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Abstract. The shortest vector problem (SVP) and the shortest inde-
pendent vectors problem (SIVP) are two famous problems in lattices,
which are usually used to evaluate the hardness of some computational
problems related to lattices. It is well known that the search-SVP is
equivalent to its optimization version. However, it seems very difficult to
prove the equivalence between search-SIVP and optimization-SIVP. In
this paper, we revisit the Successive Minima Problem (SMP), which is
proved the equivalence relation with SIVP. Naturally we will consider its
optimization version as to find all successive minima of a given lattice,
and finally we will prove that it is equivalent to its search version.
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1 Introduction

Since Ajtai’s seminal work [1] in 1996, lattice-based cryptosystems become
more and more popular due to their potential ability to resist the quantum
computer attack and successful applications in constructing important crypto-
graphic primitives: such as the hash functions [1,19,20,23], the digital signature
schemes [4,9,13], the encryption schemes [3,11,14,25], and the fully homomor-
phic encryption schemes [7,10].

Another attractive feature of lattice-based cryptosystems is their average-
case security can be based on the worst-case hardness of some lattice problems,

This work was supported in part by the NNSF of China (No. 61572490, and No.
11471314), the National Center for Mathematics and Interdisciplinary Sciences,
CAS, and Science and Technology on Communication Security Laboratory (No.
9140C110301150C11051).

c© Springer International Publishing AG, part of Springer Nature 2018
B. B. Kang and T. Kim (Eds.): WISA 2017, LNCS 10763, pp. 39–50, 2018.
https://doi.org/10.1007/978-3-319-93563-8_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93563-8_4&domain=pdf


40 H. Li and Y. Pan

which are typically some approximation variants of the shortest vector problem
(SVP) and the shortest independent vectors problem (SIVP).

SVP refers to the problem of finding a shortest non-zero vector in a given
lattice, and its hardness has been studied widely [2,6,8,12]. Interestingly, there
are three variants of SVP: search-SVP, optimization-SVP, and decisional-SVP,
which aim to find a shortest nonzero vector, find the length of the shortest
vector, and decide whether the shortest vector is shorter than some given number
respectively. It is well known that the three variants of SVP are equivalent to
each other (see [22]). In fact, it is obvious that if we could solve search-SVP then
we can solve the other two problems. Moreover, it is easy to show the equivalence
between decisional-SVP and optimization-SVP. However, reducing search-SVP
to optimization-SVP is not an easy task.

The first efficient reduction from search-SVP to optimization-SVP was pre-
sented by Kannan [18] in 1987. However, the reduction is not rank-preserving,
since it needs the optimization-SVP oracle to deal with some lower rank lattices,
besides the lattices with the same rank as the original lattice. Moreover, the
reduction invokes the optimization-SVP oracle for polynomial times. In 2013,
Hu and Pan [16] revisited the reduction and presented a rank-preserving reduc-
tion which can solve search-SVP with only one call to the optimization-SVP
oracle.

When considering the relations between search-SIVP and optimization-SIVP,
it becomes a bit more complicated. Search-SIVP refers to the question of finding
n linearly independent vectors in a given n-rank lattice L such that the maximal
length of the vectors is as small as possible. In fact, denote by λi(L)(1 ≤ i ≤ n)
the successive minima, that is, the minimum length of a set of i linearly inde-
pendent vectors in L, where the length of a set is defined as the length of the
longest vector in it. Then the target of search-SIVP is to find n linearly indepen-
dent vectors with length at most λn(L), whereas optimization-SIVP should be
defined as the problem to find λn. It is obvious that optimization-SIVP can be
reduced to its search version. However, it seems hard to give a reduction from
the search version to the optimization version since λn is only an upper bound
of the length of these independent vectors.

In this paper, we consider a lattice problem called the successive minima
problem (SMP), which is introduced in [5]. In fact, the original SMP in [5] which
aims to find n linearly independent vectors achieving the successive minima
respectively is a search version of this problem. We will naturally consider its
optimization version as to find all the values of successive minima. Therefore, the
relation between these two variants will be considered. Obviously, a reduction
from optimization-SMP to its search version is trivial, but the inverse reduction
seems difficult.

By perturbing the original lattice basis carefully as in [16], we can transform
it to another basis of a new lattice, and we consider the relation between this
pair of lattice bases. Then we find that the components of all successive minimal
vectors do not change. Moreover, the successive minima of the new lattice are
all different, which lead to an algorithm to recover all components for successive
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minimal vectors of the original lattice. Similar to [16], the reduction from search-
SMP to optimization-SMP is also rank-preserving. But by using some results of
matrix analysis, we find that our reduction holds for every lattice, no matter
whether it is full-rank or not.

Roadmap. The remainder of the paper is organized as follows. In Sect. 2, we
give some preliminaries needed. In Sect. 3, we describe the reduction from search
successively minimal vectors to its optimization version. Finally, we give a short
conclusion in Sect. 4.

2 Preliminaries

We denote by Z,R,C,Z+, and R
+ the integer ring, the real field, the complex

field, the set of positive integers, and the set of positive real numbers respectively.
For any vector v = (v1, v2, · · · , vm)T ∈ R

m and m ∈ Z
+, we denote by

‖v‖ =
√∑m

i=1 v2
i its length.

2.1 Lattice and the Successively Minima Problem

Given a matrix B = (bij) ∈ R
m×n with rank n, the lattice L(B) spanned by the

columns of B is

L(B) = {Bx =
n∑

i=1

xibi|xi ∈ Z},

where bi is the ith column of B. We call m, n the dimension and the rank of L(B)
respectively. The determinant of L(B), say det(L(B)), is defined as

√
det(BT B).

It is easy to see when B is full-rank (n = m), its determinant becomes |det(B)|.
Definition 1 (Successive Minima). For a n-rank lattice L(B) with B ∈
R

m×n, and i ∈ {1, 2, · · · , n}, we define the ith successive minimum as

λi(L(B)) = inf
{

r ∈ R
+|dim(span(B(0, r)

⋂
L(B))) ≥ i

}
,

where B(0, r) is the closed ball centered at 0 with radius r ∈ R
+, i.e., B(0, r) =

{x ∈ R
m|‖x‖ ≤ r}.

Simply speaking, λi(L(B)) means the infimum of the maximal length of i linearly
independent vectors in L(B).

It is well-known that the successive minima can be achieved, that is, there
exist n linearly independent lattice vectors v1, v2, · · · , vn ∈ L(B) such that
‖vi‖ = λi(L(B)). Therefore, we can define

Definition 2 (Successively Minimal Vectors). Given a lattice basis B ∈
R

m×n with rank n, any n linearly independent lattice vectors v1, v2, · · · , vn ∈
L(B) satisfying ‖vi‖ = λi(L(B)) are called the successively minimal vectors of
L(B).
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In [5,21], the Successive Minima Problem is defined as below:

Definition 3 (SMPγ). Given a lattice L(B) and a constant γ ≥ 1, output n
linearly independent vectors v1, v2, . . . , vn in L(B) such that ‖vi‖ ≤ γλi(L(B)).

When γ = 1, it becomes Search-SMP:

Definition 4 (Search-SMP). Given a lattice L(B), find a set of the succes-
sively minimal vectors in L(B).

It is proved that SMP is equivalent to SIVP and the closest vector problem
(CVP) in [21]. We can define its optimization version similar to SVP as following:

Definition 5 (Optimization-SMP). Given a lattice L(B), find the successive
minima of L(B).

2.2 Linear Algebra

For a matrix A ∈ C
m×n, we denote by A∗ its conjugate transpose and AT its

transpose. The singular values of A is defined to be the nonnegative square root
of the eigenvalues of A∗A.

Using the singular values or the eigenvalues of matrices, we can obtain the
following Lemma stated in [15]:

Lemma 1 (Rayleigh quotient). Let A ∈ C
m×n and 0 ≤ μ1 ≤ μ2 ≤ · · · ≤ μn

be all eigenvalues of A∗A, then for any x = (xi) ∈ C
n\{0}, we have

μ1 ≤ x∗A∗Ax

x∗x
≤ μn.

We present a lower bound for the smallest singular value of a matrix in the
following lemma, whose proof can be found in [24].

Lemma 2. Given a matrix A = (aij) ∈ R
n×n with det(A) �= 0, we let 0 ≤ σ1 ≤

σ2 ≤ · · · ≤ σn be all singular values of A, then the smallest singular value σ1

satisfies the inequality:

σ1 ≥ (
n − 1
‖A‖2F

)
n−1
2 |det(A)|,

where ‖A‖F = (
∑n

i,j=1 |aij |2) 1
2 is the Frobenius norm of A.

Finally, we give a lemma to illustrate the perturbation bound for the deter-
minant of a matrix [17]:

Lemma 3. Let B,C ∈ C
n×n, then

|det(B + C) − det(B)| ≤ n‖C‖F max{‖B‖F , ‖B + C‖F }n−1.
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3 The Search-SMP Is Equivalent to Optimization-SMP

It is obvious that if we could solve search-SMP, then we can solve optimization-
SMP easily. To show the equivalence between the two problems, what we really
need is a reduction from search-SMP to its optimization version.

In this section, we give such a reduction, which consists of three main steps.
Suppose we want to find the successively minimal vectors in a given lattice L(B),
we first construct a new lattice basis Bε by perturbing the original basis B. By
the optimization-SMP oracle, we can then get the successive minima of L(Bε). In
fact, using the successive minima, we can efficiently recover the coefficients of the
successively minimal vectors under the basis Bε. With the recovered coefficients,
we can get the successively minimal vectors in L(B) finally.

First we present a lemma to show that the coefficients of the successively
minimal vectors under the basis can be well bounded.

Lemma 4. Given a lattice basis B = (bij) ∈ Z
m×n with rank n, let M =

max{|bij |}. For any x = (xi) ∈ Z
n such that ‖Bx‖ ≤ λn(L(B)), we have

x2
i ≤ 2

n+1
2 n

n−1
2 (mM2)n.

Proof. Note that when n = 1, the result is trivial, so we assume n ≥ 2.
It is easy to check that λi(L(B))2 ≤ max{‖bi‖2} ≤ mM2, so for any x =

(xi) ∈ Z
n such that ‖Bx‖ ≤ λn(L(B)), we have

‖Bx‖2 ≤ mM2.

Considering the Gram matrix A = BT B, that is,

A =

⎛

⎜
⎝

b211 + b221 + · · · + b2m1 · · · b11b1n + b21b2n + · · · + bm1bmn

...
. . .

...
b1nb11 + b2nb21 + · · · + bmnbm1 · · · b21n + b22n + · · · + b2mn

⎞

⎟
⎠ ,

by Lemma 1, we know that

0 < μ1(A) = μ1(BT B) ≤ xT BT Bx

xT x
=

‖Bx‖2
‖x‖2 .

Together with ‖Bx‖2 ≤ mM2, we have

‖x‖2 ≤ mM2

μ1(A)
.

So for each i(1 ≤ i ≤ n), we have

|xi| ≤
√

mM
√

μ1(A)
. (1)



44 H. Li and Y. Pan

Note that the singular values of A = BT B are in fact their eigenvalues. By
the lower bound of the smallest singular value in Lemma2, we know

μ1(A) ≥ (
n − 1
‖A‖2F

)
n−1
2 |det(A)|. (2)

Since the entries of B are integers, then

|det(A)| ≥ 1 >
1
2
.

Notice that the absolute values of entries of B are bounded by M , then the
absolute values of entries of A are bounded by mM2, which implies that

‖A‖2F ≤ n2(mM2)2 = (nmM2)2.

Since n ≥ 2, we have n − 1 ≥ n
2 . Hence, we have:

μ1 ≥ 1
2
(

1
2nm2M4

)
n−1
2

By (1),
x2

i ≤ 2mM2(2nm2M4)
n−1
2 = 2

n+1
2 n

n−1
2 (mM2)n.

Remark 1. We can also use BT Bx to evaluate the upper bound of each compo-
nent of x by the Cramer’s Rule and Hadamard inequality, and the upper bound
will be nn/2mn+1/2M2n. This bound is not so tight as in Lemma4.

In the following, we describe our reduction in detail.

Theorem 1. Given an oracle O that can solve the optimization SMP for any
lattice L(B′) with basis B′ ∈ Z

m×n, there is a deterministic polynomial time
algorithm that can solve the search SMP for L(B) with the input basis B ∈ Z

m×n.

Proof. We will complete the proof in the following 4 steps:

(1) First we construct a matrix Bε ∈ Z
m×n:

Bε = εn+1B +

⎛

⎜⎜⎜
⎝

ε1 ε2 . . . εn

0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

⎞

⎟⎟⎟
⎠

where εi’s are determined as below.
Let M1 = 2

n+1
4 n

n−1
4 m

n
2 (M + 1)n and M2 =

√
m(M + 1) where M =

max{|bij |}, then we choose

p = 2max{M2
2 , 2M1M2, 2M2

1 } + 1.

Note that log p = poly(n,m, log M), where poly(n,m, log M) stands for a
polynomial of n, m and log M .
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Then we choose n + 1 positive integers a1 < a2 < · · · < an < an+1 such
that all ai + aj(1 ≤ i ≤ j ≤ n + 1)’s are distinct and an+1 is bounded by
poly(n). As in Lemma 1 of [16], we can first choose

ai = i2 + (2(n + 1)2)i + 4(n + 1)4,

for i = 1, 2, · · · , n. Then we let

an+1 = 3an.

By Lemma 1 in [16], all ai + aj(1 ≤ i ≤ j ≤ n)’s are distinct. Together with
the fact that an+1 > 2an, it is easy to see that ai + aj(1 ≤ i ≤ j ≤ n + 1)’s
are distinct and an+1 is bounded by poly(n). Finally we let

εi = pai .

Notice that for every entry bεij in Bε, log |bεij | = poly(n,m, log M). Hence
Bε can be constructed efficiently.

(2) Next we claim that the columns of Bε are linearly independent, so Bε forms
a lattice basis of L(Bε). In fact we can prove the claim by showing that
det(BT

ε Bε) �= 0. In the following, we prove that

|det((
1

εn+1
Bε)T (

1
εn+1

Bε))| = |det(
1

ε2n+1

BT
ε Bε)| >

1
2
.

Notice that the absolute values of entries of 1
εn+1

Bε can be bounded by
M +1, then the absolute values of entries of ( 1

εn+1
Bε)T ( 1

εn+1
Bε) are bounded

by m(M + 1)2. Note that

(
1

εn+1
Bε)T (

1
εn+1

Bε) = BT B +
1

εn+1
BT

⎛

⎜⎜⎜
⎝

ε1 ε2 · · · εn

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎞

⎟⎟⎟
⎠

+

1
εn+1

⎛

⎜⎜⎜
⎝

ε1 0 · · · 0
ε2 0 · · · 0
...

...
. . .

...
εn 0 · · · 0

⎞

⎟⎟⎟
⎠

B +
1

ε2n+1

⎛

⎜⎜⎜
⎝

ε21 ε1ε2 · · · ε1εn

ε2ε1 ε22 · · · ε2εn

...
...

. . .
...

εnε1 εnε2 · · · ε2n

⎞

⎟⎟⎟
⎠

Let A = BT B and C = ( 1
εn+1

Bε)T ( 1
εn+1

Bε)−A, then each entry of C can be

bounded by 2M εn
εn+1

+ ε2n
ε2n+1

≤ (2M + 1) εn
εn+1

≤ 2(M + 1) εn
εn+1

, which implies

‖C‖F ≤ 2n(M + 1)
εn

εn+1
.
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By Lemma 3, we have

|det(A + C) − det(A)| ≤ n‖C‖F max{‖A‖F , ‖A + C‖F }n−1

≤ 2n2(M + 1)
εn

εn+1
(nm(M + 1)2)n−1

= 2nn+1mn−1(M + 1)2n−1 εn

εn+1
.

By the choice of an ≥ n and p > M2
2 , we have

pan+1−an ≥ p2n

> (m(M + 1)2)2n

≥ 4m2n(M + 1)2n

> 4mn−1nn+1(M + 1)2n−1.

That is

εn

εn+1
<

1
4nn+1mn−1(M + 1)2n−1

.

Then we immediately have |det(A + C) − det(A)| < 1
2 , which is in fact

|det((
1

εn+1
B)T (

1
εn+1

B) − det(BT B))| <
1
2
.

Note that det(BT B) is a nonzero integer, then we finally have

|det((
1

εn+1
B)T (

1
εn+1

B))| >
1
2
.

For a vector satisfying ‖Bεx‖ ≤ λn(L(Bε)), all the components |xi| of x can
also be bounded by M1.

(3) Moreover, we claim that if n linearly independent vectors Bεx1, Bεx2, · · · ,
Bεxn ∈ L(Bε) form a set of the successively minimal vectors in L(Bε)
where x1, x2, · · · , xn ∈ Z

n, that is, ‖Bεxi‖ = λi(L(Bε)), 1 ≤ i ≤ n, then
Bx1, Bx2, · · · , Bxn ∈ L(B) also form a set of the successively minimal vec-
tors in L(B).

First note that since Bεx1, Bεx2, · · · , Bεxn ∈ L(Bε) are linearly indepen-
dent and Bε is a basis, then x1, x2, · · · , xn are linearly independent, which
implies that Bx1, Bx2, · · · , Bxn ∈ L(B) are linearly independent.
Second we will prove that ‖Bxi‖ = λi(L(B)), for 1 ≤ i ≤ n. For contradic-
tion, let l be the smallest index such that for 1 ≤ i < l, ‖Bxi‖ = λi(L(B)),
whereas ‖Bxl‖ > λl(L(B)). We have

‖Bxl‖2 ≥ λl(L(B))2 + 1. (3)
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By the definition of successively minimal vectors, there must exist vectors
yi = (yi1, yi2, · · · , yin)T ∈ Z

n, 1 ≤ i ≤ l such that ‖Byi‖ = λi(L(B)) and
By1, By2, · · · , Byl are linearly independent.

Considering Bεyi, note that

‖Bεyi‖2 = ε2n+1‖Byi‖2 +
n∑

j=1

y2
ijε

2
j +

n∑

j=1

2c(yi)yijεjεn+1 +
∑

1≤j<k≤n

2yijyikεjεk,

(4)
where c(yi) =

∑n
j=1 b1jyij for any yi ∈ Z

n. Since ‖Byi‖ = λi(L(B)), we
know that

‖Byi‖ ≤ M2.

By Lemma 4, we have for 1 ≤ j ≤ n

|yij | ≤ M1.

Note that |c(yi)| ≤ ‖Byi‖, we have also

|c(yi)| ≤ M2.

By the choice of p, we know that all coefficients ‖Byi‖2, y2
ij , 2c(yi)yij , 2yijyik

of εjεk in Eq. (4) are in the interval (−�p
2	, �p

2	). Since εjεk’s are different
powers of p, when we take ‖Bεyi‖2 as a number with base p, it is easy to
check that

‖Bεyi‖2 < ε2n+1‖Byi‖2 +
1
2
ε2n+1

≤ ε2n+1(λl(L(B))2 +
1
2
).

However, by Eq. (3), we know that

‖Bεxl‖2 > ε2n+1‖Bxl‖2 − 1
2
ε2n+1

≥ ε2n+1(λl(L(B))2 + 1 − 1
2
)

= ε2n+1(λl(L(B))2 +
1
2
).

Note that Bεy1, Bεy2, · · · , Bεyl are linearly independent, and λl(L(Bε)) =
‖Bεxl‖ > ‖Bεyi‖, 1 ≤ i ≤ l, which leads to a contradiction to the definition
of the successive minima. Hence, for 1 ≤ i ≤ n, we have

‖Bxi‖ = λi(L(B)).
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(4) Finally, we recover all successively minimal vectors as following. Querying
the oracle O with Bε, we obtain λi(L(Bε)), 1 ≤ i ≤ n. We next show we
can efficiently find xi ∈ Z

n, such that ‖Bεxi‖ = λi(L(Bε)) by the value of
λi(L(Bε)) for 1 ≤ i ≤ n.

Let xi = (xi1, xi2, . . . , xin)T ∈ Z
n satisfy

λi(L(Bε))2 = ‖Bεxi‖2.
First note that log(λn(L(Bε))) is bounded by poly(m,n, log M),
and by Lemma 4, we know that log |xij | can also be bounded by
poly(m,n, log M).
Second we expand ‖Bεxi‖2 as follows:

‖Bεxi‖2 = ε2n+1‖Bxi‖2+
n∑

j=1

x2
ijε2j +

n∑

j=1

2c(xi)xijεjεn+1+
∑

1≤j<k≤n

2xijxikεjεk. (5)

Similarly, since ‖Bεxi‖ = λi(L(Bε)), we know that ‖Bxi‖ = λi(L(B)). As
discussed in Step (3), all the coefficients ‖Bxi‖2, x2

ij , 2c(xi)xij , 2xijxik of
εiεj in Eq. (5) are in the interval (−�p

2	, �p
2	). It is easy to recover all the

coefficients in poly(m,n, log M) time by Lemma 2 in [16]. More precisely,
we can recover all x2

ij and xijxil, j �= l for each xi. In fact for xi, let ki =

min{j|xij �= 0}, and we can fix xiki
positive, that is xiki

=
√

x2
iki

. For the

remaining xij , we can recover their absolute values according to x2
ij , and their

signs according to the signs of xiki
xij . This can be done in poly(m,n, log M)

time.
After recovering x1, x2, · · · , xn ∈ Z

n such that ‖Bεxi‖ = λi(L(Bε)), 1 ≤
i ≤ n, we compute Bx1, Bx2, · · · , Bxn ∈ L(B). Then they form a set of
the successively minimal vectors in L(B).

All the reduction above is in poly(m,n, log M) time. The proof is completed.
Hence, we finally have:

Corollary 1. Search-SMP is equivalent to optimization-SMP.

Remark 2. In our proof of the main theorem, we use the expansion of base p
to recover all the successive minimal vectors. An obvious observation is that all
the values ‖Bεxi‖ must be different since the same value must have the same
expansion for base p in the interval (−�p

2	, �p
2	). That is, when we add these

errors to a given lattice basis B to transform it to be Bε, all the successive
minima λi(L(Bε)) will be different.

4 Conclusions

In this paper, we revisit the problem SMP in lattices, and propose a rank-
preserving reduction in polynomial time from search-SMP to optimization-SMP
with only one call to the optimization-SMP oracle, which leads to the equivalence
between search-SMP and its optimization version.
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