗ ⊆ H, in DF-resistance X∗ ⊆ P, in TF-resistance and Traceability
X∗ ⊆ P ∪ H, and in Anonymity X∗ ⊆ V ∪ H. Below the approach of [2] is used
to define AnonDB scheme.

Definition 4 (Anonymous Distance-Bounding Scheme). For a security
parameter λ, an anonymous distance-bounding (AnonDB) scheme is defined by
a tuple (X, Y, S,D, pnoise, Init, CertGen, CertVer,Π, Open), where; X, Y and S

are sets of possible system master keys, group public-keys and user member-
ship certificates, respectively. Init(1λ) is the function that the group manager
uses to generate the system master key msk, and the group public-key gpk.
CertGen(1λ,msk, gpk, i) function generates a user membership certificate si, and
CertVer(si, gpk) validates a user’s certificate with respect to the group public-
key. Π is a DB protocol between prover P (si, gpk) and verifier V (gpk), in which
V verifies that a group member is located within the distance bound D to the
verifier. The transmitted bits of a fast challenge-response round is affected by
noise where pnoise ∈ [0, 1] is the probability of a bit flip on each fast challenge-
response message. Open(msk, V iewΠ

V) is an algorithm that identifies the user
that is involved in the Π protocol, using view of the verifier.

Adversary’s capability is modeled as their access to queries presented to the
challenger. The security properties of an anonymous DB protocol are based on a
game (AnonDB Game) between a challenger and an adversary. Note that provers
have access to directional antenna (to captures the directional attack introduced
in Sect. 3.1), and presence of multiple, possibly colluding users (with different
secret keys) in the system (to capture multiple user collusion attack introduced
in Sect. 3.2). We assume the existence of a system clock that assigns time to
events. exLen(Γ) denotes the execution length of a protocol Γ.
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Definition 5 (AnonDB Game). An AnonDB game between a challenger
and adversary is an AnonDB experiment that is defined by a tuple
(AnonDB,U,P,V,H, CorruptParties) where AnonDB is an anonymous distance-
bounding scheme as defined in Definition 4. U,P,V and H are the sets of users,
provers, verifiers and actors, that are determined through interaction of the chal-
lenger and the adversary. CorruptParties(Q) is a query that allows the adver-
sary to plan their attack. Q is a set of participants, that may exist in the system
or be introduced by the adversary. In more details:

Initialize: Challenger runs (msk/gpk) ← AnonDB.Init(1λ) and publishes gpk.
Note that the execution codes of honest prover and verifier are known by the
challenger and the adversary at this point, and referred as AnonDB.Π.P and
AnonDB.Π.V respectively.

Generate Players: The sets (U,V,P,H) are formed through the interaction of
the challenger and the adversary:

(1) V = {v}, where v.Loc = loc0, v.Code = AnonDB.Π.V , v.St = 0, and
v.Corr = false.
U = {uj}j={1,...,m}, where uj .Cert is generated by AnonDB.CertGen
(1λ,msk, gpk, j) function.
P = ∪m

j=1P
j, where Pj is created as the prover subset of uj ∈ U. For all

p ∈ P
j
{j=1...m} assigns their attributes: p.Loc is set arbitrarily, p.Code =

AnonDB.Π.P , p.St is set arbitrarily such that there is no overlap in the exe-
cution time of the provers in Pj, p.Corr = false, and secret-key p.Key =
uj .Cert.
H = ∅.

(2) The challenger sends the attributes (x.Loc, x.Code, x.St) for all x ∈ X =
P∪V∪H, along with all prover subsets Pj ∈ P to the adversary. The size of
the set X is n.

(3) The adversary generates CorruptParties(Q) query and sends to the chal-
lenger. The challenger sends the secret information of the corrupted partic-
ipants in Q to the adversary and their behavior (Code, Location and Start
Time) is assigned according to the adversary instruction and their corruption
flag is set to True. For all values of j = 1 . . . m, if any prover p ∈ Pj gets
corrupted, then all provers in Pj get corrupted too.

Run: Challenger activates all participants x ∈ X = P ∪ V ∪ H at time x.St for
execution of x.Code. The game ends when the last participant’s code completes
its execution.

The properties for anonymous distance-bounding protocols are defined based
on the AnonDB Game. Conditions to win the game however varies for property.

Property 1 (AnonDB Completeness). Consider an AnonDB scheme and an
AnonDB game when Q = ∅ in the CorruptParties(Q) query and the set P is
not empty.
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The AnonDB scheme is (τ, δ)-complete for 0 ≤ τ, δ ≤ 1, if the verifier returns
OutV = 1 with probability at least 1 − δ, under the following assumptions: the
fast challenge-response rounds are independently affected by noise and at least τ

portion of them are noiseless, and τ > 1 − pnoise − ε for some constant ε > 0.

Property 2 (AnonDB Soundness). Consider an AnonDB scheme and an AnonDB
game with the following restrictions: ∀p in the nonempty set P, and v as
the only member of V, we have d(p.Loc, v.Loc) > AnonDB.D, and in the
CorruptParties(Q) query we have qi.type = actor for all qi ∈ Q. The AnonDB
scheme is γ-sound if the probability of the verifier outputting OutV = 1 is at
most γ.

This general definition captures relay attack [10], mafia-fraud [16], impersonation
attack [5], and strong-impersonation [2].

– relay attack [10] happens when the MiM attacker only relays the messages
between the honest verifier and a far-away honest prover. The MiM attacker
tries to convince the verifier that the prover is located close to the verifier. This
attack is achieved by adding extra restrictions on the adversary of Property 2
as follows:
⇒ ∀qi ∈ Q we have qi.code = “relay messages”.

– mafia-fraud [16] is when there is an honest verifier, an honest far-away prover,
and a close-by MiM attacker who tries to convince the verifier that the prover
is located close to the verifier. The attacker listens to the legitimate commu-
nications for a while, before running the attack as the learning phase. This
attack corresponds to adding extra restrictions on the adversary in Property 2
as follows:
⇒ the set of provers consists of only one prover subset, i.e., P = P1, and
⇒ ∀qi ∈ Q we have d(qi.location, v.Loc) ≤ AnonDB.D for v ∈ V.

– impersonation attack [5] happens when there is an honest verifier and a single
close-by attacker who tries to convince the verifier that the prover is located
close to the verifier. The attacker can have a learning phase before running
the attack. This attack can be achieved by adding extra restrictions on the
adversary of Property 2 as follows:
⇒ P is nonempty, and
⇒ ∀qi ∈ Q we have d(qi.location, v.Loc) ≤ AnonDB.D for v ∈ V, and
⇒ among all the successful AnonDB.Π protocols (Πsucc set) during the game,
∃π ∈ Πsucc,∀p ∈ P : t = fshT ime(π), t /∈ [p.St, p.St + exLen(p.Code)].

– multi-user MF: there is an honest verifier, multiple honest far-away provers,
and a close-by MiM attacker who tries to convince the verifier that one of
the provers is located close to the verifier. The attacker can have a learning
phase before running the attack. The extra restrictions on the adversary in
Property 2 is as follows:
⇒ the set of provers consists of a least two prover subsets, i.e., ∃p1, p2 ∈ P :
p1.Key = p2.Key, and
⇒ ∀qi ∈ Q we have d(qi.location, v.Loc) ≤ AnonDB.D for v ∈ V.
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– strong-impersonation [2] happens when either mafia-fraud or impersonation
happens. This attack can be achieved by adding extra restrictions on the
adversary of Property 2 as follows:
⇒ the set of provers consists of one prover subset, i.e., P = P1,
⇒ ∀qi ∈ Q we have d(qi.location, v.Loc) ≤ AnonDB.D for v ∈ V, and
⇒ among all the successful AnonDB.Π protocols (Πsucc set) during the game,
at least one of the following conditions hold:
(i) ∃π ∈ Πsucc,∀p ∈ P : t = fshT ime(π), t /∈ [p.St, p.St + exLen(p.Code)]
(ii) ∃p ∈ P,∃π ∈ Πsucc, v ∈ V : t = fshT ime(π), t ∈ [p.St, p.St +

exLen(p.Code)] ∧ d(p.Loc, v.Loc) > AnonDB.D.

We consider two types of attacks by a dishonest prover: multi-user far-away
dishonest provers (Property 3), and multi-user far-away dishonest provers with
close-by helpers (Property 4).

Property 3 (AnonDB Distance-Fraud). Consider an AnonDB scheme and an
AnonDB game with the following restrictions: ∀p in the nonempty set P, and
v as the only member of V, we have d(p.Loc, v.Loc) > AnonDB.D, and in
the CorruptParties(Q) query, qi.type = prover and d(qi.location, v.Loc) >
AnonDB.D for all qi ∈ Q. The AnonDB scheme is α-DF-resistant if, for any
AnonDB.Π protocol in such game, we have Pr[OutV = 1] ≤ α.

In the following TF-resistance of anonymous DB protocols is defined.

Property 4 (AnonDB Terrorist-Fraud). Consider an AnonDB scheme and an
AnonDB game with the following restrictions: ∀p in the nonempty set P, and v
as the only member of V, we have d(p.Loc, v.Loc) > AnonDB.D. The corrupted
parties are either prover or actor ∀qi ∈ Q : qi.type ∈ {prover, actor}. And at
least for one value of j ∈ {1 . . . m} we have d(qi.location, v.Loc) > AnonDB.D
for all qi ∈ Q ∩ Pj.

The AnonDB scheme is μ-TF-resistant, if the following holds about the above
game: if the verifier returns OutV = 1 in the Π protocol of game Γ with non-
negligible probability κ that is not traceable to any user with close-by provers
(Property 6), then there is an impersonation attack (as an AnonDB game Γ′ with
honest verifier, no prover and one close-by actor) that takes the view of close-by
participants of game Γ – excluding the verifier – as input, and makes the verifier
return OutV = 1 with probability at least κ − μ in the Π protocol of Γ′ game.

Any directional message that is sent to the verifier from outside the distance
bound, is not included in the input of the impersonator. Therefore any protocol
that is secure in this property, is also secure against directional TF attacks.
Note that this definition captures collusion TF (Fig. 3a and b). In anonymous
DB, breaking traceability is the only target of the adversary in collusion TF
Type 2.

The above attacks define security of the DB game. Now anonymity will be
defined in terms of distinguishing advantage of adversary between two protocol
sessions of two users.
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Property 5 (AnonDB Anonymity). Consider an AnonDB scheme and an
AnonDB game with the following restrictions: P = {P1,P2} where the size of
each of the sets P1 and P2 is equal to l > 0, and in the CorruptParties(Q)
query, qi.type ∈ {verifier, actor} for all qi ∈ Q. In this game, there are two
subsets of honest provers of the same size, the adversary corrupts the verifier
and adds a set of actors and sets their locations. Before activating the partic-
ipants, the challenger randomly chooses b ∈R {0, 1}l, and deactivates the ith

prover in Pb[i], i.e., ∀1 ≤ i ≤ l : Pb[i]
i .Code = ∅. At the end of game, A returns

b′ ∈ {0, 1}l. A protocol is α-anonymous if for any such experiment, for all values
of i ∈ {1, . . . , l} we have |Pr[b[i] = b′[i]] − 1

2 | ≤ α.

Traceability is defined as a guarantee for the group manager to be able to
identify the users from their protocol transcripts.

Property 6 (AnonDB Traceability). Consider an AnonDB scheme and an
AnonDB game with the following restrictions: P is nonempty, and in the
CorruptParties(Q) query, qi.type ∈ {prover, actor} for all qi ∈ Q. A protocol is
called γ-traceable, if the success chance of the AnonDB.Open algorithm in identify-
ing a user that has a prover in AnonDB.Π protocol, from the transcript that is seen
by the verifier, is a least as high as the chance of verifier outputting OutV = 1
in the AnonDB.Π protocol plus γ. i.e., Pr[identify user] ≥ γ + Pr[OutV = 1].

5 AnonDB Construction: dbid2anGM

DBID [2] models security of a public-key DB protocol as a cryptographic identi-
fication protocol with the additional distance-bounding properties. Definition 3
formally describes DBID scheme. In our construction we consider DBID schemes
for which public and private key of users are generated using Goldwasser-Micali
(probabilistic) encryption [19] system, denoted as DBIDGM. An example of such
schemes is ProProx [25], which is proven secure in the model of DBID schemes
(directional antenna and single user attacks) [2].

We refer to our AnonDB scheme as dbid2anGM to emphasize conversion of a
DBID scheme to an anonymous DBID. The DBID scheme has to use Goldwasser-
Micali encryption system [19] for key generation. In dbid2anGM, a user is first
enrolled in the system and is provided with a verifiable “membership” certifi-
cate. In addition to verifying the membership of a user, the certificate is used
to generate a temporary public-key, which is later used in a public-key DBID
protocol. At the end of a successful execution, verifier is convinced that a valid
member of the group is within the given distance bound.

Recall (Definition 4) that for a security parameter λ, an anonymous distance-
bounding (AnonDB) scheme is defined by a tuple (X, Y, S,D, pnoise, Init,
CertGen, CertVer,Π, Revoke, Open). For our proposed (AnonDB) scheme
dbid2anGM, these operations are named as dbid2anGM.Init, dbid2anGM.CertGen,
dbid2anGM.CertVer, dbid2anGM.Π, dbid2anGM.Revoke and dbid2anGM.Open.
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In dbid2anGM.CertGen, the group manager generates a membership certificate
for a new user, and accumulates the certificates of all users to form a public
commitment on them. Then the dbid2anGM.Π protocol takes place as below:

(i) a prover of the user ul, l = 1..m, anonymously proves that it owns one of the
accumulated certificates (according to the public accumulated commitment).

(ii) a temporary public-key is generated for the prover. The temporary public-
key is generated using Goldwasser-Micali encryption, i.e., we have C[j] =
EncGM (xl[j], vl[j]) where for the j = 1 . . . λ: xl[j] is certificate of the user,
vl[j] is a random value chosen by the prover, and C[j] is temporary public-
key. In this paper EncGM (., .) is refereed as CommitGM(., .) function. This tem-
porary public-key generation is equivalent to the DBIDGM.KeyGen function.
After establishing the temporary public-key, the prover and the verifier run
a DBIDGM.Π protocol, where the prover uses (xl, vl) as input, and the verifier
uses C as input.

In this scheme, a hash function H is used to make coins for CommitGM.
A deterministic commitment is defined by ComHe

(x, v) = (CommitGM

(x1,H(x, 1).H(v, 1)e), . . . , CommitGM(xλ,H(x,λ).H(v,λ)e), CommitGM(v1,H(v, 1)),
. . . , CommitGM(vλ,H(v,λ))) for x, v ∈ Z

λ
2 and CommitGM(., .) being Goldwasser-

Micali encryption function. We assume H(0, i) = 1 for all values of i, and also
assume that ComHe

is a one-way function. The details of operations is as follows:

dbid2anGM.Init: (msk, gpk) ← Init(1λ). The group manager initiates the sys-
tem as follows:

– Initialize Goldwasser-Micali cryptosystem: (p, q,N, θ) ← DBIDGM.Init(1λ) for
λ bit security choose N = p.q and θ as a quadratic residue modulo N . Private:
(p, q) and Public: (N, θ).

– Initialize RSA cryptosystem for the same N : generate (d, e) such that
gcd(e,φ(N)) = 1 and d = e−1( mod φ(N)). d is private and e is public.

The group master key is msk = (p, q, d, U) where U is the list of all user private-
keys, initialized to U = ∅. The group public-key is gpk = (e,N, θ, ŷ, ỹ,Ξ) where
ŷ is commitment accumulation vector of user private-keys, ỹ is signature vector
of group manager on ŷ and Ξ is the list of all user membership signatures. These
are initialized to ŷ = ỹ = [0]λ and Ξ = ∅.

dbid2anGM.CertGen: (s,msk′, gpk′) ← CertGen(msk, gpk). The group manager
first generates a certificate s = (xl, σl) and sends it to a new user (xl is called
user private-key, and σl is called user membership signatures). And second, the
system master key and public-key get updated accordingly, i.e., msk ← msk′

and gpk ← gpk′. The details is as follows, assuming l − 1 users have already
joined the group: (a) randomly choose xl ∈ Z

λ
2, (b) yl = ComHe

(xl, 0), which is
∀j ∈ {1, . . . ,λ} : yl[j] = CommitGM(xl[j],H(xl, j)) = θxl[j].H(xl, j)2 mod N and
yl[λ + j] = 1. (c) Sign σl[j] = (yl[j])d. (d) ∀j ∈ {1, . . . ,λ}: (i) accumulate jth bit
of all user private-keys into a single bit x̂[j] = x1[j] ⊕ . . . ⊕ xl[j], (ii) accumulate
hash values v̂[j] =

∏
1≤i≤l H(xi, j), and (iii) commit to accumulated values



New Attacks and Secure Design for Anonymous Distance-Bounding 613

ŷ[j] = CommitGM(x̂[j], v̂[j]) = θx̂[j]v̂[j]2 mod N . (e) Sign accumulated values ỹ =
[ŷ[1]−d

, ..., ŷ[λ]−d].
The updated group master key is msk′ = (p, q, d, U) where U = {x1, ..., xl},

and the updated group public-key is gpk′ = (e,N, θ, ŷ, ỹ,Ξ) where Ξ =
{σ1, ..., σl}. The certificate s = (xl, σl) is securely sent to the new user.

dbid2anGM.CertVer: accept/reject ← CertVer(s, gpk). Upon receiving a certifi-
cate s = (x, σ), the user can check its validity. By reading the group public-
key gpk = (e,N, θ, ŷ, ỹ,Ξ), the user calculates y = ComHe

(x, 0) and checks
y[j] ?= (σ[j])e mod N , for j = {1 . . . λ}.

dbid2anGM.Π: accept/reject ← Π{P (s, gpk) ↔ V (gpk)}. When a prover (Pl)
of a registered user wants to run the AnonDB.Π protocol with the verifier, they
will follow the protocol described in Fig. 4. The protocol consists of two main
steps. The first step is a message from the prover to the verifier (y′, π) that
generates a temporary public-key (C), and then provides a non-interactive zero-
knowledge (NIZK), which proves that the prover knows the privates related to
the temporary public-key C. Note that in the non-interactive zero-knowledge
proof, the verifier does not send any message to the prover [7,8]. The second
step is running the DBIDGM.Π protocol.

Fig. 4. Π protocol in dbid2anGM scheme for the lth user. C = ComHe(x, v).

dbid2anGM.Open: (l) ← Open(msk, transcript). The tracing authority who holds
the group master key msk, uses the verifier’s view of a successful run of Π
with the prover Pl, and returns index of the corresponding user in U. The algo-
rithm runs as follows, knowing that the group master key is msk = (p, q, d, U =
{x1, . . . , xm}):
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(1) Determine inverse of 2 as 2̂ = 2−1( mod φ(N)), i.e., 2̂ is the multiplicative
inverse of 2 (mod φ(N)). (2) ŷd = [ŷ[1]d, . . . , ŷ[λ]d]. (3) Parse verifier’s view of
the protocol to obtain y′ and C. (4) Return the first i ∈ {1, . . . , m} that all
the following holds: ∀j ∈ {1, . . . ,λ}: C[j] ?= CommitGM(xi[j], v[j]), where v[j] =
H(xi, j).v′

j
e for v′

j = (v′
j
2)2̂ mod N and v′

j
2 = y′[j].ŷ[j]d.(yi[j])−d.

dbid2anGM.Revoke: (msk′, gpk′) ← Revoke(msk, gpk, l). In this operation, the
entity holding the group master key msk, updates the group master key and the
group public key such that the provers of lth user (l ∈ {1 . . . m}) cannot succeed
in any Π protocol anymore. The algorithm runs as follows, knowing that the
group master key is msk = (p, q, d, U = {x1, . . . , xm}) and the group public key
is gpk = (e,N, θ, ŷ, ỹ,Ξ) where Ξ = {σ1, . . . , σm};

∀j ∈ {1, . . . ,λ}:

– x̂[j] = x1[j] ⊕ . . . xl−1[j] ⊕ xl+1[j] ⊕ . . . ⊕ xm[j],
– v̂[j] =

∏
i∈{1,...,m}\l H(xi, j),

– ŷ′[j] = CommitGM(x̂[j]; v̂[j]) = θx̂[j]v̂[j]2 mod N , and
– ỹ′[j] = ŷ′[j]

−d
.

Ξ′ = Ξ \ {σl}.
The group master key will update to msk′ = (p, q, d, U =

{x1, ..., xl−1, xl+1, ..., xm}) and the group public key will be gpk′ =
(e,N, ŷ′, ỹ′,Ξ′).

Theorem 1. (dbid2anGM SecurityProperties). If (i) DBIDGM scheme is (τ, δ)-
complete, γ′-sound, θ-DF-resistant, μ′-TF-resistant and DBIDGM.Π is zero-
knowledge, and (ii) the temporary public-key (C) and the private key (xl, vl)
of DBIDGM.Π are related as C = EncN (xl, vl) where EncN (., .) is the Goldwasser-
Micali encryption algorithm for modulus N with λ-bit security, then

dbid2anGM is an AnonDB scheme that is (τ, δ)-complete (Property 1), θ-DF-
resistant (Property 3), γ-Sound (Property 2), μ-TF-resistant (Property 4), α-
anonymous (Property 5) and γ-traceable (Property 6), for negligible values of α,
δ, γ, γ′, μ, μ′ and θ, assuming that quadratic residuosity, factorization and RSA
problems are hard problems.

This theorem is proven in the full version paper [3].

6 Conclusion

We showed the security challenges that arise when identity information is not
directly used in DB protocols, and proposed a new model that captures all
known attacks, and a construction with provable security in this model. We
introduced two attacks; directional attack that uses the capability of an attacker
at the physical layer of communication, and collusion attack where multiple
user collude to deceive the verifier. We showed that all existing anonymous DB
schemes are vulnerable against the new attacks.
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We proposed a construction that converts special types of DBID protocols to
anonymous ones and gave an instance of this construction. The resulting protocol
is the first anonymous DB that is resistant against all distance-bounding attacks,
including the new ones proposed in this paper. Considering attackers that use
physical layer properties of the communication system to compromise security
of DB protocols is an interesting direction for future research.

References

1. Agiwal, M., Roy, A., Saxena, N.: Next generation 5G wireless networks: a compre-
hensive survey. IEEE Commun. Surv. Tutor. 18, 1617–1655 (2016)

2. Ahmadi, A., Safavi-Naini, R.: Distance-bounding identification. In: Proceedings of
the 3rd International Conference on Information Systems Security and Privacy:
ICISSP, INSTICC, vol. 1, pp. 202–212. SciTePress (2017)

3. Ahmadi, A., Safavi-Naini, R., Akand, M.: Anonymous distance-bounding identi-
fication. Cryptology ePrint Archive, Report 2018/365 (2018). https://eprint.iacr.
org/2018/365

4. Ahmadi, A., Safavi-Naini, R.: Privacy-preserving distance-bounding proof-of-
knowledge. In: 16th ICICS (2014)
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Abstract. Bug-tracking systems are widely used by software developers
to manage bug reports. Since it is time-consuming and costly to fix all
the bugs, developers usually pay more attention to the bugs with higher
impact, such as security bugs (i.e., vulnerabilities) which can be exploited
by malicious users to launch attacks and cause great damages. How-
ever, manually identifying security bug reports from millions of reports
in bug-tracking systems is difficult and error-prone. Furthermore, exist-
ing automated identification approaches to security bug reports often
incur many false negatives, causing a hidden danger to the computer
system. To address this important problem, we present an automatic
security bug reports identification model via multitype features analysis,
dubbed Security Bug Report Identifier (SBRer). Specifically, we make
use of multiple kinds of information contained in a bug report, including
meta features and textual features, to automatically identify the security
bug reports via natural language processing and machine learning tech-
niques. The experimental results show that SBRer with imbalanced data
processing can successfully identify the security bug reports with a much
higher precision of 99.4% and recall of 79.9% compared to existing work.

Keywords: Security bug identification · Bug report
Natural language processing · Machine learning

1 Introduction

At present, bug-tracking systems, such as Bugzilla [3] and Jira [15], are widely
used by software developers to manage bug reports which are submitted by differ-
ent persons, including developers, test teams, and end-users. These bug reports
are related to all aspects of software quality, such as performance, compatibility,
stability, and security. Particularly, security bugs (i.e., vulnerabilities) are bugs
which can be exploited by malicious users to launch attacks against the software
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 619–633, 2018.
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systems. These security bugs are conceptually different from non-security bugs
which represent wrong or insufficient functionality rather than abusive function-
ality [4]. Since it is time-consuming and costly to fix all the bugs, developers
usually devote more efforts to handle the bugs with higher impact, such as secu-
rity bugs. However, existing bug-tracking systems, such as Bugzilla [3], cannot
provide the ability to identify whether a bug report is related to a security bug or
not (i.e., Security Bug Reports (SBRs) or Non-Security Bug Reports (NSBRs)).
The bug reporters may fail to correctly identify the dangerous security bugs due
to the lack of knowledge in the field of security. As a consequence, the majority
of security bugs can not be disclosed to public, causing a hidden danger to the
computer system.

A natural way to identify SBRs is to review bug reports manually. For exam-
ple, Mozilla, the famous free software community, has established a special secu-
rity bug group to handle Mozilla SBRs [21]. However, manually reviewing bug
reports (usually tens of thousands) in a bug-tracking system requires a lot of
professional knowledge, and it is very time-consuming and costly. Therefore, an
alternate solution is to automatically identify SBRs in bug-tracking systems.
There have been a lot of research focused on this problem [2,10,36,39,40]. How-
ever, existing solutions often miss many SBRs (i.e., incurring many false neg-
atives). For example, the model proposed by Yang et al. [39] only correctly
identified 39% to 56% of the high impact bug reports (e.g., SBRs) with four
imbalanced learning strategies (based on 2,845 bug reports). One possible rea-
son is that they only considered the limited features (e.g., some textual features),
ignoring other rich information in a bug report.

In this paper, we address the following research problem: Given a bug report,
how can we automatically identify whether the report is related to a security bug
or not (i.e., SBR or NSBR)? This problem should be solved with high precision
and high recall.

Our Contributions. The present paper makes the following contributions.
First, we propose an automatic security bug reports identification model via

multitype features analysis, dubbed Security Bug Report Identifier (SBRer).
Specifically, we make use of multiple kinds of information contained in a bug
report which involve the non-textual fields of a bug report (meta features, e.g.,
time, severity, and priority) and the textual content of a bug report (textual
features, i.e., the text in summary fields). Based on these features, we build an
identification model to automatically identify the SBRs via natural language
processing and machine learning techniques.

Second, we construct a dataset with 23,608 bug reports in Bugzilla which are
collected from three popular open source products (i.e., Firefox, Seamonkey, and
Thunderbird), including 3,346 SBRs and 20,262 NSBRs submitted from April
1999 to July 2017.

Third, we conduct a series of experiments based on the dataset to evalu-
ate the performance of SBRer. The experimental results show that SBRer with
imbalanced data processing can successfully identify the SBRs with the precision
of 99.4% and the recall of 79.9%. Specifically, compared to existing automated
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identification models, SBRer improves the recall by 22.9% while maintaining a
high precision.

The rest of the paper is organized as follows. Section 2 reviews the related
prior work. Section 3 describes the design of SBRer. Section 4 discusses the exper-
imental evaluation of SBRer and the results. Section 5 concludes the present
study with a discussion on future work.

2 Related Work

We first review the previous research on the identification of security bugs (i.e.,
vulnerabilities).

Identification of Security Bugs. At present, the existing SBRs identification
approaches mainly make use of the textual content of reports. The text-based
identification approaches include the following three steps. First, they need to
obtain the textual content of the bug reports, including the summary, descrip-
tions, and comments. Second, a feature space is generated based on the most
important syntactical information extracted from the textual content via text
mining techniques. Finally, feature vectors in the feature space are used to per-
form the final identification. Behl et al. [2] claimed to use Term Frequency-Inverse
Document Frequency (TF-IDF) to identify and analyze SBRs with Naive Bayes.
Gegick et al. [10] used an industrial text mining tool called SAS Text Miner
[28] to create feature vectors and trained a statistical model to identify SBRs
in the form of Singular Value Decomposition (SVD). Wijayasekara et al. [36]
also used the text mining techniques to generate the feature vector of each bug
report based on the frequent words to identify the Hidden Impact Bugs (HIBs).
HIBs refer to the software bugs that have the security impact but have not yet
been classified as vulnerabilities, similar to security bugs of this paper. Yang
et al. [39] claimed to identify high impact bug reports (e.g., SBRs) with the
help of Term Frequency (TF) and Naive Bayes. Furthermore, they compared the
effectiveness of four imbalanced learning strategies on the datasets provided by
Ohira et al. [23]. Zhou and Sharma [40] used commit messages and bug reports
to automatically identify security issues via a series of classification algorithms.

Our work and the aforesaid research mainly focus on the identification of
security bugs (i.e., vulnerabilities). However, the precision and recall of the above
methods are far from ideal. On the one hand, the majority of these approaches
do not consider the imbalanced phenomenon which has a strong impact on the
classification [33]. On the other hand, only small part of the features of bug
reports are involved in these methods, limiting the performance of classifiers.

There are a lot of other remotely related work which can be further divided
to the following two aspects.

Discovery of New Vulnerabilities. This work mainly focuses on the identifi-
cation of security bugs (i.e., vulnerabilities). There are many other approaches to
discover new vulnerabilities, mainly including two categories, i.e., static analysis
and dynamic analysis. Static analysis is an approach to find vulnerabilities by
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scanning source code without actually executing it [13,16,24,38]. Much work has
been used in practice, such as Coverity [7], Flawfinder [9], and RATS [26]. How-
ever, these approaches are generally language-specific and usually incur many
false positives in practice. Dynamic analysis aims to detect vulnerabilities by
executing the source code with real inputs, such as dynamic taint tracking [8,29]
and fuzz testing [11,31,34]. Dynamic analysis can address the deficiencies of
static analysis (less false positives) by trying a wide range of possible inputs.
However, it means more cost and leads to the path explosion problem.

Compared with these studies, SBRer takes advantage of information available
in bug reports and performs the identification via machine learning techniques.
It means SBRer is applicable to all programming languages and less costly.

Bug Reports Analysis. Our work aims to identify SBRs via analyzing bug
reports. There are many other studies focus on solving problems in the whole bug
life cycle via the analysis of information contained in bug reports. These problems
mainly involve four aspects, i.e., bug triage [1,14], bug-fix time prediction [6,17],
bug reports priority prediction [19,20,32], and duplicate bug reports detection
[25,27,35].

Compared with these studies, the goal of SBRer focuses more on the identifi-
cation of security bugs (i.e., vulnerabilities), so that experienced security experts
can fix the security bugs timely and professionally.

3 Design of SBRer

Recall that we want to design a tool that can automatically identify whether the
bug report is related to a security bug or not (i.e., SBR or NSBR), and explore
what types of features can be used for effective identification. This should be
achieved without manually inspecting each bug reports in a bug-tracking system
and with high precision and high recall. In this section, we start with an overview
of SBRer, and then elaborate its components in the following subsections.

3.1 Overview of SBRer

As highlighted in Fig. 1, SBRer has two phases: the learning (i.e., training) phase
and the identification phase. In the learning phase, SBRer takes a set of labeled
bug reports collected from bug-tracking systems as the input. Some of these
bug reports are related to security bugs (i.e., SBRs), and the others are not
(i.e., NSBRs). The output of the learning phase is the security bug reports
identification model. In the identification phase, SBRer identifies the type of the
target bug reports and outputs the identified SBRs.

The Learning Phase. As shown in Fig. 1, the learning phase has three steps.

– Step 1: Feature extraction from training bug reports. Features are
multiple quantifiable signatures that can be used to distinguish the type of
a bug report. Two types of features, i.e., meta features and textual features,
are extracted from training bug reports.
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Fig. 1. Overview of SBRer. The learning phase aims to build a security bug reports
identification model via the multitype features analysis, and the identification model
is in turn used to identify whether a target bug report is a security one or not in the
identification phase.

– Step 2: Feature vector generator for training bug reports. The
extracted features are used to generate a feature vector for each bug report.
Each feature vector has a corresponding label (“1” for SBR, and “0” for
NSBR), meaning the type of bug report (security or non-security).

– Step 3: Training machine learning model. The security bug reports
identification model is trained based on the labeled bug report feature vectors
in the training set. The identification model is a machine learning model whose
training process is standard.

The Identification Phase. Given one or multiple target bug reports, we
extract the corresponding multitype features from them. The multitype features
are transformed into vector representations, which are used as the input of the
trained machine learning model. The model identifies whether the vectors (i.e.,
bug reports) are related to security bugs (“1”) or not (“0”) and outputs the
identified SBRs. As highlighted in Fig. 1, this phase has three steps.

– Step 4: Feature extraction from target bug reports. Two types of
features are extracted from the target bug reports (similar to Step 1).

– Step 5: Feature vector generator for target bug reports. The features
are transformed into the vector representations (similar to Step 2).

– Step 6: Identification. This step uses the learned machine learning model
to identify the types of the vectors which correspond to the features of bug
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reports. More precisely, when a feature vector is identified as “1”, it means
the corresponding bug report is a SBR. Otherwise, the corresponding bug
report is identified as “0” (i.e., NSBR).

Steps 1–3 are respectively elaborated in the following subsections. Steps 4–5
are similar to Steps 1–2 and Step 6 is standard.

3.2 Step 1: Feature Extraction from Training Bug Reports

There are a lot of useful information contained in a bug report, including the
field values, the textual content, etc. We parse the bug reports according to their
format and then extract the various useful features from bug reports. These
features can be divided into two categories: meta features and textual features,
which are defined as follows.

Definition 1: (meta features). Meta features refer to the non-textual fields of a
bug report, such as reported-time and severity. Many previous studies have used
these fields to analyze bug reports [1,35]. As presented in Table 1, we focus on
the following 9 fields: reported time, severity, priority, created time, last time,
#bugs submitted, #comments, #bugs assigned, and #patches submitted, as these
fields are usually available in most of the bug reports. Besides, they can provide
potential signals for SBRs. On the one hand, the reported time, severity, and
priority reflect the attributes of bug report itself. On the other hand, created
time, last time, #bugs submitted, #comments, #bugs assigned, #patches sub-
mitted reflect the profile of bug reporters. Since bugs are contributed by people
specializing in one area (e.g., security), the profile of bug reporters may differ
from each other and heavily impact the identification of SBRs [12].

Definition 2: (textual features). Textual features refer to the textual content
of a bug report which have been used to identify SBRs [2,39,40]. In this paper,
it refers to the summary field, which is a sentence provided by the reporter in
the length of around 5–10 words. These words give a summarized description of
the bug and may contain potential semantic information for the identification of
SBRs.

3.3 Step 2: Feature Vector Generator for Training Bug Reports

The goal of the feature vector generation module is to transform the features
extracted in Step 1 into vector representations, which is necessary for training
a machine learning model. The training set consists of a set of input samples,
each of which comprises an input object (i.e., feature vector) and its label (i.e.,
“1” for SBR, and “0” for NSBR). As described above, the feature vector should
characterize a bug report in two dimensions: meta and textual. For each dimen-
sion, a set of features is extracted. Thus a vector of the features for a bug report
can be represented as:

Vreport = {vmeta, vtext} (1)
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Table 1. Fields of bug reports related to meta features

No. Field Description Example (Bug 1292443)

1 Reported time The time when a bug is reported 2016-08-04 22:40

2 Severity The possible impact of a bug
estimated by the reporter

Critical

3 Priority The order of a bug in which a bug
should be fixed

–

4 Created time The time when the bug reporter
creates the account

2010-10-24 22:46:28

5 Last time The last time when the reporter is
active

2017-08-08 21:30:46

6 #Bugs submitted The number of bug reports submitted
by the reporter in the past

221

7 #Comments The number of comments made by the
reporter in the past

528

8 #Bugs assigned The number of bugs assigned to the
reporter in the past

1

9 #Patches submitted The number of patches submitted by
the reporter in the past

0

where, vmeta is transformed from a set of meta features, and vtext is transformed
from a set of textual features.

For meta features, we extract 9 fields of bug reports listed in Table 1. These
fields are transformed into the vector, represented as:

vmeta = {vm1 , vm2 , . . . , vm8} (2)

where, vm1 refers to the reported time of a bug report. vm2 refers to the bug
severity. Its value ranges from 0 to 6, corresponding to 6 different severity labels
(i.e., blocker, critical, major, normal, minor, and trivial), where “0” indicates
that the severity field is empty. vm3 refers to the bug priority. Its value ranges
from 0 to 5, corresponding to 5 different priority labels (i.e., P1, P2, P3, P4,
and P5), where “0” indicates that the priority field is empty. vmi

(4 ≤ i ≤
8) correspond to the remaining features in Table 1 in turn. Particularly, vm4

refers to the active time of the bug reporter, which can be calculated by the
difference between the created time and the last-active time of a bug reporter,
corresponding to the feature of No. 4 and 5 in Table 1.

For textual features, we focus on the summary field of a bug report, which is
a sentence giving the summarized description of a bug. We convert the sentence
into a vector via natural language processing, including the following three steps:

– First, tokenization. Tokenization is a process to split the sentence into a set
of tokens according to the delimiters, such as spaces and punctuation marks,
via lexical analysis. While tokenizing, the tokens also should be transformed
to the lower case and the special characters should be removed.
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– Second, stop words removal. Many words are frequently used in the text but
might not carry plenty of useful information. These words are called as stop
words, such as pronouns (e.g., “I”, “he”, and “she”), articles (e.g., “a”, “an”,
and “the”), and conjunctions (e.g., “and”, “but”, and “then”). It is necessary
to remove these stop words from the set of tokens generated in the previous
step, because they might impact on the performance of the identification
model due to their skewed distributions.

– Third, vector generation. After stop words removal, we get a large corpus of
tokens. In order to map these tokens into vectors, we use the word2vec tool
[37], which is widely used in text mining. It can convert a token into a vector
whose dimension is fixed, named as word embedding. Finally, the sentence
vector (i.e., vtext represented in (3)) is a summation of the word embeddings
of all the tokens that make up the sentence. Since the word embedding can be
trained as different fixed dimensions (e.g., 5, 10, and 15), the corresponding
sentence vector may have different dimensions. The dimension of sentence
vector can be tuned to improve the effectiveness of security bug identification
(see Sect. 4.3).

vtext = {vt1 , vt2 , . . . , vtn} (3)

3.4 Step 3: Training Machine Learning Model

Having generated the feature vectors, we utilize the Support Vector Machine
(SVM) to build an identification model in this step. SVM is a popular supervised
machine learning method, which maximizes the distance between the decision
line (the line separating the two classes) and each of the two classes. Although
it is a linear model, it can realize the non-linear classification effectively via a
kernel function which could map the input into a higher dimensionality feature
space. Based on the training set (i.e., labeled feature vectors), we adopt grid-
search and 10-fold cross validation to select the best parameter values according
to the effectiveness for the identification of SBRs.

As we noted, the number of SBRs is much smaller than the number of NSBRs,
i.e., the class imbalanced phenomenon is observed. In order to identify the small
class (i.e., SBRs), we increase the weight of small samples to make the classifier
focus more on the small class (i.e., SBRs) during the training process. As a result,
we get a machine learning model with fine-tuned model parameters which can
be used to identify the type of a bug report.

4 Experiments and Results

4.1 Evaluation Metrics

The effectiveness of SBRer can be evaluated by standard metrics, such as
accuracy, precision, recall, and F1-measure, which are widely used to evalu-
ate the performance of classification. Let True Positive (TP) be the number
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of SBRs identified correctly, False Positive (FP) be the number of SBRs iden-
tified incorrectly, False Negative (FN) be the number of true SBRs unidenti-
fied, and True Negative (TN) be the number of true NSBRs identified. The
metric accuracy = (TP + TN)/(TP + TN + FP + FN) reflects the total
number of correctly identified bug reports with respect to all bug reports.
The metric precision = TP/(TP + FP ) reflects the total number of cor-
rectly identified SBRs out of all bug reports identified to be SBRs. The metric
recall = TP/(TP +FN) reflects the completeness of identifying SBRs. It refers
to the ratio of the number of SBRs identified correctly to the entire true SBRs.
The metric F1-measure = 2 ∗ precision ∗ recall/(precision + recall) reflects
the overall identification effectiveness.

4.2 Datasets

In this paper, the bug reports we experiment on are mainly collected from the
Mozilla bug database, Bugzilla [3]. There are mainly three reasons why the
Bugzilla is selected. First, Bugzilla is widely used as a bug-tracking system
to manage bug reports. Second, all bug reports from Bugzilla generally follow
the same format. Third, the SBRs in Bugzilla usually have the corresponding
Common Vulnerabilities and Exposures IDentifiers (CVE-IDs) and the links to
Mozilla Foundation Security Advisory (MFSA) [21], which has reported security
problems for each version of Mozilla’s products since 2005. With the help of
MFSA, we can distinguish the type of each bug report and build the datasets
with ground truth. More specifically, for the bug reports collected from Bugzilla,
we label the bug reports issued in the MFSA as “1” (i.e., SBRs), and other bug
reports as “0” (i.e., NSBRs).

In the present study, we mainly focus on Mozilla’s three open source prod-
ucts: Firefox, Seamonkey, and Thunderbird. Security is one of the main quality
requirements for such open source products and their bug reports are common
so that we can collect enough data for using machine learning techniques.

Table 2. Datasets of the experiments

Product Time Versions #SBRs #NSBRs

From To From To

Firefox 2002-09-29 2017-07-28 Firefox 0.8 Firefox 56.0 1,338 8,503

Seamonkey 1999-04-07 2017-07-09 Seamonkey M11 SeaMonkey 2.48 909 6,301

Thunderbird 2000-04-12 2017-07-12 Thunderbird 3.0b4 Thunderbird 52.0 1,099 5,458

All 1999-04-07 2017-07-28 — — 3,346 20,262

Table 2 shows the statistics of three products we experiment on. In Table 2,
columns Time and Versions refer to the submitted time of bug reports and
the versions that the bug reports impact on, respectively. In the end, we have
collected 23,608 bug reports, including 3,346 SBRs and 20,262 NSBRs submitted
from April 1999 to July 2017.
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4.3 Experiments and Discussion

In this paper, the experiments are conducted on a machine with AMD A10-
7300 Radeon R6 1.90 GHz CPU, 8 GB RAM and Windows 7 (64-bit) operating
system.

Experimental Settings. To implement an automatical model to identify
whether a bug report is related to a security bug (i.e., SBR) via machine learning
techniques, we use the open-source tool LibSVM [5]. We randomly select 70% of
the bug reports we collect as training set and the remaining 30% as target bug
reports to evaluate the effectiveness. This is applied equally when dealing with
other approaches.

For our purpose, the Radial Basis Function (RBF) kernel is a reasonable
choice, because it can deal with the non-linear relationship between the class
labels and the attributes. After choosing RBF function as the kernel, the SVM
model has two very important parameters, i.e., c and g, corresponding to the
cost and kernel parameters.

As shown in Table 2, only 14.2% of the collected bug reports are related to
security bugs. In order to make the SVM model work well in the imbalanced
data (i.e., having much less SBRs than NSBRs), we also take another important
parameter into account, i.e., wi. The parameter wi can increase the cost (i.e.,
parameter c) of failing to correctly identify the small class samples. The extra
cost can make the classifier “care” more about small class samples (i.e., SBRs).
To search the global optimal parameters combination of c, g, and wi, we perform
the grid-search and 10-fold cross-validation on the training set.

Selection of Sentence Vector Dimension for Textual Features. To select
a suitable sentence vector dimension for textual features, we choose seven values
of sentence vector dimension (from 2 to 50) to observe the influence on the eval-
uation metrics mentioned above. Table 3 shows the metrics concerning different
sentence vector dimensions.

Table 3. Experimental results of SVM models with different sentence vector dimen-
sions

Dimension Accuracy (%) Precision (%) Recall (%) F1-measure (%)

2 88.4 65.6 37.5 47.7

5 92.6 83.1 60.2 69.8

10 94.7 89.7 71.1 79.3

20 95.1 90.9 72.7 80.8

30 94.9 90.5 71.8 80.1

40 94.9 90.9 71.5 80.0

50 94.8 90.3 70.6 79.2

We observe that the F1-measure of the SVM model reaches the maximum
(i.e., 80.8%) when the sentence vector dimension is set to 20, which is less than



Automatically Identifying Security Bug Reports via Multitype Features 629

the general word vector dimensions (e.g., 50) [18]. This can be explained by the
fact that the size of corpus extracted from the summary field is much smaller (i.e.,
2M), compared to the corpus for general natural language processing tasks (e.g.,
100M) [18]. We further observe that with the increase of the sentence vector
dimension, there is an increasing trend of the evaluation metrics of the SVM
model, and finally falls slightly after reaching the maximum. We speculate this
is caused by the following reason: as the sentence vector dimension increases, the
more information the vector can express, which contributes to the identification
of the SBRs. However, when the dimension increases to a certain threshold (in
our case, 20), bigger dimension will not increase the information it conveys, even
cause a decline in the effectiveness of identification. These observations lead to
the following preliminary understanding:

Insight 1: The sentence vector representation of the summary field in a bug
report can be used to identify the security bug report, but the effectiveness is
sensitive to the sentence vector dimension which is related to the size of corpus
extracted from the summary field.

Comparison and Discussion Among Identification Models. After select-
ing a suitable sentence vector dimension for textual features (i.e., 20), we perform
grid-search and 10-fold cross validation and then get the SVM classifier with
fine-tuned model parameters (i.e., SBRer). Considering that we have multitype
features, i.e., meta features and textual features, we also retrain two different
machine learning models built on single feature to explore which type feature
makes more contributions to the identification with higher precision or recall.
We refer them as Meta-ML and Text-ML (dimension = 20).

In order to estimate how effective SBRer is when compared with other iden-
tification approaches of SBRs, we compare the effectiveness of SBRer with the
methods proposed by Behl et al. [2] and Yang et al. [39] on the same datasets
described in Table 2. We implement their algorithms based on Natural Language
Toolkit (NLTK) [22], which is one of the most commonly used Python library in
the field of NLP, together with Scikit-learn [30], an efficient open source frame-
work specifically for data mining and machine learning.

Table 4. Experimental results of SBRer compared with two single models (i.e., Meta-
ML, Text-ML with dimension = 20), and identification models proposed by Behl et al.
[2] and Yang et al. [39].

Model Accuracy (%) Precision (%) Recall (%) F1-measure (%)

Meta Meta-ML 93.9 83.9 70.5 76.6

Textual Text-ML (dimension=20) 95.1 90.9 72.7 80.8

Behl’s [2] 90.0 97.6 29.0 44.7

Yang’s [39] 94.9 98.0 65.0 78.2

Multitype SBRer 97.1 99.4 79.9 88.6
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Table 4 summarizes the experimental results of SBRer compared with two
single models (i.e., Meta-ML, Text-ML with dimension = 20), and identification
models proposed by Behl et al. [2] and Yang et al. [39]. We make the following
observations.

First, we observe that the Text-ML outperforms the Meta-ML in four metrics.
That is to say, textual features give a better performance in the identification
of SBRs among the two kinds of features. Furthermore, the evaluation metrics
of SBRer are improved by 2.1%, 9.4%, 9.9%, and 9.7% for accuracy, precision,
recall, and F1-measure respectively, compared to the Text-ML. On the whole,
SBRer is more effective than the other two single models, i.e., Meta-ML, and
Text-ML. These observations lead to the following explanation of the SBRer
identification results:

Insight 2: We can achieve a better performance for the identification of SBRs
by considering the two kinds of features (i.e., meta and textual) together. If the
multitype features are incomplete or unavailable, the machine learning model
based on textual features (Text-ML) is a good alternative for SBRer.

Second, the experimental results between the three textual models (i.e., Text-
ML, Behl’s [2], and Yang’s [39]) show that Text-ML significantly improves the
recall (by 150.7% to Behl’s, 11.8% to Yang’s) while maintaining a high precision
rate. This can be explained by the fact that the sentence vector can represent the
semantic information of textual description better, compared to the frequency
of words (i.e., term frequency).

Third, we improve the performance of Behl et al.’s method by 7.9%, 1.8%,
175.5%, and 98.2% for accuracy, precision, recall, and F1-measure, respectively.
The improvement of SBRer over Yang et al.’s method mainly reflect in the recall
and F1-measure (by 22.9% and 13.3% respectively). It can be explained by the
following facts: first, Behl et al.’s method does not take the imbalanced phe-
nomenon into account which seriously impacts the performance of classification;
second, SBRer takes more features into account which can result in a better
performance. These observations lead to:

Insight 3: SBRer can be more effective via multitype features analysis, com-
pared to other identification approaches which just consider the textual features.
Besides, the sentence vector can better represent the semantic information of tex-
tual description and imbalanced phenomenon should also be taken into account
to make the classifier “care” more about small class samples (i.e., SBRs).

5 Conclusion

We have presented SBRer, an automatic security bug reports identification
model via multitype features analysis, which aims to relieve human experts from
the tedious work and reduce the false negatives that incurred by other existing
security bug reports identification approaches. We present two types of features,
i.e., meta features and textual features, and train the machine learning model to
automatically identify SBRs. We have collected a bug report dataset for eval-
uating the performance of SBRer. Experimental results show that SBRer with
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imbalanced data processing can successfully identify the SBRs with the precision
of 99.4% and the recall of 79.9%, which are higher than those of the existing
models, especially the recall.

For future work, we intend to try more classification algorithms, software sys-
tems, and bug-tracking systems. In particular, how to identify more key features
contributed to the identification of the SBRs is an interesting research problem.
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Abstract. Cognitive radio technique is regarded as a promising way for
allowing secondary users (SUs) to access available channels without intro-
ducing the interference to the primary users (PUs). However, database-
driven cognitive radio networks (CRNs) are facing a series of security
and privacy threats, especially the privacy breaches of SUs. To address
this issue, this paper proposes a practical privacy-preserving protocol for
database-driven CRNs that allows SUs to get the available channels in
their vicinity efficiently while protecting their privacy. Our protocol takes
advantage of modular square root technique to verify the identity of a
SU and enables a legitimate SU to obtain the available channel without
leaking its privacy. By prefetching channels, our protocol reduces the
latency of obtaining available channels for SUs. Besides, the proposed
protocol provides strong privacy preservation that the database cannot
trace any SUs and get nothing about location or identity information
of SUs, even the database colludes with all base stations. The results of
security analysis and performance evaluation indicate the feasibility and
practicality of the proposed privacy-preserving protocol.

Keywords: Cognitive Radio Networks · Privacy-preserving
Authentication · Prediction · Modular square root

1 Introduction

Cognitive radio is emerging as a potential candidate for alleviating spectrum
scarcity and improving spectrum utilization by allowing spectrum sharing among
users [1,2]. In cognitive radio networks (CRNs), primary users (PUs) are the
owners of the licensed channels, while secondary users (SUs) are only allowed to
operate on the vacant parts of the channels allocated to PUs [3]. In database-
driven CRNs [4,5], a SU needs to send a request to the database (DB) with its
specific location in order to obtain the available channels. Then the DB returns a
response to the SU that contains a list of available channels at the SU’s location,
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 634–648, 2018.
https://doi.org/10.1007/978-3-319-93638-3_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93638-3_36&domain=pdf


A Practical Privacy Preserving Protocol in Database-Driven CRNs 635

among which the SU chooses one channel for transmission. The DB may require
a SU to send back a channel-usage notification message. In the message, the SU
notifies the DB which channel it intends to use.

Though the database-driven CRNs have advantages of simplicity and easy
operation, they suffer from serious security and privacy threats, especially the
privacy breaches of SUs. This is simply because SUs have to provide their loca-
tion information to the DB to learn about channel availability. The administra-
tors of the DB such as Google and Microsoft [6] may be honest but are curious
about the location-identity binding or association information of SUs. That is,
the DB (refers to the administrators of the DB hereinafter) is curious about what
the real identity of the SU is and where this SU has been. Moreover, the DB may
require SUs to report the selected channels, from which the DB can also geo-
locate a SU [7]. Through the location-identity binding information, the DB can
receive clues about private information such as political affiliations, habits, or
medical problems [8]. Being aware of such potential privacy threats, SUs would
be reluctant to access the DB to obtain the available channel information, and
the original intention to the CRNs is lost. Therefore, a privacy preserving pro-
tocol is necessary to prevent the DB from inferring the identity and location
information of each SU.

On the other hand, authentication is a critical security property in CRNs,
wherein the identity of a SU is verified before obtaining service. In CRNs, each
SU needs to register itself in the certificate authority (CA) before it can get the
available channels. An illegal SU cannot obtain any channel when it uses a false
identity in order to avoid charges for usage. Hence, a privacy preserving protocol
should authenticate the SUs to ensure that only the legitimate SUs can use the
channels.

To meet the aforementioned demands, we propose a practical privacy pre-
serving protocol (PraPP) for database-driven CRNs. PraPP aims at allocating
channels efficiently with the capability of authenticating the identity and pro-
tecting the privacy of SUs against the DB. The contributions of this paper are
summarized as below.

– We propose a protection protocol named PraPP that can verify the identity
and protect the privacy of SUs in database-driven CRNs, as well as improve
the efficiency of channel allocation. Taking advantage of the Markov model,
PraPP predicts the number of channels and pre-fetches channels to reduce
the latency of obtaining available channels for SUs. Moreover, PraPP authen-
ticates SUs while protect their privacy by utilizing the modular square root
technique.

– We analyze the security and evaluate the performance of PraPP. The results
show that PraPP authenticates the identity of SUs and prevents the DB
from inferring the identity and location information of SUs. PraPP also can
resist various security attacks as well as provide user anonymity and collusion
resistance. The analysis results demonstrate the feasibility and practicality of
PraPP.
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The rest of this paper is organized as follows. Related works are presented
in Sect. 2. Section 3 introduces the preliminaries. Section 4 presents the proposed
protocol. Section 5 analyzes the security and evaluates the performance of the
proposed protocol. Finally, Sect. 6 concludes the paper.

2 Related Works

Security and privacy issues in CRNs have raised more and more attention
recently. In this section, we give an overview of the related literature. We sum-
marize the comparison between these schemes and our proposed protocol in
Table 1.

Table 1. Comparison of existing privacy-preserving protocols in database-driven CRNs

Protocol Technique Privacy
protection

Identity
authentication

Channel
prefetching

Gao et al. [7] PIR � × ×
Troja and Bakiras [9] PIR � × ×
Xin et al. [10] PIR � × ×
Grissa et al. [11] Cuckoo filter � × ×
Zhang et al. [12] k-anonymity � × ×
Li et al. [13] Public key encryption � � ×
Our protocol Modular square root � � �

As required by the FCC rule, SUs should provide their locations to the DB
to obtain channel availability information, which may breach SUs’ privacy. To
address this issue, the straightforward approach is to send the whole database to
SUs and let SUs search the database themselves to choose the available channels,
which will provide the ideal privacy. Obviously, this is costly and unpractical.
To reduce the communication cost, Grissa et al. [11] compact the DB by using
the cuckoo filter technique and then send the filter to SUs. Upon receiving the
filter, SUs keep constructing the query to match items in the compact DB until
they find the available channels or until they try all channels. Obviously, This
approach incurs high communication overhead.

Private Information Retrieval (PIR) [14] is a more efficient technique to pro-
tect the privacy of SUs than the straightforward approach. PIR allows SUs to
retrieve available channels from the DB while maintaining their query private.
Gao et al. [7] identify a new attack that the DB can locate a target SU when
the DB has the knowledge of the used channels of the SU. They propose a pri-
vacy preserving spectrum retrieval and utilization scheme, which enables a SU
to query the DB without leaking SU’s location. Troja and Bakiras [9] propose
a privacy-preserving protocol based on the Hilbert space filling curve so as to
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reduce the number of PIR queries. Xin et al. [10] propose a privacy-preserving
scheme based on PIR techniques, which allows the DB to find out the available
channels regarding a querying SU’s location without learning its detail. Although
PIR-based approaches do protect the privacy of SUs, these approaches incur high
computation or communication overhead.

k-anonymity [15] is another privacy-preserving technique in database-driven
CRNs. Zhang et al. [12] exploit the k-anonymity technique to enhance SUs’ pri-
vacy, which makes SUs send square cloak region that includes SUs’ real location
to the DB. Their approach makes a tradeoff between providing high location pri-
vacy and maximizing some utility, that is, their approach obtains higher location
privacy level with sacrifice of spectrum utility.

Another focus of this paper is on the authentication of SUs. In CRNs, the
identity of each SU needs to be verified before it can get the available channel
so as to protect the right of legitimate SUs. Li et al. [13] propose a location
privacy-preserving channel allocation scheme, which authenticates the identity
of a SU, as well as protects the privacy of a SU. However, the DB should execute
the authentication and channel allocation for all SUs, which may be inefficient.

From the above discussion, it can be seen that there needs a more satisfactory
privacy preservation protocol for SUs in database-driven CRNs.

3 Preliminaries

This section briefly introduces the system model, security requirements and mod-
ular square root technique.

3.1 System Model

In database-driven CRNs, SUs send requests to the DB with their locations such
that they can obtain the available channels. Figure 1 shows the network model in
database-driven CRNs, which consists of four parities: the DB, BSs, SUs and the
certificate authority (CA). SUs can be mobile devices with limited power and
computation capabilities. The DB stores available channel information of the
whole network. Before a SU communicates with others, it sends an available-
channel request message with its location information to the nearest BS, and
then the BS forwards the request to the DB. Upon receiving the request, the
DB lookups the available channels at SU’s location and returns a channel list
to the SU through BSs. Each SU needs to register itself in the CA before using
channels. BSs verify the legitimacy of each SU and let channels are only accessed
by legal SUs.

3.2 Security Requirements

We assume that the DB has the knowledge of the complete communication con-
tent between BS and the DB as well as between BS and SUs. We also assume that
the DB is honest-but-curious. The honest-but-curious means that the DB will
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Fig. 1. Network model

follow the protocol honestly, and correctly process and respond to messages, but
are curious about the SUs identity-location binding or association information.
That is, the DB is curious about the real identity of a SU and the places this
SU has been. Therefore, the first goal of this paper is to avoid the DB obtain-
ing anything about identity-location binding or association information of SUs.
Besides, it is assumed that BSs are also honest-but-curious. However, BSs have
the knowledge of the location information of SUs when SUs communicate with
a BS. The second goal of this paper is to protect the real identity of each SU
from the tracing of BSs. Assumed that BSs will not collude with illegal SUs. SUs
want to receive channels for their locations while keeping their identity-location
binding or association information secret.

A practical privacy-preserving protocol in database-driven CRNs should have
the following desirable properties:

– Privacy Preservation. The proposed protocol should achieve privacy
requirements of SUs. In particular, the proposed protocol should prevent the
DB from inferring the identity and location information of SUs. Except the
CA, SUs are anonymous to anyone including the DB and BSs, and nobody
can trace SUs’ locations. Moreover, even the DB collude with all BSs, the
identity and location information of SUs still cannot be inferred by the DB.

– Identity Authentication. The identity of a SU should be authenticated
to ensure that an illegal SU using a false identity cannot obtain available
channels.

– Attack Resistance. Under various types of attacks (such as eavesdropping,
replaying and so on), the security of the proposed protocol will not be com-
promised.
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All these properties are considered in the design of our protocol.

3.3 Modular Square Root Technique

The modular square root technique is built on quadratic residues and their
properties [16]. Let y be any integer and n a natural number, such that
gcd(y, n) = 1. Then y is called quadratic residue modulo n if there exists an
x with x2 = y mod n. x is called a modular square root of y.

Euler’s Criterion: Let p be an odd prime and gcd(y, p) = 1. Then y is a quadratic
residue modulo p if and only if

y
p−1
2 = 1 (mod p) (1)

if p = 3 (mod 4) and y is a quadratic residue modulo p, the modular square
roots of y modulo p can be computed as follow:

r1,2 = ±y
p+1
4 (mod p) (2)

Based on Euler’s Criterion, we have the following property.

Property 1. Let n = p · q and gcd(y, n) = 1, where p and q are two distinct odd
primes and p = q = 3 (mod 4). Then y is a quadratic residue modulo n if and
only if

y
p−1
2 = 1 (mod p) and y

q−1
2 = 1 (mod q) (3)

Using the Chinese reminder theorem, the four modular square roots of y
modulo n can be computed as follow:

r1,2,3,4 = ±(y
p+1
4 (mod p))uq ± (y

q+1
4 (mod q))vp (mod n) (4)

where uq = 1 (mod p), vp = 1 (mod q).

The security of the modular square root technique is based on the difficulty
of extraction modular square roots of a quadratic residue modulo n = p ·q, when
the large distinct primes p and q are unknown.

4 Proposed Scheme

In this section, we present our practical privacy-preserving protocol (PraPP) in
detail. Specially, PraPP consists of two phases, the channel prediction phase and
the channel allocation phase. The channel prediction phase predicts the number
of channels needed in the next period, while the channel allocation phase deals
with the privacy query and authentication of SUs.
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4.1 Channel Prediction

In this phase, BSs try to predict the number of channels which will be requested
by SUs in the next period. Assume that the update period of available channel
information in the DB is T . BSs will predict the number of channels before the
DB updates and prefetch the certain number of channels after the DB updates.
It is worthwhile to note that the DB can also predict the number of channels for
each BS. Consider a Markov chain of three states s1, s2 and s3, with the probabil-
ity of transition from state si to state sj being denoted pij (i, j ∈ {1, 2, 3}). The
arrivals of SUs in state s1, s2 and s3 are [0, η), [η, 2η), and [2η,∞), respectively,
where η is a positive integer and can be different values according to different
scenarios. It is assumed that the arrivals of SUs follow a Poisson process with
average arrival rate λ [17]. The probability that the arrivals of SUs are s1 during
T is

p1 =
s1=η−1∑

s1=0

e−λT (λT )s1

s1!
. (5)

The probability that the arrivals is s2 during T is

p2 =
s2=2η−1∑

s2=η

e−λT (λT )s2

s2!
. (6)

The probability that the arrival number is s3 during T is

p3 = 1 −
s1=η−1∑

s1=0

e−λT (λT )s1

s1!
−

s2=2η−1∑

s2=η

e−λT (λT )s2

s2!
. (7)

According to the historical data, BSs can obtain the state transition proba-
bility among three states as follows:

P =

⎡

⎣
p11 p12 p13
p21 p22 p23
p31 p32 p33

⎤

⎦ (8)

where pij means the transition probability from state si to state sj , i, j ∈
{1, 2, 3}.

Suppose that probability of the current state of a BS in si (i ∈ {1, 2, 3})
is pi, then the BS computes [p1 p2 p3] · P and obtains three probability values
corresponding to three states. The largest one is the most possible state that the
BS will be in the next period. Then the BS prefetches the corresponding number
of channels denoted as χ. For example, if the most possible state is s1, the BS
will prefetch η channels.

4.2 Channel Allocation

In this phase, the legitimate SUs will obtain the available channels. Consider
a database-driven CRN composed of MSU SUs and MBS BSs. If a SU can
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communication directly with a BS, we consider the SU and the BS at the same
location. Therefore, SUs can use the channels prefetched by BSs in the channel
prediction phase.

System Initialization. The CA executes the following operations:

(1) Chooses two large distinct odd primes pCA and qCA such that pCA = qCA =
3 (mod 4) and computes nCA = pCA · qCA.

(2) Chooses two large distinct odd primes pBSi
and qBSi

for BSi whose identity
information is IDBSi

and computes nBSi
= pBSi

· qBSi
, then sends {nBSi

,
pBSi

, qBSi
} to BSi, i ∈ MBS .

(3) Chooses a secure hash function H.
(4) Publishes nCA and nBSi

.

In the rest of the paper, we use BS instead of BSi for simplicity.
For each SUj whose real identity is IDj (j ∈ MSU ), the CA issues K triples

(Rj,k, sj,k, rj,k) (k ∈ K) to SUj , where (Rj,k, sj,k, rj,k) is generated as follows:

(1) Let sj,k = 0 and selects a unique random number Rj,k for SUj . Then com-
putes y = H(Rj,k||sj,k).

(2) Checks if
y

pCA−1
2 = 1 (mod pCA) and y

qCA−1
2 = 1 (mod qCA).

if not, sj,k = sj,k + 1 and go to 2).
(3) Computes four modular square roots x1,2,3,4 of x2 = y mod nCA and chooses

the smallest square root as rj,k.
(4) Outputs (Rj,k, sj,k, rj,k) and halt.

The CA sends (Rj,k, sj,k, rj,k) to SUj in a secure control channel, where
(Rj,k, sj,k, rj,k) satisfies r2j,k = H(Rj,k||sj,k) (mod nCA). (Rj,k, sj,k, rj,k) serves
as one of SUj ’s pseudo-IDs, that is, each SUj has K pseudo-IDs.

In the rest of the paper, we use SU instead of SUj for simplicity.

Channel Prefetching Request. BS sends the predicted number of chan-
nels χ, the location of BS and IDBS to the DB. When receiving the channel
prefetching request, the DB lookups the available channels at the location of BS
and sends back the channel list as BS requests via a secure channel. After BS
receives the channel list, it saves this list in its buffer and waits for SUs’ requests.

Identity Authentication and Channel Allocation. When SU wants to
transmit data, it sends a channel request to BS who is within its communication
range. If there are multiple BSs, SU chooses the one with the strongest signal
strength. Since only the legitimate SUs can use channels, there is a need for BS
to verify SU ’s identity.

Let β = 2l and 2l−1 < nBS < 2l. (Note that β is used to eliminate the need
for division in the modular step [18].) SU executes the following operations:
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(1) Chooses a random value α such that
√

nBS ≤ α ≤ nBS

2 .
(2) Computes Uj,k = α2 · β−1 (mod nBS).
(3) Computes sk = H(α) and Vj,k = MACsk(IDBS).
(4) Encrypts (Rj,k, sj,k, rj,k), time stamp ts1 and msg as Wj,k =

Esk(Rj,k||sj,k||rj,k||ts1||msg), where msg is the specific demands for chan-
nels, such as power, QoS, available time, etc.

SU sends {Uj,k, Vj,k, Wj,k} to BS. BS verifies the legality of SU as follows:

(1) Computes four modular square roots α1,2,3,4 of α2 = Uj,k ·β (mod nBS) with
the knowledge of pBS and qBS .

(2) Computes the hash and MAC values of the four roots α1,2,3,4, namely,
sk1,2,3,4 = H(α1,2,3,4), Vj,k = MACsk1,2,3,4(IDBS). Then picks up the right
sk.

(3) Decrypts Wj,k with sk and gets {Rj,k, sj,k, rj,k, ts1, msg}.
(4) Checks the validity of time stamp ts1, and checks whether r2j,k =

H(Rj,k||sj,k) (mod nCA) holds. If holds, then it means that SU is legal,
go to 5); otherwise, go to 6).

(5) Chooses a channel from the channel list in its buffer to meet demands as
msg requests and encrypts this channel with sk as e = Esk(channel||ts2),
where ts2 is a new time stamp. Then sends e to SU .

(6) Sends e = Esk(φ||ts2) to SU , where φ is the empty set.

On receiving the data from BS, SU checks the validity of the time stamp
ts2 and uses sk to decrypt e and obtains the channel. If SU is illegal, it will get
nothing.

5 Security Analysis and Performance Evaluation

In this section, we analyze the security and evaluate the performance of the
proposed protocol.

5.1 Security Analysis

We analyze the required security properties of the proposed protocol with respect
to the security requirements given in Sect. 3. It is worthwhile to note that the
primary object of our protocol is to prevent the DB from inferring the identity
and location information of SU when the DB observes the communication mes-
sages between SUs and BSs or between BSs and the DB. The second object of
our protocol is to protect the real identity of SU from BSs’ or the DB’s tracing.

– Identity Privacy of SU. In our protocol, the CA chooses K triples for each
SU, and each SU’s real identity is converted into K pseudo-IDs (Rj,k, sj,k,
rj,k) before a SU sends the channel request to a BS. Then these pseudo-IDs
are used in identity authentication without disclosing any private information.
Only the CA has the knowledge of the relationship between a pseudo-ID and
the real identity. From the pseudo-IDs, the DB and BSs know nothing about
the real identity of SUs. Even all BSs conclude with the DB, both the DB
and BSs get nothing about the real identity of the SU.
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– Location Privacy of SU. In our protocol, SUs do not provide their locations
to the DB, so the DB has no knowledge about where a SU has been. Moreover,
each SU uses pseudo-IDs to request the available channel, and both the DB
and BSs cannot infer the identity-location binding or association information
of SUs. Since there is no location or identity information related to SUs stored
in DB, even though the DB is compromised by the attacker, the attacker
cannot get anything about SUs’ privacy. Besides, since there is no linkage
between pseudo-IDs, everyone (expect the CA and SU) is unable to link two
sessions initiated by the same SU. Hence, no one can trace a SU’s activities.

– Identity Authentication. The BSs should authenticate all SUs to ensure
that a SU cannot obtain available channels using a false identity. In our
protocol, SUj is authenticated through the triple (Rj,k, sj,k, rj,k) such
that r2j,k = H(Rj,k||sj,k) (mod nCA). Forging such a triple requires a
forger to correctly compute the modular square roots of a quadratic residue
H(Rj,k||sj,k)(mod nCA) to determine corresponding rj,k. However, it is diffi-
cult for the forger to do so without knowing pCA and qCA. With the assump-
tion that BSs will not collude with the illegal SUs, that is, BSs will not reveal
(Rj,k, sj,k, rj,k) to illegal SUs, only the legitimate SUj can provide the triple
(Rj,k, sj,k, rj,k) to BSs. In other words, nobody can impersonate SUj .
In our protocol, only the BS with the knowledge of pBS and qBS can extract
the sk from SUj by computing modular square roots of the quadratic residue
Uj,k · β (mod nBS). Without pBS and qBS , an attacker cannot obtain sk and
hence cannot encrypt channels correctly. Therefore, by decrypting e correctly,
a SU can authenticate a BS in an indirect way.

– Prevention of Collusion Attack. As the real identity of a SU is stored as
pseudo-ID in a BS, even though the DB is in collusion with a BS, both the
DB and BS only have the knowledge about that someone with a pseudo-ID
has been in the BS’s communication range. They can get nothing else about
a SU. Therefore, if the DB collude with a BS, they cannot infer the identity-
location binding or association information of SUs. If the DB collude with
all BSs, the DB and BSs still cannot trace a SU as they cannot know which
pseudo-IDs are mapping to the same SU. Hence, our protocol can prevent the
collusion attack.

– Prevention of Eavesdropping Attack. Although the data transmits in
the wireless environment can be captured by attackers, the attackers cannot
acquire the content of packets. This is because the contents of packets are
encrypted and protected by sk. Without knowing pBS and qBS , an attacker
cannot obtain the secret key sk to decrypt the messages.

– Prevention of Replaying Attack. An efficient measure against a replaying
attack is inserting a time stamp ts into transmitted messages and setting an
expected legal interval for transmission delay Δt. Replaying attack is infeasi-
ble in our protocol as two time stamps ts1 and ts2 are used to prevent replay-
ing attack, so that any relaying messages must beyond the service expiration
time. For example, in our protocol, a SU transmits a channel request contain-
ing time stamp ts1 to a BS. On receiving the request, the BS determines the
validity of the request by checking if t− ts1 < Δt, where t is the current time.
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If the inequation holds, the message is valid; otherwise, the BS treats it as
a replaying message and rejects this request. As all messages in our protocol
contain time stamp, the replaying attack can be prevented.

5.2 Performance Evaluation

In CRNs, SUs are always the devices with low power and limited computing
capability. It is impractical for such devices to execute the operations with high
computational and communication complexity. In this section, we evaluate the
performance of our protocol and compare it with other closely related ones [10,
11]. Since the public key encryption algorithm in [13] has not been specified,
we do not include it in our analysis. We consider that the DB covered region is
divided into m × m cells and there are c channels in total.

Communication Overhead. Table 2 provides the analytical communication
overhead comparison. We assume that the modulus nCA and nBS are 1024 bits,
respectively; pCA, qCA, pBS and qBS have 512 bits, respectively; the time stamp
tsi (i ∈ {1, 2}) is denoted with 32 bits [16]; the output of the MAC function,
IDBS , msg, Ri,j are 64 bits, respectively; the location of a BS is denoted with 32
bits [19] and the number of channels is denoted with 32 bits [11]. In our protocol,
the communication overhead for a SU to send {Uj,k, Vj,k, Wj,k} to a BS is about
1024 + 64 + 64 + 1024 + 32 + 64 = 2272 bits. The communication overhead for
a BS to send the predicted number of channels χ, the location and IDBS to the
DB is about 32 + 32 + 64 = 128 bits. However, a BS sends the message once
per period, so the communication overhead is about 128/χ bits. The available
channel lists returned by the DB is denoted with 32 bits. The ciphertext e that
a BS replies to a SU is about 128 bits. The system communication overhead is
about 2272 + 128 + (128 + 32)/χ = 2400 + 160/χ bits.

Table 2. Communication overhead

Protocol Communication overhead

Xin et al. [10] 2c · ((4m + 1) · |n| + |ts| + |σ|)
Grissa et al. [11] |k| + |char| + |ts| + ρ · c · m2 · (log2(1/ε) + log2(2δ))/ξ + c · |ζHMAC |
Our protocol 2|n| + |ζMAC | + 2|ts| + |msg| + ϑ�

Variables: |ts| is the size of time stamp, |n| is size of n, |ζx| is the output size of x
function. |k| and |char| are the size of secret key and characteristics in [11], respectively.
ρ is the percentage of entries with available channels, ε is the false positive rate of the
cuckoo filter, δ is the number of entries in a bucket of the cuckoo filter, ξ is the load
factor in [11]. |σ| is the size of ring signature in [10]. ϑ� is the size of the message
transmitted between a BS and the DB.

For illustration purpose, we simulate the communication overhead of different
protocols in Fig. 2. From Fig. 2(a) we can know that the communication over-
head of our protocol remains unchanged with increasing number of cells. This
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is because the communication overhead of ours is independent of the number of
cells as analysed in Table 2. Moreover, the communication overheads of Grissa et
al. and Xin et al. become higher with increasing number of cells. We reduce the
range of cell number and plot Fig. 2(b) to elaborate our advantage. As shown
in Fig. 2(b), the communication overhead of Grissa et al. is smaller than ours
when the number of cells is less than 15. However, the number of cells is large
in reality and the communication overhead of Grissa et al. is higher than ours.
Hence, our protocol has a lower communication overhead and a better scalability
as the communication overhead is independent of the number of cells.
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Fig. 2. Communication overhead

Computation Overhead. Table 3 provides the analytical computation over-
head comparison. In our protocol, SUs only need to execute a hashing, a MAC,
an encrypting and a decrypting operations, which are all low computation com-
plexity. Besides, SU needs to compute α2 · β−1 (mod nBS), as shown in Table 3.
Utilizing the Montgomery method [18] can eliminate the need for division in
the modular step. With the Montgomery method, the complexity of computing
α2 · β−1 (mod nBS) is only one Montgomery operation, i.e.,

M(αj , αj) = α2 · β−1. (9)

Therefore, the critical operations required in SUs in our protocol have been
minimized to only a single Montgomery operation [16].

From Table 3, we can know that the computation cost of our protocol is less
than that of Xin et al. on each entity. The total computation overhead of our
protocol is less than that of Xin et al. and Grissa et al. as their protocols have
to execute a high number of operations on DB when m is large.

Latency Reduction. As discussed in communication and computation over-
heads, our protocol has less communication and computation overheads com-
pared with other protocols. The less communication overhead means that our
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Table 3. Computation overhead

Computation overhead

SU BS DB

Xin et al. [10] c · (2m · Sqr + Exp) Ring + 2c · Sqr + E c · (m2 · Sqr + 2m ·
(m+1) ·Mulp+D)

Grissa et al. [11] c · HMAC 3c · Hash ρ·c·m2 ·(3+κ)Hash

Our protocol Mont + Hash +
MAC + E + D

2Exp + 3Mulp +
3Hash+2MAC+D+E

0a

Variables: Mulp, Exp and Sqr denote a modular multiplication, a modular expo-
nentiation and a modular squaring operations. E and D denote the encryption and
decryption operations. κ denotes the maximum kick-out number in the cuckoo filter
in [11]. Ring denote the ring signature operation in [10]. 0a means that the DB only
executes the lookup operation which should be executed in each protocol in order to
get the available channel list. Mont denotes the Montgomery operation in [18].

protocol transmits smaller messages with shorter time in the same network envi-
ronment. For the less computation overhead, all entities in our protocol take a
shorter time to complete all operations compared with other protocols. Summing
up, SUs in our protocol only need shorter latency to get the available channels.

On the other hand, our protocol pre-fetches channels to BSs, which is not
considered in other protocols. All BSs in our protocol authenticate the legitimacy
of SUs and allocate channels to SUs locally and concurrently, which also reduces
the latency of obtaining channels for SUs.

6 Conclusion

In this paper, we propose a practical privacy preserving protocol for database-
driven CRNs that allows SUs to get the available channels in their vicinity effi-
ciently while protecting their privacy. The proposed protocol efficiently reduces
the latency of obtaining available channels for SUs and protects the right of the
legitimate SU by making the illegal SU get nothing. We also analyze the secu-
rity and performance of the proposed protocol to demonstrate its feasibility and
practicality. In our future work, we will work on providing the formal security
proof and more implementations and simulations on performance evaluation.
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Abstract. Software defined network (SDN) is the key part of the next
generation networks. Its central controller enables the high programma-
bility and flexibility. However, SDN can be easily disrupted by a new
DDoS attack which triggers enormous Packet IN messages. Since the
existing solutions focus on checking current network states with content
feature to detect the attack, they can possibly be misled. In this paper, we
propose a detection and defense scheme against the DDoS attack based
on the time feature. Specifically, the time feature is the hit rate gradient
of the flow table. We first extract the temporal behavior of an attack.
A back propagation neural network is trained to extract an attack pat-
tern and used to recognize an attack. Then either a defense or recovery
action will be taken. We test our scheme with the DARPA 1999 intrusion
detection data set and compare our scheme with another method using
sequential probability ratio test (SPRT). The experiment and evaluation
show that our scheme enables the real-time detection, effective defense
and quick recovery from DDoS attacks.

Keywords: DDoS · SDN · BPNN · Time feature · Dynamic recovery

1 Introduction

Software defined network (SDN) is a new network architecture that separates the
control and data planes. A central control plane enables the global view of the
network, which makes SDN programmable and more flexible than a traditional
network. Using SDN can drastically increase the throughput and forwarding
speed in IoT [3] or DCN [1]. However, there are a variety of security concerns
in SDN [2]. One problem is that the central data plane of SDN may lead to the
single point failure, especially when a DDoS attack happens [9].

Especially, there exists an SDN-specific DDoS attack against SDN controller.
Different from the traditional DDoS attack, an attack against the controller
aims to overload the controller and disrupt the entire network. It utilizes the
operations defined by the OpenFlow protocol [11] to launch an attack. In SDN,
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 649–665, 2018.
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the OpenFlow (OF for short) switch encapsulates the packet that matches no
flow entry into a Packet IN message and sends it to the controller. The controller
decapsulates the Packet IN message, then calculates the route and finally pushes
a flow entry to the OF switch. To launch a DDoS attack, an attacker only need
to send enormous fake packets to the OF switch. Since the packets are fake, they
match no existing flow entry and trigger enormous Packet IN messages. Finally,
the controller resources for handling the Packet IN messages will be exhausted
[15].

Normally, the attacker sends random packets to the OF switch as long as
each packet has a different IP address or port from others. Because the attacker
can combine different attacks, such as SYN Flooding, ICMP Flooding, and UDP
Flooding [19], to confuse us, the traditional detection method may be unsuitable
for the hybrid attack. Meanwhile, the attacker uses the OF switch to attack the
controller instead of attacking the controller directly. Therefore, the packets can
be divided and sent to serval switches, but the Packet IN messages shall still be
sent to the controller automatically. Thus, it may not work to detect the attack
against the controller with the traditional method in a single switch.

1.1 Related Work

As SDN is likely to become the heart of the next generation networks, security
issues in SDN become very important. There are many studies on securing SDN
with a focus on detecting DDoS attacks in SDN.

In 2010, Rodrigo Braga et al. [4] proposed a method for detecting a DDoS
attack using OpenFlow. They combined the statistics from an OF switch with
a self-organized map (SOM) to detect a DDoS attack. By using this method,
they detected the DDoS attack without the specific middleware and got a good
accuracy. However, this method was designed for detecting a traditional DDoS
attack but not a DDoS attack against the controller. It is unknown to us whether
this method work to detect a DDoS attack against the controller.

Though studies on the traditional DDoS detection are still active [5,17,20],
many researchers realize that the detection of the DDoS attacks against a con-
troller is more important. Thus, plentiful methods for detecting a DDoS attack
against controller have been proposed [7,8,14,16,18].

Mousavi and St-Hilaire [13] proposed an entropy-based detection of the DDoS
attacks against SDN controllers in 2015. They used the entropy of IP addresses to
detect an attack. When an attack occurs, the attacker sends enormous fake pack-
ets to the OF switch. Consequently, the entropy of incoming packets increases
sharply, which can be used to detect the attack. This method shows a great
promptness, but it may make a misjudgment when the attacker tries to confuse
it [6]. It is not a universal method though it shows a great promptness.

The hit rate of a flow entry can be simply represented by the amount of the
packets that match the flow entry in a fixed time. For example, if a flow entry is
hit 20 times in 1 second, then its hit rate is 20. One primary characteristic of the
attack is that almost every packet has different IP address from another, which
causes the low rate of the flow table. Ping Dong et al. [6] proposed a detection
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method with SPRT. They defined a flow entry with an extremely low hit rate as
“low-traffic flow”. First, they used SPRT to analyze the DARPA 1999 intrusion
detection data set. Then, they used SPRT with the experienced parameters to
detect an attack. This method reduces the possibility of misjudgment since the
normal flows are always continuous but the low-traffic flows are not. It is a
universal method to detect the attack against controller, but they still ignored
the temporal characteristics of a DDoS attack, which could have achieved a faster
detection.

In all methods mentioned before, the feature used to detect an attack is
always a content feature, such as the entropy and the statistics from OF switch.
Thus, the attacker can confuse these detection systems by changing the contents
of malicious packets, such as the distribution of the IP addresses [6]. We notice
that the principle of the attack is to trigger massive Packet IN messages, thus the
attack must cause a sharp decrease in the hit rates. This change is an inherent
behavior feature of the attack. Therefore, we can use the gradients of hit rate as
the time feature to detect the attack.

1.2 Our Contributions

In this paper, we propose a method to detect and defend the DDoS attack
against controller based on time feature. It relies on the detection of the attacking
behavior according to the time feature. First, we collect statistics from the OF
switch, such as the count and duration of each flow entry. Then we calculate
the hit rate with the count and duration of flow entry. The hit rate gradient
is the gradient between two successive hit rates and it shows the changing rate
of the hit rates. For example, if the hit rate changes from 2 to 3, the hit rate
gradient is 1.5. With the multiple successive hit rates, we can calculate hit rate
gradients as the time feature. Then we use the time feature to train a BPNN.
Finally, a DDoS attack can be detected with the BPNN, and the appropriate
response will be taken. In the comparison with the methods mentioned before,
[6,13] particularly, our method has the following advantages:

– First, we use the temporal feature to predict the next state of the network
in some respects. By contrast, the methods mentioned before use the current
network state to detect a DDoS attack. For example, method [6] use low-
traffic flow, which is a current state of flow table, to detect the attack. Thus,
our method can detect the attack earlier.

– Second, the temporal feature is also the inherent behavior feature of the
attack and we use it to detect the attack. It reduces the false positive (FP)
rate caused by attacker’s strategy. The method [13], for example, can be
confused by the attacker and make a misjudgment.

– Finally, we implement a defense method and a dynamic port recovery mecha-
nism, which makes our scheme more complete than method [13] and method
[6]. The defense method interdicts attack flows effectively, while the port
recovery mechanism decreases the negative effect on the legitimate services.
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We have to admit that there are still shortages in our scheme. BPNN is a
classical machine learning algorithm. Compared with other algorithms, it shows
some limitations due to its simple structure. Though our defense method can
effectively protect the controller, it causes the unavailability of the legitimate
services sometimes. The time to recover a victim port is hard to predict and
control. Fortunately, the experiment and evaluation show that our scheme is
still feasible.

The rest of this paper is organized as follows. In Sect. 2, we are going to
introduce the OpenFlow protocol and the BPNN. Details of the method and
experiment are shown in Sects. 3 and 4. Finally, we will present conclusions in
Sect. 5.

2 Background

The OpenFlow protocol is the key protocol of SDN while BPNN is a useful
algorithm in the field of pattern recognition. Attacker utilizes the principle of
OpenFlow to launch an attack and we use the BPNN to detect this attack, so
it is necessary to introduce the OpenFlow and BPNN first.

2.1 OpenFlow

The OpenFlow protocol was proposed by professor N. McKeown in 2008. It sug-
gests separating a network into the control plane and the data plane indepen-
dently, communicating via a secure channel. The overview of OpenFlow archi-
tecture is shown in Fig. 1.

Fig. 1. OpenFlow architecture

In an OF switch, packets are always handled as the “flows”. When a packet
arrives at an OF switch, the switch tries to match the packet with the flow
table which contains many flow entries. If the packet matches any flow entry,
the switch will handle the packet as the instruction and update the counter of
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the flow entry. The packet that matches no flow entry should be encapsulated
into Packet IN message and sent to the controller. Controller makes a decision,
then pushes a flow entry to the OF switch. The process of handling a packet in
the OF switch is shown in Fig. 2.

Controller

Packet

Secure Channel

Flow Entry 1

Flow Entry 2

Flow Entry 3

Flow Entry 4

Packet_IN Flow Entry

Port

OpenFlow Switch

Packet
Forwarding

Fig. 2. Handle process of packet in SDN

According to the OpenFlow 1.0, a flow entry is mainly divided into three
parts: match field, counter, and instructions. The match field consists of many
segments from a packet, such as IP address, MAC address, port, type of protocol
etc. The match field is used to match packet and determine which instruction
should be chosen. The counter stores statistics of the packets matching this flow
entry. As for the instructions, they tell the switch what kind of action should
be taken, such as dropping, queuing or forwarding. Three main parts of a flow
entry are shown in Fig. 3.
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Fig. 3. Flow entry

From Fig. 3 we can see two important segments: “PacketCount” and “Dura-
tion”. Once we get these two statistics from the OF switch, we calculate the
hit rate of the flow table. Furthermore, we can calculate the gradient of hit rate
with successive hit rates.
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2.2 BPNN

Back propagation neural network(BPNN) [10] is one of the most useful artificial
neural networks. It is a supervised neural network. A BPNN commonly consists
of three layers: input layer, hidden layer, and output layer. The input layer and
the output layer are single-layer structure, but the hidden layer can be a multi-
layer structure. A basic BPNN is shown in Fig. 4.

x1

x2

x3

y1

y2

Input Hidden Output

Fig. 4. Back propagation neural network

We choose BPNN to recognize the patterns of the attack since it makes our
method adaptive to the hybrid attacks. Though attacker can confuse a detection
system by combining different types of DDoS attacks, the behavior characteris-
tics of the attack are still unchanged. BPNN needs a long time to train while
little time to calculate, which helps us save a significant time and resource. The
structure of BPNN may seem to be too simple, but it is already sufficient for an
effective detection.

3 Our Scheme

In this section, we are going to present the details of our scheme. The scheme
consists of 5 modules, including:

– Statistics collection module. Statistics collection module collects the statistics
for port P in period T1. The statistics that collected include the duration of
each flow entry, the packet count of each flow entry and the number of flow
entry for port P, represented by Duration, FlowCount, Num respectively.

– Feature extraction module. Feature extraction module calculates the average
hit rate e of flow table in period T1, then calculates the gradient of average hit
rate in T1, finally arranges n the gradients orderly in period T2 = n · T1 (n =
2 , 3 , . . .).

– Attack detection module. Attack detection module mainly consists of a well-
trained BPNN. The BPNN was trained with massive historical samples off-
line. With a well-trained BPNN, attack detection module can recognize the
DDoS attack patterns in real time.
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– Attack defense module. Attack defense module defends the attack in real time.
It pushes a flow entry to the corresponding OF switch, then the switch drops
all packets arriving at victim port P. The result is that malicious packets
from the attacker are entirely intercepted.

– Port recovery module. Port recovery module helps to recover the victim port
automatically. We implement this module with the help of the flow entry
pushed by attack defense module.

The whole working process of our scheme is shown in Fig. 5. And in the
following sections, we will explain how every module works in details.
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Fig. 5. Working process

3.1 Statistics Collection Module

Statistics collection module is embedded in the controller. It asks the controller
for the statistics of port P in period T1. The statistics that collected at time t
include the duration of each flow entry, the packet count of each flow entry and
the number of flow entry for port P. We order these statistics as a vector (P,
Duration, FlowCount, Num).

3.2 Feature Extraction Module

Feature extraction module is also embedded in the controller. We get the time
feature by calculating flow table’s hit rate gradients in this module. First, we
calculate the average hit rate of flow table for port P at time t. The equation
we used is shown as Eq. (1) below.
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et =

∑
f∈FP

FlowCount

Num · ∑f∈FP
Duration

(1)

The f is an existing flow entry in the flow table of the OF switch, and FP is
the set of flow entries in the flow table for port P.

We use Eq. (1) to calculate the average hit rates at time t and t + T1, then
calculate the gradient of average hit rates Δe between t and t + T1 as Eq. (2)
below.

Δe =
et+T1/Numt+T1

et/Numt
(2)

Equation (2) can be transformed as Eq. (3) below.

et+T1

et
= Δe · Numt+T1

Numt
(3)

As we mentioned before, a DDoS attack against controller triggers enormous
Packet IN messages and the malicious packets are formed with a spoofed header.
Therefore, the amount of flow entries increase rapidly while the average hit rate
decrease rapidly. We can see from Eq. (3), the hit rate gradient Δe represents the
relationship between the average hit rate and the number of flow entries. That
is why we choose Δe as an important parameter to detect the DDoS attack.

Finally, we arrange these gradients orderly in period T2 = n·T1(n = 2 , 3 , . . .)
and get a vector of gradients e = (Δe1, Δe2, Δe3, . . . , Δen). The vector e is
the time feature and the input of the BPNN.

3.3 Attack Detection Module

After we get the inputs from feature extraction module, the next step is to train
the BPNN. Since the BPNN is supervised, we have to label the inputs before
training. After labeling, we get the training samples (e, Abnormal, Normal).
The first dimension is a gradients vector, the second and the third dimension are
traffic patterns representing the DDoS attack and the normal traffic respectively.

In the detection phase, we use the well-trained BPNN to detect an attack
in real time. First, we activate the statistic collection module and the feature
extraction module to get a new e, then put it into the BPNN without label-
ing, finally the BPNN judges which class this e belongs to. And we take the
corresponding action according to the result.

We should point out that BPNN can be continuous updated online, even it
has already been employed. The matter is the design of a correction strategy.
Though a single mislabeled sample make little influence on BPNN, multiple
mislabeled samples may lead to a totally wrong result due to the snowball effect.
A correction strategy is necessary. But it involves the optimizing of a machine
learning algorithm and is pretty complex. So we choose a static BPNN instead
until we can design an effective correction strategy.
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3.4 Attack Defense Module

Once a DDoS attack has been detected, this module is going to be activated.
Attack defense module will push a special flow entry to the OF switch. The flow
entry is shown in Table 1.

Table 1. Defense flow entry

Priority Match field Counter Instructions

Minimal In Port = P · · · Action = Drop

The function of this flow entry is to directly drop all packets arriving at port
P. It cuts off the way from attacker to the controller so that the controller can
be well protected. First, the new coming packets trigger no Packet IN message
but update the “Counter” of the flow entry. Meanwhile, the existing flow entries
for legitimate services can still match their packets, since they have a higher
priority. As a result, existing services will not be interdicted, but new services
need a longer time to establish a link.

3.5 Port Recovery Module

Since the attack defense module has shut down port P for new flows, the new
legitimate services can be shut down, too. In order to decrease the negative
influence due to the defense method, we design a port recovery module to recover
the victim ports dynamically. The main idea of this method is contrary to the
detection method. In the detection method, we regard a low hit rate as a symbol
of the attack. As for recovery method, we can expect that there will still exist
massive packets arriving at the port P if the attack still goes on. Thus, the
defense flow entry must show an extremely high hit rate since each unknown
packet hits this flow entry. By calculating the hit rate of defense flow entry and
comparing it with other flow entries representing legitimate flows, we can judge
whether port P is still under attack or not. The complete recovery process is
shown as below.

1. We traverse the flow entries of all the legitimate flow entries and calculate
the average hit rate of them as Eq. (4). If there is no or very few legitimate
flow entries for P, we turn to other ports. Fnormal is the set of flow entries
that belongs to all normal ports.

ē =

∑
f∈Fnormal

FlowCount
∑

f∈Fnormal
Duration

(4)

2. Then, we calculate the hit rate of the flow entry as Eq. (5).

e =
FlowCount

Duration
(5)
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3. Finally, we compare these two hit rates. If the result satisfies Eq. (6), we judge
that the victim port is out of the attack and remove the flow entry.

e

ē
< λ (6)

If we make assumptions that (1) attacker sends packets in a speed p1 (2)
attack lasted for time t1 (3) legitimate users send packets in an average speed
p2 (4) it takes time t2 to recover the victim port since the attack ended. Conse-
quently, we can somehow transfer Eq. (6) into Eq. (7).

p1 · t1 + p2 · t2
p2 · t2 < λ (7)

Furthermore, Eq. (7) can be transformed into Eq. (8).

p1 · t1
p2 · (λ − 1)

< t2 (8)

From Eq. (8), we can see that the time needed to recover the victim port
depends on the attack scale and the λ we set. The larger attack scale is and
the smaller value of λ we set, the longer time it needs to recover the victim.
Normally, a port that had suffered from a large-scale attack is more likely to
be attacked again, thus it will be better to set a longer recovery time for it.
However, a long recovery time makes legitimate services unavailable sometimes.
The existence of λ makes the time controllable. We can set a suitable value of
λ to achieve the effective defense and reduce the recovery time, which will be
shown in the experiment. In general, if the network is time-sensitive, we set a
larger λ; if the network is security-sensitive, we set a smaller λ. In our concern,
the set of a suitable λ requires an experienced administrator, and it is better if
we can enable adaptive λ.

4 Experiment and Evaluation

In the experiment, we trained BPNN with the DARPA 1999 Intrusion Detection
Data Set [12]. In this way, we used the DARPA 1999 Intrusion Detection Data
Set as the source of network flow, then programmed to simulated the controller
and switch instead of the real one. We used a computer with 2.6 GHz Intel Core
i7-6700HQ CPU and 8G RAM to perform the experiment, also, the OS of the
computer is Windows 10 × 64.

4.1 Experiment Parameter

The parameters of experiment include: the period of statistics collection T1, the
period of feature extraction T2, the parameters of BPNN, a number threshold
of flow entries and the threshold 4λ. We set these parameters as Table 2 shows.

We set the T1 as 100 packets time, which means statistics collection module
collects statistics when 100 packets arrive at port P every time. The reasons
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Table 2. Experiment parameters

Parameter Value

T1 100 packets

T2 5 · T1

Input layer nodes 5

Hidden layer nodes 40

Output layer nodes 2

Learning rate 0.25

Positive (attack) samples 500

Negative (normal) samples 1500

Number threshold 30

λ 9

are to decrease the time of detection and lessen the burden of the controller.
Actually, we also collect the statistics when the time changes. This operation
causes that the time of detecting an attack is not always an integer. The T2

decides dimension of the input vector. With a smaller dimension, we can make a
judgment earlier, but it increases the FP value. Through several experiments, we
find it suitable to set the T2 as 5 times of the T1. The number threshold is a check
parameter to decrease FP value. Only when the BPNN gives a positive result
and the number of flow entries exceeds this threshold will we judge that port P
is under attack. Finally, we performed several times experiments to determine
the value of λ.

4.2 Accuracy and Recall

In the detection of the attack, the accuracy and recall are two of the most impor-
tant measurements. The DARPA 1999 Intrusion Detection Data Set includes
the training data and testing data and contains 56 types of attack, 201 attack
instances. After training BPNN with this data set, we begin to test it. Figure 6
shows the attack instances actually occurred on April 5th, 1999.

As we mentioned before, we simulated the controller and switch to test our
scheme with the data. But, it did not decrease the accuracy and recall, since
the statistics supposed to be got from controller and switch can be extracted
directly from the data set.

Theoretically, there are 4 types of attacks that trigger massive Packet IN
messages. The attack principles of 4 kinds of attacks are shown in Table 3.

Since ipsweep attack did not occur, we evaluate our method by detecting 3
attacks.

Figure 7 shows the attack instances detected by [6]. We can see that 3 attack
instances have been detected. Figure 8 shows the attack instances we detected.
Our method detected smurf and neptune, but we did not detect portsweep.
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Fig. 6. Attack instances actually occurred

Table 3. Attack types

Attack Principle

portsweep Attacker sends a few packets, normally, 1 packet to every port of the
target host to determine which port is available to attack

ipsweep Attacker sends a few packets, normally, 1 packet to every host of the
target network to determine which host is available to attack

smurf Attacker sends massive ICMP packets with forged source IP address to
the target host, then the target host replies to all nonexistent source
hosts, and become too busy to handle other legitimate packets

neptune Attacker sends massive SYN packets with different ports to target
host, then the target host replies every SYN packet and waits, finally
all the ports of target host are occupied

However, the portsweep attack detected by [6] triggers only 1 Packet IN message
per second. In fact, portsweep is not quite similar to the attack we try to detect.
Though we did not detect portsweep, we detected another hidden attack and
called it “burst”. It represents a burst of TCP flow with random ports. Compared
with portsweep, it is more likely to be a DDoS attack against controller, since it
triggers massive Packet IN messages. The “burst” is not defined as an attack in
the DARPA 1999 Intrusion Detection Data Set, because the data set is used for
the traditional network intrusions. Also, this flow is not considered as an attack
instance in [6], either.

Fig. 7. Attack instances detected by method [6]
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Fig. 8. Attack instances detected by our method

In fact, the value of the number threshold can be one of the factors that
decide the detecting accuracy. The value of number threshold is the amount of
the flow entries in the flow table. The accuracy is shown in Table 4.

Table 4. Threshold test

Number threshold Actual attacks Detected attacks Misjudgment Error rate

5 6 50 44 0.89

10 6 18 12 0.67

15 6 9 3 0.33

20 6 6 0 0

The 6 attack instances actually occurred are 4 “burst” instances, 1 smurf
instance and 1 neptune instances. From Table 4 we can see, when number thresh-
old increases, the number of misjudgment decreases. For this dataset, it is enough
to set number threshold as 20. Since we set number threshold as 30 to ensure
the accuracy, the attacks we detected in the experiment can be confirmed to
be the real attack. However, the increase of number threshold may decrease the
recall. For example, portsweep triggered only 1 Packet IN message per second,
therefore the amount of the flow entries did not exceed the number threshold
and we did not detect it.

4.3 Promptness

Benefiting from using the gradients of hit rates rather than the hit rate itself, our
method detected attack earlier, since we are detecting a tendency of the attack.
The time it takes to detect 6 attack instances are shown in Table 5.
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Table 5. Time for detection

Attack Time (every 100 packet time)

burst 1 4.41

burst 2 4.45

burst 3 4.48

burst 4 4.45

smurf 4.76

neptune 4.75

As we mentioned before, we also collect statistics when time changes, such as
4.41 shown in Table 5. The average time our method takes to detect an attack is
4.55 times of period T1, in another word, we detect a DDoS attack through the
first 455 packets. Method [6] shows that they detect a DDoS attack by observing
6 successive “low-traffic flows”, which means that it takes at least 6 periods of
observation to detect an attack. Obviously, our method can detect the attack
with fewer observations. It can be expected that an advanced machine learning
algorithm shall help our scheme show a better performance.

4.4 Versatility

The time feature is extracted from the statistics in OF switch. It does not involve
the content characteristics of flows, such as the IP address and protocol, but
involves the behavior characteristics. The time feature can be used to detect
all attacks aiming at disabling controller with massive Packet IN message since
their attack principles are the same. Consequently, our method can detect hybrid
attacks in different scales or protocols.

4.5 Recovery

We have detected 3 kinds of attack and 6 attack instances, then activate the
attack defense module 6 times. All the recovery time are shown in Table 6. The
time is represented as seconds it passed from 08:00:00, for example, 08:00:05 is
represented as “5 s”.

From Table 6 we can see that the average time needed to recover a victim port
is 31 seconds. Moreover, if we set a larger λ, we may even defend 4 “burst” attack
instances with a single flow entry, then the controller only suffered from 441
packets. In our opinion, a time-sensitive network needs a smaller λ while security-
sensitive network needs a larger λ. Since it need an experienced administrator
to set a suitable λ, we may have to find a way to determine the value of λ
automatically.
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Table 6. Time for recovery

Attack Start End Recover Time

burst 1 9609 s 9611 s 9657 s 46 s

burst 2 9729 s 9731 s 9737 s 6 s

burst 3 9849 s 9851 s 9866 s 15 s

burst 4 9969 s 9971 s 9998 s 27 s

smurf 19088 s 19090 s 19127 s 37 s

neptune 36241 s 36651 s 39760 s 55 s

5 Conclusion

In this paper, we proposed a detection and defense method based on the temporal
features of the DDoS attack against the controller. We calculated the gradients
of the average hit rate with the statistics collected from OF switch. Then we used
the gradients as the inputs of a BPNN. A well-trained BPNN can successfully
detect a DDoS attack against a controller, then we defend against the attack
effectively. Furthermore, we designed a method to dynamically recover the victim
port. Our method was evaluated using the DARPA 1999 intrusion detection data
set and compared with [6]. The results show that our method can detect an attack
with greater speed and accuracy.
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Abstract. Transactions using the Bitcoin system, which is built atop a
novel blockchain technology where miners run distributed consensus to
ensure the security, will cause relatively high transaction costs to incen-
tivize miners to behave honestly. Besides, a transaction should wait a
quite long time (about 10 min on average) before being confirmed on the
blockchain, which makes micropayments not cost-effective. In CCS’15,
Pass and shelat proposed three novel micropayment schemes for any
ledger-based transaction system, using the idea of probabilistic payments
suggested by Wheeler (1996) and Rivest (1997), which are called as
the “Lottery-based Micropayments”. However, the one among the three
schemes, which is fully compatible with the current Bitcoin system and
only requires an “invisible” verifiable third party, needs two on-chain
transactions during each execution, even if both the user and the mer-
chant are honest. To reduce the transaction costs and increase efficiency,
this paper proposes a fast lottery-based micropayment scheme to improve
their work. By setting up a time-locked deposit, whose secure utilization
is assured by the security of a primitive called accountable assertions
under the discrete logarithm assumption, our scheme reduces the number
of on-chain transactions to one, and yet maintains the original scheme’s
advantages.

Keywords: Lottery-based micropayments · Decentralized currencies ·
High efficiency · Accountable assertions

1 Introduction

Decentralized cryptocurrency systems based on and led by Bitcoin [1,7,12] have
gained rapid popularity in recent years, and are often quoted as “a peek into the
future financial and payment infrastructure”. Although it is striking using the
idea of maintaining a distributed ledger known as the blockchain to provide a
decentralized and open platform, the blockchain is in its childhood and there’s
still room for improvement.
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Since Satashi Nakamoto proposed Bitcoin [12] in 2008, plenty of work and
debates about the Bitcoin system and the corresponding blockchain technol-
ogy are springing up in various aspects, such as enhancing and analyzing their
security [13,17,20], increasing the efficiency [5,23], etc. We believe that besides
the security, a currency system’s durability also relies on the its efficiency and
convenient level.

However, the inherent scalability insufficiency derived from Bitcoin
blockchain protocol is still one of the main reasons that limit the widely adoption
of Bitcoin-like currency systems. Bitcoin currently bears less than ten transac-
tions per second, compared to the credit card that deals with 10,000 transactions
per second, especially where Visa can achieve 47,000 peak transactions per sec-
ond [24], Bitcoin’s throughput capacity cannot bear real-world demand. As for
the transaction latency, Bitcoin costs 10 min to create a new valid block on aver-
age. In general, only if a block has been backed up by at least six blocks, the
transactions contained can be fully confirmed. This totally costs about one hour
which makes the latency too long to suite for many practical payment scenarios,
such as supermarkets, vending machines, and take-away stores. Another draw-
back of Bitcoin is the transaction size. On average, the size of a transaction is
500 bytes. A turnover of 500 transactions per second would require 10 TB of
additional disk space per year, which is at the limit of a consumer’s storage
capacity [9].

Micropayments, i.e. payments of small amounts like cents or fractions of
a cent, have relatively high transaction costs. Besides what we have discussed
above, the transaction fee for a Bitcoin payment costs at least 0.0001 bitcoin
corresponding to between 2.5 and 10 cents in the year of 2013 and 2014 [14],
which would be higher considering the rise in value of Bitcoin in recent years
[6]. The relative high transaction cost makes micropayments not cost-effective,
where the transferred value is just a few cents. Unfortunately, micropayments
have many practical applications. Imagine Alice wants to use wireless service
that Bob provides. For every minute Alice used, she should pay Bob a relative
small amount of money, and this payment happens in every few minutes. Other
streaming services such as a user pays for every music he downloaded, every video
he watched are all micropayment instances, and some of them can happen very
frequently. This shows that, how to increase efficiency and reduce transaction
costs are central issues when designing micropayment schemes for decentralized
cryptocurrencies like Bitcoin.

One idea to overcome this problem is to reduce transaction volume arriving
at the blockchain by batching multiple transactions into a larger one. The leading
proposals are the micropayment channels [5] and its following work - the Light-
ning Network [16]. However, the approach of micropayment channels limits in
the number of payment recipients to a single predetermined one for each channel.
Although the Lightning Network can mitigate this restriction, there are several
other drawbacks such AS THE Worsening of Bitcoin’s privacy weakness, the
high bandwidth consumption and the massive storage needed.

Compared to the micropayment channels and the Lightning Network, another
interesting proposal, proposed by Pass and shelat at CCS’15 [14], targeting at
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non-channel based peer-to-peer micropayments has a better performance in the
number of payment recipients, meanwhile avoids the drawbacks of the Lightning
Network. Their work is based on the idea of probabilistic payments suggested by
Wheeler [25] and Rivest [18]. The key idea of probabilistic payments is to batch
several small transactions into a large transaction, and this process employs
probabilistic “lottery-based” payments that instead of sending a transaction of
value v, one can also send a lottery ticket whose expected payout is v. That is,
between every η transactions (e.g., η = 100), only one transaction will actually
happen on average, and this transaction will pay η times the amount of a trans-
action should pay. For every payment, it’s just like issuing a “lottery ticket”,
which has a winning probability of 1/η, from a user to a merchant. The advan-
tage of this approach is that only the winning lottery ticket yields in a recorded
transaction, but every (unopened) lottery ticket is a transfer of value.

Pass and shelat presented three micropayment schemes in their paper, and
all of them can support making payments to arbitrary recipients. Compared
with the first scheme whose implementation needs a modification to the exist-
ing Bitcoin script, the second scheme is Bitcoin-compatible by introducing a
verifiable third party T to overcomes this barrier. All of T ’s operations can
be publicly verified by irrefutable evidences (i.e., unforgeable signatures) and it
can be legally punished or replaced if anyone catches T ’s cheating. In reality,
this party T can be instantiated by a currency Exchange [10] in which clients
deposit their money for a better user experience, or any company/organization
that regards its reputation as a central concern. For a currency Exchange, its
reputation is the key factor for gaining clients’ trust and collecting money from
clients. Hence, no such company/organization will risk of losing its reputation.
Therefore, we believe that the usage of T is feasible.

The third scheme inherits the advantages of the former two, furthermore, it
only requires the intervention of an “invisible” verifiable third party T . Namely,
T is not involved in payment executions when both sides of payments are honest.
However, to prevent a user’s cheating by refusing to pay for the services/goods
he has enjoyed, which can break the financial fairness to the merchant, the third
scheme needs two on-chain transactions during each payment execution even if
both sides of a payment are honest. Considering the scalability limit of Bitcoin
blockchain and the frequent uses of micropayments, we believe that every on-
chain transaction’s cutting down is meaningful.

It’s not trivial to design a secure lottery-based micropayment scheme for
decentralized currencies to achieve this goal, meanwhile maintain the prior
scheme’s advantages. The basic security requirement is to prevent double spend-
ing, where users gain additional utilities by issuing the same lottery ticket to
several merchants that multiple of them might win but only one will be able to
cash in his ticket. Another security property, which is important for people to
adopt the scheme in reality, is the financial fairness. It says, neither side of a
payment will loss more than it deserves due to a malicious behavior of the other
side.

Contributions. In this paper we propose a fast lottery-based micropayment
scheme for decentralized currencies like Bitcoin. Our scheme uses a set of
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technologies as well as some primitives to construct a micropayment scheme
focusing on enhancing the third scheme in [14], in reducing transaction costs
and increasing efficiency. By use of a deposit mechanism which is supported by
a primitive called the accountable assertions, our scheme only requires one on-
chain transaction during each execution when both sides of payments are honest,
compared to the two on-chain transactions needed in the prior scheme, and our
scheme can still ensure financial fairness. The secure utilization of the deposit is
assured by the security of the accountable assertions which can prevent double-
spending attack as well as limit the value needed in the deposit. We define two
security properties that should at least be satisfied by a lottery-based micro-
payment scheme for decentralized currencies, called double-spending determent
and financial fairness, and we prove our scheme can achieve these properties.
Furthermore, we give a performance comparison among some related micropay-
ment schemes. More specifically, our micropayment scheme has the following
advantages:

• It reduces the number of on-chain transactions during a payment’s execution
into one without breaking the security of micropayments. Compared to the
prior scheme, our proposal increases efficiency, decreases the latency by half
and reduces the average micropayment transaction fees, which we believe it’s
meaningful especially when micropayments are conducted frequently.

• It only requires an “invisible” verifiable third party T in the process of pay-
ments. When both participants honestly follow their instructions, T is not
involved in a payment.

• It can support for making micropayments to arbitrary recipients.
• It attains financial fairness, especially to merchants, i.e., merchants can get

what he deserves even if users has cheat.
• Our scheme is Bitcoin-compatible. It needs no modification to the existing

Bitcoin script when adopting this scheme to make micropayments.

Paper Organization. We start with the preliminary on the fundamental of the
Bitcoin system and a description of the accountable assertions, also the security
assumptions and standard cryptographic building blocks are concerned in this
section. In Sect. 3, we define some security requirements and briefly review the
third scheme at CCS’15, then we present our proposal with a security analysis.
Section 4 shows a performance comparison. Section 5 concludes the paper.

2 Preliminary

2.1 Background on Bitcoin

Like most cryptocurrencies, Bitcoin is a digital cryptographic currency built
atop a decentralized peer-to-peer network, the blockchain. Every transaction
published to the Bitcoin network can be verified according to some rules called
release conditions, which are realized by the Bitcoin script. Transactions are
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posted to the blockchain within a block after solving a Proof-of-Work (PoW)
puzzle. This work is done by nodes from the Bitcoin network called miners. The
block-contained transactions are publicly readable and verifiable. Once a block
is added into the blockchain, especially backed up by a few blocks, like six, as
its successors, it is very hard to be modified or deleted. We normally regard
blockchain as an append-only decentralized public ledger.

Transaction. Before making transactions in the Bitcoin network, a user gen-
erates at least one Bitcoin account with a ECDSA key pair (pk, sk) and an
(pseudonymous) address. Every user is identified by his addresses1. Informally,
a Bitcoin transaction is to transfer bitcoins from input addresses to output
addresses using valid signatures, w.r.t. input addresses public keys respectively,
to satisfy the predefined release condition. In the following, we use a triple
(a, a′, v) to indicate a transaction transferring v bitcoins from address a to
address a′, which is simplified as (a, a′) to indicate transferring all bitcoins in a
to a′.

We denote a Bitcoin address as a = (pk,Π), where pk is a’s public key, and
Π is a’s release condition. A release condition can be simply seen as a script that
contains a sequence of instructions, which limits the redemption of an account.
We regard Π as a predicate function that returns 0/1. If a user wants to withdraw
v bitcoins in address a to some other address a′, he should present a witness x
to satisfy a’s release condition, such that Π(x, (a, a′, v)) = 1. In most cases, x is
a signature on the transaction (a, a′, v) w.r.t. a’s public key.

Bitcoin Script. The Bitcoin scripting language (“Bitcoin script” for short) is
not Turing-complete. To support the basic functionalities a transaction needed,
Bitcoin includes a list of script instructions [4]. Besides some fundamental ones,
one of the most popular and practical instructions is OP CHECKLOCKTIMEVERIFY
[3], which is used for locking an address until some predetermined point in the
future. We explain the idea behind this instruction.

Lock Time. The lock time mechanism is to allow a transaction output to be made
unspendable until some predetermined time T in the future. For a time-locked
account, if the current time t < T , then the evaluation fails and a transaction
with this account as input is consequently invalid. Only when t ≥ T , the trans-
actions involved can pass the verification and the funds covered are spendable.

A time-locked account usually serves as a deposit to prevent malicious
behaviour. For example, before the locked time T , an account a can only be
redeemed by a witness generated by some specific parties, such as someone
trusted by both sides of a payment. However, after T , a is free and the money
inside can be transferred using a signature w.r.t. a’s public key. This can be very
helpful to a scheme to realize financial fairness.

1 In this paper, we use the terms “address” and “account” interchangeably.
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2.2 Accountable Assertions

Our construction uses a cryptographic primitive called accountable assertions.
This primitive was first proposed by Ruffing et al. [19]. Intuitively, it allows users
to assert statements to contexts for no more than a fixed number. Whenever a
user asserts two distinct statements st1 �= st2 to the same context ct, the private
key of the user can be extracted publicly.

The authors gave out a concrete construction built upon the idea of
chameleon authentication trees [11,21,22]. We describe the accountable asser-
tions using the following algorithms:

• Setup(λ) → params. This algorithm chooses a secure elliptic curve and a base
point g of prime order q (|q| ≥ 2λ bites), where λ is a security parameter.
Let l and n be positive integers defining the depth of a tree and its branching
factor. It outputs (g, q, l, n) as params.

• KeyGen(params) → (pk, sk, auxsk). The key generation algorithm chooses
a key k ← {0, 1}λ for a pseudo-random function Fk, and a random integer
α ∈ Z∗

q to generate a key pair (pk′, sk′) = (X,α) with X = gα. Compute the
root node as x1

i = Fk(p, i, 0), r1i = Fk(p, i, 1), where p is a unique identifier
for the position of the root node, and y1

i = gx1
i Xr1

i for i ∈ {1, ..., n} and set
z = H(y1

1 , ..., y
1
n), where H is a collision-resistant hash function. Finally, it sets

pk := (pk′, z), sk := sk′, auxsk := k.
• Assert(sk, auxsk, ct, st) → τ . Each node Yj = (yj

1, ..., y
j
n) stores n entries,

and aj ∈ {1, ..., n} defines the position in the node. Let Yl represents the leaf
stores the entry with the number ct, where ct ∈ {1, ..., nl}, counted across all
leaves from left to right, and al is the position of this entry within Yl. In the
following, let xj

i = Fk(pj , i, 0), rj
i = Fk(pj , i, 1), where pj is a unique identifier

of the position of the node Yj .
– Compute Yl: Assert statement st to ct by computing r′l

al
= α−1(xl

al
−

S(st)) + rl
al

(mod q), where S is a hash function modeled as a ran-

dom oracle. Observe that gxl
al Xrl

al = yl
al

= gS(st)Xr. For i ∈
{1, ..., n}\{al}, yl

i = gxl
iXrl

i . Let zl−1 = H(yl
1, ..., y

l
n) and let further

fl = (yl
1, ..., y

l
al−1, y

l
al+1, ..., y

l
n).

– Compute the nodes up to the root for h = l − 1, ..., 1: Assert zh with
respect to Yh by computing r′h

ah
= α−1(xh

ah
− zh)+ rh

ah
(mod q). Observe

that gxh
ah Xrh

ah = yh
ah

= gzhXr′h
ah . For i ∈ {1, ..., n}\{ah}, yh

i = gxh
i Xrh

i .
Let zh−1 = H(yh

1 , ..., yh
n) and let further fh = (yh

1 , ..., yh
ah−1, y

h
ah+1, ..., y

h
n).

Finally, it outputs the assertion τ := (r′l
al

, fl, al, ..., r
′1
1, f1, a1).

• Verify(pk, ct, st, τ) → b. The verification algorithm parses pk as (pk′, z), and
τ as (r′l

al
, fl, al, ..., r

′1
1, f1, a1). It first verifies that pk′ is a valid public key,

then it checks the validity of a statement st in a context ct by reconstructing
a path including nodes (Yl, Yl−1, ..., Y1) from a leaf Yl to the root Y1, and
verifies whether H(y1

1 , ..., y
1
n) = z. If any of the above verifications fails, this

algorithm outputs 0. Otherwise, it outputs 1.
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• Extract(pk, ct, st1, τ1, st2, τ2) → sk/⊥. The extraction algorithm computes,
like the verification algorithm, the assertion paths for both st1 and st2 from
the bottom up to the root until a position in the tree is found where the two
paths form a collision, i.e., a position in the tree where values (x1, r1) are
used in the assertion path of st1 and values (x2, r2) are used in the assertion
path of st2 such that gx1Xr1 = gx2Xr2 . Then this algorithm outputs sk =
(x1 − x2)/(r2 − r1) (mod q). If no such position is found, it fails.

We illustrate with Fig. 1. Assume the context ct we would like to assert a
statement maps to the node entry y3

2 . Node entries written in gray background
constitute an assertion path for statement st from a leaf to the root. In this
example, the assertion is τ = (r′3

2, f3, 2, r′2
3, f2, 3, r′1

2, f1, 2).

Fig. 1. A tree with a specific assertion path, where l = 3 and n = 3.

Ruffing, Kate and Schröder showed that the accountable assertions satisfy
completeness, and security properties of extractability and secrecy under the
discrete logarithm assumption. Informally, extractability states whenever two
different statements have been asserted to the same context, the unique private
key can be extracted except for a negligible probability. Opposed to extractabil-
ity, secrecy states if no equivocation happens, i.e., there is a unique statement st
for each context ct, the private key cannot be extracted except for a negligible
probability.

2.3 Assumptions and Building Blocks

In this part, we present assumptions and a few more building blocks involved in
our scheme.

Assumptions. In this paper, we regard the blockchain as a public transaction
ledger who runs a consensus protocol among miners to agree on a global state.
We make the following assumptions:
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• Correctness and availability. We assume the blockchain will compute correctly
following the predefined instructions, and the blockchain is always available.

• Public state. All nodes can see the state of the blockchain at any time, i.e.,
transactions in the blockchain is public. The blockchain can be seen as a
public transaction ledger.

• Time. The blockchain embodies a discrete clock. Time increases in rounds.
The lock time mechanism, described in Sect. 2.1, relies on this discrete clock
to make a decision on the validity of a transaction. Time can be aware by all
nodes in the system.

• Message delivery. Messages will arrive at the blockchain at the beginning of
the next round. This makes the confirmation of any transaction costs a period
of time. An adversary has the ability to arbitrarily reorder messages sent to
the blockchain within a round, which makes the adversary may attempt a
front-running attack (a.k.a. rushing adversary).

• Verifiable third party. We assume, there exists a party that can be partially
trusted in the system. All its behavior is verifiable by irrefutable evidence
(i.e., an unforgeable signature) and it can be punished or replaced if being
caught of “cheating”. In reality, this party can be a currency Exchange, whose
reputation is the key factor for collecting money from clients.

Building Blocks. In addition to the accountable assertions, our construction
uses some standard cryptographic tools as follows.

Commitment Schemes. A (non-interactive) commitment scheme COMM enables
a party to generate a commitment to a given message. We call a commitment
scheme COMM secure if it satisfies security properties of hiding and binding.
Informally, hiding states a commitment does not reveal the committed value,
and binding states a commitment cannot be opened to two different values, i.e.,
it is computationally (or statistically) infeasible to find (r, s, r′, s′), such that,
r �= r′ but COMMs(r) = COMMs′(r′).

Signature Schemes. Our protocol uses signature scheme (Gen,Sig,Vrf) that is
existentially unforgeable under adaptively chosen-message attacks (EUF-CMA)
for all PPT adversaries. Informally, it states that any PPT adversary that is
given the public key of the signature scheme and can query to the signing oracle
for signatures of polynomial-time messages, the adversary still cannot output a
valid pair of signature and the signed message that hasn’t be queried before.

3 Fast Lottery-Based Micropayments

In this section, we provide our fast lottery-based micropayment protocol based
on the prior scheme proposed by Pass and shelat in CCS’15 [14]. First, we
define two important security requirements for lottery-based micropayments for
decentralized currencies. Second, we briefly review the prior scheme. Finally, we
present our protocol and give a security analysis.
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3.1 Security Definitions

We define the following security definitions that we believe should at least be sat-
isfied by lottery-based payments between users and merchants for decentralized
currencies.

Definition 1 (Double-Spending Determent). This property requires that a
malicious user cannot produce two valid spending evidences for different pay-
ments that share the same serial number without being detected or punished.

Definition 2 (Financial Fairness). This property requires that in a lottery-
based payment between a user and a merchant, the user should pay exactly the
same amount of money according to the result of the lottery ticket and his behav-
ior, i.e., whether he cheats, and the merchant can get what he deserves from the
user.

3.2 A Brief Review of the Scheme in CCS’15

In the third scheme of [14], the user U and the merchant M jointly generate
a lottery ticket used to decide whether the merchant should be paid in this
payment by invoking a coin-tossing protocol. Only if the lottery ticket wins, U
should pay η times the amount of every transaction should pay (suppose the
winning probability of the lottery ticket is 1/η). To prevent a malicious U ’s
cheating by withdrawing the money in the account that are supposed to be used
to pay M , or using the same account to conduct payments with someone else (i.e.,
double spending), which both can lead to M ’s loss, this scheme was designed to
send M a credential before M tells U the ticket result. With this credential, M
can transfer bitcoins from U ’s account a to a special account a′. The specialty of
a′ relies on its release condition. It limits the recipient account to be either aU ,
which is fully controlled by U , or aM that belongs to M . Furthermore, the release
condition of a′ demands a 2-of-3 multi-signature from the set {σU , σM , σT } which
are signed by U,M, T respectively. Therefore, U cannot withdraw/transfer the
money in account a′ without the help of M or T . If U and M are honest,
they can complete a payment by themselves. However, if U cheats, M will not
help U otherwise he will suffer a loss, and T will not help U if he suspects U ’s
honesty. In this case, M can ask T ’s help to get the money he deserves from
account a′. If M cheats about his winning and maliciously locks U ’s money into
account a′, U can still withdraw his money with the help of T by providing
a multi-signature of (σU , σT ) to satisfy the release condition of a′. Thus, this
scheme can ensure financial fairness both for the user and the merchant as well
as preventing double-spending attack.

3.3 Our Protocol

We proceed to present the construction of our protocol, shown in Fig. 2. Similar
to the prior scheme, our protocol requires the intervention of an “invisible”
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verifiable third party T , which is involved in an execution only when participants
deviate from their prescribed instructions. All transaction-related instructions
described in our protocol can be conducted using the existing Bitcoin script,
thus, our protocol is Bitcoin-compatible.

We adopt two accounts to prevent potential attacks from U . If U and M
are honest, an execution only involves the first account to transfer an amount of
money when the lottery ticket wins. If, however, a malicious U refuses to pay, M
can be compensated using the second account with T ’s help before a expiry time
T . The second account is a locked deposit of U with a expiry time T . If M can
present a valid evidence showing U has cheated before time T , T will transfer the
same amount of value the merchant deserves from the second account, together
with a public verifiable evidence showing that T ’s computation is correct.

Next, we concern more details. The front-running attack should be prevented
where a malicious user wants to avoid losses by withdrawing his deposit before
M being compensated. We set a period of time T ′ as a safety margin to enable a
successful transfer on the blockchain, e.g., T ′ = 10 min. Thus, when M receives a
ticket from U , he should check whether the current time satisfies t < T −T ′. If it
fails, M should reject and abort. Also, to prevent U ’s double-spending attack by
conducting multiple payments concurrently which makes a deposit insufficient
to pay all victims, we adopt the accountable assertions to limit the number of
payments a deposit can be linked. A malicious user will lose all his money in the
deposit if he ever initiates even one double-spending payment. Moreover, we set
a period of time T̄ as a safety margin to protect U ’s asset when M is malicious
and wants to double his income by showing an evidence to T that U has not
published a transaction, and after that telling U that he wins the lottery. U will
not do any operation if the current time goes out of scope as defined. Finally,
we expect the protocol can be conducted without the intervention of T when U
and M are honest, thus, U should have the ability to withdraw his deposit (i.e.,
money in the second account) by himself after time T .

Money in the first account a = (pka,Πa) gets released if U agrees to a
transaction to M . Money in the second account adep = (pkd,Π

d) can only be
released if either (a) both U and T agree to a transaction before a certain time
T , or (b) U agrees to a transaction after time T . We implement it using the lock
time mechanism. Let Πa(x, (a, a′)) = 1 if and only if x = σ1 is a signature of the
transaction (a, a′) w.r.t. pka. This can be implemented with a standard release
condition. Define Πd(x′, (adep, a′′, v)) = 1 if and only if either (a) before time
T , x′ contains a signature σT of the transaction (adep, a′′, v) w.r.t. pkT , where
v denotes the value being transferred, or (b) after time T , x′ is a signature σ′

U

of the transaction (adep, a′′, v) w.r.t. pkd. In the optimistic case when U and M
honestly follow their instructions, T will not involve into an execution. If M
finds out that U deviates from his instructions before time T , i.e., U refuses to
transfer the money to M , M and T can present a valid witness to release the
same amount of money from adep, and showing an evidence of T ’s honesty.
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Let “[·]” be an operation when inputting a random string, it outputs 1 with a
probability of 1/η, or 0 otherwise. For example, if the last two digits of the input
random string are 00, it outputs 1 and this happens with probability 1/100.

Fig. 2. Fast “Lottery-based” micropayments.

Set Up: A user U generates a Bitcoin key pair (pka, ska) and transfers V = η ·v
bitcoins to an address a = (pka,Πa). U generates another Bitcoin key pair
(pkd, skd) together with accountable assertions keys (pk, sk = skd, auxsk), and
transfers (dV + p) bitcoins to an address adep = (pkd,Π

d) with a expiry time
T , where p is the penalty if U double spends. U keeps an initial deposit state
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state := (T, k = 0, d), where k is a counter and d is the number of payments this
deposit can be involved.

Request: Whenever M wants to request a payment of v bitcoins from U , he
picks a random number r1 ← {0, 1}128, generates a commitment c = COMMs(r1)
where s denotes the string used to open the commitment. M then generates an
address aM for receiving bitcoins during this payment, and sends (c, aM ) to U .

Issuance: To send a probabilistic payment of amount v, U first checks the
serial number of this payment (i.e., the counter k + 1) that not exceeds the
predetermined upper bound d. After that, he picks a random number r2 and
creates two signatures. The first signature σ on (c, r2, aM ) is w.r.t. pka, and the
second signature σU on (adep, aM , V, tU ) is w.r.t. pkd, where tU is the current
time. Then, U creates an assertion τ ← Assert(skd, auxsk, k + 1, c) where k +
1 denotes the serial number of the current payment. Next, U increases the k
recorded in state by 1 to indicate that one more payment has been made, and
sends (σ, σU , τ, k + 1, r2, tU , a, adep) to M .

Judgment: On receiving a message from U , M does the following operations:

1) Verify whether the assertion τ is valid, i.e. Verify(pk, k + 1, c, τ) = 1, and
the current time t < T − T ′ where T ′ is a period of time sufficient for a
transaction being confirmed on the blockchain;

2) Publish the transcript (pk, k + 1, c, τ) on a bulletin board;
3) Check whether σ, σU , a, adep are valid: verify signatures σ, σU with pka and

pkd respectively. Check whether there is enough money in account a and adep,
and both of them are spendable;

4) Check whether [r1
⊕

r2] = 1.

If all of the above conditions hold, M sends U a tuple (x, a, aM ) such that
x = (c, r1, s, r2, σ), c = COMMs(r1), σ is the signature received from U , and
[r1

⊕
r2] = 1. On receiving the message sent by M , U checks the validity of these

conditions and verifies whether the current time t < tU + T̄ . Next, U computes
a signature σ1 on (a, aM ) w.r.t. pka and publishes a transaction from account a
to account aM with value V to the ledger (i.e., the blockchain), using σ1 as a
witness to satisfy the release condition Πa. If U hasn’t published this transaction
until time tU + T̄ , M immediately invokes the Compensation procedure.

Compensation: When T receives a tuple (x′, a, adep, aM ) such that x′ =
(x, σU , tU ), c = COMMs(r1), σ is a valid signature on (c, r2, aM ) w.r.t. pka,
[r1

⊕
r2] = 1, σU is a valid signature on (adep, aM , V, tU ) w.r.t. pkd, and the cur-

rent time t satisfies tU +T̄ ≤ t < T , T checks if there is a transaction from address
a to aM in the Bitcoin network or on the ledger. If not, T signs (adep, aM , V )
w.r.t. pkT , and publishes a transaction from account adep to account aM with
value V to the ledger, using σT as the witness to satisfy the release condition
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Πd before time T . T also publishes an evidence related to this payment showing
its honesty.

Penalty: If there exists two assertions (c, τ) and (c′, τ ′) that corresponding to
the same (pk, k), anyone, including T , can immediately extract sk(= skd). Before
U can withdraw the money in adep, which is only allowed after time T , T can
take out all bitcoins in adep by publishing a signature w.r.t. pkd as an evidence
that U has cheated.

After the expiry time T , U is free to withdraw the remaining money in the
account adep with a signature w.r.t. pkd. Even if there are several merchants
contacting T during the period of T , as long as T has settled these disputes
before time T , the honest merchants can be compensated. It is convenient for
T to merge all honest requests into one larger transaction and only release this
transaction to the ledger.

3.4 Security Analysis

We present three theorems to state that our lottery-based micropayment protocol
can achieve the security properties defined in Sect. 3.1, and we defer the proofs
to Appendix A.

Theorem 1. If COMM is a secure commitment scheme, and the signature
scheme (Gen,Sig,Vrf) is existentially unforgeable under adaptively chosen-
message attacks (EUF-CMA), then the probability that an execution of the
proposed lottery-based micropayment protocol results in an transaction on the
blockchain is exactly 1/η.

Theorem 2. If accountable assertions (Setup, KeyGen, Assert, Verify,
Extract) is extractable, and COMM is a secure commitment scheme, then the
proposed lottery-based micropayment protocol is double-spending deterrable.

Theorem 3. If COMM is a secure commitment scheme, signature scheme
(Gen,Sig,Vrf) is EUF-CMA, and accountable assertions (Setup, KeyGen,
Assert, Verify, Extract) satisfy extractability and secrecy, then the proposed
lottery-based micropayment protocol can achieve financial fairness.

4 Performance Comparison

In this section, we give a brief comparison of the performances among our pro-
tocol, Pass and shelat’s scheme (i.e., the third one) presented at CCS’15 [14],
the full version [15] of CCS’15, and a lottery-based micropayment protocol on
Zerocash [20]. In Table 1, we measure the performances of the four schemes with
the transaction number needed, the financial fairness property, and the commu-
nication and computation costs both on the user and the merchant sides.
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Table 1. Performance comparison

Ref. Transaction
numbera

Financial
fairness

Communication
(in rounds)a

Userb Merchantb

CCS’15 1 off-linec

2 on-chain
Yes 4 6·exp 5·exp

The full
version [15]

2 off-line
1 on-chain

No 3 7·exp 6·exp

DAM 2 off-line
1 on-chain

No 3 10·exp+�d 10·exp+�d

Ours 2 off-line
1 on-chain

Yes 3 6·exp 10·exp

a We only measure the number of transactions (in the 2rd column) and the rounds (in the
4th column) that a winning payment needed between honest parties.
b In comparison of computation cost, we only take into account of the expensive oper-
ations that a winning payment needed between honest parties, where “exp” denotes an
exponentiation operation in group G.
c We divide the transactions involved in a protocol into two categories: off-line and on-
chain, where “off-line” indicates a transaction that can be computed on the fly before an
execution of payments.
d “�”: a Zerocash Pour operation + a NIZK prove operation + 4 (non-)membership prove
operation. “�”: a NIZK verify operation.

Our protocol requires 1 on-chain transaction during each winning micropay-
ment for transferring money from U to M directly. Besides, U creates another
2 off-line transactions, which can be conducted on the fly, to transfer money to
U ’s paying account a and deposit account adep separately.

In the version of Pass and shelat’s third scheme at CCS’15, it requires 1
off-line transaction, which transfers money to U ’s paying account (i.e. account a
in Sect. 3.2), and 2 on-chain transactions. The first on-chain transaction trans-
fers money from account a to a frozen account a′, and the second one transfers
money from a′ to M . Compared to ours, the total number of transactions seems
to remain unchanged, however, one of our off-line transactions, related to adep,
can support for several payments. Considering micropayments can happen fre-
quently, our protocol reduces the average micropayment transaction fees.

The full version [15] improves the third scheme to involve only 1 on-chain
transaction using the multi-signature [2]. Besides 1 off-line transaction for trans-
ferring money to U ’s paying account, it needs an extra deposit account that
uniquely binds to a lottery ticket (i.e. a paying account) and burns on an evi-
dence of double-spending to deal with the front-running/parallel attack. The
size of the deposit requires to be large enough but is unspecified in the paper,
and the uniquely binding limits the number of tickets a user can validly create
due to the requirement of the size of a binding deposit, thus narrows the num-
ber of services a user can enjoy concurrently. Our protocol enables concurrent
micropayments with a same deposit by the use of accountable assertions. This
is a practical extension for applications of micropayments.
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The DAM (Decentralized Anonymous Micropayment) scheme [8], proposed
at EUROCRYPT’17, is a lottery-based micropayment scheme based on Zerocash
[20]. To resolve the tension between the anonymity and double-spending deter-
ment, the DAM scheme involves a deposit account like ours and [15], and intro-
duces plenty of primitives such as NIZK. However, similar to [15], the deposit
burns on an evidence of double-spending. This makes a payment not financial
fair, i.e., M cannot be compensated if U cheats. The computation cost of the
DAM scheme is obviously higher than the other three schemes, and in Table 1
we only take out some very expensive operations in the DAM scheme as a whole
in “	” and “
”.

5 Conclusion

Bitcoin, as well as many crypto-currencies based on the novel blockchain technol-
ogy, has inherent scalability limits such as low capacity in transaction through-
put, long transaction latency, large transaction size and relatively high transac-
tion costs, which makes micropayments not cost-effective. This paper proposed a
fast lottery-based micropayment scheme for decentralized currencies, especially
for Bitcoin. It adopted the idea of probabilistic “lottery-based” micropayments,
but further reduced transaction costs and increased efficiency of a prior scheme
at CCS’15 by establishing a time-locked deposit account with the accountable
assertions. As long as both sides of payments are honest, our scheme can be
conducted without any third party’s involvement and require at most one “on-
chain” transaction during each execution. However, if a user or a merchant is
malicious, our scheme can protect the counterparty’s fund security with the help
of a verifiable third party.
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gram of China (Nos. 2017YFB0802500, 2017YFB0802000), and the National Natural
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A Proofs for Theorems

Theorem 1. If COMM is a secure commitment scheme, and signature scheme
(Gen,Sig,Vrf) is existentially unforgeable under adaptively chosen-message
attacks (EUF-CMA), then the probability that an execution of the proposed
lottery-based micropayment protocol results in an transaction on the blockchain
is exactly 1/η.

Proof. Suppose the user can bias the result and spend less than he ought to be,
which means that after he receiving a commitment c from the merchant, the
user can select a r2 satisfying [r1

⊕
r2] = 0. This equals to that the user can

know r2, the committed value of the commitment c, before the merchant opens
c. This will break the hiding property of the commitment scheme.
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Suppose the merchant can bias the result and earn more money, which means
that he can either present a new r′

1(�= r1) satisfying ([r′
1

⊕
r2] = 1) ∧ (c =

COMMs′(r′
1)) which breaks the binding property of the commitment scheme

where c is the commitment of r1, or he can succeed by presenting a new pair
(r′

2, σ
′) satisfying ([r1

⊕
r′
2] = 1) ∧ (Vrfpka

(σ′, (c, r′
2, a

M )) = 1), and this will
break the existentially unforgeable of the signature scheme. �

Theorem 2. If accountable assertions (Setup, KeyGen, Assert, Verify, Extr−
act) is extractable, and COMM is a secure commitment scheme, then the pro-
posed lottery-based micropayment protocol is double-spending deterrable.

Proof. Suppose an adversary A can break the double-spending determent of our
lottery-based micropayment protocol, then he can produce at least two assertions
τ and τ ′ with τ ← Assert(skd, auxsk, k, c), τ ′ ← Assert(skd, auxsk, k, c′) and
finish the corresponding payments without being caught, where c and c′ belong to
two different payments generated by the corresponding merchants, and k denotes
a serial number. When c �= c′, this means that A can break the extractability
of the accountable assertions. When c = c′, where c = COMMs(r1) and c =
COMMs′(r′

1), according to the binding property of the commitment scheme,
(r1, s) = (r′

1, s
′). However, this happens with only a negligible probability when

two merchants randomly choose the same pair (r1, s) which is used to ensure the
merchants asset security. �

Theorem 3. If COMM is a secure commitment scheme, signature scheme
(Gen,Sig,Vrf) is EUF-CMA, and accountable assertions (Setup, KeyGen,
Assert, Verify,Extract) satisfy extractability and secrecy, then the proposed
lottery-based micropayment protocol can achieve financial fairness.

Proof. Suppose a malicious merchant can break the financial fairness of the user
by receiving more money than the user should pay for the payment. This means
that the merchant can either (1) bias the result of the lottery ticket, or (2)
transfer the money from a to his account aM even if he loses the lottery ticket
by forging a signature σ = Sigska

(a, aM ), or (3) collect all published assertions
related to the user and extract the private key of adep then generate a valid
signature, or (4) transfer the money from adep to his account aM by forging
a signature σ = SigskT

(adep, aM , V ) before time T , or (5) publish a signature
σ = Sigskd

(adep, aM , V ) to withdraw the money in adep after time T .
The condition (1) is infeasible due to our proof for Theorem 1. For the con-

dition (2), (4) and (5), any one of them can break the existentially unforgeable
of the signature scheme. The condition (3) is conflicting with the secrecy of the
accountable assertions. Besides, a transaction published by the user in order to
transfer money from a and a transaction published by T in order to transfer
money from adep will not coexistent, due to the assumptions that the blockchain
is available and public, and the discrete clock blockchain embodies makes the
time in the system is synchronous.

Suppose a malicious user can break the financial fairness of the merchant
by refusing to pay the merchant even the lottery ticket has won. The user may
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refuse to publish a transaction from a to aM , and M cannot obtain the money
he deserves from the deposit account adep by himself. Remember that there exist
a verifiable third party T whose operations should follow the instructions of the
scheme. Thus, a merchant can ask T ’s help to obtain the money from the deposit
account adep when facing a malicious user. The user cannot withdraw the money
in the locked account adep before time T , otherwise it violates the assumption
of the correctness of the blockchain. Although the deposit is unlocked after the
time T and the user can freely withdraw the money, the protocol limits that
every request received by M should be before the time T − T ′ where it leaves a
period of time T ′ for T to handle a dispute.

It remains one more case that should be considered, i.e., the money
in the deposit account adep may be insufficient to compensate M . In this
case, the user has conducted multiple (more than d) payments by issuing
n assertions {τi}n

i=1, where n (n > d) is the number of payments the
user conducts hoping that the deposit cannot afford all merchants compen-
sation requests. As a result, there must be at least two assertions satisfy-
ing (τi ← Assert(skd, auxsk, ki, ci)) ∧ (τj ← Assert(skd, auxsk, kj , cj)) ∧
(Verify(pk, ki, ci, τi) = 1) ∧ (Verify(pk, kj , cj , τj) = 1) ∧ (ki = kj). According
the proof of Theorem 2, this can either break the extractability of the account-
able assertions, or the binding property of the commitment scheme. �
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Abstract. Decentralized ledger-based cryptocurrencies like Bitcoin
present a way to construct payment systems without trusted banks. How-
ever, the anonymity of Bitcoin is fragile. Many altcoins and protocols are
designed to improve Bitcoin on this issue, among which Zerocash is the
first full-fledged anonymous ledger-based currency, using zero-knowledge
proof, specifically zk-SNARK, to protect privacy. However, Zerocash suf-
fers two problems: poor scalability and low efficiency. In this paper, we
address the above issues by constructing a micropayment system in Zero-
cash called Z-Channel. First, we improve Zerocash to support multisig-
nature and time lock functionalities, and prove that the reconstructed
scheme is secure. Then we construct Z-Channel based on the improved
Zerocash scheme. Our experiments demonstrate that Z-Channel signif-
icantly improves the scalability and reduces the confirmation time for
Zerocash payments.

1 Introduction

Decentralized ledger-based cryptocurrencies like Bitcoin [1] present a way to
construct payment systems without trusted banks. After Bitcoin, many digital
currencies try to improve it in different aspects, including functionality [2–5],
consensus scheme [3,6], scalability and efficiency [2,7], and privacy [8,9], etc.

Privacy protection in ledger-based digital currencies has attracted tremen-
dous attention [10]. Bitcoin has been thoroughly analyzed and its privacy is
deemed fragile [11]. Analyzing the transaction graph, values and dates in the
ledger possibly link Bitcoin addresses with real world identities. Mixes are
designed to break the linkability in Bitcoin system. A mix is a trusted party
who mixes coins from many users and gives different coins back to them. How-
ever, coin mixing is time-consuming and centralized, so a mix is required to
be trustworthy. Therefore, decentralized mixes are constructed like TumbleBit
[12], CoinSwap [13], CoinParty [14], CoinShuffle [15] and CoinJoin [16], and alt-
coins such as Zerocoin [17], BlindCoin [8], Mixcoin [18] and Pinocchio coin [19],
etc. However, these solutions still suffer drawbacks: (1) Insufficient performance.
Most of them require more than one round of interactions between many parties.
(2) Lack of functionality. They allows “washing” coins from time to time, but
fail to hide everyday transactions.
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 687–705, 2018.
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In comparison, Zerocash [20] completely conceals the user identity and amount
of payment in each and every transaction. Zerocash uses zero-knowledge proof,
specifically zero-knowledge Succinct Non-interactive ARguments of Knowledge
(zk-SNARKs) [21,22], to protect privacy. However, zero-knowledge proof worsens
the scalability and efficiency problems which are already serious in ledger-based
currencies. In fact, Zerocash transactions are even larger than those of Bitcoin,
and verifying zk-SNARK proof takes longer than verifying a Bitcoin transaction.

For other ledger-based digital currencies, works have been trying to solve the
scalability and efficiency issues. Changing the blocksize [23] straightforwardly
increases the scalability, while compromising efficiency by higher network latency
and longer verification time. The block merging proposed in MimbleWimble
[24] requires a special structure for the blocks and transactions, sacrificing a
majority of the digital currency functionalities. Currently, micropayment channel
[25] is the most promising solution to both scalability and efficiency problems.
Micropayment channel enables Bitcoin users to conduct payments securely off-
chain, promising to support billions of users. However, nobody has proposed to
construct a micropayment system on Zerocash1.

1.1 Our Contribution

In this work we address the above problems by the following contributions: We
develop a micropayment scheme over Zerocash, Z-Channel. Z-Channel allows
numerous users to perform high-frequency transactions off-chain in day-to-day
routine, conducting payments nearly instantly. Meanwhile, the Z-Channels are
established and terminated with strong privacy guarantee.

To implement Z-Channel on Zerocash, we improve the Distributed Anony-
mous Payment (DAP) scheme of Zerocash and propose a new scheme called DAP
Plus (DAP+ for short). DAP+ enriches DAP with multisignature and time lock
features needed by Z-Channel. We give the formal definition of the security of
DAP+ scheme based on the original DAP scheme. We prove that DAP+ scheme
is secure under this definition.

Moreover, we implement the zk-SNARK for the new NP statement, based
on the code of ZCash, and instantiate the Z-Channel protocol. We benchmark
the zero-knowledge proofs and the procedures in Z-Channel protocol. In our
experiment, a payment can be issued within 3 milliseconds, which is significantly
faster than the original Zerocash payment, which requires several minutes for
generating zero-knowledge proof, and dozens of minutes for ledger confirmation.

1.2 Paper Organization

The remainder of the paper is organized as follows. Section 2 introduces the pre-
liminaries needed for understanding our work. Section 3 presents DAP+ scheme.
1 The work of BOLT (Blind Off-chain Lightweight Transactions) [26] mentions Zero-

cash, claiming that if a BOLT is built on Zerocash, it would provide better channel
privacy than built on other currencies. However, BOLT focuses on solving the linka-
bility issue in channels, and does not specify the concrete construction over Zerocash.
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In Sect. 4, we describe the construction of Z-Channel. Section 5 analyzes the
performance of Z-Channel. Section 6 concludes this paper.

2 Preliminaries

2.1 Background on Zk-SNARKs

The zero-knowledge proving scheme in Zerocash is zk-SNARK (Succinct Non-
interactive ARguments of Knowledge) [22]. Suppose Alice has an NP problem
instance x and its witness w. She is proving to Bob that x is a valid instance,
without revealing w to Bob. She inputs x and w in zk-SNARK to generate a
proof π, and sends π instead of w to Bob. Bob then inputs x and π in zk-SNARK
and is told if π is a valid proof of x. Let C be a circuit verifying an NP language
LC . C takes as input an instance x and witness w, and outputs b indicating if
w is a valid witness for x.

A zk-SNARK is a triple of algorithms (KeyGen, Prove, Verify) fulfilling the
above procedure. The algorithm KeyGen(C) outputs a proving key pk and a
verification key vk. The algorithm Prove takes as input an instance x, a witness
w, and pk, and generates a non-interactive proof π for the statement x ∈ LC .
The algorithm Verify takes as input the instance x, the proof π, and vk, and
outputs b indicating if he is convinced that x ∈ LC .

A zk-SNARK has the property of

1. Correctness. If the honest prover can convince the verifier;
2. Proof-of-knowledge. If the verifier accepting a proof implies the prover

knowing the witness;
3. Perfect zero-knowledge. If there exists a simulator which can always gen-

erate the same results for any instance x ∈ LC without knowing witness w.

The work of Zerocash is based on the zk-SNARK implementation proposed
in [27].

2.2 The Zerocash Scheme

Zerocash is constructed by overlaying a Decentralized Anonymous Payment
(DAP) scheme over Bitcoin or any other ledger-based cryptocurrencies, which
we call the basecoin.

DAP introduces a new kind of coin called shielded coin (by contrast, we
call the unspent outputs in basecoin transparent coins), denoted by c =
(cm, v, ρ, apk, r, s), where cm is an information-hiding trapdoor commitment, ρ
is a random string for generating the unique serial number sn for this coin. ρ
together with the denomination v and shielded address apk of the owner are
concealed in cm. r and s are the trapdoors used in commitment.

DAP introduces two types of transactions to handle shielded coins: a mint
transaction txMint transforms transparent coins into a shielded coin, and a pour
transaction txPour conducts payments between shielded coins. txPour could also
transform part of the input shielded coins back to transparent coins.
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A mint transaction txMint = (cm, v, k, s) takes transparent coins as input, and
produces one shielded coin c = (cm, v, apk, r, s) 2. The commitment is conducted
in two steps: all the data except v are committed into an intermediary commit-
ment k (with trapdoor r), which is then committed together with v to obtain
cm (with trapdoor s). The second commitment is opened, i.e. k, s and v are
appended in txMint for others to verify v, while other information are concealed
in k.

A pour transaction txPour = (snold1 , snold2 , cmnew
1 , cmnew

2 , vpub, πPOUR, ∗) takes
two shielded coins cold1 and cold2 as input, and produces two newly generated
shielded coins cnew1 and cnew2 , and a (possibly zero-value) transparent coin of value
vpub. txPour reveals the commitments to new shielded coins, i.e. cmnew

1 and cmnew
2 ,

and the serial numbers of the old coins to prevent trying to spend them again.
The validity of txPour is proved by zero-knowledge proof πPOUR for the following
statement: snold1 and snold2 are valid serial numbers whose ρoldi are respectively
committed in cmold

1 and cmold
2 that exist on the ledger, and I can open the com-

mitments; I can open cmnew
1 and cmnew

2 ; the input and the output are balanced,
i.e. vold

1 + vold
2 = vnew

1 + vnew
2 + vpub; I am owner of the input coins, i.e. for each

i ∈ {1, 2}, I know secret key aold
sk,i corresponding to the address aold

pk,i committed
in coldi .

Above are the main ideas of Zerocash. [20] mentions and solves many other
issues in implementing Zerocash, we only provide a brief description due to space
limitation.

1. To prove the existence of a coin commitment cm on the ledger, all commit-
ments are maintained in a Merkle-tree with root rt.

2. To protect all the public information in txPour (for example, the address of
vpub) from forgery, txPour is protected by a signature σ, whose verification key
pksig is generated on the fly, and protected by zero-knowledge proof.

Finally, the formal definition of DAP scheme consists of algorithms
(Setup, CreateAddress, Mint, Pour, Verify, Receive). The Setup algorithm initial-
izes a DAP instance by invoking the initializers in all the cryptographic building
blocks (for example, KeyGen in zk-SNARK); the CreateAddress algorithm is exe-
cuted by each user to generate a shielded address and its key (apk, ask); the Mint
algorithm outputs a mint transaction and the resulting shielded coin; the Pour
algorithm outputs a pour transaction and the new shielded coins; the Verify
algorithm checks the validity of a mint or pour transaction; finally, the Receive
algorithm scans a ledger and outputs all the shielded coins belonging to a given
shielded address.

2.3 Micropayment Channel

Micropayment channel [25] allows two parties to make payments to each other
without publishing transactions on the ledger. A basic micropayment channel

2 We neglect the transaction fees.
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scheme consists of three protocols: establish channel, update channel, and close
channel. For convenience, we use Alice and Bob in the following description of a
complete execution of a micropayment channel. We use A and B in the subscript
for a coin of address Alice or Bob (AB for a coin in shared address). We use α
and β to differentiate different versions of the same transaction, i.e. symmetric
up to Alice and Bob.

Next, we present the execution procedure of a micropayment channel.

1. Establish channel.
(a) Alice and Bob agree on (vA, vB), the currency they are willing to devote

into the channel, and a shared address addrshr.
(b) They agree on a sharing transaction txshr, which transforms values vA and

vB from Alice and Bob, to a coin cshrAB in address addrshr of value vA +vB.
(c) Alice signs a closing transaction txclsβ for Bob, and Bob signs txclsα for Alice.

txclsα transforms cshrAB to two coins cclsα,A and cclsα,B of value vA and vB to
Alice and Bob respectively. txclsβ transforms cshrAB to two coins cclsβ,A and
cclsβ,B in the same way.

(d) Finally, they publish txshr, and the channel is established. The balance of
a new channel is (vA, vB).

Remarks:
– In case they do not have coins of the exact value before creating txshr,

they can optionally conduct a funding procedure to prepare the coins.
In this case, the input coins to txshr are called funding coins, denoted by
cfundA and cfundB respectively.

– They sign txcls before txshr, so that neither of them can lock the other’s
currency in the shared address forever.

– The implementation of shared address varies for different cryptocurren-
cies. For Bitcoin, this is implemented by paying to multiple addresses. For
Zerocash, however, this functionality is not implemented, and is what our
work aims to provide.

2. Update channel. If Alice pays Bob by Δ, the balance of the channel should
be updated to (vA−Δ, vB+Δ). This procedure is executed without interacting
with the ledger.
(a) Alice signs a new closing transaction txcls

′
β for Bob, and Bob signs txcls

′
α for

Alice. txcls
′

α transforms cshrAB to two coins ccls
′

α,A and ccls
′

α,B of value vA − Δ

and vB + Δ to Alice and Bob respectively; similar for txcls
′

β .
(b) Alice signs a revoking transaction txrevB for Bob, and Bob signs txrevA for

Alice. txrevB transforms cclsα,A to a coin crevB for Bob; txrevA transforms cclsβ,B

to a coin crevA for Alice.
Remarks:

– Each update is associated with a sequence number which increases by one
with each update. And the sequence number of the transactions in each
update are identical to that of the update.

– After an update, the previous closing transactions are rendered obsolete.
The revoking transactions prevents any of the parties from publishing
obsolete closing transaction, by giving all his/her coin in the channel to
the other party.
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– To prevent the revoking transaction from being surpassed by a transaction
immediately following the obsolete closing transaction, the coin cclsα,A is
locked by time T after txclsα is published, while txrevB overrides the time
lock. Implementation of such fine access control over a coin is left to the
cryptocurrencies. For Bitcoin, the pay-to-script feature suffices to do the
job. For Zerocash, the current scheme cannot accomplish this, which is
another issue solved in our work.

3. Close channel. Either Alice or Bob can close the channel any time after
the channel is established, without interacting with the other party. To close
the channel, Alice or Bob publishes his/her own (alpha or beta) version of
the most updated closing transaction, and waits for time T before redeeming
his/her closing coin. The transactions taking the closing coin are called redeem
transactions.

Figure 1 presents an example of execution of micropayment channel.

Fund A

Fund B

Share AB

Close

AB B

Close

A AB

Revoke

B

RedeemA Redeem B

RedeemA

Revoke

A

Redeem B

Close

AB B

Close

A AB

RedeemA Redeem B

RedeemA Redeem B

Sequence�Number�0 Sequence�Number�N......

Fig. 1. Transactions and coins in a closed micropayment channel. The transactions
that are finally confirmed on the ledger are represented in solid. This figure presents
two examples: (1) (Blue) Bob publishes the latest beta version ending the channel in
legal way or (2) (Red) Alice publishes an outdated alpha version, and Bob taking away
all the coins for punishment. (Color figure online)

The establish and closing of a channel involves interaction with the ledger.
They are comparably slow but conducted only once in the lifetime of a channel.
Meanwhile, the update procedure is executed each time a payment is made, and
it can be executed with high frequency.

2.4 Distributed Signature Generation Scheme

The naive implementation of multisignature scheme in Bitcoin, i.e. counting the
number of signatures, reveals some data which compromises the privacy if used
in Zerocash. We implement the multisignature feature in an alternative way,
namely the distributed signature generation scheme [28]. Specifically, we require
the scheme to support the following operations:
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1. Distributed key generation. Multiple parties cooperate to generate a pair
of public/private keys pk and sk. After the protocol is done, pk is known by
all the parties, while sk is invisible to every one. Each party holds a share ski

of the private key.
2. Distributed signature generation. Given a message M , the parties hold-

ing the pieces ski of the private key cooperate to generate a signature σ on
M . Specifically, each party generates a share σi of the signature alone and
broadcasts it to other parties. Anyone obtaining all the shares can recover
the complete signature σ. This signature can be verified by pk and is indis-
tinguishable from the signatures directly signed by sk.

3 DAP Plus: Improved Decentralized Anonymous
Payment Scheme

Our construction of Z-Channel relies on two functionalities: multisignature and
time lock. However, they are not provided by the original Zerocash scheme, i.e.
DAP scheme. To solve this issue, we present DAP Plus, which is an improvement
to the DAP scheme, with support to multisignature and time lock features.

3.1 Main Idea of DAP Plus Scheme

In this subsection, we present the improvements of DAP+ compared to the
original DAP scheme. For convenience, we assume that the involved parties are
Alice and Bob, and Alice is trying to send a coin to Bob.

Commit to a Public Key Lock in the Coin. In Zerocash, a shielded coin c
consists of a commitment cm and some secret data necessary for opening cm. The
commitment involves the following data: the shielded address apk owned by Bob,
the denomination v and a random string ρ (used for generating serial number
sn). In DAP+, we require Alice to additionally commit a public key lock pklk
into cm. pklk is a properly encoded public key of some public signature scheme.
For implementing multisignature functionality, we suggest that it is a distributed
signature generation scheme described in last section, to enable multiple users
to share a public key which is indistinguishable from a public key generated by a
single user. For now we simply assume that Bob generates a pair of keys locally
and sends the public key pklk to Alice for her to commit into cm. To fix the
length of the committed data in cm, Alice commits the hash of pklk, denoted by
pkh = Hash(pklk) instead of pklk. When Bob tries to spend this coin, he has to
append to the transaction a signature σ which is verified by pklk. We denote the
data protected by this signature (for example, the entire transaction, or a short
fixed string) by a function ToBeLocked(), and leave it to be determined by the
application that builds on top of DAP+ scheme.

To allow other parties to verify the signature, pklk should be disclosed as the
coin is spent. The anonymity of Bob against Alice is thus compromised, since
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Alice would immediately perceive when Bob spends the coin, by identifying pklk
published in the transaction. To solve this problem, we let Bob commit pkh into
a commitment pkcm, with his secret key ask as trapdoor, and sends pkcm to
Alice. Therefore, Alice does not know either pklk or its hash pkh, but she is still
able to commit pkh into cm in an indirect way, i.e. committing pkcm into cm. We
modify the zero-knowledge NP statement POUR in [20] for the pour transaction
so that Alice only needs to prove that she knows pkcm for the new coins. When
Bob spends his coin, however, he has to prove that the revealed pkh is correctly
committed in the coins to spend, with his knowledge of ask.

Commit a Time Lock in Coin. Next, we commit a time lock tlk into the
coin. To avoid the clock synchronizing issue, we use the block height as the clock.
For simplicity, we denote the height of the block containing a coin commitment
cm by BH(cm). We then require that Alice appends a minimum block height
MBH in the pour transaction. A transaction is considered invalid if its MBH is
larger than the height of the block containing it, thus cannot get on the ledger
until the block height reaches MBH. For each input coin, Alice should prove that
BH(cm) + tlk < MBH in zero-knowledge.

There is, however, a tricky issue about BH(cm), since it is somehow indepen-
dent from cm, i.e. there is no computational relationship between them. There-
fore, it is hard to prove in zero-knowledge that Alice has input the correct BH(cm)
as a secret input to the zk-SNARK prover. In the meantime, BH(cm) cannot be
disclosed, as this would compromise the privacy of Alice.

We solve this issue by noting that Alice does not have to prove that BH(cm)+
tlk < MBH, but BH(?)+tlk < MBH where BH(?) is the block height of something
that is guaranteed to be later than cm on the ledger and safe to be disclosed.
The best candidate for this is the Merkle-tree root rt, which is used to prove the
existence of the input coin commitment. Each time when a new coin commitment
is appended on a ledger, the root is updated to a new one, thus there is a one-
to-one correspondence between the list of commitments and the history of roots.
We then naturally define the block height of a Merkle-root rt as that of the
corresponding commitment and denote it by BH(rt).

Logical Relationship Between Public Key Lock and Time Lock. If a
coin commits a public key lock pklk and time lock tlk, we say the coin is locked
by pklk with tlk blocks. If tlk is set to the maximum time lock MTL, then we say
the coin is locked by pklk forever. We denote a pair of public key commitment
and time lock by lock = (pkcm, tlk), and a pair of public key lock and signature
by unlock = (pklk, σ). We say unlock unlocks a lock if pklk is a correct opening
of pkcm and the contained signature is valid.

We decide to take the “OR” relationship between the public key lock and
the time lock. That is to say, the transaction is valid either when the time lock
expires or a valid unlock is provided. To say it in another way, a coin is locked
by tlk blocks unless overridden by the signature.
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We accomplish this by adding a overriding boolean flag ovd as a public input
to zk-SNARK, which is true if and only if a valid unlock is appended in the
transaction. Then, Alice only has to prove in zero-knowledge that ovd||(BH(rt)+
tlk < MBH) is true, where || means logical OR.

Note that this logic can be easily modified, without modifying the NP state-
ment POUR. For example, by always setting ovd to false and requiring a valid
unlock, the logic between the locks then becomes “AND”. Similarly, always set-
ting ovd to true totally neglects the time lock. We will use a slightly modified
version of logic in Z-Channel, but for simplicity, we only describe constructing
with basic OR logic in this section.

3.2 Construction of DAP Plus Scheme

A DAP Plus scheme is a tuple of polynomial-time algorithms (Setup,
CreateAddress, CreatePKCM, MintPlus, PourPlus, VerifyPlus, ReceivePlus). Apart
from the improvements mentioned in the previous subsection, the definition and
construction of the algorithms in the DAP+ scheme are similar to the original
DAP scheme in [20]. To save space, we only present the differences in the con-
struction of these algorithms compared to the corresponding ones in the original
DAP scheme. For interested readers we refer the complete construction to the
full version of this paper [20,29].

We first present the cryptographic building blocks mentioned subsequently.

– Information hiding trapdoor commitment COMM.
– Collision resistance and flexible-input-length hash function Hash.
– Distributed public signature scheme (Gdst,Kdst,Sdst,Vdst), where Gdst is for

generating global public parameter ppdst, Kdst is the key generation algorithm,
Sdst is the signing algorithm and Vdst is the verification algorithm.

Next, we present the detailed difference in the construction of the algorithms
in DAP+ scheme compared to those in DAP scheme. For simplicity, we use
subscript 1..2 to represent a pair each with subscript 1 and 2. For example, cold1..2

represents cold1 , cold2 .

System Setup. Given security parameter λ, the algorithm Setup generates a
set of public parameters pp. It is executed by a trusted party only once at the
startup of the ledger, and made public to all parties. Afterwards, no trusted
party is needed.

Apart from the executions mentioned in the original Setup algorithm in DAP
scheme, in DAP+ this algorithm does the following:

1. Compute ppdst = Gdst().
2. Add ppdst to pp.

Create Address. Given public parameter pp, the algorithm CreateAddress out-
puts a new shielded address and its secret key in a pair (apk, ask). The construc-
tion of CreateAddress in DAP+ is exactly the same to that in DAP.
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Create Public Key Commitment. Given public parameter pp and address
secret key addrsk, the algorithm CreatePKCM generates a key pair for the dis-
tributed signature scheme, and a commitment for the public key.

This algorithm is new in DAP+ scheme, so we present the complete con-
struction as follows:

1. Compute (pkdst, skdst) = Kdst(ppdst).
2. Compute pkh := Hash(pkdst).
3. Parse addrsk as (ask, skenc), compute pkcm := COMMask

(pkh).
4. Output pkdst, skdst, pkcm.

For complete anonymity, each time Alice tries to generate a coin (via MintPlus
or PourPlus algorithm introduced later) for Bob, Bob invokes CreatePKCM algo-
rithm to generate a fresh public key commitment pkcm and sends the pkcm to
Alice. For privacy, each generated pkcm must be used only once. It is recom-
mended that a user stores the output tuples in the wallet, and whenever a new
coin is received, mark the tuple containing the corresponding pkcm as already
used. A coin that uses a pkcm already used should be considered invalid.

Mint Coin. The MintPlus algorithm outputs a shielded coin and a mint trans-
action, which transforms some transparent coins into shielded coins with equal
value.

Compared to the Mint algorithm in DAP scheme, the MintPlus algorithm
behaves differently in the following respects.

1. Additionally take as input a lock lock.
2. Additionally commit lock into the intermediary coin commitment, i.e. com-

pute
k := COMMr(apk, ρ, lock).

3. Add lock to the output coin c.

Pour Algorithm. The PourPlus algorithm outputs two shielded coins and a
pour transaction, which transfers values from two input shielded coins into two
new shielded coins, and optionally transfers part of the input value back to a
transparent coin.

Compared to the Pour algorithm in DAP scheme, the PourPlus algorithm
makes the following modifications.

– Input:
1. Additionally take as input the minimal block height MBH.
2. Input two Merkle-roots rt1..2 instead of one rt, i.e. use separate roots for

two old coins.
3. For each new coin cnewi additionally input a lock locknewi .
4. Each old coin coldi additionally contains a lock lockoldi .
5. For each old coin coldi additionally input a (possibly empty) secret key

skdst,i.
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– Procedure:
1. Replace the part of generating new coin with the procedure of MintPlus.
2. Replace the zero-knowledge proof with one of the new statement (see

paragraph “NP statement”).
3. In the part of preventing forgery, add the following to the message to be

protected: MBH, pklkold1..2.
4. Add the unlock procedure:

i. Compute msg := ToBeLocked().
ii. Let ovdi := BH(rti) + tlkoldi ≥ MBH.
iii. Compute3 σi := Sdst(skdst,i,msg) if ovdi, or let σi :=⊥ if not ovdi.
iv. Let unlocki := (pklkoldi , σi).

– Output:
1. In each output coin cnewi , add the lock locknewi .
2. Add to the pour transaction MBH, unlock1..2.

Verify Transactions. Given public parameters pp, a transaction tx and a ledger
L, the VerifyPlus algorithm outputs a bit b indicating if a given transaction is
valid on a ledger.

If tx is a mint transaction, VerifyPlus behaves exactly as the Verify algorithm
in DAP scheme.

If tx is a pour transaction, VerifyPlus behaves differently in the following
respects.

1. Check the minimum block height MBH, if it is larger than the current block
height, output b := 0 and exit.

2. In the part of preventing forgery, add the following to the message against
which the signature is verified: MBH and pklkold1..2.

3. Check the validity of unlock:
(a) If the signature σi in unlocki is empty, set ovdi to false, for i = 1, 2.
(b) If the signature σi in unlocki is not empty, compute msg = ToBeLocked()

and check Vdst(pklki,msg, σi) for i = 1, 2. If any check fails, output b := 0
and exit.

4. Check the zero-knowledge proof according to the new NP statement.

Receive Coins. Given public parameter pp, a shielded address and its key
(apk, ask), and a ledger L, the ReceivePlus algorithm scans the ledger and outputs
coins on the ledger belonging to a given shielded address.

Compared to the Receive algorithm in DAP scheme, after finding out a coin
belonging to the given address, the ReceivePlus algorithm additionally checks the
pkcm in the coin to make sure that it is in the wallet and not marked as already
used.

3 This procedure may be executed distributedly, where the input skdst,i is shared by
more than one parties, and σi is synthesized from the shared signatures.
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NP Statement. We modify the NP statement POUR as follows:

– Public input:
1. Use two Merkle-roots rt1..2 instead of one rt.
2. Add minimum block height MBH.
3. For each old coin, add pkholdi = Hash(pklkoldi ) and ovdi computed as in

PourPlus and VerifyPlus algorithm.
– Private input: add the locks lockoldi and locknewi in the corresponding coins.
– Statement:

1. For each new coin, replace the commitment validity check with the fol-
lowing equation

cmnew
i = COMMsnew

i
(vnew

i ,COMMrnew
i

(anew
pk,i, ρ

new
i , locknewi )).

2. For each old coin, replace the commitment validity check with the follow-
ing equation

cmold
i = COMMsold

i
(vold

i ,COMMrold
i

(aold
pk,i, ρ

old
i ,COMMaold

sk,i
(pkholdi ), tlkoldi )).

3. For each old coin, the time lock either expires or is overridden, i.e.

ovdi||(BH(rti) + tlkoldi < MBH)

3.3 Security of DAP Plus Scheme

The security of DAP+ scheme is defined in a similar way as that of DAP scheme.
We refer to the full version of this paper [29] for the complete security definition
and the security proof.

4 Z-Channel

We present the micropayment system over Zerocash, which we call Z-Channel.
Z-Channel follows the structure of micropayment channel presented in Sect. 2.3.
We first give the main idea of Z-Channel, then present the complete protocol.

4.1 Main Idea of Z-Channel

In the micropayment scheme, the parties generate many transactions during each
update. In Zerocash, due to zero-knowledge proof, this will be slow. We consider
letting the parties hold a summary of the transaction instead of a complete one.
Define the note of a pour transaction to be the tuple (snold1 , snold2 , cmnew

1 , cmnew
2 , ∗),

where ∗ is data of the public output4. The note specifies the behavior of the pour
transaction. Recall that we left the ToBeLocked() function in DAP+ scheme to
be defined by the application. We let this function to return the note of the pour
transaction.
4 In Z-Channel, the public output is always zero, so we neglect it in the sequel.
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Context of a Z-Channel. If Alice and Bob negotiate the random data (namely
r, s, ρ, (ask, apk)) needed in every coin in the channel, the communication cost
is tremendous. We consider letting them negotiate a random string seed, and
generate all random data with a pseudorandom function. We assign a unique tag
to each random string for distinction. We use the superscripts and subscripts of
the coin to denote the tag, for example, tagclsβ,A denotes the tag of cclsβ,A.

In the protocol, only a limited number of transactions (six, to be specific)
will be published on the ledger, a limited number of public keys suffice to ensure
the uniqueness of public key locks in each published transaction. They can be
determined at the start of the protocol. We define the context of a Z-Channel
ctx to be a tuple of seed and all the public key locks. Given the context and the
denomination, each coin in the Z-Channel is completely determined, i.e. we can
define the procedure c := GetCoin(ctx, v, tag) where tag specifies which coin to
compute.

Relationship Between Time Lock and Public Key Lock. The closing
coins cclsα,A and cclsβ,B are locked by T blocks, by the default specification of
DAP+ scheme, the coin is spendable when either lock is resolved, so both
Alice and Bob can spend the coins after T blocks. We have to modify the logic
relationship between time lock and public key lock. We define two functions
ToBeLockedS() := 0‖ToBeLocked() and ToBeLockedW() := 1‖ToBeLocked(). We
require that a valid pour transaction contains a signature verified by the public
key lock on either ToBeLockedS() or ToBeLockedW(). Furthermore, if the signa-
ture is verified on ToBeLockedS(), we call it a strong signature, otherwise it is
weak ; we specify that only a strong signature can override the time lock.

When Alice signs txclsβ for Bob, she simultaneously signs txrdmB which sends
cclsβ,B to crdmB owned by Bob, with a weak signature. Denote the procedure of
signing the notes for the other party in the update of sequence number seq with
balance (vA, vB) by (σ1, σ2) := SignNote(vA, vB , seq). When Bob signs txrevA for
Alice, which sends cclsβ,B to crevA , he signs with strong signature. Therefore, if
the closing coin is not revoked, after publishing txclsβ , Bob can wait T blocks
before publishing txrdmB and get his coin back, while Alice can never get cclsβ,B . If
a revoked txclsβ is published, Alice publishes txrevA which immediately takes cclsβ,B

away. Table 1 summarizes all the public keys and time locks of each coin.

Table 1. Coin lock specifications in Z-Channel. The public keys with single subscript
are generated by the corresponding parties locally and sent to the other. Those with
double subscripts are generated in distributed way. MTL is the maximum time lock.

c pklk tlk c pklk tlk c pklk tlk c pklk tlk

cfundA pkfundA MTL cfundB pkfundB MTL cshr pkshrAB MTL

cclsα,A,i pkclsAB T cclsβ,A,i pkclsA MTL cclsβ,B,i pkclsAB T cclsα,B,i pkclsB MTL

crdmA pkrdmA MTL crdmB pkrdmB MTL crevA pkrevA MTL crevB pkrevB MTL
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4.2 Construction of Z-Channel Protocol

A Z-Channel Protocol ZCP is a tuple of subprotocols (Establish, Update, Close).
We present the construction of the subprotocols in Algorithms 1, 2 and 3. In
Algorithms 1 and 2 we divide (by horizontal rule) the procedures into groups.
In each group the procedures are executed regardless of the presented order,
while different groups should be finished in sequence. For clarity, we omit the
description of sending data to the other party, or checking the correctness, etc.
In each group, if they fall into dispute, any of them can immediately abort the
protocol5.

Establish the Channel. Alice and Bob agree on the context (seed and all
public keys) of a Z-Channel. After that, they publish the funding coins and the
share coin. This protocol is formalized in Algorithm 1.

Algorithm 1: Establish Protocol
Alice and Bob agree on seed, vA and vB ;

Alice and Bob distributedly generate pkshrAB and pkclsAB ;

Alice generates pkfundA , pkclsA , pkrdmA , pkrevA ;

Bob generates pkfundB , pkclsB , pkrdmB , pkrevB ;

Let ctx := (seed, pkfundA , pkclsA , pkrdmA , pkrevA , pkfundB , pkclsB , pkrdmB , pkrevB , pkshrAB , pkclsAB);
Alice computes SignNote(vB , vA, 0);
Bob computes SignNote(vA, vB , 0);

Alice signs (snfundA , snfundB , cmshr, cmdmy);

Bob signs (snfundA , snfundB , cmshr, cmdmy);

Alice publishes cfundA := GetCoin(ctx, vA, tagfundA )

Bob publishes cfundB := GetCoin(ctx, vB , tagfundB )

Alice/Bob publishes cshr;

Update the State of Channel. To update the channel, Alice and Bob sign
notes for new closing transactions for each other. After that, they sign revo-
cations for each other to revoke the old version of closing transactions. This
protocol is formalized in Algorithm 2.

5 When the channel is already established, to abort means executing the Close proto-
col.
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Algorithm 2: Update Protocol
Alice and Bob agree on vA,i and vB,i;

Alice computes SignNote(vB,i, vA,i, i);
Bob computes SignNote(vA,i, vB,i, i);

Alice signs (snclsα,A,i, sn
dmy, cmrev

B , cmdmy);

Bob signs (snclsβ,B,i, sn
dmy, cmrev

A , cmdmy);

Close the Channel. Let Alice be the party that actively closes the chan-
nel. Alice publishes the most updated closing transaction. Then they publish
redeeming transactions to take away their coins. Alice waits for T blocks before
publishing the redeeming transaction. This protocol is formalized in Algorithm 3.

Algorithm 3: Close Protocol

Alice publishes cclsα ;

Bob publishes crdmB ;

Alice waits T blocks and publishes crdmA ;

4.3 Security of Z-Channel Protocol

Due to space limitation, we refer to the full version of this paper [29] for the
security definition and proof.

5 Performance Analysis

5.1 Instantiation of DAP Plus and Z-Channel

Instantiation of DAP Plus. Our implementation of DAP+ is based on that
of ZCash [30], which is the most popular implementation of DAP scheme. ZCash
follows the idea of DAP scheme, but modifies the algorithms and data structures
dramatically. Despite that, our improvements in DAP+ can be applied directly
to ZCash. For details of ZCash we refer interested readers to [30].

We implement the distributed signature generation scheme with EC-Schnorr
signature [28]. We take SHA256 as the public key hash function Hash. We com-
pute pkcm with trapdoor ask (which is 252-bit string in ZCash), by taking the
SHA256 compression of their concatenation ask‖pkh prefixed by four zero-bits.
The time lock is set as a 64-bit integer. As in ZCash, we abandon the trapdoor
s and compute the coin commitment as the SHA256 of the concatenation of all
the coin data.
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Instantiation of Z-Channel. For the distributed generation of Schnorr keys
and signature, we take the following simple procedures:

1. For key generation, Alice generates random big integer a and computes A =
aG locally, where G is the generator of the elliptic curve group used in the EC-
Schnorr signature scheme, and Bob generates b and B = bG; Alice commits
A to Bob, Bob sends B to Alice, and Alice sends A to Bob; finally, the shared
public key is A + B, and the shared secret key is a + b.

2. For signature generation, they first run a key generation procedure to agree
on K = k1G + k2G, and Alice computes signature share by e = H(xK‖M),
s1 = k1 − ae, σ1 = (e, s1), where H is hash function and M is the message to
sign; Bob computes σ2 similarly; the complete signature is σ = (e, s1 + s2).

For the consensus of secret seed, assume Alice and Bob have a secure commu-
nication channel. Alice and Bob generate random 256-bit strings a and b; Alice
commits a to Bob, Bob sends b to Alice, and Alice sends a to Bob; the seed is
seed = a ⊕ b.

5.2 Performance of Zero-Knowledge Proof in DAP Plus

We construct the circuit of the new NP statement for zk-SNARK based on the
code of ZCash. Table 2 shows the performance of the zero-knowledge proof pro-
cedures, in comparison with that of the original DAP scheme. The modifications
introduced in DAP+ scheme slightly (around 0.1% to 8%) increase the key sizes
and the time consumption, as expected.

Table 2. Performance of zero-knowledge proof

#Repeat Mean Std Max Min

Platform Ubuntu 16.04 LTS 64 bit on Intel Core

i7-5500U @ 2.40GHz 7.7GB Memory

DAP PK size 465MB

DAP+ PK size 516MB

DAP KeyGen time 5 340.44 s 6.2270 s 348.15 s 333.38 s DAP VK size 773 B

DAP+ KeyGen time 5 367.48 s 4.3756 s 372.48 s 362.76 s DAP+ VK size 932 B

Platform Ubuntu 17.04 64 bit on Intel Core

i5-4590 @ 3.30GHz 3.6GB Memory

DAP Prove time 15 98.06 s 0.4914 s 99.490 s 97.558 s

DAP+ Prove time 15 101.22 s 2.5206 s 107.52 s 98.089 s

DAP Verify time 1500 23.43ms 0.509ms 25.4ms 23.3ms

DAP+ Verify time 1500 23.46ms 0.128ms 26.3ms 23.4ms

5.3 Performance of Z-Channel Protocol Between Single Pairs

In testing performance of a single Z-Channel, we run the Z-Channel clients on
localhost to minimize the effect of real network latency, and simulate different
network latencies. Table 3 shows the result.



Z-Channel: Scalable and Efficient Scheme in Zerocash 703

Table 3. Performance of Z-Channel

#Repeat Mean Std Max Min

Platform Ubuntu 17.04 64 bit on Intel Core

i5-4590 @ 3.30GHz 3.6GB Memory

Establish time 26.59ms

Update time 1000 3.778ms 1.238ms 22.5ms 3.467ms Close time 0.3749 ms

6 Conclusion

We develop Z-Channel, a micropayment channel scheme over Zerocash. In par-
ticular, we improve the original DAP scheme of Zerocash and propose DAP Plus,
which supports multisignature and time lock functionalities that are essential in
implementing micropayment channels. We then construct the Z-Channel pro-
tocol, which allows numerous payments conducted and confirmed off-chain in
short periods of time. The privacy protection provided by Z-Channel ensures
that the identities of the parties and the balances of the channels and even the
existence of the channel are kept secret. Finally, we implement Z-Channel pro-
tocol, and our experiments demonstrate that Z-Channel significantly improves
the scalability and reduces the average payment time of Zerocash.
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Abstract. Recently, due to the inherent restriction of Bitcoin design,
the throughput of Bitcoin blockchain protocol fails to meet the daily
needs, leaving the scalability technology in dire need to provide better
efficiency. To address this issue, numerous solutions have been proposed,
including blocksize expansion, off-chain transactions and block structure
modification. Among them, Bitcoin-NG, a scalable blockchain protocol
introduced by Eyal et al. in USENIX 2016, improves scalability while
simultaneously avoiding the deterioration of other metrics in the net-
work. Bitcoin-NG has two types of blocks: key blocks for leader election
and microblocks that contain ledger entries. Eyal et al. assert that the
proportion of fee allocation of transactions in microblocks is bounded by
miners’ mining power ratio out of all mining power in the system. Specif-
ically, the upper bound is determined by the incentive sub-mechanism
of longest chain extension, while the lower bound determined by the
incentive sub-mechanism of transaction inclusion. We revisit the incen-
tive mechanism of Bitcoin-NG. We point out that Eyal et al. neglect on
the calculation of lower bound and manifest the over-simplification in
the analysis of upper bound in detail. After that, the correct incentive
mechanism is derived. Finally, we put forward an optimal proportion of
transaction fee distribution.

Keywords: Bitcoin · Bitcoin-NG · Blockchain
Incentive mechanism · Scalability

1 Introduction

Bitcoin, a decentralized digital cryptocurrency, was created by Nakamoto in
2008 [9]. Transactions in Bitcoin are broadcast to a peer-to-peer network, where
records are kept by miners in a data structure called blockchain [10]. The
blockchain technology provides a decentralized, open, untampered ledger, that
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promises to become the infrastructure for many real-word applications, such as
asset management, insurance and payments.

Despite its potential, Bitcoin blockchain suffers significantly from the scala-
bility problem. Increasing scalability results in the deterioration of other metrics
and the damage of system security. While the transaction processing speed fail-
ing to meet the daily needs, the scaling of Bitcoin blockchain has become a
hot research area. Andresen [1] advocated for an increase of the block size limit
in a predictable way for a period of time. By increasing the size of individual
blocks, more transactions could be accommodated. Poon and Dryja [12] claimed
to achieve frequent micropayments off-chain through pre-established channels
to avoid a large number of small transactions occupying blockchain capacity.
No matter how many off-chain transactions there are, no more burden will be
imposed on the on-line blockchain. Croman et al. [3] discussed the challenges
of the scalability of the blockchain in Bitcoin in general, and conclude that to
maximize the amount of transactions that the Bitcoin blockchain can process,
the basic structure of the blockchain needs to be redesigned.

Recently, Eyal et al. [4] introduced a scalable blockchain protocol, which
is called Bitcoin-NG. Its latency is limited only by the propagation delay of
the network, and its bandwidth is limited only by the processing capacity of the
individual nodes. It can improve the scalability of the system to a certain extent,
while maintaining other system metrics, such as performance and security, at a
relatively good level. Bitcoin-NG is able to provide consensus mechanisms to
demanding applications around the globe, including online payments, digital
asset transactions and smart contracts.

The Bitcoin-NG incentive mechanism contains three sub-mechanisms: heavi-
est chain extension, transaction inclusion and longest chain extension. The incen-
tive sub-mechanism of heaviest chain extension encourages miners to expand
the chain that contains the most amount of work (the main chain), while pun-
ishing miners who extend the non-heaviest branch by deducting remuneration.
The incentive sub-mechanism of transaction inclusion encourages miners to put
new transactions into their own microblock and publicize it by allocating the
transaction fee to the current leader and the next leader according to a certain
proportion. The incentive sub-mechanism of longest chain extension also allows
certain allocation of the transaction fee to motivate the miners to extend the
longest chain by mining on the last microblock produced by the current leader.
However, Eyal et al. fail to take into account the possibility that current leader
might continue mining to become the next leader after putting a transaction into
a microblock. Consequently, there is a negligence in the calculation of incentive
sub-mechanism of transaction inclusion. Meanwhile, Eyal et al. over-simplify an
important parameter in the calculation of incentive sub-mechanism of longest
chain extension.

We revisit the Bitcoin-NG incentive mechanism in detail. We point out the
errors in the analysis of two incentive sub-mechanisms, which are the negligence
in transaction inclusion and the over-simplification in longest chain extension,
and present a refined analysis. Finally, we propose an optimal proportion of
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transaction fee distribution, which is more reasonable compared to that claimed
by Eyal et al.

In this paper, we make the following key contributions:

– We describe the Bitcoin-NG incentive mechanism in the form of schematic
diagrams and visually represent the principle of three incentive sub-
mechanisms in detail, which greatly facilitate the understanding of Bitcoin-
NG.

– We point out the negligence in the analysis of incentive sub-mechanism of
transaction inclusion, which ignores the possibility that current leader can
continue mining and become the next leader after it puts transactions into
microblocks. This negligence not only misleads their analysis of the incentive
mechanism, but also results in an unreasonable proportion of transaction fee
distribution in Bitcoin-NG protocol.

– We point out the over-simplification in the analysis of incentive sub-
mechanism of the longest chain extension. The correct calculation is presented
instead, laying a solid foundation for the analysis of optimal allocation of
transaction fee.

– We give a correct analysis of Bitcoin-NG incentive mechanism in detail and
propose an optimal proportion of transaction fee allocation using rigorous
logical deductions.

1.1 Related Work

Since the original proposition of Bitcoin-NG blockchain protocol, researchers
have made a series of subsequent improvements. Kokoris-Kogias et al. [6] com-
bined the consensus mechanism of practical byzantine fault tolerance (PBFT)
algorithm and the collective signing of CoSi [14] with Bitcoin-NG, designing
the ByzCoin, which enables the reduction of the consensus delay and simulta-
neously realizes the enhancement of the transaction throughput. Luu et al. [8]
further designed ELASTICO, a new scalable agreement protocol with identity
exchange, partition confirmation and commission agreement mechanism and tol-
erates byzantine adversaries. ELASTICO increases the transaction throughput
almost linearly with the computational power of the network. It also solves the
problem of the significant increase in the consensus delay caused by scaling in
Bitcoin-NG. On the basis of ELASTICO, a new distributed protocol OmniLedger
is deisigned by Kokoris-kogias et al. [7], realizing fast verification, continuous
transaction processing and atomic cross-shard transaction. In this way, the dis-
advantages of ELASTICO such as poor bias, high failure rate and atomicity of
transaction cost are overcome.

Organization. In Sect. 2, we contrast Bitcoin-NG blockchain and the Bitcoin
blockchain. In Sect. 3, we recall the Bitcoin-NG incentive mechanism, consisting
of three contains three sub-mechanisms, which are heaviest chain extension,
transaction inclusion and longest chain extension. In Sect. 4, we point out and
correct the errors in the analysis of the Bitcoin-NG. In Sect. 5, we propose a
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refined analysis of the optimal proportion of transaction fee distribution. Finally,
we give a conclusion in Sect. 6.

2 Contrasting Bitcoin-NG Blockchain and Bitcoin
Blockchain

This section mainly contrasts Bitcoin-NG blockchain with Bitcoin blockchain.
The readers are referred to [2,4] for more detailed information.

Fig. 1. The high-level structure of Bitcoin blockchain, including basic structure, mining
reward and transaction structure.

Bitcoin Blockchain. In Bitcoin blockchain protocol [9], A and B are two blocks,
as shown in Fig. 1. Any node in Bitcoin P2P network can become a miner min-
ing for reward. Miners group transactions into a block and keep trying to find a
nonce in order to make the hash value of the block header smaller than the target
value set by the system. This process is called proof-of-work. The system adjusts
the difficulty of proof-of-work by changing the target value so that the interval
between the two blocks are approximately 10 min. Miners who successfully mine
blocks receive two kinds of remuneration as compensation for recording transac-
tions, which are generation of new coins and transaction fee. Each miner receives
full transaction fee for all transactions included in his block. There are many
transactions in each block, and transaction structure is a relatively large Merkle
tree.

Bitcoin-NG Blockchain. There are two types of blocks in Bitcoin-NG protocol [4]:
key blocks and microblocks, as shown in Fig. 2. Key blocks require proof-of-work
with a 10-min interval between two key blocks, which is called an epoch. A miner
who succeeds in mining a key block becomes the leader of current epoch, before
the next key block is published. There is no transaction except for coinbase
transaction in key blocks. In addition, a public key of the leader is stored in
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a key block. Leaders are allowed to generate microblocks at a set rate lower
than a predefined maximum, recording transactions. Each microblock needs a
signature of the current leader, which uses the private key that matches the
public key in the latest key block in the chain. There are fewer transactions
in each microblock, and transaction structure is a relatively small Merkle tree.
About 40% of all transactions fees in all microblocks in an epoch are distributed
to the current leader and 60% to the next leader.

Fig. 2. The high-level structure of Bitcoin-NG blockchain, including key blocks,
microblocks, mining reward, proportion of transaction fee allocation and transaction
structure.

3 Bitcoin-NG Incentive Mechanism

Eyal et al. [4] made the following statements about the incentive mechanism of
Bitcoin-NG. Miners with less than 25% of the total computational power network
are incentivized to follow the protocol. Specifically, miners are motivated to do
three things: (1) extend the heaviest chain; (2) include transactions in their
microblocks; (3) extend the longest chain.

The heaviest chain [13] refers to the chain with the largest amount of proof-
of-work. In Bitcoin, the heaviest chain indicates the chain with the most blocks,
while in Bitcoin-NG, it means the chain with the most key blocks. The longest
chain refers to the chain containing the largest number of blocks. In Bitcoin, the
heaviest chain is equivalent to the longest chain. Unlike Bitcoin, the heaviest
chain does not equal to the longest chain in Bitcoin-NG, as shown in Fig. 3,
since only key blocks taking up weight require proof-of-work, microblocks do
not. Accordingly, chain 1 and chain 2 have the same weight but different length.

Assume a miner whose mining power ratio out of all mining power in Bitcoin-
NG system is α. The allocation mechanism of the transaction fee is set as fol-
lowing: rleader for the current leader and (1 − rleader) for the next leader. Eyal
et al. set rleader = 40%.
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Fig. 3. Two chains with the same weight but different length. Both have the same
weight as only key blocks have weight. Since chain 1 has one more microblock, chain 1
is longer than chain 2.

3.1 Heaviest Chain Extension

Bitcoin-NG has the same incentive mechanism as Bitcoin for the heaviest chain
extension. Honest miners always extend the heaviest chain. If malicious min-
ers are the majority, they can arbitrarily switch to any branch to expand the
blockchain and gain advantage. Suppose that a minority chooses to mine on a
branch, the miner will not catch up with the speed of honest majority expanding
the main chain and therefore lose the remuneration. Thus rational miners will
extend the heaviest chain to ensure its revenues.

In Bitcoin-NG, microblocks are designed to be weightless (no proof-of-work)
because the risk of the system being attacked by selfish mining [11] greatly
increases when microblocks are given weight. If microblocks have weight, the
current leader A can keep a secret microblock An+1 and gain advantage by min-
ing the next key block A2

key on unpublished microblocks An+1, as shown in Fig. 4.
When other miners mine a key block B1

key, the leader A immediately publishes
his microblock An+1 and key block A2

key, isolating the key block B1
key. Note that

the solid blocks represent historical work and the dotted blocks indicate the work
might be updated in the future.

Fig. 4. Selfish mining under the assumption that microblocks have weight. The cur-
rent leader A can get an advantage over other miners by mining on his unpublished
microblocks.

Since Bitcoin-NG does not introduce a new vulnerability to selfish mining,
Bitcoin-NG is resilient to selfish mining against attackers with less than 25% of
the total mining power of then network. However, it is still profitable for the
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miners with more than 25% of the mining power to make selfish mining attack,
as shown in Fig. 5. A malicious miner A may withhold A1

key he has mined and
continue to mine the next key block A2

key while creating secret microblocks.
No sooner have other miners published a key block B1

key than A immediately
publish his two key blocks and retained microblocks between them, isolating the
key block B1

key. Eventually, B1
key will be discarded by the system.

Fig. 5. Selfish mining in Bitcoin-NG. A leader A can simultaneously publish two key
blocks, which results in B’s key block being discarded by the system.

3.2 Transaction Inclusion

Assume a leader A has published A1
key he had mined. In his epoch, a node

broadcasts a transaction M . If the leader A abides by the agreement, he will
create a microblock An+1 with M and publish. Then he becomes the current
leader of transaction M , obtaining rleader transaction fee, as shown in Fig. 6.

Fig. 6. Abide by mechanism of transaction inclusion. An honest leader A should place
transaction M in his microblock An+1 and publish it.

However, if the leader A does not abide by the agreement, he can potentially
increase his average remuneration by taking certain measures. First, A creates a
microblock An+1 with transaction M without publishing it, as shown in Fig. 7.

Then, A tries to mine on top of An+1, while other miners mining on An. If
the leader A succeeds in mining the subsequent key block A

′
key(with probability

α ), he becomes both the current leader and the next leader of transaction M ,



Revisiting the Incentive Mechanism of Bitcoin-NG 713

Fig. 7. Creation of microblock with-
out publishing. A dishonest leader may
place transaction M in an unpublished
microblock for more rewards.

Fig. 8. Successfully mining the subse-
quent key block. A dishonest leader
may obtain more rewards by publish-
ing his microblock An+1 and his new
key block simultaneously.

obtaining all the transaction fees, as shown in Fig. 8. If other miners mine the
next key block Bkey (with probability 1 − α), the miner A will wait for the
transaction M to be placed in a microblock by any other miner and try to mine
on top of it, as shown in Fig. 9. Here, the dotted blocks indicate the behaviors
of honest miners, which are abandoned by dishonest miners. If A successfully
mines A2

key (with probability α), he becomes the next leader of transaction M,
earning (1 − rleader) transaction fee of M. The value of rleader has to be such
that the average revenue of a miner withholding microblocks is smaller than his
revenue correctly executing the protocol:

α + (1 − α)α(1 − rleader) < rleader (1)

therefore
rleader > 1 − 1 − α

1 + α − α2
(2)

Assume that the power of an attacker is bounded by 25% of the mining
power, we obtain rleader > 37%.

Fig. 9. Mining on the microblock Cm which contains transaction M . Assume that
other miners mine the next key block Bkey. The dishonest miner A may try to mine
on the microblock containing transaction M.
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3.3 Longest Chain Extension

Suppose a leader P has published Pkey and placed transaction M in his
microblock Pn+1. Assume that the next key block is mined by a leader A. If
A abides by the protocol, i.e., extend the longest chain, he obtains (1 − rleader)
transaction fee of M , as shown in Fig. 10.

Fig. 10. Abide by longest chain extension. Honest miners should mine on the latest
microblock.

However, if A does not abide by the agreement, he can potentially increase
his average remuneration by avoiding M ’s microblock Pn+1 and mining on a
previous block Pn. Then he will place M in his own microblock An and try to
mine the subsequent key block A2

key, as shown in Fig. 11. As the current leader,
A obtains rleader transaction fee of M . Meanwhile, he earns (1 − rleader) as the
next leader with a probability of α. The value of rleader has to be such that the
average revenue of a miner extending short chain is smaller than his revenue
correctly executing the protocol:

Fig. 11. Shorter chain extension. A dishonest miner A may mine on non-recent
microblocks, allowing the microblock that contains transaction M to be discarded
by the system. Then A places M in his own microblock and tries to mine the next key
block.

rleader + α(1 − rleader) < 1 − rleader, (3)

therefore
rleader <

1 − α

2 − α
. (4)
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Combining the two incentive sub-mechanisms of transaction inclusion and
longest chain extension, Eyal et al. obtained

1 − 1 − α

1 + α − α2
< rleader <

1 − α

2 − α
. (5)

For attackers larger than 29%, the intersection of the two conditions is empty.
Therefore, Eyal et al. assert that incentive compatibility cannot be maintained
in Bitcoin-NG for an attacker larger than about 29%.

4 Amendment of the Original Bitcoin-NG Protocol

4.1 Negligence in Transaction Inclusion Inequation
and Its Amendment

A leader is encouraged to withhold the latest microblock if the average revenue
of this attack is larger than that of abiding the rules. To keep a healthy mining
ecosystem, the inequation (1) must hold true. However, there is a manifest error
in the right side.

The average revenue for a current leader to include transactions in his epoch
is not rleader. This misconception ignores the probability of re-election of the
incumbent leader in the next epoch. Instead, the revenue is rleader+α(1−rleader).

The amended inequation will be

α + (1 − α)α(1 − rleader) < rleader + α(1 − rleader), (6)

therefore
rleader >

α

1 − α
.

Taking the upper bound into consideration, the rational interval of rleader is

α

1 − α
< rleader <

1 − α

2 − α
. (7)

4.2 Over-Simplification in Longest Chain Extension Inequation
and Its Improvement

A leader-candidate might ignore the last microblock, mine on the previous
microblock to become the next leader, and then place the transactions in the
ignored preceding leader’s microblock in his own microblock. This happens under
the circumstance that the average revenue of this attack is larger than that of
abiding the rules. To preserve the healthy mining order, the inequation (3) must
hold true. However, the analysis is over-simplified, neglecting the parameter α.

The inequation (6) is the constraint for a incumbent leader in an epoch, while
the inequation (3) is the constraint for a leader-candidate who wants to solve
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the mining puzzle to become the next leader. In reality, the average revenue
for a leader-candidate who extends short chains is not the items at the left
side of the inequation (3). rleader + α(1 − rleader) is the average revenue for a
leader-candidate who is fortunate enough to become the next leader, not the
average revenue for a leader-candidate whose future is undetermined. Taking
the uncertainty into account, the true average revenue for a dishonest leader-
candidate is α(rleader + α(1 − rleader)). For the same reason, the true average
revenue for an honest leader-candidate is α(1−rleader). Therefore, the inequation
before simplification is

α(rleader + α(1 − rleader)) < α(1 − rleader). (8)

The detailed explanation above compensates the over-simplification of the
original inequation (3), but the final upper bound for the parameter rleader is
identical to that in the paper [4] by detracting α simultaneously from both sides
of the inequation (8).

5 Analysis of the Optimal Proportion of Transaction Fee
Distribution

5.1 The Definition of the Optimal rleader

Eyal et al. [4] selected rleader by arbitrarily choosing 40% from the interval
(37%, 43%) without detailed explanation. Unfortunately, the lower bound is
incorrect due to the error presented in Sect. 4. The correct lower bound is much
smaller than what Eyal et al. suggested. So the selection interval of rleader is
much larger, making the selection to be of greater significance.

As illustrated in Sect. 4, the average profit earned by behaving honestly must
be larger than that earned by launching an attack. Therefore, the smaller the
difference between honest and dishonest average profit is, the worse the mining
ecosystem will be. In an extreme situation, two kinds of profit become equal
and no distinction of revenue between honest miners and dishonest miners is
presented. In this case, there is no incentive for honest miners to behave them-
selves. Consequently, in order to strengthen our mining ecosystem, it is of great
necessity to set a lower bound for the difference between honest and dishonest
average profit, defined as “safety margin”.

There are two constraining inequations for a miner. The inequation (6) is for
an incumbent leader in an epoch. The inequation (8) is for a leader-candidate
who is eager to solve the mining puzzle to become the next leader. Therefore,
there are two profit differences Δ1 and Δ2 for corresponding inequation by sub-
tracting the left side of the inequation (i.e. the average profit for dishonest min-
ers) from the right side of the inequation (i.e. the average profit for honest
miners).
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Δ1 = [rleader + α(1 − rleader)] − [α + (1 − α)α(1 − rleader)]

= (1 − α2)rleader − α + α2 (9)
Δ2 = [α(1 − rleader)] − [α(rleader + α(1 − rleader))]

= (α2 − 2α)rleader + α − α2 (10)

Notice that the remuneration earned by a miner as well as the profit dif-
ferences are approximately proportional to his mining power. Thus the safety
margin is defined as the lower bound of the profit difference, where the miner’s
mining power should be considered. This means that the safety margin is not a
constant for any miner but proportionally correlated to a miner’s mining power.
We define m to be the safety margin proportional coefficient, and M to be safety
margin. We get M = mα. Recall that the definition of safety margin is the lower
bound of profit difference. Then we conclude

Δ1 ≥ M (11)
Δ2 ≥ M (12)

Finally, the ultimate goal of the optimization of parameter rleader is to maxi-
mize m while subjecting to inequations (11) and (12) for all miners whose mining
power α are in the interval (0, 0.25). The upper bound 0.25 is set to avoid selfish
mining [5]. This optimization aims to maximize the safety margin for any miner
with the mining power α ∈ (0, 0.25) to obtain the most robust mining ecosystem.

5.2 Calculation of the Optimal rleader

To deduce the optimal rleader, we necessarily obtain the interval of rleader from
inequations (11), (12) ( ∀α ∈ (0, 0.25)) first.

Δ1 ≥ M, ∀α ∈ (0, 0.25)

⇐⇒ rleader ≥ (m + 1)α − α2

1 − α2
, ∀α ∈ (0, 0.25)

⇐⇒ rleader ≥ max
α∈(0,0.25)

(m + 1)α − α2

1 − α2
=

4m + 3
15

(13)

Δ2 ≥ M, ∀α ∈ (0, 0.25)

⇐⇒ rleader ≤ 1 − α − m

2 − α
, ∀α ∈ (0, 0.25)

⇐⇒ rleader ≤ min
α∈(0,0.25)

1 − α − m

2 − α
=

3 − 4m

7

(14)

Therefore, we get
4m + 3

15
≤ rleader ≤ 3 − 4m

7
(15)

It is straightfoward that only when rleader = 3
11 , the coefficient m can obtain

its maximal value 3
11 . In summary, rleader = 3

11 is optimal according to our
definition and assumption (Fig. 12).
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Fig. 12. The upper bound and lower bound of rleader as functions of the safety mar-
gin proportional coefficient m. The safety margin proportional coefficient m takes its
maximum value at the intersection point of upper bound and lower bound.

6 Conclusion

Bitcoin-NG protocol improves scalability and simultaneously maintains the sys-
tem stability at a higher level. However, there are some errors in the incentive
mechanism analysis, including the negligence calculating the lower bound and
the over-simplification calculating the upper bound, directly leading to an unrea-
sonable proportion of transaction fee allocation. This paper points out the errors
of Eyal et al., and gives the correct analysis of the Bitcoin-NG incentive mecha-
nism. We consummate the Bitcoin-NG blockchain protocol as a result of logically
deducing the optimal proportion of transaction fee allocation. Specifically, the
current leader earns 3/11 of transaction fee, leaving 8/11 to the subsequent
leader.

On the basis of Bitcoin-NG, researchers have made a series of improve-
ments and innovations and proposed protocols such as ByzCoin, ELASTICO
and OmniLedger. In order to address the issue of Bitcoin scalability, more and
more research will be conducted in the future. Hopefully, the optimal propor-
tion of transaction fee distribution that we proposed in this paper can serve as
a crucial reference for both future researches and applications.
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Abstract. Blacklistable anonymous credential systems provide service
providers with a way to authenticate users according to their historical
behaviors, while guaranteeing that all users can access services in an
anonymous and unlinkable manner, thus are potentially useful in prac-
tice. Traditionally, to protect services from illegal access, the credential
issuer, which completes the registration with users, must be trusted by
the service provider. However, in practice, this trust assumption is usu-
ally unsatisfied.

In this paper, we solve this problem and present the decentralized
blacklistable anonymous credential system with reputation (DBLACR),
which inherits nearly all features of the BLACR system presented in Au
et.al. (NDSS’12) but does not need a trusted party to register users. The
new system also has extra advantages. In particular, it enables black-
list (historical behaviors) sharing among different service providers and
is partially resilient to the blacklist gaming attack, where dishonest ser-
vice providers attempt to compromise the privacy of users via generating
blacklist maliciously.

Technically, the main approach to achieve DBLACR system is a novel
use of the blockchain technique, which serves as a public append-only
ledger. The system can be instantiated from three different types of cryp-
tographic systems, including the RSA system, the classical DL system,
and the pairing based system. To demonstrate the practicability of our
system, we also give a proof of concept implementation for the instanti-
ation under the RSA system. The experiment results indicate that when
authenticating with blacklists of reasonable size, our implementation can
fulfill practical efficiency demands.

1 Introduction

There always exists a conflict between users and service providers (SP) on the
Internet. On the one hand, the SPs need to protect their services from illegal
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users and users with misbehaviors, thus hope to know the exact identity and
historical behaviors of each user. On the other hand, the users would like to
protect their privacy, and thus hope to access services in an anonymous and
unlikable manner.

The blacklistable anonymous credential system [9,25] is a good attempt to
address this conflict. In this system, each SP maintains a blacklist to record users
with misbehaviors, and a user attempting to access services of a SP is required
to prove that he is legitimately registered and that he is not in the blacklist
of the SP. Both the authentications and the maintenance of the blacklists are
conducted in an anonymous and unlinkable fashion, thus privacy of users are well
protected. Compared to traditional anonymous credential systems [8,10–14,16],
the blacklistable anonymous credential system supports revocation of users, thus
can protect SPs from users with misbehaviors. Moreover, compared to some other
revocable anonymous credential systems [10,11], this is achieved without relying
on a trusted third party, so in practice the blacklistable anonymous credential
system is preferable.

Subsequently, there are a series of works following this line of research. Some
of them consider how to improve the efficiency [24,26,31], and some others con-
sider how to utilize historical behaviors of users in a cleverer way [5,6,27,29].
In particular, in [6], an anonymous credential system supporting fine-grained
“blacklist” is proposed. In this system, instead of merely putting misbehaved
users into the blacklist, the SP will rate behaviors of users in using the services.
The rated scores can be either positive or negative for good and bad behav-
iors respectively, and belong to different categories based on types of behaviors
rated. When authenticating, SPs can set complex policies about these scores,
and a user attempting to access services of a SP needs to prove that he is legit-
imately registered and that his scores satisfy the policy of the SP. Likewise, all
those operations are conducted in an anonymous and unlinkable fashion. For
simplicity of notation, in this section, we still use the word “blacklist” to denote
this fine-grained type of “blacklists”.

To better explain how these blacklistable anonymous credential systems work,
we illustrate the workflow for them in Fig. 1a. Generally speaking, a user who
wants to access services of a SP first registers himself to the credential issuer
and gets a credential back. Then he requests a policy from the SP and proves to
the SP that he has a valid credential and that he satisfies the policy of the SP
each time he wants to access the services of a SP. Behaviors of the user will be
rated by the SP after he finishes using the services.

Note that to protect services from illegal access, the credential issuer must
be trusted by the SP. Therefore, it is usually suggested that the credential issuer
should be acted by the SP itself. However, in practice, this suggestion is often
contradicted. Considering a SP who runs a forum about alcohol abuse, anyone
who registers for this service runs the risk of revealing his drinking problem to the
SP. So, at worst, no one would register for using this forum. As a result, the SP
faces the dilemma of either trusting a third party credential issuer and suffering
potential attacks or insisting on issuing credentials all by itself and suffering a
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loss of potential users. A similar dilemma occurs when we consider the blacklist
management. More precisely, services will be better protected if the SP can refer
to blacklists of other SPs and further evaluate a user according to his historical
behaviors when using other services, but it may bring additional security issues if
the shared blacklists are fake. Besides these two problems, current blacklistable
anonymous credential systems are also vulnerable to the blacklist gaming attack,
where a malicious SP attempts to learn the identity of the user via providing a
maliciously generated blacklist during the authentication.

User

Credential Issuer

SP

1. Register

2. Issue Credential

3. Request

4. Send Blacklist

5. Authenticate

Rating Records Pool
6. Put Rating

(a)

Public Append-Only Ledger

UserSP

1. Register

2. Collect Data

3. Put Requirement
4. Get Requirement

5. Authenticate

6. Put Rating

(b)

Fig. 1. Workflows of the traditional blacklistable anonymous credential systems (left)
and our new decentralized blacklistable anonymous credential system with reputation
(right).

The first problem, namely the requirement of a trusted credential issuer, is
partially solved in [20], in which a decentralized anonymous credential system is
constructed. In particular, in [20], a blockchain based public append-only ledger
is employed to replace the credential issuer, and to register in the system, a
user just needs to put his personal information attached with his credential
to the ledger. When authenticating, a user proves to a SP that his credential
belongs to a set, which is selected by the SP from credentials of all registered
users. However, in [20], revocation of users is not considered, and it is unknown
whether their techniques can be applied to decentralize current blacklistable
anonymous credential systems. Besides, the other two problems, namely the
blacklist management problem and the blacklist gaming attack, are still open.

1.1 Our Results

In this paper, we solve these open problems by presenting the decentralized
blacklistable anonymous credential system with reputation (DBLACR), whose
workflow is illustrated in Fig. 1b. More precisely, similar to that in [20], in our new
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system, there is no central credential issuer, and a user registers via uploading
his credential together with his personal information to the public append-only
ledger, which can be instantiated with the blockchain technique. Each SP col-
lects data from the ledger automatically and put its requirement, including the
selected candidate users set and the blacklist, to the ledger regularly. When a
user wants to access a service of a SP, he first gets the latest requirement of
the SP from the ledger, then he checks its validity and whether he satisfies it. If
both tests are passed, he then proves to the SP that he satisfies its requirement.
The user can access the service if the proof is valid, and scores for his behavior
in using the service will be rated and put on the ledger by the SP then.

The DBLACR system can achieve enhanced security guarantee in the follow-
ing three aspects. We also give a comparison between our system and existing
blacklistable (or decentralized) anonymous credential systems in Table 1.

– The registration is decentralized. In our new system, no trusted credential
issuer is needed, and each SP can select candidate users by itself. Thus, secu-
rity for the SPs is improved. Note that the user does not need to indicate
which service he would like to access when registering and only the fact that
he wants to access at least one service in the system is revealed. Thus, the
real purpose of the user is well hidden if there are some common and insen-
sitive services in the system. Therefore, our solution will not compromise the
privacy of users.

– There is a consistency between the used blacklist and the shared blacklist for
any SP. This is because a SP will put his own used blacklist in the public
append-only ledger, thus cannot share a fake blacklist without being caught.
The property implies that to refer to blacklists of other SPs, a SP only needs
to trust that they will not use a fake blacklist when conducting their own
authentication protocols instead of trusting that they will not share a fake
blacklist. So, to a great extent, the SP can employ blacklists of other SPs
safely and makes better evaluations for users.

– The system is partially resilient to the blacklist gaming attacks, thus provides
a better protection for the privacy of users during the authentication. This is
achieved in two aspects. First, as in our system SPs update their blacklists
regularly, a malicious SP can only make a less powerful passive blacklist
gaming attack in each time period, where it fixes a blacklist in the beginning.
Besides, in our system, a user can learn whether he could pass the verification
in advance and will not attempt to launch an authentication if he does not
satisfy the requirement, thus less information is leaked from authentication
results. We give a more detailed discussion on how these two modifications
could boost the security in Sect. 3.

Our Techniques. We construct decentralized blacklistable anonymous creden-
tial system with reputation by introducing the blockchain technique to current
blacklistable anonymous credential systems and employ it as a public append-
only ledger to store credentials and blacklists. However, there exists issues when
integrating the blockchain technique and current (blacklistable) anonymous cre-
dential systems. To see this, recall that in a blockchain-based (blacklistable)
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Table 1. The comparison.

Decentralized Blacklist Blacklist Blacklist-Gaming

registration supporting sharing resilience

BLAC[25] ✗ † ‡ ✗

EPID[9] ✗ † ‡ ✗

PEREA[26] ✗ † ✗ ✗

PE(AR)2[31] ✗ † ✗ ✗

FAUST[24] ✗ † ✗ ✗

BLACR[6] ✗ ✓ ‡ ✗

EXBLACR[27] ✗ ✓ ‡ ✗

PERM[5] ✗ ✓ ✗ ✗

FARB[29] ✗ ✓ ✗ ✗

DAC[20] ✓ ✗ - -

Ours ✓ ✓ ✓ ✓ ∗

† : only a basic blacklist is supported.
‡ : blacklists can be shared if SPs trust each other.
✓ ∗ : the system is partially resilient to the blacklist gaming attacks.

decentralized anonymous credential system, users registers by putting its cre-
dential to the ledger. Then, to argue that he is legitimately registered, a user
just proves that he knows the secret key for a credential stored in the ledger. To
make the proof size constant, cryptographic accumulator is desired to accumulate
all credentials in the ledger. However, in most (if not all) current (blacklistable)
anonymous credential systems, credentials are commitments of the users’ secret
keys, thus are either (1) points in an elliptical curve, which cannot be accumu-
lated using existing number-theory-based accumulators or (2) exponential in the
users’ secret keys (i.e., C = gshr where s is a secret key, C is the corresponding
credential, r is a random number, and g, h are group elements), which bring
expensive double discrete logarithm proof1. In both cases, the practicability of
the system are reduced.

In this work, we solve these issues by presenting a new method to construct
credential systems. In particular, the secret key of a user is two large primes
p, q and his credential is another prime n = 2pq + 1. The credential can be
accumulated by a strong-RSA assumption based accumulator and one can effi-
ciently prove that his secret key relates to a credential in an accumulator. As a
result, the efficiency of the system is boosted. The experiment result in Sect. 6
demonstrates that our new system is quite practical. Especially, it implies a
decentralized anonymous credential system that is as much as 30 times faster
for a user to generate an authentication, when compared with the decentralized
anonymous credential sytem in [20].

1 The decentralized anonymous credential system in [20] also suffers from this problem.
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2 Notation

For a finite set S, we use ‖S‖ to denote the size of S and write x
$← S to

indicate that x is sampled uniformly from S. We write negl(·) to denote a
negligible function. For two random variables X and Y, we write X c≈ Y to
denote that X and Y are computationally indistinguishable. We will use a few
cryptographic assumptions, including the strong RSA assumption, the LD-RSA
assumption, the discrete logarithm assumption, the DDH assumption, and the
DDH-II assumption. We will also use cryptographic primitives, such as zero-
knowledge proof of knowledge, commitment scheme, dynamic accumulator, CL
signature, and public append-only ledger. Note that all zero-knowledge proofs of
knowledge used in this paper are non-interactive and admit an additional mes-
sage as input, thus it is also called signature proof of knowledge (SPK), and is
usually written as SPK{(w) : S}[m], for a statement S with witness w and addi-
tional message m. Due to lack of space, we do not provide detailed descriptions
for the used assumptions and cryptographic primitives and refer the readers to
the full version of this paper [30] for more details.

3 Syntax and Security Goals

3.1 The Syntax

There are two types of entities, namely the users and the service providers, and
a public ledger in the DBLACR system, and the system consists of the following
protocols:

– Setup. To setup the system, a trusted party is employed to generate the
public parameter of the system. Note that this party is only used in the setup
phase and we only need to trust that it will generate the public parameter
honestly and will erase all the internal states of the generation process.

– Registration. In this protocol, a user registers himself to the system. To
complete this task, a user just needs to put some information to a public
ledger, which should include some auxiliary proof data and his attributes to
aid the SPs in deciding whether to accept the user as a valid candidate user
for accessing their services.

– Authentication. This protocol is executed between a user and a SP. The user
attempts to access services of the SP in an anonymous and unlinkable fashion,
and the SP will accept the user if and only if the user fulfills its requirement.
Here, the requirement includes three parts, namely the candidate users set
C, the policy PR and the rating records list L. Our system can support a
policy of any DNF formula, whose inputs are accumulated scores for a user’s
behaviors in different category. We refer the readers to the full version of this
paper [30] for a more detailed explaination of the requirement.

– Interaction with The Ledger. The public ledger in this system is pub-
lic and accessible to every participant, including the users and the SPs. In
addition, the SPs can put data to the ledger. In particular, it can upload
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its requirement to the ledger regularly. Besides, it can submit a rating for
the anonymous user in an authentication event and submit a revocation of a
rating record submitted by itself.

3.2 The Security

We refer the readers to the full version of this paper [30] for a formal security
definition of our decentralized blacklistable anonymous credential system with
reputation. Here, we only highlight a few security properties of the system that
are most concerned in practice:

– Authenticity. The authenticity property guarantees that SPs are assured to
accept authentication events only from users satisfying their requirements.

– Anonymity. The anonymity property guarantees that all a SP learns from an
authentication is if the authenticating user satisfies its current requirement.

– Non-frameability. The non-frameability property guarantees that if a SP
is honest, then users satisfying the current requirement of this SP can always
successfully authenticate to it.

– Sybil-Attack Resilience. The Sybil attack [18] allows users to get new
credentials after their current credentials are blacklisted, thus may expose
services to users with misbehaviors. In our new system, since users register
to the system via uploading their identities to the public ledger, the Sybil
attack can be prevented if SPs only select users whose identities have not
been uploaded previously as candidate users.

– Authenticity of Registration. This property guarantees that SPs can
decide which users are legitimate directly and do not have to resort to a
third party. The property can provide a better protection for SPs.

– Privacy of Registration. This property guarantees that only the fact that
the registered user hopes to access at least one service supported by the
system can be learned from a registration event. As personal information is
usually required in registration, this property is significant in protecting the
privacy of users.

– Consistency of Blacklists. This property guarantees that each rating
record selected by a SP will be honestly assessed unless there exist SPs hoping
to expose their services to possible malicious users. The property can greatly
reduce the requirement of trust when using rating records from other SPs.

– Blacklist-Gaming Attack Resilience. The blacklist gaming attack [26]
allows a SP to compromise the privacy of users via generating blacklists
(requirements) maliciously. Our new system is partially resilient to the black-
list gaming attack and this is achieved in the following two aspects:

• First, in our new system, the SPs can only update their requirements
regularly, thus in each time period, the requirement used in authentica-
tion protocols is fixed. Compared to that in previous systems, where the
malicious SP can use an adaptively chosen blacklist during each authenti-
cation event, the privacy of users is better protected now. To demonstrate
this, we consider the following scenario. Via some auxiliary information,
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a SP conjectures that the next authentication event is launched by the
same user who launches a previous authentication event with identifier
“t”. In current blacklistable anonymous credential systems, the SP can
definitely verify its conjecture via providing a blacklist with merely “t”
in it. However, this attack is not applicable in our system since no SP is
able to use a temporary blacklist in an authentication.

• Next, in our new system, as a user could obtain the latest requirement of
a SP from the public ledger, he can check whether he is able to pass the
verification in advance and will not attempt to launch the authentication
protocol if he does not satisfy the requirement. To see why this can better
protect the privacy of users, we consider the following scenario. Again, via
some auxiliary information, a SP learns that the following authentication
events will be launched by one of two lists of users. It also learns whether
each user in these two lists satsifies a pre-defined requirement. Previously,
even restricting the malicious SP to the pre-defined requirement, it can
still determine the list of users in use if there exists an index i that the
ith users in the two lists are different in satisfying the requirement. In
contrast, in our new system, the malicious SP can learn nothing if the
numbers of users satisfying the requirement in these two lists are identical.

We remark that the first four properties are already achieved in current
blacklistable anonymous credential systems. The property “authenticity of reg-
istration” and the property “privacy of registration” have also been achieved
previously, but no system has these two properties simultaneously, and our sys-
tem is the first one that can protect both the security of the SPs and that of
the users in the registration. The last two properties are new security properties
that are only available in our new system.

4 General Construction

In this section, we provide a general framework for constructing the decentral-
ized blacklistable anonymous credential system with reputation. We start by
introducing a few algorithms and protocols used for building the system. Then
we describe how to combine these components to complete the construction.

4.1 Building Blocks

Our DBLACR system can be instantiated from various public key systems, and
for each public key system, we need the following sub-protocols to help build
our system:
A Key Generation Algorithm. On input a security parameter 1λ, the key
generation algorithm returns a public key/secret key pair, namely, (pk, sk) ←
KeyGen(1λ). In our system, the public key is the credential of a user, and the
secret key is the witness for it. So we require that the key generation algorithm
has the following properties:
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– Verifiability. There exists a polynomial-time algorithm T s.t. T (pk, sk) = 1
iff the pair (pk, sk) is a legal key pair of the public key system.

– Onewayness. Given the public key pk, it is computationally hard to compute
a secret key sk such that T (pk, sk) = 1.

– Collision Resistance. It is computationally hard to find a pair of different secret
keys (sk1, sk2) and a public key pk such that T (pk, sk1) = T (pk, sk2) = 1.

A Ticket Generation Algorithm. On input a secret key sk, the ticket gen-
eration algorithm generates a ticket for sk, namely, τ ← TicketGen(sk). In our
system, each ticket will be the representation of an authentication event, and an
authentication event with a ticket τ will be regarded as launched by the owner
of a secret key sk iff S(sk, τ) = 1. So we require that the ticket generation
algorithm has the following properties:

– Verifiability. There exists a polynomial-time algorithm S s.t. S(sk, τ) = 1 iff
τ is a valid ticket of sk.

– Indistinguishability. Let (pk, sk) ← KeyGen(1λ), then for any probabilistic

polynomial time adversary A, Pr[b $← {0, 1}; b ← AOb(pk)] ≤ 1/2 + negl(λ),
where O0 outputs a ticket of sk each time invoked, and O1 outputs a random
element in the range of the ticket generation algorithm each time.

– Verifying Consistency. For any secret keys sk1, sk2, if there exists a τ s.t.
S(sk1, τ) = S(sk2, τ) = 1, then for any τ ′ in the range of the ticket generation
algorithm, we have S(sk1, τ ′) = S(sk2, τ ′).

– Connectivity. Let (pk, sk) ← KeyGen(1λ), τ ← TicketGen(sk), and sk′ be a
secret key s.t. S(sk′, τ) = 1, then given (pk, sk′), one can efficiently compute
sk.

An SPK System Proving the Possession of the Secret Key. We need
a SPK system to prove that the prover possesses the secret key sk of a given
public key pk. Formally, the prover needs to prove SPK{(sk) : T (pk, sk) = 1}.
An SPK System Proving the Validity of a Public Key and a Ticket.
We need a SPK system proving that the prover possesses a secret key sk for a
given ticket τ and the secret key is associated with a public key in a given set C.
Formally, the prover needs to prove SPK{(sk, pk) : S(sk, τ) = 1 ∧ T (pk, sk) =
1 ∧ pk ∈ C}.
An SPK System Proving the Fulfilment of a Policy. We also need a
SPK system proving that the prover possesses a secret key sk for a given ticket
τ and the secret key represents a user whose scores evaluated according to a
policy PR and a rating records list L satisfies RR. For simplicity of description,
in this section, we define a boolean function E that outputs 1 iff the latter
condition is satisfied. Then, the prover needs to prove SPK{(sk) : S(sk, τ) =
1 ∧ E(PR,L, sk) = 1}.
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4.2 The Construction

Now, we present the general construction of our DBLACR system, which is
built on the sub-protocols shown in Sect. 4.1 and a public append-only ledger
with ideal functionality F�

BB , whose formal definition is given in the full version
[30]. Formally, we have:

Setup. On input a security parameter 1λ, a trusted party runs the setup algo-
rithm for each sub-protocol of each public key system and outputs all those
generated public parameters as the public parameter for the DBLACR system.

Registration. To register himself to the system, a user with auxiliary proof
data aux and attributes attr first generates his public key/secret key pair
(pk, sk) ← KeyGen(1λ) for one of the supported public key systems. Then
he computes ΠR←SPK{(sk) : T (pk, sk) = 1}[aux‖attr]. Finally, he stores the
tuple (Nym, pk,ΠR, attr, aux) to the public ledger via F�

BB , where Nym is his
pseudonym in the public ledger. We remark that here the user can use a tempo-
rary pseudonym and not a permanent one.

Authentication. In this protocol, a user uid attempts to authenticate with a
service provider sid. Interactions between these two parties are summarized in
Fig. 2. For the clarity of presentation, here we assume that there are k public key
systems employed in our system, and denote them as Ψ1, . . . , Ψk respectively. All
algorithms in Ψi will be labeled with a superscript “(i)”, and w.l.o.g. we assume
that the user uid chooses the first public key system when registering.

In more detail, in this protocol, the user uid first downloads the require-
ment (C,PR,L) for accessing services of sid from the public ledger. Then he
verifies the validity of this requirement. If the requirement is valid, the user
then checks whether he satisfies the requirement. If not, he aborts the pro-
tocol even without communicating with sid. Otherwise, uid sends a request
to sid and gets a challenge m‖sid′ back, where m is a randomly chosen bit
string whose length is polynomial in the security parameter. Then, uid checks
whether sid = sid′ and if so he generates a ticket T and a proof ΠA, and sends
(T ,ΠA) to sid. More precisely, to generate the ticket T , the user computes
τ1 ← TicketGen(1)(sk), randomly samples τi in the range of TicketGen(i)(·)
for i ∈ [2, k], and sets T = {τ1, . . . , τk}. To generate the proof ΠA, the user
computes ΠA = SPK{(sk, pk) :

∨k
i=1(T

(i)(pk, sk) = 1 ∧ pk ∈ Ci ∧ S(i)(sk, τi) =
1 ∧ E(i)(PR,L(i), sk) = 1)}[m‖sid], which is constructed by employing the tech-
nique in [15] to combine the proof of “validity of a public key and a ticket” and
the proof of “fulfillment of a policy” for each public key system, where Ci con-
sists of all public keys of Ψi that are in C, and L(i) consists of all rating records
in L but for each record the ticket T ′ = (τ ′

1, . . . , τ
′
k) is replaced with τ ′

i . Upon
receiving the response (T ,ΠA), sid verifies the proof and sends the result, which
will be “accept” iff the proof is valid, back to uid.

Interaction with Ledger. To obtain data from the public ledger, a participant
just needs to submit a “retrieve” request to F�

BB . To put data to the public
ledger, a SP just needs to submit a “store” request together with its permanent
pseudonym and its data to F�

BB . The submitted data vary depending on the
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Interactions in the Authentication Protocol.

UF�
BB

(uid, sid, sk, pk, C, PR, L)

SPF�
BB

(sid, C, PR, L)

(‘request’, sid)

m‖sid

(T , ΠA)

accept or reject

Fig. 2. Interactions in the authentication protocol. Here, we use “U” to denote the
user, and “SP” to denote the service provider.

purpose of the SP. In particular, when a SP would like to submit a rating s,
it needs to put a tuple (rid, T , s, Γ ) to the public ledger, where rid is a unique
string identifying this rating record, T is the ticket for the rated authentication
event, and Γ is the transcript of this authentication event, which is used to
prove that the rated authentication event can be accepted by this SP. When a
SP would like to submit a revocation of a rating record rid, it needs to put a
tuple (‘revoke’, rid) to the public ledger. When a SP would like to publish a
new requirement, it first generates a valid requirement (C,PR,L), then puts it
to the public ledger. To generate a valid requirement, apart from meeting those
demands listed in Sect. 3.1, the SP should further ensure that each selected user
in C is attached with a valid proof ΠR. We remark that all those data uploaded
to the public ledger will not be verified in this phase, instead, the verification
will be postponed until the data are used.

The Security. Security of our system is guaranteed by Theorem 4.1 stated as
following. We refer the readers to the full version of this paper [30] for proof of
Theorem 4.1.

Theorem 4.1. The system presented in Sect. 4.2 is a secure DBLACR system
if each sub-protocol has the properties demanded in Sect. 4.1.

5 The Instantiations

To demonstrate the utility of our general framework, in this section, we instan-
tiate sub-protocols defined in Sect. 4.1. The sub-protocols can be instantiated
under three different types of public key systems, namely, the classical DL sys-
tem, the pairing based system, and the RSA system. Here, we only present a
high-level idea on how to instantiate the system from the RSA system and refer
readers to the full version [30] for detailed instantiations from all three systems.

Our RSA based sub-protocols works in a quadratic residue group QRN with
a generator g, where N is the product of two big safe prime numbers. The secret
key of the system is two safe primes p and q that 2pq + 1 is also a prime and
the public key is n = 2pq + 1. To generate a ticket τ = (b, t), one first samples

r
$← ZN , then computes b = gr mod N and t = bp+q mod N .



Decentralized Blacklistable Anonymous Credentials with Reputation 731

To prove the possession of a secret key sk = (p, q) for a properly generated
public key pk = n, the user works in two steps. First, the prover proves that
(n − 1)/2 is a product of two primes. This can be accomplished by employing a
variant the proof system proposed in [21]. Then, the prover needs to prove that
he knows two numbers p, q with identical lengths that satisfy 2pq + 1 = n. To
instantiate this proof system, we apply the framework presented in [23], which
provides a simple method to prove knowledge of discrete logs that are in an
interval and fulfil a set of equations over groups of unknown order.

Then, to construct the SPK system proving that a user possesses a secret
key sk = (p, q) associated with a public key pk = n in a given set C, we apply
the approach presented in [17], which also builds on the framework of [23]. More
precisely, the prover first accumulates public keys in C with a dynamic accumu-
lator, then proves in zero-knowledge the possession of the secret key of a public
key in the accumulator. To further prove that a given ticket τ = (b, t) is also
generated from the same secret key, the prover just plugs the equation t = bpbq

into the above statement.
Finally, to prove the fulfilment of a policy, we exploit the idea in [6] to con-

struct the proof system, but will employ RSA-based cryptographic primitives
instead of those pairing-based ones. In particular, we will apply strong-RSA
assumption based additive homomorphic commitment scheme [19] and CL sig-
nature scheme [12], and we will also apply the framework in [23] to construct
our proof system.

6 The Implementation

To demonstrate the practicability of our system, in this section, we provide a
proof of concept implementation for it. The implementation includes two rel-
atively independent parts, namely, the public ledger part and the credential
system part, and we describe the results for them in Sect. 6.1 and in Sect. 6.2
respectively.

6.1 The Public Ledger

First, we explore how the public ledger could be realized. Recall that the pub-
lic ledger can be instantiated via the blockchain technique. So, we choose the
Bitcoin and the Ethereum, which are the two most popular blockchain tech-
nique instantiations currently, as the test object. The test is conducted on a
personal computer with a 3.16 GHz Intel(R) Core(TM)2 Duo Processor E8500,
8 GB RAM and 500 GB disk, running ARCHLinux version 4.10.6. The Bitcoin
client run in the experiment is Bitcoin Core Version 0.14.0 and the Ethereum
client is go-ethereum 1.5.9. The result is summarized in Table 2.

The row “Market Cap” indicates the market capitalizations of each instan-
tiation, and the data come from [1]. This can reflect the robustness of the
blockchain to some extent. The row “Initial Data Size” and the row “Initial
Sync Time” indicates the disk space and time needed before one could employ
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Table 2. Comparison of public ledger instantiations.

Bitcoin Ethereum

Market Cap 19257718797 USD 4376127411 USD

Initial Data Size 118 GB 15 GB

Initial Sync Time 9 h 5 h

Ease of Use Difficult Easy

Data Size Limit 80bytes *

Cost 0.5342 USD 0.0225 USD

Confirmation Time 6 min/70 min a few seconds/3min

the public ledger. The row “Ease of Use” and the row “Data Size Limit” indi-
cates the accessibility of using blockchain as a public ledger. For Bitcoin, in
each transaction, there exists a field OP RETURN allowing one to put up to 80
bytes arbitrary data [3] on it, but it seems that the Bitcoin community do not
hope people to use this field, and the client Bitcoin Core also does not provide a
convenient way to implement this functionality. Thus, we test this facility via a
third party open source project on GitHub [22]. For Ethereum, putting data in
a transaction is natively supported. There is also no explicit limits on the size
of data put in a transaction, but for each block, there is a block gas limit, which
is about 4 millions for current blocks. As it will consume gas to attach data
to a transaction, one could only put dozens to hundreds kilobytes data in one
transaction now according to the content of the data. The row “Cost” indicates
the amount of money cost to put data on the blockchain. For Bitcoin, this is
the transaction fee for rewarding the miners. According to statistics (data from
[4]), to hope miners to deal with the transaction immediately, the transaction
fee should be above 1.8 × 10−6 BTC per byte, and for our purpose, which will
send a transaction of about 250 bytes (about 200 bytes for the basic transaction
and about 50 bytes for the attached data), the transaction fee should be 0.00045
BTC, which is about 0.5342 USD according to the price of 1 BTC at April 14th,
2017. For Ethereum, the cost comes from the gas consumed. Currently, each gas
is about 2 × 10−8 Ether, and according to the yellow paper of Ethereum [28], a
transaction will cost 21000 gas for itself, and each non-zero byte put in the data
field will cost 68 gas. In our experiment, we put 32 bytes in a transaction and
this cost us 0.00047 Ether, or about 0.0225 USD according to the price of 1 Ether
at April 14th, 2017. The row “Confirmation Time” indicates the time needed to
wait for the transactions and the data to be confirmed. For Bitcoin, on average,
it will take 10 min to generate a new block, so on average, it will take about 5 min
to see the data appear on the blockchain, and about 1 h to confirm that the data
are put in the blockchain (6 confirmation). For Ethereum, the new block appears
every a few seconds, so the data will appear on the blockchain immediately. As
claimed by the Ethereum Blog [2], 10 confirmation in Ethereum is enough to
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achieve a similar degree of security as that of 6 confirmation in Bitcoin, so it
may take about 3 min to wait for the confirmation of the transaction/data.

From the experiment result, we observe that neither the Bitcoin nor the
Ethereum can support large data storage. So in practice, to use them as a public
ledger, one should first upload the data to some public cloud, then put the link
(40 to 60 bytes for a dropbox link and 10 to 20 bytes if google url shorten service is
used) and hash value of the data (32 bytes if SHA-256 is used) to the blockchain.
In this way, the functionality of the public ledger still reserves. Another problem
is that while it is quite easy for a service provider to sync and maintain a Bitcoin
blockchain or an Ethereum blockchain in its server, this is not the case for a
normal user. To tackle this problem, we suggest users with constrained devices
to use a lightweight client or refer to an online service to complete interactions
with the public ledger (they could exploit multiple approaches to retrieve data
to boost the security), and this will not harm the security as long as there exists
services providing correct Bitcoin or Ethereum blockchain information. When
comparing the Bitcoin and the Ehtereum, it seems that the Bitcoin blockchain is
more robust, while the Ethereum is also very secure and is much more convenient
to use. Thus, in practice, Ethereum seems a better choice and we prefer to employ
Ethereum to realize our system.

6.2 The Credential System

Then we examine the practicality of the credential system part of our system.
The implementation is for the RSA-based instantiation. To simplify the criterion
for evaluating the experiment result, we only consider a simple policy with a
single category, threshold 0, and no adjusting factor, and a rating records list
with one blacklist. The experiment is conducted on a Macbook Pro with 8 GB
of 1866 MHz LPDDR3 onboard memory and a 2.7 GHz dual-core Intel Core i5
processor, running OSX 10.12.4. The test code is written in C based on the
OPENSSL library (version 1.0.2).

There are two main operations, namely the registration and the authentica-
tion, in the system, thus our experiment also focuses on the performance of these
two protocols. First, we test the performance of the registration protocol, includ-
ing the time for a user to generate a credential, the time for a service provider to
verify a credential, and the credential size. As the user may already have a key
pair when joining the system, the time consumption for generating a credential
is tested in two modes, namely the normal mode, where the user needs to gen-
erate both the key pair and the proof, and the pre-computation mode, where
credential is generated on a given public key/secret key pair. Then, we test the
performance of the authentication protocol, including the time for generating a
proof, the time for verifying a proof, and the size of the proof. Since the user
can access the requirement in advance and precompute some parts, we will test
the times for generating a proof both with and without pre-computation.
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The experiment performance is measured under different parameters, includ-
ing the security parameter, the candidate users set size, and the blacklist size.
In more detail, we will consider security parameters of 1024 bits, 2048 bits, and
3072 bits, which can achieve a security strength of about 80 bits, 112 bits, and
128 bits respectively (according to [7]), and summarize the performance of our
system under different security parameters in Table 3. we will consider candi-
date users set size of 10000, 20000, 50000 100000, and 200000, and blacklist
size of 1000, 2000, 3000, 4000, and 5000, and summarize the performance of the
authentication protocol under these parameters in Fig. 3. When analyzing the
relation between the performance and one particular parameter, the other two
parameters will be set as default, and the default values of the security param-
eter, the candidate users set size, and the blacklist size are 2048 bits, 50000,
3000 respectively. Besides, we also test the performance for the setting with an
empty blacklist, which is exactly the scenario considered in [20], and compare
our results with theirs in Fig. 4.

Table 3. The performance of the registration protocol and the authentication protocol
under different security parameters with 50000 users and 3000 blacklist records.

GC GC-P VC CS GP GP-P VP PS

1024 bits 1.316 s 0.153 s 0.047 s 70.1 KB 10.878 s 0.021 s 5.686 s 3.1 MB

2048 bits 19.296 s 0.932 s 0.295 s 139.9 KB 51.917 s 0.036 s 29.289 6.2 MB

3072 bits 69.578 s 2.959 s 0.910 s 209.8 KB 142.123 s 0.047 s 84.872 s 9.3 MB

Here, we use GC, GC-P, and VC to denote time consumed in generating a credential,
generating a credential with pre-computation, and verifying the validity of a credential
respectively; we use GP, GP-P, and VP to denote time consumed in generating a proof,
generating a proof with pre-computation, and verifying a proof respectively; and we use
CS and PS to denote the size of a credential and an authentication proof respectively.

From the experiment results, we can conclude that our system is quite prac-
tical when deployed in practice. First, at the user side, the time consumption is
extremely low if pre-computation is enabled. At the service provider side, it is
also fairly fast to verify the validity of a credential, but it seems time-consuming
to verify the validity of a proof. Nonetheless, the service provider often controls
more computation resources, so it will take less time to wait for the verification
in real world applications. Besides, the size of the credential and the proof is
also not very large, thus the communication cost of our system is also quite low.
One advantage of our system is that both the communication cost and the com-
putation cost hardly increase with the increasing of the candidate users, i.e. it is
scalable in the number of supported users. This is important for the usefulness of
our system, since a large number of registered users is always desired to protect
the privacy of particular users. However, this is not the case for the blacklist
size, as both the communication cost and the computation cost grow linearly
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(a) Performance for the authentication protocol under different candidate users set size with secu-
rity parameter 2048 bits and 3000 blacklist records. GP, GP-P and VP are times for generating a
proof without pre-computation, generating 1000 proofs with pre-computation, and verifying a proof
respectively, and PS is the size of the authentication proof.

2,000 4,000

20

40

60

80

Size of Blacklist

T
im

e
(s
ec
)

GP
VP

(b) Time for generating and
verifying a proof under differ-
ent blacklist size with secu-
rity parameter 2048 bits and
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rity parameter 2048 bits and
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Fig. 3. Performance of our system under different candidate users set size and blacklist
size.

with the size of the blacklist. So, it is better to employ our system in settings
with a small blacklist. We leave how to upgrade the system to scalable in the
size of the blacklist as an open problem.

When comparing the efficiency of our system with that in [20], we observe
that our efficiency is much better than theirs. More precisely, our system can be
as much as 30 times faster than theirs for a user to generate an authentication,
and can be as much as 4 times faster for a service provider to verifiy. Also, the
communication cost of our system is only about 15% to 45% of theirs. Thus our
system is preferable even in scenarios that no revocation is needed.
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Fig. 4. Comparison between the performance of our authentication protocol with
empty blacklist and the performance of the authentication protocol in [20]. Since in
their experiment, accumulator is computed separately, we also do not count time con-
sumed by this part in the test. Here, GP-O and VP-O are times for generating an
authentication proof without pre-computation and verifying an authentication proof
in our system respectively; GP-G and VP-G are respective times in [20]; and PS-O and
PS-G are our authentication proof size and theirs respectively.

7 Conclusion

In this paper, we explore how to employ the blockchain technique to solve several
open problems for previous anonymous credential systems, including trust of the
credential issuer and the blacklist gaming attack. Note that, our system is only
partially resilient to the blacklist gaming attack. Especially, a malicious verifier
can still learn information such as the number of successfully authenticated users
in a time period and may use this information to compromise the privacy of users.
We leave how to construct a blacklistable anonymous credential system that is
fully resilient to the blacklist gaming attack as an open problem.
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Abstract. The user revocation of certificateless cryptosystems is an
important issue. One of the existing solutions is to issue extra time
keys periodically for every non-revoked user. However, since the scheme
requires different time keys to decrypt data for different time periods,
the user needs to hold a long list of time keys (linear growth with time),
which is inefficient in practical applications. Moreover, the ciphertexts
produced before revocation are still available to the revoked users, which
is not acceptable in most applications such as cloud storage. To over-
come these shortcomings, in this paper, we present an efficient solution
called revocable certificateless encryption with ciphertext evolution. In our
scheme, a current time key together with a private key are enough for
the decryptions by non-revoked users. Meanwhile, revoked users cannot
make decryptions on ciphertexts in the past any more. We give formal
security proofs based on the IND-CPA model under the standard BDH
problem.

Keywords: Certificateless · Revocable · Ciphertext evolution
Cloud storage

1 Introduction

In a traditional public key cryptosystem, the CA has to do complicated cer-
tificate management which is costly. To address the problem, in 1984, Shamir
proposed the famous notion called “Identity-based Cryptography” (IBC) [16].
In IBC, the user public key is no longer generated by the user himself but using
a unique identity such as email address. So there is no need to issue a certificate
to guarantee the authenticity of the user public key. However, the user private
key is fully computed by a trusted third party called Private Key Generator
(PKG). The PKG can do anything on behalf of the user which is not acceptable
in some practical applications. In order to solve the inherent key escrow problem
in IBC, in 2003, Al-Riyami and Paterson introduced certificateless public key
cryptosystem (CLPKC) [2]. The CLPKC can be viewed as a combination of the
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 741–749, 2018.
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traditional public key cryptosystem and the IBC. In CLPKC, the user private
key contains two parts, one of which is from a trusted third party called Key
Generation Center (KGC), the other from the user himself. So, the KGC cannot
access the full private key.

The user revocation is an important issue in a public key cryptosystem. The
traditional public key system employs such as the technique of CRL for the revo-
cation. However, these revocation methods are not suitable for IBC or CLPKC.
In 2001, Boneh and Franklin [3] suggested a trivial way to revoke users that the
PKG updates the private keys for all non-revoked users at every time period. In
[10], the revocation is done by a third party called SEM (SEcurity Mediator).
The first scalable and practical identity based revocation scheme is presented
by Boldyreva et al. [4], which was then improved by Libert and Vergnaud [11]
to reach a strong security level. In [14], Seo and Emura proposed the notion
of decryption key exposure (DKE) and gave a DKE-resistant revocable identity
based encryption scheme with provable security in the standard model.

The revocation problem in CLPKC is similar to that in IBC. The third
party assistant SEM revocation method [5,9] is not an ideal solution in lots of
applications, because the users cannot decrypt or sign independently. A natural
trivial way is to update user partial private keys periodically [1]. But the need for
secret channels to transmit all partial private keys consumes much computation
and bandwidth. In 2015, Sun et al. gave an efficient solution to the revocation
problem in CLPKC by constructing a revocable certificateless encryption scheme
with provable security in the standard model [17]. The scheme updates time
keys for non-revoked users over public channels and can resist the thereat of
decryption key exposure. Other related works are such as [7,12,13,18,19].

Certificateless encryption can be applied in scenarios such as cloud storage to
protect the privacy of data in the cloud [8,15]. But few consider the user revo-
cation in applications. Directly applying a revocable certificateless encryption
scheme might suffer from some drawbacks. For example, revoked data users can
still decrypt the data encrypted before revocation; data users have to maintain
all the time keys by himself (linear growth with time). Therefore, it is desirable
to make some improvements when putting a revocable certificateless encryption
scheme in applications e.g. cloud storage.

Our Contributions. In this paper, we provide a solution to those problems men-
tioned above by introducing a new notion called revocable certificateless encryp-
tion with ciphertext evolution (RCLE-CE). Suppose the system involves a data
owner, a cloud server and a data user. After the data owner uploads data into
the cloud, the data user can download to use the data. When the data user is
revoked, the cloud server does ciphertext evolution to prevent the revoked user
decrypting ciphertexts generated before revocation. As to the non-revoked users,
they can ask the cloud server for ciphertext evolution to minimize their time key
lists. We define the security model to meet the requirement of RCLE-CE and
give a concrete construction with provable security against the attacks in the
proposed model. The ciphertext evolution is simple and easy to realize.
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The remaining sections are organized as follows. In Sect. 2, we give some
preliminaries including the definition of revocable certificateless encryption with
ciphertext evolution, the security model and complexity problems. The concrete
construction with formal security proofs and efficiency analysis is presented in
Sect. 3. Finally, we conclude this paper in the last section.

2 Definition and Security Model

2.1 Revocable Certificateless Encryption with Ciphertext Evolution

A revocable certificateless encryption scheme with ciphertext evolution is made
up of the following algorithms:

– Setup: Taking a security parameter k as input, the algorithm outputs a master
secret key msk and a list of public parameters params.

– Extract-Partial-Private-Key: Taking params, msk and a user identity ID as
input, the algorithm outputs a partial private key DID. This is done by the
KGC who then transmits DID to the user via a secret channel.

– Set-Secret-Value: Taking an identity ID as input, the algorithm outputs a
secret value SVID. This is done by the user.

– Set-Public-Key: Taking an identity ID and the secret value SVID as input,
the algorithm outputs a public key PKID.

– Update-Time-Key: Taking params, msk, an identity ID and a time tag t as
input, this algorithm outputs a time key TKID,t. This is done by the KGC
who transmit TKID,t to the user via a public channel.

– Encrypt: Taking params, a data user identity ID, the current time t and a
message M as input, this algorithm outputs a ciphertext C. This is done by
the data owner who stores C in the cloud.

– Decrypt: Taking params, the data user identity and time key (PSKID, TKID,t)
and the ciphertext C as input, the data user decrypts C to recover the message
M .

– Revoke: Taking a user identity ID as input, the KGC stops computing time
keys for the user.

– Ciphertext-Evolve: The cloud server transforms a ciphertext C of (ID, t) to a
new ciphertext C ′ of (ID, t′).

2.2 The Security Model

The security model of RCLE-CE is very similar to the security model of RCLE.
Because the cloud server only use public user time keys to do ciphertext evolution.
We allow ciphertext evolution queries by adversaries during the attacks.

Three types of adversaries are considered. A type I adversary AI knows both
partial private key and secret value, but does not have time key. AI is a malicious
revoked user. A type II adversary AII has access to partial private key and time
key, but does not know the secret value. AII is the malicious KGC. A type III
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adversary AIII has access to secret value and time key, but does not know partial
private key. AII replaces the secret value with a new value of his choice.

We define the IND-CPA security of revocable certificateless encryption with
ciphertext evolution via the following game interacting between the challenger
and the adversary A (A ∈ {AI ,AII ,AIII}).

At the beginning, the challenger runs the setup algorithm to provide public
parameters params to the adversary A. If A = AII , the challenger also gives
the master secret key msk to the adversary; otherwise, the challenger keeps msk
secret.

After that, A may make some queries (PPK: Partial Private Key query, SV:
Secret Value query, PKR: Public Key Replacement query, PK: Public Key query,
TK: Time Key query, CE: Ciphertext Evolution query) to the challenger.

Query PPKAI ,AIII SV PKRAIII PK TK CE

Adversary ID ID (ID,PKID,PK′
ID) ID (ID, t) (CID,t, t

′)

Challenger DID SVID (ID,PK′
ID) PKID TKID,t CID,t′

Challenge: A outputs two messages M0 and M1 of the same length, an identity
ID∗ and a time t∗. The challenger randomly chooses β from {0, 1} and encrypts
Mβ to output a challenge ciphertext C∗.

A continues to make queries as before, subject to the constrain that AI

cannot make a time key query on (ID∗, t∗); AII cannot make a secret value
query on ID∗; AIII cannot request the partial private key of ID∗.

Guess: At the end of the game, A outputs a guess β′ ∈ {0, 1}.
The adversary A’s advantage is defined by Pr(β′ = β) − 1/2. An RCLE-CE

scheme is said to be secure in the sense of indistinguishability against chosen
plaintext attacks (IND-CPA secure) if no probabilistic polynomial-time adver-
sary has non-negligible advantage in the above game.

2.3 Bilinear Paring and Complexity Problem

Bilinear paring. Suppose G1 is an additive cyclic group and G2 is a multiplicative
cyclic group with the same prime order q. P is a generator of G1. A bilinear
pairing is a map e : G1 × G1 → G2 satisfying three basic properties below.

– Bilinear: given a, b ∈ Zq, e(aP, bP ) = e(P, P )ab;
– Non-degenerate: e(P, P ) �= 1G2 ;
– Computable: e(U, V ) can be computed efficiently.

The security of our scheme is based on the standard Computable Diffie-
Hellman problem and Bilinear Diffie-Hellman problem.
Computable Diffie-Hellman (CDH) problem. Given a random instance (aP, bP ∈
G1) with a, b ∈R Z

∗
q , to compute abP .

Bilinear Diffie-Hellman (BDH) problem. Given a random instance (aP, bP, cP ∈
G1) with a, b, c ∈R Z

∗
q , to compute e(P, P )abc.
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3 Revocable Certificateless Encryption with Ciphertext
Evolution

3.1 The Construction

– Setup: Take a security parameter k as input. G1 is an additive cyclic group and
G2 is a multiplicative cyclic group. They are of the same order q. Suppose P
is a generator of G1. e : G1 ×G1 → G2 is a bilinear pairing. Choose s ∈ Z

∗
q at

random and compute P0 = sP . Select four hash functions: H1 : {0, 1}∗ → G1,
H2 : {0, 1}∗ → G1, H3 : G2 → {0, 1}l and H4 : G2 → {0, 1}l.
The system parameters params are 〈G1,G2, q, P, P0, e,H1,H2,H3,H4〉. The
master secret key mk is s.

– Extract-Private-Key: Taking params, mk and ID as input, this algorithm com-
putes QID = H1(ID) and then calculates DID = sQID as the private key of
user ID.

– Set-Secret-Value: Taking a user identity ID as input, choose xID ∈ Z
∗
q at

random. Output the secret value SVID = xID.
– Set-Public-Key: Taking a user’s identity ID and secret value xID as input,

compute PKID = xIDP as the user’s public key.
– Time-Key-Update: Taking params, mk, ID and a time tag t as input, this

algorithm computes QID,t = H2(ID, t) and then calculates TKID,t = sQID,t

as the time key of the user ID at the time t.
– Encrypt: To encrypt a message M at the time t, this algorithm takes as input

the receiver’s identity ID and public key PKID, the time t and the message
M , then does the following:

• choose r0, r1 ∈ Z∗
q at random and compute U0 = r0P,U1 = r1P ;

• compute V = M ⊕ H3(e(QID, P0)r0 , r0PKID) ⊕ H4(e(QID,t, P0)r1);
• output the ciphertext C = (U0, U1, V ).

– Decrypt: To decrypt a ciphertext C = (U0, U1, V ), this algorithm computes
the plaintext M = V ⊕ H3(e(DID, U0), xIDU0) ⊕ H4(e(TKID,t, U1)).

– Revoke: If the user with identity ID needs to be revoked at the time t, the
KGC stops generating the time key TKID,t for the user.

– Ciphertext-Evolve: To transform a ciphertext C = (U0, U1, V ) of ID at the
time t into a new ciphertext at the current time t′, the cloud does the
following.

• Choose r′
1 ∈ Z∗

q at random and compute U ′
1 = r′

1P ;
• The cloud computes V ′ = V ⊕H4(e(TKID,t, U1)−1)⊕H4(e(QID,t′ , P0)r′

1);
• Update the ciphertext to be C = (U0, U

′
1, V

′).

3.2 The Security

Theorem 1. Suppose the hash functions H1, H2, H3 and H4 are random ora-
cles. If there exists a type I adversary AI against the IND-CPA security of our
RCLE-CE scheme with advantage ε, making q2 times H2 queries and q4 times
H4 queries, then there exists an algorithm B that can solve the BDH problem
with advantage not less than ε/q2q4.
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Proof. B is a BDH problem solver with instance (P, aP, bP, cP, e). It will act as
the challenger to compute e(P, P )abc by interacting with the adversary AI .

Taking the security parameter k as input, B chooses a bilinear group
(G1,G2, e) with q the order of both G1 and G2. P is a generator of G1. Set P0 =
aP as the master public key. Select four hash functions H1, H2, H3 and H4 as
required. The system parameters params are 〈G1,G2, q, P, P0, e,H1,H2,H3,H4〉.
B randomly chooses I∗ ∈ [1, q2] ∩ Z.

Then the adversary may make some queries described as follows. All the
hash functions are viewed as random oracles. Hash queries and answers are
maintained in the related hash lists with tuples of the form: (ID, z, zP ) for H1,
(ID, t, z′, z′P ) for H2, (x0, x1, h3) for H3 and (y, h4) for H4. If any query below
is made, we always suppose that the related hash query-answer has existed in
the list.

Especially, when AI makes the ith query to the H2 oracle, if i = I∗, B returns
bP as the answer; otherwise, B randomly chooses z′ ∈ Z

∗
q and computes z′P as

the answer. Suppose the I∗th H2 query is on the identity and time (ID∗, t∗).
Partial private key extraction query: When AI makes a partial private key extrac-
tion query on the identity ID, B searches the H1 list for a tuple (ID, z, zP ).
Compute DID = zP0 and return DID to AI .
Time key query: When AI makes a time key query on (ID, t), B searches the H2

list for a tuple (ID, t, z′, z′P ). Compute TKID,t = z′P0 and return TKID,t to
AI . Note that if (ID, t) = (ID∗, t∗), abort the game.
Secret value query: When AI requests the secret value of the user with identity
ID, B chooses a random xID ∈ Z

∗
q and returns it to AI .

Public key query: When AI requests the public key of the user ID, B checks the
secret value list for xID and then computes PKID = xIDP as the public key
returned to AI .
Ciphertext evolution query: When AI makes a ciphertext evolution query with
(C = (U0, U1, V ), ID, t, t′), B firstly searches the time key list for TKID,t,
then chooses r′

1 ∈ Z∗
q at random, computes U ′

1 = r′
1P and V ′ = V ⊕

H4(e(TKID,t, U1)−1) ⊕ H4(e(QID,t′ , P0)r′
1), finally returns C ′ = (U0, U

′
1, V

′) as
the new ciphertext to AI .
Challenge: AI selects two messages (M0,M1) of the same length as well as an
identity ID∗ and a time tag t∗ to be challenged. B randomly chooses β ∈ {0, 1}
and does the following:

– choose r∗
0 ∈ Z∗

q , compute U∗
0 = r∗

0P and set U∗
1 = cP ;

– randomly choose V ∗ ∈ {0, 1}l;
– search the H3 list for a tuple (e(QID∗ , P0)r∗

0 , r∗
0PKID∗ , h∗

3), then compute
h∗
4 = V ∗ ⊕ Mβ ⊕ h∗

3 and set H4(e(P, P )abc) = h∗
4 (actually B doesn’t know

e(P, P )abc);
– return (U∗

0 , U∗
1 , V ∗) to AI as the challenge ciphertext.

AI may make more queries as before, subject to the constrain that the time
key TKID∗,t∗ query is not allowed.
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Guess. At last, AI outputs its guess β ∈ {0, 1}. B randomly chooses a tuple
(x, h4) from the H4 list and outputs x as the solution to the BDH problem.

Analysis. It is obvious that B’s advantage to break the IND-CPA security of our
scheme is not less than ε/q2q4.

Theorem 2. Suppose the hash functions H1, H2, H3 and H4 are random ora-
cles. If there exists a type II adversary AII against the IND-CPA security of our
RCLE-CE scheme with advantage ε, making q2 times H2 queries and q4 times
H4 queries, then there exists an algorithm B that can solve the CDH problem
with advantage not less than ε/q1q3.

Theorem 3. Suppose the hash functions H1, H2, H3 and H4 are random ora-
cles. If there exists a type I adversary AIII against the IND-CPA security of our
RCLE-CE scheme with advantage ε, making q1 times H1 queries and q3 times
H3 queries, then there exists an algorithm B that can solve the BDH problem
with advantage not less than ε/q1q3.

Due to space limitation, we omit the proofs of Theorems 2 and 3. For details,
please refer to the full version of this paper.

3.3 The Comparison

We choose two representative RCLE schemes to make comparisons. In the fol-
lowing table, “TK-list size” indicates the size of time key list that the user needs
to maintain. “P1” means Problem 1: linearly growing time key list; “P2” means
Problem 2: ciphertexts before revocation can be decrypted by the revoked user.
“ST” and “RO” are short for standard model and random oracle model, respec-
tively. G1 is the cyclic group of symmetric bilinear pairing. |G1| and |M | are
the length of the element in G1 and the message, respectively. “p” is pairing
computation and “e” is exponential computation.

Scheme TK-list size Encrypt Decrypt Ciphertext size P1 P2 Model

[17] O(t) 3p+5e 5p 4|G1| + |M | No No ST

[19] O(t) 1p+3e 1p+1e |G1| + 2|M | No No RO

Ours 1 2p+4e 2p+1e 2|G1| + |M | Yes Yes RO

The above comparison shows that our scheme solves two problems P1 and
P2 inherent in conventional time-updating RCLE constructions. Our scheme is
more applicable in e.g. cloud data sharing than the existing RCLE schemes.
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4 Conclusion

We introduced the notion of revocable certificateless encryption with ciphertext
evolution (RCLE-CE) with a concrete construction. The revocation is achieved
via time key updating. The ciphertext evolution is operated by a third party e.g.
the cloud server. Compared with conventional revocable certificateless encryp-
tion, our RCLE-CE is more practical. Because it saves a lot of storage resources
for the users and makes the data in the cloud strongly secure against revoked
users. We gave both the definition and the security model of RCLE-CE. The
scheme is provably IND-CPA secure in the random oracle model assuming the
BDH problem is hard.

Acknowledgements. This work is supported by the Nature Science Foundation of
China (grant numbers 61502237, 61672289, 61572255).
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Abstract. We propose a rank metric codes based encryption based on
the hard problem of rank syndrome decoding problem. We distort the
matrix used for our encryption by adding a random distortion matrix
over Fqm . We show that IND-CPA security is achievable for our encryp-
tion under assumption of Decisional Rank Syndrome Decoding problem.
Our proposal allows the choice of the error terms with rank up to r/2,
where r is the error-correcting capability of a code. Our encryption based
on Gabidulin codes has public key size of 13.68KB, which is 82 times
smaller than the public key size of McEliece Cryptosystem based on
Goppa codes. For similar post-quantum security level of 2140 bits, our
encryption scheme has smaller public key size than key size suggested by
LOI17 Encryption [7].

Keywords: Code-based cryptography · Public-key encryption
McEliece · Provable security

1 Introduction

In 1978, McEliece [8] proposed a public-key cryptosystem based on Goppa codes
in Hamming metric. Although the original McEliece cryptosystem is still con-
sidered secured today, the large key size of Goppa codes (approximately 1 MB)
is less practical in application. As an alternative for Hamming metric, Gabidulin
introduced the rank metric and the Gabidulin codes over finite field with qm

elements, Fqm and construct the first rank-based cryptosystem (GPT) [2] with
much smaller key size compared to McEliece on Goppa codes. However, due to
the weakness of Gabidulin codes containing huge vector space invariant under
Frobenius automorphism, the GPT and other Gabidulin codes cryptosystems
were proved to be insecure by different structural attacks (for instances [6,9]).
In addition, some general rank syndrome decoding attacks (for instances [4,10])
are able to attack these cryptosystems with their parameters in polynomial time.

In 2017, there were two new attempts in rank metric encryption scheme. The
first one is proposed by Gaborit et al. [3], namely RankPKE in their construc-
tion of a code-based identity-based encryption scheme. The second attempt is
a McEliece type encryption proposed by Loidreau (LOI17) [7], which considers
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 750–758, 2018.
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a scrambler matrix P with its inverse P−1 over V , a λ-dimensional subspace of
Fqm . The term cP−1 = mSGPP−1 +eP−1 has error eP−1 with e of rank t and
m as plaintext. In other words, the matrix P−1 amplifies the rank of e, and this
leads to larger public key size as t has to be λ times smaller than r.

Our Contributions. In this paper, we propose an encryption scheme based on
the hard problem of rank syndrome decoding problem. We hide the structure
of the generator matrix of the code by adding a distortion matrix of column
rank n, with an error of rank larger than r being added into the ciphertext.
We show that our encryption scheme has IND-CPA security under assumption of
Decisional Rank Syndrome Decoding (DRSD) problem. We propose Gabidulin
codes as a choice of decodable code in our encryption. Furthermore, for similar
post quantum security level of 2140 bits, our encryption scheme has smaller public
key size as compared to key size suggested by LOI17 Encryption [7].

In the remainder of this paper, we review some preliminaries for rank metric,
circulant matrix and the hard problems which our encryption is based on in
Sect. 2. In Sect. 3 we describe our proposed cryptosystem and prove that our
encryption scheme has IND-CPA security under assumption of DRSD in Sect. 4.
In Sect. 5 we propose Gabidulin codes as a choice for the decodable code C in our
encryption with its security analyzed and propose some parameters. We give our
final considerations for this paper in Sect. 6. Due to page limitations, please refer
to the extended version of this paper for the complete proofs of some results in
this paper.

2 Preliminaries

We recall the definition of rank metric and the hard problems in coding theory
which our encryption is based on.

Given a matrix M with coefficients in a field F , the rank of M , rk(M) is the
dimension of the row span of M as a vector space over F . We denote the row
span of a matrix M over F by 〈M〉F , or 〈M〉 when the context is clear. Let Fqm

be a finite field with qm elements and {β1, . . . , βm} be a basis of Fqm over Fq,
where q is a power of a prime.

Definition 1. Let x = (x1, . . . , xn) ∈ F
n
qm and M ∈ F

k×n
qm . The rank of x

in Fq, denoted by rkq(x) is the rank of the matrix X = (xij) ∈ F
m×n
q where

xj =
∑m

i=1 xijβi. The column rank of M over Fq, denoted by colrkq(M) is the
maximum number of linearly independent columns over Fq. The support of x,
supp(x) is the Fq-vector space of Fqm generated by x1, . . . , xn.

Lemma 1 ([6]). Let x ∈ F
n
qm such that rkq(x) = r, there exists x̂ ∈ F

r
qm with

rkq(x̂) = r and U ∈ F
r×n
q with rk(U) = r such that x = x̂U . We call U a

Grassman support matrix for x and suppGr(x) = 〈U〉Fqm
the Grassman support

of x.

Lemma 2 ([9]). Let M ∈ F
k×n
qm and colrkq(M) = s < n. Then there exists

M ′ ∈ F
k×s
qm with colrkq(M ′) = s and K an invertible n × n matrix over Fq such

that MK =
[
M ′ | 0k×(n−s)

]
.
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Definition 2. Let x = (x0, . . . , xn−1) ∈ F
n
qm . The circulant matrix induced

by x is defined as Cirn(x) :=
[
x(i−j) mod n

]
i,j

∈ F
n×n
qm . The k-partial circulant

matrix, Cirk(x) induced by x is the first k rows of Cirn(x).

We now describe the hard problems which our cryptosystem is based on.

Definition 3 Rank Syndrome Decoding Problem (RSD). Let H be a
full rank (n − k) × n matrix over Fqm , s ∈ F

n−k
qm and w an integer. The Rank

Syndrome Decoding Problem RSD(q,m, n, k, w) needs to determine x ∈ F
n
qm such

that rkq(x) = w and HxT = sT .

The RSD problem is analogous to the classical syndrome decoding problem
with Hamming metric. Recently, the RSD problem has been proven to be hard
with a probabilistic reduction to the Hamming setting [5].

Given G ∈ F
k×n
qm a full rank parity-check matrix of H in an RSD problem and

y ∈ F
n
qm . Then the dual version of RSD(q,m, n, k, w) is to determine m ∈ F

k
qm

and x ∈ F
n
qm such that rkq(x) = w and y = mG + x.

If X is a finite set, we write x
$← X to denote assignment to x of an element

randomly sampled from the distribution on X. We now give the definition of
Decisional version of RSD problem in its dual form:

Definition 4 Decisional RSD Problem (DRSD). Let G be a full rank k×n
matrix over Fqm , m ∈ F

k
qm and x ∈ F

n
qm of rank r. The Decisional RSD Problem

DRSD(q,m, n, k, w) needs to distinguish the pair (mG+x, G) from (y, G) where

y
$← F

n
qm .

It was proved that DRSD is hard in the worst case [3]. Therefore, the hardness
of our cryptosystem relies on the DRSD problem (refer to Sect. 4).

There are generally two types of generic attacks on the RSD problem, namely
the combinatorial attack and algebraic attack.

Combinatorial Attack. The combinatorial approach depends on counting the
number of possible supports of size r for a rank code of length n over Fqm , which
corresponds to the number of subspaces of dimension r in Fqm . These attacks
are more efficient for small values of q (typically q = 2). The complexity of the
best combinatorial attack has been updated to (n − k)3m3qr� (k+1)m

n �−m [1].

Algebraic Attack. The nature of the rank metric favors algebraic attacks using
Gröbner bases, as they are largely independent of the value q. These attacks
became efficient when q increases. In this paper, since our q is taken to be
small (q = 2), the complexity of algebraic attacks is greater than the cost of
combinatorial attacks [4].

3 A New Encryption Scheme

We propose our new encryption scheme which consists of a public matrix dis-
torted by a matrix of column rank n. We will discuss some strengths of this
encryption after the description of the scheme.
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Presentation of the Encryption Scheme, PE = (SPE,KPE, EPE,DPE).

Setup, SPE: Generate global parameters m > n > k > k′ ≥ 1, k′ =
⌊
k
2

⌋
and

r ≤ ⌊
n−k
2

⌋
. The plaintext space is F

k′
qm . Outputs parameters = (m,n, k, k′, r).

Key Generation, KPE: Generate S
$← GLk(Fqm). Generate a generator matrix

G ∈ F
k×n
qm of a linear code CG (with efficient decoding algorithm CG.Dec(·) of

error-correcting capabilities r). Generate u
$← F

n
qm with rkq(u) = n. Gener-

ate T
$← GLn(Fq). Outputs public key κpub = (Gpub = SG + Cirk(u)T,u) and

private key κsec = (S,G, T ).

Encryption, EPE(κpub,m): Let m ∈ F
k′
qm be the message to be encrypted. Gen-

erate ms
$← F

k−k′
qm satisfying rkq ((m‖ms)Cirk(u)) >

⌈
3
4 (n − k)

⌉
. Generate

e1,e2
$← F

n
qm such that rkq(e1) = r1 ≤ r

2 and rkq(e2) = r2 ≤ r
2 . Compute

c1 = (m‖ms)Cirk(u) + e1 and c2 = (m‖ms)Gpub + e2. Output c = (c1, c2).

Decryption, DPE (κsec, c): Returns (m‖ms) = (CG.Dec(c2 − c1T )) S−1.

Correctness. The correctness of our encryption scheme relies on the decod-
ing capability of the code C. Using the private keys, we have c2 − c1T =
(m‖ms)Gpub + e2 − ((m‖ms)Cirk(u) − e1) T = (m‖ms)SG + e2 − e1T . Since
rkq (e2 − e1T ) ≤ rkq (e2) + rkq (e1T ) ≤ r, then we can retrieve (m‖ms)S =
CG.Dec(c2 − c1T ). Finally, compute (m‖ms) = (m‖ms)SS−1.

Strengths of the Proposed Encryption. In McEliece type encryption, the
generator matrix G is scrambled so that the matrix for encryption will appear
random. LOI17 Encryption applied this approach with the payoff that the error
included in the message must have rank λ times smaller than r. Nevertheless,
in our construction, we can choose e1 and e2 with rank r1 ≤ r/2 and r2 ≤ r/2
respectively. Furthermore, the matrix G in our encryption is scrambled into
Gpub = SG + X where X = Cirk(u)T has column rank n:

Proposition 1. Let u ∈ F
n
qm such that rkq(u) = n. Then for any invertible

T ∈ F
n×n
q , colrkq(Cirk(u)T ) = n.

Proof. We first show that colrkq(Cirk(u)) ≥ n. Suppose that colrkq(Cirk(u)) <
n, then there exists at most n − 1 columns of Cirk(u) that are linearly indepen-
dent over Fq. Then at most n−1 elements in the first row of Cirk(n) are linearly
independent over Fq. Then rkq(u) ≤ n−1, a contradiction to rkq(u) = n. There-
fore colrkq(Cirk(u)) ≥ n. Also, we have colrkq(Cirk(u)) ≤ n. Since T ∈ GLn(Fq),
then colrkq(Cirk(u)T ) = colrkq(Cirk(u)) = n. ��
By Proposition 1, Cirk(u)T has column rank n instead of t < n. This will make
the reduction of X into the form XK = [X ′ | 0] (as in Lemma 2) impossible.

The second approach in constructing rank metric code based encryption is
to publish the generator matrix G and introduces an error e with rkq(e) > r to
ensure the decoding to retrieve plaintext is hard. In our construction, the error
term (m‖ms)Cirk(u)T + e2 in the ciphertext c2 has error larger than r:
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Proposition 2. Let u ∈ F
n
qm such that rkq(u) = n. Given m̂ = (m‖ms) ∈

F
k
qm such that rkq (m̂Cirk(u)) >

⌈
3
4 (n − k)

⌉
. Then for any e2 ∈ F

n
qm such that

rkq(e2) = r2, we have rkq (m̂Cirk(u)T + e2) > r.

Proof. We have rkq (m̂Cirk(u)T + e2) ≥ rkq (m̂Cirk(u)T ) − rkq(e2) > r. ��
By Proposition 2, rkq((m‖ms)Cirk(u)T +e2) > r. The adversary is not able

to recover the plaintext m from c2 even he knows the structure of the generator
matrix G. However in practicality, G is remained unknown to the adversary.

4 IND-CPA Secure Encryption

The desired security properties of a public-key encryption scheme is indistin-
guishability under chosen plaintext attack (IND-CPA). This is normally defined
by a security game which is interacting between a challenger and an adversary
A. In the security game, the challenger is given a security parameters and first
runs the key generation algorithm and send κpub to A. A chooses two equal
length plaintexts m0 and m1 and sends these to the challenger. The challenger
chooses a random b ∈ {0, 1}, computes a challenge ciphertext c = EPE(κpub,mb)
and returns c to A. A outputs a bit b′ ∈ {0, 1}. A wins if b′ = b. The advantage
of an adversary A is defined as AdvIND−CPA

PE,A (λ) =
∣
∣Pr[b′ = b] − 1

2

∣
∣.

A secure public-key encryption scheme against CPA is formally defined as:

Definition 5. A public-key encryption scheme PE = (SPE,KPE, EPE,DPE) is (t, ε)-
IND-CPA secure if for any probabilistic t-polynomial time adversary A has the
advantage less than ε, that is, AdvIND−CPA

PE,A (λ) < ε.

We need the following result to acheive IND-CPA security for our encryption:

Lemma 3. Given m ≥ n, k ≥ 1 and r < n
2 . Let x,y ∈ F

n
qm such that rkq(x) = a

and rkq(y) = b. Then there exists e ∈ F
n
qm with rkq(e) = r′ ≤ r

2 such that
rkq(x + e) ≥ r′ + 1 and rkq(y + e) ≥ r′ + 1.

The proof is omitted due to page limitations. It will be included in the extended
version of this paper.

Now, suppose the challenger adversary chooses two equal length plaintexts
m0,m1 ∈ F

k′
qm and sent these to the challenger. The challenger is able to choose a

random ms ∈ F
k−k′
qm , e1,e2 ∈ F

n
qm such that the conditions (1)–(3) are satisfied:

Lemma 4. Given m0,m1 ∈ F
k′
qm and ms ∈ F

k−k′
qm , let m̂ = (0k′‖ms) and

m̄ = (m0 + m1‖ms), there exists e1,e2 ∈ F
n
qm such that

rkq(e1) = r1 ≤ r/2, rkq(e2) = r2 ≤ r/2, (1)
rkq(m̂Cirk(u) + e1) ≥ r1 + 1, rkq(m̄Cirk(u) + e1) ≥ r1 + 1, (2)

rkq(m̂Gpub + e2) ≥ r2 + 1, rkq(m̄Gpub + e2) ≥ r2 + 1. (3)
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Proof. Let rkq(m̂Cirk(u)) = a1 and rkq(m̄Cirk(u)) = b1, rkq(m̂Gpub) = a2 and
rkq(m̄Gpub) = b2. Then apply Lemma 3 accordingly. ��
Without knowing any information on ms , A is unable to distinguish between
c1 + (m0‖0)Cirk(u) and c1 + (m1‖0)Cirk(u), between c2 + (m0‖0)Gpub and
c2 + (m1‖0)Gpub, as e1, e2 are chosen such that (1)–(3) are satisfied.

Notation. Denote Ecir(m0,m1,ms) and EGpub
(m0,m1,ms) as the set of all

elements in F
n
qm that satisfy (1), (2) and (1), (3) respectively.

Definition 6 Decisional Rank Syndrome Decoding (DRSD) assump-
tion. Let DM be a distinguishing algorithm with input (x ∈ F

n
qm ,M ∈ F

k×n
qm )

and outputs a bit. The DRSD advantage of DM is defined as AdvDRSDM,n,k(DM ) =

|PrM,v ,e [DM (vM + e,M) = 1] − PrM,y [DM (y,M) = 1]|, where M
$← F

k×n
qm ,

v
$← F

k
qm , e $← F

n
qm with rkq(e) = w, y $← F

n
qm . The DRSDM assumption is the

assumption that AdvDRSDM,n,k(D) is negligible for any DM , i.e., AdvDRSDM,n,k(DM ) < εM .

Now, we prove that our encryption is IND-CPA secure under DRSDCirk(u) and
DRSDGpub

assumptions.

Theorem 1. Under the DRSDCirk(u) and DRSDGpub
assumptions, the proposed

public-key encryption scheme PE is IND-CPA secure.

Proof. To prove the security of the scheme, we are using a sequence of games.
Game G0: This is the real IND-CPA attack game against an adversary A in the
definition of semantic security. We run the following attack game algorithm:

S
$← GLk(Fqm), u $← F

n
qm , T

$← GLn(Fq),
κpub ← (SG + Cirk(u)T,u), κsec ← (S,G, T )

(m0,m1)
$← A(κpub)

b
$← {0, 1}, ms

$← F
k−k′
qm , e1

$← Ecir(m0,m1,ms), e2
$← EGpub

(m0,m1,ms),
c1 ← (mb‖ms)Cirk(u) + e1, c2 ← (mb‖ms)Gpub + e2
b̂ ← A(κpub, c1, c2)
if b̂ = b then return 1 else return 0

Denote S0 the event that A wins in Game G0. Then AdvIND−CPA
PE,A (λ) =

∣
∣Pr[S0] − 1

2

∣
∣.

Game G1: We now make one small change to G0. In this game, we pick a random
vector y

$← F
n
qm and replace c1 in G0 for EPE(κpub, (mb‖ms)) by c1 ← y. We

denote S1 the event that A wins in Game G1. Under the DRSDCirk(u) assumption,
the two games G1 and G0 are indistinguishable with |Pr[S1] − Pr[S0]| ≤ εCirk(u).
Game G2: We now make one small change to G1. In this game, we pick a random
vector z

$← F
n
qm and replace c2 in G1 for EPE(κpub, (mb‖ms)) by c2 ← z. We

denote S2 the event that A wins in Game G2. Under the DRSDGpub
assumption,

the two games G2 and G1 are indistinguishable with |Pr[S2] − Pr[S1]| ≤ εGpub
.

As the ciphertext challenge c = (c1, c2) is perfectly random, b is hidden to
any A without any advantage, therefore Pr[S2] = 1

2 . We have AdvIND−CPA
PE,A (λ) =



756 T. S. C. Lau and C. H. Tan

∣
∣Pr[S0] − 1

2

∣
∣ = |Pr[S0] − Pr[S2]| ≤ |Pr[S0] − Pr[S1]|+|Pr[S1] − Pr[S2]| ≤ εCirk(u)

+ εGpub
. Therefore, under the DRSDCirk(u) and DRSDGpub

assumption, the pro-
posed public-key encryption scheme PE is IND-CPA secure. ��

5 Our Encryption Based on Gabidulin Codes

We propose Gabidulin code as the decodable code C in our encryption. We
analyze the security of the scheme by considering possible structural attacks to
cryptanalyze the system based on Gabidulin code.

Definition 7. A matrix G = [Gi,j ] ∈ F
k×n
qm is called a Moore matrix induced

by g if there exists a vector g = (g1, . . . , gn) ∈ F
n
qm such that G =

[
g
[i−1]
j

]
for

i = 1, . . . , k, where [i] := qi is the ith Frobenius power. We define G([l]) =
[
G

[l]
i,j

]

by raising each entries of G to the lth Frobenius power.

Definition 8. Let g ∈ F
n
qm with rkq(g) = n. The [n, k]-Gabidulin code

Gabn,k(g) over Fqm of dimension k and generator vector g is the code generated
by a Moore matrix G induced by g.

Note that the error-correcting capability of Gabn,k(g) is r = �n−k
2 �.

Due to page limitations, we only present some brief reasons our proposal
resists some existing structural attacks against Gabidulin codes cryptosystems.

Key Recovery Attack. Consider Gpub, . . . , G
[m−1]
pub , there are mkn equations

with mk2 + mn unknown variables over Fqm and n2 unknown variables over Fq.
Solving these equations is equivalent to solving a multivariate quadratic problem.

Reduction Attack [9]. By Proposition 1, colrkq(Cirk(u)T ) = n, thus the adver-
sary is not able to rewrite Cirk(u)T in the form of Lemma 2 which has columns
of zero. Therefore, Gpub could not be reduced into components of random matrix
X̄ and Moore matrix Ḡ of the form S(X̄ | Ḡ)Q where Q ∈ GLn(Fq).

Moore Decomposition Attack [6]. By Proposition 1, colrkq(Cirk(u)T ) = n.
Consider a minimal column rank Moore decomposition for S−1Cirk(u)T =
MMoore + W where W is a non-Moore component which has the lowest pos-
sible column rank s. Since t = n and dmin

R (Gabn,k(g)) = n − k + 1 < s + n + 2,
the condition to apply [6, Corollary 3.12] is not satisfied. Thus, [6, Theorem 4.1]
could not be used to recover the encrypted message.

Proposed Parameters. We propose two sets of parameters for our encryption
scheme. We consider m > n and r1 = r2 = �r/2�. For the first set (PC-I to
PC-IV), we use the complexities in Sect. 2 as the lower bound of the complexity
and follows Loidreau’s application [7] of Grover’s algorithm to square root the
exponential term in the decoding complexity. For the second set, we compare
our parameters (PC-V, PC-VI) and LOI17 parameters for similar post-quantum
security level (PQ. Sec), by including the formula m32

1
2 (r−1)� k min{m,n}

n � in the



A New Encryption Scheme Based on Rank Metric Codes 757

lower bounds as it was used in [7] to evaluate the complexities. The following
table gives our parameters and LOI17’s parameters:

q m n k r1 r2 r Public key size PQ. Sec

PC-I 2 71 67 22 11 11 22 13.68KB 133

PC-II 2 85 83 16 16 16 33 14.99KB 134

PC-III 2 103 101 29 18 18 36 39.01KB 262

PC-IV 2 113 107 26 20 20 40 40.81KB 268

q m n k r1 r2 r Public key size PQ. Sec

PC-V 2 75 73 21 13 13 26 15.06KB 141

PC-VI 2 85 83 18 16 16 32 16.76KB 144

LOI17-I 2 128 90 24 11 21.50KB 140

LOI17-II 2 128 120 80 4 51.00KB 141

Our encryption has larger rank error r1 and r2. At similar security, our key size
(15.06 KB) is smaller than the key size of LOI17 (21.50 KB). Our encryption
scheme can provide better post quantum security with smaller key size.

6 Conclusion

This paper has proposed a new rank metric encryption with IND-CPA security
under the DRSDCirk(u) and DRSDGpub

assumptions. Our public matrix is dis-
torted by Cirk(u)T of column rank n. For similar post-quantum security level of
2140 bits, our encryption using Gabidulin codes has smaller public key size than
the key size of LOI17.
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Abstract. To construct an intelligent alarm filter is a promising solu-
tion to help reduce false alarms for an intrusion detection system (IDS),
in which an appropriate algorithm can be selected in an adaptive way.
Taking the advantage of cloud computing, the process of algorithm selec-
tion can be offloaded to the cloud, but it may cause communication delay
and additional burden on the cloud side. This issue may become worse
when it comes to distributed intrusion detection systems (DIDSs), i.e.,
some IoT applications might require very short response time and most of
the end nodes in IoT are energy constrained things. In this paper, with
the advent of edge computing, we propose a framework for improving
the intelligent false alarm reduction for DIDSs based on edge computing
devices (i.e., the data can be processed at the edge for shorter response
time and could be more energy efficient). The evaluation shows that the
proposed framework can help reduce the workload for the central server
and shorten the delay as compared to the similar studies.

Keywords: Intrusion detection · Intelligent false alarm filtration
Edge computing · Distributed environment · Cloud computing

1 Introduction

With the rapid development of computer networks, intrusions have become a
big threat for network security [14]. To mitigate this issue, intrusion detection
systems (IDSs) [16] are widely implemented worldwide to defend against different
kinds of attacks (either host-based attacks or network-based attacks). Generally,
IDSs can be categorized into three types based on their deployment manner:
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host-based IDSs (HIDSs), network-based IDSs (NIDSs) and distributed IDSs
(DIDSs). In particular, HIDSs are responsible for detecting anomalies in a local
system, NIDSs focus on figuring out network attacks and threats, and DIDSs
can aggregate the information from various IDS agents to improve the detection
performance of a single IDS.

Motivation. Current IDSs including either signature-based or anomaly-based
IDSs would suffer from the issue of false alarms in real-world applications [9].
To construct an intelligent false alarm filter is a promising solution, which can
reduce false alarms and keep filtration accuracy by selecting an appropriate
machine learning algorithm in an adaptive way [10]. One major issue is that
such intelligent filter requires additional workload for performing the process
of intelligent algorithm selection. Taking advantage of cloud computing, it is
feasible to mitigate this issue and improve the performance of an IDS. However,
in a distributed system like IoT environments, some applications might require
very short response time, and some applications might cause a heavy load for
networks by producing a large quantity of data. As a result, cloud computing
may be not efficient enough to support these applications.

Contributions. With the advent of edge computing, there is a chance to miti-
gate this issue via edge computing devices. Edge computing allows the computa-
tion to be performed at the edge of the network, on downstream data on behalf
of cloud services and upstream data on behalf of IoT services [18]. In this paper,
we thus propose a framework for improving the intelligent false alarm reduction
in distributed intrusion detection environments via edge computing devices. The
contributions of our work can be summarized as below:

– We propose a framework for improving the intelligent false alarm reduction
in distributed intrusion detection environments by means of edge computing.
The rationale of edge computing is that computing should happen at the
proximity of data sources, which could loose the workload of a cloud server
and reduce the communication delay.

– As a study, we conduct an evaluation by comparing our approach with the
previous related work. The experimental results indicate that our approach
can greatly reduce the workload for a central server on the cloud and shorten
the communication delay caused by selecting an algorithm.

The remaining parts of this paper are organized as follows. Section 2 describes
the background of edge computing and presents our proposed framework.
Section 3 shows our evaluation and discusses the results. We review related stud-
ies on cloud-based intrusion detection in Sects. 4 and 5 concludes our work with
future directions.

2 Our Approach

2.1 Edge Computing

As mentioned earlier, edge computing refers to the enabling technologies allowing
computation to be performed at the edge of the network, on downstream data
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Fig. 1. The proposed framework for improving intelligent false alarm filter using edge
(computing) devices.

on behalf of cloud services and upstream data on behalf of IoT services [18]. As
compared to fog computing [3], they are interchangeable, but edge computing
focuses more toward the things side, while fog computing focuses more on the
infrastructure side. The rationale of edge computing is that computing should
happen at the proximity of data sources. At the edge, the things can not only
request service and content from the cloud but also perform the computing tasks
from the cloud, including computing offloading, data storage, as well as distribute
request and delivery service from cloud to user.

Edge computing can provide many benefits. For example, the edge comput-
ing paradigm can be flexibly expanded from a single home to community, or
even city scale. For applications that require predictable and low latency such as
health emergency or public safety, edge computing is an appropriate paradigm
since it could save the data transmission time as well as simplify the network
structure. Decision and diagnosis could be made from the edge of the network,
which is more efficient compared with collecting information and making deci-
sion at central cloud. For geographic-based applications such as transportation
and utility management, edge computing exceeds cloud computing due to the
location awareness. In edge computing, data could be collected and processed
based on geographic location without being transported to cloud.

2.2 Our Framework

As edge computing can help process the data with a shorter response time, more
efficient processing and smaller network pressure, it has a potential to lighten
the burden of deploying intelligent false alarm reduction for distributed intrusion
detection environments. Figure 1 describes the proposed framework that aims
to improve the intelligent false alarm filtration by means of edge (computing)
devices. There are three major layers:



762 W. Meng et al.

– IDS layer (filter layer). This layer performs traffic inspection and false alarm
reduction. Different IDS nodes can communicate with each other to improve
their detection performance. The intelligent false alarm filter is also located
at this layer, where some expensive operations (e.g., intelligent algorithm
selection) could be offloaded to the cloud side (cloud layer).

– Cloud layer. The cloud environment can provide sufficient computation
resources for the IDS layer; thus, data owners do not need to worry about
the computational burden. However, uploading large amount of data to the
cloud side would cause additional communication burden and cannot ensure
an instant response depending on the geographical locations.

– Edge layer. This layer often embodies software modules and embedded oper-
ating systems, which is able to collect data from the IDS layer and perform
algorithm selection locally. Making a decision locally is an important way to
reduce latency, and improve the efficiency of false alarm reduction.

Constructing an intelligent false alarm filter can help choose an efficient
machine learning algorithm to conduct false alarm reduction. The previous
work [10] showed that by adaptively selecting the most appropriate algorithm,
the false alarm filter could achieve good results, whereas the workload is a con-
cern for real-world implementation. While by means of the computing resources
provided by a cloud, it becomes feasible to deploy such intelligent false alarm
filter in a cloud environment, which can reduce false alarms according to spe-
cific IP sources [11]. When the connection is established among IDS nodes, edge
devices and cloud environment, an IDS node can send data to the correspond-
ing edge device for data processing at first and then the edge device forwards
the data and results to the cloud side. For each edge device, an Edge Manager
(EM) is adopted as a core component to manage all communications and handle
other components including Data Standardization, Machine Learning Algorithm
Selection, Control System and Alarm Process System.

In particular, the component of Machine Learning Algorithm Selection is
used to select the most appropriate machine learning algorithm from a pool of
algorithms by training with a number of labeled alarms. The most appropri-
ate algorithm is denoted as the algorithm with the best classification rate and
precision rate. The Control System is mainly responsible for comparing the per-
formance of different machine learning algorithms and deciding the most appro-
priate algorithm used for alarm reduction. The Alarm Process System is mainly
responsible for reducing false alarms based on the selected algorithm and main-
taining a scheme-database for different IP sources. With the increase of labeled
training data, the selected algorithm for a specific IP source may be varied. The
outputs of the Alarm Process System are considered as true alarms.

3 Evaluation

3.1 Experimental Settings

The evaluation was performed in a company network including 20 Snort nodes
[17]. Based on previous work [10], Snort alarms can be extracted and represented
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using a 8-feature set (description, classification, priority, packet type, source IP
address, source port number, destination IP address and destination port num-
ber). During the algorithm training, all the features will be marked with their
appearance possibility to ensure the correct operations of algorithms. Similar
to [11], the algorithm pool contains seven specific machine learning algorithms:
ZeroR, KNN (IBK), SVM (LibSVM), NaiveBayes, NN (RBFNetwork), DT (J48)
and DT (RandomTree). All the algorithms were extracted from the WEKA plat-
form [20], which provides a set of algorithms, in order to avoid implementation
bias. We used two measures in deciding the performance of algorithms as below:

Classification accuracy =
N1

N2
. (1)

Precision of false alarm =
N3

N4
. (2)

where N1 represents the number of correctly classified alarms, N2 represents the
total number of alarms, N3 represents the number of alarms classified as false
alarm, N4 represents the number of false alarms. Ideally, a desirable algorithm
is expected to have a classification accuracy of 1 and a precision of false alarm of
1, but there is a balance should be considered in practical deployment. Similar
to [10,11], we define a decision value to determine the best algorithm. The
calculation is described as below:

decision value = 0.4 × CA + 0.6 × PFA (3)

where CA represents the classification accuracy and PFA represents the precision
of false alarm.

3.2 Experimental Results

In this experiment, we randomly selected six IDS nodes and collected a real five-
day alarm dataset from the deployed distributed IDS network. A node could
generate around 5400 alarms on average each day. All alarms were labeled by
expert knowledge with three network administrators from the same company.

Algorithm Selection. Table 1 presents the algorithm selection process for dif-
ferent IDS nodes (six nodes) and days (five days). It is noticeable that the algo-
rithm selection performs in an intelligent way, in which the best algorithm could
be selected for each day based on the collected data. Taking IDS-1 as an exam-
ple, the selected algorithm is SVM (LibSVM), DT (J48), DT (J48), DT (J48),
and KNN (IBK) for respective day. These results indicate that the adaptive false
alarm reduction can perform well in a cloud environment.

Workload and Delay Improvement. To explore the performance of our app-
roach, we compare it with the previous work [11], where the intelligent false alarm
filter was deployed in a cloud environment. Figure 2 depicts the reduced workload
on average for the central server on the cloud, and the delay improvement for
the data communication and algorithm selection. It is found that our proposed



764 W. Meng et al.

Table 1. The process of algorithm selection varied with different IDS nodes and days.

Day IDS-1 IDS-2 IDS-3

1 SVM (LibSVM) DT (J48) DT (J48)

2 DT (J48) SVM (LibSVM) DT (J48)

3 DT (J48) KNN (IBK) DT (RandomTree)

4 DT (J48) SVM (LibSVM) KNN (IBK)

5 KNN (IBK) SVM (LibSVM) DT (J48)

Day IDS-4 IDS-5 IDS-6

1 KNN (IBK) DT (RandomTree) DT (J48)

2 SVM (LibSVM) DT (RandomTree) DT (J48)

3 SVM (LibSVM) KNN (IBK) KNN (IBK)

4 KNN (IBK) KNN (IBK) KNN (IBK)

5 KNN (IBK) KNN (IBK) DT (J48)
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Fig. 2. The reduced workload for the cloud central server and the delay improvement,
as compared to the previous work [11].

framework can help reduce the workload for the central server and shorten the
delay by nearly 27% and 55%, respectively. The experimental results demon-
strate the efficiency of the proposed framework.

4 Related Work

Cloud computing, which refers to both the applications delivered as services
over the Internet and the hardware and systems software in the data centers
that provide those services [2], has been applied to many fields. In turn, cloud
environment is easily becoming a target for intruders looking for possible vul-
nerabilities [19]. For instance, an attacker can use cloud resources maliciously
by impersonating legitimate cloud users. To protect the cloud environment from
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various attacks, intrusion detection systems have been widely investigated and
deployed in such an environment.

To better deploy an IDS in a cloud environment, Roschke et al. [15] proposed
and implemented an extensible IDS management architecture for different kinds
of users and different kinds of requirements. Their management architecture
was mainly composed of several sensors and a central management unit. By
combining the virtualization technology and known VM monitor approaches,
they indicated that this management system could handle most existing VM-
based IDSs. Then, Vieira et al. [19] proposed a Grid and Cloud Computing
Intrusion Detection System (CCCIDS) to detect both network-based and host-
based attacks by employing an audit system with both knowledge and behavior
analysis. In particular, each node could identify local events that represented
security violations by interacting with other nodes.

To address the security issues in a cloud environment, Doelitzscher et al. [4]
proposed an autonomous agent-based incident detection system with the purpose
of solving new cloud specific security issues (i.e., the abuse of cloud resources).
Specifically, their proposed Security Audit as a Service (SAaaS) detection sys-
tem was built on intelligent, autonomous agents for collecting data, analyzing
information and distributing underlying business process. Similarly, Alharkan
and Martin [1] presented an Intrusion Detection System as a Service (IDSaaS)
to enhance the cloud provider’s security infrastructure. To enhance the perfor-
mance of a single IDS, distributed IDSs enable various IDS nodes to collect
useful information from others, which can be suitable for a cloud environment.
Several related studies regarding distributed IDSs and cloud security issues can
refer to [5–8,12,13].

5 Conclusion

In this paper, we propose a framework for improving the intelligent false alarm
reduction in a distributed environment based on edge computing devices (i.e., the
data can be processed at the edge for shorter response time and could be more
energy efficient). We conducted a study and found that our proposed approach
can further reduce the workload for the cloud central server and reduce the
delay by nearly 27% and 55%, respectively, as compared to the similar work. To
our knowledge, this is the first work in discussing the deployment of intelligent
false alarm reduction through edge computing. The future work could include
conducting more experiments to investigate the framework performance in the
aspects of algorithm selection and communication burden.
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Abstract. Through memory vulnerabilities, control flow hijacking
allows an attacker to force a running program to execute other than what
the programmer has intended. Control Flow Integrity (CFI) aims to pre-
vent the adversarial effects of these attacks. CFI attempts to enforce the
programmer’s intent by ensuring that a program only runs according to a
control flow graph (CFG) of the program. The enforced CFG can be built
statically or dynamically, and Per-Input Control Flow Integrity (PICFI)
represents a recent advance in dynamic CFI techniques. PICFI begins
execution with the empty CFG of a program and lazily adds edges to the
CFG during execution according to concrete inputs. However, this CFG
grows monotonically, i.e., edges are never removed when corresponding
control flow transfers become illegal. This paper presents LPCFI, Live
Path Control Flow Integrity, to more precisely enforce forward edge CFI
using a dynamically computed CFG by both adding and removing edges
for all indirect control flow transfers from indirect callsites, thereby rais-
ing the bar against control flow hijacking attacks.

Keyword: Control Flow Integrity

1 Introduction

Programs written in low-level languages, such as C and C++, make up the
majority of performance-critical system software (e.g., web browsers and lan-
guage runtimes) running on most computing platforms. In some domains, like
embedded systems, these languages are almost ubiquitous. However, these unsafe
languages are prone to memory corruption vulnerabilities (e.g., use-after-free and
buffer overflows). An attacker may leverage these vulnerabilities to launch control
flow hijacking attacks by changing the target of an indirect branch instruction
to force a running program to execute at a location of the attacker’s choice. In
realistic scenarios, attackers may be able to perform Turing complete computa-
tion by abusing memory vulnerabilities and using techniques like return oriented
programming [1] and counterfeit object-oriented programming [2].
c© Springer International Publishing AG, part of Springer Nature 2018
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1: void (*fp)(void);
2: void foo(int n) {
3: if (n) {
4: lpcfi assign const(fp, &g);
5: fp = &g;
6: } else {
7: lpcfi assign const(fp, &h);
8: fp = &h
9: }

10://unsafe: modify the value of fp
11: lpcfi check(fp);
12: fp();
13: }
14: void main(void) {
15: foo(1)
16: foo(0)
17: }

(a) Otherwise unsafe
code protected by LPCFI.

main foo(1)

foo(0)

foo fp()

g h

e1 e2

e3 e4

main foo ge1 e3

main foo he2 e4

main foo ge2 e3

Direct call
Indirect call

(b) PICFI’s CFG and feasible
paths (green) and infeasible path
(red) not protected by PICFI.

Fig. 1. A motivating example to demonstrate the limitation of PICFI. (Colour figure
online.)

Control Flow Integrity (CFI) has been proposed to prevent control flow
hijacking [3]. CFI typically works by enforcing a control flow graph (CFG), which
represents the programmer’s intent - or rather, what can be inferred as legal and
illegal control flow from the program. Edges in the CFG represent control flow
transfers, and CFI aims to protect indirect control flow edges from being taken
illegally. The protection offered by CFI is more effective if a more precise CFG
is used. The CFG can be computed statically and this does not consider the fact
that the legal status of indirect control flow transfers constantly changes during
runtime. For example, when a function pointer is reassigned to a new value, an
indirect call via that function pointer will call a new function target and calling
the previous target would be illegal.

Insights. Per-Input Control Flow Integrity (PICFI) [4] represents a recent
dynamic approach to forward edge CFI. PICFI first pre-computes a static CFG
as the upper bound for its dynamic one. PICFI starts with the empty CFG
of a program, and during runtime, once a function address is taken (e.g., p =
&func), it will add an edge from each indirect callsite to func if this edge is also
found in the static CFG. Hence PICFI provides better security guarantees than
CFI techniques which enforce a statically computed CFG. However, PICFI’s
dynamic CFG grows monotonically, i.e, edges added to the CFG are never
removed. Hence, edges become permanently legal to take regardless of whether
their legality changes over time. The conservatively constructed dynamic CFG
used by PICFI leaves an attack surface: when an indirect transfer remains on
the monotonically growing CFG but can never be legally executed again.

Motivating Example. Figure 1 illustrates this limitation of PICFI via a proof-
of-concept attack. Note that the lines marked in blue are instrumentation calls
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from our LPCFI approach to protect against this attack, and will be explained
below. PICFI begins execution with an empty CFG. Initially the indirect callsite
fp() at line 12 cannot invoke any function legally. After executing the if branch
via foo(1) at line 15, g becomes a legitimate target (e3 is added to the CFG).
After executing the else branch via foo(0) at line 16, h becomes a legitimate
target (e4 is added to the CFG).

Figure 1b gives PICFI’s CFG constructed immediately before the indirect
callsite fp() at line 12 when foo is invoked for a second time via foo(0) at line
16. Unfortunately, the indirect call edge fp()

e3−→g, which was added during the
first execution of foo, has already become illegal to take since fp only points to
h during the second execution at the time of calling fp(). However, this spurious
edge fp() e3−→g remains on PICFI’s CFG. This conservative CFG allows attackers
to redirect fp() to g by modifying fp’s value to be g via a memory corruption
error [5], despite foo not being allowed to call g when n’s value is 0. Therefore,
PICFI still provides an attacker opportunities to launch control flow hijacking
attacks by treating “out-of-date” control flow edges as legitimate. This paper
presents LPCFI, Live Path Control Flow Integrity, which aims to overcome this
limitation of PICFI by both adding and removing CFG edges, allowing at most
one outgoing forward edge from every indirect callsite at any one program point.

Let us revisit the example in Fig. 1 whilst taking into consideration LPCFI’s
instrumentation (highlighted in blue). During the first call to foo, fp() e3−→ g
is added to the CFG via lpcfi assign const. A check is then performed to
ensure that the indirect call transfer from fp() will reach the only legitimate
target g. During the second call to foo, lpcfi assign const in the else branch
updates the CFG by first removing invalid edge fp()

e3−→ g from the CFG, and
then adding fp()

e4−→ h. This removal is important since the second call to foo
via foo(0) is not allowed to call g, which PICFI ignores. LPCFI ensures only
one legitimate (live) function target is allowed at any call path to an indirect
callsite.

Challenges. Designing a CFI technique that overcomes the aforementioned lim-
itation is challenging. Firstly, precise static analysis is required to find statements
which may require instrumentation as the precision of static analysis directly cor-
relates with the overhead reduction achieved. Only the statements which may
modify or read the value of a function pointer should be identified by static
pointer analysis for instrumentation. Secondly, function pointer values need to
be correctly maintained in safe memory and the metadata data structure needs
to be well designed to ensure efficient lookup and runtime checks.

Our Solution. LPCFI aims to ensure only edges which are currently “live”
- can be legally taken - exist within the CFG. We have designed and imple-
mented a new instrumentation approach which tracks function pointers and the
address-taken function which they point to at any program point. A function
pointer may only ever point to a single function object, so our instrumentation
correctly updates which pointers point to which function objects in an efficient
data structure in safe memory. We apply pointer analysis [6] to identify all state-
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ments which may potentially access the value of a function pointer, and instru-
ment only those statements to minimise runtime overhead. Any callsite from a
function pointer is checked to ensure the runtime value matches the value stored
in safe memory.

This paper makes the following key contributions:

– We present LPCFI, a new dynamic control flow integrity technique that can
protect against attacks undetected by the conservative monotonically growing
CFG used by PICFI.

– We propose a new instrumentation approach coupled with a data structure
to allow only one function to be a legal target for any indirect callsite.

– We have developed a proof-of-concept attack and defence to demonstrate the
effectiveness of LPCFI in mitigating control flow attacks which are not pro-
tected by PICFI. This is publicly available at https://github.com/mbarbar/
lpcfi.

2 Related Works

Often, CFI implementations determine policy (i.e. valid targets for an indirect
control flow transfer at a particular time) according to only static information.
This is limited in that some properties are impossible to determine statically, for
example, the value of a function pointer reliant on user input.

Per-Input Control Flow Integrity (PICFI) is a CFI implementation which
uses dynamic information to gradually build the CFG [4]. PICFI begins execu-
tion with an empty CFG; all indirect transfers of control are illegal. The CFG is
gradually constructed by discovering valid targets for indirect control flow trans-
fers during runtime according to program inputs. For example, when a function
is called, that callsite becomes a valid target of return instructions, or when a
function pointer is assigned a value, that value becomes a valid target for indi-
rect callsites (constrained by the static CFG). However, these additions to the
CFG are permanent; the CFG grows monotonically. This means that changes in
target legality are not reflected in the CFG, and hence not enforced by PICFI. A
target which is made legal by PICFI is regarded as legal for the rest of execution.

Offering improvements over PICFI, PittyPat [7], a very recent work, uses
dynamic path-sensitive points-to analysis to further restrict the set of allowed
function pointers at indirect callsites during runtime. Rather than considering
just address activation, or the static points-to sets at a particular program point,
PittyPat considers the points-to set of a function pointer at a particular program
point only based on the executed program path. Hence PittyPat avoids PICFI’s
limitation of keeping previously legal targets which have become illegal. However,
PittyPat has a strong dependency on specific hardware and a modified kernel.
In contrast, LPCFI is a portable purely software-based approach without any
hardware dependency.

A shadow stack is a second stack existing in memory used to ensure return
instructions jump to the correct address [8,9]. Shadow stacks work by mirroring
return addresses pushed onto the execution stack. Upon returning, the value

https://github.com/mbarbar/lpcfi
https://github.com/mbarbar/lpcfi
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on top of the shadow stack is compared with that on the execution stack, and
if the comparison fails, an error is detected. If the shadow stack is safe from
manipulation, shadow stacks perfectly protect return transfers. However, shadow
stacks only protect backward edges but not forward edges like virtual calls.

CFI techniques have recently been used to protect against virtual table
hijacking attacks in low-level object-oriented languages like C++. VTV [10],
VTrust [11], and SafeDispatch [12] apply Class Hierarchy Analysis (CHA) to
analyse virtual calls to enforce CFI. ShrinkWrap [13] aims to improve CHA based
CFI by considering multiple and diamond inheritance. VIP [14] is a recent CFI
technique that enforces a more precise call graph than CHA based approaches
by using pointer analysis and a fast index-based instrumentation.

This work builds on an earlier version of our work [15].

3 LPCFI Approach

This section details our Live Path Control Flow Integrity approach designed
to reduce the attack surface left by PICFI. Section 3.1 describes the program
representation of a C/C++ program. Section 3.2 introduces the fp-table, the
internal metadata design. Finally, Sect. 3.3 describes the instrumentation which
operates on the fp-table to precisely update the dynamic CFG at runtime.

Fig. 2. Internal representation of the fp-table.

3.1 Program Representation

We represent programs in LLVM’s SSA form following [6,16]. The set of all vari-
ables is separated into two subsets: top-level pointers (registers) whose addresses
are not taken, and all potential targets, i.e., all address-taken objects of a pointer.
In SSA, a program is represented by five statement types: const (p = &o), copy
(p = q), store (*p = q), load (p = *q), and call (fp(...)). Passing argu-
ments into and returning results from functions are modeled by copies. A global
variable initialisation is translated into one of the four types of assignments and
analysed immediately at the beginning of the main function. For a const state-
ment p = &o (allocation sites), o is a stack or global variable, or a dynamically
created abstract heap object. We only analyse statements which access (modify
or read) the value of a function pointer according to static pointer analysis [6].
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3.2 Data Structures

LPCFI needs to store metadata in the fp-table (Fig. 2) to perform bookkeeping
to update the dynamic CFG. The metadata is stored in a safe memory region
which is accessed frequently for both reading and writing following [11].

LPCFI maintains the fp-table as shown in Fig. 2, which is a fixed size
array (size is the number of address-taken functions in the program) where
each element holds: (1) the address of a function func address, (2) an acti-
vation bit actv, and (3) a set fpset of function pointers which legally point to
func address at a particular program point during runtime. pt(fp table, fp)
returns the function that pointer fp points to. Overloaded lookup(fp table,
&func) returns the index of &func in the fp table, and lookup(fp table,
&fp) returns the index of the function which &fp points to in the fp table.

The fp-table is a simple yet efficient solution for fast lookup using a one
dimensional array. The fp-table uses function addresses as keys for various rea-
sons. Firstly, it can be a fixed size since functions which may have their addresses
taken (const statements) at runtime are known statically. Secondly, the check-
ing operation can perform lookups on the function that is about to be called
(the runtime value) and retrieve its fpset. Finally, a data structure with func-
tion addresses as the key is required regardless to keep track of whether func-
tions have been address-taken (activated) to guarantee a lower security bound
of PICFI.

3.3 Instrumentation

LPCFI’s instrumentation is placed immediately before the five statement types.
We insert instrumentation for an assignment only if it may read/write a function
pointer value as determined by Andersen’s pointer analysis [6]. All instrumenta-
tions except the checking instrumentation write to the fp-table.

1: update(fp, &o) {
2: // Check function object
3: if(o not a function obj) return;
4: // Search for index of object which fp points to
5: oldInd = lookup(fp table, &pt(fp table,fp));
6: // Remove fp from set of fp table[oldInd]
7: if (oldInd!=-1) remove(fp table[oldInd].fpset, fp);
8: // Search the index of function o in fp table
9: newInd = lookup(fp table, &o);

10: if (newInd==-1) error(’not found’);
11: // Add fp to the new function pointer set
12: add(fp table[newInd].fpset, fp);
13: }

Fig. 3. Helper function update to remove and add pointers in the fp-table.

The four assignment instrumentations share helper function update(fp, &o)
in Fig. 3 which updates a function pointer fp to correctly point to function o by
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removing fp from the fpset of fp’s old points-to target (if it is a member) at line
7, and adding fp to o’s fpset at line 12. Note that pointer analysis is always an
over-approximation. A pointer q resolved to point to a function statically, may
not point to such at runtime. LPCFI will not perform any runtime update if the
right hand side expression of an assignment (e.g., ... = q) does not refer to a
function object as shown at line 3 in Fig. 3.

Handling Constant Assignments fp = &func: This case, as carried out by
lpcfi assign const shown in Fig. 4, is simple as it is a direct assignment of a
function address func to a function pointer fp. Upon executing this statement,
LPCFI requires that, (1) func be regarded as activated, and (2) fp exclusively
points to func in the fp-table.

Assignments of this form may execute multiple times for the same RHS value.
Hence, functions will be activated multiple times. This does not affect correctness
and runtime overhead for the activation operation is negligible.

1: lpcfi assign const(fp, &func) {
2: // Search the index of &func in fp table
3: ind = lookup(fp table, &func);
4: if(ind==-1) error(’not found’);
5: // Mark func as activated
6: fp table[ind].actv bit = 1;
7: // Update fp to point to func
8: update(fp, &func);
9: }

fp = &func;

Fig. 4. Handling const statements using lpcfi assign const.

Handling Copy Assignments p = q: Represented by lpcfi assign copy,
the second case is also straightforward as shown in Fig. 5. First, we obtain
pt(fp table,q), the points-to target o of the RHS pointer q derived from the
fp-table. Then, p is made to exclusively point to q’s pointee o if o is a function
object, so both p and q are put into the fpset of object o.

1: lpcfi assign copy(p, q) {
2: // Get the object that q points to in fp table
3: o = pt(fp table, q);
4: // Update p to point to o only if o is a function
5: update(p, &o);
6: }

p = q;

Fig. 5. Handling copy statements using lpcfi assign copy.

Handling Load Assignments p = *s: lpcfi assign load’s implementation
is shown in Fig. 6. Similar to handling the copy case, we first retrieve points-to
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target o of *s from the fp-table. o is checked to ensure that it has been activated
(lines 5–8) (for a lower bound protection of PICFI, further discussed in Sect. 4.3).
Then, p is made to exclusively point to the object o (line 10).

1: lpcfi assign load(p, *s) {
2: // Get the object that *s points to
3: o = pt(fp table,*s);
4: // Search for the index of &o in fp table
5: ind = lookup(fp table, &o);
6: if(ind==-1) error(’not found’);
7: // Ensure o has been activated
8: assert(fp table[ind].actv);
9: // Update p to point to o

10: update(p, &o);
11: }

p = *s;

Fig. 6. Handling load statements using lpcfi assign load.

Handling Store Assignments *r = q: lpcfi assign store’s implementa-
tion is shown in Fig. 7. This case is similar to the copy case. The points-to
target o of the RHS pointer q is retrieved via pt(fp table, q). Then, runtime
value *r is made to exclusively point to the same as that which q does in the
fp-table.

1: lpcfi assign store(*r, q) {
2: // Get the object that *r points to
3: o = pt(fp table,q);
4: // Update q to point to o
5: update(*r, &o);
6: }

*r = q;

Fig. 7. Handling store statements using lpcfi assign store.

Handling Calls fp(...): As shown in Fig. 8, whenever a call is made from a
function pointer, the runtime value of the function pointer needs to be checked
against its saved value in the fp-table. Furthermore, a check confirming that
a callsite-to-target edge is within the static CFG must also be performed to
guarantee a security lower bound of PICFI. If either check fails, LPCFI will
report an error indicating an attempted illegal control flow transfer.

4 Implementation

We have developed a prototype with a step-by-step live demo to illustrate exam-
ples (those in Figs. 1 and 9) that can be protected by LPCFI but not by PICFI.
They are publicly available at https://github.com/mbarbar/lpcfi.

https://github.com/mbarbar/lpcfi
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1: lpcfi check(fp, callsite) {
2: // Get the object that fp points to
3: o = pt(fp table,fp);
4: // Enforce control flow integrity
5: assert(runtimeVal(*fp) == &o

&& edge(callsite, &o) ∈ static CFG);
6: }

fp(...);

Fig. 8. Handling call statements using lpcfi check.

4.1 Instrumentation and Data Structure

In our open-source prototype, LPCFI’s data structure (Fig. 2) and its instru-
mentation are implemented in an equivalent yet less efficient manner as a stan-
dalone library (i.e., lpcfi.h, lpcfi.c, fptable.h and fptable.c). In order to
demonstrate the key idea and techniques easily, our prototype performs manual
instrumention for the motivating example (Fig. 1) as available in demo.c.

At indirect callsites, a lookup operation through lpcfi check is performed
as discussed in Sect. 4.2. Assignment instrumentations are not idempotent so
PICFI’s optimsation strategy of patching out instrumentation can not be
achieved. lpcfi assign const performs both function activation (which is idem-
potent) and fp-table modification. Function activation results in a bit being set
and is negligible to the total runtime overhead.

Andersen’s pointer analysis [6] is used to check whether pointer dereferences
can read or write a function pointer value. This is conservative, so any statement
determined to not access such a value is safe without runtime bookkeeping.

4.2 Lookup Operation on the fp-table

The lookup operation is important to LPCFI’s metadata manipulation. This
happens often, especially since checking function pointer callsites requires this
search. During initialisation, the fp-table is sorted according to the func address
field for efficient searching. Then, a binary search can be performed on the fp-
table with the func address field as the key, an O(log n) operation.

Overhead mainly comes from the update helper function due to the search
operation on the fp-table for assignment instrumentations. Optimisations can
be implemented to improve the performance of the search, e.g., caching common
searches with a hash map.

4.3 Security Guarantee

LPCFI guarantees security at a lower bound of PICFI but reduces the attack sur-
face by removing spurious CFG edges during runtime. Following PICFI, LPCFI
only allows an indirect call to target a function whose address has been taken
(activated) if such callsite-target edge exists in the static CFG. However, LPCFI
places a further restriction: that function pointers hold their last assigned value.
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Calling a function pointer after it has been modified outside the standard
assignment statements results in a raised assertion because assignment instru-
mentations are the only way to write to the fp-table, which the check opera-
tion relies on. Like PICFI, LPCFI enforces control flow integrity, not data flow
integrity [17,18]. LPCFI does not ensure memory safety for code and data point-
ers (e.g., the pointers dereferenced in load/store statements are unprotected).

1: #include "privileges.h"
2: /* The header file contains function pointers */
3: /* ‘volatile (void)(*priv)(void)’ and ‘volatile (void)(*nopriv)(void)’ */
4: /* for accessing privileged and non-privileged system methods. */
5: int main(void) {
6: (void)(*op)(void);
7: char password[7];
8: while (true) {
9: fgets(password, 7, stdin);

10: if (strcmp(password, "secret") == 0) {
11: lpcfi assign copy(op, priv);
12: op = priv;
13: } else {
14: lpcfi assign copy(op, nopriv);
15: op = nopriv;
16: }
17: // memory corruption vulnerability: modify the value of op
18: lpcfi check(op);
19: op();
20: }
21: }

Fig. 9. Password verification cope that is safe with LPCFI, but not with PICFI. (Colour
figure online.)

5 Proof-of-Concept Attack and Defence

Figure 9 demonstrates LPCFI’s effectiveness over PICFI with a proof-of-concept
example in the presence of loops. This is a permission access scenario that
allows a user to access a privileged or non-privileged call depending upon the
password entered. This demo (including extended-demo.c, privileges.c, and
privileges.h) is publicly available in the extended-demo folder in our release.

LPCFI’s instrumentation is shown in blue (discussed below). In an infinite
loop, a user is prompted for a password. If correct, function pointer op is set to
function pointer priv, a privileged operation. If not, op is set to function pointer
nopriv, a non-privileged operation. Finally, op is called and the loop begins
anew. A memory vulnerability before the call allows an attackers to modify op.

If not instrumented, an attacker may change the value of op to any value,
and the call will target that location. If the code was instrumented by PICFI,
initially, the op call is deemed unable to target any location legally. The first
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time the password is entered incorrectly, the op call may reach the value pointed
to by nopriv. Similarly, the first time the password is entered correctly, the op
call may reach the value pointed to by priv. When both possible values have
been activated, PICFI will see the op call as being able to legally take on either
value until program exit. If a user enters the password incorrectly, they may
modify the value of op to be that of the privileged function pointer, and PICFI
will allow this call to be made. This is a problem when a malicious user uses the
system after a privileged user.

When the code is instrumented with LPCFI (as shown in blue), this problem
is remedied. When op is set to priv at line 12, the op call will only succeed if
op retains the value it was assigned (priv). Similarly, when op is set to nopriv
at line 15, for the op call to succeed, op must retain its value (nopriv). The
fp-table is storing a single value - the most recently assigned value.

6 Conclusion

This paper presents LPCFI, a new dynamic control flow integrity technique that
can protect against attacks undetected when using the monotonically growing
CFG used by PICFI. LPCFI achieves a lower bound security guarantee of that
promised by PICFI but reduces the attack surface left by PICFI using a new
instrumentation approach and, with a specially designed data structure, ensures
that indirect callsites from function pointers can only target at most one function.
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L., Pike, G.: Enforcing forward-edge control-flow integrity in GCC & LLVM. In:
USENIX Security 2014, pp. 941–955 (2014)

11. Zhang, C., Carr, S.A., Li, T., Ding, Y., Song, C., Payer, M., Song, D.: VTrust:
regaining trust on virtual calls. In: NDSS 2016 (2016)

12. Jang, D., Tatlock, Z., Lerner, S.: SafeDispatch: securing C++ virtual calls from
memory corruption attacks. In: NDSS 2014 (2014)
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Abstract. At ACISP 2017, Wu et al. provided an identity-based encryp-
tion scheme with equality test that considers to prevent insider attacks.
In this paper, we demonstrate that their scheme does not achieve the
claimed security requirement by presenting an attack. Subsequently, we
provide a modification of their construction.

1 Introduction

Identity-based encryption with equality test (IBEET) is a special kind of
identity-based encryption (IBE) that allows to perform equality tests between
ciphertexts under different identities as well as the same identity. This feature
enables us to apply IBEET to various scenarios in practice, such as keyword
search on encrypted databases and efficient encrypted data management on the
cloud. Due to wide availability in practice, several IBEET constructions [2,3,5,6]
have been proposed. On the other hand, supporting equality tests makes the
security of IBEET schemes weaken. If the adversary can have a trapdoor for
equality test on the target ciphertext, he can generate a ciphertext of any mes-
sage by herself and perform equality tests between the target ciphertext and the
ciphertext generated by himself. We call this type of attacks insider attack [7].
To avoid insider attacks, the previous IBEET schemes assumed that the size of
message space is exponential in the security parameter and the min-entropy of
message distribution is as high as the security parameter.

At ACISP 2017, Wu et al. [7] proposed an IBEET scheme which considers to
prevent insider attacks. To this end, they first established a variant of the tradi-
tional IBEET model: In their IBEET system, anyone can perform equality tests
between any two ciphertexts publicly without trapdoors. Instead, only group
members who have a token for a receiver’s identity can generate a ciphertext.
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Hence, testers who do not have a token cannot perform insider attacks. There-
after, Wu et al. constructed an IBEET scheme using bilinear map groups under
the proposed model. To analyze the security of their scheme, they introduced a
new security notion, which is slightly weaker than the indistinguishability under
adaptive identity and chosen ciphertext attacks (IND-ID-CCA2) for traditional
IBE; a main difference between two security models is that messages m0,m1

submitted by the adversary at the challenge phase cannot be queried to the
encryption oracle before and after the challenge phase in the security game for
the new model. (Note that the challenger in the security game for the new
model should provide an encryption oracle to the adversary because he does not
have a token required for encryption, whereas the adversary for the traditional
security model of IBE can encrypt a message by himself.) Then, they claimed
that their proposed scheme achieves this new security notion under the Bilinear
Diffie-Hellman (BDH) assumption in the random oracle model.

In this paper, we demonstrate that their construction does not satisfy their
security notion by presenting an attack. Our attack algorithm is very simple:
Once the adversary has the challenge ciphertext and a pair of message and cipher-
text after the challenge phase, he generates a valid part for equality test of sub-
mitted messages at the challenge phase by manipulating the received ciphertext.
Then, he can distinguish which message is contained in the challenge ciphertext
between two candidates by performing an equality test between the challenge
ciphertext and the ciphertext manipulated by himself. It takes one exponentia-
tion to manipulate a ciphertext to obtain a valid part for equality test and two
bilinear map evaluations to perform an equality test.

Next, we modify Wu et al.’s construction so that it achieves the security
notion which was presented in the original paper [7]. To avoid our attack pre-
sented in this paper, we exploit a keyed permutation, and let group users share
the same key for the exploited keyed permutation and use it as a token for
encryption. Moreover, we also employ a message authentication code (MAC) to
prevent an adversary from reusing an output of the exploited keyed permutation
by manipulating other parts. As a result, we obtain a modification that achieves
Wu et al.’s original security notion if the exploited keyed permutation is strong
pseudorandom, the employed MAC is existentially unforgeable, and the BDH
assumption holds in the random oracle model.

Organization of the Paper. In Sect. 2, we provide a description of Wu et al.’s
construction [7]. Section 3 presents our attack algorithm for their IBEET scheme
and Sect. 4 gives our modification. Due to the space limitation, we relegate secu-
rity analysis of our modification to the full version [4].

2 Wu et al.’s IBEET Scheme

In this section, we review Wu et al.’s IBEET scheme [7]. The description of their
IBEET construction is as follows.

– Setup(λ) : On input a security parameter λ, generate two multiplicative cyclic
groups G1,G2 of prime order p = p(λ) and a bilinear map e : G1 ×G1 → G2.
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Pick a random generator g of G1. Select two random elements α, β from Z
∗
p,

and set a master secret key msk and a master token key mtk as

msk = α and mtk = β.

Compute Ppub = gα. Generate three cryptographic hash functions

H : {0, 1}t → Z
∗
p, H1 : {0, 1}∗ → G1, and H2 : G3

1 × G2 → {0, 1}t+�,

where t denotes the bit-length of messages and � denotes the bit-length of
randomness utilized in the encryption algorithm, i.e., � = �log2 p� where �a�
denotes the smallest integer that is larger than or equal to a for a ∈ R. Finally,
output a system public parameter

pp = (λ, p, t, �, g,G1,G2, Ppub, e,H,H1,H2)

and a pair of the master secret and master token keys (msk,mtk).
– Extract(ID,msk,mtk) : On input an identity ID, the master secret key msk =

α, and the master token key mtk = β, the key generation center (KGC)
computes

gID = H1(ID), dID = gα
ID and tokID = gβ

ID,

and outputs (dID, tokID).
– Enc(pp,m, ID, tokID) : It takes the system public parameter pp, a message m,

an identity ID, and the token tokID for identity ID as inputs and picks two
random elements r1, r2 from Z

∗
p. Then, it computes

C1 = tok
r1H(m)
ID , C2 = gr1

ID , C3 = gr2 ,

C4 = (m‖r1) ⊕ H2(C1‖C2‖C3‖e(Ppub, gID)r2)

where gID = H1(ID). Finally, it outputs a ciphertext ct = (C1, C2, C3, C4).
– Test(ctA,ctB) : It takes two ciphertexts ctA = (CA,1, CA,2, CA,3, CA,4) and
ctB = (CB,1, CB,2, CB,3, CB,4) for identities IDA and IDB , respectively, as
inputs. Check whether

e(CA,1, CB,2) = e(CB,1, CA,2).

If it holds, output 1. Otherwise, output 0.
– Dec(ct, dID, tokID) : It takes a ciphertext ct = (C1, C2, C3, C4), a decryption

key dID and a token tokID for user ID as inputs, and computes

m′‖r′
1 = C4 ⊕ H2(C1‖C2‖C3‖e(C3, dID)).

Then, check whether

C1 = tok
r′
1H(m

′)
ID and C2 = g

r′
1

ID .

where gID = H1(ID). If both hold, return m′. Otherwise, return ⊥.
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3 Our Attack Against Wu et al.’s IBEET Scheme

In this section, we provide our attack algorithm against Wu et al.’s IBEET
construction.

Description of Our Attack Algorithm. The description of our attack algo-
rithm is as follows.

1. Once A receives a system public parameter, A issues an encryption oracle
query with a message m and an identity ID. Then, it returns a ciphertext
ct = (C1, C2, C3, C4) of message m under identity ID such that

C1 = tok
r1H(m)
ID , C2 = gr1

ID , C3 = gr2 ,

C4 = (m‖r1) ⊕ H2(C1‖C2‖C3‖e(Ppub, gID)r2)

where r1, r2 ∈ Z
∗
p are random elements chosen by the encryption algorithm

and gID = H1(ID).
2. At the challenge phase, A submits a target identity ID∗ and two messages

m0,m1 of the same-length such that H(m0) 	= H(m1). Then, C returns the
challenge ciphertext ct∗

ID∗,b = (C∗
1 , C∗

2 , C∗
3 , C∗

4 ) such that

C∗
1 = tok

r∗
1H(mb)

ID∗ , C∗
2 = g

r∗
1

ID∗ , C∗
3 = gr∗

2 ,

C∗
4 = (mb‖r∗

1) ⊕ H2(C∗
1‖C∗

2‖C∗
3‖e(Ppub, gID∗)r∗

2 )

where b is a random bit chosen by C, r∗
1 , r

∗
2 ∈ Z

∗
p are random elements chosen

by the encryption algorithm and gID∗ = H1(ID∗).
3. Once receiving the challenge ciphertext ct∗

ID∗,b = (C∗
1 , C∗

2 , C∗
3 , C∗

4 ) from C, A
first computes

C ′
1 = (CH(m)−1 mod p

1 )H(m1) (1)

using the ciphertext ct = (C1, C2, C3, C4) of message m obtained at Step 1.
Then, A checks whether

e(C ′
1, C

∗
2 ) ?= e(C∗

1 , C2)

If it holds, it returns 1. Otherwise, it returns 0.

Correctness of Our Attack Algorithm. The correctness of our attack algo-
rithm is straightforward. First, from Eq. (1), we have

C ′
1 = (CH(m)−1 mod p

1 )H(m1) = ((tokr1H(m)
ID )H(m)−1 mod p)H(m1) = tok

r1H(m1)
ID .

Thus,

e(C ′
1, C

∗
2 ) = (tokr1H(m1)

ID , g
r∗
1

ID∗) = e(gID, gID∗)βr1r∗
1H(m1)

since tokID = gβ
ID. On the other hand,

e(C∗
1 , C2) = e(tokr∗

1H(mb)
ID∗ , gr1

ID) = e(gID∗ , gID)βr1r∗
1H(mb)

since tokID∗ = gβ
ID∗ . Therefore, they are the same if b = 1 and different if b = 0

and so our attack algorithm outputs the correct answer with probability 1. We
note that our attack algorithm succeeds regardless of whether ID = ID∗ or not.
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4 Our Modification

Now, we present our modification of Wu et al.’s IBEET construction.

Building Blocks. We employ a keyed permutation and a MAC for our modi-
fication. Their definitions are as follows.

Definition 1 (Keyed Permutation [1]). Let F : {0, 1}κ × {0, 1}n → {0, 1}n

be a length-preserving, keyed function, that is, F is a two input function where
the first input is called the key and the second input is called just the input. We
say that a keyed function F is a keyed permutation if for every key k ∈ {0, 1}κ,
the function Fk(·) := F (k, ·) is one-to-one.

Definition 2 (Message Authentication Code (MAC)). A message
authentication code MAC consists of the following three polynomial time algo-
rithms:

– G(λ): On input a security parameter λ, it returns a secret key K.
– S(K,m): Given the secret key K and a message m, it returns a tag T .
– V(K,m, T ): Given the secret key K, a message m, and a tag T , it returns 1

or 0.

Note that we do not exploit the verification algorithm V in our modification,
but we assume that the signing algorithm S is deterministic.

Description of Our Modification. The description of our modification is as
follows:

– Setup(λ) : It generates parameters p, G1, G2, e : G1 × G1 → G2, msk = α,
and Ppub = gα by the same manner as in Wu et al.’s setup algorithm. Choose
a keyed permutation F : {0, 1}κ × {0, 1}n → {0, 1}n for positive integers
κ = κ(λ) and n = n(λ). Select a random value K1 from {0, 1}κ. Generate a
MAC scheme MAC = (G,S,V) and obtain K2 by running G(λ). Set the master
token key mtk = (K1,K2). Generate three cryptographic hash functions

H : {0, 1}t → {0, 1}n, H1 : {0, 1}∗ → G1, and H2 : T ×G1×G2 → {0, 1}t+�,

where t denotes the bit-length of messages, � denotes the bit-length of ran-
domness utilized in the encryption algorithm and T denotes the range of
outputs of S. We remark that the image of H and the domain of H2 are
slightly modified from those of the original scheme. Finally, output a system
public parameter

pp = (λ, p, t, �, g,G1,G2, Ppub, e, F,MAC,H,H1,H2)

and a pair of the master secret and master token keys (msk,mtk).
– Extract(ID,msk,mtk) : While dID is generated by the same manner as in Wu

et al.’s extract algorithm, tokID is set to mtk = (K1,K2), and it outputs
(dID, tokID).
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– Enc(pp,m, ID, tokID) : Given the system public parameter pp, a message m,
an identity ID, and the token tokID = (K1,K2) for identity ID as inputs, pick
a random element r from Z

∗
p. Then, it computes

C1 = F (K1,H(m)), C2 = gr, C3 = (m‖r) ⊕ H2(T‖C2‖e(Ppub, gID)r) (2)

where T ← S(K2, C1) and gID = H1(ID). Finally, it outputs a ciphertext
ct = (C1, C2, C3).

– Test(ctA,ctB) : On input two ciphertexts ctA = (CA,1, CA,2, CA,3) and
ctB = (CB,1, CB,2, CB,3) for identities IDA and IDB , respectively, check
whether CA,1 = CB,1. If it holds, output 1. Otherwise, output 0.

– Dec(ct, dID, tokID) : Given a ciphertext ct = (C1, C2, C3), a decryption
key dID and a token tokID = (K1,K2) for user ID as inputs, compute

m′‖r′ = C3 ⊕ H2(T‖C2‖e(C2, dID)).

where T ← S(K2, C1). Then, it checks whether C1 = F (K1,H(m′)) and
C2 = gr′

. If both hold, return m′. Otherwise, return ⊥.

Correctness of Our Modification. Let ct = (C1, C2, C3) be a valid cipher-
text of message m with respect to identity ID, i.e., it satisfies Eq. (2) for some r.
Then, for T ← S(K2, C1) with a deterministic algorithm S,

m′‖r′
1 = C3 ⊕ H2(T‖C2‖e(C2, dID))

= (m‖r) ⊕ H2(T‖C2‖e(Ppub, gID)r) ⊕ H2(T‖C2‖e(C2, dID)) = m‖r

since e(Ppub, gID)r = e(gα, gID)r = e(gr, gα
ID) = e(C2, dID). Moreover, it holds

both C1 = F (K1,H(m′)) and C2 = gr′
. Thus, our decryption algorithm returns

m correctly.
Suppose that two valid ciphertexts ctA = (CA,1, CA,2, CA,3) and ctB =

(CB,1, CB,2, CB,3) of messages mA and mB for identities IDA and IDB , respec-
tively, are given. Then,

CA,1 = F (K1,H(mA)) and CB,1 = F (K1,H(mB))

and so the test algorithm always outputs 1 if mA = mB and outputs 0 if mA 	=
mB with overwhelming property when the exploited hash function H is collision-
resistant. Therefore, our modification is correct.

Security Analysis of Our Modification. We note that our modification
achieves the security requirement, which was claimed that the original We et
al.’s scheme achieved, in the random oracle model if the BDH assumption holds,
the exploited F is a strong pseudorandom permutation and the employed MAC
scheme is existentially unforgeable under chosen message attack. Due to the
space limitation, we relegate the formal security analysis to the full version [4].
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5 Conclusion

In this paper, we presented an attack on the identity-based encryption scheme
with equality test against insider attack, proposed by Wu et al. [7]. Then, we
provided a modification of their scheme that achieves the weak indistinguisha-
bility under adaptive identity and chosen ciphertext attacks, which was claimed
to be achieved in the original paper.
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Abstract. In this paper, we propose a simple method to improve the
BKZ algorithm with small blocksize. At first, we observe that reordering
the LLL-reduced basis vectors by increasing norm will change the dis-
tribution of search nodes in the enumeration tree, which gives a chance
to reduce the enumeration search nodes with non-negligible probability.
Thus the runtime of enumeration algorithm is accelerated approximately
by a factor of two. We explain this phenomenon from a theoretical point
of view, which follows the Gama-Nguyen-Regev’s analysis [6]. Then we
apply this reordering technique on the BKZ algorithm and implement
it in the open source library NTL. Our experimental results in dimen-
sions 100–120 with blocksize 15–30 show that on LLL-reduced bases, our
modified NTL-BKZ outputs a vector shorter than the original NTL-BKZ
with probability 40%–46% with LLL Lovász constant δLLL = 0.99. Fur-
thermore, in the instances where the improved BKZ found a same or
shorter vector, the runtime is up to 2.02 times faster when setting the
blocksize β = 25 with δLLL = 0.99.

Keywords: Lattice · BKZ reduction · Enumeration · GSA
Quick reordering technique

1 Introduction

Lattice-based cryptography is considered as one of the most competitive post-
quantum candidates. The security of lattice-based cryptosystems is related to
the hardness of some problems in lattice theory such as the shortest vector
problem (SVP), the closest vector problem (CVP) and their variants. The eval-
uation for the asymptotic and the concrete hardness of these hard problems
are required before these cryptosystems are adequate to the reality. There is
a series of enumeration algorithms (ENUM) for solving SVP or approximate
SVP directly. In 1994, Schnorr and Euchner proposed their enumeration algo-
rithm (SE-ENUM) [12]. Besides, lattice reduction is one of the most remarkable
c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 787–795, 2018.
https://doi.org/10.1007/978-3-319-93638-3_47
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algorithms for lattice-based cryptanalysis. Namely lattice reduction runs in poly-
nomial time on generating a “better” basis and find relatively short vectors, to
solve SVP or appr-SVP. The LLL reduction algorithm due to Lenstra et al. is
usually used to generate an almost orthogonal basis with shorter basis vectors [9].
In our work, we use a floating point version of LLL [10] which is implemented
in the open source library NTL [13]. The well known BKZ reduction algorithm
was proposed by Schnorr and Euchner in the same paper of SE-ENUM [12].
Generally, BKZ is a block model of Korkin-Zolotarev reduction in [8] and it is
a hybrid algorithm of the LLL reduction and the SE-ENUM search algorithm.
Moreover, some fast implementations of BKZ are given in some softwares such
as Magma [2] and NTL [13].

Our Contributions. In our work, we propose a simple approach to improve
the BKZ algorithm with small blocksize. We firstly apply the quick reordering
technique (QRT) on the “LLL then SE-ENUM” for small dimensions from 10
to 30. It shows that with non-negligible probability p, the SE-ENUM search
nodes can be reduced by more than 10% (upto 95.88% maximally and 47.57%
on average). We then integrate QRT into the BKZ function implemented in NTL
(NTL-BKZ). The experimental results in high dimensions (100–120) show that
by a limit on the number of SE-ENUM search nodes, our modified NTL-BKZ
(modi-NTL-BKZ) can output a shorter vector than the original NTL-BKZ with
probability 40.91%–45.73% by setting blocksize from 15 to 30 and δ = 0.99.
Further, our modified algorithm is around 2 times faster than NTL-BKZ by
setting the blocksize β = 25 when δ = 0.99.

2 Preliminaries

A lattice L is generated by a basis B which is a set of linearly independent
vectors b1, . . . ,bn in R

m such that L(b1, . . . ,bn) = {∑n
i=1 xibi, xi ∈ Z}. Here

n is the rank of L and m is the dimension of L. The fundamental domain for L
corresponding to this basis is the set F(b1, . . . ,bn) = {t1b1 + t2b2 + · · ·+ tnbn :
0 ≤ ti < 1}. Then the volume of F(B) is called the determinant of L (or the
volume of L) which is denoted by det(L) (or vol(L)) and can be written by
det(L) = vol(L) =

√
det(B�B) in symbols. A shortest vector of L is one of the

λ1(L)-length vectors. Given a lattice basis B, the shortest vector problem (SVP)
is to find a shortest non-zero vector of L(B).

Gram-Schmidt Orthogonalization (GSO). Given a lattice basis B = (b1,
. . . ,bn), we denote by B∗ = (b∗

1, . . . ,b
∗
n) the associated Gram-Schmidt orthog-

onal basis which can be computed as: b∗
1 = b1 and b∗

i = bi − ∑i−1
j=1 μijb∗

j , for

all 2 ≤ i ≤ n where μij = <bi,b
∗
j >

‖b∗
j ‖2 (1 ≤ j < i ≤ n). The volume of L(B) can also

be calculated by vol(L(B)) =
∏n

i=1 ‖b∗
i ‖. Let πi : Rn �→ span(b1, . . . ,bi−1)⊥,

πi(bk) = bk − ∑i−1
j=1 μijb∗

j (1 ≤ j < i ≤ k ≤ n) be the projection of bk onto the
orthogonal complement of L(b1, . . . ,bi−1).

Root Hermite Factor. We can evaluate the performance of reduction algo-
rithms on n-dimensional lattice by the root Hermite Factor (rHF) [5] with
rHF(b1, . . . ,bn) = (‖b1‖/vol(L)1/n)1/n.
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Gaussian Heuristic. Given a lattice L and a vector set S, we can estimate
the number of points in S ∩ L approximately vol(S)/vol(L), which is called the
Gaussian Heuristic. By a “nice” set S, this heuristic can be proved in some cases.

LLL-Reduced Basis [9]. A basis B = (b1, . . . ,bn) ∈ R
m×n is LLL-reduced if

|μi,j | = |bi ·b∗
j |

‖b∗
j ‖2 ≤ 1/2 and ‖b∗

i ‖2 ≥ (δ −μ2
i,i−1 )‖b∗

i−1‖2 for all 1 ≤ j < i ≤ n and
Lovász constant 3/4 ≤ δ < 1. In this paper, we call it “LLL then SE-ENUM”
model when using the LLL algorithm [9] as a preprocessing for SE-ENUM.

Geometric Series Assumption (GSA). The geometric series assumption
(GSA) [11] says that the norms of GSO vectors ‖b∗

i ‖ in the LLL-type reduced
basis decline geometrically with quotient q such as ‖b∗

i ‖2/‖b1‖2 = qi−1 for
i = 1, . . . , n and q ∈ [3/4, 1). Here q is called the GSA constant. In our work, we
use linear Least Squares Fitting (LSF) to calculate the slope of GSO vectors.

Quick Reordering Technique (QRT). We reorder the output reduced basis
vectors by their increasing or decreasing norms in our method. Indeed, we use
the classical quicksort algorithm (denoted by QRT in this paper) published by
Tony Hoare in 1962 [7]. To reorder n items, QRT takes O(n log n) comparisons
averagely and often faster than other O(n log n) algorithms [14]. Hence, the
complexity of QRT is negligible, comparing to 2O(n2) of SE-ENUM.

SE-ENUM Algorithm [12]. We present the basic idea of Schnorr-Euchner’s
enumeration algorithm (SE-ENUM) for solving SVP [12]. Given a lattice L ⊂
R

m with basis B = (b1, . . . ,bn), the inputs of SE-ENUM are GSO coefficients
(μi,j)1≤j≤i≤n, the square norms ‖b∗

1‖2, . . . , ‖b∗
n‖2 of B∗, and an initial search

bound R. The output is a shortest vector v =
∑n

i=1 uibi, where ui are integer
coefficients which SE-ENUM searches in a tree. The Gaussian heuristic estimates
the number of nodes at depth k is:

Hk(R) =
1
2

· Vk(R)
vol(πn+1−k(L))

=
1
2

· Vk(R)
∏n

i=n+1−k ‖b∗
i ‖

. (1)

Then the heuristic number of total SE-ENUM search nodes is N =
∑n

k=1 Hk(R).
Due to [6], Hk(R) is maximal around the middle depth k ≈ n/2 (see an example
in Fig. 1). If the bases are LLL-reduced, the bound on N is at most 2O(n2).

BKZ Algorithm [12]. The BKZ algorithm was originally proposed as a way
of computing bases that are almost β-reduced [12]. For a given basis B =
(b1, . . . ,bn), one sets a proper blocksize β ≥ 2, which impacts both the run-
time and the output quality. Assume j is the first index of each local block
B[j,min(j+β−1,n)]. BKZ iteratively performs the LLL reduction and the SE-ENUM
algorithm on each local block for j from 1 to n − 1. We call it “1 round” from
j = 1 to j = n − 1. For each “LLL then SE-ENUM” subroutine, it outputs
linear coefficients to make a shortest vector in the local projected lattice. The
execution stops when no updating of GSO vectors occurs during a tour. Further
details may be found in [12].
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Fig. 1. Number of nodes at each level in SE-ENUM tree (average value of 100 cases of
28-dimensional random lattices).

3 Our Proposed Method

3.1 SE-ENUM with Quick Reordering Technique

We use a Quick Reordering Technique (QRT) to process the LLL-reduced basis
before inputting them into SE-ENUM. Firstly we reorder the sequence of vectors
of the LLL-reduced basis B by their norms:

(b′
1, . . . ,b

′
n) = Reorder(b1, . . . ,bn),

while in the case of increasing order: ‖b′
1‖ ≤ ‖b′

2‖ ≤ · · · ≤ ‖b′
n−1‖ ≤ ‖b′

n‖, or
the decreasing order: ‖b′

1‖ ≥ ‖b′
2‖ ≥ · · · ≥ ‖b′

n−1‖ ≥ ‖b′
n‖.

Experiment Overview. We run LLL and SE-ENUM on bases of dimensions
from 10 to 30, which can be used as efficient blocksize for preprocessing in BKZ.
For each dimension, we generate 10,000 random lattice bases (from seed 0 to
9,999) from the TU Darmstadt SVP Challenge [4]. Our implementation is using
C language and running on Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz. Here
is a simple enunciation of our experiment procedure.

1. We process the original bases by LLL reduction algorithm using different
Lovász constants δ ∈ {0.80, 0.85, 0.90, 0.95, 0.99}.

2. Then for each lattice basis, we reorder their vectors by increasing and decreas-
ing norm orders using QRT respectively.

3. Finally, we use SE-ENUM to find a shortest vector of each lattice by three dif-
ferent bases: original without reordering, increasing norm order, and decreas-
ing norm order. For the sake of fairness, the initial SE-ENUM search bound
is the same as the first vector’s norm in the original basis.

Experimental Results. We calculate the probability that the average of
‖b∗

	n/2
−1‖, ‖b∗
	n/2
‖, ‖b∗

	n/2
+1‖ is bended larger after reordering the basis.
The increasing reordering model can derive a much higher probability to bend
the bases and reduce the amount of SE-ENUM search nodes successfully. Thus
we will use the increasing QRT in the following work and just write it as
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Fig. 2. Distribution of increasing QRT applied ‖b∗
i ‖ (average value of 100 cases of

28-dimensional random lattices).

QRT if there is no specification. We count all of the cases including all of
the dimensions but separated by δ = (0.80, 0.85, 0.90, 0.95, 0.99) in our experi-
ments, the maximal value of acceleration by applying QRT on SE-ENUM are
(95.88%, 91.91%, 84.50%, 77.65%, 72.55%) and respectively the average values
are (47.57%, 32.83%, 23.49%, 18.31%, 13.37%). On the other side, the failed case
may also increase the SE-ENUM search nodes by almost double. Therefore we
should carefully handle the threshold when we adapt QRT to BKZ improvement
in Sect. 4.

3.2 Theoretical Estimation

The index of maximal search nodes is slightly shifted (by 3 in the 28-dimensional
example in Fig. 1), when the LLL-reduced basis is reordered. Moreover, the dom-
inant number of search nodes are significantly reduced, such that the total search
nodes are reduced by around 47.57% in average. We explain this phenomenon
using the GH and the GSA of input GSO basis. According to Gama-Nguyen-
Regev [6]’s analysis on the Eq. (1) from GH, the total SE-ENUM search nodes
N is

N =
n∑

k=1

Hk(R) ≈
n∑

k=1

q(n−k)k/22O(n). (2)

Here q is the GSA constant. Our experimental results show that there is a non-
negligible probability that q becomes smaller by “bending” the GSO elements
log(‖b∗

i ‖) “flatter” due to the QRT procedure. From Fig. 2 we can see that after
reordering the input basis, the associated log(‖b∗

i ‖) is bended “taller” around
the centre index and “lower” at two ends. Namely, QRT can change the GSA
distribution in the middle indices. According to the Eq. (2), the reduction of q
can greatly influence the total number of nodes in the SE-ENUM tree.
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4 Improving BKZ by the Quick Reordering Technique

4.1 The BKZ Algorithm with Increasing QRT

We show the improved BKZ algorithm using QRT in Algorithm1. Since the
additive GSA constant qβ is the pre-calculated average slope in the succeeded
cases using QRT in Sect. 3, we use it to be a threshold to call QRT for optimiza-
tion. At step 11, the average middle three GSO lengths are computed as follows
respectively.

Algorithm 1. The BKZ algorithm with increasing QRT.
Input: A basis B = (b1, . . . ,bn), the blocksize β ∈ {2, . . . , n}, the GSO elements μ

and ‖b∗
1‖2, . . . , ‖b∗

n‖2, success slope qβ from sec. 3.
Output: A BKZ-reduced basis BQRT for L(B).
1: z ← 0; j ← 0; LLL(b1, . . . ,bn, μ);
2: while z < n − 1 do
3: j ← (j mod (n − 1)) + 1; k ← min(j + β − 1, n);
4: h ← min(k + 1, n); β′ = k − j + 1 = min(β, n − j + 1);
5: if β′ ≥ 10 then
6: Compute the slope qcurrof current GSO vector lengths by LSF;
7: end if
8: if qcurr < q′

β then
9: Compute πj(L

′
β) = πj(bj), πj(bj+1), . . . , πj(bk);

10: Reorder πj(L
′
β) to increasing norm order by QRT;

11: Compute the average norm AveGSOπj(L
′
β
) (andAveGSOlocal(b∗

i ) ) of middle

three GSO vectors of πj(L
′
β) (and local block respectively);

12: if AveGSOπj(L
′
β
) > AveGSOlocal(b∗

i ) then

13: Replace the local basis (bj , . . . ,bk) = QRT(bj , . . . ,bk);
14: Update the GSO informations by the reordered one:

(μ[j,k], ‖b∗
j ‖2, . . . , ‖b∗

k‖2) = QRT((μ[j,k], ‖b∗
j ‖2, . . . , ‖b∗

k‖2));
15: end if
16: end if
17: u ← SE − ENUM(μ[j,k], ‖b∗

j ‖2, . . . , ‖b∗
k‖2);

18: if u �= (1, 0, . . . , 0) then
19: z ← 0; LLL(b1, . . . ,

∑k
i=j uibibj , . . . ,bh, μ);

20: else
21: z ← z + 1; LLL(b1, . . . ,bh, μ);
22: end if
23: end while

AveGSOπj(L′
β)

= (‖πi(bj+	β′/2
−1)‖ + ‖πi(bj+	β′/2
)‖ + ‖πi(bj+	β′/2
+1)‖)/3

AveGSOlocal(b∗
i )

= (‖b∗
j+	β′/2
−1‖ + ‖b∗

j+	β′/2
‖ + ‖b∗
j+	β′/2
+1‖)/3

The GSO informations (μiq and ‖b∗
i ‖(j ≤ q < i ≤ k)) will be updated at step 14,

if the reordered GSO vectors qualify convex in the middle part at step 13.
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We denote by “NTL-BKZ” the original floating point version BKZ XD in
NTL [13] and denote by “QRT-BKZ” the adaptation with QRT. Our experi-
ments run on n = {100, 102, 104, . . . , 120}-dimensional bases generated from TU
Darmstadt SVP Challenge [4] (100 samples for each dimension). We process all
of the bases by NTL-BKZ and preserve the necessary information in each i−th
case 1 ≤ i ≤ 100: the total number of SE-ENUM search nodes Nni; the root
Hermite Factor rHF(Lni) when the last ‖b1‖ni is updated; the SE-ENUM search
nodes Nni and the run time t′ni until the last update. Similarly, we denote the
SE-ENUM search nodes in QRT-BKZ version by NQRT

ni and denote the run time
by tQRT

ni . For the sake of fairness, we set three terminating conditions:

(1) if the total number of SE-ENUM search nodes NQRT
ni > Nni;

(2) if the processing rHF of QRT-BKZ rHF(LQRT
ni ) < rHF(Lni);

(3) if there is no update for one tour (as the condition at step 2 in Algorithm1).

We define the probability psuccLen that our QRT-BKZ outputs a smaller
rHF(L) (namely a shorter first vector) successfully than that from NTL-BKZ.

4.2 Experimental Results

4.2.1 Deriving a Smaller rHF by Probability psuccLen

We calculate all of the cases differing from the balocksize β and the δ used in
LLL subroutine. The results are given in Table 1. For the blocksize from 15 to
25, the success probability psuccLen is around 45%. Simultaneously, the psuccLen

is generally descending by increasing the blocksize.

Table 1. The rate of getting shorter b1 by QRT-BKZ than the original NTL-BKZ
output, while QRT-BKZ is bounded by the same SE-ENUM serch nodes as latter.

β psuccLen(δ = 0.90) psuccLen(δ = 0.95) psuccLen(δ = 0.99)

15 44.64% 48.45% 45.73%
20 45.45% 43.82% 45.55%
25 41.82% 38.73% 40.55%
30 17.64% 34.36% 41.45%

4.2.2 Reducing the SE-ENUM Subroutine Cost

Further, we give the average runtime for each cases in Table 2. From this table we
can see that the improved QRT-BKZ are 2.02 and 1.92 faster than the original
NTL-BKZ, when setting the blocksize β = 25 and 30 respectively with δ = 0.99.
In practice, we suggest using blocksize 20 ≤ β ≤ 30 and set LLL Lovász constant
δ ≥ 0.95 in QRT-BKZ.
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Table 2. Average runtime of NTL-BKZ and QRT-BKZ working on n ∈
{100, 102, . . . , 120}-dimensional bases with δ ∈ {0.90, 0.95, 0.99} and β ∈ {20, 25, 30}.
The QRT-BKZ performs better than NTL-BKZ for bigger δ, e.x. QRT-BKZ can reach
around 2 times faster than NTL-BKZ for δ = 0.99.

Runtime[sec] δ = 0.90 δ = 0.95 δ = 0.99

β = 20 β = 25 β = 30 β = 20 β = 25 β = 30 β = 20 β = 25 β = 30

TNTL−BKZ 7.79 15.98 80.60 10.69 31.33 335.29 22.67 310.53 8911.02

TQRT−BKZ 7.01 13.21 63.64 8.88 20.99 198.64 15.29 153.39 4651.55

5 Conclusion

In this work, firstly we introduced the quick reordering technique (QRT) applied
in the “LLL then SE-ENUM” model to reduce the SE-ENUM search nodes by
non-negligible probability. Our experimental results show that the reduced rate
depends on the input basis quality. Then we improved the BKZ algorithm with
QRT for small blocksize and modified the BKZ function in the open source
library NTL (QRT-BKZ). Within some fairness limitations, the QRT-BKZ with
small blocksize can output a smaller root Hermite factor than that of the original
NTL-BKZ, with probability 40.91%–45.73% by setting δ = 0.99. Further, for
the instances that QRT-BKZ found a same or shorter vector, the runtime is
up to 2.02 times faster than the original NTL-BKZ. Since our proposed QRT
gives an improvement on BKZ with small blocksize, it is expectant to apply the
QRT in the preprocessing subroutine of other algorithms such as BKZ 2.0 [3] or
progressive BKZ [1]. Also a precise theoretic analysis for the phenomenon should
be given in the future works.
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JP17J01987 and JST CREST Grant Number JPMJCR14D6, Japan.
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Abstract. Malware developers often use various obfuscation techniques to
generate polymorphic and metamorphic versions of malwares. Keeping up with
new variants and creating signatures for each individuals in a timely fashion has
been an important problem but tedious works that anti-virus companies face all
the time. It motivates us the idea of no more dancing with variants. In this paper,
we aim to find a malware family’s main characteristic operations directly related
to its intent. We propose global execution sequence alignment and segmentation
algorithms to generate the execution stage chart of a malware family which
presents a simple and easy-to-understand overview of the lifecycle as well as
common and different operations that individual variants perform at a stage. We
also present an automated dynamic Android malware profiling and family
security analysis system in which we focus on the execution sequences of
sensitive and permission-related API calls referred to as motifs of variants of
malware family. To achieve the goal, we modify Android Debug Bridge
(ADB) tool to add on several new features including enabling the recording of
parameters and return value of an API call, the support of UID-based profiling to
capture all the processes and threads to gain complete understanding of the
activities of target malware app, and per thread trace generation. Finally, we use
real-world dataset to validate the proposed system and methods. The generated
family stage chart and motifs can provide security analysts semantics-rich
understanding of what and how a malware family is designed and implemented.
The main characteristic API call sequences of malware families can be used as
signatures for effective and efficient malware detection in the future.
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1 Introduction

Smartphones have become a vital part of our lives. Recent reports indicate that there is
an arising proliferation of installs of unwanted software by commercial pay-per-install
(PPI) where software developers bundle third-party apps as part of their installation
process in return for a payout [1]. Many malicious software such as Trojan, backdoor
and aggressive adware, are thus downloaded into user’s device. Meantime, we observe
that malware developers often use various obfuscation techniques to generate poly-
morphic and metamorphic versions of malwares. As a result, variants of a malware
family generally exhibit resembling behaviour. Most importantly, they possess certain
common essential codes so to achieve the same designed purpose.

In this paper we propose a novel automatic dynamic Android malware profiling and
family security analysis system which focuses on execution sequences of the sensitive
and permission-related API calls referred to as motifs of the variants of a malware
family. We propose a global execution sequence alignment algorithm and a segmen-
tation algorithm for malware family behaviour analysis to find the common and main
characteristic motifs of the family.

In the past, a number of methods have been proposed in malware behaviour
analysis. Basically there are two approaches: static and dynamic analysis. For static
analysis, the subjects are mainly the APK file, DEX file, AndroidManifest.xml file and
the permissions used by apps. By analyzing the information embedded in the files (such
as permissions used [2–6] and taint information [7, 8]), researchers could assess the
threat of an app. On the other hand, the dynamic analysis tools collect runtime exe-
cution information (e.g., system calls and API calls) [9–13] in a controlled environment
to profile and examine the behaviour of an app. Different from these works, this paper
focuses on automated generation of Android malware family’s common and main
characteristic security-related API call sequences from the filtered execution traces of
its variants. The generated common or characteristic API call sequences of malware
families can be used as signatures for effective malware detection in the future.

Our contributions include (1) designing and implementing an automated profiling
and family behaviour analysis system for Android apps; (2) modifying Android Debug
Bridge (ADB) tool to add on new features including enabling the recording of
parameters and return value of an API call, support of UID-based profiling mode to
capture all the processes and threads spawned from the main process to gain complete
understanding of the activities of target malware app, and per thread trace generation;
(3) compilation of a set of sensitive and permission-related APIs essential and neces-
sary to capture security related activities of apps; (4) design and implementation of a
global execution sequence alignment algorithm and a segmentation algorithm to gen-
erate the execution stage chart of a malware family which presents a simple and
easy-to-understand overview of the lifecycle as well as common and different opera-
tions of individual variants at each stage; and (5) using real dataset to validate the
proposed system to identify common and main characteristic operations (API call
sequences) of malware families for effective detection use.

The remainder of the paper is organized as follows. In Sect. 2, we briefly review
related works of Android malware behaviour analysis. In Sect. 3, we describe the
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design and implementation of the proposed automated profiling and family behaviour
analysis system. In Sect. 4 we take an Android malware dataset to validate the pro-
posed system and algorithms. Finally, Sect. 5 gives the conclusion.

2 Related Work

Barrera et al. [3] use self-organizing map to analyze the permission-based security
model of Android. Pscout [4] discusses the relationship between the permissions and
the Java APIs. VetDroid [5] is a dynamic analysis platform that can reveal how apps
use permissions to access sensitive system resources, and how these acquired resources
are further utilized by the app. Appsplayground [6] performs dynamic analysis in an
Android emulator based on taint tracing of privacy-sensitive information, sensitive API
monitoring and kernel-level tracking to identify known exploits and unwanted func-
tionality. Apposcopy [7] focuses on static taint analysis of inter-component call graph
for malware family classification. TaintDroid [8] adopts the taint analysis technique
and provides a system-wide dynamic taint tracking system capable of tracking multiple
sources of sensitive data.

Peiravian et al. [9] use static analysis to extract permissions and API calls of
Android apps and apply machine learning techniques to detect malicious Android apps.
DroidAPIMiner [10] extracts malware features at the API level, and adopts machine
learning method to classify APIs used by malicious and benign apps, as well as those in
common use. Droidmat [11] also applies machine learning algorithms on the features in
app’s manifest file and the API calls to distinguish Android malware. DroidScope [12]
employs virtual machine introspection (VMI) technique to inspect an Android app in a
virtual machine. In CopperDroid [13], the authors also apply VMI technique to perform
system call-centric analysis and generate detailed behavioural profiles that abstract a
large stream of low-level system calls into concise, high-level semantics. However,
these works do not pay attention to the thread structure of an app and Java API call
sequences as we do.

3 System Design

In our proposed dynamic malware profiling and family behaviour analysis system, the
first step is to profile the execution of a target malware app. The main issue here is to
determine what information to record so that the trace contains sufficiently detailed
information without missing any suspicious or malicious operations. Meantime we also
do not want every detail to introduce a lot of unnecessary noises. Figure 1 presents the
architecture of the proposed profiling and family behaviour analysis system. The
profiling and analysis process consists of three phases.

3.1 Generate All_APIs Execution Trace per Thread

We first make use of the Android SDK command “am profile” to obtain the initial trace
for an app. However, this command only provides the class name, method name, thread
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name and parameter type. We modify the Android Debug Bridge (ADB) code to add
on several new features: (a) enabling the recording of parameters and return value of an
API call; (b) changing the PID-based profiling mode to UID-based so to capture all the
processes and threads spawned from the main process to have complete view of the
activities of target app; and (c) separation and generation of API call trace per thread.

Broadcast Messages: Triggering Malware Behaviour. In dynamic analysis, how to
trigger most target malware behaviour is an issue. Here, we implement a broadcast
message mechanism in our profiling system to ensure behaviour of a malware APK
would be triggered as much as possible. In our experiments, 29 out of 49 malware
families monitor the BOOT_COMPLETED event and 21 families listen to the
SMS_RECEIVED event. It is also observed that most malware apps register multiple
events. By doing so, we raise the activation rate of service components from 0.009 to
0.74 in the experiments.

3.2 Filtering for Sensitive and Permission-Related APIs

The trace obtained from Phase 1 include all APIs invoked in the app’s execution. Because
not all of them are relevant to suspicious or malicious activities, we thus focus on APIs
that require user permission to invoke and APIs that are related to sensitive actions.

APIs Requiring Permissions. Because Google does not provide official specification
documentation of the permission requirements for all APIs, to find out permission-
required APIs, we implement a program which crawls Android Developer Website [14]
in April 2016 and find 4382 classes, 35033 APIs and 135 permissions. Among them
265 APIs require permissions and only 36 of them are published on the website. The
others are commonly referred to as undocumented APIs. In PScout [4] the authors
develop a tool to extract the permission specification from four versions of the
Android OS source codes (2.2 to 4.0) and compiled a list of permission-API mappings.
From them, we focus on a selected set of 2456 APIs with 40 distinct permissions.

Sensitive APIs. In addition to APIs requiring permissions, we also identify 530 APIs
whose uses require no permissions but are often invoked by malware [10, 15]. They are
classified into nine use categories as shown in Table 1. The APIs totalled 2986, are
used as the set of sensitive and permission-related APIs in this work to filter out

Fig. 1. The architecture of the Android app profiling and family behaviour analysis system.
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irrelevant APIs from the execution traces obtained from Phase 1. The resulting traces
are referred to as execution profiles.

3.3 Malware Family Global Execution Sequence Alignment
and Segmentation and Stage Chart Generation

Once obtained the execution profiles of variants of a malware family, we want to find
common and characteristic motifs (execution snippets) of the family. Consider a
malware family FM with variants {v1, v2, …, vN} and their execution profiles {P1, P2,
… PN}. We design and develop a Global API call Sequence Alignment algorithm
called API_GSA. In the algorithm, we first randomly select an execution profile as the
baseline denoted as P(B). Pairwise global sequence alignment is then performed for
each execution profile with the baseline. The algorithm is designed to align every API
call in each execution profile to find the best matches so the similarities of the two
profiles can be optimized. A segmentation algorithm is also developed to segment the
matrix of aligned API call sequences into stages and produce family execution stage
chart. From it, we now have complete view of what individual variants perform at a
stage. Most importantly from the chart one can easily identify common stages where all
variants have the same motifs, i.e., perform identical call sequences. By concatenating
motifs of all common stages we obtain the common execution sequence of the family.

4 Evaluation

Our automated Android malware app profiling and family behaviour analysis system is
built on QEMU and KVM. The physical machine has an Intel i7-3770S 3.1 GHz
quad-core CPU with 8 GB RAM running Ubuntu 14.04. We take a dataset of ten
families of 2568 malware samples from the Drebin Project [16]. However, in our
experiments, not all samples are runnable.

Table 1. The set of sensitive APIs.

Category (API count) APIs with no permission required

File management (440) java/io/File, DataOutputStream, DataInputStream, etc.
Java reflection (3) java/lang/Class.getName, forName, getMethod
Execute command (2) java/lang/Runtime.exec, getRuntime
Encryption/decryption (3) javax/crypto/Cipher.getInstance, doFinal
Code loading (3) dalvik/system/DexClassLoader.loadClass, <init>,

PathClassLoader. <init>
String manipulation (4) *java/lang/StringBuffer.append, subString,

java/lang/StringBuilder.append, subString
Database query (65) android/content/CursorWrapper (40),

android/content/ContentProvider (24)
Common network library &
network-related API (4)

org/apache/http/impl/client/AbstractHttpClient.execute,
org/apache/http/client/utils/URLEncodedUtils.encode

Shared preference file (6) android/content/ContextWrapper.getSharedPreference
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Characteristic Security API Sequence Analysis. First, we show that our selected
sensitive and permission related API set is sufficient to reveal major characteristic
activities of a malware family. Due to the limit of pages, we take malware family
ADRD as an example for illustration. ADRD is a Trojan family and one of its main
characteristic behaviour is to steal device information and periodically send the data
out. In the Drebin dataset, there are 25 runnable variant samples labelled as family
ADRD. They all create 64 processes where a sample may spawn zero to three child
processes in addition to the main process, and 94 threads. We apply UPGMA,
an agglomerative hierarchical clustering method to roughly classify their operations,
then run the proposed global execution sequence alignment and segmentation algo-
rithms for in-depth characteristic behaviour analysis of each cluster. Figure 2 presents
the generated execution stage chart of one of the resulting cluster. In Table 2, we
present a mapping of technical descriptions of ADRD family and the main charac-
teristic API calls identified in our family behaviour analysis. One main feature such as
retrieving IMSI and IMEI appear in most variants. An interesting finding here is the set
up app’s activation date and time through the use of “oldtime” and update_flag.xml and
configure alarm to periodically activate background component.

n : mo f index

n : common stage 

n : > 66% common stage 

n : > 50% common stage 

n : gap mo f (empty space)

Fig. 2. The execution stage chart of a cluster (14 main threads).

Table 2. Summary of main characteristic behaviour of ADRD family.

Characteristic activity Code sequence

Encryption & certification java/lang/Class.forName(<Ljava/lang/String;>“com.
adroid.org.conscrypt.KeyManagerFactryImpl”,
<Z>true,<Ljava/lang/ClassLoader;>,)
java/lang/Class.forName(<Ljava/lang/String;>“com.
android.org.bouncycastle.jcajce.provider.keystore.bc.
BcKeyStoreSpi$Std”,<Z>true,
<Ljava/lang/ClassLoader;>,)
java/lang/Class.forName(<Ljava/lang/String;>“com.
android.org.conscrypt.TrustManagerFactoryImpl”,
<Z>true,<Ljava/lang/ClassLoader;>,)

(continued)
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Table 2. (continued)

Characteristic activity Code sequence

java/lang/Class.forName(<Ljava/lang/String;>“com.
android.org.conscrypt.TrustedCertificateKeyStoreSpi”,
<Z>true,<Ljava/lang/ClassLoader;>,)
java/lang/Class.forName(<Ljava/lang/String;>“com.
android.org.bouncycastle.jce.provider.
PKIXCertPathValidto-Spi”,<Z>true,
<Ljava/lang/ClassLoader;>,)

Send HttpRequest ava/net/URI.parseURI(<Ljava/lang/String;>““,)
java/net/URL.openConnection()
java/net/URI.parseURI(<Ljava/lang/String;>“http://
sd.3g.qq.com/g/softdown/util/apkskin.jsp”,<Z>false,)
org/apache/http/impl/client/AbstractHttpClient.execute
(<Lorg/apache/http/client/methods/HttpUriRequest;>,
<Lorg/apache/http/protocol/
HttpContext;>,)
org/apache/http/impl/client/AbstractHttpClient.execute(
<Lorg/apache/http/HttpHost;>,
<Lorg/apache/http/HttpRequest;>,
<Lorg/apache/http/protocol/HttpContext;>,)

Retrieve IMSI, IMEI android/content/ContextWrapper.getSystemService
(<Ljava/lang/String;>“phone”,)
android/telephony/TelephonyManager.getDeviceId()
android/telephony/TelephonyManager.
getSubscriberId()

Check internet conn. android/content/ContextWrapper.getSystemService
(<Ljava/lang/String;>
“connectivity”,)
android/net/ConnectivityManager.
getActiveNetworkInfo()

Activation date & time android/content/ContextWrapper.getSharedPreferences
(<Ljava/lang/String;>“update_flag”,<I>0,)
android/app/SharedPreferencesImpl.getLong
(<Ljava/lang/String;>“oldtime”,<J>0,)
java/util/Date.getTime();
android/app/SharedPreferencesImpl.edit()

Configure alarm to periodically
activate background component

android/content/ContextWrapper.getSystemService(
<Ljava/lang/String;>“alarm”,)
android/content/Intent.setAction(<Ljava/lang/String;>
“com.lz.myservicestart”,)
android/app/PendingIntent.getBroadcast
(<Landroid/content/Context;>,<I>0,
<Landroid/content/Intent;>,<I>0,)
android/content/Intent.writeToParcel
(<Landroid/os/Parcel;>,<I>0,)
android/app/AlarmManager.set()
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5 Conclusion and Future Work

The proliferation of malware variants makes the approach of creating signatures for
each individuals in a timely fashion inefficient and costly. It motivates us the idea of no
more dancing with variants. Different from previous works and tools on dynamic
malware analysis, this paper focuses on automated generation of Android malware
family’s common and main characteristic security-related API call sequences from the
filtered execution traces of its variants. We modify the source code of ADB to enable
the recording of parameters and return value of an API call, support UID-based pro-
filing mode so to capture all the processes and threads spawned from the main process
to gain complete understanding of the activities of target malware app, and generate
trace for each thread. We also propose global execution sequence alignment and
segmentation algorithms to generate the execution stage chart of a malware family
which presents a simple and easy-to-understand overview of the lifecycle as well as
common and different operations that individual variants performed at each stage. The
family stage chart and the motifs also provide security analysts semantics-rich
understanding of what and how a malware family is designed and implemented. Our
system and the generated malware family characteristic API call sequences can be used
as signatures for effective and efficient malware detection in the future.
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Abstract. In this paper, we utilize the recent advances in indistin-
guishability obfuscation, overcome several obstacles and propose a multi-
hop unidirectional proxy re-encryption scheme. The proposed scheme is
proved to be CCA-secure in the standard model (i.e., without using the
random oracle heuristic), and its ciphertext remains constant-size regard-
less of how many times it has been transformed.

Keywords: Multi-hop · Unidirectional proxy re-encryption
Chosen-ciphertext attack · Indistinguishability obfuscation

1 Introduction

Proxy re-encryption (PRE), introduced by Blaze et al. [5], allows a semi-trust
proxy, who is given a re-encryption key, to transform a ciphertext under the pub-
lic key of Alice (the delegator) into another ciphertext for Bob (the delegatee).
The proxy, however, learns nothing about the underlying messages encrypted.

According to the direction of transformation, PRE can be classified into uni-
directional PRE and bidirectional PRE [13]. In unidirectional PREs, the proxy
can only transform ciphertexts from Alice to Bob. While in bidirectional PREs,
the proxy can transform ciphertexts in both directions. Unidirectional PRE usu-
ally gains the advantage over bidirectional PRE, and any unidirectional scheme
can be easily transformed to a bidirectional one by running the former in both
directions. PRE can also be categorized into multi-hop PRE, in which the cipher-
texts can be transformed from Alice to Bob and then to Charlie and so on, and
single-hop PRE, in which the ciphertexts can only be transformed once [1,2]. A
multi-hop PRE will be more desirable than a single-hop PRE in practice as it
provides the flexibility of re-delegation, that is, the delegatee can re-delegate the
ciphertexts to another users.

c© Springer International Publishing AG, part of Springer Nature 2018
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In their seminal paper, Blaze et al. [5] proposed the first bidirectional PRE
scheme. In NDSS 2005, Ateniese et al. [1,2] proposed several single-hop uni-
directional PRE schemes. All of these schemes are only secure against chosen-
plaintext attacks (CPA). However, applications often require security against
chosen-ciphertext attacks (CCA). To fill this gap, in ACM CCS 2007, Canetti
and Hohenberger [6] presented a novel multi-hop bidirectional PRE scheme,
and proved its CCA-security in the standard model. In PKC 2008, Libert and
Vergnaud [14,15] proposed the first CCA-secure single-hop unidirectional PRE
scheme in the standard model. Subsequently, several CCA-secure single-hop uni-
directional PRE schemes have been proposed [7,10,12].

It is worth noting that, compared with traditional public key encryption,
PRE has more parties involved and its CCA-security model is more subtle.
Thus designing CCA secure PRE is quite challenging (In fact, a number of
alleged CCA-secure PRE schemes have subsequently been found insecure, e.g.,
[16,19]). For CCA-secure multi-hop unidirectional PREs, this problem is partic-
ularly more challenging. In ACM CCS 2007, Canetti and Hohenberger [6] left an
open problem of how to construct a CCA-secure multi-hop unidirectional PRE
scheme1. Eight years have passed, and there still exists no such scheme. Below we
briefly explain the subtleties in designing CCA-secure multi-hop unidirectional
PRE schemes.

It is well known that for a CCA-secure encryption scheme, its ciphertext
should not be malleable. For original ciphertexts, the non-malleability of each
ciphertext component can be easily ensured. However, as to transformed cipher-
texts, it is rather difficult to ensure the non-malleability of each ciphertext
component, since some of these components are modified after the transfor-
mation. Unfortunately, if the non-malleability of a given transformed cipher-
text component cannot be ensured, there might exists an adversary who can
break the CCA-security of the scheme. For example, given the challenge cipher-
text CT∗ = Encrypt(pk∗,mβ) under the target public key pk∗, the adversary
first issues a re-encryption query to transform CT∗ into a transformed cipher-
text CTi = (..., Ci, ...) under a uncorrupted user i’s public key pki, where
the non-malleability of ciphertext component Ci cannot be ensured. Next, the
adversary modifies Ci to C ′

i and obtains another (might invalid) ciphertext
CT′

i = (..., C ′
i, ...), and then issues a re-encryption query to transform CT′

i into
another (might invalid) ciphertext CT′

j under a corrupted user j’s public key
pkj . Note that it is legal for the adversary to issue this query, since (pki,CT′

i)
is not a derivative of (pk∗,CT∗). Now, with the corrupted user j’s private key
skj , the adversary might derive the underlying bit β from ciphertext CT′

j , and
then break the CCA-security of the scheme.

Our Contributions. To propose a CCA-secure multi-hop unidirectional PRE
scheme, we utilize the recent advances in indistinguishability obfuscation [9].
We here briefly explain our high-level idea: the well-formedness of the original
1 We notice that some alleged CCA-secure (identity-based) multi-hop unidirectional

PRE schemes have been proposed, e.g. [8,20,21]. However, these schemes were sub-
sequently found either insecure or flawed in the security proofs.



Constant-Size CCA-Secure Multi-hop Unidirectional Proxy Re-encryption 807

ciphertext in our scheme can be publicly verified, and with the help of indistin-
guishability obfuscation, the transformed ciphertext has the same form as the
original ciphertext. Thus the well-formedness of the transformed ciphertext can
also be verified, and the aforementioned attack can be accordingly ruled out in
our scheme. In Sect. 2, we shall present our main idea and the proposed scheme.
We stress that, it is non-trivial to use indistinguishability obfuscation to design
a CCA-secure multi-hop unidirectional PRE scheme, and we face with several
obstacles to be overcome. Interestingly, the ciphertext in our scheme remains
constant-size regardless of how many times it has been transformed.

Related Work. We review related literature about indistinguishability obfus-
cation.

Indistinguishability Obfuscation. Program obfuscation deals with the problem of
how to protect a program from reverse engineering while preserving functionality.
Unfortunately, Barak et al. [3,4] showed that the most natural simulation-based
formulation of program obfuscation (a.k.a. “black-box obfuscation”) is impossi-
ble to achieve for general programs in a very strong sense. Faced with this impos-
sibility result, Barak et al. [3,4] suggested another notion of program obfuscation
named indistinguishability obfuscation. Roughly speaking, an indistinguishabil-
ity obfuscation scheme ensures that the obfuscations of any two functionally
equivalent circuits are computationally indistinguishable. Recently, Garg et al.
[9] proposed the first candidate construction of an efficient indistinguishability
obfuscation (iO) for general programs.

Recently, staring with [18] there has been much interest in investigating what
can be built from iO, since this model leads to poly-time obfuscation of unre-
stricted program classes, circumventing the known impossibility results of [3,4].
Subsequently, many papers [11,17,18] have shown a wide range of cryptographic
applications of iO. In this paper, we seek to discover new application that is
not achievable prior to the introduction of secure obfuscation. We utilize iO to
resolve an open problem in the area of PRE.

2 Our Proposed Scheme

In this section, we shall first explain the intuition of our unidirectional proxy
re-encryption scheme from indistinguishability obfuscation, and then describe
the concrete construction in detail.

In order to resist the aforementioned attack described in Sect. 1, we design our
scheme such that, the well-formedness of the original ciphertext can be publicly
verified, and for any message m ∈ M and re-encryption key rki→j , the original
ciphertext Encrypt(pkj ,m;R) and the transformed ciphertext ReEncrypt(rki→j ,
Encrypt(pki,m;R)) have the same form. Thus the well-formedness of the trans-
formed ciphertext can also be verified. Our first idea is to create an indistin-
guishability obfuscation of the program ReEnc-i-j given in Fig. 1 as PReEnc-i-j and
set the re-encryption rki→j = PReEnc-i-j. Now, given a ciphertext CTi under user
i’s public key pki and the re-encryption key rki→j = PReEnc-i-j, the re-encryption
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algorithm run by a proxy, outputs the ciphertext CTj = PReEnc-i-j(CTi, R),
where randomness R is chosen by the proxy. Obviously, the scheme satis-
fies the above requirement. Unfortunately, it is easy to find an attack. Let
CT∗ ← Encrypt(pk∗,mβ) be the challenge ciphertext. An adversary can issue
the re-encryption key generation query 〈pk∗, pkj〉 to obtain the re-encryption
key rk∗→j = PReEnc-*-j, where pkj is the uncorrupted user j’s public key. Then,
it chooses randomness R and computes CTj = PReEnc-*-j(CT∗, R). Observe that,
CTj = Encrypt(pkj ,mβ ;R), and thus the adversary can determine the under-
lying bit β and break the CCA-security of the scheme, since R is known to
it.

ReEnc-i-j:
Input: Ciphertext CTi and randomness R.
Constants: User i’s private key ski.
1. Compute m = Decrypt(ski,CTi).
2. If m =⊥, output ⊥.
3. Output: Encrypt(pkj ,m;R).

Fig. 1. Program ReEnc-i-j

Enc:
Input: Message m ∈ M and randomness R.
Constants: PRF keys K.
1. Compute R = F (K,R).
2. Output: Encrypt(pk,m;R).

Fig. 2. Program Enc

We try to resist the above attack by the following modifications. The goal
of the modifications is to make the sender not know the randomness used to
encrypt the message. Let (Setup,Encrypt,Decrypt) be a secure public key encryp-
tion scheme. The user’s public key of the modified unidirectional proxy re-
encryption scheme is set to be pk = (pk,PEnc), where (pk, sk) ← Setup and
PEnc is an indistinguishability obfuscation of the program Enc which is given
in Fig. 2. In this modified unidirectional proxy re-encryption scheme, given a
message m ∈ M and a randomness R chosen by the sender, the encryption
algorithm computes the ciphertext CT = PEnc(m,R) under the user’s pub-
lic key pk. Observe that, CT = Encrypt(pk,m; ˜R), where the randomness ˜R
used to encrypt the message is unknown to the sender, and thus the modi-
fied scheme can resist the above-mentioned attack. However, there still exists
another attack. The adversary also issues the re-encryption key generation query
〈pk∗, pkj〉 to obtain the re-encryption key rk∗→j = PReEnc-*-j, where pkj is
the uncorrupted user j’s public key. Then, it chooses a randomness R, and
computes CTj = PReEnc-*-j(CT∗, R) and CT′

j = PEnc
j (m0, R). Notice that,

CTj = Encrypt(pkj ,mβ ; ˜R) and CT′
j = Encrypt(pkj ,m0; ˜R). Since the cipher-

texts CTj and CT′
j are generated by the same randomness ˜R, the adversary can

determine the underlying bit β easily and thus break the CCA-security of the
scheme, even if the randomness ˜R is unknown to it.

Now, we build our multi-hop unidirectional PRE scheme on a new witness-
recovering CCA-secure PKE scheme. The input of program ReEnc-i-j only
includes a ciphertext, and the randomness R used to encrypt the message m
in the program is obtained from the input ciphertext.
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Concretely, the proposed multi-hop unidirectional proxy re-encryption
scheme consists of the following algorithms (Figs. 3 and 4):

GlobalSetup(κ): Given a security parameter κ, the global setup algorithm first
generates a bilinear group (p,G,GT , e). Then, it chooses g, u, v, d ∈ G uni-
formly at random, and a collision-resistant hash function H : G × {0, 1}�δ ×
{0, 1}� → Z

∗
p.

It also chooses puncturable PRFs F : K × {0, 1}�δ → {0, 1}�δ , ˜F : ˜K ×
{0, 1}�δ → Z

∗
p, key derivation functions KDF1 : DK1 ×GT → {0, 1}�δ , KDF2 :

DK2 × {0, 1}�δ → {0, 1}�. Next, it chooses dk1 ← DK1 and dk2 ← DK2. The
global parameters is published as

param = (p,G,GT , e, g, u, v, d, H, F, ˜F ,KDF1(dk1, ·),KDF2(dk2, ·)).

For brevity, we assume that param is implicitly included in the input of the
following algorithms.

KeyGen(κ): The key generation algorithm first chooses x ∈ Z
∗
p uniformly at

random and sets h = gx. Then, it chooses puncturable PRF keys K ←
K, ˜K ← ˜K, and creates an obfuscation of the program Enc-v0 as PEnc ←
iO(κ,Enc-v0). The public key is set to be pk = (h,PEnc) and the private key
sk = (pk, (x,K, ˜K)).

ReKeyGen(ski, pkj): Given user i’s private key ski = (pki = (hi,PEnc
i ),

(xi,Ki, ˜Ki)) and user j’s public key pkj = (hj ,PEnc
j ), the re-encryption

key generation algorithm creates an obfuscation of the program ReEnc-i-
j-v0 as PReEnc-i-j ← iO(κ,ReEnc-i-j-v0), and outputs the re-encryption key
rki→j = PReEnc-i-j.

Encrypt(pk,m): Given a public key pk = (h,PEnc) and a message m ∈ {0, 1}�,
the encryption algorithm proceeds as follows.
1. Choose r ∈ Z

∗
p and δ ∈ {0, 1}�δ uniformly at random.

2. Compute (r, c1, c2, c3, c4) = PEnc(m, r, δ).
3. The output ciphertext is CT = (r, c1, c2, c3, c4).

ReEncrypt(rki→j ,CTi): Given a re-encryption key rki→j = PReEnc-i-j and a
ciphertext CTi under user i’s public key pki, the re-encryption algorithm
outputs the ciphertext CTj = PReEnc-i-j(CTi).

Decrypt(sk,CT): Given a private key sk = (pk = (h,PEnc), (x,K, ˜K)) and a
ciphertext CT = (r, c1, c2, c3, c4), the decryption algorithm proceeds as fol-
lows.
1. Compute t = H(c1, c2, c3).
2. Check whether e(h, c4) = e(c1, utvrd) holds. If not, output ⊥.
3. Compute ˜δ = c2 ⊕ KDF1(dk1, e(g, c1)1/x), m = c3 ⊕ KDF2(dk2, ˜δ).
4. Output the message m.

It can be verified that our proposed scheme satisfies the correctness require-
ment of multi-hop unidirectional proxy re-encryption. Observe that, the trans-
formed ciphertexts have the same form as the original ciphertexts, and they can
be consecutively transformed. This means that our scheme is multi-hop. Note
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Fig. 3. Program Enc-v0

Fig. 4. Program ReEnc-i-j-v0

that the well-formedness of both original ciphertext and transformed ciphertext
can be publicly verified, and hence our scheme can resist the attack mentioned
in Sect. 1. It is worth noting that, our techniques proposed in this paper can
be used to construct an identity-based multi-hop unidirectional PRE scheme
with constant-size ciphertexts and CCA-security in the standard model. Since
the construction is quite straightforward, we here do not present the detailed
construction. Below, we state the security theorem of our proposed scheme and
defer detailed security proof to the full version, due to page limit.

Theorem 1. If our obfuscation scheme is indistinguishably secure, H is a
collision-resistant hash function, F, ˜F are secure punctured PRFs, KDF1 and
KDF2 are secure key derivation functions, and the 1-DBDHI assumption holds
in the bilinear group (p,G,GT , e), then the proposed multi-hop unidirectional
proxy re-encryption scheme is IND-PRE-CCA secure.
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Abstract. In this paper, we present a new lattice-based signature
scheme, PASSG, based on signatures from the partial Fourier recov-
ery problem PASSRS introduced by Hoffstein et al. in 2014. Same as
PASSRS , security of our construction relies on the average-case hard-
ness of a special kind of Short Integer Solution (SIS) problem and the
hardness of partial Fourier recovery problem. PASSG improves PASSRS

in two aspects. Firstly, unlike PASSRS , PASSG comes with a reduction
proof and is thus provably secure. Secondly, we adopt rejection sampling
technique introduced by Lyubashevsky in 2008 to reduce the signature
size and improve the efficiency. More concretely, signatures of PASSG

are Gaussian-distributed and is more space efficient. We also present
another security parameter set based on best known attack using BKZ
2.0 algorithm introduced by Chen and Nguyen in 2011.

Keywords: Lattice-based cryptography · Digital signature
Partial fourier recovery problem

1 Introduction

In 2014, Hoffstein et al. [9] presented a signature scheme called PASSRS . As a
candidate of practical post-quantum signature schemes, the security of PASSRS

is based on a special hard problem known as partial Fourier recovery. The prob-
lem requires recovery of a ring element with small norm given an incomplete
description of its Chinese remainder representation. Even though there is no
known reduction from standard lattice problems to the partial Fourier recovery
problem, [9] shows that there is a relationship between this problem and the
Short Integer Solution (SIS) problem. By assuming the average-case hardness of
a special SIS problem which is called Vandermonde-SIS, the security of PASSRS

is said to rest on the hardness of Vandermonde-SIS. However, no security reduc-
tion between PASSRS and Vandermonde-SIS is provided in [9].
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In this paper, we present PASSG, an efficient lattice-based signature scheme
based on PASSRS that provides provable security along with more secure param-
eter sets comparing with the original PASSRS .

1.1 Related Work

Early candidates of lattice-based signature schemes, such as GGH signature
scheme [8], lack security proofs and have been broken subsequently due to tran-
script attacks.

The seminal work of Gentry et al. [7], known as the GPV framework, com-
bines a hash-and-sign paradigm with a pre-image sampling function. The signa-
ture schemes obtained through this fashion enjoy a provable security based on
the hardness of the SIS problem. In the GPV framework, the efficiency of a sig-
nature scheme (in terms of both speed and size) depends heavily on the preimage
sampling function and the quality of secret basis produced by the trapdoor gen-
erating function. Improving performance of these functions becomes the research
objective for the following studies. To the best of our knowledge, the most effi-
cient construction following this direction while admitting a security proof is due
to Micciancio and Peikert [13].

Besides GPV framework adopting “hash-and-sign” techniques, there are
also lattice-based signature schemes built through Fiat-Shamir heuristics.
Lyubashevsky and Micciancio [12] first presented a lattice-based one-time sig-
nature scheme based on the ring-SIS problem. Based on [12], Lyubashevsky [10]
then proposed a lattice-based interactive identification scheme and converted the
scheme into a signature scheme using Fiat-Shamir heuristics. In the scheme, an
abortion technique is used to protect the secret key from leakage. This abortion
techniques, usually known as rejection sampling, has flourished modern lattice
based signatures. For example, by rejecting to a Gaussian distribution [11] or a
Bimodal Gaussian distribution (BLISS) [4], one is able to reduce both the rejec-
tion rate and the size of the signatures. State-of-the-art following this direction
is Dilithium [5], whose hardness is based on the learning with error problem over
modular lattices.

Different from these previous lattice-based signature schemes, Hoffstein et
al. [9] proposed PASSRS based on the partial Fourier recovery problem. It adopts
the same aborting technique used in [10] to decouple the signature from the
secret key. Although the time efficiency of PASSRS is comparable with BLISS,
we note that there are still rooms for improvement. First of all, PASSRS does
not admit a formal reduction proof. Moreover, cryptanalysis has been developing
very rapidly during the past 2 years due to a new model [1] of analyzing the cost
of BKZ 2.0 lattice reduction algorithm [3]. As a consequence, the security level
of the original PASSRS will be significantly reduced. It is fair to say PASSRS

may not be secure if the originally suggested parameters are adopted. To solve
these problems, we present a new signature scheme called PASSG.

Our Contribution: Comparing with PASSRS , our contributions can be sum-
marized as follow:
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– We apply the rejection sampling technique from [11] to PASSRS to construct
a new scheme known as PASSG. The use of rejection sampling can reduce the
signature size of PASSRS ;

– Comparing with PASSRS , PASSG comes with a formal reduction proof;
– We further provide several sets of security parameters for our new scheme

that are robust against new analysis.

2 Preliminary

2.1 Notation

Elements in Zq are represented by integers in [− q
2 , q

2 ). We use cyclotomic poly-
nomial rings Zq[x]/(xN + 1) with N being a power of 2 and q being a prime
congruent to 1 mod 2N . An element a ∈ Rq is represented as a polynomial
a = a0 +a1x+a2x2 + · · ·+aN−1xN−1 with coefficients ai ∈ Zq. We can also use
vector [a0, a1, a2, · · · , aN−1]T to represent polynomial a. We use � to denote the
multiplication on Rq and � to denote component-wise multiplication of vectors.
For any β with gcd(β, q) = 1, Fermat’s little theorem says βq−1 = 1( mod q).
Since q = rN +1, we have βrN = 1 mod q. We can define a ring homomorphism
mapping f → f(βr) for any f ∈ Rq. For any f1, f2 ∈ Rq,

(f1 + f2)(βr) = f1(βr) + f2(βr) and (f1 � f2)(βr) = f1(βr) � f2(βr)

For distribution D, x
$←− D means uniformly sampling x according to distribution

D. ‖v‖1 is the �1 norm of vector v and ‖v‖ is the �2 norm of v.
The continuous normal distribution over R

N centered at v with standard
deviation σ is defined as ρN

v,σ(x) = ( 1√
2πσ2 )Ne

−‖x−v‖2

2σ2 . For simplicity, when v is
the zero vector, we use ρN

σ (x).
The discrete normal distribution over ZN centered at v ∈ Z

N with standard
deviation σ is defined as DN

v,σ(x) = ρN
v,σ(x)

ρN
v,σ(Z

N )
.

Lemma 1 (Rejection Sampling [4]). Let V be an arbitrary set, and h : V →
R and f : Zm → R be probability distributions. If gv : Zm → R is a family of
probability distribution indexed by all v ∈ V with the property that

∃M ∈ R such that ∀v ∈ V,∀z ∈ Z
m,Pr[M · gv(z) ≥ f(z)] ≥ 1 − ε.

Then the output distribution of the following algorithm A:
1. v

$←− h; 2. z $←− gv; 3. output (z, v) with probability min
(

f(z)
M ·gv(z)

, 1
)
.

is within statistical distance ε
M of

1. v
$←− h; 2. z $←− f ; 3. output (z, v) with probability 1

M .
The probability of algorithm A output something is at least 1−ε

M .

Lemma 2 ([11]).

1. For any k > 0, Pr[‖z‖ > kσ
√

N ; z $←− DN
σ ] < kNe

N
2 (1−k2);

2. For any vector v ∈ R
N , σ, r > 0, Pr[|〈z,v〉| > r; z $←− DN

σ ] ≤ 2 exp(− r2

2‖v‖2σ2 ).
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2.2 Digital Signatures

A digital signature scheme consists of three algorithms, namely, KeyGen, Signing,
Verification, described as follows.

– KeyGen(1λ) → (sk, pk): On input security parameter 1λ, this key generation
algorithm generates private signing key sk and public verification key pk.

– Signing(sk, μ) → σ: On input signing key sk and message μ, the signing algo-
rithm outputs signature σ on μ.

– Verification(μ, σ, pk)→ accept/reject: On input message μ, signature σ and
verification key pk, the verification algorithm outputs accept if σ is a signature
on μ. otherwise, it outputs reject.

Security of a digital signature scheme can be defined by a Game held between
a challenger C and a probabilistic polynomial-time forger F . Game consists of
three phases, namely, Setup, Query and Output.

– Setup. The challenger C runs KeyGen algorithm and obtains private signing
key and public verification key pair (sk, pk). C sends verification key pk to the
forger F .

– Query. Forger F sends message μi to challenger C. C signs μi using sk and
returns the corresponding signature σi to F . Forger F repeats the process n
times where n is polynomial in λ and finally obtains a list of message and
signature pair ((μ1, σ1), (μ2, σ2), · · · , (μn, σn)).

– Output. The forger F outputs a forgery (μ∗, σ∗). F wins Game if

(Verification(μ∗, σ∗, pk) → accept)∧((μ∗, σ∗) /∈ {(μ1, σ1), (μ2, σ2), · · · , (μn, σn)}).

Definition 1. A signature scheme (KeyGen, Signing, Verification) is said to be
strong unforgeable if for any polynomial-time forger F , the probability of F win-
ning Game is negligible.

2.3 Hardness Assumption

Before introducing the hard problem used in our construction, we first introduce
the partial Fourier recovery problem which requires recovering a signal from a
restricted number of its Fourier coefficients.

Let ω be the primitive Nth root of −1 modulo q. We define the discrete
Fourier transform over Zq to be the linear transformation Fx = x̂ : ZN

q → Z
N
q

given by (F)i,j = ωij . The Fourier transform matrix F is a Vandermonde matrix.
Let FΩ be the restriction of F to the set of t rows specified by an index set, Ω,
(FΩ)ij = ωΩij . The partial Fourier recovery problem is that, given an evaluation
f̂ |Ω ∈ Z

t
q, find x with small norm such that x̂|Ω = f̂ |Ω( mod q). The solution x

is required to be small since one can easily find a large x such that x̂|Ω = f̂ |Ω .
This problem has been well studied and considered to be hard in general.

We note that to date, there is no known reduction from lattice-based hard
problem to partial Fourier recovery problem. However, finding a short preimage
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by a given evaluation and a transform matrix FΩ is known to be related to solving
the Short Integer Solution (SIS) and the Inhomogeneous Short Integer Solution
(ISIS) problem, two average-case hard problems which are frequently used in
lattice-based cryptography constructions. So we define a new problem called
Vandermonde-SIS problem. Here we assume that the hardness of SIS problem
is not relied on the structure of the public matrix and the Vandermonde-SIS
problem is hard in average-case. The security of our proposed signature scheme
is based on the assumed average-case hardness of the Vandermonde-SIS problem.

Definition 2 (Vandermonde − SISK
q,t,N,β problem). Given a Vandermonde

matrix FΩ ∈ Z
t×N
q drawn according to some distribution K, find a non-zero

v ∈ Z
N
q such that FΩv = 0 and ‖v‖ ≤ β.

The distribution K here refers to randomly samples t rows from discrete Fourier
transform matrix F .

3 Construction

In this section, we describe the construction of PASSG in details. Our construc-
tion involves the following algorithms:

KeyGen: This algorithm generates polynomial f ∈ Rq with each coefficient inde-
pendently and uniformly sampled from {−1, 0, 1} as the secret key. The corre-
sponding public key is f̂ |Ω = FΩf . As described in Sect. 2.3, FΩ is the restriction
of F to the set of t rows. Thus, FΩ can be generated by randomly picking t rows
from the original Fourier transform matrix F.

Signing(f , μ): To sign message μ, the signer first randomly samples polynomial
y from discrete normal distribution DN

σ and computes ŷ|Ω = FΩy. The signer
then computes challenge c = FormatC(Hash(ŷ|Ω , μ)) where FormatC and Hash
are two public algorithms such that:

Hash : Zt
q×{0, 1}∗ → {0, 1}	,FormatC : {0, 1}	 → {v : v ∈ {−1, 0, 1}N , ‖v‖1 ≤ κ}.

Finally, the signer computes z = f � c + y and outputs (z, c) with probability
min( DN

σ (z)

MDN
f�c,σ(z)

, 1) where M = exp(28α+1
2α2 ) and σ = α · κ

√
N .

Verification(μ, z, c,FΩ , f̂ |Ω): The verifier accepts the signature if and only if
‖z‖ ≤ kσ

√
N and c = FormatC(Hash(ẑ|Ω − f̂ |Ω � ĉ|Ω , μ)).

In the signing procedure, z is distributed according to DN
f�c,σ. Thus, for any

z∗ ∈ R
N , we have:

Pr[z = z∗] = DN
f�c,σ =

ρf�c,σ(z∗)
ρσ(ZN )

=
1

ρσ(ZN )
exp(−‖z∗ − f � c‖2

2σ2
)

= DN
σ exp(−−2〈z∗, f � c〉 + ‖f � c‖2

2σ2
)
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We have:

DN
σ

DN
f�c,σ

=
DN

σ

DN
σ exp(−−2〈z∗,f�c〉+‖f�c‖2

2σ2 )
= exp(

−2〈z∗, f � c〉 + ‖f � c‖2
2σ2

)

According to Lemma 2, when r = 14‖v‖σ, with probability at least 1 − 2−128

we have 〈z∗, f � c〉 > −14‖f � c‖σ. Then, with probability at least 1 − 2−128, we
have:

exp(
−2〈z∗, f � c〉 + ‖f � c‖2

2σ2
) < exp(

28‖f � c‖σ + ‖f � c‖2
2σ2

).

Assume σ = α · κ
√

N . Then,

exp(
28‖f � c‖σ + ‖f � c‖2

2σ2
) ≤ exp(

28κ
√

Nσ + (κ
√

N)2

2σ2
) = exp(

28α + 1
2α2

).

According to Lemma 1, if we reject z with probability min( DN
σ (z)

MDN
f�c,σ(z)

, 1) where

M = exp(28α+1
2α2 ). The distribution of z should be identical to y.

Theorem 1. Assume there is a polynomial-time forger who can successfully
forge a PASSG signature with non-negligible probability δ by making at most
s queries to the signing oracle and h queries to the random oracle FormatC ◦
Hash. Then, there exits a polynomial-time algorithm which can solve the
Vandermonde − SISK

q,t,N,β problem for β = 2kσ
√

N + 2κ
√

N with probabil-
ity δ2

2(h+s) .

We remark that details of the security proof are omitted from this version due
to page limit and can be found in the full version.

4 Practical Instantiation

In this section, we present a practical instantiation with parameters chosen
according to the lattice reduction algorithm BKZ 2.0. This gives us an app-
roach to analyse the security of PASSG under best known attack. Two sets of
parameters with 128-bit security will be presented. Based on the two sets of
parameters, we can estimate the rejection rate and signature size of our PASSG.

Table 1 gives two sets of parameters. Both sets provides 128 bit security
against quantum attackers. The first set of parameters provides a similar security
level as the original PASSRS signature scheme, and is performance oriented. The
second set is security oriented and has a larger build in margin. This is to account
for future advance in cryptanalysis.

The best known lattice attack against our scheme is to look for the unique
shortest vector within a lattice spanned via the basis:

B =

⎡
⎣

qIt 0 0
FΩ IN 0
f̂ |Ω 0 1

⎤
⎦
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Table 1. PASSRS signature scheme parameter

Parameter 1 Parameter 2

N 512 1024

q ≡ 1 mod 2N 216 + 1 216 + 1

t = |ω| 256 512

k 13.3 13.3

σ 2000 1800

κ s.t. 2κ ·
(

N

κ

)
≥ 2256 44 36

M = exp( 2τκσ+κ2

2σ2 ) ≈7.4 ≈7.4

Lattice strength 1.0035 1.0017

Public key size (log2 q + 2)t 832 bytes 1664 bytes

Signature length ≈ (log2 σ + 2)N + min(κ log2 N, N) 882 bytes 1709 bytes

where It is a t dimensional identity matrix. This lattice has a unique shortest
vector 〈0, f , 1〉 with an l2 norm of approximately

√
2N/3 + 1. On the other hand,

it has been shown in [6] that the ability to locate a unique shortest vector in a
lattice depends on the root Hermite factor of the lattice, which is the n-th root
of

Gaussian expected length
l2 norm of the target vector

where n = (N+t+1) is the dimension of the lattice. We known that the Gaussian

expected length of this lattice is
√

N+t+1
2πe q

t
N+t+1 . This results in

⎛
⎝

√
N+t+1
2πe q

t
N+t+1

√
2N/3 + 1

⎞
⎠

1
N+t+1

With t ≈ N/2, this quantity is ≈
(√

9/(8πe)q
1
3

) 2
3N

.

For the parameter sets that we are suggesting, this yields 1.0035 and 1.0017,
respectively. Applying the latest results of estimating the cost of the BKZ 2.0
algorithm with (quantum) sieving [1–3], we estimate the cost to recover this
shortest vector requires at least 2129 and 2198 operations.
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Abstract. Key Predistribution Schemes (KPS) are efficient key man-
agement solutions that are well suited to establish lightweight symmet-
ric keys even in resource starved environments, like low cost Internet
of Things (IoT). This paper uses Chinese Remainder Theorem (CRT)
to propose an energy efficient and deterministic KPS for distributed ad
hoc networks, that we name as CRT-KPS. We theoretically establish
the effectiveness of CRT-KPS in term of crucial metrics. Comparative
study establishes that our proposals have better balance in overall per-
formance as compared to state-of-the-art schemes and should find wide
applications in IoT systems (specially for resource starved end devices).

Keywords: IoT networks security · Energy efficient key management
Key Predistribution Scheme (KPS)
Chinese Remainder Theorem (CRT) · Isomorphism

1 Introduction

Internet of Things (IoT) is a new reality where all objects can sense, identify,
connect and communicate themselves to a single system. IoT is transforming
our physical world to a single large information system and has several scien-
tific applications. Of notable interests are networks that deal with sensitive data
like military networks where security is premium. A few prototype IoT net-
works are (static) Wireless Sensor Networks (WSN), Mobile Ad hoc NETwork
(MANET) and Radio Frequency IDentification (RFID) systems. It is obvious
that a widespread adaptation of IoT systems is not risk free because if any (low
cost) IoT device’s security is compromised, then a valid threat can widely dis-
pense through the Internet. This paper provides a lightweight indigenous solution
that uses a device’s identity and supports large number of (pre-defined) network
nodes; and so, is implementable in RFID-WSN integration platforms.

1.1 Security and Key Management Issues: Motivation

To ensure secure (confidential and authentic) communication and distribution of
sensitive IoT data, we implement cryptosystems. Constraints in resources restrict

c© Springer International Publishing AG, part of Springer Nature 2018
W. Susilo and G. Yang (Eds.): ACISP 2018, LNCS 10946, pp. 821–830, 2018.
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applications of heavyweight Public Key Cryptosystems (PKC) in resource con-
straint IoT devices (sensors, tags, etc.). Instead, we exploit faster implementable
Symmetric Key Cryptographic (SKC) protocols [3]. A major concern while
implementing SKC systems for (low cost) networks is their demand to assign
the same (or easily derivable) cryptographic key(s) among the communicating
parties (prior to exchanges of messages).

Inefficient computation and communication overheads prohibit implementa-
tions of online PKC protocols [12] to manage symmetric keys in low cost net-
works. Pairwise assignments of mutual keys overburden the memory of devices.
Employing Trusted Authorities (TA) to distribute symmetric secrets is prohib-
ited since devices (including TAs) are prone to compromise. This motivates
implementations of efficient Key Predistribution Schemes (KPS) to secure com-
munication of resource constraint IoT devices. A KPS, as conceptualized by
Eschenauer and Gligor [5], executes the steps below:

1. preload keys: prior to deployment, a root authority assigns blocks of keys of an
underlying SKC (AES-128 [3]) with unique key identifiers (ids) into devices
to form their keyrings from a large collection of system keys, aka the key pool
K ;

2. key establishment: preloaded keys are established by a two phase process, as
below:

– Shared key discovery: discovers the shared key(s) among two nodes.
– Path key establishment: establishes an optimized path between a given

pair of nodes that do not share any key. This step involves intermediate
nodes.

Nodes ‘equate’ each others’ node ids (function of entire preloaded set key
ids [7,9,11]) after (broadcast) exchange of these lightweight packets during a
key establishment process (KEP). Aforesaid subprocesses that establish mutual
shared key(s) between participants can be either probabilistic or deterministic
and accordingly leads to:

1. Random Key Predistribution Schemes (RKPS) [5]: preload SKC keys [3] into
devices to form keyrings in an arbitrary manner and obtain a random graph-
ical model. Gennaro et al. [6] and references therein extends this RKPS [5] to
a subset scheme and combines with an identity based system [13] to obtain a
hybrid leaf resistant non-interactive linear hierarchical key agreement scheme
(ni-L-H-KAS).

2. Deterministic Key Predistribution Schemes (DKPS) [2]: use combinatorial
designs to model a network’s (symmetric) key sharing graph. The works [1,
7,9,11] set out desirable criteria for combinatorial KPS and manifest that
they have predictable parametric properties. Paterson and Stinson [11] unify
constructions of combinatorial KPS. Works that rectify certain parametric
deficits (resilience or connectivity, defined in Sect. 3), with nominal increment
in a node’s storage are eminent [1,4].
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1.2 Contribution and Organization of Our Work

We construct a simple-minded Chinese Remainder Theorem based Key Predistri-
bution Scheme (CRT-KPS) in Sect. 2. Next we analyze this indigenous proposal
in Sect. 3 on the basis of crucial design parameters and compare with prominent
schemes.1

2 Key Predistribution Schemes (KPS) Based on CRT

This section devises a novel Chinese Remainder Theorem based Key Predistribu-
tion Scheme (CRT-KPS). We commence by revisiting CRT for any two co-prime
integers p, q and reconstruct an associated isomorphism between Zpq �−→ Zp×Zq.
We employ this isomorphism to construct our CRT-KPS for the case of two co-
prime integers, p, q.

Result 1 (CRT for 2 co-primes and an isomorphism). Given two co-prime
integers p and q, the following system of equations has an unique solution mod
pq, i.e., x ∈ Zpq.

x ≡ a(mod p) (1)

x ≡ b(mod q) (2)

As an immediate consequence, an isomorphism is set out from Zp × Zq �−→ Zpq.
Reducing x mod p and x mod q, we obtain reverse direction, i.e., the above two
equations.

Proof. We refer our readers to a standard text on basic number theory for proof
of CRT (Koblitz [8]). Here we only state the solution and use it to construct the
isomorphism:

An Unique Solution is: α ≡ bm1p + an1q ∈ Zpq. (3)

where m1 ≡ m(modp), n1 ≡ n(mod q) such that mp + nq = from Extended
Euclidean Algorithm (EEA) since gcd(p, q) = 1. We construct a map between
Zp × Zq �−→ Zpq as (a, b) ≡ α, where α is the unique solution of x ≡ a mod p
and x ≡ b mod q that we obtain through CRT. Now we establish that this map
is an isomorphism:

– homomorphism: follows from standard computation that we exhibit now.
Consider (a1, b1) ∈ Zp × Zq ≡ α1 ∈ Zpq, (a2, b2) ∈ Zp × Zq ≡ α2 ∈ Zpq.
Then since (a1, b1) + (a2, b2) ∈ Zp × Zq = (a1 + a2, b1 + b2) ≡ α1 + α2 ∈ Zpq

and (a1, b1) · (a2, b1) ∈ Zp × Zq = (a1a2, b1b2) ≡ α1 · α2 ∈ Zpq, we have an
induced homomorphism.

– bijection: of the aforesaid map is a consequence of (i) the uniqueness (so,
one-to-one) and, (ii) the fact that both the domain set (Cartesian product)
and the range set has same number of elements (pq) , i.e., the induced map
is onto.

1 We refer to an existing result as ‘Result’; while a ‘Theorem’ or ‘Corollary’ are new
outcomes.
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– reverse isomorphism: Given an α ∈ Zpq, (α mod p, α mod q) gives the inverse
isomorphism. We use both maps during construction and analyses of our
CRT-KPS.

2.1 CRT-KPS: A Novel Distributed KPS Using CRT

Here we construct the indigenous CRT-KPS for two co-prime integers. These
two co-primes p, q (system parameters) are chosen so that pq > N = expected
number of nodes in the network. So, both p, q are considerably small unlike
primes used for cryptographic purposes (PKC [12] or pseudo-random number
generators [10]). Further, we do not impose any further restrictions on them (for
instance, to be of almost equal sizes, like in RSA [12]). Rest of the construction
is set out next:

1. we set the key pool to be the ring Zpq for the chosen co-primes p, q;
2. nodes ids are set as α ≡ (a, b) where α ∈ Zpq such that α ≡ a mod p and

α ≡ b mod q. So the maximum number of blocks and hence, nodes = β = pq;
3. we use the isomorphism resulting from CRT to assign key ids to a node

α ≡ (a, b) as: {(a, j), j = 1, 2, 3, · · · , q − 1} ∪ {(i, b), i = 1, 2, 3, · · · , p − 1}. We
have a repeat of one key: (a, b) that we consider only once. So keyring sizes
= k = p + q − 1.

Computation of shared keys between two nodes with ids αi ≡ (ai, bi), i = 1, 2
is done by key establishment process (KEP), the executes the simple and
lightweight steps below:

1. broadcast exchange of node ids (as elements in Zpq);
2. “equate” these node ids to trace the common shared keys between nodes as

below;
– in case ai �= a2, bi �= b2, common keys between the nodes α1, α2 are

(a1, b2) and (a2, b1) since keyrings of αi = (ai, y), y ∈ Zq, (x, bi), x ∈
Zp (ai, bi), i = 1, 2.

– in case ai �= a2 but bi = b2 = b (say), we compute the common keys
between nodes α1 and α2 to be (i, b), i = 0, 1, · · · , p − 1.

– in case ai = a2 = a (say) and bi �= b2, then by a similar logic, the common
keys between nodes α1 and α2 are (a, j), j = 0, 1, · · · , q − 1.

A shared session key between the nodes α1 and α2 in all the three cases can be
taken as an unique publicly known function (example: xor) of all their common
shared keys. For the first case, Theorem 1 proves the uniqueness of this session
key in the entire system and therefore eliminates masquerading attacks. For
latter two cases, session keys are unique only up to a threshold since common
keys are shared by other p + q − 1 nodes (Theorems 2 and 4). An interested
reader may refer to Fig. 1 for an instance with p = 5, q = 7 where we represent
keyrings and connectivity of nodes 17, 12, 19(mod35). We choose these three
nodes as their key sharing covers all possible (three) cases that we state above
and analyze in depth through the Theorems 1, 2, 4 and 3 in next Sect. 3.



CRT-KPS: A Key Predistribution Schemes Using CRT 825

Fig. 1. Prototype connectivity between nodes due to (2 co-prime) CRT-KPS with
p = 5, q = 7.

Remark 1 (Variant of CRT − KPS). CRT holds for any number of co-prime
integers and potentially lead to constructions of generic CRT-KPS. Generalized
CRT-KPS has more keys in intersections of keyrings at depth 1; and so facilitate
subset construction. Due to limited scope of this shortened conference version
and rigor of presentation of the generalized version, this paper studies the case
of two co-prime integers only.

3 Analyses with Comparative Study

Here we scrutinize CRT-KPS in terms of crucial parameters. Like all (combina-
torial) KPS, energy requirement of CRT-KPS is less and it supports a network of
pre-defined size (pq). Next we recall an active adversarial threat model, system’s
resiliency against it, the vital notions of secure connectivity and its trade-offs
with resilience:

Definition 1 (Random Node Compromise attack). is random capture or
compromise of nodes [7,9,11] (without prior information about the network).

Definition 2 (A Resilience Metric). fail(s) is defined as the probability of
a link being compromised among the network of uncompromised nodes due to
random compromise of s nodes. Notationally, fail(s) =

cs
us

, where cs is the

number of compromised links and us is the total number of links in the remaining
network of uncompromised nodes.

We use fail(1) to analyze our schemes and adapt during comparative study.

Definition 3 (Secure link). A secure link is said to exist between nodes in
a system designed by a KPS if they share at least one key of the underlying
SKC [3]. In case of multiple (uniformly) shared keys between a pair of nodes, we
construct a shared session key to be an unique (publicly known) function of all
their common shared keys.
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Definition 4 (Secure connectivity). We define the metric, secure connectiv-
ity or simply connectivity of the network, to be the probability that two nodes
are connected by a secure link. Symbolically we denote a network’s connectivity
(under a KPS) by ρ.

Schemes with good connectivity (i.e., high ρ values) and resiliency (i.e., small
fail(s) values) are preferred. Unfortunately these two metrics are inversely
related; so a trade-off is inevitable. It is desirable that the system’s connec-
tivity ratio ρ be as close to 1 as possible. If necessary, resilience improvement
techniques can be exploited (Dalai and Sarkar [4] and references therein). Now
that the basic notions are formally set out, we analyze the key sharing graph of
CRT-KPS through the theorems and corollaries, that follow:

Theorem 1. Consider two nodes with ids αi ∈ Zpq, i = 1, 2 where αi ≡ ai(mod
p) and αi ≡ bi(mod q) for i = 1, 2. So we consider the inverse isomorphism
operation of CRT. Assume a1 �= a2, b1 �= b2. Then we can compute (a1, b2) and
(a2, b1) to be the common shared keys between the nodes α1 and α2. Further
these are the only two nodes in the system that share this pair keys. Therefore
we arrive a case of absolute resilience.

Proof. The fact that (a1, b2) and (a2, b1) are common shared keys between the
nodes α1 and α2 is a direct consequence of our construction. Conversely, we use
CRT and the method of “prove by contradiction” to ratify that these keys are
jointly in no other nodes, i.e., αz, z �= i = 1, 2. Suppose (a1, b2) and (a2, b1) in the
same node αz, z ∈ Zpq, z �= i = 1, 2. Then from our construction, keyring of the
node αz must contain: (a1, j); (l, b2) or (a1, j); (l, b2), (j = 1, 2, 3, · · · , q − 1, l =
1, 2, 3 · · · , p − 1 in both cases); i.e., contain αz ≡ (a1, b1) or αz ≡ (a2, b2) since
a1 �= a2 and b1 �= b2. This compels αz = α1 or αz = α2, which leads to a
contradiction, and so our claim is true. �	
Corollary 1. Number of nodes pairs < α1, α2 >∈ Zpq × Zpq that have per-
fect resilience against compromise of third party nodes = pq(p−1)(q−1)

2 (refer to
Theorem1).

Proof. For a node α1 ∈ Zpq ≡ (a1, b1) ∈ Zp×Zq, there are (p−1)(q−1) possible
α2 ≡ (a2, b2) ∈ Zp×Zq nodes with a1 �= a2, b1 �= b2. Now we can choose α1 ∈ Zpq

in pq ways since all choices of α1 are stochastically independent. However in this
process, we double count every pair of nodes in the form α1, α2 and α2, α1 (since
α1 is just a label). We divide by 2 to eliminate this double count and obtain the
desired result. �	
Theorem 2. Consider a1 = a2 = a (say) for two arbitrary nodes ids αi ∈
Zpq(ai, bi) ∈ Zp × Zq for i = 1, 2; so b1 �= b2. Then there are q keys
(a, j), j = 0, 1, 2, 3, · · · , q − 1 common between them. Similarly, the intersection
of two arbitrary nodes α1 and α2 when b1 = b2 = b (say), so that a1 �= a2 has p
keys: (i, b), 1 = 0, 1, 2, 3, · · · , p − 1.
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Proof. For nodes α1 �= α2 ∈ Zpq with a = a1 = a2 ∈ Zp =⇒ b1 �= b2 ∈ Zq.
There cannot be any common key of the form (i, b), b ∈ Zq. This is because first
co-ordinate is constant and second co-ordinate varies. So only possibility is to
have common key of the form (a, j), a ∈ Zp. Our construction yields: (a, j), j =
1, 2, 3, · · · , q−1 to be the set of q common keys as j varies over Zq. By symmetry,
the other result follows. �	
Corollary 2. Number of nodes that contain the keys: (a, j), j = 0, 1, 2, · · · , q−1
for a fixed a ∈ Zp are q. So number of nodes that contains (a, j), j =
0, 1, 2, · · · , q − 1 for a varying a ∈ Zp = pq. Similarly the number of nodes
that contain the keys: (i, b), i = 0, 1, 2, · · · , p − 1 for varying b ∈ Zq are qp.

Proof. From CRT-KPS construction and proof of previous Theorem2, it is clear
that for a fixed a ∈ Zp, the keys (a, j), j = 0, 1, 2, · · · , q − 1 jointly occur in
the q nodes with ids: (a, b), b = 0, 1, 2, · · · , q − 1. Moreover, they are the only
common keys among these nodes as second (key) co-ordinate varies for them
only. Therefore, as a varies over Zp, number of nodes = pq (q many for each
a ∈ Zp). Proof of the other case is similar. �	
Proof of the next theorem uses CRT-KPS construction and standard computa-
tions.

Theorem 3. (Degree of CRT-KPS) Cycle of a given key (i, j) ∈ Zp × Zq (fixed
i, j) has r = p + q − 1 nodes with ids (i, z1), z1 ∈ Zq ∪ (z2, j), z2 ∈ Zp (counting
(z1, z2) once).

Given the circumstantial importance of the structure of a KPS during parametric
analyses, the next theorem formally classifies key sharing subgraph of a given
node α ∈ Zpq.

Theorem 4. For an arbitrary node α ∈ Zpq ≡ (a, b) ∈ Zp × Zq, it has either:

1. precisely 2 distinct keys shared individually with (q − 1)(p − 1) nodes (and no
third node) whose x and y co-ordinates are simultaneously different from α;

2. exactly a set of p distinct shared keys with p node whose first co-ordinates
varies in Zp and second co-ordinate is same as α;

3. exactly a set of q distinct shared keys with p node whose first co-ordinate is
same as α while second co-ordinates varies in Zq.

CRT-KPS has full connectivity with multiple inter-nodal shared keys.
Further compromise of a single node, yield fail(1) =
(q − 1)(p − 1) + p(p − 1)/2 + q(q − 1)/2)

pq(pq − 1)/2
. Further, CRT-KPS system has good

resilience against masquerading of internal nodes since for a node, (q − 1)(p − 1)
nodes shares an unique session key.

Proof. We observe that case 1 of this theorem corresponds to Theorem 1 and its
Corollary 1; while cases 2 and 3 are covered in Theorem 2 and its Corollary 2.
An obvious implication is an arbitrary node’s connectivity with all nodes in the
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network with multiple common shared keys; and so, the resultant network is fully
connected.

The statement about resilience of CRT-KPS requires deeper analysis, that
we do now. Compromise of a node exposes all p + q − 1 keys; each of which
connect p+q−1 nodes individually but not independently. Since there are three
types of connections in every node (cases 1, 2, 3), we count them separately. Our
construction combines all shared keys between (a pair of) nodes to obtain a
shared session key in each of the aforesaid case. So we count (i) a single link
for each peer node corresponding to case 1, (ii) a cycle of length p for case 2
and (iii) a cycle of length q for case 3. Therefore there are (q − 1)(p − 1) links
corresponds to case 1 ((q − 1)(p − 1) peer nodes), while cases 2 and 3 yield

(
p
2

)

and
(
q
2

)
links corresponding to p and q keys in respective cases (cycles of length

p, q). Therefore, fail(1) =
(q − 1)(p − 1) + p(p − 1)/2 + q(q − 1)/2)

pq(pq − 1)/2
. �	

Table 1. Comparison of asymptotic behavior of different schemes.

Scheme No. of nodes ρ fail(1)

CRT − KPS N = pq 1
(q − 1)(p − 1) +

p(p − 1)

2
+

q(q − 1)

2
pq(pq − 1)

2

TD(2, k, pt) [11] � N = p2t, t ∈ Z z
1

pt
= N

−1
2

TD(k, pt) [9], k = zq (ext. of [9,11]) (z: variable)

TD(3, k, q), k = zq N = q3, z < 1
z(2 − z)

2

2(1−z)
(2−z)

N
−1
3

TD(3, k, q), k = q N = q3 1/2 5N
−2
3

TD(4, k, q), k = zq N = q4
z(z2 − 3z + 6)

6

3(z2 − 2z + 2)

z2 − 3z + 6
N

−1
4

Symmetric BIBD [2] N = q2 + q + 1 1 N
−1
2

Comparative Study. We compare asymptotic behavior of CRT-KPS with
prominent others in term of parameters defined in Sect. 3. We present the data
in Table 1 and compare with SBIBD [2] and TD(t, k, q) [11] with intersection
threshold η = 1.

4 Conclusion and Future Works

This paper proposes an energy efficient KPS, called CRT-KPS. Schematic anal-
yses shows this deterministic CRT-KPS assigns multiple shared keys between
nodes and has appreciable resilience against active node capture attacks. Com-
parative study show that our indigenous scheme outperforms state-of-the-art
proposals.
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We can construct a (deterministic) subset scheme with distributed CRT-KPS
at top level. This subset scheme extends to a strongly resistant hybrid ni-L-H-
KAS on combining with Sakai et al.’s distributed ni-KAS [13]. Being combina-
torial, this decentralized KAS using bilinear pairing maps will have predictable
design properties as opposed to Gennaro et al.’s random schemes [6] and so suit
resourceful MANETs better.
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