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Abstract. In this article the implementation of the mathematical model for
rotor oscillations on non-linear bearing supports for the multistage centrifugal
compressor is considered by using the computer program “Critical frequencies
of the rotor”. It realized the finite element mathematical model, which allows
taking into account the non-linear dependence of bearing stiffness on the rotor
speed, as well as gyroscopic moments of inertia of impellers and shell-type
parts. The artificial neural network “Virtual Gene Developer” software is pro-
posed for evaluating the operating parameters of the approximating curve
“bearing stiffness – rotor speed” by the dataset of numerical simulation results in
the abovementioned software. Actual parameters of non-linear bearing stiffness
are obtained by the results of the experimental research of rotor critical fre-
quencies for the multistage centrifugal compressor 295GC2-190/44-100M on
the experimental accelerating-balancing stand “Schenck”. The main advantages
of the proposed approach and methodology for application of Artificial Neural
Networks are stated.
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1 Introduction

Intensification of the development in the field of power engineering occurs through the
usage of the modern energy-intensive equipment, an essential role of which is per-
formed by multistage rotor machines. Permanently raising their parameters leads to
increasingly significant problems of vibration reliability. Furthermore, the problem of
investigating the dynamics of flexible rotors on the system of bearings is currently
actual due to the impossibility of absolutely accurate dynamic balancing. It is com-
plemented by an acute problem of evaluation of stiffness characteristics for rotor
bearings in close connection with the dependence of critical frequencies of the rotor
and corresponding mode shapes [1]. However, up-to-date methods for simulating the
dynamics of rotor systems are predominantly based on the use of computer programs
realizing the finite element method [2], but analytical studies generally use
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two-dimensional continuous mathematical models for beam elements taking into
account the hypothesis of Kirhhoff [3] about the non-deformable cross-sections.
Application of the three-dimensional finite element models, particularly within the use
of “ANSYS” software requires a relatively large machine time, in contrast to the beam
models. Moreover, available software by default cannot provide it, taking into account
non-linearities, which may be inherent in rotors. Consequently, the attention of sci-
entists is attached to the application of significant efforts to expand the capabilities of
existing software products and create new ones, more often combining the fields of
hard and soft modeling [4–7].

2 Literature Review

The recent achievements in the field of rotor dynamics can be marked. The research
work [5] is aimed at the development of the computational techniques of rotor
dynamics with the use of the finite element method. Using “Matlab” software to
develop the simulation model for determining the eigenfrequencies of the elastic rotor
based on the 2D beam bending model with testing by “SolidWorks” software is pre-
sented in the research [8]. The problem of determining eigenfrequencies of rotors on
the basis of linear and non-linear mathematical models is well researched in the work
[9]. The influence of the rotor speed on the bearing stiffness using numerical simulation
with the use of “ANSYS” software is investigated in the work [10]. The approach for
identification of the rotor unbalances is proposed within the work [11] for the case of a
single-span rotor as an elastic Euler-Bernoulli beam with a single-disc. Techniques that
allow taking into account the gyroscopic moments are considered in works [12], and
the impact of the deformable parts on rotor dynamics is investigated in the article [13].

The work [14] is devoted to comprehending the inherent mechanism and the feature
of the subharmonic resonance for the rotor system supported on the ball bearings using
numerical analysis for the 6-degrees-of-freedom model with non-linearities, Hertzian
contact forces and bearing clearance. Taking into account the random excitations for
the analysis of gas turbine, the blade vibrations is presented in work [15]. The approach
for experimental and numerical research of a new dynamic phenomenon for two-bladed
wind turbines is stated in the article [16], and the novel methodology for the angular
position identification of the unbalance force for the case of asymmetric rotors is
proposed in the research paper [17]. Finally, a novel methodology for a stochastic
presentation of non-linear dynamics problems is stated within the work [18]. The
solution of the problem of evaluation of stiffness characteristics for the rotor bearings
within the dependence of critical frequencies of the rotor has not been found. Due to the
abovementioned, this paper is aimed at using the artificial neural network (ANN) for
evaluating the parameters of the approximating curve “bearing stiffness – rotor speed”
by the dataset of numerical simulation results in the proposed computer program. The
results of the experimental research of critical frequencies allow obtaining actual
parameters of bearing stiffness.
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3 Research Methodology

3.1 Bearing Stiffness Characteristics

To develop a technique for determining eigenfrequencies and critical frequencies of
rotor oscillations, an approximating curve for describing the dependence “rotor speed –

bearing stiffness” from the recent experience in the design and calculation of com-
pressor units can be used. It confirms the sufficiency of using quadratic polynomial to
describe the dependence of the bearing stiffness c on the rotor speed x:

c xð Þ ¼ c0 þ axþ bx2; ð1Þ

where c0 – bearing stiffness in case of the non-rotating rotor (N/m); a – initial slope
(N�s/m); b – initial curvature of the curve (N�s2/m). The following investigation is
aimed at identifying parameters c0, a, b by using ANN.

3.2 The Mathematical Model of Rotor Dynamics

The finite element mathematical model of rotor oscillations, which allows taking into
consideration gyroscopic moments of inertia for impellers and shell-type parts, as well
as the non-linear dependence of bearing stiffness on the rotor speed (1), is realized by
the computer program [19].

Due to the finite element method, the mathematical model of rotor oscillations is
described with the following equation [20, 21]:

C xð Þ½ � � x2 M½ �� �
Yf g ¼ Ff g; ð2Þ

where {F}, {Y} – column vectors of amplitudes Fk and yk of external mono-harmonic
forces Fk sinxt and node displacements yk sinxt respectively; k – node number (k = 1,
2, …, 2N – 1); N – total number of finite elements; [C(x)], [M] – global stiffness and
inertia matrices formed from local ones by summarizing at corresponding nodes k:

C xð Þ½ �ij ¼
Xn
k¼1

C xð Þ½ �e
� � kh i

ij ; M½ �ij ¼
Xn
k¼1

M½ �e
� � kh i

ij ; ði; j ¼ 1; 2; . . .; 2N � 1Þ: ð3Þ

In case of two-nodes beam finite elements with 4 degrees of freedom, the local
matrices of stiffness [C(x)]e and inertia [M]e for the finite element e = (i, j) are
determined by the following expressions:

Ce ¼ EI
l3

12þ cl3
EI 6l �12 6l

6l 4l2 �6l 2l2

�12 �6l 12 �6l
6l 2l2 �6l 4l2

2
664

3
775 ;
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Me ¼ m
420

136 22l 54 �13l

22l

�136l2�
�105r2=4þ
þ 420Ig=m

13l �3l2

54 13l 136 �22l
�13l �3l2 �22l 4l2

2
6666664

3
7777775
; ð4Þ

where m – finite element mass (kg); l – finite element length (m); E – Young’s modulus
of the material (N/m2); I – axial moment of inertia for the cross-section (kg�m2); r –
cross-sectional radius (m); Ig – gyroscopic moment of inertia for impellers and
shell-type parts (kg�m2).

In case of free oscillations Fk = 0 (k = 1, 2, … 2N – 1), and the condition of
existence of non-trivial solutions of the system (2) is vanishing, the determinant

det C Xð Þ½ � � X2 M½ �� � ¼ 0; ð5Þ

which is the higher order non-linear algebraic equation with respect to critical fre-
quency X.

As a result of the rotor dynamic modeling for the different values of parameters c0,
a, b, the dataset describing the matrix dependence {K} = f {X} between stiffness
characteristic {K} = {c0, a, b}

T and spectrum {X} = {X1, X2, X3, …}T of critical
frequencies can be obtained.

The abovementioned technique is implemented on the example of the multistage
centrifugal compressor 295GC2-190/44-10M on magnetic bearings. The compressor
with a capacity of 16,85 megawatt is a part of the gas pumping unit
GPU-C-16/102-3,32M produced by the Public Joint Stock Company “Sumy
Machine-Building Science-and-Production Association”, has the operating rotor speed
in the range 3710…5565 rpm.

Obtained maximum parameters c0
max = 2,5�107 N/m, amax = 3�104 N�s/m, bmax =

3�107 N�s2/m and Xmax = 536 will be used for normalizing the dataset within the
regression procedure and ANN implementation.

3.3 Regression Procedure

The dataset obtained as a result of numerical simulation of rotor dynamics by using the
computer program “Critical frequencies of the rotor” can be used within the regression
procedure [19, 20] for determining the linear dependence between bearing stiffness and
critical frequencies in the following form:

�Xi ¼ ai�c0 þ bi�aþ ci�b; ð6Þ
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where i – number of critical frequency (i = {1, 2, 3}); ai, bi, ci – unknown weight
factors; �Xi, �c0, �a, �b – dimensionless normalized parameters in a range 0…1 determined
by formulas:

�Xi ¼ Xi=X
max; �c0 ¼ c0=c

max; �a ¼ a=amax; �b ¼ b=bmax: ð7Þ

Dependence (6) is equal to a set of three planes in the 4D hyperspace unit “�c0 – �a –
�b – �Xi” after normalizing (7).

Unknown parameters ai, bi, ci as a components of the column vector of weight
factors {A}i = {ai, bi, ci}

T can be obtained as a result of solving the system of
non-homogeneous linear equations

½K� Af gi¼ �X
� �

i; ð8Þ

where ½K� – rectangular matrix of bearing stiffness coefficients of size n � 3 (n –

number of rows of numerical simulation results dataset); �X
� �

i – column vector of
normalized critical frequencies of size n � 1:

½K� ¼
c 1h i
0 a 1h i b 1h i

c 2h i
0 a 2h i b 2h i

. . . . . . . . .
c nh i
0 a nh i b nh i

2
6664

3
7775 ; �X

� �
i¼

�X 1h i
i

�X 2h i
i
. . .
�X nh i
i

8>><
>>:

9>>=
>>;
: ð9Þ

Due to n > 3, column vectors, {A}i can be obtained by the formula of linear
regression:

Af gi¼ ½K�T ½K�� ��1½K�T|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
n�n

�X
� �

i|ffl{zffl}
n�1

: ð10Þ

Critical frequencies can be determined by the linear regression model by the fol-
lowing formula:

~X
� � ¼ A½ � �Kf g; ð11Þ

where ~X
� �

– column vector of experimental values of critical frequencies ~X1, ~X2, ~X3;
�Kf g – column vector of bearing stiffness parameters; [A] – the rectangular matrix of

weight factors determined by formula (10):

½A� ¼
Af g1
Af g2
Af g3

2
4

3
5 ¼

a1 b1 c1
a2 b2 c2
a3 b3 c3

2
4

3
5; ~X

� � ¼
~X1
~X2
~X3

8<
:

9=
;; �Kf g ¼

�c0
�a
�b

8<
:

9=
;: ð12Þ

Application of Artificial Neural Network 329



Unknown weight factors �Kf g are determined in Eq. (11) by the inverse matrix
formula:

�Kf g ¼ A½ ��1 ~X
� �

: ð13Þ

3.4 Using Artificial Neural Network

Using the continuum analytical models for investigating rotor dynamics is not possible
in the general form. Therefore, the finite element method is mainly applied. However,
solving the inverse problem related to the identification of bearing stiffness charac-
teristic providing the actual operating parameters or critical frequencies and form
shapes is the complicated research problem that can not be solved using traditional
finite element analysis due to the initial nonlinearity of the mathematical model. In this
case, artificial neural networks (ANN) as universal approximators can be implemented
due to their ability to provide general mechanisms for creating models with highly
nonlinear relationships between input and output parameters [21].

A variety of ANN is ensured due to the specific requirements of the problems by
adopting a different degree of network complexity, types of inter-connections, transfer
functions, training method, etc. In this work, ANN with input, output and system of
hidden layers is used, that creates a correspondence between critical frequencies of the
rotor and parameters of the bearing stiffness characteristic. The procedure for identi-
fication of rotor bearing stiffness characteristic by combined using finite element model
of rotor dynamics and ANN is schematically presented in Fig. 1a.

It should be noted that the output parameters (critical frequencies X1, X2, X3) of
numerical simulation in the computer program “Critical frequencies of the rotor” are
input data for ANN training, and the output parameters of ANN (stiffness coefficients

Fig. 1. The procedure of using ANN (a) and ANN architecture (b).
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c0, a, b) must be compared with their corresponding actual values determining as a
result of experimental research.

The configuration of ANN is presented in Fig. 1b. The number of layers and the
distribution of neurons in layers are determined by the condition of full-time operating
of all neurons. Decreasing the number of hidden layers and corresponding neurons
leads to decreasing accuracy of the subsequent evaluation of rotor bearing stiffness
characteristics, while an unreasonable increasing of neurons and layers leads to
increasing the learning time and to non-involved neurons.

4 Results

4.1 Using Regression Procedure

Experimental research of the rotor dynamics for the multistage centrifugal compressor
295GC2-190/44-100M was provided on the accelerating-balancing stand “Schenck” for
accelerating testing and dynamic balancing in vacuum of flexible rotors of centrifugal
compressors with a mass up to 2500 kg. As a result, actual critical frequencies
X1 = 117 rad/s, X2 = 256 rad/s, X3 = 511 rad/s were determined, and corresponding
normalized parameters �X1 = 0.218; �X2 = 0.478; �X3 = 0.953 were calculated. Thus, due
to the formula (13), the column vector �Kf g = {0.817, 0.204, 0.891}T, and the evaluated
bearing stiffness parameters are as follows: c0 = 0.817�2.5�107 = 2.179�107 (N/m);
a = 0.204�(–3�104) = –0.613�104 (N�s/m); b = 0.891�2�102 = 1.782�102 (N�s2/m).

All the abovementioned results are presented in Table 1.

The verification of the results is carried out by determining the critical frequencies
as a result of numerical simulation in the program “Critical frequencies of the rotor”. In
case of the parameters c0 = 2.179�107 N/m; a = –0.613�104 N s/m; b = 1.782�102
N s2/m, the critical frequencies are obtained: X1 = 117 rad/s, X2 = 264 rad/s,
X1 = 513 rad/s, which corresponds to actual critical frequencies.

However, it should be noted that actual parameters c0 = 2.45�107 N/m; a =
–2.9�104 N s/m; b = 2.086�102 N s2/m of bearing stiffness characteristic allow con-
cluding that there is insufficient accuracy of the linear regression procedure due to
relative errors 11.1%, 78.9% and 14.6% respectively. Thus, there is a need to use the
method giving more accurate results.

Table 1. Comparison of achieved results.

Methods and parameters c0�107 a�104 b�102 x1 x2 x3

Regression analysis 2.179 −0.613 1.782 117 264 513
Artificial Neural Network 2.455 −2.682 1.996 118 256 511
Actual parameters 2.450 −2.900 2.086 117 256 511
Error in regression analysis 11.1 78.9 14.6 0.0 3.1 0.4
Error for using ANN 0.2 7.6 4.4 0.9 0.0 0.0
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4.2 Implementation of Artificial Neural Network

“Visual Gene Developer” software provides graphical visualization of ANN training
procedure (Fig. 2). Lines present weight factors and nodes means threshold values. In
the diagram, red color corresponds to the high positive number, and violet color means
high negative number. Line width is proportional to the absolute number of weight
factor or threshold value.

The following training settings were selected: Learning rate – 0.001; Transfer
function – Hyperbolic tangent; Total number of training cycles – 1�106; Target error –
1�10−5; Initialization method of threshold – Random; Initialization of weight factor –
Random; Analysis update interval – 500 cycles.

ANN training results include initial parameters c0, a, b, resulting frequencies X1,
X2, X3 and predicted critical frequencies x1, x2, x3.

Comparison of predicted critical frequencies with the corresponding resulting
critical frequencies leads to the conclusion about high accuracy (up to the third decimal
place) of ANN learning process. In addition, the following training results are obtained:
Sum of error – 3.5�10−4; Average error per output per dataset – 3.6�10−6; Regression
coefficient – 0.99996.

Evaluated bearing stiffness parameters are �c0 = 0.982 (c0 = 2.455�107 N/m);
�a = 0.894 (a = –2.681�104 N s/m); �b = 0.998 (b = 1.996�102 N s2/m). All the
abovementioned results are presented in Table 1. The verification of the results is
carried out by determining the critical frequencies as a result of numerical simulation in
the program “Critical frequencies of the rotor”. In case of the parameters
c0 = 2.455�107 N/m; a = –2.681�104 N s/m; b = 1.996�102 N s2/m, the critical fre-
quencies are obtained: X1 = 118 rad/s, X2 = 256 rad/s, X1 = 511 rad/s, which corre-
sponds to the actual critical frequencies. However, it should be noted that actual
parameters c0 = 2.45�107 N/m; a = –2.9�104 N s/m; b = 2.086�102 N s2/m of bearing
stiffness characteristic indicates high accuracy of results obtained by using ANN due to
the relative errors less than 1%. The design scheme and mode shapes obtained using

Fig. 2. ANN map analysis (a) and results of regression analysis (b).
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the computer program “Critical frequencies of the rotor” for bearing stiffness evaluated
by the use of ANN are presented in Fig. 3.

The main advantages of using ANN are sufficient accuracy of the obtained results,
and lack of need for the re-optimizing procedure when changing experimental values of
critical frequencies within the same model of rotor dynamics.

5 Conclusions

Thus, the regression dependences for identification of bearing stiffness parameters by
using numerical simulation and experimental data are proposed. The computer program
“Critical oscillations of the rotor” realizes the mathematical model of rotor dynamics,
which allows taking into consideration gyroscopic moments of inertia for impellers and
shell-type parts, as well as the non-linear dependence of bearing stiffness on the rotor
speed.

The implementation of ANN is verified on the example of the compressor
295GC2-190/44-10M on magnetic bearings with taking into account dependence of
stiffness characteristics on the rotor speed. Comparison of the bearing stiffness and
critical frequencies obtained with the use of ANN and physical experiment on the
accelerating-balancing stand confirms the reliability of the proposed approach with
sufficient accuracy for practical purposes.

There are different results of the evaluation of bearing stiffness characteristics as a
result of the implementation of the linear regression procedure and artificial neural
network. Moreover, sufficient accuracy of calculation of critical frequencies does not
ensure a sufficient accuracy of regression procedure due to its original linearity.
However, this problem is completely eliminated with the use of an artificial neural
network. In addition, it should be noted that using artificial neural network significantly
improves the accuracy of identification of the parameters for the mathematical model of
bearing stiffness in comparison with the linear regression procedure. ANN has the
advantage over traditional optimization methods due to the fact, that changing the
initial data for the same model requires a new optimization procedure, while the
previously trained ANN does not need this.

Fig. 3. Design model and mode shapes of the rotor.
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Achieved results allow setting directions of further research within the development
an approach for implementation ANN for identification non-linear bearing stiffness
characteristics by the results of numerical simulation and experimental research of
forced oscillations, as well as providing virtual dynamic balancing of flexible rotor
systems for multistage centrifugal machines.
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