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Foreword

The future is already here. It’s just unevenly distributed — William Gibson

A computer terminal is not some clunky old television with a typewriter in front of it. It is an
interface where the mind and body can connect with the universe and move bits of it about—
Douglas Adams

In 1943, Thomas Watson, then president of International Business Machines (aka
IBM) made one of the most inaccurate predictions ever. Speaking of the future of the
computer business he said, “I think there is a world market for maybe five com-
puters.” Clearly, he missed the mark by a few billion in sheer numbers. But more
importantly he missed the mark in seeing the dramatic shift in human life and culture
that would occur. Computers are everywhere today. They drive our work, our
society, and our lives in almost every way imaginable. They pervade our reality.
So much so that if computers and digital technology suddenly vanished or shut
down, global communication, information, and society would come to a
grinding halt.

From giant supercomputing machines that can crunch quadrillions of floating-
point operations per second (FLOPS), a measure of computer performance to tiny
chips that are embedded in everyday objects, we exist in what is often described as
the Internet of things—or the network of devices that connect our lives, spaces,
possessions, communications, and more. More people have access to cell phones
today than to safe drinking water (Casey, 2016). Computers have become integral to
how we function. Our work lives are often driven by digital communications and
tasks. People today buy every good or service imaginable online, from luxury items
to basic necessities like food. They meet significant others online or use the Internet
to connect with friends and family at near and far distances. Digital technologies are
integral to how we work, think, live, and run our world. Though we can speak of the
practicalities of such technology, what we are seeing is a fundamental transformation
of our engagement with the world as humans.
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This global shift was best captured in a talk delivered by the author Douglas
Adams at a conference at Magdalene College, Cambridge, in 1998. In a wide-
ranging, extempore speech, Adams covered a range of topics, in his inimitably
funny yet insightful manner, including the cultural and intellectual history of the
human civilization. One of the insights he shared with the audience how human
technological history consists of, what he referred to as, the four ages of sand.
Specifically, Adams seeks to describe how technological change has changed and
broadened our understanding of ourselves and the world. Let us quote directly from
Adams (1998), as he describes the first two ages, primarily because paraphrasing
him risks losing the immediacy and power of his distinctive voice and the precise
meaning in his ideas:

The first age of sand was the age of the telescope. From sand we make glass, from glass we
make lenses and from lenses we make telescopes. When the great early astronomers,
Copernicus, Galileo, and others turned their telescopes on the heavens and discovered that
the Universe was an astonishingly different place than we expected and that, far from the
world being most of the Universe, with just a few little bright lights going around it, it turned
out - and this took a long, long, long time to sink in - that it is just one tiny little speck going
round a little nuclear fireball, which is one of millions and millions and millions that make up
this particular galaxy and our galaxy is one of millions or billions that make up the Universe
and that we are also faced with the possibility that there may be billions of universes, that
applied a little bit of a corrective to the perspective that the Universe was ours.

The next age of sand is the microscopic one. We put glass lenses into microscopes and
started to look down at the microscopic view of the Universe. Then we began to understand
that when we get down to the sub-atomic level, the solid world we live in also consists, again
rather worryingly, of almost nothing and that wherever we do find something it turns out not
to be actually something, but only the probability that there may be something there.

The third age of sand, according to Adams, is the discovery that sand can be used
to make the silicon chip. The chip led to the digital computer and then suddenly:

. . .what opens up to us is a Universe not of fundamental particles and fundamental forces,
but of the things that were missing in that picture that told us how they work; what the silicon
chip revealed to us was the process. The silicon chip enables us to do mathematics
tremendously fast, to model the very simple processes that are analogous to life in terms
of their simplicity; iteration, looping, branching, the feedback loop which lies at the heart of
everything you do on a computer.

The fourth and final age of sand according to Adams is that sand can be used to
make fiber-optic cables and thus leads to a new communication platform, the
Internet. This is a new form of communication (many-to-many), in contrast to
previous technologies such as the telephone (which was one-to-one), or radio and
TV (which were one-to-many). It is communication between people that forms the
fourth age of sand.

The idea here is that each of these ages of sand changes how we, as a species,
locate ourselves in relation to the world. The repercussions of the first two ages of
sand are felt even today; their contribution to our knowledge of the world and our
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place in it is not the stuff of school textbooks. Yet we are actually now living within
the next two ages (the third and fourth ages of sand), and this has significant
implications for our economy, our lives, and our relationships with each other and
our world. The first two ages of sand have power in human knowledge and history
but are either felt indirectly or seen as knowledge removed from our everyday lives
or experiences. But the third and fourth ages of sand have immediately obvious and
tangible affects on our lives and experiences. Without them, our everyday acts of
talking or texting with distant friends and family, buying our “stuff” online, sending
work emails, or checking the immediate news would be impossible. These ages of
sand pervade our experience of the world and each other. In this, they are not only
ages of technological development—they become the filter or lens through which we
operate and function. They drive our view and experience the world. Thus, they are
woven into the fabric of our immediate lives, needs, and beliefs.

Clearly something as world-view changing as the third and fourth ages of sand
require new intellectual tools to grasp, understand, control, and experience these
devices and technology. It is important to remember that one of the challenges in the
world of the third and fourth ages of sand is in their virtual nature. Such technologies
are often black boxes, in that their inner workings are relatively impenetrable, unless
one has explicit technical knowledge to understand them. This requires that we
develop intellectual tools or ways of thinking that allow us to understand and engage
with such technologies in creative, thoughtful, and appropriate ways. Along with the
development of these intellectual tools, we need pedagogical tools to prepare the
next generation of learners to work, live, play, engage, and design technologies
appropriately, ethically, and thoughtfully. This goes beyond merely learning to
program things. This means helping teachers and learners to develop a mind-set,
skills, knowledge, and dispositions that allow for creative learning with
technologies.

This is where computational thinking comes to the forefront. Broadly, computa-
tional thinking is thought processes for structuring and formulating problems that
can be effectively carried out by computational devices, or other information
processing agents. Given the breadth and depth with which technology touches
our world, computational thinking cuts across disciplines and must be of interest
not just to computer scientists but to every student and learner. The question of how
to bring computational thinking to teachers and learners in creative and interdisci-
plinary ways is challenging and complex. Given the accelerating rate of technolog-
ical change, with its dramatic impact on our lives and world, this is also an urgent
problem, and one demanding of scholarly attention.

That is what makes this book and the range of ideas in this book so timely and
important. The editor of this collection has compiled articles by top thinkers,
scholars, and researchers in this emerging, growing field. The work presented in
this volume touches on a range of aspects of computational thinking and helps us to
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better define its range, scope, and potential of learning in this new domain. We
believe that this line of work can have significant impact on the future of this area, by
providing ideas, guidelines, and solutions for the next generation of learners who
will live, learn, and engage with these new ages of sand.

Mary Lou Fulton Teachers College
Arizona State University
Tempe, AZ, USA

Punya Mishra
Danah Henriksen

References

Adams, D. (1988). Is there an Artificial God? Speech at Digital Biota 2 Conference. Cambridge:

Magdelene College. Retrieved from http://www.biota.org/people/douglasadams/

Casey, V. (2016, October 16). Why can people get access to mobile phones, and not safe water?

Retrieved from: http://www.wateraid.org/news/blogs/2016/october/why-can-people-get-access

-to-mobile-phones-and-not-safe-water

viii Foreword

http://www.biota.org/people/douglasadams/
http://www.wateraid.org/news/blogs/2016/october/why-can-people-get-access-to-mobile-phones-and-not-safe-water
http://www.wateraid.org/news/blogs/2016/october/why-can-people-get-access-to-mobile-phones-and-not-safe-water


Contents

Part I Foundations in Computational Thinking

1 Strategies for Developing Computational Thinking . . . . . . . . . . . . . 3
Myint Swe Khine

2 Characteristics of Studies Conducted on Computational Thinking:
A Content Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Filiz Kalelioğlu

3 Microworlds, Objects First, Computational Thinking
and Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Greg Michaelson

4 Toward a Phenomenology of Computational Thinking in STEM
Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Pratim Sengupta, Amanda Dickes, and Amy Farris

5 Strictly Objects First: A Multipurpose Course on Computational
Thinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Johannes Krugel and Peter Hubwieser

6 Introducing Computational Thinking Through Spreadsheets . . . . . 99
John Sanford

Part II Computational Thinking and Teacher Education

7 Preparing Pre-service Teachers to Promote Computational
Thinking in School Classrooms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Charoula Angeli and Kamini Jaipal-Jamani

8 Computational Thinking in K-12: In-service Teacher
Perceptions of Computational Thinking . . . . . . . . . . . . . . . . . . . . . 151
Phil Sands, Aman Yadav, and Jon Good

ix



9 A Computational Thinking Curriculum and Teacher Professional
Development in South Korea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Soohwan Kim and Hae Young Kim

Part III Computational Thinking in Schools and Higher Education

10 Exploring the Scope and the Conceptualization of Computational
Thinking at the K-12 Classroom Level Curriculum . . . . . . . . . . . . . 181
Georgios Fessakis, Vasilis Komis, Elisavet Mavroudi,
and Stavroula Prantsoudi

11 Introducing Coding and Computational Thinking in the Schools:
The TACCLE 3 – Coding Project Experience . . . . . . . . . . . . . . . . . 213
Francisco José García-Peñalvo, Daniela Reimann,
and Christiane Maday

12 Case Studies of Elementary Children’s Engagement
in Computational Thinking Through Scratch Programming . . . . . . 227
Sze Yee Lye and Joyce Hwee Ling Koh

13 Integrating Computational Thinking in School Curriculum . . . . . . 253
Mehmet Aydeniz

14 Susceptibility to Learn Computational Thinking Against STEM
Attitudes and Aptitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Ana Calderon

15 Mapping Computational Thinking for a Transformative
Pedagogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Michael Vallance and Phillip A. Towndrow

x Contents



About the Authors

Charoula Angeli is Professor of Instructional Technology at the University of
Cyprus. She has undergraduate and graduate studies at Indiana University-Bloom-
ington, USA (B.S. in Computer Science, M.S. in Computer Science, and Ph.D. in
Instructional Systems Technology, 1999). She also pursued a postdoctoral fellow-
ship in LRDC (Learning Research and Development Centre) at the University of
Pittsburgh, USA. Her research interests include Technological Pedagogical Content
Knowledge, Computational Thinking, Instructional Design, and Complex-Problem
Solving with Technology. She has published extensively in referred journals and
presented her work worldwide. She also participated in several research projects
funded by different agencies.

Mehmet Aydeniz is an associate professor of Science Education at the University of
Tennessee, Knoxville. He received both his master and doctorate degrees in Science
Education from Florida State University. His research focuses on students’ engage-
ment with scientific practices such as argumentation, engineering design and com-
putational thinking more recently and teacher learning.

Ana Calderon is a lecturer in the Department of Computing, Cardiff Metropolitan
University, Wales, United Kingdom, and editor-in-chief of the AMI journal. Com-
pleted research projects include the area of formal semantics of programming
languages, relating games models to coherence space models, resulting in an
in-depth analysis of composition in Game Semantics and analysing methodologies
to rigorously investigate computational thinking in higher education.

Amanda Dickes is a postdoctoral research fellow on the EcoMOD project at
Harvard University. Her research focuses on the design of learning environments
that integrate computational modeling with other forms of scientific modeling in an
attempt to understand how computation and computational modeling can become
the “language” of practice in the elementary science and math classroom. Before

xi



joining Harvard, she completed her Ph.D. in the Learning Sciences at Vanderbilt
University where she was a member of the Mind, Matter and Media Lab.

Amy Farris is an Assistant Professor in the Department of Curriculum and
Instruction at Penn State University. She investigates the intersections of scientific
modeling and computational thinking in elementary and middle school classrooms.
Her work also addresses how learners’ experience of computational modeling
integrates ideas and practices both in STEM disciplines and along personal and
out-of-school narratives. Farris received her Ph.D. in Learning, Teaching, and
Diversity at Vanderbilt University.

Georgios Fessakis holds a BSc in Informatics, an MSc in Advanced Informatics
Systems from National and Kapodistrian University of Athens/Department of Infor-
matics and Telecommunications and a PhD in Informatics Didactics from University
of the Aegean. He has many years of extensive experience as a researcher and as
Computer Science teacher in secondary public schools (1999–2007). Georgios is
teaching ICT, Computer Science, Mathematics Education and Learning
Technology–related courses, since 2004, at the University of the Aegean, where
he currently serves as associate professor. During all these years Georgios has
published several articles in international and Greek journals and conferences. He
also has participated and directed national and international research and develop-
ment projects. His main research interests include ICT design and development for
learning, Computer Science, Mathematics, Technology and Science Education,
Intelligent systems and CSCL.

Francisco José García-Peñalvo received his bachelor’s degree in Computing from
the University of Salamanca (Spain), and the University of Valladolid (Spain), and
his PhD degree from the University of Salamanca, where he is currently the director
of the Research Group in Interaction and e-Learning. His main research interests
focus on e-Learning, computers and education, adaptive systems, web engineering,
semantic web and software reuse. He has led and participated in over 50 research and
innovation projects. He has published over 200 articles in international journals and
conferences. He has been a guest editor of several special issues of international
journals (Online Information Review, Computers in Human Behavior and Interac-
tive Learning Environments). He is the editor-in-chief of the Education in the
Knowledge Society magazine and the Journal of Information Technology Research.
He coordinates the Doctoral Programme in Education at the Society of Knowledge
of the University of Salamanca.

Jon Good is a doctoral candidate in the Educational Psychology Educational
Technology programme at Michigan State University. His research is focused on
computational thinking, computer science education and creativity.

xii About the Authors



Peter Hubwieser has been teaching Mathematics, Physics and Computer Science at
Bavarian Gymnasiums for 15 years. In 1995 he received his Dr.rer. nat. in Theoretical
Physics at the Ludwig-Maximilians-Universität München. From 1994 to 2002 he has
been delegated to the Faculty of Informatics of the Technical University ofMunich on
behalf of the Bavarian Ministry of Education, in charge for the implementation of
new courses of studies for teacher education in Informatics and a compulsory subject
of Computer Science at Bavarian secondary schools. Since June 2002 he is working
as an associate professor at the Faculty of Informatics of the Technical University of
Munich. From 2002 to 2015 he was additionally a visiting professor at the Alpen-
Adria –University of Klagenfurt and from 2007 to 2008 at the University of Salzburg.
Since 2009 he holds the position of the information officer of the TUM School of
Education. In 2015 he took over the position of the scientific director of the
Schülerforschungszentrum Berchtesgaden additionally to his professorship.

Kamini Jaipal-Jamani is a Professor of Education at Brock University in Canada.
She obtained her MEd at Western University and her Ph.D. at UBC. Her research
and writing focuses on science teaching and learning, technology integration, and
teacher professional development. She has conducted research on relationships
between language and science, implementation of video games and blogs in K-12
science instruction, gamification, and the development of TPACK knowledge in
teacher education. Her current program of research involves an examination of the
use of robotics to promote science learning and computational thinking in K-12 and
teacher education contexts.

Filiz Kalelioğlu is an assistant professor of Computer Education and Instructional
Technology at the Education Faculty, Baskent University. She graduated with a PhD
in Computer Education and Instructional Technology from Ankara University in
2011. Her academic interest areas are e-learning, social media in education, instruc-
tional design, technology integration and computer science education. She serves as
a reviewer for several journals in the field of educational technology. She has
published many national and international articles and book chapters.

Myint Swe Khine is Professor of Education at the Emirates College for Advanced
Education in the United Arab Emirates. He is also an Adjunct Professor at Curtin
University in Australia. He received his master’s degrees from the University of
Southern California, Los Angeles, USA, and University of Surrey, Guildford, UK;
and Doctor of Education from Curtin University, Australia. He worked in Nanyang
Technological University, Singapore, and Murdoch University, Australia, before
taking up position in the United Arab Emirates. He has published widely in inter-
national referred journals and edited several books. His recent publications include
Robotics in STEM Education: Redesigning the Learning Experience (Springer,
Switzerland, 2017).

Hae Young Kim holds a PhD degree in Instructional Systems and Learning Technol-
ogies and a Master degree in Educational Measurement and Statistics from Florida

About the Authors xiii



State University, USA. In 2016, she joined Tallassee Community College and
Department of Juvenile Justice as an instructional designer and psychometrician. She
has developed e-learning courses for Florida Juvenile Officer Academy and
overviewed the curriculums and certification exam items. She maintains the current
certification exams and develops new test items along with subject-matter experts. Her
research interests are pre-service teacher education, assessments and instructional
strategies to improve student learning and performances. Currently, she is working
on designing an assessment system of computational thinking in K-12 settings.

Soohwan Kim is an assistant professor at Chongshin University in Korea. He holds
a PhD degree in Computer Science Education from Korea University in Korea. He
taught for 15 years in elementary school. He is teaching computational thinking and
programming for non-computer science major students.

From 2015, he joined SW education leading schools in Korea as a consultant and
developed a textbook, some online lectures, many lesson plans and some teacher
training courses for K-12 computational thinking education. He is managing teacher
training course and teacher workshops about CT education. His research interests are
educational equality in public education, teacher training, learner assessments and
instructional strategies to improve computational thinking. Currently, he is working
on designing an assessment system of computational thinking in K-12 settings.

Joyce Hwee Ling Koh is an associate professor at the Learning Sciences Academic
Group of the National Institute of Education of Nanyang Technological University,
Singapore. Her research interests are in the areas of design thinking, technological
pedagogical content knowledge and online facilitation. She has published articles in
many SSCI journals including Computers and Education, Instructional Science, and
Computers in Human Behavior.

Vasilis Komis is currently an Associate Professor in the Department of Educational
Sciences and Early Childhood Education of the University of Patras. His publica-
tions and research interests concern the teaching of computer science, the pupils’
representations in the new information technologies and the representations formed
during the use of computers in class room, the integration of computers in education,
the conception and the development of educational software.

Johannes Krugel studied Computer Science with minor Psychology at the Free
University of Berlin. From 2009 to 2016 he was teaching and research assistant at
the Technical University of Munich. In 2016 he received his Dr.rer. nat. in Theo-
retical Computer Science at the Technical University of Munich with his dissertation
on efficient algorithms and data structures for strings. For several years he was
responsible for the education, support and supervision of the teaching assistants at
the Faculty for Computer Science. Since 2016 he is postdoctoral researcher in the
working group for Didactics in Computer Science. He designed the MOOC and
coordinated the development and implementation.

xiv About the Authors



Sze Yee Lye is the head of department (ICT) in Teck Whye Primary School,
Singapore. She is also currently pursuing her doctorate part time at Learning
Sciences Academic Group of the National Institute of Education of Nanyang
Technological University, Singapore. Her research interests are in the areas of
educational technology and programming. A reflective practitioner, she has
presented in international conferences and has published articles in peer-reviewed
journals such as Computers in Human Behavior and Journal of Educational Tech-
nology & Society.

Christiane Maday holds a B.Sc. in Construction Engineering as well as a Master of
Engineering Education and worked as a student assistant in the TACCLE 3 coding
project (2013–2015) at Karlsruhe Institute of Technology, Germany.

Elisavet Mavroudi holds a BSc in Informatics from the National and Kapodistrian
University of Athens/Department of Informatics and Telecommunications (1991)
and an MEd in “Modeling Design and Development of Educational Units” from the
University of the Aegean (2015). She has been working as a Computer Science
teacher in secondary public schools since 1997. She has also been working as a
researcher in educational technology for almost 10 years, and she has published a
couple of articles in international and Greek journals and conferences. Her main
research interests include the Didactics of Informatics, ICT applications in Education
and e-learning.

Greg Michaelson is professor of Computer Science at Heriot-Watt University in
Edinburgh. His broad research area is in formally motivated programming language
design, implementation and analysis, especially for multi-processor systems. He has
enjoyed sustained funding for his research and has published widely. Dr. Michaelson
has taught programming for 40 years, and has published text books on functional
programming with lambda calculus and on Standard ML. Most recently, he has been
exploring systematic computational thinking as a practice of problem solving.

Stavroula Prantsoudi holds a BSc degree in Informatics (Aristotle University of
Thessaloniki/Department of Computer Science), an MSc degree in Information
Systems (University of Macedonia) and is currently studying for an MEd degree
in Interdisciplinary Education (University of the Aegean/Department of Preschool
Education). She serves as a Computer Science teacher in secondary public schools
(2003 - today) and has taught ICT subjects at all levels and types of Greek schools,
adults training structures and vulnerable social groups. Since 2004 she has attended
numerous training programmes in the areas of teaching and ICT and has
implemented educational programmes in the areas of her interest.

Daniela Reimann is a researcher at Karlsruhe Institute of Technology’s Institute for
Vocational and General Pedagogy. Her research interest is in digital media in
education and creative processes. She is currently working in the project

About the Authors xv



“Prospective further training for industry 4.0” funded by the Ministry of Economics
in Baden-Würrtemberg, Germany.

Phil Sands is a doctoral candidate in the Educational Psychology Educational
Technology program at Michigan State University. His research is focused on
computer science and education.

John Sanford holds a Doctor of Engineering degree from Yale. He is Professor
Emeritus of Information Systems at Philadelphia University where he pioneered
and introduced a computer for student use in the 1970s and served as director of
computing at the university for 10 years as the computing centre grew to a
university-wide service. He introduced most of the computer programming and
information systems core courses to the School of Business and has published in
the area of computer education, computational thinking, fuzzy logic, and data
mining. Earlier experience included systems engineering with Autonetics (later
North American Rockwell) in California, and engineering management with General
Electric Re-entry Systems Division in the 1960s.

Pratim Sengupta is the Research Chair of STEM Education and a professor of
Learning Sciences at the University of Calgary, Canada. He is a recipient of the
CAREER Award (2012) from the US National Science Foundation, and directs the
Mind, Matter & Media Lab. His research programme has led to the development of
ViMAP, an open-source programming language for the K-12 science and math
classrooms, as well as Open Computing platforms and immersive computing expe-
riences in public places. The work reported here was partly conducted at Vanderbilt
University, where Dr. Sengupta was a faculty member and programme chair of
Learning Sciences until 2015.

Phillip A. Towndrow is a senior research scientist in the Centre for Research in
Pedagogy and Practice, National Institute of Education, Nanyang Technological
University, Singapore. His current research and writing interests include the use of
new media in multimodal communication, learning task design, classroom interac-
tions, and teachers’ professional development and learning. Phillip’s work appears in
various books and journals including the Journal of Curriculum Studies, Teaching
and Teacher Education and the Journal of Literacy Research. He is currently a
managing editor for the Asia Pacific Journal of Education (Routledge).

Michael Vallance is a professor in the Department of Media Architecture at Future
University Hakodate, Japan. He has been involved in educational technology design,
implementation and research for over 20 years, working closely with higher educa-
tion institutes, schools and media companies in the UK, Singapore, Malaysia and
Japan. His 3D virtual world design and tele-robotics research has been funded by the
UK Prime Minister’s Initiative (PMI2) and the Japan Advanced Institute of Science
and Technology (JAIST). In 2012 he was awarded second prize in the Distributed
Learning category by the United States Department of Defense for his research in
virtual collaboration.

xvi About the Authors



Aman Yadav is an associate professor in Educational Psychology and Educational
Technology at Michigan State University. Dr. Yadav’s research focuses on compu-
tational thinking, computer science education and problem-based learning. His work
has been published in a number of leading journals, including ACM Transactions on
Computing Education, Journal of Research in Science Teaching, Journal of Engi-
neering Education, and Communications of the ACM.

About the Authors xvii



Part I
Foundations in Computational Thinking



Chapter 1
Strategies for Developing Computational
Thinking

Myint Swe Khine

1.1 Introduction

The term computational thinking came into wide use as a popular term during the
1980s that refers to a collection of computational ideas that people in computing
disciplines acquire through their work in designing programs, software and compu-
tations performed by the computer hardware (Tedre and Denning 2016). It was
envisioned that computational thinking will be a fundamental skill that complements
to reading, writing and arithmetic for everyone and represents a universally appli-
cable aptitude. Denning (2017) paraphrased the definition as “Computational think-
ing is the thought processes involved in formulating problems so that their solutions
are represented as computational steps and algorithms that can be effectively carried
out by an information-processing agent”. Educators believed that assimilating com-
putational thinking at a young age will assist them to enhance problem-solving
skills, improve logical reasoning and advance analytical ability – key attributes to
succeed in the twenty-first century (Riley and Hunt 2014).

In the age of rapid development in information and communication technologies,
dramatically changing economic landscape and escalating competition, educational
planners are focusing their relentless effort in equipping the young generation with
real-world skills ready for the demand and challenges of the future. It is commonly
believed that computational thinking will play a pivotal and dominant role in this
endeavour. Wide-ranging researches on and application of computational thinking in
education have emerged in the last 10 years. This book documents some of those
attempts in conducting systematic, prodigious and multidisciplinary research in
computational thinking and presents their findings and accomplishments. This
book is divided in three parts. While the first part of the book presents foundations

M. S. Khine (*)
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in computational thinking, the second part covers computational thinking and
teacher education. The last part of the book deals with computational thinking in
schools and higher education.

1.2 Foundations in Computational Thinking

The first part of the book consists of chapters that discussed about the foundations of
computational thinking. Kalelioglu in Chap. 2 presented a systematic literature
review of studies on computational thinking. The purpose of his study was to
investigate the research trends in this area by examining the databases and digital
libraries using the keywords. A total of 69 publications were found between 2013
and 2017 period in the literature. The studies were conducted with the sample
population ranging from kindergarten students to teachers and instructors to graduate
students. It was also found that the term computational thinking has also been
defined in different ways, and most works were case studies. This study has provided
an insight into the characteristics of the literature on computational thinking and
serves as a guide for future research in this area.

In Chap. 3, Michaelson described the teaching of programming from Papert’s
Logo to microworlds and Objects First. He noted that Objects First as an object-
oriented programming language bridges microworlds and systematic programming.
However he argued that both languages provide superficial programming skills and
did not stress on problem-solving. In this chapter the author explained finding
variables and expression and computational patterns with examples. The author
suggested that to employ pedagogy based on strong computational thinking by
teaching students how to systematically analyse the program, define the essential
patterns in data and form algorithms and finally develop programs.

Pratim Sengupta and his colleagues (Chap. 4) argued the viewing coding and
computational thinking as mastery to viewing them as experience. The group has
conducted a series of research in K–12 classrooms and partnerships with teachers in
the United States. They suggested some pedagogical guidelines for sustaining
computing and computational thinking through computational modelling in the
Science, Technology, Engineering and Mathematics (STEM) discipline. Among
them were reframing programming and coding as “modelling” and using both
visual- and text-based programming languages for curricular integration. They
urged that these guidelines would help teachers and students adopt computing and
computational thinking as a “language” of STEM.

In Chap. 5, Krugel and Hubwieser presented the development and delivery of a
multipurpose course on computational thinking with objects-first approach in the
German state of Bavaria. The chapter detailed the rationales, objectives and frame-
work in designing the online course called Learning Object-Oriented Programming
(LOOP). This course was meant for the freshmen of the university and introduces
computational thinking and object-oriented concepts before the programming skill is
taught. The course materials comprise of videos, quizzes and interactive exercises.
The LOOP consisted of five broadly defined sections that include (i) objective-
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oriented modelling, (ii) algorithms, (iii) classes in programming languages, (iv)
object-oriented programming and (v) associations and references. The online course
is offered to any interested students on an online platform. After 5 weeks duration,
the authors collected feedback from the participants with the aim of improving the
course. The comments from the participants were obtained through questionnaire
and online discussion. The authors reported that the feedback provided valuable
information for further improvement of the course.

Sanford in Chap. 6 began with the discussion of computational thinking as
complementary and additional to the reading, writing and arithmetic for early
childhood education. While other attempts to introduce computational thinking
and coding with software and programming languages, he noted that the value of
spreadsheets for logical construction and visibility of details is overlooked. He
argued that early introduction of spreadsheets as an integral part of already existing
approaches to mathematics and science was necessary. Sanford demonstrated the use
of spreadsheets with examples on creating functions and equations, arithmetic
games, word problems, equation, simulating a problem and trigonometry that can
lead to computational thinking.

1.3 Computational Thinking and Teacher Education

The chapters in the second part of the book deal with how computational thinking
has been introduced in teacher education programs. In Chap. 7, Angeli and Jaipal-
Jamini noted that while the importance of teaching computational thinking across K–
12 curriculum has been widely recognized, teacher education programs lack the
knowledge and skills to teach pre-service teachers about the subject. To address the
issue, they presented a study that uses scaffolded programming scripts as one
method for teaching computational thinking in teacher preparation program. These
programming scripts were used in the context of educational robotics activities. The
study found that significant development took place in pre-service teachers’ com-
putational thinking skills after the course despite the fact that trainees do not have
any prior experience. The authors also noted that the affordances of LEGO WeDo
programming language might have attributed in this process. Finally, the authors
raised the issue of whether it is better to first teach students how to create abstractions
and generalizations of problems before teaching them how to develop algorithms
and write and debug computer code.

Sands, Yadev and Good present in-service teachers’ perceptions about computa-
tional thinking in Chap. 8. This chapter reports the results from a study to examine
practicing teachers’ views of computational thinking and compare to the definition
by the computer science education researchers. The study involved 74 elementary
and secondary teachers from a Midwestern state in the United States. It was found
that teachers’ conceptions of computational thinking include important aspects of the
computational thinking literature, but there are still several common misconceptions
about the concept. The chapter discusses implications of the findings on how to
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engage non-computing K–12 teachers in computational thinking and develop their
competencies to incorporate computational thinking within the context of their
subject area. The chapter informs in-service and pre-service teacher development
efforts and explains how computational thinking applies to disciplinary knowledge
in school subjects.

In Chap. 9, Kim and Kim from Chongshin University in Korea shared their
experience on developing a computational thinking curriculum and teacher profes-
sional development in South Korea. As a background the authors described the
historical development on computing education and recent curriculum changes at
elementary, middle and high school levels in the country. The goal of the curriculum
is to gradually step up from information literacy to computational thinking and move
towards achieving collaborative problem-solving capabilities. The authors reported
that all K–12 teachers are trained to use Scratch and Entry educational programming
languages. Entry is a Korean-style block programming language that allows teachers
to teach online. The effectiveness of the training program was evaluated with the use
of concerns-based model of teacher development. The model comprises of seven
stages, and Stages of Concern Questionnaire was used to collect the data from the
participating teachers. The authors concluded that the success of the computing
education depends on collaboration among all stakeholders including leaders,
teachers, students and parents.

1.4 Computational Thinking in Schools and Higher
Education

Part III of this book covered topics on computational thinking in schools and higher
education settings. Fessakis and his colleagues explored the scope and conceptual-
ization of computational thinking at the K–12 classroom-level curriculum. In
Chap. 10, they described the historical evolution of the computational thinking
concept and presented the rationale of the research that involved qualitative content
analysis of various computational thinking curricula and initiatives. The research
questions included whether all the theoretical dimensions of computational thinking
were presented in the classroom curriculum, which school subjects are utilized for
the development of computational thinking in schools, which teaching and learning
methods and resources are proposed for the development of computational thinking
and whether any other dimensions in computational thinking is missing in the
curriculum. The authors reported their findings and point out the limitation of their
study. They stressed that computational thinking is important for science and
technology progress and empirical studies were needed to discover how computa-
tional thinking skills in schools can be realized.

In Chap. 11, Garcia-Peñalvo and his team shared their experience with coding
project that introduced computational thinking in schools. The TACCLE 3 Coding is
a project that supports primary school and teachers who wish to teach computing to
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4–14-year-olds. TACCLE 3 was designed to offer classroom teachers with the
knowledge, skills and materials to teach in schools together with in-service training
courses and other staff development events for countries in the European Union.
Three objectives of the project broadly defined are to (i) equip classroom teachers,
regardless of the level of confidence, with knowledge and the materials they need to
teach coding effectively; (ii) develop websites that are easy to follow with innovative
ideas and recourses to assist teachers to teach coding; and (iii) provide national and
international in-service training courses and staff development. The chapter details
the curriculum, pedagogies and activities designed for the project and different types
of software and technology used to achieve the goals.

Lye and Koh presented three case studies of elementary children’s engagement in
computational thinking through Scratch programming in Chap. 12. The authors
noted that Scratch is a programming language designed to facilitate children’s
engagement in computational thinking with the possibility of developing problem-
solving skills. Their study that took place in a primary school in Singapore, attempts
to find out the achievement made and challenges faced by the children with different
programming abilities when engaging in computational thinking. The study utilized
multiple-case study approach involving three cases where narratives of children’s
moves, utterances and behaviours during the Scratch programming were recorded
and analysed. They observed that programming behaviours of three students were
different, one using trial-and-error method, another using piecemeal approach and
another using holistic programming. These findings confirmed that children do not
approach a problem in a similar way and teachers need to scaffold different pro-
gramming behaviours with differentiated form of instruction to ensure the students’
progress according to their own ability.

In Chap. 13, Aydeniz provided a comprehensive view and meta-analysis of
research studies conducted by computer science education community. It is a
common belief that if computational thinking curriculum is introduced properly, it
can enhance the students’ problem-solving abilities, critical thinking, data analysis
and modelling skills. These attributes are particularly important for STEM educa-
tion. The chapter began with the overview of development and integration of
computational thinking skills in K–12 curriculum and analysis of how these skills
are integrated in science and mathematics subjects in schools. The chapter also
examined how computational thinking skills can be integrated in the STEM educa-
tion. The chapter looked into how computational skills have been introduced in
pre-service teacher education and in-service professional development programs.
The chapter concluded that challenges remain in the computer science and STEM
education communities. These challenges include defining the appropriate curricu-
lum, training teachers and equitable access for all students.

Ana Calderon from the Cardiff Metropolitan University shared the findings from
her study with undergraduate students over a period of 2 years to find out whether
aptitudes and preferences for STEM and humanities subjects had any impact on
students’ performance in computational thinking. In her chapter, she stated that the
commonly agreed concepts in computational thinking includes decomposition, data
representation, algorithmic thinking and abstraction and these concepts are linked
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together to solve complex problem. The chapter reported detail findings and differ-
ences in performance between students who studied STEM subjects such as math-
ematics, computing and physics and humanities subjects such as history, literature
and drama. The chapter concluded with the suggestion to explore further with
broader and larger sample population that consider age, educational backgrounds
and careers.

The last chapter by Vallance and Towndrow presented a study that examined the
learners’ understanding of computational thinking concept through illustrative flow-
charts. In this study undergraduate students in one university in Japan were assigned
to design, build and program robots to solve a disaster scenario with the use of
LEGO Mindstorms. The students reflected upon the problem-solving processes with
the use of flow-chart representing metal models of computational thinking. It was
found that students were able to express recognition of the computational thinking
concepts on modularity, decomposition and algorithmic logic; however, they faced
difficulty expressing in generalization and abstraction. From the findings, the authors
suggested that more attention should be paid to task design and pedagogy in
introducing computational thinking concepts.

1.5 Conclusion

The chapters in this book cover wide-ranging topics on computational thinking in
various educational settings. The suggestions provided by Sengupta and his col-
leagues are notable. The pedagogical guidelines to sustain computational thinking
through modelling in STEM education can be a practical use for promoting STEM
education. The need to equip in-service and pre-service teachers with computational
thinking skills has strong support from educators. Many studies have been reported
in the literature that utilizes a variety of approaches. For example, one of the studies
in this book describes the relationships between computational thinking concepts
and object-oriented programming. Another study uses Scratch programming to
engage the children with computational thinking. The chapter by Sanford discusses
how spreadsheet can be used for computational thinking. It is evident from these
studies that computational thinking can be engaged by many different ways.

Wang (2016) noted that understanding computing and acquiring computational
thinking are two sides of the same coin. According to him, “computational thinking
is the mental skill to apply fundamental concepts and reasoning, derived from
modern digital computers and computer science, in all areas, including day-to-day
activities”. In his words “computational thinking is thinking inspired by an under-
standing of computers and information technologies”. The foundations and research
highlights described in this book relate to linking, infusing and embedding compu-
tational thinking elements to school curricula, tertiary courses and STEM-related
subjects. The chapters presented best practices, critical analyses and in-depth inves-
tigations by educators and researchers in the field, highlighting the contemporary
trends and issues, creative and unique approaches, innovative methods, frameworks,
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pedagogies and theoretical and practical aspects in computational thinking. The
study on developing computational thinking is set to grow in the next decades and
beyond. There is a need to collectively raise new questions that contribute to the
understanding and effective implementation of the concept. It is hoped that this book
will serve as a catalyst to continue the dialogue on computational thinking.
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Chapter 2
Characteristics of Studies Conducted
on Computational Thinking: A Content
Analysis

Filiz Kalelioğlu

2.1 Introduction

When the literature was examined, the first concept of computational thinking
(CT) was first used by Papert in 1996. However, the particular skill of CT gained
the attention of researchers following Wing’s paper in 2006. According to Wing,
‘Computational thinking involves solving problems, designing systems, and under-
standing human behaviour, by drawing on the concepts fundamental to computer
science’ (p. 33). Moreover, CT requires using heuristic reasoning to discover a
solution beginning from planning, learning and scheduling in the presence of
uncertainty (Wing 2008). For Wing, CT was seen as a kind of analytical thinking
covering mathematical thinking that we might use to solve a problem. After a while,
Cuny et al. (2010) proposed a new definition: ‘Computational thinking is the thought
processes involved in formulating problems and their solutions so that the solutions
are represented in a form that can be effectively carried out by an information-
processing agent’ (as cited in Wing 2010, p. 1).

Guzdial (2008) defined CT as a way of thinking about computing. For Aho
(2012), CT is the process of formulating problems in a way that solutions can be
represented as algorithms and computational steps. Similarly, Mannila et al. (2014)
defined CT as covering a set of concepts and thinking processes from computer
science that help in formulating problems and their solutions. In the same line, Voogt
et al. (2015) stated that CT could be seen as a thinking process required for solving
problems including generalising and transferring this process to different problems
in other areas.
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Riley and Hunt (2014) stated that CT is a way of thinking for computer scientists
and is the manner in which they reason. Google (n.d.) states that CT is a problem-
solving process, such as a process that includes analysing data logically and creating
solutions as ordered steps and dispositions, for example, the ability to confidently
deal with complexity and open-ended problems. In more detail, Selby (2013) defined
CT as a cognitive or thought process that reflects the ability to think in abstractions,
decomposition, algorithm, evaluation and generalisation.

The Royal Society (2012) defined CT as, ‘the process of recognising aspects of
computation in the world that surrounds us, and applying tools and techniques from
Computer Science to understand and reason about both natural and artificial systems
and processes’ (p. 29). According to the operational definition of ISTE and CSTA
(2011), CT is a problem-solving process that includes the following characteristics:

• Formulating problem
• Logically organising and analysing data
• Representing data through abstractions
• Automating solutions through algorithmic thinking
• Identifying, analysing and implementing possible solutions with the goal of

achieving the most efficient and effective combination of steps and resources
• Generalising and transferring solutions to a wide variety of problems

These skills are supported and enhanced by a number of dispositions or attitudes
such as:

• Confidence in dealing with complexity
• Persistence in working with difficult problems
• Tolerance for ambiguity
• The ability to deal with open-ended problems
• The ability to communicate and work with others to achieve a common goal or

solution

Barr and Stephenson (2011) posed a similar operational definition of CT includ-
ing core CT concepts and capabilities and examples of how they might be
implemented in activities through multiple disciplines. As a summary, Wing
(2006) specified the following characteristics of CT as:

• Conceptualising: Thinking like a computer scientist requires thinking at many
levels of abstraction and means more than being able to program a computer.

• Fundamental skill for everyone: CT is something that each person must know in
order to function in this digital age.

• A way that humans think: It is a way for people to solve problems, but does not
mean to think like a computer.

• Complements and combines mathematical and engineering thinking.
• Ideas: It will be the computational concepts we use to approach and solve

problems, to manage our daily lives and to communicate and interact with other
people.
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The most important and high-level thought process in CT is the abstraction
process (Wing 2008). In computing, this is necessary in order to abstract the
concepts and ideas beyond the physical perspective of time and space. It is used to
capture essential properties common to a set of objects while hiding irrelevant
distinctions among them. Abstraction is used in defining patterns, generalising
from specific instances and parameterisation. Similarly for Aho (2012), mathemat-
ical abstractions, in other words models of computation, are at the centre of com-
puting and CT. According to Selby (2013), CT should include the idea of a thought
process, the concepts of abstraction and decomposition. From analysing the findings
of Kalelioğlu et al. (2016), it can be seen that they found abstraction, algorithmic
thinking, problem-solving, pattern recognition and design-based thinking were the
top five skills underlined by researchers, and it was obvious that the definition of CT
also consists of algorithmic and design-based types of thinking.

The process of computational thinking involves many subactions and concepts.
Brennan and Resnick (2012) describe a CT framework as computational concepts
(sequences, loops, events, parallelism, conditionals, operators and data), computa-
tional practices (experimenting and iterating, testing and debugging, reusing and
remixing, abstracting and modularising) and computational perspectives
(expressing, connecting and questioning). Computing At School (CAS) states that
CT involves six different concepts as logic, algorithms, decomposition, patterns,
abstraction and evaluation and five approaches to working in the classroom as
tinkering, creating, debugging, persevering and collaborating (CAS Barefoot
2014). Moreover, many researchers have described CT concepts and practices
from different perspectives. According to the most cited papers representing the
variety of perspectives and points of view, Barr and Stephenson (2011) proposed
abstraction, algorithmic and procedures, automation, problem decomposition, par-
allel processing and simulation as a subset of core concepts and skills for CT skills.
For Grover and Pea (2013), abstraction and pattern generalisation, algorithms, logic,
problem decomposition, debugging, productivity and performance constraints, par-
allel thinking and systematic processing of information were the concepts and skills
for CT skills.

When examining the studies focusing on systematic literature reviews, Benitti
(2012) reviewed the literature systematically for educational benefits of robotics. She
concluded that educational robotics can be used as a method for improving learning;
nevertheless, she mentions other studies that do not enhance learning. Grover and
Pea (2013) analysed the literature on computational thinking in the K–12 sphere and
concluded that recent studies on CT focused on the definitions of computational
thinking skills and tools as another issue to promote the development of CT.

In a study by Kalelioğlu et al. (2016), papers about computational thinking were
analysed from between 2006 and 2014. The results revealed that the papers mainly
focused on the plugged or unplugged types of activities for teaching computational
thinking in the K–12 curriculum. Heintz et al. (2016) systematically analysed papers
and the curriculum of ten countries in terms of computer science education in K–12
education. The countries integrated digital literacy with programming, the subject of
computer science or computing. However, although computational thinking was not
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explicitly expressed, its ideas and some concepts were seen to be used in the
curricula.

Lye and Koh (2014) reviewed nine papers on developing computational thinking
through programming and concluded there was a need to conduct more research on
the topic. Similarly, Moreno-León and Robles (2016) systematically analysed papers
focused on the teaching of programming with Scratch and on the development of
related skills within this context. In terms of developing thinking skills, seven out of
nine articles concluded that students developed their problem-solving, logical think-
ing and creativity through learning to program. To draw more clear conclusions
about learning programming through such platforms and developing thinking skills,
there was seen a need for more empirical studies with larger student samples.

Approaches to teaching these skills, which are gaining popularity, are also
striking. At the same time, Bundy (2007) stated that CT would gain popularity,
prompting research in nearly all disciplines, both in the sciences and the humanities.
On the other hand, many researchers concluded that focusing on the integration of
computational thinking skills in education as inadequate (Heintz et al. 2016; Voogt
et al. 2015, p. 726). Hence, the main purpose of the current study is to consider what
researchers have said about CT through the following research questions:

• What are the demographic characteristics of the selected papers?
• What kind of taxonomy might characterise this entire set of literature?
• What was the purpose of the studies?
• What was the nature of the studies that have been conducted?
• What kinds of studies have been conducted?
• What are the overall results of the selected papers?

2.2 Methodology

The skill of computational thinking is important both in computer science education
and in the teaching of programming skills. This skill, which has been taught since
early childhood for some, continues to be taught to different age groups via a range
of different approaches and methods. For this reason, this skill has been the subject
of many research studies for academics working in this field. The purpose of the
current study is to examine published studies in computational thinking in a sys-
tematic way and to present a history of the research and new research trends in this
area. In this context, the concept of computational thinking was systematically
searched in databases and digital libraries of ScienceDirect and the IEEE Xplore
Digital Library.

The primary search term ‘computational thinking’ was entered along with the
data in the abstract, title and keyword section, for publications between 2013 and
2016. The papers were then analysed according to their year of publication, target
population, keywords, taxonomy type and nature of the study. The results of the
inductive analysis are presented according to the research questions. After detailed
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document analysis, some parts of the analysed data are transformed into numerical
values and illustrated through the use of graphics.

2.2.1 Demographic Characteristics of the Selected Papers

Detailed research was carried out on 65 studies that were considered worthy of
review. In accordance with the American Psychological Association Publication
Manual, the reviewed studies are listed in the References section, annotated with an
asterisk.

2.2.1.1 Year of Publication

When the publication dates of the studies were examined, it was seen that 8 studies
were published in 2013, 17 in 2014, 16 in 2015 and 24 in 2016 (see Fig. 2.1). When
the distribution of publication dates is examined, it can be seen that the number of
publications mostly increased in line with the year of publication.

2.2.1.2 Target Population

When the target populations of the studies were examined, 15 studies were
conducted with undergraduate students, 13 with K–12 students, 7 with teachers
or instructors, 6 were with high school students and 6 with middle school students
(see Fig. 2.2).

The sample shows that the studies were performed with any group directly related
to the topic. The studies tried to examine the effects of different subjects on different
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people. However, the studies seem to mostly target student populations. Studies
conducted by university students are followed by studies with primary school
students.

2.2.1.3 Keywords

When the keywords in the studies are examined, it was seen that computational
thinking was the most preferred keyword (n ¼ 42). In addition, programming
(n ¼ 16) and teaching/learning strategies (n ¼ 9) are also included. Computer
science (n ¼ 8), educational robotics (n ¼ 6), computing (n ¼ 5), computer science
education (n ¼ 5) and Scratch (n ¼ 5) were other preferred keywords (see Fig. 2.3).
The chosen keywords reflect the characteristic of the sample studies. It is often seen
that research focuses on CT and how to teach it. It can be said that the studies
focusing on computational thinking are directly related to programming and com-
puter science when looking at the keyword patterns related to computational think-
ing. It is possible to say that all the studies examined are actually about which
teaching methods and techniques and which teaching tools can be used to teach this
skill.

2.2.1.4 Type of Taxonomy

A fivefold taxonomy was used to classify the publications. The first category in the
taxonomy was model, which includes articles that focused on discussions about CT
and its scope. The second was pedagogy, which includes articles that focused on
how CT can be taught: teaching methods or tools such as robots, unplugged,
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STEAM and block-based, etc. The third was assessment for articles with that focus
and means on how CT can be measured and learnt. The other taxonomies were
research and opinion and include articles that focused on research methodology or
that share perspectives about CT (see Fig. 2.4).

65%

25%

14%

12%

9%

8%

8%
8%

Computational thinking

Programming

Teaching/learning strategies

Computer science

Educational robotics

Scratch

Computer science education

Computing

Fig. 2.3 Keywords

Pedagogy 69%

Assessment 
42%

Research 28%

Opinion 
15%

Model 3%Fig. 2.4 Type of taxonomy

2 Characteristics of Studies Conducted on Computational Thinking: A. . . 17



It is clear that the studies primarily focus on how CT is taught (n ¼ 45). The
situation that emerged was similar to that of computational thinking as the keyword
under the previous research question, being pedagogy the clear favourite. Second
was assessment of CT publications (n ¼ 27) in which the researchers were
discussing or stating how to evaluate CT. Third was research for studies that
measured the impact of CT (n ¼ 18).

2.2.1.5 Purpose of the Papers

When the purposes of the papers were examined in detail: 19 papers were aiming to
develop students’ computational thinking skills or their programming ability through
the application of different tools or approaches; 15 papers proposed a methodology
for teaching computational thinking to students; and 12 papers had a purpose
focusing on the investigation of variables on computational thinking knowledge or
computer science concepts. Other purposes that were less common were six papers
about assessment of computational thinking skill; six papers proposed a model for
integrating computational thinking skills to curricula; five papers discussed the
literature about computational thinking or programming; two papers focused on
CT and its impact on K–12 science education; and two papers reported the experi-
ence and perceptions of teachers about computer science and computational thinking
(see Table 2.1).

When studies on the instructional methods and tools of CT were examined in
detail, most were about STEAM applications (n ¼ 13) and block-based applications
(n¼ 13), with publications on robotics applications (n¼ 8) in third place. Studies on
unplugged practices were the least favoured of the teaching methods (see Fig. 2.5).

Table 2.1 Purpose of papers

Purpose
Number of
indices

Development of students’ computational thinking (CT) skills/programming in
the context of educational robotics/games/mobile computing

19

Proposed a teaching method/activities/professional development for developing
the computational thinking of students

15

Investigation of effects of variables on computational thinking knowledge and
skills/programming

12

Assessment of computational thinking 6

Design of a computational thinking curriculum 6

Review of literature/models about CT/programming 5

Discuss CT and impacts on K–12 science education 2

Report on teachers’ perceptions/experience of computer science 2
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2.2.2 Nature of the Studies Conducted

2.2.2.1 Research Design

The method most used in the various different types of research was that of case
study (n ¼ 13). In addition, experimental designs (n ¼ 16) were also widely
preferred. Survey type (n ¼ 7) and qualitative studies (n ¼ 7) are the other methods
found to have been used in the studies (see Fig. 2.6).

2.2.2.2 Data Collection Tools

It became clear that questionnaires (n ¼ 24) were the most preferred type of data
collection tool. Next were tests developed by the teacher or researcher (n ¼ 10), and
then interviews (n ¼ 8) and observation (n ¼ 7) were methods used to gather deeper
information (see Fig. 2.7).

2.2.2.3 Data Analysis Method Used

A descriptive statistical analysis (n ¼ 26) was the most used type of data analysis.
This method is followed by other quantitative analytical methods, such as t-test
(n ¼ 10), ANOVA (n¼ 4) and ANCOVA (n¼ 1), whereas content analysis (n ¼ 9)
was used for qualitative data (see Fig. 2.8).
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2.2.3 Summary of Results for the Selected Papers

When the results of the investigated research studies are examined, some main
themes emerged as pedagogy, learning and teaching context and potential contribu-
tions. Therefore, it summarises how computational thinking is taught, how the
learning environment should be, what this skill will provide and what contributions
it will provide to the students.
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The most common pedagogical approaches to promote the learning of CT,
programming concepts, logic and computational practices are programming courses
(de Araujo et al. 2016), games (Towhidnejad et al. 2014), unplugged approaches
(Lee et al. 2014), visual programming languages (Bustillo and Garaizar 2014; Liu
and Xu 2016; Sáez-López et al. 2016), virtual experiments (Li et al. 2015a), virtual
reality and simulations (Li et al. 2016) and creative competency exercises (CCE)
(Shell et al. 2014). These methods are beneficial for both the learning and teaching of
computing, computational thinking and CS knowledge and skills. Moreover, learn-
ing environment should be a constructionism-based problem-solving learning envi-
ronment, including scaffolding and reflection activities to support learning
computational practices (Lye and Koh 2014). Moreover, pair programming and
other kinds of collaborative learning environment should be designed for gender
equity and socialisation (Zhong et al. 2016).

Programmes for computer science or computational thinking training impact on
changing teachers perceptions about computer science (Prieto-Rodriguez and
Berretta 2014) and students’ learning (Rodrigues et al. 2016). Kindergartners can
learn and practice many concepts and aspects of robotics, programming and com-
putational thinking within a robotics curriculum (Bers et al. 2014). Computational
thinking is an engaging way to learn science (Arraki et al. 2014; Nesiba et al. 2015;
Peel et al. 2015). Moreover robotics competitions also impact on students’ learning
and motivation for further exploring in STEM or STEM-related fields (Eguchi
2016).

In addition to other concepts related to computational thinking, in particular the
algorithms, solving problems and abstraction have emerged as the most assessed
abilities (De Araujo et al. 2016). According to the experimental design results, it is
found that a statistically significant correlation exists between CT and spatial ability
and between reasoning ability and problem-solving ability (Moreno-León et al.
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2016). Male students were better with abstract thinking and problem-solving when
compared to female students. Moreover, abstract thinking improved the program-
ming understanding of the students (Park et al. 2015). Computational activities and
experiments helped to develop not only the students’ exploratory skills but also their
creativity (Se et al. 2015). However, there is a need for more research about
supporting the CT of students with instructional media like block-based program-
ming platforms at different education levels (Garneli 2014; Moreno-León and
Robles 2016).

2.3 Discussion and Conclusion

The skill of computational thinking is important both in computer science education
and in the teaching of programming skills. This skill, which has been taught since
early childhood for some, continues to be taught to different age groups via different
approaches and methods. For this reason, this skill has been the subject of many
research studies for academics working in this field. The purpose of the current study
is to examine studies in computational thinking that took place between 2013 and
2016 in a systematic way. In this context, keywords in the concept of computational
thinking were systematically searched in databases and digital libraries of
ScienceDirect and the IEEE Xplore Digital Library. The study described in this
paper explored the literature on computational thinking and described the demo-
graphic characteristics of the literature in terms of characteristics, methods, design
and data analysis.

When studies from the literature were examined in terms of their year of publi-
cation, the number of studies mostly increased in parallel with the year in which they
were published. It can be said that CT will likely maintain its popularity, and more
work will emerge in the coming years. As it is considered a skill necessary for
programming, researchers will likely continue to study CT as a notable subject. As
stated by Wing (2006), this kind of thinking will be part of the skillset of not only
other scientists but of everyone else. CT should be added to every child’s analytical
ability besides reading, writing and arithmetic. It is thought that with the ability of
computational thinking, students can solve problems in different areas (Barr et al.
2011). ISTE and CSTA (2011) stated that CT is an important skill in enhancing the
success of students, preparing students for global competition and achieving success
in school life and real life success. With today’s digital tools, students need to be able
to think cognitively in order to be able to answer the question of how tomorrow’s
problems can be solved. Students will need to learn and apply the new skill of
computational thinking in order to benefit from the changes that come with the rapid
changes in technology.

The sample reviews were performed with any group directly related to the topic.
The studies tried to examine the effects of different subjects on different people.
However, many countries are updating their computer science curricula to teach this
skill at a young age (European Schoolnet 2015). The new computer science
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curriculums include pedagogical strategies to teach computer science, programming
and computational thinking at different ages, with teachers and researchers seem-
ingly able to teach this skill at a young age. Moreover, there are efforts worldwide to
integrate computer science, programming and computational thinking into new
curricula (e.g. Duncan 2018). As a result of this process, the researcher noted that
it is expected to work with different stakeholders (e.g. teachers, students of different
ages groups, etc.) in order to handle the challenges and make correct preparations
and to direct learning at the student and teacher level as a natural outcome of this
situation.

When the keywords in the studies were examined, it was seen that computational
thinking was the most preferred keyword, programming was second and teaching
and learning strategies were third. The reason that programming is the second and
most used keyword is because programming is used as the context for studies
focusing on computational thinking (Fletcher and Lu 2009; Hambrusch et al.
2009; Lee et al. 2011). When we look at the pattern of keywords, it was seen that
studies of CT are related to the teaching strategies and technologies used for this
skill. This also could be seen from the studies’ themes and literature about this topic,
which includes pedagogy publications, that mostly supports this finding. When
studies on the instructional methods and tools of CT are examined, it was found
that most were about STEAM, block-based or robotic applications. This result was
comparable with that of Kalelioğu et al. (2016) who stated that the main topics
covered in the papers they examined were composed of activities that promote CT in
the curriculum. According to the results of their literature review of papers about
computational thinking published between 2006 and 2014, while studies on inte-
grating computational thinking to the curriculum was at the fore, pedagogical topics
were second, i.e. how to teach and which tools to use. Another result, by Grover and
Pea (2013), stated that ‘much of the recent work on CT has focused mostly on
definitional issues, and tools that foster CT development’ (p. 42). On the contrary, it
can be said that the studies carried out in the following years have primarily focused
on the pedagogical issues.

The most used research method found in the current study was case studies. In
addition to this method, experimental designs, survey type and qualitative studies
were the other methods used. According to the research questions, the research
methods and data collection tools may be different. In the case of teaching tech-
niques of CT, it was observed that an in-depth study with small groups was
preferred. However, Moreno-León and Robles (2016) concluded in their systematic
literature review that there is a need for further studies about proving learning and
developing thinking skills through programming with experimental designs and
larger student samples.

The aim of the current study was to provide an insight into the characteristics of
the recent literature on CT and to present the range of views found. As can be seen,
the studies on CT show a pattern. It may therefore be possible to say that studies
focusing on CT will increase in the years ahead. Moreover, it points towards how
studies on computer science courses, whether at the university or K–12 level, should
be designed and evaluated in order to remain popular. This study is limited to the
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databases analysed, keywords used and the analysis units obtained by the date range.
It is therefore feasible to conduct further research using different databases as well as
more recent publications. It is thought that the results obtained will provide
researchers with further ideas for studies to be conducted on this subject.
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Chapter 3
Microworlds, Objects First, Computational
Thinking and Programming

Greg Michaelson

3.1 Overview

Teaching of programming has long been dominated by language-oriented
approaches, complemented by industrial design techniques, with little attendant
pedagogy. An influential alternative has been Papert’s constructivism, through
playful exploration of constrained microworlds. The archetypal microworld is
based on turtle graphics, as exemplified in Papert’s Logo language. Here, students
compose and repeat sequences of operations to steer and move a turtle that leaves a
trail behind it. Contemporary graphical environments, like Alice and Scratch, aug-
ment the turtle world with colourful interacting animated avatars.

However, the microworld approach scales poorly to systematic programming
driven by problem-solving. Many students find the transition from novice coding to
problem-solving-oriented programming problematic (Moors and Sheenan 2017).
Furthermore, microworld languages tend to be relatively impoverished, lacking
types and data structures.

Objects first is a contemporary approach to teaching programming through object
orientation, which seeks to bridge microworlds and systematic programming. Here,
students explore, modify and extend pre-formed objects analogous to microworlds,
in constrained subsets of full strength languages, typically Java. However, there is
growing evidence that, as with the original microworlds, some students find the
transition to problem-solving-based programming difficult.

Computational thinking (CT), as popularised by Wing, offers an approach to
problem-solving in which programming is the final stage. CT has been widely
heralded as a new pedagogy of programming. However, interpretations of CT vary
widely from a loose assemblage of techniques to a systematic discipline.
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In this chapter, I will argue that both microworlds and objects first build super-
ficial programming skills at the expense of deeper competences in problem-solving.
I will further argue that systematic CT, driven by seeking patterns in concrete
instances, offers a way to refocus on problem-solving for programming.

What follows may seem a bit disjointed, but it gets there in the end. My approach
is a mix of pedagogy, history and opinion: I trust it’s clear which is which.

3.2 Microworlds and Logo

Since Wing’s highly influential intervention (Wing 2006), there has been worldwide
interest in computational thinking (CT) as a pedagogy of problem-solving. Tedre
and Denning (2016) offer a succinct account of CT before and after Wing. In
particular, they draw attention to the key role of Papert in envisioning CT.

Papert (1993) was a proponent of Piaget’s constructivist model of cognitive
development. Here, a child’s transition, from the preadolescent concrete to the
adult abstract operational stages of thought, is informed by learning by discovery,
termed bricolage, which is the exploration of different assemblies of available skills.
Thus, Papert expounded a notion of problem-solving based on combinatorial think-
ing, i.e. systematic exploration, in some microworld, i.e. a constrained domain,
through thinking about thinking, i.e. debugging an incorrect solution to find a
better one.

This approach derives from early Artificial Intelligence Research. In their report
on activities in the MIT AI laboratory, Minsky and Papert (1971) say that:

. . .we see solving a problem often as getting to know one’s way around a “micro-world” in
which the problem exists. (Minsky and Papert 1971) (cited in (Weir 1987, p.12))

and that:

We think that learning to learn is very much like debugging complex computer programs. To
be good at it requires one to know a lot about describing processes and manipulating such
descriptions. (italics in original) (Minsky and Papert 1971)

Hence, a notation for describing microworld processes, and an environment for
manipulating process descriptions, could facilitate both combinatorial thinking and
thinking about thinking.

Papert was highly enthused by the educational possibilities offered by mass
access to computers with graphical capabilities. He envisaged how what we now
call personal computing facilities might be used to embody and animate microworlds
for teaching children.

Primarily concerned with mathematics education, Papert’s Logo programming
language was intended for manipulating a geometric microworld of turtle graphics.
His idea was that, by acting out the behaviours they wished the turtle to perform, a
neophyte could learn how to assemble rules characterising those behaviours in the
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microworld on the computer. Rule assemblies could then be falsified by comparing
the behaviour of the on-screen turtle with the intended behaviour, for reformulation.

Papert promoted the benefits of:

. . .deliberately thinking like a computer, according, for example, to the stereotype of a
computer program that proceeds in a step-by-step, literal, mechanical fashion. There are
situations where this style of thinking is appropriate and useful. Some children’s difficulties
in learning formal subjects such as grammar or mathematics derive from their inability to see
the point of such a style. (italics in original) (Papert 1993, p. 27)

While Papert is somewhat vague about his pedagogy, his collaborator Weir
(1987) thoroughly explored how best to use computers to support “a kind of messing
about”. For Weir, a microworld is a:

small, coherent domain of objects and activities implemented as a computer program and
corresponding to an interesting part of the real world. (italics in original) (Weir 1987, p. 12)

She went on to elaborate the key features of computer-based environments for
exploring a microworld, of which I think the following are the most pertinent:

1. . . .as the learner interacts with environment (sic), she “manipulates” concrete embodi-
ments of the concepts to be learned; she “experiences” the concepts directly, not through
language about them.

2. . . . The idea is to juxtapose experience in the real world with experience in the
computational world, so that each complements the other.

3. A cluster of activities is made available so that any one concept is met in several
different contexts and in different combinations.

. . .
5. It is useful to choose aspects of the environment about which the learner is likely to

have intuitions, to have naïve theories arising from her “street sense”. . .
. . .
7. There should be several levels of formal description, so that a student can move

backward and forward from experiential to formal modes of operation.
,,,
9. It is to be expected that there will be some things you CAN’T do easily in a particular

microworld. (Weir 1987, p. 105)

We can see in this characterisation the essential elements of the objects-first
approach, which we will explore below.

Logo’s design was strongly influenced by its MIT stablemate LISP (Berkley and
Bobrow 1964). Logo (McArthur 1973) is procedural rather than declarative and has
a richer syntax than LISP, making it more suitable for use with beginners. Nonethe-
less, like LISP, Logo is untyped and uses a list form for all data structures. Like
LISP, while Logo is Turing complete, its expressiveness depends heavily on a
substantial vocabulary of symbolic operators.

The typical use of Logo for teaching is to start with sequences of concrete turtle
operations, introduce fixed repetition and then explore abstraction through naming
sequences as procedures and generalising operation arguments as variables. Weir
notes that:

Using variables in this way provides a concrete way of approaching the abstract notion of an
algebraic variable as it occurs in school mathematics. (Weir 1987, p. 23)
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I think that abstraction through the introduction of variables is the key link from
coding to programming. However, neither Papert nor Weir offers any guidance for
how to do so. We will return to this below.

It is important to remember that Logo was intended to support a constructivist
pedagogy that integrated combinatorial thinking and thinking about thinking, not as
a programming language per se. Weir seemed to regret the latter use:

The books that have appeared since tend to regard “doing Logo” as learning to program. But
what about acquiring aesthetic and scientific concepts? (Weir 1987, p. 11)

Reflecting on his widely read book Mindstorms, Papert (1993) acknowledged
that:

Mindstorms unquestionably has a bug for giving prominence to structured programming as a
model for thinking about thinking . . . although Mindstorms emphatically proposes the idea
of “bricolage” as a model for general scientific theorizing, this idea comes late in the book
and is not developed as an alternative style of programming. . . . (Papert 1993, p. xv)

There is an enormous literature about Logo and its deployment, much supportive
and much critical. There is also an enormous literature about constructivist peda-
gogy, again much supportive and much critical. I will not explore either here.

Nonetheless, it is salient to reiterate that, in its constructivist conception, Logo
was developed to facilitate learners making the transition through bricolage from
preadolescent concrete thinking to adult abstract thinking. Little consideration was
given to its use with adolescents and adults, like senior secondary and undergraduate
students, who might be expected to have attained abstract thought, and for whom the
bricolage learning style may not be appropriate.

3.3 From Logo to Objects

From the outset, Logo was widely adopted for school use, at least by schools that
could afford the required computing and support infrastructure. For example, an
early report for Alberta Education (Kieren 1984) recommends its deployment across
schools, at all levels, for a variety of topics. However, the report is guarded about the
use of Logo in computer literacy and computer science, beyond early years, and
recommends avoiding premature use of more advanced features like:

procedures, sub-procedures, variables, recursion, or top-down programming. (Kieren 1984,
p. 23)

That is, the use of abstraction mechanisms is to be delayed.
Within mainstream computing education in higher education (HE), Logo had

considerably less purchase. Programming courses had become universal from the
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mid-1960s onwards, with content and pedagogy driven largely by changing indus-
trial practices (Michaelson 2015).

Nonetheless, the motivations behind Logo were taken seriously by both comput-
ing educationalists and language developers. In particular, Logo influenced the
evolution of the general-purpose object-oriented Smalltalk, at Xerox PARC in the
early 1970s (Kay 1993).

Object orientation (OO) long predates Logo: the Simula languages (Dahl 2004)
were developed in the 1960s for discrete event simulation, and Simula 67 was the
first widely used OO language. Kay, Smalltalk’s designer, acknowledged Simula as
a key influence on Smalltalk (Kay 1993).

Kay, having encountered Piaget’s and Papert’s pedagogies through Minsky,
visited Papert’s team in 1968 and was impressed by Logo’s use with children in
local schools. His group started teaching Smalltalk to school children from 1973,
deploying what were effectively microworlds to underpin learning (Kay 1993).

Smalltalk is a far more expressive language than Logo but, like Logo, was
implemented from the start in a visual environment. Indeed, one of the first classes
constructed in Smalltalk was for Logo turtle graphics (Kay 1993).

However, Kay observed that non-programmer adults found the transition from
very simple to somewhat more complex problems very hard. He analysed a program
he thought straightforward to construct and found 17 “non-obvious ideas”:

And some of them were like the concept of the arch in building design: very hard to discover,
if you don’t already know them. (Kay 1993, p. 82)

To address this, Kay’s team decided that design should be taught explicitly. His
collaborator Goldberg introduced design templates as intermediary forms, to aid
decomposing a problem into classes and messages; this approach proved successful.

We could view the use of design templates as a form of scaffolding. This
constructivist concept was elaborated by Wood et al. (1976), building on Vygotsky’s
notion of zones of proximal development (Vygotsky 1978), in turn developed as a
critique of Piaget:

. . .the zone of proximal development. . .is the distance between the actual developmental
level as determined by independent problem solving and the level of potential development
as determined by problem solving under adult guidance or in collaboration with more
capable peers (italics in original). (Vygotsky 1978, p. 86)

Thus, Wood et al. argued that traversing a zone of development requires scaf-
folding to facilitate it:

This scaffolding consists essentially of the adult “controlling” those elements of the task that
are initially beyond the learner’s capacity, thus permitting him to concentrate upon and
complete only those elements that are within his range of competence . . . It may result,
eventually, in development of task competence by the learner at a pace that would far
outstrip his unassisted efforts. (Wood et al. 1976, p. 90)

We will return to this notion below.
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3.4 OO and Objects First

Through the 1970s and 1980s, mainstream higher education (HE) computing con-
tinued to be led by industrial imperatives. Impressionistically, while COBOL, and
Algol descendants like Pascal, still predominated, we can observe a steady transition
to the OO language C++, driven by the rapid uptake of the free, platform-
independent UNIX operating system from Bell Laboratories.

UNIX was written in C and ran on minicomputers and workstations, offering
relatively low-cost multi-access, appealing to HE, and a robust software engineering
environment, appealing for industrial computing. In turn, C++ was derived from C
and, like Smalltalk, influenced by Simula 67 (Stroustrup 1987).

In the same period, emerging industrial approaches to OO design, for example,
Rumbaugh et al.’s (1990) object modelling technique (OMT), were also adopted in
HE. Typically, however, a C++ subset was used to teach traditional procedural
programming prior to, and independently of, OO. Smalltalk was not widely adopted.

A fundamental change in undergraduate computing education came in the
mid-1990s, with the widespread adoption of SUN Microsystem’s OO language
Java (Gosling et al. 1996), eventually displacing COBOL for commercial computing
and rapidly gaining use for wider software engineering alongside C++.

Java is disconcertingly like C in appearance, but had OO as the key language
design principle from the outset. Unlike Smalltalk and C++, Java supports single
rather than multiple inheritance, making it simpler for OO teaching.

Java was complemented by the integration of similar but competing industrial OO
methodologies, including OMT, into the Unified Modelling Language (UML)
(Booch et al. 2005) which rapidly became, and remains, the standard OO design
and education practice.

Herein lie the roots of objects first (OF). Many practitioners noted that students
who had already been exposed to procedural programming found the subsequent
adoption of OO difficult. It was thought that this might be circumvented by starting
with OO. See, for example, (Wallace and Martin (1997). Thus, Java and OO with
UML quickly displaced procedural programming as the initial undergraduate teach-
ing methodology.

Nonetheless, constructivist thinking, and Papert’s pedagogy, were still current in
computing education. For example, Brusilovsky et al. (1997) critiqued general-
purpose languages as being too large, over-oriented to numeric and symbolic
computation and lacking visualisation. Citing Logo as a major influence, they
advocated the use of mini-languages oriented to constrained domains, much like
microworlds, for teaching programming principles, in visual environments. They
also advocated the use of subsets of full languages, which they term sublanguages.

Echoing Papert and Weir, Brusilovsky et al. commented that:

Note that the application of a mini-language is never the goal itself, but a method of
mastering a set of notions and skills. If this set contains not only programming concepts,
but also some concepts from another domain, a mini-language might be useful to learn this
domain (as Logo is used to learn geometry). (Brusilovsky et al. 1997)
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Now, just before the emergence of Java, Kölling et al. (1995) critiqued extant OO
languages, like C++, Smalltalk and Eiffel, as too complex, and their development
environments as too unwieldy, for initial teaching. Subsequently, Kölling and
Rosenberg built the Blue OO teaching language (Kölling and Rosenberg 1996a)
and development environment (Kölling and Rosenberg 1996b). Serendipitously,
Blue shares two key characteristics of Brusilovsky et al.’s (1997) recommendations:
a small language intended to aid learning, implemented in a simple visual environ-
ment to support experimentation.

As Kölling acknowledges (Kölling 2016), academics face an uphill struggle to
broaden the use of novel in-house teaching languages, to compete with industrial
languages. For example, in 2017, Cass (2017) reported that the top ten languages for
IEEE Spectrum readers were Python, C, Java, C++, C#, R, JavaScript, PHP, Go and
Swift. For comparison, Murphy et al. (2017) reported that in UK universities in
2016, the top ten teaching languages were Java, Python, C++, C, JavaScript,
Haskell, C#, Processing, Matlab and PHP.

Thus, the promising outcomes from experiences with Blue were subsequently
revisited by Barnes and Kölling (2003), in the BlueJ environment for teaching initial
OO in Java.

BlueJ was explicitly developed to support OF (Kölling 2016, p. 13). In their
guidelines for teaching with BlueJ, Kölling and Rosenberg (2001) observe that:

With BlueJ we can really interact with objects as the very first thing we do. Since objects can
be created interactively, the first activity for students should be to open an existing project,
create a few objects, make method calls on these objects and inspect the objects’ state. Here,
we really interact with objects before introducing any other concept. Objects come truly first.
(Kölling and Rosenberg 2001, p. 2)

This serendipitously met Brusilovsky et al.’s (1997) third key recommendation: a
microworld like approach to programming education.

In a typical curriculum based on OF, as exemplified say by Barnes and Kölling
(2003), students are presented with a programming environment for visualising
objects, pre-primed with some simple class. Students start by constructing instances
of the class and invoking methods to learn what changes they cause. Next, they start
to solve problems that involve modifying instances in specified ways, by sequencing
method invocations. Students then explore the code behind the methods, and, with
appropriate guidance, modify methods to change their behaviours, and construct
new methods with new behaviours.

This approach is far more general than the original microworld conception. In
principle, the scope and properties of the introductory class of objects are limited
solely by the instructor’s ingenuity and skill, rather than being constrained by a
domain-oriented notation like the original Logo.

OF in general and BlueJ specifically have proved highly popular, and both are
still widely used in HE. Nonetheless, the efficacy of OF is controversial.
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3.5 Critiques of Objects First

Hu (2004) provides a thorough survey of limitations to OF. In particular, he observes
that OF gives an inadequate grasp of basic algorithms, because arrays are
covered late.

Of interest from a constructivist perspective, and contrary to my suggestion
above, Hu argues that most young adults lack appropriate abstract thinking capabil-
ities for OO:

When addressing the reasons students were unable to see the forest in their programming
activities, Reek (1995) pointed out that “the problem isn’t that the students are stupid, but
rather that at age eighteen their thinking maturity is still at the concrete level”. Teaching
objects-first ignores this fact and thus creating an environment that forces students to think at
a higher level of abstraction, which is often the point where the confusion starts. (Hu 2004,
p. 212)

To me, this suggests that OF does not adequately scaffold abstraction. However,
Hu recommends a return to procedural programming for beginners, followed by OO.

Lister et al.’s (2006) comprehensive, but dense, analysis of the SIGCSE mailing
list discussion of OF, which considered 99 postings by 39 people, reached no
definitive conclusions:

There is a fairly strong consensus that programming is hard both to teach and to learn, but the
case that objects-early is harder (or easier) than objects-late has not yet been made conclu-
sively. (Lister et al. 2006, p. 150)

However, they make the interesting observation that:

A key distinction is evident from the debate, however. Two computing sub-disciplines are
contending over the role of programming as:

1. A manipulative tool for the conduct of algorithmic thought experiments in a purely
scientific CS model, as opposed to

2. The centrality of design in the construction of large scale software systems by
professional software engineers. (Lister et al. 2006, p. 159)

Finally, in their well-designed study, Ehlert and Schulte (2009) compared pro-
gramming learning outcomes for 17-year-olds following either an OF or a proce-
dural approach in a first programming course. Both cohorts covered the same topics
overall, but in different orders. For OF, students began with instance experimenta-
tion, before moving on to variables and control structures. For the procedural
approach, students began with variables and control structures, meeting OO much
later. The evaluation found that, at the end of the study, the OF cohort had somewhat
higher attainment of overall concepts than the procedural cohort, but, in a follow-up
8 weeks later, there was no significant difference in attainment.

Curiously, both cohorts found arrays and association difficult: the procedural
cohort met arrays three topics before the OF cohort, and both met association as the
final topic. To me, this suggests that neither approach provided appropriate
scaffolding.
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3.6 Computational Thinking, Papert and Objects First

Let us now return to computational thinking (CT). In popular discourse, we can
discern a spectrum from what we might call weak to strong CT.

At one end, weak CT is toolkit of general-purpose, domain-independent problem-
solving techniques that derive from computing. We have seen that for Papert (1993),
problem-solving involves “thinking like a computer”. Alternatively, CT may be
presented as thinking like a computer scientist. For example, for Google (2017):

The basic skills of computer scientists and the way they think are computational thinking.
The area in which you apply CT can be any subject area or topic, even the subject area or
topic you teach.

Denning et al. (2017, pp. 32–33) offer a robust, if scattergun, criticism of the
alleged primacy and all-embracing nature of CT.

Contrariwise, Denning (2017) critiques what he sees as too narrow a conception
of CT as problem-solving:

Underlying all the claims is an assumption that the goal of computational thinking is to solve
problems. Is everything we approach with computational thinking a problem? No. We
respond to opportunities, threats, conflicts, concerns, desires etc. by designing computational
methods and tools – but we do not call these responses problem-solutions. It seems overly
narrow to claim that computational thinking, which supports the ultimate goal of computa-
tional design, is simply a problem solving method. (Denning 2017, p. 39)

Between weak and strong CT, Yadav et al. (2017) list nine core concepts from the
Computer Science Teachers Association/International Society for Technology in
Education (CSTA/ISTE):

data collection, data analysis, data representation, problem decomposition, abstraction,
algorithms and procedures, automation, parallelization, and simulation. (Yadav et al.
2017, p. 57)

They also list six CT practices from a College Board/National Science Founda-
tion stand-alone course:

connecting computing, creating computational artefacts, abstracting, analyzing problems
and artefacts, communicating, and collaborating. (Yadav et al. 2017, p. 58)

While this offers more precision, nonetheless, on this basis just about any
educational activity could be claimed to embody CT.

At the other end of the spectrum, strong CT is a systematic discipline of problem-
solving. Thus, Kao (2011), following Wing (2006), presents the four key aspects of
CT as:

. . .

• Decomposition: the ability to break down a problem into subproblems.
• Pattern recognition: the ability to notice similarities,differences, properties, or trends

in data.
• Pattern generalization: the ability to extract unnecessary details and generalize those that

are necessary in order to define a concept or idea in general terms.
• Algorithm design: the ability to build a repeatable, step-by-stepprocess to solve a

particular problem. (Kao 2011, p. 6)
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BBC Bitesize (2017) repeats these almost verbatim, identifying Kao’s (2011)
pattern generalisation as abstraction:

There are four key techniques (cornerstones) to computational thinking:

• Decomposition – breaking down a complex problem or system into smaller, more
manageable parts

• Pattern recognition – looking for similarities among and within problems
• Abstraction – focusing on the important information only, ignoring irrelevant detail
• Algorithms – developing a step-by-step solution to the problem, or the rules to follow to

solve the problem. (BBC Bitesize 2017)

Note that these aspects lie at the core of the CSTA/ISTE characterisation.
Curiously, Google (2017) includes a variant of Kao’s definition, while also repeating
the CSTA/ISTE list.

Both Papert’s approach and OF are based on some pre-given decomposition of a
domain, and scaffold algorithm formation through combinatorial thinking, that is by
exploring the efficacy of different groupings of rules (Papert) or methods
(OF) against some problem requirement.

Here, I think that OF offers little advance on Papert. In particular, there seems to
be little principled consideration of what constitute key problem-solving and pro-
gramming concepts or how their acquisition should be staged. Thus, there are no
explicit criteria for choosing an initial object class or deploying it to scaffold concept
acquisition beyond method sequencing.

Furthermore, neither approach:

• Scaffolds reflection on the efficacy of potential solutions found by discovery, that
is, thinking about thinking

• Has anything to say about pattern identification or abstraction
• Offers any guidance on decomposition of a novel problem domain from scratch

3.7 Scaffolding Programming with Patterns
and Computation Structures

While I have critiqued Kao’s characterisation as not taking adequate account of
information in problem-solving (Michaelson 2015), I am very much of the strong CT
persuasion.

I also see problem-solving as the heart of programming. However, this view is by
no means universal.

For example, Guizdal (2017) suggests that starting with problem-solving in
teaching computer science may be counter-productive. Citing Sweller (1988), he
asserts that:

Problem-solving creates enormous cognitive load that interferes with learning to understand.
(Guizdal 2017, pp. 11)

Instead, Guizdal proposes starting with program comprehension:
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To teach for understanding, we would give students worked examples and ask them
questions about the examples, ask students to predict outcomes or next steps in a
visualisation. . . . (Guizdal 2017, pp. 11)

While I acknowledge that program comprehension is a vital component of
learning to program, I think that problem-solving is key to becoming an effective
programmer, right from the start. Furthermore, I think that understanding and
comparing code fragments is fundamental to abstraction in CT-based problem-
solving.

As I have argued elsewhere (Michaelson 1992, 2015), I think that problem-
solving should be driven by abstraction from concrete instances of a specific
problem, to identify the constructs appropriate to a general solution. In particular,
we should use abstraction to identify the types and variables that an algorithm may
manipulate to solve an arbitrary instance.

This approach is in keeping with Vygotsky’s (1962) characterisation of the final
stages in the development of concept formation in young persons:

Only the mastery of abstraction, combined with advanced complex thinking, enables the
child to progress to the formation of genuine concepts. A concept emerges only when the
abstracted traits are synthesized anew and the resulting abstract synthesis becomes the main
instrument of thought. The decisive role in this process, as our experiments have shown, is
played by the word, deliberately used to direct all the part processes of advanced concept
formation. (Vygotsky 1962, p. 78)

That is, as Berger (2005) suggests for mathematics, I see the role of the variable in
problem-solving as comparable to the role of the word in Vygotsky’s notion of
advanced concept formation.

Here, I think that the CT notion of pattern identification offers a very practical
bridge from concrete instances to abstractions with variables. However, the term
“pattern” may be misleading. We normally understand a pattern to have some
repetitive fixed structure, for example, in tiling a floor as a black and white
chequerboard. But, for problem-solving, we actually want to identify the underlying
regularities in differences. So a pattern is some property that lots of different
instances share; ideally one that enables us to generate new instances that also
share the property.

I also think that the notion of identifying a pattern should be more than just a
metaphor for some informed intuition that comes with experience. Rather, pattern
identification should be taken literally, as an approach that involves directly com-
paring structural and operational features in solving concrete instances of problems,
to identify how they are similar and how they differ.

This generalises Papert’s combinatorial thinking, where the learner behaves
within a constrained domain to write down sequences of actions for the computer
to perform. In an arbitrary domain, we proceed by solving lots of concrete instances
of a problem, analysing what we did with the concrete data to get to the concrete
results and then looking for patterns across instances in both data and actions. We
can do this by decomposing our data and actions at finer and finer levels of detail
until we can identify and generalise the patterns amongst and across elementary
operations on elementary data. This is reminiscent of Turing’s analysis of someone
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doing arithmetic with pencil and squared paper, going to right down to symbol-by-
symbol operations (Turing 1936).

Furthermore, I think we should view patterns as templates, encompassing both
information and computation:

• Patterns in data lead to variables and expressions to calculate with them.
• Patterns in computations lead to assignments, structured programming constructs

and subprograms.

Thus, I envisage patterns as skeletal forms in some well-defined notation, for
example, a pseudocode or reference language (Scottish Qualifications Authority
2015) or, indeed, some programming language. That is, ultimately, patterns are
rendered as chunks of syntax with holes in them.

Note that, here, there are fundamental differences to OO design patterns (Gamma
et al. 1995) which are used to structure complex programs constructed from classes
with well-defined interfaces. This usually involves retrofitting extant components to
a pattern. In my conception, control patterns have closer analogies with higher-order
function from functional programming (Michaelson 1992). These are used to
abstract common patterns of recursion for instantiation with context-specific func-
tions to control repetition and computation.

3.7.1 Finding Variables and Expressions

An elementary expression typically has variables for values that change and con-
stants for values that don’t change, combined by unchanging operations. We can find
expressions by abstracting over concrete calculations.

For example, suppose we want to travel 400 km. If our vehicle goes at 100 km per
hour, the journey takes:

400=100 ¼¼ 4 h

And if our vehicle goes at 80 km per hour, the journey takes:

400=80 ¼¼ 5 h

Comparing the expressions, they have “400/” in common so we can abstract
where they differ:

400=? h

Now, we can introduce a variable called “speed”, which has to be an integer like
100 and 80, and then for unknown values find:
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400=speed

We all know how to do this. How about making it explicit?

3.7.2 Finding Computation Patterns

Let’s next consider three archetypal computation structures and their corresponding
programming language forms: choice, repetition and iteration.

First of all, an if statement typically has a choice condition, with branches
depending on whether it is true or false. We can view this as a pattern for discrim-
inated computation. In turn, this may depend on being able to identify a pattern to
divide data into two groups, where each group is processed in the same manner. That
pattern then frames the condition.

Next, a while statement typically has a termination condition and a body. We can
view this as a pattern that determines when to stop performing a repeated compu-
tation. In turn, this may depend on being able to identify a pattern in either data or
actions, characterising how each step determines the next.

Finally, a for loop typically has a control variable with initialisation and
incrementation expressions, a termination condition, and a body. We can view this
as a pattern for counted or indexed computation. In turn, this may depend on being
able to identify a pattern characterising a sequence of data, where each element is
processed or generated in the same manner, or processing each element depends on
some property of the previous element.

In all three cases, our understanding of the computation pattern guides our
abstractions. That is, when we explore data looking for computation patterns, we
should ask of it questions that enable us to choose amongst the possibilities.

All three computation patterns involve:

• A condition that determines what to do next
• What is done next
• What it is done to

So maybe we might interrogate our data by asking:

• What have we got?
• What are we doing to it?
• Why or when are we doing it?
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3.7.3 Example

Suppose we’re organising a sports club outing to the chariot racing, and we want to
work out how many full price and how many concession price tickets we need to
purchase. Suppose we know everyone’s age:

12 44 23 63 13 69 10 12 61 . . .

and that anyone under 16 or over 60 can get a concession.
To begin with, let’s write down what we do with each concrete age in turn:

Data Action Condition

12 Count 1 concession Under 16

44 Count 1 full price Between 16 and 60

23 Count 2 full price Between 16 and 60

63 Count 2 concession Over 60

13 Count 3 concession Under 16

69 Count 4 concession Over 60

. . . . . . . . .

We’ve already implicitly abstracted out accumulation variables for the conces-
sion and full price counts, just by describing what we’re doing.

On closer inspection, we can see that the action for each concrete data item
involves incrementing a count depending on which condition is met:

Data Action Condition

12 Increment concession Under 16

44 Increment full price Between 16 and 60

23 Increment full price Between 16 and 60

63 Increment concession Over 60

13 Increment concession Under 16

69 Increment concession Over 60

. . . . . . . . .

We can regroup by the three conditions:

Data Action Condition

12 Increment concession Under 16

13 Increment concession Under 16

44 Increment full price Between 16 and 60

23 Increment full price Between 16 and 60

63 Increment concession Over 60

69 Increment concession Over 60

. . . . . . . . .
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Now we can spot the choice structure pattern, abstract over the age in the three
conditions and introduce an if statement for each:

IF age under 16 THEN
increment concession
ELSE
IF age over 60 THEN
increment concession
ELSE
increment full
END IF
END IF

Alternatively, we can look for a pattern based on grouping abstracted actions:

Data Action Condition

12 Increment concession Under 16

13 Increment concession Under 16

63 Increment concession Over 60

69 Increment concession Over 60

44 Increment full price Between 16 and 60

23 Increment full price Between 16 and 60

. . . . . . . . .

Again, we can abstract over the age but introduce two if statements are having
combined conditions for common actions:

IF age under 16 OR over 60 THEN
increment concession
ELSE
increment full price
END IF

We can now think about how processing the sequence of data, rather than each
data item, is structured. Let’s make the process of dealing with each item in turn
more explicit:

Data Action Condition

Look for more data More data

12 . . . . . .

Look for more data More data

44 . . . . . .

Look for more data More data

23 . . . . . .

. . . . . . . . .

Look for more data No more data

Stop
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This looks like a repetition structure of the form:

look for more data
WHILE more data DO
IF . . . THEN . . . ELSE . . .
look for more data
END WHILE

Again, we all know how to do this sort of blow-by-blow analysis, and with
experience, we come to do so in big “intuitive” steps. But beginners don’t know
where to start. Again, how about making this analysis explicit?

3.7.4 Finding Information Structures

Note that the notion of a type encompasses structured information, for example,
linear sequences and nested structures, not just base types like numbers. However,
identifying how information is structured need not lead us immediately to storing
data in such a structure. That depends on whether processing the information
requires it to be stored for subsequent access.

For example, it is tempting to automatically identify a linear sequence of numbers
with an array. However, finding the average of a sequence of numbers can be
performed by taking each number in turn. In contrast, finding all the numbers less
than the average requires them all to be held until the average is known. Again, this is
something we can tell by systematic and detailed working with concrete instances.

3.8 Conclusions

Teaching programming is hard. It seems deeply unsatisfactory that some people
seem to get it and some don’t, and that we don’t understand why.

After critiquing the bricolage/microworld and objects-first approaches to teaching
programming, I’ve argued that we might better deploy a pedagogy based on strong
CT. That is, I think that we can teach beginners how to systematically analyse
concrete instances of problems, to tease out the essential patterns in data and
computations, leading to abstractions that can form the basis of algorithms and,
ultimately, programs.
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Chapter 4
Toward a Phenomenology
of Computational Thinking in STEM
Education

Pratim Sengupta, Amanda Dickes, and Amy Farris

4.1 Introduction

In this chapter, we argue for an epistemological shift from viewing coding and
computational thinking as mastery over computational logic and symbolic forms to
viewing them as a more complex form of experience. Rather than viewing comput-
ing as regurgitation and production of a set of axiomatic computational abstractions,
we argue that computing and computational thinking should be viewed as discur-
sive, perspectival, material, and embodied experiences, among others. These expe-
riences include, but are not subsumed by, the use and production of computational
abstractions. We illustrate what this paradigmatic shift toward a more phenomeno-
logical account of computing can mean for teaching and learning STEM in K-12
classrooms by presenting a critical review of the literature, as well as by presenting a
review of several studies we have conducted in K-12 educational settings grounded
in this perspective.

Papert (1987) famously referred to technocentrism as the fallacy of referring all
questions about technology to the technology itself. A critical look at the history of
educational computing tells us that the research in this field has also been predom-
inantly technocentric in nature. Calls for taking into account the learners’ experi-
ences as building blocks for deeper learning and the development of disciplinary
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expertise in STEM certainly have been made (e.g., Papert 1980; DiSessa 2000).
However, the predominant effect of this call has also been technocentric in the sense
that it has resulted in the creation of a new genre of programming languages (e.g.,
LOGO, Scratch, NetLogo, StarLogo TNG, AgentSheets, ViMAP, CTSiM, etc.) and
microcontrollers (e.g., Arduino) designed to be easily usable for the “novice pro-
grammer.” The technocentric focus is also evident in the learning objectives and
assessment of computational thinking, which predominantly focus on the production
and use of computational abstractions (e.g., see the studies reviewed by Grover and
Pea (2013a)). Only a few, recent examples have focused on phenomenological
aspects of computational thinking, such as the centrality of discourse (Grover and
Pea 2013b; Farris and Sengupta 2014), the role of embodied reasoning (Francis et al.
2016), aesthetic experiences (Farris and Sengupta 2016) and the importance of
managing, rather than ignoring uncertainty (Farris et al. 2016) in the development
of computational thinking in STEM curricular contexts. And while recent arguments
have been made for an increased awareness for paying attention to sociological
dimensions of computing such as computing in public spaces (Sengupta and
Shanahan 2017), virtual communities (e.g., online Scratch communities) and
out-of-school, DIY makerspaces (Kafai and Burke 2013), our focus here is on the
K-12 public school classroom.

Our chapter is an argument for deepening and broadening the focus on the
phenomenology of computing and computational thinking in K-12 STEM curricular
contexts and classrooms. Our concerns are both epistemological and pedagogical
and are grounded historically as well as in the pragmatics of K-12 classrooms with
the focus on sustaining computing as a long-term practice. The first part of the
chapter presents a critical and synthetic review of the literature and argues for a
phenomenological approach toward developing an epistemology of computational
thinking that foregrounds the uncertainty and complexity in the experience of
computing and science, in professional practice and in STEM classrooms. The
second part of the chapter presents a set of pedagogical approaches for sustaining
computing and computational thinking through computational modeling in the
STEM classroom. This is presented in the form of a critical review of studies that
are conducted by our research group in K-12 classrooms in the USA, including
studies that were conducted in the form of partnerships with teachers.

4.2 The Need for a Phenomenology of Computational
Thinking

Since the phrase “computational thinking” has been popularized by Wing (2006),
there have been a plethora of studies on computational thinking in education. Yet,
beyond the early work on computational literacy by Papert (1980) and diSessa
(2001), the epistemology of computational thinking has received very little attention
in the literature. In this section, we examine core beliefs and assumptions about the
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nature of knowledge and knowing that are and should be involved in thinking
computationally, by adopting a historical perspective as well as by reviewing recent
research in and relevant to educational computing, from a phenomenological per-
spective. We highlight the importance of grounding computational thinking in
representational and epistemic practices that are central to knowing and doing in
science and, more broadly, in STEM education. The phenomenologist Merleau-
Ponty (1962) defined sense experience as “that vital communication with the world
which makes it present as a familiar setting of our life” (Merleau-Ponty 1962, pp 61).
We believe that thinking carefully in terms of these practices can help us understand
the materiality, uncertainty and subjectivity inherent in the students’ and teachers’
sense experiences of computational thinking in STEM classrooms, for reasons we
explain in more detail next.

4.2.1 Inseparability of Abstractions and Practices
in Computing and Science

Citing a definition coined together with Jan Cuny of the National Science Founda-
tion and Larry Snyder of the University of Washington, Wing (2011) defined
“computational thinking” to indicate the “thought process involved in formulating
problems and their solutions so that the solutions are represented in a form that can
be effectively carried out by an information-processing agent [CunySnyderWing10]”
(Wing 2011, p 20). According to Wing, the “essence of computational thinking is
abstraction” (Wing 2008, pp 3717). She argued that computational thinking
involves dealing with abstractions in the following ways: (a) defining abstractions,
(b) working with multiple layers of abstraction, and (c) understanding the relation-
ships among the different layers (Wing 2008). Abstractions, according to Wing, give
computer scientists the power to scale and deal with complexity. She noted:

Abstraction is used in defining patterns, generalizing from instances, and parameterization. It
is used to let one object stand for many. It is used to capture essential properties common to a
set of objects while hiding irrelevant distinctions among them. (Wing 2011, p 20)

Wing’s conceptualization of abstraction, as the excerpt above shows, therefore,
emphasizes the notion of generalization. Abstractions, in her view, are generalized
computational representations that can be used (i.e., applied) in multiple situations or
contexts. In this sense, as Sengupta et al. (2013) pointed out, her definition of
abstraction is similar to Locke’s. In Locke’s view, abstraction is the process in
which “ideas taken from particular beings become general representatives of all of
the same kind” (Locke 1690/1979).

However, a phenomenological interpretation of Wing’s notion of abstractions is
incomplete without a deeper understanding of the contextualization that necessitates
and grounds computational abstractions in professional practice. For example, the
computer scientist and software engineering researcher Douglas C. Schmidt (2006)
points out that software researchers and developers typically engage in creating
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abstractions that help them program in terms of their contextualized design goals –
e.g., the specific problem that they are solving, which is often in a different field
(domain) of professional practice. The abstractions that “need” to be created are
essential because the end user must be shielded from avoidable complexities, such as
the CPU, memory, and network devices, and, instead, interact directly with the
domain-specific problem (Schmidt 2006). Similarly, it is important to note that even
Wing (2011) acknowledges the complexity of computing systems as resulting
from the material and physical constraints underlying the information-processing
agent and its operating environment. She argues that while considering what com-
putational thinking is, we must also “worry about boundary conditions, failures,
malicious agents and the unpredictability of the real world” (Wing 2011, pp 20).

We therefore believe that the term “thinking” in computational thinking is a
semantic reduction of its intended meaning. Phenomenologically, computational
thinking involves both representational and epistemic work that are also grounded
disciplinarily and materially. It is in this light that Sengupta et al. (2013) argued that
when the notion of computational abstractions is grounded in use, it could be
understood as a practice that draws upon concepts that are fundamental to computing
and computer science, and it also includes practices such as problem representation,
abstraction, decomposition, simulation, verification, and prediction that are also
central to modeling, reasoning, and problem-solving in a large number of scientific,
engineering, and mathematical disciplines (National Research Council 2007; NGSS
2015).

Sociologists and philosophers of science have also identified the inseparability of
abstractions and practice in the work of scientists. It is rarely the case that the
transformation of an initial idea to a successful scientific experiment or a model is
a simple and linear process that relies on solely the invention and use of abstractions.
The philosopher Andrew Pickering pointed out that scientists are always enmeshed
in a “mangle of practice” (Pickering 1995). That is, scientists struggle continuously
in order to get theories and instruments on one hand and the natural world on the
other to perform in the ways that their investigations require. The creation of
scientific knowledge can therefore be understood as a dynamical process of interac-
tive stabilization of material and human agency – a process that Pickering termed as
the dance of agency (Pickering 1995; see also Lehrer 2009). Uncertainty, and
managing uncertainty are unavoidable aspects in this work, even though the most
popular image of scientific work tends to be one of the certitude of accurate pre-
dictions (Duschl 2008).

A central focus of the scientific work is the invention, reproduction, and modi-
fication of scientific inscriptions – such as graphs, equations, computer code, etc. –
which tend to amplify certain aspects of the phenomena under investigation while
reducing emphasis on other, less relevant aspects (Latour 1990). This is similar and
synergistic to the work of defining and using contextually relevant computational
abstractions, as we pointed out earlier. Additionally, computational models can also
bring to light new, unexpected ways of thinking about the phenomena by bringing
different disciplinary perspectives in contact with one another (MacLeod and
Nersessian 2015). The process of creation of these inscriptions – which are
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collectively termed “modeling” – involves both representational and epistemic work
in a deeply intertwined manner (Giere 1988; Pickering 1995; Lehrer 2009). This
perspective is known as the “science as practice” perspective and is now regarded as
a cornerstone of science education research (NGSS 2015). In the following sub-
sections, we consider the subjective and perspectival nature of the work involved in
modeling, and in particular, computational modeling.

4.2.2 Subjectivity in Representational Work

Studies of scientists and their production of scientific inscriptions reveal a rather
amorphous nature of scientific knowledge and work (Pickering 1995; Ochs et al.
1996; Latour 1999; Daston and Galison 2007). For Pickering (1995), as we
mentioned in the previous section (Sect. 4.2.1), subjectivity arises from the dance
of agency between theory formulation and the materiality of the physical world.
Latour (1999) argues that while a common image of science implies objectivity
and certitude, viewing science as research can help us see it as a much more
complex experience – one that is uncertain and subjective, and both human and
non-human. Ochs et al. (1996) highlighted the central role that interpretive work,
including negotiation between scientists, plays in dealing with uncertainty during a
research project. They also demonstrated that the interpretive nature and uncertainty
of this work – an epistemic phenomenon – are deeply tied to the representational
infrastructure (Ochs et al. 1996). This is echoed by Daston and Galison (2007), who
pointed out that as representational technologies evolve and new representational
technologies emerge, they necessitate new forms of uncertainty and
interpretive work.

Daston and Galison (2007) argued that with the introduction of photographic
technology and the printing press, the epistemic stance of scientific work shifted
from a falsely “objectivitist” stance to “trained judgment.” This was evident in their
comparison between the nineteenth century introduction of photographic technology
where the machinic nature of photography created an impression that scientist could
“get out of the way” and let the photograph produce what became perceived as bare,
uninterpreted, objective “facts.” In contrast, beginning in the early to mid-twentieth
century, with the advent of the printing press that in turn widened the audience for
scientific works such as atlases, the production of scientific images became neces-
sarily more interpretive on the part of the scientist, with a clear goal of enhancing the
communicativity of the images, which Daston and Galison (2007) termed “trained
judgment.”

Building on this work, Farris et al. (2016) have argued that the advent of
computing as a key mode and medium of scientific inquiry further amplifies this
epistemic stance of “trained judgment.” A case to point, they argued, is that recent,
long-term ethnographic studies of biomedical engineering labs illustrate how the
malleability and inherent interdisciplinary of the practice of computational modeling
results in new conceptual innovations in scientific practice (Nersessian 2012;
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Chandrasekharan and Nersessian 2015). Nersessian and colleagues showed that
computational modeling can be particularly helpful for creating new scientific
knowledge in the field of complex systems, by (a) bridging the gap between
theorization, dynamic visualization, and experimental work, (b) bringing together
multiple disciplinary perspectives, (c) using stochastic modeling techniques in cases
where clear mechanistic accounts are difficult to obtain, and (d) making it possible to
communicate directly with colleagues about complex, predictive visualizations of
the target phenomena.

4.2.3 Computational Modeling as Perspectival Work

In his seminal book, Mindstorms, Papert argued that working with the LOGO turtle
is a “model for what it is to get to know an idea the way you get to know a person”
(Papert 1980, pp 136). Papert argued that it involves getting to know the turtle,
through exploring what it can or cannot do. He cautioned that this should not mean
that all ideas be reduced to computational terms; rather, the early experience with
turtles is a good model of learning. That is, “. . . it is a good way to ‘get to know’
subject by ‘getting to know’ its powerful ideas” (Papert 1980, p 138). As an
illustrative case, he noted that when children learn Newtonian mechanics using
LOGO, they do so through modeling changing velocities, i.e., by specifying how
fast the turtle should move. The propositional forms of these phenomena are
represented in the form of physical laws in the form of linear mathematical equa-
tions, and the fallacy of education is that these laws which are the products of
complex work (i.e., Pickering’s mangle of practice) in which qualitative thinking
that is less completely specified and seldom stated in propositional form play an
important role. Therefore, it is the qualitative experience of thinking like the turtle
and thinking with the turtle that makes the experience of learning a powerful and a
deep one and one that is quite antithetical to learning as usual in K-12 science (and
beyond). These forms of reasoning enable the learner to engage in embodied and
intuitive reasoning (Papert 1980; Wilensky and Reisman 2006; Dickes et al. 2016b;
Sengupta and Wilensky 2009).

The early success of LOGO has led to the development of several LOGO-like
programming languages and modeling environments such as NetLogo (Wilensky
1999), Scratch (Resnick et al. 2009), AgentSheets (Repenning and Sumner 1995),
CTSiM (Sengupta et al. 2013; Basu et al. 2016), and ViMAP (Sengupta et al.
2015b). Computational models developed in such languages are more generally
known as agent-based models (ABMs). When users develop ABMs, they construct
programs by providing simple rules to a computational object or agent (e.g., the
sprite in Scratch, the turtle in LOGO, etc.), which then enacts the rules through
movement in computational space. These agent-level actions are repeated over time
and/or across multiple agents. In the former case, it enables learners to generate
models of continuous movement (Newtonian mechanics) from temporal aggrega-
tions of discrete actions (Sengupta and Farris 2012; Sengupta et al. 2012). In the
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latter case, it enables learners to model dynamical systems (e.g., ecological
interdependence) in which multiple agents are simultaneously interacting with
each other (Dickes and Sengupta 2013; Dickes et al. 2016b).

Because the agent-level interactions, attributes, and behaviors are often body-
syntonic (i.e., can be explained and understood through simple embodied actions of
the child), young children can model complex scientific phenomena using such
forms of computing (Papert 1980; Danish 2014; Dickes et al. 2016b; Levy and
Wilensky 2008). As Dickes et al. (2016b) demonstrated, by engaging in agent-based
modeling, even young learners can investigate and develop explanations of system-
level, emergent behaviors from the perspective of agents within the system. They
key argument supported by these studies is that thinking like the agent provides
learners an intuitive pathway in exploring emergent outcomes of the system
(Wilensky and Reisman 2006; Levy and Wilensky 2008). Evelyn Fox Keller’s
biography of the biologist Barbara McClintock supports this claim, citing evidence
that thinking like the agent (e.g., a chromosome) enabled McClintock to make
significant advances in her research on human genetic structures (Keller 1984).
Similarly, Ochs et al. (1996) also identified that scientists’ sensemaking in the
domain of physical sciences also involves such mental projections of the self into
the phenomenon of inquiry.

4.3 Phenomenological Approaches for Sustaining
Computing in STEM Classrooms

What does the theoretical review in the preceding section mean for the praxis of
computing in STEM education? We argue that the experience of coding in STEM,
from the perspective of the learners and teachers, especially over a long period of
time, is inherently heterogeneous. That is, dealing with computational abstractions in
the context of STEM disciplinary contexts and classrooms involves engaging with
multiple forms and genres of representations beyond coding, and often translating
between these representations requires interpretive judgments. This stands in con-
trast to the views that have been more traditionally supported by educational
researchers, where the goal is to “apply” algorithmic thinking and computational
abstractions to determine the correct answer. This complexity is left out in
technocentric images of coding, even when they apparently focus on computational
productions by participants.

In the remainder of this section, we propose some phenomenological approaches
that can help us address these issues in the K-12 STEM classroom. We will review a
set of studies conducted in partnership with K-12 teachers and students. Participants
in these studies used coding in order to design and develop models in science and
math on a long-term basis, throughout the academic year. We present a close
examination of the nature of the experience through which teachers and students
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appropriated coding and computational thinking as the language of doing scientific
work in their classrooms. We begin with an argument for adopting a particular genre
of programming and modeling (agent-based programming and modeling) for
modeling across disciplines, which is essential for long-term curricular integration.
We then suggest a set of pedagogical guidelines for integrating programming in the
K-12 STEM curricula, grounded in the perspectives of teachers and learners in K-12
classrooms.

4.3.1 Agent-Based Computational Modeling
as a Transdisciplinary Practice

Scientific practices like modeling develop only over the long term, both historically
within the sciences and ontogenetically within the lifetime of individuals. This is
because modeling is a rather nuanced and complex form of epistemology, even
though most educational texts and curricula do not directly address these complex-
ities (Lehrer 2009). The yearlong science classroom is a better context for engaging
children in such extended forms of practice, rather than the predominant tradition in
educational research to conduct intervention studies where children engage in
modeling (including computational modeling) spanning a few hours to a few days.
But, in order to support such long-term curricular integration, we must take into
consideration how to integrate computational modeling and programming across
disciplinary contexts.

Different forms of phenomena lend themselves to different forms of modeling
(Lehrer and Schauble 2007), and we have found that at the elementary, middle, and
high school levels, the categories of linear continuity and emergent aggregation can
be helpful guides for us in selecting scientific phenomena across disciplines that can
lend themselves well to computational modeling and programming. An example of
modeling linear continuity would be modeling motion as a continuous change in
position, where the behavior of a single “agent” (e.g., a ball rolling on a ramp) can be
modeled as a temporal series of changes of position and/or other variables such as
speed and acceleration that obey linear mathematical relationships (Sherin et al.
1993; Sengupta and Farris 2012). An example of modeling emergent aggregation
would be modeling ecological interdependence, where multiple agents simulta-
neously interact with each other and the environment, which in turn result in
aggregate-level outcomes, e.g., the dynamical relationship between the predator
and prey populations in an ecosystem (Wilensky and Reisman 2006; Dickes and
Sengupta 2013; Wagh et al. 2017). Such aggregate-level behaviors or outcomes are
known as emergent, because although linear relationships between individual agents
(objects) produce these behaviors, these behaviors are not apparent in the description
of either the individual objects or the relationships (Lehrer and Schauble 2007;
Wilensky and Resnick 1999). Other examples of emergent phenomena that have
been successfully adopted by teachers and students through the use of agent-based
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computational modeling and programming include electrical conduction (Sengupta
and Wilensky 2011), crystallization (Blikstein and Wilensky 2009), molecular
chemistry (Stieff and Wilensky 2003), evolution (Dickes and Sengupta 2013;
Wagh et al. 2017), ethnocentrism (Hostetler et al. 2018), etc. This suggests that
adopting agent-based modeling and programming as the form of computing can
make it possible for educators to use the same genre of modeling and programming
across multiple disciplines.

It has also been argued that students’ conceptual difficulties in understanding both
linear continuity and both emergent aggregation have similar origins (Reiner et al.
2000; Chi 2005). For example, Reiner et al. (2000) argued that physics novices tend
to use substance-based knowledge when reasoning about concepts like force, heat,
light, and electric current (e.g., force as a property of an object). For example, the
misconception that continuing motion implies a continued force in the direction of
the movement is generated from a more primitive idea (called phenomenological
primitives or p-prims) called “continuous force,” which can be abstracted from
common everyday experiences of needing constant effort to keep an object in motion
(DiSessa 1993). Note that these novice intuitive ideas about physics have an
underlying structure of a direct schema – one that involves an agent either acting
on another agent or an agent being acted upon by an impetus (Talmy 1983). On the
other hand, an expert-like understanding of kinematics involves being able to
conceptualize a situation in terms of more complex interactions – e.g., situations
involving lack of motion, or constant speed could be conceptualized as forms of
dynamic equilibrium between interacting systems (Clement 1993; Greeno and Van
De Sande 2007). Similarly, in the domain of ecology, researchers have argued that
commonly noted misconceptions are indicative of direct schema or event schema,
which imply a direct cause-effect relationship (such as “A” causes “B”) or an event
that has a finite duration of time (as opposed to being continuous), whereas the
expert conception of ecological phenomena involves a more complex cognitive
structure involving the dynamic and decentralized nature of emergent phenomena
in terms of a myriad of simultaneous interactions (Chi 2005). However, studies have
also shown that pedagogical approaches based on agent-based models and modeling
can act as productive learning environments, using which novice learners can
develop deep understandings of dynamic, aggregate-level phenomena by
bootstrapping, rather than discarding their agent-level intuitions (Dickes and
Sengupta 2013; Dickes et al. 2016b; Wilensky and Reisman 2006; Levy and
Wilensky 2008).

This body of research also provides useful guidelines for the sequence of learning
activities in each domain, and our general pedagogical approach explicitly adopts the
perspective that expert-like scientific knowledge can result through building upon
and refining existing naive intuitive knowledge (Dickes et al. 2016b; Danish 2014;
Sengupta et al. 2015b). For example, the initial learning activities leverage a naive
conceptualization of the domains and progressively scaffold them toward refine-
ment. In kinematics, learners begin by inventing representations of motion in terms
of measures of speed (how fast an object is moving) and inertia (innate tendency of
an object to continue its current state of rest or motion, which often takes an
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anthropomorphic form in novice reasoning), and gradually move to a force-based,
more canonical description of motion in subsequent activities (Sengupta and Farris
2012; Farris et al. 2016). Similarly, in ecology, students begin with programming the
behavior of single agents in the ecosystem and gradually develop more complex
programs for modeling the behavior and interaction of multiple species within the
ecosystem (Wilensky and Reisman 2006; Danish 2014; Sengupta et al. 2013; Dickes
et al. 2016b).

4.3.2 Framing Programming as Designing Mathematical
Measures of Change

Our studies have demonstrated that framing programming as “mathematizing” in the
science classroom can serve as a productive pedagogical approach for integrating
programming in the K-12 science classroom (Sengupta et al. 2013, Sengupta et al.
2015a, b, 2018; Dickes et al. 2016a; Farris et al. 2016). In this approach, program-
ming is used in the context of creating computational models of scientific phenom-
ena through designing discrete mathematical representations of units of change, for
representing change over time. That is, the computational code created by students
serve to define a “unit” of measurement, which would then get repeated as the
program was “run” to produce the desired motion.

From the perspective of praxis in the K-12 science classroom in North American
public schools, this form of activity is of critical importance for classroom integra-
tion of computational modeling and programming. Teachers in US and Canadian
public schools who we have worked with have reported that interpreting and
constructing mathematical measures (e.g., units of measurement and graphs) are
areas where most of their students experience difficulties (e.g., see Sengupta et al.
2018). This is also of importance for US and Canadian public schools because
manipulating units is emphasized in standardized assessments (in the USA) and
the program of studies (in Canada), and therefore, teachers acknowledge this as an
important learning goal in their regular science classroom.

We see this as a great opportunity for integration of computational modeling and
programming in K-12 science classrooms. Our studies show that agent-based pro-
gramming and modeling can help students overcome conceptual challenges in
understanding linear continuity (e.g., kinematics; see Sengupta and Farris 2012)
and emergent aggregation (e.g., ecology; see Dickes et al. 2016b), through the
iterative design of measures of change over time. This is because the activity of
programming the behavior of agents requires the learners to define the event in
discrete measures (Sengupta et al. 2015b). The state of the simulation, at any instant,
represents a single event in the form of spatialized representations of agent actions
and interactions. To “run” the simulation, these events are repeated a number of
times specified by the user. By engaging in iterative cycles of building, sharing,
refining, and verifying computational models, students refine their understanding of
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what actions and interactions of agents represent an “event,” which are then
displayed on graphs. This enables students to define and explore different kinds of
units and see their simulation measured in those units (Farris et al. 2016) and even
merge computational modeling with artistic design (Sengupta et al. 2012).

4.3.3 Supporting Perspectival Work Through Embodied
Modeling

Research in science education suggests that the integration of ABMs in elementary
classrooms also benefits greatly from the use of other synergistic forms of modeling
such as embodied and physical modeling. Programming an agent involves learning
to think like the agent, because it can help students understand the relationship
between their code and the simulated output. In our studies, all teachers saw
embodied modeling as a valuable activity for teaching students how to think like
an agent. Embodied modeling introduces the students to the relevant computational
rules represented by the agent-based programming commands through embodied
interactions with the material world, and in doing so, helps them debug their
programs and deepens their understanding of the graphs in the simulations (Dickes
et al. 2016a, b).

Why are these different forms of modeling necessary? Science educators and
cognitive scientists have argued that embodied thinking is central to the development
of agent-based thinking and representational practices (Papert 1980; Goldstone and
Wilensky 2008; Wilensky and Reisman 2006). For example, in a recent study
conducted in a third-grade classroom, students began with an embodied modeling
activity of foraging behavior, followed by the generation of mathematical inscrip-
tions based on their embodied actions, and finally, conducted further inquiry of
interdependence in an ecosystem using two separate ABMs (Dickes et al. 2016b).
We found that the students recalled and built upon their embodied modeling
experiences as butterflies foraging for nectar (see Fig. 4.1), during their subsequent
interactions with the agent-based simulation of a butterfly-bird-flower ecosystem
(see Fig. 4.2). We also found that creating mathematical inscriptions (bar graphs) to
represent the data collected during the embodied modeling activity provided a
representational continuity between the embodied modeling activities and the
ABMs, as well as with previous representational forms that students used and
developed in their science and math classes prior to the study. And finally, we also
found that embodied modeling activities, especially in the case of modeling inter-
actions between different types of agents, must be designed so that students are able
to take on the perspectives of different types of agents, rather than prompting
students to take on the perspective of only one type of agent.

As students engaged iteratively in cycles of embodied modeling and graphing by
taking on the perspective of the agents in the system, and then modeled the same
phenomena using multi-agent-based NetLogo simulations, we found that they were
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able to develop progressively more complex forms of mechanistic explanations of
emergence. Mechanistic explanations focus on the processes that underlie cause-
effect relationships and thereby take into account how the activities of the constituent
components affect one another (Russ et al. 2008). In particular, we found that
learners were able to engage in a particular form of mechanistic reasoning that
Russ et al. (2008) termed chaining. During chaining, learners use knowledge
about the causal structure of the phenomena to make claims about what must have
happened previously to bring about the current state of things (backward chaining)
or what will happen next given that certain entities or activities are present now
(forward chaining).

This is an important finding from the perspective of computational thinking in the
context of science education, because this suggests that event-based programming
and modeling can support children in developing deep conceptual understandings of
complex scientific phenomena. Furthermore, this also suggests that focusing on
supporting the growth of students’ mechanistic reasoning through modeling may

Fig. 4.1 Students participating in phase I’s embodied modeling activity

Fig. 4.2 Screenshots of the predator ABM (left) and watched energy ABM (right). Both models
were designed to actively recruit students’ previous embodied modeling experiences shown in
Fig. 4.1

60 P. Sengupta et al.



be helpful for integrating computational thinking in science classrooms. As
Sengupta et al. (2013) identified, mechanistic reasoning in the domain of science
education is well aligned with algorithm design and complexity analysis in the
domain of computational thinking.

4.3.4 Refining Computational Modeling Through
Disciplinarily Grounded Classroom Norms

Our studies also illustrate that emphasizing mathematizing and measurement as key
forms of learning activities can help teachers meaningfully integrate programming as
a “language” of science (Dickes et al. 2016a; Sengupta et al. 2018). Long-term
studies of classroom integration of computional modeling and programming in the
science curricula has further shown that teachers can seamlessly accomplish this by
supporting the development of disciplinarily grounded classroom norms for devel-
oping and refining mathematical measures (Dickes et al. 2016a). Science educators
have shown that the iterative design of mathematical measures can result in deep
conceptual growth of students in elementary science, especially when these activities
are integrated throughout the curriculum over several months (Lehrer 2009). Lehrer
and colleagues have also shown that asking the question what counts as a “good”
model also needs to be established in classroom instruction as a norm, in order to
deepen students’ engagement with scientific modeling in elementary grades. Fur-
thermore, similar to Cobb and his colleagues’ work in the mathematics classroom
explained in the next paragraph (McClain and Cobb 2001; Yackel and Cobb 1996;
Cobb et al. 1992), these norms also follow shifts toward deeper disciplinary warrants
over time (Lehrer and Schauble 2006; Ford and Forman 2006; Lehrer et al. 2008). In
such classrooms, mathematical modeling becomes a meaning-making lens through
which the natural world can be systematized and described (Lehrer et al. 2001).

The specific genre of classroom norms that we have found to be at work in our
studies has been termed sociomathematical norms (McClain and Cobb 2001; Yackel
and Cobb 1996; Cobb et al. 1992). In a recent paper, we outlined and demonstrated
how the emphasis on developing and refining sociomathematical norms pertaining to
the design of mathematical measures of motion can help teachers seamlessly inte-
grate programming with science education in a third-grade classroom and how they
are taken up in students’work (Dickes et al. 2016b). Sociomathematical norms differ
from general social norms that constitute the classroom participation structure in that
they concern the normative aspects of classroom actions and interactions that are
specifically mathematical. These norms regulate classroom discourse and influence
the learning opportunities that arise for both the students and the teacher. As in the
work of Cobb and his colleagues (Yackel et al. 1991; Cobb et al. 1992), we also
found that it was the classroom teacher who initiated and guided the development of
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these norms in order to foster and sustain classroom microcultures characterized by
explanation, justification, and argumentation.

In our study (Dickes et al. 2016b), an important and rather fundamental
sociomathematical norm that began as the central guiding question posed by the
teacher at the beginning of the class was “what counts as a good model.” Similar to
Yackel and Cobb (1996), we found that this norm typically originated as a socially
defined norm and shifted over time to a more sociomathematically defined norm. That
is, students’ initial warrants were decided on the basis on how many of their peers
“liked” a particular model during class discussion and sharing of models rather than
thinking more deeply about how their ViMAP code represented the relevant phenom-
enon they were modeling. However, over time, these warrants became progressively
more grounded in the mathematically warrants of how representative their code were
of the relevant phenomena being modeled. The class jointly took up normative ways
of thinking about and representing motion (walking) through designing and refining
approximate and predictive measures of change over time, using embodied modeling
activities, drawings of their embodied modeling activities that represented “step-
sizes”, and their ViMAP code and graphs (Dickes et al. 2016b).

Overall, we found that students’ use of the ViMAP programming commands
became increasingly sophisticated as they held their models accountable to the
sociomathematical norms (Dickes et al. 2016a). Over a 6-week period, we scored
each student’s final ViMAP model at the end of each class period in terms of whether
they used appropriate computational abstractions identified by Sengupta et al. (2013)
as being relevant to computational thinking such as variables, loops, and initializa-
tion. Students’ code was scored on the appropriate and non-redundant use of vari-
ables and loops in their models and whether their graphs represented appropriate
element(s) of the phenomenon being simulated using their ViMAP code. The growth
in students’ computational fluency is evident in Fig. 4.3. For example, a score of zero
meant none of the variables used were appropriate, whereas a score of 3 meant no
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Fig. 4.3 Improvement in computational thinking supported by sociomathematical norms
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use of redundant or incorrect variables. The accuracy of the graphs in students’ later
models were indicative of the appropriate use of the “repeat” command (i.e., loops)
and order of placement of the “place measure” command. This in turn relied on their
conceptual understanding of when to initialize the measurement (i.e., initialization)
and how often the desired measurement had to be repeated in order to generate the
graph (loops).

4.3.5 Framing Coding as Designing for Authentic Use

In a study conducted in a fourth-grade classroom in a low-income (90% free lunch),
public charter school in Nashville, we investigated how collaboratively designing
computational machines for authentic users could support the integration of coding
in STEM education (Sengupta et al. 2015b). The first phase of the study focused on
introducing students to agent-based programming through creating geometric shapes
(e.g. squares, circles, spirals) using the ViMAP programming language (Sengupta
et al. 2015b). ViMAP uses the NetLogo modeling platform (Wilensky 1999) as its
simulation engine and enables learners to design, program and graph NetLogo
simulations using both programming blocks and text-based programming (see
Fig. 4.6). This phase lasted for eight class periods. For the next 18 class periods,
students worked in dyads on a STEM design challenge (capstone activity), i.e.,
constructing mathematical machines and user guides for generating geometric
shapes using a distributed computing infrastructure.

During the capstone learning activity, learners worked in dyads and constructed a
mathematical machine for generating geometric shapes. Each machine consists of
two components: virtual and physical. The virtual component was a ViMAP pro-
gram that learners constructed using visual programming primitives selected from
the ViMAP programming library. The physical component consisted of two physical
control interfaces, each designed to control the reading on one of the distance
sensors. Each sensor controlled a distinct turtle variable (e.g., color, speed, rotation).
This was an activity that required intersubjective collaboration (Sengupta et al.
2015b), because while each member of the dyad independently designed one of
these physical control structures using Lego bricks, the dyad was responsible for
jointly designing the ViMAP program. Figure 4.4 shows an example of student
work.

We specified that other fourth-grade teachers in Nashville would use these
machines, so that students had a specific image of user(s) in mind. To ensure
authenticity of the users, we also invited three graduate students in education with
prior math teaching experience in elementary grades, but unaffiliated with our study,
to serve as “users.” The user testing took place twice: first in mid-March (user testing
1) and in late April (user testing 2). During both the user testing events, each user
interacted with a dyad’s machine for about 20 min and provided them written and
verbal feedback. After user testing 1, students improved their machines and user
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guides in order to address the issues highlighted in the feedback. User testing 2 was
also the capstone activity.

We compared the work of each dyad at two stages: user testing 1 (UT1) and user
testing 2 (UT2). In terms of children’s mechanistic explanations (Russ et al. 2008),
we found that compared to UT1, attending to what the user needs to know resulted in
improving greatly the quality of students’ mathematical explanations during UT2.
Their explanations, as evident both in their user guides and verbal explanations
during the user testing process, made explicit the mathematical relationships
between algorithmic elements (e.g., number of loops in their ViMAP program)
and variables in their ViMAP programs, and the actions of the turtle in every step
(e.g., right turn), which in turn was directly effected by the users’ actions (e.g.,
sensor reading generated by the user). The greater emphasis on identifying and
representing the relationships between computational abstractions (algorithms and
variables), mathematical relationships, and the mechanics of the physical setup
resulted from the need to create designs that were more communicative (Sengupta
et al. 2015b). A sample comparison is shown in Fig. 4.5a.

The phenomenological lesson here is that when coding is embedded in an
authentic design activity intended for and tested by an authentic audience, paying
attention to the needs and the perspective of the user can deepen the coders’
conceptual understanding of the relationship of computational abstractions with
disciplinarily grounded knowledge and representations.

4.3.6 Support Transition from Visual to Text-Based
Programming

Another important issue for sustaining programming in K-12 STEM classrooms,
especially in the higher grades (middle school or high school), is that although visual

Fig. 4.4 (a) (Left) Jerry’s pulley mechanism for controlling turn of the turtle via 1. (b) (Middle)
Chuck’s machine for controlling the speed of the turtle via sensor 2. (c) (Right) is a screenshot of
their ViMAP program for generating a square, and our annotation makes explicit the multiplicative
reasoning involved in generating angles and sides of the square
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programming lowers the barrier for entry into programming, learners who intend to
pursue careers in computing may find the drag-and-drop nature of visual program-
ming inauthentic or find it difficult to transition to text-based programming (DiSalvo
2014). In a recent study conducted in an eighth-grade classroom, we investigated this
issue (Sengupta et al. 2015b). We used ViMAP, because ViMAP is a dual-mode
programming language that enables users to engage in both blocks and text-based
programming. Visual programming commands in ViMAP are defined as short
NetLogo procedures (see Fig. 4.6), which students can easily access and modify
using text-based NetLogo code. In our study, after engaging in visual programming
with ViMAP for approximately 2 months to build simulations of interdependence in
ant ecosystems, the teacher and the students wanted to make deeper changes in the
underlying text-based NetLogo code. But, given the limited instructional time, the
teacher found it challenging to help students create new simulations in NetLogo

Fig. 4.5b A schematic for mechanistic explanations used by all groups in user testing 2

Fig. 4.5a Jacinda and Tom’s user guides in user testing 1 (left) and user testing 2 (right). We
annotated their user guides using the schematic shown in Fig. 4.5b
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using text-based programming. This required a lot of “overhead,” because the
language syntax was often disconnected from the relevant scientific concepts.

To address this issue, the teacher then decided to return to the ViMAP-Ants unit
(see www.vimapk12.net for the curricular activities) and asked the students to work
in small groups to create new ViMAP commands by modifying and extending the
underlying NetLogo code. For the eighth graders, this work was motivated by a
capstone project of designing and creating a version of ViMAP-Ants in order to
teach fourth graders about food webs, which is a required curricular standard in
fourth grade. The teacher introduced the students to relevant “chunks” (procedures)
in the NetLogo code pertaining to specific ViMAP commands they were already
familiar with. She led class discussions in which the students collaboratively
interpreted and explained the significance of the computational abstractions in
NetLogo code in terms of relevant scientific concepts represented in the ViMAP
commands. Learning the syntax and new forms of abstractions (such as classes) in
text-based programming therefore became deeply intertwined with the relevant
concepts in ecology (e.g., hierarchy of organisms in food webs). While students’
previous work using visual programming introduced them to computational abstrac-
tions such as loops, variables, and conditionals, text-based programming further
deepened their computational thinking because it involved creating computational
objects or classes, declaring new local variables, creating and modifying condi-
tionals, editing and repurposing lists, and using random numbers. Students’ growth
in computational thinking was further evident in a post-assessment activity, in which
they successfully created new commands for a NetLogo simulation of a different
ecosystem without teacher-provided assistance (Sengupta et al. 2015b).

Fig. 4.6 ViMAP-Ant-Foodweb simulation and programming commands developed by eighth
graders. Popped-out images show NetLogo procedures underlying the ViMAP commands created
by the students. Left to right, graphs of population and energy, library of ViMAP commands, a
sample ViMAP program, and the NetLogo simulation controlled by the ViMAP program
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4.4 Discussion: Computational Thinking as Experience
in K-12 STEM

In Quest for Certainty, John Dewey argued against empiricist ontology that sub-
stitutes data for objects (and inquiry). Data, he argued, signifies a phenomenon for
further inquiry; but instead, empiricism often represents data as being self-evident
(Dewey 1929 (1984)). In a similar vein, the persistent fallacy of the predominant
epistemology in educational computing, especially as it pertains to computational
thinking in education, is the normative notion that knowledge is some antecedent
reality (Dewey 1929 (1984)), reified in terms of learners’ use of computational
abstractions used commonly by professional coders. That is, for researchers, the
experience of learners is substituted by canonical assessments of the “computational
abstractions” that the learners used in their computer programs. Certainly, there are
efforts, especially by constructionist scholars, to demonstrate how computing can
take on diverse and personally meaningful forms (Resnick et al. 2000; Farris and
Sengupta 2016), but the hallmark of the experience of coding, as reported in nearly
all research articles on computational thinking (including some of our own previous
work), remains the deft use of computational abstractions by learners who haven’t
had much prior experience with coding. This is the danger of technocentrism (Papert
1987) realized – where the questions about technology are being answered by
referring the questions to the technology itself.

In this chapter, we have argued for paradigmatic shift in the epistemology and
pedagogy of computing and computational thinking, especially for K-12 STEM
education. Our position is that we must shift away from empiricist ontology that
Dewey argued against (Dewey 1929 (1984)), and technocentrism that Papert argued
against (Papert 1987), toward more phenomenological perspectives, in terms of
trying to both understand and support the development of computational thinking
as experience in the context of K-12 STEM education. Epistemologically, we have
argued that computational thinking must be reconceptualized more appropriately as
an intersubjective experience, as opposed to more cognitivist and technocentric
images of learning and reasoning that can be assessed through the production of
symbolic code. Contextualizing computational abstractions in K-12 science class-
rooms is a complex experience that can be better understood as a “phenomenal field”
(Merleau-Ponty 1962), rather than by simply focusing on a cognitivist image of
“thinking”. This experience is rife with uncertainty and involves significant instruc-
tional work. For example, even in short-term studies, Sengupta et al. (2013) and
Basu et al. (2016) acknowledge and highlight the importance of extensive scaffold-
ing provided by facilitators in order to help students in overcoming challenges in
designing and using the necessary computational abstractions for modeling kine-
matics and ecology. However, despite such efforts, a commonly used approach of
assessing computational thinking relies primarily (and in many cases, only) on eval-
uating structural elements of learners’ computer programs (e.g., Grover et al. 2018;
Weintrop et al. 2018; Dasgupta et al. 2016). Pedagogically, we have argued that
addressing this issue necessitates careful considerations of the complexities of K-12
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classrooms, without ignoring teachers’ and students’ experiences in which comput-
ing and coding are situated. In particular, we have proposed the following pedagog-
ical guidelines for sustaining computational thinking in the K-12 classroom:

1. Reframing programming and coding as “modeling,” in particular, as the design of
mathematical units of measurement of change over time, for the K-12 science
classroom;

2. Highlighting transdisciplinary representational and epistemic practices such as
design and modeling to support continuity in learning experiences across
disciplines;

3. Designing complementary activities that use embodied modeling and
non-computational materials as representational and cognitive amplifications of
computational code;

4. Focusing on disciplinarily grounded, normative instructional approaches (e.g.,
sociomathematical norms) during classroom instruction for refining computa-
tional modeling;

5. Reframing coding and modeling as designing for an authentic audience; and
6. Using both visual (block-based) and text-based programming languages for

longer-term curricular integration.

This list is far from exhaustive. However, given the context in which most of our
studies have been carried out – high-poverty, predominantly nonwhite classrooms in
public schools with limited resources – we believe that these guidelines can help us
focus our attention on issues that can make a difference in terms of helping teachers
and students adopt computing and computational thinking as a “language” of STEM,
especially on a long-term basis.
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Chapter 5
Strictly Objects First: A Multipurpose
Course on Computational Thinking

Johannes Krugel and Peter Hubwieser

5.1 Introduction

In 2006, Janet Wings presented her groundbreaking concept of computational
thinking (CT), which seems to be broadly accepted these days. She defined CT as
“. . . the process of abstraction, choosing the right abstractions, operating in terms of
multiple layers of abstraction simultaneously, defining the relationships between
layers.” Two years before, the German state of Bavaria had introduced a new
compulsory subject (from 2 to 6 years, depending on the school type) of computer
science (CS) in its grammar schools (Gymnasium) with a very similar direction
(Hubwieser 2012). The teaching approach for this subject was developed in the years
1995 – 2000. Up to now, more than 700,000 students have attended this course at
least in its shortest version of 2 years. The course is based on the strictly objects-first
approach, introducing the concepts object, attribute, and method just before class
and long before any programming activity. Based on the object-oriented paradigm,
the course covers data structures of common software types (graphic and text pro-
cessors, hypertext, spreadsheets) as well as data bases and object-oriented
programming.

Later, this concept was applied to an introductory CS lecture for engineering
students at the Technical University of Munich, which was conducted over 8 years
with a maximum of 400 participants per year.

In Germany, the implementation of computer science education at school is very
diverse, unregulated, and inconsistent in many states. To compensate the resulting
differences in prerequisite knowledge among the freshmen of our university, we
developed a massive open online course (MOOC) called “LOOP: Learning Object-
Oriented Programming” that introduces computational thinking and object-oriented
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concepts before any programming activity, very similar to our original teaching
concept. The course includes various interactive exercises to enable the learners to
experiment with the presented concepts. Furthermore, we implemented program-
ming exercises with constructive feedback for the learners using a web-based
integrated development environment and additionally an automatic grading system.
The target group of this online course are prospective students of science or
engineering that are due to attend CS lessons in their first terms. The course was
conducted as a prototype with a limited number of participants. In a concluding
survey, the participants submitted textual feedback on the course; some of them
proposed specific improvements for the employed interactive exercises. In addition,
we conducted a cluster analysis to find out how the participants behaved over the
course.

In this paper, we discuss the relationships between the CT concept of Wing, its
operationalization elaborated by others, and our object-oriented view on the basic
concepts of computation. We describe the school subject and the university lecture,
before presenting details of our MOOC, its didactical approach, and first results of a
pilot study.

5.2 Background and Related Work

In the following, we describe the ideas of computational thinking and object
orientation, as well as the objects-first principle. We furthermore describe the
theoretical background of the teaching methods, motivational theory, and some
related MOOCs for introductory CS.

5.2.1 Computational Thinking

Janet Wings’ concept of computational thinking (CT) seems to be broadly accepted
today, also outside the CS community (see, e. g., Mishra et al. (2013)). Recently, a
comprehensive review of the field of computational thinking in K12 was published
in Seehorn et al. (2011).

Yet, for defining or identifying competencies in the field of CT, we need an
operationalization of its definition. The K12 standards of the CSTA from 2011
contain (among four others) a strand called “computational thinking.” The 48 stan-
dards of this strand can be seen as an operationalization of CT. In Table 5.1, we list
several of those standards that might be relevant for our teaching concept.
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5.2.2 Object Orientation

The object-oriented paradigm was defined, e. g., in 1990 by Rosson and Alpert as a
combination of the four aspects: communicating objects, abstraction, shared behav-
ior, and designing with objects (Rosson 1990). In order to define the concept of
object orientation, James Rumbaugh stated in 1991 that object orientation would
have to encompass four aspects: identity of objects, classification, polymorphism,
and inheritance (Rumbaugh and Blaha 1991). In 1992, Henderson-Sellers identified
the following three main conceptual components: encapsulation/information hiding,
abstraction/class/object, and inheritance/polymorphism (Henderson-Sellers 1992).

Armstrong conducted a very interesting review of 239 publications and presented
a list of the 20 aspects of object orientation that were addressed most frequently in
the definitions of object orientation. The five most frequently used were inheritance,
object, class, encapsulation, and method (Armstrong 2006).

Table 5.1 Relevant CSTA standards of the strand computational thinking

No. The students shall be able to Level Grade

4 Recognize that software is created to control computer operations 1 K-3

6 Understand and use the basic steps in algorithmic problem-solving (e. g.,
problem statement and exploration, examination of sample instances,
design, implementation, and testing)

1 3–6

7 Develop a simple understanding of an algorithm (e. g., search, sequence
of events, or sorting) using computer-free exercises

1 3–6

46 Use the basic steps in algorithmic problem-solving to design solutions (e.
g., problem statement and exploration, examination of sample instances,
design, implementing a solution, testing, evaluation)

2 6–9

48 Define an algorithm as a sequence of instructions that can be processed by
a computer

2 6–9

50 Act out searching and sorting algorithms 2 6–9

51 Describe and analyze a sequence of instructions being followed (e. g.,
describe a character’s behavior in a video game as driven by rules and
algorithms)

2 6–9

52 Represent data in a variety of ways including text, sounds, pictures, and
numbers

2 6–9

57 Use abstraction to decompose a problem into subproblems 2 6–9

88 Use predefined functions and parameters, classes, and methods to divide a
complex problem into simpler parts

3.A 9–10

90 Explain how sequence, selection, iteration, and recursion are building
blocks of algorithms

3.A 9–10

94 Describe how various types of data are stored in a computer system 3.A 9–10

141 Compare and contrast simple data structures and their uses (e. g., arrays
and lists)

3.B 10–12

145 Decompose a problem by defining new functions and classes 3.B. 10–12
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5.2.3 Objects-First Principle

Discussing the objects-first paradigm, Lewis stated: “A distinction must quickly be
made between initially writing classes that define objects, and using objects defined
by preexisting classes. It is sometimes suggested that if students do not write multiple
classes and methods initially, they are not being indoctrinated into an object-
oriented approach. Most educators agree, however, that using objects is the appro-
priate first step” (Lewis 2000).

In 2008, Bennedsen and Schulte conducted a very interesting survey about the
understanding and implications of objects first among introductory programming
teachers (Bennedsen and Schulte 2010). They contacted about 700 authors, teachers
and SIGCSE members and received 298 at least partly filled out questionnaires. The
content analysis led to the suggestion of the three categories using objects, creating
classes, and concepts (“involves the teaching of the general principles and ideas of
the object-oriented paradigm, focusing not just on programming but on creating
object-oriented models in general”). The authors deduced three common sequences
of objects-first courses (Bennedsen and Schulte 2010):

1. Using objects, followed by:

(a) Creating classes, followed by concepts
(b) Concepts, followed by creating classes

2. Creating classes, followed by concepts.

In her doctoral thesis, Ira Diethelm defined the strategy strictly models and
objects first that should start with the usage and manipulation of objects before the
class concept is introduced (Diethelm 2007), corresponding to the sequences 1.a and
1.b accordingly (Bennedsen and Schulte 2010).

5.2.4 Teaching Methods

According to Biggs (1999), the highest level of teaching focuses on “what the
student does”:

This implies a view of teaching that is not just about facts, concepts and principles to be
covered and understood, but about:

1. What it means to understand those concepts and principles in the way we want them to be
understood.

2. What kind of TLAs (teaching/learning activities) are required to reach those kinds of
understandings.

In fact it was our main concern during the development of this course to propose
the actual learning activities that students should perform as related to the different
curriculum topics. We did not regard pseudo-activities like “listen,” “understand,” or
“read” as satisfying in this respect. Instead, we tried to suggest observable active
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learning operations, similar to Anderson and Krathwohl (2001) in relation to their
cognitive process concept, e. g., “program,” “implement,” “present,” “explain,” or
“calculate.” In summary, we tried to follow as closely as possible the principles of
constructivism (see, e. g., Ben-Ari 1998).

5.2.5 Motivation

Based on his empirical investigations, J.M. Keller developed the ARCS Model of
Instructional Design as a “method for improving the motivational appeal of instruc-
tional materials” (Keller 1987a, b). The model contains four conceptual categories
that “subsume many of the specific concepts and variables that characterize human
motivation” (Keller 1987b):

• Attention has not only to be directed to the appropriate stimuli but also sustained
during the learning process.

• Relevance provides the answer to the question “Why do I have to study this?”
• Confidence can influence a student’s persistence and accomplishment. Confident

people tend to believe that they can effectively accomplish their goals by means
of their actions, while unconfident people want to impress others and worry about
failing.

• Satisfaction makes people feel good about their accomplishments.

5.2.6 Related MOOCs

There are many online courses for learning the basics of computer science. In the
following, we sketch some introductory MOOCs (massive open online courses) and
SPOCs (small private online courses) that explicitly cover computational thinking or
object-oriented programming (OOP) and that were recently published in the scien-
tific literature.

Liyanagunawardena et al. describe the experiences with a MOOC for the intro-
duction to programming where the learners have the possibility to build an Android
game. They report on a good community experience and that one difficulty for the
learners was to install the development software (Liyanagunawardena et al. 2014).

Piccioni et al. describe a SPOC used to complement an existing course for the
introduction to programming. As gamification element, badges are awarded to
learners (Piccioni et al. 2014).

Falkner et al. developed a MOOC in which the participants learn programming by
producing animations and digital artwork (Falkner et al. 2016).

Alario et al. developed a MOOC with interactive exercises using, among others,
the software Greenfoot (Alario-Hoyos et al. 2016; Kölling 2010).
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Kurhila et al. describe a MOOC for the introduction to CS offered in Finish
schools (Kurhila and Vihavainen 2015; Vihavainen et al. 2012).

5.3 Course Origin and History

Before presenting our MOOC in more detail, we describe the design of the school
subject and the introductory CS lecture for STEM (science, technology, engineering,
and mathematics) students at the university.

5.3.1 Compulsory Subject CS in Bavarian Grammar Schools

In the year 2000, the government of the German state of Bavaria decided to
introduce a new compulsory subject of computer science (CS) in all its 400 Gymna-
siums, which represent the most demanding of its three types of secondary schools
(Hubwieser 2012). This subject was introduced simultaneously with the reduction of
the Bavarian Gymnasium from nine to eight grades that was put into operation in
grade 5 and 6 in 2004.

The new CS subject comprises mandatory courses in grades 6/7 for all students of
Gymnasium, followed by courses that are compulsory for the students of the science
and technology track (the largest of the four education tracks of this school type,
attended by about 50% of an age group) in grade 9 and 10. In grades 11 and 12, there
are elective courses that qualify for an optional graduation exam in informatics.

Regarding the learning content, the CS course is based on a strictly objects-first
approach. The courses start in grade 6 with the introduction of the concepts object,
attribute, method, and class in the context of vector graphics. In a second step, the
concept of aggregation is introduced in the context of word processing. Following
this, the students work with recursive aggregation, applied to file systems. This leads
to the construction of folder trees as a representation of hierarchical structures. In the
next step, the trees are generalized to graphs by the application of references in the
context of hypertext systems. At the end of grade 7, the students work out their first
programs, using a virtual robot, e. g., the Robot Karol. “Programming” is understood
at this point as creating new methods for the class Robot.

In grade 9, the students learn to apply the concept of function. They construct
functional models (data flow diagrams), where the information processing units are
restricted to functions. The models are implemented on spreadsheet systems. The
rest of the school year in grade 9 is dedicated to (object-oriented) data modeling. The
students work with the basic concepts of data base systems – record, table, query –

using a relational data base system. They design entity relationship models of more
complex systems that consist of several tables, connected by relationships, and
implement their models using relational data base systems. The students of grade
10 consolidate their object-oriented knowledge by “real” object-oriented
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programming, designing object, class, and state models and implementing them with
a suitable object-oriented programming language, which currently will be Java in
most of the schools. Additionally, they learn to apply the concepts of sub- and
superclass, inheritance, and polymorphism.

In the elective courses in grade 11, the object-oriented modeling and program-
ming concepts are extended by the recursive data structures: list, tree, and graph.
Afterward, the students are introduced to basic concepts of software engineering,
which they apply within the context of a large programming project. In the second
year of the elective course, the students are introduced in several important subject
areas of computer science in grade 12: formal languages, parallel programming,
assembler programming, and limitations of computability. For more details about
this course, see Hubwieser (2012).

We had derived the following global learning objectives for our project
(Hubwieser 2007). The students should:

• Acquire the capability of independent opinion and responsible acting in the
information society.

• Be able to act responsibly and efficiently in a world of work and profession that is
ubiquitously penetrated by information technology (IT).

• Master efficiently the tools and understand the limitations, chances, and risks of
information technology.

• Learn the responsible, efficient usage of information technology based on knowl-
edge of the theoretical foundations and basic principles of the systems.

• Master complex systems, particularly being able to describe their structure and
behavior and communicate about them in a competent way.

• Be prepared for the application of information technology in other school
subjects.

• Be able to choose their career based on a sufficient knowledge of the possibilities
and principal limitations of future IT developments.

Concerning the level of educational objectives, we have explained also in
Hubwieser (2007) that our CS lessons are very demanding, e. g., the students have
to:

• Analyze problems in order to represent them properly by an object-oriented
model.

• Evaluate alternative models in order to choose one of them.
• Create models and programs out of their models.

This shows that the educational objectives reach the most difficult cognitive
process dimension create according to Anderson and Krathwohl (2001).

Regarding the lowest category of learning objectives, I have demonstrated in
Hubwieser (2007, 2008a) that the instructional objectives of even quite simple
object-oriented programs easily demand 40 or even more instructional objectives
in order to be understood by the students.

The intended knowledge is a very crucial aspect still, even if it gains its impor-
tance mainly as a component of learning objectives or, following Hartig (2001), as
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one of several facets of competence. After all, the relevant subject matter knowledge
determines the substantial and logical structure of the teaching process.

As it is impossible to teach all the knowledge of CS in secondary schools, we had
to select the knowledge elements that seem to be particularly valuable for our target
group, with respect to the intentions we had defined specifically for our project. In
particular, we had to respect the primary objective of extended general education.
For this purpose, we applied the concept of Fundamental Ideas of CS of A. Schwill
(1994).

Regarding the overall logical structure of the course, we decided to follow the
objects-first paradigm, described by Lewis (2000).

During this process of the curriculum development, it turned out that the object-
oriented approach could even serve as a conceptual framework that contained all
other knowledge fields that we had decided to be encompassed in the curriculum (see
Table 5.2).

As far as we have evidence about the success of this conception, it seems quite
successful now, 10 years after the start of the first course.

5.3.2 Introductory CS Lectures for STEM Students
at the University

We also designed and gave introductory lectures in CS for STEM students at the
university. The main goal of these courses was to introduce freshmen of engineering
(major in geodesy) and business administration into the fundamentals of object-
oriented programming (OOP). The course comprised 2 weekly hours of lecturing
and 2 more hours of practice in groups of 20 students. It ran over one semester each
and was taught in German language.

Following a strictly objects-first strategy (Gries 2008), we distributed the learning
objectives over the parts of the course that precede the “serious” programming part
and thereby avoiding to confront the students with too many unknown concepts at

Table 5.2 Object-oriented framework of knowledge areas

Knowledge field Object-oriented concept Examples, tools, and software

Data structures of
standard software

Object and class models of docu-
ments, attributes, methods

Graphics, text, hypertext,
presentations

Algorithm State and activity models, methods Karol, Scratch, etc.

Function Functional models Spreadsheets

Data bases Records as objects, tables as classes Relational data base systems

Computer networks,
Internet

Parallel collaboration of objects,
defined by protocols

E-mail, client-server-systems,
network protocols

Formal languages Syntax of programming languages and
protocols

Java, BNF

Machine level
programming

Object-oriented models of processors
and computer systems

Assembly programming, class
“PROCESSOR”
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the point they have to write their first program. Basically, we suggest the students to
look at an object as a state machine (Hubwieser 2006). In order to realize this in a
student-oriented way, the students need to be able to understand a simulation
program of a typical state machine, e. g., a traffic light system. The curriculum of
the course was structured in the following seven chapters:

1. Modeling. Informatics (main subject areas, typical working methods), functional
modeling (data flow diagrams), modeling techniques in computer science

2. Object-Oriented Modeling. Objects in documents (object, class, attribute,
method, class card, object card); artificial languages (grammars, BNF); states of
objects (state, transition, state diagram, real and program objects); object diagram,
association, class diagram, multiplicity of associations, compound objects (crea-
tion of objects as values of attributes)

3. Algorithms. The concept of algorithm (programming languages), class definition
(definition and declaration, signature of methods, access modifier, attribute dec-
laration, definition of methods); structure of algorithms (graphical representation
of algorithms, structural components of algorithms, nesting of components, input
and output of algorithms); properties of algorithms (terminating, deterministic,
determined)

4. Object-Oriented Programming. Definition of classes (structure of object-oriented
programs, definition and declaration, signature of methods, access modifier,
attribute declaration, definition of methods); assignment statement, ring
exchange, assignment in constructor methods, encapsulation, equality; translation
of computer programs, compiler vs. interpreter, execution of programs, course of
events of a program; communication by methods (input, output, side effects, local
and global variables/attributes); creating objects at runtime, constructor method,
references, removal of objects; implementation of algorithms (structure elements
in programming languages – sequence, conditional statement, repetition); arrays,
index.

5. State Modeling. Finite automatons, triggering and triggered action, state chart;
implementation of automatons (switch statement); conditional transitions (com-
plete state modeling, implementation of conditional transitions).

6. Interaction and Recursion. Implementation of associations (unidirectional, bidi-
rectional, 1:1, 1:n, m:n multiplicities, association class); sequence charts (calling
of methods, sequence charts); recursive algorithms (linear and cascading
recursion)

7. Generalization. Sub- and super-classes, specialization, inheritance; implementa-
tion of specialization, overriding of methods, generalization, class hierarchies;
polymorphism (calling methods of foreign classes, abstract classes)
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5.4 MOOC

Making our approach for learning object-oriented accessible to an even wider
audience, we decided to develop an online course called “LOOP: learning object-
oriented programming” (Krugel and Hubwieser 2017). In the following, we give the
motivation for creating the course, describe the course elements, and present the
details of the course design.

5.4.1 Motivation for Creating the Course

CS education in school is varying strongly in many countries. In consequence, the
prerequisite knowledge of freshmen at universities is very inhomogeneous
(Hubwieser et al. 2015). To investigate this at our university, we performed a survey
in a CS1 lecture in October 2015, applying a specific instrument by Linck et al.
(2013), as proposed, e. g., by Hering et al. (2014). The results of the 874 participants
revealed huge differences in the students’ prior knowledge.

As students cannot be expected to be present at the university before lecturing
starts, MOOCs (massive open online courses) seem to represent potential solutions
to compensate or reduce these differences. Yet, as learning to program is a substan-
tial cognitive challenge (Hubwieser 2008b), such MOOCs run in danger to
overstrain the students, frustrating them already before their studies.

To meet this challenge, we designed our course LOOP that starts with a gentle
introduction to computational thinking (Wing 2006) and object-oriented concepts
before the programming part to avoid excessive cognitive load, following the
concept strictly objects first (Gries 2008).

The target group of the course are prospective students of science or engineering
that are due to attend CS lessons in their first terms. We created our course on the
learning platform edX Edge1.

5.4.2 Videos

All topics of the course are presented in short videos with an average length of 5 min.
The videos were produced based on the suggestions of Guo et al. (2014) and similar
to the suggestions by Alonso-Ramos et al. (2016) published shortly after our
recording.

Each of the 24 videos begins with a short advance organizer to help the learners
focus on the relevant aspects. This is augmented with the talking head of the

1https://edge.edx.org
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respective instructor (using chroma key compositing) facilitating the learners to
establish a personal and emotional connection (Alonso-Ramos et al. 2016).

For the actual content of the videos, we decided to use a combination of slides and
tablet drawing. The background of the video consists of presentation slides and the
instructor uses a tablet to draw and develop additional aspects or to highlight
important part of the slides (“Khan-style”). This turned out to yield quite engaging
videos with a reasonable effort for preparing and recording. All slides are provided
for download and we additionally added audio transcripts for the videos. By such
video, audio, and textual representations, several senses are addressed simulta-
neously, making the content accessible to learners with different learning prefer-
ences or impairments.

5.4.3 Quizzes

After each video, the course contains quizzes as formative assessment. The main
purpose is to provide the learners with direct and instant feedback on the learning
progress. The quizzes use the standard assessment types offered by the MOOC
platform, e. g., single- / multiple-choice questions, drop-down lists, drag-and-drop
problems, or text input problems. Depending on the answer, the learner gets a
positive feedback or, otherwise, for example, hints which previous parts of the
course to repeat in more detail.

5.4.4 Interactive Exercises

The videos introduce new concepts to the learners, and the quizzes test the progress,
which is, however, in general not sufficient to acquire practical competencies
(Alario-Hoyos et al. 2016). Following a rather constructivist approach, we intend
to let the learners experiment and interact with the concepts directly. Considering
that, we include interactive exercises or programming task for all learning steps
throughout the course. Special care was devoted to the selection and development of
those interactive exercises to enable the learners to experiment and interact directly
with the presented concepts. It can be a major obstacle for potential participants
having to install special software (Liyanagunawardena et al. 2014; Piccioni et al.
2014), which is especially problematic in an online setting without a teacher who
could help in person. We therefore decided to use only purely web-based tools.
There are already many web-based tools for fostering computational thinking and
learning OOP concepts available on the web. We selected the most suitable tools to
support the intended learning goals. Where necessary, we adapted or extended them
to meet our needs. All tools are integrated seamlessly into the learning platform
resulting in a smooth user experience.
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5.4.5 Programming Exercises

While in several introductory CS MOOCs the learners have to install an integrated
development environment (IDE) for writing their first computer programs, we
decided to rely on web-based tool also for this purpose (like Piccioni et al. 2014).
We chose to use Codeboard 2 (Estler and Nordio) (among several alternatives,
Derval et al. 2015; Skoric et al. 2016; Staubitz et al. 2016) because of the usability
and seamless integration into the edX platform using the Learning Tools Interoper-
ability (LTI) standard.

The programming assignments are graded automatically, and the main purpose is
to provide helpful feedback to the learner. We therefore implemented tests for each
assignment that make heavy use of the Java reflection functionality. While standard
unit tests would fail with a compile error if, e. g., an attribute is missing or spelled
differently. Reflection makes it possible to determine for a learner’s submission if, e.
g., all attributes and methods are defined with the correct names, types, and param-
eters. Writing the tests requires more effort than for standard unit tests but can give
more detailed feedback for the learners in case of mistakes.

Additionally we integrated the automatic grading and feedback system JACK
(Striewe and Goedicke 2013) using the external grader interface of the edX platform.
Apart from static and dynamic tests, JACK also offers the generation and comparison
of traces and visualization of object structures; however, we do not use this extended
functionality yet.

5.4.6 Course Design

Computational thinking (CT) as introduced by Wing (2006) is a universal personal
ability that can be used in many disciplines. Since the target group of our course
comes from various different fields of study, we incorporated CT as integral part of
the course. CT is on the one hand intended to facilitate learning programming and on
the other hand a sustainable competency that can be used also outside of our course.

As pointed out in Hubwieser (2008b), there is a fundamental didactical dilemma
in teaching OOP: on the one hand, modern teaching approaches postulate to teach in
a “real-life” context (Cooper and Cunningham 2010), i. e., to pose authentic
problems to the students. Therefore, it seems advisable to start with interesting,
sufficiently complex tasks that convince the students that the concepts they have to
learn are helpful in their professional life. However, if we start with such problems,
we might ask too much from the students, because they will have to learn an
enormous amount of new, partly very difficult concepts at once (Hubwieser 2008b).

Following a strictly objects-first approach (Gries 2008) and similar to the design
of the school subject and the introductory lecture, we solved this problem by

2https://codeboard.io
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distributing the learning objectives over the parts of the course that precede the
“serious” programming part. This avoids to confront the learners with too many
unknown concepts when they have to write their first program. Among others, we
suggest to the students to look at an object as a state machine (Hubwieser 2008b). In
order to realize this in a learner-oriented way, the students need to be able to
understand a simulation program of a typical state machine, e. g., a traffic light
system.

Concerning the choice of the examples, we set the emphasis on the relevance for
the everyday life, which leads, for instance, to banking or domestic appliances.

LOOP consists of the following five chapters, which are described in more detail
below:

1. Object-oriented modeling

1.1 Objects
1.2 Classes
1.3 Methods and parameters
1.4 Associations
1.5 States of objects

2. Algorithms

2.1 Concept of algorithm
2.2 Structure of algorithms

3. Classes in programming languages

3.1 Class definition
3.2 Methods
3.3 Creation of objects

4. Object-oriented programming

4.1 Implementing algorithms
4.2 Arrays

5. Associations and references

5.1 Aggregation and references
5.2 Managing references
5.3 Communication of objects
5.4 Sequence charts

5.4.6.1 Chapter 1: Object-Oriented Modeling

Following the concept strictly objects first, Chapter 1 is based on object-oriented
modeling of standards software documents like graphics, texts, or hypertexts as
already proposed in Hubwieser (2000). This idea was inspired by the prior work of
U. Freiberger about the object-oriented modeling of word processors (Freiberger
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1988–1990). As described in Hubwieser (2003), the course starts with the applica-
tion of the concepts object and attribute in the context of vector graphics, worked out
by the students using web-based vector graphic drawing tool SVG-edit .3 The
learners have the task to draw a simple graphic using rectangles, circles, and lines
(which implicitly also already prepares for the idea of classes). The learners are then
asked to publish their drawing in the discussion forum of the course and to introduce
themselves to the community.

To let the learners experience that objects have a state, that the state can change,
and that this is usually achieved by method calls, we developed a new interactive
exercise. The learners can draw a picture on a canvas in the web browser by using
simple commands in a restricted pseudo programming language, which only allows
the creation of graphical objects (e. g., circles and rectangles) and method calls on
those objects (e. g. move(), setWidth(), setFillColor(), . . .). By this way, the students
rediscover the same objects, classes, attributes, and methods that they have learned at
the beginning of the course in the context of vector graphics. To implement this
exercise, we combined the tool trinket4 (providing an online code editor connected to
a canvas) and the JavaScript library SVG.JS5 (providing an interface for drawing
objects) (see Fig. 5.1). We adapted and extended this such that the learners can
inspect the drawn objects by showing the Unified Modeling Language (UML) object
diagram when hovering over an object. As an assignment in the course, we prompted

Fig. 5.1 Interactive exercise: construction of a graphic with simple commands (using trinket.io)

3https://github.com/SVG-Edit
4https://trinket.io
5http://svgjs.com
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the learners to draw an animal or a cartoon figure and to share it in the discussion
forum.

As the execution of an algorithm in an object-oriented program is realized by a
sequence of object states (represented by the values of the attributes), the concept
state is essential to understand this. We start by defining the state of an object by the
combination of the states of all its attributes, each of them represented by the actual
value of the attribute. This means that an object changes its state if one of its
attributes changes its value. The transition between two states is triggered by a
method that changes the values of an attribute. In order to describe the states of an
object, we introduce state charts.

We then turn our attention toward the states of real-world objects and model them
in further state charts, for example, the state chart of (German) traffic lights. The
traffic light system uses three indicators (red, yellow, and green light, each with the
states “on” and “off”) to display four different system states, which the road users
interpret usually as “stop” (red), “prepare for stopping if not very close” (yellow),
“go” (green), and “prepare for forthcoming go” (red-yellow). We discover that the
real technical system “traffic light” uses only four of its eight technically possible
states (defined by all possible combinations of the two states of each of the three
lamps). For example, the state “on-off-on” (in colors: red-green) is technically
possible, but not used. In an interactive assignment, the students are asked to
complete a start chart for a hair dryer (see Fig. 5.2).

As a consequence of the abovementioned considerations, from now on every
object is perceived as a state machine.

5.4.6.2 Chapter 2: Algorithms

To understand the concept of algorithms, Chapter 2 begins with a definition and
some examples and counterexamples of algorithms. Enabling the learners to interact
with and to visualize simple algorithms, we integrated the geometric web framework
CindyJS6 written in JavaScript (von Gagern et al. 2016). As example, we use the
Euclidian algorithm for calculating the greatest common divisor of two numbers.
The learner can modify the input by moving a point in the plane and observe at the
same time the steps of the algorithm.

Syntax can be a major obstacle when learning to program (Kölling 2010). We
therefore tried to reduce the cognitive load and make the first steps easier by
providing a gentle introduction. To facilitate the understanding for the structure of
algorithms, we included a gamification element using block-based programming
(see Fig. 5.3). We integrated a series of maze riddles from Blockly-Games,7 which
can be solved by combining move operations with structural elements like loops and
conditional statements.

6http://cindyjs.org
7https://blockly-games.appspot.com
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Fig. 5.2 Interactive exercise: completing a state chart for a hair dryer (using drag-and-drop)

Fig. 5.3 Interactive exercise: programming with blocks (using Blocky Games)
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5.4.6.3 Chapter 3: Classes in Programming Languages

After this introductory step, we transfer the concept of a class (including the
concepts of attributes and methods) into a programming language (here: Java) by
comparing a class card with the definition of the same class in the programming
language. Before the learners start to implement their first class in from scratch, we
let them experience the connection between the class card and the corresponding
Java implementation using the web-based tool UmpleOnline8 (Lethbridge 2014).
This tool enables the learner to modify a class diagram and simultaneously observe
the changes in the Java implementation and the other way around (see Fig. 5.4).

On this occasion, we also introduce some new concepts like data types and
constructors. We, however, try to reduce the cognitive load and hide “advanced”
aspects (like access modifiers) to let the learners focus on the essential parts of the
class definitions.

One of the big challenges of informatics education is the proper introduction of
the assignment command (e. g., “assign the value 5 to the variable number”),
particularly its distinction from the equality statement (e. g., “the value of number
is equal to 5”). In the syntax world of C and its successors (e. g., Java), this is made
even more difficult by the unlucky choice of the “¼” sign for the assignment
operator, which is well known by the students from the subject of mathematics,
symbolizing equality there. The semantics of the assignment command will be
explored by closely looking at the values of the attributes during sequences of
assignments. Proper understanding might be tested by the task of exchanging the
values of two attributes. This leads directly to the state concept of attributes
(respectively, of variables) which is essential to understand an assignment like
“counter ¼ counter + 1” where the attribute (variable) counter appears in two
different states, represented by its values before and after the execution of the
assignment.

Fig. 5.4 Interactive exercise: connection between class card and program code (UmpleOnline)

8http://try.umple.org
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5.4.6.4 Chapter 4: Object-Oriented Programming

Now that the structural elements of algorithms (elementary, sequential, conditional,
and repetitive processing structures), the concept of states of objects, and also the
syntax of class definitions are known, it is not a big step for the learners to start
implementing their first algorithms.

For visualizing the execution of a program, we chose to use the tool Java-Tutor9

(based on the very similar Python-Tutor) (Guo 2013). The learners can run a
program step-by-step with the possibility to navigate forward and backward while
observing the control flow (see Fig. 5.5). It also includes a graphical representation
of the memory contents, preparing the learner to understand related concepts such as
references.

Chapter 5 also introduces the concept of arrays, as a rather simple but very
instructive element, especially in combination with repetitions.

5.4.6.5 Chapter 5: Associations and References

One of the most challenging tasks in teaching informatics is the introduction of
pointers or references, which is essential for the understanding of certain effects that
arise, for example, if two references point toward the same object. Fortunately, our
students already know the aggregation as a special type of association (marked with
“contains”), for example: an object of the class Folder may contain an object of the

Fig. 5.5 Interactive exercise: visualizing the program execution (using Java-Tutor)

9http://www.pythontutor.com/java.html
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class File. This leads us exactly to the right concept: if an object obj1 of Class1
contains an object obj2 of Class2, the latter will be implemented as an attribute of the
type Class2 in Class1, whose value is actually a reference toward the external object
obj2. It is crucial for the proper perception that the students keep in mind that the
aggregation association is always connecting objects, although it is drawn in the
class diagram.

Chapter 6 additionally introduces sequence diagrams as a way to visualize the
behavior of a system with several objects and the communication between the
objects.

5.5 Pilot Conduction

We prepared the online course on the platform edX Edge and conducted it during the
summer holidays 2016 with a limited number of participants as prototype for a
MOOC. The course was announced internally at our university as preparation course
for CS basics. Participation was voluntary and did not count toward a grade, but we
issued informal certificates for successful participation (¼ obtaining at least 50% of
the possible points in at least 12 of 16 course units).

In an introductory online questionnaire, we asked the participants about their
gender, major, and previous programming experience. Additionally we asked about
the intentions to complete the course, providing four options (see Table 5.3).

The course took 5 weeks (1 week for each chapter) and the targeted workload of
the learners was 10 h per week. The communication among the learners and with the
instructors took place entirely in the discussion forum. The main task of the
instructor during the conduction of the course was to monitor the forum and to
react accordingly, e. g., answer questions or fix problems with the grading system.

In a concluding questionnaire distributed after the course, we asked for positive
and negative textual feedback regarding the course.

Table 5.3 Participant’s intentions to complete the course

Option Answers

I just want to have a look at the course 14

I want to study some topics that are relevant for me 18

I want to study most topics of the course 12

I want to complete the whole course 29

(No answer) 4

Total 77
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5.5.1 First Results

The course attracted 187 registrations. For the introductory questionnaire, we
received 77 responses (female, 21; male, 52; no answer, 4) with a very diverse
study background (33 different majors, including biology, business studies, engi-
neering, and mathematics). Regarding programming, 10 participants had no experi-
ence, 35 had basic knowledge, and 27 participants had alreadywritten a “bigger”
program of at least 100 lines of code (no answer: 5 participants).

The discussion forum contained in total 178 posts at the end of the course.
However, there was not a lot of discussion and communication among the partici-
pants themselves, and most posts were answers to the exercises as required by the
assignments (see Sect. 3.4), presumably because we did not actively focus on
initiating lively discussions in this prototypical conduction of the course.

From the 77 responses of the introductory questionnaire, 41 stated that they want
to complete most topics or the whole course (see Table 5.3). In general, MOOCs
have a rather high dropout (Delgado Kloos et al. 2014; Garcia et al. 2014; Piccioni
et al. 2014). At the end of the course, we were happy that 40 participants gained the
course certificate (however, not necessarily the same learners as the 41 from the
questionnaire).

In the concluding survey distributed after the course, we received 11 answers.
The participants proposed specific improvements for the employed interactive exer-
cises, among others to use a more user-friendly web-based drawing tool (or to
additionally allow the use of offline software) and to include more difficult exercises.
Yet, the overall feedback was encouragingly positive. The learners stated to like the
videos, the explanations, the interactive exercises, and the overall alignment of the
course elements.

The scores of the assignments reflect a picture similar to the responses of the
participants. The average scores are quite low, which is caused mainly by the high
frequency of score 0, in other words by the participants that did not really try to solve
the tasks (see Table 5.4). The average scores decline monotonously over all course
sections, except the tasks in Sects. 1.5 and 5.1, where the average scores increase
relative to the preceding tasks.

5.5.2 Cluster Analysis

To investigate the learning progress of the participants even further, we conducted a
hierarchical cluster analysis of their scores. We calculated the average of the
achieved relative scores over each of the 16 course sections for each of the 187 par-
ticipants. For example, if a person scored 3 points in a section with a maximum score
of 12 points over all assignments, we entered the value 0.25. This resulted in a
187� 16 matrix of real values (from 0.00 to 1.00) with one line per participant and
one column per section. For the clustering, we regarded the columns of this matrix as
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dimensions. Thus, the set of 16 average scores of each participant could be regarded
as the definition of a certain position in a 16-dimensional space. By this way, the
pairwise distance between the positions of all participants could be calculated in a
specific distance matrix with 187 columns and 187 rows, applying 2 different
distance metrics (Maximum and Euclidian). Finally, a hierarchical clustering was
performed on this distance matrix, starting with one cluster per person and combin-
ing successively more and more persons to larger clusters according to their relative
distance, applying several different clustering strategies (ward.D, Complete, Aver-
age, and McQuitty; for details, see Everitt et al. 2001). The calculation was
performed in the statistical programming language R by applying the function hclust.

As hierarchical clustering is a local heuristic strategy, the results have to be
inspected according to their plausibility. For this purpose, we looked for plausible
dendrograms that represented a proper hierarchy. We found that the Euclidean
distance metrics produced the best results in combination with the ward.D algorithm.
Figure 5.6 shows the result. To find a suitable number of clusters, we inspected these
dendrograms from the top down to a level where we found as many clusters as
possible, but avoiding too small clusters with less than five members. We found that
the best height to cut would be at five branches (see Table 5.5).

Finally, we calculated the average performance over all course sections for each
of these clusters. The results are displayed in Fig. 5.7.

Obviously, the clustering reflects the dropout behavior of the participants. It
reveals that the 90 students of cluster 2 did not have any success in the whole
course, presumably just playing around with the MOOC. The 29 students of cluster
1 achieved some relevant score points in Sect. 1.1 (Objects) and Sect. 1.5 (States of
objects). The 22 participants of cluster 3 started quite well, but dropped out during
the second part of Chapter 1 and Chapter 2. Interestingly, they also show a relative
good performance in Sect. 1.5, similar to cluster 1. This seems to be a last but in the
end unsuccessful trial to catch up again. The 20 students of cluster 4 decline from

Table 5.4 Results of assignments per course section

Section Average over all participants Frequency of average score 0

1.1 0.35 55.9%

1.2 0.34 63.8%

1.3 0.32 66.5%

1.4 0.26 69.1%

1.5 0.37 62.8%

2.1 0.25 72.9%

2.2 0.24 71.8%

3.1 0.24 74.5%

3.2 0.21 76.6%

3.3 0.19 79.8%

4.1 0.14 81.4%

4.2 0.12 84.6%

5.1 0.14 83.5%
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Sects. 4.1 to 5.2, failing in the last two exercises. Finally, the 23 students of cluster 5
made it successfully to the end, although having some troubles with Sect. 4.3
(Arrays), Sect. 5.2 (Managing references), and Sect. 5.4 (Sequence charts), but
catching up again in Sect. 5.1 (Aggregation and references) and Sect. 5.3 (Commu-
nication of objects).

5.6 Discussion

A very similar teaching concept is applied in three introductory CS courses: a school
subject, a lecture at the university, and a MOOC. The circumstances of the courses
are very different, concerning, e.g., the audience (school pupils vs. STEM students),
the setting (classroom vs. online) and the course duration (several years vs. 6 weeks).
Our underlying ideas for the design of all three courses are, however, very similar:
the learning objectives are distributed across the course to reduce the cognitive load
of the learners. This is achieved by teaching concepts from computational thinking
before the actual programming tasks.

Based on the results of the pilot conduction of the MOOC, we are going to
improve and optimize our course. In particular, we will look carefully to the results
of the cluster analysis and optimize especially the sections that represent local
minima in Fig. 5.7 (e. g., Sects. 1.4, 2.2, 4.3, 5.2, and 5.4) because the assignments
in these sections might represent potential hurdles for the learners.

Fig. 5.6 Exemplary dendrogram, clustering by Euclidean distance with the ward.D algorithm

Table 5.5 Results of
clustering over the
performance in the course
sections

Cluster Students

1 29

2 90

3 25

4 20

5 23
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While we focused so far mostly on the design and creation of the material and
exercises, we are going to shift the focus more toward the communicational aspects
and incorporate more collaborative elements and peer-grading features into the
course. We are going to offer the course to the public as a MOOC and aim to
evaluate the learning processes by mining all data produced by the participants. We
furthermore plan to measure the effect of the MOOC on the knowledge of the
freshmen when entering university.

In the long term, we aim to use LOOP as a general tool to analyze learning
processes in object-oriented programming. The online setting allows to perform
experiments and analysis on a scale much larger than in a regular classroom course
and, furthermore, poses new research questions (Settle et al. 2014).

Acknowledgments We thank Alexandra Funke and Marc Berges for developing parts of the
course and Elias Hoffmann, Elisabeth Eichholz, and Simon Zettler for testing and evaluating a
preliminary version of the course.

Fig. 5.7 Average performance of the student clusters in the course sections
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Chapter 6
Introducing Computational Thinking
Through Spreadsheets

John Sanford

6.1 Background

To a large extent culture defines who we are. The human species is gregarious.
Humans like to interact with other humans. These interactions follow acceptable
protocol. Cultural change is generally a slow process baring cataclysmic occur-
rences. Computational thinking requires a cultural change. It involves a change in
the way humans think of using words and numbers and relationships. Advances in
computational education require the educators themselves to think that way, and this
alone presents a considerable difficulty.

As prehistoric cultures progressed, they developed methods for recording infor-
mation and keeping a record of significant occurrences and features of their lives.
The earliest such records constituted an oral history. Eventually skills of reading,
writing, and arithmetic were acquired by a select few in each community. These
skills certainly did not include digital computational thinking because the technol-
ogy did not exist. The digital computer with all its implications as a problem-solving
partner is an extremely recent newcomer to the human cultural scene.

Ancient societies produced some astoundingly intricate and accurate mechanisms
as evidenced by the Antikythera mechanism discovered in 1901 of the island of
Antikythera. This mechanism, thought to have been constructed in 150 BCE, cal-
culated positions of the sun and moon and provided other celestial data. The abacus,
the Roman hodometer, water clocks, and similar counting devices certainly
exhibited a computational nature. Nonetheless, people at that time would never
have considered such instruments as presenting a new way of thinking. They were
tools intended to assist humans who were employing existing methods of thinking.
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Digital computer developments of the twentieth century CE created profound
differences. Some researchers and practitioners began to use digital computers
interactively. The computer became a partner in many areas of research and analysis.
This partnership really represented a new paradigm. This was a new way of thinking.
People used digital machines to solve problems whose solutions were not available
by other means then or now. Pursuit of this human-machine partnership added a new
feature to the long established skills of reading, writing, and arithmetic. A somewhat
popular though not exclusive term for this added skill is “computational thinking.”
Participants in the digital computational field are still struggling to clearly define the
concept of computational thinking. Whatever it is, it should become as much a
natural activity as writing a note or calculating change for transactions in a depart-
ment store.

How should the pedagogical community approach the new paradigm? Forecast-
ing the future is a popular pastime but one attended by questionable accuracy.
Reviewing the milieu of existing science fiction may be as useful as any other
forecasting method. Current developments in the field of artificial intelligence
suggest that human-computer cooperation may become extensive. Such a conclusion
is not really helpful. It rather clouds the issue of appropriate education choices.

The feeling of urgency may exist, but progress is slow. Many states, cities, and
even nations are moving ahead with computer science curriculum. For just a few
examples:

• In 2017 the state of Mississippi, USA, will roll out a pilot computer science
program in 34 school districts (Wright (2016)).

• San Francisco established a pilot CS program for middle grades in the 2015–2016
school year (Twarek (2016)).

• In 2012 the small nation of Estonia introduced programming for its first graders
(Olson (2012)).

The Internet reports quite a few pilot programs intended for instruction of young
people in computer coding. Scratch is an online programming language developed at
Massachusetts Institute of Technology’s (MIT) Media Lab and is designed to be
easy if not intuitive for young children. Children who wish to participate can join a
Scratch community to design games and create stories. See https://scratch.mit.edu/.

Harvard University offers a Scratch Ed community for educators to join an online
community and develop projects for children (http://scratched.gse.harvard.edu/).

Minecraft is a popular game programming site for children. Like Scratch, it has its
own programming techniques and coding language of sorts (https://minecraft.net/).

As noted, these programs are pilot programs and participants self-select, which
means they are not necessarily representative of the general population. Such pro-
grams are ad hoc attempts to add coding as a separate component to the participants’
education. They are not a part of any standard curricular.
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6.2 What Is Education?

We are entitled to ask, “What is the purpose of education?” Is education intended as
an apprenticeship directed toward useful employment of the adult? Is education
intended as a means of propagating the advantages of an existing culture? Is
education intended to provide the student with knowledge and skills that will
allow the individual to lead a happy and fulfilling life?

The last option is the one that classically applied to those attaining an education at
the college level. Frequently the historical goal of college education in the western
world was preparation of the youth for service in church and state. In 1860 the
United States of America created “land-grant” colleges. The focus of these institu-
tions shifted toward an agricultural and mechanical education. Land-grant colleges
were intended to provide an education for all social classes. So perhaps the answer to
the question is yes to all three options mentioned in the paragraph above.

Should there be a fundamental educational core for everyone with divergence as
the child matures? Some countries have national tests to select students who will go
on to higher academic levels and hence to more prestigious and higher-paying
occupations. This approach tends to be less widespread today but is still practiced
in some societies. Often family wealth is an important consideration.

Today we recognize that the education system should offer all students the same
educational opportunities starting with the first grade or even preschool. Diversifi-
cation may be applicable at higher levels. At least one educational goal should be “to
provide the student with knowledge and skills that will allow the individual to lead a
happy and fulfilling life.”

With these considerations in mind, we must not allow considerations of compu-
tational thinking to diminish emphasis on the skills and knowledge that have been
demonstrated in the past as valuable for a fulfilling life in an advanced society.
Individuals must develop their own mental capacity for reading, writing, arithmetic,
logic, and music. In fact there is evidence that logic and music are important
progenitors for problem-solving ability. Students need to read and discuss their
readings. Students need to have mastered fundamental arithmetic skills required
for normal daily life just as they did before the digital age. We must not allow
computational learning to become a siren song to lure the child away from mental
agility. And yet we need to introduce computational thinking early in the education
process so that it becomes a familiar capability on a par with reading, writing,
arithmetic, and other skills.

Children should not become addicted to an electronic calculator or computer. It is
easy to use Google for solution of simple mathematical problems that should be done
on paper or in the student’s head. Today cell phones possess personal assistants, Siri,
Alexa, and Google. More personal assistant apps are available at app stores. Soon
these artificial intelligence apps will become all too obliging. The digital assistance is
not limited to mathematics. Google and other applications will turn text into audio
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and spoken word into text. Translation into foreign languages is readily available. In
the near future artificial intelligent applications will provide analysis of paragraphs
and even entire books. The future is a little frightening. Students who develop a
dependency on these applications too early in life will certainly underdevelop their
mental capacity.

So there is the problem. This treatise will recommend early introduction of digital
solutions, particularly utilizing spreadsheet technology because it is easy to use and
readily available. But that introduction should at an appropriate time.

6.3 The Approach to a Solution

There are some well-known guidelines for problem-solving though, as already
noted, there are situations in which other approaches are necessary. Generally
established approaches are facilitated rather than being replaced by computational
thinking methods. The following methodologies are valuable:

• Stating the problem and inherent assumptions
• Systems analysis
• Defining constants and variables (state vector)
• Defining a mathematical model
• Selecting a digital computational mechanism where appropriate
• Utilizing graphical presentations where appropriate

Stating assumptions and listing parameters are a good practice to provide clarity
of the task at hand. It is particularly essential in providing repeatability. Other
researchers cannot follow or replicate your work if you have not provided all the
initial conditions.

Systems analysis involves separation of a problem into separate parts that can be
studied individually.

Defining a mathematical model may not apply in every case. Perhaps it should be
called a computational model. This model is the framework that defines methodol-
ogy which will be pursued enroot to the eventual solution.

If we are to use digital computational methods, we must select some application
software or some computer coding language. There is indeed a wide assortment from
which to choose. Software for use in computers includes more application languages
than we have space to list, specialized application software, and even specialized
digital machines. A very short partial list of specialized application software would
include spreadsheets, Mathcad, Maple, project evaluation and control software,
linear programming and goal programming, etc. Discussion on the particular value
of spreadsheets will be presented shortly.
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6.4 What Is Computer Science?

Computer scientists have championed the introduction of computer coding for all
elementary and intermediate students. As previously noted, some school districts are
introducing computer coding in early grades, sometimes very early grades. In fact,
computer scientists have been championing this approach for some time although as
suggested by Denning, computational thinking did not originate with computer
scientists but rather with the various scientific fields, Denning (2017).

Computer coding teaches a valuable approach to logical thinking. Students
writing computer code in whatever language must clearly specify variables and
constants that will be part of the problem. They learn to deal with sequential logic
and predicate logic, (if. . . then... else). The risk is that the student will spend more
emphasis on language structure and less on problem structure. One popular approach
for teaching coding to young people involves having them create games. Computer
games are popular, so they will capture the child’s interest and at the same time will
provide valuable coding experience. But computer code does not directly display
itself in the algebraic form typically employed in introductory texts on arithmetic or
mathematics. Solutions using computer code may appear more as an adjunct than as
natural partner to classical educational methods. Some students develop a natural
proclivity for coding just as some naturally have exceptional ability with music and
musical instruments. But other students find quite the opposite and for them learning
computer code proves to be a difficult task.

Harvard University offers a popular course for computer science majors and
nonmajors (CS50X (2017)). The website for the course suggests that it provides:

• “A broad and robust understanding of computer science and programming.
• How to think algorithmically and solve programming problems efficiently.
• Concepts like abstraction, algorithms, data structures, encapsulation, resource

management, security, software engineering, and web development.
• Familiarity in a number of languages, including C, Python, SQL, and JavaScript

plus CSS and HTML.”

This must be good description of computer science or at least an introduction to
it. Computer science as described here is very much involved with computer
language and structures. But in order to deal with the problem-solving environment
of business or profession, one should also have familiarity and experience with
systems analysis, stating inherent assumptions, etc., as was discussed previously.
The goal is to think of the digital process as part of the solution methodology and not
as an add-on feature. Coding and programming are different from the usual methods
encountered in precollege education, and they may well appear to be existing in a
separate silo.
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6.5 What Is Computational Thinking?

What is computational thinking? This is a good question to ask. It is not easy to
answer. Much has already been written on the subject. One of the early and
significant discussions was given in 2006 by Jeannette M. Wing of Carnegie Mellon
School of Computer Science (Wing (2006)). See also Sanford (2013). As is often the
case when attempting to delineate first occurrences, even earlier discussions of the
topic are to be found, and no attempt to present an accurate history will be made here.

In his recent article on Computational Thinking in Science, Peter Denning
commented that, “Scientists who used computers found themselves routinely
designing new ways to advance science. They became computational designers as
well as experimenters and theoreticians” (Denning (2017)). He describes the process
as one of the solutions comprised of computational steps. But as he points out, these
steps may or may not be reducible to analytic algorithms.

Sometimes problem-solvers may obtain solutions through digital computation
and yet have no idea how the solutions were actually obtained. Such solutions might
involve neural networks, genetic algorithms, crowd sourcing, or other methods
known or yet to be discovered. If there is a distinguishing factor to computational
thinking, it must be that it is a partnership of human mind and digital machinery. One
goal for education, even early childhood education, should be to prepare future
researchers to use this partnership. Students should think of digital assistance as just
part of a natural process as common as using a pencil or a reference book. And this is
computational thinking. Too bad that there is no single word, such as informatics,
that would present a good description. In fact, informatics already has a well-known
connotation that does not meet the requirement.

The student or researcher needs to think of the problem solution as information in
the Claude Shannon sense (Shannon (1949)). In that sense one will operate on the
known data to develop a solution. In some cases it is just natural that the path to this
solution will involve digital computation. We want to be mindful that the path does
not destroy information. The paths to problem solutions should, as much as possible,
preserve methods, allow for expansion, clearly delineate assumptions, and preserve
repeatability. Students should be introduced to this methodology early in their
educational career and in such a way that it augments and does not inhibit essential
mental development associated with reading, writing, mathematics, music, science,
and logic.

6.6 What Is Important?

So, the pedagogical concern with computational thinking really refers to electronic
digital computational thinking and to a partnership of human mind and digital
machinery. This partnership should become second nature. The student and/or the
researcher should think of using digital machinery as readily as one might think of
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using a pencil and paper. But, most of us think of digital computation as an add-on
not as an integral part of problem-solving. Most young people today grow up using
cell phones, social media, and even electronic calculators but do not readily turn to
digital machinery for assistance in adjusting recipes for an afternoon picnic or
budgeting vacation expenses. If computing machinery is used as an assistant in
such activities, the solutions become dynamic. Information is readily available
concerning the effect of varying different parameters. Most importantly, if digital
assistance is used in small things, then it will naturally become an integral part of
large things.

The best way for a classroom instructor to present digital computation as a
partnership of human mind with digital machines would be to go through the
textbook and provide teaching examples to accompany any topic and every topic
where such examples could be applicable. Students should work at least one
example. This presents digital solutions as strongly associated with the textbook
material rather than some add-on feature.

It is not appropriate to present here material from a particular copyrighted
textbook in order to develop computer examples that would couple with
it. However, verbal descriptions often do not convey a concept as completely as a
picture. So beginning with the next section, we present randomly selected examples
of computer solutions that might fit with typical educational topics in elementary and
intermediate classes. Keep in mind that these examples are only part of the picture.
The other part is the textbook or lecture material that is supported by the computer
examples. Tied together they constitute instruction in computational thinking.

Many people think that they are using computational thinking if they use an
existing program to find answers that apply only to a fixed set of data. The fullest
meaning of computational thinking applies to a way of thinking that prepares a
mathematical model which is appropriate for digital machinery. The result is
dynamic. It may be used to evaluate variations in result that would be expected
from variations in input data. The examples presented in this chapter emphasize this.

There is a large collection of software available from which to choose for the
examples just discussed. This includes search software, plotting software, and
calculating software. Some applications will allow users to write equations “free
form” much as they would with pencil and paper. This chapter suggests the use of
spreadsheets. It presents support for this choice. However the field of software
development is progressing rapidly, and other excellent choices may be available
by the time you read these words.

6.7 Why Spreadsheets?

It is easy to say that spreadsheet software can be used in ways that resemble a pencil
and paper approach with the added advantages that words are typewritten and
mathematical calculations are done for you instead of separately on a calculator. It
is easy to say that the computer solution on a spreadsheet can be developed and
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displayed in a way parallel to the familiar solution printed in a textbook and as such
will be easy for students to visualize. But, “Seeing is believing!” The following
pages present a succession of examples intended to demonstrate the applicability of
this medium throughout the precollege educational experience. Discussion of more
advanced applications can be found elsewhere.

These examples are in no way unique. They do not present any particularly
original concepts. In fact their simplicity and commonality are the hallmark of the
argument for their introduction as a complimentary feature. The examples here are
only a few. Spreadsheet software can be used for just about any problem in
precollege mathematics, physics, and science. Spreadsheets update all formulas
every time a change is made rather than execute a sequence of instruction as
indicated in computer programming. This means that the “Do Loop” is not applica-
ble. Difference equations (or time delays) can generally be implemented by
assigning time to successive columns or successive rows. All the other basic
programming features such as sequential logic, predicate logic, and even table
lookup are available in spreadsheet. I addition they contain a wealth of special
features such as finding maximums, minimums, sorting, and others. There will be
instances where the spreadsheet is not a valid replacement problem-specific soft-
ware. Such instances might include specialized tutorial software, software to simu-
late chemical processes, software for advanced mathematical concepts, etc.

Spreadsheets are widely used for business applications, and knowledge of their
capabilities is an asset for knowledge workers.

Descriptions presented in the following pages are definitely not intended as a
tutorial. People who wish to learn more about development of spreadsheet method-
ologies can refer to any number of simple introductory books or even to free material
on the Internet.

Remember the ultimate goal is for students to become comfortable with organiz-
ing problems in a particular way that will facilitate a computer solution. The student
should be comfortable using the computer as an integral part of problem solutions.

Spreadsheets are very visual and as such almost self-teaching (well not quite).
They enjoy a wide range of applications in business today and will almost certainly
continue to do so in the future. Elementary school teachers may already be familiar
with this application for recording grades, seating assignments, and countless
other uses.

Microsoft is the leading purveyor of spreadsheet software. It is part of their office
suite. And, several open-source office suites containing spreadsheet software are
available. All offer similar functionality. In addition they have a macro language that
may be used by older students to create stand-alone computer programs. Microsoft
Excel uses Visual Basic. This is not the currently preferred language for coding
instruction, but if a student has finished an introductory class in some other language,
such as Python, Visual Basic will not appear difficult.
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The following list itemizes some of the arguments for early introduction of
spreadsheets:

1. They are almost as visual as using paper and pencil.
2. Students can begin to produce useful material with minimal instruction.
3. They have an extensive library of easily used features and functions.
4. Graphical presentations are easily produced.
5. It is highly unlikely that they will be superseded any time soon.

So when should students first encounter a spreadsheet?
They begin learning addition, multiplication, and division in the early grades.

There is no doubt that students should still memorize addition, subtraction, multi-
plication, and division “tables” so that they are able to perform common numerical
computations mentally. Although calculators are all too available, they have no place
for simple calculations. It would be a mistake to use digital aids on any occasion
where the problem is easily done without them. Like most other features of the
human body, the brain will benefit from exercise.

At the proper time students can bring their arithmetic knowledge to a spreadsheet
application. A small amount of overhead instruction is necessary but not arduous.
How do you initiate a spreadsheet? How do you save it when you are through with
it? How do you open a previously saved spreadsheet? Students will probably already
be familiar with such processes because they will have been playing computer
games. Also, how do you erase? How do you copy?

The next step is the art of creating functions or equations. At the start these will be
only simple equations like 20 ¼ 5 � 4. The computer will use an asterisk instead of
the familiar multiply sign and a slash instead of the familiar divide sign. And that is
enough for a start. The rest is developed as the need arises.

Figure 6.1 shows a sample. The student writes ¼5*4 but leaves the 20 for the
computer to insert by itself. If the student leaves a space at the start, the spreadsheet
shows the formula. If the student does not leave a space, the computer shows the
correct answer. The student can experiment with this sort of calculation in order to
become comfortable with it.

Can this be made more interesting? Suppose we develop an arithmetic game. True
enough, many computer games are already available to teach arithmetic. But this
game the student will create by herself.

Fig. 6.1 When writing
equations, type a space first,
and see the formula
(equation). Leave no space
and see the computer’s
answer as shown in
column C
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6.8 Where Is Computational Thinking?

The above example uses a spreadsheet to accomplish the same thing that could be
accomplished with pencil and paper. However it demonstrates the ability of a
computer solution to extend the problem as is done where long division is easily
added.

In early grades the student would not yet have been introduced to long division.
Division of 456 by 32 could be effected with an electronic calculator, and students
will probably have such an app on their cell phones. They should look for that on
their cell phones. All of this sharing of computer and problem-solving inculcates
what we call computational thinking.

Each and every one of the examples presented in this chapter inculcates compu-
tational thinking when it is presented along with standard textbook or lecture
material. They exemplify the partnership of the human mind and electronic comput-
ing to solve problems. Without a computer such problems would be solved with
paper and pencil and, in some cases, with the aid of an electronic calculator. The
computer approach presents a dynamic solution where the effect of variations in
parameters can be easily examined and where results can be easily presented as a
chart if applicable.

6.9 An Arithmetic Game with a Spreadsheet

Figure 6.2 shows how the “game” will appear when we are done. Construction is
quite simple. The student will type in the labels and then type the numbers in column
B. After placing the first two numbers, the student can select those same numbers

Fig. 6.2 The multiplication
game
This figure shows the
spreadsheet as it will appear
when completed. The
student has partially filled in
column D
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together and copy them to the remainder of the column. The computer knows to
increase each number according to the example of the first two.

Next the student enters the formula ¼ B5*$D$4 into cell C5. The student copies
this formula to the bottom of the column. The computer will automatically advance
the number parameter, B5 to B6, and B7, and so on, progressively as the formula is
copied. The dollar signs lock the parameters that they precede so that they will not
change.

The student enters ¼ C5 ¼ D5 in cell E5 and copies this formula to the bottom.
Note that Fig. 6.2 shows column C as very narrow. This column will have the

correct product value, and we want to hide it. The column width can be adjusted with
the mouse so that it is very narrow. To play the game, the student types the product of
3 and 0 in column D, and the computer places TRUE or FALSE in column E.

Features learned in this spreadsheet are:

1. How to copy numbers to create a sequence
2. How to copy formulas
3. How to type formulas like ¼ B5*$D$4 and ¼ C5 ¼ D5
4. Use of $ for absolute reference
5. How to change the width of a column

That is not too much! Student should be invited to create more games for addition
and subtraction but not division. Division presents a problem because the computer
uses decimals and not fractions. Decimals are probably a later introduction.

Perhaps it would be fun to have the numbers in column B appear in random order
instead of sequentially. We would introduce two new features, the RAND() function
and a simple sorting routine. First place ¼ RAND() in cell A5 and copy it to cell
A15. Next sort the range A5:E15 using column A. Figure 6.3 shows a typical result
after this step. But when one looks at column A in Fig. 6.3, the numbers do not
appear to be in ascending order as we expect them to be. At the completion of the

Fig. 6.3 The randomized
multiplication game
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sort operation, the spreadsheet recalculates all functions on the sheet. So then the
random numbers are all changed. No matter! The intent was to rearrange the
numbers in column B, and this has been accomplished. The final step would be to
make column A width very narrow so we would not see the random numbers.

Indeed, every time the student types an answer into a cell in column C, all the
random numbers will change, but they will not be seen because the column width has
been made small. There are “hide” and “reveal” instructions available, but that
would add unnecessary complication. The student has played the game and typed
in some answers. Every time a new number is entered, all the RAND() values
change. But we don’t care because after the range A5:E15 is sorted, it remains the
way it is.

The additional features to be learned are:

1. The RAND() function
2. Sorting

It is important that the students be encouraged to follow this pattern and to create
new games. Some student may use imagination and ingenuity to do new things. That
would show that they are becoming comfortable with computer use.

6.10 A Game to Add Columns of Figures

Another game could add different numbers in a column. We start with three numbers
in a column. The student picks them at random and types them into columns as seen
in Fig. 6.4. At the top of each column, the student enters the formula to sum the
numbers in that column. Figure 6.4 shows the result with the formula just as it is
being entered into cell D2. When the student presses ENTER to finish the formula in
D2, the letters will disappear, and the proper sum value will appear.

The game is to enter the correct sums for the columns into cells B6, C6, and D6.
Then the “FALSE” responses in row 7 will change to “TRUE.” Can the student
remember what to type in cell B7? It would be¼ B2¼ B6. Of course the game is not
much of a game if the correct answer is visible in row 2. To hide these numbers,
change row height. Another trick would be to change the text color to white so it will
not be visible.

Fig. 6.4 Adding
columns game
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To continue the student will have to change the numbers in the columns by hand.
If RAND() is used, the numbers will change every time anything is done to the
spreadsheet and nothing will work properly.

6.11 Word Problems

Computer use is a perfect adjunct when word problems are introduced in math
classes. This is true no matter what software is used. Computational modeling of the
problem allows reuse of the same template for other similar problems. This is
particularly applicable to spreadsheets because when properly constructed, the
sheet contains its own labeling and instructions. The spreadsheet provides a self-
contained report and solution at the same time. And often a model will bring to mind
new imaginative activities beyond the original scope of the initial problem.

Word problems introduced in the lower grades generally involve simple addition,
subtraction, multiplication, and division. For example, a problem might say that
Oscar has six apples and Juan has four apples. How many do they have together? If
Carla joins them and they give her two apples, how many will Oscar and Juan have
left? Such problems can be modeled on a spreadsheet which offers the advantage that
it is neat and ordered and provides a pleasing presentation. These simple problems
can be done in one’s head with little or no formal organization. However they
provide learning experience on the computer. Good form dictates that a short
restatement of the problem be placed at the top of the sheet. All parameters of the
problem should be placed on the sheet, usually at the top left. These constitute what
are often referred to as the state vector or state variables. Actually some of them may
be constants for the sake of the problem. The state variables do not include universal
constants such as π that are available as functions on the computer. But they should
include other constants such as the acceleration of gravity that will be approximated
because it is actually not a constant and is not a simple calculation.

Figure 6.5 shows a simple practice problem. Here Carla has $7.50 and Oscar has
$9.00. How much do they have together?

Fig. 6.5 Presented for spreadsheet practice
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When Juan joins them with $8.24, how much do all three have together? The
student would not create a new sheet for the second part but rather add Juan to the
state vector and add part two to the existing sheet. The sheet will contain formulas
such as ¼ SUM(B3:B4) and ¼ SUM(B3:B5). Students should not do the work in
their head and just type the answer. And if the problem changes so that Oscar has
$8.00, the new solutions are obtained by changing the value in the state vector from
$9.00 to $8.00.

As previously mentioned, the spreadsheet serves as a template for similar prob-
lems. The student should be guided to use the same sheet for a problem where Carla
has only $3.50 and Oscar has only $5.00. New results are obtained by simply
changing the initial condition values in the state vector.

Problems like these offer an introduction to spreadsheet capabilities and methods,
but they do not suggest the significant advantages that are available through the
computer. Eventually these advantages should be introduced. The next example
demonstrates array capability and the easy display methods that are available in the
spreadsheet.

In this problem, Carla and Oscar are friends. Carla has $7.50 and Oscar has $9.00.
They decide to pool their resources and buy comic books together. They will share
the books. Their favorite comics are “Tales for Zombies”which costs $3.00 per copy
and “Squeaky Crypt” which costs $2.30 per copy. Because they have not bought any
of these for some months, their collections are a bit behind. They will buy the current
issues and back issues. So they might buy four “Tales of Zombies,” and then they
would have enough money for only one issue of “Squeaky Crypt.” What are the
various combinations of issues that they could buy with the money that they have?

Figure 6.6 shows the spreadsheet for this problem. The state vector has a value for
Carla + Oscar. Together they have $16.50. Even though this appears in the area for
constants, it should be calculated with a formula. It is not a fundamental data item.

The outer boarders of the array show the number of each type of comics
purchased. Students can type in the numbers 1, 2, 3, and so on. But they should
remember how to type 1 and 2 and then select them and copy. The computer will
know that it is to increase each number by one.

Formulas will be used for all the other numbers. The formula in cell C14 is
¼C13*$B$8. The purpose of each dollar sign is to lock the parameter that follows
it. When copying this formula cross the row to cell F14, the $B$8 will never change
and will always point to the cost of “Tales for Zombies.”

The only tricky formulas are the ones in the center that produce the values 5.30,
8.30, and so on. These numbers show the total dollar cost. So if Carla and Oscar buy
one of each of the comic books, they will spend $5.30. The formula is ¼C
$14 + $B15. Here again the dollar sign locks the parameter that follows it. This
allows the student to write the one formula and copy it across and down to achieve
the total array. The numbers that are possible without exceeding funds available are
shown in bold. Conditional formatting is available to allow the computer to set bold
format automatically, but this is an advanced feature. Also an IF function can be used
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to avoid displaying any numbers that exceed the available funds, but this also is an
advanced concept. Most likely the student can set the bold format by hand after
inspecting the numbers to see which ones are too large. Perhaps the student may be
invited to think of how to add the IF feature after the basic solution is created.

Features learned in this problem:

1. The use of absolute reference, i.e., use of dollar signs in a formula
2. How to set text to bold
3. Maybe how to use an IF function

Students should be encouraged to see how easy it is to obtain new results if Oscar
or Carla has a different amount of money or if the cost of a comic book changes. One
might ask how the problem would be different if Carla and Oscar had a friend who
wished to join in the project.

One might ask how to approach the problem if the selection is to be among three
different comic books. If there are three comic books, the array must be three-
dimensional. It is not likely that a young student will think of that. Such a problem
would be beyond the elementary level. The resultant display would involve a set of
two-dimensional arrays, one for each different number of issues of the third comic
book. Computer programming code for such a problem would involve three loops.
That would be simple, but the display would not differ from the spreadsheet display.
It is not easy to display three dimensions on a two-dimensional sheet of paper.

Fig. 6.6 Showing costs for combinations of comic books
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Data is often displayed in arrays. For example, the temperature at noon of every
day in a month would be an array. Other examples would be inches of rain each day
for a month, student grades on a quiz, and names of students in a class. Sometimes
people are interested in the numerical average of the data or the total value of all the
data. Sometimes we want to sort the data into alphabetical order. There are ample
opportunities for examples and problems.

6.12 Student Projects

The intention thus far has been to show how spreadsheets and computer technology
can fit as part of more usual instruction rather than as separate stand-alone instruc-
tion. After students have developed fundamental facility with spreadsheets, they will
enjoy projects that offer more self-expression or even group activities. One example
of such a group project might be planning a lemonade stand to raise money for some
charity. This is a good project, and there are many lemonade recipes on the Internet.
There are even Internet sites that will help with planning.

The solution of any problem should start with the accepted scientific method.
First identify all the information that might apply to the problem. What are the
physical requirements? What locations are possible? What are advantages of each
location? What criteria will be used to select the best location? What hardware such
as table, chairs, pitchers, and the like may be required? Does required hardware
impact site selection criteria?

People often neglect specification of selection criteria. This oversight may result
in selections based more on whim rather than on attributes.

Of course much of the hardware can be borrowed from friends, relatives, or other
sources, and these factors are listed as problem assumptions. But students must plan
for the expendable items and must establish a price for a cup of lemonade. Modeling
the material costs on a spreadsheet will be helpful. It will provide a clear display of
all the data and calculations. Further it will allow examining various scenarios that
will lead to setting a price and estimating the probable profit of the enterprise.

The first step in modeling the expendables is to obtain a good recipe, preferable
from the Internet. Using the Internet rather than human help will encourage resource-
fulness and independence. The next step is planning and designing the spreadsheet
itself. The various spreadsheets developed by different groups may be similar but
will probably differ in appearance. The first part of the sheet should contain a brief
description, names, and a date. Then there needs to be places for the recipe, for all the
raw materials, and for any constants such as how many cups will be available from a
gallon, and so on. When purchases are made, how many units are contained in a
package? For example, how many pounds of sugar are in one sack? All numbers
need to be entered in separate cells all by themselves with no labels. However, dollar
signs are actually part of a number.
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Figure 6.7 shows one possible configuration. Teachers should give some guide-
lines as a start for the spreadsheet:

1. Begin with a very brief description and include names and the date.
2. Organize in columns with column headings for units, cost per unit, number of

days, etc.
3. Think of fixed costs and variable costs separately.

Fig. 6.7 Showing possible lemonade sale configuration
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4. Variable costs are costs that depend on how many cups you sell, like lemons and
sugar.

5. For raw materials, think of how you buy them, per pound, per unit, etc. and
their cost.

6. Set up the spreadsheet so that there are certain numbers entered as numbers such
as cost of sugar, cost of ice, number of days, etc.

7. Other numbers should be calculated using a formula that refers to the fixed
numbers. Then if you change the cost of lemons, all the other numbers will
change (recalculate).

6.13 Equations

Consider further use of spreadsheets and computer technology as part of normal
in-class instruction in mathematics. Equation (6.1) is a simple example that would
have a simple solution:

12 ¼ 3Xþ 3 ð6:1Þ
Yes, the solution is X ¼ 3, but it might be instructive to see the locus of all points

defined by 3X + 3 ¼ Y. Figure 6.8 shows this locus. It is easy to produce, and the
method is well worth the time it would take a student to learn it. Two columns define

Fig. 6.8 Showing locus of all Y values for Y ¼ 3X + 3
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the chart shown in Fig. 6.8. One is a column of X values and the other a column of Y
values. Create the columns by selecting a starting value for X and placing it in a cell,
in this case cell A5. The value of X should increase by some fixed amount for each
cell. This amount of increase can be called the step. Place the step value in cell A4.
Now the formula in cell A6 is ¼ A5 + $A$4. Copy this down the column for a
reasonable way.

The next column has the computation of ¼3X + 3 obtained by referring to the X
value from the corresponding row in the X column. In other words, cell B5 contains
¼3*A5 + 3. Copy this formula down the column, and create the chart (graph). All
the spreadsheet software contains graphing capabilities although they differ slightly.
It is important to use the X-Y plot feature.

Now the student can see that Y ¼ 12 when X ¼ 3. This is so simple that it might
appear trivial, but the technique has broad application. For example, consider
Eq. (6.2):

3X2 þ 2X� 3 ¼ 0 ð6:2Þ
There is, of course, a quadratic formula that may be used to solve this equation for

the value of X.
Examples are offered on the Internet. Some schools may have advanced math

application software such as Mathcad, Maple, or similar applications that will
provide easy methods for finding the solution and even for graphing the function.
However, the spreadsheet is included with office suites, and it is essentially free if
you own the suite. So we can use it. Figure 6.9 shows the result.

If the student is advanced sufficiently in the use of spreadsheets, values for the
equation coefficients, a, b, and c, may be placed at the head of the sheet and
referenced in the various formulas where they are required. For a typical example,
see Eq. (6.3):

¼ $B$1∗A6^2þ $B$2∗A6þ $B$3 formula in cell B6 of Fig:6:9 ð6:3Þ
The solutions are read where the graph intersects the x-axis. Using coefficients in

cells B1, B2, and B3 provides the student with the capability of changing the C value
and watching the entire curve move up or down. The student can see when the curve
has two solutions, only one solution, and when it has no solution (not valid).

Figure 6.9 is a template. It stands ready to deal with any quadratic problem. The
only modifications required for a new problem are changing the coefficients and
changing the step and start values.

Graphical solutions are also applicable to third-, fourth-, and higher-order equa-
tions. As previously mentioned software that will provide such solution is readily
available. In fact at least one Internet site is available that will provide roots of a
third-order equation. There is still some advantage to using a graphical solution that
one creates for oneself. For one thing behavior of the function away from the zero
crossing is available. The student can examine sensitivity of the roots to coefficient
changes. At what value of the constant term will there be two solutions and only one
solution?
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As can be seen in Fig. 6.10, the coefficients are listed at the top of the spreadsheet
so that they can be readily changed. One can obtain a more accurate determination of
the routs by expanding the graph in the area of zero crossings. This requires only that
the starting point and step size be changed. A very small step size will expand the
area of interest. Figure 6.11 shows this. And, the spreadsheet of Fig. 6.10 is a
template for use with any third-order polynomial.

6.14 Simulating a Problem in High School General Science

Describing the trajectory of an object thrown up into the air is a common general
science problem. It is so common that multiple solutions are available on the
Internet. A slight variation would be a rifle bullet trajectory. If the rifle is held at
some angle, there will be horizontal and vertical velocities. The vertical component
is given by multiplying muzzle velocity by the sin of the angle. For the horizontal
component, one uses the cos instead of the sin.

Fig. 6.9 Showing solution of a quadratic equation
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Problems like this provide good learning experiences because they have many
parts that must be investigated in succession. A spreadsheet allows these compo-
nents to be displayed in an orderly fashion.

The maximum height of the trajectory occurs when the velocity resulting from
gravity equals the upward component of muzzle velocity. The two velocity vectors
act in opposite directions. So the time spent traveling up, TU, is obtained as the
upward component of muzzle velocity divided by the acceleration of gravity. This is

Fig. 6.10 Showing graphical solution of third-order equation

Fig. 6.11 Showing expanded graph in area of the root X ¼ �0.423
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shown in Eq. (6.4). It is the same time that the bullet will require to fall back down to
the height of the rifle. The height above the rifle that the bullet will reach in TU

seconds is given by Eq. (6.5):

TU ¼ VU=g ð6:4Þ
DU ¼ 1

2
gT2

U ¼ VUTU ð6:5Þ

Total distance from apex to the ground, DT, is equal to DU + DR, where DR is the
distance from the rifle to the ground. The time for the bullet to travel from the apex to
the ground is given in Eq. (6.6). So the total time of flight, up and down, is TD + TU:

TD ¼
ffiffiffiffiffiffiffiffiffi

2DT

g

s

ð6:6Þ

These equations are derived through use of the calculus, but they are typically
presented without derivation in elementary general science textbooks. Some peda-
gogical assistance is required because the student did not use the calculus to develop
the equations and so will not necessarily recognize that the sequence of calculations
is important. One must first find the total distance from ground to the apex and then
employ Eq. (6.6). Then the time in flight, T, is the sum of TU and TD as shown in
Eq. (6.7):

T ¼ TU þ TD ð6:7Þ
Once the total time of flight is available, the horizontal range can be found as the

product of flight time and horizontal component of muzzle velocity, assuming zero
air drag.

Figure 6.12 shows atypical spreadsheet solution. This solution utilizes an Excel
add-in called “Solver” to select an angle that maximizes the horizontal range.

The Solver add-in is not really necessary. The student can use different values for
the angle and optimize heuristically. Students should be encouraged to change initial
conditions such as such muzzle velocity and angle to see what effect these have on
trajectory.

Plotting the trajectory would be fun if the students are sufficiently familiar with
spreadsheets. By the time they reach general science they should be.

As always, the first steps in solving a problem are a clear statement of the problem
and a clear statement of parameters (state vector) and influencing factors.

The riffle bullet trajectory problem demonstrates this orderly development. Each
of the calculated values is shown in the column for calculated values. Each is
calculated using a function that relates to problem constants or other calculated
values. The spreadsheet provides an easy method of describing the succession of
steps and allows them to be labeled and visually displayed. The spreadsheet provides
not only a solution but essentially a report of the solution all packaged together.

All of the values must be related. All formulas must reference the constants in the
constants column. Most constants are not laws of nature but are initial conditions that
can be changed. Changing any one of them must result in a new solution. Perhaps the
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most significant risk inherent in spreadsheet solutions is that the problem-solver may
perform mental calculations and insert them into the solution process. In that case
changing the initial conditions or constants would not produce a correct solution for
the new constants.

Students will and should display originality in design so all spreadsheets will not
all look like Fig. 6.12. Presenting students with a template would defeat the
fundamental intention of creating a comfortable relationship with computational
thinking. There is little doubt that solutions for this exact same problem will be
found on the Internet. Students should resist looking at them before obtaining their
own solution unless they are stumped.

6.15 Trigonometry

Trigonometry is generally considered to be a later high school subject. Students
would typically use calculators in order to obtain required level of accuracy for even
simple problems. Built-in functions are available in spreadsheets for both plane and
spherical trigonometry and do not require loading special libraries. Simple diagrams
can be created right on the spreadsheet using a feature that allows insertion of shapes.

Students still need to know the fundamental rules that are applicable to trigo-
nometry, such as that the sum of all interior angles of a triangle will equal 180� in
Euclidian trigonometry. Students will need to know what functions to employ for the

Fig. 6.12 Showing the
bullet trajectory problem
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solution to a given problem. The advantage of the spreadsheet over the calculator is
that problem visibility is as always present. Changes may easily be made to
accommodate new problems that are similar to the given one. Figure 6.13 presents
a typical problem.

6.16 Simultaneous Algebraic Equations

Introduction of simultaneous equations is a late high school topic. If software similar
to Mathcad, Maple, etc. is available, it will present a medium that is easier to use than
the spreadsheet. But convenience and expense incline toward use of a spreadsheet. It
is there and it is free with any office suite. The spreadsheet will perform matrix
operations, addition, subtraction, multiplication, and inversion. Knowledge of
matrix operations is valuable for mathematics and for computer science.

Spreadsheets use functions such as MMULT and MINVERSE to accomplish
multiplication and inversion for division. These are array operations, and so the input
parameters for them are arrays. The easiest way to specify an input array is to select it
with the mouse, but one can specify it by identifying the two diagonal cells. Since the
response will be an array, one must select the area that the response array will occupy
and then type a function such as ¼ MMULT(. . . .

The method for solving simultaneous equations involves the matrix equations
shown in (6.8) and (6.9)

where Y, A, and X are matrices. A�1 is the inverse of A.

Yf g ¼ A½ � • Xf g ð6:8Þ
A½ ��1

• Yf g ¼ Xf g ð6:9Þ

Fig. 6.13 A typical
trigonometric problem

122 J. Sanford



The X matrix is a column matrix containing X1, X2, . . .Xn. Actually it is blank in
the spreadsheet the labels, X1, X2, etc., are understood. After performing the
operation shown in (6.9), X will contain the solution for all values of X1, X2,. . .Xn

dictated by the simultaneous equations. The Y matrix is also a column matrix
containing all the Y values that correspond to the rows of the simultaneous equa-
tions. The matrix, A, contains the coefficients of all the X values in the simultaneous
equations. Figure 6.14 shows this as it might appear in a spreadsheet. The letters Y,
A, etc., above the matrices are not necessary. They are added for clarity as are X1 and
X2 in the initial X matrix. In fact, the entire Y matrix in the lower equation is added
for clarity. The original Y matrix can be pre-multiplied by A�1 to yield the answers
for X values.

One interesting feature is that the results shown on the spreadsheet are dynamic. If
one changes a value in the A matrix or the initial Y matrix, the solution changes to
the correct values for the new input. If a changed parameter produces a set of
equations for which there is no solution, Excel puts “#NUM!” in the cells. Other
spreadsheets may use a different notification.

The simultaneous equations may be many in number, limited only by practical
computational considerations. It is valuable for students to know how to solve two
simultaneous equations by hand. Certainly more than two simultaneous equations
can be solved by hand, but the process does become tedious for large numbers of
equations.

6.17 Conclusion

This chapter has presented some concepts related to computational thinking.

1. Computational thinking is nothing more than developing a normal tendency for
individuals to organize and present problems for solution with the aid of digital
computing machinery.

2. It is a partnership of human mind and digital machinery.
3. Digital machinery should be as readily used as paper and pencil.
4. Computational thinking should be incorporated in early childhood education.

Fig. 6.14 Showing matrix
operations
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5. Computational thinking should be included throughout the education years.
6. It involves a methodology for problem-solving and not just computer

programming.
7. Spreadsheet software is suggested as a medium, but there are other options.

Each of the examples shown in the chapter presents a computerized method of
problem-solving. When instructors develop similar problems to augment textbook
material, they are inculcating computational thinking.

Problem-solving methods such as systems analysis and use of mathematical
models are touched on in the chapter. These are not really specific to computational
thinking any more than they are components of problem-solving, or computer
science, or other disciplines. The chapter has not stressed their existence.

In this world “we must run as fast as we can, just to stay in place” (Carroll). By the
time the grade school child of today reaches college age, the human interface with
computers will almost certainly be though artificial intelligence and robotics. Does
that mean that this concept of computational thinking will fade in significance? No!
If humans have a problem, then they must describe the problem even for artificial
intelligence. A significant feature present in the examples contained in this chapter is
that the first step is describing the problem.

References

CS50X. (2017). Harvard University https://www.edx.org/course/introduction-computer-science-
harvardx-cs50x January 13, 2017.

Denning, P. J. (2017). Computational thinking in science, American Scientist January 2017,
publication of Sigma Xi, January–February 2017 edition pages 13–17.

Olson, P. (2012). Why Estonia has started teaching its first-graders to code. Forbes.com http://
www.forbes.com/sites/parmyolson/2012/09/06/why-estonia-has-started-teaching-its-first-
graders-to-code/#7de3a61b5790. Sighted 1/13/2017.

Sanford, J. F. (2013). Core concepts of computational thinking. International Journal of Teaching
and Case Studies, 4(1), 1–12.

Shannon, C. E. (1949). The mathematical theory of communication. ISBN 0-252-72546-8.
Twarek, B. (2016). San Francisco Unified School District, STEMDept. http://www.csinsf.org/pilot.

html. Sighted 1/31/2017.
Wing, M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Wright, C. M. (2016) (CS4MS) pilot program in 34 Mississippi school districts. http://www.mde.

k12.ms.us/TD/news/2016/04/28/mde-targets-expansion-of-computer-science-education-in-
pilot-programs-teacher-training. Sighted 1/31/2017.

Other Related Papers by This Author

Sanford, J. F., & Naidu, J. T. (2016). Computational thinking concepts for grade school. Contem-
porary Issues in Education Research, 9(1), 23.

Sanford, J. F., & Naidu, J. T. (2017). Mathematical modeling and computational thinking. Con-
temporary Issues in Education Research, 10(2), 159–168.

124 J. Sanford

https://www.edx.org/course/introduction-computer-science-harvardx-cs50x
https://www.edx.org/course/introduction-computer-science-harvardx-cs50x
http://forbes.com
http://www.forbes.com/sites/parmyolson/2012/09/06/why-estonia-has-started-teaching-its-first-graders-to-code/#7de3a61b5790
http://www.forbes.com/sites/parmyolson/2012/09/06/why-estonia-has-started-teaching-its-first-graders-to-code/#7de3a61b5790
http://www.forbes.com/sites/parmyolson/2012/09/06/why-estonia-has-started-teaching-its-first-graders-to-code/#7de3a61b5790
https://en.wikipedia.org/wiki/Special:BookSources/0252725468
http://www.sfusd.edu/
http://www.csinsf.org/pilot.html
http://www.csinsf.org/pilot.html
http://www.mde.k12.ms.us/TD/news/2016/04/28/mde-targets-expansion-of-computer-science-education-in-pilot-programs-teacher-training
http://www.mde.k12.ms.us/TD/news/2016/04/28/mde-targets-expansion-of-computer-science-education-in-pilot-programs-teacher-training
http://www.mde.k12.ms.us/TD/news/2016/04/28/mde-targets-expansion-of-computer-science-education-in-pilot-programs-teacher-training


Part II
Computational Thinking and Teacher

Education



Chapter 7
Preparing Pre-service Teachers to Promote
Computational Thinking in School
Classrooms

Charoula Angeli and Kamini Jaipal-Jamani

7.1 Introduction

The importance of teaching computational thinking across the K–12 curriculum has
been strongly argued for by many educational scholars and researchers (Wing 2006;
Grover and Pea 2013; Guzdial 2008). At the same time, there is evidence that teacher
education departments lack the knowledge and skill to teach pre-service teachers
about computational thinking (Yadav et al. 2011, 2014). While in general, the
research in this area is scarce; some preliminary evidence exists showing that the
introduction of computational thinking modules in the teaching of existing teacher
education courses can have positive results on pre-service teachers’ understanding of
computational thinking concepts (Yadav et al. 2014). Thus, the issue of how to
promote computational thinking in pre-service teacher education is timely, and any
new studies undertaken for this research purpose are much needed and are fully
warranted (Gretter and Yadav 2016).

The present study responds directly to calls for more research into how to include
the teaching of computational thinking in existing teacher education courses (Yadav
et al. 2011, 2014; Hodhod et al. 2016; National Research Council 2011). In
particular, the study herein proposes the use of scaffolded programming scripts as
one instructional method for teaching computational thinking to novice pre-service
teachers. The study is undertaken within the context of educational robotics activities
with LEGO WeDo, a robotics construction kit for education (Kim and Coxon 2016;
Geist 2016), for teaching a science lesson about gears and their functions.
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7.2 A Definition of Computational Thinking

While the concept of computational thinking in education can be traced back to the
work of Seymour Papert, who strongly advocated the idea of children developing
algorithmic thinking through the Logo programming language (Papert 1980),
Wing’s (2006) article has rekindled the interest in promoting computational thinking
in education. Collective efforts aiming at developing a definition for computational
thinking include the two National Academy of Sciences workshops (National
Research Council 2010, 2011) and the initiative undertaken by Royal Society
(2012) and also workshops organized by the Computer Science Teachers Associa-
tion (CSTA) and the International Society for Technology in Education (ISTE).

The 2010 National Research Council’s report differentiated computational think-
ing from computer literacy, computer programming, and computer applications and
broadened the term to include core concepts from the discipline of computer science,
such as abstraction, decomposition, pattern generalizations, visualization, problem-
solving, and algorithmic thinking.

Similarly, the Royal Society (2012) defined computational thinking as “the
process of recognizing aspects of computation in the world that surrounds us, and
applying tools and techniques from computer science to understand and reason about
both natural and artificial systems and processes” (p. 29).

CSTA and ISTE developed an operational definition of computational thinking as
a problem-solving process that includes, but is not limited to, the following ele-
ments: (a) formulating problems in a way that enables us to use a computer and other
tools to help solve them; (b) logically organizing and analyzing data; (c) representing
data through abstractions, such as models and simulations; (d) automating solutions
through algorithmic thinking (i.e., a series of ordered steps); (e) identifying, analyz-
ing, and implementing possible solutions with the goal of achieving the most
efficient and effective combination of steps and resources; and (f) generalizing and
transferring this problem-solving process to a wide variety of problems.

Despite the fact that currently there is not one unanimous definition of computa-
tional thinking, after a systematic examination of what is currently known in the
literature, Grover and Pea (2013) and Selby (2014) concluded that researchers have
come to accept that computational thinking is a thought process that utilizes the
elements of abstraction, generalization, decomposition, algorithmic thinking, and
debugging (detection and correction of errors). Abstraction is the skill of removing
characteristics or attributes from an object or an entity in order to reduce it to a set of
fundamental characteristics (Wing 2011). While abstraction reduces complexity by
hiding irrelevant detail, generalization reduces complexity by replacing multiple
entities which perform similar functions with a single construct (Thalheim 2000).
For example, programming languages provide generalization through variables and
parameterization. Abstraction and generalization are often used together as abstracts
are generalized through parameterization to provide greater utility. Decomposition is
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the skill of breaking complex problems into simpler ones (Wing 2008; National
Research Council 2010). Algorithmic thinking is a problem-solving skill related to
devising a step-by-step solution to a problem and differs from coding (i.e., the
technical skills required to be able to write code in a programming language)
(Selby 2014). Additionally, algorithmic notions of sequencing (i.e., planning an
algorithm, which involves putting actions in the correct sequence) and algorithmic
notions of flow of control (i.e., the order in which individual instructions or steps in
an algorithm are evaluated) are also considered important elements of computational
thinking (Lu and Fletcher 2009). Debugging is the skill to recognize when actions do
not correspond to instructions and the skill to fix errors (Bers et al. 2014).

Similarly, Perrenet et al. (2005) and Perrenet and Kaasenbrood (2006) proposed a
hierarchy, known as the PGK hierarchy, of four levels for developing computational
thinking skills:

4. The problem level is the fourth and highest level in the hierarchy. At this level,
one thinks of problems as objects and can develop solutions to problems as black
boxes. Solutions are elegant and stripped of unnecessary details.

3. The object level is the third level in the hierarchy. At this level, one can think
computationally in ways that do not depend on upon the specifics of a program-
ming environment. Mainly, one can think regarding functions (generalizations)
that rely on inputs. Thus, while abstraction at the fourth level involves thinking
about solutions to problems as black boxes, at the third level common patterns are
recognized, and abstractions are generalized through parameterization for
wider use.

2. The program level is the second level in the hierarchy. At this level, one
understands algorithms as sets of instructions written in a specific programming
language. Algorithmic thinking is a problem-solving skill related to devising a
step-by-step solution to a problem. Sequencing (i.e., planning an algorithm,
which involves putting actions in the correct sequence) and flow of control
(i.e., the order in which individual instructions or steps in an algorithm are
evaluated) are considered essential elements of thinking computationally at this
level.

1. The execution level constitutes the lowest level in the hierarchy. At this level, one
understands algorithms as computer programs that run on specific machines and
receive values or signals as inputs. While this level is the lowest in the hierarchy,
it is an important one, because here one develops and practices the skill of
debugging, i.e., the skill to recognize and fix errors when actions/outputs do not
correspond to instructions.

Accordingly, in this study, pre-service teachers’ computational thinking was
examined using the four-level hierarchy of computational thinking as proposed by
Perrenet and his colleagues and focused on the teaching of computational thinking
through the use of scaffolded programming scripts within the context of educational
robotics activities using LEGO WeDo.
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7.3 The Teaching of Computational Thinking

A systematic review of the literature on the teaching of computational thinking in
pre-service education revealed a dearth of research articles published in referred
scholarly education journals. Nonetheless, a large number of related studies about
the teaching of computational thinking, not necessarily within the context of
pre-service education, have been published in referred computer science conference
proceedings. Based on the results of this analysis, the teaching of computational
thinking, thus far, has been pursued using five different approaches: (a) unplugged
activities, (b) building-block programming, (c) tangible programming, (d) digital
game creation through computer programming, and (e) educational robotics. It is
worth mentioning that the results of this literature review are in agreement with
Selby (2012, 2014) and Lye and Koh (2014), who stated that computer programming
has been a favorite approach to adopt for teaching computational thinking, as it is the
thing to do in order to automate a solution to a problem. In particular, four of the five
approaches identified herein involved computer programming.

7.3.1 Unplugged Activities

This approach deploys unplugged activities to teach children computational thinking
– that is, activities without the use of a computer. Prottsman (2014) reported on the
development of the Thinkersmith curriculum in 2011, which introduced a stand-
alone set of unplugged activities for K–8 specifically designed to provide students
with strong computer science foundations without using computers. Lessons in this
curriculum, such as Binary Baubles, used materials found in games and crafts to
teach authentic computer science concepts. In 2013, Code.org expanded on what
Thinkersmith created and offered a 20-hour unplugged curriculum for grades K–8.
After the wide adoption of this curriculum by teachers worldwide, in 2015 Code.org
developed further the existing 20-hour unplugged curriculum, which now includes
more than 55 lessons. CS Unplugged is another unplugged computer science
approach proposed by Bell et al. (2015). CS Unplugged is a collection of activities
that teach computational thinking through engaging games and puzzles that use
cards, string, crayons, and lots of physical movement. Students learn about binary
numbers and algorithms without using computer programming.

7.3.2 Building-Block Programming Approach

Researchers who adopted the building-block programming approach (e.g., Fessakis
et al. 2013; Resnick et al. 2009a, 2009b; Portelance et al. 2016) deployed Logo or
Logo-like programming languages, such as Scratch, to teach young students various
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computational thinking skills, such as abstraction, generalization, and algorithmic
thinking. In these building-block programming environments, one creates computer
programs by simply snapping graphical blocks together into stacks, which represent
sequences of instructions. In addition, these environments are usually “low floor”
(easy to learn how to use) and “high ceiling” (afford the development of complex
and sophisticated programs) and allow children to engage in rich programming
activities with them.

7.3.3 Tangible Programming

Other researchers used tangible programming to teach computational thinking
(Wang et al. 2014; Kazakoff et al. 2013). Tangible programming has been proposed
in order to make programming more direct and less abstract for young children. It is
a technique that combines computer programming and tangible interaction using
physical objects to interact with the computer. There are several tangible program-
ming tools appropriate to be used with children, such as T-Maze (Wang et al. 2014),
Tern (Horn and Jacob 2007), Toque (Tarkan et al. 2010), and Twinkle (Silver and
Rosenbaum 2010).

7.3.4 Digital Game Design and Creation

A fourth approach for teaching computational thinking to children is digital game
design and creation (Kumar 2014; Tsalapatas et al. 2012; Denner et al. 2014).
According to Dalal et al. (2009), rapid computer game creation is an innovative
pedagogical approach for teaching computational thinking, because it allows the
creation of games quickly without formal knowledge of programming. Students can
easily create objects with visual representations and assign properties to them.
Similarly, Tsalapatas et al. (2012) reported on cMinds Learning Suite, a learning
intervention that used game-based visual programming toward building computa-
tional thinking skills. Results from different studies that adopted cMinds Learning
Suite in different European countries showed high learner motivation in engaging in
computational thinking activities using the tool and improved problem-solving
skills.

7.3.5 Educational Robotics

Lastly, during the last decade, the research community has embraced educational
robotics with genuine enthusiasm as an approach for teaching computational think-
ing to students (Stoeckelmayr et al. 2011; Janka 2008; Bers 2010; Bers et al. 2014;
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Kazakoff and Bers 2012; Alimisis and Kynigos 2009; Benitti 2012; Bredenfeld et al.
2010; Johnson 2003). Benitti (2012) indicated that robotics have the potential to be
effective teaching tools; learning gains for the students are not guaranteed just by the
mere use of robotics. A major factor that directly influences student learning is how
well the teacher knows how to use the technology as well as how to use the
technology to teach a specific subject matter (Thomaz and Cakmak 2009). Vollstedt
et al. (2007) also found that the comfort level of the teacher to use computers and
program with robotics to be a major reason hindering the implementation of teaching
with robotics in classrooms.

Recently, very few researchers have focused on teaching the teachers how to
teach with robotics to enhance student learning. For example, Bers et al. (2013)
investigated the effect of a 3-day robotics workshop on 32 pre-primary educators.
They found that there were statistically significant gains in participants’ knowledge
of technology, pedagogy, and robotics content. Similarly, Burrows et al. (2012)
designed a 2-week professional development (PD) to teach simple programming to
pre-collegiate teachers using a hands-on, trial and error method. Pre-collegiate
teachers used LEGO Mindstorms robotics kits to learn computer science through
engineering design problems. According to the results, there was an increase in
knowledge of and confidence to integrate robotics into classroom instruction and
lesson plans.

Based on the results of the preceding studies, targeted robotics interventions that
were designed in ways that provided hands-on activities that involved problem-
solving, engineering design, programming, as well as modeling about how these
could be applied in teaching promoted pre-service teachers’ computational thinking
skills. Our study builds on these previous studies and involves the use of LEGO
WeDo to engage pre-service teachers in meaningful learning activities to learn about
the science concept of gears. We also extend the literature on the teaching of
computational thinking within the context of pre-service teacher education by
introducing a scaffolded programming strategy, developed from computational
theoretical principles, to develop computational thinking.

7.4 Research Questions

To this end, the present study sought to answer the following:

(a) How did learning with scaffolded programming scripts in the context of robotics
activities influence pre-service teachers’ computational thinking?

(b) How did learning with scaffolded programming scripts in the context of robotics
activities influence pre-service teachers’ understanding of gears and their
functions?
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7.5 Method

7.5.1 Participants

Twenty-one third-year pre-service teacher education students enrolled in a science
education course at a Canadian university participated in the study after ethics
approvals were received and all participants signed consent forms. All research
participants had basic computing skills and completed, before their participation in
this study, an educational technology course on teaching with technology in ele-
mentary and secondary education. The participants had no previous experience with
neither computational thinking nor the use of educational robotics in classroom
teaching.

7.5.2 The LEGO WeDo Education Construction Set

LEGO WeDo, which is designed for students ages 7 and up, enables novices to
construct robots and easily program the robots using the LEGOWeDo programming
language. It is an ideal tool to use in teacher education courses for promoting
pre-service teachers’ computational thinking skills, because, later, the teachers
themselves can also use it with their students. Also, LEGO WeDo constitutes a
“low floor” (i.e., easy to learn how to use) and “high ceiling” (i.e., affords the
development of vibrant computer programs) (Resnick et al. 2009a, 2009b) robotics
environment allowing novices to engage in interesting computational thinking tasks
with it.

7.5.3 Data Collection Instruments

Research data were collected using (a) four programming tasks and (b) a knowledge
test about gears. All research instruments were developed by the authors and
checked for validity by experts in computational thinking.

Four programming tasks, related to three robots, namely, “The Dancing Birds,”
“The Smart Spinner,” and “The Roaring Lion,” were used for assessing pre-service
teachers’ computational thinking. For each programming task, students were given a
textual description of behavior that the robot had to exhibit, and they had to first
write down pseudocode for a suitable algorithm (see Appendix B for an example).
Then, they were asked to code the algorithm using the LEGO WeDo programming
language, run the computer program, and debug it, if necessary. The intention with
each one of the four programming tasks was for the students to think and provide a
general solution for the task at hand that could be utilized in various other cases.
After debugging, students were asked to write down the corrected/revised computer
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program, if any. This way the researchers were able to compare the computer
programs students wrote before debugging, with those they wrote/changed after
debugging. The researchers used the PGK hierarchy (as explained in Sect. 7.2) for
assessing students’ computational thinking. Also, the correctness of the computer
programs was scored on a scale from 0 to 10 points. The criteria used were as
follows: (a) the LEGO WeDo programming instructions were put in the correct
sequence (4 points), (b) the flow of control was correctly decided (3 points), and
(c) programming errors were identified, removed, and fixed (3 points). A total score
was used for recording performance on each programming task. Students were
allowed up to 15 min for each programming task.

The knowledge test, administered both as a pre- and a posttest, consisted of five
questions about gears and their functions. A cumulative score was used for rating
performance on the test. The highest possible score on the test was 15 points. Each
question was scored on a scale from 1 to 3 points: 1 for incorrect, 2 for partially
correct, and 3 for correct. Fifteen minutes were allowed for administering the
knowledge test.

7.5.4 Scaffolded Programming Scripts

Three scaffolded programming scripts, in paper form, were used for teaching
pre-service teachers computational thinking. The first programming script was
about the robot “The Dancing Birds” and consisted of seven sections. The second
programming script was about the robot “The Smart Spinner” and consisted of five
sections, and the third script was about the robot “The Roaring Lion” and also
consisted of five sections. In essence, the three robots were selected, because their
construction covered aspects of gears, and, thus, they were used as learning materials
to teach pre-service teachers about gears. Accordingly, for each robotic construction,
a programming script was designed and developed to teach students how to program
each robot to demonstrate specific behaviors or actions.

Each section in a programming script consisted of four programming subtasks
sequenced from simple to more complex with continuous fading support for the
learner (see Appendix A for a complete example). Scaffolding was provided in the
form of programming tasks ranging from worked-out programming tasks to semi-
completed programming tasks to new programming tasks. Worked-out program-
ming tasks provided full instructional scaffolding for the learner; semi-completed
programming tasks provided partial scaffolding and new programming tasks no
scaffolding. To better explain how these ideas were used for the design of the
programming scripts, the authors here describe the layout of the first section of
“The Dancing Birds” programming script.

The section consisted of four programming tasks as follows. The first task
provided a completed computer program (a worked-out programming task) written
in the LEGO WeDo programming language. The students were asked to use LEGO
WeDo to generate the program, run the program, and write in the space provided
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what they observed. The purpose of the first programming task was for the
pre-service teachers to realize that specific computer instructions corresponded to
specific robotic actions and that sequencing was one essential aspect of program-
ming. For the second task, students were given a completed computer program
again. They were asked to run the program and change it if needed so that the robot
exhibited a particular behavior. The second task introduced students to debugging,
that is, to recognize that specific instructions did not correspond to actions and to
remove and fix errors. The third programming task asked students to complete a
semi-completed program using the LEGO WeDo programming language. Finally,
for the fourth task, students were asked to write pseudocode for an algorithm for the
robot to perform a particular action. Then, students were asked to write LEGO
WeDo code for the pseudocode, run the program, change it if needed, and write
the new/revised code in the space provided. The purpose here was for the students to
think abstractly first about providing a general solution to a problem, expressed in a
high-level language, before coding it in a particular programming language.

7.5.5 Research Procedure

Research data were collected in two 3-hour class meetings facilitated by an instruc-
tional technology educator and a science education faculty who collaborated on this
research study. During the first phase, students were kindly asked to complete the
self-efficacy questionnaire and the pretest on gears. Then, the science educator
introduced them to the science terminology of gears and their functions using
LEGO WeDo robotic models. After that, the instructional technology professor
presented computational thinking as an essential skill that everyone should have in
the twenty-first century, using a series of real-life examples, such as fixing a leaky
roof or pipe, looking up a name in an alphabetically sorted list, and planning a long
road trip. The idea here was for the students to realize the importance of computa-
tional thinking in carrying out everyday tasks. Then, students were asked to work in
dyads to build the robots using LEGOWeDo for the purpose of further investigating
concepts and phenomena about gears. Each student in each dyad had his or her
LEGO WeDo construction set. Thus, while the researchers/instructors encouraged
collaboration and exchange of ideas between the students, at the same time, they
provided all students with their LEGO WeDo kit, so they could all have equal time
and engagement with the robotics constructions and programming. The students
were first introduced to the elements of the LEGO WeDo kit before building their
first robot (“Dancing Birds”). Subsequently, the first programming script was
handed out to them. In the beginning, the instructional technology educator
explained the programming tasks and discussed each computer command (coding)
systematically. The instructional technology professor discussed notions of what is
an algorithm, sequencing of instructions, debugging, and flow of control in the form
of loops. While this process was followed systematically for the first two sections of
the “Dancing Birds” programming script, soon after that, students were able to
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assume full agency of their activities with the programming environment of LEGO
WeDo and engage in self-directed learning. At the end of the first programming
script, students were asked to work individually on a new programming task that was
used for assessment purposes.

Seven days later, the second 3-h research phase followed. Students were wel-
comed back and reminded of what was accomplished during the first meeting.
Additionally, for repeated measure purposes, students were asked to work on the
same programming task as the one they worked on at the end of the first phase. Then,
they were asked to construct the “Smart Spinner” and program the robot using the
scaffolded programming script that was given to them. At the end of this activity,
students were asked to work individually on a new programming task related to the
“Smart Spinner” that was used for final assessment purposes. Subsequently, the
same procedures were followed for the “Roaring Lion.”

7.6 Results

7.6.1 Pre-service Teachers’ Computational Thinking

In order to answer the first research question “How did learning with scaffolded
programming scripts in the context of robotics activities influence pre-service
teachers’ computational thinking?,” the computer programs students wrote for the
four programming tasks (i.e., one for the “Dancing Birds” script in the first research
phase that was also repeated in the second research phase, one for the “Smart
Spinner,” and one for the “Roaring Lion”) were analyzed using the PGK hierarchy.
The correctness of the programs was also determined. To remind the reader, for each
programming task, students had first to write pseudocode for an algorithm followed
by a computer program using the LEGO WeDo programming language, run the
program, debug it, and change it if needed.

According to the results, for the first programming task (i.e., the one related to the
“Dancing Birds” robot), two (9.52%) students only wrote pseudocode, as shown in
Fig. 7.1, before writing actual computer code using the LEGO WeDo programming

Fig. 7.1 Two examples of expressing an algorithm in words before writing computer code
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language. The remaining 19 (90.48%) rushed into writing computer code directly, as
shown in Fig. 7.2, bypassing the pseudocode phase. For the first programming task,
all students debugged their computer programs, and four (19.05%) of them wrote
revised programs. For the second (which was a repetition of the first task), third, and
fourth programming tasks, all students wrote computer code directly. Also, all of
them debugged their programs. Three (14.29%) students wrote revised programs for
the third programming task, and two (9.52%) of them wrote revised programs for the
fourth programming task.

These results showed that pre-service teachers were able to demonstrate compu-
tational thinking at the two lowest levels of the PGK hierarchy only, that is, at the
execution level (Level 1) and program level (Level 2), showing no evidence of
computational thinking at Levels 3 and 4. Thus, learning with scaffolded program-
ming scripts in this study helped novice pre-service teachers to develop debugging
skills and coding skills in regard to the specifics of a specific programming language.
In essence, pre-service teachers were able to understand computer programs as sets
of instructions written in the LEGO WeDo programming language and were able to
run their programs on specific inputs, such as signals that could be identified by the
LEGOWeDo sensors. There was no evidence of thinking computationally at higher-
order levels, independent from the specifics of the programming environment
at hand.

In regard to the correctness of the computer programs, three repeated measures
analyses were performed between the first and second administration of the first
programming task, the second and third programming tasks, and the third and fourth
programming tasks. The mean performances were found to be 8.68 (SD ¼ 0.94),
9.10 (second administration of the first task, SD¼ 0.72), 9.45 (SD ¼ 0.51), and 9.65
(SD ¼ 0.33), for the first, second, third, and fourth programming task, respectively.
Repeated measures analyses revealed statistically insignificant differences between
the first and second administration of the first programming task, F(1, 19) ¼ 3.33,
p ¼ 0.08. The results also showed statistically significant differences between the
second and third programming tasks and the third and fourth programming tasks, F
(1, 19) ¼ 30.03, p < 0.05, and F(1, 19) ¼ 12.67, p < 0.05, respectively.

Fig. 7.2 Two examples of writing computer code directly
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7.6.2 Conceptual Understanding About Gears

In regard to the second question “How did learning with scaffolded programming
scripts in the context of robotics activities influence pre-service teachers’ conceptual
understanding about gears?,” descriptive statistics showed an average performance
on the pretest knowledge test on gears of 9.62 (SD ¼ 1.88) and an average
performance on the posttest knowledge test of 12.48 (SD ¼ 1.63). A paired sample
t-test was subsequently performed showing statistically significant differences
between pre-service teachers’ pre- and posttest knowledge scores, t(20) ¼ 5.84,
p < 0.01, indicating the effectiveness of the intervention on students’ conceptual
understanding of gears and how they work.

7.7 Discussion

Overall, the results of this study are very encouraging if one considers the fact that
the research participants had no prior experiences with computational thinking. In
particular, the results of the research revealed the significant development of novice
pre-service teachers’ computational thinking skills at the program level (Level 2) and
execution level (Level 1) of the PGK hierarchy. While there was no evidence of
development at the two higher levels of the PGK hierarchy, these findings are
significant, as they showed that novice pre-service teachers with no prior experience
with computer programming and debugging developed these two skills in a rela-
tively short amount of training time. The results of the repeated measures analyses,
which showed a gradual improvement of students’ programming skills over the
6-hour intervention with the three scaffolded programming scripts, also supported
these conclusions.

It is also noted that the significant results of the study regarding the development
of computational thinking skills at the two lowest levels of the PGK hierarchy may
also be related to the choice made regarding using LEGOWeDo. LEGOWeDo, as a
“low floor” “high ceiling” environment, enabled students to learn the specifics of the
programming language quickly without imposing a high mental load on their
cognitive resources. Also, as the LEGO WeDo programming environment does
not afford the use of functions, it was not possible for the researchers to explain
thinking in more abstract forms using LEGO WeDo computer programs. This
constraint related to the affordances of the LEGO WeDo programming language
had a direct impact on how well the researchers in this study were able to demon-
strate computational thinking at the two highest levels of the PGK hierarchy. In
reality, and based on the learning materials used in this study (i.e., the design of the
scaffolded programming scripts), the teaching of computational thinking was
restricted to Level 1 and Level 2 of the PGK hierarchy. Hence, the results are
consistent with those aspects of computational thinking the researchers were able
to teach with LEGO WeDo.
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Furthermore, the results showed that even when students were specifically asked
to write pseudocode in textual form for their algorithms, two students only did so and
only for the first programming script related to the “Dancing Birds,” while the
majority of them coded directly using the LEGO WeDo programming language
from the start. These findings strongly showed that writing algorithms in narrative
form was a difficult skill for the pre-service teachers to develop within the time
constraints of the study.

The results are also significant because they indicate that scaffolded programming
scripts can promote novice pre-service teachers’ computational thinking in the
context of existing teacher education courses, without the need to restructure teacher
education programs. In this study, this was achieved through the means of a close
collaboration between an instructional technology faculty member and a science
education faculty member. It is worth noting here that the preparation for teaching
this 6-hour module on computational thinking was lengthy and intense because the
researchers needed to make several learning design decisions about how to best
couple the teaching of computational thinking using educational robotics activities
with the teaching of gears and their functions. According to the findings, students not
only developed some aspects of computational thinking, but they also further
improved their conceptual understanding about gears. This result is directly related
to the decision made to use the three robots of “The Dancing Birds,” “The Smart
Spinner,” and “The Roaring Lion” to explicitly demonstrate how the constructions
of these robots were based on principles of how gears work. Also, within this
context, the results showed significant gains in pre-service teachers’ self-efficacy
to teach with robotics indicating that students developed confidence in teaching with
robotics in their classrooms.

Regarding future studies, researchers can assume more advanced designs moving
away from one-group-only designs, as it was the case in this study, to two- or more-
group designs. Also, the sample of the studies needs to increase. These improve-
ments allow for more rigorous accounts on the effectiveness of the interventions
enabling researchers to develop a better understanding of the teaching of computa-
tional thinking in teacher education courses and beyond.

Also, while the development of novice pre-service teachers’ computational
thinking was promoted in this study through the use of scaffolded programming
scripts, as the primary instructional method used, the field can benefit from future
studies that will address the design, development, and assessment of various other
instructional methods. As the results showed, the scaffolded programming scripts
afforded the development of computational thinking at the two lowest levels of the
PGK hierarchy. An issue that arises directly from these findings is about what side of
the PGK hierarchy computational thinking teaching strategies should be tried to
tackle first. For example, is it better to first teach students how to create abstractions
and generalizations of problems (two highest levels of the hierarchy) before teaching
them how to develop algorithms and write and debug computer code (two lowest
levels), or the other way around? This issue is important to investigate further with
important implications for learning design and utilization of programming environ-
ments. While we foresee pros and cons for both sides of the debate, we firmly believe
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that the literature about the teaching of computational thinking can greatly benefit
from future studies pursuing this line of research.

Appendices

Appendix A: Scaffolded programming script for the robot “The
Dancing Birds”

Part I

1. Use LEGOWeDo to generate the following computer program. Run the program
and write in the space provided what you observe.

--------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------

2. Use LEGOWeDo to generate the following computer program. Run the program
and change it (if needed), so that the robot makes a noise first followed by a spin
to the right. Write in the space provided the new code, if any.

----------------------------------------------------------------------------
----------------------------------------------------------------------------
----------------------------------------------------------------------------

3. Use LEGO WeDo to generate and complete the following computer program so
that the robot does the following in this order: (a) spins to the right, (b) makes a
sound, and (c) makes a different sound than before. Then, write in the space
provided the completed code.

----------------------------------------------------------------------------
----------------------------------------------------------------------------
----------------------------------------------------------------------------

4. Without using LEGOWeDo, write (with a pen) in the space below the code for a
computer program so that the robot does the following in this order: (a) spins to
the right, (b) makes a sound, (c) makes a different sound, and (d) spins to the left.
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--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------

5. Now, use LEGO WeDo to run the program you wrote in 4 above. If needed,
change it so that the robot does whatever is specified in 4 above. Then, write the
new code in the space provided below.

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------

Part II

1. Use LEGOWeDo to generate the following computer program. Run the program
and write in the space provided what you observe.

------------------------------------------------------------------
------------------------------------------------------------------
------------------------------------------------------------------

2. Use LEGOWeDo to generate the following computer program. Run the program
and change it (if needed), so that the robot does the following in this order:
(a) spins to the right, (b) waits for 2 s, (c) spins to the left, (d) waits for 2 s, and
(e) stops spinning. Write in the space provided the new code.

------------------------------------------------------------------
------------------------------------------------------------------
------------------------------------------------------------------

3. Use LEGO WeDo to generate and complete the following computer program so
that the robot does the following in this order: (a) spins to the right, (b) waits for
3 s, (c) spins to the left, (d) waits for 3 s, (d) makes a sound, and (e) makes a
different sound. Then, write in the space provided the new code.

--------------------------------------------------------
--------------------------------------------------------
--------------------------------------------------------
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4. Without using LEGOWeDo, write (with a pen) in the space below the code for a
computer program so that the robot does the following in this order: (a) makes a
sound, (b) makes a different sound, (c) spins to the right, (d) makes a different
sound than the previous one.

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------

5. Now, use LEGO WeDo to run the program you wrote in 4 above. If needed,
change it so that the robot does whatever is specified in 4 above. Then, write the
new code in the space provided below.

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------

Part III

1. Use LEGOWeDo to generate the following computer program. Run the program
and write in the space provided what you observe.

--------------------------------------------------------
--------------------------------------------------------
--------------------------------------------------------

2. Use LEGOWeDo to generate the following computer program. Run the program
and change it (if needed), so that the robot shows the picture of a beautiful beach.

-------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------

3. Use LEGO WeDo to generate and complete the following computer program so
that the robot does the following in this order: (a) shows the picture of a wood,
(b) waits for 3 s, (c) shows the picture of the bottom of the sea, and (d) waits for
1 s.
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---------------------------------------------------------------------------
---------------------------------------------------------------------------
---------------------------------------------------------------------------

4. Without using LEGOWeDo, write (with a pen) in the space below the code for a
computer program so that the robot does the following in this order: (a) spins to
the right, (b) shows a picture with clouds, and (c) spins to the left.

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------

5. Now, use LEGO WeDo to run the program you wrote in 4 above. If needed,
change it so that the robot does whatever is specified in 4 above. Then, write the
new code in the space provided below.

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------

Part IV

1. Use LEGOWeDo to generate the following computer program. Run the program
and write in the space provided what you observe.

-------------------------------------
-------------------------------------
-------------------------------------

2. Use LEGOWeDo to generate the following computer program. Run the program
and change it (if needed), so that the robot does the following in this order:
(a) spins to the right, (b) shows the picture of a cave, and (c) spins to the left.

------------------------------------------------------------------
------------------------------------------------------------------
------------------------------------------------------------------
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3. Use LEGO WeDo to generate and complete the following computer program so
that the robot does the following in this order: (a) waits for 2 s, (b) spins to the left,
(c) shows a picture on the screen, (d) waits for 2 s, and (e) shows a new picture on
the screen.

------------------------------------------------------------------
------------------------------------------------------------------
------------------------------------------------------------------

4. Without using LEGOWeDo, write (with a pen) in the space below the code for a
computer program so that the robot does the following in this order: (a) spins to
the left, (b) waits for 10 s, and (c) stops spinning, and (d) shows a picture with
clouds.

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------

5. Now, use LEGO WeDo to run the program you wrote in 4 above. If needed,
change it so that the robot does whatever is specified in 4 above. Then, write the
new code in the space provided below.

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------

Part V

1. Use LEGOWeDo to generate the following computer program. Run the program
and write in the space provided what you observe.

-------------------------------------
-------------------------------------
-------------------------------------
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2. Use LEGOWeDo to generate the following computer program. Run the program
and change it (if needed), so that the robot does the following in this order:
(a) spins to the right, (b) waits for 9 s, (c) makes a sound, (d) spins to the left,
(e) makes a sound, and (f) spins to the right.

-----------------------------------
-----------------------------------
-----------------------------------

3. Use LEGO WeDo to generate and complete the following computer program so
that the robot does the following in this order: (a) shows a picture, (b) spins to the
left, and (c) makes the sound of a whistle five times.

------------------------------------
------------------------------------
------------------------------------

4. Without using LEGOWeDo, write (with a pen) in the space below the code for a
computer program so that the robot does the following in this order: (a) spins to
the left, (b) waits for 2 s, (c) makes the sound of a whistle six times, and (d) spins
to the right.

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------

5. Now, use LEGO WeDo to run the program you wrote in 4 above. If needed,
change it so that the robot does whatever is specified in 4 above. Then, write the
new code in the space provided below.

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------

Part VI

1. Use LEGOWeDo to generate the following computer program. Run the program
and write in the space provided what you observe.
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-----------------------------------------------------------------------------
-----------------------------------------------------------------------------
-----------------------------------------------------------------------------

2. Use LEGOWeDo to generate the following computer program. Run the program
and change it (if needed), so that the robot makes the sound that you see below
for ever.

----------------------------------------------------------------------------
----------------------------------------------------------------------------
----------------------------------------------------------------------------

3. Use LEGO WeDo to generate and complete the following computer program so
that the robot does the following in this order: (a) makes the sound of a whistle,
(b) makes a kissing sound, and (c) repeats this sequence forever.

----------------------------------------------------------------------------
----------------------------------------------------------------------------
----------------------------------------------------------------------------

4. Without using LEGOWeDo, write (with a pen) in the space below the code for a
computer program so that the robot makes a sequence of four different sounds and
repeats this sequence forever.

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------

5. Now, use LEGO WeDo to run the program you wrote in 4 above. If needed,
change it so that the robot does whatever is specified in 4 above. Then, write the
new code in the space provided below.

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------

Part VII

1. Use LEGOWeDo to generate the following computer program. Run the program
and write in the space provided what you observe.
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--------------------------------------------------------------
--------------------------------------------------------------
--------------------------------------------------------------

2. Use LEGOWeDo to generate the following computer program. Run the program
and change it (if needed), so that the robot (a) makes a sound and (b) makes a new
sound that is repeated forever.

--------------------------------------------------------------
--------------------------------------------------------------
--------------------------------------------------------------

3. Use LEGO WeDo to generate and complete the following computer program so
that the robot does the following in this order: (a) makes a sound, (b) shows a
picture, and (c) repeats this sequence forever.

-----------------------------------------------------------------------
-----------------------------------------------------------------------
-----------------------------------------------------------------------

4. Without using LEGOWeDo, write (with a pen) in the space below the code for a
computer program so that the robot (a) waits for 1 s, (b) makes a sequence of three
different sounds, and (c) repeats this sequence forever.

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------

5. Now, use LEGO WeDo to run the program you wrote in 4 above. If needed,
change it so that the robot does whatever is specified in 4 above. Then, write the
new code in the space provided below.

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
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Appendix B

Without using LEGO WeDo, write (with a pen) in the space below the code for a
computer program so that the robot does the following in this order:

1. Spins to the left
2. Makes the sound of a bird
3. Makes the sound of a bird
4. Makes the sound of a bird
5. Spins to the right
6. Shows the picture of a sky
7. Waits for 3 s
8. Shows the picture of a cave

--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------
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Chapter 8
Computational Thinking in K-12: In-service
Teacher Perceptions of Computational
Thinking

Phil Sands, Aman Yadav, and Jon Good

8.1 Introduction

Much of what we know about computational thinking comes from early research in
educational practices using computers (Papert 1980; Pea and Kurland 1984) and
from common conceptions of how computer scientists think about problems
designed to be solved by computers (Denning 2009). Wing (2006) formalized
computational thinking in an influential article discussing the ways computer scien-
tists think about problems and how skills associated with computing are broadly
applicable in other disciplines. Wing sparked a discussion about how educators
should prepare students for careers influenced by computing and where core com-
putational thinking concepts could be integrated into K-12 curricula (Barr and
Stephenson 2011; Grover and Pea 2013; Yadav et al. 2014). Almost a decade
later, teaching computational thinking skills to students has permeated at all levels
of elementary and secondary schools. This integration is being done through the
generation of new curricula within computer science education programs – the AP
computer science principles course is one notable example – as well as in other
content areas, such as mathematics and science (Weintrop et al. 2016). With this
increased interest, however, comes key questions about how in-service teachers
conceptualize computational thinking, especially teachers who are not trained in
computer science. Namely, how do these teachers understand computational con-
cepts as they work to apply them in their classrooms? Further, what steps do we need
to take to help in-service teachers integrate computational thinking into their
curriculum?

Most of the attention on embedding computational thinking during the past
decade has focused on preservice teachers (Yadav et al. 2011, 2014). While this
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information can help guide in-service teachers’ professional development, we have
yet to identify the unique challenges that exist in introducing computational thinking
to non-computing teachers. A better understanding of in-service teachers’ concep-
tions of computational thinking can guide design of teacher professional develop-
ment programs. In a recent survey, we examined how K-12 in-service teachers
perceive computational thinking within elementary and secondary classrooms. We
present results from the survey and provide recommendations for developing pro-
fessional development programs around computational thinking practices. We also
discuss specific areas within the computational thinking model that lend themselves
to the nature of applied problem-solving in K-12 classrooms.

8.2 Background

In considering computational thinking and its application to student preparation,
Wing (2008) pointed to the links between CT and the wide variety of disciplinary
skills traditionally taught in K-12 classrooms. These connections focus on the
ubiquitous nature of computing and the nature of abstraction as it pertains to
STEM career pathways. In addition, Wing stressed that computational thinking
was not the same as the practice of programming; rather, she argued that the skills
used in programming are useful for problem-solving in multiple contexts. Denning
(2009) argued for the use of computational thinking ideas as the “third leg of
science,” a component of the inquiry process as much as it is a separate and distinct
discipline. While Wing and Denning differed in how computational thinking was
framed, they both agreed on the benefits for students from learning computer
science. Regardless of which perspective one takes, it is apparent that the connec-
tions between computing and K-12 curricula are deep enough to justify the interest
in further embedding these ideas in classrooms.

Since Wing (2006) introduced computational thinking, there have been several
attempts to expand on what ideas encapsulate CT. Wing proposed that computa-
tional skills include abstraction, problem decomposition, pattern recognition, algo-
rithmic thinking, and logical thinking. In attempting to draw connections between
these skills and an educational model in Bloom’s taxonomy, Selby (2015) organized
a variation of these ideas by perceived difficulty: evaluation, algorithm design,
generalization, abstraction of functionality, abstraction of data, and decomposition.
Barr and Stephenson (2011) proposed nine major computational thinking concepts
and abilities to be used within K-12 classrooms across core content areas. These
include data collection, data analysis, data representation, problem decomposition,
abstraction, algorithms and procedures, automation, parallelization, and simulation.
This set is echoed in the work of Grover and Pea (2013), who offered that CT was
comprised of abstractions and pattern generalizations, systematic processing of
information, symbol systems and representations, algorithmic notions of flow of
control, structured problem decomposition, iterative, recursive, and parallel

152 P. Sands et al.



thinking, conditional logic, efficiency and performance constraints, and debugging
and systematic error detection. A more complex set of skills were described by the
National Research Council (2010) including:

reformulation of difficult problems by reduction and transformation; approximate solutions;
parallel processing; checking and model checking as generalizations of dimensional analy-
sis; problem abstraction and decomposition; problem representation; modularization; error
prevention, testing, debugging, recovery and correction; damage containment; simulation;
heuristic reasoning; planning, learning, and scheduling in the presence of uncertainty; search
strategies; analysis of the computational complexity of algorithms and processes; and
balancing computational costs against other design criteria. (p. 3)

Given the wide variety of skills that can be connected to computational thinking, the
lack of a clearly defined subset of skills may confuse educators trying to implement
these practices.

Computational thinking skills have also appeared in recent updates to K-12
curriculum frameworks, such as Next Generation Science Standards (NGSS) as
well as other curricula designed to teach introductory computing skills. The Next
Generation Science Standards (NGSS) include the use of CT as an important practice
to develop scientific understanding (NGSS Lead States 2013). The College Board
created a new Advanced Placement computing course focusing on six key compu-
tational thinking practices, with the goal of attracting a more diverse group of
students to computer science (2014). Similarly, Google introduced the CS First
initiative to provide traditional computer science activities and lessons focused on
computational thinking primarily for use by out-of-school organizations.

Considering that the onus for implementing these programs is on educators with
limited experience in computing, a concern is the risk of conflating computational
thinking with computer science or mathematics. There is also a potential for those
implementing computational thinking ideas to imply that both CT and CS require the
use of programming in all contexts (Fletcher and Lu 2009). In order to address this
issue, it has been suggested that educators encourage the use of computational
thinking skills at an early age, concentrating more on the innate thought processes
that are associated with computing as opposed to specific computing tools. By doing
so, educators can reduce the barriers for entry for students taking computing courses
later in their academic careers (Margolis et al. 2010). This group includes not just
students that develop further interest in computer science but also students interested
in other fields engaging with computing in some form.

In spite of the potentially overwhelming set of skills that can be included in
definitions of computational thinking, it is possible to implement most of the core
ideas in primary and secondary classrooms without overemphasizing technical
abilities. Examples can include digital storytelling, simple data collection, and the
encouragement of scientific investigation (Lee et al. 2014). Considering that teachers
may be using these skills in primary school classrooms already (Mannila et al. 2014),
this suggests a need to help move teachers from implicit to explicit practices
grounded in an understanding of why computational practices are relevant to student
development.
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8.3 Need

Computational thinking practices have the potential to develop student interest in
how computing plays a role in other disciplines, specifically STEM. In order to see
the benefits of student exposure to these computing concepts, we need to train both
preservice and in-service teachers in computational thinking practices regardless of
academic discipline. Across the United States, academic standards have been rewrit-
ten to include computational thinking as a core principle of curriculum implemen-
tation. Examples of this include the Next Generation Science Standards which
include computational thinking concepts (NGSS 2013), Indiana’s K-8 science
standards (Indiana Department of Education 2017), and Texas’ Essential Knowledge
and Skills for elementary education (Texas State Board of Education 2012). Design-
ing teacher professional development program should focus on augmenting teachers
existing competencies while relying on established best practices, in order to align
courses with the major components of computational thinking. As an important step
in this process, we need to understand in-service teachers’ current perceptions of
computational thinking (Prieto-Rodriguez and Berretta 2014). In identifying areas of
need, the transition can then be made to connecting professional development with
classroom integration of CT. This study examined in-service teachers’ conceptions
of computational thinking and was guided by the following research questions:

1. How do in-service teachers conceptualize computational thinking as it would
manifest in classroom practice?

2. How does teachers’ subject area influence their computational thinking
conceptualizations?

3. How does teachers’ grade level taught influence their computational thinking
conceptualizations?

8.4 Methods

Participants Seventy-four elementary and secondary teachers from a Midwestern
state participated in the study. Of these teachers, 65 were female and 9 were male.
Teachers taught at a variety of levels in the K-12 spectrum but could be divided
roughly into primary school (N ¼ 45) and secondary school (N ¼ 29) levels. For the
purposes of this study, we included grades K-6 as primary school teachers and
grades 7–12 as secondary school teachers. Lastly, we considered those teachers that
taught primarily STEM subjects (N ¼ 29) versus those that were in non-STEM
subjects (N ¼ 55). STEM subjects included mathematics, science, computers, or
technology.

154 P. Sands et al.



Survey The survey included ten Likert scale questions based on prior work exam-
ining preservice teachers’ perceptions of computational thinking (Yadav et al. 2011,
2014). The survey items began with the phrase “Computational thinking
involves. . .” followed by a short stem that either belonged or did not belong to the
broader perception of computational thinking. Teachers responded to the items on a
Likert scale with five potential response values. These included “strongly agree,”
“agree,” “disagree,” “strongly disagree,” and “don’t know.” Table 8.1a includes the
list of survey items, and Table 8.1b includes how we characterized whether the item
aligned with literature’s conceptions of computational thinking. It should be noted in
this table that the concept of “coding/programming” was not categorized due to
disagreement over whether programming is an essential element of teaching CT in
classrooms (Denning 2009; Wing 2006; Brennan and Resnick 2012). The internal
reliability of these items was assessed using Cronbach’s alpha (α ¼ 0.92). In
addition, the survey included items to collect demographic information regarding
teachers’ gender, grade level taught, and subjects taught.

The survey was distributed at the Michigan Association for Computer Users in
Learning (MACUL) conference. Participants were recruited at an exhibition booth
for university K-12 outreach programming.

Table 8.1a Items included
in the teacher survey

Computational thinking involves. . .

. . . solving problems

. . . using heuristics/algorithms

. . . logical thinking

. . . thinking like a computer

. . . coding/programming

. . . doing mathematics

. . . using computers (e.g., office tools)

. . . knowing how to use a computer

. . . using technology in your teaching

. . . playing online games

Table 8.1b How researchers categorized items from the teacher survey

Computational thinking involves. . . Computational thinking does not involve. . .

. . . solving problems . . . doing mathematics

. . . using heuristics/algorithms . . . using computers (e.g., office tools)

. . . logical thinking . . . knowing how to use a computer

. . . thinking like a computer . . . using technology in your teaching

. . . playing online games

It is unclear whether or not computational thinking involves. . .

. . . coding/programming
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8.5 Data Analysis

Likert response was given a numerical value from 1 to 4 (“strongly agree,” 1;
“agree,” 2; “disagree,” 3; “strongly disagree,” 4), and missing responses and those
marked as “don’t know”were excluded from these calculations. We used descriptive
analysis for each of the survey items to view patterns in teachers’ conceptions of
computational thinking. In addition, Mann-Whitney U test was used to analyze the
influence of teachers’ subject area and grade level taught on their conceptions of
computational thinking. Mann-Whitney U test, a nonparametric alternative test to
the independent t-test, was used due to the ordinal nature of the data. The data was
analyzed using the R statistical package.

8.6 Results

Majority of the teachers in our study were most confident that computational
thinking involved logical thinking (100%), doing mathematics (100%), and solving
problems (99%). To a lesser degree, majority of the teachers also agreed that
computational thinking involved using heuristics or algorithms (93%), using com-
puters (86%), using technology in teaching (82%), and knowing how to use a
computer (76%). Teachers’ conceptions of computational thinking are shown in
Fig. 8.1, and the descriptive statistics are presented in Table 8.2.

8.6.1 STEM vs Non-STEM Teachers

STEM refers to teaching and learning in the fields of science, mathematics, engi-
neering, and technology (Gonzalez and Kuenzi 2012). For the purpose of this study,
teachers that specified their primary area as one of the natural sciences or engineering
(e.g., computer science, physics, chemistry, etc.) were included within STEM. This
group was categorized as “STEM” teachers, and those outside of these disciplines
was categorized as “non-STEM” teachers. For this study, most of the primary school
teachers were removed from the STEM analysis because these educators commonly
teach all domains. Only those primary educators that specified a domain specializa-
tion were considered in this analysis. Table 8.3 shows the breakdown by grade level
and STEM specialization.

As shown in Fig. 8.2, results showed that STEM teachers had the greatest
confidence that computational thinking involved doing mathematics (100%), logical
thinking (100%), solving problems (100%), using computers (96%), and using
heuristics or algorithms (96%). The non-STEM teachers showed similar beliefs
that computational thinking involved doing mathematics (100%), logical thinking
(100%), solving problems (100%), and using heuristics or algorithms (93%). While
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Fig. 8.1 Teachers’ conceptions of computational thinking

Table 8.2 Descriptive statistics on teachers’ conceptions of computational thinking

Computational thinking involves. . . Mean Standard deviation

. . . doing mathematics 1.31 0.46

. . . using computers (e.g., office tools) 1.67 0.90

. . . solving problems 1.28 0.48

. . . using heuristics/algorithms 1.5 0.76

. . . logical thinking 1.23 0.42

. . . thinking like a computer 1.70 0.92

. . . knowing how to use a computer 1.84 0.99

. . . using technology in your teaching 1.65 0.88

. . . playing online games 1.83 0.97

. . . coding/programming 1.64 0.83

Note: The scale was from 1 (strongly agree) to 4 (strongly disagrees)
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there were similar responses between the STEM and non-STEM teachers on almost
all of the items, two notable exceptions were “thinking like a computer” and “using
computers.” This showed that non-STEM teachers were less likely to view those as
computational thinking. It should be noted that “using computers” was described on
the survey instrument as being akin to using office tools and other applications.

Table 8.3 Primary and secondary teachers considering STEM vs non-STEM teaching credentials

Primary Secondary

STEM 14 15 29

Non-STEM 31 14 45

45 29
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Fig. 8.2 STEM vs. non-STEM teachers and perceptions of computational thinking
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Mann-Whitney U results exhibited there was no significant difference between
STEM and non-STEM teachers on how they conceptualized computational thinking
(see Table 8.4 for the Mann-Whitney U statistics for each of the computational
thinking items).

8.6.2 Primary vs Secondary School Teachers

Over the last decade, the high awareness of STEM curricula has led to more
elementary teachers exploring ways to engage their students in technology
(DeJarnette 2012); hence, we examined whether there were differences in how
they conceptualized computational thinking when compared to secondary teachers.
As shown in Fig. 8.3, results demonstrated that secondary teachers believed that
computational thinking involved doing mathematics (100%), logical thinking
(100%), solving problems (100%), and using heuristics or algorithms (100%).
Similarly, primary teachers also viewed computational thinking as involving doing
mathematics (100%), logical thinking (100%), and solving problems (98%). How-
ever, there were some differences between the two groups as secondary teachers
disagreed at a higher rate whether computational thinking involved “knowing how to
use a computer,” “playing online games,” and “using technology in teaching.” In
addition, they had uniform sentiment that “using heuristics or algorithms” belonged
to computational thinking, while primary teachers showed some disagreement.
Other items showed some differences, but none that were visually significant enough
to note.

Mann-Whitney U results suggested no significant difference between primary
and secondary teachers on how they conceptualized computational thinking (see
Table 8.5 for the Mann-Whitney U statistics for each of the computational thinking
items).

Table 8.4 Mann-Whitney U test comparing STEM vs Non-STEM teachers

Computational thinking involves. . . U statistic p-value

. . . doing mathematics 526 0.06557

. . . using computers 437.5 0.5706

. . . solving problems 473.5 0.3973

. . . using heuristics or algorithms 423.5 0.7236

. . . logical thinking 396 0.8475

. . . thinking like a computer 420 0.2644

. . . knowing how to use a computer 389 0.8276

. . . using technology in teaching 385 0.8967

. . . playing online games 349 0.6169

. . . coding or programming 333 0.5387
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Table 8.5 Mann-Whitney U test comparing primary and secondary teachers’ perceptions

Computational thinking involves. . . U statistic p-value

. . . doing mathematics 688.5 0.24

. . . using computers 607 0.72

. . . solving problems 651 0.51

. . . using heuristics or algorithms 673.5 0.24

. . . logical thinking 621.5 0.50

. . . thinking like a computer 550.5 0.71

. . . knowing how to use a computer 571.5 0.73

. . . using technology in teaching 565 0.79

. . . playing online games 508.5 0.76

. . . coding or programming 525.5 0.92
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8.7 Discussion

Overall, results suggested that while teachers conceptualized computational thinking
in alignment with the literature, they also had some incorrect ideas about what
computational thinking entailed. We also found that there were no differences on
teachers’ conceptions of computational thinking based upon either the content area
(STEM vs. non-STEM) or grade level (primary vs. secondary). Computational
thinking involves a set of skills that describe many of the same abilities inherent to
programming and problem-solving with computers (Denning 2009). The responses
given by the teachers in our study suggested that many educators have very little
knowledge about what these skills are and lack awareness of how these skills can be
implemented in their classrooms. The results suggest that there is much work to be
done before in-service teachers are able to implement computational thinking in their
classrooms.

Based on the literature, we classified what computational thinking entails (see
Table 8.1b). Our results exhibited that teachers had the greatest confidence that CT
involved “logical thinking” and “solving problems,” which align with how compu-
tational thinking has been conceptualized recently (Denning 2017). On the other
hand, teachers also viewed CT as “doing mathematics,” which does not align with
the common conception of computational thinking. Overall, we found that majority
of the teachers strongly agreed with all the components of computational thinking
outlined in the survey items and in many cases that teachers incorrectly agreed with
concepts that we did not view as computational thinking. With these conceptions of
computational thinking, a teacher simply using digital tools, such as Microsoft
Office, might think that he/she is engaging his/her students in computational think-
ing. On the other hand, it is also possible that teachers might think that CT involves
too many conceptual tasks to integrate.

Our results support the need to develop non-computing teachers’ understanding
of computational thinking if it is to permeate within K-12. Teachers, regardless of
whether they taught a STEM subject or not, have similar ideas about computational
thinking and sometimes hold incorrect conceptions. Given the prevalence of incor-
rect views related to computational thinking suggests that while CT maybe a
buzzword in computing education, many teachers are not being introduced to the
core components of computational thinking. While researchers have argued for the
need to embed computational thinking within teacher education (Yadav et al. 2017),
our results suggest the need to also train in-service teachers. This training needs to be
content-specific on how to integrate computational thinking ideas into existing
curriculum. Specifically, teachers need to be introduced to computational thinking
in a way that meets their existing learning goals and fits within their pedagogical
practices. Rather than adapting approaches designed for preservice teachers, we
instead propose implementing a distinct strategy for integrating CT ideas aimed at
teachers already working in K-12 classrooms.

In-service teacher professional programs need to provide support for content
integration, allowing educators to utilize their existing body of knowledge while
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also meeting their needs with regard to time constraints and availability. Existing
research into teacher professional development has found the difficulties of provid-
ing long-term gains in the classroom based on limited exposure to applied concepts
through isolated workshop sessions (Harris and Sass 2011; Desimone 2009). Thus,
in order to successfully train teachers to integrate computational thinking into K-12
classrooms, we need to develop ongoing and continuous professional development
programs that help teachers develop a thorough understanding about what it means
to think computationally and then engage their students in computing ideas (Yadav
et al. 2017).

Professional development needs to draw upon teachers’ expertise in their content
knowledge, pedagogical knowledge, and pedagogical content knowledge. The
Reading Apprenticeship model (Greenleaf et al. 2011) provides a framework to
support teachers’ learning of computational thinking concepts and develop students’
understanding of how computation can be applied in specific subject areas. Specif-
ically, professional development should point out clear connections and how com-
putational thinking can meet subject area learning goals rather than just being an
instructional add-on in the K-12 curriculum (Greenleaf et al.). Given the large
number of demands teachers face and the time constraints of the classroom, we
also need to address how to deliver the content to teachers. Schools of education
should collaborate with departments of computer science to lead state-approved
professional development certification programs in computing education. These
low-cost flexible programs could be delivered online, to allow teachers to learn
virtually and be a member of an online community of practice to discuss how
computational thinking can be embedded to meet their subject-specific learning
goals. As suggested by Yadav et al. (2017), we believe that an online community
of practice would allow teachers to effectively integrate computational thinking to
meet their curriculum needs.

Our findings have important implications for how professional development
programs should be structured to ensure that teachers effectively integrate compu-
tational thinking in their classrooms. Results suggest that professional development
needs to differentiate between the use of computing tools and the concepts and
practices inherent to computational thinking. It might be beneficial to expose
teachers to computational thinking without the use of computers, such as using the
CS Unplugged curriculum (Bell et al. 2009). Focusing on unplugged activities might
help teachers grasp how computational thinking and the use of computers in the
classroom differ from one another. We believe that given Wing’s (2006) description
of computational thinking overlapped with aspects of problem-solving components,
such as abstraction, problem decomposition, pattern recognition, and algorithmic
thinking, a focus on problem-solving skills offers a low floor to get teachers
interested in computational thinking. By using problem-solving as the focus, we
feel that more teachers will be motivated to embed subcomponents of computational
thinking in their regular academic subjects (Yadav et al. 2016).

This study had a few limitations, which has implications for generalizability of
the findings. First, we acknowledge that the survey was based on a small number of
teachers and may not have accurately represented teacher knowledge of
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computational thinking across the United States. The impact of this small group is
also enhanced due to the large number of elementary teachers in our sample that
were not included in our evaluation of STEM and non-STEM teachers. Additionally,
given that participants in our study were volunteers might lead to self-selection bias,
which limits generalizability of the results. It is also possible that the since teachers
completed the survey at a conference focused on technology in education, they were
more focused on computational thinking as involving use of technology/digital
tools. At the same time, given that teachers interested in technology struggled with
identifying computational thinking ideas suggests we have an uphill climb before
CT becomes another core subject similar to reading, writing, and arithmetic as called
for by Wing (2006).

In summary, we recognize the need to prepare students for twenty-first-century
careers makes it essential for K-12 teachers to be prepared to integrate computational
thinking concepts. This requires a multipronged approach to prepare teachers at the
preservice and in-service level to become computationally literate.
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Chapter 9
A Computational Thinking Curriculum
and Teacher Professional Development
in South Korea

Soohwan Kim and Hae Young Kim

9.1 Introduction

Changes in industry caused by the development of information and communication
technology (ICT) have affected all areas of society, including educational environ-
ments. In this age of the “Fourth Industrial Revolution” (Schwab 2015), new technol-
ogies continue to integrate the physical, digital and biological worlds, thereby changing
the economy, the demands of the workplace, and the educational needs of our youth. In
Korea as elsewhere, educational policymakers have come to see that sofeware and
computing education are no longer options but basic competencies that students must
learn in order to succed in twenty-first century. Many nations (e.g., Korea, United
Kingdom,United States, China, Japan, France) have prioritized computational thinking
education, that is, education that teaches coding, algorithm, or digital literacy for K-12
students (Bocconi et al. 2016; ISTE and CSTA 2011; NRC 2010; Naace 2014; KICE
2015). As Corporate Vice-President of Microsoft Research Jeanette Wing noted,
“Everyone can benefit from thinking computationally. My grand vision is that compu-
tational thinking will be a fundamental skill—just like reading, writing, and arith-
metic—used by everyone by the middle of the 21st Century.” (Wing 2008). The
changes in computing education in Korea from 2005 to 2015 reflect the government’s
recognition of the importance of computing education. Accordingly, it has continu-
ously pursued measures designed to give students the ability to apply technology in
their daily lives and use it to make a better future for society (Code.org 2018; KICE
2015; MoE 2015; MoE et al. 2016; P21 2011).

The current 2015 computing education policy was intended to “strengthen SW
[software] education in schools for computing education” (MoE 2014) by:
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(1) establishing the foundation for SW education, (2) identifying and supporting SW
talent, and (3) building the support system for SW education.

Such plans call on teacher educators to train pre-service and in-service teachers in
computational thinking teaching and learning strategies to prepare them for effective
implementation in the classroom. Understanding teacher perceptions can help
teacher educators in computing education respond to problems with the new curric-
ulum as well as teacher concerns.

9.2 The Evolution fo Computing Education in Korea

Up to 2005, Korean computing education consisted mainly of ICT education with a
focus on using software applications and the internet (e.g., PowerPoint, Word
processing, Excel). In 2005, the Ministry of Education attempted the first introduc-
tion of computer science into the curriculum of computing education, though the trial
was not successful and the curriculum was not executed (Lee and Choi 2015). In
2009, the computing education curriculum was altered to include computational
thinking and in 2015, the revised curriculum was finalized (see Fig. 9.1).

All primary school students are required to begin learning about computational
thinking by providing at least 17 classroom hours of various activities involving
educational programming languages or the Unplugged materials. Middle school
students are supposed to spend at least 34 classroom hours exploring and learning
about computational thinking practices with educational programming language and
physical devices (e.g. sensor board, Pico board) (Ministry of Education 2015). All
Korean high school students may take computing education as a normal elective
subject, so any student who wants to learn computing education can select it.

The mandatory nature of these changes makes them quite meaningful. Because
Korea has a national educational curriculum, all students now have equal access to
the new computing education curriculum, the goals of which are to improve student
competencies like information literacy, computational thinking, and collaborative
problem-solving capability (see Fig. 9.2). Table 9.1 shows differences in the content

Fig. 9.1 Changes in Korean computing education, 2004–2015
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of the computing education curriculum for elementary, middle, and high school
students before and after the 2015 curriculum change.

9.3 Current Status of Computing Education in Korea

In 2017, the Korean government is assigning and operating 1200 research or leading
schools for computing education from elementary to high schools to prepare for the
2018 school year. In 2016, 160,000 students throughout Korea participated in an
online coding party that operated on MS Kodu and the Korean Entry platform, which
are block based coding tools (MoE et al. 2016).

The Korean Office of Education has taken many steps to help teachers with the
2015 curriculum. It continues to offer large-scale teacher training courses and has a
plan to hire 500 new secondary school teachers with computer majors by the year
2020. In Korea, primary school teachers must teach all subjects, and all pre-service
teachers must take a course training them to teach this new computing education.

All K-12 teachers are using to teach two educational programming languages:
Scratch and Entry. Entry is a Korean style block programming language that has

Fig. 9.2 Breakdown of 2015 revised computing education curriculum

Table 9.1 Changes in the content of the Korean computing education curriculum before and after
2015

Level Before After Contents

Elementary
school
(2019~)

ICT unit in practi-
cal arts (12 hours)

SW education in practi-
cal arts (over 17 hours)

Problem-solving process, algo-
rithm, programming concepts
Information ethics

Middle school
(2018~)

Informatics
(elective)

‘Informatics’
Over 34 hours (compul-
sory subject)

Problem-solving based on CT
Developing algorithms and
programming

High school
(2018~)

‘Informatics’
(advanced
elective)

‘Informatics’ (general
elective)

Designing algorithms and pro-
grams with various fields
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been strongly influenced by Scratch, however Entry is based on a Learning
Management System that enables teachers to make online classes for their students
(Fig. 9.3).

Four government agencies have partnered to with educational associations,
teacher groups, and private companies to ensure the successful implementation of
the 2015 computing education curriculum:

– Four government agencies: Korean Ministry of Science and ICT; Korean Foun-
dation for the Advancement of Science & Creativity; Korean Ministry of Educa-
tion; Korean Education and Research Information Service

– Four academic associations: Korean Information Science Education Federation;
Korean Association Of Information Education; Korean Association of Computer
Education; Korean Institute of Information Scientists and Engineers

– Two teacher groups: Association of Teachers for Computing (primary school);
Informatics and Computer Teachers of Secondary School

9.4 Steages of Teacher Concern about Computing
Education

The effectiveness of educational reform depends on how well teachers practice the
reform in their classroom. The 2015 South Korean computing education reform
requires teachers to teach computing according to a national curriculum and stan-
dards. Yet, the success of this reform requires that teachers fully understand the
revised computing education curriculum, including intentions, importance, goals,
and methods needed to achieve those goals and achieve full implementation with

Fig. 9.3 Interface of entry (http://playentry.org)
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high fidelity and accountability. Clearly, the teachers’ interest, motivation, and
concerns regarding the computing education are integral to this implementation.
Listening to teachers and identifying their needs in this endeavor is essential to
finding avenues for appropriate educational supports rather than simply enforcing a
top-down mandate for teachers to teach computing education across the country.

A first step in identifying the concerns, interests and thoughts of teachers is
paying attention to their affective or emotional areas. Fuller (1969) proposed a
Concern-Based Model of Teacher Development to explain how the concerns of
pre-service (or novice) teachers may change over time, as they become professional
teachers. Fuller categorized such concerns into three developmental stages: (1) con-
cern with self as an early concern, (2) concern with tasks, and (3) concern with
impact on student learning. Hall et al. (1973) extended Fuller’s concern-based model
to explore teachers’ concerns and changes in concern when educational programs
and reforms are initiated and implemented. They identified seven stages in teachers’
concerns, starting with 0:: unconcerned, informational, personal, management, con-
sequence, collaboration, and refocusing.

Table 9.2 provides a detailed explanation of each of these stages. The first three
stages involve concerns with self and stage 3 is concerned with tasks. Stages
4 through 6 involve the impact of educational reforms on student learning. Based
on this research, George et al. (2006) developed an assessment instrument called the
Stages of Concern Questionnaire to examine these stages. The instrument includes
35 items with possible responses on an 8-point Likert scale with a Cronbach alpha of
between .64 to .84, indicating good reliability.

George et al. (2006) proposed a hypothetical development of stages of concern
like Fig. 9.4. They categorized teacher groups according to the extent to which one

Table 9.2 Seven stages teacher concern

Area Stage Description

Self 0:
Unconcerned

The individual indicates little concern about or involvement with the
innovation.

1:
Informational

The individual indicates a general awareness of the innovation and
interest in learning more details about it. The individual does not seem
to be worried about himself or herself in relation to the innovation.

2: Personal The individual is uncertain about the demands of the innovation, his or
her adequacy to meet those demands, and/or his or her role with the
innovation.

Task 3:
Management

The individual focuses on the processes and tasks of using the inno-
vation and the best use of information and resources. Issues related to
efficiency, organizing, managing, and scheduling dominate.

Impact 4:
Consequence

The individual focuses on the innovation’s impact on students in his or
her immediate sphere of influence.

5:
Collaboration

The individual focuses on coordinating and cooperating with others
regarding use of the innovation.

6:
Refocusing

The individual focuses on exploring ways to reap more universal
benefits from the innovation, including the possibility of making major
changes to it or replacing it with a more powerful alternative.
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uses and practices educatnoal reform as nonuser, inexperienced user, experienced
user, and renewing user. Nonuser means a group of teachers who do not use or
practice educational reform in their classrooms. Since they do not participate in the
reform, nonusers may not be interested in the reform yet or may not have time to
think about it due to their busy schedule. George et al. labeled this type of concern is
unconcerned of stage 0. However, for some of nonuser teachers, they might be
interest in the reform and want to know about it. George et al. (2006) called this as
informational concern, which is stage 1. Typically, nonuser group have relatively
high intensity of concern at stage 0-unconcerned and stage 1-informational.

Inexperienced users mean teachers who have just started practicing an educa-
tional reform but do not know yet effective ways to implement it. Therefore,
inexperienced teachers have concerns in regard to managing a reform and conflicts
with the other tasks. George et al. labeled this concern as management concern,
which is stage 3. As teachers practice reform, they become experienced teachers and
are more likely interested in student learning and effective teaching methods by
teacher collaboration, which were labeled as Consequence concern of Stage 4 and
Collaboration concern of Stage 5 repsectively. When the process of a reform reaches
to a mature and stable period, teachers are able to reflect the contents of reform and
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an impact on student learning. As a result of their reflection, teachers have more
concerns regarding how to revise the current reform for better results, which was
labeled as Refocusing concern of Stage 6.

Kim and Kim (2016) conducted a survey to assess Korean teachers’ stages of
concern regarding computing education using the current version of the Stages of
Concern Questionnaire (George et al. 2006). They collected data from 92 teachers
from elementary, middle and high schools in Korea in early 2016. The analysis of the
data revealed the following insights:

(1) The average Korean teachers presented a non-user profile of stages of
concern, which showed the highest intensity of concern at Stage 0-Unconcerned
and 1-Informational and lowest intensity of concern at Stage 4-Consequences and
5-Collaboration (2) Gender differences in the stages of concern existed in the data.
Except for the fact that Stages 0 and 1 were the highest concerns in both genders,
male teachers showed high intensity of concern at Stage 5-Collaboration and
6-Refocusing whereas female teachers showed high concerns at Stage
3-Management and Stage 2-Personal.

(3) The level of perceived software proficiency affected teachers’ stages of
concern. Teachers with high software proficiency showed significantly higher con-
cerns at Stage 4-Consequence, Stage5-Collaboration, and Stage 6-Refocusing than
the teachers with low software proficiency. Teachers with moderate software profi-
ciency showed high concern at Stage 1-Information and Stage 2-Personal. Teachers
with low software proficiency showed high concerns at Stage 1-Information and
Stage 3-Mangement.

(4) Software education training experiences also affected teachers’ stages of
concern. Teachers who had software education training showed statistically higher
concerns at Stage 4-Consequence, Stage 5-Collaboration, Stage 6-Refocusing than
teachers with no training experience.

(5) The years of computing teaching experience affected teachers’ stage of concern.
Figure 9.5 displays how the intensity of teacher concern changed in relation to

years of computing education experiences. Teachers with less than 1 year of
experience in computing education showed high intensity at Stages 0 and 1 and
low intensity at Stages 4, 5, and 6. On the other hand, the teachers with more than
4 years of computing education experience show high intensity of concern at Stage
6-Refocusing and Stage 5-Collaboration.

Studies on teacher concerns have shown that teachers’ concerns about computer
education tend to differ based on factors such as software proficiency, software
education training experience, and software teaching experiences. Since the
implementation of the revised Korean computing education curriculum is now at a
preparation stage, teachers concerns tend to be mostly at Stage 0-unconcerned and
1-Informational. For teachers who have high software proficiency, however,
software education experience gained in their classroom and received software
education training correspond to different concerns from teachers with low software
proficiency, and no teaching and no training experience. By looking at teachers’
concerns about the process of a specific educational reform (before-early-middle-
later implementation), we can identify the needs of teachers at each stage and
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provide appropriate supports based on individual needs. Thus, examining teacher’s
concerns and needs may ultimately contribute to the effective and efficient imple-
mentation of computing education reforms for K-12 students.

9.5 Analysis of Teacher Needs

We investigated the perceptions of 30 teachers from 15 elementary and 12 secondary
schools in Seoul. We conducted seven focus group interviews and one group
discussion using the qualitative method known as phenomenological research
(Kim et al. 2017). Our analysis of teacher perceptions about current computing
education resulted six distinct problems:

1. Lack of a teacher who majored in a computer-related field or computing
education,

2. Little understanding by principals and non-computer scienc major teachers of the
need for computing education,

3. The need to empower problem-solving capability and programming skill of
compuer teachers,

4. Insufficient materials on teaching strategies and content for computing education,
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5. Lack of lesson hours for K-12 students and a physical infrastructure for comput-
ing education,

6. Inconsistent computing education policies.

In addition, the teachers we interviewed suggested some specific policy changes
to increase the future effectiveness of computing education.

1. Make a special department for informatics education in the Ministry of
Education

2. Establish legal provisions mandating minimum informatics class times and
integrated subjects

3. Plan and execute consistent long-term planning for informatics education
4. Provide more physical space for teacher self-study
5. Create regional computing education centers (e.g., university, library,museum),

with a variety of resources
6. Construct an integrated support system of regional societies, universities, labo-

ratories, and companies.
7. Create a training course on computing education for school principals and

governors.
8. Consider both universal education and vocational education.
9. Support a free semester system and circles made by students themselves.

10. Hire supervisors and researchers with an appropriate educational philosophy
and passion for computing education for education offices.

11. Develop an online system through which teachers can share teaching and
learning materials and educational examples.

12. Develop computing education teacher training courses for different levels of
expertise.

13. Establish an incentive system for excellent computing education teachers and
support teacher groups.

9.6 Proposed Innovations for More Effective Computing
Education

9.6.1 Teacher Training Course

Given the responses of the teachers we interviewed, we propose the establish-
ment of a teacher training course for computing education. The objectives of the
course include: expand computing education through guidance that involves
essential content for schools, establish networks to support the leading schools,
and understand the educational content of computing education. Table 9.3 shows
the contents of a proposed basic teacher training course for 2015 computing
education curricula.

Table 9.4 shows the content of an advanced one-day teacher training course, with
teachers grouped by region and elementary or secondary school position. The course
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content consists of activities involving problem-solving. In one, teachers will be
asked to select six issues based on the educational environment of secondary school
and then analyze and share some of the major factors, such as objectives, learning
factors, teaching and learning considerations, educational environments. Each step
will have problem-solving strategies that call for abstraction and the use of the
automation method (e.g. extract core factor, analyze the current state, decomposi-
tion, modeling, algorithms, programming).

Table 9.5 in particular shows an advanced teacher training course to take place
over 2 days. Based on a revised computing education curriculum, the course consists
of reconstructing methods for learning content to improve students’ computational
thinking. This course is based on the 2015 revised curriculum in order to show how
to reconstruct the curriculum for the needs of our current educational environments.

Table 9.3 Time and content of teacher training basic courses

Time Contents

1 h Explanation of computing educational policy and running leading schools for computing
education

1 h Computational thinking and computing education

1 h Educational contents of computing education
(e.g. unplugged, EPL, physical computing)

Table 9.4 Detailed content of teacher training course

Subject Detailed contents

1 Explore computational thinking
factors

Google computational thinking factors
Creative computing factors
Factors of CAS of U.K.
Factors of Korean SW education
Practice: Make a table of contents of computa-

tional thinking factors

2 Explore lesson plans for computa-
tional thinking

Google CT lesson plan
CS first of MS
Textbook of CAS
Sample lesson plans of CSTA
Korean textbooks for CT
Report of teaching and learning model for CT
Practice: Make a worksheet for CT lesson

3 Computing education curriculum Revised computing education curriculum
Explore hierarchy of educational contents
Explore levels of educational contents
Practice: Make a worksheet for hierarchy of

contents

4–5 Make a lesson plan Abstraction and algorithm
Programming
Practice: Make teaching and learning plan

6 Sharing and feedback Present teaching and learning plan
Peer feedback
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All teachers have to conduct a final project: to make lesson plans and materials based
on computational thinking for their students.

9.6.2 Innovation in the Pre-Service Teacher’s College
Curriculum

In Korea, one needs a special certification to be a teacher for K-12. Most elementary
school teachers have graduated from one of eleven special colleges of education;
most secondary school teachers have graduated from a related educational depart-
ment in a university.

Figure 9.6 presents some proposed changes to the curricula of primary pre-service
teachers so as to emphasize computational thinking education. It has four parts: SW
literacy, using SW, making SW, SW life (Jeong 2016).

The Korean government also has announced the plan of SW Core Universities for
cultivating future human resources who can apply the computational thinking to
solve real life problems (MSI 2018). The SW Core University will strengthen
students competitiveness in SW fields and expand the value of SW by offering a
revised curriculum that concentrates on the practical demands of the SW industry.

The SW Core Universities have to conduct the four following parts:

– Revise SW education curricula according to the needs of industry.
– Operate mandatory programs for all SW major students.
– Provide SW basic education for non-SW major students.
– Establish entrance standards for SW special students.
– Empower networking among SW core universities.

Table 9.5 Advanced teacher training course (secondary school)

Day Contents Description

Day
1

Reconstruction method of computing
curriculum for computational thinking
(2h)

Understand of the 2015 revised curricu-
lum. Understand teaching and learning mate-
rials and educational environment for real life
problem-solving using computational
thinking.

Practice about reconstruction of the cur-
riculum (5 h)

Development and share lesson plan based on
computational thinking with team.

Day
2

Practice of problem- solving and pro-
gramming based on computational
thinking (7 h)

Block based programming or text based pro-
gramming for improving problem-solving in
real life stuation. Physical computing
programming
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9.7 Discussion and Conclusion

Among the most fundamental of our findings was the pressing need for the estab-
lishment of an appropriate physical infrastructure for computing education. The
responses of teachers constantly spoke to this problem of infrastructure, and they
identified it as the most important condition for successful computer education.
Differences between schools in the quality of their computer facilities is a problem
in many developing countries or countries with a large gap between rich and poor.
Because some schools do not have the appropriate physical infrastructure,
Unplugged method that it the teaching and learning method without a computer is
an alternative of computing education, however coding process is necessary.

Therefore, it is necessary to make an environment that guarantees high educa-
tional quality and low investment cost. The One Laptop per Child project of
Negroponte or the ‘Hole in the wall’ effort by Sugata are good alternatives to
traditional computer labs. However these projects can only succeed if implemented
by human resources with a real passion for their students.

Ultimately, successful computing education requires effective operational infra-
structures and human resources. In education, the teacher is the primary human
resource, so government must support them. There are two main methods for
preparing teachers for the challenge of instituting the 2015 computing education
curriculum in Korea. First, we must change the college curriculum for pre-service
teachers in training so that it contains both pedagogical content knowledge and
pedagogical methods for computing education. Second, we must plan and make
available multiple levels of teacher training courses. The basic course should include the
use of educational programming tools and various devices like Arduino, Sensor board,
or Small Robot. Advanced courses should contain teaching and learning strategies for

Fig. 9.6 Contents of framework for computing education for elementary pre-service teachers.
Adapted from “Needs Analysis of Software Education Curriculum at National Universities of
Education for the 2015 Revised National Curriculum” by Y. Jeong, 2016, Journal of The Korea
Association of Information Education, 20(1), p. 85. Copyright 2016 by KAIE
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improving students’ computational thinking. In addition, a convergence course should
consist of a STEM project integrating other subjects. In the last year, KOFAC have been
running basic and advanced courses for teacher training in Korea, some as trials for
convergence training courses.

Another method is to support a self-organized teacher group and provide a place
for them to study teaching and learning strategies. This concept is in line with
making a free place for students, as in the future school by Isido (Ishido 2014). In
fact, self-organized teacher groups are arising, thus government should strengthen
their capacity voluntarily. Computing education teachers must create such groups
and together attempt various challenges such as micro-teaching, learning about
new devices, and studying the computing education curriculum. Because comput-
ing education requires a computer and various technological devices, a location
with an appropriate infrastructure is a prerequisite. Little by little, the Korean
government is seeking to make more of such places available. Both local
governments and local offices of education should provide support for such teacher
groups and locations as well.

Finally, training courses in computing education must be made available for
governors and principals of schools. According to recent research(Choi et al.
2016), the perception of the necessity of computing education is rising among school
principals, and this attitude has a positive effect on the entire system. Directors of
schools who are convinced of the importance of computing education help to ensure
that practice rooms and support for computing teachers remain available. The
authority of principals is absolute in Korea, so the milieu they create within their
context can have a major impact on the larger school environment and policymakers.
We believe it is highly likely that principals who take these training courses will be
much stronger supporters of computing education—and a facilitater of the proper
professional development for teachers in their schools. The teacher is a primary
factor in effective computing education but not the only one. As Toyama (2015)
noted, successful computing education depends on the passion of all stakeholders,
including leaders (governors or directors), teachers (performers), students, and
parents (beneficiaries).
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Chapter 10
Exploring the Scope and the
Conceptualization of Computational
Thinking at the K-12 Classroom Level
Curriculum

Georgios Fessakis, Vasilis Komis, Elisavet Mavroudi,
and Stavroula Prantsoudi

10.1 Introduction

While it is a rather common belief that the integration of computer science (CS) in
modern general education is required for pedagogical and socioeconomic reasons,
approaches to this attempt vary significantly. Briefly speaking, one can distinguish
three main models – (1) the “CS as a separate subject” model, which emphasizes the
fundamental concepts and skills of computer science, mainly programming. This
model, in many cases, results in the diffusion of the misconception that “CS ¼ pro-
gramming” (Denning 2009). (2) The information communication technologies (ICT)
model, which aims at the development of digital literacy (synonymous of ICT
literacy). In this case, the emphasis is placed on the familiarization with software
applications and the fluent use of digital technology. In the best case, this model also
concerns the use of ICT as a cognitive tool (e.g., use of microworlds, simulations,
and other learning software) for the construction of knowledge by students in various
school subjects, combined with the constructivist pedagogy. The ICT model does
not ensure that students develop the required CS competences. This is because it
percepts computers as tools in science and, at best, computation as a method of
science. These perceptions do not cover the current conceptions of computation as a
process of nature and of computing as the study of natural and artificial information
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processes (Denning and Martell 2015). (3) The third model constitutes a combina-
tion of CS and ICT models using curricula that bridge digital literacy and CS topics,
in coordination with the curricula of other school subjects, with the intention of
ICT-enhanced teaching and learning. The bridging of ICT and CS standards and
curricula constitutes a pragmatic solution for modern public educational systems
(Brinda et al. 2009). This model, if wisely implemented, could support the devel-
opment of computational literacy (diSessa 2000) for all literate citizens, which
concerns the use of CS concepts and methods as tools for general problem-solving
as well as a medium to study other disciplines. Furthermore, it could cover the
introduction of the fundamental and distinct principles and practices of CS instead of
reducing CS to a few categories of its key practices like programming or application
of computational thinking (Denning 2009).

Each of the three, CS integration in education, models has significantly distinct
consequences and requirements for their implementation in a state- or nationwide
educational system scale. For example, the preparation of teachers, the curriculum,
and the teaching/learning material require a different approach in each model.
Despite the efforts of several international organizations (such as the Association
for Computer Machinery/Computer Science Teachers Association (ACM/CSTA)
and the International Society for Technology Education (ISTE)) to propose model
curricula, standards, teachers’ training, learning material, research support, and
policies, the position of CS and ICT still varies significantly among state and
national educational systems. What most countries seem to be mainly delivering is
ICT literacy, thus reproducing the misconception that “CS ¼ digital devices and
productivity software applications” and, consequently, limiting students’ opportu-
nities to develop their competence for computational resources utilization.

As CS is currently considered the fourth great scientific domain along with the
traditional physical, life, and social sciences (Rosenbloom 2004), the integration of
CS in general education is an imperative issue that should attract the interest of the
education community and educational policy-makers. Recently, the role of CS in
general education came in the center of the interest in many countries, mainly
because of the recognition of computing as a core part of Science, Technology,
Engineering, and Mathematics (STEM) Education (Henderson et al. 2007). The
conducting of a meaningful and comprehensive discussion on the integration of
CS in K-12 education, with the participation of all stakeholders, is currently of great
importance. The CS education community’s recently increased interest in the con-
cept of CT is particularly helpful to initiate and fuel this dialogue. With the
publication of the article entitled “Computational Thinking” (Wing 2006), Janette
Wing set out her vision of recognizing CT as a fundamental competency that all
literate citizens should develop through compulsory education, to complement the
three other core skills, that is, reading, writing, and mathematics. Since Wing (2006)
raised the issue of CT, as a conceptual tool to approach the role of CS in general
education, extended discussion on the scope of the term got launched.

No sooner had this discussion come to a close than various initiatives, as well as
full curricula – geared toward the development of CT in education – emerged. An
important factor, which – at policy level – highlights this focus on CT was that, since
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2009, the National Science Foundations’ (NSF) Computer Information, Science and
Engineering (CISE) Research Infrastructure, recognizing the importance of CT and
the essential role it can play in education and society, decided that CT should be a
required element in all proposals submitted for sponsorship under the program CISE
Pathways to Revitalized Undergraduate Computing Education (CPATH). The early
attempts of implementing CT integration in education have already been providing
feedback information thus making a critical review of the concept, one that takes into
consideration the sporadic theoretical criticism (Denning 2009; Easterbrook 2014)
seem well-timed and fruitful. The present work constitutes an attempt to contribute
to the clarification of the CT term within the context of K-12 education. A central
issue of this study/chapter is to outline the conceptualization of CT as it is explicitly
or implicitly presented through the curricula of K-12 education. Furthermore, the
paper takes a cautious look at the expected conceptualization of CT by the teachers.
The instructional events and learning activities that a teacher employs in his/her
everyday practice and which formulate the classroom curriculum constitute a pro-
jection of his/her interpretation and pedagogical translation of the programmatic
curriculum (Deng 2009; Fesakis and Serafeim 2009). Teachers’ preparation is very
significant for the development of the CT full pedagogical potential (Yadav et al.
2011, 2014), or, as Cuny (2011) points out, the biggest challenge does not lie in the
curriculum but in the effective teacher preparation and support. In this paper, we
attempt to explore the teachers’ CT content theory using content analysis on the
learning activities designs which constitute the product of the teachers’ pedagogical
translation of the programmatic curriculum. Finally, the study tests Denning’s
(2009) claim that CT is not a unique and distinctive characteristic of CS, neither
adequate to express the whole field of CS. The rest of the chapter will unfold in four
sections as follows: Section 10.2 presents the historical evolution of the concept
along with some criticism it has been receiving. The research rationale and meth-
odology are discussed in Section 10.3, while the research findings are presented and
initially interpreted in Section 10.4. The paper closes with summarizing and con-
cluding remarks in Section 10.5.

10.2 Theoretical Framework

10.2.1 Historical Evolution of the CT Concept

Jeannette Wing (2006) recoined the term CT in her homonymous article where she
formulated the following definition:

Computational thinking involves solving problems, designing systems, and understanding
human behavior, by drawing on the concepts fundamental to computer science. (Wing 2006)

Wing’s arguments about the importance of CT for general education are developed
along two axes: (1) On the one hand, CT constitutes a set of skills, techniques,
methods, and attitudes of reaching solutions to a wide range of problems.
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Abstraction and analysis constitute the prominent tools in addressing the complexity
of the problems. CT appears to equip us with methods and models that make the
representation and solution of complex problems feasible, a perspective that would
otherwise be impossible. (2) On the other hand, CT confronts us with the challenge
of machine intelligence asking for what people can do better than machines and what
machines are better than humans at. Attempts to answer the question of what types of
problems are solvable by a computer promote science and technology toward
exploring new frontiers.

As Grover and Pea (2013) remark, long before Wing’s article rekindled the idea
and triggered actions that would back up its implementation, the value of learning
computer programming as a general competence had been highlighted by two other
computer science pioneers, Alan Perlis and Seymour Papert. More specifically, in
1962, Alan Perlis put forth the idea that all college students should understand
computation theory and learn computer programming as a medium to study a wide
variety of other topics, more effectively (Guzdial 2008). He thus proposed the
teaching of computer programming to all students. A few years later, in 1967,
according to the LOGO Foundation, Papert (1991) created LOGO programming
language specially designed as an alternative approach to mathematics teaching and
algorithmic thinking. In the years that followed, Papert made popular the idea of
programming as a means of developing algorithmic thinking, promoting his robotic
turtle and LOGO programming language in the context of K-12. Computer science
has for the first time become popular and in fact, at a time when the widespread and
the possibilities offered by technology nowadays, seemed like science fiction sce-
narios (personal computers appeared in the late 1970s and spread during the 1980s).
Papert was also the one who first coined the term “computational thinking” for
education, in 1996, within his work with LOGO programming in MIT (Papert 1996).
Furthermore, in 2000, Andrea diSessa introduces the definition of computational
literacy, to describe how computers can turn into powerful catalysts for change in
education and how everyone – apart from consumer – can become a creator of
dynamic and interactive representations as cognitive tools (diSessa 2000). DiSessa
supports the value of using computers as a medium for exploring other disciplines
(Abelson and diSessa 1980) so the two terms, “computational literacy” and “com-
putational thinking,” although different, tend to be used as synonyms (Grover and
Pea 2013).

More recently, Isbell and Stein argued that the curricula of computing courses
should be revisited to include core competences in modeling, scales and limits,
simulation, abstraction, automation, and interpretation of data, also known as the
computationalist mind-set (Isbell et al. 2009). The term has later been expanded to
include reasoning at multiple levels of abstraction, the use of mathematics to develop
algorithms, and understanding the dimension of scale.

Wing’s action toward the direction of integrating CT in basic education brought
the scientific community up to serious questions. Questions related to which exact
aspects of CS could contribute to the solution of problems across the spectrum of
human research, as well as which people have the appropriate training to effectively
support such a venture (Barr and Stephenson 2011). Furthermore, Guzdial (2008)
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raises the issue of what non-computing students understand about computing, as
well as issues related to the tools and the structure/organization of the courses so that
they become more challenging and easily accessible to all students. To examine the
“nature of computational thinking” and what it implies in the academic and educa-
tional field, along with the pedagogical aspects of CT (National Research Council
2010), the National Academy of Sciences organized a first workshop, the closing of
which left many questions unanswered. Thus, a second workshop followed, which
leads to the revision of the original definition of CT by Wing herself and to the
formulation, hence, of a second definition, according to which:

Computational thinking is the thought processes involved in formulating problems and their
solutions so that the solutions are represented in a form that can be effectively carried out by
an information-processing agent. (Wing 2011)

At the same time, CSTA in collaboration with ISTE organized workshops aiming at
creating an “operational definition,” that is, a list of the key concepts and skills
related to CT, along with examples of how these could be incorporated into different
subjects. The two organizations mentioned above display extensive experience in the
development of standards, teaching material, professional development programs for
teachers, and educational policies counseling internationally. The interested reader
may obtain a brief description of the results of this effort at Barr and Stephenson
(2011), while the key points of the operational definition – as described in a collation
of CT resources for teachers (ISTE and CSTA 2011) – present CT as a problem-
solving process that includes (but is not limited to) the following characteristics:

• Formulating problems in a way that enables people to use a computer and other
tools to help solve them

• Organizing and analyzing data logically
• Representing data through abstractions, such as models and simulations
• Automating solutions through algorithmic thinking (a series of ordered steps)
• Identifying, analyzing, and implementing possible solutions with the goal of

achieving the most efficient and effective combination of steps and resources
• Generalizing and transferring this problem-solving process to a wide variety of

problems

The “CS Principles” course designed by the College Board and NSF constitutes
another interesting approach since it focuses on CT practices and is based on the
seven “big ideas” of computer science (The College Board 2010):

1. Computing is a creative activity.
2. Abstraction reduces information and details to facilitate focus on relevant

concepts.
3. Data and information facilitate the creation of knowledge.
4. Algorithms are used to develop and express solutions to computational problems.
5. Programming enables problem-solving, human expression, and creation of

knowledge.
6. The internet pervades modern computing.
7. Computing introduces a global impact.
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From the United Kingdom and the Royal Society, with support from the Royal
Academy of Engineering, finally, comes the following definition:

Computational thinking is the process of recognizing aspects of computation in the world
that surrounds us and applying tools and techniques from Computer Science to understand
and reason about both natural and artificial systems and processes. (Royal Society 2012)

Royal Academy’s definition brings CT closer to Denning’s (2009) CS definition and
its application for the study of the natural and artificial world.

The evolution in the definition of CT shows that the concept is still under
discussion. Despite its evolution, CT remains rather blurred in the broad education
community. More modern definitions tend to relate CT with the application of
computation as a problem-solving and an epistemological means in several disci-
plines. A useful outcome from the above review of the definitions would be the
union of the proposed sets of CT dimensions. Hence, the set of dimensions, which
the various definitions seem to highlight, include:

• Creative problem-solving
• Algorithmic approach to problem-solving
• Problem solution transfer
• Logical reasoning
• Abstraction
• Generalization
• Representation and organization of data
• Systemic thinking
• Evaluation
• Social impact of computation

A reasonable question that arises, therefore, is whether CT is an umbrella concept
describing the loose assembly of pedagogically significant dimensions of CS, a
practice of CS, or a distinctive entity concerning a specific kind of thinking in the
context of computation. In the next section, we’ll try to shed some light on the CT
concept commenting on the criticism against it. This will also help justify the
analysis scheme that will be used in the research part of the paper.

10.2.2 Criticism of the CT Concept as a Vehicle to Reclaim
CS Role in Education

There is rather limited, however serious, criticism expressed against the CT concept,
to date. In his article, Easterbrook (2014) mentions a few critiques that have been
made with respect to the vagueness of the term. He also claims that, because
computational thinkers are oriented toward problems that can be tackled with
computers, problems such as ethical dilemmas, value judgments, and societal change
could be ignored or downgraded to simpler, computationally approachable versions.
Especially in the case of sustainability practice, he proposes systems thinking as the
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necessary bridge for the utilization of CT, as it provides a domain ontology for
reasoning and thinking critically about sustainability. Furthermore, Denning (2009)
expressed deep concerns about the risk of degrading CS to one of its key practices
(CT) and of replacing the usual misconception that “CS¼Computer Programming”
with the new inadequate equation, that is “CS¼CT”. As Denning notes, CS is not
just a tool in the hands of scientists but a way to do science. Computers are a tool, not
the object of study, and computation is an essential method of doing science since it
concerns the understanding and control of information processes (artificial and
natural). Advances in CS, therefore, allow scientists to envision new problem-
solving strategies and experiment with new solutions, both in the real and virtual
worlds. The work of organizations like Partnership for Advanced Computing in
Europe (http://www.prace-ri.eu/), which awards scientists who advance science
using computing, is illustrative for the significance of high-performance computing
in scientific and technology advancement. As Denning (2009) highlights, this
rationale stems as early as 1975 when Physics Nobel Laureate Ken Wilson promoted
the idea that simulation and computation are ways to do science, previously not
available. In collaboration with other scientists from several fields, Ken Wilson
advocated the creation of supercomputing centers worldwide, aiming to confront
grand scientific challenges by computation. One could claim thus that, at the core of
Denning’s view lies the belief that, while both, computation and CT are essential to
the advancement of science, computation, as a concept, is more fundamental than
CT. Denning’s point of view that CS provides the way to “the study of information
processes, natural and artificial” endorses the value of CS in general education since,
in a world where CS is ubiquitous, those who possess computing skills are expected
to be better problem-solvers and more adaptable to the modern socioeconomic
environment and, consequently, more competent at dealing with great challenges.
Furthermore, since computation is considered a new inevitable way to do science,
supplemental to theory and experiment, the development of CT emerges as a
strategic advantage for future scientific progress in any society. Through this per-
spective, Denning promotes “The Great Principles Framework” as a complete
approach to the integration of CS Education in K-12 (Denning and Martell 2015).
According to Denning (2009), “The Great Principles Framework” is a way to
express CS as a field of science based on deep and enduring fundamental principles.
The framework has two parts: core principles and core practices. The core principles
are grouped into seven categories:

• Computation (meaning and limits of computation)
• Communication (reliable data transmission)
• Coordination (cooperation among networked entities)
• Recollection (storage and retrieval of information)
• Automation (meaning and limits of automation)
• Evaluation (performance prediction and capacity planning)
• Design (building reliable software systems)

The core practices are areas of skill and ability in which computing people can
display various levels of performance such as beginner, competent, and expert.
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There are four core practices: (a) Programming, (b) Engineering of systems,
(c) Modeling, and (d) Applying. Denning considers that CT can be seen either as a
style of thought that runs through the practices or as a fifth practice. It is the ability to
interpret the world as algorithmically controlled conversions of inputs to outputs.

10.3 Research Framework

As can be deducted from the discussion on CT meaning, the essence of CT lies in the
ability of someone to approach problem-solving the way computer scientists do. The
above view does not attribute special innate talents to computer scientists but rather
refers to acquired skills and conceptual models, reflecting specific educational
background, as well as experience gained by solving complex problems with
computers. While anyone – with proper training – can use software applications in
the context of his/her work or for entertainment purposes, the metaphors and ways of
thinking of CS must be taught explicitly (Guzdial 2008). For a systemic and
sustainable integration of CT in formal education, resources that would first persuade
educational policy-makers and, later on, allow teachers to integrate CT in the realm
of their knowledge both in principle and classroom are required (Barr and Stephen-
son 2011). Many initiatives have produced such resources and have been
progressing to the integration of CS in education so far, yet CT and its relation to
CS remain rather unclear and controversial.

10.3.1 Research Rationale

To contribute to the disambiguation of CT and map the gap between CS and CT
educational potential, the present work explores the conceptual interpretation of
CT in widely known K-12 curricula. More specifically, the paper explores the
expected understanding of CT by the teachers as this is depicted in the pedagog-
ical translation (Deng 2009) of the curricula into learning activities. To obtain
this, directed qualitative content analysis (Seker and Guney 2012) on sets of
learning activities of selected curricula-initiatives will be conducted, using a
complex coding scheme, based on current theoretical conceptions of CT, the
great principles of computing framework (Denning 2009), and selected educa-
tional dimensions. The aims of the analysis include (a) to promote CT conceptual
disambiguation, (b) to deductively confirm that CT concerns the application of
CS to other school subjects and gain a better understanding of the nature of this
relation, and (c) to search for evidence supporting Denning’s (2009) view
according to which, while CT is one of the key practices of CS, it is not adequate
to cover all the principles and practices of the discipline.

188 G. Fessakis et al.



In the present work, the authors adopt Deng’s (2009) view that a school subject is
introduced at schools as a distinct representation of a content embodied in curricu-
lum documents or materials (e.g., curriculum frameworks, syllabuses, textbooks,
digital repositories of learning objects). Curriculum developers – often implicitly –

apply a (subject dependent) theory of content, that is, a way of deliberately selecting,
arranging, transforming, and framing the content so that it serves the educational
purposes of a school subject. The theory of content is also applied in the process of
selecting specific teaching, learning, and assessment methods for the corresponding
school subject. Consequently, for an efficient teaching and the development of the
full educational potential of a school subject, apart from familiarity with the content
per se (content knowledge), teachers are required to have knowledge and under-
standing of the corresponding inherent theory of content as well as of the related
curricular, learning and instructional issues (pedagogical content knowledge)
(Shulman 1986). The formation of CT as a school subject, therefore, imposes the
use of a theory of content in the relevant curriculum development process. The
exploration of both CT theory of content and its understanding by teachers arises as a
key research issue. Curriculum theory discerns three levels of curriculum-making:
the institutional (or abstract/ideal), the programmatic (or analytic/technical), and
the classroom (or enacted) (Deng 2009).

The institutional curriculum expresses the desired, anticipated, long-term out-
comes of the school subject in social, cultural, and national levels (Doyle 1992a, b).
In the case of CT, the institutional curriculum can be inferred from the general
philosophy sections of the CT national curricula or the model curricula and the
curriculum proposals of the various associations and initiatives. Any institutional CT
curriculum is, more or less, in alignment with Wing’s arguments on the value of the
development of CT in general education.

The programmatic curriculum describes specific content (topics, concepts, prob-
lems, case studies, etc.) which have been selected, organized, and framed in a way
that both meet the institutional curriculum expectations and are also consistent with
the modern pedagogical approaches (e.g., inquiry, collaborative, interdisciplinary
problem-based learning), as well as with the education research findings (didactics of
the specific subject matter). In order to cope with this complex challenge, program-
matic curriculum designers have to formulate a content theory. The programmatic
curriculum constitutes a set of technical and analytical documents for use in schools.
Thus, programmatic curricula about CT have the form of curriculum frameworks
accompanied by guidelines for instruction and assessment. A selection of them is
described in Sect. 10.3.2.1.

Finally, the classroom curriculum is formed by the transformation of the pro-
grammatic curriculum into instructional events and learning activities, at school.
Classroom curriculum is, therefore, mainly defined by teachers who are expected to
have a good comprehension of the content of the programmatic curriculum in order
to be able to interpret it and translate it into instructional and learning activities,
taking into consideration (a) the directions of the institutional curriculum, (b) their
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students’ existing knowledge and experiences, and (c) their school context. Thus, CT
classroom curriculum concerns the development of teaching and learning designs
(e.g., scenarios, scripts, lesson plans) and materials, aiming at engaging students in
the construction of their own knowledge and competences related to CT, as well as
at the implementation of these designs in the classroom. The pedagogical translation
concerns the development of educational experiences by selecting key issues (e.g.,
concepts, problems), their appropriate pedagogical representations, instructional and
assessment methods, and resources (e.g., class exercises, creative examples, careful
explanations). Obviously, the classroom level curriculum is the key to a successful
implementation of any institutional and programmatic CT curriculum, while the
educational potential of CT is practically determined by the classroom curriculum.

According to the above analysis, in order to better understand the nature of CT as
a school subject, it is crucial to explore the curriculum content with respect to the
three levels of curriculum-making, described above. Moreover, by analyzing the
learning activities included in a classroom level curriculum, one may better conceive
the teachers’ understanding of CT institutional and programmatic curricula as well as
the corresponding theory of content. Thus, in this paper, by analyzing a number of
learning activities that accompany programmatic curricula in several curriculum
proposals, the authors seek to explore the contemporary anticipated understanding
of the CT curriculum content theory by the teachers and how it relates to the
programmatic and the institutional curriculum conceptions of CT. Toward this
direction, content analysis to CT learning activity sets, using as coding categories
the dimensions of CT that are described in the programmatic and institutional
curricula, will be applied. Furthermore, content categories in relation to pedagogy
dimensions and CT concept disambiguation – as it will be analyzed in the following
section – have been defined. More specifically, the analysis can potentially provide
answers to the following questions:

RQ1. Are all the theoretical dimensions of CT represented in the classroom
curriculum?

RQ2.Which other school subjects are utilized for the development of CT in schools?
RQ3. Which teaching/learning methods and resources are proposed for the devel-

opment of CT?
RQ4. Are there any dimensions (practices and key concepts) of the CS great

principles framework proposed by Denning that are not covered by the CT
classroom curricula (in other words, is the eq. CT ¼ CS valid)?

It is worth pointing out that, since the learning activities that will be analyzed
within the framework of this work are not necessarily products of work of ordinary
teachers, the relevant content analysis is expected to reveal a rather optimistic aspect
of the teachers’ understanding of CT content.
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10.3.2 Research Methodology

Qualitative content analysis (Krippendorff 1980; Neundorf 2002) was employed in
this research to explore the CT classroom curriculum nature as this is projected by
the learning activities designs proposed in various curricula and initiatives. More
specifically, a directed (deductive) content analysis (Elo and Kyngas 2007) with a
predefined coding scheme, which was developed through the relevant theoretical
analysis (the review of the CT conceptions), was used. The directed content analysis
uses an existing theoretical framework to determine the initial coding scheme, while
the results of the analysis validate or extend this theoretical framework (Hsieh and
Shannon 2005 cited in Seker and Guney 2012). Content analysis requires the
selection of the unit of analysis to start. In this study, the unit of analysis is the
learning activity design (or lesson plan, or learning scenario, or learning script) that
explicitly addresses CT for the K-12 grades.

10.3.2.1 Building the Collection of the Learning Activities Designs

To build the collection of learning activity designs, we first collected a set of
curricula and initiatives concerning CT in K-12 education using (1) information
derived from the literature review and (2) known electronic search engines, to look
for initiatives offering teaching/learning resources and curricula concerning the
integration of CT in the educational process. The results included CS curricula and
initiatives which made clear reference to the term and relevant concepts, as well as
activities including core dimensions of CT, without referring directly to the term.
The sources were filtered based on their quality, intentional focus on CT, and their
role as models for many other less known initiatives. The final set of curricula and
initiatives as well as the numbers of the corresponding learning designs/scenarios
that were selected for analysis are summarized in Table 10.1.

The sources presented in Table 10.1 contain many learning scenarios from which
58 – the ones that more strongly responded to the criteria defined above – were
selected for further study and content analysis. More analytically:

• Teaching London Computing (https://teachinglondoncomputing.org/). TLC pro-
gram is funded by the Mayor of London and the Department of Education to
provide free classroom resources, workshops, and continuing professional

Table 10.1 CT learning design sources included in the analysis

Source Selected learning designs

Teaching London computing 21

Barefoot program 14

CS unplugged 14

Computational thinking toolkit by ISTE and CSTA 9
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development courses to support computing teachers in London. Studying the
links between computing and a variety of other subjects, as well as how CT
techniques apply across the curriculum, a partnership between the Queen Mary
University of London and King’s College London has developed a series of
activities and educational material. The goal, among others, was to engage
computer science and a series of other topics, like English, math, biology,
physics, history, philosophy, language, music, design and technology, art, and
dance, in an interdisciplinary way. The resources provided include CS and
interdisciplinary learning activities for developing CT or even a series of fun
activities and booklets based around puzzles or magic tricks that teach computing
topics and CT. The resource hub of TLC provides a large number of scenarios in
total, 21 of which were selected for analysis based on the activities’ relevance
with CT.

• Barefoot Program (http://barefootcas.org.uk/). The Barefoot Program, supported
by the Department for Education, Computing at School (CAS) community, and
British Telecommunications (BT), provides many high-quality resources aligned
to the national curriculum, to support primary teachers of all UK nations to teach
CS. For the Barefoot Program, although CT has wide applications across other
disciplines and clearly helps in problem-solving procedures, it’s obviously appar-
ent and probably most effectively learned, through the rigorous, creative pro-
cesses of writing code. From the 39 available resources, we selected 14 scenarios
for the purposes of our study. The activities were selected after filtering the
available resources to result in those related to CT topics.

• CS Unplugged (http://csunplugged.org/). CS Unplugged is a project carried out
by CS Education Research Group at the University of Canterbury to provide a
collection of learning activities (games, puzzles, etc.) that teach CS without the
required use of a computer. The material is shared under a Creative Commons
license and has been used around the world for over 20 years. The activities are
aimed at the 5–12-year-old age group and mainly concern data representation,
algorithms, procedures, intractability, cryptography, and the human face of com-
puting, most of them embedding many concepts and approaches of CT. The main
goal is that young students will experience the kind of questions and challenges
computer scientists experience, without having to learn to program first. After the
adoption of computing and CT in many classrooms, the collection is nowadays
widely used. From about 30 available scenarios, 14 were selected for our study
because they explicitly mention CT or some of the CT concepts.

• Computational Thinking Toolkit was created by ISTE and CSTA, with the
support of NSF, in order to prepare and conduct a CT approach for K-12 students
and teachers (Sykora 2014). The toolkit describes CT as a cross curricular
initiative and a problem-solving skill. To guide teachers by example and support
them in their attempts to teach CT, the toolkit introduces full learning experiences
as well as CT scenarios, cultivating certain characteristics, dispositions ans
attitudes as essential dimensions of CT. All the 9 CT learning scenarios of the
toolkit concerning K-12 education were included in our analysis.
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The detailed list of the selected learning scenarios for analysis is accessible at
https://goo.gl/cG6LE1.

10.3.2.2 Defining the Coding Scheme

In a directed content analysis, the coding process requires a predetermined catego-
rization matrix (coding scheme). In this study the coding scheme was developed
with respect to (a) the union of CT dimensions that are proposed by the various
initiatives (Table 10.2), (b) the key concepts and practices of CS as Denning
proposed them, (c) pedagogy features (learning, teaching methods, social mode,
unplugged or on the computer), and (d) interdisciplinary features (related subject
matters other than CS). In this section, the dimensions of the coding scheme as well
as the categories of each dimension are described. To serve the analysis purposes, we
used a number of dimensions, only a subset of which, actually the ones mentioned in
the research findings section, are presented below.

a. CT Dimensions

CT is analyzed to several dimensions by the several learning scenarios providers.
The authors tried to find correspondences and define the union of these dimension

Table 10.2 CT dimensions across the initiatives and unified

TLC Barefoot ISTE-CSTA Unified dimensions

Algorithmic
thinking

Algorithms Algorithms and
procedures

Algorithmic thinking – AL

Abstraction Abstraction Abstraction Abstraction – AB

Evaluation Evaluation Problem decomposition Generalization – GE

Decomposition Decomposition Data collection Logical reasoning – LR

Pattern matching Patterns Data analysis Pattern matching – PM

Modeling Logic Data representation Problem decomposition –

PD

Sequencing Automation Problem translation – PT

Logical reasoning Simulation Evaluation – EV

Generalization Representation – RE

Translating
problems

Data collection – DC

Understanding
people

Data representation – DR

Testing Data analysis – DA

Modeling – MO

Simulation – SIM

Automation – AUT

Sequencing – SE

Testing – TE

Understanding people – UP
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schemata, in order to use them as coding categories. The exploration of the distri-
bution of scenarios throughout these dimensions and the relationships among them
will provide crucial information for the understanding of CT at the classroom
curriculum level. Table 10.2 lists the dimensions per initiative and the unified set
used for the scenarios’ analysis. The unified list is the union of the partial lists. CT
dimensions are not explicitly mentioned by CS Unplugged project, so there is not a
corresponding column in Table 10.2. A careful observation of Table 10.2 reveals
that systems thinking is not considered as a CT dimension in the analyzed initiatives
despite the fact that it is mentioned as such in other sources (Easterbrook 2014). This
is a programmatic curriculum level omission since systems thinking is a key
contribution of CS to problem-solving and the study of complex dynamic systems.

b. CT Approaches

Barefoot names a set of CT approaches and ISTE-CSTA a set of dispositions that
correspondingly accompany and support the CT development (Table 10.3). CT
approaches were used as a coding category in our analysis in order to explore their
presence in the classroom curricula. The ISTE-CSTA dispositions are in partial
correspondence to CT approaches so we consider the later as a means to help
students develop these dispositions.

c. Curriculum Subject

As CT is supposed to concern the application of CS in other disciplines, the
relevant scenarios are reasonably expected to be interdisciplinary. The authors used
the scenarios’ curriculum subject as another coding dimension to confirm the above
CT conception. Furthermore, the distribution of the scenarios to the various subjects
could reveal subjects that are not represented at all or others that are more common
and popular. Finally, the inspection of the potential problems and concepts of each
subject used in the scenarios will result in information concerning the extent of the
designers’ understanding of CT. The category elements of this coding dimension
include school subjects (e.g., mathematics, science, history).

d. Grade

The grades proposed as target groups by each scenario were used as a coding
category with the elements PK, G1, G2, . . ., G12. The distribution of scenarios to the
grades and more specifically the inspection of the available number of scenarios for

Table 10.3 The CT approaches category elements

CT approach ISTE-CSTA disposition

Tinkering

Creating Tolerance for ambiguity, ability to deal with open-ended problems

Debugging Confidence in dealing with complexity

Persevering Persistence in working with difficult problems

Collaborating The ability to communicate and work with others to achieve a common goal or
solution
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each CT dimension by grade will provide useful information about which dimen-
sions the learning designers find more appropriate and/or easier to cultivate for each
grade.

e. CT tools

CT tools category includes the titles of software and/or hardware that are used/
proposed in the scenarios. This category will permit us to explore the kind of
learning technologies and CS tools that are used for the cultivation of CT in the
scenarios. The categories in this dimension arose during the analysis and contain
values such as Scratch, Unplugged, data logging, robotics kit, automation kit, etc.

f. Learning Approach

The learning and instructional approaches employed in the scenarios can provide
information about the pedagogical beliefs of the designers. The categories which
arose in this dimension are inquiry learning, problem-based learning, project-based
learning, game-based learning, role playing, etc.

g. Great Principles of Computing, Concepts, and Practices

This category consists of the great principles of computing concepts and prac-
tices, as those are described by Denning and Martell (2015). This coding permits us
to explore the validity of the eq. CT ¼ CS. The categories of the specific dimension
match the principles and practices of the framework mentioned in Sect. 10.2.2.
Computational thinking is considered a key practice and is not used as a coding
category, since it will undoubtedly be contained in a CT learning scenario.

10.4 Findings

Each of the learning designs included in the collection under analysis has been
categorized in terms of the coding scheme by two of the authors, who are experi-
enced K-12 computer science teachers with undergraduate and postgraduate studies
in CS. After the coding, the content analysis data exploration was implemented. The
findings related to each coding category are presented in the following sections.

10.4.1 Findings Regarding the Age of the Proposed Target
Groups

The study of the analyzed learning designs’ distribution according to the grades is of
great interest for two reasons. The first reason concerns the availability of scenarios
for all dimensions and ages, while the second one relates to the indication of the
developmental appropriateness of each CT dimension, for each age group (e.g.,
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which age should the cultivation of abstract thinking start at?). To answer these
questions, the contingency table between ages/grades and sources of scenarios
(Table 10.4), as well as the contingency table between CT dimensions and ages/
grades (Table 10.5), were studied. Following is an analysis for each of the tables.

To calculate the frequencies in Table 10.4, we have included each scenario in all
the grades it corresponds to, according to its designers. For example, a scenario
referring to age 7+ appears as an option in the G7–G12 rank. Consequently, we can
interpret the content of a cell as the number of the theoretically alternative scenarios
that each source provides for a specific grade. The last column (SUM) refers to the
overall scenarios that are available per grade and typically is not a part of the
contingency table but facilitates the analysis. Considering Table 10.4, it becomes
obvious that:

a. Each learning design source addresses a different basic age group. This is what
the editors of the scenarios claim, nevertheless. This is also statistically confirmed
since the Fischer’s exact test in Table 10.1 ( p < 0,001) shows a correlation
between the variables “groups” and “scenarios sources.” More specifically, the
selected activities from the CS Unplugged set concern classes G4+, Barefoot
offers activities involving lower grades (PK-G6), while TLC provides choices for
all classes, but their number becomes remarkably larger from G7 and beyond. The
situation is different in the ISTE-CSTA proposals where there is an even distri-
bution of the proposed activities across all classes, albeit the number of options is
limited.

b. Although CT seems to involve all ages, a careful observation of the SUM column
reveals a significant reduction of options in younger groups/lower grades. One
reason for this may be that children need to advance in the understanding of
sciences independently before they are ready to integrate CS as an epistemolog-
ical tool in their study. It is also likely that developing scenarios concerning the
various CT dimensions for younger ages constitutes a far more demanding task

Table 10.4 Frequency distribution of ages which the proposed scenarios address

TLC Barefoot ISTE-CSTA CS Unplugged SUM

PK 1 7 2 0 10

G1 1 6 2 0 9

G2 1 9 2 4 16

G3 1 5 0 6 12

G4 1 7 1 12 21

G5 1 6 1 13 21

G6 1 6 1 13 21

G7 6 0 2 14 22

G8 16 0 2 14 32

G9 16 0 3 14 33

G10 17 0 3 14 34

G11 20 0 3 14 37

G12 20 0 3 14 37
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and may therefore require a systematic study of the relevant didactics field. The
ISTE-CSTA example suggests that, although it may require a more laborious and
cautious designing process, bringing CT teaching to younger ages may not be
an impossible venture. This claim is consistent with the concerns arisen by
Armoni (2012) and efforts highlighting the existence of relevant opportunities
(Fessakis et al. 2013).

Another question that would be interesting to explore is the existence of a
correlation between the CT dimensions and the students’ age of introduction to the
sample scenarios. To approach this question, we study the contingency table
between the dimensions of CT and grades, related to the scenarios analyzed. Each
entry in Table 10.5 represents the frequency of the CT dimension of the

Table 10.5 Correlation between the dimensions of CT and ages, related to the scenarios analyzed

PK G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12

Algorithmic
thinking – AL

6 6 12 9 13 11 15 15 22 22 21 24 24

Abstraction –

AB
5 4 6 3 9 8 10 8 13 12 13 15 15

Generalization –

GE
3 2 4 4 10 11 13 11 17 15 15 15 15

Logical reason-
ing – LR

5 5 8 6 12 13 16 13 16 14 13 14 14

Pattern matching
– PM

2 2 3 2 5 6 7 5 8 8 8 8 8

Problem decom-
position – PD

8 7 12 8 14 15 17 12 15 16 16 16 16

Problem transla-
tion – PT

0 0 1 1 5 5 6 6 6 6 7 8 8

Evaluation – EV 2 1 2 2 4 4 4 4 8 8 8 8 8

Representation –

RE
3 2 6 6 11 13 14 13 15 15 15 15 15

Data collection –

DC
1 1 1 0 0 0 0 0 0 1 1 1 1

Data representa-
tion – DR

2 2 5 5 12 12 15 15 18 18 19 20 20

Data analysis –
DA

1 1 1 1 1 2 3 3 3 3 3 4 4

Modeling – MO 3 2 5 4 5 4 6 4 7 7 7 9 9

Sequencing – SE 0 0 0 0 0 0 0 0 2 3 3 3 3

Simulation –

SIM
1 1 2 1 3 2 3 3 5 5 6 7 7

Automation –

AUT
2 2 2 1 2 1 4 3 3 2 2 2 2

Testing – TE 2 2 3 1 0 1 1 1 3 3 3 3 3

Understanding
people – UP

0 0 0 0 0 0 0 3 3 3 4 4 4
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corresponding row for the grade/age of the corresponding column. So, for example,
in the collection analyzed, there are six scenarios in which algorithmic thinking is
cultivated (AL) in the first grade (G1), while the number of available scenarios for
the cultivation of abstraction (AB) in grade 12 (G12) is 15.

An observation of Table 10.5 shows that not all dimensions of CT are evenly
distributed across ages. In general, it seems that in most grades, algorithmic thinking
prevails. Some dimensions are underrepresented, while others appear in excess, in
scenarios for specific ages. For example, engaging with patterns in early grades is an
activity of great importance in the didactics of mathematics (for the development of
pre-algebraic concepts) as well as in general for the cultivation of the generalization
and abstraction capacities and could also be carried out with the use of computers for
the simultaneous development of CS concepts. Moreover, data collection and
analysis, combined with CS, provide opportunities for the development of concepts
from mathematics, statistics, social sciences, data science, and other fields. Surpris-
ingly, there are a limited number of data collection scenarios, despite their apparent
correlation with data analysis. Similarly, simulation scenarios could be exploited in
early grades. The relatively small number of scenarios regarding these CT dimen-
sions indicates that there is room for development in the collections and it contradicts
programmatic curricula intentions. The lack of sequencing (SE) scenarios may
indicate that this dimension should be merged with another, e.g., with algorithmic
thinking (AL), or that it may be a synonym of some other CS practice, such as
programming. Finally, the lack of scenarios involving the dimension understanding
people (UP) before G6 indicates that further reflection on how artificial intelligence
concepts could be introduced in early stages is needed, while this also constitutes a
direction for educational research development. For the rest of the table (excluding
zero cells), what generally applies is that while the age factor ascends, the number of
available scenarios for each dimension increases, a fact that was expected after the
uneven distribution in Table 10.4. The statistical investigation of the correlation of
the rows and columns of Table 10.5 had a negative result. It therefore seems that, in
the analyzed scenarios, CT dimensions have no general relationship to age. Fischer’s
exact test per cell in Table 10.5 detected as significant the deviations of the displayed
frequencies from the theoretically expected ones, in cells with the value
0 (Table 10.5). Other, partial correlations, positive or negative, of some CT dimen-
sions to specific age groups are not assessed as generalizable from the sample.

Summarizing the results of the analysis regarding the age dimension, it is noted
that the imbalanced distribution of the CT learning designs across the different age
groups is also reflected in the various dimensions of CT. Some dimensions, despite
their obvious usefulness and the available themes, are not implemented by any
scenario in some ages. There is, therefore, both the need and the room for developing
scenarios that exploit dimensions such as data analysis, pattern matching, modeling,
simulation, automation, and people understanding. The difficulties may have to do
with how well-versed the designer is in the didactics of the subjects, for the specific
ages, with his/her awareness of the content of other subjects, his/her interest, etc. An
interdisciplinary approach to the issue – that is, the collaboration of educational
design specialists from various subjects, CS included – would probably help.
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10.4.2 Findings Regarding the Comprehension of CT
Concept by the Scenario Designers

Table 10.6 shows the distribution of scenarios per CT dimension. The application of
statistical tests (X2 and Kolmogorov-Smirnov) produced the result that the distribu-
tion is normal with μ ¼ 15.72 and sigma¼ 10.68, Skewness (Pearson)¼ 0.389, and
Kurtosis (Pearson) ¼ �1.2.

This implies that most of the CT dimensions are exploited by scenarios, the
number of which is smaller than the mean μ. Table 10.6 reveals that the dimensions
of CT that more frequently appear in scenarios (f > μ) are algorithmic thinking,
problem decomposition, abstraction, data representation, logical reasoning, general-
ization, representation, and modeling. It seems that it may be easier to write
scenarios for certain CT dimensions, either because the specific dimensions are
more comprehensible to the designers or because their didactics is a more widely
studied field. It also appears that there is plenty of room for scenario design in
dimensions such as simulation (SIM), data analysis (DA), automation (AUT), and
understanding people (UP). The CT dimensions that appear to be more popular in
the sample scenarios indicate a conservative perception of the concept by the
designers, as, through them, CT is primarily viewed as being identical to algorithmic
thinking (AL) and relevant dimensions. This case will also be investigated through
the search of correlations between the various CT dimensions. Interesting questions
that arise at this point include the following: Are there any correlations among CT
dimensions? Are there any dimensions that frequently occur together while some
other couples seem incompatible (i.e., the appearance of a dimension implies the

Table 10.6 Distribution of
scenarios per CT dimension

CT dimension Total scenarios

Algorithmic thinking – AL 38

Problem decomposition – PD 29

Abstraction – AB 27

Data representation – DR 26

Logical reasoning – LR 25

Generalization – GE 24

Representation – RE 22

Modeling – MO 19

Simulation – SIM 13

Pattern matching – PM 12

Evaluation – EV 10

Problem translation – PT 8

Data analysis – DA 8

Automation – AUT 7

Testing – TE 6

Understanding people – UP 4

Sequencing – SE 3

Data collection – DC 2
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lack of another)? Which are the groups of dimensions that appear together? These
questions could shed some more light on the interpretation and understanding of CT
by instructional designers, issue.

Table 10.7 summarizes the correlations among CT dimensions as those appear in
the scenarios analyzed. The correlations among the dimensions were initially tested
by the X2 test, but Table 10.7 shows the statistically significant associations with
their direction according to the Spearman rho coefficient. A positive correlation
implies a frequent simultaneous occurrence of the respective dimensions in a
scenario. Conversely, a negative correlation means that the presence of a dimension
is an important factor to predict the absence of the other. Correlations between
dimensions indicate conceptual affinity. In Table 10.7 the reader can see that
algorithmic thinking (AL) appears independently of all others, which practically
means that it cannot help us predict the occurrence of another dimension. Abstrac-
tion (AB) is negatively related to pattern matching (PM) and positively to general-
ization (GE), evaluation (EV), data analysis (DA), and modeling (MO). It thus
appears that AB is most often associated with generalization and modeling activities,
as well as with data analysis scenarios. The negative correlation with pattern
matching is probably due to the lack of knowledge of the relationship which
connects patterns firstly to generalization and eventually to abstraction. While it is
reasonable that, in the context of CT, abstraction is approached through modeling
and analysis, since this is the way that CS contributes to the cultivation of abstraction
in other sciences, one should not miss the point that there are alternative paths in CS

Table 10.7 Table of the correlations among the CT dimensions

Positive correlation (significance level
a ¼ 0.05)

Negative correlation (significance level
a ¼ 0.05)

AL – –

AB GE, EV, DA, MO PM

GE AB, EV –

LR PD –

PM – AB, MO

PD LR SIM, UP

PT RE, DR –

EV AB, GE –

RE PT, DR –

DC DA, SE, AUT –

DR PT, RE, SIM –

DA AB, DC, SIM, AUT –

MO AB, SIM PM

SE DC –

SIM DR, DA, MO –

AUT DC, DA –

TE – –

UP – PD
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that lead to the development of abstraction. Pattern matching, process, and data
structure abstraction (e.g., recursive computations and graphics) are a few of them.
There is a correlation between generalization (GE) and both abstraction (AB) and
evaluation (EV), while one would also expect to see a correlation with pattern
matching (PM), etc. Logical reasoning (LR) is positively correlated with problem
decomposition (PD), while one would also expect it to be associated with AL and
DA, at least. Pattern matching is negatively associated only with abstraction
(AB) and modeling (MO). In general, the correlations identified could be character-
ized reasonable but incomplete. For example, the correlation among automation
(AUT), data collection (DC), and data analysis (DA) is reasonable and expected, but
the lack of correlation between pattern matching (PM) and generalization (GE) or
simulation (SIM) indicates that the collection scenarios are not fully covering the
range of computational thinking scope. Thus, the teachers’ and/or educational
designers’ understanding of CT is susceptible to significant improvement. Further-
more, some dimensions appear independent and somewhat distant and isolated from
others (AL, TE, UP) and therefore need to be further studied to determine ways they
can be exploited in combination. By the MCA analysis on the CT dimension table
and selecting as axes the first two analysis factors that explain the 50.5% inertia of
the observations cloud, we can graphically summarize the dimensions and scenarios
in both dimensions, as shown in Chart 10.1.

In the first quadrant of Chart 10.1, it can be seen that the placement of AB-1
almost diagonally is equidistant from group G1 ¼ (AB-1, DR-1, MO-1, SIM-1,
SE-1) of the fourth quadrant as well as from G2 ¼ (AB-1, LR-1, GE-1, EV-1, RE-1,
PD-1, PT-1,) of the first quadrant. Group G3¼ (PM-1, TE-1, AUT-0, SIM-0, DA-0,
MO-0, AB-0) is also distinguished in the second and third quadrant. The isolated

Chart 10.1 Correlations between CT dimensions and scenarios in two dimensions
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category UP-1 can be seen in the third quarter. Present in the center of the axis
system are the most independent and most frequently occurring dimensions, with the
leading all AL, almost at the origin of the system. The groupings of the dimensions
are consistent both with the correlations between the CT dimensions (Table 10.7)
and the comments on the underrepresentation of particular combinations of dimen-
sions, e.g., PM and GE and AB, DA and AL, etc., in the scenarios. Chart 10.2
illustrates the distribution of the scenarios in the categories.

The MCA analysis highlights scenarios groups with specific combinations of
dimensions as well as the lack of scenarios for other combinations, as described
above. It therefore appears that the current understanding of computational thinking
by the scenario designers omits an important range of scenarios.

As far as the CT approaches are concerned, the distribution in Table 10.8 shows
that the most popular approach is tinkering while debugging is quite distant from the
rest. Such a distribution seems reasonable since construction is more difficult than
tinkering, while persevering and commitment are prerequisites in CS.

Chart 10.2 Illustration of the correlation between CT dimensions and scenarios, in two dimen-
sions at MCA

Table 10.8 Distribution of
frequencies of the scenarios’
CT approaches

CT approaches Scenarios

Tinkering 26

Persevering 19

Collaborating 15

Creating 11

Debugging 9
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10.4.3 Findings Regarding the Conception of CT
as Application of CS for Producing Knowledge
in Other Disciplines

The first question to be tackled under this category is (i) Which disciplines, others
than CS, and at what frequency, were involved in the analyzed CT scenarios?
Table 10.9 shows that the majority of scenarios combine CT with mathematics, a
significantly smaller number with arts and language, while dramatically fewer are
the scenarios relating to other school subjects such as science (where CT could be
exploited in a variety of scenarios for building simulations, for the collection and
analysis of data deriving from experiments, for the visualization of concepts and
data, etc.) and social science (where there are opportunities for exploiting CT in the
collection and analysis of data, systems modeling, etc.).

Also missing are scenarios inspired by the digital humanities field. This imbal-
ance demonstrates that CT cannot be automatically developed by instructional
designers, but it needs more effort and collaboration of interdisciplinary teams in
order for it to unfold in all its aspects. The interdisciplinary approach seems to be the
key to the transformation of the CT programmatic curricula into the respective
classroom ones. Current capacities of instructional designers in the application of
CS in other disciplines might not suffice, as also do the CS skills themselves. The
solution probably lies in the collaboration with instructional designers of other
disciplines.

Table 10.9 Distribution of
scenarios in the various
disciplines

School subject Scenarios

Mathematics 19

Arts 9

Language – English 8

Algebra 6

Life science – biology 5

Technology – design 5

Interdisciplinary 5

Geometry 4

Science 4

Social studies 4

Geography 3

History 3

Literature 2

Nutrition 1

Philosophy 1

Physical education 1

Dance 1
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The second question that is addressed in this category is (ii) Is there any
correlation between CT dimensions and the disciplines involved in the scenarios?

The attempt to detect correlations between the disciplines involved in the scenar-
ios and the CT dimensions highlights some interesting facts about which dimensions
are consistent with and exploited by certain school subjects in all the scenarios
analyzed. To be more specific, the correlation analysis with the coefficient Spearman
rho revealed as significant (a ¼ 0.05) the correlations of Table 10.10.

Most of the results were expected and support the view that CT concerns the use
of CS as an epistemological tool in other disciplines together with theory and
experiment. Yet, there are correlations that are missing or seem strange. For exam-
ple, correlations among science and the modeling and simulation dimensions, life
science-biology and simulation as well as between technology-design and automa-
tion dimensions are absent, while the negative correlation of the pairs, mathematics
and simulation and technology-design and algorithmic thinking, comes as a surprise.

Table 10.10 also shows that the common way to connect the various disciplines
with the CT dimensions passes through the data collection and analysis paths, while
other, more profound correlations may find it difficult to reach the level of scenarios.

Table 10.10 Correlations between school subjects and CT dimensions

Correlation to CT dimension

School subject Positive (+) Negative (�)
Mathematics Logical reasoning – LR Simulation – SIM

Geometry Problem decomposition – PD
Problem translation – PT

Algebra Pattern matching – PM

Science Data collection – DC
Data analysis – DA

Life science – biology Data collection – DC
Modeling – MO
Automation – AUT

Technology – design Understanding people – UP Algorithmic thinking – AL

Language – English Problem decomposition – PD
Representation – RE

Literature Data collection – DC

Social studies Data collection – DC
Data representation – DR
Data analysis – DA
Automation – AUT

History Data representation – DR
Sequencing – SE

Interdisciplinary Data collection – DC
Data analysis – DA
Simulation – SIM
Automation – AUT
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10.4.4 Findings on the Potential Difference Between CT
and Denning’s Fundamental Concepts and Practices
Framework

The coding in this dimension permits the testing of Dennings’ thesis that CT is a key
practice of CS and that CT curricula cannot cover all the CS principle categories.
Table 10.11 shows the results of the analysis of the selected CT learning scenarios
according to the principles framework.

As the data reveal, Denning is probably right since CT scenarios do not cover
fundamental principle categories such as coordination (e.g., concurrent fork and join
programming, synchronization among information-processing agents, etc.). The
number of scenarios concerning communication (reliable transfer of data among
systems) is rather small, as well as the number of scenarios concerning the recollec-
tion and evaluation (time and memory complexity) issues that constitute key CS
problems. The frequencies of CS practices in Table 10.11 are very small, but this fact
is rather expected for CT scenarios in K-12 since the real CS practices are relevant to
CS majors.

10.4.5 Findings on Other Educational Parameters

Table 10.12 shows the tools that are utilized in the CT learning scenarios and the
corresponding frequencies in a number of scenarios.

Strikingly, most scenarios do not require any kind of technology for their
implementation (Unplugged) even if they do not belong to the CS Unplugged
collection. As far as the rest of the scenarios are concerned, a number of them
have been particularly created for implementation with the Scratch educational
programming environment, some others for use with any programming language

Table 10.11 Covering of the
principles and practices of
computing framework

Principle categories Scenarios

Computation 36

Communication 1

Coordination 0

Recollection 2

Automation 9

Evaluation 5

Practices Scenarios
Design 0

Programming 1

Engineering of systems 0

Modeling 1

Applying 0
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and only two for use with educational robotics. Contrary to the authors’ expecta-
tions, the table reveals a complete absence of scenarios that exploit LOGO language
and educational data logging and automation devices or alternative robotics and
automation platforms, such as Arduino or Raspberry PI. This specific finding
indicates that CT is being treated as the theoretical aspect of CS, while it also
shows a tendency to distinguish CS from computers. CT, however, requires the
use of CS in other disciplines, in an authentic way. Consequently, in the context of
observations and experiments, for example, one would expect to come across
science scenarios that use sensors and computers to collect and process data from
the natural environment. Or, even scenarios on how sensors work and how the
digitization of signals is performed, scenarios on the use of meteorological stations,
ultrasonic devices, three-dimensional printers, etc. The projection of the scenarios on
the basis of the tools they exploit suggests directions toward which the development
of CT scenarios can be further extended.

As far as the learning approaches employed in the scenarios is concerned
(Table 10.13), they are consistent with the modern views of teaching. They could,
however, be richer or more specialized and include more approaches such as
learning by design, learning by making, and collaborative learning.

10.5 Summary, Discussion, and Conclusion

The current need for disambiguation of the CT concept has triggered and subse-
quently fueled an intensive discussion about the role of CS in general education. The
efforts to clarify the meaning of CT resulted in the advancement of the understanding
of CS’s significance as a core school subject. This concentration of interest, in
combination with the inclusion of CS in the field of STEM education, makes the

Table 10.12 Distribution of
the frequencies of the digital
tools in the CT scenarios

CT tools Scenarios

Unplugged 42

Scratch 6

Any language 4

Simulation 3

Robotics 2

WWW browser 2

Spreadsheet 1

Table 10.13 Frequency
distribution of the learning
approaches in the CT
scenarios

Learning approach Scenarios

Problem-based learning 25

Project-based learning 17

Game-based learning 15

Inquiry learning 11

Role playing 5

206 G. Fessakis et al.



presence and the role of both CS and CT in general education increasingly important
and urgent. The work presented in this chapter is an effort to contribute to the
clarification of the CT concept and its relation to CS Education. More specifically,
the chapter’s structure launches with a review of the historical evolution of the CT
concept and the related criticism formulated, and it is then followed by the explo-
ration of the conceptual interpretation of CT in the learning activity designs of,
widely known, K-12 CT curricula and initiatives. The deductive content analysis
implemented for this purpose was based on a complex coding scheme which was
developed after reviewing the current theoretical conceptions of CT.

The content analysis of the CT learning scenarios reveals interesting findings,
concerning the pedagogical translation of CT into classroom curriculum (Deng
2009), some of which are summarized here.

In the programmatic level analysis, an omission concerning systems thinking as a
CT dimension was detected, despite the fact that it constitutes an accepted field of CS
application for interdisciplinary problem-solving and the study of complexity
(Fessakis and Kirodimou 2016). As far as the age dimension is concerned, there is
an imbalanced distribution of the available CT learning designs across the different
age groups. In general, the number of the available CT learning scenarios increases
with age. This relation is also reflected in the context of the CT dimensions. The lack
of scenarios that are suitable for younger ages points the need for didactics research
concerning CS and CT in first grades, in parallel with other school subjects’
educational research, constituting an interdisciplinary approach to the issue of
using CS as an epistemological tool.

Regarding the comprehension of the CT concept by the learning scenarios
designers, the analysis concluded that some CT dimensions appear to be much
more popular than others. This indicates a rather conservative perception of the
CT concept by the designers, according to which, CT is primarily viewed as being
identical to algorithmic thinking and some relevant dimensions. More scenarios are
needed in various dimensions such as data analysis, pattern matching, modeling,
simulation, automation, and people understanding. Additionally, the correlations
among the CT dimensions identified (simultaneous presence of the dimensions in
the scenarios) appear reasonable but incomplete. It therefore appears that the current
understanding of CT by the scenario designers leaves an important range of scenar-
ios out. Thus, the teachers’ and/or educational designers’ understanding of CT is
susceptible to significant improvement.

A theoretical review of the CT concept reveals that current CT conceptions
concern the use of CS as an epistemological tool for problem-solving in other
scientific fields, alongside with theory and experiment. Thus, CT as a subject matter
is expected to be developed using interdisciplinary learning scenarios combining CS
with several other fields. The analysis of the sample scenarios shows that most of
them combine CT with mathematics, a significantly smaller number involve arts and
language, while dramatically fewer are the scenarios relating to other school subjects
such as science and social science. This limitation supports the argument that in
order for CT to unfold in all its aspects, CT instructional/learning designers need to
collaborate in interdisciplinary teams. In addition, further research, focused on the
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exploration of CS impact in other disciplines, is necessary, in order to highlight the
CT factor. The analysis of the connections of CT dimensions to the various school
subjects (Table 10.10) reasonably reveals that a common way to connect the various
disciplines with CT dimensions passes through the data collection and analysis
paths. Table 10.10 also reveals some other profound links that need to be further
developed since they can form the base of interesting and fruitful CT learning
scenarios. Surprisingly, programmatic curricula do not include significant CT
dimensions, such as systems thinking and digital citizenship, areas of significant
CS applications that should affect general education.

Finally, the research findings support Denning’s view that CT is rather a key
practice of CS, since the sample scenarios content analysis revealed that fundamental
CS principle categories such as coordination are not covered at all, while categories
such as communication, recollection, and evaluation are sporadically covered.

Based on the findings of the content analysis, answers to the research questions
could be formulated as follows:

RQ1. Are all the theoretical dimensions of CT represented in the classroom
curriculum?

Excluding the systems thinking dimension that is omitted from the program-
matic level of the analyzed curricula, the general answer is “Yes”; not all dimensions
appear in equal frequency though. CT scenario designers mainly focus on algorith-
mic thinking. Many important CT dimensions such as pattern matching and auto-
mation are not covered to a satisfactory extend and certainly not in a balanced and
spiral, across the grades, way.

RQ2.Which other school subjects are utilized for the development of CT in schools?

Several school subjects are involved, albeit mostly through data analysis. Some
are utilized in an incomplete way, while mathematics is the most common subject.
Concerning the rest, progress needs to be done and a more contemporary study of the
links of CS with other subjects through the computational sciences is necessary. The
digital humanities field lags far.

RQ3. Which teaching/learning methods and resources are proposed for the devel-
opment of CT?

The employed teaching/learning methods are fairly progressive, yet the tools/
resources study reveals a significant shortfall in educational key technologies, e.g.,
educational robotic kits, automation, specific programming languages, and mobile
programming.

RQ4. Are there any dimensions (practices and key concepts) of the CS great
principles framework proposed by Denning that are not covered by the CT
classroom curricula (in other words, is the eq. CT ¼ CS valid)?

The process revealed dimensions of the CS framework that are either not covered
at all or are only partially covered by the scenarios analyzed. We could, thus, claim
that the content analysis supports Denning’s view that CS<>CT and that the role of
CS in education is more profound than that of CT.
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Taking into account the main findings of the content analysis, it becomes obvious
that classroom translation of CT concept by the designers of the sample learning
designs aligns to the institutional and programmatic conception. According to this
conception, CT concerns the use of CS as part of the methodology of other
disciplines, but it lacks many areas of application and is rather limited and
unsystematic in others. It appears that, during the process of their transformation
into learning scenarios, both the conceptual content of CT and its dimensions are
limited enough. Some dimensions are underrepresented, and potential connections to
several school subjects remain untapped. Thus emerges the need for the conduction
of research toward the direction of exploring the relation of CS to the production of
knowledge in modern disciplines. This research will inform teacher’s training. It is
not easy for instructional designers to have a deep knowledge of the epistemological
uses of CS in different disciplines such as science, literature, etc. Most examples
relate to CS applications in mathematics, an area which current scenario designers
seem to be more familiar with. An interdisciplinary approach to the issue could
therefore solve the problem. Interdisciplinary groups of learning designers and
systematic mapping of the scenarios to authentic CT applications in various scien-
tific fields is required, to unfold the scope of the concept. Furthermore, didactics
research on the key dimensions of CT for younger ages is a prerequisite for the
development of spiral structured curricula for CT and CS. Thus, the presented
research supports the concurrent work of Yadav et al. (2017) according to which
the preservice teacher’s education programs need to be redesigned, to develop
teachers CT competences and prepare them to incorporate CT in K-12 classrooms.
The present research provides information about the difficulties and future needs of
CS and CT teachers, as well as indications about the required research directions.
Besides from arguing for the significance of teacher training and the value of an
interdisciplinary approach to the production of CT learning scenarios, the study also
records the CT dimensions that need to be further studied, as well as the relations of
CS to other schools subjects that have not been educationally exploited yet.

Moreover, the claim that there are fundamental concepts of CS that are not
covered by the CT approach is strengthened. Hence, in order to optimize the results,
further research on educational computing and the didactics of CS needs to be
conducted, along with the spread of CT in general education.

The limitations and constraints of the present research include the subjective
categorization of learning designs and the limited set of CT scenarios sources.
Furthermore, since the learning activities analyzed are not necessarily products of
ordinary teachers’ work, the results may present a more optimistic version of the
reality of the teachers’ general population. A direct examination of teachers, with
respect to their understanding of CT content and CT curriculum theory of content,
(Loughran et al. 2012) is proposed as a future work. Empirically, very little is known
about the realization of CT in schools and classrooms (Yadav et al. 2011). Empirical
studies are therefore needed, to investigate the classroom realization of CT. To
conclude, CT is vital for science and technology progress and a valuable competency
for the modern citizen in general. It concerns the study of using CS for solving
problems across all disciplines, including math, science, and the humanities. In
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addition, CT tends to see the world in terms of a series of generic problems that have
computational solutions (solution patterns) (Easterbrook 2014). Although CT con-
cept helps utilize CS in general education, it only offers a limited solution to the
problem. The exclusive integration of CT in the separate school subjects’ curricula
could lead to the teaching of some applications of computing by non-properly
trained CS-educated teachers (Leyzberg and Moretti 2017) and may not serve the
policy goal of attracting new students to CS departments and STEM carriers
(Hutchison 2012; Lang et al. 2013; DesJardins 2015). In addition, CT as a part of
CS key practices does not take advantage of the full potential of CS in education. The
interdisciplinary nature of CT may inspire some educational policy-makers to use it
as a possible solution of the CS teachers’ shortage problem (Kosturko 2016; Goode
2007) since CT could be taught by properly trained teachers of several other school
subjects. The introduction of CT in education as part of other school subjects’
curricula will not optimally confront the CS integration in general education in the
long term. The theoretical analysis and the findings of this research contribute to the
long and demanding work needed to meaningfully and sustainably integrate CS in
general education for the interest of society.
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Chapter 11
Introducing Coding and Computational
Thinking in the Schools: The TACCLE
3 – Coding Project Experience

Francisco José García-Peñalvo, Daniela Reimann, and Christiane Maday

11.1 Introduction

There is a general trend worldwide to make computer science a basic skill (García-
Peñalvo et al. 2017; Llorens Largo et al. 2017). This is related to future generations
of workers that should know, at least, the basic laws of a computer-based society
and, without demerit to humanities or social sciences, trying to reduce the current
gap with STEM (science, technology, engineering, and mathematics) (CEDEFOP
2015) careers.

Current society is software-driven (Manovich 2013). A very common situation in
countries with a high rate of unemployment is they have unfilled positions for
engineers and technicians for the industry and digital services. This means that a
growth in the demand of positions related to technology and scientific knowledge,
particularly engineering, but not only, is not reflected in the increase of students in
such university degrees.

In the European Union, more than 800,000 professionals skilled in computing/
informatics by 2020 are expected; many educators, parents, economists, and
politicians are starting to think that students need some computing and coding skills
(Balanskat and Engelhardt 2015).

In EEUU there are different studies that recommend the creation of a well-defined
set of K-12 computer science standards based on algorithmic/computational thinking
concepts (Tucker et al. 2006; Wilson et al. 2010).
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On the other hand, new devices (Alonso de Castro 2014; Sánchez-Prieto et al.
2013, 2014), from smartphones and tablets to electronic learning toys and robots,
find new audiences with increasingly young children. This causes new challenges for
teachers (Sánchez-Prieto et al. 2016a, b, 2017), for example, how to define devel-
opmentally appropriate activities and content for children of different ages (Bers
et al. 2014).

These new devices caused that the real life in the physical space is represented in
the virtual space in all its facets, e.g., the place where I am, the activities I am
undertaking, with whom I communicate and interact, and what I buy. Data traces in
the virtual space, which capture more and more what we do, are stored, networked,
and sent to third parties (Boyd and Ellison 2008; Guettat et al. 2010). At the same
time, the subjects in the digitized world always receive more accurate proposals and
offers of assistance systems from the virtual space (Chajri and Fakir 2014; Colomo-
Palacios et al. 2017). The virtual affects the physical reality to an increasing extent,
but the virtual space is not a “neutral world,” but it is driven by corporations and their
business interests.

Whereas information technology (IT) literacy is the capability to use today’s
technology in one’s own field, the notion of IT fluency adds the capability to
independently learn and use new technology as it evolves (National Research
Council Committee on Information Technology Literacy 1999) throughout one’s
professional lifetime. Moreover, IT fluency also includes the active use of algorith-
mic thinking (including programming) to solve problems, whereas IT literacy is
more limited in scope.

The most frequent approach to teaching digital literacy has been to gradually
encourage the learning of programming, and the term code literacy (Prensky 2008)
has been coined to refer to the process of teaching children programming tasks, from
the simplest and most entertaining to the most complex; this way the student’s
progress is centered on the difficulty of the tasks and in their motivating character-
istic. This means a link between the learning with the response to a stimulus instead
to the child’s learning and cognitive capabilities, following the traditional behavior-
ist theories (Zapata-Ros 2015).

However, there exist an alternative in the constructionism approach, yet consid-
ered by Papert (1980) in his researches based on the Logo programming language,
that conveys the idea that the child actively builds knowledge through experience
and the related “learn-by-doing” approach to education. Papert wanted to create “a
mathematics children can love rather than inventing tricks to teach them a mathe-
matics they hate,” because Papert’s leitmotifs were thinking about thinking and the
freedom to achieve one’s potential (Stager 2016).

The term computational thinking was made popular by Jeannette M. Wing
(2006), with her definition “computational thinking involves solving problems,
designing systems, and understanding human behavior, by drawing on the concepts
fundamental to computer science.” Aho (2012) simplified this concept defining it as
the thought processes involved in formulating problems, so “their solutions can be
represented as computational steps and algorithms.” García-Peñalvo (2016f) defined
computational thinking as the application of high level of abstraction and an
algorithmic approach to solve any kind of problems.
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European Erasmus+ TACCLE 3 – Coding project (García-Peñalvo 2016a, b,c, d;
TACCLE 3 Consortium 2017) focusses on supporting school teachers and develop-
ing their confidence to deliver the new computing curriculum including coding and
computational thinking approaches.

In this chapter, TACCLE 3 – Coding is introduced, and in this framework, the
experience of using wearables with target groups in higher education (pedagogy,
engineering pedagogy) as well as in elementary teacher training is going to be
presented.

11.2 TACCLE 3 – Coding Project

TACCLE 3 – Coding is a European Union Erasmus+ KA2 Programme project that
supports primary school staff and others who are teaching computing to 4–14-year-
olds. It started at September 2015 and will end at October 2017.

The project consortium is coordinated by GO! Het Gemeenschapsonderwijs
(Belgium) and composed of the following partners: the Pontydysgu Limited (United
Kingdom), Scholengroep 1 Antwerpen (Belgium), Karlsruher Institut Für
Technologie (Germany), Hariduse Infotehnoloogia Sihtasutus (Estonia), Tallinn
University (Estonia), University of Salamanca (Spain), Aalto-Korkeakoulusaatio
(Finland), and Itä-Suomen yliopisto (Finland).

All the information and the project outcomes and deliverables are available at the
project website http://www.taccle3.eu, and they are licensed under a Creative Com-
mons Attribution-NonCommercial-ShareAlike 4.0 International License.

Also, training courses will be available for both in-service and future teachers.
Many European countries are introducing computing and coding as core curric-

ulum topics (Balanskat and Engelhardt 2015). Some have already done so; many
others are intending to. Inevitably the detail of the curricula will be different in each
country, but there is a substantial overlap – almost all of the curricula available so far
include programming, control technology, and computational/logical thinking, so
TACCLE 3 has started with these (García-Peñalvo et al. 2016).

Figure 11.1 shows the main page of the projects website. From this, users may
access to different kinds of resources organized by the following categories:

• Using logic
• Algorithms
• Creating + debugging programs
• Controlling things

In Fig. 11.2, the tabs on the top menu correspond to the curriculum areas and
underpin the schemes of work that in turn form the basis for the lessons you will be
delivering in the classroom. Under each heading, you will find a variety of ideas,
lessons, and materials directly related to classroom activities.

One the most interesting TACCLE 3 resources is the activity/lesson. It is
published in the form of blog post. Each post explains the basic concept followed
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by the aim of the lesson which in turn contributes to one or more of the attainment
targets in the computing curriculum.

The outline of the activity follows this scheme:
Title

1. Overview

Brief description
Age
Level
Twenty-first-century skills
Tips to adapt the lesson (e.g., to older/younger students, students with special

needs, etc.)

Fig. 11.1 Main page of the TACCLE 3 website: Source (TACCLE 3 Consortium 2017)
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Material

2. Aim of the activity
3. Needed tools and resources
4. Practical activity description

Figure 11.3 shows an example of a TACCLE 3 activity oriented to introduce the
decomposition process, breaking down a problem into smaller manageable parts.
Decomposition helps in solving complex problems and managing large projects.

Fig. 11.2 Categories of the available resources
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11.3 Developing Smart Textile Objects

To make the abstract learning contents of coding more graspable and usable for
teachers at primary school level, the concepts are linked to imagination and
phantasies of young children, who can invent and realize their own project ideas
to be developed by the learners themselves. The latter is done in project-based
learning scenarios (Estruch and Silva 2006; Markham et al. 2003), using embedded

Fig. 11.3 Decomposition activity in TACCLE 3 – Coding project. (Source http://www.taccle3.eu/
english/2015/11/16/decomposition/)
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sensor- and actuator-based systems, using the Arduino LilyPad technology intro-
duced by Buechley (2014), extended by a visual interface to facilitate programming
using icons in a free drag-and-drop environment (Amici) (Kafai 2014).

The technology chosen opens up to link the ideas and imagination to
computational thinking (Wing 2006, 2008, 2011) and acting through more art- and
craft-based, creative processes. Examples of smart textile projects (and the sketching
of electronic circuits) are used. Smart textiles, which are also referred to as “wear-
ables,” are a generation of clothes and accessories with embedded microcomputers
and offer various possibilities for learning about computational modeling. The
system, worn on the body, can respond with behavior programmed by the children
themselves. They manipulate and change technology. Using, e.g., conductive yarn
(as connector), sensors, motors, and LED lights as well as sewable circuit boards
(Arduino LilyPad introduced by Buechley), smart textiles create a link between
sensual-haptic materials (Fernández et al. 2016; Scopes and Smith 2010), precise
computer control, and creative concepts. New interfaces – sewed, woven, or stitched
– can be experienced between body, clothing, and the environment. It can be stitched
together with conductive thread to create interactive garments and accessories. In
conjunction with the open-source Arduino technology, they open up opportunities
for cross-disciplinary teaching of the subjects of art, design, computer science, and
music, for example, to address learning in the context of storytelling wearables (Tan
2005), wearable music (Rosales 2012), or sounding artifacts (Trappe 2012).

The Arduino LilyPad technology consists of hard components as well as a
programming interface which can be connected to an icon-based interface to be
used by younger children at primary school level.

The LilyPad can “sense information about the environment using inputs like light
and temperature sensors and can act on the environment with outputs like LED
lights, vibrator motors, and speakers” (http://lilypadarduino.org). Kafai (2014)
highlighted the LilyPad Arduino kit being a shapable set of technologies, bringing
together crafting, design, and technology, supporting individual learning processes.

11.4 Curriculum Modules for Primary School Teacher
Training

The learning activities developed include a teacher training, as well as a tutorial for
beginners to programming, which introduces the teacher both to the handling of the
LilyPad Arduino hardware and to the application of the Amici user interface and can
be used as instructions for teaching processes related to interactive clothing. Also,
the development of creative themes is addressed, to support imagination and self-
initiated learning. The teacher training is based on the modules identified to develop
a project.

The teachers get familiar with the hardware, such as the electronic components,
main board, connectors (including unusual wires made of ink or yarn), and sensors
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and actuators. The teachers use the same modules for project-based learning with
physical computing as the school kids in hands-on workshops.

Since, however, the handling of the software and hardware used in the project is
documented only insufficiently in Germany, it was decided to write down in a
structured way the experiences gained. Although the resultant tutorial does not
claim to discuss all software and hardware issues, relevant problems need to be
explained in detail. The tutorial was developed on the basis of the EduWear manual
compiled by the “Digital media in Education (dimeb)” research group of the
University of Bremen (http://goo.gl/a8c2L7).

The following lesson plans for classroom sessions are linked to each other and
based on one another. They form the teaching units on developing sensor- and
actuator-based systems/developing a project with Arduino LilyPad and Amici
software.

Module 1 Getting Familiar with Hardware
This module is part of a series of lesson plans to introduce children (from grade 5 up)
to smart textile objects, based and the programming of sensors and actuators set up in
an electronic circuit. After the series of lessons 1–6, the learners will be able to
develop, connect, and program a sensor- and actuator-based interactive system and
contextualize it in a project. Also, there are lessons to introduce the development of
electronic circuits through painting connectors (wires) using conductible ink. In
those lessons, the learners design and paint electronic systems, which can be
integrated in an interactive book project.

a. Aims: familiarizing with the terms and related hardware and understanding the
components as a networked system

b. Terms to be introduced: sensor, actuator, connector, main board LilyPad, input,
output, and meaning/function in a circuit/interactive system.

c. Methods: relation to sensory perception/the human senses and/or learners to
represent the components physically

d. Develop photo work sheets for identification of hardware components, including
learning material including exercises

Module 2 Developing an Electronic Circuit
In module 2 of the LilyPad Arduino-based Smart textile introduction series, learners
learn to develop a circuit, cable it and make it run by themselves. This way pupils
learn: 1. to develop a circuit, cable it and make it run by themselves, 2. how to cable
the components using crocodile clips. There are exercises based on work sheets to
arrange the components and cables, so that an LED glows continuously or an LED
shines on and switches off, come along with the module.

Module 3 Developing an Interactive System: Programming Arduino LilyPad
In this module, the learners learn to program Arduino LilyPad main board by using
the icon-based drag-and-drop programming environment Amici. In the session
pupils are introduced to Amici software through work sheets with exercises related
to LED on/off or for a particular time, in the context of an interactive system. The
aim is to make transparent computational thinking and modeling behavior by
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developing a program. It intends the pupils to understand the computer as a shapable,
controllable medium.

Module 4 Programming Arduino LilyPad: Getting Familiar with Amici
The main aim of this module is to make transparent computational thinking/modeling,
and algorithms control computer, in order to understand the computer as a shapable,
controllable medium to the learners by doing, testing, and debugging. In this module,
the issue of testing and debugging is introduced to the pupils by making them develop,
test, and debug a program by themselves. The interrelation of such processes which
belong together is addressed. Aims are to develop a program, test, and debug it. The
issue of bugs and debugging is addressed (original etymological meaning of the bug,
esp. for younger kids!). There are exercises to arrange the components and cables, so
that a LED glows or so that a LED shines on and switches off.

Module 5 Developing a Project with Arduino LilyPad and Amici
In this module, the learners are encouraged to develop an idea for an interactive
project, based on sensors and actuators they know from the previous lessons. By
developing an idea for an interactive project, have them identify the tasks to fulfill
and the realization by themselves. Co-construction of knowledge is supported and
learned through the working and design processes. This learning activity deals with
using logic and algorithms.

Module 6 Painting Electronic Circuits
This module deals with particular connectors. Painting electronic circuits can be
used as a vehicle to technology education in early age groups. Conductible ink in a
pen is used for electronic components in the context of drawing images. As Buechley
has stressed, “electronics aren’t just for experts and engineers. Kids and amateurs
should be able to play, too.” Buechley (2014) designed paper-based electronics for
“sketching” and folding. Teachers like to get and test learning materials which are
ready to use in the classroom but also designed flexible enough to be amended
individually according to their own purposes, needs, target groups, and ideas. In the
following example, learning material is presented. Using conductible ink, the issue
of “algorithms” as an endless set of activities which, after its realization, lead to a
solution is introduced for primary school level. Therefore, the paper cards (Figs. 11.4
and 11.5) were developed. In Fig. 11.4 the cooking of a pan cake is used as an
example for an algorithm.

Fig. 11.4 Drawn algorithm in the form of a game. Learner to put together the images in the right
order
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For initiating the process, a blanc algorithm puzzle is handed out to the pupils
(Fig. 11.6).

In step 4, a connection between the ends has to be drawn (Fig. 11.7).
Afterward, it needs folding along the dotted line (Fig. 11.8).
In step 6, pieces are cut apart. Obviously, there is only one correct order of the

parts. Here you can see that there will be no electric connection (Fig. 11.9).
In step 7, the parts are folded and numbered. At the front, an algorithm can also be

written or drawn (e.g., a recipe) (Fig. 11.10).

Fig. 11.5 If every step is put together correctly, the LED glows

Fig. 11.6 A blanc paper algorithm puzzle is sketched for individual use

Fig. 11.7 The connection is done using electronic ink

Fig. 11.8 Fold along the dotted line
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In the 8th step, an actuator and a battery have to be wired to the end and to the
starting point. Then the actuator will react if the algorithm is laid in the correct order
(Fig. 11.11).

11.5 Conclusions

Introducing computational thinking and a solid base of coding is the educational
agenda of many countries worldwide. The challenge is to do it in the right way so
that the objective is not confused and really influences the acquisition of key twenty-

Fig. 11.9 Cutting pieces apart

Fig. 11.10 Fold parts and number them

Fig. 11.11 Cable an actuator and a battery
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first-century competences; trying to avoid these contents will become in another
subject an over-saturated curriculum.

Methods of teaching which have long been overtaken such as the reduction on a
tool-oriented and resource-based use of computers, which may now be overtaken,
despite all the interdisciplinary and interconnecting efforts, remain as a reality in
today’s schools, colleges, and outer school contexts.

The presented approaches which were well received by the pedagogical target
groups are available for teaching computational modeling at school and university as
well as in outside school settings. They can be absorbed and used to ensure a
sustainable and systematic integration of computer science contents and embed
them into the curricula, crossing the borders of disciplines and school subjects,
such as computer science/IT, textile, art, and design education.

In this sense TACCLE 3 project looks for sharing experiences and resources to
achieve the pursued goal involving the right actors.

Teachers that are interested in participating in TACCLE 3 – Coding may do it in
several ways:

• Visiting the website to access to the resources.
• Writing news related to coding in the schools.
• Making learning activities/lessons.
• Making resource reviews (products, tools, books, courses, etc.) oriented to other

teachers. There exists a recommended template (García-Peñalvo 2016e).
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Chapter 12
Case Studies of Elementary Children’s
Engagement in Computational Thinking
Through Scratch Programming

Sze Yee Lye and Joyce Hwee Ling Koh

12.1 Introduction

In the recent years, there has been burgeoning interest in teaching programming to
K-12 students (Grover and Pea 2013; Kafai and Burke 2013), with countries like
Estonia and the United Kingdom making programming a compulsory subject in
schools. In school-based programming activities, K-12 students typically create
interactive animations with child-friendly programming languages such as Alice
(Cooper 2010) and Scratch (Resnick et al. 2009).

Programming achieves more than just having students to write lines of codes. It is
essentially a problem-solving activity (Jonassen 2011; Kafai and Burke 2013;
Palumbo 1990). It has been proposed that programming exposes students to com-
putational thinking where they apply programming concepts such as abstraction and
modularization for problem-solving and engage in programming practices such as
testing and debugging (Brennan and Resnick 2012; Wing 2006). Wing (2006)
argues that computational thinking “represents a universally applicable attitude
and skill set everyone, not just computer scientists, would be eager to learn and
use” (p. 33). Computational thinking also parallels the twenty-first-century
competencies and skills such as problem-solving, creativity, and innovation
(Ananiadou and Claro 2009; Binkley et al. 2012).

Despite the heightened interest in K-12 programming, little attention has been
given to understand how K-12 students engage in computational thinking as they
program. Such kinds of studies are pertinent in K-12 settings, especially in elemen-
tary school contexts where young children may need more support when engaging in
programming activities (Grover and Pea 2013). Armed with these findings,
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educators can better support students with varying programming abilities to engage
in computational thinking during programming lessons. To address this research
gap, this paper seeks to examine elementary school students’ programming behav-
iours through multiple case studies. Specifically, this study provides an in-depth case
analysis of three Grade 4 students’ programming strategies through on-screen
recordings, interviews, and examination of their programming projects. The impli-
cations of these findings for the development of children’s computational thinking in
K-12 contexts are discussed.

12.2 Literature Review

12.2.1 Computational Thinking

Despite the rising popularity of computational thinking, the definition of computa-
tional thinking is still highly contested (Barr and Stephenson 2011; Brennan and
Resnick 2012; Grover and Pea 2013). Some of these definitions may not involve the
use of programming tools. For example, the National Research Council (NRC), in its
outline for the “Framework for K-12 Science Education” (NRC 2012), describes
mathematics and computational thinking as the representation of variables and their
relationship with computer tools. On the other hand, the International Society for
Technology in Education (ISTE) considers computational thinking as algorithmic
thinking with automation tools and data representation with the use of simulation.

As the focus of this study is to examine computational thinking through pro-
gramming for K-12 students, we are using the computational thinking framework
proposed for Scratch by Brennan and Resnick (2012). Scratch is a popular program-
ming language used in K-12 settings (e.g., Baytak and Land 2011; Kafai et al. 2010;
Tangney et al. 2010). With respect to Scratch, Brennan and Resnick (2012) suggest
three dimensions of computational thinking: computational concepts, computational
practices, and computational perspectives. Table 12.1 summarizes the key ideas on

Table 12.1 Computational thinking dimensions

Dimension Description Examples

Computational
concepts

Concepts that programmers use Variables
Loops

Computational
practices

Problem-solving practices that occur in the pro-
cess of programming

Being incremental and
iterative
Testing and debugging
Reusing and remixing
Abstracting and
modularizing

Computational
perspectives

Students’ understandings of themselves, their
relationships to others, and the technological
world around them

Expressing and
questioning about the tech-
nology world
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these three dimensions. These dimensions are appropriate for understanding how
K-12 students approach programming as Scratch is similar to other contemporary
visual programming languages for the younger children (e.g. Alice). These lan-
guages use simple-to-understand programming blocks, and the program output is
typically presented in the form of animated objects. Therefore, this framework is
likely to be suitable for considering computational thinking for programming con-
texts in K-12 education.

12.2.2 Computational Thinking Concepts in K-12

Most K-12 programming studies examine the issues related to the computational
thinking dimension of computational concepts. In these classes, students complete
programming tasks after being introduced to the relevant computational concepts
such as sequence, loops, parallelism, events, conditionals, and operators (e.g. Burke
2012; Denner et al. 2012). These programming classes are based on the learning
theory of constructionism which “attaches special importance to the role of con-
structions in the world as a support for those in the head, thereby becoming less of a
purely mentalist doctrine” (Papert 1994, p. 143).

Essentially, the students in these studies learn programming while actively
constructing their programming projects. Numerous studies assess students’ acqui-
sition of different computational concepts (Brennan and Resnick 2012) by examin-
ing students’ created artefacts (Burke 2012; Denner et al. 2012), their tests, or quiz
results (e.g. Lewis 2011; Lin and Liu 2012; Martin et al. 2013; Su et al. 2014) or
students perceptions through interviews (Meerbaum-Salant et al. 2013) and surveys
(Feng and Chen 2014; Sáez López et al. 2016). These studies unanimously report
positive results where students could grasp the associated computational concepts.

Some other studies report that questioning by teachers (Feng and Chen 2014; Su
et al. 2014), help from peers (Denner et al. 2012; Lewis 2011; Martin et al. 2013), or
assistance from parents (Lin and Liu 2012) to be some forms of support that K-12
students need during programming to help acquire computational concepts. Yet, no
studies examined if students differed in terms of their computational thinking during
programming and if this influenced how they approach programming.

12.2.3 Computational Thinking Practices in K-12

Only four studies focus on the computational practice of testing and debugging for
K-12 students (Baytak and Land 2011; Berland et al. 2013; Fessakis et al. 2013;
Wyeth 2008) with data collected through the log of programming activities (Berland
et al. 2013), field observation (Bers et al. 2014; Fessakis et al. 2013), and video
recordings (Baytak and Land 2011; Wyeth 2008).
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For the computational thinking practice of testing and debugging, it was found
that the students were more likely not to plan but “rather tried commands one by
one” (Fessakis et al. 2013, p. 94). When immediate feedback on their programs was
given, students were encouraged to explore and experiment with their programs
more frequently (Berland et al. 2013; Fessakis et al. 2013; Wyeth 2008). Analysis of
elementary school children’s programming behaviour with Logo found that they
were more like to “identify programming actions at the level of individual program-
ming statements” and “fail to ‘chunk’ program code in relation to the goal it is
intended to accomplish” (Lehrer et al. 1999, p. 297). This resembled the behaviour
of adult novice programmers who tend to focus on small chunks within programs
during testing and debugging (Bednarik 2012; Vessey 1985; Wiedenbeck et al.
1993).

During testing and debugging, young children were also found to engage in help-
seeking from knowledgeable others (Feng and Chen 2014). Baytak and Land’s
(2011) observation of 5th graders saw them seeking help from both teachers and
the peers after noticing the discrepancies between their actual and intended pro-
gramming output. The children studied did not see the teacher as the only expert and
would also seek help from their peers. This could be because of the largely
constructionist approaches adopted for school-based programming classes. Seeking
help concurred with the concept of community in constructionism (Papert 1980) in
which the community members (e.g. students and teachers) can act as “collaborators,
coaches, audience, and co-constructors of knowledge” (Kafai and Resnick 1996,
p. 6).

12.2.4 Research Gap in K-12 Programming Studies

Existing studies provide some brief insights about how elementary school students
are exhibiting computational thinking. With majority of the studies focusing on
computational concepts, there is generally a lack of studies investigating the cogni-
tive aspects of programming for the younger children (Grover and Pea 2013) which
embody the important computational practices that support computational thinking.
This is a glaring gap in current K-12 programming research.

Interestingly, with the emergence of help-seeking as a programming behaviour of
young children, it exacerbates the need for educators to understand their program-
ming behaviours so that instructional support for programming classes can be better
designed to foster computational thinking. Our review shows that programming
classes are typically conducted in a one-size-fits-all manner. Understanding the
possible variations in students’ programming behaviours is therefore important for
determining how instruction may be differentiated as needed. Understanding young
children’s programming behaviours could also provide insights about how students
are problem-solving during programming. Such studies would be of immense
interest to K-12 educators and researchers as developing problem-solving skills
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during programming is a motivating factor for the increased interest in K-12
programming (Barr and Stephenson 2011; Resnick et al. 2009).

12.3 Research Purpose

This study, thus, seeks to advance our current limited knowledge on how young
students are approaching computational thinking during programming. Specifically,
the paper aims to answer the following research questions:

When given a programming task,

1. What programming behaviours did students exhibit?
2. Are there any differences among students’ programming behaviours?

12.4 Methodology

To answer the research questions, a multiple case study research design was adopted.
This research design “is an in-depth description and analysis of the bounded system”

(Merriam 2009, p. 40). Multiple case studies enable in-depth analyses and compar-
ison of the characteristics and nuances of programming behaviours among young
children by using each child as a unique case. It provides a way for the initial
vocabulary of young children’s programming behaviour to be established for further
analysis in future.

12.4.1 Study Context

12.4.1.1 The Programming Class

The study was conducted in a typical 6-year Singapore elementary school. This
school conducted a 5-week Scratch programming class for all Grade 4 students as
after-school enrichment activity. Students attended classes once a week, and each
session lasted 2 hours. The purpose of this activity was to expose the students to
programming. Scratch was chosen as a programming language as the school felt that
it would be easier for the children to pick up this easy-to-use programming language.
Scratch is an intuitive visual programming language produced by MIT for children
to create interactive stories and games (see Fig. 12.1). In Scratch, students would
snap blocks together in jigsaw syntax to form scripts. Scripts would be used to
control sprites or objects.

Students were taught various programming concepts through different program-
ming tasks between lessons one to four. During the first two lessons, students were
introduced to fundamental programming concepts such as sequences and events
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(e.g. When Green flag clicked block) through the creation of animated stories.
During the next two lessons, the students were asked to create games with more
complex programming concepts such as conditionals (e.g. if block) and operators
(e.g. variable-related blocks). During the last lesson, the students could choose to
create any program they wanted. The programming task analysed in this paper took
place during the fourth lesson.

12.4.1.2 The Programming Task

In this task, the students were to create a scoring mechanism for a bouncing ball
game that they created during the third lesson where players had to move an object
(e.g. the plank) to catch a bouncing ball (see Fig. 12.2). In this task, students had to
create the scoring mechanism where:

1. The score would be reset to 0 each time the game was restarted.
2. The score would increase incrementally based on the rules set by the student.

This task was selected for analysis as it was a complex programming activity. In
terms of the computational thinking framework outlined in Table 12.1, it involves
the computational concepts of operators such as variables. In this task, students need
to use the variable-related blocks such as set score and change score to set the rules
for controlling the score variable (see Fig. 12.2). An example of a possible solution is

Fig. 12.1 Scratch layout
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shown in Fig. 12.2 where set score to 0 is triggered when the green flag on the top
right-hand corner is clicked by the player, whereas change score by 1 awards the
player one point each time the ball touches the plank. Students also had to use nested
conditional looping (i.e. the if touching plank block is nested within the forever
block; see Fig. 12.2). If there was no nested conditional looping (i.e. the removal of
forever block), the if block would only execute once only during the start of the
game, and the score would not be increased accordingly when the ball touched the
plank. Such kinds of nested looping were found to be challenging for the students
(Lee 2010; Meerbaum-Salant et al. 2013).

Prior to this task, the students had already learned the computational thinking
concepts of sequences, loops, and conditionals and had created programs that
implemented these concepts. The concept of operators (e.g. variable-related blocks)
was new in this task.

12.4.2 Selection of Cases

Each case was purposefully selected based on the maximum variation strategy
which was common in qualitative studies (Creswell 2013; Merriam 2009). These
cases represented students with different performance outcomes in the program-
ming task. The program of Student A did not meet the requirements at all, while
that of Student C met all the requirements. Student B’s program met requirements
partially as the scoreboard in his game could not be reset to zero when a new
game was played. This case selection strategy provided varied perspectives of
programming based on task performance outcomes. It would add to the current
limited knowledge on how elementary school students approach programming
and whether there may be any differences among students with different perfor-
mance outcomes in programming tasks.

Fig. 12.2 Possible solution to programming task
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12.4.3 Data Collection and Analysis

This data collection method is based on methods used in the studies of Berland et al.
(2013) and Baytak and Land (2011) where students’ programming logs were
documented and, at times, videorecorded. In our study, students’ programming
logs were documented as a video with a screen capture software that was installed
on their computers. The software also captured the verbal utterances of the students.
A 20-minute on-screen recording with utterances was captured for each of the three
students which spanned the duration they spent on the scoring task. Through
capturing the on-screen recording and utterances, we hope to obtain insights into
the dimensions of computational practices applied by the students. These video
recordings formed the primary data for the study. To triangulate these data collected,
10-minute individual interviews were conducted with each student after the five
lessons. During the interview, students were asked about their programming expe-
riences. The program that each student created was also collected and analysed to
understand the outcomes of students’ computational practices and their application
of computational concepts.

Content analysis was used to analyse the on-screen recordings. Each recording
was broken into moves as units of analysis. Each move represented a specific
programming behaviour. These units were coded using directed content analysis
where there were predetermined categories from existing literature reviews and
categories that emerged from the data (Hsieh and Shannon 2005). In this study,
we first drew reference from the computational practices specified by Brennan and
Resnick (2012) for computational thinking which comprised of experimenting and
iterating, testing and debugging, reusing and remixing, and abstracting and
modularizing. When examining students’ programming behaviours, we found it
that it was difficult to distinguish practices such as experimenting and iterating
from testing and debugging. From our data, we classified these practices as Coding
and Examining (see Table 12.2) as we observed students to be either inserting and

Table 12.2 Activities during programming

Programming behaviour
Observed
N

% of
total

Standardized
residual

Examining – Students examining the program output or
blocks

85.00 37.61 6.61

Coding – Students coding by inserting or manipulating
blocks or sprites

67.00 29.65 3.63

Verbalizing – Students making utterances about the con-
tents of blocks

29.00 12.83 �2.69

Helping – Students helping others to program or seeking
help from peers or resources

24.00 10.62 �3.52

Non-programming tasks – Activities that are not related to
programming such as playing games and interacting with
peers on non-programming issues

21.00 9.29 �4.02

Total 226 100.00
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manipulating blocks or sprites or examining their blocks and programming output.
The category of Coding was also used by Wyeth (2008) and Berland et al. (2013) to
describe students’ programming moves.

Throughout this process, we observed students to be making verbalizations and
seeking or giving help as they engaged in Coding and Examining. Therefore, the
categories of Verbalizing and Helping were added. In addition, students also
engaged in Non-programming tasks as they played games after completing their
assigned programming tasks and interacted with peers on on-programming issues.

While Brennan and Resnick proposed that students’ computational practices also
comprised reusing and remixing as well as abstracting and modularizing, we felt that
these could be better assessed through examining the students’ programming pro-
cess. As the purpose of content analysis was to code students’ programming
behaviour move by move, we did not include these categories within the coded
programming behaviours but analysed if students exhibited these practices as we
study their programming process in the Findings section. To establish inter-rater
reliability, 10% of the units were coded by a second rater, and a Cohen’s kappa of
0.87 was derived, indicating adequate reliability. The student interviews were
analysed for dominant themes using content analysis.

To answer the research questions, the frequencies of the coded categories were
counted up and analysed statistically. The first research question was examined with
the chi-square goodness-of-fit test to identify the dominant programming activities.
The Pearson’s chi-square test for association was used to analyse the differences in
programming behaviour among students. These results were triangulated against the
themes that emerged from the interviews as well as the students’ programming
products.

12.5 Findings

12.5.1 Students’ Programming Behaviours

As evident in the recordings, the students were engaged in five kinds of program-
ming behaviours (see Table 12.2).

The chi-square goodness-of-fit test found significant differences among the
frequencies of the categories coded (χ2 (4, N ¼ 226) ¼ 74.26, p < 0.05). As per
Agresti (2007), cells with a standardized residual greater than +2 indicated that its
observed frequency was above-expected, whereas a residual smaller than �2 indi-
cated that the observed frequency was below-expected. Thus, Table 12.2 shows that
students’ engagement in Examining and Coding during programming were above-
expected, accounting for more than 50% of the coded units, whereas the rest of the
behaviours were below-expected. Examining occurred most frequently among the
units coded with students executing their programs to observe if there was any
mismatch between the intended and actual output. Students could also be Examining
by mousing over blocks to determine if these should be applied or modified. Besides
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Examining, students also paid considerable attention to Coding, which accounted for
nearly 30% of the coded units. These behaviours involved students inserting or
manipulating blocks or sprites.

Among the programming behaviours that had below-expected frequencies, Ver-
balizing and Helping accounted for close to 23% of the coded units. Verbalizing
referred to students’ verbal utterances that were made in correspondence to their
examining and coding activities. They could be thinking aloud about possible
programming steps (e.g. “Make variable”) or verbalizing particular blocks in their
program. In Fig. 12.3, for example, a student verbalized “Move 10 steps” and “If on
edge bounce” as he was examining the blocks he had used in the program.

About 11% of the units coded involved students helping or seeking help from
others. When faced with problems during programming, some students would seek
help from the knowledgeable others (e.g. peers or teachers) or refer to content
resources such as the teacher’s worked examples. When help was sought by peers,
students were found to be providing step-by-step instructions, answering peers’
questions, pointing out possible mistakes, or helping their peers to do the
programming.

About 9% of the coded units involved students engaging in Non-programming
tasks. This included interacting with others on non-programming matters, playing
Scratch games created by themselves or their peers. These activities typically
occurred when students have completed their programming-related activities ahead
of time or when students have encountered repeated failed attempts to solve their
programming bug and decided to do something other than their programming
activity.

12.5.2 Differences in Programming Behaviours

A chi-square test of independence found significant differences among students’
programming behaviours (χ2 (8, N ¼ 226) ¼ 37.69, p < 0.05). From Table 12.3, it
can be seen that the frequency of occurrences of Examining and Coding were within
expectation for all three students, indicating that they were largely on task. Student A
had above-expected frequencies for Helping and Non-programming tasks, while that

Fig. 12.3 Verbalizing on
existing blocks
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for Verbalizing was below-expected. This contrasted sharply with Student C whose
observed frequency for Verbalizing was above -expected, while the observed fre-
quency for Non-Programming tasks was below-expected. Student B was the only
student with below-expected frequency for Helping. The specific programming
behaviours of each student are described in the following sections.

12.5.2.1 Student A

Student A is an 11-year-old boy who claimed to have learned Scratch programming
from his after-school care centre. However, he did not manage to fulfil the program-
ming task as he did not create any script with the operator-related blocks. The
program he created did not have the required scoring mechanism at all.

Even though Student A’s engagement in Coding was within expectation, analysis
of his programming process showed that he was not coding according to the task
specifications but redesigned the programming task to make it more manageable (see
Fig. 12.4). Working from a bouncing ball program that he created during the last
lesson, he inserted another sound block (play sound HumanBeatBox until done)
below an existing sound block (play sound HipHop until done) rather than create the
scoring mechanism. He also created a script with two blocks so that the user can stop

Table 12.3 Comparison of activities

Examining Coding Verbalizing Helping

Non-
programming
tasks Total

Student A – Failed to meet requirements

Actual 19.00 12.00 1.00 11.00 13.00 56.00

Expected 21.06 16.60 7.19 5.95 5.20 56.0

% 33.93 21.43 1.79 19.64 23.21 100.00

Standardized
residual

�0.66 �1.55 �2.85 2.53 4.14

Student B – Partially met requirements

Actual 30.00 27.00 9.00 2.00 6.00 74.00

Expected 27.83 21.94 9.50 7.86 6.88 74.00

% 40.54 36.49 12.16 2.70 8.11 100.00

Standardized
residual

0.63 1.57 �0.21 �2.70 �0.43

Student C – Met all requirements

Actual 36.00 28.00 19.00 11.00 2.00 96.00

Expected 36.11 28.46 12.32 10.19 8.92 96.00

% 37.50 29.17 19.79 11.46 2.08 100.00

Standardized
residual

�0.03 �0.14 2.69 0.35 �3.21

Total count 85.00 67.00 29.00 24.00 21.00 226.00

% 37.61 29.65 12.83 10.62 9.29

12 Case Studies of Elementary Children’s Engagement in. . . 237



the game by pressing the b key. In terms of computational thinking concepts
specified by Brennan and Resnick (2012), the student has applied the concepts of
sequence and events. He was unable to use operator-related blocks (e.g. set score) or
create blocks with nested conditional looping. He engaged in the computational
programming practices of experimenting and iterating to add media effects at this
point. The simplicity of the task led to little need for engagement in the practices of
testing and debugging.

From Table 12.3, his observed frequency for Helping was above-expected. He
actively sought help from peers or used content resources such as worked examples
in his attempts at the programming task. He explicitly requested his peers to “just
come and do it [the scoring task] now”. His peer obliged and made all the required
changes for the scoring task.

The student then sought to fix the bouncing ball problem in his program. The ball
was supposed to move downwards when hitting the upper plank 1 and upwards
when hitting the lower plank 2. The program output in Fig. 12.5a shows the ball
bouncing upwards when hitting plank 1. An examination of the students’ original
program in Fig. 12.5b shows an error in specifying the point block. For a ball to point
downwards if touching plank 1, the nested point block should be specified as point in
direction 180. Conversely, for the ball to move upwards if touching plank 2, the
nested point block should be specified as point in direction 0. The student attempted
to engage in some aspects of the computational thinking practices of reusing and
remixing when he used the teacher’s bouncing ball template (see Fig. 12.5c) to
improve his program. This template was originally provided as some of the students
were not able to make the ball bounce properly in the previous lesson. The teacher
provided the template to help the students focus on programming the scoring
mechanism during this lesson. With the help of this resource, the student engaged
in the computational practices of experimenting and iterating as well as testing and
debugging to fix the problem. Figure 12.5d shows him modifying his program
accordingly by changing the turn block inputs from 60� to 45� as per the template.
This change did not solve the problem as the problem was with the point in direction
block. For example, the ball was still pointed upwards when it hit plank 1. He did not
succeed at the first try and had to refer the template again. Figure 12.5e shows his
second attempt where he changed the inputs in the point block for both plank 1 and

Fig. 12.4 Student A’s scripts for the redesigned manageable task
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Fig. 12.5 Modification based on bouncing ball template
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plank 2. This enabled the ball to bounce properly as the orientation of the ball was set
correctly at downwards and upwards for plank 1 and plank 2, respectively.

About 23% of the units coded for Student A was for Non-programming tasks, the
highest among the three students. Analysis of the videos showed that when he was
not working on the programming task, he was either interacting with his friends on
non-programming matters or playing his self-created Scratch games either individ-
ually or with his peers. When interviewed, Student A expressed a trial-and-error
approach to programming where:

I see the output. I click on the blocks and see what they can do. . . . I try to fix them again and
try to make the program correct.

It appeared that he made surface-level changes to blocks by changing its inputs to
match the teachers’ template but did not attempt to shift or manipulate blocks
dynamically. He refocused the programming tasks and chose to do what appeared
manageable to him, relying heavily on peer support for the tasks that were beyond
him. His higher-than-expected focus on Non-programming tasks could also be a
means of avoiding tasks that may seem difficult to him.

12.5.2.2 Student B

Student B is an 11-year-old boy who did not have prior programming experience.
His program partially fulfilled the task requirements because it failed to reset the
scoring mechanism of the game to zero when the game started.

From Table 12.3, it can be seen that Student B was the only student who had
below-expected frequencies for Helping as he largely depended on himself to solve
programming problems. A major problem he encountered was that his scoreboard
remained at zero and could not change. Screen recordings revealed that despite the
seven unsuccessful attempts, Student B persevered by Coding, Examining his
program output, and modifying the program continuously without seeking external
help. At times, he would verbalize his thoughts as indicated by the units coded under
Verbalizing. In terms of computational thinking practices, Student B can be charac-
terized as one who engaged intensively in experimenting and iterating as well as
testing and debugging.

Figure 12.6 shows Student B’s coding process. In his original program (see
Fig. 12.6a), Student B’s score could not change because he applied a block that
set score to 0 rather than change score. In Modification 1 (see Fig. 12.6b), he applied
nested conditional looping by shifting the if block within forever and if touching
Sprite 2. He also attempted to replace set scores to 0 to change scores by 1. He
examined the output and found that the score still did not change as he had different
conditions nested within the if touching Sprite 2 block.

He then attempted to understand his program by verbalizing the blocks he just
modified (If touching Sprite 1, change score). In Modification 2 (see Fig. 12.6c), he
shifted the turn right by 60� block to the forever loop to isolate the change score
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block. Seeing that the output is not still changing, he again verbalized the blocks
related to scoring (If touching Sprite 1, change score).

Student B eventually solved the problem when he realized that he had specified
the wrong conditions as the two blocks containing the if touching statements referred
to different sprites (see Fig. 12.7). The self-realization of the buggy block was
evident through his utterance (“This thing is Sprite 2”). He then edited the program
accordingly by making the sprite consistent in both the outer if and inner if blocks
(see Fig. 12.7). However, Student B failed to realize that the inner if block was
redundant and the same solution could be attained by just adding the change score
block after the point in direction block. Even though Student B has fixed the
changing score problem, he did not manage to complete the other task requirement
of resetting the score to zero during a game replay.

Fig. 12.6 Making changes

Fig. 12.7 Student B’s final
program
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In contrast to Student A, Student B made some attempts to examine related
blocks. For example, after Modification 2 (see Fig. 12.6c), he verbalized the related
blocks that might cause the score to change (If touching Sprite 1, change score).
From this utterance, we can infer that he was reading one block after another and
considering how the two blocks in close proximity could affect each other. This was
further triangulated in his interview in which he described that he read his program in
“step-by-step” mode as an approach to programming. Nevertheless, we observe that
Student B typically focused his attention on the blocks he had just modified, thereby
limiting his examination to a small chunk of program. His utterances, which tend to
focus on single blocks, e.g. Set score, showed that he could be reading chunks of
blocks in isolation. This could be a reason why he failed to realize that there was a
redundant inner if block.

12.5.2.3 Student C

Student C is an 11-year-old girl who had some experience with programming. Like
Student B, Student C completed her programming task with minimal help from
others. In fact, she provided help to peers even as she was completing her own
programming task. The standardized residuals of Table 12.3 show that Student C
predominantly engaged in Verbalizing as she was Coding and Examining. This
could be her way of articulating her programming strategy in order to stay focused
on the given task.

Analysis of screen recordings showed that Student C was thinking aloud about
both individual and related blocks, which exemplified attempts to analyse her
program holistically as she engaged in the computational thinking practices of
experimenting and iterating and testing and debugging. For example, Student C
realized that the score was not increasing but remained at zero during game play (see
Fig. 12.8a) as the set score to 0 is nested within the forever block. She thus
verbalized, “Set Score to 0 outside the forever thingy,” and then shifted the set
score to 0 block outside the forever block (see Fig. 12.8b). In contrast to Student B,
these moves showed that Student C had a more holistic view of her program as she
did not pay attention to blocks within close proximity of each other. In this example,
she was cognizant that the forever block could affect the set block even though these
were not close to another.

Student C was also observed to be making strategic programming moves rather
than inserting blocks by trial and error. In one iteration of her program, she
discovered a bug where her change score block was nested within a forever block
(see Fig. 12.9a). This caused the score to change infinitely. She realized how the
forever block was related to the ever-changing score in the program. Thus, she
removed the forever loop (see Fig. 12.9b).

Student C also ensured that there were no redundant blocks in her program as she
removed sprites in her previous moves. For example, in Fig. 12.10, there were

242 S. Y. Lye and J. H. L. Koh



missing conditions in the last two if blocks. While the presence of these blocks did
not affect the running of the program, these would never be executed. Through her
utterance “I know how to make this shorter”, we deduced that she was aware that
these blocks were redundant. She then removed these blocks from the program
accordingly.

Fig. 12.8 Verbalizing proposed solution

Fig. 12.9 Making a strategic move
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Interviews with Student C showed that she approached programming by seeking
to understand her program as she said, “I have to look at the script”. As compared to
the other students, she was able to go beyond surface-level changes by considering
the relationships among blocks across the whole program. Among the three students,
she was the only student who fulfilled all the task requirements.

12.6 Discussion

This study analysed possible differences in the programming behaviours of elemen-
tary school students through three purposive naturalistic case studies of students with
different performance outcomes in a common programming task. Three kinds of
programming behaviours were observed.

Fig. 12.10 Removing
redundant blocks
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12.6.1 Programming Behaviours

12.6.1.1 Student A: Trial-and-Error Programming

It was found that Student A approached programming through changing block
inputs by trial and error. In terms of computational thinking practices, it appeared
that Student A was not deficient in carrying out experimenting and iterating as well
as testing and debugging. However, this study shows that the mere act of carrying
out these computational thinking practices did not imply that quality programming
was happening. One reason for Student A’s programming behaviour could be
explained with literature review findings about children where they were likely to
be programming in trial and error due to the immediate feedback afforded by the
programming languages (Berland et al. 2013; Fessakis et al. 2013; Wyeth 2008).
Nevertheless, Student A also exhibited some forms of problem avoidance as he
reframed the programming task into what he appeared to be more confident of doing,
depended on external help, and engaged in Non-programming tasks to a larger extent
than the other students. Student A also did minimal manipulation of blocks and did
not attempt to create nested loops, possibly indicating his poor grasp of domain
knowledge. Domain knowledge refers to the “generic theories and principles upon
which the system is designed” (Jonassen 2011, p. 80), and it involves both declar-
ative and procedural knowledge of the system of interest (Alexander 1992). Declar-
ative knowledge is about “knowing that”, while procedural knowledge is about
“knowing how” (Alexander 1992). Student A appeared to lack declarative knowl-
edge related to computational thinking concepts as he did not know which blocks to
use. His attempts at copying the teacher’s template demonstrated his weak proce-
dural knowledge as he did not appear to have had deep understanding of the
programming intent of the template.

12.6.1.2 Student B: Piecemeal Programming

As compared to Student A, Student B appeared to have stronger understanding of
computational thinking concepts as he was able to use sequences, loops, operators,
and conditionals. Student B can be characterized as a self-dependent but piecemeal
programmer as he largely examined programming blocks in close proximity to each
other and did not examine the interrelationships among blocks. While such kinds of
programming behaviour did not surface in K-12 programming studies, this is
nevertheless common among novice programmers at tertiary level (e.g. Vessey
1985). By adopting such a programming approach, Student B failed to have a
thorough understanding of his program. Therefore, in terms of computational think-
ing practices, it can be seen that Student B’s execution of experimenting and
iterating as well as testing and debugging was analytically superior to that of Student
A. There were some attempts to understand bugs and make reasoned changes to his
program even though it was piecemeal in nature.
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12.6.1.3 Student C: Holistic Programming

In comparison, Student C can be characterized as one who attempted to program
through analysing and understanding her program holistically. It appeared that
frequent verbalization supported Student C as she attempted to make reasoned rather
than haphazard changes to the program. Interestingly, Student C also attempted to
make her program efficient by cleaning up redundant blocks. Among the three
students, Student C showed good understanding of computational thinking concepts.
Her attempts at the computational thinking practices of experimenting and iterating
as well as testing and debugging was undergirded by a holistic understanding of
where she was heading with her program. Such an approach is superior to the trial-
and-error and piecemeal approaches adopted by Students A and B, respectively.

These descriptive findings provided us with insights of how these students were
problem-solving during programming. As the fostering of problem-solving skills is
one of the driving forces behind the heightened interest in K-12 programming and
computational thinking (Kafai and Burke 2013; Resnick et al. 2009), the following
instructional implications need to be considered:

12.6.2 Instructional Implications

12.6.2.1 Develop Domain Knowledge

The programming strategy adopted by Student A indicated that some students could
need more time to acquire the domain knowledge for programming. Essentially, these
students could be unclear of the functions of the programming block.Without such basic
domain knowledge, they might be just experimenting with blocks and not engaging in
any meaningful problem-solving. Besides explicit teaching, students can be pointed to
instructional resources such as videos, cue cards, or the Help menu in Scratch.

Other kinds of instructional resources could include partial worked examples
from which student can be taught to reuse and remix for their given programming
task. This appeared to be something that Student A referred to. In fact, reusing and
remixing is widely adopted by programming professionals (Haefliger et al. 2008).

In this study, Student A actively sought help from his peers, but they responded
by doing the task for him. Peer support, as scaffold, could be encouraged with peers
guiding but not taking over programming tasks. Such kinds of peer support are in
line with the community in constructionism (Papert 1980) where community mem-
bers (e.g. students) can act as “collaborators, coaches, audience, and co-constructors
of knowledge” (Kafai and Resnick 1996, p. 6). Evidently, peer support is an
important element in K-12 programming (Denner et al. 2012; Lewis 2011; Martin
et al. 2013). Nevertheless, young children may not instinctively know how to ask
good questions. Teachers may have to engage in modelling (Palinscar and Brown
1984; Schünemann et al. 2013) and provide students with question prompts to do so
(Choi et al. 2005; Ge and Land 2003).
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The integrative use of teacher, peers, and instructional resources can function as a
distributed scaffolding system (Puntambekar and Kolodner 2005) for building
students’ domain knowledge. This can better cater to students who have different
zones of proximal development (Brown et al. 1993; Li and Lim 2008; Puntambekar
and Kolodner 2005) with respect to programming.

12.6.2.2 Help Students to Develop a Holistic View of the Program

The study results showed that Student B lacked a holistic view of the program as he
focused on the blocks that concerned the changes he was making at a point in time.
As such, he failed to consider how the different parts of the program were interre-
lated and was not able to build “a causal model of the program structure and the error
in it” (Vessey 1985, p. 490). This is unlike better programmers who are more likely
to “seek the relations of objects, which leads to a connected view of [the] program”

(Wiedenbeck et al. 1993, p. 807).
For students like Student B, they could be taught to comprehend their programs

by thinking aloud and verbalizing their programming steps like Student C. Such
kinds of verbalization could help them better understand their program steps. This
thinking-aloud strategy is highly recommended in other subject areas such as reading
comprehension (Kucan and Beck 1997) where it was suggested that “breaking into
the reading process by asking readers to think aloud, or verbalize, as they read
focuses their attention and requires that they spend more time thinking about what
they are reading” (p. 292).

Another way to develop a holistic view of the program is through program
comprehension exercise. Students could be given programs and asked to predict
their outputs and reasons for their predictions. The chosen programs could be based
on the students’ own buggy programs which could also be used to demonstrate how
blocks in the various parts of the programs are related. In this study, the teacher did
provide opportunities for the students to predict output during whole-class discus-
sion or when students approached teacher for help. As the students only had three
programming lessons prior to undertaking the task for this study, more program
comprehension exercises may be needed to help the students to develop a holistic
view of the program.

12.6.3 Help Students to Develop the Practice of Abstraction
and Modularization

Although Student C completed the assigned task, her solution could be further
enhanced through abstraction and modularization which is “building something
large by putting together collections of smaller parts” (Brennan and Resnick 2012,
p. 7). An example can be seen in Fig. 12.2 where different stacks of blocks were
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created for the resetting of score to 0 and the increment of scores when the ball
touched the plank. Abstraction and modularization makes it easier for programmers
to debug programs by compartmentalizing them into different stacks of codes or
sprites. However, for Student C, the program was not compartmentalized, and the
solution was implemented in just one lengthy stack of programming blocks (see
Fig. 12.8). From this study, we speculate that abstraction and modularization may
not come naturally for elementary students, even those who may be better pro-
grammers. There would, thus, be a need to make students aware of such good
programming practices through role modelling. Developing abstraction and
modularization is likely to sharpen students’ problem-solving skills as it could
help them to organize the programming problem to make troubleshooting easier.

12.7 Limitations and Future Research

In this paper, we studied how three students were programming, while they were a
given a fairly complex programming task. Even though the task may be relatively
complex for these young and inexperienced programmers, it nonetheless is not
reflective of students’ programming behaviours when confronted with more com-
plex, open-ended programming tasks. The programming behaviours that emerged
still need to be validated through further studies. Another limitation of the study was
the selection of three purposive case studies based on students’ programming out-
comes. The intent of this study was to surface some initial insights, but further
studies through larger samples of students are needed to validate the programming
behaviours observed. The study is also limited in its examination of how students’
prior programming experiences and motivations for programming may have
influenced their programming behaviours. Even though both Student A and Student
C appeared to have had some experience in Scratch programming, their program-
ming outcomes and programming behaviours differed. Students’ motivation and
self-efficacy for programming could have influenced the efforts and outcomes.
However, these factors were not examined deeply in this study as the focus was
on students’ programming behaviours. In future studies, the influence of instrumen-
tal aspects as well as students’ perception of their learning environments could be
taken into consideration for a more holistic understanding of students’ programming
behaviours. Another limitation of this study is that computational programming
perspectives of the children were not examined as the focus of the study was to
understand the children’s programming behaviours. Future studies could examine
this aspect through post-activity reflections for the children to articulate how their
understandings of themselves, others, and the world have shifted through their
engagement in Scratch programming.
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12.8 Conclusion

Despite the heightened interest in how computational thinking may be applied in
K-12 programming, only a few studies examined how young children program. This
study attempted to bridge this gap through in-depth analysis of how three Grade
4 students were programming. The different programming behaviours of these three
students indicate that young children may not approach programming in a similar
manner. As such, K-12 programming teachers may need to scaffold these different
programming behaviours with differentiated forms of instruction so that computa-
tional thinking can be acquired more easily by students with different efficacies for
programming. The findings of this study provide initial insights for K-12 educators.
More studies in this area are needed for interested educators and researchers to plan
K-12 programming lessons effectively.
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Chapter 13
Integrating Computational Thinking
in School Curriculum

Mehmet Aydeniz

13.1 Introduction

There has been an increasing interest in making computer science a core subject in
K-12 school curriculum and integrating computational thinking into STEM subjects.
Several countries have developed national policies, standards, and guidelines for
curriculum, teacher education, and assessment. In the United States, interest in
computer science became a hot topic after NSF’s CS 10K Project, whose aim was
to prepare 10,000 computer science (CS) teachers by 2016 (Astrachan et al. 2011;
The National Center for Women & Information Technology (NCWIT) 2012). NSF
has sponsored different working groups to study the feasibility of infusing CS into
K-12 education, conduct research about pedagogical aspects of computational
thinking (CT), and develop assessment metrics for measuring CT skills across
subject areas. These efforts resulted in a comprehensive definition of CT and ways
to train teachers and develop the curriculum. The funding provided by the NSF
motivated both curriculum development and teacher education efforts across the
United States. The CS efforts in the United States can be put into four categories:
(1) curriculum development programs (e.g., AP CS principles, Exploring Computer
Science (ECS), code.org), (2) programs that target broadening participation in CS,
(3) programs designed to certify teachers to teach computer science (Idaho Teach,
UTeach, TEALS), and (4) integrating CT into STEM curriculum (e.g., NIELS,
CTSiM, Scalable Game Design, Bootstrap).

Computational thinking entered into science education in the United States
through introduction of the Next Generation Science Standards [NGSS] (National
Research Council [NRC] 2013). NGSS places emphasis on science technology,
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engineering, and mathematics (STEM) practices. These practices include
questioning, formulating evidence-based explanation, developing models,
computational thinking, and engineering design. Among these practices, compu-
tational thinking has received significant attention from the computing industry
and funding from federal agencies (Astrachan et al. 2011; Guzdial 2008; NRC
2011a, b; Wilson et al. 2010). Science and mathematics educators have applauded
the investment in computational thinking and motivation to integrate computa-
tional thinking into science and mathematics curriculum. The motivation to inte-
grate computational thinking into science and mathematics curriculum comes from
the fact that computing concepts and practices have become an integral part of the
work that professional scientists, mathematicians, and engineers do (Bailey and
Borwein 2011; Denning 2017). If implemented effectively, computational think-
ing has the potential to significantly advance students’ problem-solving and ana-
lytical thinking and data analysis and modeling skills (Barr and Stephenson 2011;
Selby 2015). More, it is believed that the integration of computational thinking into
school curriculum and students’ engagement with application of computational
practices and concepts in K-12 will better prepare them for the twenty-first-century
economy and citizenship (Buckingham 2015; Smith 2016; Yadav et al. 2017; The
World Bank 2016; Vee 2013).

Despite increasing interest in computational thinking and the potential academic
benefits of integration for students, integration of computational thinking into school
science and mathematics has proved to be challenging for several reasons. First,
most schools cannot afford to add a computer science course to their existing
curriculum as school STEM curriculum is already saturated (Cuny 2012, 2016).
More, even when they do want to integrate computational thinking into school
curriculum, they often have difficulty in finding a qualified teacher to teach the
course (Astrachan et al. 2011; Barr and Stephenson 2011; UK Department for
Education 2013; Yadav et al. 2017). The second problem related to the lack of
qualified teachers to teach computational thinking in K-12 classrooms (Ericson et al.
2008). While teachers are familiar with and can adopt their instruction to several of
the practices called for in the NGSS, they are not as familiar with engineering design
and computational thinking nor do they have the knowledge and skills to teach
computational thinking skills in their courses. Most teachers have not taken engi-
neering or computer science courses as part of their college curriculum nor have they
been exposed to pedagogies that will help them teach computational thinking in an
effective manner. Problems with integration of computational thinking are not
limited to teachers’ familiarity with the concept. Third, discussions around definition
of computational thinking, its place in school curriculum, and how to best achieve
integration and how to design and deliver teacher training programs have not been
settled yet (Barr and Stephenson 2011; Perkovic et al. 2010; Wilson et al. 2010).
Despite these pressing questions, and ongoing discussions, STEM educators have
designed and delivered curriculum and programs for teacher training and student
learning in formal and informal contexts (Marling and Juedes 2016; Sengupta and
Farris 2013; Sengupta and Wilensky 2009; Wilensky and Reisman 2006; the
College Board, 2016).
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The purpose of this chapter, therefore, is to conduct a meta-analysis of research
studies conducted by computer science education community and in STEM educa-
tion. This review is significant for several reasons. First, such review affords the
opportunity to analyze how computational thinking has been defined and how
concepts and practices have been adopted to science education. Second, it allows
us to review professional development models that have been designed to help
teachers develop pedagogical knowledge and skills for integration of CT in general
and in science classrooms particularly along with their affordances and challenges.
Third, it will give us the opportunity to see how CT concepts and practices have been
measured both in integrated and stand-alone CT contexts. This review will also focus
on the pedagogy of computational thinking in the context of science and intervention
studies that focus on cognitive aspect of learning. Studies related to the affective
aspect of computational thinking will not be addressed. The ultimate goal of this
chapter is to provoke a discussion among STEM education community about the
need to understand the urgency of the call and strategies for developing capacity to
more rigorously integrate and thus more effectively implement computational think-
ing in K-12 classrooms.

The chapter starts with an introduction that highlights the developments that gave
rise and motivation to integrate CT in K-12 classrooms, followed by a discussion of
definition of computational thinking and its connections with science. Next, we
discuss current efforts and models around CS teacher training and professional
development in the United States. Then, we discuss research programs that have
explored the connections between computational thinking and science learning. We
end the chapter with a discussion of the implication of surging interest in and
synergy around computer science and integration of computational thinking into
STEM curriculum for STEM educators.

13.2 Defining Computational Thinking and Establishing Its
Importance for STEM Education

Computational thinking has been defined in various ways and by several scholars
and entities. Cuny et al. (2010) defines computational thinking as “the thought
processes involved in formulating problems and their solutions so that the solutions
are represented in a form that can be effectively carried out by an information-
processing agent.” The Royal Society defines computational thinking as “the process
of recognizing aspects of computation in the world that surrounds us, and applying
tools and techniques from computer science to understand and reason about both
natural and artificial systems and processes” (Furber 2012, p. 29). The UK Depart-
ment for Education has started an ambitious program around computational think-
ing. The UK Department for Education (2013) describes the purpose of the program
among others as helping students: “To understand and apply the fundamental
principles and concepts of computer science, including abstraction, logic, algorithms
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and data representation, to analyze problems in computational terms, and have
repeated practical experience of writing computer programs in order to solve such
problems, and to evaluate and apply information technology, including new or
unfamiliar technologies, analytically to solve problems”(p. 1). The CS curriculum
framework is structured in four key and progressive stages. Students at the fourth
key stage are expected “To develop their capability, creativity and knowledge in
computer science, digital media and information technology, to develop and apply
their analytic, problem-solving, design, and computational thinking skills and to
understand how changes in technology affect safety, including new ways to protect
their online privacy and identity, and how to report a range of concerns” (p. 1).
According to College Board (2017), computational thinking refers to the habits of
minds by which learners combine the power of human curiosity, imagination, and
creativity with the capabilities of intelligent machines to model natural phenomena,
design systems, or solve complex problems using scientific data and heuristic
reasoning. Wing (2010) defines computational thinking as the “thought process
involved in formulating problems and their solutions so that the solutions are
represented in a form that can be effectively carried out by an information-
processing agent” (Wing 2010, p. 1). Accordingly, she suggested that computational
thinking is a fundamental analytical thinking and problem-solving skill needed for
everyone in a professional life that relies on computing tools for such practices as
data representation, analysis, and modeling, not just for computer scientists. Con-
sistent this view, the Computer Science Teachers Association (CSTA) states that
“the study of computational thinking enables all students to better conceptualize,
analyze, and solve complex problems by selecting and applying appropriate strate-
gies and tools, both virtually and in the real world” (CSTA 2011, p. 9). While CT has
been defined by several scholars and professional entities, no definition has made the
impact on the field than Wing’s (2010) definition of computational thinking
(Teodte and Aydeniz 2015). Wing’s definition has received some criticism as well.

Denning (2017), for instance, problematizes the definition of CT advocated by
Wing (2010) and offers the term computational design instead. He states that
“Computational designers spend much of their time inventing, programming, and
validating computational models, which are abstract machines that solve problems
or answer questions” (p. 17). He argues that “the thought processes of computational
thinking should include those of skilled practitioners of the field where the compu-
tation will be used” (p. 15). Moreover, he attributes the origin of the term compu-
tational thinking to, the Nobel Laureate, theoretical physicist Kenneth Wilson, who,
along with his colleagues, uses the term computational thinking to refer to the
thought process used in “designing, testing, and using computational models”
(p. 14). He further argues that both “computational science and computational
thinking in science emerged from within the scientific fields—they were not
imported from computer science” (p. 14). Further, he makes references to John
von Neumann, “the polymath who helped design the first stored program computers,
described algorithms for solving systems of differential equations on discrete grids”
(p. 14). Denning (2017) maintains scientists and engineers have equally benefited
from and contributed to the advancement of computational sciences. He places a
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significant emphasis on the power of simulations and the role of computational
thinking in advancing science through simulations. Computational thinking and the
power of computers have given rise to several advancements in science and
mathematics ranging from “ability to simulate algorithms for solving systems of
differential equations on discrete grids” to “ability to sequence and edit genes” using
the power of computing (p. 13). Denning (2017) maintains that “computation has
proved so productive for advancement of science and engineering that virtually
every field of science and engineering has developed a computational branch
“(p. 14). Denning is perhaps right in his assertion that science has made significant
contributions to the field of computational thinking through its model-based
practices.

Genome scientists, for instance, have studied how different traits are passed on
from generations to generation using DNA information and to determine the evolu-
tionary changes that are needed for a particular protein to change into another protein
based on the underlying amino acid sequences using computational methods.
Genetic scientists first used the Needleman-Wunsch algorithm, to compare sets of
amino acid sequences with each other by using scoring matrices derived from the
work of Dayhoff and more recently BLAST for performing fast, optimized searches
of gene and protein sequence databases. Today, more sensitive searches utilizing
gene/protein family-based Position-Specific Score Matrices (PSSMs) or Hidden
Markov Models (HMMs) can be applied in order to perform comparative analyses
and assign putative functions to unannotated proteins by establishing evolutionary
relationships. These sensitive methods are usually used to identify domains which
are functionally and evolutionary independent units of a protein. As a result of the
tools and ways of thinking offered by computing, scientists have been able to
discover 18 new candidate genes for autism through computational analysis of
whole-genome sequences of more than 5000 people (Gholipour 2017).

Computational thinking has many aspects; some of the aspects are related to
computing concepts, others are related to computational practices, yet others are
related to soft aspects of computing. The main concepts of computational practices
are abstractions, algorithms, debugging, automation, data and representations, and
data analysis. We will not define and elaborate in each of these aspects here, but the
table shown below can help our readers understand the definition of each of these
aspects. Scientists, mathematicians, engineers, and statisticians use these concepts to
design representational or predictive models, solve complex business or scientific
problems, analyze large sets of data, and construct and communicate models of
patterns within the data and increase the efficiency of computing systems.

Engaging in design using computational thinking requires certain dispositions
and habits of mind. These dispositions include: “self-efficacy, confidence in dealing
with complexity, persistence in working with difficult problems, tolerance for
ambiguity, the ability to deal with open-ended problems, and the ability to commu-
nicate and work with others to achieve a common goal or solution.” Einstein once
said, “If I had an hour to solve a problem and my life depended on it, I would use the
first 55 minutes determining the proper question to ask, for once I know the proper
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question, I could solve the problem in less than five minutes.” This perspective on
problem-solving requires open-mindedness and highlights the importance of soft
skills in problem-solving. Therefore, in addition to teaching problem-solving and
critical thinking skills, designing learning activities to help students develop these
dispositions is critical to successful implementation of a computational thinking
program. These are the types of skills that are needed in science and engineering as
well. Therefore, these skills should not be left out when designing learning activities
and assessing learning outcomes for students in the context of computer science or
computational thinking. Taking a learning progression approach to designing such
activities and assessment is critical to “the opportunity to learn” for students of all
backgrounds, experiences, and levels.

13.3 Access and Equity in Computer Science Education

Over the years engineering and science have increased the processing power of
computers, and powerful computers are now cheaper and thus accessible to anyone
who wants to leave a mark in history of science, business, engineering, and tech-
nology. The increasing accessibility and increasing power of computers have, to
some extent, democratized the scientific and engineering endeavors and opportunity
to learn. As a result of accessibility to powerful computers and computer-based
resources, “more people can be computational designers and tackle grand challenge
problems” (Denning 2017, p. 17). Inspired by these facts, persistent economic
opportunity gap for different sects of society and concern about economic compet-
itiveness have encouraged the United States to initiate a bold initiative called
Computer Science (CS) for All. The goal of this initiative is “to empower all
American students from kindergarten through high school to learn computer science
and be equipped with the computational thinking skills they need to be creators in
the digital economy, not just consumers” (White House 2016, n.p). This initiative
involves distributing $4 billion funding to states and $100 million directly to school
districts in an effort “to expand K-12 CS by training teachers, expanding access to
high-quality instructional materials, and building effective regional partnerships”
(White House 2016, n.p).

Broadening participation in CS has been an issue in the United States. To broaden
participation of marginalized student populations, NSF started a program called the
Broadening Participation in Computing Alliance (BPC). The BPC Alliances were
established between 2006 and 2009 to increase the number and diversity of college
graduates in the computing and computationally intensive disciplines (NSF 2016).
The Alliances are national and regional collaborations consisting of academic
institutions, educators, professional societies, community organizations, and indus-
trial partners that have vested interest in making CS accessible to all students with an
explicit focus on underserved and underrepresented populations. The Alliances are
charged with creating the “best practices, educational resources, advocacy networks,
and forums needed to transform computing education” NSF 2013, n.p). While these
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efforts have generated a synergy and provided motivation to make CS accessible to
all students, Margolis et al. (2012) argue, if we want to go beyond the issue of access
and truly engage underrepresented student populations in CS in a meaningful and
effective way, “we also must transform CS classroom culture and teaching in ways
that engage and deepen how diverse students learn” (p. 72). In order to achieve this
goal, they have developed, the “Exploring Computer Science” curriculum, which
covers a range of CS topics through inquiry-based, hands-on, and culturally relevant
pedagogy (p. 73) and now being implemented in a wide range of schools nationwide
in the United States. This program is supplemented with teacher professional
development program which will be discussed under professional development of
CS teachers section of this chapter.

The issue of equity in CS has been a hot topic in other parts of the world as well.
For instance, a recent report published by Kemp et al. (2016) highlights the issues of
access and quality in CS education for different student populations in the United
Kingdom. One of the findings of this report was that “Boys and mixed schools were
more likely to offer computing than girls schools,” and at The General Certificate of
Secondary Education (GCSE), “19.6% of girls-only providers offered computing
compared to 31.6% of boys-only and 29.1% of mixed providers. While 9.3% of
girls-only providers offered computing at A-level 43.7% of boys-only and 24.5% of
mixed providers offered computing at A-level” (p. 4).

Regarding equity in computer science, two core issues have been targeted by the
CS community. First is the issue of access to computer science education. The
discussion focuses on underrepresentation of females, students with special needs,
and African-American and Hispanic students in CS. The main argument of this line
of research is that there are no pathways and enough resources for these groups to
enter CS programs. To address this issue, NSF has developed the broadening
participation program to create a network and increase opportunities for these
underrepresented groups to become part of CS community (Ashcraft and Blithe
2009; Burgstahler et al. 2012; Simard et al. 2010). The second line of research
focuses on pedagogy of computing. Scholars who fall under this camp argue that the
traditional CS curriculum ignores cultures and experiences of underrepresented
student groups, and instruction fails to address the learning needs of these groups
(Ben-Ari 2004; Brennan et al. 2011; Goode et al. 2014; Ryoo et al. 2016). Therefore,
this group has intensified their efforts to develop a curriculum that values and
integrates the cultural capital of the underrepresented groups and design and imple-
ment professional development for CS teachers to adopt inquiry-based, equitable
instructional, and assessment strategies. One way to address the underrepresentation
of women, students with special needs, and African-American and Hispanic students
is the adoption of culturally relevant curriculum and use of culturally responsive
instruction. The integration of CT into STEM courses, coupled with adoption of
inquiry-oriented culturally responsive pedagogies, can definitely make CS more
appealing to these underrepresented groups. This integration can potentially situate
computing in a culturally relevant and personally meaningful context and thus
increase student engagement and learning.
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13.4 Integrating Computational Thinking into STEM
Curricula

Arguably, computer science and the technologies it enables now are the driving force
of world’s growing economies, advanced defense systems, advanced communica-
tion technologies, scientific enterprise, and educational innovations (NSF 2013).
Considering the pervasiveness of computing in current industrial and research fields,
the ability to think computationally and use computing tools to make decisions,
design systems, and solve problems has become essential to every discipline (Vee
2013). Thus, CT should penetrate into formal school curriculum and be part of
informal STEM education programs for all ages and students of all backgrounds
(Margolis and Goode 2016; Weintrop et al. 2016; Wilson et al. 2010). While the
STEM education community and industry both agree that such integration should
take place, there is no consensus on how such integration should take place, who
should be responsible for making the integration possible, how to educate current
and future teachers to integrate CT across STEM curriculum, and how to assess
student learning in such an integrated learning context.

Several entities and individual scholars have been engaged in developing frame-
works and pursuing critical research questions both for effective teaching of CT and
for integration of CT into STEM curriculum. A commission led by the Association
for Computing Machinery, Code.org, Computer Science Teachers Association,
Cyber Innovation Center, and National Math and Science Initiative, in partnership
with states and districts, contributed to the development of a framework called, “The
K–12 Computer Science Framework” (American Computing Machinery 2016). This
framework has provided a comprehensive list of concepts and practices that are
associated with computer science. The CS concepts included in this framework
include: “computing systems, networks and the internet, data and analysis, algo-
rithms and programming, and impacts of computing” (p. 2). The CS practices
include fostering an inclusive computing culture, collaborating around computing,
creating computational artifacts, testing and refining computational artifacts, devel-
oping and using abstractions, recognizing and defining computational problems, and
communicating about computing” (p. 2). The framework establishes a parallel
between CS practices and science, engineering, and mathematical practices. This
relationship has been discussed using modeling, problem-solving, abstractions, and
computational thinking as the starting points.

Computational thinking is a necessary part of modern time scientists’ profes-
sional practices. First, most scientist use computers to collect, classify, store, trans-
form, and use empirical data needed for them to conduct their analysis (Emmott
2006). Second, most scientists use empirical data to develop, test, and refine models
to represent, study, and predict the structure and behavior of natural, physical, and
biological systems using the tools and power of computers. As such computer
models serve as a core representational practice in the field of science (Denning
2017; Nersessian 1992; Lehrer and Schauble 2006; Basu et al. 2015). Third,
scientists use the power of computing to represent or simulate the structure and
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behavior of biological and physical systems or design systems for data collection,
testing their hypothesis, manipulation, and developing solutions to problems. As
these points indicate, solving problems through computational thinking is a common
practice among scientists.

There is a growing consensus which claims that integrating computational think-
ing into STEM curricula gives learners a more realistic view of how scientists and
the professional in STEM fields function to achieve their research and professional
goals and thus better prepares them for building the necessary knowledge and skills
and habits of minds used in these fields (Augustine 2005; Dickes et al. 2016;
Feurzeig et al. 2011; National Research Council (NRC) 2011a, b; Weintrop et al.
2016). The pioneer of computer science Papert (1991) claimed that learning pro-
gramming in concert with other subjects can make learning more meaningful and
easier (as cited in Basu et al. 2015). Similarly, science and mathematics provide “a
meaningful context and a set of relevant problems” for using computational think-
ing, computing concepts, and practices (Hambrusch et al. 2009; Jona et al. 2014; Lin
et al. 2009; Wilensky et al. 2014) as cited in Weintrop et al. 2016, p. 128). Weintrop
et al. (2016) argue, “This reciprocal relationship—using computation to enrich
mathematics and science learning and using mathematics and science contexts to
enrich computational learning” (Weintrop et al. 2016, p. 128) is the driving force for
the increasing motivation for integration-based computational thinking curricula.
Computational thinking-based learning activities hold potential to engage student in
such learning activities. Furthermore, there is significant amount of research that
backs the claim that students learn best when they engage in design-based learning
activities which focus on problem identification, formulation of possible solutions,
testing of tentative solutions and use of representations for modeling, and reasoning
about the behavior of the target system (Blikstein and Wilensky 2009; Kim et al.
2015a; b; Kolodner et al. 2003; Mehalik et al. 2008; Papert 1980, 1991; Penner
2000; Sengupta et al. 2013).

Some empirical studies have shown that middle and elementary school children
can successfully use computational thinking tools to develop models of scientific
phenomena. Moreover, these studies engaging students in such practices have
shown to result in students developing both inquiry skills and a deep conceptual
understanding of the targeted science ideas (Basu et al. 2015, 2017; Sengupta and
Farris 2013: Sengupta et al. 2013; Taub et al. 2015; Wilensky 1995; Wilkerson-Jerde
2014). Therefore, there is a synergy among STEM education community both to
improve the state of CS education in K-12 education and to integrate computational
thinking into STEM curriculum.

While there has been a synergy to improve the state of CS in K-12 education and
to integrate core computational thinking skills in STEM curricula, the primary
focus of these efforts was first to “improve students’ interest in CT through
extracurricular activities, as opposed to aligning their learning activities with
curricular topics in science or mathematics” (Basu et al. 2017, p. 2). More recently,
scholars have made a conscious effort to integrate CT skills into STEM curricula
(Guzdial 1995; Sherin 2001; Sengupta and Wilensky 2009; Sengupta et al. 2013;
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Wilensky and Reisman 2006). Northwestern group has also successfully devel-
oped computational thinking-based lessons ranging from population biology,
DNA sequencing, ohm laws, kinetic molecular theory, to chemical reactions
(these lessons can be reached at http://ct-stem.northwestern.edu). These lessons
have been successfully used in schools to engage student in computational think-
ing and science learning in a variety of science domains (Weintrop et al. 2016).

Despite these intentional efforts “relatively little is known about students’ devel-
opmental processes and conceptual understanding in curricula that involve learning
programming and/or computational modeling in conjunction with scientific concepts
and representational practices” (Basu et al. 2017, p. 2). One challenge that remains to
be addressed is how to successfully integrate computational thinking into STEM
education (Rubinstein and Chor 2014). More, STEM education faculty has made
attempts to define what science learning and teaching would be like in the area of
NGSS and in a fashion integrated with CT. Weintrop et al. (2016) defined compu-
tational thinking in the context of mathematics and science. Weintrop et al. (2016)
argue that “science and mathematics are meaningful contexts in which we can
successfully “situate the concepts and practices of computational thinking.” They
argue this is the case because this is the “way mathematicians and scientists are using
computational thinking to advance their disciplines” (Weintrop et al. 2016, p. 128).
They propose a taxonomy that consists of four main categories: “data practices,
modeling and simulation practices, computational problem solving practices, and
systems thinking practices” (p. 128). The authors note, “Although we present our
taxonomy as a set of distinct categories, the practices are highly interrelated and
dependent on one another” (p. 134). The authors developed this framework through
the analysis of various sources related to computational thinking. These include
reviewing existing computational thinking literature, interviewing computational
scientists, and reviewing computational thinking-based lesson plans. After the
research team developed a tentative taxonomy, they consulted an expert panel
(consisting of STEM teachers and researchers) to finalize their taxonomy (Fig. 13.1).

A similar framework has been proposed by Sengupta et al. (2013). The compo-
nents of their framework include “1) Relationship between CT and Scientific
Expertise, 2) Selection of a Programming Paradigm, 3) Selection of Curricular
Science Topics, 4). Principles for System Design” (p. 353). In reference to the first
aspect of this framework, the authors point out the role of abstractions and compu-
tational models in the sciences with a particular attention to how both scientists and
software engineers use abstractions to design systems and solve problems. The
authors make an explicit and intentional reference to the importance of modeling
in science and how computational thinking is an essential practice in developing
scientific models. They also highlight the pedagogical affordances of computational
models for science learning in this aspect of their framework. The second aspect of
the proposed framework focuses on the importance of selecting a programing
paradigm that is conducive for the targeted domain and expected learning outcomes.
This is important because each programming paradigm provides different
affordances for the types of inquiry activity and scientific and computational
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practices students are expected to engage in and the artifacts they are expected to
produce. The third component of the framework proposed by Sengupta et al. deals
with selection of science topic covered by the curriculum. The final component of
the proposed framework focuses on the “principles for system design.” By system
the authors refer to the learning modules that integrate both science and computa-
tional thinking. The principle guide includes “a) supporting low-threshold as well as
high ceiling learning activities; b) design of programming primitives, c) supporting
algorithm visualization; and d) sequencing learning activities in a constructivist
fashion” (p. 353). Sengupta et al.’s (2013) model is based on a learning progression
for students to jointly develop computational thinking proficiency, conceptual
understanding, and engagement with epistemic practices of target domain.

Each of the frameworks/taxonomies presented provides a different perspective on
the integration of CT into science. These taxonomies are critical not only for
curriculum development efforts but also for accurately assessing the type of knowl-
edge and skills that are being promoted by CT-based STEM curricula. Moreover,
such taxonomies could help teacher education faculty to develop more relevant
content for professional development programs for teachers. Finally, these efforts
can initiate a meaningful conversation among STEM education colleagues about the
strengths and weaknesses of proposed taxonomies/ frameworks regarding integra-
tion of CT into STEM curricula. Such conversation in turn can inform and lead to
more relevant and effective programming related to curriculum development, pro-
fessional development, and assessment efforts.
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System Thinking 
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Fig. 13.1 Computational thinking in mathematics and science taxonomy adaopted from Weintrop
et al. 2016. https://link.springer.com/content/pdf/10.1007%2Fs10956-015-9581-5.pdf
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13.5 CT-Based Learning Environments

Some scholars have also investigated the process of learning in CT-based learning
environments such as NIELS (NetLogo Investigations in Electromagnetism,
CTSiM (Computational Thinking in Simulation and Modeling) and Scalable
Game Design. NetLogo is a multi-agent-based modeling environment in which
the user can create and/or interact with thousands of “agents,” whose behavior is
controlled by simple rules, and it is through the interaction of these agents that
complex, emergent phenomena are generated (Sengupta et al., p. 30). CTSiM is a
learning environment for K-12 science that is based on a computational thinking
approach (Basu et al. 2015; Sengupta et al. 2013). “The system consists of an
agent-based, visual programming and modeling platform where students can
model, simulate, and study science processes to simultaneously learn about
domain-general computational concepts and practices and relevant science phe-
nomena” (Basu et al. 2017, p. 2).

Scalable Game Design (SGD) is a program designed to “motivate, engage and
educate secondary students in designing complex games” (Reppening, et al. 2010,
p. 1). The program has evolved from an after-school program to a full-blown IT
curriculum that is now being implemented in K-12 classrooms. One critical aspect of
this curriculum is that even teachers without computer science backgrounds can
teach concepts targeted by SGD curriculum (Reppening et al. 2014). The project is
currently being adopted by more than 25 school districts in the United States. The
SGD program aims to increase the cognitive complexity of learning tasks that
middle school students would typically engage. More precisely, they wanted to
shift the focus of instruction from Web browsing, use of Web application, and
keyboarding to engaging students in computational thinking defined by problem-
solving and creativity. The program first targeted middle school as students start to
develop their identities at the middle school age (Gootman 2007) and now is offered
for different grade levels ranging from elementary to college. The program aims to
expose students to computational thinking through games and science visualization
and thus encourage and motivate students to pursue advanced learning opportunities
and possibly careers in computer science (Reppening et al. 2010). Reppening and his
colleagues argue that complex educational activities such as programming “must be
heavily scaffolded” (p. 2). Therefore, their approach has two stages: first they
motivate students to engage in computational thinking activities through game
design and then leverage the skills acquired in this process to engage students in
development of science visualizations. They also argue that in order for program-
ming to be interesting, programming tasks must be “grounded in students’ interests,”
promote problem-solving and critical thinking, and allow for and foster “student
creativity” (p. 2). However, achieving these goals has not been easy. Therefore,
STEM educators have been investing time and resources into researching different
motivational and pedagogical models to integrate computational thinking into K-12
education in an effective manner (Barr and Stephenson 2011; Reppening et al. 2010;
Sengupta et al. 2013; Weintrop et al. 2016; Wilson et al. 2010).
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Basu et al. (2017) designed a study to investigate both “specific issues with
integrating CT with middle school science instruction to support students’ science
and CT learning, and the types of difficulties students face when learning in CTSiM
learning environment and “the kinds of support they require to overcome these
challenges” (p. 2). After providing an extensive review of literature on how students
learn and in what ways they struggle with both learning about and doing science in
simulation-based learning environments and programming, they elaborate on the
characteristics of the CTSiM learning environment, the curriculum they have
designed, their intervention, and the findings of their research study.

Basu et al. worked with 15 6th grade students as they engaged in 7 learning
activities in 2 different units. Each set of activity focused on one science domain: one
set of activities (n ¼ 7) focused on kinematics and the other set (n ¼ 7) on ecology.
Students spent 3 h each day working with a member of the research team learning the
content through CTSiM for 3 days for each learning activity. The researchers worked
directly with the students to make observations and provide guidance through
leading questions when they struggled. They collected both observational and
interview data. The researchers “characterize the types of challenges the students
faced while working with CTSiM” through their analyses.

The results showed the CTSiM learning environment made significant contribu-
tions to students’ learning gains. Moreover, scaffolding made a big difference on
students’ learning gains in science. The authors report that students who received
one-on-one scaffolding showed improved learning gains between pre- and posttests:
F for kinematics (F (1,21) ¼ 4.101, p < 0.06), and for ecology (F (1,21) ¼ 37.012,
p < 0.001). The authors reported several challenges that the students faced while
learning in the CTSiM environment. The authors reported that students experienced
several challenges while learning science through a CT-based STEM curriculum.
The first challenges were associated with content knowledge due to lack of prior
knowledge or gaps in content knowledge. The second reported challenge was
associated with modeling practices. Students specifically experienced challenge in
“representing scientific concepts and processes as computational models and refin-
ing constructed models (partial or full) based on observed simulations” (Basu et al.
2017, p. 19). Another reported challenge experienced by the students was “agent-
based thinking challenges”—“expressing agent behaviors as computational
models”, “understanding how individual agent interactions lead to aggregate-level
behaviors, and the consequences of agent behavior changes on the aggregate behav-
ior” (p. 19). The final type of challenges experienced by the students included
programming-related challenges. The reported programming challenges include
(1) challenges in understanding the semantics of domain-specific primitives; (2) chal-
lenges in using computational primitives like variables, conditionals, nesting, and
loops to build programs (i.e., behaviors); (3) procedurality challenges; (4) modularity
challenges; (5) code reuse challenges; and (6) debugging challenges)” (p. 20).

Collectively, these results show us that integrating CT into STEM curricula is a
novel goal and as shown in this pullout study and some other studies can make
significant contributions to student learning. However, the challenges students face
in learning STEM concepts and practices in different CT-based learning
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environments and in different domains and contexts must be observed, studied, and
characterized. Unless we study and understand how students learn in these learning
environments and what specific challenges they experience and types of support they
need to overcome the observed challenges, we will not be able to develop effective
CT-based STEM curricula. Such knowledge is also necessary for designing effective
teacher professional development programs. Teachers who are knowledgeable of
these challenges can be guided by experts to adopt pedagogical strategies to address
these challenges.

13.6 Computer Science in K-12 Education

Computer education at the K-12 level typically has been limited to after-school
programs and summer camps specifically designed to increase female and racial
minority students’ interest in computing (Basu et al. 2017; Margolis and Goode
2016; Yadav et al. 2017). However, there has been an increasing push to make
computer science education as part of official K-12 curriculum (Margolis et al. 2014;
Royal Society 2012). As a result, several curriculum development and teacher
education programs have been developed to address the challenge. While it is
impractical to present all of these efforts, we will mention few efforts that have
been widely received by the CS community in the United States. Three curriculum
programs that have received wide acceptance from the CS community are Exploring
Computer Science, Scalable Game Design, and AP CS Principles.

Exploring Computer Science is a yearlong course consisting of 6-week long units.
The purpose of the course is to engage students both in computer science content and
computational practices. ECS curriculum creates opportunities for students to utilize
a variety of computational tools and engage in problem-solving using computing
practices in a culturally relevant fashion. One of the strengths of this curriculum
program is that both “assignments and instruction are contextualized to be socially
relevant and meaningful for diverse students” (n.p).

The ECS curriculum consists of human computer interaction, problem-solving,
programming, Web design, computing and data analytics, and problem-solving
units. The human-computer interaction unit gives the students diverse opportunities
to explore a variety of websites and Web applications and discuss issues of privacy
and security. Students learn the characteristics that make certain tasks easy or
difficult for computers and how these differ from those that humans characteristi-
cally find easy or difficult. The problem-solving unit provides students with oppor-
tunities to become “computational thinkers” by applying a variety of problem-
solving techniques as they create solutions to problems that are situated in a variety
of contexts. In the programming unit, students design algorithms and create pro-
gramming solutions to a variety of computational problems using an iterative
development process in scratch. TheWeb design unit challenges students to develop
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a Web page by applying their knowledge of algorithms, abstraction, and Web page
design. In the computing and data analysis unit, students use computers to translate,
process, and visualize data in order to find patterns and test hypotheses around
community-related issues. The robotics unit introduces students to robotics as an
advanced application of computer science that can be used to solve problems in a
variety of settings from business to healthcare. Students explore how to integrate
hardware and software in order to solve problems. More detailed description of each
unit can be found at http://www.exploringcs.org/curriculum.

AP Computer Science (CS) Principles teaches core computational concepts and
practices in a multidisciplinary approach. The course introduces students to pro-
gramming, abstractions, algorithms, large data sets, the Internet, cybersecurity
concerns, and computing impacts from a creativity and problem-solving perspective.
Students’ knowledge and skills are assessed through multiple choice test, two
performance-based tasks, and analysis of students’ digital portfolio.

13.7 Computer Science and Professional Development
of Teachers

Computer science education has been part of K-12 education in several parts of the
world for a long time. The United States has started an aggressive campaign to
elevate the status of computer science in K-12 classrooms in the early 2010s. NSF
supported the program CS 10K’s goal to prepare and place 10,000 CS-certified
teachers in K-12 classrooms across the country (Cuny 2012). India is another
country that has placed an increasing emphasis on CS education in its curriculum.
For instance, India has increased the hours spent on computer science from 160 to
180 for the 9th and 10th grades and from 140 to 180 for post-secondary school (Kim
et al. 2015b). Korean Ministry of Education initiated a plan for computing education
with software emphasis in K-12 curricula (Kim et al. 2015b). The program integrates
computing concepts into curriculum starting with the elementary school and all the
way to 12th grade. Israel has incorporated CS as part of school curriculum since
1970 and more strategically since the 1990s (Gal-Ezer and Stephenson 2014). High
school students interested in computer science usually take three 90-hour course
works during 10th through 12th grades. Israeli curriculum has made it optional for
highly motivated and capable students to take additional CS courses that engage
them in more rigorous course work. However, this option is not widely accessible for
every student (Gal-Ezer and Stephenson 2014). Russia has been teaching “The
Foundations of Informatics” since 1985 in its high school curriculum, whose goal
has been to promote “algorithmic thinking and computer literacy among students”
(Khenner and Semakin 2014, p. 1). This course has been updated several times in the
last three decades but a main focus is to foster students’ “algorithmic thinking,
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systems thinking skills, skills of formalization and systematization, and skill of
accessing ICT tools to solve problems” (Khenner and Semakin 2014, p. 5). The
Russian government has simultaneously prepared thousands of mathematics and
physics teachers to teach the informatics course.

In the United States, integration of computing in school curriculum has been a bit
challenging. States have not been proactive in designing policies around CS educa-
tion or teacher education around CS. Similarly, schools are not yet ready to fully
embrace the CS education initiative. However, despite institutional resistance from
schools, computer science education continues to become a game player in primary
and secondary schools across the globe (Basu et al. 2017; Yadav et al. 2017). For
instance, in the United States alone, more than 2000 high schools started to offer new
computer science courses (Cuny 2016). The United Kingdom (The Royal Society
2012) and Australia have developed rigorous policies and programs around com-
puting. Mexico has started its own initiatives to make computing an integral part of
school curriculum (Escherle et al. 2016). Turkey is considering to make coding as a
mandatory course starting from elementary school, all the way to high school.
Efforts in Europe and Asia follow the same pattern. South Korea has started a new
initiative in computer science with a focus on software development (Kim et al.
2015b).

While there is an increasing synergy in making CS a core curriculum course, and
computational thinking a core learning outcome in STEM courses, certifying suffi-
cient number of teachers who can teach CS and training enough STEM teachers who
can integrate computational thinking into their curriculum have been a challenge for
the STEM community (CSTA 2013; Ericson et al. 2008; Gal-Ezer and Stephenson
2010; Lye and Koh 2014; Menekse 2015; Ni and Guzdial 2012; Yadav et al. 2017).
The complexity of teacher preparation stems from challenges around recruitment,
the confusion about what types of knowledge and skills need to be taught, and how
teacher quality should be measured in CS as well as the place of CS in teacher
preparation programs (Gal-Ezer and Stephenson 2010; Goode et al. 2014; CSTA
2013). Gal-Ezer and Stephenson (2010) state:

Because so few countries or states/provinces require or allow for teachers to be certified
specifically as computer science teachers, very few teacher preparation institutions provide
programs with rigorous and relevant computer science training. In the absence of clear and
specific requirements for computer science, these institutions have little or no incentive to
address the needs of computer science teachers. (p. 63)

This is the case partly because interest in teaching CS in schools is relatively new;
policy makers, schools of education, and computer science departments are not
prepared to deal with this suddenly emerging need and the challenge it has posed
to the community. Nevertheless, the issue of preparing future CS teachers has
received attention from several scholars (Ericson et al. 2008; Gal-Ezer and Stephen-
son 2010; Goode et al. 2014; Lapidot and Hazzan 2003; Yadav and Korb 2012;
Yadav et al., 2014). The CS education community has embraced two popular
models, one in which students are recruited from computer science major and are
supported through pedagogical courses and clinical experiences to become certified.
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In the other model, the focus is on recruiting and preparing teachers from other
content areas through professional development to become CS teachers (CSTA
2013; Yadav et al. 2017).

13.7.1 Preservice Teacher Education Models

Since the synergy for teaching computer science in the US schools started, CS
educators have come up with various models for preparing future teachers. Goode
developed a course for teacher education programs in California around the Explor-
ing Computer Science curriculum, which has now been adopted in several other
states and serves as a model for professional development activities in the United
States. The course creates learning opportunities for students to “explore computer
science as a discipline that encourages inquiry, creativity, and collaboration” and
“models the investigative nature of computing” through hands-on activities which
“allow students to gain insights about teaching and learning core computing con-
cepts and practices in classroom settings. The course focuses on “methods of
eliciting, understanding and assessing” students’ conceptual understanding of core
computing concepts and practices. The course also equips prospective teachers with
knowledge and skills to engage student in inquiry-based learning activities. Students
explore a variety of instructional resources, tools, and virtual environments to
support their students’ engagement with computing concepts in an effective manner
(Goode 2011).

Some other systematic models have also been developed to infuse computer
science in secondary STEM teacher preparation program. For instance, in Idaho,
colleagues have developed a program called IDoCode. The IDoCode is a 35-credit
graduate certificate program designed for teachers to get certified to teach computer
science. Preservice teachers take a series of computer science courses and a mix of
courses around pedagogy of computing to get certified to teach computer science
(more information about the program can be accesses at https://coen.boisestate.edu/
idocode/students/cs-masters-stem-education/).

The UTeach Institute has also developed a certification route for computer
science majors to get certified to teach computer science in secondary schools. The
program is consistent with their model for math and science certification in which
students get certified to teach math and science by taking a series of courses as part of
a minor and some clinical experiences in local classrooms under the mentorship of
master teachers. Students who choose the CS path are required to take 24 h in CS and
UTeach’s pedagogy courses. While a viable option, the program has not been as
successful as their science and mathematics certification pathway programs as
computing jobs are abundant, and teacher salaries cannot compete with the salaries
offered to the graduate of computer science majors. However, this may change in the
future with more rigorous recruitment methods and more competitive incentives for
teachers of computer science.
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13.7.2 In-Service Professional Development Programs

Goode and her colleagues have developed a professional development program for
CS teachers building on their successful preservice teacher education model. The
ECS professional development program focuses on content, pedagogy, and partic-
ipants’ belief systems, provides in-class coaches who can help the teachers imple-
ment the content learned in the summer workshops, and provides the opportunity to
be part of a professional learning community (Margolis et al. 2012). The key features
of their PD program are that the program (1) immerses teachers into inquiry-based
learning and teaching practices; (2) focuses on discussion of equity-related issues
and culturally relevant pedagogy; (3) focuses on analysis of instructional practices,
through a teacher-learner-observer model in which teachers take turns planning and
delivering CT lessons in teams, giving and receiving feedback through structured
debriefing sessions with fellow teachers; and (4) focuses on development and
sustainability of an ongoing professional learning community (Goode et al. 2014).
Collectively, these targeted educational experiences create rich opportunities for
deep and reflective learning and, therefore, increases teachers’ knowledge of both
content and pedagogy.

The UTeach Institute has developed a 5-day summer professional development
program where they expose teachers to computing content and pedagogy with
ongoing support during school year. The Scalable Game design group has also
developed an effective professional development program for teachers to implement
their curriculum in their classrooms.

TEALS (Technology Education and Literacy in Schools) is another successful
program that has received significant attention from CS community and school
districts in the United States. This program establishes connections between pro-
fessionals from industry and teachers to bring rigorous computer science to the
nation’s classrooms. Collaborating with industry professionals has several benefits.
First, industry professionals have robust knowledge of computing concepts and
practices. Therefore, they can help teachers to develop and strengthen their knowl-
edge of the subject matter. Second, industry professional can help teachers to present
content in a way that is relevant to students’ personal lives thus increasing students’
motivation to more effectively engage with learning core computing concepts and
practices. Finally, they can serve as role models and inform and excite students about
career opportunities in CS-related fields. One strength of the TEALS is that it offers
three different support models for teachers to choose from. These models include
(1) classroom enrichment model, (2) co-teaching model, and (3) the lab support
model. The classroom enrichment model is designed for teachers who already
possess significant content knowledge and confident in pedagogy of computing.
The industry professional’s role is to enrich teachers’ curriculum by demonstrations
or other motivating activities. In the co-teaching model, industry professionals are
responsible for and provide instruction with teachers in the classroom for the entire
school year. They co-plan and teach with teachers so the teacher can strengthen their
content knowledge and improve their pedagogical knowledge related to teaching
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core computing concepts and practices. In this model, the industry professionals
gradually hand the responsibilities over to the teacher over the course of 2 years.
Once confident in content and pedagogy of computing, the teacher starts to assume
the primary planning, teaching, and assessment responsibilities. In the lab support
model, the teacher who may not be confident in their content knowledge assumes the
primary responsibility for instruction; however, they are aided by teaching assistants
who have strong commend of content and can answer difficult questions and assist
students with challenging assignments and projects.

13.8 Discussion

There has been a growing synergy around integrating computer science in K-16
school curriculum and CT in STEM curricula particularly. Although considerable
effort has been put into developing curricula and after-school programs to broaden
participation of underrepresented populations, there are still significant challenges
that remain to be addressed both by the computer science education and STEM
education community. These challenges include but not limited to “defining a
learning progression and curriculum, assessing student achievement, preparing
teachers, and ensuring equitable access” (Weintrop et al. 2016, p. 130). To address
these challenges, STEM education community has started to develop curriculum
integration models (Joyner et al. 2014; Perkovic et al. 2010; Roschelle et al. 2000;
Rubinstein and Chor 2014; Schanzer et al. 2015; Sengupta and Wilensky 2009; Tan
and Biswas 2007; Wilensky and Reisman 2006), study how students learn STEM
concepts, and engage in STEM practices in an integrated learning environment
(Basu et al. 2017; Sengupta et al. 2013; Sengupta and Farris 2013; Sengupta et al.
2015). For instance, Northwestern group has successfully developed computational
thinking-based lessons ranging from population biology, DNA sequencing, ohm
laws, kinetic molecular theory, to chemical reactions, and these lessons have been
successfully used in schools to engage student in computational thinking (Weintrop
et al. 2016), and Vanderbilt group is working on both the developments of new
curricula and studying how students learn core science concepts in this new learning
environment.

While there are different models for infusing CT into school curriculum, one
thing is very clear: we no longer can separate computer science or computational
thinking from STEM education. Whether taught in stand-alone CS courses, or as part
of STEM courses, computational thinking and the pedagogy around computational
thinking are going to drive the future of teacher education, research, and curriculum
development efforts in STEM education. Therefore, it is imperative that we start
engaging in conversations around teacher preparation and pedagogy of teaching CT
through STEM. This integration perspective may challenge our current assumptions
about ways to prepare future mathematics and science teachers and promote and
measure teachers’ pedagogical content knowledge.
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While our assumptions about what is worth to measure in STEM has already been
challenged with the NGSS, with more emphasis on CT skills in STEM, both the
content and methods of our assessments will also need to change. While curriculum
development and assessments are relatively easier to develop and implement,
recruitment and preparation of teachers and professional development of STEM
teachers to teach CT in their curriculum will continue to present unique challenges to
our community. Convincing practicing teachers to learn about new concepts and
practices of an unfamiliar territory and the pedagogy associated with this new
domain knowledge can be quite challenging. However, we have experience and
resources that can help us to successfully respond to these emerging challenges.
Despite our motivation to tackle these emerging issues around integration of CT in
school curriculum and teacher education, the biggest challenge will be getting
support from policy makers and preparing school leaders to understand the impor-
tance of CT and dedication to invest in CT-based efforts and the complexity of how
schools function as a system and as a community.

Apart from teacher education, there are new perspectives on how students will
learn in a computer-based learning environment in which they are no longer the
receivers of knowledge but the authors of knowledge. In this data-rich, model-based,
and computational-driven learning environment, students take ownership, and this
model challenges the traditional roles that the teachers and students have assumed.
Instead of transmitting the expert knowledge to their students, teachers now must
assume the primary role of a facilitator in this learning environment, scaffold student
learning, and monitor their progress in real time through formative assessment. In
order for teachers to successfully achieve this new responsibility, they must develop
new ways of thinking, acquire new content knowledge, and develop pedagogical
content knowledge necessary for this new learning environment and changing goals.
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Chapter 14
Susceptibility to Learn Computational
Thinking Against STEM Attitudes
and Aptitudes

Ana Calderon

14.1 Introduction

Computational thinking (henceforth abbreviated to CT) (Papert 1996; Guzdial 2008;
Wing 2008) has received increasing attention amongst researchers and practitioners
in the education field. Of particular importance is the recent trend to incorporate CT
and related concepts at earlier stages of a pupil’s education (Calderon et al. 2015;
Bers et al. 2014). This initiative is based on the belief that by doing so, pupils’
problem-solving skills and ability for logical thinking will be enhanced and that
pupils will benefit greatly throughout their learning journey. The importance CT
takes in compulsory education is best evidenced by changes in curriculum, policy
and practice. For instance, the European Commission’s science and knowledge
service has recently released a report on “Developing Computational thinking in
Compulsory Education”. Not only does it provide comprehensive text on CT skills
for children in compulsory education, but it also presents recent findings, based on
research to support the policy-making process within Europe (Bocconi et al. 2016).
Other examples include CT skills being incorporated into K–12 (NRC 2011) and
recent significant educational reforms in the UK, with a focus on the need for
digitally confident citizens and on enabling digital innovation (UK Digital Skills
Taskforce 2014; House of Lords 2015). Moreover, in 2014, a new subject, comput-
ing, was introduced in the English National Curriculum, aiming to address compu-
tational thinking skills at varying key stages with similar changes introduced in
Wales (Arthur et al. 2013).

This shift in perspective presents great opportunities but also challenges for those
working in computer science education in higher education, particularly as notions
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that used to be reserved for post-compulsory and higher educational stages are now
being pushed further and further down the educational ladder. It is imperative that, as
computer science becomes one of the core educational components of primary and
secondary school, educators at higher education level adopt common themes and
present further challenges to students. For instance, there is an opportunity to get
students more involved with complex societal problems, and aiding in achieving
their solution, there is an opportunity to move towards teaching students skills in
complex problem-solving, in particular, by employing advanced computational
thinking techniques. Hence, although most of the effort has thus far been concen-
trated on compulsory education, our work focuses on HE and post-compulsory and
higher education, as those working in this area will face increasing challenges and
also will be best equipped to advise those introducing CT in post-compulsory and
higher education. Hence, these considerations are timely with recent development.

14.2 Computation Thinking: Main Components

There are many views of computational thinking (NRC 2010); some researchers
adopt the original notions of procedural thinking, as developed by Papert (1980).
This work was the first to introduce computational thinking and views it as a step-by-
step list of detailed and unambiguous instructions such that it can be interpreted and
executed by an automated agent. Other researchers argue that computational think-
ing is a way of enabling humans to solve complex problems, by generating powerful
tools to do so. Whatever viewpoint adopted, most researchers seem to agree that
computational thinking is an integral part of computer science and that skills
obtained from it can be transferred to problems in other subjects.

To date there is no consensus regarding the definitive or necessary components of
computational thinking, although we note that recent efforts (Kalelioglu et al. 2016)
have begun to provide a unifying framework for CT. Also, Barr et al. (2011) provide
an operational definition of computational thinking, aimed at giving educators a
definition they can incorporate in their teachings. At present, it is commonly agreed
that computational thinking involves a combination of, at least, the following five
concepts:

• Decomposition
The process of breaking a complex problem into smaller sub-problems, in a

manner that allows for understanding how their solutions can be placed together
to form a solution to the original complex problem.

• Data representation
As suggested by the title, studying data representation enables pupils to use CT

methods for representing information.
• Algorithmic thinking
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Algorithmic thinking allows students to solve problems by generating a step-
by-step set of unambiguous instructions that can be followed by autonomous
agents. This is similar to the original definition of computational thinking (Papert
1980).

• Abstraction
Once patterns have been recognized, one can abstract away from the particular

the details and create a general framework for solving several similar problems.

These concepts are linked together to solve a complex problem and are typically
taught as such, as oppose to completely separate notions. Moreover, as mentioned in
the introduction, several researchers and practitioners agree that CT elements can be
readily applied to enhancing problem-solving skills in several subjects (Wing 2011).
Validating this claim is perhaps ecologically impossible. However, if one was to test
it, the most readily place one would expect this conjecture to hold is within the reach
of computer science, as it is the most closely related to computational thinking; once
sufficient evidence has been gathered, one may then investigate more distant STEM-
based subjects. This conjecture is the motivation for our work; we do not claim to
have attempted a solution to it, and we choose to investigate the opposite direction,
whether students who are more able and more interested in STEM subjects are those
who more readily learn CT elements or whether CT really is sufficiently generalized
that all academic backgrounds, aptitudes and attitudes learn it equally readily.
Essentially the question of interest to this work is whether computational thinking
is unbiased towards varying preferences and abilities (humanities vs STEM), and it
thus indeed seems to be the case. We stress that we do not claim to prove the
conjecture but instead offer evidence that seems to strengthen it. Of particular
interest to us is whether students with higher aptitudes (during secondary school
education) in STEM or humanities are more susceptible to the learning of CT
components and related concepts.

14.2.1 Relevant Literature

Following its introduction (Papert 1980) and then popularization (see, for instance,
Wing (2008)), computational thinking has been applied in a wide range of educa-
tional domains and investigations. We now highlight the main contributions to the
area. As highlighted in the previous section, most work has focused on primary and
secondary school education, and we aim at filling the gap regarding how to then
challenge pupils at higher education; hence, the gap in literature forces our literature
review to focus mainly on compulsory education.

Visual languages (Selker Koved 1988; Chang et al. 1994) and serious games have
recently been used to teach pupils, particularly of a young age, computing concepts
mainly related to programming (see, for instance, Kazimoglu et al. [2012]). This is
often linked to computational thinking. For instance, Koh et al. (2010) created a
visual tool to measure transfer of computational thinking skills, from educational
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games to science simulations. The particular games where the measurements were
taken were created by students, implemented using computational thinking tools. On
the other hand, Repenning and Ioannidou (2010) reports on a research project on
developing and testing strategies for incorporating computational thinking in curric-
ula, teacher training and authoring schools. Of particular interest was the achieve-
ment of a balanced curriculum that incorporates game designs and computational
thinking skills.

So far we have surveyed the literature for computational concepts taught with
electronic means, but there are growing research and practice in the teaching of
computational thinking without the use of a computer, with the most prominent
examples found in Adams et al. (2005). Other important examples and resources
include Curzon (2013), Boyle et al. (2012) and Ball et al. (2012). Also, although
most of our literature survey has focused on computational thinking and its appli-
cability to computer science, it can influence (and be influenced by) research in
varied subjects from STEM-based knowledge to humanities. For instance, Bundy
(2007) describes workshops held with professionals and researchers across a wide
range of subjects reporting on the impact computational thinking research has had on
their fields. The importance of computational thinking in varying subjects is perhaps
best evidenced by its applicability to digital humanities (Gold 2012).

14.3 Investigation

As mentioned, our focus was on understanding how a preference for STEM or for
humanities, as well as aptitude, is impacted by the ability to comprehend CT and
CT-related concepts. Our investigations spanned 3 years, with the first 2 years
focusing on gathering data linking particular concepts of CT to particular aptitudes.
Short sessions were designed to introduce CT concepts at the start of term, which
were then tested throughout the term. Once data seemed to confirm that there is no
difference in CT, whereas more traditionally taught modules did appear to suffer
bias, we moved on to creating a stand-alone CT module, to be taught alongside other
computer science modules. We then (on the third and final year of the investigation)
analysed how students performed in the subjects “Mathematics for Computing” and
“Introduction to Programming” and the cohort outperformed previous years. The
stand-alone module included aspects of the introductory sessions held for the benefit
of this investigation; we will describe the course in detail once the data has been
presented.

14.3.1 Methodology for First Investigation

The first part of our investigation focused on particular concepts of CT, namely
decomposition, algorithmic thinking and abstraction. The focus was on learner
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performance of those components, compared to programming susceptibility in
students. The results were analysed against preferences in STEM and humanities.
To decide which students’ data would be used in the investigation, we looked for
their highest achievements in their last 2 years of schooling and classified them
according to the most commonly occurring subjects; for humanities, these were
history, literature and drama, and for STEM, they were physics, mathematics and
computing (see Table 14.1 above). To decide on aptitude, we analysed their grades,
and if their highest was on group A of the table below, then we rated them as aptitude
in STEM and, if their highest grades were in group B, as aptitude in humanities. The
reason for not setting a universal boundary (a particular grade or percentage) is that
doing it individually allows for measurement of students’ aptitudes with regards to
their own abilities. Also not all subjects were included; we choose to restrict to
students with a particular choice of A-levels and found we could get the most
participants by opting to focus on the subjects specified on Table 14.1.

To measure attitude (in our setting, this reads as personal preference), we asked
all students to complete an attitude survey. We built the questionnaire by modifying
a version of the Mathematics Attitude Test (Alken 1974) to cater for varying sub-
jects. For the stem questionnaire (focused on computing and mathematics), we used
five subscales:

• Programming confidence (PC)
• Computer science confidence (CC)
• Affective engagement (AE)
• Behavioural engagement (BE)
• Confidence in using technology (TC)
• Attitude to the use of technology to learn mathematics (MT)

In each of these categories, students were asked to answer questions according to
the scale below. To score, similar to variations of MAS (Mathematics Atitude Scale)
(Tapia and Marsh 2004), we used the sum of chosen ratings:

(1) hardly ever, (2) occasionally, (3) about half the time, (4) usually, (5) nearly
always

In the interest of reproducibility, the test is specified below:

(PC) I am confident with programming.
(PC) I know I can handle difficulties in programming.
(PC) I can get good results in programming.
(PC) I think like a programmer.

(CC) I am confident with computer science.
(CC) I know I can handle difficulties in computer science.

Table 14.1 Grouping of participating students

Group A Mathematics, computing and physics

Group B History, literature and drama
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(CC) I can get good results in computer science.
(CC) I think like a computer scientist.

(MT) Maths is more interesting when using graphics calculators and computers.
(MT) Graphics calculators and computers help me learn maths better.
(MT) Using graphics calculators and computers in maths is worth the extra effort.
(MT) I like using graphics calculators and computers in maths.

(TC) I am good at using computers.
(TC) I can fix a lot of computer problems.
(TC) I am good at using and adapting to new technologies.
(TC) I can master any computer programs needed for school.

(BE) If I make mistakes, I work until I have corrected them.
(BE) If I can’t do a problem, I keep trying different ideas.
(BE) I try to answer questions the teacher asks.
(BE) I concentrate hard in maths.

(AE) Learning computing is enjoyable.
(AE) I am interested to learn new things in computing.
(AE) I get a sense of satisfaction when I solve computing problems.
(AE) In computing you get rewards for your efforts.

As previously mentioned, the score was taken as the sum of individually chosen
ratings. Hence, the maximum score is 120, and we defined an individual as having a
positive attitude in STEM if they scored anything strictly above 72, with no scores
less than or equal to 2 for any given rating.

14.4 Results Following the First Stage of the Investigation

We now present some statistical conclusions derived from our study. We compared
performance in programming against performance in particular elements of CT
while looking for bias in the categories of STEM and humanities. The particular
elements of CT we focused on are those considered essential components of the
pedagogy, namely, abstraction, decomposition and algorithmic thinking. The results
for each of these aspects will be presented separately, followed by a general
observation of performance in computational thinking and programming, taken as
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average of individual student’s performance variation between overall CT and
programming. We also analysed individual variations in each of the CT components.

We first discuss some significant findings in the performance of the particular
cohort in programming. The programming module’s main focus was on:

• Syntax: Formal languages, regular expressions, lexical analysis, context-free
grammars, parsing and context sensitivity.

• Semantics: Both operational and denotational were introduced, along with their
main concepts.

• Programming paradigms.
• Complexity and measuring complexity of algorithms.

Performance was measured as the grade obtained in a coursework (that did not
count for their final degree classifications) aimed at assessing their ability to:

• Interpret software requirements from a given scenario.
• Structure programs using key programming constructs.
• Identify and implement modular elements of programs.
• Demonstrate an appreciation of the key principles of user-centric design to design

and develop appropriate user interfaces.

The particular task was to produce a piece of software to allow the user to
catalogue various forms of media, according to specified classifications and infor-
mation described to pupils in a coursework brief. This is a fairly standard type of
coursework for a programming class. This was an intentional choice, aimed at
minimizing influences of particular work choices during result analysis.

The programming distribution of grades (for the first year, we conducted this
investigation) can be found below (Fig. 14.1).

The STEM group’s performance was 67.3%, with a standard deviation of 57.6,
and those with an aptitude in humanities was 57.6% with a standard deviation of
11.74; this suggests a potential bias for stem-based abilities.

We will now explain the data for computational thinking performance, broken
into the varied elements, together with descriptions of the sessions.

14.4.1 Decomposition

Teaching of decomposition was done by first explaining it to students as a way to
solve a complex problem. This was firstly achieved by asking students to think about
the problem in terms of its parts, mentioning that the same process can apply to
algorithms, systems, etc. The first concern was to ensure students understood that the
division of parts had to be so that the overall problem could be solved by, instead of
attempting it, solving and evaluating the individual parts (i.e. it had to be “compo-
sitional”). This is important as it enables making complex problems more
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manageable and less difficult to solve. The whole class then engaged in a thought
experiment where students were asked to think how they would assign sub-problems
in developing a particular piece of software. This included role assignments,
e.g. perhaps some would be responsible for the interface. It also included questions
about how a breakdown into smaller components would be achieved. Finally
students had to ask and answer questions regarding the specifics behind the break-
down of the problem.

To assess students’ ability to solve problems by first applying decomposition,
students were given Lego Mindstorms and requested to complete particular shape
themes (these included a companionship robot, an animal robot, a robot to aid in
exploratory scientific missions, e.g., exploring a dangerous unneutered terrain). The
students were told the robots would also need to be programmed to perform
particular actions. They were requested to solve this using their computational skills,
in particular by analysing the problem and decomposing into smaller problems that
had to be pieced together; this activity was done in groups of four. Performance was
measured by focusing on the following elements:

• Variety of moves the robot was capable of performing
• Ensuring the robot had been programmed for independent action
• Creativity and complexity of shape and mechanics
• Programming, including explanation from students about its inner workings
• Ability of the student to explain concisely what they had done
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Mean performance was 68.3% for humanities (with a variance of 15.1) and 70.8%
(with a variance of 20.1) for STEM (full figures can be found in Table 14.2 below)
(Fig. 14.2).

14.4.2 Abstraction

Each week, for 12 weeks, students were given 2 h of lectures on abstraction,
followed by a 2-hour workshop, broken into two stages. We now give a brief
overview of the sessions. They began with a gentle introduction to abstraction
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Fig. 14.2 Distribution of grades for decomposition against humanities and STEM preferences at
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Table 14.2 Grades from cohorts before and after introduction of CT module

Before CT introduction After CT introduction

STEM Humanities STEM Humanities

Mean performance 52.9 48.9 61.6 61.0

Variance in grades 23.1 34.9 23.9 24.2
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using ideas from Bell et al. (1998). Once students were confident in the simple
exercises, we introduced a visual challenge, in the form of Bongard problems
(Foundalis 2013). These are notoriously difficult, and the focus of the session was
not on the solution, rather it was on them focusing on finding details not relevant and
focusing on learning abstraction geometrically, rather than on the more standard
problems. Average performance for abstraction was 61.5% for STEM and 61.0% for
humanities. Performance for abstraction was measured by performance in an activity
modified from Adams et al. (2005). The table below shows the distribution of
performance (Fig. 14.3).

14.5 Algorithmic Thinking

Likewise for nearly all components (decomposition excluded), algorithmic thinking
was first presented during two sessions of 2-hour lecture sessions and then followed
by a 2-hour workshop.

During the workshop, students were reminded of what algorithmic thinking
consists of and then given practical exercises, adapted from Curzon (2014), such
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as an adaptation of the “Knight’s Tour” and “Kakuro, Sudoku and Computer
Science”. Students were then requested to think of daily activities and write
pseudocode for them, and finally given an activity similar to “Marching Orders
Activities” (Bell et al. 1998).

Performance was measured by asking students to consider a person with locked-
in syndrome, only able to blink, and write pseudocode for a communication method,
assuming the person would have a helper (human) to aid in reading. For instance, a
solution could be to blink once for “yes” and twice for “no”, while the helper
chooses each alphabet letter. Of course this is quite inefficient, and grouping the
letters or other methods leads to more efficient solutions and algorithms. The
students were told to carefully consider the efficiency and complexity of their
algorithms, prior to writing their pseudocode.

Pupils’ performance was judged based on:

• Appropriateness of suggestions regarding how the patient could communicate
with the (human) helper. For instance, blinking once for yes and twice for no
(henceforth referred to as the base case)

• The particulars of the method with regard to its efficiency, as compared to the
base case

• Comparative advantages and disadvantages against the base case
• Careful discussion of what other problems need solving, for instance, how to deal

with:

– Extra characters: punctuation, digits, etc.
– Accidental blinking

Average performance for algorithmic thinking was 68.8% for STEM and 67.5%
for humanities. The table below shows the individual distributions of grades for the
activity just described (Fig. 14.4).
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14.6 Discussion of Results

Discrepancies in programming performance, for STEM against humanities, were
higher than those for computational thinking concepts, and that was the focus of
this investigation. The aim was to discover whether there would be a discrepancy
change in one group over the other, and there is some statistical evidence to suggest
that the answer is negative; hence, CT might be less biased to varied academic
backgrounds than programming. More illustrative content is given by observing
differences in performance between programming and each of the CT components
we tested in each student. In order to understand individual differences, we
analysed individual student performances and measured it against each computa-
tional thinking element. The result was that, as compared to introductory program-
ming, overall individual students performed 5.5% better in decomposition, 6.4% in
algorithmic thinking and 4.8% better in abstraction. Hence, there is some further
indication for the need of a module entirely dedicated to computational thinking.
To complete this project, we designed such a module, targeting computer science
and software engineering students (first year, first semester). The course was
intensive and ran for 12 weeks with 4 hours each week; we then compared the
performance (in a mathematics module) of students who took the course against
those who did not (all other modules were kept constant); for ethical reasons, this
had to be done with students from different cohorts, and we acknowledge this may
cloud the conclusion but still provides enough content to merit mention and further
investigation suggestions. The design of the course and results of the comparison
are discussed in the next section.

Teaching programming at higher education is notoriously difficult, and design-
ing a computational thinking course to go alongside it is of relevance to educators
worried about the impact of introductory programming courses. In particular, we
conjecture that a computational thinking module might aid in reducing disengage-
ment in other courses, in particular programming courses. One of the main
difficulties with regards to programming is how difficult it is to find a challenging
level during classes that fits all pupils. Although this may be true for most subjects,
in the case of programming, what varies is the way in which problems are
approached. Novices tend to focus on a single line at a time, rather than under-
standing the program as a complex problem, in the way that more experienced
programmers do. It is also the case that novice programmers often fail to recognize
their own failings at a higher rate than their more experienced peers, which can lead
to frustration and disengagement. These are two areas where computational think-
ing might aid; frustration might be decreased by increased confidence in the
parallel CT module (which our results show is unbiased regardless of the academic
background of pupils). Moreover, disengagement because of varying approaches
to the problem can also be fixed by a parallel CT module, since one of its main foci
is on viewing computing and social problems and generating methods for system-
atically solving them through a particular set of skills. Hence, there is some
indication that novices would benefit by transferring this view to their introductory

290 A. Calderon



programming courses. There are often other reasons for dropping out of a pro-
gramming course or disengaging with it; these may be reasons beyond computa-
tional thinking’s reach in terms of minimizing negative effects. However, we have
identified a few main reasons accepted by educators as significant with regard to
student numbers and shown some evidence that computational thinking might help
reduce these.

14.6.1 Designing a CT Module

To test feasibility of a separate CT module, we designed a new course for software
engineering and computer science students. To test its effectiveness, in particular on
the learning of mathematics, the students were taught a 12-week course on CT skills
(4 h each week). The particulars of the sessions are as follows: 2 h of theoretical
understanding of CT components and 2 h of practical sessions with complex
problems challenging pupils’ understanding in each of the three computational
thinking elements (abstraction, abstract thinking and decomposition). Each compo-
nent was also complemented by concepts linked to computer science, for instance,
algorithmic thinking included lessons in complexity of algorithms, but these were
presented in a sufficiently general manner that the module could still be stand-alone
and, importantly, taught to students with a wide range of backgrounds.

The main focus of this pilot study was to design a course so that, upon comple-
tion, students would be able to demonstrate understanding of fundamental concepts
in computer science and software engineering, in particular being able to apply a
range of approaches to solving data-driven and computational problems. During
delivery of the course, the focus was on giving pupils the skills needed so they were
able to demonstrate an appreciation of the role of computer science and computa-
tional thinking in the modern world. The first session of the course consisted of an
explanation of what computational thinking is, including a brief introduction into
each of its components. The remaining sessions were then responsible for their
detailed explanations. A summary of introductory material into each component is
given now.

Abstraction was first presented as a formal definition with examples. We stated it
as the removal of unnecessary data, considered as noise, to make the problem
simpler; it was recapped during the introduction to decomposition, due to how
coupled the concepts are. We highlighted that, as humans, we abstract to problem-
solve regularly; this was followed by examples of human conversation, where detail
is unimportant, cases in which the wrong amount of detail is abstracted (both over
and under the expectancy of the other conversationalist). Samples of questions posed
to students included:

If a friend asks you about their holidays, would you give them an hour-by-hour account, or
abstract some detail so only the highlights would be communicated?

On the other hand, if a waiter asks of your lunch choice, would the general category “food”
suffice?
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Students were also taught how to abstract by parameterization (describing
named computations) and by specification (ignoring how computations are
performed).

This was then followed by highlights of the important role abstraction serves to
computer science, as well as some considerations of how it is applied in exemplary
problems. For instance, with regard to programming, we essentially explained it as
hiding some complexity, for example, by saying that in a language such as Python
to simply say “Hello World”, it takes a few lines; however, it contains thousands of
machine code, which the programmer is usually blind to. We also used the
introduction of abstraction to discuss a layered view of computer science, in
terms of abstraction layers (turning into a class discussion). Suggested layers
included:

• Theory/mathematics
• Applications
• Operating system, kernel
• Assembler, computer architecture
• Computer organization
• Digital logic
• Electronics
• VLSI design
• Silicon wafer design
• Physics

Algorithmic thinking was presented with the usual definition of an algorithm, that
is, an unambiguous list of sequential steps to be followed, as a solution to a problem.
Also included was a brief introduction to pseudocode (thus allowing students to
write solution algorithms to problems from the first session). Amongst the topics
more directly linked to computer science were:

• Equipping students with skills necessary to describe the steps in the program
development process

• Equipping students with skills necessary to introduce algorithms formally
• Equipping students with skills necessary to describe program data in a general

setting
• Ensuring students were able to design algorithmic solutions to complex problems

and knew how to verify and test their solutions
• Analysing algorithms, showing correctness of algorithms. For instance, proving

recursive algorithms are correct, using mathematical induction
• Using loop invariants in proofs

Decomposition, similarly to the previous concepts, was first presented via a
formal definition. We stated it as the ability to break down complex problems
into manageable smaller ones, in a manner such that the sub-problems can be
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composed together to form a larger one. This was followed by motivational
examples of complex problems and finally comparatively less complex problems
that the students could work on forming compositional sub-problems. With regard
to linking it to computer science, we focused on how functionality is organized
within programming. The core idea was to explain how programming languages
allow for the breaking up of code into pieces such that, if the subdividing is
done sensibly, then editing and debugging are more easily achieved. Other
topics relating decomposition to programming included links with structured
programming, object-oriented decomposition (breaking into smaller classes and
objects). In addition, students also understood that decomposition is not univer-
sally applicable, that there are some problems too complex, with too many
unknowns that we cannot use decomposition to devise a solution. Decomposition
was naturally introduced in relation to abstraction. The particular lesson plan
included:

• Introduction to decomposition with motivational examples, followed by the main
steps involved, namely:

• Identifying components, aiming at minimizing component dependency, and
reducing coupling

• Deciding which information needs to be private and encapsulating it in particular
modules (information hiding)

• Modelling decomposition by designing the modules, including pseudocode
• Using abstraction to remove unnecessary detail and aid in simplifying the

problem

14.7 Performance in Mathematics Subjects Post-
Computational Thinking Course

We found that the discrepancy in grades for a particular mathematics module was
smaller than in previous years (as described in Table 14.2), observing a decrease in
discrepancy by 19.2% for STEM and by 30.7% for humanities. Moreover, the actual
performance of students in the specific mathematics module improved by 8.7% for
STEM and humanities by 12.1%. We acknowledge that this was done with two
different cohorts, and there might be some effects on the performance due to varied
participants; however, the change in variance is quite significant and merits further
investigation.

Performance in the mathematics module was measured according to standard
conditions for such a module; we will describe it in details soon. First, a
description of the core content of the module is given. It was concerned with
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facilitating the understanding and implementations of various mathematical
concepts underpinning computer science, with a focus on:

• The axiomatic method: basic concepts, axioms, definitions, theorems, finite and
infinite sets, natural numbers and induction

• Logic: statements, truth values, Boolean operators, laws of propositional logic,
predicates, quantifiers and laws of predicate logic

• Sets: connection between sets and predicates, operations on sets and laws of set
operations. Functions, sequences and relations

• Algorithms: basic complexity theory, rates of growth, time and space constraints,
common data structures and sorting algorithms. Interpreting graphs. Iteration and
recursion

• Number theory: representations, permutations and combinations and foundations
of cryptography

• Automata, grammars and languages: finite-state machines, finite-state automata
and Turing machines

• Statistics and probability: definitions, conditional probability, Bayes’ theorem,
expectation, variance, standard deviation and analysis of simple datasets

For further information on how the concepts were introduced to students, we refer
the reader to the supplemental reading on that course, namely, Lehman et al. (2010),
Boolos et al. (2007) and Johnsonbaugh (2013).

The performance in both cases (before and after introduction of a focused
computational thinking module) was measured with a similar exam. Students were
requested to sit an in-class test and answer questions on a variety of topics
(as above). Common questions included completing the truth table for a Boolean
formula (different formulae were given to different cohorts) and using logical
analysis of the definitions of union and intersection of sets (and therefore rules for
conjunction, disjunction and De Morgan’s), to prove a particular statement (different
statements were given to different cohorts). Also, the grading scheme was similar in
both cases.

In order for a student to achieve a first class (higher than 70 percentage), the
student’s work had to demonstrate excellent understanding of the main mathematical
concepts in computing science, including key mathematical terminology, notation
and the formal definitions and proofs. Also, the work had to display an excellent
awareness of how discrete mathematics applies to computation and its application to
real-world problems.

In order to achieve a second class, upper division (between 60 and 69 percentile),
the submission had to demonstrate a good understanding of the key mathematical
concepts in computer science, including key mathematical terminology, notation and
formal definitions and proofs. Also, the work had to display an awareness of how
discrete mathematics applies to computations and its application to real-world
problems.

In order to achieve a second class, lower division (between 50 and 59 percentile),
the submission had to demonstrate some understanding of the main mathematical
concepts in computer science, including some of the key mathematical terminology,
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notation and formal definitions and proofs. Also it was required that the work
displayed an awareness of how discrete mathematics applies to computation and
its application to real-world problems.

In order for work to be classed as third division (between 40 and 49 percentile),
the submission had to demonstrate satisfactory understanding of the main mathe-
matical concepts in computer science, including some of the key mathematical
terminology, notation and formal definitions and proofs. Also it needed to display
some awareness of how discrete mathematics applies to computation and its appli-
cation to real-world problems.

Finally, a “fail” entailed a weak submission that demonstrated poor understand-
ing of the main mathematical concepts in computing science, including with very
little understanding of some of the key mathematical terminology, notation and
formal definitions and proofs and, also, with little awareness of how discrete
mathematics applies to computation and its application to real-world problems.

14.8 Performance in Introductory Programming Courses
Post-Introduction of Computational Thinking Course

The results found were similar to those in the previous section (as per Table 14.2
above). There is some statistical analysis that indicates that there was an increased
performance in programming for both groups. It is important to acknowledge that
these had to be done with different cohorts for ethical reasons (it would not be
possible to offer a group of students the course and have a “control group” who did
not receive a beneficial pedagogical intervention, as they would be disadvantaged);
hence, the particular findings need to be taken in context, and it indicates an increase,
but we cannot conclude for certain that there was an increase in performance.

We detailed how performance was measured in mathematics, and we now give, in
similar detail, the performance in programming. The particular course measured
performance in programming by identifying and grading the following components:

• Production and organization of code
More specifically, the focus was on usage of key programming constructors, as

well as effective approach to specific paradigms (for instance, object-oriented
programming).

• Graphical user interface
More specifically, the focus was on intuitive designs with consideration of

basic concepts of usability engineering, as well as how professional and aesthet-
ically pleasing the interface was.

• Interpretation of user requirements
More specifically, the focus was on how the assignment was interpreted and

the production of software that met the requirements, together with evidence of
testing and debugging of code on several development stages.
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14.9 Conclusion and Directions for Future Work

Computational thinking’s efficacy and transferability onto varying subjects and
skills is often taken as a tautology. We set out the beginnings of an investigation
into whether aptitudes and attitude to varying subjects has an impact into the ability
to learn CT. Our results indicate that CT learning has no discriminatory effect on the
large groups of STEM and humanities. We have focused only on these two general
categories, but since our results have thus far have been positive, we argue that there
is sufficient motivation to analyse whether there is a difference when dealing with
smaller subclasses of subjects (both within and across the broader categories we
investigated).

For our studies, we paired an aptitude and attitude in mathematics and computer
science, but could not similarly pair an attitude in humanities as, to the best our
knowledge, no such tests exist. Given that humanities are outside the author’s
expertise, further work will involve a multi-disciplinary team investigating how
attitude in learning humanities, or lack thereof, might be impacted differently in
humanity subjects against computational thinking learning. The results found could
then lead to a bigger investigation on how computational thinking skills can be
transferred to subjects more cognitively distant from computer science, particularly
outside the sciences.

We categorized students who classified high on attitude and aptitude in specific
subjects of STEM and humanities (chosen to maximize the available number of
participants in our sample); we then analysed the data against performance in
programming and in varying components of computational thinking. To measure
attitude, we modified the MAS scale to cater for our investigations; and, in order to
measure aptitude, we took the highest grades individuals obtained in each of the
classifying groups for STEM and humanities.

Our results indicate the variance in performance is smaller in computational
thinking concepts than in programming. An interesting direction for further work
would be to ask whether the same holds true for other traditional computer science
courses (against the same components of computational thinking).

In addition to our initial investigation, in order to test feasibility of designing a
stand-alone CT module and understanding how it might affect mathematical con-
cepts, we conducted a pilot study (described in the previous session), by
encompassing such a course with a new cohort of students. Following the pilot
course, analysis in student performance was indicative of a positive correlation with
the course and increased performance in a particular mathematical module. This
merits further investigation; in particular, it would be interesting to see whether
subjects a bit “further” from computational thinking would be similarly impacted,
for instance, by taking a sample of students enrolled in both humanities and STEM
subjects (at higher education level) and seeing whether a short CT course can aid in
their problem-solving skills. Importantly, a positive correlation between perfor-
mance and introduction of the CT course would indicate that CT problem-solving
abilities can indeed be transferred to varied subjects. Also, investigating how specific
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these findings are to higher education, and whether they scale further down pupils’
learning journeys, would have significant consequences regarding an understanding
of when to introduce CT in pupils’ learning. Likewise, future work will also contain
a similar experimental setup with adults who have been away from educational
settings and in a work environment for a significant amount of time. Again, if
positive correlations were found, this would have significant consequences and
consist of further evidence into how efficient (and transferable to a variety of skills
and subjects) computational thinking truly is.

Finally, it is worth emphasizing that teaching introductory programming at higher
education is notoriously difficult. The cohort of students enrolled in a programming
introductory class (at the institution where the experiments took place) typically
contains students with varying academic backgrounds. Moreover, students will have
had varying levels of exposure to (both formal and informal) programming concepts
prior to the beginning of their higher education journeys. The discrepancy in ability
and prior exposure between students makes delivery of material and, in particular, its
difficulty level challenging to deliver. Disengagement from students is commonly
observed due to material being too difficult or not sufficiently challenging. Recently,
we have witnessed the increased awareness on the importance on “software carpen-
try”, and teaching such skills requires academic teaching staff to move beyond
demonstrating technical skills, to aid students in their ability to explain the rational
thoughts behind decisions taken in solutions to complex problems, typically associ-
ated with developing software. It has been argued that computational thinking is
amongst the pillars underpinning software development and that it is advantageous
to expose pupils to such skills in conjunction with teaching programming. Our work
indicates that there is indeed a positive correlation between such exposure and
increased performance in students’ programming skills. However, we can also
argue that such an emphasis on CT in conjunction with a more formal delivery of
programming could aid in minimizing disengagement risks, and we leave such an
investigation to further work. Our conjecture is based on disengagement due to the
wrong level of difficulty causing demotivation amongst students. It is evident that
other disengagement causes may not be impacted by the introduction of a parallel
computational thinking course, and we would like to further analyse the potential of
such links. Therefore, we also leave to future work an attempt at establishing links
between disengagement and pupils’ achievements in programming and links
between disengagement and pupils’ achievements in computational thinking sub-
jects, with the aim of establishing a statistically significant correlation. We are,
however, aware that it would be difficult to quantifiably establish the introduction
of a computational thinking module as the positive cause in lowering drop-out rates
and disengagement amongst a particular cohort, in particular because we could not
test students who did and did not complete the computational thinking module and
whether they left the course or not, as it would be unethical to have a negative and
irreversible effect on pupils’ learning.

We will also conduct a broader investigation to the one reported here, namely,
understanding whether humanities against STEM preferences suffer bias in the
ability to engage and learn computational thinking skills, in non-student populations.
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This investigation will be an attempt to establish if similar results can be reproduced
with a broader sample of the population rather than university students, and varying
ages, educational backgrounds and careers will be taken into account.
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Chapter 15
Mapping Computational Thinking
for a Transformative Pedagogy

Michael Vallance and Phillip A. Towndrow

15.1 Introduction

Computer science practitioners have called upon education ministries to adopt
Computational Thinking as a foundation for twenty-first-century learning and skills
development at all age levels. Computational Thinking is aimed at ways of under-
standing human behavior through the analytical thinking processes associated with
solving problems, mostly in the fields of science, technology, engineering, and math
(STEM) education. Accordingly, a problem-solving process, informed by the char-
acteristics of Computational Thinking, requires active and experiential behaviors of
both learners and instructors within a multidisciplinary education environment. In
this chapter it is proposed that educational robot activities offer such a context to
discover more about the Computational Thinking of learners and that this can be
achieved by considered pedagogy and informed task design.

The chapter is a descriptive, case study account to identify Computational
Thinking in beginner educational robot activities, reminiscent of the late Seymour
Papert’s development of LOGO and Mindstorms. Challenging tasks are provided to
university undergraduate students in Japan who then design, program, and imple-
ment unique robot solutions. The interpretation of data from ten tasks undertaken by
four undergraduate university students over two semesters will demonstrate how
they mapped their mental models of problem-solving (i.e., their Computational
Thinking) to the resulting robot program solutions. The case study is then used to
explain how pedagogy and task design inform a new learning paradigm.

The chapter is organized as follows. First, the resurgent interest in Computational
Thinking is discussed. After that a method for capturing students’ problem-solving
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processes as illustrative flowcharts is presented. The context of using robots in an
imaginary disaster situation is then discussed, along with the project tasks, partici-
pants, and instrument. This is followed by a detailed account of the results. The
chapter concludes with an informed discussion of pedagogy and task considerations
that support Computational Thinking.

15.2 Background

Forty years ago the late Seymour Papert wrote about a schizophrenic split between
the disciplines of science and humanities in his seminal book, Mindstorms: Chil-
dren, Computers, and Powerful Ideas (Papert 1980). He advocated that computers
could “break down the line between the two cultures” (ibid; p. 38) and subsequently
promote a “less dissociated cultural epistemology” ((ibid; p. 39). He reasoned that
computers could be used to “challenge current beliefs about who can understand
what and at what age” (ibid; p. 4) and “can help people form new relationships with
knowledge that cut across the traditional lines separating humanities from sciences”
(ibid; p. 4). As we near the end of the second decade of the twenty-first century,
Papert’s philosophical beliefs once again resonate in education research and practice
in the form of Computational Thinking. The resurgence of Papert’s “powerful ideas”
can be attributed to an influential article by Jeanette Wing (2006) who posited that
“computational thinking involves solving problems, designing systems, and under-
standing human behavior, by drawing on the concepts fundamental to computer
science...” (p. 33).

Crucially, Computational Thinking is something people do, not computers. It
involves logical thinking, the ability to recognize patterns, and the capacity to
structure problems so that computers can be used, if necessary, to help develop
solutions (cf., Liukas 2015). It uses a set of concepts such as abstraction, decompo-
sition, algorithmic logic, and pattern recognition to process and analyze data and
create real and virtual artifacts in solving problems. Influential MIT professor Mitch
Resnick advocates Computational Thinking be a device for conceptualizing learning
for students to:

• Formulate problems in a way that enables us to use a computer and other tools to
help solve them

• Logically organize and analyze data
• Represent data through abstractions such as models and simulations
• Automate solutions through algorithmic thinking (a series of ordered steps)
• Identify, analyze, and implement possible solutions with the goal of achieving the

most efficient and effective combination of steps and resources
• Generalize and transfer this problem-solving process to a wide variety of prob-

lems (Brennan and Resnick 2012)

The Computer Science Teachers Association (CSTA) and the International Soci-
ety for Technology in Education (ISTE) in the USA are actively promoting the
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inclusion of Computational Thinking in school and higher education curricula. Barr
and Stephenson (2011) proposed that educational policies need to present a single
message at federal, state, and local levels about the importance of Computational
Thinking in K-12 education. They recommended that Computational Thinking be
incorporated throughout the entire K-12 experience and all preservice teachers be
provided preparation classes on Computational Thinking across all disciplines.

In the UK in 2012, the Royal Society (2012) in a report entitled “Shut Down or
Restart?” recommended a transformation of the ICT (information communication
technology) subject to adopt Computational Thinking in both the primary and
secondary school curricula. Consequently, in 2014, the UK’s National Curriculum
introduced a new subject called computing to replace ICT. The compulsory subject
was developed on the supposition that, “Computational thinking is a skill that all
pupils must learn if they are to be ready for the workplace and able to participate
effectively in the digital world” (NAACE 2014).

Like many other accounts of education excellence, Finland stands out as a role
model. Toikkanan (2015) states, “No other country has the same approach as
Finland. The Finnish curriculum includes coding as a mandatory, cross curricular
theme starting from first grade.” Of the 20 other European countries surveyed by
Toikkanan, only the UK and Belgium have computing as a mandatory requirement.
The remaining countries offer the subject only as an option (ibid).

It took nearly 10 years for Wing’s influential article on Computational Thinking
to be translated into Japanese (cf., Nakashima 2015), but even in Japan, where a
philosophical gulf exists between the sciences and humanities (Berlin 1974), Com-
putational Thinking is gaining traction (Computational Thinking for All 2017).

At this juncture, it may appear that academics in the computer science and
information technology disciplines are asserting their beliefs upon all of education
and that Computational Thinking may mistakenly be considered the act of working
on a digital device. However, using a word processor obviously involves the use of a
computer, but it would be a stretch of the imagination to associate cognitive actions
while typing be considered Computational Thinking. It has been argued that Com-
putational Thinking does not even need computers, as it is an approach to problem-
solving that uses strategies such as logic (algorithms), ideas (abstraction), and the
removal of errors (debugging) (Yadav et al. 2011). However, Dede et al. (2013)
suggest that computers, machines, and digital devices have already altered our
interactions with technology so that “. . . new forms of expression that are emerging
today have significant implications for how we engage and interact with machines”
(p. 4). In other words, we are learning “in” technology (Schrader 2008; Vallance and
Towndrow 2016), and our creativity is augmented by Computational Thinking.
Consequently, it is reasoned that students who are engaged in Computational
Thinking processes across the curriculum can begin to see relationships between
the subjects they study at school or higher education and life outside the classroom.
Therefore, Computational Thinking is as relevant to the arts, humanities, and social
science disciplines as it is to the disciplines of science, technology, engineering,
and math.
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In this chapter we will attempt to illustrate Computational Thinking. We want
students to make sense of their processes through reflection and articulation and to
reconsider and refine processes so they can articulate their understanding as they
proceed through the problem-solving procedure. We want them to hypothesize,
experiment (what if), design, interpret, and reflect. Supported by a “learning by
design” pedagogy, students will engage in the design and subsequent use of the
physical, digital, or virtual representations for modeling and reasoning (Papert
1980). For instance, the “learning by design” pedagogy allows students to design
and use representations of something such as a 3D model, an infographic, a podcast,
or a robot to understand the “what” and “why” of their learning processes and
acquired knowledge. As a result, it has been posited that the development of
students’ Computational Thinking skills can be closely aligned with the students’
design-based computational representational practices (Basu et al. 2016), facilitated
by a transformative pedagogy and contextualized by tasks incorporating educational
robot activities. Our goal is to show how practitioners can view those
representations.

15.3 Method

The method used in our project has been informed by Atmatzidou and Demetriadis’
(2014) paper “How To Support Students’ Computational Thinking Skills In Educa-
tional Robotics Activities.” Their students worked in small groups, guided by
worksheets, to solve problems. They used a model of Computational Thinking
concepts consisting of abstraction, generalization, algorithmic logic, modularity,
and decomposition. Data was collected from pre- and post-implementation quizzes,
questionnaires, and interviews from 35 participants over a course of 11 tasks each
lasting 2 h. The interpretation of the data revealed that their students became familiar
with the concepts of algorithm logic, modularity, and decomposition, but abstraction
and generalization proved more challenging. The researchers suggested that more
engagement with complicated problems was required so that students could reflect
further on their solutions. In our project we were limited to four students but took the
opportunity to develop tasks and reflection data that would, it was anticipated,
provide that deeper understanding of the students’ awareness of the concepts of
Computational Thinking. To that end we provided a post-task worksheet for students
to discuss and illustrate their knowledge via algorithmic flowcharts and Computa-
tional Thinking concept linkages with their robot program solutions.

15.3.1 Educational Robot Activities

Informed by Atmatzidou and Demetriadis (2014), our project adopted the program-
ming of LEGO Mindstorms EV3 robots to navigate mazes of measurable
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complexity. LEGO Mindstorms is often thought of as simply a toy for children
interested in building robots. LEGO markets Mindstorms for children aged 10 and
over. But this downplays the enormous versatility LEGO Mindstorms has to offer
learners of all ages. The programming of a LEGO Mindstorms robot (see Fig. 15.1)
begins with the drag and drop graphical user interface (see Fig. 15.2) that enables
commands to be downloaded from a computer to the “brick” (a programmable
microcomputer with a processor, flash memory, and Linux operation system). At

Fig. 15.1 LEGO
Mindstorms EV3 robot
example

Fig. 15.2 Mindstorms EV3 program example with blocks, loops, and variables

15 Mapping Computational Thinking for a Transformative Pedagogy 305



the beginning, this allows new users to appreciate the concept of procedures. Adding
sensors to a robot requires learners to then consider sensor values, variables, arrays,
and logic. Learners become engaged in testing and adjusting their programs in
attempts to succeed in their desired outcomes.

LEGO Mindstorms is not only for school children but for any aged learner
starting out in programming in any STEM discipline. Research by Lui et al.
(2010) used LEGO Mindstorms with university computer science students to pro-
mote self-directed learning. Popelka and Nožička (2014) utilized LEGOMindstorms
as a simulation of robotic systems using the programming language C#, a PID
(proportional-integral-derivative) controller, Visual Studio software, and
MonoDevelop framework, tools far beyond the level of a 10-year-old and certainly
more appropriate for university undergraduates. They concluded that, “Based on
discovered facts LEGO Mindstorms can be considered a low-cost and capable kit to
simulate real robotics systems” (p. 1128). Catlin and Blamires (2010) adopted
LEGO Mindstorms to promote Computational Thinking which involves mathemat-
ical modeling, inductive thinking, and experimentation. Turner and Hill (2008) used
LEGO Mindstorms as a prerequisite for teaching Java programming at a university.
They focused on problem-solving and robot maze emulation. Lew et al. (2010) used
LEGO Mindstorms on an advanced software engineering course utilizing the leJOS
firmware replacement for Java programming. They concluded that there were
sufficient technical challenges with the use of LEGO Mindstorms that they will
continue to be used in future semesters. To sum up this small sample of literature,
due to its versatility, LEGOMindstorms is misrepresented as a simple toy and can be
as powerful a robotic tool as any child, adult, or computer science student wishes to
imagine.

15.3.2 Tasks

Ten tasks were implemented over two semesters: 15 weeks per semester. The
narrative for the tasks was informed by the continuing disaster at the Fukushima
Daiichi Nuclear Power Plant in Japan. Varying levels of radiation still afflict the site
and surrounding countryside. Robots are being used at the site to observe, monitor,
clean, and repair damaged reactors and buildings. And only robots can enter parts of
the plant off-limits to humans due to the radiation levels. The task narratives are
imaginary but are aimed at creating an awareness and a curiosity of the daily
challenges faced by the plant workers.

In our project tasks, robots have to be customized to maneuver obstacles (Tasks
T1, T2, T3), turn on auxiliary machinery (Tasks T4, T5, T6), climb steps (Task T8),
and synchronize with other robots (Tasks T7, T9). All robots use a combination of
motors and sensors. The tasks were not solely a trial-and-error, discovery imple-
mentation. Of course, giving students opportunities to tinker was essential in the
sessions, but occasionally the instructor taught new concepts and EV3 capabilities.
For instance, programming structures for accelerating and decelerating a robot
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proved useful. Without knowing this, the students’ robots simply moved at one
particular speed, and when stopping, inertia would move the robot off its trajectory.
The concept of self-regulated motors and the physical use of gears were also
practiced during task solution considerations. Moreover, additional tools such as
the Pixy camera from the Carnegie Mellon Robotics Institute (http://www.cmucam.
org/projects/cmucam5) and associated programming were introduced. The Pixy
camera could be programmed with a PID (proportional-integral-derivative) control-
ler to recognize and track objects. The Pixy camera was considered in Task 9. Also,
the students were instructed how to create EV3 MyBlocks that could then be
recycled in later tasks. This proved extremely useful as the MyBlocks saved much
time and enhanced the aesthetic elegance of the EV3 program.

15.3.3 Participants

Four second year, male undergraduate intelligent systems students were purposively
selected. The students studied Java programming in their regular course but were not
instructed in the development of flowcharts or their associated semiotic symbols in
any programming classes. The students also had prior experience at a beginner level
with LEGOMindstorms EV3 robot construction kits and the associated software in a
prior project with the same researcher (Vallance and Goto 2015). They were
therefore all familiar with the physical LEGO Mindstorms components such as the
range of sensors and possible robot constructions. They were also familiar with the
semiotic representations of programming within the EV3 software such as motors,
loops, sensors, and read-write variables and how to wire and download the pro-
grams. However, they were not considered to have advanced knowledge of EV3
software, and so tasks could be designed that would challenge the students.

Over two semesters of 15 weeks per semester, the students met once a week for
2 hours. There was no time limit on completing each task, and the more challenging
tasks carried over from 1 week to the next. The emphasis was on successful task
completion and reflection on the procedures needed to undertake the task (i.e., solve
a problem). To promote constructive conversations among the four students, it was
decided to request one collaboratively developed solution, both in construction of a
robot and its associated EV3 program solution, and one post-hoc flowchart drawn
together for each task immediately after the task was successfully completed.

15.3.4 Instrument

A post-task A3-sized paper worksheet was used to collect students’ reflections (see
Figs. 15.3, 15.4, 15.5, 15.6, 15.7, and 15.8, for examples). The worksheet aimed to
determine evidence of the Computational Thinking concepts: generalization, mod-
ularity, abstraction, decomposition, and algorithmic logic.
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15.3.4.1 Generalization

Generalization is being able to transfer one problem-solving process to another
problem or a variety of problems. For the development of Computational Thinking

Fig. 15.3 Flowchart
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in our context, there needed to be a recognition that an existing EV3 program
solution, or parts of it, can be adopted in another, different problem. The most
common transfer of EV3 program blocks from one solution to another solution
would be the read-write variable block. Therefore, if students used a variable in their
solution, then it is anticipated they could transfer that variable to another solution at a
later task. To determine such recognition, we simply asked students to highlight an
EV3 program block or series of blocks that they would consider in a future task. In
the post-task discussion with the researcher, the students indicated whether they
were able to either highlight the block/s (O) or not (X) on their post-task worksheet.

15.3.4.2 Modularity

Modularity is the development of autonomous processes that encapsulate a set of
often used commands to perform a specific function and might be used in the same or
a different problem. For the development of Computational Thinking, there needed
to be a recognition of autonomous sections of code that could be copied and later
used for the same or a future task problem. To determine such recognition, we
simply asked students to highlight an EV3 series of blocks that they could be
considered operable in a future task. In the post-task discussion with the researcher,
the students indicated whether they were able to either highlight the block/s (O) or
not (X) on their post-task worksheet.

15.3.4.3 Abstraction

Abstraction is the process of creating something simple from something complicated
by leaving out the irrelevant details and also finding relevant patterns. For the
development of Computational Thinking, students needed to be able to separate
important information from redundant information. To determine whether students
could recognize redundancy in the EV3 solutions, we asked them what part of the

Fig. 15.4 EV3 program
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EV3 program (e.g., a block, a loop, a variable) could be deleted that would have no
effect on the current solution. In the post-task discussion with the researcher, the
students indicated whether they were able to either highlight the block/s (O) or not
(X) on their post-task worksheet.

Fig. 15.5 Flowchart
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15.3.4.4 Decomposition

Decomposition is the process of breaking problems down into smaller parts so that
the problem may be more easily solved. For the development of Computational
Thinking, students needed to show a problem being broken into smaller parts (i.e.,
micro problems). To determine students’ ability to break up the overall task problem
into smaller components, we asked them to write about the problem in detail on the
post-task worksheet. In the post-task discussion with the researcher, the students
indicated whether they were able to either break up the overall problem into smaller
parts (O) or not (X) on their post-task worksheet.

15.3.4.5 Algorithmic Logic

Algorithmic logic is the practice of writing step-by-step, specific, and unambiguous
instructions for carrying out a process. For the development of Computational
Thinking, there needed to be explicit wording of the steps in the algorithm and,
where applicable, an effort to find the most effective algorithm. The algorithm in this
project was the development of a semiotic flowchart of the student’s procedure in
solving each task problem. A metric for determining the extent of algorithmic logic
was initially considered. Vallance et al. (2015) quantified Mindstorms EV3 program
solutions as a metric entitled robot task complexity (RTC). This was a numerical
value derived from summating the EV3 program’s semiotic blocks and associated
variables used in each solution. In their research, this metric was then compared with
a circuit task complexity (CTC) metric derived from the navigation, maneuvers, and
obstacles represented by each problem (cf., Barker and Ansorge 2007; Vallance et al.
2015).

However, the flowcharts developed in this project take the concept of robot task
complexity further by charting representations of students’ reflective thinking pro-
cesses of the procedures they utilized to complete each task problem. Therefore,
assigning numerical values to a flowchart would not make sense. It is more prudent
to seek an interpretation of the flowcharts. To do this the researcher can compare the
flowchart to the EV3 program solution. As the researcher “walks through” the

Fig. 15.6 EV3 program
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Fig. 15.7 Flowchart

Fig. 15.8 EV3 program
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student’s algorithmic thinking process, the researcher can attempt to simultaneously
follow the semiotic symbols of the EV3 program solution. The aim is to decide how
closely the flowchart can be used to determine the programmed robot solution (see
Table 15.1). To explain this, three examples of algorithmic logic from our data are
shown below.

Example 1 In this task the student’s flowchart is recognizable when compared to
the EV3 program solution.

Summary The flowchart clearly illustrates the students’ procedures. By reading the
flowchart, one can simultaneously follow the process within the EV3 program.

Example 2 In this task the student’s flowchart is only partially recognizable when
compared to the EV3 program solution.

Summary The students’ flowchart covers two robots which worked in sequence.
The EV3 program contained customized MyBlock processes. This made it difficult
to coordinate the flowchart with the EV3 program. To understand the EV3 program,
one has to open the software and view the MyBlock constructions.

Example 3 In this task the student’s flowchart is unrecognizable when compared to
the EV3 program solution.

Summary The flowchart was minimal and lacked the detail expected (and previ-
ously drawn). The EV3 program appears straightforward but contains a customized
MyBlock. The combination of flowchart and EV3 program was confusing.

15.4 Results

This section will explain the data collected from the four participants. Table 15.2
shows the ten task problems to solve; task T10 is text only so is added below.
Table 15.3 illustrates the combined Computational Thinking data from the ten tasks.
Our results cannot be generalized due to the limited number of students involved.
However, it is an attempt to inform practitioners how Computational Thinking can
be recognized, illustrated, and analyzed.

Task 10: Build two basic robots to demonstrate the use of all the EV3 sensors.
Then run the two robots together to demonstrate how the sensors operate.

Table 15.1 Estimation of flowchart and robot solution

O Recognizable. The flowchart is a clear indication of the EV3 program solution See exam-
ple 1

△ Partially recognizable. The flowchart partially illustrates the EV3 program
solution, but some additional work is required

See exam-
ple 2

X Not recognizable. The flowchart does not clearly demonstrate the EV3 pro-
gram solution

See exam-
ple 3
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Table 15.2 Tasks

(continued)
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Table 15.2 (continued)

Table 15.3 Computational thinking data

Task Generalization Modularity Abstraction Decomposition Algorithmic logic

T1 O O O △ O

T2 O O O O △

T3 X O O O O

T4 X O X △ △

T5 X X X △ △

T6 X △ △ △ △

T7 X O O O O

T8 △ X X O O

T9 O O X O O

T10 X O O O O
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15.4.1 Generalization

Generalization was the most difficult concept for students to grasp and recognize in
their solutions. In the initial tasks T1 and T2, the students were able to consider their
solution (the designed robot and EV3 program components) and solution process in
another context such as the next problem. This was due to the tasks being quite easy
for the students as they were mainly a reminder of a previous EV3 robot project (cf.,
Vallance & Goto 2015). However, tasks T3 to T8 proved more challenging, and the
students could not specifically envisage how their problem-solving process could be
applied to a more general problem. This may be the fault of the instructor as he failed
to use pedagogical techniques such as elicitation to draw out any ideas of general-
ization directly from the students during the post-task group interviews. Over time
though, as students gained experience in more effective problem-solving processes,
the concept of generalization was partially understood (as revealed in task T9).
However, it was a surprise that students did not indicate positively in Task 10 as
this task involved use of all sensors: surely students would be able to generalize the
use of sensors to another problem-solving process. A follow-up interview revealed
that students knew that task T10 was the final task, so they believed that they did not
need to consider any future problems. Reflecting on these observations, it has
become apparent that more time is required to discuss generalization of problem-
solving to other contexts, to elicit explicit additional examples from the students, and
then to further reflect by checking understanding either via instructor-student ques-
tion and answers or student-to-student peer reviewing.

15.4.2 Modularity

Modularity is quite similar to generalization but operates at a more specific, deeper
level in the problem-solving process. Modularity in computing relates to functions
and is the recognition of sections of code that can be used in different parts of the
same, or other, solution. Students in this project were asked to indicate sections of
their EV3 program solutions that could be used later. Modularity recognition proved
problematic for tasks T5, T6, and T8. However, these tasks did not involve robot
navigation but activating external auxiliary machinery (T5, robot to manually turn a
motor; T6, robot to lift engineers up to a solar panel; T8, robot to climb steps and
photograph damaged radioactive bins). It is posited that the EV3 program solutions
for tasks T5, T6, and T8 were very specific to their designed robot and the associated
problem.
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15.4.3 Abstraction

The challenge was to see if students could ignore unimportant details. One way to do
this was for students to identify a part of their problem-solving process and/or an
EV3 program block that could, after reflection, be deleted and have no detrimental
impact on their solution. Students were able to look at their solutions and take out
parts of the solutions in five of the ten tasks. Common to all five recognized tasks
was that they involved navigation and maneuvering. Tasks T1, T2, T3, and T7
challenged students to navigate obstacles in predetermined circuits. Task T10
involved two EV3 robots synchronizing with each other but still required the robots
to navigate a circuit. The other five tasks included the use of additional physical
components such as a solar panel and a fan. Students considered the programs of
these five tasks to be specific to the given challenge and concluded that there was no
opportunity within these solutions to delete any section of their problem-solving
process or EV3 program blocks.

15.4.4 Decomposition

Decomposition involves breaking the problem-solving process into smaller parts. In
a computer program, smaller parts can be easier to understand and later maintain
(such as debugging a problematic program). Tasks T4, T5, and T6 involving the
mechanisms proved partially problematic to itemize. On the whole though, students
could adequately decompose their problem-solving processes. This was due to prior
programming experiences acquainting the students with the process of breaking
code into smaller chunks.

15.4.5 Algorithmic Logic

Immediately after each task was completed, the students illustrated their workflow as
a flowchart (see Figs. 15.3, 15.4, 15.5, 15.6, 15.7, and 15.8 above). Rectangular
boxes, for instance, represent processing activities, while diamond boxes illustrate
decisions. It was posited that the flowchart would correspond to the resultant EV3
program solutions. Flowcharts for tasks T1, T3, T7, T8, T9, and T10 were indeed
recognizable when compared to the EV3 programs. However, Table 15.3 shows that
the flowcharts that attempted to explain solutions involving mechanisms (T4, T5,
and T6) were partially recognizable; i.e., it was difficult to distinguish the students’
flowchart thinking process with the EV3 program procedure. In these tasks the
students had to consider the actions of sensors and data and therefore found it
challenging to integrate into their logical workflow “thinking” process.
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15.5 Discussion

If we accept that the previously mentioned tasks and flowcharts have the potential to
promote and develop students’ problem-solving processes within a particular con-
text, then two central questions arise concerning the aptness and capability of
Computational Thinking as an instructional approach within and, most certainly,
beyond STEM. These are: (1) How can Computational Thinking transform teaching
and learning in classrooms? (2)What are the implications of adopting Computational
Thinking for teachers, learners, and learning resources as a guiding pedagogy? In
this discussion, we address these broad issues in two main, yet complementary,
directions: task design and pedagogy.

15.5.1 Task Design

While we fully accept that instructional interactions between teachers, learners, and
learning resources are multiple, simultaneous, and continuous, it is useful (both
descriptively and analytically) to distinguish between two types of “work” in
classrooms: activities and tasks. In our viewpoint and understanding, the activities
that students do in classrooms usually involve low cognitive demand, such as quiet
seatwork, for example, filling in a worksheet or practicing test questions (Towndrow
2007). In contrast, tasks are larger schemes designed to lead learners to the achieve-
ment of specified outcomes (Seedhouse 2005). According to Blumenfeld et al.
(1987), instructional tasks are the organizational backbone of classroom interactions
in the crucial sense that teachers combine various task elements together to shape or
frame how students learn.

When seen academically, tasks are the key ways in which students experience a
particular curriculum (Doyle 1983). From this perspective, tasks determine not only
what content students learn but also how they think about, develop, make sense of,
and apply the content knowledge they encounter. Consequently, whereas some tasks
involve students at a surface level, others engage them more deeply by requiring the
interpretation, flexibility, shepherding of resources, and construction of meanings.
These are areas where Computational Thinking has a major part to play so long as
the tasks (as we have characterized them so far) involved are designed aptly and well
by teachers (and students).

For us, digital tasks (whatever their specific content and objectives) require
teachers’ design (Towndrow 2005). This is similar but not identical to the way in
which an architect might devise a blueprint for a building or structure (cf., Wiggins
and McTighe 2005). By way of illustration, here are four types of task structure for a
teacher’s consideration (adapted from Towndrow and Vallance 2004):

• Single output/outcome, single strategy. This is where there is a single known or
acceptable answer to a question or problem and there is only one way to reach
it. For example, find the length of the unknown side of a right-angled triangle.
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• Single output/outcome, multiple strategies.Given a single objective, there is more
than one known or acceptable way of achieving it, for example, losing weight or
saving money.

• Multiple outputs/outcomes, single strategy. There is only way to achieve more
than one outcome, for example, using a data set derived from standard formulae
and accepted procedures, to produce tables, graphs, and charts to address more
than one research question.

• Multiple outputs/outcomes, multiple strategies. Tasks of this kind are highly
flexible and usually involve solving ill-structured (c.f., Jonassen 2000) or
“wicked” problems (Rith and Dubberly 2007).

This learning task classification has several uses in planning and/or interpreting
tasks. In our case examples above, some of the work required the students to enact
tasks where there was a single or fixed aim requiring an EV3 programming solution
(e.g., navigate a closed space, negotiate hurdles, or move an object to a
predetermined destination). Additionally, in some cases, there was potentially
more than one acceptable way or method of reaching an end goal (e.g., T4, T5,
T6) although this may not have been immediately obvious to the students at the time
of enactment. However, beyond the confines of task completion in a specific
instance, the scope of Computational Thinking is potentially transcendent. This is
particularly the case with generalization and abstraction where learners may want or
need to think beyond their immediate circumstances toward other scenarios and
outcomes.

With this information, we are now able to make two points with relevance to the
hows of Computational Thinking. First, we maintain that it requires a vision and
understanding of classroom work where tasks are not simply agendas or checklists of
things to get done. Rather, tasks—when designed appropriately—can be the carriers
or vehicles of serious and demanding intellectual context and a basis for engagement
in multiple ways and directions.

Second, tasks can be the amplifiers of student agency. Take again the issue of
trying to find ways to express generalization and abstraction explicitly. One possible
method could be for students to engage with more complicated or complex problems
and then discuss them alongside deeper task enactment reflections. Another angle
might be to open or ease the scope of the robot programming tasks to allow for more
than one output. This would allow students to generate multiple ideas, make more
decisions, and chart further courses depending on their own intentions or purposes.
Of course, ill-structured problem-solving is harder to evaluate and assess (because
there is no set or accepted answer to the issues involved), but many of the situations
we have to deal with in life outside of school are just like this.

Does Computational Thinking have a role to play? Perhaps, but much depends on
how we view the purposes of teaching and learning more generally, and this leads us
to a short consideration of our second discussion question concerning pedagogy.
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15.5.2 Toward a Pedagogy of Computational Thinking

For those researchers and educators who tend to think of teaching and learning in
mostly pragmatic terms (what works, curriculum coverage, and strict accountabil-
ity), “pedagogy” is synonymous with what teachers do—teaching. Indeed, when
compliance to certain structures, policy directives, or ideologies is valued by the
members of educational communities, then pedagogy—in terms now of methods or
strategies in a teacher’s toolkit—is often listed as effective and efficient means
toward an end. However, we believe this view of pedagogy is limited and limiting
given the scope and intentions of Computational Thinking.

According to Alexander (2008), pedagogy is not something that can be prescribed
or even described in official educational documents such as curricula or policy
briefs. In his view:

. . . pedagogy is the act of teaching together with its attendant discourse of educational
theories, values, evidence and justifications. It is what one needs to know, and the skills one
needs to command, in order to make and justify the many different kinds of decision of
which teaching is constituted. (ibid., p.47)

In this definition, Alexander is careful to note that pedagogy “is” the act of
teaching but there is more to it than that. In fact, we can understand pedagogy as a
case or argument for itself in terms of the values, evidence, and justifications we
(as teachers, curriculum developers, educational policymakers, etc.) create and use
that necessarily go beyond the classroom, beyond the school, and beyond govern-
ments or boards of education toward society itself. Pedagogy, in a crucial sense,
characterizes who we are as people and what it is we aspire to in life. It also has much
to do with how we think we can best achieve the “tasks” we set ourselves and which
tasks we think, know, or believe are important and meaningful in our lives (e.g., free
speech or self-determination). These are matters to be discussed, debated, and
deliberated on constantly. In other words, pedagogy is dynamic, shifting, and
necessarily contestable. What counts today pedagogically may not hold tomorrow
but at least those who are informed would know why and how things have changed
over time.

It is also right to view Computational Thinking pedagogically in order to assess
its full potential in the classroom and learning more generally. We do not wish to
argue that all problems or issues in life or the school curriculum can be solved
computationally. That would be untenable and perhaps even undesirable. Rather, as
a system of thought and disposition, Computational Thinking offers a set of princi-
ples, practices, and procedures that potentially foster clarity, purposefulness,
empowerment, reflection, understanding, critique, and creativity. And when com-
bined with other ways of viewing the world, those who can think and act computa-
tionally, we believe, bring a unique and valuable perspective to the table.

What then would be some of the implications of adopting Computational Think-
ing for teachers, learners, and learning resources as a guiding pedagogy in schools
and beyond? We begin with teachers.
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While it is undeniable that factual and procedural knowledge are both important
and necessary in school, and life, more broadly, there are certain types of task design
that are more suited to the achievement of open-ended, flexible, and alternative
outcomes. Teachers, then, who want to design tasks involving or requiring Compu-
tational Thinking, would need to acknowledge that in certain circumstances there
might be more than one way of achieving a desired academic outcome as clearly
illustrated in our case study tasks. This is not to advocate an “anything goes”
mentality. Rather, tasks when viewed pedagogically require explanation and justifi-
cation. This means that teachers not only need to know what to do and how to do
things but also be prepared to “explain”why they have chosen their particular modes
of operation in specific circumstances. Such explanations, we argue, would be part
of a pedagogy of Computational Thinking in the making, the circumstance where
teachers think computationally about their work and its importance as a mode of
instruction and set of principles for life.

Importantly, for teachers, Computational Thinking also has the potential for the
design of a series of tasks that build on each other conceptually and practically, as
demonstrated in our case study. Alexander (2008) stresses the importance of cumu-
lation, that is, “knowing what has gone before, learning from it, evaluating it, and
building on it” (p. 68). Pedagogically, it is vital for both teachers and students to
know where they started in a task, where they are now, and what it is that they are
trying to do. The robot tasks and semiotic representations of developing solutions in
our case study clearly illustrated these conditions. It is only under the circumstances
of working toward task completion that teachers’ feedback and scaffolding make
sense.

When viewed operationally and pragmatically, learners are often cast at the
passive receiving end of teaching and instruction. Their obligation is to complete
work that has been set for purposes they may not always be aware of. Our case
examples above illustrate a different experiential perspective. The robot program-
ming tasks and the reflection activities that followed were designed to make explicit
for students the thinking they used to complete the work set. If this is a worthy aim
(and we believe it is), then students have an essential part to play in enacting (not just
doing) learning that involves Computational Thinking. As a result, they should be
proactive and prepared to map, for example, their lines of thinking even when not
asked to do so by the teacher. They should also be willing (and able, after a while) to
suggest different ways in which tasks can be designed and redesigned in their
enactment. For example, if a student saw or realized that a task specification was
faulty or that there might be a different (and more elegant) way of achieving a
previously set goal, then they should consider it perfectly reasonable to suggest a
task modification or solution that fits their own learning aims and ambitions in a
better way. By this, teachers and learners could enter into pedagogic partnerships
that are mutually informative and collaborative (cf., Prensky 2010).

Finally, while learning or instructional resources (e.g., books, LEGO blocks,
sensors, and motors) are inanimate and therefore lack inherent purposes of their
own (we might argue), the ways in which teachers and learners approach, identify,
and recruit them might be open to review with Computational Thinking or any kind
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of subject-based instruction. We subscribe to the view that teaching and learning can
be supported in different ways for varying purposes, at many levels and with
different consequences. For example, in an edited book chapter, Cohen et al.
(2002) mention three kinds of interdependent instructional resources that shape
and influence classroom interactions. These are:

• Conventional—Teachers’ formal qualifications, books, facilities, expenditures,
class size, time, libraries, laboratories

• Personal—Teachers’ and students’ knowledge and skills (these influence per-
ceptions and uses of conventional resources)

• Environmental—Leadership, academic norms, and institutional structures (these
also affect whether and how teachers and students use conventional resources)

In our opinion, this conception of instructional resources is expansive and
demanding as it includes tangible and immaterial items. However, in the interests
of supporting a wide range of computational skills and dispositions, personal and
environmental factors and considerations cannot be ignored. Rather, they should be
cultivated, promoted, and used as widely as possible to ensure comprehensiveness
and flexibility.

15.6 Conclusion

The chapter has been a descriptive account of undergraduate university students
designing, building, and programming LEGO Mindstorms EV3 robots to solve
problems set as tasks in an imaginary disaster scenario. It was found that students
were able to express recognition of the Computational Thinking concepts of mod-
ularity, decomposition, and algorithmic logic but had difficulty expressing explicit
recognition of generalization and abstraction. This finding, as a result of our qual-
itative interpretations of the students’ flowcharts, supports the quantitative data
outcomes of Atmatzidou and Demetriadis’ (2014) research.

Demonstrating that our tasks had merit, we then critiqued our Computational
Thinking observations in terms of implications for teaching and learning. To do so,
we addressed two main issues, namely, task design and pedagogy.

We proposed that a task is considered to be a structure that intends to lead learners
to the achievement of a specific objective. Tasks determine not only what content
students learn but also how they think about, develop, make sense of, and apply the
knowledge they encounter. Four types of task structure were highlighted: single
output/outcome, single strategy; single output/outcome, multiple strategies; multiple
outputs/outcomes, single strategy; and multiple outputs/outcomes, multiple strate-
gies. Consequently, explicitly incorporating Computational Thinking enables
learners and instructors to go beyond specified task completion criteria and consider
other scenarios and outcomes. However, such “generalization” and “abstraction”
were considered most challenging to the students in our case study.
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This led us to consider a pedagogy of Computational Thinking. It was argued that
although pedagogy is often considered solely an act of teaching, its performance
embeds values, evidence, justifications, and characteristics of who we are. For
instance, as mentioned above, teachers designing tasks requiring Computational
Thinking strategies would need to acknowledge that in certain circumstances there
might be more than one way of achieving a desired academic outcome. This means
that teachers not only need to know what to do and how to do things but also be
prepared to “explain” why they have chosen their particular modes of operation in
specific circumstances. This becomes a part of the pedagogy of Computational
Thinking in the making, where teachers think computationally about their work
and its importance as a mode of instruction and set of principles for life. Learners too
have an important role in reciprocating explanations as they too need to explain their
thinking, as illustrated in the reflection maps in our case study. As teachers and
learners enter this constructive partnership, improved task specifications may be
suggested, existing solutions may be modified, and alternate interpretations may be
designed.

Finally, through our case study implementations, interactions, and reflections, we
have proposed that a transformed pedagogy can be supported by tasks that engage
learners in Computational Thinking. Our students not only illustrated their “think-
ing” with semiotic flowcharts but began to “think about thinking” as they reflected
not only on their task solutions but also alternative ideas and the transfer of their
ideas to other problems. We believe this is what Seymour Papert (1980) had in mind
when he talked about powerful ideas:

And for me what is the most important in this is that through these experiences these children
would be serving their apprenticeships as epistemologists, that is to say learning to think
articulately about thinking. (p.27)
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