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Abstract. Semantic word embeddings have shown to cluster in space
based on linguistic similarities that are quantifiably captured using sim-
ple vector algebra. Recently, methods for learning distributed word vec-
tors have progressively empowered neural language models to compute
compositional vector representations for phrases of variable length. How-
ever, they remain limited in expressing more generic relatedness between
instances of a larger and non-uniform sized body-of-text. A recent study
proposed a formulation that combines a word vector set of variable cardi-
nality to represent a verse, with an iterative distance metric to evaluate
similarity in pairs of non-conforming verse matrices. In this work, we
expand on this sentence abstraction and apply it to a dialogue text pas-
sage that is prescribed in a playscript and uttered by an actor. In contrast
to baselines characterized by a bag of features, our model preserves word
order and is more sustainable in performing semantic matching at any
of a dialogue, act, and play levels. To validate our framework for train-
ing word vectors, we analyzed the clustering of the complete play set
of Shakespeare by exploring multidimensional scaling for visualization,
and experimented with playscript searches of both contiguous and out-
of-order parts of dialogues. We report robust results that support our
intuition for measuring play-to-play and dialogue-to-play similarity.

1 Introduction

The attraction of using vector spaces for analyzing natural language semantics,
stems primarily from providing an instinctive relation mechanism by subscribing
to lexical distance and similarity concepts. In a large corpora of text, the struc-
ture of a semantic space is created by evaluating the various contexts in which
words occur. Thus leading to distributional models of word meanings with the
underlying assertion that words who transpire in similar contexts tend to have
similar interpretations [26]. Distributed words, also known as word embeddings,
are each represented with a dense, low-dimensional real-valued vector, and fol-
low efficient similarity calculations directly from the known Vector Space Model
[22]. Word vectors have been widely used as features in a diverse set of compu-
tational linguistic tasks, including information retrieval (IR) [17], parsing [24],
named entity recognition [10], and question answering [12].
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In recent years, neural network architectures have inspired the deep learning
of word embeddings from large vocabularies to avoid a manual labor-intensive
design of features. The work by Bengio et al. [4] introduced a statistical language
model formulated by the conditional probability of the next word given all its
preceding words in a sequence, or a context. However, the time complexity of
the neural model renders the scheme inefficient due to the non-linear hidden
layer. The succeeding Word2Vec [18] and GloVe [20] methods preserve the prob-
abilistic hypotheses founded in Bengio et al. [4] approach, and further eliminate
the hyperbolic tangent layer entirely, thus becoming more effective and feasible
tools for language analysis. Notably, these methods expand on the input con-
text window to include the words that both precede and follow the target word.
Word embeddings are typically constructed by way of minimizing the distance
between words of similar contexts, and encode various simple lexical relations as
offsets in vector space. Our work investigates the linguistic structure in raw text,
and explores clustering and search tasks using Word2Vec to train the underlying
word representations.

Fig. 1. Framework overview: on the left, tokens and context from a text corpus are used
to train word vectors. A collection of word vectors is constructed to represent word-
for-word the source text of every playscript. Word vectors are first row bound into a
matrix to represent an actor specific or simultaneous dialogue. Then, dialogue matrices
are concatenated into act matrices that are further coalesced into a hierarchical play
matrix. We run all-play-pairs and all-query-play-pairs similarity process on matrices
of a non-uniform row count, and generate a distance matrix that we use for cluster
analysis and search ranking, respectively.

Applying unsupervised learning [8] of distributed word embeddings to a
broader set of semantic tasks has not yet been fully established and remains
an active research to date. In their recent work, Fu et al. (2014) utilize word
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embeddings to discover hypernym-hyponym type of linguistic relations. Not-
ing that offsets of word pairs distribute into structured clusters, they modeled
fine-grained relations by estimating projection matrices that map words to their
respective hypernyms, and report a reasonable test F1-score of 73.74%. Socher
et al. (2013) proposed a recursive neural network to compute distributed vector
representations for phrases and sentences of variable length. Their model out-
performs state-of-the-art baselines on both sentiment classification and accuracy
metrics, however, its supervised method requires extensive manual labeling and
makes scaling to larger sized text non trivial. A representation more rooted in a
convolutional neural architecture [15], produces a feature map for each possible
window in a sentence, and follows with a max-over-time pooling [6] to capture the
most important features. Pooling has the apparent benefit of naturally adapt-
ing to variable length sentences. At the higher document level, Le and Mikolov
[16] introduced a paragraph vector extension to the learning framework of word
vectors. Given their different dimensionality, paragraph and word vectors are
concatenated to yield fixed sized features, however, unique paragraph vectors
constrain context sharing across the document.

For a composition of words, most of the techniques discussed tend to reshape
the varying dimensionality of input sentences into uniform feature vectors.
Rather, our implementation retains the word vectors as distinct rows in a matrix
form to construct any of the dialogue, act, or play data structures for perform-
ing our set of linguistic tasks over a collection of scripts. The main contribution
of our work is a framework (Fig. 1) with a lexical representation that abides
word-for-word by the corpus source sequence, to facilitate a generic evaluation
of relationships among entities of non-uniform text size. This work extends a
recent study [5] by issuing responses to keyphrase queries that not only identify
the act and scene enumerations inside a script, but in addition single out the
corresponding actor names paired with the enclosed dialogue text-sequence. The
rest of this paper is organized as follows. In Sect. 2, we briefly review the neural
models to found Word2Vec, and proceed with motivating our choice for a dia-
logue matrix representation that leads to our act and play hierarchies. Section 3
derives our play similarity measure as it applies to a pair of non-conforming con-
catenations of dialogue embeddings, whereas Sect. 4 profiles the compiled format
of the Shakespeare play-set corpus we used for evaluation. We then present our
methodology for analyzing clusters of Shakespeare genres and ranking playscript
searches of unsolicited keywords, and report extensive quantitative results of
our experiments, in Sect. 5. We conclude with a discussion and future prospect
remarks in Sect. 6.

2 Embedding Hierarchy

In Word2Vec, Mikolov et al. (2013a) proposed a shallow neural-network struc-
ture for learning useful word embeddings to support predictions within a local
bi-directional context-window. Both the skip-gram and continuous bag-of-words
(CBOW) models offer a simple single-layer architecture based on the inner prod-
uct between a pair of word vectors. In the skip-gram version the objective is to
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predict the not necessarily immediate context words given the target word, and
conversely, CBOW estimates the target word based on its neighboring context.
As a context window scans over the corpus, the models attempt to maximize
the log probability of the generated objective function, based on their respec-
tive multiple and single output layers, and training word vectors proceeds in
a stochastic manner using back propagation. To improve upon accuracy and
training time, Mikolov et al. (2013b) introduced both randomly discarding of
frequent words that exceed a prescribed count threshold, and the concept of
negative sampling that measures how well a word pairs with its context drawn
from a noise distribution of a small sample of tokens. Empirically, neural model
performance shown mainly governed by tunable parameters, including the word
vector dimension, d, the symmetric context-window size, cw, and the number
of negative samples, sn. Overall, skip-gram works well with a small amount of
training data, while CBOW is several times faster to train.

The corpus we used for our study comprises a set of tens of playscripts and
to train word embeddings, we first flattened the entire corpus into a linear array
of dialogue text passages. We then proceeded to construct our basic data struc-
tures that culminate in an effective hierarchical representation of a play object,
which is perceived nameless across subsequent clustering and search analyses.
Let w(k) ∈ R

d be the d-dimensional word vector corresponding to the k-th word
in a dialogue. A dialogue text sequence S of length n is represented as a matrix

S = w(1) ⊕ w(2) ⊕ . . . ⊕ w(n), (1)

where ⊕ is a row-wise binding operator and S ∈ R
n×d. S is thus regarded

as a vector set and rows of S are considered atomic. To index a word vector
in a dialogue, we use the notation sk. Similarly, a play act A of m dialogues
becomes a concatenation of dialogue matrices, A = S(1) ⊕S(2) . . .⊕S(m), where
A ∈ R

ra×d and ra =
∑m

j=1 |S(j)|, and a play P comprises l act matrices, P =

A(1) ⊕ A(2) . . . ⊕ A(l), where P ∈ R
rp×d and rp =

∑l
i=1 r

(i)
a . Respectively, aj

itemizes a dialogue matrix in an act, and pi enumerates an act matrix in a play.
Equation 2 provides an alternate matrix notation for each a dialogue, act, and
play constructs.
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. (2)

The length of a dialogue, |S(j)|, and the number of dialogues per act, |A(i)|,
are varying parameters that we track and keep in a play map for traversing the
play hierarchy. For play similarity computations, we often iterate a play matrix
and access the entire collection of word vectors. Conveniently, we use a three
dimensional indexing scheme, pijk, where each of i, j, and k points to an act
matrix, dialogue matrix, and word vector, respectively. Space complexity for
play embeddings is linear, O(lmn), and for a vocabulary that permits storing
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a 16-bit token enumeration instead, memory area required is thus reduced by a
half. We further denote the corpus play set T = {P (1), P (2), . . . , P (N)}, where
N , or cardinality |T |, is the number of plays.

3 Play Similarity

Measuring similarity and relatedness between distributed terms is an important
problem in lexical semantics [1]. Recently, the process of learning word embed-
dings transpired compelling linguistic regularities by simply probing the linear
difference between pairs of word vectors. This evaluation scheme exposes rela-
tions that are adequately distributed in a multi-clustering representation [9].
However, a single offset term is insufficient to assess similarity between a pair of
plays represented by non-conforming matrices, each potentially retaining many
thousands of word vectors. For evaluating semantic closeness of a pair of plays,
p(u) and p(v), we explored a similarity concept that expands on the Chebychev
matrix distance [5] and is defined by

d(u, v) =
1

∣
∣p(u)

∣
∣

∑

xyz

{

max
ijk

(
sim(p(u)xyz, p

(v)
ijk)

)}

, (3)

where |p(u)| is the play cardinality that amounts to the total number of dis-
tributed word vectors for representing the play, and |p(u)| �= |p(v)|. Whereas
sim() is a similarity function that operates on two word vectors and takes either
a Euclidean or an angle form. We chose cosine similarity [2] that performs an
inner product on a pair of normalized vectors g and h, g·hT

‖g‖2‖h‖2
, and returns

a scalar value as a measure of proximity. The time complexity of the distance
algorithm is roughly quadratic, as for each word vector in play p(u), we find the
closest word vector in play p(v), and then calculate the mean of all the closest
distances derived formerly.

In our system, all possible pairs of the corpus playscripts, T , are evaluated
for similarity in the context of a |T |-dimensional squared distance-matrix, D.
Elements of the distance matrix are considered directional and hence imply
d(u, v) �= d(v, u). Matrix D facilitates unsupervised learning for clustering plays
that apart from knowing their individual representations, they are perceived as a
collection of unlabeled objects. Following an identical vein, as the distance metric
provided by Eq. 3 is generic and assumes opaque matrix pairs, our framework
naturally extends the semantic distance intuition to express a query-play type of
relations for conducting a search. A query, q, comprises an unsolicited keyphrase
and as such abides by our dialogue matrix formulation, S. The distance d(q, u),
where u ∈ {1, 2, . . . , |T |}, thus conveys a distinct relevancy measure for ranking
the search of a query in each of the corpus plays contained in collection T . Our
system reports back search results as a table of sorted distances paired with the
play enumeration [7].
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4 Shakespeare Corpus

We evaluated the performance of our model on playscripts written by William
Shakespeare that we acquired online from the publicly available repository pro-
vided by Project Gutenberg [23]. The project cites the complete work of Shake-
speare and comprises both plays and poems. Among the editions offered, we
chose the plain-text eBook version that is distributed in a single file with instruc-
tive header separators between plays. Plays written by William Shakespeare are
often divided into three major genres and include comedy, history, and tragedy
type of content, as Table 1 lists the play names associated with each of the genre
partitions. Our study pertains to mining text of a traditional playscript format,
and thus excludes poetry type compositions by Shakespeare, such as the renown
collection of 154 sonnets.

Table 1. List of Shakespeare play names classified by their respective genres.

Comedy History Tragedy

All’s Well That Ends Well Henry IV, part 1 Antony and Cleopatra

As You Like It Henry IV, part 2 Coriolanus

The Comedy of Errors Henry V Hamlet

Cymbeline Henry VI, part 1 Julius Caesar

Love’s Labours Lost Henry VI, part 2 King Lear

Measure for Measure Henry VI, part 3 Macbeth

The Merry Wives of Windsor Henry VIII Othello

The Merchant of Venice King John Romeo and Juliet

A Midsummer Night’s Dream Richard II Timon of Athens

Much Ado About Nothing Richard III Titus Andronicus

Pericles, Prince of Tyre

Taming of the Shrew

The Tempest

Troilus and Cressida

Twelfth Night

Two Gentlemen of Verona

Winter’s Tale

The Shakespeare dataset consists of 37 full-length titles, as 17, 10, and 10
plays subscribe to comedy, history, and tragedy genre groups, respectively. Every
Shakespeare playscript contains a section header labeled dramatis personae, per-
sons of the drama, that lists the main characters of the play. However, this list is
often incomplete, as there are many background and offstage roles that emerge as
the storytelling evolves. For our work, we have scanned each playscript from start
to end and manually extracted a complete list of all the names of active actors in
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Fig. 2. Actor distribution across the entire Shakespeare play suite.

a play, and used it as a search index for binding a dialogue to an actor. In total,
the Shakespeare corpus incorporates 1,352 distinct characters and Fig. 2 provides
visualization of actor distribution across the entire play suite. Uniformly, every
Shakespeare play is divided into five acts, as each act is composed of one or more
scenes. For a scene, the playscript contains a brief header description of location
and time of day, and may follow by appearance directions such as characters
entering and exiting the stage. Successively, the script presents a chronology of
dialouge text passages, each identified with a single or group of characters. A
dialogue is often a short text sequence, but may also comprise a paragraph of
several sentences. The Shakespeare corpus combines a total of 749 scenes and
30,473 dialogues, and visualization of per-act stacked distribution of scenes and
dialogues across all the plays is outlined in Figs. 3 and 4, respectively. Table 2 pro-
vides complementary summarizations of actors-per-play, and aggregations over
acts for scenes-per-play, and dialogues-per-play.

To derive our word vectors, we first tokenized and lowercased the dialogue text
passages of the entire play suite, removed all punctuation marks excluding the
hyphen, and have retained stop words of Old English that dates back to the Shake-
speare era of the 17th century. The corpus has a little under two million unfiltered
symbols with a vocabulary of 24,747 unique tokens to train (Table 2). Notably,
most unsolicited tokens are of a low frequency term with only 22 symbols exceed-
ing 100 incidents. The mean frequency term is 56, and there are 196 tokens, under
one percentage point of the vocabulary size, that occur only once in the dataset.
In Fig. 5, we show our word cloud rendition using R [21] that depicts the top 100
frequent tokens in a linear dialogue collection extracted from the Shakespeare
playscript suit. As anticipated, words of relational connotations like ‘thou’, ‘thy’,
and ‘thee’, or of a romantic association such as ‘good’ and ‘love’, and monarchy
related ‘lord’ and ‘king’ are of the highest occurrence term.



A Hierarchical Playscript Representation of Distributed Words 89

Fig. 3. Per-act stacked scene distribution across the entire Shakespeare play suite.

Fig. 4. Per-act stacked dialogue distribution across the entire Shakespeare play suite.

Dialogue text passages are regularly preceded in the playscript with a pattern
consisting of an uppercased character name that is followed by a period. We
note that this pattern remains verbatim and excluded from tokenization, and
internally we retain a dialogue data structure as a record pair of the actor name
and his or her corresponding text sequence. This lets us at any time respond to
search queries with both a playscript location that comprises the act and scene
IDs, and in addition provide the respective actor name. In addition, dialogues
paired with multiple actors are fairly regular in Shakespeare plascripts, including
the common appearances of LORDS, SERVANTS, ALL, and CHORUS, and
both our actor index and representation abide by this simultaneous rule.
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Fig. 5. caption A word cloud rendition of the top 100 frequent tokens as they appear
in a linear dialogue collection extracted from the full set of Shakespeare playscripts.
Font size is proportional to the number of word occurrences in the corpus.

To construct a context window, we randomly select an unlabeled play enu-
meration in the [1–37] range, and traverse our hierarchy top-to-bottom by arbi-
trarily sampling act and dialogue indices that are confined to the limits set by
the singled out playscript. In our implementation, running dialogue indices cross
scene boundaries and are presumed continuous throughout a given play act. In
the text passage of the chosen dialogue, a random target-word position is used
to extract from left and right context words that are delimited by the dialogue
start and end words. Ultimately, one of our system goals is to discover semantic
relations that closely align learned play clusters with the manually-prescribed
classified genres listed in Table 1.

5 Empirical Evaluation

Previously, we discussed vector embedding techniques, such as Word2Vec [18]
and GloVe [20], and their role to transform natural language words into a seman-
tic vector space. In this section, we proceed to quantitatively evaluate the intrin-
sic quality of the produced set of latent vector representations, and analyze their
impact on the performance of our unsupervised learning tasks that comprise
play clustering and search. As an aid to tune our system level performance,
we explored varying some of the hyperparameters designed to control the neural
models incorporated in the word embedding methods. In practice, we have imple-
mented our own Word2Vec technique natively in R [21] for better integration
with our software framework. Across all of our experiments, we trained word vec-
tors employing mini-batch stochastic gradient descent (SGD) with an annealed
learning rate, and semantic similarity results we report on both play-to-play and
dialogue-to-play relations presume anonymous plays.
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Table 2. Summarizations of play properties including actors-per-play, aggregations
over acts for scenes-per-play and dialogues-per-play, and at a corpus level the total of
unsolicited and unique tokens.

Actors

Min Max Mean Total

16 168 36.5 1,352

Scenes

Min Max Mean Total

9 42 20.2 749

Dialogues

Min Max Mean Total

499 1,175 823.6 30,473

Tokens

Unsolicited Unique

1,999,034 24,747

5.1 Experimental Setup

The raw text of Shakespeare playscripts [23] underwent a data cleanup preprocess
to decompose hyphenated word compounds, properly uppercase all instances of
actor declarations, and introduce a more definite separation symbol between
an actor ID and the succeeding dialogue text-sequence. We then tokenized the
corpus using the R tokenizer [21] and built a maximal vocabulary V of size
|V | = 24, 747. Each word in this sparse 1-of-|V | encoding is represented as a
one-hot vector ∈ R

|V |×1, with all its components zeroed out and a single one
set at the index of the word in the vocabulary, that is further mapped onto a
lower-dimensional semantic vector-space. Projecting onto the denser formulation
transpires at the stage immediately preceding the hidden layer of the neural
models that underlie the embedding technique.

In the absence of a large supervised training set of word vectors, the use of
pre-trained word vectors obtained from an unsupervised neural model became a
favorable practice to boost system performance [6,12,15]. While proven useful
for word analogy and multi-class classification tasks, clustering and search over a
rather unique dataset requires however randomly initialized word-vectors. Hence
our model generates distinct input and output sets of word vectors, W and
W̃ , that only differ as a result of their random initialization. To help reduce
overfitting and noise, we used their sum, W + W̃ , as our final vectors and that
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Fig. 6. Flattened play hierarchy into a single linear matrix of word vectors w(k) ∈ R
d.

Showing distribution of matrix row count across the entire Shakespeare play suite.

typically yields a small performance gain. To better assess the space complexity
of our play representation made of the trained word embeddings, Fig. 6 provides
a visual interpretation of a flattened play hierarchy, outlined as a single linear
matrix with up to several tens-of-thousands rows of word vectors, and shown
distributed across the entire Shakespeare play suite.

Recent study by Baroni et al. [3] alluded to neural word-embedding mod-
els that consistently outperform the more traditional count-based distributional
methods on many semantic matching tasks and by a fair margin. Furthermore,
much of the achieved performance gains cited are mostly attributed to a system
design choice of the configured hyperparameters. Motivated by these results,
we evaluated task performance comparing distinct play hierarchies generated by
each skip-gram and CBOW, and choose negative sampling that typically works
better than hierarchical softmax [19]. For the learning hyperparameters, there
seems no single selection for an optimal word-vector dimension, d, as it tends
to be highly task dependent and varies from 25 for semantic classification [24]
up to 300 for word analogy [18]. Rather, we set d = 10 and traded-off word vector
dimension to attain more tractable computation in building the distance matrix
that is inherently of a quadratic time complexity, O(|T |2). Whereas, to better
assess the impact of the context window on our system performance, we varied
discretely its size cw = {5, 15, 25, 50}, in a wide range of word counts. Evidently,
Word2Vec performance tends to decrease as the number of negative samples
increases beyond about ten [20], thereby we used sn = 10. For our mini-batch
SGD to train word vectors, we used a batch size of 25 and an initial learning rate
α = 0.1, and updated parameters after each window. The number of epochs we
ran in our experiments topped at 10,000, and is determined by both the chosen
neural model and context window size, cw.
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5.2 Experimental Results

We present play clustering results of our own trained Shakespeare corpus at
both the genre component level and for the entire suite of |T | = 37 plays. To
visualize genre based clusters, we used Multidimensional Scaling (MDS) [11,25]
that extracts patterns of semantic proximities from our play distance-matrix
representation, D. The distance matrix is composed of a set of pairwise play-
similarity values with O(|T |2) scaling that MDS further compiles and projects
onto an embedding p-dimensional Euclidean-space. This mapping is intended to
faithfully preserve the clustering structure of the original distance data-points,
and often, data visualization quality of clusters is directly proportional to the
ratio p

|T | . In our experiments, we consistently rendered similarity measures of
play pairs onto a two-dimensional coordinate frame to inspect and analyze for-
mations of genre-based play clustering.

In Fig. 7, we provide baseline visualization of MDS applied to our play dis-
tance matrices that represent each of the genre components of comedy, history,
and tragedy with dimensionality |T | = {17, 10, 10}, respectively. For this exper-
iment, we used the CBOW neural model to train word vectors, as hyperparam-
eters were uniformly set to their defaults, using 5 words for the context window
size, cw. The comedy collection shows most of its plays semantically closely
related, with the exception of A Midsummer Night’s Dream as an outlier with
a fair distance apart. Whereas the history genre class of ten play samples has
eight of its members arranged as immediate neighbors, the position of Henry
VIII slightly disjoint, and the first part of Henry IV noticeably apart. On the
other hand, the tragedy genre selection formed two distinct adjacent clusters of
five and three plays, respectively, as the titles Antony and Cleopatra and Timon
of Athens are notably detached.

A much broader interest of our work underscores the cluster analysis of a
single distance matrix with dimensionality |T | = 37 that represents the entire
Shakespeare play suite. Through this evaluation, our main objective is to predict
unsupervised play clustering and assess its matching to the Shakespeare formal

(a) Comedy. (b) History. (c) Tragedy.

Fig. 7. Visualization of play distance matrices using Multidimensional Scaling. Repre-
senting the Shakespeare genres of comedy, history, and tragedy each with 17, 10, and
10 plays, respectively.
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Table 3. Visualization of clustering the entire Shakespeare play suite using Multidi-
mensional Scaling, as each play is assigned its formal genre-subset legend post project-
ing onto the displayable embedding space. Shown as a function of a non-descending
context window-size, cw, for both the skip-gram and CBOW neural models.

Skip-gram

cw = 5 cw = 15 cw = 25 cw = 50

CBOW

cw = 5 cw = 15 cw = 25 cw = 50

genre subdivisions (Table 1). Table 3 shows the clustering produced by applying
MDS to the single matrix that captures all-play-pairs semantic similarities, as
each play is assigned its formal genre-subset legend post projecting onto the
displayable embedding space. In these experiments, we compared unique word-
vector sets generated by each skip-gram and CBOW, as we stepped over the
fairly large extent of discrete values prescribed for the context window size,
cw. Expanding the context window scope has a rather mild impact on cluster
construction with word vectors trained by the CBOW neural model, noting
that for cw = 25, clusters are shown shifted upwards as the mapping onto the
history genre gave rise to one outlier, the Henry V play, at the bottom right
corner of the plot area. However for skip-gram, group formations are considerably
susceptible and affected by even a moderate change of cw. Furthermore, the play
partitions we generated under CBOW training persistently resemble the official
subdivision of Shakespeare genre collections, although for visualization in a 2D
embedding space, the comedy and history sets do overlap each other. The impact
of the neural model used on clustering playscripts largely concurs with the results
obtained using an orthogonal bible book-suite [5].

In our play search experiments, we explored three types of keyphrase queries
including fixed dialogue text-passages drawn from a known play and act,
reordered words of random partial dialogues distributed uniformly in each of
the plays of the Shakespeare suite, and randomly selected tokens from the cor-
pus vocabulary composed into a set of keywords. Every search is preceded by
converting the query composition into a matrix of word vectors and then pair-
ing the query matrix with each of the play hierarchies to compute similarity
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distances. Thus resulting in a process of linear time complexity, O(|T |). Unless
otherwise noted, for the search experiments we applied default hyperparameters
to CBOW-based trained word-vectors.

Table 4. Search queries of fixed dialogue text-sequences from known play origins.

Play Actor Search Query

A Midsummer
Night’s Dream

HIPPOLYTA bent in heaven shall behold
the night

Much Ado About
Nothing

HERO says the prince and my new
trothed lord

King John BASTARD bragging horror so shall
inferior eyes

Hamlet QUEEN did he receive you well

Macbeth MACBETH our will became the servant
to defect

In Table 4, we list search queries of fixed dialogue text-passages and cor-
respondingly enumerate their play origins and bound actors. Overall, for each
of the five dialogues searched the predicted play title matched the expected
label and was ranked highest with a score of 1.0. King John appeared to be
a single source play for its keyphrase as the rest of the plays scored fairly low
with a mean of 0.27. However, not surprisingly the search of the remaining four
queries uncovered additional unlisted plays that equally claimed a lead score,
as keyphrase words either extend within an act or over acts non-adjacently and
would still rank high for relevance in the context of a play search. For instance,
the Twelfth Night play scored high on the keyphrase from the play of Hamlet
with keywords split apart among the first three acts, and similarly Cymbeline
ranked high for the dialogue text passage from Macbeth, as keyword groups
appear in each of the first and fifth acts. Figure 8 provides visualization to our
fixed-dialogue search results in the form of a depleted confusion matrix ∈ R

37×5,
with actual and predicted plays listed at the bottom and to the left of the grid,
respectively.

In the second search experiment, we selected from each of the Shakespeare
plays five random samples of partial dialogues, each with eight unordered context
words. We ran a total of 5 × 37 = 185 search episodes and constructed a search
matrix by computing all directional pairs of query-play distances, and then aver-
aged the score for multiple queries per play. In Fig. 9, we show our results for the
random sub-dialogue search and demonstrate consistent top ranking for when
the source play of the queries matches the predicted play along the diagonal of
the fully populated confusion-matrix ∈ R

37×37.
Our third task deployed cumulatively a total of 200 searches using a query

keyphrase that is a composite of randomly selected tokens from our entire vocab-
ulary, and thus implies a weak contextual relation to any of the Shakespeare



96 A. Bleiweiss

Fig. 8. Visualization of our fixed dialogue search results provided in the form of a
depleted confusion matrix ∈ R

37×5.

Fig. 9. Visualization of our randomly reordered sub-dialogue search results provided
in the form of a fully populated confusion-matrix ∈ R

37×37.

plays. Distributed non uniformly, our token based keyphrases are evidently
biased towards affiliation with plays of the largest content. Figure 10 shows non-
zero query allocations that occupy 36 out of 37 plays, excluding the Comedy of
Errors title. As a preprocess step, we iterated over the extended search matrix
of dimensionality (37 × 200) and identified the play that is closest to a given
query. We followed by averaging the distances in the case of multiple queries per
play, and ended up with a reduced search matrix ∈ R

37×36. Figure 11 shows the
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Fig. 10. Distribution of queries in random token search, presented across 36 Shake-
speare titles. The larger the playscript content, the higher the query count.

Fig. 11. Visualization of our random token search results provided in the form of a
reduced dimensionality confusion-matrix ∈ R

37×36.

results of random token search as the straddling bright line along the diagonal of
the confusion matrix highlights our best ranks. In this experiment, search scores
are expected to be diverse and span a rather wide range of [0.23, 0.87].

In Table 5, we list computational runtime of our implementation for key tasks
in performing linguistic clustering and search. All reported figures are in seconds
and were obtained by running our software single-threaded on a Windows 10
mobile device, with Intel 4th generation CoreTM processor at 1.8 GHz and 8 GB
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Table 5. Running time for key computational tasks in performing clustering and search
over the Shakespeare corpus. All figures are shown in seconds.

Task Min Max Mean Total

Hierarchy Formation 0.58 1.44 0.91 33.53

Distance Matrix 0.83 80.08 56.19 2,079.35

Keyphrase Query 13.48 18.66 16.65 616.05

of memory. Play hierarchy construction is linear with the number of dialogues
per play, and given a fairly balanced distribution over playscripts (Fig. 6), the
play of Othello claimed the slowest to generate the data structure at 1.44 s. The
distance matrix item shows the time to compute a set of similarities for one
play paired with each of the rest of the plays in the Shakespeare collection. On
average, play-to-play distance derivation amortized across |T | = 37 plays takes
about 1.51 s. Launching a keyphrase query task typically involves a dialogue-to-
play similarity operator that is linear in the total number of dialogues for the
entire play collection. Query response times are shown for each search episode
and are uniformly impartial to the keyphrase originating play, as evidenced by a
small standard deviation of two percent of the mean. The total column of Table 5
further accumulates individual play processing times and is roughly the mean
column value multiplied by the number of plays, |T | = 37.

6 Conclusions

In this study, we have demonstrated the apparent potential in a hierarchical
representation of word embeddings to conduct effective play level clustering and
search. We trained our system on a 37-dramatic-play corpus that comprises a
vocabulary of about 2 million tokens, and generated our own word vectors for
each of our experimental choices of model-hyperparameter configurations. We
showed that the CBOW neural model outperforms skip-gram for the linguistic
tasks we performed, and furthermore, clustering under CBOW proved sustain-
able to modifying the context window size in a fairly large extent. To evaluate
any-pair semantic similarity of both play-to-play and query-to-play, we used a
simple and generic distance metric [5] between a pair of word vector sets, each
of up to tens of thousands elements, that disambiguates non-matching matrix
dimensionality. We reported robust empirical results on our tasks for deploying
state-of-the-art unsupervised learning of word representations.

At first observation, our hierarchical representation of plays might appear
greedy storage wise, and rather than a matrix interpretation, we could have
resorted to a more compact format by averaging all the dialogue word vectors
and produce a single dialogue vector. While this approach seems plausible for the
clustering tasks to both reduce footprint and streamline computations, the data
loss incurred by doing so adversely impacted the performance of our search tasks.
To address this shortcoming, our experimental choice of a modest 10-dimensional
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word vector appears as a reasonable system-design trade-off that aids to circum-
vent excessive usage of memory space. On average, there are 17,509 word vectors
per-play (Fig. 6) and hence storage space for the entire Shakespeare play-suite
is at a moderate 37 × 17, 509 × 10 × 4 ≈ 26 MB that is proportional to 34 MB
area claimed by the bible book set [5].

To the best of our knowledge and based on literature published to date, we
are unaware of semantic analysis systems with similar goals to evenhandedly
contrast our results against. The more recent work by Yang et al. [27], pro-
posed a hierarchical attention network for document classification. Their neural
model explores attention mechanisms at both a word and sentence levels in
an attempt to differentiate content importance when constructing a document
vector representation. However, for evaluation their work focuses primarily on
topic classification of short user-review snippets. Unlike our system that reasons
semantic relatedness between any full-length plays. On the other hand, Jiang
et al. [13] skip the sentence level construct altogether and combine a set of word
vectors to directly represent a complete Yelp review. In their report, there is
limited exposure to fine-grained control over the underlying neural models to
show performance impact on business clustering.

Given that the training of word vectors is a one time process, a natural pro-
gression of our work is to optimize the core computations of constructing the
distance matrix and performing a keyphrase query. The inherent independence
of deriving similarity matrix elements and separating play search rankings lets
us leverage parallel execution, and we expect to reduce our runtime complex-
ity markedly. For a larger number of corpus plays, to uphold efficient hierar-
chy access our system would benefit from word vector caching, and we contend
that projecting the distance matrix onto a three-dimensional embedding space is
essential to improve cluster perception for analysis. Lastly, we seek to apply our
play distance matrix directly to methods that partition objects around medoids
[14] and potentially avoid outliers.

Acknowledgements. We would like to thank the anonymous reviewers for their
insightful suggestions and feedback.
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