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Abstract. In multi-agent path finding (MAPF) on graphs, the task is to find
paths for distinguishable agents so that each agent reaches its unique goal vertex
from the given start while collisions between agents are forbidden. A cumulative
objective function is often minimized in MAPF. The main contribution of this
paper consists in integrating independence detection technique (ID) into a
compilation-based MAPF solver that translates MAPF instances into proposi-
tional satisfiability (SAT). The independence detection technique in search-
based solvers tries to decompose a given MAPF instance into instances con-
sisting of small groups of agents with no interaction across groups. After the
decomposition phase, small instances are solved independently and the solution
of the original instance is combined from individual solutions to small instances.
The presented experimental evaluation indicates significant reduction of the size
of instances translated to the target SAT formalism and positive impact on the
overall performance of the solver.

Keywords: Multi-agent path-finding (MAPF) � Independence detection (ID)
Propositional satisfiability (SAT) � Cost optimality � Makespan optimality
Sum-of-costs optimality � SAT encodings � Path-finding on grids

1 Introduction

Multi-agent path finding (MAPF) represents a task of finding collision free paths for a
set of mobile agents where each agent is assigned unique start and goal positions [13,
19, 22, 27]. An environment with agents is often abstracted by undirected graph in the
literature [17, 36]. Agents in this abstraction are represented by items placed in vertices
of the graph while edges represent passable regions. At most one agent can be placed in
each vertex to model physical space occupancy by agents. Agents can traverse a single
edge at each time step.
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Various movement schemes exist for MAPF on graphs. Often an agent can move
into an unoccupied neighbor not entered by another agent [28] – this will be called
move-to-unoccupied variant. This variant requires at least one vertex in the graph
unoccupied to be able to perform some movements at all. Other movement schemes
include chains of agents moving simultaneously with only the leader entering the
unoccupied vertex or cases with no vacant vertex in the graph where rotations along
non-trivial cycles are allowed [32]. We base our presentation on the move-to-unoc-
cupied variant. Let us note that techniques shown in this paper are generic across all
these movement schemes.

The MAPF problem and its variants are strongly practically motivated. Applica-
tions range from navigation of multiple mobile robots [5, 8] through traffic optimization
[12, 15] to movement planning in computer games [34]. We refer the reader to various
studies such as [19, 20] for the detailed survey of applications.

1.1 Optimality in MAPF

We address optimal MAPF in which we search for paths that are optimal with respect
to a given objective. The two basic cumulative objectives studied in the literature are
sum-of-costs [19, 25] and makespan [29].

The sum-of-costs objective assumes that unit costs are assigned to move and wait
actions. The cost of plan is the sum of action costs along all the paths and over all
agents. The aim is to obtain a plan with the minimum cost.

Under the makespan objective, the aim is to obtain a plan that can be executed in
as short as possible time while each movement consumes 1 unit of time. In other words,
we need the longest path out of all the paths to be as short as possible.

As we will show later, there may be situations where the increase in the sum-of-
costs leads to a shorter makespan and vice versa.

A feasible solution of MAPF can be found in polynomial time [13, 35]. Adding any
of the discussed objectives renders the decision version of MAPF (a yes/no question if
a given MAPF has a solution of specified makespan/sum-of-costs) to be NP-complete
[16, 28, 32].

We will keep the further description around the sum-of-costs variant but it is
important to note that the presented techniques apply for the makespan variant as well.

1.2 Contributions to SAT-Based MAPF

Techniques for solving MAPF optimally include translation of the decision version into
propositional formula [10, 11]. The formula is satisfiable if and only if the instance of
MAPF is solvable for a given value of the objective function. Assuming that satisfi-
ability of such formula is a non-decreasing function of the value of objective function,
the optimum can be obtained by querying the satisfiability multiple times. A trivial
strategy of increasing the value of objective function by one turned out to be a good
choice [30] in many cases (thanks to the non-uniform difficulty of each query).
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Satisfiability of the formula can be decided by an off-the-shelf SAT solver [2, 6]
which is one of the advantages of the SAT-based approach. All advanced techniques
developed in recent SAT solvers [4] can be employed for solving MAPF in this way.

The most significant bottleneck of all existing SAT-based algorithms for MAPF is
the large size and combinatorial difficulty of the target propositional formula that grow
significantly with the increasing number of agents as well as with growing size of the
underlying graph. This kind of growth of combinatorial difficulty has already been
addressed by Standley [24] in his search-based optimal MAPF solving algorithm.
Standley described various variants of a method called independence detection that
tries to determine the smallest possible groups of agents for which paths can be found
independently of other groups.

Our contribution consists in integrating two variants of independence detection –

simple independence detection (SID) and independence detection (ID) – with MDD-
SAT – the most recent SAT-based MAPF solver [30]. As there are differences in how
the original Standley’s search-based algorithm and SAT-based approach work, we
suggested modifications to ID to be compatible with the SAT-based approach. Our new
solvers are called MDD-SAT+SID and MDD-SAT+ID following the notation of [24].
Conducted experiments demonstrate similar performance benefit as in the case of
original application of SID and ID in the search-based approach.

This paper is an extension of [31]. We describe in more detail the encoding of
MAPF to a Boolean formula. In addition to [31] we also present experimental eval-
uation of MDD-SAT+SID. The paper is organized as follows. After the formal
introduction of the MAPF problem a brief exposition of related work is done. Then, the
Boolean encoding of MAPF is presented, also the original SID and ID are recalled and
their integration with the SAT-based approach is presented. Finally, an experimental
evaluation with grids and large maps is presented.

2 MAPF Definition

An arbitrary undirected graph can be used to model the environment where agents are
moving. Let G ¼ V ;Eð Þ be such a graph where V ¼ v1; v2; . . .; vnf g is a finite set of

vertices and E� V
2

� �
is a set of edges.

The placement of agents in the environment is modeled by assigning them vertices
of the graph. Let A ¼ a1; a2; . . .; amf g be a finite set of agents. Then, an arrangement of
agents in vertices of graph G will be fully described by a location function a:A ! V ;
the interpretation is that an agent a 2 A is located in a vertex a að Þ: At most one agent
can be located in each vertex; that is a is uniquely invertible.

Definition 1 (MAPF). An instance of multi-agent path-finding problem is a quadruple
R ¼ G ¼ V ;Eð Þ;A; a0; aþ½ � where location functions a0 and aþ define the initial and
the goal arrangement of a set of agents A in G respectively. □

The dynamicity of the model assumes a discrete time divided into time steps. An
arrangement ai at the i-th time step can be transformed by a transition action which
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instantaneously moves agents in the non-colliding way to form a new arrangement
aiþ 1. The transition between ai and aiþ 1 must satisfy the following validity conditions:

(1) 8a 2 A either ai að Þ ¼ aiþ 1 að Þ or fai að Þ; aiþ 1 að Þg 2 E holds
(agents move along edges or wait at their current location),

(2) 8a 2 A ai að Þ 6¼ aiþ 1 að Þ ) a�1
i aiþ 1ðað ÞÞ ¼ ?

(agents move to vacant vertices only), and
(3) 8a; b 2 A a 6¼ b ) aiþ 1 að Þ 6¼ aiþ 1 bð Þ

(no two agents enter the same target/unique invertibility of resulting arrangement).

The task in MAPF is to transform a0 using above valid transitions to aþ .
An illustration of MAPF and its solution is depicted in Fig. 1.

Definition 2 (MAPF solution). A solution for MAPF instance R ¼ G;A; a0; aþ½ � is a
sequence of arrangements a0; a1; a2; . . .; al

� �
where al ¼ aþ and aiþ 1 is a result of

valid transition from ai for every ¼ 1; 2; . . .; l� 1. □
Makespan l is the total number of time steps until the last agent reaches its

destination. Sum-of-costs denoted n is the sum of path costs per individual agents. Each
action (including wait) of an agent before it reaches its goal has unit cost.

2.1 Makespan vs. Sum-of-Costs

There exists an instance in which all the sum-of-costs optimal solutions are not
makespan optimal. Similarly, none of the makespan optimal solution is sum-of-costs
optimal there (see Fig. 2 for illustration).

In the SAT-based optimal MAPF solver described below, a proper relation between
makespan and sum-of-costs need to be found as both objectives are bounded during
search. We need to ensure that smallest cost found under the given makespan bound is
optimal (see [30] for more detailed discussion).
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Fig. 1. An example of a MAPF instance from [31] with three agents a1, a2, and a3 (left).
A solution of the instance is shown (right).
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3 Related Work

Many other successful algorithms exist for the optimal MAPF solving. The state-of-
the-art search-based algorithms (though there is no universal winner) include in-
creasing cost tree search - ICTS [19], conflict base search - CBS [20], and improved
CBS – ICBS [7]. These algorithms excel in setups with relatively few agents on large
maps.

Another research direction is represented by methods based on reduction of the
MAPF problem to another formalism. Except the SAT as a target formalism, successful
attempts to reduce MAPF to constraint optimization problem [18], inductive logic
programming [33], and answer set programming [9] have been made. These approa-
ches (the SAT approach including) can be generally characterized by a high perfor-
mance in MAPFs with small underlying graph densely populated with agents. This is a
natural outcome of the maturity of solvers used to solve hard combinatorial problems in
the target formalism.

Recently new research directions driven by applications have been identified in the
MAPF context. For example, it is not always necessary to distinguish between indi-
vidual agents – see [14] for detailed survey.

4 SAT Encoding for Optimal Sum-of-Costs

In this paper, we follow the algorithm solving sum-of-cost optimal MAPF via reduction
to SAT presented in [30].

The basic approach in solving MAPF via SAT is to create a time expansion graph
(denoted TEG) [29]. A TEG is a directed acyclic graph (DAG). First, the set of vertices
of the underlying graph G are duplicated for all time-steps from 0 up to the given
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Fig. 2. An instance of the MAPF problem from [31] in which no makespan optimal solution is
sum-of-costs optimal and no sum-of-costs optimal solution is makespan optimal.
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bound l. Then, possible actions (move along edges or wait) are represented as directed
edges between successive time steps. Formally a TEG is defined as follows:

Definition 3 (TEG). Time expansion graph of depth l for underlying graph V ;Eð Þ is a
digraph Vl;El

� �
where Vl ¼ utjjt ¼ 0; 1; . . .; l ^ uj 2 V

n o
and El ¼ fðuuj ; utþ 1

k Þj
t ¼ 0; 1; . . .; l� 1 ^ uj; uk

� 	 2 E _ j ¼ k
� �g: □

The encoding for MAPF introduces propositional variables and constraints for a
single time-step t in order to represent any possible arrangement of agents at time
t. Given a desired makespan l, the formula represents the question of whether there is a
solution in the TEG of l time steps. The search for optimal makespan is done by
iteratively incrementing l ¼ 0; 1; 2. . .ð Þ until a satisfiable formula is obtained.

To find the optimal sum-of-costs solution, we use similar technique as with optimal
makespan solution. The sequence of decision problems is whether there exists a
solution of a given sum-of-cost n. However, encoding this decision problem is more
challenging than the makespan case, because one needs to both bound the sum-of-
costs, but also to predict how many time expansions are needed. We address this
challenge by using two key techniques described next: (1) Cardinality constraint for
bounding n and (2) Bounding the Makespan.

4.1 Cardinality Constraint for Bounding n

The SAT literature offers a technique for encoding a cardinality constraint [3, 21],
which allows calculating and bounding a numeric cost within the formula. Formally,
for a bound k 2 N and a set of propositional variables X ¼ x1; x2; . . .; xkf g the cardi-
nality constraint � k x1; x2; . . .; xkf g is satisfied iff the number of variables from the set
X that are set to TRUE is � k.

In our SAT encoding, we bound the sum-of-costs by mapping every agent’s action
to a propositional variable, and then encoding a cardinality constraint on these vari-
ables. Thus, one can use the general structure of the makespan SAT encoding (which
iterates over possible makespans), and add such a cardinality constraint on top.

4.2 Bounding the Makespan for the Sum of Costs

We compute how many time expansions (l) are needed to guarantee that if a solution
with sum-of-costs n exists then it will be found. In other words, in our encoding, the
values we give to n and l must fulfill the following requirement:

R1: all possible solutions with sum-of-costs n must be possible for a makespan of at
most l.

To find a l value that meets R1, we require the following definitions. Let n0 aið Þ be
the cost of the shortest individual path for agent ai, and let n0 ¼

P
at2A n0 aið Þ: n0 was

called the sum of individual costs (SIC) [19]. n0 is an admissible heuristic for optimal
sum-of-costs search algorithms, since n0 is a lower bound on the minimal sum-of-costs.
n0 is calculated by relaxing the problem by omitting the other agents. Similarly, we
define l0 ¼ max

at2A
n0 aið Þ: l0 is length of the longest of the shortest individual paths and
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is thus a lower bound on the minimal makespan. Finally, let D be the extra cost over
SIC (as done in [19]). That is, let D ¼ n� n0.

Proposition 1. For makespan l of any solution with sum-of-costs n, R1 holds for
l� l0 þD.

Proof Outline: The worst-case scenario, in terms of makespan, is that all the D extra
moves belong to a single agent. Given this scenario, in the worst case, D is assigned to
the agent with the largest shortest path. Thus, the resulting path of that agent would be
l0 þD; as required. □

Using Proposition 1, we can safely encode the decision problem of whether there is
a solution with sum-of-costs n by using l ¼ l0 þD time expansions, knowing that if a
solution of cost n exists then it will be found within l ¼ l0 þD time expansions. In
other words, Proposition 1 shows relation of both parameters l and n which will be
both changed by changing D. Algorithm 1 summarizes our optimal sum-of-costs
algorithm. In every iteration, l is set to l0 þD and the relevant TEGs (described
below) for the various agents are built. Next a decision problem asking whether there is
a solution with sum-of-costs n and makespan l is queried. The first iteration starts with
D ¼ 0. If such solution exists, it is returned. Otherwise n is incremented by one, D and
consequently l are modified accordingly and another iteration of SAT consulting is
activated.

Algorithm 1. SAT consult illustrating the increase in . 

MAPF-SAT (MAPF ) 
, 

while Solution not found do 

for each agent do 
   Build TEGi( ) 

end 
  Solution = Consult-SAT-Solver( ) 

if Solution not found then

end
end 
return (Solution) 

end 

This algorithm clearly terminates for solvable MAPF instances as we start seeking a
solution of n ¼ n0 D ¼ 0ð Þ and increment D (which increments n and l as well) to all
possible values. The unsolvability of an MAPF instance can be checked separately by a
polynomial-time complete sub-optimal algorithm such as PUSH-AND-ROTATE [35].
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4.3 Efficient Use of the Cardinality Constraint

The complexity of encoding a cardinality constraint depends linearly in the number of
constrained variables [21, 23]. Since each agent ai must move at least n0 aið Þ, we can
reduce the number of variables counted by the cardinality constraint by only counting
the variables corresponding to extra movements over the first n0 aið Þ movement ai
makes. We implement this by introducing a TEG for a given agent ai (labeled TEGi).

TEGi differs from TEG (Definition 3) in that it distinguishes between two types of
edges: Ei and Fi � Ei are (directed) edges whose destination is at time step � n0 aið Þ.
These are called standard edges. Fi denoted as extra edges are directed edges whose
destination is at time step � n0 aið Þ. Figure 3 shows an underlying graph for agent a1
(left) and the corresponding TEG1. Note that the optimal solution of cost 2 is denoted
by the diagonal path of the TEG. Edges that belong to Fi are those that their destination
is time step 3 (dotted lines). The key in this definition is that the cardinality constraint
would only be applied to the extra edges, that is, we will only bound the number of
extra edges (they sum up to DÞ making it more efficient. There are various possibilities
to define what happens to an agent when it reaches the goal (disappears, waits etc.). In
all cases, edges in TEGs corresponding to wait actions at the goal are not marked as
extra. Importantly, our SAT approach is robust across all these variants.

4.4 Detailed Description of the SAT Encoding

Agent ai must go from its initial position to its goal within TEGi. This simulates its
location in time in the underlying graph G. That is, the task is to find a path from a00 aið Þ
to alþ aið Þ in TEGi. The search for such a path will be encoded within the Boolean
formula. Additional constraints will be added to capture all movement constraints such
as collision avoidance etc. And, of course, we will encode the cardinality constraint
that the number of extra edges must be exactly D.

We want to ask whether a sum-of-costs solution of n exists. For this we build TEGi

for each agent ai 2 A of depth l0 þD. We use Vi to denote the set of vertices in TEGi
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Fig. 3. A TEG for an agent that needs to go from u1 to u3.
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that agent ai might occupy during the time steps. Next we introduce the Boolean
encoding (denoted BASIC-SAT) which has the following Boolean variables:

1. vtj aið Þ for every t 2 0; 1; . . .; lf g and utj 2 Vi – Boolean variable of whether agent ai
is in vertex vj at time step t.

2. Et
j;k aið Þ for every t 2 0; 1; . . .; l� 1f g and utj; u

tþ 1
k


 �
2 Ei [Fið Þ – Boolean vari-

able that model transition of agent ai from vertex vj to vk through any edge (standard
or extra) between time steps t and tþ 1 respectively.

3. Ct aið Þ for every t 2 0; 1; . . .; l� 1f g such that there exist utj 2 Vi and utþ 1
k 2 Vi

with utj; u
tþ 1
k


 �
2 Fi – Boolean variables that model cost of movements along extra

edges (from Fi) between time steps t and tþ 1.

We now introduce constraints on these variables to restrict illegal values as defined
by our variant of MAPF. Other variants may use a slightly different encoding but the
principle is the same. Let Tl ¼ 0; 1; . . .; l� 1f g: Several groups of constraints are
introduced for each agent ai 2 A as follows:

C1: If an agent appears in a vertex at a given time step, then it must follow through
exactly one adjacent edge into the next time step. This is encoded by the fol-
lowing two constraints, which are posted for every t 2 Tl and utj 2 Vi.

vtj aið Þ )
_

utj ;u
tþ 1
kð Þ2 Ei [Fið Þ E

t
j;k aið Þ ð1Þ

^
utj ;u

tþ 1
kð Þ; utj ;u

tþ 1
lð Þ2 Ei [Fið Þ^k\l

:Et
j;k aið Þ _ :Et

j;l aið Þ ð2Þ

C2: Whenever an agent occupies an edge it must also enter it before and leave it at
the next time-step. This is ensured by the following constraint introduced for

every t 2 Tl and utj; u
tþ 1
k


 �
2 Ei [Fið Þ:

Et
j;k aið Þ ) vtj aið Þ ^ vtþ 1

k aið Þ ð3Þ

C3: The target vertex of any movement except wait action must be empty. This is
ensured by the following constraint introduced for every t 2 Tl and

utj; u
tþ 1
k


 �
2 Ei [Fið Þ such that j 6¼ k:

Et
j;k aið Þ )

^
al2A^al 6¼ai^utþ 1

k 2Vl
vtþ 1
k alð Þ ð4Þ

C4: No two agents can appear in the same vertex at the same time step (although the
previous constraint ensures that an agent does not collide with an agent currently
residing in a vertex it does not prevent simultaneous entering of the same vertex
by multiple agents). That is the following constraint is added for every t 2 Tl
and pair of agents ai; al 2 A such that i 6¼ l:
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^
utj2Vi \Vl

:vtj aið Þ _ :vtj alð Þ ð5Þ

C5: Whenever an extra edge is traversed the cost needs to be accumulated. In fact,
this is the only cost that we accumulate as discussed above. This is done by the

following constraint for every t 2 Tl and extra edge utj; u
tþ 1
k


 �
2 Fi.

Et
j;k aið Þ ) Ct aið Þ ð6Þ

C6: Cardinality Constraint. Finally, the bound on the total cost needs to be
introduced. Reaching the sum-of-costs of n corresponds to traversing exactly D
extra edges from Fi. The following cardinality constrains ensures this:

� D Ct aið Þji ¼ 1; 2; . . .; n ^ t ¼ 0; 1; . . .l� 1 ^ utj; u
tþ 1
k


 �
2 Fi

n o
6¼ ;

n o
ð7Þ

The resulting Boolean formula that is a conjunction of C1 … C7 will be denoted as
FBASIC R; l;Dð Þ and is the one that is consulted by Algorithm 1.

The following proposition summarizes the correctness of our encoding.

Proposition 2. MAPF R ¼ G ¼ V ;Eð Þ;A; a0; aþð Þ has a sum-of-costs solution of n if
and only if F BASIC R; l;Dð Þ is satisfiable. Moreover, a solution of MAPF R with the
sum-of-costs of n can be extracted from the satisfying valuation of F BASIC R; l;Dð Þ by
reading its vtj aið Þ variables.
Proof: The direct consequence of the above definitions is that a valid solution of a
given MAPF R corresponds to non-conflicting paths in the TEGs of the individual
agents. These non-conflicting paths further correspond to satisfying the variable
assignment of F BASIC R; l;Dð Þ; i.e., that there are D extra edges in TEGs of depth
l ¼ l0 þD: □

As discussed in [30], the limitation of BASIC-SAT encoding is its size which is
implied by the size of the time expanded graph. To mitigate this limitation Surynek
et al. took inspiration from another successful search-based solver called increasing
cost tree search (ICTS) [19]. Vertices whose sum of distances from a00 aið Þ and alþ aið Þ
in TEGi is greater than l can never be visited by ai in any optimal solution or else ai
would not have enough time steps to reach alþ aið Þ: Omitting those vertices from TEGs
that are too far in the aforementioned sense would not compromise soundness of the
solving process but would lead to a smaller formula. In [30], this version of TEGs
where unreachable vertices are omitted is called MDD and corresponding formula is
denoted as FMDD R; l;Dð Þ. When referring to MDD-SAT solver we assume the version
with MDDs.

Using MDDs can rule out many vertices that would be normally considered in
standard time expansions. Experiments confirmed that MDDs enabled using the SAT-
based approach even for large MAPF instances for which the size of encodings without
MDD was prohibitive.
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5 Independence Detection

Our major aim is to increase performance of the SAT-based MAPF solver by reducing
the number of agents needs to be considered at once. This has been successfully done
in search based methods via a technique called independence detection.

In this section, we will describe the original method of independence detection
proposed by Standley (2010). The main idea behind this technique is that difficulty of
MAPF solving optimally grows exponentially with the number of agents. It would be
ideal, if we could divide the problem into a series of smaller sub problems, solve them
independently at low computational effort, and then combine them.

The simple approach, called simple independence detection (SID), assigns each
agent to a group so that every group consists of exactly one agent. Then, for each of
these groups, an optimal solution is found independently. Every pair of these solutions
is evaluated and if the two groups’ solutions are in conflict (that is, when collision of
agents belonging to different group occurs), the groups are merged and replanned
together. If there are no conflicting solutions, the solutions can be merged to a single
solution of the original problem. This approach can be further improved by avoiding
merging of groups.

Generally, each agent has more than one possible optimal path. However, SID
considers only one of these paths. The improvement of SID known as independence
detection (ID) is as follows. Let’s have two conflicting groups G1 and G2. First, try to
replan G1 so that the new solution has the same cost and the steps that are in conflict
with G2 are forbidden.

vertices

time

u2u1 u3 u4 u5 u2
u1 u3 u4

u5

G1 G2 G3 G1 G2 G3

Fig. 4. A schematic illustration from [31] of path replanning within the independence detection
technique. A path for the group G1 conflicted with paths of other two groups (left part). Then
path for G1 has been successfully replanned (right part).
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If no such solution is possible, try to similarly replan G2. If this is not possible,
merge G1 and G2 into a new group. In case either of the replanning was successful, that
group needs to be evaluated with every other group again. This can lead to infinite
cycle. Therefore, if two groups were already in conflict before, merge them without
trying to replan.

Algorithm 2. MAPF solving algorithm based on independence detection (ID) technique. 
Planning for groups is always done to have least number of conflicts w.r.t. conflict avoidance 
table.  

assign each agent to a group; 
plan a path for each group by A*; 
fill conflict avoidance table; 
while conflicting groups exist 
G1, G2 = conflicting groups; 
if G1, G2 not conflicted before 
 replan G1 by A* with illegal moves based on G2; 
if failed to replan 
 replan G2 by A* with illegal moves based on   ; 
endif

endif 
if no alternate paths for G1, G2

G1

merge G1 and G2; 
plan a path for new group by A*; 
endif 

update conflict avoidance table; 
end 
tgvwtp combined paths of all groups; 

G1

Standley uses ID in combination with the A* algorithm. While planning, it is
preferred to find paths that create the least possible amount of conflicts with other
groups that have already planned paths. For this purpose, the conflict avoidance table is
created (see Algorithm 2 for pseudo-code).

The table stores moves of agents in other groups. In case A* has a choice between
several nodes with the same minimal f() cost, the one with least amount of conflicts is
expanded first. This technique yields an optimal solution that has a minimal number of
conflicts with other groups. This property is useful when replanning of a group’s
solution is needed.

Both SID and ID do not solve MAPF on their own, they only divide the problem
into smaller sub-problems that are solved by any possible MAPF algorithms. Thus, ID
and SID are general frameworks, which can be executed on top of any MAPF solver.

6 Integrating SID and ID into MDD-SAT

SID can be integrated into the SAT-based framework as a top-level algorithm where
MDD-SAT merely serves as a procedure for optimal MAPF solving restricted on an
individual group. Hence, no modification of the core MDD-SAT procedure is needed.
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ID however requires modification of the original ID since in the propositional
formula it is not possible to express preference that individual paths of groups of agents
should avoid occupied positions in the conflict avoidance table. In the yes/no SAT
environment we either manage to avoid occupied positions or not while in the negative
case there is no easy tool how to control the number of conflicts.

The SAT-based version of ID works in similar way to the original version of
Standley but instead of resolving conflicts between a pair of conflicting groups G1 and
G2 it resolves conflict of group G1 with all other groups. If this attempt is successful,
G1 is independent on others and the process can continue with resolving conflicts
between remaining groups (see Fig. 4 where G1 has been made independent).

If the attempt to resolve conflict between G1 and G2 by making G1 independent
fails, the same is tried for G2. If the attempt for G2 fails too groups are merged. The
pseudo-code is shown as Algorithm 3.

In contrast to original ID we strictly require avoidance with respect to the conflict
avoidance table instead of stating it as a preference only. This is technically done by
omitting the conflicting vertices in the MDD. The SAT approach does not allow to
express a preference like in the search based algorithm. This is the reason why ID in the
SAT-based solver differs from the original one.

Algorithm 3. Independence detection in the SAT-based framework. Conflict aviodance is 
strictly required. 

assign each agent to a group; 
plan a path for each group G1,…,Gk by MDD-SAT; 
fill conflict avoidance table; 
while conflicting groups exist 
G1, G2 = conflicting groups; 
if G1, G2 not conflicted before 
replan G1 by MDD-SAT with illegal moves based on 
{G1,…,Gk}-G1; 
if failed to replan G1

replan G2 by MDD-SAT with illegal moves based on 
{G1,…,Gk}-G2; 

endif
endif 
if no alternate paths for G1, G2

merge G1 and G2; 
plan a path for new group by MDD-SAT; 

endif 
update conflict avoidance table; 

end 
return combined paths of all groups; 
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7 Experiments

We performed experimental comparison of the proposed MDD-SAT+SID and MDD-
SAT+ID solvers with other state-of-the-art solvers – namely with the previous best
SAT-based solver MDD-SAT and also with search-based algorithms ICTS and ICBS.

The MDD-SAT+SID and MDD-SAT+ID have been implemented in C++ as an
extension of an existing implementation of the MDD-SAT solver. A couple of minor
improvements have been done in the original MDD-SAT encoding – some auxiliary
propositional variables have been eliminated which reduced the size of the encoding and
consequently saved runtime while generating formulae (this improvement affects both
MDD-SAT and new MDD-SAT+SID, MDD-SAT+ID used in presented experiments).

We used Glucose 3.0 [1] in variants of MDD-SAT which is a top performing
SAT solver according to the recent SAT Competitions [4]. The complete implemen-
tation of the MDD-SAT solvers is available on-line to allow reproducibility of the
presented results: http://ktiml.mff.cuni.cz/*surynek/research/icaart2017.

ICTS and ICBS have been implemented in C#. The original implementations of
these algorithms have been used.

All the tests were run on Xeon 2 Ghz, and on Phenom II 3.6 Ghz, both with 12 Gb
of memory.

The experimental setup followed the scheme used in the literature [22] which tests
MAPF algorithms on 4-connected grids. Let us note however that all the suggested
algorithms are designed and implemented for general undirected graphs (the fact that
grids are used in the experiments is not exploited to increase efficiency of solving in
any way).

7.1 Small Grids Evaluation

The first series of experiments takes place on small square grids of sizes 8 � 8,
16 � 16, and 32 � 32 with 10% of vertices occupied by obstacles. In this setup of the
environment, we increased population of agents from 1 and observed the runtime of all
the solvers until no solver was able to solve the instance within the given time limit of
300 s (this was 20 agents for 8 � 8 grid, and 40 and 60 for 16 � 16 and 32 � 32 girds
respectively).

Ten randomly generated instances per number of agents were used. The initial
positions were generated by choosing a subset of vertices randomly. The goal
arrangement has been generated as a long random walk from the initial state following
valid moves – this ensured solvability of all the tested instances.

To be able to communicate results of experiments more easily we intuitively dis-
tinguish three different categories of instances with respect to the density of agents as
follows. The behavior of solvers is then discussed with respect to these categories:

• Low density – few interactions among agents, paths for individual agents can be
planned independently.

• Medium density – some interaction among agents are inevitable but there exist
multiple groups of agents that are independent of each other.

• High density – majority of agents are interdependent and form one large group.

Variants of Independence Detection in SAT-Based MAPF 129

http://ktiml.mff.cuni.cz/%7esurynek/research/icaart2017


The small grid experiment contains instances from all these three cases. The
hypothesis is that the SID and ID technique will be helpful in instances with medium
density of agents while ID is expected to reach benefit in higher densities of agents. We
also expect that in the case of low density of agents there will be some benefit of SID
and ID since many agents will just follow their shortest paths towards goals in such a
case. As in low and medium density cases the complexity of the formula is not
proportional to the difficulty of the instance.

Furthermore, we expect rather negative effect of using SID and ID in instances with
high density of agents. This is because of the fact that most agents will be gradually
merged into a large group while the process of merging represents an overhead in such
a case.
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Fig. 5. Results of experiments on small grid maps of sizes 8 � 8, 16 � 16, and 32 � 32.
Figures show how many instances were solved within the given runtime and sorted runtimes
(right bottom part). Clearly versions of MDD-SAT dominate in the test over search based
algorithms ICTS and ICBS except few quickly solvable cases. Moreover, MDD-SAT+ID and
MDD-SAT+SID outperforms MDD-SAT in cases with low to medium density of agents. MDD-
SAT+ID and MDD-SAT+SID exhibit similar performance while ID shows its advantage in
instances requiring more time.
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Experimental result for the small grids (see Fig. 5) confirmed the hypothesis.
MDD-SAT+SID/ID win in low to medium density of agents. For the higher density of
agents, both MDD-SAT+SID/ID tend to be eventually outperformed by the original
MDD-SAT. If SID and ID are compared then we can see that ID has more significant
benefit than SID in most cases.

7.2 Large Maps – Dragon Age

We also experimented on three structurally different large maps from Dragon Age:
Origins [26] – ost003d, den520d, and brc202d (see Fig. 6). Our choice of maps
is driven by the choice of authors in the previous literature [20, 30].

We used setup with 16 and 32 agents randomly paced agents which represents low
to medium density. Let us note that a case with high density of agents in the map of that
size is currently out of reach of any existing algorithm.

To obtain problems of various difficulties the distance of agents from initial posi-
tions to their goals has been varied in the range 8, 16, 24, …, 320.

For each distance 10 random instances were generated in which initial positions
were selected randomly and then random walk has been performed until all the agents
reach at least the given distance from its initial position.

The hypothesis for large maps is that MDD-SAT+SID/ID should dominate gen-
erally with some expected advantage of ID which in fact is the same hypothesis as in
the case of small grids because here we have only the low-medium density case.
However, as there are important structural differences between the three tested maps
which impact is hardly predictable. Intuitively, SID/ID should have been more bene-
ficial in ost003d and den520d maps since in these maps there is more room to find
alternative paths.

Results for the three Dragon Age maps are shown in Figs. 7, 8, and 9. Again the
number of instances solved in the given runtime is shown. The difficulty (runtime)
grows with the growing distance of agents from their goals in this setup.

It can be read from these results that MDD-SAT+ID tends to outperform MDD-
SAT in more difficult instances. In these instances, the interaction among agents in non-
trivial but on the other hand the interdependence among agents is tractable by ID.

ost003d den520d brc202d

Fig. 6. Illustration of large Dragon Age maps ost003d (size 194 � 194), den520d (size
257 � 256), and brc202d (size 481 � 530).
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Surprising results have been obtained for MDD-SAT+SID which performed gen-
erally worse than MDD-SAT. SID hence was unsuccessful in independence detection
enough to produce any performance benefit in MDD-SAT expect the case of very easy
instances.

The intuitive hypothesis was not confirmed completely since surprisingly MDD-
SAT is better than MDD-SAT+ID in easier instances of medium density category
usually and the performance of MDD-SAT+SID remained behind expectation. Our
initial intuitive hypothesis did estimate well the effort needed for merging groups that
eventually represents a big overhead in case of large maps. Hence, MDD-SAT+ID can
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Fig. 7. Results of experiments on Dragon Age map ost003d. MDD-SAT+ID outperforms
MDD-SAT in harder instances while MDD-SAT+SID performs worse than MDD-SAT. All
MDD-SAT versions are dominated by ICTS.
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Fig. 8. Results of experiments on Dragon Age map den520d. ID brings minor benefit in
harder instances while SID has merely a negative effect.
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show its benefit after the difficulty of the formula representing the entire MAPF
instance prevails over the difficulty of group merging.

Another surprising result was obtained in brc202d map where MDD-SAT+ID
was a very clear winner in harder instances with 32 agents.

Moreover, we cannot say that SAT-based approach represented by MDD-SAT and
MDD-SAT+SID/ID is a universal winner as there are cases where ICTS and ICBS
dominate (ost003d with 32 agents is such an example).

7.3 Discussion

It can be generally observed that ID brings worthwhile improvement to MDD-SAT
solver which by itself performs very well. The simple version of independence
detection SID provides worse benefit than ID and in large instances its effect is even
negative.

Experimental results indicate that there is a certain range of the density of agents
though not precisely determined in our evaluation in which ID is beneficial while
outside this range it cases an overhead.

The implementation of ID within the MDD-SAT+ID solver did not use any special
reasoning about what groups of agents should be merged or not. The groups were
processed in the ordering given by the original ordering of agents. We expect that more
careful reasoning about merging can bring yet more improvements.

8 Conclusion

Integration of the existing technique of independence detection (ID) into the SAT-
based approach to MAPF has been presented. Performed experimental evaluation
shows that using ID in the SAT-based approach to MAPF has a significant performance
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Fig. 9. Results of experiments on Dragon Age map brc202d. ID brings significant
improvement in harder instances with 32 agents. SID again has rather a negative effect in
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Variants of Independence Detection in SAT-Based MAPF 133



benefit. This can be especially observed in instances with medium density of agents
where interactions among agents are non-trivial but there is still chance to find suffi-
ciently many small independent groups of agents.

The new solver called MDD-SAT+ID is a combination of an existing SAT-based
MAPF solver MDD-SAT and ID. We have shown that MDD-SAT+ID is a new state-
of-the-art in the optimal SAT-based MAPF solving for the presented categories of the
MAPF problem. Moreover, the new MDD-SAT+ID performs well also with respect to
the best search based solvers like ICTS and ICBS though we cannot say that MDD-
SAT+ID is a universal winner.

The future research of the presented topic will focus on the following aspects:
(i) The classification of density of agents was intuitive only in the presented experi-
mental evaluation. Hence the immediate future work is to develop concepts for more
precise classification of the density and interaction among agents. (ii) ID is not ben-
eficial across all instances and sometimes represents an overhead. Hence, having a
more rigorous classification of the density of agents, we can develop a mechanism for
automated deciding whether to use ID or not according to the classified density of
agents. (iii) Currently we take groups of agents to be merged in the same order as they
appear in the input. A more careful consideration of which groups to merge may lead to
further performance improvements.

Acknowledgements. This paper is supported by the joint grant of the Israel Ministry of Science
and the Czech Ministry of Education Youth and Sports number 8G15027, and Charles University
under the SVV project number 260 333.

We would like thank anonymous reviewers for their constructive comments of [31] which
helped us to prepare this extended version of the paper.

References

1. Audemard, G., Simon, L.: The Glucose SAT Solver (2013). http://labri.fr/perso/lsimon/
glucose/. Accessed Oct 2016

2. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In:
Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI
2009), pp. 399–404. IJCAI (2009)

3. Bailleux, O., Boufkhad, Y.: Efficient CNF encoding of boolean cardinality constraints. In:
Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 108–122. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45193-8_8

4. Balint, A., Belov, A., Heule, M., Järvisalo, M.: SAT 2015 competition (2015). http://www.
satcompetition.org/. Accessed Oct 2016

5. van den Berg, J., Snoeyink, J., Lin, M.C., Manocha, D.: Centralized path planning for
multiple robots: optimal decoupling into sequential plans. In: Proceedings of Robotics:
Science and Systems V, University of Washington. The MIT Press (2010)

6. Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability. IOS Press,
Amsterdam (2009)

134 P. Surynek et al.

http://labri.fr/perso/lsimon/glucose/
http://labri.fr/perso/lsimon/glucose/
http://dx.doi.org/10.1007/978-3-540-45193-8_8
http://www.satcompetition.org/
http://www.satcompetition.org/


7. Boyarski, E., Felner, A., Stern, R., Sharon, G., Tolpin, D., Betzalel, O., Shimony, S.: ICBS:
improved conflict-based search algorithm for multi-agent pathfinding. In: Proceedings of the
24th International Joint Conference on Artificial Intelligence (IJCAI 2015), pp. 740–746.
IJCAI (2015)

8. Čáp, M., Novák, P., Vokřínek, J., Pěchouček, M.: Multi-agent RRT: sampling-based
cooperative pathfinding. In: International conference on Autonomous Agents and Multi-
Agent Systems (AAMAS 2013), pp. 1263–1264. IFAAMAS (2013)

9. Erdem, E., Kisa, D.G., Öztok, U., Schüller, P.: A general formal framework for pathfinding
problems with multiple agents. In: Proceedings of the 27th AAAI Conference on Artificial
Intelligence (AAAI 2013). AAAI Press (2013)

10. Huang, R., Chen, Y., Zhang, W.: A novel transition based encoding scheme for planning as
satisfiability. In: Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI
2010). AAAI Press (2010)

11. Kautz, H., Selman, B.: Unifying SAT-based and graph-based planning. In: Proceedings of
the 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), pp. 318–325.
Morgan Kaufmann (1999)

12. Kim, D., Hirayama, K., Park, G.-K.: Collision avoidance in multiple-ship situations by
distributed local search. J. Adv. Comput. Intell. Intell. Inform. (JACIII) 18(5), 839–848
(2014)

13. Kornhauser, D., Miller, G.L., Spirakis, P.G.: Coordinating pebble motion on graphs, the
diameter of permutation groups, and applications. In: Proceedings of the 25th Annual
Symposium on Foundations of Computer Science (FOCS 1984), pp. 241–250. IEEE Press
(1984)

14. Ma, H., Koenig, S., Ayanian, N., Cohen, L., Hoenig W., Kumar, T.K.S., Uras, T., Xu, H.,
Tovey, C., Sharon, G.: Overview: generalizations of multi-agent path finding to real-world
scenarios. In: IJCAI-16 Workshop on Multi-Agent Path Finding (WOMPF) (2016)

15. Michael, N., Fink, J., Kumar, V.: Cooperative manipulation and transportation with aerial
robots. Auton. Robot. 30(1), 73–86 (2011)

16. Ratner, D., Warmuth, M.K.: NxN puzzle and related relocation problems. J. Symb. Comput.
10(2), 111–138 (1990)

17. Ryan, M.R.K.: Exploiting Subgraph structure in multi-robot path planning. J. Artif. Intell.
Res. (JAIR) 31, 497–542 (2008)

18. Ryan, M.R.K.: Constraint-based multi-robot path planning. In: Proceedings ICRA 2010,
pp. 922–928. IEEE Press (2010)

19. Sharon, G., Stern, R., Goldenberg, M., Felner, A.: The increasing cost tree search for optimal
multi-agent pathfinding. Artif. Intell. 195, 470–495 (2013)

20. Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for optimal multi-
agent pathfinding. Artif. Intell. 219, 40–66 (2015)

21. Marques-Silva, J., Lynce, I.: Towards robust CNF encodings of cardinality constraints. In:
Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 483–497. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74970-7_35

22. Silver, D.: Cooperative pathfinding. In: Proceedings of the 1st Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2005), pp. 117–122. AAAI Press
(2005)

23. Sinz, C.: Towards an optimal CNF encoding of boolean cardinality constraints. In: van Beek,
P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005). https://doi.
org/10.1007/11564751_73

24. Standley, T.: Finding optimal solutions to cooperative pathfinding problems. In: Proceedings
of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010), pp. 173–178. AAAI
Press (2010)

Variants of Independence Detection in SAT-Based MAPF 135

http://dx.doi.org/10.1007/978-3-540-74970-7_35
http://dx.doi.org/10.1007/11564751_73
http://dx.doi.org/10.1007/11564751_73


25. Standley, T., Korf, R.E.: Complete algorithms for cooperative pathfinding problems. In:
Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI
2011), pp. 668–673. IJCAI (2011)

26. Sturtevant, N.R.: Benchmarks for grid-based pathfinding. IEEE Trans. Comput. Intell. AI
Games 4(2), 144–148 (2012)

27. Surynek, P.: A novel approach to path planning for multiple robots in biconnected graphs.
In: Proceedings of the 2009 IEEE International Conference on Robotics and Automation
(ICRA 2009), pp. 3613–3619. IEEE Press (2009)

28. Surynek, P.: An optimization variant of multi-robot path planning is intractable. In:
Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010),
pp. 1261–1263. AAAI Press (2010)

29. Surynek, P.: Compact representations of cooperative path-finding as SAT based on
matchings in bipartite graphs. In: Proceedings of the 26th IEEE International Conference on
Tools with Artificial Intelligence (ICTAI 2014), pp. 875–882. IEEE Computer Society
(2014)

30. Surynek, P., Felner, A., Stern, R., Boyarski, E.: Efficient SAT approach to multi-agent path
finding under the sum of costs objective. In: Proceedings of 22nd European Conference on
Artificial Intelligence (ECAI 2016), pp. 810–818. IOS Press (2016)

31. Surynek, P., Švancara, J., Felner, A., Boyarski, E.: Integration of independence detection
into SAT-based optimal multi-agent path finding: a novel SAT-based optimal MAPF solver.
In: Proceedings of the 9th International Conference on Agents and Artificial Intelligence
(ICAART 2017). SciTe Press (2017)

32. Yu, J., LaValle, S.M.: Structure and intractability of optimal multirobot path planning on
graphs. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI
2013). AAAI Press (2013)

33. Yu, J., LaValle, S.M.: Planning optimal paths for multiple robots on graphs. In: Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA 2013), pp. 3612–
3617. IEEE Press (2013)

34. Wang, K.C., Botea, A.: Fast and memory-efficient multi-agent pathfinding. In: Proceedings
of the 18th International Conference on Automated Planning and Scheduling (ICAPS 2008),
pp. 380–387. AAAI Press (2008)

35. de Wilde, B., ter Mors, A., Witteveen, C.: Push and rotate: a complete multi-robot
pathfinding algorithm. J. Artif. Intell. Res. (JAIR) 51, 443–492 (2014)

36. Wilson, R.M.: Graph puzzles, homotopy, and the alternating group. J. Comb. Theory Ser.
B 16, 86–96 (1974)

136 P. Surynek et al.


	Variants of Independence Detection in SAT-Based Optimal Multi-agent Path Finding
	Abstract
	1 Introduction
	1.1 Optimality in MAPF
	1.2 Contributions to SAT-Based MAPF

	2 MAPF Definition
	2.1 Makespan vs. Sum-of-Costs

	3 Related Work
	4 SAT Encoding for Optimal Sum-of-Costs
	4.1 Cardinality Constraint for Bounding {{\varvec \upxi}} 
	4.2 Bounding the Makespan for the Sum of Costs
	4.3 Efficient Use of the Cardinality Constraint
	4.4 Detailed Description of the SAT Encoding

	5 Independence Detection
	6 Integrating SID and ID into MDD-SAT
	7 Experiments
	7.1 Small Grids Evaluation
	7.2 Large Maps – Dragon Age
	7.3 Discussion

	8 Conclusion
	Acknowledgements
	References




