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Abstract. State-of-the-art service robots that fetch a cup of coffee and
clean up rooms require cognitive skills such as learning, planning, and
reasoning. Especially reasoning in dynamic and human populated envi-
ronments demands for novel approaches that can handle comprehensive
and fluent knowledge bases. Our long-term objective is an autonomous
robotic team that is capable of handling dynamic and domestic envi-
ronments. Therefore, we combined ALICA – A Language for Interactive
Cooperative Agents – with the Answer Set Programming solver Clingo.
The answer set programming approach offers multi-shot solving tech-
niques and non-monotonic stable model semantics, but requires to keep
the Module Property satisfied. We developed an automatic satisfaction of
the Module Property and chose topological path planning as our evalua-
tion scenario. We utilised the Region Connection Calculus as the under-
lying formalism of our evaluation and investigated the scalability of our
implementation. The results show that our approach handles dynamic
environments and scales up to appropriately large problem sizes while
automatically satisfying the Module Property.
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1 Introduction

Due to the development of autonomous vacuum cleaners, lawnmowers and pool
cleaners, autonomous robots stepped into our everyday life and also in other
areas similar developments are currently taking place. Automated guided vehi-
cles that take care of the logistics in production plants or parcel service centres
are already commonly used [1], but also most car manufacturers are developing
autonomous cars [2]. Even autonomous and interactive toys become more and
more intelligent and conquer our children’s rooms [3,4].

In contrast to these single purpose devices, researchers in the field of service
robots focus on multi-purpose robots. Figure 1 shows a state-of-the-art service
robot, which can do everyday household tasks. The variety of those tasks pose
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Fig. 1. Domestic service robot [5].

new challenges to the research community because the number of elements rel-
evant to the robot’s environmental representation is tremendous. Further chal-
lenges arise from human populated environments, that require robots to han-
dle very dynamic situations, because human beings insert, remove, and dis-
place objects in their environment. Furthermore, human beings are themselves
dynamic obstacles from the robot’s point of view. In order to cope with such
environments, robots need cognitive capabilities such as learning, planning, and
reasoning. Reasoning about such complex and dynamic domains, e.g., requires a
suitable level of abstraction in order to make the reasoning more tractable. Con-
sider the example of a robot that should fetch a cup. Reasoning about possible
positions of the cup and how the robot could get there, should not be polluted by
the cup’s exact coordinates or the robots trajectory planning. The robot should
only take its current position in the building, locked doors, obstacles, and the
building’s topology into account.

Symbolic knowledge representation and reasoning is a common approach for
tackling such problems [6]. Nevertheless, most benchmarks present today1 are
designed in a way that prevents the development of solvers that continuously use
a changing amount of knowledge while solving different problem instances over
time. Our contribution is to enable multi-agent systems to continuously reason
about dynamic environments by utilising Answer Set Programming (ASP) – a
non-monotonic knowledge representation and reasoning formalism [7], suitable
for multi-shot solving [8]. In our case, the multi-agent system is controlled by the
ALICA – A Language for Interactive Cooperative Agents [9]. Our preliminary
work [10] forms the basis for integrating ASP with ALICA and allows us to extend
it with a general solver interface which in turn makes ALICA open for a wider set
of application domains. Moreover, we had to extend the utilised ASP solver with
query mechanism according to [11]. In contrast to our preliminary work [12], the
Module Property is now satisfied automatically. In order to evaluate our query
mechanism, we used an ASP-based path planning scenario that utilizes a simpli-
fied version of the Region Connection Calculus [13], denoted as RCC-4.

1 http://www.satcompetition.org/ [Online; accessed September 12, 2017].
http://aspcomp2015.dibris.unige.it/ [Online; accessed September 12, 2017].
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The remainder of this paper is structured as follows. Section 2 introduces
ALICA, ASP, and RCC-4. The integration of ALICA with ASP is described
in Sect. 3. Furthermore, the query semantics extension including the automatic
satisfaction of the Module Property is elaborated in Sect. 4. Section 5 provides
the description of our evaluation scenario, whose results are presented in Sect. 6.
Finally, we compare our work with other approaches in Sect. 7 and conclude with
Sect. 8.

2 Foundations

This section is divided into three subsections. In Sect. 2.1 the focus is set on
concepts of ALICA that are necessary to understand in the context of this work.
The same holds for Sect. 2.2 that is about the syntax and semantics of ASP. In
Sect. 2.3 an explanation of the basic relations of the Region Connection Calculus
4 is given.

2.1 ALICA

The ALICA framework is designed to coordinate a cooperative team of
autonomous agents. Explaining all features of this framework is beyond the scope
of this work and we would like to point the interested reader to the dissertation
of Skubch [9] and two supplementary publications [14,15]. In this section, our
goal is to explain the fundamental principles of ALICA and focus on the parts
that we changed to make a wider set of general problem solvers accessible from
within an ALICA program.

The ALICA framework is distributed in the sense that each agent in the team
is running its own independent ALICA behaviour engine. Each behaviour engine
determines the sequence of actions of the local agent while coordinating itself
with other engines and taking the current situation as well as a given ALICA
program into account. Sometimes frameworks like ALICA are also denoted as
sequencers [16].

An ALICA program is a special tree, whose interior nodes are plans and
its leaf nodes are atomic behaviours. The CleanUp plan in Fig. 2 is an example
of such an interior node. A plan can include several states (Z0. . .Z8) that are
connected with guarded transitions to create finite state machines (FSM). Each
FSM is annotated with a task (Tidy Up, Wipe Floor, Inspect) and a pair of
cardinalities for the minimum and the maximum number of agents allowed in
the corresponding FSM. Each state of a plan, except for terminal states (Z4), can
contain behaviours and plans that represent leaf or interior nodes respectively
on the next level of the tree. In Fig. 2 plans and behaviours are distinguished by
the colour of their boxes, e.g., state Z0 contains the plan Drive, which is blue,
and state Z1 contains the behaviour Pick Up, which is orange. It is important to
note that a plan, which is referenced in a state, is a complete plan like the Clean
Up plan itself and therefore can include state machines with other behaviours
and plans.
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Fig. 2. Simple clean up plan [12]. (Color figure online)

The coloured circles on top of some states in Fig. 2 illustrate a possible global
execution state of the plan. Each circle represents an agent. The red circle, for
example, could be the local agent executing the Pick Up behaviour, while the
other circles represent other agents in the team, whose corresponding behaviour
engine have published their execution state to the local agent.

In order to understand the extension of ALICA by a general problem solver
interface, it is necessary to introduce the notion of ALICA plan variables. For
simplicity let us modify the Inspect state machine from Fig. 2 to create a plan
on its own.

The purpose of this plan, as shown in Fig. 3, could be the identification of
coffee cups that should be cleaned, because they are dirty and not used any more.
Therefore, an agent searches for coffee cups in state Z4 and switches to state Z5,
in order to classify them. For remembering which cup was found in state Z4

the plan variable X can be set to the corresponding cup and thereby influence

Inspection Var: X

Inspect

0..1

Z4 Z5 Z9

Search Classify Clean Var:X′

found

in use

identified

done

Fig. 3. Inspection plan [12].
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the agent’s behaviour during the rest of the plan execution. This influence can
even reach to deeper levels of the plan tree, as indicated by variable X ′ of the
Clean plan in state Z9. It is possible to define variable bindings over states in
an ALICA plan tree, e.g., stating that X denotes the same variable as X ′. This
allows determining the agent’s behaviour in the Clean plan, depending on which
cup was found in the Inspection plan.

ALICA, as presented in [9], only provided one solver for assigning values
to plan variables. The given solver addresses non-linear continuous constraint
satisfaction problems and, as it was hard-wired to ALICA, the applicability of
ALICA was limited for some domains. Our extension of ALICA with a general
solver interface tackles this issue (see Sect. 3).

2.2 Answer Set Programming

Answer Set Programming (ASP) is a declarative approach for solving NP-
search problems. It can be seen as the result of decades of research in the
areas of knowledge representation, logic programming, and constraint satisfac-
tion. Thereby, its focus is on expressiveness, ease of use, and computational
effectiveness [17]. An ASP program is specified by a set of rules of the form
a0 ← a1∧. . .∧ am ∧ ∼ am+1∧. . .∧ ∼ an. Each ai denotes a predicate p(t1, . . . , tk)
with terms t1, . . . , tk build from constants, variables, and functions. Rules con-
sist of three parts, namely the head a0, the positive part a1 ∧ . . . ∧ am and the
negative part ∼ am+1 ∧ . . .∧ ∼ an of the body. The semantics of the default
negation ∼ is that of negation-as-failure. That means, ∼ ai is considered to hold
if it fails to prove that ai holds. Nevertheless, ASP also provides classic negation
¬ai, whose semantics is that ¬ai holds, if ai does not.

The example in Listing 1.1 is a syntactically correct ASP program. In order
to create syntactically correct ASP programs, the rules have to be transformed
in the following way: ← is transformed to :-, ∧ are replaced by , and a rule is
ended by a dot. The - in front of robot(X) stands for classic negation ¬ and not
in front to of broken(X) means default negation ∼. The ; is a syntactic short-
cut for creating several rules at once. Rule 1, therefore, creates robot(chuck),
robot(fox), and robot(lisa). Furthermore, Rules 1 and 2 have an empty body.
So their heads are unconditionally true, and they are denoted as facts. Rule 3
makes use of the default negation ∼ and states that a robot can drive, as long
as it cannot be proven, that it is broken (not broken(X)). Here X is a variable
(starts with a capital letter), which can be substituted with any element of the
Herbrand universe of the given program.

1 robot(chuck; fox; lisa).

2 broken(fox).

3 canDrive(X) :- robot(X),not broken(X).

4 highFailureRate :- Working = #count{X : canDrive(X)},

Broken = #count{X : broken(X)}, Working < Broken.

Listing 1.1. Robots can drive, as long as they are not broken.
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The Herbrand universe of the program in Listing 1.1 only contains four con-
stants (start with lower case letter): {chuck, fox, lisa, highFailureRate}. Rule
4 derives the constant highFailureRate, if there are more broken robots than
driving ones. As shown by this rule, ASP is capable of handling integers and
provides aggregate functions like #count or #sum and arithmetic functions like
< or +. The result of this program will state, that there are three robots of whom
chuck and lisa can drive, the constant highFailureRate does not occur.

State-of-the-art ASP solvers [7,18] usually work in two steps. First, they
ground the program and afterwards determine all stable models of the grounded
program. A program, as well as every part of it, is grounded if it does not contain
any variable. In order to create a grounded program, informally speaking, the
variables of each rule are replaced by each possible substitution with an element
of the program’s Herbrand universe. The Herbrand universe of a program is con-
structed from all constants and functions occurring in the program. Grounding
a program that way would increase the number of rules enormously, therefore
the utilised grounding algorithms try to keep the grounded program as small as
possible, without altering the programs meaning. For example, Rule 3 of Listing
1.1 will not be part of the grounded program, if there is no robot available.

Solving a grounded program is often done with SAT solving techniques that
are adapted to the stable model semantics of ASP. A model in ASP is a set M
of ground predicates that for every rule either contains the rule’s head (a0 ∈
M), or does not include all predicates of the positive part of the rule’s body
({a1, . . . , am} � M), or contains predicates from the negative part of the rule’s
body ({am+1, . . . , an} ∩M �= ∅). Informally speaking, a stable model is as small
as possible and contains predicates, only if they are justified by facts. For a
detailed introduction to the stable model semantics, see [19].

In our approach, we choose the Clingo 4.5.3 ASP solver [7], which introduces
the notion of External Statements to ASP [8,20]. External Statements in com-
bination with Program Sections, explained later on, are the key concepts for
enabling the query semantics described in Sect. 4. The External Statements are
predicates annotated with #external (see Listing 1.2). Those predicates are not
removed from the body of a rule during grounding, even if they do not appear
in the head of any rule, because of this annotation. Furthermore, it is possible
to set them explicitly to true or false without an extra grounding step.

1 #external closed(lab ,hall).
2 connected(lab ,hall) :- not closed(lab ,hall).
3 disconnected(lab ,hall) :- closed(lab ,hall).

Listing 1.2. Modeling a door using an External Statement.

The example, given in Listing 1.2, is part of our evaluation scenario presented
in Sect. 5 and will also be used in ASPExtensionQueries presented in Sect. 4.1.
In this example closed(lab, hall) is marked as an External Statement and is
therefore set to false by default. If the External Statement closed(lab, hall)
is set to true, the head of Rule 3 holds and the predicate disconnected(lab,
hall) is part of the stable model. The head of Rule 2 cannot be derived since
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closed(lab, hall) is set to be true. Usually, during the grounding procedure
Rule 2 would be removed, because its body cannot be derived. However, since
this rule contains an External Statement, it stays part of the grounded logic pro-
gram. Therefore, it is possible to change a logic program without another ground-
ing step by using External Statements. For example, if the External Statement
closed(laboratory, hall) is set to true, the laboratory and the hall are dis-
connected from each other. If it is set to false the predicate disconnected(lab,
hall) no longer holds but connected(lab, hall) can be derived, thus the
rooms are connected. Furthermore, changing the External Statement does not
change the size of the resulting stable model.

Additionally, Clingo introduces Program Sections [7]. Program Sections are
used to divide a logic program into different parts, which can be grounded sep-
arately. An example is given in Listing 1.3.

1 #program rcc4_composition_table .

2 disconnected(X,Z) :- properPart(X,Y),disconnected(Y, Z),

X != Z.

3 #program rcc4_facts.

4 properPart(office1 ,offices).

5 disconnected(offices ,studentArea).

Listing 1.3. Usage of program sections.

This example contains two Program Sections identified by the #program
prefix, i.d., rcc4 composition table and rcc4 facts. Moreover, the order in
which they are grounded influences the facts, which appear in the stable mod-
els. If the Program Section rcc4 composition table is grounded before the
Program Section rcc4 facts, the resulting model would only contain the facts
properPart(office1,offices) and disconnected(studentArea, offices).
If Program Section rcc4 facts is grounded first, the model will contain these
facts before the Program Section rcc4 composition table is grounded. Once
this Program Section is grounded the model will additionally contain the fact
disconnected(office1, studentArea), since this rule’s body holds for the
grounding of X by office1, Y by offices, and Z by studentArea.

2.3 Region Connection Calculus

In this section, the base relations of the Region Connection Calculus 4 (RCC-
4) are shown, which is based on the Region Connection Calculus 8 presented
by Randell et al. in [13]. We have been inspired to use RCC-4 instead of using
RCC-8 by the implementation of RCC-4, that is provided by the QSRlib Foun-
dation [21] since the majority of the RCC-8 relations were not used for modelling
the Distributed Systems Department (see Sect. 6). These calculi are commonly
used in qualitative spatial reasoning and will be used to model our evaluation
scenarios in Sect. 5. The foundation of the relations is the binary relation C(x,y),
which expresses that two spatial regions of unknown size are connected. Infor-
mally speaking, they share at least one common point. Furthermore, C(x,y) is



Reasoning for Autonomous Agents in Dynamic Domains 29

Fig. 4. RCC-4 base relations [12].

reflexive and symmetric. By using the C(x,y) relation four base relations are
defined and shown in Fig. 4.

Two regions are partially overlapping (PO), if they are connected (C), mean-
ing they share a common point, region or part of their border. Region x is a
proper part (PP) of Region y if y contains Region x, which means that Region x
is connected to y and no part of x is outside the border of y. Since this relation
is not symmetric the inverse relation PPI is included as well. Additionally, two
regions are disconnected (DC) if they do not share a common point. By using
the composition table shown in Table 1 the transitive relations between Region
x and z can be derived, given the relations between the pairs (x,y) and (y,z).
Hereby, ∗ denotes that all four relations can hold. For example, if Region x is a
proper part (PP) of Region y and Region y is disconnected (DC) from Region
z, it can be derived that Region x is disconnected (DC) from Region z.

Table 1. RCC-4 composition table [12].

DC PO PP PPI

DC * DC PO PP DC PO PP DC

PO DC PO PPI * PO PP DC PO PPI

PP DC DC PO PP PP *

PPI DC PO PPI PO PPI PO PP PPI PPI

An example for using RCC-4 to model a building is given in Sect. 5. Further-
more, the RCC-4 relations can be used to model the relation of objects to each
other. For example, in the domain of domestic service robots RCC-4 can be used
to model objects on a table without defining their exact positions, e.g., a cup
and a plate could be proper parts of the table and could be disconnected from
each other if they are not touching each other.

3 Extending ALICA with a General Solver Interface

In this section, we describe the extension of the ALICA framework with a general
solver interface, in order to integrate different solvers into the ALICA framework.
By now, ALICA has only been able to use a gradient solver, which is able to
solve non-linear continuous constraint satisfaction problems.
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We created an abstract solver interface that allows solving very different
problem classes. A solver that is compatible with this interface, has to adhere
to four corresponding concepts: solver, variable, term, and problem descriptor.
The solver is expected to solve the problem contained in a problem descriptor. A
problem descriptor encapsulates the other two concepts that describe the actual
problem. Solving a problem means to assign values to variables in a way that
the values fulfil constraints described by a set of terms. The ALICA engine
only understands these basic relations between the four concepts. The type of
values that can be assigned to a specific variable and the format of the terms
is unknown to the ALICA engine. Only the domain specific parts of an ALICA
program should be able to understand the actual meaning of a described problem
and be able to interpret the solver’s results. Furthermore, the variable concept is
identical to that of ALICA plan variables (see Sect. 2.1). Therefore, the ALICA
engine is able to collect all relevant constraints (terms) over variables in the plan
hierarchy, when a solution for a specific variable is required and can pass it via
a problem descriptor to the responsible solver.

There are two methods for interacting with the solver interface. The first
method checks if a solution for a given set of variables can be found. This
method only determines, whether a solution exists and does not provide the
solution itself. Usually, the complexity of providing a solution is the same as for
proofing only the existence of a solution, but in case of an optimisation problem,
it is not the same. Determining, for example, whether there is a cup available, is
much easier than to determine the closest available cup. Therefore, whenever it
is enough to check the existence of a solution the ALICA engine can save some
time doing so.

With the second method, it is possible to actually determine the solution
itself. The solver assigns its result to the corresponding variables and the ALICA
engine hands them, via the problem descriptor, back to the calling domain-
specific part of its program. The gradient solver, for example, returns continuous
values and an ASP solver could return a set of predicates.

So far, the presented interface has been used to integrate three different
solvers. The first solver is the gradient solver, which was a part of the original
ALICA framework and has been adapted to the new interface. Additionally, an
ASP solver, which is presented in this work, is integrated by using this inter-
face. Furthermore, Witsch presents in [22] a middleware that enables a decision-
making process for a group of robots. This middleware uses the presented inter-
face to exchange variables and proposals between agents.

4 Extending Clingo with Query Semantics

The extension of Clingo with query semantics is twofold. On the one hand, there
is the structure of the query itself and on the other hand there is the processing of
such a query. The query structure holds all information necessary for processing
the query, e.g., ASP rules that change the ASP program during the query process.
The details are explained in Subsect. 4.1. The workflow during the processing of
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a query is described in Subsect. 4.2. This subsection places the focus especially on
the requirements and techniques for changing the ASP program only during the
query process and how it is possible to reestablish the programs state without
the changes inflicted due to the query.

4.1 Query Structure

The central part of the query structure, further denoted as ASPQuery, is the
ASPTerm. In compliance with the Term and Variable concepts, described in
Sect. 4, the ASPTerm constraints a set of ASPVariables with a set of user defined
rules. The interpretation of theses rules depends on the type of the ASPQuery.
It is either an ASPFilterQuery or an ASPExtensionQuery (see Fig. 5).

Fig. 5. Classmodel of ASPQueries.

The ASPQuery does, apart from the ASPTerm, also include a lifetime, a
list of stable models, and a map of results with its corresponding truth values.
The lifetime determines the number of solving operations the query should be
processed with the current ASP program. The list of stable models includes all
stable models from the last solving operation. Finally, the map of results and
truth values contains one entry per queried predicate. The queried predicate is
mapped to true if it is part of all stable models, false if its classic negation is
part of all stable models, and unknown in all other cases.

The ASPFilterQuery is a simple ASPQuery that only filters the stable models
by a set of given predicates. In the opposite to the ASPExtensionQuery, the ASP
program is not altered due to ASPFilterQueries. Gelfond et al. [11] present a
similar query mechanism, that checks whether a grounded predicate is part of the
solver’s stable models. In extension to this query formalism, we allow wildcards
as parts of the filters. The filter robot(wildcard), e.g., filters for all grounded
robot/1 predicates, including classic negated predicates. The truth value of this
filter is set to true if at least one grounded robot/1 predicate exists in all stable
models, unknown if no grounded robot/1 predicate appears in any stable model,
and false otherwise.
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The ASPExtensionQuery is a much more sophisticated way to query an ASP
program. During it lifetime, it changes the ASP program and therefore its stable
models. Afterwards, the ASP program is reverted to its original state. Consider,
for example, an ASP program that identifies cups as free to use, when they are
on the cupboard. With the ASPExtensionQuery, it is possible to temporarily
declare all cups in the dishwasher as free to use, too. In general this is done by
adding an arbitrary set of rules, given by the ASPTerm, to the ASP program. One
rule in the set is specially handled and therefore further denoted as query rule.
The head of the query rule defines, similar to the filter of the ASPFilterQuery,
the crucial predicates to look for in the stable models.

For each ASPExtensionQuery a unique External Statement and Program
Section is created. Both are necessary to revert the ASP program back to its
original state after the end of the query’s lifetime. The External Statement is
added to the body of each rule and all rules are added to the ASP program as
part of the Program Section. The Program Section is grounded one time before
the solving operations and as soon as the lifetime of the query is expired, the
External Statement is released. Releasing the External Statement automatically
removes all added rules from the ASP program and therefore their influence on
the stable models.

Consider the following example, given in Listing 1.4. It demonstrates the
setup of an ASPExtensionQuery in pseudo code.

1 term ->addQueryRule("goalReachable(X):-reachable(X,Y),

goal(X),start(Y).")

2 term ->addRule("goal(r1405B).")

3 term ->addRule("start(r1411).")

4 query ->setTerm(term)

5 query ->programmSection("distributedSystems")

6 query ->external(distributedSystemsExt)

7 query ->lifeTime (1)

Listing 1.4. Example of an ASPTerm.

The example is part of an ASP navigation, which will be explained in
detail in Sect. 5. Here it is queried whether room r1405B can be reached from
room r1411. Therefore, the query rule and two facts are added to the Pro-
gram Section distributed Systems and guarded by the External Statement
distributedSystemsExt. Finally, the query’s lifetime is set to one, which means
that the query will be removed from the ASP program directly after it has been
answered one time.

Since the ASPExtensionQuery is used to alter an ASP program, it can violate
the Module Property, whose satisfaction guarantees that two Program Sections
can be combined without rendering the ASP program unsolvable. A Module P
is defined as a triple of sets (P, I, O). P is a ground program over the universe
ground(A) and both, I and O, are disjoint subsets of ground(A). Furthermore,
all atoms appearing in P are either part of I or O and all rule heads are part of
O. I and O are denoted as input and output, respectively. Given this definition
of a Module, two Modules P and Q are compositional, meaning their join will
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not violate the Module Property if the following two conditions hold. The first
condition is that the output sets of both Modules are disjoint, meaning that
they do not share a common predicate. The second condition relies on strongly
connected components [23]. A strongly connected component is a subset of a
directed graph, in which every vertex is reachable by any other vertex in this
subset. In order to check this condition, all strongly connected components of
the union of P and Q (SCC) have to be considered. If any strongly connected
component in SCC has a non-empty intersection with both output sets (O(P)
∩ SCC �= ∅ or O(Q) ∩ SCC �= ∅), this condition is violated. Violating any
of these two conditions would result in a recursion between both Modules and
therefore violating the Module Property. The given definition is based on the
lecture material from Schaub [24].

Expanding an ASP program with a Program Section can violate of the Mod-
ule Property, which causes that the ASP program can no longer be grounded and
solved. Therefore, the ASPExtensionQuery has to guarantee unique rule heads
for every rule in the query. This can be done by enclosing the rule heads inside a
unique predicate, which in this case is realised by a constant string and a counter
provided by the ASPSolverWrapper (see Sect. 4.2). This way of satisfying the
Module Property does not change the arity of the query rule head but replaces
it with a new predicate, which has to be considered when the result is returned
to the user. In order to cope with this problem and making the Module Property
transparent for the user, the ASPExtensionQuery is expanded by an automatic
satisfaction of the Module Property. The pseudo code in Algorithm 1 describes
our approach to guarantee the satisfaction of the Module Property.

This algorithm uses an ASPExtensionQuery q and the value of the counter c,
which is maintained by the ASPSolverWrapper, as inputs and returns a modified
unique ASPExtensionQuery. The first two steps in this algorithm create a unique
Program Section ps and a unique External Statement ex, which are used in the
following steps. In Step 3 (Lines 3–5), the query’s facts appearing in the query
rule’s bodies are encapsulated in a new predicate pred, which is a combination of
ps and c. After this step is completed, the query rule is expanded by the unique
External Statement, which allows the removal of the query after it has been
answered. Step 4 duplicates the query rule q’, which will be explained based
on an example in the next paragraph. Furthermore, in Step 5 (Lines 8–10) the
occurrences of all rule heads are encapsulated in the predicate pred, as well,
which marks the end of altering the query rule. The additional rules and facts
have to be adapted since they can still violate the Module Property. Therefore,
Step 6 (Lines 11–14) alters the rule heads by encapsulating them in pred and
by adding ex to the body of every rule. This creates unique rules, which can
later be removed from the ASP program by releasing the External Statement.
The same process is used in Step 7 for altering the query’s facts, which results
in a unique query.

An example for the application of this algorithm is presented in Listing 1.5.
This example is part of the evaluation scenario presented in Sect. 5. In this
example, the counter c, managed by the ASPSolverWrapper, is set to 1.
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Algorithm 1: Automatic satisfaction of the Module Property.

Input : ASPExtensionQuery q, Counter c
Output: ASPExtensionQuery with unique rules

1 Create unique Program Section ps
2 Create unique External Statement ex
3 foreach fact in q.facts do
4 replace occurence of fact in q.queryRule.body by ps(fact)
5 end
6 add(q.queryRule.body, ex)
7 q’ = duplicate q.queryRule
8 foreach rule in q.rules do
9 replace occurence of rule.head in q’ by ps(rule.head)

10 end
11 foreach rule in q.rules do
12 replace rule.head by ps(rule.head)
13 add(rule.body, ex)

14 end
15 foreach fact in q.facts do
16 replace fact in q.queryRule by ps(fact)
17 expand(fact, ex)

18 end
19 return q

1 // ASPExtensionQuery before applying the algorithm

2 goalReachable (X) :- reachable(X, Y),goal(X),start(Y),

room(X),room(Y).

3 reachable(r1405 ,r1406) :- room(r1405),room(r1406).

4 goal(r1405B).

5 start(r1411).

6

7 // ASPExtensionQuery after applying the algorithm

8 #program query1.

9 #external extQuery1.

10 query1(goalReachable (X)) :- reachable(X,Y),query1(goal(X)),

query1(start(Y)),room(X),room(Y),extQuery1.

11 query1(goalReachable (X)) :- query1(reachable(X, Y)),

query1(goal(X)),query1(start(Y)),room(X),room(Y),extQuery1

.

12 query1(reachable(r1405 ,r1406)) :- room(r1405),room(r1406),

extQuery1.

13 query1(goal(r1405B)) :- extQuery1.

14 query1(start(r1411)) :- extQuery1.

Listing 1.5. Application of the automatised satisfaction of the Module Property.

The example consists of the query rule in Line 1, an additional rule stating
that if room 1405 and room 1406 exist they are reachable by each other, and
two facts defining the start and goal position of the navigation. These facts can
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cause a violation of the Module Property since they form two Strongly Con-
nected Components between two Modules if this query is used twice. Therefore,
the automatized satisfaction of the Module property is used. The result of this
process is shown in Lines 8 till 14 of Listing 1.5. Hereby, the Lines 8 and 9 have
already been added in the previous version of the ASPExtensionQuery presented
in [12], which is a unique Program Section and External Statement. This part of
the query is followed by the query rule and its duplicate in Line 10 and 11. In both
cases, the heads are expanded by a new predicate query1 that is identical to the
Program Section, rendering the heads unique. Furthermore, the appearance of
every fact is replaced by its expanded version, which is shown in the Lines 13 and
14 of this example. The only difference between the duplicates is the handling
of the rule heads of additional rules like Line 12. In order to satisfy the Module
Property, the head of this rule has to be expanded as well. This change has to
be conducted in the query rule, too, in order to use the corresponding predicate.
This can cause problems when solving the query. In this example the reachable
predicate is expanded by the rule reachable(r1405, r1406):- room(r1405),
room(r1406). Therefore, the occurrence of the rule head in the query rule has
to be replaced. This causes that the reachable predicates in the knowledge base
are no longer appearing in the query rule. Thus, leaving out possible solutions
for the query. To cope with this problem, the duplicated query rule is used. The
appearance of the additional rule heads is not replaced, leaving the possibility to
use the knowledge base. After solving the query the unique predicate is removed
from the results.

To sum up, the presented approach of an automatized satisfaction of the
Module Property allows the user to create ASPExtensionQueries, without the
opportunity to violate it. Furthermore, this approach allows to expand predi-
cates appearing in the knowledge base without loosing the possibility to use the
knowledge base. As a last point, this approach is transparent to the user, who
formulates the query and is given the result without any additional predicates
encapsulating the original query.

4.2 Workflow of Queries

In order to use the described ASPTerm and ASPQueries, the query structure
has to be accessed by the ALICA behaviours and the ASPQueries have to be
forwarded to the Clingo ASP solver. Therefore, a wrapper has been created, that
encapsulates the Clingo ASP solver and provides access to the query structure.
This wrapper, named ASPSolverWrapper, is registered at the ALICA frame-
work by using the interface explained in Sect. 3 and can be used by ALICA
behaviours. The interaction workflow between the ALICA Engine and the wrap-
per are depicted in Fig. 6.

As mentioned in Sect. 2.1, an ALICA program consists of a directed acyclic
plan tree. The ASPTerms needed to formulate queries are created inside the
runtime conditions of such plans. Once the ASPTerm is created (an example is
given in Listing 1.4), it can be used by an ALICA behaviour to formulate a query.
Thereby, the External Statements’ truth values are given by a worldmodel class,
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Fig. 6. Query workflow [12].

which encapsulates data that was perceived by the local agent or received from
other agents, e.g., the state of a door. After the ASPQuery has been formulated,
it is registered at the wrapper, which passes it to the ASP solver Clingo. In case
of an ASPExtensionQuery, the automatized satisfaction of the Module Property
(Sect. 4) is applied, which encapsulates the query in a unique Program Section.
Afterwards, the wrapper adds the query rule, the set of additional rules, and
facts to the solver’s ASP program. Additionally, the ASPPlanTreeIntegrator
parses the ALICA program’s plan tree to enable reasoning about its structure,
which is done by rules given in the background knowledge files. These files, for
example, contain rules to detect malformed ALICA programs. The corresponding
ASP rules are presented in [10]. The ASPPlanTreeIntegrator is only used during
the first registered query since the predicates stay part of the following stable
models as soon as they have been grounded. Furthermore, this increases the
runtime of the first query but reduces the runtime of the following queries, since
this Program Section has not to be grounded anymore. Once all program parts
(queries, background knowledge, and plan structure) have been added, Clingo
grounds and solves the program. The in this process derived stable models are
passed to the registered queries and saved to enable further use by other parts
of the ALICA framework, especially the ALICA behaviours. Finally, the results
are returned to the ALICA behaviour via two methods defined by the created
interface. The first method is named existsSolution, which checks the truth
value of the query without returning stable models or ground predicates. This
method can be used in combination with an ASPFilterQuery, which checks if
an ASP predicate is part of at least one or all stable models since the caller
is only interested if the queried fact is part of the stable models. The second
method is named getSolution. This method is used to return the derived stable
models to the querying ALICA behaviour. This method can, for example, be
used in combination with an ASPExtensionQuery, where a query rule, a set
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of additional rules, and facts are used to alter the ASP program. Since the
ASPExtensionQuery modifies the ASP program the resulting stable models and
the queried rule heads are returned to the querying ALICA behaviour. Since the
rule heads have been altered by Algorithm 1, the encapsulating unique predicate
is removed before the results are returned to the caller. After the results are
returned, the ALICA behaviour can react to the changes in the model or to the
resulting rule heads. By returning the calculated results to the ALICA behaviour,
the workflow of a query is finished and the queries lifetime is reduced by one
and the ALICA behaviour can create the next query.

5 Evaluation Scenario

Our approach for handling dynamic domains will be evaluated using the scenario
presented in this section. The base of this scenario is a map of the Distributed
Systems Department of the University of Kassel and was created by using a
TurtleBot [25]. A TurtleBot is a small service robot equipped with a 3D camera
and was in our case extended with a 2D laser scanner. The customised version
of a TurtleBot is depicted in Fig. 7 alongside the resulting map, which is shown
in Fig. 8.

Fig. 7. Adapted version of a TurtleBot.

Fig. 8. Map of the distributed systems department [12]. (Color figure online)
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This map consists of 19 rooms and is divided into seven areas, which
are highlighted in different colours. These areas include from left to right
studentArea (red), mainHallA (black), workshop (green), offices (blue),
mainHallB (purple), utility (yellow) and organization (orange). Addition-
ally, 56 points of interest (POI), examples marked with dots, are placed on this
map. For example, a POI was placed on different workplaces, the coffee machine
or the conference room. Furthermore, the robot’s position is marked with a
circle and the navigation goal used in this scenario is marked by a cross. The
relations between the areas, rooms and POIs are modelled using the Region
Connection Calculus 4 (Sect. 2). A POI is a properPart of a specific room
and disconnected to all other rooms. Rooms are either partialOverlapping
with other rooms, properPart of areas or disconnected from both. Areas can
either be partialOverlapping or disconnected. Additionally, doors have been
modelled utilising External Statements, as shown in Listing 1.2. This enables
our approach to use different parts of the logic program without an additional
grounding step and thus allows to change the stable models. This should decrease
the runtime for answering ASPQueries and keep the models’ size stable since no
additional predicates have to be added to open or close doors, which could lower
the performance of the ASP program. In order to use this scenario, we imple-
mented an ALICA behaviour, which uses an ASPFilterQuery to check if the
robot’s goal position (cross) is reachable from its current position. In this case,
we use the transitive closure defined by the predicate reachable(X,Y), which is
presented in Listing 1.6 as a simple path planning approach.

1 reachable(X,Y) :- reachable(Y,X),X!=Y.

2 reachable(X,Z) :- reachable(X,Y),reachable(Y,Z),

X!=Y,Y!=Z,X!=Z.

3 reachable(X,Y) :- partialOverlapping (X,Y),room(X),room(Y).

4 reachable(X,Y) :- partialOverlapping (X,Y),area(X),area(Y).

5 reachable(X,Y) :- properPart(X,Y),room(X),area(Y).

Listing 1.6. Transitive closure of reachable relation.

Rules 1 and 2 of the listing express, the reachable relation is symmetric
and transitive. Furthermore, Rules 3 and 4 state, that a room room(X) or area
area(X) is reachable from another room room(Y) or area area(Y) if they
are partial overlapping partialOverlapping(X,Y). As a last point, a room is
reachable from an area if the room is a properPart of the area (Rule 5).

6 Evaluation

In this section, we present the revised and updated evaluation results from [12].
There are three main differences to our preliminary evaluation. We utilise a
more current version of the ASP solver Clingo, the Module Property is satisfied
automatically, and we evaluated the influence of adding External Statements to
our ASP program.
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6.1 Dynamic Changes

The evaluation scenario has been modelled in two different ways. The first way,
denoted as Ext, makes use of External Statements in its ASP rules, as described
in Sect. 5. The second, denoted as noExt, purely relies on facts describing the
connections between rooms of the department. Both ways utilize the transitive
closure for their path planning approach, as presented in Listing 1.6. In Fig. 8
the robot’s starting position is marked by a circle and the goal is marked by
a cross. The path the robot is supposed to follow leaves the studentArea and
follows mainHallA to reach mainHallB, since the door from mainHallA to the
offices is closed. From mainHallB the path will enter the offices through a
door and finally reaches the goal, which is situated in the utility area. This
door is the solely open door in mainHallB and is opened and closed via an
External Statement to simulate a change in the environment.

Fig. 9. Comparison of different modelling approaches [12].

The evaluation mainly consists of four steps. As a first step the solver is
initialized and after transforming the ALICA plantree into corresponding ASP
rules, the correctness of the plantree is checked as well as a navigation query
is solved. In this step, the selected goal is not reachable, due to closed doors.
The second step is purely solving the composed ASP program again, in order
to be able to compare the time needed. In step three a door is opened, making
the navigation between both rooms possible. This either means a new grounding
step (noExt), the change of the truth value of an External Statement (Ext), or
the creation of a new solver instance, which uses the noExt model. The last step
is purely solving the ASP program again.

The evaluation results of our preliminary evaluation are presented in Fig. 9.
In contrast to these former results, all steps were roughly halved in runtime,
independent from the way changes are handled (see Fig. 10).
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Fig. 10. Comparison of different modelling approaches using Automatic Module Prop-
erty satisfaction.

The first and most time-consuming step lasts 61.5 ms for Ext and 24.2 ms
for noExt or creating a new solver instance. The difference of 37.3 ms is caused
by the way the department is modelled. In noExt, connections between rooms
are expressed by single facts. In Ext, a connection between two rooms consists
of an External Statement and two rules, which express the state of a door. This
increases the size of the ASP program, and therefore, the initialization time. The
second and the fourth step have similar results. Hereby, the usage of Ext results
in an average runtime of 3.9 ms, while the usage of noExt results in an average
runtime of 0.8 ms. In step three a door is opened or closed. This represents
a dynamic change in the environment and is, therefore, more critical for our
investigation than the other steps. The usage of Ext results in a runtime of
5.8 ms, noExt lasts 12.8 ms, and the instantiation of a new solver takes 24.2 ms.
This is caused by the way a change in the model is performed. In Ext, the truth
value of an External Statement is changed and thereby slightly influences the
runtime. In noExt, a Program Section has to be grounded, which increases the
runtime by roughly 12 ms. The highest increase of 23.6 ms is caused by a new
solver instance since the initialization step has to be performed again.

As the ALICA framework usually runs at 30 Hz, an ALICA behaviour can
query the ASP solver at most 30 times per second, i.e., each iteration. In Fig. 11,
all three methods for modelling the department are compared with respect to
the number of changes per 30 iterations.

The x-axis shows the number of changes per 30 iterations and the y-axis
shows the average runtime of a query. The runtime for 30 changes per 30 queries,
i.e., opening or closing a door each iteration, corresponds to the runtime of step
three in Fig. 10. Since there is no difference in solving and changing a value when
using Ext the blue line is constant. In comparison to this, the runtime of noExt
increases when changes are made since a new program part has to be grounded
for each change.
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Fig. 11. Comparison of measured time regarding changes in the model.

As a result, External Statements are superior in runtime, when in 10 out
of 30 iterations a door is closed or opened. This is due to the fact that, when
using noExt, the stable models’ sizes increase with every change made and slows
down the process of handling the models rapidly. In contrast, when using Ext,
the model’s size stays the same. A third alternative is to discard the current and
create a new ASPSolver instance after a few changes. This method is depicted
by the green line, which intersects the blue line by six changes and is the slowest
solution. Therefore, we suggest the use of Ext in dynamically changing environ-
ments.

6.2 Scalability of External Statements

Our approach to automatically satisfy the Module Property makes use of Exter-
nal Statements. Each time a query is formulated that was never queried before,
a new External Statement is added to the ASP program. Although it is possible
to deactivate old queries by releasing their corresponding External Statements,
we encountered that old ASPExtensionQueries have a significant influence on
the runtime. ASPFilterQueries do not suffer from this issue, as they do not alter
the ASP program.

In Fig. 12 the runtime for an increasing number of External Statements is
shown. It is important to note that there is always only one External Statement
activated and all other External Statements, originating from former queries, are
released. The average increment per additional External Statement is 0.1 ms.
Therefore, the use of at most 1800 External Statements are allowed, without
dropping below a query frequency of 5 Hz.

6.3 Scalability of the Region Connection Calculus

Following our preliminary evaluation, we re-evaluated the scalability of the
Region Connection Calculus 4 using a more current version of Clingo. Utilising
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Fig. 12. Influence of increasing External Statements on the query runtime.

the navigation scenario from Sect. 4, we expanded the number of rooms, start-
ing from 500 rooms and increasing up to 2000 rooms. Furthermore, we tested
different connection densities between the rooms ranging from 25% to 100% con-
nected rooms. Hereby, 100% means that every room has at least one connection
to another room. The results are given in Figs. 13 and 14.

Fig. 13. Runtime of the initial grounding.

We stopped the evaluation at a number of 2000 rooms, as both runtimes
increase exponentially with rising connection density and number of rooms. At
2000 rooms, the grounding already lasted 51 min. As a result, we only suggest
using the Region Connection Calculus 4 in combination with transitive closure
based path planning in dynamic domains if only less than 900 regions need to be
considered. We consider this number suitable for dynamic domains since, after
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Fig. 14. Runtime of the solve step.

an initialization phase of roughly 4.5 min, a robot can still change the knowledge
base 5 times per second by an ASPExtensionQuery.

7 Related Work

Besides the ALICA framework, other domain independent frameworks could be
used to integrate an ASP solver for the use in different robotics scenarios. These
frameworks include DyKnow [26] and KnowRob [27], which are both presented in
this section. Furthermore, papers utilising ASP for multi-shot solving and the
application of ASP in household scenarios are shown.

DyKnow, which is presented in [26], sets its focus on distributed collection
and the distribution of data. This includes raw sensor values, processed sensor
values or even predicates, which hold between objects recognised. Both, the
collection and the distribution, are a set of processes specified in the knowledge
processing language provided in [26]. These processes provide collected data,
derived information, and knowledge about objects and their relation to multiple
agents and allows them to reason about the received data. In comparison to
this, the ALICA framework provides a domain independent framework, which is
used to model and control the behaviour of agents. By expanding ALICA with
the solver interface and the query mechanism presented, the agents are able
to reason about the relations of objects in their environment and the domain
specific knowledge, which is given in ALICA behaviours. Furthermore, ALICA
provides the functionality to hierarchically constraint variables, which allows the
formulation of queries utilising the ALICA plan tree structure.

KnowRob, presented in [27], is a framework utilising Prolog to build a knowl-
edge base that provides access methods to retrieve information stored in the
knowledge base. This knowledge base is extended by a “virtual knowledge base”,
which is used to compute the abstract representation of data when the data is
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queried. This is done by forwarding the query to another part of the robot,
which has free resources or can provide better results. Furthermore, this frame-
work supports only one agent, which is a contrast to ALICA which is used for
teams of agents. In comparison to KnowRob framework, ALICA uses a declarative
programming approach (ASP and Prolog), too. Additionally, both frameworks
use this programming approach to formulate knowledge bases, which can be
accessed by the supported agents.

Furthermore, in [8] one-shot solving is compared with multi-shot solving
based on External Statements. Hereby, they used benchmarks given by the Fifth
ASP Competition and support our results regarding External Statements in
dynamic domains. Nevertheless, they always investigated External Statements
in the context of expanding universes. According to our knowledge, our work is
the first investigating the advantages of External Statements in the context of
dynamic universes of almost constant size.

Erdem et al. present in [28] a framework utilising ASP and ConceptNet [29]
for representing commonsense knowledge in ASP, which is then used to plan and
execute household tasks. Hereby, ASP is used to represent the task of tidying a
house consisting of three rooms that include a kitchen, a bathroom, and a living
room. Therefore, the possible actions of a robot and the estimated locations of
objects are modelled in ASP. This can be compared to our evaluation scenario
(Sect. 5) and the application of the developed query mechanism. A household
as presented in [28] is a highly dynamic and human populated environment and
therefore is suited for the presented query mechanism, which has been proven is
Sect. 6.

Finally, we want to state the difference to our preliminary work [12]. In [12]
the user is required to manually guarantee the satisfaction of the Module Prop-
erty. In this extended version, we introduce an approach to automatically guar-
antee the satisfaction of the Module Property. Whenever the user formulates
an ASPExtensionQuery (in [12] denoted as ASPVariableQuery) our approach
transforms the given query rules into unique rules without any interaction from
a user. This makes the otherwise tedious satisfaction of the Module Property
transparent to the user and releases him from this responsibility. Additionally, we
re-evaluated our approach with a more current version (5.2.0) of the ASP solver
Clingo that gives us a significant runtime improvement, as shown in Sect. 6.

8 Conclusion and Future Work

In extension to our preliminary work [12], we presented an automatic satisfaction
of the Module Property and re-evaluated our scenarios with a current version
of the ASP solver Clingo. The integration of Clingo with the ALICA framework
clearly benefits from the current version of Clingo. All runtime evaluations show
improved results. In order to prevent a violation of the Module Property, we auto-
matically create a unique rule head for every part of the ASPExtensionQuery.
As we showed before, both ways of creating unique rule heads (with or without
External Statements) respond appropriately fast (less than 20 ms) for dynamic
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domains. Nevertheless, the runtime advantage with External Statements further
improved, compared to the results in [12], due to the current Clingo version. We
observed one disadvantage of External Statements. Whenever it is necessary to
create a new query that is different from all other queries before, a new External
Statement needs to be added to your ASP program. Although it is absolutely
possible to do this automatically, we encountered an increase in solving time
by 1 ms per created query. The amount of 1 ms depends on our modelling and
can probably be further reduced, but the number of External Statements, even
when they were already released, is a limiting factor with regard to scalability.
However, we still propose the use of External Statements for modelling dynamic
domains, such as human-populated service robotic domains. Only the number of
different queries is limited to 1800 in order to remain reasonably low in runtime.
As in [12], we evaluated the scalability of the Region Connection Calculus 4 by
determining the transitive closure of the reachability relation. With the current
Version of Clingo, we may conclude that the calculus scales up to a number of
900 instead of only 600 regions under premises that an agent can still query its
knowledge base at a rate of 5 Hz after an initial grounding time of roughly five
minutes.

In our future work, we will increase the variety of our scenarios in order to
get a more profound impression of the validity of External Statements as a solu-
tion to reasoning in dynamic domains. Furthermore, this investigation will be
joined with knowledge-based collaboration between multiple agents. In the cur-
rent scenarios, the knowledge bases are independent of each other and the agents
do not utilise knowledge from other agents knowledge bases. Implementing this
feature, e.g., would allow an agent to ask another agent for open doors, instead
of searching for open doors by itself.

Another aspect of knowledge-based collaboration is about global consistent
stable models. Furthermore, it is possible in ASP that several valid models exist,
but it is often desirable that a team agrees on the same or a similar model.
Therefore, agents could exchange relevant parts or even complete models between
each other, in order to choose the local model that is most similar to the parts
received from other agents.

Besides the knowledge-based collaboration of agents, another part of our
future work will be the provision of ASP based commonsense knowledge, which
will enable agents to solve everyday tasks. A promising approach for this is the
combination of Clingo with ConceptNet 5 [29], which represents commonsense
knowledge as a hypergraph. This hypergraph consists of weighted edges connect-
ing concepts with a given set of relations. These edges will be translated into
ASP and will provide a commonsense knowledge base that can be accessed by
an agent with the presented query structure.
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