
Chapter 6
Introducing Computational Thinking
Through Spreadsheets

John Sanford

6.1 Background

To a large extent culture defines who we are. The human species is gregarious.
Humans like to interact with other humans. These interactions follow acceptable
protocol. Cultural change is generally a slow process baring cataclysmic occur-
rences. Computational thinking requires a cultural change. It involves a change in
the way humans think of using words and numbers and relationships. Advances in
computational education require the educators themselves to think that way, and this
alone presents a considerable difficulty.

As prehistoric cultures progressed, they developed methods for recording infor-
mation and keeping a record of significant occurrences and features of their lives.
The earliest such records constituted an oral history. Eventually skills of reading,
writing, and arithmetic were acquired by a select few in each community. These
skills certainly did not include digital computational thinking because the technol-
ogy did not exist. The digital computer with all its implications as a problem-solving
partner is an extremely recent newcomer to the human cultural scene.

Ancient societies produced some astoundingly intricate and accurate mechanisms
as evidenced by the Antikythera mechanism discovered in 1901 of the island of
Antikythera. This mechanism, thought to have been constructed in 150 BCE, cal-
culated positions of the sun and moon and provided other celestial data. The abacus,
the Roman hodometer, water clocks, and similar counting devices certainly
exhibited a computational nature. Nonetheless, people at that time would never
have considered such instruments as presenting a new way of thinking. They were
tools intended to assist humans who were employing existing methods of thinking.
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Digital computer developments of the twentieth century CE created profound
differences. Some researchers and practitioners began to use digital computers
interactively. The computer became a partner in many areas of research and analysis.
This partnership really represented a new paradigm. This was a new way of thinking.
People used digital machines to solve problems whose solutions were not available
by other means then or now. Pursuit of this human-machine partnership added a new
feature to the long established skills of reading, writing, and arithmetic. A somewhat
popular though not exclusive term for this added skill is “computational thinking.”
Participants in the digital computational field are still struggling to clearly define the
concept of computational thinking. Whatever it is, it should become as much a
natural activity as writing a note or calculating change for transactions in a depart-
ment store.

How should the pedagogical community approach the new paradigm? Forecast-
ing the future is a popular pastime but one attended by questionable accuracy.
Reviewing the milieu of existing science fiction may be as useful as any other
forecasting method. Current developments in the field of artificial intelligence
suggest that human-computer cooperation may become extensive. Such a conclusion
is not really helpful. It rather clouds the issue of appropriate education choices.

The feeling of urgency may exist, but progress is slow. Many states, cities, and
even nations are moving ahead with computer science curriculum. For just a few
examples:

• In 2017 the state of Mississippi, USA, will roll out a pilot computer science
program in 34 school districts (Wright (2016)).

• San Francisco established a pilot CS program for middle grades in the 2015–2016
school year (Twarek (2016)).

• In 2012 the small nation of Estonia introduced programming for its first graders
(Olson (2012)).

The Internet reports quite a few pilot programs intended for instruction of young
people in computer coding. Scratch is an online programming language developed at
Massachusetts Institute of Technology’s (MIT) Media Lab and is designed to be
easy if not intuitive for young children. Children who wish to participate can join a
Scratch community to design games and create stories. See https://scratch.mit.edu/.

Harvard University offers a Scratch Ed community for educators to join an online
community and develop projects for children (http://scratched.gse.harvard.edu/).

Minecraft is a popular game programming site for children. Like Scratch, it has its
own programming techniques and coding language of sorts (https://minecraft.net/).

As noted, these programs are pilot programs and participants self-select, which
means they are not necessarily representative of the general population. Such pro-
grams are ad hoc attempts to add coding as a separate component to the participants’
education. They are not a part of any standard curricular.
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6.2 What Is Education?

We are entitled to ask, “What is the purpose of education?” Is education intended as
an apprenticeship directed toward useful employment of the adult? Is education
intended as a means of propagating the advantages of an existing culture? Is
education intended to provide the student with knowledge and skills that will
allow the individual to lead a happy and fulfilling life?

The last option is the one that classically applied to those attaining an education at
the college level. Frequently the historical goal of college education in the western
world was preparation of the youth for service in church and state. In 1860 the
United States of America created “land-grant” colleges. The focus of these institu-
tions shifted toward an agricultural and mechanical education. Land-grant colleges
were intended to provide an education for all social classes. So perhaps the answer to
the question is yes to all three options mentioned in the paragraph above.

Should there be a fundamental educational core for everyone with divergence as
the child matures? Some countries have national tests to select students who will go
on to higher academic levels and hence to more prestigious and higher-paying
occupations. This approach tends to be less widespread today but is still practiced
in some societies. Often family wealth is an important consideration.

Today we recognize that the education system should offer all students the same
educational opportunities starting with the first grade or even preschool. Diversifi-
cation may be applicable at higher levels. At least one educational goal should be “to
provide the student with knowledge and skills that will allow the individual to lead a
happy and fulfilling life.”

With these considerations in mind, we must not allow considerations of compu-
tational thinking to diminish emphasis on the skills and knowledge that have been
demonstrated in the past as valuable for a fulfilling life in an advanced society.
Individuals must develop their own mental capacity for reading, writing, arithmetic,
logic, and music. In fact there is evidence that logic and music are important
progenitors for problem-solving ability. Students need to read and discuss their
readings. Students need to have mastered fundamental arithmetic skills required
for normal daily life just as they did before the digital age. We must not allow
computational learning to become a siren song to lure the child away from mental
agility. And yet we need to introduce computational thinking early in the education
process so that it becomes a familiar capability on a par with reading, writing,
arithmetic, and other skills.

Children should not become addicted to an electronic calculator or computer. It is
easy to use Google for solution of simple mathematical problems that should be done
on paper or in the student’s head. Today cell phones possess personal assistants, Siri,
Alexa, and Google. More personal assistant apps are available at app stores. Soon
these artificial intelligence apps will become all too obliging. The digital assistance is
not limited to mathematics. Google and other applications will turn text into audio
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and spoken word into text. Translation into foreign languages is readily available. In
the near future artificial intelligent applications will provide analysis of paragraphs
and even entire books. The future is a little frightening. Students who develop a
dependency on these applications too early in life will certainly underdevelop their
mental capacity.

So there is the problem. This treatise will recommend early introduction of digital
solutions, particularly utilizing spreadsheet technology because it is easy to use and
readily available. But that introduction should at an appropriate time.

6.3 The Approach to a Solution

There are some well-known guidelines for problem-solving though, as already
noted, there are situations in which other approaches are necessary. Generally
established approaches are facilitated rather than being replaced by computational
thinking methods. The following methodologies are valuable:

• Stating the problem and inherent assumptions
• Systems analysis
• Defining constants and variables (state vector)
• Defining a mathematical model
• Selecting a digital computational mechanism where appropriate
• Utilizing graphical presentations where appropriate

Stating assumptions and listing parameters are a good practice to provide clarity
of the task at hand. It is particularly essential in providing repeatability. Other
researchers cannot follow or replicate your work if you have not provided all the
initial conditions.

Systems analysis involves separation of a problem into separate parts that can be
studied individually.

Defining a mathematical model may not apply in every case. Perhaps it should be
called a computational model. This model is the framework that defines methodol-
ogy which will be pursued enroot to the eventual solution.

If we are to use digital computational methods, we must select some application
software or some computer coding language. There is indeed a wide assortment from
which to choose. Software for use in computers includes more application languages
than we have space to list, specialized application software, and even specialized
digital machines. A very short partial list of specialized application software would
include spreadsheets, Mathcad, Maple, project evaluation and control software,
linear programming and goal programming, etc. Discussion on the particular value
of spreadsheets will be presented shortly.
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6.4 What Is Computer Science?

Computer scientists have championed the introduction of computer coding for all
elementary and intermediate students. As previously noted, some school districts are
introducing computer coding in early grades, sometimes very early grades. In fact,
computer scientists have been championing this approach for some time although as
suggested by Denning, computational thinking did not originate with computer
scientists but rather with the various scientific fields, Denning (2017).

Computer coding teaches a valuable approach to logical thinking. Students
writing computer code in whatever language must clearly specify variables and
constants that will be part of the problem. They learn to deal with sequential logic
and predicate logic, (if. . . then... else). The risk is that the student will spend more
emphasis on language structure and less on problem structure. One popular approach
for teaching coding to young people involves having them create games. Computer
games are popular, so they will capture the child’s interest and at the same time will
provide valuable coding experience. But computer code does not directly display
itself in the algebraic form typically employed in introductory texts on arithmetic or
mathematics. Solutions using computer code may appear more as an adjunct than as
natural partner to classical educational methods. Some students develop a natural
proclivity for coding just as some naturally have exceptional ability with music and
musical instruments. But other students find quite the opposite and for them learning
computer code proves to be a difficult task.

Harvard University offers a popular course for computer science majors and
nonmajors (CS50X (2017)). The website for the course suggests that it provides:

• “A broad and robust understanding of computer science and programming.
• How to think algorithmically and solve programming problems efficiently.
• Concepts like abstraction, algorithms, data structures, encapsulation, resource

management, security, software engineering, and web development.
• Familiarity in a number of languages, including C, Python, SQL, and JavaScript

plus CSS and HTML.”

This must be good description of computer science or at least an introduction to
it. Computer science as described here is very much involved with computer
language and structures. But in order to deal with the problem-solving environment
of business or profession, one should also have familiarity and experience with
systems analysis, stating inherent assumptions, etc., as was discussed previously.
The goal is to think of the digital process as part of the solution methodology and not
as an add-on feature. Coding and programming are different from the usual methods
encountered in precollege education, and they may well appear to be existing in a
separate silo.
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6.5 What Is Computational Thinking?

What is computational thinking? This is a good question to ask. It is not easy to
answer. Much has already been written on the subject. One of the early and
significant discussions was given in 2006 by Jeannette M. Wing of Carnegie Mellon
School of Computer Science (Wing (2006)). See also Sanford (2013). As is often the
case when attempting to delineate first occurrences, even earlier discussions of the
topic are to be found, and no attempt to present an accurate history will be made here.

In his recent article on Computational Thinking in Science, Peter Denning
commented that, “Scientists who used computers found themselves routinely
designing new ways to advance science. They became computational designers as
well as experimenters and theoreticians” (Denning (2017)). He describes the process
as one of the solutions comprised of computational steps. But as he points out, these
steps may or may not be reducible to analytic algorithms.

Sometimes problem-solvers may obtain solutions through digital computation
and yet have no idea how the solutions were actually obtained. Such solutions might
involve neural networks, genetic algorithms, crowd sourcing, or other methods
known or yet to be discovered. If there is a distinguishing factor to computational
thinking, it must be that it is a partnership of human mind and digital machinery. One
goal for education, even early childhood education, should be to prepare future
researchers to use this partnership. Students should think of digital assistance as just
part of a natural process as common as using a pencil or a reference book. And this is
computational thinking. Too bad that there is no single word, such as informatics,
that would present a good description. In fact, informatics already has a well-known
connotation that does not meet the requirement.

The student or researcher needs to think of the problem solution as information in
the Claude Shannon sense (Shannon (1949)). In that sense one will operate on the
known data to develop a solution. In some cases it is just natural that the path to this
solution will involve digital computation. We want to be mindful that the path does
not destroy information. The paths to problem solutions should, as much as possible,
preserve methods, allow for expansion, clearly delineate assumptions, and preserve
repeatability. Students should be introduced to this methodology early in their
educational career and in such a way that it augments and does not inhibit essential
mental development associated with reading, writing, mathematics, music, science,
and logic.

6.6 What Is Important?

So, the pedagogical concern with computational thinking really refers to electronic
digital computational thinking and to a partnership of human mind and digital
machinery. This partnership should become second nature. The student and/or the
researcher should think of using digital machinery as readily as one might think of
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using a pencil and paper. But, most of us think of digital computation as an add-on
not as an integral part of problem-solving. Most young people today grow up using
cell phones, social media, and even electronic calculators but do not readily turn to
digital machinery for assistance in adjusting recipes for an afternoon picnic or
budgeting vacation expenses. If computing machinery is used as an assistant in
such activities, the solutions become dynamic. Information is readily available
concerning the effect of varying different parameters. Most importantly, if digital
assistance is used in small things, then it will naturally become an integral part of
large things.

The best way for a classroom instructor to present digital computation as a
partnership of human mind with digital machines would be to go through the
textbook and provide teaching examples to accompany any topic and every topic
where such examples could be applicable. Students should work at least one
example. This presents digital solutions as strongly associated with the textbook
material rather than some add-on feature.

It is not appropriate to present here material from a particular copyrighted
textbook in order to develop computer examples that would couple with
it. However, verbal descriptions often do not convey a concept as completely as a
picture. So beginning with the next section, we present randomly selected examples
of computer solutions that might fit with typical educational topics in elementary and
intermediate classes. Keep in mind that these examples are only part of the picture.
The other part is the textbook or lecture material that is supported by the computer
examples. Tied together they constitute instruction in computational thinking.

Many people think that they are using computational thinking if they use an
existing program to find answers that apply only to a fixed set of data. The fullest
meaning of computational thinking applies to a way of thinking that prepares a
mathematical model which is appropriate for digital machinery. The result is
dynamic. It may be used to evaluate variations in result that would be expected
from variations in input data. The examples presented in this chapter emphasize this.

There is a large collection of software available from which to choose for the
examples just discussed. This includes search software, plotting software, and
calculating software. Some applications will allow users to write equations “free
form” much as they would with pencil and paper. This chapter suggests the use of
spreadsheets. It presents support for this choice. However the field of software
development is progressing rapidly, and other excellent choices may be available
by the time you read these words.

6.7 Why Spreadsheets?

It is easy to say that spreadsheet software can be used in ways that resemble a pencil
and paper approach with the added advantages that words are typewritten and
mathematical calculations are done for you instead of separately on a calculator. It
is easy to say that the computer solution on a spreadsheet can be developed and
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displayed in a way parallel to the familiar solution printed in a textbook and as such
will be easy for students to visualize. But, “Seeing is believing!” The following
pages present a succession of examples intended to demonstrate the applicability of
this medium throughout the precollege educational experience. Discussion of more
advanced applications can be found elsewhere.

These examples are in no way unique. They do not present any particularly
original concepts. In fact their simplicity and commonality are the hallmark of the
argument for their introduction as a complimentary feature. The examples here are
only a few. Spreadsheet software can be used for just about any problem in
precollege mathematics, physics, and science. Spreadsheets update all formulas
every time a change is made rather than execute a sequence of instruction as
indicated in computer programming. This means that the “Do Loop” is not applica-
ble. Difference equations (or time delays) can generally be implemented by
assigning time to successive columns or successive rows. All the other basic
programming features such as sequential logic, predicate logic, and even table
lookup are available in spreadsheet. I addition they contain a wealth of special
features such as finding maximums, minimums, sorting, and others. There will be
instances where the spreadsheet is not a valid replacement problem-specific soft-
ware. Such instances might include specialized tutorial software, software to simu-
late chemical processes, software for advanced mathematical concepts, etc.

Spreadsheets are widely used for business applications, and knowledge of their
capabilities is an asset for knowledge workers.

Descriptions presented in the following pages are definitely not intended as a
tutorial. People who wish to learn more about development of spreadsheet method-
ologies can refer to any number of simple introductory books or even to free material
on the Internet.

Remember the ultimate goal is for students to become comfortable with organiz-
ing problems in a particular way that will facilitate a computer solution. The student
should be comfortable using the computer as an integral part of problem solutions.

Spreadsheets are very visual and as such almost self-teaching (well not quite).
They enjoy a wide range of applications in business today and will almost certainly
continue to do so in the future. Elementary school teachers may already be familiar
with this application for recording grades, seating assignments, and countless
other uses.

Microsoft is the leading purveyor of spreadsheet software. It is part of their office
suite. And, several open-source office suites containing spreadsheet software are
available. All offer similar functionality. In addition they have a macro language that
may be used by older students to create stand-alone computer programs. Microsoft
Excel uses Visual Basic. This is not the currently preferred language for coding
instruction, but if a student has finished an introductory class in some other language,
such as Python, Visual Basic will not appear difficult.
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The following list itemizes some of the arguments for early introduction of
spreadsheets:

1. They are almost as visual as using paper and pencil.
2. Students can begin to produce useful material with minimal instruction.
3. They have an extensive library of easily used features and functions.
4. Graphical presentations are easily produced.
5. It is highly unlikely that they will be superseded any time soon.

So when should students first encounter a spreadsheet?
They begin learning addition, multiplication, and division in the early grades.

There is no doubt that students should still memorize addition, subtraction, multi-
plication, and division “tables” so that they are able to perform common numerical
computations mentally. Although calculators are all too available, they have no place
for simple calculations. It would be a mistake to use digital aids on any occasion
where the problem is easily done without them. Like most other features of the
human body, the brain will benefit from exercise.

At the proper time students can bring their arithmetic knowledge to a spreadsheet
application. A small amount of overhead instruction is necessary but not arduous.
How do you initiate a spreadsheet? How do you save it when you are through with
it? How do you open a previously saved spreadsheet? Students will probably already
be familiar with such processes because they will have been playing computer
games. Also, how do you erase? How do you copy?

The next step is the art of creating functions or equations. At the start these will be
only simple equations like 20 ¼ 5 � 4. The computer will use an asterisk instead of
the familiar multiply sign and a slash instead of the familiar divide sign. And that is
enough for a start. The rest is developed as the need arises.

Figure 6.1 shows a sample. The student writes ¼5*4 but leaves the 20 for the
computer to insert by itself. If the student leaves a space at the start, the spreadsheet
shows the formula. If the student does not leave a space, the computer shows the
correct answer. The student can experiment with this sort of calculation in order to
become comfortable with it.

Can this be made more interesting? Suppose we develop an arithmetic game. True
enough, many computer games are already available to teach arithmetic. But this
game the student will create by herself.

Fig. 6.1 When writing
equations, type a space first,
and see the formula
(equation). Leave no space
and see the computer’s
answer as shown in
column C
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6.8 Where Is Computational Thinking?

The above example uses a spreadsheet to accomplish the same thing that could be
accomplished with pencil and paper. However it demonstrates the ability of a
computer solution to extend the problem as is done where long division is easily
added.

In early grades the student would not yet have been introduced to long division.
Division of 456 by 32 could be effected with an electronic calculator, and students
will probably have such an app on their cell phones. They should look for that on
their cell phones. All of this sharing of computer and problem-solving inculcates
what we call computational thinking.

Each and every one of the examples presented in this chapter inculcates compu-
tational thinking when it is presented along with standard textbook or lecture
material. They exemplify the partnership of the human mind and electronic comput-
ing to solve problems. Without a computer such problems would be solved with
paper and pencil and, in some cases, with the aid of an electronic calculator. The
computer approach presents a dynamic solution where the effect of variations in
parameters can be easily examined and where results can be easily presented as a
chart if applicable.

6.9 An Arithmetic Game with a Spreadsheet

Figure 6.2 shows how the “game” will appear when we are done. Construction is
quite simple. The student will type in the labels and then type the numbers in column
B. After placing the first two numbers, the student can select those same numbers

Fig. 6.2 The multiplication
game
This figure shows the
spreadsheet as it will appear
when completed. The
student has partially filled in
column D
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together and copy them to the remainder of the column. The computer knows to
increase each number according to the example of the first two.

Next the student enters the formula ¼ B5*$D$4 into cell C5. The student copies
this formula to the bottom of the column. The computer will automatically advance
the number parameter, B5 to B6, and B7, and so on, progressively as the formula is
copied. The dollar signs lock the parameters that they precede so that they will not
change.

The student enters ¼ C5 ¼ D5 in cell E5 and copies this formula to the bottom.
Note that Fig. 6.2 shows column C as very narrow. This column will have the

correct product value, and we want to hide it. The column width can be adjusted with
the mouse so that it is very narrow. To play the game, the student types the product of
3 and 0 in column D, and the computer places TRUE or FALSE in column E.

Features learned in this spreadsheet are:

1. How to copy numbers to create a sequence
2. How to copy formulas
3. How to type formulas like ¼ B5*$D$4 and ¼ C5 ¼ D5
4. Use of $ for absolute reference
5. How to change the width of a column

That is not too much! Student should be invited to create more games for addition
and subtraction but not division. Division presents a problem because the computer
uses decimals and not fractions. Decimals are probably a later introduction.

Perhaps it would be fun to have the numbers in column B appear in random order
instead of sequentially. We would introduce two new features, the RAND() function
and a simple sorting routine. First place ¼ RAND() in cell A5 and copy it to cell
A15. Next sort the range A5:E15 using column A. Figure 6.3 shows a typical result
after this step. But when one looks at column A in Fig. 6.3, the numbers do not
appear to be in ascending order as we expect them to be. At the completion of the

Fig. 6.3 The randomized
multiplication game
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sort operation, the spreadsheet recalculates all functions on the sheet. So then the
random numbers are all changed. No matter! The intent was to rearrange the
numbers in column B, and this has been accomplished. The final step would be to
make column A width very narrow so we would not see the random numbers.

Indeed, every time the student types an answer into a cell in column C, all the
random numbers will change, but they will not be seen because the column width has
been made small. There are “hide” and “reveal” instructions available, but that
would add unnecessary complication. The student has played the game and typed
in some answers. Every time a new number is entered, all the RAND() values
change. But we don’t care because after the range A5:E15 is sorted, it remains the
way it is.

The additional features to be learned are:

1. The RAND() function
2. Sorting

It is important that the students be encouraged to follow this pattern and to create
new games. Some student may use imagination and ingenuity to do new things. That
would show that they are becoming comfortable with computer use.

6.10 A Game to Add Columns of Figures

Another game could add different numbers in a column. We start with three numbers
in a column. The student picks them at random and types them into columns as seen
in Fig. 6.4. At the top of each column, the student enters the formula to sum the
numbers in that column. Figure 6.4 shows the result with the formula just as it is
being entered into cell D2. When the student presses ENTER to finish the formula in
D2, the letters will disappear, and the proper sum value will appear.

The game is to enter the correct sums for the columns into cells B6, C6, and D6.
Then the “FALSE” responses in row 7 will change to “TRUE.” Can the student
remember what to type in cell B7? It would be¼ B2¼ B6. Of course the game is not
much of a game if the correct answer is visible in row 2. To hide these numbers,
change row height. Another trick would be to change the text color to white so it will
not be visible.

Fig. 6.4 Adding
columns game
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To continue the student will have to change the numbers in the columns by hand.
If RAND() is used, the numbers will change every time anything is done to the
spreadsheet and nothing will work properly.

6.11 Word Problems

Computer use is a perfect adjunct when word problems are introduced in math
classes. This is true no matter what software is used. Computational modeling of the
problem allows reuse of the same template for other similar problems. This is
particularly applicable to spreadsheets because when properly constructed, the
sheet contains its own labeling and instructions. The spreadsheet provides a self-
contained report and solution at the same time. And often a model will bring to mind
new imaginative activities beyond the original scope of the initial problem.

Word problems introduced in the lower grades generally involve simple addition,
subtraction, multiplication, and division. For example, a problem might say that
Oscar has six apples and Juan has four apples. How many do they have together? If
Carla joins them and they give her two apples, how many will Oscar and Juan have
left? Such problems can be modeled on a spreadsheet which offers the advantage that
it is neat and ordered and provides a pleasing presentation. These simple problems
can be done in one’s head with little or no formal organization. However they
provide learning experience on the computer. Good form dictates that a short
restatement of the problem be placed at the top of the sheet. All parameters of the
problem should be placed on the sheet, usually at the top left. These constitute what
are often referred to as the state vector or state variables. Actually some of them may
be constants for the sake of the problem. The state variables do not include universal
constants such as π that are available as functions on the computer. But they should
include other constants such as the acceleration of gravity that will be approximated
because it is actually not a constant and is not a simple calculation.

Figure 6.5 shows a simple practice problem. Here Carla has $7.50 and Oscar has
$9.00. How much do they have together?

Fig. 6.5 Presented for spreadsheet practice
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When Juan joins them with $8.24, how much do all three have together? The
student would not create a new sheet for the second part but rather add Juan to the
state vector and add part two to the existing sheet. The sheet will contain formulas
such as ¼ SUM(B3:B4) and ¼ SUM(B3:B5). Students should not do the work in
their head and just type the answer. And if the problem changes so that Oscar has
$8.00, the new solutions are obtained by changing the value in the state vector from
$9.00 to $8.00.

As previously mentioned, the spreadsheet serves as a template for similar prob-
lems. The student should be guided to use the same sheet for a problem where Carla
has only $3.50 and Oscar has only $5.00. New results are obtained by simply
changing the initial condition values in the state vector.

Problems like these offer an introduction to spreadsheet capabilities and methods,
but they do not suggest the significant advantages that are available through the
computer. Eventually these advantages should be introduced. The next example
demonstrates array capability and the easy display methods that are available in the
spreadsheet.

In this problem, Carla and Oscar are friends. Carla has $7.50 and Oscar has $9.00.
They decide to pool their resources and buy comic books together. They will share
the books. Their favorite comics are “Tales for Zombies”which costs $3.00 per copy
and “Squeaky Crypt” which costs $2.30 per copy. Because they have not bought any
of these for some months, their collections are a bit behind. They will buy the current
issues and back issues. So they might buy four “Tales of Zombies,” and then they
would have enough money for only one issue of “Squeaky Crypt.” What are the
various combinations of issues that they could buy with the money that they have?

Figure 6.6 shows the spreadsheet for this problem. The state vector has a value for
Carla + Oscar. Together they have $16.50. Even though this appears in the area for
constants, it should be calculated with a formula. It is not a fundamental data item.

The outer boarders of the array show the number of each type of comics
purchased. Students can type in the numbers 1, 2, 3, and so on. But they should
remember how to type 1 and 2 and then select them and copy. The computer will
know that it is to increase each number by one.

Formulas will be used for all the other numbers. The formula in cell C14 is
¼C13*$B$8. The purpose of each dollar sign is to lock the parameter that follows
it. When copying this formula cross the row to cell F14, the $B$8 will never change
and will always point to the cost of “Tales for Zombies.”

The only tricky formulas are the ones in the center that produce the values 5.30,
8.30, and so on. These numbers show the total dollar cost. So if Carla and Oscar buy
one of each of the comic books, they will spend $5.30. The formula is ¼C
$14 + $B15. Here again the dollar sign locks the parameter that follows it. This
allows the student to write the one formula and copy it across and down to achieve
the total array. The numbers that are possible without exceeding funds available are
shown in bold. Conditional formatting is available to allow the computer to set bold
format automatically, but this is an advanced feature. Also an IF function can be used
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to avoid displaying any numbers that exceed the available funds, but this also is an
advanced concept. Most likely the student can set the bold format by hand after
inspecting the numbers to see which ones are too large. Perhaps the student may be
invited to think of how to add the IF feature after the basic solution is created.

Features learned in this problem:

1. The use of absolute reference, i.e., use of dollar signs in a formula
2. How to set text to bold
3. Maybe how to use an IF function

Students should be encouraged to see how easy it is to obtain new results if Oscar
or Carla has a different amount of money or if the cost of a comic book changes. One
might ask how the problem would be different if Carla and Oscar had a friend who
wished to join in the project.

One might ask how to approach the problem if the selection is to be among three
different comic books. If there are three comic books, the array must be three-
dimensional. It is not likely that a young student will think of that. Such a problem
would be beyond the elementary level. The resultant display would involve a set of
two-dimensional arrays, one for each different number of issues of the third comic
book. Computer programming code for such a problem would involve three loops.
That would be simple, but the display would not differ from the spreadsheet display.
It is not easy to display three dimensions on a two-dimensional sheet of paper.

Fig. 6.6 Showing costs for combinations of comic books
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Data is often displayed in arrays. For example, the temperature at noon of every
day in a month would be an array. Other examples would be inches of rain each day
for a month, student grades on a quiz, and names of students in a class. Sometimes
people are interested in the numerical average of the data or the total value of all the
data. Sometimes we want to sort the data into alphabetical order. There are ample
opportunities for examples and problems.

6.12 Student Projects

The intention thus far has been to show how spreadsheets and computer technology
can fit as part of more usual instruction rather than as separate stand-alone instruc-
tion. After students have developed fundamental facility with spreadsheets, they will
enjoy projects that offer more self-expression or even group activities. One example
of such a group project might be planning a lemonade stand to raise money for some
charity. This is a good project, and there are many lemonade recipes on the Internet.
There are even Internet sites that will help with planning.

The solution of any problem should start with the accepted scientific method.
First identify all the information that might apply to the problem. What are the
physical requirements? What locations are possible? What are advantages of each
location? What criteria will be used to select the best location? What hardware such
as table, chairs, pitchers, and the like may be required? Does required hardware
impact site selection criteria?

People often neglect specification of selection criteria. This oversight may result
in selections based more on whim rather than on attributes.

Of course much of the hardware can be borrowed from friends, relatives, or other
sources, and these factors are listed as problem assumptions. But students must plan
for the expendable items and must establish a price for a cup of lemonade. Modeling
the material costs on a spreadsheet will be helpful. It will provide a clear display of
all the data and calculations. Further it will allow examining various scenarios that
will lead to setting a price and estimating the probable profit of the enterprise.

The first step in modeling the expendables is to obtain a good recipe, preferable
from the Internet. Using the Internet rather than human help will encourage resource-
fulness and independence. The next step is planning and designing the spreadsheet
itself. The various spreadsheets developed by different groups may be similar but
will probably differ in appearance. The first part of the sheet should contain a brief
description, names, and a date. Then there needs to be places for the recipe, for all the
raw materials, and for any constants such as how many cups will be available from a
gallon, and so on. When purchases are made, how many units are contained in a
package? For example, how many pounds of sugar are in one sack? All numbers
need to be entered in separate cells all by themselves with no labels. However, dollar
signs are actually part of a number.
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Figure 6.7 shows one possible configuration. Teachers should give some guide-
lines as a start for the spreadsheet:

1. Begin with a very brief description and include names and the date.
2. Organize in columns with column headings for units, cost per unit, number of

days, etc.
3. Think of fixed costs and variable costs separately.

Fig. 6.7 Showing possible lemonade sale configuration
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4. Variable costs are costs that depend on how many cups you sell, like lemons and
sugar.

5. For raw materials, think of how you buy them, per pound, per unit, etc. and
their cost.

6. Set up the spreadsheet so that there are certain numbers entered as numbers such
as cost of sugar, cost of ice, number of days, etc.

7. Other numbers should be calculated using a formula that refers to the fixed
numbers. Then if you change the cost of lemons, all the other numbers will
change (recalculate).

6.13 Equations

Consider further use of spreadsheets and computer technology as part of normal
in-class instruction in mathematics. Equation (6.1) is a simple example that would
have a simple solution:

12 ¼ 3Xþ 3 ð6:1Þ
Yes, the solution is X ¼ 3, but it might be instructive to see the locus of all points

defined by 3X + 3 ¼ Y. Figure 6.8 shows this locus. It is easy to produce, and the
method is well worth the time it would take a student to learn it. Two columns define

Fig. 6.8 Showing locus of all Y values for Y ¼ 3X + 3
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the chart shown in Fig. 6.8. One is a column of X values and the other a column of Y
values. Create the columns by selecting a starting value for X and placing it in a cell,
in this case cell A5. The value of X should increase by some fixed amount for each
cell. This amount of increase can be called the step. Place the step value in cell A4.
Now the formula in cell A6 is ¼ A5 + $A$4. Copy this down the column for a
reasonable way.

The next column has the computation of ¼3X + 3 obtained by referring to the X
value from the corresponding row in the X column. In other words, cell B5 contains
¼3*A5 + 3. Copy this formula down the column, and create the chart (graph). All
the spreadsheet software contains graphing capabilities although they differ slightly.
It is important to use the X-Y plot feature.

Now the student can see that Y ¼ 12 when X ¼ 3. This is so simple that it might
appear trivial, but the technique has broad application. For example, consider
Eq. (6.2):

3X2 þ 2X� 3 ¼ 0 ð6:2Þ
There is, of course, a quadratic formula that may be used to solve this equation for

the value of X.
Examples are offered on the Internet. Some schools may have advanced math

application software such as Mathcad, Maple, or similar applications that will
provide easy methods for finding the solution and even for graphing the function.
However, the spreadsheet is included with office suites, and it is essentially free if
you own the suite. So we can use it. Figure 6.9 shows the result.

If the student is advanced sufficiently in the use of spreadsheets, values for the
equation coefficients, a, b, and c, may be placed at the head of the sheet and
referenced in the various formulas where they are required. For a typical example,
see Eq. (6.3):

¼ $B$1∗A6^2þ $B$2∗A6þ $B$3 formula in cell B6 of Fig:6:9 ð6:3Þ
The solutions are read where the graph intersects the x-axis. Using coefficients in

cells B1, B2, and B3 provides the student with the capability of changing the C value
and watching the entire curve move up or down. The student can see when the curve
has two solutions, only one solution, and when it has no solution (not valid).

Figure 6.9 is a template. It stands ready to deal with any quadratic problem. The
only modifications required for a new problem are changing the coefficients and
changing the step and start values.

Graphical solutions are also applicable to third-, fourth-, and higher-order equa-
tions. As previously mentioned software that will provide such solution is readily
available. In fact at least one Internet site is available that will provide roots of a
third-order equation. There is still some advantage to using a graphical solution that
one creates for oneself. For one thing behavior of the function away from the zero
crossing is available. The student can examine sensitivity of the roots to coefficient
changes. At what value of the constant term will there be two solutions and only one
solution?
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As can be seen in Fig. 6.10, the coefficients are listed at the top of the spreadsheet
so that they can be readily changed. One can obtain a more accurate determination of
the routs by expanding the graph in the area of zero crossings. This requires only that
the starting point and step size be changed. A very small step size will expand the
area of interest. Figure 6.11 shows this. And, the spreadsheet of Fig. 6.10 is a
template for use with any third-order polynomial.

6.14 Simulating a Problem in High School General Science

Describing the trajectory of an object thrown up into the air is a common general
science problem. It is so common that multiple solutions are available on the
Internet. A slight variation would be a rifle bullet trajectory. If the rifle is held at
some angle, there will be horizontal and vertical velocities. The vertical component
is given by multiplying muzzle velocity by the sin of the angle. For the horizontal
component, one uses the cos instead of the sin.

Fig. 6.9 Showing solution of a quadratic equation
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Problems like this provide good learning experiences because they have many
parts that must be investigated in succession. A spreadsheet allows these compo-
nents to be displayed in an orderly fashion.

The maximum height of the trajectory occurs when the velocity resulting from
gravity equals the upward component of muzzle velocity. The two velocity vectors
act in opposite directions. So the time spent traveling up, TU, is obtained as the
upward component of muzzle velocity divided by the acceleration of gravity. This is

Fig. 6.10 Showing graphical solution of third-order equation

Fig. 6.11 Showing expanded graph in area of the root X ¼ �0.423
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shown in Eq. (6.4). It is the same time that the bullet will require to fall back down to
the height of the rifle. The height above the rifle that the bullet will reach in TU

seconds is given by Eq. (6.5):

TU ¼ VU=g ð6:4Þ
DU ¼ 1

2
gT2

U ¼ VUTU ð6:5Þ

Total distance from apex to the ground, DT, is equal to DU + DR, where DR is the
distance from the rifle to the ground. The time for the bullet to travel from the apex to
the ground is given in Eq. (6.6). So the total time of flight, up and down, is TD + TU:

TD ¼
ffiffiffiffiffiffiffiffiffi

2DT

g

s

ð6:6Þ

These equations are derived through use of the calculus, but they are typically
presented without derivation in elementary general science textbooks. Some peda-
gogical assistance is required because the student did not use the calculus to develop
the equations and so will not necessarily recognize that the sequence of calculations
is important. One must first find the total distance from ground to the apex and then
employ Eq. (6.6). Then the time in flight, T, is the sum of TU and TD as shown in
Eq. (6.7):

T ¼ TU þ TD ð6:7Þ
Once the total time of flight is available, the horizontal range can be found as the

product of flight time and horizontal component of muzzle velocity, assuming zero
air drag.

Figure 6.12 shows atypical spreadsheet solution. This solution utilizes an Excel
add-in called “Solver” to select an angle that maximizes the horizontal range.

The Solver add-in is not really necessary. The student can use different values for
the angle and optimize heuristically. Students should be encouraged to change initial
conditions such as such muzzle velocity and angle to see what effect these have on
trajectory.

Plotting the trajectory would be fun if the students are sufficiently familiar with
spreadsheets. By the time they reach general science they should be.

As always, the first steps in solving a problem are a clear statement of the problem
and a clear statement of parameters (state vector) and influencing factors.

The riffle bullet trajectory problem demonstrates this orderly development. Each
of the calculated values is shown in the column for calculated values. Each is
calculated using a function that relates to problem constants or other calculated
values. The spreadsheet provides an easy method of describing the succession of
steps and allows them to be labeled and visually displayed. The spreadsheet provides
not only a solution but essentially a report of the solution all packaged together.

All of the values must be related. All formulas must reference the constants in the
constants column. Most constants are not laws of nature but are initial conditions that
can be changed. Changing any one of them must result in a new solution. Perhaps the
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most significant risk inherent in spreadsheet solutions is that the problem-solver may
perform mental calculations and insert them into the solution process. In that case
changing the initial conditions or constants would not produce a correct solution for
the new constants.

Students will and should display originality in design so all spreadsheets will not
all look like Fig. 6.12. Presenting students with a template would defeat the
fundamental intention of creating a comfortable relationship with computational
thinking. There is little doubt that solutions for this exact same problem will be
found on the Internet. Students should resist looking at them before obtaining their
own solution unless they are stumped.

6.15 Trigonometry

Trigonometry is generally considered to be a later high school subject. Students
would typically use calculators in order to obtain required level of accuracy for even
simple problems. Built-in functions are available in spreadsheets for both plane and
spherical trigonometry and do not require loading special libraries. Simple diagrams
can be created right on the spreadsheet using a feature that allows insertion of shapes.

Students still need to know the fundamental rules that are applicable to trigo-
nometry, such as that the sum of all interior angles of a triangle will equal 180� in
Euclidian trigonometry. Students will need to know what functions to employ for the

Fig. 6.12 Showing the
bullet trajectory problem

6 Introducing Computational Thinking Through Spreadsheets 121



solution to a given problem. The advantage of the spreadsheet over the calculator is
that problem visibility is as always present. Changes may easily be made to
accommodate new problems that are similar to the given one. Figure 6.13 presents
a typical problem.

6.16 Simultaneous Algebraic Equations

Introduction of simultaneous equations is a late high school topic. If software similar
to Mathcad, Maple, etc. is available, it will present a medium that is easier to use than
the spreadsheet. But convenience and expense incline toward use of a spreadsheet. It
is there and it is free with any office suite. The spreadsheet will perform matrix
operations, addition, subtraction, multiplication, and inversion. Knowledge of
matrix operations is valuable for mathematics and for computer science.

Spreadsheets use functions such as MMULT and MINVERSE to accomplish
multiplication and inversion for division. These are array operations, and so the input
parameters for them are arrays. The easiest way to specify an input array is to select it
with the mouse, but one can specify it by identifying the two diagonal cells. Since the
response will be an array, one must select the area that the response array will occupy
and then type a function such as ¼ MMULT(. . . .

The method for solving simultaneous equations involves the matrix equations
shown in (6.8) and (6.9)

where Y, A, and X are matrices. A�1 is the inverse of A.

Yf g ¼ A½ � • Xf g ð6:8Þ
A½ ��1

• Yf g ¼ Xf g ð6:9Þ

Fig. 6.13 A typical
trigonometric problem
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The X matrix is a column matrix containing X1, X2, . . .Xn. Actually it is blank in
the spreadsheet the labels, X1, X2, etc., are understood. After performing the
operation shown in (6.9), X will contain the solution for all values of X1, X2,. . .Xn

dictated by the simultaneous equations. The Y matrix is also a column matrix
containing all the Y values that correspond to the rows of the simultaneous equa-
tions. The matrix, A, contains the coefficients of all the X values in the simultaneous
equations. Figure 6.14 shows this as it might appear in a spreadsheet. The letters Y,
A, etc., above the matrices are not necessary. They are added for clarity as are X1 and
X2 in the initial X matrix. In fact, the entire Y matrix in the lower equation is added
for clarity. The original Y matrix can be pre-multiplied by A�1 to yield the answers
for X values.

One interesting feature is that the results shown on the spreadsheet are dynamic. If
one changes a value in the A matrix or the initial Y matrix, the solution changes to
the correct values for the new input. If a changed parameter produces a set of
equations for which there is no solution, Excel puts “#NUM!” in the cells. Other
spreadsheets may use a different notification.

The simultaneous equations may be many in number, limited only by practical
computational considerations. It is valuable for students to know how to solve two
simultaneous equations by hand. Certainly more than two simultaneous equations
can be solved by hand, but the process does become tedious for large numbers of
equations.

6.17 Conclusion

This chapter has presented some concepts related to computational thinking.

1. Computational thinking is nothing more than developing a normal tendency for
individuals to organize and present problems for solution with the aid of digital
computing machinery.

2. It is a partnership of human mind and digital machinery.
3. Digital machinery should be as readily used as paper and pencil.
4. Computational thinking should be incorporated in early childhood education.

Fig. 6.14 Showing matrix
operations
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5. Computational thinking should be included throughout the education years.
6. It involves a methodology for problem-solving and not just computer

programming.
7. Spreadsheet software is suggested as a medium, but there are other options.

Each of the examples shown in the chapter presents a computerized method of
problem-solving. When instructors develop similar problems to augment textbook
material, they are inculcating computational thinking.

Problem-solving methods such as systems analysis and use of mathematical
models are touched on in the chapter. These are not really specific to computational
thinking any more than they are components of problem-solving, or computer
science, or other disciplines. The chapter has not stressed their existence.

In this world “we must run as fast as we can, just to stay in place” (Carroll). By the
time the grade school child of today reaches college age, the human interface with
computers will almost certainly be though artificial intelligence and robotics. Does
that mean that this concept of computational thinking will fade in significance? No!
If humans have a problem, then they must describe the problem even for artificial
intelligence. A significant feature present in the examples contained in this chapter is
that the first step is describing the problem.
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