
ε-Strong Privacy Preserving Multi-agent
Planning

Antońın Komenda(B), Jan Tožička, and Michal Štolba

Department of Computer Science, Faculty of Electrical Engineering,
Czech Technical University in Prague,

Karlovo náměst́ı 13, 121 35 Prague, Czech Republic
{antonin.komenda,jan.tozicka,michal.stolba}@fel.cvut.cz

Abstract. Multi-agent planning can solve various sequential decision
problems comprising multiple entities. In contrast to classical planning,
the agents are interested in maintaining privacy while planning with
each other. Therefore they have to reason about what information they
can share. Although privacy is one of the crucial aspects of multi-agent
planning, formal and algorithmic treatment of privacy is rather sparse in
literature. No domain-independent strong privacy preserving multi-agent
planner was proposed so far. Moreover, our recent results indicate that
an efficient variant of such planner may not exist at all. Such strong pri-
vacy preserving planner would not allow to leak any private information
during planning neither directly nor indirectly. Especially the indirect
leakage is hard to assess as it can be based on any possible deduction
principle from the non-private information along the planning process.

Here, we propose a refined version of a multi-agent planning principle,
based on our previous work published as the conference version of this
paper. The planning principle is designed so that it can get arbitrarily
close to the general strong privacy preserving planning for the price of
decreased planning efficiency. We have tighten the bounds on the privacy
leakage and proved the strong privacy can be achieved by a finite number
of additional plans, in contrast to the previous algorithm, where the num-
ber had to be infinite in general. We newly illustrate the principle on an
additional synthetic planning problem, which shows the general privacy
leakage upper bound. As in the previous variant of the algorithm, the
strong privacy assurances are under computational tractability assump-
tions commonly used in secure computation research.

Keywords: Automated planning · Multi-agent systems · Privacy
Security

1 Introduction

Multi-agent planning deals with a problem of finding a coordinated sequence of
actions for a set of entities (or agents), such that the actions are applicable from

c© Springer International Publishing AG, part of Springer Nature 2018
J. van den Herik et al. (Eds.): ICAART 2017, LNAI 10839, pp. 137–156, 2018.
https://doi.org/10.1007/978-3-319-93581-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93581-2_8&domain=pdf

138 A. Komenda et al.

a predefined initial state and transform the environment to a state where pre-
defined goals are fulfilled. If the environment and the actions are deterministic
(that is their outcome is unambiguously defined by the state they are applied in),
the problem is a deterministic multi-agent planning problem [3]. Furthermore,
if the set of goals is common to all agents and the agents cooperate in order
to achieve the goals, the problem is a cooperative multi-agent planning prob-
lem. The reason the agents cannot simply feed their problem descriptions into
a centralized planner typically lies in that although the agents cooperate, they
want to share only the information necessary for their cooperation, but not the
information about their inner processes. Such privacy constraints are respected
by privacy preserving multi-agent planners.

A number of privacy preserving multi-agent planners have been proposed
in recent years, such as MAFS [10], FMAP [15], MADLA [19], PSM [16] and
GPPP [8]. Although all of the mentioned planners claim to be privacy-preserving,
formal proofs of such claims do not exist. The privacy of MAFS is discussed
in [10] and expanded upon in [2], proposing Secure-MAFS, a version of MAFS
with stronger privacy guarantees. These guarantees are proven for a family of
planning problems, but does not hold generally. The approach was recently gen-
eralized in the form of Macro-MAFS [7], however without strengthening the
claims about privacy.

Here, we propose a parameterized variant of strong privacy preserving plan-
ning using the definition of privacy in [10]. We show how the two extremities of
the parameter lead to strong privacy preserving, but inefficient planner; or weak
privacy preserving, but efficient planner.

This article is a reworked and extended version of the paper [17]. In this
version, we have reformulated most of the definitions and proofs to improve
readability and conciseness of the arguments. We provide tighter bounds on
privacy leakage and propose a novel example illustrating the principle of the
proposed planner. Moreover, the novel example provides a ground for novel claim
about privacy leakage in multi-agent planning in general.

2 Multi-agent Planning

The most common model for multi-agent planning is MA-Strips [3] and derived
models (such as MA-MPT [10] using multi-valued variables). We reformulate
the MA-Strips definition and we also generalize the definition to multi-valued
variables. Formally, for a set of agents A, a problem M = {Πi}|A|

i=1 is a set of
agent problems. An agent problem of agent αi ∈ A is defined as

Πi =
〈
Vi = V pub ∪ V priv

i ,Oi = Opub
i ∪ Opriv

i ∪ Oproj, sI , s�

〉
,

where Vi is a set of variables s.t. each V ∈ Vi has a finite domain dom(V), if
all variables are binary (i.e. |dom(V)| = 2), the formalism corresponds to MA-
Strips. The set of variables is partitioned into the set V pub of public variables
(with all values public), common to all agents and the set V priv

i of variables

ε-Strong Privacy Preserving Multi-agent Planning 139

private to αi (with all values private), such that V pub ∩ V priv
i = ∅. A complete

assignment over V is a state, partial assignment over V is a partial state. We
denote s[V] as the value of V in a (partial) state s and vars(s) as the set of
variables defined in s. The state sI is the initial state of the agent αi containing
only V pub and V priv

i variable. s� is a partial state representing the goal condition,
that is if for all variables V ∈ vars(s�), s�[V] = s[V], s is a goal state. Similarly,
as in [9], we require all goals to be public, as private goals can be transformed
into a public equivalent [16], i.e. vars(s�) ⊆ V pub.

The set Oi of actions comprises of a set Opriv
i of private actions of αi, a set Opub

i

of public actions of αi. A public projection of an action removes all its private
parts. The set Oproj contain public projections of other agents’ actions. Opub

i , Opriv
i ,

and Oproj are pairwise disjoint. An action is defined as a tuple a = 〈pre(a), eff(a)〉,
where pre(a) and eff(a) are partial states representing the precondition and effect
respectively. An action a is applicable in a state s if s[V] = pre(a)[V] for all
V ∈ vars(pre(a)) and the application of a in s, denoted a ◦ s, results in a state
s′ s.t. s′[V] = eff(a)[V] if V ∈ vars(eff(a)) and s′[V] = s[V] otherwise. A public
action can be defined using a mixture of public and private preconditions and
effects. A private action can be defined only over the private variables. As we
often consider the planning problem from the perspective of agent αi, we omit
the index i.

We model all “other” agents as a single agent (the adversary), as all the
agents can collude and combine their information in order to infer more. The
public part of the problem Π which can be shared with the adversary is denoted
as a public projection. The public projection of a (partial) state s is s�, restricted
only to variables in V pub, that is vars(s�) = vars(s) ∩V pub. We say that s, s′ are
publicly equivalent states if s� = s′�. The public projection of action a ∈ Opub

is a� = 〈pre(a)�, eff(a)�〉 and of action a′ ∈ Opriv is an empty action noop. The
public projection of Π is Π� =

〈
V pub, {a�|a ∈ Opub}, s�

I , s
�
�

〉
.

We define the solution to Π as follows. A sequence π = (a1, ..., ak) of actions
from O , s.t. a1 is applicable in sI = s0 and for each 1 ≤ i ≤ k, ai is applicable in
si−1 and si = ai ◦ si−1, is a local sk-plan, where sk is the resulting state. If sk is
a goal state, π is a local plan, that is a local solution to Π. A local plan contains
actions only of one agent, public, private or projected. Note that the actions in
Oproj are assumed to be of the particular agent as well.

Such local plan π does not have to be the global solution to M , as the actions
of other agents (Oproj) are used only as public projections and are missing private
preconditions and effects of other agents. The public projection of π is defined
as π� = (a�

1 , ..., a
�
k) with the noop actions omitted.

From the global perspective of M a public plan π� = (a�
1 , ..., a

�
k) is a

sequence of public projections of actions of various agents from A such that
the actions are sequentially applicable with respect to V pub starting in s�

I and
the resulting state satisfies s�

� . A public plan is αi-extensible, if by replacing a�
k′

s.t. ak′ ∈ Opub
i by the respective ak′ and adding ak′′ ∈ Opriv to required places

we obtain a local plan (solution) to Πi. According to [16], a public plan π�

αi-extensible by all αi ∈ A is a global solution to M .

140 A. Komenda et al.

The nature of MA-MPT planning allows for plans containing repeated action
sequences (in extreme, repeated infinitely many times). Such repetitions however
does not provide transformation to a state not yet visited. Therefore the length
of global meaningful plans is bounded by the number of all possible states

∏

V ∈V pub∪⋃|A|
i=1 V priv

i

|dom(V)|. (1)

We define the sets of all meaningful global and local plans as sols(M) and
sols(Π) respectively. Lengths of plans in both sets are limited by the presented
bound on meaningful plans and therefore the sets are finite.

Since an agent can be required to repeatedly produce a particular value
assignment of a variable, which is consumed (needed in precondition and changed
in effect) by an action of another agent, we have to allow for meaningful repe-
titions in sols(Π). Length of a local plan with such repetitions is however still
limited by the maximal length of its related global plan solving M . Therefore
we use the same bound on length both for plans in sols(M) and sols(Π) where
Π ∈ M . solsl(Π) will denote sets of local plans of length l; sols≤l(Π) and
sols>l(Π) denote sets of local plans of length no more than l and longer than l
respectively. Finally, seqs(Π) will denote all possible sequences of actions (incl.
non-plans) of the problem Π.

2.1 Privacy

First definition of privacy leakage quantification was proposed in [18]. It was
based on enumeration of all plans, which we used as the underlying principle
for measuring the privacy leakage in this work. However, we do not explicitly
require enumeration of the particular plans as in looser form, our bounds work
with all possible action sequences. Note that the work in [18] is also not easily
applicable to MA-Strips and MA-MPT.

The only rigorous definition of privacy for MA-Strips and MA-MPT so far
was proposed in [10] and extended in [2]. The authors present two notions, weak
and strong privacy preservation:

An algorithm is weak privacy-preserving if, during the whole run of the algo-
rithm, the agent does not openly communicate private parts of the states, private
actions and private parts of the public actions. In other words, the agent openly
communicates only the information in Π�. Even if not communicated, the adver-
sary may deduce the existence and values of private variables, preconditions and
effects from the (public) information communicated.

An algorithm is strong privacy-preserving if the adversary can deduce no
information about a private variable and its values and private precondi-
tions/effect of an action, beyond what can be deduced from the public projection
Π� and the public projection of the solution plan π�.

ε-Strong Privacy Preserving Multi-agent Planning 141

2.2 Secure Computation

In general, any function can be computed securely [1,20,21], however it is not
known how to encode the whole planning process into one function [14]. In this
contribution, we focus on more narrow problem of private set intersection (PSI),
where each agent has a private set of numbers and they want to securely compute
the intersection of their private sets while not disclosing any numbers which are
not in the intersection. The ideal PSI supposes that no information is transferred
between the agents [11].

Ideal PSI can be solved with trusted third party which receives both private
sets, computes the intersection, and sends it back to agent. As long as the third
party is honest, the computation is correct and no information leaks.

In literature (e.g., [6,11]), we can find several approaches how the ideal PSI
can be solved without trusted third party. Presented solutions are based on
several computational hardness assumptions, e.g., intractable large number fac-
torization, DiffieHellman assumption [4], etc. All these assumptions break when
an agent has access to unlimited computation power, therefore all the results
hold under the assumption that P �= NP , in other words by computational
intractability of breaking PSI.

3 ε-Strong Privacy Preserving Multi-agent Planner

Multi-agent planner fulfilling the strong privacy requirement forms the lower
bound of information exchanged between the agents. Agents do not leak any
information about their internal problems and thus their cooperation cannot be
effective [14], nevertheless, a strong privacy preserving multi-agent planner is an
important theoretical result that could lead to better understanding of privacy
preservation during multi-agent planning and consequentially also to creation of
more privacy preserving planners.

In this contribution, we present a planner that is not strong privacy pre-
serving but can be arbitrarily close to it. We focus on planning using projected
plan-space1 search [13] and thus we will define the terms in that respect. In
the following definitions and proofs we suppose that there are two semi-honest
(honest but curious) agents α− and α+. We will consider the perspective of the
agent α− trying to detect the private information of α+ for the simplicity of the
presentation, but all holds for both agents and also for a larger group of agents.
Similarly to [2], we also assume that Opriv = ∅. This assumption can be stated
WLOG as each sequence of private actions followed by a public action can be
compiled to a single public action.

Definition 1 (Public Plan Acceptance). Public plan acceptance P (π�) is
a probability known to agent α− whether a plan π� is α+-extensible.

When the algorithm starts, α− has some a priori information P 0(π�) about
acceptance of plan π� by agent α+ (e.g., 0.5 probability of acceptance of each
1 Projected plan-space contains all the solutions of the projected public problem Π�.

142 A. Komenda et al.

plan in the case when α− knows nothing about α+). At the end of execution
of the algorithm, this information changes to P ∗(π�). Obviously, every agent
knows that the solution public plan π∗ the agents agreed on is extensible and
thus it is accepted by every agent, i.e. P ∗(π∗) = 1. The difference between
the α−’s a priori information and the final information represents information
which leaked from α+ during their communication. Whether an agent is certain
about acceptance of a plan can be expressed as |1 − 2P (π�)|, normalized to an
interval 〈0, 1〉, where 0 means not knowing anything about acceptance of the
plan (P (π�) = 0.5) and 1 means certainty (P (π�) = 1 or P (π�) = 0).

Definition 2 (Leaked Information). Leaked information from perspective of
one agent during execution of a multi-agent planner leading to a solution π∗ is
a sum of changes in certainty about acceptance of the plan from the beginning
P 0(π�) to the end P ∗(π�) of planning excluding the solution plan π∗

λ =
∑

π�∈{π�|π∈sols(Π)}\{π∗}

∣∣1 − 2P ∗(π�)
∣∣ − ∣∣1 − 2P 0(π�)

∣∣ . (2)

As we do not assume the agents intentionally increase uncertainty about accep-
tance of other agents by sending invalid plans (the honest but curious agents),
the certainty about acceptance of a plan can only grow, i.e.

∣∣1 − 2P ∗(π�)
∣∣ − ∣∣1 − 2P 0(π�)

∣∣ ≥ 0, thus λ ≥ 0.

Definition of algorithm’s leaked information allows us to formally define
strong privacy of a projected plan-space planning algorithm. sec:strong-priv-pres

Proposition 1. (Strong Privacy). A planning algorithm is strong privacy
preserving if it assures λ = 0.

Proof. Any information leakage allowing deduction of private information (pre-
conditions or effects) in agent’s planning problem during planning affect proba-
bility of acceptance or rejection of plan projections by other agents as the precon-
ditions and effects are the only principle preventing of acceptance or rejection of
a sequence of actions. Therefore λ = 0 holds if and only if no information by
Definition 2 leaked.

Definition 3 (ε-Strong Privacy Preserving Planner). For given ε > 0,
an planning algorithm is ε-strong privacy preserving if it leaks acceptance or
rejection of no more than ε local plans, i.e. λ ≤ ε.

The high-level idea of our proposed planner (Algorithm1) is based on a
systematic generate-and-test principle, similar to our recent principle proposed
in [16]. Local plans π are generated in parallel by all agents and their public
projections π� are distributively tested whether there are some projections π∗

common to all agents. Since only acceptable local plans π thus public projections
π� are generated and tested, if a public projection common to all agents is
found, it is guaranteed to be a global solution [16]. Provided that the distributed

ε-Strong Privacy Preserving Multi-agent Planning 143

testing is done such that no information leaks, the only other point of possible
information leakage is from the fact that a global solution was not found for a
particular set of generated local plans. In other words, knowing α+ refused all
possible solutions in a well defined set of plans, tells α− the plans were refused
because of some private preconditions of α+. Technically, the only parts of the
algorithm, where the agents can learn something about each others’ plans is
therefore at lines 9 and 11, where all agents know that a solution was not found
for all plans generated by the iterations of the algorithm so far.

Let us assume the systematicity of the generate-and-test principle is in testing
of incrementally longer plans. The length l of the agents’ local plans grows with
each iteration of the main loop (lines 3, 4 and 13), therefore each distributed
intersection (line 9) is done for generated plans of length ≤ l. After each iteration,
which did not end at line 11, the agent α− knows that the agent α+ refuses a local
plan projection π� generated by α−. This increases the certainty about refusal
of π� and therefore increases λ. Note that such situation can be caused only by
unfulfilled private preconditions of an action of the agent α+ which prevent α+

to generate π�. This principle is known as privately dependent actions, for more
detail see [12].

The principle of iterations synchronized by length was used only for the
sake of clearer explanation. The argument however holds WLOG also for other
iterative schemes. If the length of the generated plans is not synchronized by
the iterations, all local plans of length l will be eventually generated by both
agents α+ and α−. When a solution of length l + 1 is found, α− can use the
same reasoning as in the previous paragraph to deduce α+ has some unfulfilled
private preconditions in π�.

Generally, the same line of reasoning can be even used for any systematic plan
generating algorithm, under the assumption all agents know the other agents’
systematic plan generation algorithms. There always exists a point in future
when α− knows that α+ had generated a plan, which would have be a solution
of the problem and the algorithm would have end. And the only reason, why
this had happened is that α+ has some unfulfilled private preconditions.

To fulfill the ε-privacy requirement by the Algorithm1, the systematically
generated plans, which can leak information, are supplemented by a sufficiently
large amount of randomly generated plans on line 7. As these plans are longer
than the systematic ones, with a probability proportional to the number of such
plans generated, they can shortcut finding of a solution sooner than using only
the systematic plan generation. The formula |sols>l(Πi)|(1− ε

|sols≤l(Πi)|) for the
number of the shortcut plans k will be explained later as part of the ε-privacy
proof.

In summary, all agents sequentially generate solutions to their local problems
Πi at line 5. The systematic local plans are supplemented by longer randomly
generated local plans at line 7. Then the agents create public plans by making
public projections π� of their generated solutions. Created public plans π� are
then stored in a set Φi. As the plans π are local solutions, they are αi-extensible.
Agents continuously check whether there are some plans in the intersection of

144 A. Komenda et al.

these sets from all other agents. It is important to compute the intersection
without disclosing any information about plans which do not belong to this
intersection. Plans in the intersection are guaranteed to be αi-extensible by all
agents and thus form global solutions. If at least one global solution is found in
Φ, the algorithm ends at line 11. The algorithm ends for all agents in the same
iteration, as the secure intersection is done distributively by all agents for all
agents. Therefore the termination condition at line 10 is evaluated by all agents
equally.

Algorithm 1. ε-Strong privacy preserving multi-agent planner.
1 Function SecureMAPlanner(Πi, ε) is
2 Φi ← ∅;
3 l ← 1;
4 loop
5 S ← generate all local solutions to Πi of length l;

k ← |sols>l(Πi)|(1 − ε

|sols≤l(Πi)|); ε ← ε − k;

6 S ′ ← randomly select k solutions to Πi of any length > l;
7 Φi ← Φi ∪ {π�|π ∈ S ∪ S ′};

8 Φ ← secure

(⋂
αj∈A

Φj

)
;

9 if Φ �= ∅ then
10 return Φ;
11 end
12 l ← l + 1;

13 end

14 end

The description of the planning algorithm is followed by proofs of its sound-
ness (a result of the algorithm is always a correct solution), completeness (if a
planning problem has a solution, it is returned by the algorithm) and assurance
on information leakage no more than required ε.

Theorem 1 (Soundness and Completeness). Algorithm SecureMAPlanner
is sound and complete, under the assumption that the systematic plan generation
procedure (line 5) is complete.

Proof. (Soundness) Every public plan returned by the algorithm is αi-extensible
by every agent, and thus it can be extended by all agents to a valid global solution
(Lemma 1 in [16]).

(Completeness) Since there is only finite number of different plans of length
at most l, all plans are eventually (in finite time) added to the plan set Φi

under the assumption that the underlying plan generation procedure of the local
solutions (line 5) is complete. The longest possible solution is finite by Eq. (1),
thus SecureMAPlanner() with systematic local planner ends in finite time when
M has a solution.

ε-Strong Privacy Preserving Multi-agent Planning 145

Theorem 2 (ε-Strong Privacy). Algorithm SecureMAPlanner() is ε-strong
privacy preserving when ideal PSI is used for the secure plan projection inter-
section (line 9).

Proof. The only points in the algorithm, where the agents communicate is in the
distributed intersection of the public projections (line 9) and implicitly in the
synchronized termination (lines 10–12).

To ensure privacy of the first point, both agents encode public projections of
their plans into a set of numbers using the same encoding. Then, they just need to
compare two sets of numbers representing their sets of plausible public plans, in
other words they need to compute ideal PSI [6,11]. No private information leaks
within ideal PSI, therefore no private information leaks during the distributed
intersection.

There can be, however, private information leakage, when the algorithm con-
tinues several iterations, i.e. the algorithm does not terminate (the second point).
When the agent α− finds out that some set of plans is unacceptable by the agent
α+ (which is the only reason, why the algorithm has to continue with another
iteration), private information leaks simply by growth of certainty by Definition 2.

As α+ does not know how many plans α− has generated thus how many plans
were refused, if we want to upper-bound the possible leaked information, α+ has
to consider that all possible plans of length l were generated by α− and refused
by α+, i.e. λl+1 − λl ≤ |solsl(Πi)|. Such situation reflects the maximal possible
growth in the certainty about acceptance of possible plans. In sum over all plans
lengths we get λl ≤ ∑

1≤l′≤l

|solsl′(Πi)| = |sols≤l(Πi)|.
To limit the leakage by shortcutting the solution prematurely by the randomly

selected plans, it has to happen that all agents generate by chance a global solu-
tion (line 7) sooner than systematically in its iteration by the length l. As the
best we can get is an upper-bound (the number of real solution is not known in
beforehand) on the needed number of randomly generated plans k, we can assume
that there is only one solution plan. A chance to randomly choose one particular
plan by a selection of k random plans from all solutions |sols>l| = n longer
than the current iteration length l is

(
n
k

) − (
n−1

k

)
(
n
k

) =

(
n−1
k−1

)
(
n
k

) =
k

n
=

k

|sols>l(Πi)| . (3)

The change of not selecting the solution plan is simply 1 − k
|sols>l(Πi)| , which

with the upper-bound on the certainty about acceptance of possible plans
gives us a parameterized tighter upper-bound on the leaked information λl ≤
|sols≤l(Πi)|(1 − k

|sols>l(Πi)|) ≤ sols≤l(Πi). Note that each agent has the same
chance to select the one common solution, therefore the chance is not decreased
with increasing number of agents.

By Definition 3, λ ≤ ε has to hold for ε-privacy preserving planner, that
means for the last iteration with a systematically found global plan λ|π∗| ≤ ε. As
the length of the systematic solution plan |π∗| is not know in beforehand, we have

146 A. Komenda et al.

to heuristically estimate it. As l ≤ |π∗| holds for all iterations of the algorithm,
we can modify the formula and derive the upper-bound on the number of shortcut
plans to fulfill ε:

λl ≤ ε, (4)

|sols≤l(Πi)|(1 − k

|sols>l(Πi)|) ≤ ε, (5)

|sols>l(Πi)|(1 − ε

|sols≤l(Πi)|) ≤ k. (6)

As such k is only an estimate assuming each iteration is the last one, we have
to decrease the allowed leakage in each iteration by ε ← ε − k at line 6.

The parameter ε, and consequentially also k, acts as a trade-off parameter
between security and efficiency. If the agent “randomly” selects all its plans
sols>l(Πi), then no information about refused plans can leak as it is assured
that planning finds the (at least one existing) solution in the first iteration. Thus
it would imply the strong privacy, i.e. for k = |sols>l(Πi)| we get ε ≥ 0 ≥ λ

from Eq. 5 and Definition 3. Conversely, if we plan only systematically k = 0,
the leakage upper-bounded ε ≥ |sols≤l(Πi)| ≥ λ.

In the previous cases, sols>l can be replaced by seqs>l, as there cannot be
less sequences than solutions and we are dealing with upper bounds. However,
we kept the tighter sols>l in the proof and discussion. The possible issue with
|sols>l| is that it can be hard to evaluate them efficiently, which is not prob-
lem with seqs>l. The drawback of seqs>l is their exponentially larger amount,
therefore exponential “looseness” of the bounds and a need for possibly expo-
nentially larger k.

The leakage bounds are illustrated in Fig. 1 for an example planning problem.
The problem has 2, 4, 8, 16 and 32 solutions (in the set sols≤l(Πi)) for plan
lengths l 1, 2, 3, 4 and 5 respectively. This gives us 30, 28, 24, 16 and 0 solutions
in the set sols>l(Πi), again for lengths l = 1 <, 2, 3, 4 and 5. The lines depict
the upper-bound of the leakage λ for different numbers of shortcut plans k.
For example, in the first iteration, only the two possibly refused plans can leak
information, therefore even when k = 0, i.e. without any shortcut plans, λ1 =
2. Conversely, to assure the planning process ends in the first iteration and does
not leak any information, k has to equal to the rest of plans for > l, which is
30, where maximal leakage is ensured to be 0. Based on the changing numbers
of already generated and still to be generated plans the ratio changes with the
following iterations.

The points, where the upper-bounds equals to 0, represent numbers of short-
cut plans needed to provide strong privacy (Proposition 1). The Fig. 2 depicts
the numbers k of shortcut plans for the particular iterations of the example plan-
ning problem. Although the example shows only a small and synthetic planning
problem, the principles and trends of the privacy bounds are general.

ε-Strong Privacy Preserving Multi-agent Planning 147

Fig. 1. Upper-bounds of required shortcut plans to assure leakage of the planning
algorithm for iterations of the presented example planning problem.

Fig. 2. Amounts of shortcut plans k assuring leakage of no private information, there-
fore privacy preserving run of the planning algorithm in the presented example planning
problem.

To increase efficiency of the intersections, the principle proposed in PSM
planner [16] can be used. Each agent stores generated plans in a form of planning
state machines, special version of finite state machines. An algorithm, which can
be used for secure intersection of planning state machines, was presented in [5].
In the case of different representation of public plans, more general approach of
generic secure computation can be applied [1,20,21].

148 A. Komenda et al.

4 Logistics Example

Let us consider a simple logistics scenario to demonstrate how private informa-
tion can leak for k = 0 and how it decreases with larger k values.

In this scenario, there are two transport vehicles (plane and truck) operating
in three locations (prague, brno, and ostrava). A plane can travel from prague
to brno and back, while a truck provides connection between brno and ostrava.
The goal is to transport the crown from prague to ostrava.

This problem can be expressed using MA-Strips as follows. Actions

fly(loc1, loc2) and drive(loc1, loc2)

describe movement of plane and truck respectively. Actions load(veh, loc) and
unload(veh, loc) describe loading and unloading of crown by a given vehicle at
a given location.

We define two agents Plane and Truck. The agents are defined by sets of
executable actions as follows

Plane = {
fly(prague, brno), fly(brno, prague),
load(plane, prague), load(plane, brno),
unload(plane, prague), unload(plane, brno) },

Truck = {
drive(brno, ostrava), drive(ostrava, brno),
load(truck, brno), load(truck, ostrava),
unload(truck, brno), unload(truck, ostrava) }.

The aforementioned actions are defined using binary variables at(veh, loc) ∈
{true, false} to describe possible vehicle locations and binary variables
in(crown, loc) and in(crown, veh) to describe positions of crown. A variable is
assigned true value if the fact it is describing holds. E.g. in(crown, plane) = true
represents the fact that crown is in plane. We omit action names in examples
when no confusion can arise. For example, we have the following actions:

fly(loc1, loc2) = 〈pre(.) = {at(plane, loc1) = true},
eff(.) = {at(plane, loc2) ← true,

at(plane, loc1) ← false}〉,

load(veh, loc) = 〈pre(.) = {at(veh, loc) = true, in(crown, loc) = true},
eff(.) = {in(crown, veh) ← true,

in(crown, loc) ← false}〉,
unload(veh, loc) = 〈pre(.) = {at(veh, loc) = true, in(crown, veh) = true},

eff(.) = {in(crown, loc) ← true,
in(crown, veh) ← false}〉.

ε-Strong Privacy Preserving Multi-agent Planning 149

The initial state and the goal are given as follows:

sI = {at(plane, prague) = true, at(truck, brno) = true,
in(crown, prague) = true}

s� = {in(crown, ostrava) = true}
All other variables not present in the initial state sI are false.
In our example, the only variable shared by the two agents is in(crown, brno)

and as required by vars(s�) ⊆ V pub (see Sect. 2), the goal in(crown, ostrava).
We have the following variable classification:

V pub = {in(crown, brno),
in(crown, ostrava)},

V priv
Plane = {at(plane, prague), at(plane, brno),

in(crown, prague), in(crown, plane)},
V priv
Truck = {at(truck, brno), at(truck, ostrava),

in(crown, truck)}.
The actions and their projections important for the following discussion are:

load(truck, brno) = 〈pre(.) = {in(crown, brno) = true,
in(truck, brno) = true}〉,

eff(.) = {in(crown, brno) ← false,
in(crown, truck) ← true},

load(truck, brno)� = 〈pre(.) = {in(crown, brno) = true},
eff(.) = {in(crown, brno) ← false}〉,

unload(truck, ostrava) = 〈pre(.) = {in(truck, ostrava) = true,
in(crown, truck) = true}〉,

eff(.) = {in(crown, ostrava) ← true,
in(crown, truck) ← false},

unload(truck, ostrava)� = 〈pre(.) = ∅,
eff(.) = {in(crown, ostrava) ← true }〉

All the actions arranging vehicle movements are private. Only the actions
providing package treatment at public locations (brno, ostrava) are public:

Opub
Truck = { load(truck, brno), unload(truck, brno),
load(truck, ostrava), unload(truck, ostrava) },

Opub
Plane = {load(plane, brno), unload(plane, brno)}.

The agent Plane generates possible plans using the systematic plan genera-
tion algorithm (e.g. Best-First Search) and thus it sequentially generates follow-
ing public plans:

150 A. Komenda et al.

πPlane
1 = 〈 unload(truck, ostrava) 〉, l = 1

πPlane
2 = 〈 unload(plane, brno),

unload(truck, ostrava) 〉, l = 2,
πPlane

3 = 〈 unload(truck, brno),
unload(truck, ostrava) 〉, l = 2

πPlane
4 = 〈 unload(truck, ostrava),

unload(truck, ostrava) 〉, l = 2
. . .
πPlane

n = 〈 unload(plane, brno), load(truck, brno),
unload(truck, ostrava) 〉, l = 3.

Note that any locally valid sequence of action containing action

unload(truck, ostrava)

seems to be a valid solution to the Plane agent. In this example, πPlane
n is the

first plan extensible to a global solution by both Plane and Truck generated by
the systematic planning process.

Similarly, agent Truck sequentially generates following public plans:

πTruck
1 = 〈 unload(plane, brno), load(truck, brno),

unload(truck, ostrava) 〉, l = 3,
πTruck

2 = 〈 unload(plane, brno), unload(plane, brno),
load(truck, brno), unload(truck, ostrava) 〉, l = 4,

. . .

We can see that Truck generates an extensible plan as the first one and
Plane generated equivalent solution as the n-th plan. Thus, once both agents
agree on a solution, agent Plane can try to deduce something about Truck

private information. Since all plans π
plane
1 , . . . ,πplane

4 are strictly shorter than
the accepted solution π

plane
n and they were not generated by Truck, it implies

that these plans are not acceptable by Truck, i. e. for example P ∗(πPlane
1) = 0.

More specifically, Plane can deduce following about Truck’s private information:

– The action unload(truck, ostrava) has to contain some private precondition,
otherwise πPlane

1 would be generated also by Truck before πTruck
1 , because it

is shorter.
– Private preconditions of unload(truck, ostrava) certainly depend on private

fact (possibly indirectly) generated by load(truck, brno), otherwise πPlane
2

would be generated before πTruck
1 .

In this example, we have shown how systematic generation of plans can cause
private information leakage. Let us now consider a case when both agents add
one shortcut plan after each systematically generated one, i. e. k = 1. For the
simplicity, we will consider previous sequence of plans, where πPlane

n is selected
as the shortcut plan in the first iteration for l = 1 by both agents. In such
case, the amount of leaked information is smaller by Eq. (5). If there is only one
solution πPlane

n , the leakage will be 0 and the agents would not be able to deduce

ε-Strong Privacy Preserving Multi-agent Planning 151

any private information about the other agents. If the shortcut plan πPlane
n is

added in next iteration for length l = 3, Plane can deduce that P ∗(πPlane
1) = 0,

but cannot deduce the same about other plans. Plane could deduce that Truck

accepts no plan of length 2, only once it is sure that all of them have been
systematically generated. But thanks to the adding of the shortcut plan, the
solution can be found sooner.

Obviously k = 1 decreases the leaked information only minimally. To decrease
the private information leakage significantly, k has to grow by Eq. (5) towards
|sols>l(ΠPlane)| as we showed in proof of Theorem 2.

5 Code Lock Example and General Privacy Leakage
Upper-Bound

The other example is designed such that it shows the successive leaking of infor-
mation by learning about refused sequences of the actions. There is a combina-
tion code lock and two agents. The agent α− is unlocking the lock with help of
the other agent α+, which knows the combination. The lock requires a correct
sequence of n pressed buttons reachable by α+ (each button can be pressed only
once), finished with pressing two unlock buttons, each reachable only by one
of the agents. Note that strictly speaking if only one combination is correct no
private information would leak as Definition 2 excludes the solution plan π∗. We
could modify the example such that there are more correct solution and α− is
trying to deduce all of them, however to simplify the latter discussion, we will
stick to one solution, which we assume to be secret.

This assumption is not unrealistic, as in reality the press actions would be
private, however by the requirement of privacy preserving MA-MPT planning,
all actions incl. press are public.

The binary variables of the problem are

V pub = {unlocked+, unlocked−},
V priv

α+ = {pressed0, pressed1, . . . , pressedn},
V priv

α− = ∅.
The two public unlocked variables describe whether the two agents successfully
unlocked their side of the lock. For simplicity, we assume only α+ need to enter
the correct sequence, which allows to unlock its side. The agent α− attempts to
deduce the constraints among the presses during the process. Provided that the
α− agent has similar combination as α+ the example would work symmetrically
for both agents, or even for more agents unlocking the lock in coordination.
The successfully entered steps of the combination are represented by the private
pressed variables.

In the initial state, all variables are set to false with the exception of pressed0

allowing to press the first correct button. The goal of the problem is to unlock
both sides of the lock:

sI = {pressed0 = true},
s� = {unlocked+ = true, unlocked− = true}.

152 A. Komenda et al.

The actions of the problem are the two unlocking the lock and actions repre-
senting pressing the buttons. All actions are public (following the assumption on
no private actions), however actions of α+ have private preconditions and effects
constraining only the correct unlock sequence. The action sets consist of:

Opub
α+ = {unlock+, press1, press2, . . . , pressn},

Opub
α− = {unlock−}.

The action unlock− (and its projection) has no preconditions and the sole
effect unlocked− ← true, which is required by the goal:

unlock− = unlock�
− = 〈pre(.) = ∅, eff(.) = {unlocked+ ← true}〉.

Let the unlocking sequence of button indices be described by a mapping
u(i) �→ i′ which for each step i returns next button index i′ to be pressed. Then
each button pressing actions is defined as:

pressi = 〈pre(.) = {pressedu(i)−1 = true},
eff(.) = {pressedu(i) ← true}〉.

unlock+ = 〈pre(.) = {pressedn = true},
eff(.) = {unlocked+ ← true}〉.

For an example, a n = 3 step unlocking sequence 2, 3, 1 will induce following
actions for the agent α+:

press2 = 〈pre(.) = {pressed0 = true},
eff(.) = {pressed1 ← true}〉,

press3 = 〈pre(.) = {pressed1 = true},
eff(.) = {pressed2 ← true}〉,

press1 = 〈pre(.) = {pressed2 = true},
eff(.) = {pressed3 ← true}〉.

unlock+ = 〈pre(.) = {pressed3 = true},
eff(.) = {unlocked+ ← true}〉.

The projections of all press actions have no preconditions and effects (they
are effectively noops with different action names from perspective of α−), as the
pressed variables are private. The action unlock has only its goal effect:

press�
1 , . . . , press

�
n = 〈pre(.) = ∅, eff(.) = ∅〉 = noop,

unlock�
+ = 〈pre(.) = ∅, eff(.) = {unlocked+ ← true}〉.

From perspective of α−, any sequence of α+ ending with unlock+ is legiti-
mate. On the contrary, only the correct sequence of press actions and unlock+

is valid from perspective of α+.
In each iteration l, if a solution is not found, α− eliminates all possible combi-

nations of the code of length l. These eliminations represent the private variables
pressed in form of preconditions and effects of actions of α+. Because of the

ε-Strong Privacy Preserving Multi-agent Planning 153

Fig. 3. Hypothetical upper-bounds on information leakage in the Code Lock example
problem for n = 2 without decreasing ε during the iterations by ε ← ε − k. For k = 8
the leakage λ = 0. For l ≥ 3, the leakage assumes possible longer plans of the problem
(e.g., by more then two agents) than those limited by l ≤ n.

problem formulation, the number of projected local plans of α+ from perspective
of α− are:

n1 + n2 + · · · + nl + nl+1 + · · · + nn−1 + nn,

where n is the number of press actions and l is the intermediate length of the
solution. We can bound sizes of sols≤l and sols>l using this sequence, l ≤ n
by the count of meaningful plans by Eq. 1 and an assumption on repetitions of
the press actions are allowed as α− cannot know otherwise:

|sols≤l| ≤
l∑

i=1

ni ≤ nl+1, (7)

|sols>l| ≤
n−l∑
i=1

nl+i ≤ nn+1. (8)

Without the shortcut plans k = 0, we get that nl+1 ≤ ε using Eqs. (5) and
(7). This shows the possible maximal leakage of information is exponentially
bound by the length of the plan which is bound by the number of actions in Π+.
It is not surprising though that if we want a strong privacy preserving variant
ε = 0, we need to generate exponential number of plans nn+1 in the number of
actions of the problem for the first iteration by Eqs. (6) and (8).

The exponential growth of information leakage in l in this example is illus-
trated in Fig. 3. The other exponential dependency is on the number of (press)
actions, i.e. on n.

154 A. Komenda et al.

As the Code Lock problem is designed such that there are no public depen-
dencies among the actions (with exception of the required goal conditions), it
represents a planning problem with the maximal amount of private informa-
tion and only one solution as assumed in the proof of Theorem2. Therefore the
resulting exponential bounds on leakage in l and in n hold not only for this par-
ticular planning problem, but as a general upper bound on the privacy leakage
in MA-Strips planning with n actions and k shortcut plans in l-th iteration of
the SecureMAPlanner() algorithm (by Eqs. (5), (7) and (8)):

λl ≤ nl+1(1 − k

nn+1
). (9)

6 Conclusions

In this article, we have provided a refined variant of the multi-agent planning
principle preserving privacy from our previous version of the paper [17]. The
principle of the algorithm is an application of the private set intersection (PSI)
algorithm to privacy preserving multi-agent planning using intersection of sets of
plans. As the plans are generated as extensible to a global solution provided that
all agents agree on a selection of such local plans, the soundness of the planning
approach is ensured. As we showed in [17] and in the refined proof of Theorem2
here, the intersection process can be secure in one iteration by PSI, but some
private information can leak during iterative generation of the local plans, which
is the only practical way how to solve generally intractable planning problems.
In more iterations, plans which are extensible by some agents but not extensible
by all agents can leak private information about private dependencies of actions
within the plans. In other words, if an agent says the proposed solution can be
from its perspective used as a solution to the planning problem, but it cannot
be used as a solution by another agent, the first one learns that the other one
needs to use some private actions which obviate usage (extensibility) of the plan
to a global solution. In the previous version of the algorithm, we have proposed
to dilute the plans by an sufficient amount of randomized plans, however the
number in general needed to be infinite [17]. In this variant of the algorithm,
we have shown that the privacy leakage can be arbitrarily shortcut by randomly
selected local plans and fully prevented by using all solutions (exponential in the
number of actions) already in the first iteration. Although the number of such
shortcut plans achieving strong privacy is exponential in general, in contrast to
the dilution approach, the number is finite. The results are also in agreement
with our recent results in [14]. As in the previous version of the paper, we
have illustrated the principle on the logistics example, however with new results
using the improved version of the algorithm. Newly, we have demonstrated the
principle on a synthetic planning problem, which shows also the novel privacy
leakage upper bound (Eq. 9) which holds in general.

Acknowledgments. This research was supported by the Czech Science Foundation
(no. 15-20433Y).

ε-Strong Privacy Preserving Multi-agent Planning 155

References

1. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 1–10.
ACM, New York (1988)

2. Brafman, R.I.: A privacy preserving algorithm for multi-agent planning and search.
In: Yang, Q., Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, 25–31 July 2015, pp. 1530–1536. AAAI Press (2015)

3. Brafman, R.I., Domshlak, C.: From one to many: planning for loosely coupled
multi-agent systems. In: Proceedings of the ICAPS 2008, pp. 28–35 (2008)

4. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theor.
22(6), 644–654 (1976)

5. Guanciale, R., Gurov, D., Laud, P.: Private intersection of regular languages. In:
Miri, A., Hengartner, U., Huang, N., Jøsang, A., Garćıa-Alfaro, J. (eds.) 2014
Twelfth Annual International Conference on Privacy, Security and Trust, Toronto,
ON, Canada, 23–24 July 2014, pp. 112–120. IEEE (2014). https://doi.org/10.1109/
PST.2014.6890930

6. Jarecki, S., Liu, X.: Fast secure computation of set intersection. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 418–435. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4 26

7. Maliah, S., Shani, G., Brafman, R.: Online macro generation for privacy preserv-
ing planning. In: Proceedings of the 26th International Conference on Automated
Planning and Scheduling, ICAPS 2016 (2016)

8. Maliah, S., Shani, G., Stern, R.: Collaborative privacy preserving multi-agent plan-
ning. In: Proceedings of the AAMAS 2016, pp. 1–38 (2016)

9. Nissim, R., Brafman, R.I.: Multi-agent A* for parallel and distributed systems. In:
Proceedings of AAMAS 2012, pp. 1265–1266 (2012)

10. Nissim, R., Brafman, R.I.: Distributed heuristic forward search for multi-agent
planning. JAIR 51, 293–332 (2014)

11. Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: Private set intersection
using permutation-based hashing. In: 24th USENIX Security Symposium (USENIX
Security 15), pp. 515–530. USENIX Association, Washington, D.C. (2015)

12. Štolba, M., Tožička, J., Komenda, A.: Secure multi-agent planning. In: Proceedings
of the International Workshop on PrAISe (2016)

13. Stolba, M., Tozicka, J., Komenda, A.: Secure multi-agent planning algorithms.
ECAI 2016, 1714–1715 (2016)

14. Stolba, M., Tozicka, J., Komenda, A.: The limits of strong privacy preserving multi-
agent planning. In: Proceedings of the 27th International Conference on Automated
Planning and Scheduling. ICAPS 2017 (2017). To appear

15. Torreño, A., Onaindia, E., Sapena, O.: FMAP: distributed cooperative multi-agent
planning. AI 41(2), 606–626 (2014)

16. Tožička, J., Jakub̊uv, J., Komenda, A., Pěchouček, M.: Privacy-concerned multia-
gent planning. KAIS, pp. 1–38 (2015)

17. Tozicka, J., Komenda, A., Stolba, M.: ε-strong privacy preserving multiagent plan-
ner by computational tractability. In: van den Herik, H.J., Rocha, A.P., Filipe,
J. (eds.) Proceedings of the 9th International Conference on Agents and Artifi-
cial Intelligence. ICAART 2017, vol. 1, Porto, Portugal, 24–26 February 2017, pp.
51–57. SciTePress (2017). https://doi.org/10.5220/0006176400510057

https://doi.org/10.1109/PST.2014.6890930
https://doi.org/10.1109/PST.2014.6890930
https://doi.org/10.1007/978-3-642-15317-4_26
https://doi.org/10.5220/0006176400510057

156 A. Komenda et al.

18. Van Der Krogt, R.: Quantifying privacy in multiagent planning. Multiagent Grid
Syst. 5(4), 451–469 (2009)

19. Štolba, M., Komenda, A.: Relaxation heuristics for multiagent planning. In: 24th
International Conference on Automated Planning and Scheduling (ICAPS), pp.
298–306 (2014)

20. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science, pp. 160–164. SFCS 1982. IEEE
Computer Society, Washington, DC (1982)

21. Yao, A.C.C.: How to generate and exchange secrets. In: Proceedings of the 27th
Annual Symposium on Foundations of Computer Science, SFCS 1986, pp. 162–167.
IEEE Computer Society, Washington, DC (1986)

	-Strong Privacy Preserving Multi-agent Planning
	1 Introduction
	2 Multi-agent Planning
	2.1 Privacy
	2.2 Secure Computation

	3 -Strong Privacy Preserving Multi-agent Planner
	4 Logistics Example
	5 Code Lock Example and General Privacy Leakage Upper-Bound
	6 Conclusions
	References

