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Abstract. One of the major issues in security is how to protect the pri-
vacy of multimedia big data on cloud systems. Homomorphic Encryption
(HE) is increasingly regarded as a way to maintain user privacy on the
untrusted cloud. However, HE is not widely used in machine learning and
signal processing communities because the HE libraries are currently sup-
porting only simple operations like integer addition and multiplication.
It is known that division and other advanced operations cannot feasibly
be designed and implemented in HE libraries. Therefore, we propose a
novel approach to building a practical matrix inversion operation using
approximation theory on HE. The approximated inversion operation is
applied to reduce unwanted noise on encrypted images. Our research also
suggests the efficient computation techniques for encrypted matrices. We
conduct the experiment with real binary images using open source library
of HE.
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1 Introduction

We are currently living in a data deluge era, where large-scale data have been
continually generated and accumulated from a variety of sources. Therefore,
many data scientists and engineers in various academic communities, includ-
ing machine learning, statistics, and signal processing, have developed several
sophisticated analysis techniques for big data. However, there are security issues
in data analysis on the cloud because data is stored and processed, not in the
client’s, but in the cloud system’s storage. Because of this, various privacy pre-
serving approaches, which process and analyze the data on an encrypted domain,
have been introduced by much literature.

Homomorphic Encryption (HE) is now considered a powerful solution for
providing the security in the cloud system since it is possible to evaluate a
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function on encrypted data. That is, the encrypted data are processed in their
format without decryption in the cloud. And the advent of Fully Homomorphic
Encryption (FHE) scheme [6], which has no limitation on performing additions
and multiplications on ciphertexts, has caused a great development in HE. How-
ever, FHE has a fundamental limitation in practical implementation although all
computational operations can be designed in theory - it is not straightforward to
perform complicated operations including division, comparison and conditional
branching on ciphertexts. For this reason, FHE was considered hard to be used
for real dataset.

In this paper, we overcome the limitation of FHE and show its applicability to
real data. We introduce a methodology for applying FHE to real image filtering
algorithm. We first explain the background for image filtering and leveled FHE in
Sect. 2. Then we propose the inverse operation of the encrypted matrix in Sect. 3,
and show how to apply this matrix inversion to the filtering technique in Sect. 4.
We also show how to efficiently calculate encrypted matrices in Sect. 5, and
Sect. 6 presents our experimental results. Finally, Sect. 7 concludes the paper.

Related Works. The division problem has been actively studied in the area of
multi-party computation (MPC). Dahl et al. [7] uses Taylor series to approximate
a division operation to a linear function. The authors divide a real number by
its bit length, and then use a rounding function to convert it to an integer. Since
the bit length of the number is private information, it is kept secret using MPC.
Veugen [8,9] also uses MPC for division approximation. In the paper, the author
uses the additive blinding method in order to prevent the input value from being
exposed to any parties.

There have also been substantial studies regarding computing a matrix
inverse for solving regression problems of machine learning. Hall et al. [10] pre-
sented a MPC protocol to solve a linear regression problem on encrypted data.
The approach uses Newton’s method to compute a matrix inverse. By iterating
some linear operations, it can approximate the inverse. Nikolaenko et al. [11]
focused on a ridge regression problem by combining the garbled circuit theory
[12,13] with homomorphic encryption. In detail, the approach utilizes homomor-
phic encryption for linear operations, and garbled circuit for non-linear opera-
tions. Lu et al. [16] presented the method of statistical analysis, including linear
regression, using FHE. They build the encrypted matrix primitives for data
analysis.

After the research of Graepel et al. [14], studies combining HE and machine
learning have increased. In [14], the authors present some binary classification
algorithms on encrypted data. Similarly, Bost et al. [15] construct the secure
comparison operation, and develop three classifiers using the operation.

Contributions

– Division-free Matrix Operation: In many statistical analyzes, inverse
matrix computation is essential. However, FHE does not support this oper-
ation, which is a major obstacle to applying FHE to real data analysis.
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We extend the application of FHE by newly introducing the inverse matrix
operation method on ciphertext.

– Training the model parameters on encrypted data: In order to remove
the noise of the image, it is necessary to train the model parameter of the
image filter. Most studies that use statistical analysis with FHE focus on
applying already trained model parameters to the data. However, training
model parameters is the most important step in statistical analysis, and this
paper focuses on training step. We show the applicability of this training
algorithm by applying the proposed filtering technique to real binary images.

– Two party model applicable to real-world cloud environments: Most
of the papers presented in related works section require a third-party to assist
in the operation between the two parties. The third-party plays a role of
authentication and data verification between a server and client. However,
organizing the third-party may increase the budget of both sides. In this
paper, we propose a novel approach which can run securely without the third-
party.

2 Background

2.1 Image Smoothing Filter

Image filtering techniques can be divided into two major categories, low-pass
filter and high-pass filter. Low-pass filter, as known as smoothing filter, serves
to remove the noise in the image. In contrast, high-pass filter makes the image
shaper, emphasizing fine details in the image. Both filtering works the same
way, only different with the mask they use. In this paper, we only deal with the
low-pass filter.

Image filtering process can be defined as follow:

y[m,n] =
K∑

i=−K

K∑

j=−K

wi,jx[m + i, n + j]. (1)

This equation means that the filtered image pixel y[m,n] is obtained by multi-
plying values of pixels near x[m,n] by the mask w = {wij}. The mask w is a
(2K + 1) × (2K + 1) matrix and we only consider the case when K = 1 in this
paper. The K = 1 case example is shown in Fig. 1.

For smoothing filter, we assume w0,0 = 0. That is, the filtered image pixel
y[m,n] is obtained by weighted sum of the nearby pixels. Then the weight param-
eter w should be modeled for filtering. In general, the parameter can be simply
estimated by least square estimate. In order to apply least square estimate, we
need to transform the Eq. (1) into matrix form. The matrix form of Eq. (1) is as
follows:

Y = Xw + ε,
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X =

⎛

⎜⎝
xT
1
...

xT
N

⎞

⎟⎠ ∈ Z
N×8
t , Y =

⎛

⎜⎝
y1
...

yN

⎞

⎟⎠ ∈ Z
N×1
t , w =

⎛

⎜⎝
w1

...
w8

⎞

⎟⎠ ∈ R
8×1

where xT
i = [xi

1 · · · xi
8], N is the number of training data, and t is an integer

determined by the type of image. For example, t = 256 if the image is gray-
scale image with all pixel values between 0 and 255. ε is signal noise, generally
assumed as Gaussian noise. Now, using the least square approach, the weight
parameter can be calculated by

w∗ = (XTX)−1XTY. (2)

Using the estimated weight parameter w, we can filter the entire image by mul-
tiplying w∗ by the total image pixels.

Fig. 1. Image filtering with 3 × 3 mask

2.2 Leveled Fully Homomorphic Encryption

In this work, we use the Brakerski-Gentry-Vaikuntanathan (BGV)’s scheme [2],
which proposed the leveled fully homomorphic encryption. For the sake of sim-
plicity, let E [·] and D [·] denote the encryption and decryption algorithm respec-
tively.

The plaintext space of BGV’s scheme is Apr := Zpr/Φm(x), where p is a
prime and Φm(x) is the m-th cyclotomic polynomial. Then the basic operations,
addition and multiplication for a, b ∈ Apr work as follow:

D[ Add(E[a],E[b]) ] = a + b mod(Φm(x), pr)

D[ Mul(E[a],E[b]) ] = a × b mod(Φm(x), pr).

One of the most important points of BGV’s scheme is that SIMD is possi-
ble. CRT-packing algorithm in BGV’s scheme makes it possible to pack multiple
plaintexts into one plaintext. If the cyclotomic function Φm(x) can be factor-
ized into l-irreducible polynomials, that is Φm(x) =

∏l
i=i Fi(x) mod pr, then
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l-elements {ai}l
i=1 ∈ Z

l
pr can be packed into one element a ∈ Apr . It is said that

the plaintext has l-slots, and each slot element ai satisfies ai = a mod(Fi(x), pr)
for i = 1, · · · .l. CRT-packing algorithm increased the efficiency of the scheme,
and we show the use of this techniques in Sect. 5.

3 Matrix Inverse Approximation (MIA)

Recall that it is impossible to perform a division operation on ciphertexts. So,
we need to design a division-free method for seeking the inverse of encrypted
matrices. We use the Neumann series which approximates the matrix inversion
by using iterative method. The formula is as follows:

Theorem 1. Suppose that a real matrix A ∈ R
d×d has the infinity norm

‖A‖∞ < 1, then I − A is invertible and its inverse is the series: (I − A)−1 =∑∞
i=0 A

i, where I is the identity matrix. We can replace I−A with B, then we
get:

B−1 =
∞∑

i=0

(I − B)i (3)

where the norm of B follows 0 < ‖B‖∞ < 2.

We can also apply Eq. (3) for an arbitrary matrix C ∈ R
d×d. If we multiply C

by a constant t = 1/‖C‖∞, then the norm of tC becomes ‖tC‖∞ = 1. Applying
this property to Eq. (3), we have C−1 ≈ t

∑n
i=0 (I − tC)i. To use this equation

for MIA, however, the real number elements of the matrix tC must be replaced
with integers. So we use the round function, D = �qtC�, where q = 10γ . Note
that rounding on a matrix means rounding on every element of that matrix.
As q increases, the matrix D ∈ Z

d×d loses less information from C because the
fractional part of a real number can be a corresponding integer. Then, we can
approximate the integer form of tC as tC � q−1D.

However, the round function cannot guarantee that the norm of the matrix
q−1D falls within the range of 0 to 2. Since ‖qtC‖∞ = q, the infinity norm of D
is in the range

(
q − 1

2d, q + 1
2d

]
for d × d matrix C. Then, we can see the range

of ‖q−1D‖∞ as follows:

1 − d

2q
< ‖q−1D‖∞ ≤ 1 +

d

2q
.

So if q is set to satisfy d/2 < q, we can guarantee that q−1D has the infinity
norm between 0 and 2. Subsequently, the matrix inverse C can be derived as
follows:

C−1 ≈ t
n∑

i=0

(
I − q−1D)i

≈ t · q−n
n∑

i=0

(qI)n−i (qI − D)i
. (4)

Finally, Algorithm1 demonstrates MIA’s overall protocol.
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Algorithm 1. Overall protocol of MIA
1: Client calculates t = 1

‖C‖∞ and determines q = 10γ .

2: Client encrypts q and D = �qtC�. Then, it transfers E [q] ,E [D] to the server with
the approximation order n.

3: Server calculates
∑n

i=0 E [qI]n−i
E [qI − D]i, and returns it to the client.

4: Client decrypts the returned value and multiplies it by t · q−n. Then, it can build

the approximated inverse matrix C−1 ≈ t · q−n
D

[∑n
i=0 E [qI]n−i

E [qI − D]i
]
.

4 Encrypted Image Filtering

In this section, we calculate the weight parameter of smoothing filter using the
operation suggested in Sect. 3.

Data Sampling. Suppose we have a M × M size image, and each pixel is an
element of Zt for an integer t. Then the image consists of a total of M2 pixels,
which is a great burden to use for weight parameter estimation. From this point
of view, we use a sampling approach. That is, we sample some pixels for training
the weight parameter, not using all pixels. For even sampling, we split the image
into N grids and extract the center pixel. Then we have the training dataset
{xT

i , yi}N
i=1. For the sake of simplicity, we assumed w−1,−1, w−1,1, w1,−1, w1,1 = 0

in Fig. 1 and only use the adjacent 4 pixels for filtering. Figure 2 illustrates the
process of sampling data and configuring a training set.

Fig. 2. Method for sampling the data

Model Training. As described in Sect. 2.1, the model parameter can be
obtained by the equation w∗ = (XTX)−1XTY. So, we use the MIA method
to compute the inverse of XTX. The overall algorithm using MIA is presented
in Algorithm 2.

This algorithm has a limitation that once communication between client and
server is needed, since it is impossible to calculate the eigenvalue ‖XTX‖∞ from
E[XTX]. Of course, there is a way for client to calculate and encrypt XTX, then
upload it to server. But for large data set, this can be a burden on client and we
focus on the convenience of the client rather than the server.
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Algorithm 2. Overall Protocol of Weight Estimation
1: Client uploads the encrypted training data E[XT ], E[Y] to the server.
2: Server calculates E[XTX] and sends it back to client.
3: Client decrypts E[XTX] and calculates t=1/‖XTX‖∞. It also determines q=10γ .
4: Client encrypts q, D = �q · t ·XTX� and transfers E[q], E[D] to the server with the

approximation order n.

5: Server calculates
(∑n

i=0 E [qI]n−i
E [qI − D]i

)
E

[
XTY

]
, and returns it to the

client.
6: Client decrypts the returned value and multiplies it by t · q−n. Then, it can build

the approximated weight parameter

w∗ ≈ t · q−n
D

[(
n∑

i=0

E [qI]n−i
E [qI − D]i

)

E

[
XTY

]
]

. (5)

5 Efficient Computation Techniques

Since the computations on ciphertexts are very heavy, it is important to design
an efficient algorithm with as few computations as possible. To do so, we utilize
the CRT-packing techniques for matrix encryption and suggest some efficient
operations for packed data.

5.1 Encrypted Matrix Operations

Halevi et al. [3] suggested three layouts for encrypting matrix: the row-major
order, the column-major order, and the diagonal-major order. In this work, we
utilize the row-major order, packing and encrypting each rows of a matrix sep-
arately. We use the matrix operation suggested by Lu et al. [16]. Since each
rows of matrices are encrypted separately, we can denote the encryption of d×d
matrices X and Y as E[xT

i ]di=1 and E[yT
i ]di=1 respectively. The methods proposed

by [4] are as follows:

1. Matrix Addition
Addition can be performed simply, just adding each encrypted row:

E[xT
i ] + E[yT

i ] for 1 ≤ i ≤ d.

2. Matrix Multiplication
Multiplication is more complicated than the addition operation. To evaluate
E[X] · E[Y], we need to use the Replicate function. Replicate(E[v], i) is the
function which replaces all elements of the vector v with the i-th element.
Then using Replicate, we can multiply E[X] and E[Y]:

d∑

i=1

Replicate(E[xT
j ], i) · E[yT

i ] for 1 ≤ i ≤ d. (6)

This matrix multiplication method reduces the complexity from O(d3) to
O(d2).
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Algorithm 3. Optimized MIA Computation
1: Input: E[q], E[qI − D], order n
2: Output: result =

∑n
i=0 E[qI]n−i · E[qI − D]i.

3:
4: Initialize temp = E[I]
5: for(i = 0; i < n − 1; i + +)
6: result + = Replicate(E[q], n − i) · temp
7: temp ∗ = E[qI − D]
8: result + = temp
9: return result

5.2 MIA Computation

Recall Eq. (4) of MIA. In order to obtain the inverse of the matrix C, server
should compute

∑n
i=0 E[qI]n−i ·E[qI−D]i. To calculate this expressions in order

requires O(nd2) multiplications. Furthermore, since E[qI] and E[qI − D] are
vectors with d-ciphertexts, it occupies very large memories. In this section, we
suggest a faster and more memory-savvy way to compute MIA. We choose to
pre-calculate qn instead of calculating a heavy matrix multiplication. So client
encrypts a vector q = [q1q2 · · · qn] using CRT-packing. By storing a scalar vector
q, server doesn’t need to store a large ciphertext matrix. The detailed algorithm
is described in Algorithm 3.

Compared to conventional computations, the number of multiplications
between two encrypted vectors, represented in Eq. (6), has been reduced by
n(n + 1)d to n(d − 1) through this optimization technique. Also move opera-
tion, which is the heaviest operation in CPU, reduced from 3d to 2d.

6 Experiment

For the simplicity, we use a binary image with all pixel values 0 or 1 for our
experiment. The size of the image is 100 × 100 and consists of a total 10,000
binary pixels. We use the sampling method described in Sect. 2.1 to extract 100
data and use it as a training set.

6.1 Error Rate Measurement

Since we use approximation techniques for inverse matrix computations, we need
to define the error rate for accuracy measurements. First, we use F1-score to
measure the accuracy of image filtering. F1-score is often used in signal process-
ing because it considers recall as well as precision. The definition of F1-score is
presented in Fig. 3, where 0 and 1 means the pixel values of the filtered image.

That is, Precision means the ratio of pixels having a value of 1 actually among
the results filtered by 1, and Recall means the ratio of pixels filtered by 1 of the
pixels of the actual 1. F1-score is defined as the harmonic mean of Precision and
Recall.
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Fig. 3. The definition of F1-score

In addition to F1-score, we also use RMSE(Root Mean Square Error) to
measure the accuracy of the model parameter w. Let w and w∗ denote the
estimated weight using the original scheme and our scheme, respectively. The
definition of RMSE is as follows:

RMSE =
‖w∗ − w‖2√|w∗| .

We measure the error rate of the three images using the error rate defined
above. Figure 4 shows the result image of our image filtering and its error rate.

6.2 Performance Test

We first used two PCs with Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40 GHz,
64 GB RAM, and Ubuntu 16.04.1 LTS (64-bit) OS. We also used C++ as the
programming language.

We used HElib by Halevi and Shoup [5]. This library is based on Brakerski-
Gentry-Vaikuntanathan (BGV)’s HE scheme [2]. The parameter p, r,m deter-
mines the plaintext space Apr := Zpr/Φm(x). m is determined by the function
FindM in HElib. m is dependent on prime p, security level δ, and the tolerable
noise level L. Also plaintext has l-slots using CRT-packing. In this paper, we use
zero-padding in the empty slots. We run performance tests on two cases.

1. p = 2, r = 32, L = 32, δ = 64, m = 24929, l = 512.
2. p = 2, r = 32, L = 50, δ = 64, m = 43691, l = 1285.

The biggest difference between these two cases is L. A high L ensures more
operations, but the larger the L, the more exponentially the computation time.

Recall the Eq. (5). Server should compute
(∑n

i=0 E [qI]n−i
E [qI − D]i

)

E
[
XTY

]
. However, the first case, L = 32, cannot support the whole opera-

tion. Therefore, we assume that when the server computes E
[
XTY

]
and sends

it to the client, the client re-encrypts it. Therefore, we only measure the time to
multiply the already calculated E

[
XTY

]
. In the second case, L = 50, the entire

operation is possible, so we measure the time that the server performs the whole
operation with E

[
XT

]
and E [Y].
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Fig. 4. Comparison of conventional filtering and our filtering application. We use three
images for the experiment. For the original images in the first column, the second
column contains filtered images, where the weight is trained on plaintext space. The
images in the third column are filtered on ciphertext space using our scheme. The
last two columns represent F1-score and RMSE for each image. We use the parameter
q = 10 and n = 4.

Table 1. The result of performance test

L n MIA evaluation (s) The rest evaluation (s) Decryption (s)

32 1 1.936 1.66 10.840

2 142.192 2.26 10.796

3 283.852 2.72 10.844

4 419.532 3.224 10.620

L n MIA evaluation (s) The rest evaluation (s) Decryption (s)

50 1 5.744 273.628 34.312

2 725.996 280.028 34.752

3 1423.92 276.684 34.436

4 2181.36 281.624 34.724
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Table 1 shows the result of performance test. MIA evaluation means the part
of computing

∑n
i=0 E [qI]n−i

E [qI − D]i, and the rest evaluation means multi-
plying E

[
XTY

]
by the MIA result. Each result is the average of the results for

the above three images. Both cases are fixed at p = 10 because the size of the
ciphertext is independent of p, so there is no significant impact on performance
time. Decryption time is independent of order n, because n also does not affect
the size of the ciphertext.

7 Conclusion

In this paper, we presented a method to apply FHE to image filtering. To calcu-
late the weight of a filter in an encrypted image, we propose an Matrix Inverse
Approximation technique that does not require division. We propose an algo-
rithm that removes the noise of the real encrypted image using the MIA tech-
nique and suggest an mathematical optimization technique that can efficiently
perform the algorithm. Finally we performed the experiment by applying this
algorithm to the actual binary image. We conclude that our MIA and optimiza-
tion techniques will make practical use of FHE.
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