®

Check for
updates

Web Performance Characteristics
of HTTP /2 and Comparison
to HTTP/1.1

Robin Marx®) | Maarten Wijnants®™), Peter Quax®), Axel Faes®),
and Wim Lamotte®)

UHasselt-tUL-imec, EDM, Hasselt, Belgium
robin.marx,maarten.wijnants,peter.quax,axel.faes,
J P q
wim.lamotte}@uhasselt.be

Abstract. The HTTP/1.1 protocol has long been a staple on the web,
for both pages and apps. However, it has started to show its age, espe-
cially with regard to page load performance and the overhead it entails
due to its use of multiple underlying connections. Its successor, the newly
standardized HTTP/2, aims to improve the protocol’s performance and
reduce its overhead by (1) multiplexing multiple resources over a single
TCP connection, (2) by using advanced prioritization strategies and by
introducing new features such as (3) Server Push and (4) HPACK header
compression.

This work provides an in-depth overview of these four HTTP/2 per-
formance aspects, discussing both synthetic and realistic experiments, to
determine the gains HTTP/2 can provide in comparison to HTTP/1.1
in various settings. We find that the single multiplexed connection can
actually become a significant performance bottleneck in poor network
conditions with high packet loss and that HT'TP /2 rarely improves much
on HTTP/1.1, except in terms of reduced overhead. Prioritization strate-
gies, Server Push and HPACK compression are found to have a relatively
limited impact on web performance, but together with other observed
HTTP/2 performance problems this could also be due to faulty current
implementations, of which we have discovered various examples.

Keywords: HTTP/2 - Web performance - Best practices - HTTP
Server push -+ Prioritization - Networking + Measurements

1 Introduction

As the web grows more mature in terms of availability and features, so does its
complexity. Websites have evolved from collections of simple individual docu-
ment pages into complex user experiences and even full “apps”. Even though
internet connection speeds have also been steadily increasing in this time frame,
the traditional internet protocols HT'TP/1.1 and TCP have struggled to keep
up with these developments and are in many cases unable to provide fast web

© Springer International Publishing AG, part of Springer Nature 2018
T. A. Majchrzak et al. (Eds.): WEBIST 2017, LNBIP 322, pp. 87-114, 2018.
https://doi.org/10.1007/978-3-319-93527-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93527-0_5&domain=pdf

88 R. Marx et al.

page load performance [12]. This is detrimental to the overall viability of the web
platform for complex use cases such as e-commerce, since a multitude of studies
has shown that web performance is a core tenet in ensuring user satisfaction
[9,13].

Most of the performance problems with HT'TP /1.1 stem from the fundamen-
tal limitation to only request a single resource per underlying TCP connection
at the same time. This means that slow or large resources can delay others,
which is called “Head-Of-Line (HOL) blocking”. As modern websites consist of
tens to even hundreds of individual resources, browsers typically open several
parallel HTTP (and thus also TCP) connections (up to six per hostname and 30
in total in most browser implementations). However, these heavily parallelized
setups induce large additional overheads (e.g., in terms of server-side connection
count) while not providing extensive performance benefits in the face of ever
more complex websites [12] (see also Sect.4). Note that while the HTTP/1.1
specification does include the pipelining technique (which does allow multiple
requests to be queued on a connection), it is not enabled by default in the major
modern browsers due to various practical issues [14].

In order to tackle these challenges, the new HTTP/2 protocol [3] (h2) was
standardized in 2016, after evolving from Google’s SPDY protocol since 2009.
While keeping full backwards compatibility with the semantics of the HTTP /1.1
protocol (h1) (e.g., types of headers, verbs and overall setup), h2 nevertheless
introduces many low-level changes, primarily with the goal of improving web
page load performance. For example, all h2 traffic is ideally sent over a single
TCP connection (making use of multiplexing and inter-resource prioritization
algorithms to eliminate HOL blocking), there is support for server-initiated traf-
fic (Server Push) and headers are heavily compressed in the HPACK format.
The details of these aspects are discussed in Sects. 4 to 7.

In theory, h2 should solve most of the problems of h1l and improve web page
load times by up to 50% [12]. In practice however, the gains from h2 are limited
by other factors and implementation details. Firstly, the use of a single TCP
connection introduces a potential single-point-of-failure when high packet loss is
present (and so it might actually be better to also use multiple TCP connections
for h2). Secondly, correctly multiplexing multiple resources over this connection
is heavily dependent on the used resource prioritization scheme and the inter-
leaving of resource chunks might introduce its own implementation overhead as
these chunks need to be aggregated before processing. Finally, complex inter-
dependencies between resources and late resource discovery might also lessen
the gains from h2 [22]. The fact that h2 is not a simple drop-in replacement
with consistently better performance than h1 is also clear from previous studies,
which often find cases where h2 is significantly slower than h1 (see Sect. 2).

In this text, we continue the groundwork from our previous publications
[17,18]. We discuss four HTTP/2 performance-related aspects and test their
impact, both in synthetic and realistic test scenarios, in comparison with
HTTP/1.1’s performance (Sects.4 to 8).

Web Performance Characteristics of HT'TP /2 89

Our main contributions are as follows:

— We extend the Speeder framework for web performance measurement
[18], combining a large number of off-the-shelf software packages to provide
various test setup permutations, leading to a broad basis for comparison and
interpretation of experimental results.

— We compare h2 to h1 in both synthetic and realistic experiments and find that
while h2 rarely significantly improves performance over hi, it is also
rarely much slower. Additionally, in most cases, bad network conditions
do not seem to impact h2 much more than they impact hil. Using multiple
parallel TCP connections can help both h2 and h1. Prioritization, Server Push
and HPACK compression seem to contribute only sparingly to page load time
improvements.

— We find that many current h2 implementations (both on the server
and browser sides) are not yet fully mature and that some (default)
implementations lead to suboptimal performance, especially concerning the
time it takes to start rendering the web page.

2 Related Work

Various authors have published works comparing the performance of h2 and its
predecessor SPDY to hi.

In “How Speedy is SPDY?” [27] the authors employ isolated test cases to
better assess the impact of various parameters (latency, throughput, loss rate,
initial TCP window, number of objects and object sizes). They observe that
SPDY incurs performance penalties when packet loss is high (mainly due to the
single underlying TCP connection) but helps for many small objects, as well
as for many large objects when the network is fast. For real pages, they find
that SPDY improves page load performance for up to 80% of pages under low
throughput conditions, but only 55% of pages under high bandwidth.

“Towards a SPDY’ier Mobile Web?” [8] performs an analysis of SPDY over
a variety of real networks and finds that underlying cellular protocols can have
a profound impact on its performance. For 3G, SPDY performed on a par with
h1, with LTE showing slight improvements over hl. A faster 802.11g network
did yield improvements of 4% to 56%. They further conclude that using multiple
concurrent TCP connections does not help SPDY.

“Is The Web HTTP/2 Yet?” [26] measures page load performance by loading
real websites over real networks from their original origin servers. They find that
most websites distribute their resources over multiple backend hosts and as such
use h2 over multiple concurrent connections, which “makes h2 more resilient to
packet loss and jitter”. They conclude that 80% of the observed pages perform
better over h2 than over hl and that h2’s advantage grows in mobile networks.
The remaining 20% of the pages suffer a loss of performance.

“HTTP/2 Performance in Cellular Networks” [10] introduces a novel network
emulation technique based on measurements from real cellular networks. They
use this technique to specifically assess the performance impact of using multiple

90 R. Marx et al.

concurrent TCP connections for h2. They find that h2 performs well for pages
with large amounts of small and medium sized objects, but suffers from higher
packet loss and larger file sizes. They demonstrate that h2 performance can be
improved by using multiple connections, though it will not always reach parity
with hi.

“HTTP/1.1 Pipelining vs HTTP2 In-The-Clear: Performance Comparison”
[7] compares the cleartext (non-secure) versions of hl and h2 (hic and h2c
respectively) (even though h2c is not currently supported by any of the main
browsers, see Sect. 3). They disregard browser computational overhead and find
that on average h2c is 15% faster than hic and “h2c is more resilient to packet
loss than hic”.

Additional academic work [15] found that for a packet loss of 2%, “h2 is
completely defeated by h1” and that even naive Server Push schemes can yield
up to 26% improvements. Others [25] conclude that h2 is mostly interesting for
websites with large amounts of images, showing up to a 48% decrease in page
load time, with an additional 10% when using h2 Server Push, and that h2
is resilient to higher latencies but not to packet loss. Further experiments [23]
indicate that h2 Server Push seems to improve page load times under almost all
circumstances. Finally, Carlucci et al. [6] state that packet loss has a very high
impact on SPDY, amounting to a 120% increase of page load time compared to
h1 on a high bandwidth network.

Content Delivery Network (CDN) companies have also measured h2 per-
formance on their networks. Gooding et al. [11] from Akamai find that using
multiple TCP connections is best avoided for critical resources on h2. A presen-
tation by Fastly [2] states that h2 mostly outperforms hl on fast networks, but
loses on networks with higher packet loss.

Our review of related work clearly shows that the current state of the art is
often contradictory in its conclusions regarding h2 performance. It is not clear
whether using multiple TCP connections provides significant benefits, whether
h2 is resilient to poor network conditions and what degrees of improvement
developers might expect when migrating from hil to h2.

In this work, we try to assess why these contradictions exist by running a
wide variety of tests on several heterogeneous test setups (see Sect. 3). We look
at four performance-related aspects of h2, first in isolation to assess their relative
impacts and then in combination to evaluate the protocol’s impact on typical
realistic web page loads. We are thus able to confirm some of the findings reported
by the related work, while showing that many of the contradictory findings can
be attributed to inefficiencies in current h2 implementations.

3 Experimental Setup with the Speeder Framework

As discussed in Sect. 2, there are many cases of contradictory results regarding
the performance of h2. As we suspect that one of the reasons for these discrepan-
cies are differences in the underlying h2 implementations (both client/browser-
side and server-side) and utilized test configurations, we aim to employ as many

Web Performance Characteristics of HT'TP /2 91

test setup permutations as possible. We argue that if the results show simi-
lar trends across all or a large part of the test setups, they are most likely
attributable to the protocol itself. If however the results vary widely, they are
typically dependent on specific implementations.

In order to obtain these diverse test setup permutations, we use the Speeder
framework for web performance measurement, previously introduced in [18].
Speeder provides pre-installed versions of a large amount of existing software
packages (e.g., servers, browsers, network emulation tools, automated testing
tools) that can be freely coupled to each other through the use of Docker con-
tainers'. Users simply need to select the desired setup permutations and the
framework collects and aggregates a multitude of key metrics. Users can then
utilize various visualization tools to compare the results.

For this work, we have expanded Speeder in a variety of ways. We have
upgraded the supported browser versions of Chrome and Firefox to v60 and
v54 respectively, updated webpagetest? to v3 and now also support the H20
webserver?, which was heavily optimized for h2 from the ground up. We have
also created and integrated the H2Vis visualization tool. H2Vis directly takes the
low-level .pcap packet capture files recorded during a test run (using tcpdump?)
to produce a number of insightful graphical representations. For example, we
can plot both TCP-level and h2-level packets on a graphical timeline to help
verify how data is actually sent by the h2 server, how the various h2 streams
are interleaved on a single TCP connection (see Sects.4 and 5) and what the
practical impact of packet loss is on the connection. Additionally, support for
graphically visualizing the generated h2 priority dependency trees (see Sect.5)
allows us to quickly assess the impact of various prioritization strategies in use by
browsers. Table 1 provides an overview of the features of the Speeder framework
at the time of writing.

Unless indicated otherwise, the results in this work were generated in an
experimental setup using NGINX v1.10 as web server and Google Chrome v54 as
browser, driven by Webpagetest v2.19 and the dynamic cellular network model.
This dynamic network model uses previous work [10] which introduced a model
based on real-life cellular network observations. The model has six levels of “user
experience (UX)”: NoLoss, Good, Fair, Passable, Poor and VeryPoor. Each UX
level contains a time series of values for bandwidth, latency and loss. The model
changes these parameters at 70ms intervals to simulate a real network. This
implies, for example, that applied packet loss is more bursty than with the fixed
model. For details, please see [10] or the original source code®.

Our results will be presented using two distinct metrics, namely
loadEventEnd and SpeedIndex. loadEventEnd from the Navigation Timing API
[28] gives a good indication of the total time (in milliseconds (ms)) a page needed

! https://www.docker.com/.

2 https://www.webpagetest.org/.

3 https://h20.example.net/.

* http://www.tcpdump.org/.

5 https://github.com/akamai/cell-emulation-util.

https://www.docker.com/
https://www.webpagetest.org/
https://h2o.examp1e.net/
http://www.tcpdump.org/
https://github.com/akamai/cell-emulation-util

92 R. Marx et al.

Table 1. Software, metrics and visualizations supported in the Speeder framework
(August 2017).

Protocols HTTP/1.1 (cleartext), HTTPS/1.1, HTTPS/2

Browsers Chrome (v51-v60), Firefox (v45-v54)

Test drivers | Sitespeed.io (v3), Webpagetest (v3.0)

Servers Apache (v2.4.20), NGINX (v1.10), NodeJS (v6.2.1), H20 (v2.1)
Network - DUMMYNET (cable and cellular) (provided by Webpagetest)

- Fixed TC NETEM (cable and cellular)
- Dynamic TC NETEM (cellular) [10]

Metrics All Navigation Timing values [28], SpeedIndex [19], firstPaint,
visualComplete, other Webpagetest metrics [20]

Visualizations | Packet timeline (TCP and h2), h2 priority dependency trees.
Boxplots, linegraphs and CDF's of recorded metrics

to load, but does not say anything about how progressively it was rendered in
that time frame. In other words: a page that stays empty for 5s and only renders
content during the last 0.6 s (page A) will have a better observed loadEventEnd
performance than a page that finishes loading at 7.5s, but that had its main
content drawn by 2.5s (page B), while the latter arguably yields the better
end-user experience. In order to capture the degree to which the page loads pro-
gressively, Google introduced the SpeedIndex metric [19], which measures how
fast a page renders, not just loads. Inconsistencies between loadEventEnd and
SpeedIndex results can indicate that a resource was fast to load but slow to
have visual impact. Like loadEventEnd, SpeedIndex is expressed in ms and so
for both metrics lower values mean better performance.

Finally, we performed most of our tests using three versions of the HTTP
protocol: the secure HT'TPS/2 (h2s) and HTTPS/1.1 (his) and also the unen-
crypted HTTP/1.1 (hic), because many websites still use this “cleartext”
version. We do not include h2c, as modern browsers choose to only support
h2s for security reasons. Note additionally that switching from hic to a secure
setup (either his or h2s) could have its own performance impact as TLS connec-
tions typically require additional network round-trips to setup. In the following
sections, we will use h2 to refer to h2s, and h1l refers to both his and hic.

Most of our graphs will show loadEventEnd on the Y-axis. Individual data
points will typically represent aggregates (e.g., median, average) of 10 to 100
page loads. Each experiment was repeated at least five times. Unexpected dat-
apoints and anomalies across runs were analyzed further by manually checking
the collected output of individual page loads (e.g., screenshots/videos, .har files,
waterfall charts, .pcap files). The line plots will show the median values under
Good network conditions, as do the Cumulative Distribution Functions (CDFs).
The box plots will show the median as a horizontal bar and the average as a
black square dot, along with the 25th and 75th percentiles and min and max
values as the whiskers. Some box plots use a logarithmic scale on the Y-axis to

Web Performance Characteristics of HT'TP /2 93

allow for large values. To be able to compare our results using the SpeedIndex
metric, we make sure our loaded resources have a strong visual impact on the
visible “above the fold” part of the website.

Some of our results were obtained using hand-crafted experiments on syn-
thetic data. These test cases are intended to demystify the underlying behavior
of the protocols and their implementations, and so are often not entirely realistic
or involve extreme circumstances. However, most of our results were obtained
using more realistic data based on existing websites. We expect that, compared
to the experiments on synthetic pages, these test cases will show similar but
more nuanced results and trends.

Readers are encouraged to review our full dataset (which encompasses results
not presented in this paper (e.g., for other browser/server combinations and test
pages)), setup details and source code via https://speeder.edm.uhasselt.be.

4 Multiplexing over a Single TCP Connection

4.1 Background

One of the major downsides of HT'TP/1.1 is that it only allows a single resource
to be requested and sent on an individual TCP connection at any given time.
As such, the problem of Head-Of-Line (HOL) blocking is introduced, where the
delivery of the initial resource(s) can block later resources (e.g., if the initial
resource is very slow to be generated, is very small (so it does not take up the
full possible bandwidth) or is very large). To work around this problem, modern
browsers typically open up to six parallel HT'TP/TCP connections to a single
origin server. This way, even if one or more of the connections suffer from HOL
blocking, the others can serve key resources as soon as possible. In tandem, devel-
opers have adopted the practice of merging several smaller resources into larger
files, a practice called “concatenation” or “bundling”. This approach causes the
number of individual resources to go down and with them the number of needed
TCP connections and HTTP requests. On the other hand, concatenation has the
adverse effect that it reduces the fine-grained cacheability of individual, smaller
resources.

Another h1 best practice is that of “hostname sharding”. Web developers
will typically distribute their resources over a number of individual servers with
different hostnames (for example by using a CDN). The browser will open up to
six connections per hostname, resulting in a total of 17-60 parallel hl connec-
tions across all hostnames® per page load. This leads to massively parallel page
loads, but also introduces significant overheads on the server side in order to sup-
port this large amount of connections and their state management. The down-
sides of both concatenation and sharding (reduced cacheability and higher over-
head, respectively) do not always outweigh their observed page load performance
benefits [12].

5 http://www.browserscope.org/.

https://speeder.edm.uhasselt.be
http://www.browserscope.org/

94 R. Marx et al.

In response, HTTP /2 tries to solve the root issue of HOL blocking by deliv-
ering multiple resources over a single TCP connection concurrently, using mul-
tiplexing. In practice, smaller chunks of individual resources are encapsulated in
conceptual “streams” and are then interleaved on the single connection. Section 5
discusses in detail how h2 decides on the resources’ interleaving order with a
priority-based dependency tree. The HTTP /2 specification [3] actively encour-
ages this single connection setup. For example, it includes a mechanism for coa-
lescing requested HTTP connections to separate hostnames onto a single TCP
connection if the hosts use the same HTTPS certificate and resolve to the same
IP address, this way effectively “undoing” a typical sharded h1 setup. HTTP/2
Server Push can also only be used for resources on the same domain (see Sect. 6).

In theory, h2’s approach should render the h1l best practices of concatena-
tion and sharding obsolete [12]. In practice however, the single TCP connection
might also be more susceptible to adverse network conditions than h1’s parallel
approach. With hi, if one or more of the parallel connections would incur packet
loss or high jitter, the possibility exists that the other connections would remain
unimpaired. With just a single h2 connection, all resources will be impacted
when the network deteriorates. In effect, this could introduce transport-layer
HOL blocking, induced by TCP’s guarantee of in-order delivery combined with
re-transmits when packet loss is present [21]. If the impact of packet loss is sig-
nificant, h2 might in practice also benefit from sharding on multiple connections
(see Sect.4.2).

4.2 Head-of-Line Blocking in Practice with Images

In order to assess the impact of concatenation and sharding on both hl and
h2 page load performance in varying network conditions, the experiments in
Fig.1 compare three cases: (left) concatenated into a single resource on one
host, (middle) non-concatenated on one host, (right) non-concatenated on four
hosts (“sharded”). In practice, for the sharded case, for hl the browser will
open the maximum amount of connections (24, six per hostname) and a single
connection per hostname for h2 (four in our case). The observed h1l connections
are all configured with Keep-Alive and do not use pipelining.

In h1 the problem of HOL blocking is most apparent when trying to download
many smaller files, as browsers only open six parallel connections. Since these
smaller files do not fully take up the available bandwidth and each individual
resource request requires a full Round-Trip-Time (RTT) delay, this overhead
quickly adds up. For this, we consider three experiments in Fig.1: (a) a large
number (i.e., 380) of small files, (b) a medium number (i.e., 42) of medium sized
files and (c) a medium number (i.e., 30) of large files. We choose images because
they typically incur a low processing overhead from the browser. We look at
more complex JavaScript/CSS cases in the next section.

For Fig. 1(a) we observe that h2 significantly outperforms h1 when there is
no concatenation (middle), but that using a single concatenated image largely
reduces h2’s benefit and brings it somewhat on a par with hi (left). This is
expected as the single h2 connection can efficiently multiplex the many small

Web Performance Characteristics of HT'TP /2 95

30k T T T T T T T T
20k H = HTTP/1 ; ; :]
15k H 3 HTTPS/1}-- .
__10k[{E=3 HTTPS/2}.]
I . e
> 5k R ke .
e %ié;' #* N =
€L
= =
$ 2k L |
w
e
©
o
1k 1
05k | | | | | | | | |
NoLoss Good Poor NoLoss Good Poor NoLoss Good Poor
single big image, 779KB 380 small icons, 502KB 380 small icons, 502KB
(a) 1 host 1 host 4 hosts
Network Condition
30k T T T T T T T T T
20k HE== HTTP/1 : : |
15k H=3 HTTPS/1}-- .
__ 10k [{E=3 HTTPS/2}. - i 1
2 ‘ T
= —
5 Skt jsn o ’
=] .- L : T
S - I T
g okl -1 T LT i - |
w [I .
o° 1 1
Eg H
T
1k Es+ T HES Lo |
0.5k H H H H H L
NoLoss NoLoss Good Poor NoLoss Good Poor
single big image, 1.1MB 42 medium images, 1MB 42 medium images, 1MB
(b) 1 host 1 host 4 hosts
Network Condition
30k =1 TP/ ' ‘ %% |
%gEIZI HTTPS/L |~ S A : 1
1Ok7 HTTPS/2 | ' ' ' - é ' . ' |
(%) o R = _ T N |
£ %%é L
T 5kf B e 1
w
5
o 2k} Concatenated, single ... 1
° 10MB image
3 often crashed
the tested browser.
or led to high (>35k)
1k} loadEventEnd values 1
Osk | | | | | |
NoLoss Good Poor NoLoss Good Poor
no results 30 large images, 10.4MB 30 large images, 10.4MB
(c) 1 host host 4 hosts

Network Condition

Fig. 1. Synthetic test cases concerning HOL blocking with images. h2 performs well
for many small files but deteriorates for less or larger files. Sharding only helps h2 for
larger files.

96 R. Marx et al.

files. It is of note that the concatenated version is two to five times faster overall,
even though (in a rare compression fluke) its file size is much higher than the
sum of the individual file sizes. Additionally, we see that sharding deteriorates
h2’s performance, while only marginally benefiting h1 (right). Because the files
are that small, h2’s multiplexing was at its best in the single host case and
maximized the single connection’s throughput, while in the sharded setting it
has less data to multiplex per connection. Conversely, sharding empowers hil to
open up more connections, but still suffers from HOL blocking on the small files.

Figure 1(b) shows relatively little differences and no clear consistent winners
between the concatenated (left) and separate files (middle) over one host. This
is somewhat expected for h2, as in both cases it sends the same amount of
data over the same connection, but not for hl1. We would expect the six parallel
connections to have more impact, but it seems they can actually hinder on
good network conditions. This is probably because of the limited bandwidth
in our emulated cellular network, where the six connections contend with each
other, while a single connection can consume the full bandwidth by itself. Unlike
h2’s behaviour in (a), we see that here h2 does not get significantly faster for
the concatenated version. This indicates that the higher measurements in (a)
(middle) are in large part due to the overhead of handling the many individual
requests. Similarly, sharding (right) shows inconsistent behavior: sometimes it
helps and sometimes it hurts h2; it shows impressive benefits for hic but smaller
gains for hl1s. We posit that the additional overhead of setting up extra secured
HTTPS connections (both for his and h2s) limits the effectiveness of the higher
parallel throughput. Overall, we can state that there is no clear winner here, nor
for the three different setups, nor for the three protocols.

Lastly, in Fig. 1(c) we see that h2 struggles to keep up with hi for the larger
files and performs significantly worse under bad network conditions (note the
y-axis’ log scale). Due to the much larger amount of data, h1l’s larger amount
of parallel connections do help here, while packet loss impacts the fewer h2
connections more. This is immediately apparent when comparing the NoLoss and
Good network conditions in Fig. 1(c) (middle): the hl measurements are very
similar while the single h2 connection is almost 80% slower in this case (note that
the NoLoss and Good conditions are identical except for the amount of packet
loss introduced). As expected, utilizing additional parallel connections (right)
benefits both hl and h2, helping mitigate HOL blocking for h1 and lessening the
impact of loss when compared to a single h2 host. The SpeedIndex measurements
(not included here) show very similar trends for all of the experiments discussed
in Fig. 1.

In conclusion, we can say that while h2 indeed helps for many smaller files,
it still loses to concatenated versions of those files, both over h1 and h2. This
indicates that the current h2 implementations can incur heavy costs for handling
individual resources, though this primarily poses a large problem for many (>42)
files (see also Sect.4.3). We can also conclude that h2’s single connection setup
seems to suffer from bad network conditions, but not excessively more than hi,
and the performance drop largely depends on the observed case. Similarly, we

Web Performance Characteristics of HT'TP /2 97

have observed that using multiple parallel connections for h2 can help mitigate
this problem (especially for websites with large objects), but that it can also lead
to slower load times (for many, smaller objects). These findings are consistent
with the previous work of Goel et al. [10], who overall observed that if sharding
helps for h2, sharding over more hosts helps more, but there are diminishing
returns with each increase in the amount of hosts. Additionally, Mi et al. [21]
decisively show that large files can increase the time to download smaller files by
99% over a single h2 connection. They propose an extension to h2 that allows
migrating resource requests between parallel TCP connections (also in a mul-
tipath TCP setting). Interestingly, Manzoor et al. [16] have shown empirically
that various browsers are already using multiple parallel connections for h2 in
the wild (although this was never observed during our tests). This might indi-
cate that the browser vendors are aware of the beneficial nature of this practice.
However, to the best of our knowledge, the browser vendors have yet to present
their own results on this issue.

4.3 HOL Blocking in Practice with CSS and JavaScript

HOL Blocking with CSS and JavaScript with loadEventEnd. The dis-
cussion in Sect. 4.2 has clearly shown the impact of network conditions and the
amount of parallel connections of h2’s performance. It has also shown that due
to HOL blocking, h2 seems to shine when loading a large amount of smaller files,
but that it is not necessarily faster when the amount of files is lower. In order to
investigate this property further and determine the point where HOL blocking is
overcome, we observe two experiments in Fig.2: 500 <div>-elements are styled
using (left) simple CSS files (single CSS rule per <div>) and (right) complex JS
files (multiple statements per <div>). We vary the degree of CSS and JS code
concatenation, from one file (full concatenation) to 500 files (no concatenation).
Figure 2 plots full results in (a) and shows more detail for one to 30 files in (b).
We resorted to CSS and JS files in these experiments instead of images because
they typically include additional processing from the browser, which can also
impact page load time performance, as we will see. The data shown here is from
tests using the Good network condition.

The big-picture trends in Fig.2(a) look very similar to Fig.1(a) (left and
middle): h2 again clearly outperforms hi as the number of files rises and shows
a much better progression towards larger file quantities than the quasi linear
growth of hi. Interesting is also the performance of Firefox: while its h1 results
(not shown in Fig. 2 for clarity) look almost identical to Chrome, its h2 values
are much lower, indicating that it has a more efficient implementation that scales
better to numerous files.

Looking at the zoomed-in data in Fig.2(b), we do see somewhat different
patterns. For the simple CSS files the trends are relatively stable, with hic
outperforming h2 and h2 beating his. This changes at about 30—40 files, where
h2 finally takes the overall lead. For the more complex JS files (right), this
tipping point comes much later around 100 files. The measurements for one to
ten JS files are also much more irregular when compared to CSS. Because hi

98 R. Marx et al.

7k - -
++ HTTP/1 .
6k [x HTTPS/1
@—o HTTPS/2 PR S
gSk F|>—& HTTPS/2 (firefox) e +
- 4 -
2ak| ,1.-/-
=
23Kt e
i X
©
°

0 100 200 300 400 500 0 100 200 300 400 500
simple CSS files, total 16.4 KB complex JS files, total 395 KB
(a) amount of files

++ HTTP/1

16K e x HTTPS/1
1.4k ||ee HTTPS2
HTTPS/2 (firefox)

!

simple CSS files, total 16.4 KB complex JS files, total 395 KB
(b) amount of files

Fig. 2. Synthetic test cases for HOL blocking with CSS/JS files. h2 performs well for
many files but there is no clear winner for the more concatenated cases. Image taken
from our previous work [18].

shows the same incongruous data as h2, we can assume this can be accounted to
the way the browser handles the computation of the larger incoming files. The
performance of a multithreaded or otherwise optimized handling of multiple
files can depend on how many files are being handled at the same time. This
would also explain the very high h2 measurements for a single JS file in Firefox
(consistent over multiple runs of the experiment). In additional tests, smaller JS
files and larger CSS files also showed much more stable trends, indicating that
especially large JS files incur a large computational overhead. Note as well that
the timings for a smaller amount of JS files are sometimes higher than those for
the larger amounts, indicating that concatenation might not always be optimal
here (for none of the protocols). Poor network conditions (not shown here) show
similar trends to Good networks, but the h2 tipping points come later: 40-50
files for simple CSS, 150 for complex JS.

All in all, we can see that h2 only overcomes h1’s HOL blocking problems at
a relatively large amount of individual files (304 in the best case). While most
websites do include that many resources, our results also show that concatenating

Web Performance Characteristics of HT'TP /2 99

files together (thus again reducing the total resource count) can overall be faster
than sending individual files for all protocols (especially for CSS files and many
images, see Fig. 1(a)). This again confirms our earlier thesis that browsers intro-
duce a lot of overhead per individual resource/request, regardless of the actual
size of the data (though Firefox seems to have a more efficient implementation
than chrome, at least for h2) and that this issue needs to be resolved first before
h2 can overtake h1l and its best practices.

HOL Blocking with CSS and JavaScript with SpeedIndex. For the tests
in the previous Sect. 4.3, the SpeedIndex results were significantly different from
the loadEventEnd measurements and merit separate discussion. Figure 3 shows
the same experiment but depicts SpeedIndex for Google Chrome. We notice
that the data for the simple CSS files (left) looks very similar to Fig. 2, but the
results for the complex JS files (right) do not. Since the SpeedIndex metric gives
an indication of how progressively a page renders (Sect. 3) and because we know
from Fig.2 that hl takes much longer than h2 to load large amounts of small
files, we can only conclude that under h2 the JS files take much longer to have
an effect on the page rendering, to skew the SpeedIndex in this way.

7k

+-+ HTTP/1 +
6k H > x HTTPS/1
e—e HTTPS/2 et

0 100 200 300 400 500 0 100 200 300 400 500
simple CSS files, total 16.4 KB complex JS files, total 395 KB

amount of files

Fig. 3. Synthetic test cases for HOL blocking with CSS/JS files (SpeedIndex metric).
h2 SpeedIndex for JavaScript indicates that it is much slower to start rendering than
hi1. Image taken from our previous work [18].

We manually checked this assumption using screenshots and found that for
h1 the JS was indeed progressively executed as soon as a file was downloaded,
but with h2 the JS code was applied in “chunks”: in larger groups of 50 to 300
files at a time and mostly towards the end of the page load. We first assumed
this was because of erroneous multiplexing: if all the files are given the same
priority and weight, their data will be interleaved, delaying the delivery of all
files (see Sect. 5). Captures of h2 frame data in Google Chrome however showed
that each file i was requested as dependent on file i - 1, and that file data
was fully delivered in request order (consistent with the behaviour described

100 R. Marx et al.

in Sect.5). We can once more only conclude that the browser implementation
somehow delays the processing of the files, either because of their JS complexity
or because the handling of many concurrent h2 streams is not optimized yet.
This argument is supported by the SpeedIndex results for Firefox (not shown
here, for clarity), as its h2 values are much lower than those of h1, indicating
that Firefox has a more efficient h2 implementation than Chrome.

If the browsers’ handling of CSS code would be similar to that of JS code,
we would expect to see similar results in Fig. 3 (left) and (right). However, if the
CSS files would also be applied individually as soon as they were downloaded,
the h1 SpeedIndex values would be much lower than the observed measure-
ments. We found that the browser delays execution of all CSS until they have
all been downloaded and processed for both h1 and h2, despite our experiments
having been built specifically to prevent this. This is again unexpected browser
behaviour (though probably not directly related to the h2 implementation) and
we plan to look deeper into this in future work, as discussed in [18].

5 Resource Prioritization

5.1 Background

As demonstrated in Sect.4, h2 solves the h1 Head-Of-Line blocking problem
by allowing multiple resources to be sent on the same connection at the same
time. To make this possible, each resource is assigned to its own conceptual
“stream” and these streams are then multiplexed over the single underlying
TCP connection. The data from the individual files is split up in chunks and can
thus be interleaved with chunks from other files. This is especially interesting for
resources that are partly directly available but that need slow I/O operations
to complete (e.g., an HTML template that fetches content from a database).
Using multiplexing, chunks from other resources can be sent while the data of
the “delayed” resource is being fetched, resulting in less idle time on the TCP
connection. Alternatively, when concurrently sending a very large and a very
small file, the data from the small file might be multiplexed with parts of the
larger file so the receiver does not need to wait for the larger file to be fully
downloaded to receive the smaller resource [21].

To this end, the h2 specification [3] details the concept of a “dependency
tree”. Nodes in this dependency tree represent individual h2 streams, while the
root of the dependency tree denotes the underlying TCP connection. New nodes
are added to the tree as new resources are requested and nodes can be removed
when their corresponding resources have been fully downloaded. A parent-child
relationship between nodes indicates that the child’s transmission should be
postponed until its ancestor has been downloaded completely (or until it is tem-
porarily impossible to make progress on the parent resource). Conversely, a sib-
ling relationship between nodes allows bandwidth to be distributed among the
siblings proportionally to their “weight” (i.e., € [1,256]), thus allowing multiple
resources to be interleaved in a very fine-grained way. The h2 buildup of the
tree is decided by the browser at runtime and communicated to the server using

Web Performance Characteristics of HT'TP /2 101

HEADERS or PRIORITY frames. This general setup allows for a lot of flexibility
in how the dependency tree is effectively constructed and maintained by the
browser during the page load.

Figure4 shows example dependency trees from Google Chrome (a) and
Mozilla Firefox (b) respectively. It is apparent that Chrome chooses a very
sequential setup, where each node is the only child of its parent (rendering indi-
vidual stream weights effectively useless). It does however maintain an internal
“priority order” depending on the type and location of the resource (e.g., a CSS
file in the <head> will be given a Highest priority level, while an image in the
<body> will have a Low overall importance). If a new resource is discovered, it
will be not be added at the end of the full tree, but rather after the last exist-
ing resource with the same priority level. Firefox utilizes similar priority bins
internally (indicated by e.g., leaders, followers, unblocked) but chooses to
build its priority tree in a radically different way from Chrome. Firefox adds
“ghost” nodes for each of these priority levels (which do not directly represent
an h2 resource or stream) to be able to group the h2 streams that belong to this
category as siblings. This allows Firefox to use a more complex prioritization
strategy for its h2 implementation.

[unblocked] [background]
— S/(_?_ _\E _,I .
o |
=

speculative

leaders

1

followers
(L AT X
| |

L p—— —
HTML, images, fonts, favicon, <head> & <body> CSS, <head>J, ...

S

—_——— 1
oy
5
— T s _ =10
2 5()3(y
&
I S

r
]

(
|
L
[
|

Fig.4. HTTP/2 dependency tree layout of (a) Chrome and (b) Firefox. Numbers
indicate node weights.

5.2 Evaluation of Prioritization Strategies

As Chrome’s and Firefox’s approaches for the h2 dependency trees are funda-
mentally different (Fig.4), it is difficult to directly compare both options and
see which one performs best. This is due to the fact that the both browsers are
internally optimized for their specific strategy, implying that using a different
strategy will skew the results. Instead, we implement two alternative, less com-
plex prioritization strategies to see how much better (or worse) the browser’s
more advanced approach works.

The first alternative algorithm, Round Robin (RR), is the default behaviour
specified in the h2 specification [3]. All h2 streams are made siblings under the
root node and each is given an equal weight. In effect, this causes all active

102 R. Marx et al.

resources to be given an equal share of the bandwidth and leads to heavy mul-
tiplexing. The second algorithm, First-Come-First-Served (FCFS), approaches
the way h1 works. The dependency tree is purely linear and each new node is
added as the bottom leaf node; FCFS is thus a much less advanced version of
Chrome’s strategy as it will never inject new nodes between two existing nodes.
FCFS entails that the current resource has to be sent fully before (any part of)
the next resource can be sent, effectively disabling multiplexing.

These two alternative algorithms are implemented by modifying the H20
server source code. The server simply ignores the priority directives from the
browser (which is allowed behaviour as per the h2 specification [3]) and builds
its own dependency tree using the rules described above.

Figure5 shows the CDF results for the Firefox browser in Poor network
conditions. We take a corpus of 40 websites (see Sect.8 for details) and load
them 20 times with each protocol/prioritization strategy; the median values are
used in the CDF.

1.0F ‘ ‘ ‘ poor network condition
0.9+
0.8}
0.7}

uw 0.6

[a)

O0.5F
041 %—x HTTPS/1
0.3 o—o HTTPS/2 default
0.2 -+- HTTPS/2 FCFS
0.1} A HTTPS/2 RR
0.0

0 2500 5000 7500 10000 0 _ 2500 5000 7500 10000

loadEventEnd (ms) Speedindex (ms)

Fig.5. HTTP/2 prioritization strategies in Firefox for a Poor network condition.
Round Robin is clearly detrimental for SpeedIndex and his is consistently faster than
h2.

We can deduce that the impact of the different h2 prioritization strategies
is moderate for the loadEventEnd metric, with h2 measurements being very
similar. However, the SpeedIndex metric clearly shows worse performance when
using the Round Robin strategy. This is expected, as it will take longer for
resources to be fully downloaded and because, as we have discussed in Sect. 4.3,
browsers will often wait for a full resource (or group of resources) to be down-
loaded before re-rendering the page. This is a remarkable result because, as men-
tioned before, Round Robin is the default prioritization behaviour prescribed by
the h2 specification and in our tests it was seen in effect in both Microsoft’s
Edge and Apple’s Safari browsers (which do not seem to employ a custom pri-
oritization strategy at this time).

We performed similar tests for Google Chrome and on the various other
network emulation settings detailed in Sect. 3. The results displayed in Fig.5

Web Performance Characteristics of HT'TP /2 103

are among the most distinct of all our evaluated data, meaning that other
tests showed even less differences between the different strategies, especially
for improved network conditions. This indicates that the adopted prioritiza-
tion strategy is not a major influencer of h2 page load performance, except on
poor networks and then only when used in the most straightforward way. This
reflects previous work by Bergan [4], who found that Chrome’s implementation
only clearly outperforms a completely random strategy in 31% of the observed
pages.

Finally, when looking at the browsers’ prioritization strategies, we found
that their implementations are often still lacking in their support of cutting-
edge web technologies. For example, the new Service Worker concept” allows
developers to register a JS-based “client-side proxy” that can intercept and per-
form custom processing on all requests the browser emits. We found that all h2
requests passing through such a Service Worker lost all of their intelligent pri-
oritization information, leading to Chrome defaulting to a FCFS-alike strategy,
while Firefox exhibited pure RR behaviour. This is probably an implementa-
tion oversight and we expect this to be fixed in the future. As another example,
developers can indicate to the browser that certain JS files are less important
using the async/defer attributes. Chrome correctly assigns a Low priority to
those resources, but in Firefox they are regarded as normal, high-priority JS
files. We believe that these and similar browser implementation errors could be
responsible, at least partly, for some contradictory results in other work (Sect. 2).

6 Server Push

6.1 Background

In HTTP/1.1, the browser can only receive resources that it has explic-
itly requested. Typically, the user agent first fetches the HTML page (e.g.,
index.html), which it then parses to discover other referenced resources. As such,
it takes at least one RTT before the browser can start requesting critical CSS/JS
files and a minimum of two RTTs before they are downloaded. Especially on slow
networks, this can have a large performance impact. In response, the HTTP /2
specification [3] describes a novel mechanism called “Server Push”. This allows
the server to decide to send along additional resources with previously requested
resources, not having to wait for the browser to request them first, thus poten-
tially saving a full RTT.

In theory, developers could push all necessary resources of a website along
with the original HTML request and thus eliminate additional RTTs completely.
In practice however, Server Push is limited by TCP’s congestion control mech-
anisms. For example, in its “slow start” phase, TCP sends only a small amount
of data at the beginning of the connection and then exponentially ramps up its
speed if no packet loss or delays are present. In practice, the TCP congestion

" https://developers.google.com/web/fundamentals/getting-started /primers/service-
workers.

https://developers.google.com/web/fundamentals/getting-started/primers/service-workers
https://developers.google.com/web/fundamentals/getting-started/primers/service-workers

104 R. Marx et al.

window starts at about 14 KB for modern Linux kernels (as used in our exper-
iments) [17], severely limiting the amount of resource data we can push during
the first RT'T. Given this behaviour, h2 Server Push’s benefits should increase
the longer the TCP connection stays open (i.e., the congestion window grows as
the connection gets “warmer”), as more data can be pushed in a single RTT.

Server Push could be a good fit for the popular modern Single Page App
(SPA) setup. In this paradigm, the loaded page routinely requests additional
data from the server using a (REST) API, thus keeping the TCP connection
active. The API’s response will then no longer just consist of the structured
xml/json data, but can also contain the pushed subresources (e.g., images)
mentioned in the data. Another interesting use case is to deploy Server Push
from a network intermediary, such as a CDN proxy. In this setup, the browser
typically connects to the proxy, which in turn connects to the origin server. The
proxy can then “warm up” its connection to the browser by pushing static assets
(mainly CSS/JS/font files) while it waits for the dynamic HTML and other data
to arrive from the origin. This use case is discussed in-depth by Zarifis et al. [30],
who show up to 27% web page load time improvements when using Server Push
in this fashion.

However, the page load performance of Server Push can be very dependent on
knowledge of the correct priority of the resources it wants to push and how they
fit into the page loading process. The main reason for this is that large parts of
common network stack implementations use buffered I/0, both on the OS-level
and in the network itself [5]. Once data is queued in these intermediate buffers,
it is often impossible to remove it or replace it with other data. If we then, for
example, would immediately push three very large image files along with the
initiating request and their data fills up all buffers, the browser’s request for a
more critical CSS file will be delayed because we cannot re-prioritize the less
important image data in the buffers. This makes for large practical difficulties
in determining which resources to push and when [30]. This problem is enlarged
by the fact that the h2 specification [3] does not include a mechanism for the
browser to signal to the server which files it has already cached. Consequently,
the server will potentially push files which the browser already has, wasting
bandwidth and delaying other resources.

6.2 Experimental Evaluation

While a full in-depth evaluation of the discussed characteristics of h2 Server
Push is out of scope for this work, we can nevertheless demonstrate several of the
discussed aspects using a very simple example. We use the existing Push demo
by Bradley Fazon®, based on the www.eff.org frontpage. This page has a single
“critical CSS” file (which is responsible for the main look-and-feel of the site and
thus a good Push target) and a good mix of additional CSS, JS and image files
without being too complex. We make sure the initial HTML code is smaller than

8 https://github.com/bradleyfalzon /h2push-demo.

www.eff.org
https://github.com/bradleyfalzon/h2push-demo

Web Performance Characteristics of HT'TP /2 105

14KB (by removing some metadata and enabling gzip compression), reducing
the on-network HTML size from 42 KB to 9 KB.

Figure 6 shows the results from tests using the Apache webserver because
NGINX does not yet support h2 Server Push. The SpeedIndex results are dis-
played because these should be most affected. We observe five different experi-
ments: (1) push the single “critical CSS” file, (2) push all the CSS/JS files (10
files), (3) push all (images + CSS/JS + one font), (4) push all images (18 files)
and (5) the reference measurement (original, no push). We see that pushing the
one “critical CSS” file does indeed improve the SpeedIndex measurements, but
not excessively so. It is unexpected however that pushing all CSS/JS performs
a little better than just the “critical CSS” in the Good network condition. We
found that in practice the initial data window is often a bit larger than 14 KB,
S0 it can accommodate more than just the single CSS file. However, this is not
always the case and other runs of the same experiment show less optimal results
(which can also be seen in the Poor network condition). Given a larger data win-
dow, the “Push all” test case should perform similarly to pushing the CSS/JS
resources, but it is consistently a bit slower. It turned out that we pushed the
single font file at the very end, after all the images. The font data should have
been given a higher h2 priority than the images, but due to an Apache bug® this
was not the case and the font data had to wait, delaying the final render. This
also explains why pushing just the images performs worse than the reference:
the much more important CSS and JS is delayed behind the image data.

4k T T
3 HTTPS/2
n
3k ! -
g h - -
- I I e I
5 | - i 1 1
2K | 4 i T I
= ! - ! . = -
& | H E'Ia e i
SRS e
=+ 4
o I I I - I \' I I I - I \.
1CSS CSs/Js all images orig 1CSS Css/Is all images orig
Good network condition Poor network condition

test case

Fig. 6. Realistic test case for HT' TP /2 Push. Pushing the wrong assets or in the wrong
order can deteriorate performance.

The discussed aspects and challenges make Server Push difficult to fine-tune
to achieve optimal performance. Due to this and the fact that many popular h2
server implementations do not yet support Server Push, Zimmerman et al. [31]
found that out of their observed 5.38 million HTTP/2 enabled domains, only
595 actively used Server Push.

9 https://icing.github.io/mod_h2/nimble.html.

https://icing.github.io/mod_h2/nimble.html

106 R. Marx et al.

7 HPACK Header Compression

7.1 Background

HTTP uses the concept of Headers to convey various types of metadata about
its requests and responses between the user agent and the server. These headers
are typically prepended to the actual message body. Some popular header names
are Content-Type, Keep-Alive, Cache-Control and Cookie. This last header
is useful to bind multiple requests and responses to the same conceptual “user
session” , allowing applications to provide stateful interactions. Cookies typically
contain a numeric user ID or session token but can also include more complex
(serialized) data, which can make them relatively large in practice [29].

The headers are often repeated with each individual message, which can be
wasteful with respect to bandwidth usage, especially in the case of large metadata
like Cookie. HTTP/2 attempts to solve this deficiency by introducing HPACK
[24], a compression algorithm specifically tuned to the HTTP header format.
HPACK combines a pre-defined dictionary of known prolific header names and
values with a dynamic shared dictionary per connection that is built up at run-
time (at both the server and browser side), based on the header data that is
actually being sent during the session. As such, HPACK will perform better
with large amounts of similar files or cases with large dynamic metadata, as
it learns the repeating data on-the-fly. For example, the first time a header of
the form Cookie: value is sent on the connection, it is stored in the dynamic
dictionary. The next time this specific header would be sent, it can be wholly
replaced by a reference to the dictionary entry, which is identical on both client
and server.

7.2 Experimental Evaluation

To demonstrate the behaviour of HPACK, we use data gathered during our
experiments from Sect. 4, which include only typical HT'TP headers and no cook-
ies are set. Table 2 details three cases: (a) 10 large images, (b) 42 medium images
and (c) 400 complex JS files. The BytesOut measurements consist of all data
that was sent by the browser and thus include primarily HTTP request headers
and TLS connection setup data. The actual header-induced overhead is even
larger if we also consider HTTP response headers.

For the cases with one host server, we can clearly see that HPACK signif-
icantly reduces the overall header size when compared to hi, with a factor of
more than five for case (c). It is also apparent that the header overhead is typ-
ically relatively low but can grow to 27% for many individual files on his (as
each of those files requires a separate request and response message). Looking
at the sharded setup with four host servers, we see that while both protocols
produce more overhead from the extra connections, h2s relatively suffers more
than his, especially for (a) and (b) (note that the his overhead is mainly due
to the TLS overhead from opening 24 connections compared to the six for the
single host case and four for sharded h2s). This is expected, as h2s now has

Web Performance Characteristics of HT'TP /2 107

less data to learn from on each individual connection and optimize its dynamic
compression scheme. This is another argument of h2 to favor using only a single
underlying TCP connection.

It is of note that these observed header compression results are arguably too
low to have a significant impact on the performance of any individual page load
of a realistic website. However, when viewed on a larger scale (e.g., cumulatively
across all the servers in a data center or CDN) these savings can add up and
make a significant difference in the overall bandwidth usage of popular websites.
Related work from Cloudflare [1] indicates that on average HPACK reduces
HTTP header size by 30% and overall HTTP/2 egress traffic by 1.4%, with
outliers of up to 15% for individual websites.

Table 2. Total bytes sent by Google Chrome (~HTTP headers) and ratio to total
page size. For many small files, the HTTP header overhead is significant. Sharding
over multiple hosts decreases the effectiveness of HPACK header compression.

File count Protocol | Total page |1 host 4 hosts
size
BytesOut | % of total | BytesOut | % of total
page size page size

(a) 10 large h2s 2177600 504 0.02% 1227 0.05%
files

his 2177600 2419 0.1% 2993 0.1%
(b) 42 medium | h2s 1075000 649 0.06% 1362 0.1%
files

his 1075000 2786 0.2% 3346 0.3%
(c) 400 small | h2s 610000 29580 4% 38680 6%
files

his 610000 165300 27% 177600 29%

8 HTTP/2 Performance for Realistic Web Pages

8.1 Experimental Setup

While the synthetic test cases from the previous sections (excluding Sect. 5) are
useful to assess the individual h2 performance techniques in isolation, they are
not always representative for real websites. We will now look at some more real-
istic test cases. We will first present results for a corpus of nine manually selected
website landing pages (corpus A), which all contain either many smaller images
(e.g., media/news sites) or fewer but larger images (e.g., product landing pages
with large images taking up most of the “above the fold” space). The compo-
sition of this corpus is motivated by the goal of enabling easy and meaningful
comparison with our synthetic experiments in Sect.4.2. As we will see however,
while the resulting findings showed clear trends, it was difficult to pinpoint their

108 R. Marx et al.

underlying causes. In response, we executed additional tests on a second, larger
corpus of 40 landing pages (corpus B) taken from the Alexa Top 50 and Moz
Top 500 rankings'®. These pages were selected primarily on their total filesize,
with 10 pages being low-weight (<500 KB), 10 pages medium-weight (>500 KB,
<1MB) and 20 pages heavy-weight (>1MB). All pages were cloned using the
wget tool!'! so that they could be served locally in the Speeder experimental
setup (Sect. 3).

The experimental setup is meant to simulate what would happen if a devel-
oper would switch their hl site to h2 by naively moving all their own assets
over to a single server (disabling sharding) but still downloading some external
assets from third party servers (e.g., Google analytics, some JS libraries). This
approach is similar to the one adopted in [27]. We expect to see good h2 perfor-
mance compared to hi, as the latter has only six parallel connections to work
with and h2 can optimally use its single TCP connection.

The results for corpus A are from server NGINX v1.10, browsers Google
Chrome v54 and Mozilla Firefox v49 and test runner webpagetest v2.19. Each
page was loaded at least 10 times. The results for corpus B were obtained later
during our research through the standard H20 server v2.1, Google Chrome v58,
Morzilla Firefox vb4 and webpagetest v3.0. Each page was loaded at least 20
times. We will display the median values. For more details on both test corpora
and the Speeder setup, we refer to our website (see Sect. 3).

8.2 Experimental Results

Figure 7 shows the median loadEventEnd and SpeedIndex measurements
for corpus A over Good and Poor networks. Globally, we can state that
loadEventEnd and SpeedIndex are often similar for the three protocols on the
Good network, indicating that the page load times of the tested pages are mostly
network dependent, with the rendering having to wait for assets to come in. This
explains why Poor network conditions can have a very large impact on page
load time performance (see Fig.7(right)). In various cases, h2’s SpeedIndex is
far above that of hl even if their loadEventEnd values are similar, indicating
that h2 is slower to start rendering, consistent with our observations in Sect. 4.3.
hic is faster than h2 in almost all of the cases and h2 is almost never much faster
than his. Note that this is somewhat against our hypothesis, as h1s has to make
due without the benefits of sharding. A more in-depth discussion of some of the
outliers in Fig. 7 can be found in [18].

Looking more closely at the results for Poor networks in Fig. 7, we see that h2
is sometimes much slower than h1 but sometimes is also relatively similar. Given
the limited size of corpus A, it was difficult to pinpoint the underlying reasons
for this inconsistent behaviour. Suspecting that the total page size and amount
of objects on the page had a large influence (both from the corpus A results and
our synthetic tests in Sect. 4), we ran additional tests on the larger corpus B. The

19 http://www.alexa.com/topsites, https://moz.com/top500.
1 https://www.gnu.org/software/wget /.

http://www.alexa.com/topsites
https://moz.com/top500
https://www.gnu.org/software/wget/

Web Performance Characteristics of HT'TP /2

14k —————— 77— — ——
+-+ HTTP/1 Chrome loadEventEnd
12k % x HTTPS/1 q
o0 HTTPS/2 ¥
w10kt 1
£
2 8kt 1
I
=
E 6kt 1
o
8 akf]
2k 1
1 2 3 456 7 8 9 1 2 3 45 7 8 9
Good network condition Poor network condition
(a) website nr
14k —————— — ——
+o+ HTTP/1 Firefox loadEventEnd
12k > x HTTPS/1 1
6—© HTTPS/2
glok F 1
2 8kf 1
& x
= "
$ 6kt P J
o
°
S akf |
2k 1
1 2 3 456 7 8 9 1 2 3 456 7 8 9
Good network condition Poor network condition
(b) website nr
14k —————— —
+-+ HTTP/1 Chrome Speedindex
12k > x HTTPS/1 1
©—e HTTPS/2
710k - 1
£

8kt

Speedindex (
o
~

2k} S N 1
1 2 3 4 56 7 89 12 3 456 7 89
Good network condition Poor network condition
(C) website nr
14k —— — ———
+-+ HTTP/1 Firefox Speedindex
12k > x HTTPS/1]
o—o HTTPS/2
Hlokt———————— 1
£

8k

Speedindex (
o
~

3

-l
IN]S

45678§

(d)

Good network condition Poor network condition

website nr

109

Fig. 7. Nine realistic websites from corpus A on the dynamic Good and dynamic Poor
network models. There is very similar performance under Good network conditions,
but h2 clearly suffers from Poor conditions. Image taken from our previous work [18].

110 R. Marx et al.

results in Fig. 8 show that our thesis was indeed correct: the low-weight pages
(left) have similar SpeedIndex performance for his and h2s even on the Poor
network, while for the heavier pages (right) h2 clearly suffers. The results for
the loadEventEnd metric showed similar though less pronounced trends for the
Poor network and only small differences in the three protocols’ measurements
on the Good network.

1.0F poor n‘etwork‘ conditio‘n
0.9+
0.8+
0.7+

uw0.6}

a

00.5}
0.4¢ HTTPS/1 (chrome)
031 | e—o HTTPS/2 (chrome)
0.2+ > » HTTPS/1 (firefox)
0.1+ >—> HTTPS/2 (firefox)
0.0

0 2500 5000 7500 10000 O 2500 5000 7500 10000

low-weight pages (n=10) heavy-weight pages (n=20)
Speedindex (ms)

Fig. 8. Differences in SpeedIndex for low-weight and heavy-weight pages from corpus
B in Poor network conditions. Heavy-weight pages clearly cause h2 to suffer more and
are faster to load under his.

Finally, it is difficult to directly compare our results for realistic pages to
related work, since few authors present results from a large corpus of locally
cloned web pages over various network conditions with modern h2 implementa-
tions or for the SpeedIndex metric. The closest related work loads pages directly
on the internet via various networks and shows more positive loadEventEnd
results for h2 than our tests do, for example that 80% of pages on faster net-
works clearly benefit from h2 [26]. This percentage is lower on slower networks
but there h2 typically also has a higher benefit. We are unable to confirm their
findings with our measurements. The most recent related work [31] loads pages
over a high speed link and concludes that 51% of the tested pages are >5% faster
over h2 when compared to hls, which is also contradictory to our realistic test
case results.

9 Discussion

Conceptually, the ideal HTTP /2 setup will use a single TCP connection to multi-
plex a large amount of small and individually cacheable site resources. This mit-
igates the HTTP/1.1 application-layer HOL blocking issue and helps to reduce
the h1l overhead of many parallel connections, while also maximizing the effi-
ciency of the underlying TCP protocol. Together with advanced resource prior-
itization strategies, Server Push and HPACK header compression, this can lead
to (much) faster load times than are possible today over hl, with less overhead.

Web Performance Characteristics of HT'TP /2 111

Unfortunately, as our experiments have shown, this ideal setup is not yet
viable. While h2 is indeed faster than hl when loading many small files (Figs. 1
and 2), it is still often slower than loading concatenated versions of those files over
h2 (Sect.4.2). Looking at the SpeedIndex metric results (Figs. 3, 7 and 8) also
shows that h2 is frequently later to start rendering the page than hi. HTTP /2
also struggles when downloading large files (Figs. 1 and 8) and its performance
can quickly deteriorate when used in bad network conditions. In our observa-
tions, h2 is in most cases currently either a little slower than or on a par with
h1 and shows both the most improvement and worst deterioration in extreme
circumstances.

The good news is that almost all of the encountered problems limiting h2’s
performance seem to be due to inefficient implementations in the used server
and browser software. Firstly, while loading many smaller files incurs its own
considerable browser overhead, the comparison of Chrome and Firefox in Fig. 2
tells us that this overhead can be reduced, as Firefox seems to have especially
optimized its pipeline for large amounts of files. Secondly, the fact that h2 is later
to start rendering than hi is also due to ineffective processing of the h2 data,
since we have confirmed that resources are received well in time to enable faster
first paints (Sect. 4.3). Thirdly, several cases in which h2 underperformed could
be attributed to the server or browser not correctly (re-)prioritizing individual
assets (Sects.5 and 6). As these implementations mature, we can expect many
of these issues to be resolved.

However, h2 still retains some core limitations, mostly due to its single under-
lying TCP connection, which seems to simultaneously be its greatest strength
and weakness. TCP’s congestion control algorithms can lead h2 to suffer sig-
nificantly from packet loss on Poor networks (most obvious when downloading
multiple large files (Figs. 1 and 8)) and can heavily impact the effectiveness of h2
on newly established connections (Sect.6). We have to nuance these statements
however, as in practice h2 actually performs quite admirably and usually does
not suffer more from bad networks than hi, despite using fewer connections.
Additionally, we have found that h2 can also benefit from using multiple con-
nections in bad networks, especially in the cases where its performance problems
are greatest.

The other discussed h2 performance aspects do not seem to have as large an
impact as the use of the single TCP connection. While prioritization is certainly
important, the exact strategy that is used seems to have relatively little impact
in most cases. Chrome and Firefox use wildly different algorithms to build their
dependency trees (Sect.5). Similarly, HPACK has only a limited impact on the
total used bandwidth for most normal cases and will probably not directly affect
individual page load times (Sect. 7). Finally, h2 Server Push sounds like a pow-
erful optimization but takes a lot of work and special network setup (e.g., CDN
intermediaries) to save more than a single RTT on a page load (Sect. 6). Further
work is needed to determine how to optimize both h2 resource prioritization and
Server Push.

112 R. Marx et al.

Recognizing that the core h2 performance problems stem primarily from
the use of TCP, the new QUIC protocol [6] implements its own application-
layer reliability and congestion control logic on top of UDP. QUIC removes the
transport-layer HOL blocking by allowing out-of-order delivery of packets, differ-
ently handles re-transmits in the case of loss, reduces the amount of round-trips
needed to establish a new connection and allows larger initial data transmissions.
Running h2 on top of QUIC could greatly benefit h2’s multiplexing setup.

As such, we can conclude that the HTTP/2 protocol specification is a solid
foundation for the next steps in bringing better page load performance to the
web and reducing overall overhead. It will however take some time for imple-
mentations to mature and the QUIC protocol to be finalized before we will see
its largest benefits in practice.

10 Conclusion

In this work we have discussed and evaluated four salient performance-related
aspects of the new HTTP/2 protocol: using a single underlying TCP connec-
tion (Sect.4), prioritization of multiple resources over this single connection
(Sect. 5), the new Server Push construct (Sect.6) and HPACK header compres-
sion (Sect.7). Our evaluation was comprehensive and varied, looking both at
synthetic and realistic test cases, over a variety of software, performance metrics
and emulated network conditions.

Our results have shown that the switch to the single multiplexed TCP con-
nection has by-and-large the biggest performance impact when comparing h2 to
h1’s multiple parallel connections. While in most cases h2 performs similarly to
or slightly better than h1l (while inducing much less overhead), poor network
conditions coupled with large files can cause h2’s performance to deteriorate.
The emerging QUIC protocol might help h2 overcome these problems by switch-
ing to UDP, while in the mean time using multiple concurrent h2 connections
can also help.

Other discovered performance problems, such as h2 delaying the time to start
rendering web page content, were likely to stem primarily from incomplete or
erroneous h2 implementations and are expected to be solvable in time. Similarly,
prioritization and Server Push both have potential but require future work to
determine their best practices.

Acknowledgements. This work is part of the imec ICON PRO-FLOW project. The
project partners are among others Nokia Bell Labs, Androme, Barco and VRT. Robin
Marx is a SB PhD fellow at FWO, Research Foundation - Flanders, project number
1S02717N. Thanks to messrs Goel, Michiels, Robyns, Menten, Bonné and our anony-
mous reviewers for their help.

Web Performance Characteristics of HT'TP /2 113

References

10.

11.

12.

13.

14.

15.

16.

17.

Alpichi, K.: HTTP Pipelining. https://blog.cloudflare.com/hpack-the-silent-killer-
feature-of-http-2/ (2017). Accessed 08 Aug 2017

Beheshti, H.: HT'TP/2: What No One’s Telling You (2016). http://www.slideshare.
net/Fastly /http2-what-no-one-is-telling-you. Accessed 01 Mar 2017

Belshe, M., Peon, R., Thomson, M.: HyperText Transfer Protocol Version 2 (2015).
https://tools.ietf.org/html/rfc7540. Accessed 01 Mar 2017

Bergan, T.: Benchmarking HTTP /2 Priorities, October 2016. https://docs.google.
com/document/d/1oLhNglskaWD4_DtaoCxdSRN5erEXrH-KnLrMwEpOtFY/
Bergan, T., Pelchat, S., Buettner, M.: Rules of Thumb for
HTTP/2 Push (2016). https://docs.google.com/document/d/
1KONykTXBbbbTIv60t5MyJvXjqKGsCVNYHyLEXIxYMv0

Carlucci, G., De Cicco, L., Mascolo, S.: HT'TP over UDP: an Experimental Inves-
tigation of QUIC. In: Proceedings of the ACM Symposium on Applied Computing,
pp. 609-614. ACM (2015)

Corbel, R., Stephan, E., Omnes, N.: HTTP/1.1 pipelining vs HTTP2 in-the-clear:
performance comparison. In: 2016 13th International Conference on New Technolo-
gies for Distributed Systems (NOTERE), pp. 1-6, July 2016

Erman, J., Gopalakrishnan, V., Jana, R., Ramakrishnan, K.K.: Towards a
SPDY’ier Mobile Web? In: Proceedings of the Ninth ACM Conference on Emerg-
ing Networking Experiments and Technologies, CONEXT 2013, pp. 303-314. ACM,
New York (2013). https://doi.org/10.1145/2535372.2535399

Everts, T., Kadlec, T.: WPO Stats (2017). https://wpostats.com/. Accessed 03
Aug 2017

Goel, U., Steiner, M., Wittie, M.P., Flack, M., Ludin, S.: HTTP/2 performance in
cellular networks: poster. In: Proceedings of the 22nd Annual International Confer-
ence on Mobile Computing and Networking, MobiCom 2016, pp. 433-434. ACM,
New York (2016). https://doi.org/10.1145/2973750.2985264

Gooding, M., Garza, J.: Real World Experiences with HTTP/2 (2016). https://
www.slideshare.net /JavierGarzal8 /real-world-experiences-with-http2-michael-
gooding-javier-garza-from-akamai. Accessed 01 Mar 2017

Grigorik, I.: High Performance Browser Networking. O’Reilly Media Inc,
Sebastopol (2013)

Kohavi, R., Deng, A., Longbotham, R., Xu, Y.: Seven rules of thumb for web site
experimenters. In: Proceedings of the 20th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 1857-1866. ACM (2014)
Krasnov, V.: HPACK: The Silent Killer (feature) of HT'TP/2 (2017). https://
developer.mozilla.org/en-US/docs/Web/HTTP /Connection_management_in_
HTTP_1.x#HTTP pipelining. Accessed 08 Aug 2017

Liu, Y., Ma, Y., Liu, X., Huang, G.: Can HTTP/2 really help web performance
on smartphones? In: 2016 IEEE International Conference on Services Computing
(SCC), pp. 219-226. IEEE (2016)

Manzoor, J., Drago, 1., Sadre, R.: The curious case of parallel connections in
HTTP/2. In: International Conference on Network and Service Management
(CNSM), pp. 174-180. IEEE (2016)

Marx, R.: HTTP/2 Push: The Details (2016). http://calendar.perfplanet.com/
2016 /http2-push-the-details/. Accessed 01 Mar 2017

https://blog.cloudflare.com/hpack-the-silent-killer-feature-of-http-2/
https://blog.cloudflare.com/hpack-the-silent-killer-feature-of-http-2/
http://www.slideshare.net/Fastly/http2-what-no-one-is-telling-you
http://www.slideshare.net/Fastly/http2-what-no-one-is-telling-you
https://tools.ietf.org/html/rfc7540
https://docs.google.com/document/d/1oLhNg1skaWD4_DtaoCxdSRN5erEXrH-KnLrMwEpOtFY/
https://docs.google.com/document/d/1oLhNg1skaWD4_DtaoCxdSRN5erEXrH-KnLrMwEpOtFY/
https://docs.google.com/document/d/1K0NykTXBbbbTlv60t5MyJvXjqKGsCVNYHyLEXIxYMv0
https://docs.google.com/document/d/1K0NykTXBbbbTlv60t5MyJvXjqKGsCVNYHyLEXIxYMv0
https://doi.org/10.1145/2535372.2535399
https://wpostats.com/
https://doi.org/10.1145/2973750.2985264
https://www.slideshare.net/JavierGarza18/real-world-experiences-with-http2-michael-gooding-javier-garza-from-akamai
https://www.slideshare.net/JavierGarza18/real-world-experiences-with-http2-michael-gooding-javier-garza-from-akamai
https://www.slideshare.net/JavierGarza18/real-world-experiences-with-http2-michael-gooding-javier-garza-from-akamai
https://developer.mozilla.org/en-US/docs/Web/HTTP/Connection_management_in_HTTP_1.x#HTTP_pipelining
https://developer.mozilla.org/en-US/docs/Web/HTTP/Connection_management_in_HTTP_1.x#HTTP_pipelining
https://developer.mozilla.org/en-US/docs/Web/HTTP/Connection_management_in_HTTP_1.x#HTTP_pipelining
http://calendar.perfplanet.com/2016/http2-push-the-details/
http://calendar.perfplanet.com/2016/http2-push-the-details/

114

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

R. Marx et al.

Marx, R., Quax, P., Faes, A., Lamotte, W.: Concatenation, embedding and shard-
ing: do HTTP/1 performance best practices make sense in HTTP/2? In: Pro-
ceedings of the 13th International Conference on Web Information Systems and
Technologies (WEBIST 2017), pp. 160-173. INSTICC, ScitePress (2017)
Meenan, P.: Speed Index (2012). https://sites.google.com/a/webpagetest.org/
docs/using-webpagetest /metrics/speed-index. Accessed 01 Mar 2017

Meenan, P.: Webpagetest (2016). https://webpagetest.org. Accessed 01 Mar 2017
Mi, X., Qian, F., Wang, X.: SMig: stream migration extension for HTTP/2. In:
Proceedings of the Ninth ACM Conference on Emerging Networking Experiments
and Technologies (CoNEXT 2016), pp. 121-128 (2016)

Netravali, R., Goyal, A., Mickens, J., Balakrishnan, H.: Polaris: faster page loads
using fine-grained dependency tracking. In: 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 2016) (2016)

de Oliveira, I.N.; Endo, P.T., Melo, W., Sadok, D., Kelner, J.: Should i wait or
should i push? A performance analysis of push feature in HT'TP/2 connections.
In: Proceedings of the Workshop on Fostering Latin-American Research in Data
Communication Networks. ACM (2016)

Peon, R., Ruellan, H.: HPACK: Header Compression for HT'TP/2 (2015). https://
www.rfe-editor.org/rfc/rfc7541.txt. Accessed 07 Aug 2017

de Saxcé, H., Oprescu, 1., Chen, Y.: Is HTTP/2 really faster than HTTP/1.1?
In: IEEE Conference on Computer Communications Workshops (INFOCOM), pp.
293-299. IEEE (2015)

Varvello, M., Schomp, K., Naylor, D., Blackburn, J., Finamore, A., Papagiannaki,
K.: Is the web HTTP/2 yet? In: Karagiannis, T., Dimitropoulos, X. (eds.) PAM
2016. LNCS, vol. 9631, pp. 218-232. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-30505-9_17

Wang, X.S., Balasubramanian, A., Krishnamurthy, A., Wetherall, D.: How speedy
is SPDY? In: NSDI, pp. 387-399 (2014)

Wang, Z.: Navigation Timing API (2012). https://www.w3.org/TR/navigation-
timing. Accessed 01 Mar 2017

Yue, C., Xie, M., Wang, H.: An automatic HTTP cookie management system.
Comput. Netw. 54(13), 2182-2198 (2010)

Zarifis, K., Holland, M., Jain, M., Katz-Bassett, E., Govindan, R.: Making effec-
tive use of HTTP/2 server push in content delivery networks. Technical report,
University of Southern California, Networked Systems Laboratory, January 2017
Zimmermann, T., Riith, J., Wolters, B., Hohlfeld, O.: How HTTP/2 pushes the
web: an empirical study of HT'TP/2 server push. In: 2017 IFIP Networking Con-
ference and Workshops (2017)

https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://webpagetest.org
https://www.rfc-editor.org/rfc/rfc7541.txt
https://www.rfc-editor.org/rfc/rfc7541.txt
https://doi.org/10.1007/978-3-319-30505-9_17
https://doi.org/10.1007/978-3-319-30505-9_17
https://www.w3.org/TR/navigation-timing
https://www.w3.org/TR/navigation-timing

	Web Performance Characteristics of HTTP/2 and Comparison to HTTP/1.1
	1 Introduction
	2 Related Work
	3 Experimental Setup with the Speeder Framework
	4 Multiplexing over a Single TCP Connection
	4.1 Background
	4.2 Head-of-Line Blocking in Practice with Images
	4.3 HOL Blocking in Practice with CSS and JavaScript

	5 Resource Prioritization
	5.1 Background
	5.2 Evaluation of Prioritization Strategies

	6 Server Push
	6.1 Background
	6.2 Experimental Evaluation

	7 HPACK Header Compression
	7.1 Background
	7.2 Experimental Evaluation

	8 HTTP/2 Performance for Realistic Web Pages
	8.1 Experimental Setup
	8.2 Experimental Results

	9 Discussion
	10 Conclusion
	References

