
A Quantitative Assessment of the JADEL
Programming Language

Federico Bergenti1, Eleonora Iotti2(B), Stefania Monica1, and Agostino Poggi2

1 Dipartimento di Scienze Matematiche, Fisiche e Informatiche,
Università degli Studi di Parma, 43124 Parma, Italy
{federico.bergenti,stefania.monica}@unipr.it

2 Dipartimento di Ingegneria e Architettura,
Università degli Studi di Parma, 43124 Parma, Italy

eleonora.iotti@studenti.unipr.it, agostino.poggi@unipr.it

Abstract. This paper reports a quantitative assessment of JADEL,
an agent-oriented programming language designed to implement JADE
agents and multi-agent systems. The assessment is structured in two
parts. The first part is intended to evaluate the effectiveness of JADEL
for the concrete implementation of agent-based algorithms expressed
using a pseudocode. The second part examines the functionality of the
language regarding concurrency and message passing by comparing the
implementation in JADEL of a set of benchmark algorithms with the
corresponding implementations in Scala. The metrics introduced for the
two parts of the assessment are meant to evaluate the expressiveness and
ease of use of JADEL, and reported results are encouraging.

Keywords: Agent Oriented Programming · JADEL · JADE

1 Introduction

Agent-Oriented Programming (AOP) is the programming paradigm first intro-
duced by Shoham in [40]. AOP identifies as core abstractions the autonomous
and proactive entities known as (software) agents, and, over the years, several
languages and tools have been developed to coherently support AOP and to
provide advanced features for the development of agents and multi-agent sys-
tems. Agent programming languages is a class of programming languages, which
includes AOP languages, that has gained significant relevance in the literature.
The interest in agent programming languages dates back to the introduction
of agent technologies and, since then, it has grown rapidly. As a matter of
fact, agent programming languages turned out to be especially convenient to
model and develop complex multi-agent systems, in contrast with traditional
(lower-level) languages, that are often considered not suitable to effectively
implement Agent-Oriented Software Engineering (AOSE) [13]. Nowadays, agent
programming languages are widely recognized as important tools in the devel-
opment of agent technologies and they represent an important topic of research
c© Springer International Publishing AG, part of Springer Nature 2018
J. van den Herik et al. (Eds.): ICAART 2017, LNAI 10839, pp. 157–178, 2018.
https://doi.org/10.1007/978-3-319-93581-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93581-2_9&domain=pdf

158 F. Bergenti et al.

(see, e.g., [1,18]). Each agent programming language is usually based on a spe-
cific agent model, which is often formally defined, and aims at providing dedi-
cated constructs to adopt the specific agent model at a high level of abstraction.
Simplicity and ease of use are characteristics which made the success of agent
programming languages among developers. In fact, thanks to such characteris-
tics, agent programming languages allow developers to reduce the complexity of
their work and to expedite the creation of agents and multi-agent systems.

Besides agent programming languages, other tools have been provided over
the years to support the effective construction of agents and multi-agent sys-
tems. Agent platforms are examples of such tools which offer language-agnostic
approaches to the development of agents and multi-agent systems. One of the
most popular agent platforms is the Java Agent DEvelopment framework (JADE,
jade.tilab.com) [2,3], which is a middleware that offers several APIs and graph-
ical tools to support the development of distributed multi-agent systems. JADE
can be considered a consolidated tool, and it is widely used both for industrial
and academic purposes [30]. In particular, it has been used for many relevant
research projects (see, e.g., [8,9,11,35], just to mention some recent projects of
the authors), and it has been in daily use for service provision and management
in Telecom Italia for more than six years, serving millions of customers in one of
the largest broadband networks in Europe [10]. Moreover, JADE is considered
a valid enabler for the use of agent technology in various application domains,
such as agent-based social networks modeling [12] and localization [6,32,33]. As a
notable feature, JADE supports the development of agents and multi-agent sys-
tems that are compliant with the specifications of IEEE Foundation for Intelli-
gent and Physical Agents (FIPA, www.fipa.org), with a particular focus on FIPA
interaction protocols [25].

Beside such considerations, JADE also owes its success to its pure Java app-
roach to agent technologies. As a matter of fact, when JADE was conceived and
developed, in the early 2000’s, its main design decisions were based on the tech-
nologies that were most popular and promising at the time. Developers wanted
to use Java, and the common opinion was that such a technology would have
been able to change many aspects of software development processes. In such
a context, a pure Java approach seemed to be a perfect choice for a software
framework that aimed at becoming a solid and reliable tool. Nowadays, such a
design choice is less appealing to developers of agents and multi-agent systems.
Our experience in using agent technologies and teaching it to graduate stu-
dents shows a slow regression of the appreciation on JADE for its intimate link
with Java. In fact, Java does not natively support agent-oriented technologies
and methodologies, and this is perceived as a limitation and a source of errors.
Moreover, JADE is constantly expanding and its continuous growth—in terms
of features, and available APIs—increases the complexity of the framework. As
a result, there is a high number of implementation details that a developer must
handle to build a non-trivial multi-agent system. In order to address such prob-
lems, we are working on automated tools to help the analysis and verification

http://jade.tilab.com/
www.fipa.org

A Quantitative Assessment of the JADEL Programming Language 159

of JADE agents and multi-agent systems on the basis of a formal operational
semantics that we are developing [5,16].

In a plan of simplification and renovation of the experience of using JADE,
the introduction of a specific AOP language seems an appropriate option. The
JADE Language (JADEL) is an AOP language based on JADE which is meant
to simplify the work of JADE users, at least, in some aspects of the development
process. JADEL provides abstractions and constructs which focus on relevant
agent-oriented features of JADE, and it aims at simplifying the adoption of such
features at a high level of abstraction. A first description of JADEL can be found
in [7], and more recent developments are discussed in [17], where an overview of
current syntax and semantics is presented. Then, in [4,14], the JADEL support
for FIPA interaction protocol, which was not included in the first versions of
the language, is presented. Finally, [15] is a first attempt at assessing the fea-
tures of the language by discussing the use of JADEL for the implementation
of a non-trivial agent-based algorithm. The objective of this last exercise is to
illustrate the steps that a programmer needs to follow from pseudocode to imple-
mentation, and to analyze the effort spent in doing such a task when JADEL is
adopted. Due to the distributed nature of JADE, the algorithm chosen as case
study is a well-known procedure for solving distributed constraint satisfaction
problems, the Asynchronous BackTracking (ABT) algorithm. In [15], the source
code written with JADEL of the ABT algorithm is compared with the original
pseudocode from [44,45], and some considerations on the effectiveness of the use
of JADEL for this task are presented. In this paper, the problem of translating a
known pseudocode into a working program, and of evaluating the effectiveness of
JADEL in such a task, is further investigated. The main steps of the translation
from the original pseudocode to JADEL source code are recalled, and relevant
metrics for the evaluation of programming languages are applied to this case.
Moreover, in order to investigate the features of JADEL in terms of support to
concurrency and message passing, accepted benchmark algorithms found in the
Savina benchmark suite [29] are implemented in JADEL and compared against
known implementations in Scala.

The paper is organized as follows. Section 2 briefly reports on some of the
most popular agent programming languages to overview related work. Section 3
shows the JADEL programs used to support the proposed quantitative evalua-
tion. In particular, it shows the implementation of the ABT pseudocode and of
selected programs of the Savina benchmark suite. Section 4 uses the presented
JADEL source codes to discuss a quantitative evaluation of JADEL. Finally, a
brief recapitulation of major presented results concludes the paper.

2 Related Work

The obvious collocation of JADEL is in the wide scope of agent programming
languages, but JADEL is also a Domain-Specific Language (DSL) and it should
be treated as such. The wide range of technologies and tools involved in the
development of a DSL is brightly discussed in [31,34], where DSLs are clearly

160 F. Bergenti et al.

marked as important tools to support model-driven development. Such works
also provide in-depth analyses of the motivations that may lead developers to
decide in favor of a new DSL, which is a difficult decision because of the inher-
ent costs of DSLs in terms of implementation and maintenance. Nevertheless,
the use of a DSL for a specific application domain leads to important benefits.
As a matter of fact, the syntax of a DSL is tailored on the specific domain
that it describes, with the aid of user-friendly notations that are simpler than
the respective general-purpose ones. This facilitates code understanding, and it
allows many repetitive and tedious activities to be automated. Moreover, DSLs
are meant to be easily integrated with a host language, which is typically a
general-purpose programming language, and this fact ensures the applicability
and reusability of domain-specific code in real-world scenarios, where the inter-
operability with existing code is essential. All such benefits justify the design of
JADEL as a DSL for AOP with the intent to increase the adoption of JADE in
model-driven development. Notably, the approach of designing an new agent pro-
gramming language as a DSL for agent-oriented programming has been adopted
by other languages mentioned below.

The features of agent programming languages may differ significantly, con-
cerning, e.g., the selected agent mental attitudes (if any), the integration with an
agent platform (if any), the underlying programming paradigm, and the underly-
ing implementation language. In order to compare the characteristics of different
agent programming languages and to provide a clear overview of the state of the
art, it is worth recalling accepted classifications of relevant agent programming
languages that have already been proposed. [1] classifies agent programming
languages on the basis of the use of mental attitudes. According to such a clas-
sification, agent programming languages can be divided into: AOP languages,
Belief Desire Intentions (BDI) languages, hybrid languages, which combine the
two previous classes, and other languages, which fall outside previous classes. It
is worth noting that such a classification recognizes that BDI languages follow
the AOP paradigm, but it reserves special attention to them for their notable rel-
evance in the literature. [18] proposes a different classification, where languages
are divided into declarative, imperative, and hybrid. Declarative languages are
the most common because they focus on automatic reasoning, which is theme
closely related to agent technologies. Some relevant imperative languages have
also been proposed, and most of them were obtained by adding agent-oriented
constructs to existing procedural programming languages. In the rest of this
section, a list of the most popular agent programming languages and their fea-
tures is given, in chronological order.

Shoham introduced the AOP paradigm in [39] together with his appreci-
ated AGENT-0 language [38]. One of the direct descendant of AGENT-0 is
the language called PLAnning Communicating Agents (PLACA). It extends
the capabilities of AGENT-0 by providing improved syntax and new mental
categories. Just like AGENT-0, PLACA has experimental nature and it was
not meant for practical use. Another important, yet experimental, language is
Concurrent MetateM [24], which is an agent programming language based on

A Quantitative Assessment of the JADEL Programming Language 161

temporal logics. Another important example of classic agent programming lan-
guages is AgentSpeak(L), whose syntax and semantics were formalized by Rao
in [36]. The proposed formalization of AgentSpeak(L) is based on the BDI agent
model. Other agent programming languages based on the BDI model are An
Abstract Agent Programming Language (3APL) [27], which includes features of
both imperative and logic programming languages, and the JACK Agent Lan-
guage (JAL), which is built on top of JACK platform [41], an environment to
develop multi-agent systems in which agents are based on the BDI paradigm.
Another software framework that implements a BDI-based reasoning engine is
Jadex [19]. It combines declarative and imperative approaches by using an XML
specification language to define beliefs, goals and plans, and by using Java as
procedural language to implement plans. Then, A Computational Language for
Autonomous Intelligent and Mobile Agents (CLAIM) [23] is an agent language
that supports agent mobility. While, the Semantic web-Enabled Agent Language
(SEA L) [20–22] is a DSL to model and develop multi-agent systems in the
scope of the Semantic Web. Finally, SARL [37] is one of the latest entries in the
plethora of agent programming languages. It is a general-purpose imperative
language with an intuitive syntax, and it can be considered platform-agnostic,
even if it is commonly used with the dedicated agent platform called Janus.

3 Implementations of Selected Algorithms in JADEL

JADEL supports four main agent-oriented abstractions, namely, agents,
behaviours, communication ontologies, and roles in interaction protocols. Actu-
ally, agents in JADEL use ontologies and behaviours, and they take roles in
interaction protocols.

A JADEL agent can be defined by using the keyword agent followed by
its name. It has a life cycle that consists in a start-up phase followed by an
execution phase, and it is eventually terminated by a take-down phase. The
declaration of an agent is allowed to extend the declaration of another agent,
with the usual semantics of inheritance, and two event handlers are provided
to support initialization and take-down phases, namely, the on-create and the
on-destroy handlers. During agent initialization, a sequence of tasks, called
behaviours following accepted JADE nomenclature, can be added to an internal
list by means of the activate-behaviour expression. After the start-up phase,
actions specified in such behaviours are performed by the agent. New tasks can
be added dynamically during the life cycle of the agent, and tasks that are no
longer needed can be removed.

Behaviours for JADEL can be of two types, namely cyclic or oneshot.
Cyclic behaviours represent actions that remain in the behaviour list of an agent
after their execution. This means that the action of a cyclic behaviour can be
used one or more times during the life cycle of the agent. A one-shot behaviour,
instead, contains an action which terminates immediately and it is removed from
the list of the agent after just one execution. The action of a behaviour can be
an auto-triggered action, i.e., it starts immediately after its behaviour is chosen

162 F. Bergenti et al.

by the agent, or it can be triggered by an event, e.g., the reception of a message.
Message reception is handled by means of a specific construct of JADEL, the
on-when-do construct, which also provides a control over the type of message
the agent intends to receive.

Ontologies and interaction protocols are used in agent communication. In par-
ticular, ontologies provide formal means to support the semantics of the adopted
agent communication language. Ontologies represent one of the most tedious and
error prone tasks in the development of multi-agent systems with JADE, and
JADE users tend to agree that the large amount of implementation details and
repetitive idioms involved in ontology classes shift the focus on technical parts
rather than on the semantics of involved ontology elements. For this reason,
JADEL provides a special lightweight syntax for ontologies and it permits the
automation of many repetitive tasks. As a matter of fact, a JADEL ontology
is defined as a set of concepts, predicates, propositions and actions. Such terms
compose a sort of dictionary, which is usually organized in a hierarchical struc-
ture. Agents sharing such a dictionary can interact by using common terms as
content of their messages.

Besides ontologies, JADEL support structured communication by means of
a specific constructs to allow agents taking roles in FIPA interaction protocols.
Roles are particular behaviours, which are composed of a set of predefined event
handlers. Each of such handlers covers a different step of the interaction proto-
col, by filtering messages through their performatives, as expected from FIPA
specifications.

3.1 Implementation of the ABT Algorithm

The Asynchronous BackTracking (ABT) [43] algorithm is a well known algo-
rithm to solve Distributed Constraint Satisfaction Problems (DCSPs) [43].
DCSPs are distributed variants of constraint satisfaction problems and, as such,
a DCSP consists in a finite set of variables and a finite set of constraints over
such variables. As in [43], we denote variables as x1, x2, . . . , xn. Each variable
xi takes values in a domain, called Di. Constraints subsets of D1 × · · · × Dn,
and a DCSP is solved if and only if a value is assigned to each variable, and
each assignment satisfies all constraints. In a DCSP constraints and variables
are distributed among agents. Such agents manage a number of variables and
they know the constraints over managed variables. Commonly, each agent is
associated with just one variable, and it finds an assignment of its variable, i.e.,
a pair (xi, d) where d ∈ Di, that satisfies involved constraints. The interactions
in the multi-agent system allows each agent to obtain the assignments of other
agents, and to check if constraints are really satisfied. Informally, a DCSP is
solved if each agent finds a local solution that is consistent with the local solu-
tions of other agents. In [44], a survey of the main algorithms for solving DCSPs
is given. In particular, pseudocode and examples are shown for the ABT, the
asynchronous weak-commitment search, the distributed breakout, and the dis-
tributed consistency algorithms.

A Quantitative Assessment of the JADEL Programming Language 163

The ABT algorithm solves DCSPs under three assumptions: each agent owns
exactly one variable, all constraints are in the form of binary predicates, and
each agent knows only the constraints that involve its variable. Because it is
not necessarily true that all agents in a multi-agent system know each others,
they can communicate only if there is a connection between the sender and the
receiver of a message. For each agent, the agents who are directly connected
with it are called its neighbors. In ABT, each agent maintains an agent view,
which is the agent local view of its neighbors assignments. Communication is
addressed by using two types of messages, OK and NoGood, which work as
tools to exchange knowledge on assignments and constraints. More precisely, OK
messages are used to communicate the current value of the sender agent variable,
and NoGood messages provide the recipient with a new constraint. Agents are
associated with a priority order, which can be, e.g., the alphabetical order of
their names (or variables). OK messages flow from top to bottom of the priority
list of agents, and NoGood messages, instead, go up from lowest priority agents
to highest ones. Core of the algorithm is the check agent view procedure, which
controls if the current known assignments are consistent with the agent value. If
not, procedure backtrack is used to send NoGood constraints to neighbors. The
rest of the algorithm is given in terms of event handling constructs which react
at other agents messages.

The ABT algorithm was originally described using a pseudocode [44]. For
the sake of brevity, the pseudocode is not reproduced here. The proposed imple-
mentation in JADEL follows precisely the original pseudocode. The presentation
of the JADEL source code is structured into the presentation of the ontology, of
the agents, of support procedures and of event handlers, as follows.

Ontology. An important entity in JADEL is the ontology. From ABT pseu-
docode, messages are divided into different categories, but there is no specifica-
tion or definition of an ontology. JADEL takes advantages from a light syntax for
defining communication means which describes how agents could interoperate
in a given application. The ontology for ABT algorithm includes propositions,
concepts, and predicates, as shown in the JADEL code below.

ontology ABTOntology {
concept Assignment (aid index , integer value)
predicate OK(Assignment ass ignment)
predicate NoGood(many Assignment ass ignmentL i s t)
proposition NoSolution
proposition Neighbor
predicate So lu t i on (many Assignment ass ignmentL i s t)

}

The assignment is a central concept in ABT algorithm. Its implementation
consists in the definition of an ontology term which is composed of an agent
identifier, i.e., xi, and the value of its variable, i.e. di, called index and value,
respectively. The two predicates used in the main part of the algorithm, namely,
the OK and the NoGood predicates, are defined on the basis of the definition of the

164 F. Bergenti et al.

Assigment. In fact, an OK message is the current assignment of the agent, while
the NoGood message is a sequence of forbidden assignments. Also a predicate
Solution is defined, which is used to communicate to other agents the solution
of the problem, when found. NoSolution and Neighbor are simply propositions,
that agents can exchange to indicate the algorithm termination with no solutions,
and the neighbor request, respectively.

Agents. ABT pseudocode describes event handlers and main procedures, but
it does not illustrate how agents should be written. In JADEL, an agent must be
defined. Such an agent is called ABTAgent. It consists of some properties, among
which there are the agent view and the set of neighbors. The initialization of an
ABTAgent is done by filling the set of neighbors with the identifiers of connected
agents, and by setting the priority of the each agent. Moreover, ABTAgent pro-
vides two important methods, namely, checkConstraints and assignVariable.
The first checks if all constraints are satisfied by current assignments in agent
view, while the second selects a value which is consistent with agent view and
assigns it to the variable owned by the agent. Both methods return true if the
operation was successful and false if it is was not.

Procedures. The core procedure of the ABT algorithm is the check agent view
procedure, which controls if the current value my value ∈ Di of the agent xi

is consistent with its agent view. A value d ∈ Di is called consistent with the
agent view if for each value in agent view, all constraints that involve such value
and d are satisfied. If this is not the case, the agent has to search for another
value. At the end, if none of the values in Di satisfies the constraints, another
procedure is called, namely, the backtrack procedure. Otherwise, an OK message
is sent to the agent neighbors, which contains the new assignment. In the JADEL
implementation of the ABT algorithm, the check agent view procedure becomes
a one-shot behaviour. In fact, its action has to be performed only once, when
the behaviour activates, as follows.

oneshot behaviour CheckAgentView for ABTAgent {

The keyword for denotes which agents are allowed to activate such a behaviour.
In this case, such agents are instances of the ABTAgent class. Inside the behaviour,
methods and public fields of the agent can be called by using the field theAgent,
which is implicitly initialized with an instance of the agent specified. If no agent
is specified with the for keyword, theAgent refers to a generic agent. The
CheckAgentView behaviour does not need to wait for messages, or events, so
the keyword do is used, as follows.

A Quantitative Assessment of the JADEL Programming Language 165

do {
i f (! theAgent . checkConst ra int s ()) {

i f (! theAgent . a s s i gnVar i ab l e ()) {
activate behaviour Backtrack (theAgent)

} else {
activate behaviour SendOK(theAgent)

}
}

}

The procedure backtrack is meant to locally correct inconsistencies. First, a
new NoGood constraint has to be generated. Generating a NoGood is done by
checking all assignments that are present into the agent agent view. If one of
these is removed, and then the agent succeeds in choosing a new value for its
variable, it means that such an assignment is wrong. Hence, that assignment is
added to the NoGood constraint. After this phase, the new generated NoGood
can be empty or not. If no assignment appears within that new constraint, then
there is no solution for the DCSP. Otherwise, a NoGood message has to be sent
to the lowest priority agent, and then its assignment has to be removed from
agent view. Then, a final check of the agent view is done. JADEL implementation
of such a procedure is another one-shot behaviour, whose code follows precisely
the original pseudocode of the algorithm.

oneshot behaviour Backtrack
for ABTAgent {
do {

var V = new HashMap<AID, Integer >(theAgent . agentview)
var s o r t e dVa r i ab l e sL i s t = V. keySet . s o r t
V. remove (theAgent .AID)

for (v : s o r t e dVa r i ab l e sL i s t) {
var removed = V. remove (v)
i f (theAgent . a s s i gnVar i ab l e (V)) V. put (v , removed)

}

i f (V. isEmpty) {
activate behaviour SendNoSolution (theAgent)

} else {
activate behaviour SendNoGood(theAgent , V)

theAgent . agentview . remove (V. keySet .max)

activate behaviour CheckAgentView (theAgent)
}

}
}

166 F. Bergenti et al.

Event Handlers. Others procedures specified in the original ABT pseudocode
concern the reception of messages. When the agent receives an OK message, it
has to update its agent view with that new information, then it must check if
the new assignment is consistent with others in agent view. The reception of
a message requires a cyclic behaviour, which waits cyclically for an event and
checks if such an event is a message.

cycl ic behaviour ReceiveOK for ABTAgent {

To ensure that such a message is the correct one, namely, an OK message, some
conditions have to be specified. JADEL provides the construct on-when-do to
handle this situation. The clause on identifies the type of event and eventu-
ally gives to it a name. If the event is a message, the clause when contains an
expression that filters incoming messages, as follows.

on message msg
when {

ontology i s ABTOntology and
performative i s INFORM and
content i s OK

}

Conditions in when clause can be connected by logical connectives and, or,
and they can be preceded by a not. They refer to the fields of the message,
namely, ontology, performative, and content. Fields that are not relevant
can be omitted, and multiple choices can be specified. For example a behaviour
can accept REQUEST or QUERY IF messages with performative is REQUEST or
performative is QUERY IF. The clause do is mandatory and contains the code
of the action.

do {
extract receivedOK as OK

val a = receivedOK . ass ignment

theAgent . agentview . r ep l a c e (a . index , a . va lue)

activate behaviour CheckAgentView (theAgent)
}

The content of the message is obtained by means of the JADEL expression
extract- as, which manages all the needed implementation details and gives a
name and a type to the content. Once the content of type OK of the message is
obtained, its assignment is used to revise the agent view. Then, the behaviour
CheckAgentView is activated.

Finally, the pseudocode of the procedure that manages the reception of a
NoGood message is a cyclic behaviour for ABTAgent.

cycl ic behaviour ReceiveNoGood for ABTAgent {

A Quantitative Assessment of the JADEL Programming Language 167

Checking if the event is a message, and then, if the message is actually a NoGood
message, is done similarly to the OK reception, by using the clauses on and when,
as shown in the following code.

on message msg
when {

ontology i s ABTOntology and
performative i s INFORM and
content i s NoGood

}

Inside the do body, the message content is extracted as a NoGood and it is
recorded as a new constraint. We assume that the agent holds a set of constraints
within the field constraint which is accessed by the agent instance theAgent.

do {
extract receivedNoGood as NoGood

val newConstraints = receivedNoGood . as s ignmentL i s t

theAgent . c on s t r a i n t s . putAl l (newConstraints)

Then, if some constraints involve an agent which is not in the agent neighbor-
hood, a request is sent to such an agent, in order to create a new link.

for (x : newConstraints . keySet) {
i f (! theAgent . ne ighbors . conta in s (x)) {

activate behaviour SendRequest (theAgent , x)

theAgent . ne ighbors . add (x)
}

}

Finally, the agent view must be checked, and if the previous value of the agent
variable xi remains unchanged, an OK message is sent.

var oldValue = theAgent . agentview . get (theAgent .AID)

activate behaviour CheckAgentView (theAgent)

i f (oldValue == theAgent . agentview . get (theAgent .AID)) {
activate behaviour SendOK(theAgent)

}

3.2 Implementation of Savina Benchmarks

Other evaluations on JADEL are made by comparing it using the Savina
benchmarks [29]. Savina is a benchmark suite to test actor libraries per-
formances, and the source code of the thirty Savina benchmarks can be

168 F. Bergenti et al.

found at github.com/shamsimam/savina. For each benchmark, Savina pro-
vides an implementation by using the actor features of Akka [42], Functional-
Java (www.functionaljava.org/), GPars (www.gpars.org/), Habanero-Java
library [28], Jetlang (github.com/jetlang), Jumi (jumi.fi/actors.html),
Lift (liftweb.net/api/26/api/#net.liftweb.actor.LiftActor), Scala [26], and
Scalaz (github.com/scalaz). The thirty benchmarks that Savina provides are
divided into classic micro-benchmarks, concurrency benchmarks and parallelism
benchmarks.

Micro-benchmarks are simple benchmarks which test specific features of an
actor library. For example, the classic PingPong benchmark measures the mes-
sage passing overhead, while the Counting benchmark tests message delivery
overhead. Concurrent benchmarks focus on classic concurrency problems, such
as the dining philosophers, and they represent more realistic tests than micro-
benchmarks. Finally, parallelism benchmarks exploit pipeline parallelism, phased
computations, divide-and-conquer style parallelism, master-worker parallelism,
and graph and tree navigation. In [29], the scope and the characteristics of each
benchmark are discussed, and some experimental results are shown. It is worth
noting that Savina is a suite that helps testing actor-oriented solutions, and it
does not consider agent-oriented features. Nevertheless, Savina benchmarks are
also suitable to analyze some features of agent programming languages, such
as concurrency and message passing. For this reason, in this paper we take a
few benchmarks from those proposed by Savina, and re-implemented them in
JADEL. Savina does not yet contains inter-languages comparisons. As a matter
of fact, sources are written in Java and Scala, and all benchmarks shows almost
the same code: the differences among them are due to the various actor imple-
mentations. Additional language comparisons could be useful to evaluate the
elegance, the readability and the simplicity of a given solution, beside its perfor-
mances. Only a few Savina micro benchmarks are considered here, namely, the
PingPong, ThreadRing, Counting, Big, Chameneos benchmarks.

It is worth noting that Savina benchmarks are thought for actor-based sys-
tems, and thus are heavily based on message passing. JADEL ontologies help
in managing such task effectively. In the JADEL source code below, the simple
ontology used for implementing the PingPong example is shown. The commented
parts are the identifiers of the message objects which Savina implementation
defines and uses for messages.

ontology PingPongOntology {
proposition Star t // PingPongConfig . StartMessage
proposition Ping // PingPongConfig . SendPingMessage
proposition Pong // PingPongConfig . SendPongMessage
proposition Stop // StopMessage

}

The PingPong classic example consists in the definition of two agents which uses
such an ontology, exchanging N Ping and Pong messages, alternatively. In the
following listing, the source code of the ping agent, i.e., the initiator agent, is
shown.

https://github.com/shamsimam/savina
www.functionaljava.org/
www.gpars.org/
https://github.com/jetlang
https://jumi.fi/actors.html
http://liftweb.net/api/26/api/#net.liftweb.actor.LiftActor
https://github.com/scalaz

A Quantitative Assessment of the JADEL Programming Language 169

agent PingAgent uses ontology PingPongOntology {
var AID pongAgent

on create {
pongAgent = newAID(arguments . get (0) as St r ing)

activate behaviour WaitForStartOrPong (th i s ,
PingPongConfig .N)

}
}

Then, the pong agent, i.e., the responder agent has the following source code in
JADEL.

agent PongAgent uses ontology PingPongOntology {
var AID pingAgent

on create {
pingAgent = newAID(arguments . get (0) as St r ing)

activate behaviour WaitForPingOrStop (th i s , 0)

activate behaviour SendInformMsg (th i s , #[pingAgent] ,
new Star t)

}
}

Similarly, ThreadRing agents are defined. In this benchmark, N agents exchange
R Ping messages, and they are limited to communicate only with the next
agent in the ring. As for the PingPong benchmark, an ontology which follows
precisely the Savina structure of message object is defined. In this example,
message content are predicates rather than propositions, because they need to
carry information between involved agents.

ontology ThreadRingOntology {
predicate Ping (integer l e f t) // ThreadRingConfig . PingMessage

predicate Data (aid next) // ThreadRingConfig . DataMessage

predicate Exit (integer l e f t) // ExitMessage

}

170 F. Bergenti et al.

The JADEL source code for agent definition is listed below.

agent ThreadRingAgent extends JadelBaseAgent
uses ontology ThreadRingOnto {

var i n t id
var AID na

on create {
na = newAID(arguments . get (0) as St r ing)
id = arguments . get (1) as I n t eg e r

activate behaviour WaitForMsg (t h i s)

i f (id == ThreadRingConfig .N − 1) {
activate behaviour SendInformMsg (th i s , #[na] ,

new Ping (ThreadRingConfig .R))
}

}
}

As an example of cyclic behaviour, the following code shows the reception of
an increment message in the Counting example. In this example, a Producer
agent sends N increment messages to a Counter one, which counts the number of
arrived messages. When the counter agent received all messages, it must inform
the other agent of the resulting value of its count. As we can see, the behaviour
WaitForMsg is a cyclic behaviour, as in ABT event handlers, because it must
wait for a message and repeat its action each time a message arrives. For this
scope, the construct on-when-do is used, as follows.

cycl ic behaviour WaitForMsg for Counter {
on message msg
when {

content i s Increment
} do {

theAgent . count = theAgent . count + 1

i f (theAgent . count >= CountingConfig .N) {
activate behaviour SendInformMsg (theAgent ,

#[theAgent . producerAgent] ,
new Result ingValue (theAgent . count))

activate behaviour Delete (theAgent)
}

}
}

Other micro benchmarks are implemented in the same fashion, with

1. A definition for each different kind of agent involved, which activates needed
behaviours in the start up phase of its life cycle by means of the on-create
handler;

A Quantitative Assessment of the JADEL Programming Language 171

2. The definition of a number of cyclic behaviour whose purpose is to intercept
messages and process the correct ones; and

3. The definition of an ontology which terms are equivalent to the Savina ones.

Hence, the methodology used in [15] for implementing the ABT algorithm is the
common way to creating agents and multi-agent systems with JADEL, whether
the example is a very simple one (e.g., the PingPong), or a more complex algo-
rithm as ABT.

4 Experimental Results

Methods to evaluate DSLs can be found in, e.g., [20], which focuses on multi-
agent systems. Other surveys, such as [31,34], highlight the main advantages of
the use of DSLs.

The comparison between the ABT pseudocode and its JADEL implementa-
tion is done by defining some metrics, which help us to get an idea of JADEL
advantages and disadvantages. Then, we compare JADEL code with an equiv-
alent JADE code, measuring the amount of code written, and the percentage
of agent-oriented features of such a code. Nevertheless, comparing a pseudocode
with an actual implementation is a difficult task, due to the informal nature
of the pseudocode, and the implicit technical details it hides. Moreover, pseu-
docodes from different authors may look different, depending on their syntax
choices and their purposes. As far as we know, there are not standard methods
for evaluating the closeness of a source code to a pseudocode, and its actual
effectiveness in expressing the described algorithm. Hence, we limit our evalua-
tion to the use case of JADEL shown in this paper: the ABT example presented
in previous section.

The first consideration that is made in evaluating the JADEL implemen-
tation of ABT is that ABT pseudocode is presented by means of procedures
and event handlers, with the aid of the keywords when and if. As a second
consideration, the notation used inside the ABT pseudocode is the same of the
DCSP formalization. As a matter of fact, there are agentview and neighbors
sets, and assignments are denoted as (xi, di), where xi is the variable associated
with the i-th agent, and di ∈ Di. A message is identified according to its type
and its content, i.e., (OK, (xi, di)) for an OK message, or (nogood, (xi, V)) for a
NoGood. Such characteristics of ABT pseudocode allow us to talk about similar-
ity between it and the JADEL source code. In fact, in JADEL, both procedures
and event handlers are represented as behaviours of the agent. In particular,
procedures are one-shot behaviours that define an auto-triggering actions, while
event handlers are cyclic behaviours, each of them waits for the given event
and then performs its action. Hence, we can associate each behaviour with a
procedure or an event handler, and analyze each of them separately. Moreover,
calls to procedures in ABT pseudocode translate into the activation of the cor-
responding behaviour in JADEL. Also, the sending of a message is done by acti-
vating a specific JADEL behaviour. Hence, we associate each send instruction in
ABT pseudocode to that activation. The DCSP notation is used also in JADEL,

172 F. Bergenti et al.

by means of the two maps, theAgent.agentview and theAgent.neighbors, and by
defining some ontology terms. As a matter of fact, terms OK and NoGood are
predicates in a JADEL ontology, and they contain an assignment, and a list of
assignments, respectively. Each assignment consists in a index and a value, i.e.,
xi and di, respectively. The domain Di of a variable is defined once in the start-
up phase of the agent and it is never modified during the execution of its actions.
We associate ABT pseudocode notations with the respective JADEL notation
described above. Finally, the reception of a message is done by using the con-
struct on-when-do, which is the corresponding of ABT pseudocode construct
when received(. . .) do.

We will say, in the following, that a line of ABT pseudocode corresponds
to a line (or, a set of lines) of JADEL implementation, if it falls in one of the
previous cases. Then, for each line of ABT pseudocode, we measure the number
of the corresponding Lines Of Code (LOC) of JADEL implementation. The
absolute value of the difference between ABT lines and corresponding JADEL
LOC is used as a first, rough, distance. For example, in the reception of an
OK message, the first line of the pseudocode corresponds to the on-when-do
constructs to capture the correct event, and filter other messages that are not
complied with the expected structure, as follows.

on message msg
when {

ontology i s ABTOnto and
performative i s INFORM and
content i s OK

}

Moreover, the extract-as expression is used to obtain the message content.

extract receivedOK as OK

Hence, we can conclude that in this case there are six LOCs instead of one line
of the pseudocode. Thus, the distance is of five LOCs. Such a distance gives us
an idea of the amount of code which is necessary to translate pseudocode into
JADEL, in case of ABT example. A summary is shown in [15] where a count of
nested blocks also presented. ABT pseudocode and JADEL implementation do
not differ significantly in terms of nested blocks, and JADEL code often requires
one more level (the do block), but its structure is usually very similar to ABT
pseudocode.

The count of nested blocks makes more sense when JADEL code is compared
to the equivalent JADE one. Such an equivalent implementation is obtained
directly from the available JADEL compiler [7], which translates JADEL code
into Java and uses JADE APIs. In fact, JADEL entities translate into classes
which can extend JADE Agent, CyclicBehaviour, OneShotBehaviour, and
Ontology base classes, while JADEL event handlers translate into the correct
methods of JADE APIs, in order to obtain the desired result. JADE code is auto-
matically generated from the JADEL one, and this means that the final code
may introduce some redundancy or overhead. For this reason, we also write a

A Quantitative Assessment of the JADEL Programming Language 173

JADE code that implements ABT algorithm directly. Nevertheless, this alter-
native implementation is as complex as JADE generated code, because of some
implementation details that JADE requires.

A comparison between JADEL and JADE implementation is made in
terms of amount of code, i.e., by counting the number of non-comment and
non-blank LOCs of each entity, namely, the ABTAgent, the ABTOntology,
and all the behaviours. Results are shown in [15]. In order to empha-
size the advantage in using JADEL instead of JADE, the percentage
of lines which contains agent-oriented features over the total number of
LOCs is also shown in [15]. We define as agent-oriented features each
reference to the agent world. For example, keywords agent, behaviour,
ontology are agent-oriented features, but are also special expressions such as
activate-behaviour. In JADE, agent-oriented features are simply the calls to
the API. [15] shows that the JADEL implementation is far lighter than the JADE
one, and that it is more dense in terms of agent-oriented features. Such mea-
sures can be viewed as an indication of simplicity of JADEL code with respect
to JADE.

The comparison between the chosen Savina benchmarks and their JADEL
implementation is done by using the metrics of LOCs, with some restrictions.
As in the ABT case, JADEL code is also compared with an equivalent JADE
code, in terms of amount of code written. The main problem here is the different
structure of a JADEL implementation, developed by using the JADEL approach,
and the structure of a benchmark in Savina. Savina and JADEL projects are
analyzed in terms of file written, utilities, and base classes, and only relevant
parts of the benchmarks are evaluated (for example, configuration files are not
counted). For a deeper evaluation, JADEL ontologies and Savina message objects
are treated separately.

Savina benchmarks are structured as follows. There is a Java-written file of
configurations, where parameters are initialized and managed (e.g. the number of
pings N for the PingPong example), and objects for message passing are imple-
mented. There is also a Scala source code that contains the implementations
of actors, a class which implements the benchmark, i.e., a class that manages
the iteration and the cleanup phases of each test, and an entry point for the
benchmark. Similarly, JADEL benchmarks are structured as follows. The con-
figuration file is the same as Savina. There is a Java file that implements the
benchmark and the entry point. The most important, there is a JADEL file
which contains the agents that are used in such a benchmark, their behaviours
and an ontology for agent communications. It is worth noting that ontology
predicates, concepts and propositions completely substitute that objects in the
configuration file which are used in Savina for message passing. So, the JADEL
implementation uses only a part of such a file, for getting parameter values, and
does not take advantage of message objects.

Then, all benchmarks share a common base of methods and utilities. In
Savina, for each considered actor framework, an actor base class is implemented.

174 F. Bergenti et al.

Table 1. Number of LOCs, for Scala, JADEL and JADE implementation of selected
examples from Savina benchmark suite.

JADEL Scala JADE (generated source)

Base 55 68 197

PingPong 62 73 295

ThreadRing 46 53 239

Counting 72 40 308

Big 90 76 407

Chameneos 121 112 574

Philosopher 108 64 503

In JADEL, a base agent with two behaviours is implemented. Finally, Scala,
JADEL and JADE LOCs are calculated using the following rules:

1. Blank lines or comments are not counted;
2. Prints for debugging are not counted;
3. Regarding Savina benchmarks, actors implementations are counted and also

the definition and implementation of Message objects;
4. Regarding JADEL, the agent, behaviour and ontology implementations are

counted; and
5. Regarding JADE, all generated files are counted.

Each measurement of the Savina suite is done by considering the Scala
actor implementation of the benchmark. In Table 1, LOCs of some examples
are shown, namely, the PingPong, ThreadRing, Counting, Big, Chameneos and
Philosopher benchmarks. Table 2 emphasize the fact that JADEL syntax for
ontologies is very light and the number of LOCs for ontologies remains little for
each example, as opposed to Savina message objects or JADE ontologies.

Table 2. Number of LOCs, for Scala, JADEL and JADE implementation of ontologies
and messages.

JADEL ontology Scala message objects JADE ontology

Base 4 0 37

PingPong 6 29 57

ThreadRing 5 30 94

Counting 5 3 62

Big 5 21 47

Chameneos 7 32 141

Philosopher 7 6 97

A Quantitative Assessment of the JADEL Programming Language 175

5 Conclusions

In this paper, a quantitative evaluation of the agent-oriented programming lan-
guage JADEL was presented. First, AOP paradigm and agent programming
languages were briefly recalled, and JADEL was shortly presented. Then, a
direct translation of the ABT pseudocode was presented together with a lighter
presentation of the implementation of selected Savina benchmarks in JADEL.
Such implementations were finally used quantitatively assess the performance
of JADEL using specific metrics intended to evaluate the conciseness of the
language and possible performance overheads introduced.

Not all adopted metrics can be regarded as complete in every situation,
because they cannot fully describe qualitative factors, such as readability, re-
usability or maintainability. In particular, some of them heavily depend on the
type of pseudocode given. However, such measurements help us at evaluating the
simplicity of written code and they gives us an idea of the expressiveness and
effectiveness of the language. As a matter of fact, the distance of JADEL from
pseudocode and from Scala source code is very small. This fact may help JADE
developers in translating an idea of distributed algorithms into a working JADE
multi-agent system. Moreover, the distance from pseudocode and the number of
nested blocks is very high in the case of JADE. This is mainly due to the very
high number of implementation details that hide behind JADEL code, and the
structure itself of Java language and JADE APIs.

References

1. Bădică, C., Budimac, Z., Burkhard, H.D., Ivanovic, M.: Software agents: languages,
tools, platforms. Comput. Sci. Inf. Syst. 8(2), 255–298 (2011)

2. Bellifemine, F., Bergenti, F., Caire, G., Poggi, A.: JADE - a Java agent development
framework. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.)
Multi-Agent Programming: Languages, Platforms and Applications. MASA, vol.
15, pp. 125–147. Springer, Boston (2005). https://doi.org/10.1007/0-387-26350-
0 5

3. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-agent Systems with
JADE. Wiley Series in Agent Technology. Wiley, Chichester (2007)

4. Bergenti, F., Iotti, E., Monica, S., Poggi, A.: Interaction protocols in the JADEL
programming language. In: Proceedings of the 6th International Workshop on Pro-
gramming Based on Actors, Agents, and Decentralized Control (AGERE!) (2016)

5. Bergenti, F., Iotti, E., Poggi, A.: An outline of the use of transition systems to
formalize JADE agents and multi-agent systems. Intelligenza Artificiale 9(2), 149–
161 (2015)

6. Bergenti, F., Monica, S.: Location-aware social gaming with AMUSE. In: Trends
in Practical Applications of Scalable Multi-Agent Systems, the PAAMS Collection
(PAAMS 2016), pp. 36–47 (2016)

7. Bergenti, F.: An introduction to the JADEL programming language. In: Proceed-
ings of the IEEE 26th International Conference on Tools with Artificial Intelligence
(ICTAI), pp. 974–978. IEEE Press (2014)

https://doi.org/10.1007/0-387-26350-0_5
https://doi.org/10.1007/0-387-26350-0_5

176 F. Bergenti et al.

8. Bergenti, F., Caire, G., Gotta, D.: Agents on the move: JADE for Android devices.
In: Proceedings of the Workshop Dagli Oggetti Agli Agenti (WOA 2014). CEUR
Workshop Proceedings, vol. 1260 (2014)

9. Bergenti, F., Caire, G., Gotta, D.: An overview of the AMUSE social gaming
platform. In: Proceedings of the Workshop Dagli Oggetti agli Agenti (WOA 2013).
CEUR Workshop Proceedings, vol. 1099 (2013)

10. Bergenti, F., Caire, G., Gotta, D.: Large-scale network and service management
with WANTS. In: Industrial Agents: Emerging Applications of Software Agents in
Industry, pp. 231–246. Elsevier (2015)

11. Bergenti, F., Franchi, E., Poggi, A.: Agent-based social networks for enterprise
collaboration. In: Proceedings of the 20th International Conference on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE 2011). IEEE
Press (2011)

12. Bergenti, F., Franchi, E., Poggi, A.: Agent-based interpretations of classic network
models. Comput. Math. Organ. Theory 19(2), 105–127 (2013)

13. Bergenti, F., Gleizes, M.P., Zambonelli, F. (eds.): Methodologies and Software
Engineering for Agent Systems: The Agent-Oriented Software Engineering Hand-
book. Springer, New York (2004). https://doi.org/10.1007/b116049

14. Bergenti, F., Iotti, E., Monica, S., Poggi, A.: A case study of the JADEL program-
ming language. In: Proceedings of the Workshop Dagli Oggetti agli Agenti (WOA
2016). CEUR Workshop Proceedings, vol. 1664, pp. 85–90 (2016)

15. Bergenti, F., Iotti, E., Monica, S., Poggi, A.: A comparison between asynchronous
backtracking pseudocode and its JADEL implementation. In: Proceedings of the
9th International Conference on Agents and Artificial Intelligence (ICAART), vol.
2, pp. 250–258. ScitePress (2017)

16. Bergenti, F., Iotti, E., Poggi, A.: Outline of a formalization of JADE multi-agents
system. In: Proceedings of the Workshop Dagli Oggetti agli Agenti (WOA 2015).
CEUR Workshop Proceedings, vol. 1382, pp. 123–128 (2015)

17. Bergenti, F., Iotti, E., Poggi, A.: Core features of an agent-oriented domain-specific
language for JADE agents. In: de la Prieta, F., et al. (eds.) Trends in Practi-
cal Applications of Scalable Multi-Agent Systems, the PAAMS Collection. AISC,
vol. 473, pp. 213–224. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40159-1 18

18. Bordini, R.H., Braubach, L., Dastani, M., Seghrouchni, A.E.F., Gomez-Sanz, J.J.,
Leite, J., O’Hare, G., Pokahr, A., Ricci, A.: A survey of programming languages
and platforms for multi-agent systems. Informatica 30(1), 33–44 (2006)

19. Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: a BDI-agent system combining
middleware and reasoning. In: Unland, R., Calisti, M., Klusch, M. (eds.) Soft-
ware Agent-Based Applications, Platforms and Development Kits, pp. 143–168.
Birkhäuser (2005)

20. Challenger, M., Kardas, G., Tekinerdogan, B.: A systematic approach to evaluating
domain-specific modeling language environments for multi-agent systems. Software
Qual. J. 24(3), 755–795 (2016)

21. Challenger, M., Mernik, M., Kardas, G., Kosar, T.: Declarative specifications for
the development of multi-agent systems. Comput. Stand. Interfaces 43, 91–115
(2016)

22. Demirkol, S., Challenger, M., Getir, S., Kosar, T., Kardas, G., Mernik, M.: SEA L:
a domain-specific language for Semantic Web enabled multi-agent systems. In:
Federated Conference on Computer Science and Information Systems (FedCSIS),
pp. 1373–1380 (2012)

https://doi.org/10.1007/b116049
https://doi.org/10.1007/978-3-319-40159-1_18
https://doi.org/10.1007/978-3-319-40159-1_18

A Quantitative Assessment of the JADEL Programming Language 177

23. El Fallah-Seghrouchni, A., Suna, A.: CLAIM: a computational language for
autonomous, intelligent and mobile agents. In: Dastani, M.M., Dix, J., El Fallah-
Seghrouchni, A. (eds.) ProMAS 2003. LNCS (LNAI), vol. 3067, pp. 90–110.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25936-7 5

24. Fisher, M.: A survey of concurrent MetateM — the language and its applications.
In: Gabbay, D.M., Ohlbach, H.J. (eds.) ICTL 1994. LNCS, vol. 827, pp. 480–505.
Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0014005

25. Foundation for Intelligent Physical Agents: FIPA specifications, multi-agents sys-
tem standard specifications (2002). http://www.fipa.org/specifications

26. Haller, P., Odersky, M.: Scala actors: unifying thread-based and event-based pro-
gramming. Theoret. Comput. Sci. 410(2), 202–220 (2009)

27. Hindriks, K.V., De Boer, F.S., Van der Hoek, W., Meyer, J.J.C.: Agent program-
ming in 3APL. Auton. Agent. Multi-Agent Syst. 2(4), 357–401 (1999)

28. Imam, S.M., Sarkar, V.: Habanero-Java library: a Java 8 framework for multicore
programming. In: Proceedings of the 2014 International Conference on Principles
and Practices of Programming on the Java Platform: Virtual Machines, Languages,
and Tools (PPPJ 2014), pp. 75–86. ACM (2014)

29. Imam, S.M., Sarkar, V.: Savina - an actor benchmark suite: enabling empirical
evaluation of actor libraries. In: Proceedings of the 4th International Workshop on
Programming based on Actors, Agents & Decentralized Control (AGERE!), pp.
67–80. ACM (2014)

30. Kravari, K., Bassiliades, N.: A survey of agent platforms. J. Artif. Soc. Soc. Simul.
18(1), 11 (2015)

31. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. (CSUR) 37(4), 316–344 (2005)

32. Monica, S., Bergenti, F.: Location-aware JADE agents in indoor scenarios. In: Pro-
ceedings of the Workshop Dagli Oggetti agli Agenti (WOA 2015). CEUR Workshop
Proceedings, vol. 1382, pp. 103–108 (2015)

33. Monica, S., Bergenti, F.: A comparison of accurate indoor localization of static
targets via WiFi and UWB Ranging. In: de la Prieta, F., et al. (eds.) Trends in
Practical Applications of Scalable Multi-Agent Systems, the PAAMS Collection.
AISC, vol. 473, pp. 111–123. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-40159-1 9

34. Oliveira, N., Pereira, M.J., Henriques, P., Cruz, D.: Domain specific languages:
a theoretical survey. In: INFORUM 2009 Simpósio de Informática. Faculdade de
Ciências da Universidade de Lisboa (2009)

35. Poggi, A., Bergenti, F.: Developing smart emergency applications with multi-agent
systems. Int. J. E-Health Med. Commun. 1(4), 1–13 (2010)

36. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

37. Rodriguez, S., Gaud, N., Galland, S.: SARL: a general-purpose agent-oriented pro-
gramming language. In: Proceedings of the IEEE/WIC/ACM International Joint
Conferences of Web Intelligence (WI) and Intelligent Agent Technologies (IAT),
vol. 3, pp. 103–110. IEEE Press (2014)

38. Shoham, Y.: AGENT-0: a simple agent language and its interpreter. In: Proceed-
ings of the 9th National Conference on Artificial Intelligence (AAAI), vol. 91, pp.
704–709 (1991)

39. Shoham, Y.: Agent-oriented programming. Artif. Intell. 60(1), 51–92 (1993)
40. Shoham, Y.: An overview of agent-oriented programming. In: Bradshaw, J. (ed.)

Software Agents, vol. 4, pp. 271–290. MIT Press (1997)

https://doi.org/10.1007/978-3-540-25936-7_5
https://doi.org/10.1007/BFb0014005
http://www.fipa.org/specifications
https://doi.org/10.1007/978-3-319-40159-1_9
https://doi.org/10.1007/978-3-319-40159-1_9
https://doi.org/10.1007/BFb0031845

178 F. Bergenti et al.

41. Winikoff, M.: JACK intelligent agents: An industrial strength platform. In: Bor-
dini, R.H., Dastani, M., Dix, J., El Fallah, S.A. (eds.) Multi-Agent Programming.
MASA, vol. 15, pp. 175–193. Springer, Boston (2005). https://doi.org/10.1007/0-
387-26350-0 7

42. Wyatt, D.: Akka concurrency. Artima Incorporation (2013)
43. Yokoo, M., Durfee, E.H., Ishida, T., Kuwabara, K.: The distributed constraint

satisfaction problem: formalization and algorithms. IEEE Trans. Knowl. Data Eng.
10(5), 673–685 (1998)

44. Yokoo, M., Hirayama, K.: Algorithms for distributed constraint satisfaction: a
review. Auton. Agent. Multi-Agent Syst. 3(2), 185–207 (2000)

45. Yokoo, M., Ishida, T., Durfee, E.H., Kuwabara, K.: Distributed constraint satis-
faction for formalizing distributed problem solving. In: Proceedings of the 12th
International Conference on Distributed Computing Systems, pp. 614–621. IEEE
Press (1992)

https://doi.org/10.1007/0-387-26350-0_7
https://doi.org/10.1007/0-387-26350-0_7

	A Quantitative Assessment of the JADEL Programming Language
	1 Introduction
	2 Related Work
	3 Implementations of Selected Algorithms in JADEL
	3.1 Implementation of the ABT Algorithm
	3.2 Implementation of Savina Benchmarks

	4 Experimental Results
	5 Conclusions
	References

