
 123

LN
BI

P
32

2

13th International Conference, WEBIST 2017
Porto, Portugal, April 25–27, 2017
Revised Selected Papers

Web Information
Systems and Technologies

Tim A. Majchrzak
Paolo Traverso
Karl-Heinz Krempels
Valérie Monfort (Eds.)

Lecture Notes
in Business Information Processing 322

Series Editors

Wil M. P. van der Aalst
RWTH Aachen University, Aachen, Germany

John Mylopoulos
University of Trento, Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

Tim A. Majchrzak • Paolo Traverso
Karl-Heinz Krempels • Valérie Monfort (Eds.)

Web Information
Systems and Technologies
13th International Conference, WEBIST 2017
Porto, Portugal, April 25–27, 2017
Revised Selected Papers

123

Editors
Tim A. Majchrzak
University of Agder
Kristiansand, Vest-Agder Fylke
Norway

Paolo Traverso
Center for Information Technology
FBK-ICT irst
Trento
Italy

Karl-Heinz Krempels
RWTH Aachen University
Aachen
Germany

Valérie Monfort
University of Paris 1
Paris
France

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-319-93526-3 ISBN 978-3-319-93527-0 (eBook)
https://doi.org/10.1007/978-3-319-93527-0

Library of Congress Control Number: 2018947335

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The present book includes extended and revised versions of a set of selected papers
from the 13th International Conference on Web Information Systems and Technologies
(WEBIST 2017), held in Porto, Portugal, during April 25–27, 2017.

We received 77 paper submissions from 30 countries, of which 16% are included in
this book. The papers were selected by the event chairs and their selection is based on a
number of criteria that include the classifications and comments provided by the
Program Committee members, the session chairs’ assessment of the presentation and
discussion quality, and also the program chairs’ global view of all papers included in
the technical program. The authors of selected papers were then invited to submit a
revised and extended version of their papers having at least 30% novel material.

The purpose of the 13th International Conference on Web Information Systems and
Technologies (WEBIST) was to bring together researchers, engineers, and practitioners
interested in the technological advances and business applications of Web-based
information systems. The conference had five main tracks, covering different aspects of
Web information systems, namely: Internet Technology; Web Interfaces and Appli-
cations; Society, e-Communities; e-Business; Web Intelligence; and Mobile Informa-
tion Systems.

The papers selected to be included in this book contribute to the understanding of
relevant trends of current research on Web information systems and technologies,
comprising:

– Unified interfaces
– Progressive Web apps (PWAs) as well as a mobile device taxonomy
– XML and open data processing
– The history of Web engineering
– Web development for end-users
– Access control
– Web platform assessment
– Rule engines
– Scientific blogging

We would like to thank all the authors for their contributions and also the reviewers
who helped ensure the quality of this publication. Moreover, we wish to include a word
of appreciation for the excellent organization provided by the conference secretariat run
by INSTICC.

April 2017 Tim A. Majchrzak
Paolo Traverso

Karl-Heinz Krempels
Valérie Monfort

Organization

Conference Co-chairs

Karl-Heinz Krempels RWTH Aachen University, Germany
Valérie Monfort LAMIH Valenciennes UMR CNRS 8201, France

Program Co-chairs

Tim A. Majchrzak University of Agder, Norway
Paolo Traverso Center for Information Technology, IRST, Italy

Program Committee

Mohd Shahidan Abdullah Universiti Teknologi Malaysia, Malaysia
Jose Alfonso Aguilar Universidad Autonoma de Sinaloa, Mexico
Jose Luis Herrero Agustin University of Extremadura, Spain
Diana Andone Politehnica University of Timisoara, Romania
Marzal Miguel Ángel Universidad Carlos Iii De Madrid, Spain
Guglielmo De Angelis CNR, IASI, Italy
Valeria De Antonellis University of Brescia, Italy
Giuliano Armano University of Cagliari, Italy
Luca Berardinelli TU Wien, Austria
Werner Beuschel Technische Hochschule Brandenburg, Germany
Adelaide Bianchini Universidad Simón Bolívar, Venezuela
Lidong Bing Carnegie Mellon University, USA
Christoph Bussler Oracle Corporation, USA
Elena Calude Massey University, Institute of Natural

and Mathematical Sciences, New Zealand
Pasquina Campanella University of Bari Aldo Moro, Italy
Cinzia Cappiello Politecnico di Milano, Italy
Luigi Di Caro University of Turin, Italy
Nunzio Casalino LUISS Guido Carli, Italy
Sven Casteleyn Universitat Jaume I, Spain
Mario Cataldi Université Paris 8, France
Dickson Chiu The University of Hong Kong, SAR China
Martine De Cock Ghent University, Belgium
Emmanuel Coquery Université Claude Bernard Lyon 1, France
Daniel Cunliffe University of South Wales, UK
Steven Demurjian University of Connecticut, USA
Enrico Denti Università di Bologna, Italy
Alexiei Dingli University of Malta, Malta

Martin Drlik Constantine the Philosopher University in Nitra,
Slovak Republic

Atilla Elci Aksaray University, Turkey
Larbi Esmahi Athabasca University, Canada
Jérôme Euzenat Inria and University of Grenoble Alpes, France
Alexander Felfernig Technische Universität Graz, Austria
Dieter A. Fensel University of Innsbruck, Austria
Joao Carlos Amaro Ferreira ISEL, Portugal
Josep-Lluis Ferrer-Gomila Balearic Islands University, Spain
Karla Donato Fook IFMA, Maranhão Federal Institute for Education,

Science and Technology, Brazil
Geoffrey Charles Fox Indiana University, USA
Pasi Fränti University of Eastern Finland, Finland
Xiang Fu Hofstra University, USA
Martin Gaedke Chemnitz University of Technology, Germany
Ombretta Gaggi Università di Padova, Italy
Yunjun Gao Zhejiang University, China
John Garofalakis University of Patras, Greece
Panagiotis Germanakos University of Cyprus, Cyprus
Henrique Gil Escola Superior de Educação do Instituto Politécnico

de Castelo Branco, Portugal
Nuno Pina Gonçalves Superior School of Technology, Polytechnic Institute

of Setúbal, Portugal
Anna Goy University of Turin, Italy
Carlos Granell Universitat Jaume I, Spain
Ratvinder Grewal Laurentian University, Canada
Daniela Grigori Université Paris-Dauphine, France
Foteini Grivokostopoulou University of Patras, Greece
Naijie Gu University of Science and Technology of China, China
Karim El Guemhioui Université du Québec en Outaouais, Canada
Angela Guercio Kent State University, USA
Francesco Guerra University of Modena and Reggio Emilia, Italy
Hakim Hacid Zayed University, UAE
Fayçal Hamdi Conservatoire National des Arts et Métiers, France
Shanmugasundaram

Hariharan
Saveetha Engineering College, India

Ioannis Hatzilygeroudis University of Patras, Greece
A. Henten Aalborg University, Denmark
Hanno Hildmann Universidad Carlos III de Madrid, Spain
Yuh-Jong Hu National Chengchi University, Taiwan
Sergio Ilarri University of Zaragoza, Spain
Kai Jakobs RWTH Aachen University, Germany
Anne James Coventry University, UK
Monique Janneck Lübeck University of Applied Sciences, Germany
Ivan Jelinek Czech Technical University in Prague, Czech Republic
Zhuoren Jiang Sun Yat-sen University, China

VIII Organization

Ejub Kajan State University of Novi Pazar, Serbia
Georgia Kapitsaki University of Cyprus, Cyprus
George Karabatis UMBC, USA
Ashraf Khalil Abu Dhabi University, UAE
Matthias Klusch German Research Center for Artificial Intelligence

(DFKI) GmbH, Germany
In-Young Ko Korea Advanced Institute of Science and Technology,

South Korea
Waldemar W. Koczkodaj Laurentian University, Canada
Hiroshi Koide Kyushu University, Japan
Fotis Kokkoras TEI of Thessaly, Greece
Efstratios Kontopoulos Centre for Research and Technology Hellas, Greece
Tsvi Kuflik The University of Haifa, Israel
Kin Fun Li University of Victoria, Canada
Weigang Li University of Brasilia, Brazil
Xian Li LinkedIn Corp, USA
Dongxi Liu CSIRO, Australia
Michael Mackay Liverpool John Moores University, UK
Andrea Marrella Università degli Studi di Roma La Sapienza, Italy
Kazutaka Maruyama Meisei University, Japan
Wojciech Mazurczyk Warsaw University of Technology, Poland
Luca Mazzola Germany
Inmaculada Medina-Bulo Universidad de Cádiz, Spain
Hakima Mellah Research Center in Scientific and Technical

Information, Algeria
Abdelkrim Meziane CERIST Alger, Algeria
Alex Norta Tallinn University of Technology, Estonia
Dusica Novakovic London Metropolitan University, UK
Declan O’Sullivan University of Dublin Trinity College, Ireland
Kalpdrum Passi Laurentian University, Canada
David Paul The University of New England, Australia
José António Sena Pereira Instituto Poliécnico de Setúbal, Escola Superior

de Tecnologia de Setúbal, Portugal
Isidoros Perikos University of Patras, Greece
Toon De Pessemier Ghent University, iMinds, Belgium
Luis Ferreira Pires University of Twente, The Netherlands
Simona Popa Universidad Católica San Antonio de Murcia, Spain
Jim Prentzas Democritus University of Thrace, Greece
Birgit Pröll Johannes Kepler University Linz, Austria
Carme Quer Universitat Politecnica de Catalunya, Spain
Thomas Risse University Library Johann Christian Senckenberg,

Germany
Andrzej Romanowski Lodz University of Technology, Poland
Davide Rossi University of Bologna, Italy
Gustavo Rossi Lifia, Argentina
Yacine Sam University of Tours, France

Organization IX

Comai Sara Politecnico di Milano, Italy
Claudio Schifanella Università degli Studi di Torino, Italy
Wieland Schwinger Johannes Kepler University, Austria
Jochen Seitz Technische Universität Ilmenau, Germany
Mohamed Sellami RDI Group, LISITE Lab, ISEP Paris, France
Rami Sellami CETIC, Belgium
Tacha Serif Yeditepe University, Turkey
Xin Shuai Thomson Reuters, USA
Marianna Sigala University of South Australia Business School,

Australia
Eliza Stefanova Sofia University, Bulgaria
Dragan Stojanovic University of Nis, Serbia
Dirk Thissen RWTH Aachen University, Germany
Ismail Toroslu Middle East Technical University, Turkey
Elena-Madalina

Vatamanescu
National University of Political Studies and Public

Administration, Romania
Jari Veijalainen University of Jyväskylä, Finland
Maria Esther Vidal Universidad Simon Bolivar, Venezuela
Petri Vuorimaa Aalto University, Finland
Xinheng Wang University of West London, UK
Tony Wasserman Carnegie Mellon University, Silicon Valley, USA
Jason Whalley Northumbria University, UK
Maarten Wijnants Hasselt University, Belgium
Manuel Wimmer Technische Universität Wien, Austria
Marco Winckler University Nice Sophia Antipolis, France
William Van Woensel Dalhousie University, Canada
Lina Zhou University of Maryland, Baltimore County, USA

Additional Reviewers

Hassan Adelyar Kabul University, Afghanistan
Alexandr Kormiltsyn Tallinn University of Technology, Estonia
Karima Quayumi Tallinn University, Estonia

Invited Speakers

Marco Gori Università degli Studi di Siena, Italy
Christoph Rosenkranz University of Cologne, Germany
Geert-Jan Houben Delft University of Technology, The Netherlands
Roy Cecil IBM Portugal, Portugal

X Organization

Contents

TwigStackPrime: A Novel Twig Join Algorithm Based on Prime Numbers. . . . 1
Shtwai Alsubai and Siobhán North

Return of the Great Spaghetti Monster: Learnings from a Twelve-Year
Adventure in Web Software Development . 21

Antero Taivalsaari and Tommi Mikkonen

Web Platform Assessment Tools: An Experimental Evaluation 45
Solange Paz and Jorge Bernardino

Progressive Web Apps for the Unified Development
of Mobile Applications . 64

Andreas Biørn-Hansen, Tim A. Majchrzak, and Tor-Morten Grønli

Web Performance Characteristics of HTTP/2 and Comparison
to HTTP/1.1 . 87

Robin Marx, Maarten Wijnants, Peter Quax, Axel Faes,
and Wim Lamotte

CUBE System: A REST and RESTful Based Platform for Liquid
Software Approaches . 115

Clay Palmeira da Silva, Nizar Messai, Yacine Sam,
and Thomas Devogele

Harnessing Community Knowledge in Heterogeneous Rule Engines 132
Kennedy Kambona, Thierry Renaux, and Wolfgang De Meuter

Bringing Scientific Blogs to Digital Libraries: An Integration
Process Workflow . 161

Fidan Limani, Atif Latif, and Klaus Tochtermann

Enhanced Querying of Open Data Portals . 179
Mauro Pelucchi, Giuseppe Psaila, and Maurizio Toccu

A Taxonomy for App-Enabled Devices: Mastering the Mobile
Device Jungle. 202

Christoph Rieger and Tim A. Majchrzak

Attaining Role-Based, Mandatory, and Discretionary Access Control
for Services by Intercepting API Calls in Mobile Systems 221

Yaira K. Rivera Sánchez, Steven A. Demurjian, and Lukas Gnirke

Assisted End User Development for Non-programmers: Awareness,
Exploration and Explanation of Composite Web Application Functionality . . . 249

Carsten Radeck and Klaus Meißner

Author Index . 277

XII Contents

TwigStackPrime: A Novel Twig Join
Algorithm Based on Prime Numbers

Shtwai Alsubai1(B) and Siobhán North2

1 College of Computer Engineering and Science,
Prince Sattam bin Abdulaziz University,

Al-Kharj, Kingdom of Saudi Arabia
sa.alsubai@psau.edu.sa

2 Department of Computer Science,
The University of Sheffield, Sheffield, UK

s.north@sheffield.ac.uk

Abstract. The growing number of XML documents leads to the need
for appropriate XML querying algorithms which are able to utilize the
specific characteristics of XML documents. A labelling scheme is funda-
mental to processing XML queries efficiently. They are used to deter-
mine structural relationships between elements corresponding to query
nodes in twig pattern queries (TPQs). This article presents a design and
implementation of a new indexing technique which exploits the prop-
erty of prime numbers to identify Parent-Child (P-C) relationships in
TPQs during query evaluation. The Child Prime Label (CPL, for short)
approach can be efficiently incorporated within the existing labelling
schemes. Here, we propose a novel twig matching algorithm based on
the well known TwigStack algorithm [3], which applies the CPL app-
roach and focuses on reducing the overhead of storing useless elements
and performing unnecessary join operations. Our performance evalua-
tion demonstrates that the new algorithm significantly outperforms the
previous approaches.

Keywords: XML databases · Holistic twig join algorithm
Node labelling · Twig pattern query

1 Introduction

As enterprises and businesses produce and exchange XML-formatted informa-
tion more frequently, consequently, there is an growing requirement for effective
handling of queries on data which conforms to an XML format [15–17]. Recently,
several approaches have been proposed in the literature to process XML queries
[3,5,7–12,14,17]. Due to the definition of relationships in XML as nested tags,
data in XML documents are self-describing and flexibly organized [8,16]. There-
fore, the basic XML data model is a labelled and ordered tree.

In most XML query languages, such as XPath and XQuery, a twig (small
tree) pattern can be represented as a node-labelled tree whose edges specify
c© Springer International Publishing AG, part of Springer Nature 2018
T. A. Majchrzak et al. (Eds.): WEBIST 2017, LNBIP 322, pp. 1–20, 2018.
https://doi.org/10.1007/978-3-319-93527-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93527-0_1&domain=pdf

2 S. Alsubai and S. North

(a)

e

a

a

x y

x

y

y

(b)

Fig. 1. (a) Range-based labelling scheme and (b) its DataGuide.

the relationship constraints among its nodes and they are either Parent-Child
or Ancestor-Descendant. As a result, an XML query is defined as a complex
selection on elements of an XML document specified by structural information
of the selected elements. Improving the efficiency of tree patterns matching is a
core operation in processing of an XML query [2,4,9,10,17] since tree patterns
are the basis for querying structured tree-based data model such as XML.

Generally, the purpose of XML indexing is to improve the efficiency and
scalability of query processing by reducing the search space. Without an index,
XML retrieval algorithms have to scan all the data. Most existing XML query
processing algorithms [5,8,9,12,20,21] rely on XML indexing techniques to scan
only the XML data relevant to XML queries, therefore, XML query performance
is improved.

In XML, there are two basic type of indices. The first one is to index each
node in an XML document by recording its positional information [13,15]. This
group is well-known as node label or labelling schemes. In this group of indices,
every node in an XML document is assigned an unique label to record its position
within the original XML document. The labelling scheme should enable deter-
mination of the structural information, i.e., Parent-Child (P-C) and Ancestor-
Descendant (A-D) relationships. As a result, for any given two elements in an
XML document, the relationship between them (if it exists) can be computed
in constant time. A well-known example of node labelling is the containment
labelling scheme proposed in [13]. In this approach, each node is assigned with
a tuple of three values as < start, end, level >. Start and end contain values
of positions corresponding to the opening tag < tag − name > and the clos-
ing tag < /tag − name >. Level represents the depth of the node within its
XML tree. The two basic relationships Ancestor-Descendant and Parent-Child
can be determined efficiently. Given two nodes u and v, u is an ancestor of v
if and only if u.start < v.star < v.end < u.end. A Parent-Child
relationship is defined as node u is the parent of node v if and only if u.start <
v.star < v.end < u.end, v.level = u.level+1. by way of explanation,
the u node is in the range of node v.

TwigStackPrime: A Novel Twig Join Algorithm Based on Prime Numbers 3

The alternative to node labelling uses root-to-node paths in the XML doc-
ument and is well-known as graph indexing (also referred to as structural sum-
mary or path indexing). Because an XML document can be modelled as rooted,
ordered, labelled tree, a labelled path is defined as a sequence of tag names in the
form of tag1/tag2/ . . . /tagn from the root represented by tag1 to node n tagged
by tagn. For illustration, consider the XML tree in Fig. 1, elements tagged by a
can be stored in different storage structures according to their unique labelled
paths. Consequently, elements corresponding to the path e/a are {a1, a3, a4},
while a2 is stored alone in its distinct labelled path e/a/a. A classic example of
a path index is DataGuide [18]. The main drawback of this approach is that it
only supports a simple path queries. There exist some graph indices that cover
twig path queries as [19] but one of the limitations with these indices is that
they are very large [5].

Both node and graph indexing are essential to XML query processing algo-
rithms, they play important role in providing efficient evaluation of queries with
respect to CPU complexity and memory consumption overhead [2,21]. Accord-
ing to [22], a labelling scheme has to guarantee uniqueness and order preserva-
tion of node labels, thus the hierarchical relationships between a pair of nodes
can be determined efficiently. The labelling scheme should enable checking all
XPath relationships by computations only. To better understand the mecha-
nisms of node indexing methods and their properties, [15] classified node index-
ing into four distinct types; range-based, prefix-based, multiplicative and hybrid
labelling. A range-based labelling scheme will be adopted in this article to explore
the effect of the new indexing mechanism. For sake of simplicity the following
Example 1 aims to explain the use of labels in the determination of hierarchical
relationships in XML trees.

Example 1. Consider Fig. 1, the structural relationships between the elements
can be determined according to the properties for ancestor-descendant and
parent-child relationships, respectively. Consider the relationship between node
a1 and y1, as the elements are labelled based on containment labelling scheme
proposed in [13]. a1 is an ancestor of y1 because 2 < 6 < 8. Also, a1 is a par-
ent node of a2 because the parent-child conditions are satisfied as 2 < 4 <
8 and 2 + 1 = 3.

Organization. The rest of this article is organised as follows. Section 2 shows the
related work. The new indexing technique will be introduced in Sect. 3. In Sect. 4,
we present a holistic twig join matching algorithm TwigStackPrime. Section 5
presents thorough experimental studies about the performance between the new
algorithm and the previous approaches. We conclude the paper in Sect. 6

2 Related Work

Every XML query processing algorithm which performs structural join opera-
tions to match a given query against an XML document relies on either range-
based labelling schemes or prefix-based labelling schemes [3,10,14,17]. This is

4 S. Alsubai and S. North

due to the fact that labelling schemes where nodes are considered as the basic
unit of a query provides great flexibility in performing any structural query
matching efficiently. The information gained from labels varies according to the
chosen labelling scheme. To determine the effects of the range-based labelling
scheme, [13] proposed multi-predict merge-join algorithm based on the positional
information of the XML tree. An alternative representation, a prefix scheme, of
labels of an XML tree can be seen in [10]. In this sort of labelling scheme, each
node is associated with a sequence of integers that represents the node-ID path
from the root to the node. This approach can be exemplified by the Dewey system
used by librarians, the sequence of components in a Dewey label is separated
by “.” where the last component is called the self label (i.e., the local order
of the node) and the rest of the components are called the parent label. For
instance, {1.2.3} is the parent of {1.2.3.1}. Another approach, [1] addressed the
limitations of information encoded within labels produced by existing labelling
schemes. It focus on performing join operations earlier, at leaf levels, where
the selectivity of query nodes is at its peak for data-centric XML documents.
The significance of the proposed approach stems from a comprehensive labelling
scheme that encodes additional structural information, called Nearest Common
Ancestor, NCA for short rather than the basic relationships among elements
of XML documents. None of the previous approaches have taken the breadth of
every node into account. In this paper, we propose a novel approach to overcome
the previous limitations.

One of the most important problems in XML query processing is tree pattern
matching. Generally, tree pattern matching is defined as mapping function M
between a given tree pattern query Q and an XML document D, M : Q →
D that maps nodes of Q into nodes of D where structural relationships are
preserved and the predicates of Q are satisfied. Formally, tree pattern matching
must find all matches of a given tree pattern query Q on an XML document D.

Early work on processing twig pattern matching decomposed twigs into a
set of binary structures, then performed structural joins to obtain individual
binary matchings. The final solution of the twig query is computed by stitching
together the binary matches. In [3], the authors introduced the first holistic twig
join algorithm for matching an XML twig pattern, called TwigStack. It works in
two phases. Firstly, twig patterns are decomposed into a set of root-to-leaf paths
queries and the solutions to these individual paths are computed from the data
tree. Then, the intermediate paths are merge joined to form the final result. The
authors of [3] proposed a novel prefix filtering technique to reduce the number
of irrelevant elements in the intermediate paths.

The classical holistic twig join algorithm TwigStack only considers the
ancestor-descendant relationship between query nodes to process a twig query
efficiently without storing irrelevant paths in intermediate storage. It has been
reported [3] that it has the worst-case I/O and CPU complexity when all edges
in twigs are “//” (AD relationship) linear in the sum of the size of the input
and output lists. However, TwigStack ’s performance suffers from generating use-
less intermediate results when twig queries encounter Parent-Child relationships.

TwigStackPrime: A Novel Twig Join Algorithm Based on Prime Numbers 5

The authors of [9] proposed the first refined version of TwigStack. They intro-
duced a new buffering technique to process twig queries with P-C relation-
ships more efficiently by looking ahead some elements with P-C relationships
in lists to eliminate redundant path solutions. TwigStackList guarantees every
single path generated is a part of the final result if twig queries do not have
P-C under branching query nodes. Subsequently, TwigStackList ensures opti-
mal CPU and I/O cost when twig queries contain only Ancestor-Descendant
edges below branching nodes and allows the occurrence of Parent-Child else-
where [9]. The authors of [6] have proven that the TwigStack algorithm and its
variants which depend on a single sequential scan of the input lists can not be
optimal for evaluation of tree pattern query with any arbitrary combination of
ancestor-descendant and parent-child relationships.

The approach to examine XML queries against document elements in post-
order was first introduced by [4], Twig2Stack. The decomposition of twigs into
a set of single paths and enumeration of these paths is not necessary to process
twig pattern queries. The key idea of their approach is based on the proposition
that when visiting document elements in post-order, it can then be determined
whether or not they contribute to the final result before storing them in inter-
mediate storage which is trees of stacks to ensure linear processing. TwigList
[11] replaced the complex intermediate storage proposed in Twig2Stack with
lists (one for every query node) and pointers with simple intervals to capture
structural relationships. The authors in [7] proposed a new storage scheme, level
vector split which splits the list connected to its parent list with P-C edge to
a number of levels bounded by the maximum depth of the XML tree. A combi-
nation of pre-order and post-order filtering methods is adopted to develop two
algorithms, namely: TJStrictPre and TJStrictPost. Although, they can prune
irrelevant elements when P-C edges exist, they still perform unnecessary com-
putations and store useless elements corresponding to leaf query nodes.

3 Child Prime Label

We present a new indexing technique which can be applied to the existing
labelling schemes to skip scanning useless elements in the streams during the
processing of twig pattern queries with Parent-Child edges. The key idea of our
work is to find an appropriate, refined labelling scheme such that, for any given
query node in the TPQ, the set of its child query nodes in the XML document,
this forms the major bottleneck in determining structural relationship because
Parent-Child can be resolved efficiently. This novel approach results in consid-
erably fewer single paths stored than existing algorithm. It also increases the
overall performance and reduces the memory overhead, and the result is shown
clearly in our experiments.

The idea is to identify all the distinct tags in the XML tree and assign them
with unique prime numbers. Then, the intuition of the CPL is to use the modulo
function to create a mapping from an integer to a set of element names. The
leaf elements will not be annotated with CPLs, whereas the inner elements (i.e.,

6 S. Alsubai and S. North

parent elements) are assigned CPLs. During depth-first scanning, an element
is assigned the next available prime number if its tag has not been examined.
After that, we check the CPL parameter of its parent element to see whether
it is divisible by the assigned prime number or not. If it is, we process the
next element, otherwise the product of parent element’s CPL is multiplied by
the new prime number. We index tags for each XML tree in tag indexing to
create a mapping from an element tag to a prime number as in Eq. 1. The tag
indexing is implemented by a mean of hash table. For illustration, consider an
element e, with all distinct names of children, C = {c1, c2, . . . , cm} and a list of
prime numbers P = {p1, p2, . . . , pn}. The bijective mapping function f : C → P
for all element p ∈ P , there is a unique element c ∈ C such that f(c) = p. Then,
the CPL for element e can be computed as follows:

CPL(e) =

⎧
⎨

⎩

m∏

i=1

f(ci), if m ≥ 1

∅, otherwise
(1)

Proposition 1 (Uniqueness). There is only one unique set of prime factors
for any number.

(a) (b)

Fig. 2. (a) a sample of an XML tree labelled with the original range-based augmented
with CPL parameters and (b) its corresponding tag indexing.

To explore the effect of CPL approach, we extend the original range-based
labelling scheme to incorporate the CPL information. Each range-based label
with CPL is presented as quadruple = (start, end, level, CPL). The first three
attributes remain the same as in the original labelling scheme see Sect. 1. Accord-
ing to Proposition 1, all distinct names of immediate child elements for a par-
ticular element in the XML tree can be obtained from having the corresponding
prime numbers associated with tag names of its children.

Definition 1 (Child Prime Label). A child prime label is assigned to each
element in an XML document as an extra parameter into the range-based label.

TwigStackPrime: A Novel Twig Join Algorithm Based on Prime Numbers 7

A child prime label indicates the multiplication of distinct prime numbers for
every internal elements within the document. For example, node u is encoded
quadruple = (startu, endu, levelu, CPLu).

Property 1. In any XML labelling scheme that is augmented with Child Prime
Label, for any nodes x, y and z in an XML document, x has at least
one or more child nodes of tag(y) and tag(z) if CPLx mod keytag(y) ×
keytag(z) = 0 where keytag(y) and keytag(z) are unique prime numbers.

To demonstrate the effect of child prime label, consider the XML tree in
Fig. 2 and the tag indexing table on the top right, queries in XML are expressed
as twigs since data is represented as tree. The answer to an XML query is
all occurrences of it in an XML document under investigation. So, if we issue
the simple twig query Q = a[x]/y, only two elements will be considered for
further processing, namely a2 and a4. This is because of CPLa2 modkeytag(x)×
keytag(y) = 77mod 7 × 11 equals 0.

4 Twig Join Algorithm

4.1 Notation

There is abstract data type called a stream, which is a set of elements with
the same tag name, where the elements are sorted in ascending document order.
Each query node q in a twig pattern is associated with an element stream, named
Tq which has a cursor Cq which initially points to the first element in Tq at the
beginning of a query processing. To ensure the linear processing in the filtering
phase of holistic algorithms, only the first element is accessible and the rest of
the elements are unseen by the algorithms. There are also some auxiliary opera-
tions on streams and TPQ and its nodes to facilitate the twig matching process.
Supported operations are as follows: getStart(Cq) returns the start attribute of
the first element of q. getEnd(Cq) returns the end attribute of the first element of
q. getLevel(Cq) returns the level attribute of the first element of q. getCPL(Cq)
returns the CPL attribute of the head element corresponding to query node
q. tagPrime(q) returns the unique prime number associated with q from tag
indexing. advance(Cq) forward the cursor of q to the next element. eof(Tq) to
judge whether Cq points to the end of stream of Tq. children(q) returns all child
nodes of q. subtree(q) returns all child nodes which are in the subtree rooted at
q. childrenAD(q) returns all child nodes which have A-D relationship with q. chil-
drenPC(q) returns all child nodes which have P-C relationship with q. isRoot(q)
returns boolean values to see whether q is the root or not. getRoot(TPQ) returns
the query root of the input TPQ. parent(q) returns the parent query node of
q. isLeaf(q) returns boolean values to see whether q is a leaf node or not.

4.2 TwigStackPrime

In this section, we present a new holistic twig join algorithm, called TwigStack-
Prime. It can be seen as an alternative to TwigStack algorithm. The structure

8 S. Alsubai and S. North

of the main algorithm, TwigStackPrime presented in Algorithm 2 is not much
different from the original holistic twig join algorithm TwigStack [3] which uses
two phases to compute answers to a TPQ. In the first phase, solutions to root-
to-leaf paths in a TPQ are found and stored in output arrays (Lines 1–11). It
repeatedly calls the getNext algorithm (see Algorithm 1) with the query root
as the parameter to return the next query node for processing. In the second
phase (Line 12), solutions in the output arrays are merge-joined based on their
common branching query nodes and query matches are returned as the query
result. The number of output arrays is equal to the number of leaf query nodes
(i.e., the number of individual root-to-leaf paths in a TPQ).

Algorithm 1. getNext(q) [2].

Input: q is a query node
Result: a query node in TPQ which may or may not be q

1 if isLeaf(q) then
return: q

2 foreach node ni in children(q) do
3 gi = getNext(ni) if gi �= ni then

return: gi
4 nmax = a query node with the maximum start value ∈ children(q)
5 nmin = a query node with the minimum start value ∈ children(q)
6 while getEnd(getElement(q)) < getStart(getElement(nmax)) do
7 advance(q)
8 if getStart(getElement(q)) < getStart(getElement(nmin)) then

return: q
9 else

return: nmin

10 Function getQCPL(Query node q):
11 // the prime number assigned to the query node which is the product of its

child query node prime numbers
12 qCPL = 1
13 foreach node ni in childrenPC(q) do
14 qCPL = qCPL × tagPrime(ni)

return: qCPL
15 Function getElement(Query node q):
16 if childrenPC(q) > 0 then
17 while ¬ eof(Cq) ∧ getCPL(Cq) % getQCPL(q) �= 0 do
18 advance(q)

19 if eof(Cq) then
return: ∞,∞,∞, 1 // out of range label

20

21 else
return: Cq // the current head element in the stream of q

22

getNext is a fundamental function which is called by the main algorithm to
decide the next query node to be processed. It is used to guarantee that the

TwigStackPrime: A Novel Twig Join Algorithm Based on Prime Numbers 9

current element associated with the query node returned is part of the final
output since all the basic structural relationships are thoroughly checked by
getNext or its supporting subroutine getElement. getNext(q) returns an element
eq of a query node q ∈ TPQ with three properties:

i eq has a descendant element eqi in each of the streams corresponding to its
child elements where eqi is the first element of a query node qi = children(q)
(this property is checked in Lines 9–11).

ii each of its child elements satisfies recursively the first property (this property
is checked in Lines 4–5).

iii if q has Parent-Child edge(s) with its child query nodes, then eq has a child
eqi in Tqi for each query node qqi = childrenPC(q) (this property is checked
in Lines 21–23 of getElement function).

In the function getElement(q), if q does not have P-C edges, the first ele-
ment of q is returned. Otherwise, Line 22 checks CPL relationship for all child
query nodes with P-C relationships. If the first element does not satisfy the CPL
relationship (the third property), the function skips all elements which do not
satisfy the CPL relationship. Otherwise, the first element is found to satisfy the
CPL relationship, then it is returned in Line 26 if the stream is unfinished. In
case the stream reaches the end, Line 24 returns virtual end element labelled
with infinity values as (∞,∞,∞) to complete the query processing.

Compared to the original TwigStack which does not apply CPL relationships,
the effect of TwigStackPrime can be illustrated in the following example.

Example 2. Consider the XML tree of Fig. 3 and Q1 = a[//x]/y. Assume the
tree is labelled with range-based labelling and CPL approach as in Fig. 2. Ini-
tially, the cursors point at the first elements in streams. getNext(a) is called
since a is the root query node. The first call of getNext(a) in TwigStack returns
a1 because it satisfies the descendant extension condition, but TwigStackPrime
skips a1 since it does not satisfy the CPL relationship that is CPL of a1 is not
divisible by the prime number associated with the tag name y. The algorithm
has to skip n elements with tag x since they are useless to the first element a2.
After this, TwigStackPrime can ensure that a2 satisfies the three properties and
thus is pushed into the stack for query node a. For instance, CPL(a1) → 35

e

a1

x1 xn a2

xn+1 y1

Fig. 3. Illustration to the suboptimal processing of TwigStack.

10 S. Alsubai and S. North

Algorithm 2. TwigStackPrime [2].

Input: TPQ Q
1 while ¬end(getRoot(Q)) do
2 qact = getNext(getRoot(Q)) // see Algorithm
3 if ¬ isRoot(q) then
4 cleanStack(getElement(qact), parent(qact))
5 if isRoot(q) ∨ ¬ empty(Sparent(qact)) then
6 cleanStack(getElement(qact),qact)
7 moveToStack(qact)
8 if isLeaf(qact) then
9 outPathSolution(qact) // Blocked solutions

10 else
11 advance(qact)

12 MergeAllPathSolutions() // Phase 2
13 Function cleanStack(Query node qact,Query node q):
14 // pop any element in Sq which is not the ancestor of getElement(qact)
15 while ¬empty(Sq) ∧ getEnd(top(Sq)) < getStart(getElement(qact)) do
16 pop(Sq)

17 Function moveToStack(Query node q):
18 // p is a pointer to the top parent stack if q is the root p is null
19 // p = top(Sparent(q))
20 push(Cq, p) to Sq

21 Function end(Query node q):
return: ∀ni ∈ subtree(q) : isLeaf(ni) ∧ eof(Cni)

mod tagPrime(y) → 11 is not equal to zero. The algorithm terminates after
performing one recursive calls of getNext(a). On the other hand, TwigStack has
to iterate n + 1 times to answer match to Q1. TwigStack also generates n useless
paths for Q1 over the given XML tree.

4.3 Analysis of TwigStackPrime

In this section, we show the correctness of our algorithms. The correctness of
TwigStackPrime algorithm can be shown analogously to TwigStack due to the
fact that they both use the same stack mechanism. In other words, the correct-
ness of Algorithm 2 follows from the correctness of TwigStack [3].

Definition 2 (Head Element). For each query node q in a TPQ Q, the ele-
ment indicated by the cursor Cq is the head element of q.

Definition 3 (Child and Descendant Extension). A query node q has the
child and descendant extension if the following properties hold:

– ∀ ni ∈ childrenAD(q), there is an element ei which is the head of Tni
and a

descendant of eq which is the head of Tq.
– ∀ ni ∈ childrenPC(q), there is an element eq which is the head of Tq and its

CPL parameter is divisible by tagPrime(ni).

TwigStackPrime: A Novel Twig Join Algorithm Based on Prime Numbers 11

– ∀ ni ∈ children(q), ni must have the child and descendant extension.

The above definition is a key for establishing the correctness of the following
lemmas:

Lemma 1. For any arbitrary query node q′ which is returned by getNext(q), the
following properties hold:

1. q′ has the child and descendant extension.
2. Either q == q′ or q′ violates the child and descendant extension of the head

element eq of its parent(q′).

Proof. (Induction on the number of child and descendants of q). If q is a leaf
query node, it is returned in Line 2 because it verifies all the properties 1 and
2a in Lemma 1. Otherwise, the algorithm recursively gets gi = getNext(ni) for
each child of q in Line 4. If for some i, there is gi �= ni, and it is known by
inductive hypothesis that gi verifies the properties 1 and 2b with respect to q, so
the algorithm returns gi in Line 6. Otherwise, by inductive hypothesis that all
q ’s child nodes satisfy properties 1 and 2a with their corresponding sub-queries.
At getElement(q) (Lines 21–25), getNext advances from Tq all segments that do
not satisfy the divisibility by the product of prime numbers in childrenPC(q)
returned from getQCPL. After that, the algorithm advances from Tq (Lines 9–
10) all segments that are beyond the maximum start value of ni ∈ children(q).
Then, if q satisfies properties 1 and 2a, it is returned at Line 12. Otherwise,
Line 13 guarantees that ni ∈ children(q) with the smallest start value satisfies
properties 1 and 2b with respect to start value of q ’s head element eq is returned.

Lemma 2. Suppose getNext(q) returns a query node q′ and q �= q′ at either
Line 4 or 13 of getNext. Then there is no new solution involving top element of
the parent stack of q′ denoted as p which has end value less than the start value
of the head element of q′ or some elements which are in children(p).

Proof. Suppose that on contrary, there is a new solution using some elements of
p = parent(q′) in Sp denoted as eSp

for which getEnd(eSp
) < getStart(q′). Using

range-based property, it will be known that all elements from children(p) in some
solutions must have end values less than the end value of eSp

, therefore less than
the start value of the head element of q′. Since getNext(q) = q′ and from Line 3
of getNext for each child node ni of p (including q′), it is getNext(ni) = ni and
getStart(q′) ≤ getStart(ni). Using Lemma 1, it will be known that each ni has a
child and descendant extension, and thus all elements of children(ni) have start
values greater than getStart(ni), therefore greater than getStart(q′), which is a
contradiction.

Theorem 1. Given a twig pattern query Q and an XML document D, Algorithm
TwigStackPrime correctly returns answer to Q on D.

Proof. In Algorithm TwigStackPrime, getNext(root) is repeatedly invoked to
determine the next query node to be processed. Using Lemma 1, it is known

12 S. Alsubai and S. North

that all elements returned by qact = getNext(root) have the child and descen-
dant extension. If qact �= root, Line 4, the algorithm pops from Sparent(qact) all
elements that are not ancestors of the head element of qact by Lemma 2. After
that, it is already known qact has a child and descendant extension so that Line
5 checks whether Sparent(qact) is empty or not. If so, it indicates that it does not
have the ancestor extension, and it can be discarded safely to continue with the
next iteration. Otherwise, the current head element of qact has both the ances-
tor and child and descendant extensions which guarantee its participation in at
least one root-to-leaf path. Then, Sqact

is cleaned by popping elements which do
not contain the head of qact. Then, the item in the stack is used to maintain
pointers from itself to the query root. Finally, if qact is a leaf node, we compute
all possible combinations of single paths with respect to qact, line 8–9.

The correctness holds for TPQs with both A-D and P-C relationships, it
can be shown that TwigStackPrime algorithm is optimal when P-C axes exist
only in the deepest level of a twig query. The intuition is simple since the CPL
relationship can detect hidden immediate child elements only in two streams
related by P-C relationships. Henceforth, we can conclude the following result.

Theorem 2. Consider a twig pattern query Q with n query nodes, and only
Ancestor-Descendant edges or there are Parent-Child edges to connect leaf query
nodes, and an XML document D. TwigStackPrime has worst-case I/O and CPU
time complexities linear in the sum of the size of the n input lists and the
output list.

Example 3. Consider the XML tree of Fig. 4 and Q2 = a[/x]/y/f, the head ele-
ments in their streams are a → a1, x → x1, y → y1 and f → f1. The first call
of getNext(root) inside the main algorithm will return a → a1 because it has
A-D relationship with all head elements and satisfies CPL with x and y, and its

e

a1

x1 a2

x2 y1

f1

y2

a4

x4 y3

(a) an XML tree. (b) tag indexing.

Fig. 4. Sub-optimal evaluation of TwigStackPrime where redundant paths might be
generated.

TwigStackPrime: A Novel Twig Join Algorithm Based on Prime Numbers 13

descendant y → y1 also satisfies the child and descendant extension with respect
to f. However, TwigStackPrime produces the useless path (a1, x1) because y2
does not have child of f-node [2].

5 Experimental Evaluation

In this section we present the performance comparison of twig join algorithms,
namely: TwigStackPrime the new algorithm based on Child Prime Label app-
roach, along with TwigStack [3]. The original twig join algorithm that was
reported to have optimal worst-case processing with A-D relationship in all
edges, and TwigStackList is the first refined version of TwigStack to process
P-C efficiently [9]. TwigStackList was chosen in this experiment because it uti-
lizes a simple buffering technique to prune irrelevant elements from streams. We
evaluated the performance of these algorithms against both real-world and arti-
ficial datasets. The performance comparison of these algorithms was based on
the following metrics:

1. Number of intermediate solutions: the individual root-to-leaf paths generated
by each algorithm.

2. Processing time: the main-memory running time without counting I/O costs.
All twig pattern queries were executed 103 times and the first three runs were
excluded for cold cache issues. We did not count the I/O cost for tag indexing
files for TwigStackPrime algorithm because it is negligible, and the cost to
read the tag indexing is constant over a series of twig pattern queries.

5.1 Experimental Settings

All the algorithms were implemented in Java JDK 1.8. The experiments were
performed on 2.9 GHz Intel Core i5 with 8 GB RAM running in Mac OS X El
Capitan. The benchmarked data sets used in the experiments and their charac-
teristics are shown in Table 1. The selected datasets and benchmark are signif-
icantly more frequent in the literature of XML query processing [3,7–9,11,12].

Table 1. Characteristics of XML datasets used in the experiments.

DBLP TreeBank XMark Random

Range-based MB 65.3 43 35.3 69.4

CPL MB 70.3 47.9 40.1 74.1

� size MB 5 4.9 4.8 4.7

Tag indexing size KB 0.48 3 1 0.049

Nodes (Millions) 3.73 2.43 2.04 3.94

Max/Avg depth 6/2.9 36/7.8 12/5.5 13/7

Distinct tags 40 251 83 6

Largest prime numbers 151 1597 379 19

14 S. Alsubai and S. North

DBLP is a highly structured document and is very wide and shallow, while
TreeBank is a deep-recursive dataset with a large number of distinct tags and
has irregular structure. Both are real-world and obtained from the University
of Washington XML repository [24]. The XMark dataset is well-known bench-
marked XML dataset [23]. To ensure fair comparison, DBLP and XMark datasets
were selected because they are both considered as data-oriented and have very
strong structures. We also generated Random dataset similar to that in [9] but
we have the two parameters: depth and fan-out. The depth of randomly gen-
erated tree has maximum value sets to 13 and fan-out has range from 0 to
6, respectively. This dataset was created to test the performance where the

Table 2. Experimental TPQs.

Code XPath expression Result

DQ1 /dblp/inproceedings[//title]//author 88

DQ2 //www[editor]/url 21

DQ3 //article[//sup]//title//sub 278

DQ4 //article[/sup]//title/sub 0

XQ1 /site/closed auctions/closed auction[annotation/description/text/
keyword]/date

4042

XQ2 /site/closed auctions/closed auction//keyword 12527

XQ3 /site/closed auctions/closed auction[//keyword]/date 12527

XQ4 /site/people/person[profile[gender][age]]/name 3243

XQ5 //item[location][//mailbox//mail//emph]/description//keyword 16956

XQ6 //people/person[//address/zipcode]/profile/education 3241

TQ1 //S[//MD]//ADJ 19

TQ2 //S/VP/PP[/NP/VBN]/IN 152

TQ3 //VP[/DT]//PRP DOLLAR 3

TQ4 //S[/JJ]/NP 5

TQ5 //S[VP[DT]//NN]/NP 32

TQ6 //S[//VP/IN]//NP 20311

TQ7 //S/VP/PP[//NP/VBN]/IN 320

TQ8 //EMPTY/S//NP[/SBAR/WHNP/PP//NN]/ COMMA 17

TQ9 //SINV//NP[/PP//JJR][//S]/NN 4

RQ1 //b//e//a[//f][d] 1331

RQ2 //a//b[//e][c] 18033

RQ3 //e//a[/b][c] 11216

RQ4 //a[//b/d]//c 59568

RQ5 //b[d/f]/c[e]/a 377

RQ6 //c[//b][a]/f 47159

RQ7 //a[c//e]/f[d] 1906

RQ8 //d[a//e/f]/c[b] 204

RQ9 //a[d][c][b][e]//f 3757

TwigStackPrime: A Novel Twig Join Algorithm Based on Prime Numbers 15

XML document combines features of DBLP and TreeBank, being structured
and deeply-recursive at the same time.

The XML structured queries for evaluation over these dataset were chosen
specifically because it is not common for queries, which contain both ‘//’ and ‘/’,
to have a significant difference in performance for tightly-structured document
such as DBLP and XMark. TreeBank twig queries were obtained from [7,9].
Twig patten queries over the random data set were also randomly generated.
Table 2 shows the XPath expressions for the chosen twig patterns. The code
indicates the data set and its twig query, for instance, TQ2 refers to the second
query issued over TreeBank dataset.

5.2 Experimental Result

We compared TwigStackPrime algorithm with TwigStack and TwigStackList
over the above mentioned twig pattern queries against the data sets selected.
The Kruskal-Wallis test is a non-parametric statistical procedure was carried
out on processing time, the p-value turns out to be nearly zero (p-value less
than 2.2−16), it strongly suggests that there is a difference in processing time
between two algorithms at least as shown in Fig. 5.

(a) DBLP (b) XMark

(c) Random (d) TreeBank

Fig. 5. Processing time for twig pattern queries against DBLP in (a) and XMark in
(b). (c) and (d) shows processing time for TPQs on Random and TreeBank datasets,
respectively [2].

16 S. Alsubai and S. North

Fig. 6. The processing time taken by each algorithm to run the two most expensive
queries in the experiments, normalizing query times to 1 for the fastest algorithm for
each query [2].

TwigStackPrime vs. TwigStack. We compare the performance between
TwigStackPrime and TwigStack. Table 3 shows that TwigStackPrime always
generates fewer root-to-leaf paths than TwigStack. This is because TwigStack-
Prime uses CPL relationships to prune irrelevant elements. For instance, in
TQ6, TwigStackPrime produced only 22,565 useful paths, whereas the number
of intermediate paths in TwigStack was 702,391. Although DBLP and XMark
have relatively regular structures, TwigStack still produced irrelevant paths. For
this type of datasets, TwigStackPrime shows optimal performance by generating
only paths contributing in the final results. Since there is a difference in perfor-
mance suggested by the Kruskal-Wallis test, we ran pairwise comparison based
on Manny-Whitney test which showed that in most test twig queries TwigStack-
Prime outperformed TwigStack as depicted in Fig. 5. In our experiments, we
used TQ6 and RQ6 because they touch very large portions of their datasets and
produce quite huge results. For TQ6 and RQ6, TwigStackPrime were more than
40 and 5 time faster than TwigStack, respectively.

TwigStackPrime vs. TwigStackList. We now compare the performance
between TwigStackPrime and TwigStackList. For highly structured datasets,
both TwigStackPrime and TwigStackList are optimal as presented in Table 3.
However, none of the algorithms are optimal in the other datasets because they
have redundant paths and many tags are deeply recursive. In most queries,
TwigStackPrime generated relatively fewer paths than TwigStackList. This is
because TwigStackPrime uses CPL relationships to prune useless elements while
TwigStackList utilises a simple buffering technique bounded by the number of
elements in the longest path of the queried XML dataset. For example, RQ9

where some of branching edges are P-C, TwigStackPrime can guarantee optimal
evaluation because RQ9 is its optimal class of query as mentioned in Theorem 2.
TwigStackPrime produced 8,786 useful paths whereas TwigStackList generated
17,328 useless paths. Even though RQ4 is optimal for TwigStackList because it

TwigStackPrime: A Novel Twig Join Algorithm Based on Prime Numbers 17

Table 3. Single paths produced by each algorithm [2].

Code TwigStack TwigStack list TwigStackPrime

DQ1 147 139 139

DQ4 98 0 0

XQ1 9414 6701 6701

TQ2 2236 388 441

TQ3 10663 11 5

TQ4 70988 30 10

TQ6 702391 22565 22565

TQ8 58 27 26

TQ9 29 17 8

RQ1 2076 1843 1795

RQ2 29914 24235 23057

RQ3 20558 16102 15505

RQ4 67005 57753 57753

RQ5 3765 901 1093

RQ6 201835 98600 72084

RQ7 6880 2791 3219

RQ8 746 322 406

RQ9 179546 26114 8786

does not have P-C in branching axes, TwigStackPrime evaluated RQ4 efficiently
see Fig. 5 and Table 3.

Since there was a difference in performance, we ran pairwise comparison
based on Manny-Whitney test which showed that in most twig queries tested
TwigStackPrime outperformed TwigStackList, however, they showed same per-
formance in XQ2, XQ3 and XQ6 see Fig. 5. For expensive queries, pairwise com-
parison based on Manny-Whitney test between TwigStackPrime and TwigStack-
List resulted in p − value < 0.001 which suggests a significant difference and
TwigStackPrime has the best performance.

When evaluating RQ6, TwigStackPrime has the best performance, it is
roughly twice as fast than TwigStackList.

Summary. It can be seen in Fig. 5 the only twig queries where TwigStackPrime
has slower performance comparing to the others is TQ3 and TQ9 because they
touch very little of the dataset. According to the experimental results, we can
draw the following two conclusions:

1. The CPL approach is a new source of improvement for holistic twig matching
algorithms since it can reduce the number of elements processed and the size
of intermediate result when TPQs contain Parent-Child edges.

18 S. Alsubai and S. North

2. TwigStackPrime significantly outperformed TwigStack and TwigStackList for
different types of XML documents in terms of their structures including
shallow and deep datasets. TwigStackPrime showed a superior performance in
avoiding the storage of unnecessary paths while processing time is improved.

6 Conclusion and Future Work

In this paper, we proposed the CPL approach to improve the pre-filtering strat-
egy in twig join algorithms when P-C edges are involved in TPQs. The key to
the TwigStackPrime is the use of the CPL approach as the labelling scheme
and of the advanced preorder filtering function getNext, which both enable fast
determination of P-C relationships between elements of XML documents while
scanning them in preorder traversal. This property is exploited to reduce stor-
age space by skipping irrelevant elements from the streams and to improve the
overall performance.

Compared to the previous labelling schemes, the CPL approach can be used
to derive a set of the tag names of child elements associated with their inner
elements. P-C edges, hence, can be solved in very efficient way. TwigStackPrime
algorithm shows the general framework we use for introducing the CPL approach
into existing twig matching algorithms, extending algorithm like TwigStack.

Existing research revolves around improving the efficiency of twig matching
algorithms and extending querying algorithms to make them more able to handle
positional predicates and order axes in XPath expressions. A promising approach
for speeding up the query processing would be to combine our approach with
the previous orthogonal algorithms to propose a new one-phase twig matching
algorithm that we hope will be superior to the previous approaches. The current
preliminary idea is to examine processing ordered twig patterns and positional
predicate in a way that would consume less time and memory than the existing
approaches. We will consider one-phase and ordered twig matching algorithms
as our future work.

References

1. Aghili, S.A., Li, H.-G., Agrawal, D., El Abbadi, A.: TWIX: twig structure and
content matching of selective queries using. In: Proceedings of the 1st International
Conference on InfoScale 2006, p. 42 (2006)

2. Alsubai, S., North, S.: A prime number approach to matching an XML twig pat-
tern including parent-child edges. In: The 13th International Conference on Web
Information Systems and Technologies, WEBIST 2017, pp. 204–211. SCITEPRESS
Science and Technology Publications, Lda, Porto (2017)

3. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern
matching. In: Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data, pp. 310–321. ACM, Madisonn (2002)

4. Chen, S., Li, H.-G., Tatemura, J., Hsiung, W.-P., Agrawal, D., Sel, K., Candan,
K.S.: Twig2Stack: bottom-up processing of generalized-tree-pattern queries over
XML documents (2006)

TwigStackPrime: A Novel Twig Join Algorithm Based on Prime Numbers 19

5. Chen, T., Lu, J., Ling, T.W.: On boosting holism in XML twig pattern matching
using structural indexing techniques. In: Science, pp. 455–466 (2005)

6. Choi, B., Mahoui, M., Wood, D.: On the optimality of holistic algorithms for twig
queries. In: Mař́ık, V., Retschitzegger, W., Štěpánková, O. (eds.) DEXA 2003.
LNCS, vol. 2736, pp. 28–37. Springer, Heidelberg (2003). https://doi.org/10.1007/
978-3-540-45227-0 4

7. Grimsmo, N., Bjørklund, T.A., Hetland, M.L.: Fast optimal twig joins. VLDB
3(1–2), 894–905 (2010)

8. Li, J., Wang, J.: Fast matching of twig patterns. In: Bhowmick, S.S., Küng, J.,
Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 523–536. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85654-2 45

9. Lu, J., Chen, T., Ling, T.W.: Efficient processing of XML twig patterns with
parent child edges: a look-ahead approach. In: Proceedings of the Thirteenth ACM
International Conference on Information and Knowledge Management, no. i, pp.
533–542. ACM, Washington, D.C. (2004)

10. Jiaheng, L., Meng, X., Ling, T.W.: Indexing and querying XML using extended
Dewey labeling scheme. Data Knowl. Eng. 70(1), 35–59 (2011)

11. Qin, L., Yu, J.X., Ding, B.: TwigList : make twig pattern matching fast. In:
Kotagiri, R., Krishna, P.R., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA
2007. LNCS, vol. 4443, pp. 850–862. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-71703-4 70

12. Wu, H., Lin, C., Ling, T.W., Lu, J.: Processing XML twig pattern query with
wildcards. In: Liddle, S.W., Schewe, K.-D., Tjoa, A.M., Zhou, X. (eds.) DEXA
2012. LNCS, vol. 7446, pp. 326–341. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32600-4 24

13. Zhang, C., Naughton, J., DeWitt, D., Luo, Q., Lohman, G.: On supporting con-
tainment queries in relational database management systems. ACM SIGMOD Rec.
30, 425–436 (2001)

14. Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M., Srivastava, D., Wu, Y.:
Structural joins: a primitive for efficient XML query pattern matching. In: Pro-
ceedings of 18th International Conference on Data Engineering, pp. 141–152 (2002)

15. Haw, S.-C., Lee, C.-S.: Data storage practices and query processing in XML
databases: a survey. Knowl. Based Syst. 24(8), 1317–1340 (2011)

16. Gang, G., Chirkova, R.: Efficiently querying large XML data repositories: a survey.
IEEE Trans. Knowl. Data Eng. 19(10), 1381–1403 (2007)

17. Lu, J., Ling, T.W., Bao, Z., Wang, C.: Extended XML tree pattern matching:
theories and algorithms. IEEE Trans. Knowl. Data Eng. 23(3), 402–416 (2011a)

18. Goldman, R., Widom, J.: Dataguides: enabling query formulation and optimization
in semistructured databases. In: Proceedings of International Conference on Very
Large Data Bases, pp. 436–445 (1997)

19. Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.: Covering indexes for
branching path queries. In: Proceedings of 2002 ACM SIGMOD International Con-
ference on Management Data, SIGMOD 2002, p. 133 (2002)

20. Bača, R., Krátký, M., Ling, T.W., Lu, J.: Optimal and efficient generalized twig
pattern processing: a combination of preorder and postorder filterings. VLDB J.
22(3), 369–393 (2012)

21. Bača, R., Krátký, M.: XML query processing. In: Proceedings of 16th International
Database Engineering Application Symposium, IDEAS 2012, p. 813 (2012)

22. Mathis, C., Härder, T., Schmidt, K., Bächle, S.: XML indexing and storage: ful-
filling the wish list. Comput. Sci. Res. Dev. 30, 118 (2012)

https://doi.org/10.1007/978-3-540-45227-0_4
https://doi.org/10.1007/978-3-540-45227-0_4
https://doi.org/10.1007/978-3-540-85654-2_45
https://doi.org/10.1007/978-3-540-71703-4_70
https://doi.org/10.1007/978-3-540-71703-4_70
https://doi.org/10.1007/978-3-642-32600-4_24
https://doi.org/10.1007/978-3-642-32600-4_24

20 S. Alsubai and S. North

23. Schmidt, A., Waas, F., Kersten, M., Busse, R., Carey, M.J., Amsterdam, G.B.:
XMark: a benchmark for XML data management. In: VLDB 2002 Proceedings of
the 28th International Conference on Very Large Data Bases, pp. 974–985 (2002)

24. Miklau, G.: UW XMLData Repository. http://www.cs.washington.edu/research/
xmldatasets/. Accessed 04 Feb 2016

http://www.cs.washington.edu/research/xmldatasets/
http://www.cs.washington.edu/research/xmldatasets/

Return of the Great Spaghetti Monster:
Learnings from a Twelve-Year Adventure

in Web Software Development

Antero Taivalsaari1 and Tommi Mikkonen2(B)

1 Nokia Technologies, Tampere, Finland
antero.taivalsaari@nokia.com

2 University of Helsinki, Helsinki, Finland
tommi.mikkonen@helsinki.fi

Abstract. The widespread adoption of the World Wide Web has funda-
mentally changed the landscape of software development. Only ten years
ago, very few developers would write software for the Web, let alone
consider using JavaScript or other web technologies for writing any seri-
ous software applications. In this paper, we reflect upon a twelve-year
adventure in web development that began with the development of the
Lively Kernel system at Sun Microsystems Labs in 2006. Back then, we
also published some papers that identified important challenges in web-
based software development based on established software engineering
principles. We will revisit our earlier findings and compare the state of
the art in web development today to our earlier learnings, followed by
some reflections and suggestions for the road forward.

Keywords: Web programming · Web applications · Web engineering
Software engineering · HTML5 · JavaScript · The Internet of Things
IoT · Programmable World

1 Introduction

The widespread adoption of the World Wide Web has fundamentally changed
the landscape of software development. In the past years, the Web has become
the de facto deployment environment for new software systems and applications.
Office productivity applications and corporate tools such as invoicing, purchasing
and expense reporting systems have migrated to the Web. Banking, insurance
and retail industries – to name a few – have been transformed profoundly by
the emergence of web-based applications and internet services. Academic papers
such as this one are now commonly written using collaborative, browser-based
environments instead of traditional, installed office suites. Even software devel-
opment is nowadays often performed using interactive, web-based tools.

Over ten years ago, we published a number of papers on the emergence of
the Web as a software development platform and associated challenges [1,2].

c© Springer International Publishing AG, part of Springer Nature 2018
T. A. Majchrzak et al. (Eds.): WEBIST 2017, LNBIP 322, pp. 21–44, 2018.
https://doi.org/10.1007/978-3-319-93527-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93527-0_2&domain=pdf

22 A. Taivalsaari and T. Mikkonen

At that point, the world looked very different still. Back in 2006, very few devel-
opers would write software for the Web, let alone consider using JavaScript or
other web technologies for writing any serious software applications [3]. Today,
the Software as a Service (SaaS) model [4] is prevalent, and interactive, dynamic
software development for the Web has become commonplace. In fact, traditional
installed applications now maintain a stronghold only in the mobile realm, where
the number of mobile apps (especially for iOS and Android devices) has exploded
in recent years [5]. In contrast, the number of applications that people install
on their personal computers has been in steady decline over the past years. The
majority of activities on personal computers are now performed using a web
browser, leveraging the Software as a Service model [6].

A key technical manifestation of the early years of our twelve-year adventure
in web development was the Lively Kernel system (http://lively-kernel.org/),
originally created at Sun Microsystems Labs in 2006–2008. The Lively Kernel
was one of the first fully interactive, self-sustaining, web-based software develop-
ment environment that was built on the assumption that the web browser would
become a credible, full-fledged software platform [7]. While the Lively Kernel
is not very widely known or used today, it did pave the way – for its part –
for today’s Software as a Service based software development systems and truly
interactive, live web programming. A recently published ten-year anniversary
paper summarizes the roots, design thinking and the evolution of the Lively
Kernel from the technical perspective over the past ten years [8].

The broader software development challenges that we faced in the early years
were summarized in another paper that was provocatively called “Spaghetti
Code for the 21st Century” [1,9]. In that paper, we argued that web development
had reintroduced many of the spaghetti code problems that had already largely
been eliminated in the software industry some ten years earlier. We listed issues
that plagued web application development at the time, reminiscing us of the
fabled “spaghetti code wars” in the early 1970s. We argued that web development
was effectively giving rebirth to many of the same issues that were identified two
decades earlier as the main culprits for unreadable, unmaintainable code.

Since then, we have been involved in the development of various other
projects related to web development. In this paper, a revisited version of an
earlier conference paper [10], we reflect upon our twelve-year adventure in web
development, focusing especially on our learnings on software development chal-
lenges associated with web-based software development. We will revisit various
topics that we identified as central challenges in web development over ten years
ago. Although things have generally been moving in a better direction, we argue
that the “organic”, rather uncontrolled evolution of the Web and the dramatic
increase in popularity of web-based software development in general have exac-
erbated the problems and the “impedance mismatch” between web development
and software engineering [1,11]. We will also present some interesting research
opportunities and directions for the next ten years.

The structure of this paper is as follows. We start the paper with a review
of the software engineering principles in the context of the Web, revisiting the

http://lively-kernel.org/

Return of the Great Spaghetti Monster 23

central challenges that we identified over ten years ago (Sect. 2). We then take
a look at the state of web programming today, highlighting significant changes
in web development since we started our journey many years ago (Sect. 3). In
Sect. 4, we compare the state of the art in web development today to our earlier
findings. In Sect. 5, we present some additional observations and technical chal-
lenges, followed by some reflections and forward looking predictions in Sect. 6.
Finally, Sect. 7 concludes the paper.

2 Software Engineering Principles in the Context of Web
Programming

This section provides a condensed summary of our “Spaghetti Code for the 21st
Century” paper, published as a Sun Labs Technical Report in June 2007 [9] and
as a conference paper (in somewhat shorter form) in 2008 [1]. The challenges
identified in those publications serve as the backdrop for the evaluation and
discussion later in this paper.

Back in 1968, Edsger Dijkstra started his crusade against “spaghetti code”
[12]. Spaghetti code is a pejorative term for source code that has a complex and
tangled control structure, especially one using many gotos, exceptions, threads,
global variables, or other “unstructured” constructs. It is named such because
program flow tends to look like a twisted and tangled bowl of spaghetti. The
term is commonly used in negative sense to imply that a given piece of work is
difficult to understand.

As underlined by the spaghetti code controversy, software engineering
remained an undeveloped, unestablished practice until the late 1970s [13,14].
Many important principles, such as modularity, information hiding, separation of
concerns (especially the separation of specification from implementation), man-
ifest interfaces, reusability and portability did not exist or were not adopted
widely until they were introduced and instituted by Parnas, Clements, Corbató,
Dahl, Guttag, Hoare, Morris, Liskov, Zilles and many others in the seminal arti-
cles in the 1970s and 1980s [15–30]. MacLennan has summarized many of these
principles in his book that focuses on the principles of programming languages
[31].

An important milestone in the codification of software engineering is the
1968 NATO Software Engineering Conference [32]. Besides introducing the idea
of reusable software and software components [33], the attendees of the confer-
ence agreed that design concepts essential to maintainable systems are modular-
ity (to isolate functional elements of the system), specification (of the interface
as opposed to the implementation), and generality (required for extensibility).
In that conference, the first formal definition of software engineering was also
specified. As summarized by Bauer in [32], software engineering was then defined
as the “establishment and use of sound engineering principles in order to obtain
economically software that is reliable and works efficiently on real machines.”
Today, some fifty years later, that definition is still as valid as ever.

24 A. Taivalsaari and T. Mikkonen

As long as the primary purpose of web development was the creation of
web sites consisting of documents, pages and forms, there was little reason to
apply established software engineering principles to web development. The web
browser, with its original design dating back to 1990, was and still is well-suited
to displaying documents and supporting simple navigation from page to page.
However, over the years web pages have increasingly taken the form of desktop-
style applications, with richer user interface and direct manipulation capabilities,
as well as more advanced asynchronous communication between the clients and
servers. The size and complexity of web applications and pages have also grown
dramatically1. This has increased the need to treat web development in the same
fashion as software development. An ad hoc, document-oriented and tool-driven
approach to web development – as was common especially in the early days of
web development – is insufficient in this regard.

In many ways, web application development in its early days was reminiscent
of software development in the 1970s before software engineering principles were
defined and systematically applied to software development. The nascent field
of Web Engineering has emerged in response to the need to introduce sound
engineering principles to web development; the first international conferences in
this area (such as the ICWE conferences) were arranged in the early 2000s.

In our “Spaghetti Code for the 21st Century” paper, we grouped the chal-
lenges in web application development into three main categories based on well-
documented software engineering principles. These categories were: (1) modular-
ity and interfaces; (2) consistency, simplicity and elegance; and (4) reusability
and portability. Furthermore, identified two additional categories of important
challenges related to (4) usability and (5) development style.

Below we provide a condensed summary of the key challenges that we iden-
tified back in 2007. These challenges will serve as a backdrop for the updated
discussion in the rest of this paper. The abbreviations and numbers in paren-
theses below (e.g., SC#1, WI#2) will be used later in this paper to refer to the
earlier identified issues.

– Modularity and Interface Issues
• Separation of Concerns (SC#1): Declarative and procedural development

style are mixed up.
• Separation of Concerns (SC#2): User interface component placement,

user interface style elements, event declarations and application logic are
mixed up.

• Separation of Concerns (SC#3): Dependence on tool support.
• Well-Defined Interfaces (WI#1): No well-defined interfaces exist between

the browser and other components, apart from the Document Object
Model (DOM).

• Well-Defined Interfaces (WI#2): Hard-coded references and other imple-
mentation details are used openly.

1 In 2016, Wired Magazine reported that the size of the average web page had exceeded
the size of the original (year 1993) Doom multiplayer 3D computer game (https://
www.wired.com/2016/04/average-webpage-now-size-original-doom/).

https://www.wired.com/2016/04/average-webpage-now-size-original-doom/
https://www.wired.com/2016/04/average-webpage-now-size-original-doom/

Return of the Great Spaghetti Monster 25

• Information Hiding (IH#1): The DOM tree is exposed and manipulated
through side effects.

• Information Hiding (IH#2): Source code of applications is exposed.
• Information Hiding (IH#3): No privacy mechanisms available in

JavaScript.
– Consistency, Simplicity and Elegance Issues

• Consistency (C#1): There are several ways to perform the same
functions.

• Consistency (C#2): Things should happen explicitly rather than through
side effects.

• Simplicity and Elegance (SE#1): Web applications are unstructured and
hard to read.

• Simplicity and Elegance (SE#2): Different types of technologies (e.g.,
HTML, JavaScript, CSS, XML) are mixed up.

– Reusability and Portability Issues
• Reusability (R#1): Elements of reuse are scattered and mixed with the

rest of the application.
• Reusability (R#2): Hard-coded references and other implementation

details are exposed.
• Portability (P#1): There are still significant differences between browsers

and browser versions.
• Portability (P#2): Portability of (developer) experience is poor.

– Usability Issues
• Usability (U#1): The browser I/O model is poorly suited to desktop-style

applications.
• Usability (U#2): The semantics of many browser features are unsuitable

for applications.
– Development Style Issues

• Development Style (DS#1): No transitive closure of program structures
is available statically.

• Development Style (DS#2): There is no support for static verification or
static type checking.

Each of the issues was discussed in detail in the original technical report [9]
and conference paper [1]. For a detailed description of the issues listed above,
refer to those papers. In general, our earlier studies pointed out an impedance
mismatch between software engineering and web development – the former was
already an established discipline with well-defined, mature methodologies and
commonly understood engineering practices, while the latter was based on a
combination of ad hoc practices and tools. Let us next examine the state of the
art in web development some twelve years later.

3 State of Web Programming Twelve Years Later –
General Observations

In this section we will take a look at the state of the art in web programming
today, approximately twelve years later since our original analysis. We will begin

26 A. Taivalsaari and T. Mikkonen

with a general overview of the changes that have occurred in the past several
years. Later in the paper we will then reflect and map the present state in the
industry to our original findings.

3.1 The Web and the Software as a Service (SaaS) Model Have
Redefined Personal Computing

Today, the use of the Web as a software platform and the benefits of the Soft-
ware as a Service model are widely understood [4,34]. For better or worse, the
web browser has become the most commonly used desktop application; often
the users no longer open any other applications on their PCs than just the
browser. Effectively, for many average computer users today, the browser is the
computer. A recent VisionMobile developer survey report strongly confirmed
this observation, proposing the following key trends [6]:

– The browser has become the default interface for desktop applications.
– If the browser isn’t used to run the desktop app, it is being used to distribute

it.
– ChromeOS is gaining a foothold in Southern Asia.

Based on the points above, it is fair to say that the Web and the Software
as a Service model have redefined the notion of personal computing. Although
conventional desktop applications do still exist and are still widely used, desktop
applications and their deployment model are now primarily web-based. Perhaps
the most representative example of this ongoing paradigm shift is Microsoft’s
web-based Office 365 productivity suite (https://www.office.com/) that replaces
Microsoft’s earlier (native) Office suite – the most iconic and prevalent software
product of the earlier PC era. This trend has also sparked the introduction of
totally new computing device categories, such as Google’s purely browser-based
Chromebook personal computers (https://www.google.com/chromebook/) run-
ning the web-based ChromeOS operating system.

3.2 JavaScript Has Become a Very Popular Programming Language

Due to the central role of the web browser, JavaScript has become one of the
most popular programming languages in the world, just as we anticipated ten
years ago. While JavaScript language standardization work was stalled for many
years, there is now major progress on the standards front. The ECMAScript 6
Specification was finally published in June 2015 [35], followed by ECMAScript 7
Specification a year later [36]. Although the suitability of the JavaScript language
for large masses of software developers can still be debated, ECMAScript 6 – also
known as ECMAScript 2015 – is actually a decent and expressive programming
language, providing support for features such as modules, class declarations, lex-
ical block scoping, iterators and generators, promises for asynchronous program-
ming, and proper tail calls. Furthermore, libraries and tools have come to rescue
for numerous other problematic characteristics. For instance, Flow (https://flow.
org/) is a static type checker for JavaScript programs, which can also determine
the completeness of applications.

https://www.office.com/
https://www.google.com/chromebook/
https://flow.org/
https://flow.org/

Return of the Great Spaghetti Monster 27

3.3 Interactive, Visual Development on the Web Has Become
Commonplace

From the viewpoint of the original Lively Kernel vision (see [7]), it is inter-
esting to note that interactive, visual development for the Web has become
commonplace. There are numerous interactive HTML5 programming environ-
ments such as Cloud9 (https://c9.io/), Codepen.io (http://codepen.io/), Dabblet
(http://dabblet.com/), JSBin (https://jsbin.com/), JSFiddle (https://jsfiddle.
net/), and Plunker (https://plnkr.co/) that capture many of the original qual-
ities of the Lively vision – such as the ability to perform software development
entirely within the confines of the web browser. In the research front, CoRED
has investigated the possibilities of collaborative coding [37].

In addition, there are web curation systems (see [38]) and JavaScript visual-
ization libraries such as Chart.js (http://www.chartjs.org/), Cola.js (https://
github.com/tgdwyer/WebCola), D3 (https://d3js.org/), and Vis.js (http://
visjs.org/) that provide rich, interactive, animated 2D and 3D visualizations
for the Web, very much in the same fashion as we envisioned when we started
the work on the Lively Kernel back in 2006. A central difference, though, is that
these new libraries are intended primarily for data visualization rather than for
general-purpose application development.

3.4 Web Browser Performance and JavaScript Performance Have
Improved Dramatically

While the original versions of the Lively Kernel ran slowly, advances in web
browsers and high-performance JavaScript engines soon changed the situation
dramatically. The emergence of Google’s Chrome web browser and the V8
JavaScript engine – created at Google by some of our former colleagues from
Sun Microsystems – kick-started web browser performance wars. Raw JavaScript
execution speed increased roughly by three orders of magnitude between years
2006 and 2013, effectively repeating the same dramatic performance advances
that had occurred with Java virtual machines ten years earlier when those VMs
evolved from simple interpreter-based systems to using advanced adaptive just-
in-time compilation techniques. Although improvements in the UI rendering area
have been less dramatic, from the end user’s perspective today’s web browsers
are easily 10–20 times faster than ten years ago [39]. This has made it possible to
run serious applications in the web browser. (Sadly, this has also enabled much
richer use of interactive advertisements on web sites.)

3.5 HTML, CSS and the DOM Turned Out to Be Much More
Persistent Than Anticipated

The browser and JavaScript performance improvements – while definitely
impressive – were not really unforeseen to us. We were convinced that the per-
formance problems of the browser and JavaScript would ultimately get resolved.

https://c9.io/
http://codepen.io/
http://dabblet.com/
https://jsbin.com/
https://jsfiddle.net/
https://jsfiddle.net/
https://plnkr.co/
http://www.chartjs.org/
https://github.com/tgdwyer/ WebCola
https://github.com/tgdwyer/ WebCola
https://d3js.org/
http://visjs.org/
http://visjs.org/

28 A. Taivalsaari and T. Mikkonen

However, what was unforeseen to us how “sticky” the original core technolo-
gies in web development – HTML, CSS and JavaScript – as well as the use of
the Document Object Model (DOM) would be. Our assumption was that soft-
ware developers would prefer having a more uniform, conventional set of impera-
tive graphics APIs – supporting direct, programmatic object manipulation much
in the same fashion as in conventional desktop operating systems – instead of
using features that were originally designed for document layout rather than for
programming.

Furthermore, when we gave presentations in web developers conferences in
the late 2000s, reminding web developers of traditional software engineering
principles such as modularity, separation of concerns and the general impor-
tance of keeping specifications and public interfaces separate from implementa-
tion details [19], web developers shrugged and noted that the use of HTML, CSS
and JavaScript already gave them the necessary separation. Likewise, the ability
to manipulate graphics by poking the global DOM tree from anywhere in the
application was seen as a perfectly acceptable way of doing things rather than
as something that would raise any serious concerns.

In recent years, things have gone in a better direction given the earlier
mentioned modularity mechanisms that have been added to the ECMAScript
language, increasing use of RESTful APIs, as well as upcoming support for
Web Components (https://www.w3.org/TR/#tr Web Components). Web Com-
ponents bring component-based software engineering principles to the World
Wide Web, including the interoperability of higher-level HTML elements, encap-
sulation, information hiding and the general ability to create reusable, higher-
level UI components that can be added flexibly to web applications.

3.6 Instant Worldwide Deployment and Dramatically Faster
Release Cycles Have Become Commonplace

When the Lively Kernel project was started, the majority of software deploy-
ments at Sun Microsystems were still done in a conventional fashion by distribut-
ing physical CDs/DVDs or by making new binary installers available on the Web.
New software releases occurred relatively infrequently, perhaps a few times per
year for major software products such as the Java SDK. In contrast, web-based
systems allow changes to be published pretty much instantly worldwide.

Since the Lively Kernel was one of the first systems to boldly enter such an
instant deployment model, we had no support from tools and techniques that
have later been introduced in the context of continuous deployment [40]; this has
given rise to an entirely new development process around associated automation
and tools. In hindsight, it is amazing how quickly the traditional deployment
model was replaced by instant worldwide deployment enabled by the Software
as a Service model. This has resulted in dramatically faster release cycles as well
as in the rise of entirely new continuous development and deployment practices
methodologies across the industry, including DevOps [41]. These topics are now
so widely studied and documented that we do not need to dive more deeply into
them in this paper. For details the reader is referred to [40,42,43].

https://www.w3.org/TR/#tr_Web_Components

Return of the Great Spaghetti Monster 29

4 Comparing Then and Now – Reflections on Software
Engineering Principles

In our original Spaghetti paper, we divided the challenges in web-based soft-
ware development into three main categories and two additional areas based on
established software engineering principles. We will now reflect on the present
state of the art in web programming in light of those five categories. Instead of
revisiting each earlier identified issue in detail, we will provide an overview of
the key changes in the past decade in tabular format, complemented with some
discussion.

4.1 Revisiting the Modularity and Interface Issues

Originally, the most essential modularity issues that we identified were related
to the mixture of procedural and declarative programming style, the mixing
of HTML/CSS/JS code, and the common assumption that development tools
would ultimately solve the problems (instead of somebody actually address-
ing the underlying core issues) [1]. We also lamented the lack of well-defined
interfaces and inadequate information hiding capabilities, as well as the openly
exposed nature of the DOM tree and the source code comprising web pages.

Today, most of the previously identified challenges are still present at the
browser level. For instance, the global nature of the DOM tree has not changed
much, and web development is generally still a mixture of procedural and declara-
tive development styles. However, improvements in the JavaScript/ECMAScript
language as well as the availability of richer, better-designed libraries and frame-
works has changed web development significantly. While in the earlier days the
number of JavaScript libraries was very limited, today there is an extremely
rich library ecosystem available for web development, including the currently
dominant Angular.js and React.js developer ecosystems.

Table 1 presents a condensed evaluation of the main changes related to the
modularity and interface issues that we identified back in 2007 [9]. For each pre-
viously identified issue we provide a short evaluation and comments on whether
the issue has improved or worsened over the years.

4.2 Revisiting the Consistency, Simplicity and Elegance Issues

The second big bucket of challenges in our original Spaghetti paper was related
to consistency, simplicity and elegance issues. One of the most significant obser-
vations back then was that the standards-compatible web browser offered too
many ways to perform the same functions. We also lamented the unstructured
nature of web applications, as well as the general tendency for web developers
to mix different types of technologies, paradigms and development styles.

Table 2 presents a condensed evaluation of the main changes related to the
consistency, simplicity and elegance issues that we identified back in 2007 [9].
For each previously identified issue we provide a short evaluation and comments
on whether the issue has improved or worsened over the years.

30 A. Taivalsaari and T. Mikkonen

Table 1. Modularity and interface issues revisited.

Issue Evaluation Comments

SC#1 Improved Today, developers rarely perform low-level DHTML
programming anymore. Thus, accidental mixing of
programming paradigms is less common. The
programming paradigm (declarative vs. procedural) is
determined largely by the choice of libraries/frameworks
on top of the web browser

SC#2 Improved Today, developers rarely use the low-level DHTML
mechanisms for component placement or event
declarations directly. Thus, accidental mixing of
different types of declarations is less common. Today,
these aspects are driven largely by the choice of
libraries/frameworks on top of the browser

SC#3 Neutral In many ways, dependence on tool and library support
in web development has increased considerably over the
years. Whether this is a good or bad trend is subject to
debate and personal preferences. The availability of
richer and more mature development frameworks has
definitely alleviated many of the issues identified earlier

WD#1 Mostly neutral The number of APIs provided by a
standards-compatible web has increased over the years.
However, the DOM is still the primary communication
interface inside the browser

WD#2 Improved Today, developers rarely perform low-level DHTML
programming anymore. Thus, hard-coded references or
other implementation details are not as exposed as
earlier. The actual improvements are dependent on the
choice of libraries/frameworks on top of the browser

IH#1 Slightly improved The DOM is still an exposed, global data structure. Web
Components ameliorate the issues by providing support
for encapsulation, information hiding and the general
ability to create encapsulated DOM elements. However,
Web Components are not in widespread use yet

IH#2 Neutral The source code of web applications is still as exposed
as earlier. Obfuscation techniques are used commonly
by developers to hide source code

IH#3 Improved JavaScript/ECMAScript language improvements (e.g.,
modules and proper lexical block scoping) that have
improved the situation and reduced the danger of
accidental name clashes

Discussion. In the consistency, simplicity and elegance area, things have gen-
erally been moving in a better direction. That said, today’s web application
developers are faced with an even more overwhelming cornucopia of choices in

Return of the Great Spaghetti Monster 31

Table 2. Consistency, simplicity and elegance issues revisited.

Issue Evaluation Comments

C#1 Worsened The number of programming models offered by a generic web
browser has actually increased over the years. For instance,
the introduction of the WebGL API has made it possible to
perform web rendering using yet another built-in API. Also,
the number of libraries and frameworks has increased
dramatically over the years. Thus, developers are faced with
even more choices and even more ways to perform the same
functions

C#2 Improved Today, developers rarely use the low-level DOM manipulation
operations directly. This has reduced the use of programming
styles that rely on side effects. The actual improvements in
this area are dependent on the choice of libraries/frameworks
on top of the web browser

SE#1 Improved The availability of mature, higher-level libraries and
frameworks has improved the overall quality and structure of
web applications considerably. Again, the actual
improvements in this area are driven mainly by the choice of
libraries/frameworks

SE#2 Improved Today, developers rarely perform low-level DHTML
programming anymore. Thus, accidental mixing of different
types of technologies and paradigms is less common. The
actual improvements in this area are dependent on the choice
of libraries/frameworks on top of the browser

almost all aspects of web development. A great example are the rendering mech-
anisms inside the web browser that we have studied recently in [44]. The basic
observation in that article is that the generic, standards compatible web browser
offers five overlapping rendering models: DHTML, Canvas API, WebGL, SVG
and Web Components. The developers are confronted with various choices also
in choosing communication models, e.g., whether to use Ajax [45], Comet [46],
Server-Sent Events [47], WebSockets [48], WebRTC [49]), or Web Workers [50].

In the broader picture, the deficiencies of the web browser as a software plat-
form have been tackled with an abundance of libraries. As of this writing, there
are more than 1,300 officially listed JavaScript libraries in javascripting.com,
with new ones being introduced nearly on a daily basis. Although many of the
libraries are domain-specific, a lot of them are aimed squarely at solving the
architectural limitations of the web browser, e.g., to provide a consistent set
of manifest interfaces to perform all the programming tasks. Over the years,
JavaScript libraries have evolved from mere convenience function libraries to
full-fledged Model-View-Controller (MVC) frameworks providing extensive UI
component sets, application state management, network communication and
database interfaces, and so on.

32 A. Taivalsaari and T. Mikkonen

4.3 Revisiting the Reusability and Portability Issues

The third bucket of challenges in our original Spaghetti paper was related
to reusability and portability. In our earlier paper we criticized the generally
unstructured nature of web applications that made it difficult to isolate and pack-
age components for reuse. We also lamented the incompatibilities between dif-
ferent browsers and browser versions that made it burdensome to write portable
code that would work across different browsers and browser versions. Further-
more, we noted that the abundance of different libraries and frameworks reduced
the overall portability of developer experience, since development guidelines
and recommended practices for one library were typically different from other
libraries. Table 3 presents a condensed evaluation of the main changes related to
the reusability and portability issues that we identified back in 2007 [9].

Discussion. In the reusability and portability area, things have also been mov-
ing in a better direction, primarily because the richer development frameworks,
the introduction of Web Components and new JavaScript language mechanisms
have encouraged the developers to write considerably more structured code and
components specifically intended for reuse.

However, just like ten years ago, a central problem in web application devel-
opment is browser incompatibility. While browser compatibility has generally
improved significantly over the years, the rapid pace of innovation and constant
introduction of new features has kept browsers pacing each other as browser ven-
dors have prioritized their implementation roadmaps differently. Over the years,
there have also been business and legal reasons for some of the incompatibilities,
such as the intellectual property rights issues in the media codec area. Because of
incompatibilities, developers still often depend on compatibility bridge libraries
such as Modernizr (https://modernizr.com/) that detect missing features in the
underlying browser and fill in the gaps automatically.

4.4 Revisiting the Usability and User Experience Issues

The fourth bucket of challenges in our original Spaghetti paper was related to
usability. In our earlier paper we focused the usability analysis on the impedance
mismatch between traditional desktop applications and the document-oriented,
page-oriented application model introduced by the web browser. We noted that
in web applications user interaction was based primarily on pages and hyper-
links, as opposed to PC applications that supported modern (or at least modern
back then) user interaction features such as direct manipulation, menu-oriented
navigation, and a rich set of interactive graphical widgets.

Table 4 presents a condensed evaluation of the main changes related to the
usability and user experience issues that we identified back in 2007 [9].

Discussion. Overall, the user experience of the web browser has not changed
very much from the page-oriented back-forward-reload metaphor introduced by

https://modernizr.com/

Return of the Great Spaghetti Monster 33

Table 3. Reusability and portability issues revisited.

Issue Evaluation Comments

R#1 Improved Today, developers rarely perform low-level DHTML
programming anymore. Thus, a programming style that
spreads elements of reuse in a spaghetti-like fashion is
less common. Web Components make it possible write
web UI components with proper encapsulation and
information hiding. The actual improvements in this
area are dependent on the choice of
libraries/frameworks on top of the web browser
(including the option to use Web Components)

R#2 Improved Today, developers rarely perform low-level DHTML
programming anymore. Thus, the use of hard-coded
references is significantly less common. The actual
improvements in this area are dependent on the choice
of libraries/frameworks and/or Web Components

P#1 Improved Browser compatibility has improved significantly over
the years. For instance, the event handling capabilities
of Microsoft browsers are now compatible with the
other major web browsers. There are also much better
compatibility test suites available nowadays. Then
again, the rapid introduction of new browser features
and APIs has a tendency to keep browsers somewhat
incompatible with each other, as the browser vendors
struggle to implement all the latest features

P#2 Neutral or
somewhat
worsened

Regarding the portability of developer experience, the
abundance of web technologies has made things even
more challenging for developers, as it is not necessarily
very easy to migrate skills learned with one library
ecosystem to another. For instance, the transition from
Angular.js development to React.js can be demanding.
However, given that the majority of today’s software
developers grew up with web technologies, they are less
burdened by patterns and conventions learned during
the earlier desktop software era

the NCSA Mosaic browser in the early 1990s [51]. Ten years ago, the page-
oriented interaction and navigation model of the web browser seemed like a
throwback to an earlier era. We remarked that the interaction model of the web
browser was reminiscent of the I/O model of the IBM 3270 series terminals of
the 1970s – in both systems the entire display was updated in response to each
successful user-initiated network request. We also lamented the poorly defined
semantics of many of the browser functions and buttons. For instance, semantics
of the ‘back’, ‘stop’ and ‘reload’ buttons were unclear when these features were
used in desktop-style web applications.

34 A. Taivalsaari and T. Mikkonen

Table 4. Usability issues revisited.

Issue Evaluation Comments

U#1 Neutral The page-oriented user interaction model can still be considered
suboptimal for desktop applications. The introduction of more
advanced communication capabilities in the web browser, such as
asynchronous HTTP requests [45] and Server-Sent Events [47],
have alleviated issues considerably, though. More broadly, the
web browser has become such a dominant environment for
applications that our earlier observations are mostly irrelevant
nowadays

U#2 Neutral The semantics of many of the browser buttons and other features
(e.g., the context menus that open up when right-clicking objects
in a desktop browser) are still poorly suited to applications.
However, the web browser has become such a dominant
environment for applications that our earlier observations are
mostly irrelevant nowadays

Even today, it still is not entirely clear to the user what will happen if the user
presses the ‘back’, ‘stop’ or ‘reload’ button during a financial transaction initiated
from a browser-based banking or stock trading application. To avoid potentially
harmful (and expensive) interactions, some web applications explicitly disable
many of the browser’s navigation buttons.

Interestingly, even though the observations that we presented earlier are still
valid today, the usability issues have become mostly irrelevant because of the
dominant role that the web browser and the Software as a Service (SaaS) model
have today. Nowadays, the majority of computer users are so accustomed to
the web browser and its user interface that they rarely miss the features or
conventions of the earlier PC-era desktop applications. Browser-based interaction
has simply become the norm also for desktop applications2. For the average
computer user, the web browser effectively is the application platform now.

It should be noted that the adoption of Single-Page Application (SPA) develop-
ment style [52,53] and its support in popular frameworks such as Angular.js [54]
have improved the overall user experience considerably for those web sites that
wish to behave more like classic desktop applications. Nevertheless, we still think
that a lot of room remains in improving the overall usability of web applications.
Those discussions are beyond the scope of this paper, however.

4.5 Revisiting the Development Style Issues

The fifth and last bucket of challenges in our original Spaghetti paper was related
to development style. We pointed out that the field of web programming bears

2 Even this paper was written using the online tool Overleaf instead of a conventional,
PC-based word processing application such as Microsoft Word.

Return of the Great Spaghetti Monster 35

the imprint of the document-oriented – as opposed to application-oriented –
roots of the Web. The programming capabilities of the Web have largely been
an afterthought – designed originally for relatively simple scripting tasks. For
instance, the JavaScript language was originally created by Brendan Eich in ten
days in May 1995.

In our earlier paper the analysis of development style issues focused primarily
on the differences that arise from the use of dynamic vs. static programming
languages. Ten years ago, the software development landscape was dominated by
statically compiled programming languages such as C, C++ and Java. The use
of interpreted, dynamic programming languages such as Lisp, Scheme, Python
or JavaScript was limited. Today, dynamic languages (especially JavaScript and
Python) have a central role especially in client-side development, driven by the
expectation and need to have much shorter release cycles and the ability to
perform changes in near real time [55].

Table 5 presents a condensed evaluation of the main changes related to the
development style issues that we identified back in 2007 [9].

Table 5. Development style issues revisited.

Issue Evaluation Comments

DS#1 Improved An abundance of tools is available nowadays to ensure the
completeness of web applications. For instance, the earlier
mentioned Flow tool (https://flow.org/) is a static type
checker for JavaScript programs that can also determine the
completeness of applications. Tools such as Webpack module
bundler can also help in packaging applications and make sure
they contain all the necessary components

DS#2 Improved An abundance of tools is available nowadays to support static
verification and static type checking of web applications.
There are also JavaScript language extensions and variants
such as TypeScript that make optional type checking
available with the latest ECMAScript features (https://www.
typescriptlang.org/)

5 Comparing Then and Now – Additional Observations

In our WEBIST conference paper published in 2017, we listed a number of
additional topic areas and web application development issues that were not
covered by our original Spaghetti evaluation framework presented over ten years
earlier. Below we summarize these additional observations and challenges. Some
of these topics arise from the security limitations of the web browser, while other
topics arise from the dramatically faster development cycles that have become
commonplace in the past 5–10 years.

https://flow.org/
https://www.typescriptlang.org/
https://www.typescriptlang.org/

36 A. Taivalsaari and T. Mikkonen

Limited Access to Local Resources or Host Platform Capabilities. Web
documents and applications are run in a sandbox that places significant restric-
tions on the resources and host platform capabilities that the web browser can
access. For instance, access to local files on the machine in which the web browser
is being run is not allowed, apart from reading and writing cookies and using
the localStorage mechanism. While these security restrictions prevent mali-
cious access, they make it difficult to build web applications that utilize local
resources or host platform capabilities. Consequently, the functionality that can
be offered by web applications is still significantly more limited than that of
native applications. In this area things have not changed very much in the past
ten years.

Mobile Computing is Still Dominated by Apps – For Now. During
the original development of the Lively Kernel system in 2006–2008, we were
aiming at making the system run well also on mobile web browsers. Although
the feasibility of running the system on mobile devices was demonstrated [56], in
practice mobile devices and browsers were still so slow those days that no serious
mobile Lively applications could be built. Furthermore, the considerably smaller
screen sizes, different input modalities and limited mobile OS API access made
it difficult to develop and run applications on mobile devices.

The technical reasons for the desktop and mobile app divergence are well
understood nowadays [57,58]. A major contributor to the divergence is the lim-
ited access to the underlying platform capabilities mentioned above. One app-
roach for tackling the shortcomings of the Web as a mobile platform is to use
cross-platform or hybrid app designs [3,59]. In the late 2000s, so called Rich
Internet Application (RIA) platforms such as Adobe AIR, Apache Cordova [60]
(formerly PhoneGap) and Microsoft Silverlight [61] were very popular. RIA sys-
tems were an attempt to bring alternative programming languages and libraries
to the Web in the form of browser plug-in components that each provided a com-
plete, more efficient platform runtime (see [3]). However, just as it was predicted
in [62], the RIA phenomenon turned out to be rather short-lived.

More broadly, it is interesting to note that in the past ten years desktop com-
puting and mobile computing have evolved in entirely different directions. While
personal computers are now driven mostly by the Software as a Service model,
mobile devices are still dominated by native or hybrid apps. This divergence
is unlikely to continue indefinitely. There are already indications that desktop
and mobile operating systems will ultimately converge. For instance, Microsoft’s
latest Windows 10 Mobile operating system represents an attempt to unify Win-
dows application platform across multiple device classes.

Fine-grained Security Model is Still Missing. Compared to traditional
desktop applications, web applications can still be viewed as second-class citizens
that are at the mercy of the classic, one size fits all sandbox security model
of the web browser. This means that decisions about security are determined
primarily by the site (origin) from which the application is loaded, and not by
the specific needs of the application itself. The situation is further complicated by

Return of the Great Spaghetti Monster 37

opportunistic designs and mashware paradigm, where applications are composed
out of data and code available from various web sites [11,63].

Testing of Web Applications is Still Challenging. Related to testing, web
applications are generally so dynamic that it is impossible to know statically –
ahead of application execution – if all the structures that the program depends on
will be available at runtime. While web browsers are designed to be error-tolerant
and will ignore incomplete or missing elements, in some cases the absence of
elements can lead to fatal runtime problems that are impossible to detect before
execution. Furthermore, with scripting languages such as JavaScript applications
can even modify themselves on the fly, and there is no way to statically detect the
possible errors resulting from such modifications. Consequently, web applications
require significantly more testing to make sure that all the possible application
behaviors and paths of execution are covered.

Forgiveness and Error-Tolerance. The web browser and the JavaScript vir-
tual machine have been designed to be extremely permissive and error-tolerant.
As a general principle, errors are not reported unless absolutely necessary. For
instance, spelling errors in JavaScript variable names implicitly result in the cre-
ation of a new variable with the misspelled name. Likewise, minor accidental
syntax errors, such as using square brackets “[]” instead of parentheses “()”,
e.g., in string indexing operation ‘‘String.chatAt()’’, will go unreported and
can lead to problems that are very difficult to trace. While such permissiveness
enables the successful execution of source code that contains spelling errors, this
usually results in other, significantly more difficult errors later in the execution.
When an error is finally reported, the actual problems hides elsewhere in the pro-
gram. Such problems multiply when creating web-based mashups that combine
code from multiple sources and different authors [11,64].

Challenges arising from the forgiving, permissive nature of the web browser
and JavaScript are tackled primarily by tools. However, declarative applications
are not easy to test with present-day tools; they rely on, e.g., test coverage that
has little meaning in a declarative setup. Furthermore, coverage testing has very
little meaning if the application relies extensively on external libraries and mod-
ules. For instance, in a typical Node.js application today, the amount of actual
application code is often marginal compared to the thousands of NPM modules
that the application uses. In such an environment, actual application code may
only consist of a few hundred or thousand lines, while the NPM modules used
by the application contain millions of lines of code from external sources.

Fashion-Driven Development. Over the past years there has been a notable
trend in the library area towards fashion-driven development. By this we refer
to the developers’ tendency to surf on the wave of newest and most dominant
“alpha” frameworks. For instance, the once hugely popular Prototype.js and
JQuery.js libraries are nowadays mostly forgotten, replaced by Knockout.js and
Backbone.js in 2012. Back in 2014, Angular.js was by far the most dominant
alpha framework, while in 2016–2017 it is the React.js + Redux.js ecosystem
that is capturing the majority of developer attention. As witnessed by the some-

38 A. Taivalsaari and T. Mikkonen

what unfortunate recent evolution of the Angular ecosystem, the alpha frame-
works have a tendency to evolve very quickly once they get developers’ attention,
leading into compatibility issues. To make the matters worse, once the next fash-
ionable major framework emerges and hordes of developers start jumping ship
onto the new one, it becomes questionable to what extent one can build long-
lasting business-critical applications and services, e.g., for the medical industry
in which products must commonly have a minimum lifetime of twenty years.
With the present pace of upgrades, the browser and the web server as the run-
time environment would be almost completely replaced by patches, upgrades,
and updates; similarly, most of the libraries would be replaced several times by
newer ones.

Opportunistic Design and Cargo Cult Programming. In web develop-
ment there has historically been a strong tradition of mashup-based development
[11,64]: searching, selecting, pickling, mashing up and gluing together disparate
libraries and pieces of software [63]. Often such development has the characteris-
tics of cargo cult programming3: ritually including code and program structures
that serve no real purpose or that the programmer has chosen to include because
hundreds of other developers have done so – without really understanding why.
While this approach can save a lot of work and open up interesting opportuni-
ties for large-scale code reuse [64,65], this approach does not foster development
of reliable, long-lasting applications, because even the smallest changes in the
constituent components or subsystems – each of which evolves separately and
independently – can break applications [66]. In Node.js development, oppor-
tunistic design is especially common, as the developers often include numerous
NPM modules for convenience, or simply because many their colleagues or other
developers have done so.

6 Reflections and the Road Forward

In striking contrast with the situation twelve years ago, there is now an incred-
ible amount of innovation in the web development area. End user software has
largely migrated to the Web, JavaScript has become one of the most popular pro-
gramming languages in the world, and new libraries and tools have become avail-
able almost on a weekly (if not daily) basis (see, e.g., http://www.javascripting.
com/). The rapid pace of innovation and rather uncontrolled, organic evolution
of the Web have resulted in a situation in which there are numerous ways to
build applications on the Web – many more than most people realize, and also
arguably more than are really needed. This has put the developers in a complex
position in which it is difficult to choose technologies that would be guaranteed
to still be around and supported ten years from now.

While the overall complexity of the web application development scene
has increased, there have been improvements in nearly all the problem areas
that we identified earlier. For instance, as already mentioned, there has finally

3 https://en.wikipedia.org/wiki/Cargo cult programming.

http://www.javascripting.com/
http://www.javascripting.com/
https://en.wikipedia.org/wiki/Cargo_cult_programming

Return of the Great Spaghetti Monster 39

been tremendous progress in ECMAScript (JavaScript) language standardization
[35,36]. Furthermore, newer browsers – in particular Microsoft’s Edge browser4

that has replaced Internet Explorer – are significantly more compatible with
each other than dominant browsers ten years ago. We are confident that simi-
lar compatibility improvements will find eventually their way also to mobile web
browsers that still have more significant feature deviations today (there is a good
overview available at http://mobilehtml5.org/).

In the same vein, Web Components offer hope that well-known (but hith-
erto missing) software engineering principles and practices will eventually find
their way into the web browser, including modularity and the ability to create
higher-level, general-purpose UI components that can be flexibly added to web
applications. Web components are still the “dark horse” in web development –
they are little known to most developers, and it is difficult to place betting odds
on their eventual success. Web components cater to nearly any imaginable use
case but they are especially well-suited to the development of full-fledged web
applications that require an extensible set of GUI widgets.

Looking forward, we predict that the current transition towards the Internet
of Things (IoT) and the Web of Things (WoT) will drive the industry towards
systems that have much better support for interactive development and pro-
gramming. We are moving to the Programmable World Era in which literally all
everyday objects will be connected to the Internet and will have enough comput-
ing, storage and networking capabilities to host a dynamic programming envi-
ronment, thus turning everyday objects remotely programmable [67,68]. Such a
dynamic programming vision is actually very close to one of our central goals
when we started the Lively Kernel system development back at Sun Microsys-
tems Labs in 2006 [8].

For better or worse, everyday objects around us will have more computing
power, storage capacity and network bandwidth than computers that were used
for entire computing departments in the 1970s and 1980s. The availability and
presence of such capabilities will open up tremendous possibilities for entirely
new types of applications and services. Many of the platforms under development
for the IoT domain leverage Node.js, which effectively means that JavaScript may
well become the de facto programming language for IoT applications as well.

The Internet of Things area offers a natural playground for dynamic program-
ming capabilities provided by live object systems such as the Lively Kernel. To
this end, we plan to harness and leverage the Lively environment as a web-based
graphical end-user programming environment for IoT devices, with the goal to
realize the broader Programmable World vision by implementing the same kind
of direct manipulation capabilities that demonstrated earlier. The key difference
is that rather than just making the World Wide Web more lively, we now aim
at making the entire world around us programmable in an effortless and lively
fashion (“Lively Things”) [8].

4 https://www.microsoft.com/en-us/windows/microsoft-edge.

http://mobilehtml5.org/
https://www.microsoft.com/en-us/windows/microsoft-edge

40 A. Taivalsaari and T. Mikkonen

7 Conclusions

The World Wide Web is the most powerful medium for information sharing
in the history of humankind. Somewhat accidentally, the success of the Web
has turned the web browser also into a dominant platform for end-user software.
Today, the Software as a Service (SaaS) model is prevalent on desktop computers,
while traditional installed applications still maintain a stronghold in the mobile
application area.

Over ten years ago, we published a number of papers on the emergence of the
Web as a software platform. We noted that the field of web programming bears
the imprint of the document-oriented – as opposed to application-oriented –
roots of the Web. We pointed out that the programming capabilities of the Web
have largely been an afterthought – designed originally by non-programmers
for relatively simple scripting tasks. We examined the state of the art in web
software development in light of established software engineering principles, and
enumerated issues that plagued web application development at the time. Those
issues reminisced us of the fabled “spaghetti code wars” in the early 1970s.

In this paper, we have revisited our earlier findings and examined the state of
the art in web software development today based on our experiences and learn-
ings from various web development projects in the past twelve years. In almost
all areas and issues that we identified a decade earlier, things have generally been
moving in a better direction. However, at the same time the overall complexity
of the web development landscape has increased considerably, reflecting the vast
amount of innovation and interest in this space.

Furthermore, while there has recently been tremendous progress in
JavaScript language evolution and in improving JavaScript performance, the
majority of innovation has occurred in higher layers parts of the stack (e.g., in
developing more comprehensive and powerful libraries and frameworks), leaving
some of the core issues – such as the overall complexity of the web browser –
still unaddressed.

Looking forward, we believe that interactive, web-based software develop-
ment capabilities will become even more important in the future as the industry
moves towards the Programmable World Era in which everyday objects around
us will become connected and programmable.

References

1. Mikkonen, T., Taivalsaari, A.: Web Applications - Spaghetti Code for the 21st
Century. In: Proceedings of the International Conference on Software Engineering
Research, Management and Applications (SERA 2008, Prague, Czech Republic,
20–22 August 2008), pp. 319–328. IEEE Computer Society (2008)

2. Taivalsaari, A., Mikkonen, T., Ingalls, D., Palacz, K.: Web Browser as an appli-
cation platform. In: 34th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA 2008, Parma, Italy, 3–5 September 2008), pp. 293–
302. IEEE Computer Society (2008)

Return of the Great Spaghetti Monster 41

3. Casteleyn, S., Garrigós, I., Mazón, J.N.: Ten years of rich internet applications: a
systematic mapping study, and beyond. ACM Trans. Web 8(3), 18:1–18:46 (2014)

4. Turner, M., Budgen, D., Brereton, P.: Turning software into a service. Computer
36(10), 38–44 (2003)

5. Petsas, T., Papadogiannakis, A., Polychronakis, M., Markatos, E.P., Karagiannis,
T.: Rise of the planet of the apps: a systematic study of the mobile app ecosystem.
In: Proceedings of the 2013 Internet Measurement Conference, pp. 277–290. ACM
(2013)

6. VisionMobile: Cloud and Desktop Developer Landscape (2016). http://www.
visionmobile.com/product/cloud-and-desktop-developer-landscape/. Accessed 5
Mar 2016

7. Taivalsaari, A., Mikkonen, T., Ingalls, D., Palacz, K.: Web Browser as an Applica-
tion Platform: The Lively Kernel Experience. Technical report, TR-2008-175, Sun
Microsystems Laboratories (2008)

8. Ingalls, D., Felgentreff, T., Hirschfeld, R., Krahn, R., Lincke, J., Röder, M.,
Taivalsaari, A., Mikkonen, T.: A world of active objects for work and play: the
first ten years of lively. In: Proceedings of SPLASH 2016 Onward! Track (Amster-
dam, The Netherlands, 30 October–4 November 2016), pp. 238–249 (2016)

9. Mikkonen, T., Taivalsaari, A.: Web Applications: Spaghetti Code for the 21st Cen-
tury. Technical report TR-2007-166, Sun Microsystems Labs, June 2007

10. Taivalsaari, A., Mikkonen, T.: The web as a software platform: ten years later. In:
WEBIST 2017, Porto, Portugal (2017)

11. Mikkonen, T., Taivalsaari, A.: The Mashware challenge: bridging the gap between
web development and software engineering. In: Proceedings of the FSE/SDP Work-
shop on Future of Software Engineering Research, pp. 245–250. ACM (2010)

12. Dijkstra, E.W.: Letters to the editor: go to statement considered harmful. Com-
mun. ACM 11(3), 147–148 (1968)

13. Dijkstra, E.W.: Programming: from craft to scientific discipline. In: International
Computing Symposium, pp. 23–30 (1977)

14. Hoare, C.: Programming: sorcery or science? IEEE Softw. 1(2), 5 (1984)
15. Corbato, F.: Sensitive Issues in the Design of Multi-Use Systems. Technical report,

DTIC Document (1968)
16. Parnas, D.L.: Information Distribution Aspects of Design Methodology (1971)
17. Dahl, O.J., Dijkstra, E.W., Hoare, C.A.R.: Structured Programming. Academic

Press Ltd., London (1972)
18. Parnas, D.L.: A technique for software module specification with examples. Com-

mun. ACM 15(5), 330–336 (1972)
19. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.

Commun. ACM 15(12), 1053–1058 (1972)
20. Parnas, D.L.: On the design and development of program families. IEEE Trans.

Softw. Eng. 1, 1–9 (1976)
21. Parnas, D.L.: Designing software for ease of extension and contraction. In: Pro-

ceedings of the 3rd International Conference on Software Engineering, pp. 264–277.
IEEE Press (1978)

22. Parnas, D.L., Clements, P.C., Weiss, D.M.: Enhancing reusability with information
hiding. Tutorial Softw. Reusability, 83–90 (1983)

23. Parnas, D.L., Clements, P.C.: A rational design process: how and why to fake it.
IEEE Trans. Softw. Eng. 2, 251–257 (1986)

24. Morris Jr., J.H.: Protection in programming languages. Commun. ACM 16(1),
15–21 (1973)

http://www.visionmobile.com/product/cloud-and-desktop-developer-landscape/
http://www.visionmobile.com/product/cloud-and-desktop-developer-landscape/

42 A. Taivalsaari and T. Mikkonen

25. Morris Jr., J.H.: Types are not sets. In: Proceedings of the 1st Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pp.
120–124. ACM (1973)

26. Liskov, B., Zilles, S.: Programming with abstract data types. In: ACM SIGPLAN
Notices, vol. 9, pp. 50–59. ACM (1974)

27. Liskov, B., Zilles, S.: Specification techniques for data abstractions. In: ACM SIG-
PLAN Notices, vol. 10, pp. 72–87. ACM (1975)

28. Guttag, J.: Abstract data types and the development of data structures. Commun.
ACM 20(6), 396–404 (1977)

29. Zilles, S.N.: Procedural encapsulation: a linguistic protection technique. In: ACM
SIGPLAN Notices, vol. 8, pp. 142–146. ACM (1973)

30. Corbató, F.J.: On building systems that will fail. In: ACM Turing Award Lectures
1990. ACM (2007)

31. MacLennan, B.J.: Principles of Programming Languages: Design, Evaluation, and
Implementation. Oxford University Press, New York (1999)

32. Naur, P., Randell, B.: Software Engineering: Report of a Conference Sponsored by
the NATO Science Committee, Garmisch, Germany, 7–11 October 1968, Brussels,
Scientific Affairs Division, NATO (1969)

33. McIlroy, M.D., Buxton, J., Naur, P., Randell, B.: Mass-produced software compo-
nents. In: Proceedings of the 1st International Conference on Software Engineering,
Garmisch Pattenkirchen, Germany, pp. 88–98 (1968)

34. Bouzid, A., Rennyson, D.: The Art of SaaS: A Primer on the Fundamentals of
Building and Running a Successful SaaS Business. Xlibris (2015)

35. ECMAInternational: ECMAScript 2015 Language Specification, Standard ECMA-
262, 6th Edn., June 2015. http://www.ecma-international.org/ecma-262/6.0/.
Accessed 22 Feb 2017

36. ECMAInternational: ECMAScript 2016 Language Specification, Standard ECMA-
262, 7th Edn., June 2016. http://www.ecma-international.org/ecma-262/7.0/.
Accessed 22 Feb 2017

37. Lautamäki, J., Nieminen, A., Koskinen, J., Aho, T., Mikkonen, T., Englund, M.:
CoRED: browser-based collaborative real-time editor for Java web applications.
In: Proceedings of the ACM 2012 Conference on Computer Supported Cooperative
Work, pp. 1307–1316. ACM (2012)

38. Lupfer, N., Kerne, A., Webb, A.M., Linder, R.: Patterns of free-form curation:
visual thinking with web content. In: Proceedings of the 2016 ACM on Multimedia
Conference (MM 2016, Amsterdam, The Netherlands, 15–19 October 2016), pp.
12–21 (2016)

39. Wagner, J.L.: Web Performance in Action: Building Fast Web Pages. Manning
(2016)

40. Leppänen, M., Mäkinen, S., Pagels, M., Eloranta, V.P., Itkonen, J., Mäntylä, M.V.,
Männistö, T.: The highways and country roads to continuous deployment. IEEE
Softw. 32(2), 64–72 (2015)

41. Debois, P.: DevOps: a software revolution in the making. J. Inf. Technol. Manag.
24(8), 3–39 (2011)

42. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “Stairway to Heaven” - a
multiple-case study exploring barriers in the transition from agile development
towards continuous deployment of software. In: 2012 38th EUROMICRO Confer-
ence on Software Engineering and Advanced Applications (SEAA), pp. 392–399.
IEEE (2012)

43. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda.
J. Syst. Softw. 123, 176–189 (2017)

http://www.ecma-international.org/ecma-262/6.0/
http://www.ecma-international.org/ecma-262/7.0/

Return of the Great Spaghetti Monster 43

44. Taivalsaari, A., Mikkonen, T., Pautasso, C., Systä, K.: Comparing the built-in
application architecture models in the web browser. In: 2017 IEEE International
Conference on Software Architecture (ICSA), pp. 51–54. IEEE (2017)

45. Garrett, J.J.: Ajax: A New Approach to Web Applications, 18 February 2005.
http://adaptivepath.org/ideas/ajax-new-approach-web-applications/

46. Crane, D., McCarthy, P.: What Are Comet and Reverse Ajax? Springer (2009)
47. Hickson, I.: Server-Sent Events. W3C Recommendation 03 February 2015 (2015).

http://www.w3.org/TR/eventsource/
48. Pimentel, V., Nickerson, B.G.: Communicating and displaying real-time data with

websocket. IEEE Int. Comput. 16(4), 45–53 (2012)
49. Bergkvist, A., Burnett, D.C., Jennings, C., Narayanan, A.: WebRTC 1.0: Real-time

Communication Between Browsers. Working draft, W3C (2012)
50. W3C: W3C Schools - HTML Web Workers Example. http://www.w3schools.com/

html/html5 webworkers.asp
51. Darken, R.: Breaking the mosaic mold. IEEE Int. Comput. 2(3), 97 (1998)
52. Mesbah, A., Van Deursen, A.: Migrating multi-page web applications to single-

page Ajax interfaces. In: 11th European Conference on Software Maintenance and
Reengineering CSMR 2007, pp. 181–190. IEEE (2007)

53. Mikowski, M.S., Powell, J.C.: Single Page Web Applications: JavaScript End-to-
End. Manning, Shelter Island (2013)

54. Jadhav, M.A., Sawant, B.R., Deshmukh, A.: Single page application using Angu-
larJS. Int. J. Comput. Sci. Inf. Technol. 6(3), 2876–2879 (2015)

55. Poulson, L.D.: Developers shift to dynamic programming languages. IEEE Com-
put. 40(2), 12–15 (2007)

56. Mikkonen, T., Taivalsaari, A.: Creating a mobile web application platform: the
lively kernel experiences. In: Proceedings of the 24th ACM Symposium on Applied
Computing (SAC 2009), Proceedings, vol. 3, pp. 177–184 (2009)

57. Charland, A., Leroux, B.: Mobile application development: web vs. native. Com-
mun. ACM 54(5), 49–53 (2011)

58. Joorabchi, M.E., Mesbah, A., Kruchten, P.: Real challenges in mobile app develop-
ment. In: ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, pp. 15–24. IEEE (2013)

59. Dalmasso, I., Datta, S.K., Bonnet, C., Nikaein, N.: Survey, comparison and eval-
uation of cross platform mobile application development tools. In: 2013 9th Inter-
national Wireless Communications and Mobile Computing Conference (IWCMC),
pp. 323–328. IEEE (2013)

60. Wargo, J.M.: Apache Cordova 4 Programming. Pearson Education (2015)
61. Moroney, L.: Microsoft Silverlight 4 Step by Step. Microsoft Press, Redmond (2010)
62. Taivalsaari, A., Mikkonen, T.: The web as an application platform: the saga contin-

ues. In: 37th Euromicro Conference on Software Engineering and Advanced Appli-
cations (SEAA 2011, Oulu, Finland, 30 August–2 September 2011), pp. 170–174.
IEEE Computer Society (2011)

63. Hartmann, B., Doorley, S., Klemmer, S.R.: Hacking, mashing, gluing: understand-
ing opportunistic design. IEEE Pervasive Comput. 7(3), 46–54 (2008)

64. Taivalsaari, A., Mikkonen, T.: Mashups and modularity: towards secure and
reusable web applications. In: 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering-Workshops, ASE Workshops 2008, pp. 25–33.
IEEE (2008)

65. Salminen, A., Mikkonen, T.: Mashups: software ecosystems for the web era. In:
IWSECO@ICSOB (International Conference on Software Business), pp. 18–32
(2012)

http://adaptivepath.org/ideas/ajax-new-approach-web-applications/
http://www.w3.org/TR/eventsource/
http://www.w3schools.com/html/html5_webworkers.asp
http://www.w3schools.com/html/html5_webworkers.asp

44 A. Taivalsaari and T. Mikkonen

66. Salminen, A., Mikkonen, T., Nyrhinen, F., Taivalsaari, A.: Developing client-side
mashups: experiences, guidelines and the road ahead. In: Proceedings of 14th
International Academic MindTrek Conference: Envisioning Future Media Envi-
ronments, pp. 161–168. ACM (2010)

67. Wasik, B.: In the Programmable World, All Our Objects Will Act as One. Wired,
p. 462, May 2013

68. Taivalsaari, A., Mikkonen, T.: Roadmap to the programmable world: software chal-
lenges in the IoT era. IEEE Softw. 34(1), 72–80 (2017)

Web Platform Assessment Tools:
An Experimental Evaluation

Solange Paz1 and Jorge Bernardino1,2(&)

1 Polytechnic of Coimbra, ISEC,
Rua Pedro Nunes, Quinta da Nora, 3030-190 Coimbra, Portugal

a21230164@alunos.isec.pt, jorge@isec.pt
2 Centre of Informatics and Systems, University of Coimbra,

Pinhal de Marrocos, 3030-290 Coimbra, Portugal

Abstract. Web search engines are used daily to find information, helping the
user to surf the web. Web searching is the most popular online activity and
although search engines regularly use updated indexes to run quickly and effi-
ciently, they sometimes fail to keep the user on their page for a long time. As
such, it is important to have the lowest delay in response time. Therefore, it is
essential to understand what load is supported by each search engine by con-
ducting load testing. These tests have the objective of optimizing the perfor-
mance of the application being tested, thus verifying the maximum amount of
data that is processed. In this paper we conduct a comparative analysis of the
four most popular web platform assessment tools, Apache JMeter, Apache
Flood, The Grinder and Gatling. As important as the search engine response
time is the accuracy of returned results, that is, the amount of correct links
related to what was searched for. For that reason, the accuracy of results returned
by web search engines are also evaluated. In the experimental evaluation we use
two tools: Apache jMeter and The Grinder, to compare with the web search
engines: Google, Bing, Ask and Aol Search.

Keywords: Web assessment tools � Load testing � Performance tests
Results accuracy

1 Introduction

Web searching is the most popular online activity and web search engines are used
daily helping the user to surf the web. People around the world access web search
engines frequently to obtain links for the information they are looking for. The speed in
returning a response to the user as well as the accuracy of returned results are very
important, because although there are almost imperceptible differences in response
time, users are aware of these faults and could get frustrated. In the event of a high
response time from a web search engine, users tend to abandon their search. On the
other hand, a faster search engine creates a better usability experience for the user. For
this reason, it is important that the response time of a search engine is the lowest
possible. To understand the maximum load supported by a search engine it is necessary
to conduct performance tests, which focus exclusively on efficiency and reliability.

© Springer International Publishing AG, part of Springer Nature 2018
T. A. Majchrzak et al. (Eds.): WEBIST 2017, LNBIP 322, pp. 45–63, 2018.
https://doi.org/10.1007/978-3-319-93527-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93527-0_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93527-0_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93527-0_3&domain=pdf

Thus, the performance test evaluates the behaviour of an application when it is sub-
mitted to a workload, that is, when it has several users interacting simultaneously with
the application. The results of these tests reveal application sites where resources are
being wasted or used inefficiently.

The development process of software includes a variety of activities where the
probability of occurring errors is enormous. Therefore, software testing is critical to
ensure the quality of product functionality, and as a final revision of its specification,
design and code.

When performing tests during software development value is added to the product,
as a test conducted correctly uncovers bugs that must be corrected before release to
improve quality and reliability of a system.

Despite the great importance of these tests, sometimes they aren’t executed for the
reason that testing is a costly activity within development.

Depending on what system is being developed testing can be responsible for more
than 50% of the costs [19]. Load tests are normally performed to identify the behaviour
of a system subjected to a specific expected load, which can be a number of simul-
taneous expected users, the number of transactions per hour or a number of transactions
made on system currently in test. These type of tests are ideal to verify if the appli-
cation, server or database being tested remains stable during its usual workload. Load
tests help to identify the maximum capacity of an application as well as any impedi-
ments that can interfere with its operation in terms of capacity.

There are a variety of testing tools in the market with different features and
functionalities. The main purpose of all these tools is to simulate users accessing a
particular application and later record the response time of the same, providing in most
cases several formats of visualization of the response time. In this work we compare
four of the most popular tools [24]: Apache JMeter; Apache Flood; The Grinder and
Gatling. The tools are compared in terms of functionality, usability and performance.
This comparison helps the selection of the best tool and it promotes the use of software
testing tools.

Nowadays the content of a website is important as well as the speed at which it
responds. Companies focus on improving the capability of a website’s response to
avoid losing users. To conduct a realistic evaluation of the tools, four popular web
search engines are tested in terms of performance and accuracy of returned results:
Google, Bing, Ask, and Aol Search. The experimental evaluation consisted in simu-
lating the access of several users to the search engines, with searches with different
number of words. Two test tools were used: Apache jMeter and The Grinder to cal-
culate the elapsed time of the results.

As important as the search engine response time is the accuracy of returned results,
that is, the amount of correct links related to what was searched for. For that reason, the
accuracy of results returned by web search engines are also evaluated. The accuracy
assessment involved the search of five questions in each of the search engines. We have
registered the total number of links with correct information according to the search
and selected the search engine that returns the highest number of correct links.

This paper is an extended version of the article titled “Comparative Analysis of
Web Platform Assessment Tools” presented at the 13th Conference on Web Infor-
mation Systems and Technologies [18]. It improves and complements the former in the

46 S. Paz and J. Bernardino

following aspects: the performance evaluation tests used two tools, Apache jMeter and
The Grinder, and not only one; in the experimental evaluation we used two, three and
four search words; and Google, Bing, Ask, and Aol Search are compared in terms of
the accuracy of the results returned.

The rest of this paper is structured as follows. Section 2 presents a literature review
on loading testing and Sect. 3 describes the various types of performance tests. Sec-
tion 4 describes the four testing tools, and Sect. 5 the qualitative and quantitative
analysis of these tools. Section 6 presents the performance tests performed on each web
search engine. Section 7 presents the experimental evaluation of the accuracy of each
web search engine. Finally, Sect. 8 states the conclusions and proposes some future
work.

2 Related Work

Web applications are ubiquitous and need to deal with a large number of users. Due to
their exposure to end users, especially customers, web applications have to be fast and
reliable, as well as up-to-date. However, delays during the usage of the Internet are
common and have been the focus of interest in different studies [12, 17].

Load testing is thus an important practice for making sure a web site meets those
demands and for optimizing its different components [9].

The goal of a load test is to uncover functional and performance problems under
load. Functional problems are often bugs which do not emerge during the functional
testing process. Deadlocks and memory management bugs are examples of functional
problems under load. Performance problems often refer to issues like high response
time or low throughput under load. The first conference about testing software was
organized in 1972, at Chapel Hill, where the works presented at the conference
defended that performing tests is not the same as programming [15].

The existing load testing research mainly focuses on automatic generation of load
test suites [1–3, 11, 14, 25]. There is limited work, which proposes the systematic
analysis of the results of a load test to uncover potential problems. Unfortunately,
looking for problems in a load test is a timeconsuming and difficult task. The work [27]
flags possible functional problems by mining the execution logs of a load test to
uncover dominant execution patterns and to automatically flag functional deviations
from this pattern within a test.

In [28] the authors introduce an approach that automatically flags possible per-
formance problems in a load test. They cannot derive the dominant performance
behavior from just one load test, since the load is not constant. A typical workload
usually consists of periods simulating peak usage and periods simulating off-hours
usage. The same workload is usually applied across load tests, so that the results of
prior load tests are used as an informal baseline and compared against the current run.
If the current run has scenarios which follow a different response time distribution than
the baseline, this run is probably troublesome and worth investigating.

The authors of [7] introduced a new integrated automation structure by Selenium
and Jmeter. This structure shares the test data and steps, which is useful for switching in
several kinds of tests for web applications. With the use of this software structure one

Web Platform Assessment Tools: An Experimental Evaluation 47

can improve extensibility and reuse of the tests, as well as the product quality. This
work describes how to design the tests automation based in web details.

In [26] the authors proposed a usage model and a load model to simulate user
behaviors which help generate a realistic load to the web application load test. They
implemented a tool known as “Load Testing Automation Framework” for web appli-
cations load test. The tool is based in the two models mentioned above.

There are not many scientific works dedicated to the comparison of evaluation tools
of web platforms. However, in [16] it is used four testing tools: Apache JMeter, HP
LoadRunner, WebLOAD and The Grinder, with the objective of comparing these tools
and identify which one is the most efficient. In the comparison the parameters used are
cost, the load limit and the ease of use. The best tool of the comparison was jMeter,
since it’s free, has a huge ability to simulate load and its interface is easy to use.

In [22] are described three open source tools (jMeter, soapUI, and Storm) and
compared them in terms of functionalities, usability, performance and software
requirements. This work concludes that jMeter is the tool that takes longer to respond
to the tests, compared to the other two tools.

Khan [21] compares the Apache jMeter and HP LoadRunner tools in terms of
performance and concludes that the best one is Apache jMeter. Selecting this tool as the
best derived from the ease of installation, and ease of learning how to use.

Unlike previous papers, besides a comparison between four web platforms evalu-
ation tools: Apache jMeter, Apache Flood, The Grinder and Gatling, in our work it is
also performed an evaluation of four search engines: Google, Bing, Ask and Aol search
relatively to its performance and the accuracy of results.

3 Performance Testing Types

Performance testing is important to analyze and monitor the performance of web
applications. Performance testing verify the response time of an application, thus
determining its scalability and reliability. This is also used to identify the critical
bottleneck of a system, or gather other information as the hardware needed for the
operation of the application.

Before going to market, the software system must be tested against speed, stability
and scalability under a variety of load conditions. If the system is to be sold without
performance testing, it can cause problems as the system slows down when it is
accessed by multiple users simultaneously, which affects directly the reputation of the
company and the expected sales goal.

There are several performance tests used to measure the performance of a system
when it is subjected to a certain workload [6]. Table 1 describes the most common
types of performance tests. According to the information in Table 1, performance tests
are divided in six types: Load testing; Stress testing; Volume testing; Endurance
testing; Spike testing e Scalability testing. All these kind of test aim at evaluating the
performance of a certain system to test. For that end, loads are applied in the system in
different ways.

48 S. Paz and J. Bernardino

4 Evaluated Tools

There are several tools available on the market, some of them free, while others are
paid. From all the existing tools, four were selected which are considered the most
popular and for its ability to measure web applications performance and its proficiency
after a load test [25]. We will evaluate the following tools:

• Apache JMeter (http://jmeter.apache.org/)
• Apache Flood (https://httpd.apache.org/test/flood/)
• The Grinder (http://grinder.sourceforge.net/)
• Gatling (http://gatling.io/)

To understand which tool satisfies our needs, additional detailed information is
required about each tool. To synthesize that information, a comparative study was
carried out between the four tools. For the accomplishment of this study was necessary
to evaluate the functionalities provided by the tools, its documentation and existing
usage examples. It was also necessary to install each tool to ensure knowledge of its
operation details. Throughout the next sections, four testing tools will be presented:
Apache jMeter, Apache Flood, The Grinder and Gatling.

4.1 Apache jMeter

Apache jMeter [5] was designed to test functional load behavior, that is, to correctly
simulate users and measure the applications performance. It can be used to test per-
formance both in static resources as in dynamic resources (files, databases, server), to
simulate a heavy server/group load, test the load limit supported by the server, or
analyzing the overall performance under different kinds of load.

This tool simulates software usage by virtual users and simulates its web access
simultaneously, generating data to delimit how many users manages to withstand before
being cast away by its users. That is, Apache jMeter tests whether the expected number
of users will be met within the timeframe described in the software requirements.

Table 1. Performance testing types.

Type Description

Load testing Load testing refers to placing a load on the system and analyze its
performance

Stress testing Stress testing refers to a large number of inputs, making numerous,
concurrent attempts to access a single web site

Volume
testing

Refers to testing with a certain amount of load volume

Endurance
testing

Refers to placing a load on a system over a certain time period and check its
performance

Spike testing Refers to the use of a sudden increase of load and analyze if the system
behavior degrades or cope with the load changes

Scalability
testing

Refers to the system capacity working under the expected load

Web Platform Assessment Tools: An Experimental Evaluation 49

http://jmeter.apache.org/
https://httpd.apache.org/test/flood/
http://grinder.sourceforge.net/
http://gatling.io/

For the fulfillment of tests, Apache jMeter provides several kinds of requests and
assertions, which authenticate the result of requests, besides that it also possesses logic
controllers, such as cycles, and additional controllers to be used in the construction of
test plans. Thread controls (virtual users) are also made available by this tool, desig-
nated as thread group, where it is possible to set the number of threads, the amount of
times each thread is executed and the timeframe between each execution, all this assists
in conducting stress tests. In the end, several listeners exist (tree, tables, graphs and log
file), that based in the request results or in the assertions, can be used to generate graphs
or tables results. One example of the results of a test in the form of a table are shown in
Fig. 1.

Apache jMeter initially works with the user sending a request to the destination
server. Apache jMeter then receives the useful information from the destination server
and provides the user with the results in different formats. The main features of Apache
jMeter are:

• Can run on any operating system, since it is an application developed in JAVA;
• Supports HTTP, SMTP, POP3, LDAP, JDBC, FTP, JMS, SOAP and TCP

protocols;
• Has multiple built-in and external listeners to view and analyze performance test

results;
• Integration with major configurations and continuous integration systems is

possible.

In summary, Apache jMeter is a tool that behaves completely in performing tests,
since it supports static and dynamic resources, as well as several protocols from HTTP
to TCP. It can even be used by any machine since it can run on any operating system.
The fact of supporting distributed testing facilitates the simulation of a larger load,
since each test runs on different machines.

Fig. 1. Example of a test in Apache jMeter.

50 S. Paz and J. Bernardino

4.2 Apache Flood

Apache Flood [4] can be used to collect performance metrics that are important for a
given website, such as the time to submit an order or the time to receive a complete
response.

It has a modular architecture where we can easily add new resources, designing
frameworks through a support library and defining actions and behaviors for them. It is
capable of generating large amounts of web traffic and of working well with dynamic
content, being possible to simulate multiple, different and complex users, since a user
can make a request to a more complete web page.

All tests are called with a standard interface and at the end transaction reports are
collected with statistics of each HTTP transaction about the latency time, response
time, idle time, and TCP Handshake time. A test example with Apache Flood is shown
in Fig. 2.

With Apache Flood it is possible to run several tests in parallel and two options are
provided for this execution: Threaded and Forked. These two methods can be used
simultaneously, allowing to maximize the performance of each test. In threaded exe-
cution, the process is instructed to perform several user-space threads, each of which
will execute a chain of complex events. When a Forked run is performed, the process is
instructed to make multiple copies of itself using the fork() command.

Apache Flood makes it possible to perform distributed tests through access to
several remote machines. It is possible to invoke a remote instance with both RSH and
SSH.

The main features of Apache Flood are:

• Works with a global standard in security technology (SSL);
• Has an XML-based configuration;

Fig. 2. Test Plan using Apache Flood [18].

Web Platform Assessment Tools: An Experimental Evaluation 51

• Simulator of users and multiple users simultaneously;
• Simulator of several different users, that is, each with different arrival times.

Overall, Apache Flood is a little complex tool, since its configuration is only based
on XML and works only with SSL. Besides that, it has little documentation, which
makes it difficult to use.

4.3 The Grinder

The Grinder [23] is a load testing platform, developed in JAVA that makes it easy to
run a distributed test. That is, it is possible to simultaneously use several machines to
perform parallel tests, controlling all execution from a main machine, where we can
generate various analyzes of the generated data, with tables and graphs. Each load to be
monitored and controlled is visualized through a graphic console. It allows see how the
application behaves under a heavy load, subsequently determining all weaknesses of
the application in order to optimize them. The Grinder comes with a plugin for HTTP
testing services as well as a tool that allows HTTP scripts to be automatically recorded.

The Grinder consists of agents, which initiate the number of load processes equal to
the number configured by the user; by workers, who execute the load test scripts; by a
console that is the graphical interface used to control the agents and to display the
statistics collected by the workers and by TCP proxy that interposes between the
browser and the destination server and can be used to create scripts by registering the
activity of the browser, which can later be executed by work processes. Results of a
test, in the form of a table, are presented in Fig. 3.

The Grinder’s main features are:

• Uses a TCP proxy to record network activity in the test script;
• It is possible to perform distributed tests that adapt with the increase of the number

of users;
• Using Python or Closure with any Java API allows creation or modification of

better test scripts;
• Post-processing with full access to the results of the correlation and content veri-

fication tests;
• Supports multiple protocols: SOAP, XML-RPC, IIOP, RMI/IIOP, RMI/JRMP,

JMS, POP3, SMTP, FTP and LDAP.

Fig. 3. Result of a test using The Grinder.

52 S. Paz and J. Bernardino

Briefly, The Grinder is a tool that supports several protocols, from SOAP to
LDAP. This allows the exchange of structured information on a decentralized and
distributed platform to be carried out in several ways, some faster and more efficient
than others. Besides, it is highlighted in its reports that allows an easy analysis of the
test results, since they can be presented from tables to graphs.

4.4 Gatling

Gatling [8] was designed to be used with load testing, analyzing and measuring the
performance of a variety of services, focusing on web applications, defending ease of
use, maintenance and high performance. Gatling is written in Scala that comes with an
interesting premise of always treating our performance tests as production code,
meaning we can write code directly in the application. It is a very useful tool when we
want to simulate a large number of users, since they do not all arrive at the same time
and Gatling has an option (ramp) to implement this behavior, where the ramp value
indicates the duration during which the users are started linearly, that is, they are
always started for a fixed number of seconds. It also allows to simulate various types of
users and even all these users using the application simultaneously.

Basically the Gatling structure can be defined in four different parts: (i) configura-
tion of the HTTP protocol, where it is possible to define the base url to be tested;
(ii) definition of headers, which makes it possible to add a bit of load through them to
the server; (iii) definition of the scenario, which constitutes the core of the test, where a
set of actions is performed to simulate a user interaction with the application and
(iv) simulation definition, where is defined the load that will be executed over a period
of time.

Gatling provides a diverse form of representation of results, as shown in Fig. 4.

Fig. 4. Result of test using Gatling.

Web Platform Assessment Tools: An Experimental Evaluation 53

The main characteristics of Gatling are:

• Easy integration with Jenkins through the jenkins-plugin and can also be integrated
with other continuous integration tools. This allows constant feedback from per-
formance tests;

• Allows to easily run the tests through Maven to Gradle with the help of maven-
plugin and gradle-plugin;

• Full HTTP protocol support and can also be used for JDBC and JMS load tests;
• Has multiple input sources for data-driven testing.

In summary, Gatling stands out for the elegant reports it provides, as well as for the
documentation it has about the operation of the application. It also has a very intuitive
interface. The fact that its structure has the possibility of being defined in four different
parts, allows the addition of charge even in headers.

5 Comparison of Web Platform Testing Tools

In this section we present a comparison of the four web platform test tools, and then a
discussion of the results. This comparison is useful for users to choose the testing tool
best suited to their needs. The comparison of the tools is divided into two analyses:
qualitative and quantitative.

5.1 Qualitative Analysis

In order to perform the qualitative analysis, only the most relevant characteristics were
considered and, after the use of each of the tools, each one of its characteristics was
described. The characteristics analysed are: Open Source, Report view mode, Test
language, Test recorder, and Distributed testing. Table 2 shows the qualitative analysis
of the four tools.

Table 2. Qualitative analysis.

Characteristics Tools
Apache jMeter Apache Flood The Grinder Gatling

Open source Yes Yes Yes Yes
Report view
mode

CSV, XML,
Embed. Tables,
Graphic,
Plugins

CSV, XML,
Embed. Tables,
Graphic,
Plugins

CSV, XML,
Embed. Tables,
Graphic,
Plugins

CSV, XML,
Embed. Tables,
Graphic,
Plugins

Test language XML XML XML XML
Test Recorder HTTP HTTP HTTP HTTP
Distributed
Testing

Supports
multiple
machines to be
controlled by a
single instance
to run

Supports
multiple
machines to be
controlled by a
single instance
to run

Supports
multiple
machines to be
controlled by a
single instance
to run

Supports
multiple
machines to be
controlled by a
single instance
to run

54 S. Paz and J. Bernardino

In this analysis the Apache jMeter tool stands out as being the best one, since it has
more visualization modes than the other tools. Regarding distributed testing this tool is
also better, since it allows the use of multiple machines to be controlled by a single
instance for execution.

5.2 Quantitative Analysis

In order to perform the quantitative analysis, only the most relevant characteristics were
considered: ease of use, graphics complexity, interface, quality of documentation
presented, easily editing scripts, and ease of interpretation of reports. After each tool
use, each one of its characteristics was evaluated on a scale from zero (very bad) to ten
(excellent). Then the individual scores of each feature of the respective tools were
added, resulting in their final score.

In Table 3 the quantitative analysis of the four tools is performed.

The final scores obtained by the Apache jMeter, Apache Flood, The Grinder and
Gatling were respectively: 55, 16, 40, and 35 points.

The jMeter tool was considered to have a better ease of use, since it has an intuitive
interface and a lot of documentation about its use. In turn, Apache Flood was the tool
with a lower ease of use, since it does not have an interface, nor does it have docu-
mentation about its operation. Regarding the ease of editing scripts, the jMeter tool is
the “winner”, since it is not necessary to write direct code to perform editing. The more
complex graphs of jMeter lead to the production of more detailed reports with a high
ease of interpretation.

The tool with the lowest score was Apache Flood, since it had a negative score in
practically all analyzed characteristics. With regard to the best score, this was attributed
to the jMeter tool, since it stood out positively in all the characteristics, never obtaining
a score inferior to 8.

Table 3. Quantitative analysis [18].

Characteristics Tools
Apache jMeter Apache Flood The Grinder Gatling

Ease of use 10 4 6 5
Graphics complexity 8 0 7 6
Interface 9 2 8 7
Quality of documentation presented 10 2 8 6
Easily editing scripts 10 3 7 6
Ease of interpretation of reports 8 5 4 3
Final score 55 16 40 35

Web Platform Assessment Tools: An Experimental Evaluation 55

5.3 Discussion of the Results

After enumeration and analysis of the four test platforms, it was necessary to choose
the ones that would allow easy learning, be simple to handle, be able to simulate
several users on the website, send requests to the server, support distributed testing and
generate reports in CSV. That is, it was necessary to select a tool that pleases the user in
all its aspects, from its use, to the results visualization. So, the selected tools were
Apache jMeter and The Grinder. Apache jMeter stands out positively in relation to the
mentioned characteristics and have a good documentation in its own website that
originates a good learning of use is evidenced by the examples that it has in the most
diverse tasks that allow to create test scripts in a simplified way.

The fact that jMeter supports distributed testing, with multiple machines simulta-
neously being controlled by a single running instance allows test scripts with a small
number of users to run on multiple machines. Thus it is possible to simulate a greater
number of users in the same time interval, thus avoiding long execution times for the
various tests performed.

The second best tool selected was The Grinder, as it stands out in its user-friendly
interface and documentation. It is also possible to construct more complex test plans,
since they are written with code and not created through the tool console.

6 Performance Testing with Web Search Engines

Performance testing is performed to evaluate the performance of components of a
particular system under a particular workload. During this testing, system components
are monitored to verify the stability of the system under test. Performance Testing is the
type of Non-Functional Testing. It strives to build performance standards into the
implementation, design and architecture of a system.

The speed of a website is as important today as its content, because unconsciously
no one likes to wait, so every millisecond matters a lot in response time. Smartphones,
tablets and other portable devices are creating more and more web traffic simultane-
ously, since countless people download videos, news or use social networks. Therefore,
there is a huge competition not through the content that each website has, but because
of its responsiveness. Certainly the most visited is the one that will respond faster.
Google engineers have revealed that users are starting to get frustrated with a website
after waiting only 400 ms [13], this almost imperceptible delay causes users to look for
other websites.

According to [20] we select the top five web search engines: Google, Bing, Yahoo,
Ask and Aol Search. Of these five, Yahoo was excluded, and the others were compared
in terms of performance to the remaining search engines by using the jMeter tool.
Yahoo was removed from the comparison, since whenever users were simulated to
access it, an error was returned with code 999 (unable to process request at this time).
This error occurs when there is a large number of requests originating from the
computer that is being used to perform the tests. Yahoo generates error code 999, to
protect its servers, denying access to its webpage [10].

56 S. Paz and J. Bernardino

In order to perform the tests, we used the two best tools, Apache jMeter and The
Grinder, respectively, so we could check if there were differences between the results
returned by each of the tools. The test case consisted of adding more words in the
search as well as gradually increase the number of users in each web search engine.
Thus, searches were done with the words “Apache jMeter”, “Apache jMeter Gatling”
and “Apache jMeter Gatling Grinder”.

In the experiments we simulate 10, 100, and 1000 users accessing the web poage.
All users were simulated coming to the search engines every 5 s, since they always
have countless people accessing their web pages. Only 10 users were initially simulated
to understand how each search engine behaved with a minimum load. This number has
been increasing to an average load with 100 users and to a high load with 1000 users.
Since 1000 users already experienced errors in simulating users, this number was no
longer increased.

For testing the web search engines, we evaluate two metrics:

– Elapsed time: it encompasses the time from the time the request was formulated,
until its response was obtained.

– Message size in bytes: it incorporates the size of customer requests for server and
server responses to the client.

Each test case was repeated ten times and only the arithmetic mean of the results
obtained are presented in Tables 4, 5 and 6. We also computed the latency time (it only
includes the time from when the request was formulated until the first part of the
response was obtained) but the results are similar to elapsed time and due to space
limits they are not shown.

Table 4. Elapsed time tests performed with Apache jMeter.

Search Engine Elapsed Time (ms)
2 words 3 words 4 words

10 users Google 396 378 2,080
Bing 575 1,569 4,067
Ask 802 3,009 3,109
Aol Search 441 1,060 1,060

100 users Google 443 350 1,125
Bing 2,201 2,853 1,167
Ask 1,171 24,318 24,318
Aol Search 731 13,108 13,108

1000 users Google 11,525 12,835 16,166
Bing 43,354 60,242 81,904
Ask 20,225 28,951 30,327
Aol Search 19,776 12,510 12,907

Web Platform Assessment Tools: An Experimental Evaluation 57

6.1 Results with the Apache jMeter

In this section we present and analyze the results of the tests performed with the best
tool, Apache jMeter. The results refer to tests with two, three and four search words.

According to the results presented in Table 4, the search engine that takes less time
to obtain the response since the request was made is Google, searching 2 words. So it
responds quickly to its users, avoiding waiting queues, because with 10 and 100 users
the elapsed values are less than 450 s. When the load is increased to 1000 users, it also
increases the elapsed time. In this case it is possible that some users wait longer than
others to obtain the response to their request.

Table 5. Message size with Apache jMeter.

Search Engine Message size (bytes)
2 words 3 words 4 words

10 users Google 40,686 40,817 41,982
Bing 91,820 93,013 93,626
Ask 71,390 134,936 104,704
Aol Search 48,417 40,407 40,212

100 users Google 40,656 40,810 41,986
Bing 91,932 93,156 93,774
Ask 71,411 134,885 101,708
Aol Search 48,417 40,405 40,212

1000 users Google 40,623 40,869 41,801
Bing 91,495 92,853 102,12
Ask 35,804 87,902 85,926
Aol Search 48,417 40,404 40,546

Table 6. Elapsed time tests performed with The Grinder.

Search engine Elapsed Time (ms)
2 words 3 words 4 words

10 users Google 420 505 653
Bing 2,000 2,100 3,450
Ask 5,400 6,100 7,880
Aol Search 245 328 2,210

100 users Google 560 682 1,980
Bing 2,300 3,400 4,600
Ask 1,400 2,180 1,870
Aol Search 250 482 1,200

1000 users Google 580 23,300 2,940
Bing 2,700 26,500 34,000
Ask 1,800 46,300 54,400
Aol Search 550 27,300 29,900

58 S. Paz and J. Bernardino

With the increase in the number of words to search, also increases the time to get
the answer since the request was made. Overall, the best search engine when more than
two words are used is Google, since it has lower elapsed time values. A good alter-
native to Google in terms of performance will be Aol Search, which also has reduced
elapsed values.

In contrast, the search engine that responds more slowly to its users by providing
higher elapsed values is Bing. This one with 100 and 1000 users can have elapsed
values that represent twice the value obtained in the other search engines.

According to the results presented in Table 5, the amount of data returned in the
server response (message size) is practically constant with increasing load, since the
search results are the same. In turn, when we increase the number of words to search,
the size of the message increases accordingly, since the returned links will be different
when searching for different words. Google is the search engine that returns fewer bytes
in its response, that is, it responds faster to the user. A good alternative to Google is Aol
Search, since it also returns minimum message sizes. In contrast, the search engine that
responds more slowly is Bing.

6.2 Results with the Grinder

In this section are presented and analyzed the results of the tests performed with the
tool The Grinder. The results refer to tests with two, three and four search words.

According to the results Table 6, the search engine that responds more quickly
when a search is performed on it, is Google. Despite the increase in the number of
words the search also increases the response size, it can respond quickly when it has a
low charge. When the load and number of words are increased simultaneously, Google
responds to respond more slowly, however it continues to stand out positively in
response times.

An alternative to Google is Aol Search, which behaves very similarly to its elapsed
time values.

In contrast, search engines that have returned the worst results, resulting in multiple
queues when they have a high load on the system, are Bing and Ask.

The results presented in Table 7 behave similarly to those in Table 5, that is, the
number of bytes returned in the response remain practically constant with the increase
in load. However, when the number of words being searched is increased, so does the
size of the message.

Despite similar behaviors, the values in Table 7 differ greatly from those in
Table 5. Apache jMeter does not perform all actions supported by browsers, in par-
ticular it does not perform the javascript found in HTML pages. Thus, Table 5 presents
lower values for the size of the message.

However, despite different values, the conclusions drawn are the same: Google is
the fastest web search engine, followed by Aol Search and, in turn, Bing responds more
slowly, since it returns more Bytes in the response.

Web Platform Assessment Tools: An Experimental Evaluation 59

7 Accuracy of Results Using Web Search Engine

As important as the speed with which a particular search engine responds is the
accuracy of the results returned by it. Thus, five questions were conducted where the
response was studied according to the number of correct results (accuracy). We ana-
lyzed the results returned on the first five pages returned in the search (#1, #2, #3, #4,
#5) and on the fifteenth page (#15) to see if the search engine continued to show results
identical to those on the original pages. The number of correct results returned in each
search engine was recorded, thus concluding which one had better accuracy in the
search results.

We choose the following four questions to test the web search engines:

– Where is ISEC?
– Where is Rua Pedro Nunes?
– Who is the Portuguese Prime Minister?
– Who was the last King of Portugal?

According to the results presented in Table 8, the search engine that returns a larger
number of links related to a specific search is Google, leading in the polls “Who is the
Portuguese Prime Minister?” and “Who was the last King of Portugal?”. However,
considering only the number of correct results in the first web page (#1), the best web
search engine is Bing, since it returns a larger number of results on the first page. In
contrast, Aol Search is the one that returns the least correct links.

Google, Bing, and Ask are the web search engines that return a significant amount
of correct links on the first four pages. In turn, Aol Search distributes the total number
of correct links throughout all pages, since it returns the same amount on almost every
page.

So the best search engine in terms of correct results returned related to the search
questions is Google.

Table 7. Message size with The Grinder.

Search engine Message size (bytes)
2 words 3 words 4 words

10 users Google 43,200 45,000 45,600
Bing 97,300 97,700 97,900
Ask 82,980 86,400 86,800
Aol Search 53,200 54,000 57,500

100 users Google 43,400 45,800 45,600
Bing 97,100 97,000 99,800
Ask 88,500 80,600 86,800
Aol Search 56,700 57,900 54,000

1000 users Google 43,500 44,800 43,800
Bing 96,000 98,500 91,000
Ask 85,800 87,000 89,200
Aol Search 52,300 52,000 53,400

60 S. Paz and J. Bernardino

8 Conclusions and Future Work

Performance testing strives to build performance standards into the implementation,
design and architecture of a system. The activity test is fundamental to guarantee the
quality of the products developed. Among the various types of test that exists, load
testing stands out, since they are reaching more and more importance, since the web
systems are increasingly used. These tests are still little used and, since the associated
costs for their execution are high, the use of tools that automate the creation and
execution of tests is essential. In addition, measuring response time and simulating
multiple users accessing an application simultaneously is unfeasible and often
impossible to perform without a tool that automates the testing process.

In this paper, four test tools were presented: Apache jMeter, Apache Flood, The
Grinder and Gatling. For this, a quantitative analysis and a qualitative analysis were
carried out, comparing the main characteristics common to all the tools. This com-
parison concludes that the best tool for evaluation of web platforms is Apache jMeter,
since it stands out positively in most of its characteristics, in addition to allowing the
use of distributed tests, with multiple machines simultaneously to be executed by a
single instance running. The fact that Apache jMeter supports distributed testing,
provides the simulation of more users in the same time interval.

Table 8. Number of correct links returned in each web search.

Questions researched Search engines Page number
#1 #2 #3 #4 #5 #15 Total

“Where is ISEC?” Google 1 0 0 0 0 0 1
Bing 8 9 8 2 2 0 29
Ask 1 0 0 0 0 0 1
Aol Search 0 0 0 0 0 0 0

“Where is Rua Pedro Nunes?” Google 1 2 2 2 0 0 7
Bing 2 1 3 2 0 0 8
Ask 0 5 0 7 1 0 13
Aol Search 1 0 1 3 3 3 11

“Who is the Portuguese Prime Minister?” Google 7 9 6 8 2 3 35
Bing 3 1 2 3 2 5 16
Ask 6 5 4 4 5 3 27
Aol Search 3 5 1 4 5 3 21

“Who was the last King of Portugal?” Google 6 5 8 4 3 0 26
Bing 3 0 2 0 2 2 9
Ask 6 4 2 2 3 0 17
Aol Search 5 4 4 2 1 0 16

Total per page Google 15 16 16 14 5 3 69
Bing 16 11 15 7 6 7 62
Ask 13 14 6 13 9 3 58
Aol Search 9 9 6 9 9 6 48

Web Platform Assessment Tools: An Experimental Evaluation 61

As search engines are accessed countless times during the day by various users
around the world, it is important that they can respond quickly to all users. Thus, it is
important to perform performance tests on the search engines, and then act on their
optimization. In the experimental evaluation load tests were performed on four search
engines with the Apache jMeter. To be able to evaluate different results, was used the
second best tool for evaluation of web platforms, The Grinder. The number of search
words was further increased to see if this number interfered directly with response
times.

So the search engine that stood out positively both in terms of response times and in
terms of accuracy was Google. This low load (10 users), average (100 users) or high
(1000 users) responds quickly to users. In contrast, Bing was the search engine that
stood out negatively, since it is the one that takes more time to present the answers to
the users. With high response times users tend to abandon their page.

In terms of accuracy, the most accurate search engine in searches performed is
Google, since it returns many links related to the searched words. This is more efficient
in your results on the first four pages. An alternative to Google in terms of accuracy is
Bing, which also returns a significant amount of search-related links. In contrast, the
search engine that returns the least results related to the search is Aol Search, however
it distributes the correct links evenly through the results pages. So the best search
engine in terms of accuracy and performance is Google. A good alternative to this in
terms of performance is Aol Search, however in terms of accuracy is Bing.

As future work we propose the creation of distributed tests, that is, in several
machines. This way, we can simulate more users accessing the same search engines
already tested and get more real results.

References

1. Avritzer, A., Weyuker, E.R.: The automatic generation of load test suites and the assessment
of the resulting software. IEEE Trans. Softw. Eng. 21(9), 705–716 (1995). https://doi.org/10.
1109/32.464549

2. Avritzer, A., Larson, B.: Load testing software using deterministic state testing. In: Ostrand,
T., Weyuker, E. (eds.) Proceedings of the 1993 ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 1993, pp. 82–88. ACM, New York (1993). https://
doi.org/10.1145/154183.154244

3. Avritzer, A., Weyuker, E.J.: Generating test suites for software load testing. In: Ostrand, T.
(ed.) Proceedings of the 1994 ACM SIGSOFT International Symposium on Software
Testing and Analysis, ISSTA 1994, pp. 44–57. ACM, New York (1994). https://doi.org/10.
1145/186258.186507

4. Apache Flood. https://httpd.apache.org/test/flood/. Accessed 11 Nov 2016
5. Apache JMeter. http://jmeter.apache.org. Accessed 11 Nov 2016
6. Difference Between Performance Testing, Load Testing and Stress Testing – With

Examples. http://www.softwaretestinghelp.com/what-is-performance-testing-load-testing-
stress-testing/. Accessed 15 July 2017

7. Wang, F., Du, W.: A test automaton framework based on WEB. In: Proceedings of the IEEE
11th International Conference on Computer and Information, ACIS 2012. IEEE Press (2012)

8. Gatling Project, Stress Tool. http://gatling.io. Accessed 11 Nov 2016

62 S. Paz and J. Bernardino

http://dx.doi.org/10.1109/32.464549
http://dx.doi.org/10.1109/32.464549
http://dx.doi.org/10.1145/154183.154244
http://dx.doi.org/10.1145/154183.154244
http://dx.doi.org/10.1145/186258.186507
http://dx.doi.org/10.1145/186258.186507
https://httpd.apache.org/test/flood/
http://jmeter.apache.org
http://www.softwaretestinghelp.com/what-is-performance-testing-load-testing-stress-testing/
http://www.softwaretestinghelp.com/what-is-performance-testing-load-testing-stress-testing/
http://gatling.io

9. Banga, G., Druschel, P.: Measuring the capacity of a web server under realistic loads. World
Wide Web 2(1–2), 69–83 (1999). https://doi.org/10.1023/A:1019292504731

10. Information about Yahoo Error 999. http://www.scrapebox.com/yahoo-999-error. Accessed
11 Nov 2016

11. Zhang, J., Cheung, S.C.: Automated test case generation for the stress testing of multimedia
systems. Softw. Pract. Experience J. 32(15), 1411–1435 (2002). https://doi.org/10.1002/spe.
487

12. Curran, K., Duffy, C.: Understanding and reducing web delays. Int. J. Netw. Manag. 15(2),
89–102 (2005)

13. Lohr: For Impatient Web Users, an Eye Blink Is Just Too Long to Wait (2012). http://www.
nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html?_r=2

14. Bayan, M.S., Cangussu, J.W.: Automatic stress and load testing for embedded systems. In:
30th Annual International Computer Software and Applications Conference (COMPSAC
2006), Chicago, IL, pp. 229–233 (2006). https://doi.org/10.1109/COMPSAC.2006.119

15. Sharma, M., Angmo, R.: Web based automation testing and tools. Int. J. Comput. Sci. Inf.
Technol. (2014)

16. Sharma, M., Iyer, V.S., Subramanian, S., Shetty, A.: A comparative study on load testing
tools. Int. J. Innovative Res. Comput. Commun. Eng. (2007)

17. Barford, P., Crovella, M.: Measuring web performance in the wide area. SIGMETRICS
Perform. Eval. Rev. 27(2), 37–48 (1999). https://doi.org/10.1145/332944.332953

18. Paz, S., Bernardino, J.: Comparative analysis of web platform assessment tools. In:
Proceedings of the 13th International Conference on Web Information Systems and
Technologies - Volume 1: WEBIST, pp. 116–125 (2017). ISBN 978-989-758-246-2. https://
doi.org/10.5220/0006308101160125

19. Pressman, R.: Engenharia de Software, 6th edn. McGraw-Hill, New York (2006)
20. Ratcliff (2016). https://searchenginewatch.com/2016/08/08/what-are-the-top-10-most-

popular-search-engines/. Accessed 11 Nov 2016
21. Khan, R.: Comparative Study of Performance Testing Tools: Apache JMeter and HP

LoadRunner (2013)
22. Hussain, S., Wang, Z., Toure, I.K., Diop, A.: Web Service Testing Tools: A Comparative

Study (2013)
23. The Grinder, a Java Load Testing Framework. http://grinder.sourceforge.net/. Accessed 11

Nov 2016
24. Tikhanski: Open Source Load Testing Tools: Which One Should You Use? (2015). https://

www.blazemeter.com/blog/open-source-load-testing-tools-which-one-should-you-use
25. Garousi, V., Briand, L.C., Labiche, Y.: Traffic-aware stress testing of distributed systems

based on UML models. In: Proceedings of the 28th International Conference on Software
Engineering (ICSE 2006), 391–400. ACM, New York (2006). https://doi.org/10.1145/
1134285.1134340

26. Wang, X., Zhou, B., Li, W.: Model based load testing of web applications. In: Proceedings
of IEEE International Symposium on Parallel and Distributed Processing with Applications
(ISPA 2010). IEEE Press (2010)

27. Jiang, Z.M., Hassan, A.E., Hamann, G., Flora, P.: Automatic identification of load testing
problems. In: Proceedings of the 24th IEEE International Conference on Software
Maintenance (ICSM), Beijing, pp. 307–316 (2008). https://doi.org/10.1109/ICSM.2008.
4658079

28. Jiang, Z.M.: Automated analysis of load testing results. In: Proceedings of the 19th
International Symposium on Software Testing and Analysis (ISSTA 2010), pp. 143–146.
ACM, New York (2010). https://doi.org/10.1145/1831708.1831726

Web Platform Assessment Tools: An Experimental Evaluation 63

http://dx.doi.org/10.1023/A:1019292504731
http://www.scrapebox.com/yahoo-999-error
http://dx.doi.org/10.1002/spe.487
http://dx.doi.org/10.1002/spe.487
http://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html%3f_r%3d2
http://www.nytimes.com/2012/03/01/technology/impatient-web-users-flee-slow-loading-sites.html%3f_r%3d2
http://dx.doi.org/10.1109/COMPSAC.2006.119
http://dx.doi.org/10.1145/332944.332953
http://dx.doi.org/10.5220/0006308101160125
http://dx.doi.org/10.5220/0006308101160125
https://searchenginewatch.com/2016/08/08/what-are-the-top-10-most-popular-search-engines/
https://searchenginewatch.com/2016/08/08/what-are-the-top-10-most-popular-search-engines/
http://grinder.sourceforge.net/
https://www.blazemeter.com/blog/open-source-load-testing-tools-which-one-should-you-use
https://www.blazemeter.com/blog/open-source-load-testing-tools-which-one-should-you-use
http://dx.doi.org/10.1145/1134285.1134340
http://dx.doi.org/10.1145/1134285.1134340
http://dx.doi.org/10.1109/ICSM.2008.4658079
http://dx.doi.org/10.1109/ICSM.2008.4658079
http://dx.doi.org/10.1145/1831708.1831726

Progressive Web Apps for the Unified
Development of Mobile Applications

Andreas Biørn-Hansen1(B), Tim A. Majchrzak2, and Tor-Morten Grønli1

1 Faculty of Technology, Westerdals Oslo ACT, Oslo, Norway
{bioand,tmg}@westerdals.no

2 ERCIS, University of Agder, Kristiansand, Norway
timam@uia.no

Abstract. Progressive Web Apps (PWAs) allow for web applica-
tions to be developed in an offline-first approach. While Web apps
traditionally did not properly function without an Internet connec-
tion, PWAs enable them to be downloaded, installed and used offline
on various systems, including mobile devices and personal comput-
ers. We present an introduction to the state-of-art in research and
practice. Based on this, we discuss various underlying concepts and
technologies. Then, we scrutinize and compare PWAs against cross-
platform app development approaches on both technical and overarch-
ing aspects. A list of suggestions for future research is also presented.
We urge academia to keep up with the latest trends within the field
of mobile and web development, as new concepts and approaches such
as Progressive Web Apps now make for interesting research topics with
tangible real-world effects.

Keywords: Progressive Web Apps · Service workers · Cross-platform
Cross-platform development · Mobile web

1 Introduction

The proliferation of app- and web-enabled devices including mobile, watches,
TVs, desktop and laptop computers demands developers to obtain considerable
multi-platform technical knowledge due to extensive fragmentation. In tradi-
tional application development, codebases have been constrained to build and
execute on only one or few target platforms [2–4]. In mobile development, we refer
to this as the Native development approach – apps are developed in a platform-
specific language such as Java or Kotlin for Android and Swift or Objective-C
for iOS. The clash of business interests, where an increasing pool of devices and

This paper greatly extends the short paper [1] presented at WEBIST 2017. It has
been updated to reflect the latest developments, includes new content based on
additional work as well as on the discussions at the conference, and has been amended
with a comprehensive discussion. Please note that verbatim content from the short
paper is not explicitly highlighted but for figures and tables already included there.

c© Springer International Publishing AG, part of Springer Nature 2018
T. A. Majchrzak et al. (Eds.): WEBIST 2017, LNBIP 322, pp. 64–86, 2018.
https://doi.org/10.1007/978-3-319-93527-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93527-0_4&domain=pdf

Progressive Web Apps for the Unified Development of Mobile Applications 65

platforms can run apps and display web content, yet pose development constrains
to the developers’ platform knowledge, has led do the increased popularity of
tools and frameworks for cross-platform development [5].

The purpose of such tools and frameworks is to maximize code reuse across
platforms and to minimize the product’s time-to-market. Moreover, they allow
efficient use of existing (or more common) knowledge [6,7] such as web develop-
ment languages versus platform-specific mobile programming languages. Conse-
quently, the vast amount of different cross-platform development frameworks has
also been subject to academic research in recent years [6,8,9]. Different frame-
works pose different possibilities, challenges and purposes. Research and practice
tend to categorize such frameworks into approaches [10,11]. Hybrid, Interpreted,
Cross-compiled, Model-Driven (MDD) and Component-Driven (CDD) develop-
ment are all examples of cross-platform approaches [1,9,10]. These approaches
differ in how they facilitate the development of cross-platform applications.

The Hybrid approach is well-known due the popularity to frameworks such as
Cordova, PhoneGap and Ionic, but has been criticised [9,12,13] for delivering sub-
par performance and user experience when compared to native development due
to its dependency on a WebView (an in-app integrated browser component) [9]
and interfaces built in HTML and CSS. The Interpreted approach has seen an
rise in popularity after the release of frameworks such as Facebook’s React Native,
Telerik’s NativeScript and Fusetools’ Fuse, none of which are dependent on a web
browser, but rather leverage an on-device JavaScript interpreter to generate native
user interfaces for an optimal user experience [14]. The Cross-compiled approach
depends neither on web browsers nor interpreters, as it compiles a common lan-
guage into native binaries for each supported platform, thus produce actual native
apps [15]. Xamarin is an example of a tool belonging to the Cross-compiled app-
roach [14]. Both the Model-Driven an Component-Driven approaches have previ-
ously been identified to serve mostly academic purposes, with less foothold in the
industry than the aforementioned approaches [8,14].

The main differentiators between the Web platform and the aforementioned
approaches and frameworks is that any cross-platform approach will produce apps
that (a) Can access most or all open device and platform feature APIs, (b) Can
be installed on users’ phones, and (c) Do not require an active Internet connec-
tion to be used. These differences are some of several motivations behind a new
Web-based development approach, coined Progressive Web Apps (PWA) [16]. Any
website can become a Progressive Web App by adhering to and adopting certain
concepts and technologies – as further discussed in detail in Sect. 4.

At its core, PWA allows websites (web apps) to become less web-like and
more app-like. This is done by e.g. allowing websites to be downloaded and
installed onto users’ phones, similar to how regular apps are installed via app
stores (example given in Fig. 7). Due to being installable, a PWA can – and
should – also work well in offline contexts by leveraging browser-based storage
engines such as IndexedDB [17]. This can be immensely important for emerging
markets where Internet connectivity is sparse and expensive [18]. The mobile-
web unifying part of PWAs also lies in how they look like regular apps.

66 A. Biørn-Hansen et al.

We have previously reported about a lack of research on Progressive Web
Apps [1]. This was true in January 2017 when researching towards our WEBIST
short paper [1], and it still holds true as of July 2017. Little additional research
has been added to the body of knowledge since our last literature review. We
hope that by providing an array of suggestions for future work (see p. 18),
researchers from different fields may take interest in further widening the area
of research within Progressive Web Apps.

The rest of this paper is structured as follows. Section 2 explains our research
methods, being literature search, technical implementation and performance
testing. In Sect. 3 we discuss related work on cross-platform development and
Progressive Web Apps. Underlying technologies and concepts are introduced in
Sect. 4. Then, in Sect. 5 we present our findings, both a feature comparison of
approaches, as well as a performance measurement comparison of the imple-
mented technical artifacts. We then discuss our findings in Sect. 6, before we
conclude our paper and suggest topics for further research in Sect. 7.

2 Research Methods

Our study implements three research methods to gain broader understanding of
the possibilities and state of research and practice regarding Progressive Web
Apps. We conduct a literature search to understand the state of the knowledge
body, develop five technical implementations in the form of mobile apps, then
scrutinize and compare the performance of those apps. This section discuss the
methods in greater depth.

2.1 Literature Search

Our searches for academic involvement in Progressive Web Apps returned a
very limited amount of results per July 2017, as it did during our initial search
in January 2017 [1]. A search for “Progressive Web Apps” on Google Scholar
returned 14 results. Of those, relevant academic results accounted for only three;
a study from Malavolta et al. on the energy impact of service workers [19] (ACM),
a paper regarding web application launch time [20] (IEEE), and one Bachelor’s
thesis [21] investigating differences between PWAs and native Android apps.
Also, a ResearchGate search was conducted, covering both publications and
questions on their website, but it rendered no published results.

Academic contributions are, per July 2017, still close to non-existing. The
lack of involvement is understandable as the subject is rather new and unex-
plored by the majority of research and practice. However, this results in a mas-
sive research potential within a variety of different fields, particularly technical,
economical and sociological. Our suggestions for further research will hopefully
spark interest in relevant research communities.

Progressive Web Apps for the Unified Development of Mobile Applications 67

2.2 Technical Implementation

To gain better understanding of the possibilities of Progressive Web Apps, four
apps and a PWA were developed for comparison. A native Android app was
developed using the newly-supported Java alternative Kotlin [22]. An hybrid
app was developed using the Ionic Framework. An interpreted app was developed
using React Native. A cross-compiled app was developed using Xamarin. Lastly,
the Progressive Web App was developed using React.js. As our main aim is to
introduce PWA as a concept along with technical and higher-level comparisons,
we excluded the aforementioned approaches model-driven and component-driven
from our study, also due to the reported academic nature of said approaches with
possibly limited real-world impact so far (cf. e.g. [23]).

The applications employ a master-detail navigation pattern, where the mas-
ter view presents a list of clickable items fetched from an API [24]. Upon list item
click, the app navigates to the detail view, displaying the item image together
with its author and title. The data is fetched from www.reddit.com/r/Art/.json.

Note that no code– or otherwise technical optimizations have been imple-
mented in either apps. All apps do however implement asynchronous data fetch-
ing to avoid blocking the user interface rendering. The apps are depicted in
Figs. 1, 2, 3, 4 and 5. All five technical artefacts have been open-sourced1 to
allow verification of the results.

2.3 Performance Testing

Three variables were included as part of the performance test. The tests were
conducted on a Google Nexus 5X device running Android version 7.0. The aim
was to gather initial data on differences in performance between the implemen-
tations discussed in Subsect. 2.2.

Size of Installation: Information regarding app size was found at the following
path on the Android device: Settings – Apps – [app name].

Activity Launch Time: This was measured using the Android Debug Bridge
and its am activity launch time command. This measures the time it takes
to launch the first activity of an application. The test was conducted ten times
for each app as the results rendered different at each run. The average time is
presented as result.

Time from App-icon Tap to Toolbar Render: As no suitable method for
measuring elapsed time from app-icon tap to user interface toolbar render was
identified, an online stop watch was used. The toolbar, titled “Art by Reddit”,
is displayed in Figs. 1, 2, 3, 4 and 5. In our applications, this element is the first
to be rendered to the screen as it does not require any dynamic data to load
(unlike the Reddit posts requiring an asynchronous API call), thus we used it
as the basis for our render-time measurement. As the measurement relied on
human reactions, and is thus inherently error-prone, the test was conducted ten
times for each app, and the average time is presented as result.
1 https://github.com/andreasbhansen/pwa-paper.

https://www.reddit.com/r/json/
https://github.com/andreasbhansen/pwa-paper

68 A. Biørn-Hansen et al.

Fig. 1. The Ionic Framework Hybrid app.

Fig. 2. The React Native Interpreted app.

Progressive Web Apps for the Unified Development of Mobile Applications 69

Fig. 3. The Xamarin Cross-Compiled App.

Fig. 4. The Native Android App.

70 A. Biørn-Hansen et al.

Fig. 5. The Progressive Web App.

3 Related Work

While the lack of academic involvement and research on Progressive Web Apps
is evident from the literature search, an established industry-oriented body of
knowledge was identified. The Google Web Fundamentals group acts as the driv-
ing force for the creation and publishing of tutorials and blog posts. Until a solid
academic knowledge-base is developed, the Web Fundamentals website should,
thus, be the foundation for upcoming research.

Other than Google-created content, two early-access books were identi-
fied [25,26] together with an extensive pool of industry articles. Examples of
topics covered are fundamental concepts [27], challenges and concerns [28], and
thoughts on the impact of web innovation [29]. A notably larger academic foun-
dation was found for the other app development approaches discussed. Numerous
papers on cross-platform app development and underlying approaches have pre-
viously been identified. Papers found to often recur in related research includes
[7,30–32]. They make up the theoretical foundation and early research, which
newer papers draw from. Their topics range from comparisons of technical frame-
works and approaches, to classifications and performance measurements.

Recent research identified includes, but is not limited to, topics such as
requirements for cross-platform tooling [33], development approach evaluation
frameworks [11], energy consumption comparisons [15], and end-user perception
of cross-platform apps [34,35]. Their contributions should be acknowledged as
important foundation for future research on Progressive Web Apps.

Progressive Web Apps for the Unified Development of Mobile Applications 71

Due to the lack of academic contributions regarding PWA, the keen indus-
try interest should act as a catalyst for further research and more academic
involvement. Research suggestions are presented in Sect. 7 in an attempt to spark
interest in relevant research communities.

4 Underlying Technologies and Concepts

Progressive Web Apps are not a single technology or concept, but rather a variety
of these used together to provide an improved user experience. In this section,
we introduce different aspects of PWAs.

4.1 Regarding the Term

A Progressive Web App still is web app, although it uses techniques to provide
a progressive user experience. It, therefore, is no inconsistency to speak of both
Progressive Web Apps and progressive web app without addressing the same
concepts. Arguably, an PWA is always a progressive web app, but not all web
apps that are progressive are PWAs in a narrow sense. This confusion will be
resolved by explaining the technologies and concepts in the following subsections.

Throughout this paper, we use the upper-case variant and respectively the
acronym PWA when we refer to the agglomeration of technologies and concepts
as a whole, i.e. when an app qualifies to be a PWA. Lower case variants are
used when concepts are addressed more loosely, e.g. when an app embeds some
concepts of progression.

We deem this distinction to be important; for the time being, it should be
sufficient as proposed above. However, with a possible proliferation of PWAs a
clear denomination will be required (cf. also with the call for a taxonomy of
app-enabled devices in [36]).

4.2 Technologies

Service Workers. Most of the features and concepts (see Sect. 4.3) that sepa-
rates a PWA from a regular web app are available through Service Workers [37].
A Service Worker is a JavaScript script which performs background operations
separate from the rest of the website as it cannot interact with the DOM [38].
It acts as an application-level network proxy, allowing developers to fully inter-
cept network requests and control such as caching of data and assets for offline
availability, background synchronization (e.g. fetching data while app is in the
background) and registering for push notifications [38,39]. As per July 2017,
Apple’s Safari browser does not support the Service Workers API, rendering
their platform’s users unable to use PWAs to their full extent.

72 A. Biørn-Hansen et al.

Application Shell (AppShell). A well-designed and optimized AppShell is of
utmost importance for an optimal user experience. This is the first-to-render user
interface of the PWA, ensuring that the user experiences immediate rendering
of some content to avoid the feeling of a slow app [40]. The AppShell is made
up of static assets and interface components, meaning that it should not depend
on any external dynamic data to render. Examples of such static assets include
toolbars, navigation bars, splash screens and the like developed in HTML, CSS
and JavaScript [40]. In contrast, dynamic data requires an asynchronous action
to be fetched before render (e.g. network call or local database query).

Web App Manifest. The Manifest is a JSON file web developers can use
to configure their PWAs. Within the file, configurations such as app name, icon
paths, splash screen image, background colours and display types (e.g. fullscreen,
with or without browser artefacts) can be specified [41]. Such configurations
are important for enhancing the app-like feeling of a PWA, a concept further
discussed in Sect. 4.3.

HTTPS. Progressive Web Apps must be served via HTTPS [38]. This ought
to “[...] prevent snooping and to ensure content hasn’t been tampered with.”,
according to Google’s LePage [42].

4.3 Concepts

A total of 10 concepts officially [42] lay the foundation of Progressive Web Apps.
Some of these concepts are known from regular web development, while others
are exciting additions to the mobile web.

Progressive. The progressive in Progressive Web Apps refers to the concept of
Progressive Enhancement, which builds on the idea that a product, e.g. a website
in our example, can progressively become better and more advanced based on
the browser and device of a user. That means that users on devices with weaker
hardware and fewer capabilities (such as lack of Service Worker support) can still
visit and enjoy the experience of the website. Thus, Progressive Enhancement
focusses on content over browser capabilities, i.e. functionality [43].

Responsive. At the heart of mobile-compliant web design is the concept of
responsive design [44]. A responsive web design allows for different form factors
to engage with the content of a website in an optimal fashion. This applies to
the sizing of fonts, placement of images, stacking of grids, and so on [45]. This
concept is not proprietary to PWAs, but rather essential for any website wishing
to deliver a good user experience for visitors using mobile devices.

Progressive Web Apps for the Unified Development of Mobile Applications 73

Installable. A Progressive Web App can be downloaded and installed onto
devices directly from a user’s Internet browser, as seen in Sect. 5.2 and Fig. 7.
Together with the concepts discussed below, installable web apps greatly extends
the possibilities of the mobile web. This is where the unification of traditional
mobile apps and web apps starts. No longer are do apps have to be installed via
constrained app stores, as they can now be installed through a PWA-compliant
browser such as Chrome or Samsung Internet.

Connectivity Independent. This is one of the core concepts that differenti-
ates a PWA from a regular web app or website. Where a regular website would
require an active Internet connection to function and properly render content
to the user, a PWA can manage offline contexts as well. It does this by leverag-
ing Service Workers, as introduced in Sect. 4.2 on the underlying technologies of
PWAs, as well as local data and asset caches [17].

App-Like. As Figs. 1, 2 and 5 illustrate, differentiating a Progressive Web App
(Fig. 5) from regular apps (Figs. 1 and 2) is hard, if not impossible by judging
only by the looks. A well-built and well-designed PWA can act, look and feel like
a regular native or cross-platform app. Archibald [39] presented Google’s vision
for the mobile web with the following statement: “We want everything that ends
up on the home screen to be competitive with native apps. We want to make
the web a first-class part of the operating system in the user’s mind”.

Fresh. With the help of Service Workers, a PWA can fetch new content from an
associated web service whenever the app requires it, either during a background
synchronization task or whenever the user opens the app. This ensures that the
app is both available offline, though with potentially dated cached content, and
online with fresh content ready for digesting and caching for future offline use.

Safe. As discussed in Sect. 4.2, PWAs must be served via HTTPS for optimal
end-user security.

Discoverable. Search engines can discover and index the content of Progressive
Web Apps as they are indeed regular websites, only with additional capabilities
as discussed in the rest of this section.

Re-engageable. Using the new Web Push API available in certain browsers
[46], Progressive Web Apps can deliver the same re-engaging experience as reg-
ular apps by leveraging push notifications to draw users back into the app.

Linkable. Lastly, being linkable is part of any reachable website, PWA or not.
Thus, PWAs should adhere to the same standard by providing easy sharing of

74 A. Biørn-Hansen et al.

content through URLs. In fact, a PWA will also be able to register intents, for
now on Android Chrome [47]. This allows an installed PWA to automatically
open itself upon visiting or clicking a link related to the PWA website, e.g. open
the reddit Art PWA automatically if visiting https://www.reddit.com/r/Art/.

4.4 Lighthouse: PWA Testing Tool

While not being a technology or concept, the Lighthouse Chrome extension is
an official Google product targeting PWA developers. The Lighthouse exten-
sion will aid in benchmarking websites against certain measurements and aims
Google assess as important, especially for PWAs. While the extension works on
non-PWA websites too, it is designed to help optimize websites for better ren-
dering speed, time to first possible user interaction and general compliance with
Google’s aim for PWAs and the future of (mobile) web experience [48]. Light-
house will generate a verbose report on the state of the tested website, provide
resources on how to optimize code and assets, and give an overall score, as seen
in Fig. 6 below.

Fig. 6. Example of a Lighthouse report, generated using the reddit Art PWA.

4.5 Framework Agnosticity

An open-source initiative named HNPWA.com, short for HackerNews PWA,
aims to aid developers in choosing between the vast amount of front-end web
frameworks [49] available for building Progressive Web Apps.

As PWAs can be developed using any web framework or library [50], such
an initiative is of utmost importance. HNPWA acts as a vehicle for increasing

https://www.reddit.com/r/Art/
https://hnpwa.com/

Progressive Web Apps for the Unified Development of Mobile Applications 75

popularity and clarity around what a Progressive Web App is – and what it can
achieve in the context of user experience.

In Subsect. 4.4, the Lighthouse performance testing tool was introduced. This
tool acts as the basis for the framework comparisons presented at HNPWA.
Results of rigorous performance testing for a number of front-end frameworks
and technologies are presented on HNPWA. This data can – and perhaps should
– be used in decision making on technology choices, especially if PWA concepts
are important for a project.

5 Results

In this section we present both technical and more overarching results from
our study. The data presented should aspire academia to continue researching
Progressive Web Apps and cross-platform development in general.

5.1 Feature Comparison

This section seeks to provide insights into differences between interpreted apps,
Progressive Web Apps, hybrid apps and native apps by comparing a set of fea-
tures and concepts. It also presents insights on such as technical frameworks and
experience unification for end-users.

Table 1 provides a non-exhaustive list of features available in PWAs as of
July 2017, along with their compatibility. Remarks follow subsequently.

Table 1. Feature-comparison of approaches.

Feature Interpreted PWA Hybrid Cross-compiled Native

Installable Yes Yesa Yes Yes Yes

Offline capable Yes Yes Yes Yes Yes

Testable before
installation

No Yes No No No

App marketplace
availability

Yes Yesb Yes Yes Yes

Push notifications Yes Yesc Yes Yes Yes

Cross-platform availability Yes Limitedd Yes Yes No

Hardware and Platform
API access

Yes Limitede Yesf Yes Yes

Background
synchronisation

Yes Yes Yes Yes Yes

76 A. Biørn-Hansen et al.

(a) The Enable improved add to Home screen developer flag in Chrome
Canary for Android can be enabled in order for PWAs to be installed like
normal apps [51]. This is as true as of July 2017 as it was in January 2017
[1].

(b) PWAs will be made searchable from the Windows 10 app marketplace, thus
becoming “first-class citizens” of their app ecosystem [52].

(c) Push notification support through the Push API [53] is available, but limited
to certain browsers.

(d) As Apple’s Safari browser does not yet support the Service Workers API,
the iOS platform is yet to fully realise and leverage the potential of the
technological advancement.

(e) A PWA can use HTML5-based APIs for hardware and platform access in
addition to features and functionality made possible by Service Workers.

(f) Hardware and platform access for Hybrid apps is usually provided by Cor-
dova, a library for handling the bridging between a native app’s web-view
component and the device’s APIs.

5.2 Unification of Mobile App and Web Experiences

An evident difference between web apps and regular mobile apps is their
explorability. A regular app requires search and installation via an app market-
place. Progressive Web Apps enable the best of both approaches, where end-users
can easily experience an application through their web browser, then choose to
install it via an “Add to Home screen” banner prompted (see Fig. 7). The banner
will be prompted to the user if certain qualifications are met [54], or can be dis-
played programmatically as controlled by the website’s developer [47]. Figure 7
illustrates the installation process for the PWA designed and implemented for
this paper (cropped screenshots).

The illustrated experience is per July 2017 only achievable by enabling the
Improved PWA Installation flag in the Chrome Canary for Android settings.
Without that flag enabled, the experience is comparable to bookmarking a site
to the home screen.

Together with the full screen experience of PWAs, the installation prompt
can be considered an advance in unification of end-user experience and mobile
web perception. Instead of forcing users to download an app from a marketplace,
they can experience the product in their web browser as a regular website before
installing it via the banner. As we discuss in our list of suggestions for future
work, research on potential security concerns should be of interest to all parties.

5.3 Unification of Desktop App and Web Experiences

Developing cross-platform desktop applications using JavaScript frameworks
such as Electron.js has over the last year seen an immense increase in popu-
larity [55]. Mainstream software such as GitHub Desktop, Visual Studio Code

Progressive Web Apps for the Unified Development of Mobile Applications 77

Fig. 7. PWA installation flow in Chrome Canary.

and Slack is now being written cross-platform using Electron.js [56]. As we intro-
duce in this section, PWAs can perhaps be the future approach for developing
such applications, without the need of Electron.js or similar frameworks.

A PWA’s reach and deployability is not limited to mobile devices only. Both
on Chrome OS, Windows and MacOS (previously OS X), certain browsers such
as Google Chrome have started to bridge the gap between desktop apps and web
apps by offering desktop PWA support [47,57]. Figure 8 depicts how a PWA in
Chrome on MacOS prompts the user with an installation banner, asking them
to “Add [the] site to [user’s] shelf to use it any time”, as of July 2017. This is
the desktop version of the PWA banner seen in image #1 in Fig. 7.

Upon clicking the Add button in above banner, a dialog box is prompted to
the user, as seen in Fig. 9. This action triggers the PWA to be downloaded to the
user’s computer and added to the Chrome Apps folder, on MacOS found at the
following path: /Users/<username>/Applications/Chrome Apps.localized.

The downloaded version can now be executed at the user’s machine and
used in offline situations in the same way the PWA works on a mobile device.
However, the user experience differs between desktop and mobile PWAs as of
July 2017. Where a mobile PWA can execute in its own browser-artefact-less
shell, i.e. looking like a regular mobile app, opening a desktop PWA will simply
launch the downloaded app in the regular Chrome browser as a new tab. This
is a major difference between a desktop PWA and an Electron.js desktop app.
In Sect. 7.2 we propose topics and suggestions for further research. Continuing
scrutinizing PWAs as a mean of cross-platform desktop development should be
of profound interest for industry and academia alike.

78 A. Biørn-Hansen et al.

Fig. 8. The Progressive Web App running in Chrome on desktop.

Fig. 9. Chrome prompting user with a dialogue after clicking the “Add” button.

5.4 Performance Comparison Between Native, Hybrid, Interpreted,
Cross-Compiled and PWA

Table 2 presents a comparison of three different measurements: installation size,
launch time and toolbar render time. The installation size of the Progressive
Web App (104 KB) is

(a) 242 times smaller than the Xamarin-based cross-compiled app (25.19 MB),
(b) 157 times smaller than the React Native-based interpreted app (16.39 MB),
(c) 43 times smaller than the Ionic Framework-based hybrid app (4.53 MB), and
(d) 42 times smaller than the native Android app (4.37 MB).

In terms of render-speeds, the PWA rendered different results when Chrome
Canary (a) did not run in the background, and (b) it did run in the background,
i.e. has previously been used to browse some arbitrary website.

Note that in our prior paper [1], the Ionic-based Hybrid app’s Time from
app-icon tap to toolbar render speed clocked in at 9242.1 ms. We found that by

Progressive Web Apps for the Unified Development of Mobile Applications 79

Table 2. Measurement-comparison of approaches.

Measure Native Hybrid Interpreted Cross-compiled PWA

Size of installation 4.37 MB 4.53 MB 16.39 MB 25.19 MB 104KB

Android activity
launch time

1408 ms 467.5 ms 246 ms 4190 ms 230ms

Time from app-icon
tap to toolbar
render

1688 ms 3999 ms 1716 ms 4590 ms (a) 3152ms
(b) 1319 ms

re-implementing the app in a newer version of Ionic, as well as investigating a
configuration file which contained an unnecessary splash screen delay, we got the
render time down to 3999 ms, and Android activity launch time dropped from
860 ms to 467.5 ms. Without said investigation, the default delay would cause an
additional 3000 ms to the render time [58].

It is important to note that the activity launch and toolbar render times do
not stack, i.e. it does not e.g. take a total of 1408 ms + 1688 ms to render the
native app’s toolbar. The native app, in this example, will launch the Android
activity after 1408 ms after app icon tap (launch), then within the next 280 ms
(1688 ms − 1408 ms) render the toolbar.

6 Discussion

Based on our results and findings, we use this section to scrutinize and further
discuss the possibilities and limitations of Progressive Web Apps when compared
to other cross-platform approaches.

6.1 Basics

From the perspective of web-native unification, there are certain differences and
major limitations to the PWA approach compared to hybrid, interpreted, cross-
compiled and native apps. We use this section to stimulate interest by elaborating
on a set of these differences and limitations based on our findings, and suggest
for future research to dive deeper.

As discussed by Malavolta [59], a PWA cannot access hardware- and
platform-level features not supported by the respective browser. Examples of
such non-included features are a native device calendar and contact list access.
However, an increasing pool of platform APIs are becoming available in newer
browsers [18].

For Progressive Web Apps to have the same potential as cross-platform app
development, support for Service Workers in Apple’s iOS Safari browser is a
requirement. Without such support, a PWA-enabled website would not deliver
a consistent experience across browsers and platforms.

80 A. Biørn-Hansen et al.

6.2 Feature Comparison

Table 1 highlighted differences in feature compatibility between approaches for
app development. There are certain profound differences between them, some
being inherent characteristics. In general, the interpreted and cross-compiled
approaches provided the highest level of feature compliance.

A Progressive Web App is the only option among the listed approaches that
naturally enables testing of an app prior to installation, due to being accessible in
web browsers. If app marketplace presence is required, the four other approaches
fully supports such, with a potential PWA entry into the Microsoft app store [52].

Offline capabilities, push notifications and background synchronisation are
available regardless of approach. Cross-platform compatibility is found in the
hybrid, interpreted, cross-compiled and PWA approaches, the latter with some
limitations in regards to supported operating systems (no iOS support) and
platform feature API access limited by browser device API implementations [60].

For apps relying on features not found in – or requiring performance not
achievable in a modern-day browser, the alternative approaches are more suit-
able. The five artefacts developed as part of this paper are limited in terms of
device-platform communication requirements, as they do not require any APIs
other than those commonly found in browsers.

6.3 Performance Comparison

Table 2 presented the results from three measurements conducted for preliminary
data gathering. It thereby also provides an anchor for further research.

The results illustrate the presence of certain trade-offs. If minimal app size is
a priority, no approach is even remotely close to the 104 KB PWA. The second
smallest in size is the native app, still weighing 42 times more (4.37 MB) than
the PWA albeit rendering the toolbar faster is certain situations (with Chrome
closed). The largest and slowest of all approaches was the cross-compiled Xam-
arin app. At 242 times (25.19 MB) the size of the PWA and over three times as
slow (compared to launching the PWA with Chrome open), the cross-compiled
approach overall performed worst in the test. It is interesting that the cross-
compiled app performed this way, as the codebase has been compiled from a
common language into native binaries, thus exposing a native user interface.

Yet, the hybrid approach, which, as discussed, is questionable when it comes
to performance, managed to outperform the cross-compiled app in all three mea-
surements. The hybrid approach also outperformed the native approach at activ-
ity launch (so does interpreted and PWA), but failed to deliver the same fast
rendering speeds (native at 1688 ms, hybrid at 3999 ms).

While the interpreted app installation size was 157 times larger than the
PWA, it was also more than 3.5 times faster to render the toolbar (first render)
when launching the PWA without having Chrome running in the background.
If launched with Chrome already running, the gap between the two apps was
down to 457 ms, still favouring the interpreted app. If installation size is not
the main priority of a project, the interpreted approach is seemingly producing

Progressive Web Apps for the Unified Development of Mobile Applications 81

fast-launching, fast-rendering apps while still weighing 1.5 times less than the
cross-compiled app. The interpreted and cross-compiled approaches are the only
cross-platform approaches that would render native user interfaces (see Table 2).
If cross-platform deployability and native interface performance are important
criteria of a project, the interpreted approach would, based on our findings, be
the one to adopt.

Interestingly, the rather grim assessment of the cross-platform approach
seemingly contradicts earlier findings (cf. e.g. [2,61]). However, such work usu-
ally reports good results from technologically very sound approaches, such as
from those based on model-driven techniques – which we explicitly excluded
in this paper since such approaches do not play any practical role in the app
development landscape of today.

The presented results are limited in that the apps were only tested on one
specific device, the Google Nexus 5X, running Android 7.0. The conducted tests
do not build on previous research or established methods for measuring perfor-
mance. The purpose of the tests was to gather and present preliminary results
to spark interest for further work. The differences may be more significant on
older, especially on less powerful devices. Also, differences between technical
frameworks within an approach and the apps they produce is likely to occur.
The fact that Xamarin of the cross-compiled approach generated such subpar
results compared to the other approaches does not inherently mean that all cross-
compiled frameworks will do the same. We aim to conduct further research on
PWAs and cross-platform development involving an array of devices and frame-
works for increased validity. We deem our findings presented in Table 2 to be
essential for decision making; we will continue to further explore possible mea-
surements and technical approaches and frameworks, as well as to bolster the
theory behind work such as the one presented here.

7 Conclusion and Further Work

We have reported on numerous findings and gaps throughout the paper. This
section concludes our research and discussion, and provide suggestions for fur-
ther research in hope of inspiring fellow academics to continue scrutinizing new
possibilities with the introduction of Progressive Web Apps.

7.1 Conclusion

The Progressive Web App approach currently waits for – or probably even
depends on – Apple implementing Service Workers into their iOS Safari browser.
The approach could than reach its full potential.

With fast user interface rendering times (in some situations even faster than
native) [39], overall well-compliant platform- and device API integrations via
HTML5 and JavaScript, and the insignificant space they occupy on-device, PWA
should be considered a very possible upcoming contender in the cross-platform
space.

82 A. Biørn-Hansen et al.

When compared to (other) cross-platform approaches, PWA the lacks native
user interfaces cross-compiled and interpreted frameworks will produce. How-
ever, so does the popular hybrid approach. Access to device and platform fea-
ture APIs is limited in PWAs to which such APIs are implemented into the
users’ browser. No such limitations have been identified for the other cross-
platform approaches. However, due to being web-based PWAs can inherently be
tested in any web browser before an eventual on-device installation in a Service
Worker-compliant browser. This is unique to PWAs when compared to the other
approaches. Service Workers enable PWAs to perform tasks such as background
synchronization (allowing offline availability) and push notification registration.
Such features were previously only available in native apps and via cross-platform
approaches.

Progressive Web Apps do also have the potential of becoming an approach
for developing desktop apps, as discussed in Subsect. 5.3. With Microsoft’s future
plans of including PWAs in their Windows Store, Google’s plans of leveraging
them on their ChromeOS platform, and the current possibilities of installing
PWAs on desktop machines via e.g. the Chrome browser, we may see a shift in
how desktop apps are developed. Through further research and industry adop-
tion, desktop Progressive Web App ought to be further scrutinized.

We have identified a widening gap in the scientific literature concerning PWA.
As of July 2017, less than a handful of papers form the entire published academic
body of knowledge on the subject to the best of our knowledge. This makes for
interesting research possibilities; we present suggestions in the following.

7.2 Suggestions for Further Work

We encourage academia to keep track of the progress in the field of mobile
computing and the web, as well as their intersection. Both technical and non-
technical possibilities emerge with the introduction of Progressive Web Apps
across devices and platforms.

Based on our study and understanding of the field, we suggest the following
topics for further research:

– Expand the testing and assessment activities, including additional measure-
ments e.g. regarding energy consumption.

– Scrutinize PWAs’ capabilities on desktop compared to cross-platform desktop
frameworks such as Electron.js and traditional development approaches.

– Investigate if – and possibly how – PWAs could be supported on other
devices, such as smart TVs (e.g. Samsung Tizen) and Wearables such as
smart watches.

– Research patterns of technical development and of application for optimizing
web applications for an offline-first paradigm shift.

– Further investigate, develop, compare and evaluate technical frameworks for
Progressive Web App – and cross-platform development.

– Evaluate embeddable databases for (Progressive) Web Apps in the context of
offline use.

Progressive Web Apps for the Unified Development of Mobile Applications 83

– As the PWA installation banner can now be programmatically handled by
developers [47], study how and when users should be prompted with the
banner for an optimal number of installation.

– Study Progressive Web Apps’ effect on user retention compared to regular
mobile apps (both native and cross-platform). An hypothesis could be that
the insignificant size of a PWA on a space-constrained mobile device leads to
less app being uninstalled compared to the usage of regular apps.

– As arbitrary (PWA) code and associated assets now can be downloaded to
various devices, are there any new security concerns introduced? In fact, the
Android world recently witnessed how a game developer managed to nearly
brick a customer’s phone with their Android Play Store game [62], breaking
out of the Android application sandbox. Thus, proper assessment of possible
newly introduced security risks should be prioritized.

– Include business users and consumers in studies, for example regarding the
user perception of PWAs.

References

1. Biørn-Hansen, A., Majchrzak, T.A., Grønli, T.M.: Progressive web apps: the pos-
sible web-native unifier for mobile development. In: Proceedings of the 13th Inter-
national Conference on Web Information Systems and Technologies (WEBIST),
pp. 344–351. SciTePress (2017)

2. Heitkötter, H., Majchrzak, T.A., Kuchen, H.: Cross-Platform Model-Driven Devel-
opment of Mobile Applications with MD2. In: Proceedings of 28th ACM SAC, pp.
526–533. ACM (2013)

3. Perchat, J., Desertot, M., Lecomte, S.: Component based framework to create
mobile cross-platform applications. In: Procedia Computer Science, vol. 19, pp.
1004–1011. ScienceDirect (2013). http://www.sciencedirect.com/science/article/
pii/S1877050913007485

4. Majchrzak, T.A., Heitkötter, H.: Status quo and best practices of app develop-
ment in regional companies. In: Krempels, K.-H., Stocker, A. (eds.) WEBIST
2013. LNBIP, vol. 189, pp. 189–206. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44300-2 12

5. Malavolta, I., Ruberto, S., Soru, T., Terragni, V.: Hybrid mobile apps in the Google
play store: an exploratory investigation. In: Proceedings 2nd ACM International
Conference on Mobile Software Engineering and Systems, MOBILESoft 2015, pp.
56–59. IEEE Press (2015)

6. Angulo, E., Ferre, X.: A case study on Cross-Platform development frameworks for
mobile applications and UX. In: Proceedings of the XV International Conference
on Human Computer Interaction, p. 27. ACM (2014)

7. Heitkötter, H., Hanschke, S., Majchrzak, T.A.: Evaluating cross-platform develop-
ment approaches for mobile applications. In: Cordeiro, J., Krempels, K.-H. (eds.)
WEBIST 2012. LNBIP, vol. 140, pp. 120–138. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36608-6 8

8. Majchrzak, T.A., Biørn-Hansen, A., Grønli, T.M.: Comprehensive analysis of inno-
vative cross-platform app development frameworks. In: Proceedings of 49th HICSS.
IEEE Computer Society (2017)

http://www.sciencedirect.com/science/article/pii/S1877050913007485
http://www.sciencedirect.com/science/article/pii/S1877050913007485
https://doi.org/10.1007/978-3-662-44300-2_12
https://doi.org/10.1007/978-3-662-44300-2_12
https://doi.org/10.1007/978-3-642-36608-6_8
https://doi.org/10.1007/978-3-642-36608-6_8

84 A. Biørn-Hansen et al.

9. Rahul, R., Tolety, S.B.: A study on approaches to build cross-platform mobile appli-
cations and criteria to select appropriate approach. In: Annual IEEE India Confer-
ence, pp. 625–629. IEEE (2012). https://doi.org/10.1109/INDCON.2012.6420693

10. El-Kassas, W.S., Abdullah, B.A., Yousef, A.H., Wahba, A.M.: Taxonomy of Cross-
Platform mobile applications development approaches. Ain Shams Eng. J. 8, 163–
190 (2017)

11. Rieger, C., Majchrzak, T.A.: Weighted evaluation framework for cross-platform
app development approaches. In: Wrycza, S. (ed.) SIGSAND/PLAIS 2016. LNBIP,
vol. 264, pp. 18–39. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46642-2 2

12. Du, F.Q.: Under the Hood: Rebuilding Facebook for Android (2012). https://www.
facebook.com/notes/facebook-engineering/under-the-hood-rebuilding-facebook-
for-android/10151189598933920/. Accessed 13 Jan 2017

13. Lee, C.: Zuckerberg talks about Facebook App mistakes, rumored smartphone and
more (2012). http://www.idownloadblog.com/2012/09/11/zuckerberg-app-phone-
more/. Accessed 17 Apr 2016

14. Latif, M., Lakhrissi, Y., Nfaoui, E.H., Es-Sbai, N.: Cross platform approach for
mobile application development: A survey. In: 2016 International Confere on Infor-
mation Technology for Organizations Development (IT4OD), pp. 1–5. IEEE (2016)

15. Ciman, M., Gaggi, O.: An empirical analysis of energy consumption of cross-
platform frameworks for mobile development. Pervasive Mobile Comput. 39, 214–
230 (2016). https://doi.org/10.1016/j.pmcj.2016.10.004

16. Russel, A., Berriman, F.: Progressive web apps: escaping tabs without losing our
soul (2015). https://goo.gl/e6pZHF

17. Osmani, A., Cohen, M.: Offline storage for progressive web apps (2017). https://
developers.google.com/web/fundamentals/instant-and-offline/web-storage/
offline-for-pwa. Accessed 3 July 2017

18. Roy-Chowdhury, R.: The mobile web: state of the union (2017). https://www.
youtube.com/watch?v= ssDaecATCM

19. Malavolta, I., Procaccianti, G., Noorland, P., Vukmirović, P.: Assessing the impact
of service workers on the energy efficiency of progressive web apps. In: Proceedings
of the 4th International Conference on Mobile Software Engineering and Systems,
MOBILESoft 2017, Piscataway, NJ, USA, pp. 35–45. IEEE Press (2017). http://
dl.acm.org/citation.cfm?id=3104093

20. Gudla, S.K., Sahoo, J.K., Singh, A., Bose, J., Ahamed, N.: Framework to improve
the web application launch time. In: Proceedings of 2016 IEEE International Con-
ference on Mobile Services (MS), pp. 73–78. IEEE Press (2016)

21. Fransson, R., Driaguine, A.: Comparing progressive web applications with native
android applications: an evaluation of performance when it comes to response time.
Ph.D. thesis, Linnaeus University (2017). http://www.diva-portal.org/smash/
record.jsf?pid=diva2%3A1105475&dswid=-7607

22. Shafirov, M.: Kotlin on Android. Now official (2017). https://blog.jetbrains.com/
kotlin/2017/05/kotlin-on-android-now-official/. Accessed 9 June 2017

23. Majchrzak, T.A., Ernsting, J., Kuchen, H.: Achieving business practicability of
model-driven cross-platform apps. Open J. Inf. Syst. (OJIS) 2, 3–14 (2015)

24. Android Developers: (Implementing descendant navigation). https://developer.
android.com/training/implementing-navigation/descendant.html. Accessed 12
July 2017

25. Ater, T.: Building Progressive Web Apps: Bringing the Power of Native to the
Browser. O’Reilly (2017)

https://doi.org/10.1109/INDCON.2012.6420693
https://doi.org/10.1007/978-3-319-46642-2_2
https://doi.org/10.1007/978-3-319-46642-2_2
https://www.facebook.com/notes/facebook-engineering/under-the-hood-rebuilding-facebook-for-android/10151189598933920/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-rebuilding-facebook-for-android/10151189598933920/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-rebuilding-facebook-for-android/10151189598933920/
http://www.idownloadblog.com/2012/09/11/zuckerberg-app-phone-more/
http://www.idownloadblog.com/2012/09/11/zuckerberg-app-phone-more/
https://doi.org/10.1016/j.pmcj.2016.10.004
https://goo.gl/e6pZHF
https://developers.google.com/web/fundamentals/instant-and-offline/web-storage/offline-for-pwa
https://developers.google.com/web/fundamentals/instant-and-offline/web-storage/offline-for-pwa
https://developers.google.com/web/fundamentals/instant-and-offline/web-storage/offline-for-pwa
https://www.youtube.com/watch?v=_ssDaecATCM
https://www.youtube.com/watch?v=_ssDaecATCM
http://dl.acm.org/citation.cfm?id=3104093
http://dl.acm.org/citation.cfm?id=3104093
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1105475&dswid=-7607
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1105475&dswid=-7607
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://developer.android.com/training/implementing-navigation/descendant.html
https://developer.android.com/training/implementing-navigation/descendant.html

Progressive Web Apps for the Unified Development of Mobile Applications 85

26. Hume, D.A.: Progressive Web Apps. Manning (2017). https://www.manning.com/
books/progressive-web-apps

27. Edwards, A.R.: The building blocks of progressive web apps - smashing mag-
azine (2016). https://www.smashingmagazine.com/2016/09/the-building-blocks-
of-progressive-web-apps/

28. Mahemoff, M.: Progressive web apps have leapfrogged the native install mode . . .
but challenges remain (2016). https://goo.gl/EbnF0N

29. Rinaldi, B., Holland, B., Looper, J., Motto, T., VanToll, T.J.: Are progressive web
apps the future? (2016). http://developer.telerik.com/featured/are-progressive-
web-apps-future/

30. Xanthopoulos, S., Xinogalos, S.: A comparative analysis of cross-platform develop-
ment approaches for mobile applications. In: Proceedings of 6th Balkan Conference
in Informatics, BCI 2013, pp. 213–220. ACM (2013)

31. Dalmasso, I., Datta, S.K., Bonnet, C., Nikaein, N.: Survey, comparison and eval-
uation of cross platform mobile application development tools. In: Proceedings of
9th IWCMC, pp. 323–328 (2013)

32. Palmieri, M., Singh, I., Cicchetti, A.: Comparison of cross-platform mobile devel-
opment tools. In: Proceedings of 16th International Conference on Intelligence in
Next Generation Networks, pp. 179–186. IEEE (2012)

33. Gaouar, L., Benamar, A., Bendimerad, F.T.: Desirable requirements of cross plat-
form mobile development tools. Electron. Dev. 5, 14–22 (2016)

34. Mercado, I.T., Munaiah, N., Meneely, A.: The impact of cross-platform develop-
ment approaches for mobile applications from the user’s perspective. In: Proceed-
ings of International Workshop on App Market Analytics, WAMA 2016, pp. 43–49.
ACM (2016)

35. Malavolta, I., Ruberto, S., Soru, T., Terragni, V.: End users’ perception of hybrid
mobile apps in the Google play store. In: 2015 IEEE International Conference on
Mobile Services, pp. 25–32. IEEE (2015)

36. Rieger, C., Majchrzak, T.A.: Conquering the mobile device jungle: towards a tax-
onomy for app-enabled devices. In: Proceedings of the 13th International Con-
ference on Web Information Systems and Technologies (WEBIST), pp. 332–339.
SciTePress (2017)

37. Service Workers 1 (2017). https://developers.google.com/web/fundamentals/
getting-started/primers/service-workers. Accessed 29 June 2017

38. Gaunt, M.: Service workers: an introduction (2016)
39. Archibald, J.: Instant loading: building offline-first progressive web apps (2016).

https://www.youtube.com/watch?v=cmGr0RszHc8
40. Osmani, A., Gaunt, M.: Instant loading web apps with an application shell archi-

tecture (2017).https://developers.google.com/web/updates/2015/11/app-shell
41. Guant, M., Kinlan, P.: The web app manifest (2016). https://developers.google.

com/web/fundamentals/engage-and-retain/web-app-manifest/. Accessed 8 Dec
2016

42. LePage, P.: Your first progressive web app (2017). https://developers.google.com/
web/fundamentals/getting-started/codelabs/your-first-pwapp/. Accessed 8 June
2017

43. Cazañas, A., Parra, E.: Strategies for mobile web design. In: INCISCOS 2016
(2017). ingenieria.ute.edu.ec

44. Nebeling, M., Norrie, M.C.: Responsive design and development: methods, tech-
nologies and current issues. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013.
LNCS, vol. 7977, pp. 510–513. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-39200-9 47

https://www.manning.com/books/progressive-web-apps
https://www.manning.com/books/progressive-web-apps
https://www.smashingmagazine.com/2016/09/the-building-blocks-of-progressive-web-apps/
https://www.smashingmagazine.com/2016/09/the-building-blocks-of-progressive-web-apps/
https://goo.gl/EbnF0N
http://developer.telerik.com/featured/are-progressive-web-apps-future/
http://developer.telerik.com/featured/are-progressive-web-apps-future/
https://developers.google.com/web/fundamentals/getting-started/primers/service-workers
https://developers.google.com/web/fundamentals/getting-started/primers/service-workers
https://www.youtube.com/watch?v=cmGr0RszHc8
https://developers.google.com/web/updates/2015/11/app-shell
https://developers.google.com/web/fundamentals/engage-and-retain/web-app-manifest/
https://developers.google.com/web/fundamentals/engage-and-retain/web-app-manifest/
https://developers.google.com/web/fundamentals/getting-started/codelabs/your-first-pwapp/
https://developers.google.com/web/fundamentals/getting-started/codelabs/your-first-pwapp/
http://ingenieria.ute.edu.ec/enfoqueute/index.php/revista
https://doi.org/10.1007/978-3-642-39200-9_47
https://doi.org/10.1007/978-3-642-39200-9_47

86 A. Biørn-Hansen et al.

45. LePage, P.: Responsive web design basics (2017). https://developers.google.com/
web/fundamentals/design-and-ui/responsive/. Accessed 4 July 2017

46. CanIUse: Can I use push API (2017). http://caniuse.com/#feat=push-api.
Accessed 29 June 2017

47. Birch, S., Russell, A.: Progressive web apps: great experiences everywhere (2017).
https://www.youtube.com/watch?v=m-sCdS0sQO8

48. Google Developers: Lighthouse (2017). https://developers.google.com/web/tools/
lighthouse/. Accessed: 2017-6-28

49. Smeets, R., Aerts, K.: Trends in web based cross platform technologies. Int. J.
Comput. Sci. Mobile Comput. 5, 190–199 (2016)

50. Osmani, A.: Production progressive web apps with JavaScript frameworks (2017).
https://www.youtube.com/watch?v=aCMbSyngXB4

51. Joreteg, H.: Installing web apps on phones (for real) (2016). https://joreteg.com/
blog/installing-web-apps-for-real

52. Rossi, J.: The progress of web apps - microsoft edge dev blog (2016). https://blogs.
windows.com/msedgedev/2016/07/08/the-progress-of-web-apps/

53. Push API (2017). https://www.w3.org/TR/push-api/. Accessed 29 June 2017
54. Pedersen, M.: Progressive web apps: Bridging the gap between web and

mobile (2016). https://www.sitepoint.com/progressive-web-apps-bridging-the-
gap-between-web-and-mobile/

55. npm-stat: npm-stat: electron (2017). https://npm-stat.com/charts.html?
package=electron&from=2015-11-01&to=2017-06-28. Accessed 28 June 2017

56. Electron: (Electron). https://electron.atom.io/. Accessed 28 June 2017
57. Raible, M.: The ultimate guide to progressive web applications (2017). http://

scotch.io/tutorials/the-ultimate-guide-to-progressive-web-applications. Accessed
28 June 2017

58. Ionic: ionic2-app-base (2017). https://github.com/ionic-team/ionic2-app-base/
blob/master/config.xml#L30

59. Malavolta, I.: Beyond native apps: web technologies to the rescue! (keynote). ACM
(2016). http://doi.acm.org/10.1145/3001854.3001863

60. Puder, A., Tillmann, N., Moskal, M.: Exposing native device APIs to web apps.
In: Proceedings of 1st International Conference on Mobile Software Engineering
and Systems, pp. 18–26. ACM (2014). https://doi.org/10.1145/2593902.2593908

61. Heitkötter, H., Majchrzak, T.A.: Cross-platform development of business apps with
MD2. In: vom Brocke, J., Hekkala, R., Ram, S., Rossi, M. (eds.) DESRIST 2013.
LNCS, vol. 7939, pp. 405–411. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38827-9 29

62. Postfu: Is it actually possible to earn money from mobile game ads? (2017).
https://np.reddit.com/r/gamedev/comments/6575nr/is it actually possible to
earn money from mobile/dg8mmia/?context=10000. Accessed 28 June 2017

https://developers.google.com/web/fundamentals/design-and-ui/responsive/
https://developers.google.com/web/fundamentals/design-and-ui/responsive/
http://caniuse.com/#feat=push-api
https://www.youtube.com/watch?v=m-sCdS0sQO8
https://developers.google.com/web/tools/lighthouse/
https://developers.google.com/web/tools/lighthouse/
https://www.youtube.com/watch?v=aCMbSyngXB4
https://joreteg.com/blog/installing-web-apps-for-real
https://joreteg.com/blog/installing-web-apps-for-real
https://blogs.windows.com/msedgedev/2016/07/08/the-progress-of-web-apps/
https://blogs.windows.com/msedgedev/2016/07/08/the-progress-of-web-apps/
https://www.w3.org/TR/push-api/
https://www.sitepoint.com/progressive-web-apps-bridging-the-gap-between-web-and-mobile/
https://www.sitepoint.com/progressive-web-apps-bridging-the-gap-between-web-and-mobile/
https://npm-stat.com/charts.html?package=electron&from=2015-11-01&to=2017-06-28
https://npm-stat.com/charts.html?package=electron&from=2015-11-01&to=2017-06-28
https://electron.atom.io/
http://scotch.io/tutorials/the-ultimate-guide-to-progressive-web-applications
http://scotch.io/tutorials/the-ultimate-guide-to-progressive-web-applications
https://github.com/ionic-team/ionic2-app-base/blob/master/config.xml#L30
https://github.com/ionic-team/ionic2-app-base/blob/master/config.xml#L30
http://doi.acm.org/10.1145/3001854.3001863
https://doi.org/10.1145/2593902.2593908
https://doi.org/10.1007/978-3-642-38827-9_29
https://doi.org/10.1007/978-3-642-38827-9_29
https://np.reddit.com/r/gamedev/comments/6575nr/is_it_actually_possible_to_earn_money_from_mobile/dg8mmia/?context=10000
https://np.reddit.com/r/gamedev/comments/6575nr/is_it_actually_possible_to_earn_money_from_mobile/dg8mmia/?context=10000

Web Performance Characteristics
of HTTP/2 and Comparison

to HTTP/1.1

Robin Marx(B), Maarten Wijnants(B), Peter Quax(B), Axel Faes(B),
and Wim Lamotte(B)

UHasselt-tUL-imec, EDM, Hasselt, Belgium
{robin.marx,maarten.wijnants,peter.quax,axel.faes,

wim.lamotte}@uhasselt.be

Abstract. The HTTP/1.1 protocol has long been a staple on the web,
for both pages and apps. However, it has started to show its age, espe-
cially with regard to page load performance and the overhead it entails
due to its use of multiple underlying connections. Its successor, the newly
standardized HTTP/2, aims to improve the protocol’s performance and
reduce its overhead by (1) multiplexing multiple resources over a single
TCP connection, (2) by using advanced prioritization strategies and by
introducing new features such as (3) Server Push and (4) HPACK header
compression.

This work provides an in-depth overview of these four HTTP/2 per-
formance aspects, discussing both synthetic and realistic experiments, to
determine the gains HTTP/2 can provide in comparison to HTTP/1.1
in various settings. We find that the single multiplexed connection can
actually become a significant performance bottleneck in poor network
conditions with high packet loss and that HTTP/2 rarely improves much
on HTTP/1.1, except in terms of reduced overhead. Prioritization strate-
gies, Server Push and HPACK compression are found to have a relatively
limited impact on web performance, but together with other observed
HTTP/2 performance problems this could also be due to faulty current
implementations, of which we have discovered various examples.

Keywords: HTTP/2 · Web performance · Best practices · HTTP
Server push · Prioritization · Networking · Measurements

1 Introduction

As the web grows more mature in terms of availability and features, so does its
complexity. Websites have evolved from collections of simple individual docu-
ment pages into complex user experiences and even full “apps”. Even though
internet connection speeds have also been steadily increasing in this time frame,
the traditional internet protocols HTTP/1.1 and TCP have struggled to keep
up with these developments and are in many cases unable to provide fast web
c© Springer International Publishing AG, part of Springer Nature 2018
T. A. Majchrzak et al. (Eds.): WEBIST 2017, LNBIP 322, pp. 87–114, 2018.
https://doi.org/10.1007/978-3-319-93527-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93527-0_5&domain=pdf

88 R. Marx et al.

page load performance [12]. This is detrimental to the overall viability of the web
platform for complex use cases such as e-commerce, since a multitude of studies
has shown that web performance is a core tenet in ensuring user satisfaction
[9,13].

Most of the performance problems with HTTP/1.1 stem from the fundamen-
tal limitation to only request a single resource per underlying TCP connection
at the same time. This means that slow or large resources can delay others,
which is called “Head-Of-Line (HOL) blocking”. As modern websites consist of
tens to even hundreds of individual resources, browsers typically open several
parallel HTTP (and thus also TCP) connections (up to six per hostname and 30
in total in most browser implementations). However, these heavily parallelized
setups induce large additional overheads (e.g., in terms of server-side connection
count) while not providing extensive performance benefits in the face of ever
more complex websites [12] (see also Sect. 4). Note that while the HTTP/1.1
specification does include the pipelining technique (which does allow multiple
requests to be queued on a connection), it is not enabled by default in the major
modern browsers due to various practical issues [14].

In order to tackle these challenges, the new HTTP/2 protocol [3] (h2) was
standardized in 2016, after evolving from Google’s SPDY protocol since 2009.
While keeping full backwards compatibility with the semantics of the HTTP/1.1
protocol (h1) (e.g., types of headers, verbs and overall setup), h2 nevertheless
introduces many low-level changes, primarily with the goal of improving web
page load performance. For example, all h2 traffic is ideally sent over a single
TCP connection (making use of multiplexing and inter-resource prioritization
algorithms to eliminate HOL blocking), there is support for server-initiated traf-
fic (Server Push) and headers are heavily compressed in the HPACK format.
The details of these aspects are discussed in Sects. 4 to 7.

In theory, h2 should solve most of the problems of h1 and improve web page
load times by up to 50% [12]. In practice however, the gains from h2 are limited
by other factors and implementation details. Firstly, the use of a single TCP
connection introduces a potential single-point-of-failure when high packet loss is
present (and so it might actually be better to also use multiple TCP connections
for h2). Secondly, correctly multiplexing multiple resources over this connection
is heavily dependent on the used resource prioritization scheme and the inter-
leaving of resource chunks might introduce its own implementation overhead as
these chunks need to be aggregated before processing. Finally, complex inter-
dependencies between resources and late resource discovery might also lessen
the gains from h2 [22]. The fact that h2 is not a simple drop-in replacement
with consistently better performance than h1 is also clear from previous studies,
which often find cases where h2 is significantly slower than h1 (see Sect. 2).

In this text, we continue the groundwork from our previous publications
[17,18]. We discuss four HTTP/2 performance-related aspects and test their
impact, both in synthetic and realistic test scenarios, in comparison with
HTTP/1.1’s performance (Sects. 4 to 8).

Web Performance Characteristics of HTTP/2 89

Our main contributions are as follows:

– We extend the Speeder framework for web performance measurement
[18], combining a large number of off-the-shelf software packages to provide
various test setup permutations, leading to a broad basis for comparison and
interpretation of experimental results.

– We compare h2 to h1 in both synthetic and realistic experiments and find that
while h2 rarely significantly improves performance over h1, it is also
rarely much slower. Additionally, in most cases, bad network conditions
do not seem to impact h2 much more than they impact h1. Using multiple
parallel TCP connections can help both h2 and h1. Prioritization, Server Push
and HPACK compression seem to contribute only sparingly to page load time
improvements.

– We find that many current h2 implementations (both on the server
and browser sides) are not yet fully mature and that some (default)
implementations lead to suboptimal performance, especially concerning the
time it takes to start rendering the web page.

2 Related Work

Various authors have published works comparing the performance of h2 and its
predecessor SPDY to h1.

In “How Speedy is SPDY?” [27] the authors employ isolated test cases to
better assess the impact of various parameters (latency, throughput, loss rate,
initial TCP window, number of objects and object sizes). They observe that
SPDY incurs performance penalties when packet loss is high (mainly due to the
single underlying TCP connection) but helps for many small objects, as well
as for many large objects when the network is fast. For real pages, they find
that SPDY improves page load performance for up to 80% of pages under low
throughput conditions, but only 55% of pages under high bandwidth.

“Towards a SPDY’ier Mobile Web?” [8] performs an analysis of SPDY over
a variety of real networks and finds that underlying cellular protocols can have
a profound impact on its performance. For 3G, SPDY performed on a par with
h1, with LTE showing slight improvements over h1. A faster 802.11g network
did yield improvements of 4% to 56%. They further conclude that using multiple
concurrent TCP connections does not help SPDY.

“Is The Web HTTP/2 Yet?” [26] measures page load performance by loading
real websites over real networks from their original origin servers. They find that
most websites distribute their resources over multiple backend hosts and as such
use h2 over multiple concurrent connections, which “makes h2 more resilient to
packet loss and jitter”. They conclude that 80% of the observed pages perform
better over h2 than over h1 and that h2’s advantage grows in mobile networks.
The remaining 20% of the pages suffer a loss of performance.

“HTTP/2 Performance in Cellular Networks” [10] introduces a novel network
emulation technique based on measurements from real cellular networks. They
use this technique to specifically assess the performance impact of using multiple

90 R. Marx et al.

concurrent TCP connections for h2. They find that h2 performs well for pages
with large amounts of small and medium sized objects, but suffers from higher
packet loss and larger file sizes. They demonstrate that h2 performance can be
improved by using multiple connections, though it will not always reach parity
with h1.

“HTTP/1.1 Pipelining vs HTTP2 In-The-Clear: Performance Comparison”
[7] compares the cleartext (non-secure) versions of h1 and h2 (h1c and h2c
respectively) (even though h2c is not currently supported by any of the main
browsers, see Sect. 3). They disregard browser computational overhead and find
that on average h2c is 15% faster than h1c and “h2c is more resilient to packet
loss than h1c”.

Additional academic work [15] found that for a packet loss of 2%, “h2 is
completely defeated by h1” and that even naive Server Push schemes can yield
up to 26% improvements. Others [25] conclude that h2 is mostly interesting for
websites with large amounts of images, showing up to a 48% decrease in page
load time, with an additional 10% when using h2 Server Push, and that h2
is resilient to higher latencies but not to packet loss. Further experiments [23]
indicate that h2 Server Push seems to improve page load times under almost all
circumstances. Finally, Carlucci et al. [6] state that packet loss has a very high
impact on SPDY, amounting to a 120% increase of page load time compared to
h1 on a high bandwidth network.

Content Delivery Network (CDN) companies have also measured h2 per-
formance on their networks. Gooding et al. [11] from Akamai find that using
multiple TCP connections is best avoided for critical resources on h2. A presen-
tation by Fastly [2] states that h2 mostly outperforms h1 on fast networks, but
loses on networks with higher packet loss.

Our review of related work clearly shows that the current state of the art is
often contradictory in its conclusions regarding h2 performance. It is not clear
whether using multiple TCP connections provides significant benefits, whether
h2 is resilient to poor network conditions and what degrees of improvement
developers might expect when migrating from h1 to h2.

In this work, we try to assess why these contradictions exist by running a
wide variety of tests on several heterogeneous test setups (see Sect. 3). We look
at four performance-related aspects of h2, first in isolation to assess their relative
impacts and then in combination to evaluate the protocol’s impact on typical
realistic web page loads. We are thus able to confirm some of the findings reported
by the related work, while showing that many of the contradictory findings can
be attributed to inefficiencies in current h2 implementations.

3 Experimental Setup with the Speeder Framework

As discussed in Sect. 2, there are many cases of contradictory results regarding
the performance of h2. As we suspect that one of the reasons for these discrepan-
cies are differences in the underlying h2 implementations (both client/browser-
side and server-side) and utilized test configurations, we aim to employ as many

Web Performance Characteristics of HTTP/2 91

test setup permutations as possible. We argue that if the results show simi-
lar trends across all or a large part of the test setups, they are most likely
attributable to the protocol itself. If however the results vary widely, they are
typically dependent on specific implementations.

In order to obtain these diverse test setup permutations, we use the Speeder
framework for web performance measurement, previously introduced in [18].
Speeder provides pre-installed versions of a large amount of existing software
packages (e.g., servers, browsers, network emulation tools, automated testing
tools) that can be freely coupled to each other through the use of Docker con-
tainers1. Users simply need to select the desired setup permutations and the
framework collects and aggregates a multitude of key metrics. Users can then
utilize various visualization tools to compare the results.

For this work, we have expanded Speeder in a variety of ways. We have
upgraded the supported browser versions of Chrome and Firefox to v60 and
v54 respectively, updated webpagetest2 to v3 and now also support the H2O
webserver3, which was heavily optimized for h2 from the ground up. We have
also created and integrated the H2Vis visualization tool. H2Vis directly takes the
low-level .pcap packet capture files recorded during a test run (using tcpdump4)
to produce a number of insightful graphical representations. For example, we
can plot both TCP-level and h2-level packets on a graphical timeline to help
verify how data is actually sent by the h2 server, how the various h2 streams
are interleaved on a single TCP connection (see Sects. 4 and 5) and what the
practical impact of packet loss is on the connection. Additionally, support for
graphically visualizing the generated h2 priority dependency trees (see Sect. 5)
allows us to quickly assess the impact of various prioritization strategies in use by
browsers. Table 1 provides an overview of the features of the Speeder framework
at the time of writing.

Unless indicated otherwise, the results in this work were generated in an
experimental setup using NGINX v1.10 as web server and Google Chrome v54 as
browser, driven by Webpagetest v2.19 and the dynamic cellular network model.
This dynamic network model uses previous work [10] which introduced a model
based on real-life cellular network observations. The model has six levels of “user
experience (UX)”: NoLoss, Good, Fair, Passable, Poor and VeryPoor. Each UX
level contains a time series of values for bandwidth, latency and loss. The model
changes these parameters at 70 ms intervals to simulate a real network. This
implies, for example, that applied packet loss is more bursty than with the fixed
model. For details, please see [10] or the original source code5.

Our results will be presented using two distinct metrics, namely
loadEventEnd and SpeedIndex. loadEventEnd from the Navigation Timing API
[28] gives a good indication of the total time (in milliseconds (ms)) a page needed

1 https://www.docker.com/.
2 https://www.webpagetest.org/.
3 https://h2o.examp1e.net/.
4 http://www.tcpdump.org/.
5 https://github.com/akamai/cell-emulation-util.

https://www.docker.com/
https://www.webpagetest.org/
https://h2o.examp1e.net/
http://www.tcpdump.org/
https://github.com/akamai/cell-emulation-util

92 R. Marx et al.

Table 1. Software, metrics and visualizations supported in the Speeder framework
(August 2017).

Protocols HTTP/1.1 (cleartext), HTTPS/1.1, HTTPS/2

Browsers Chrome (v51–v60), Firefox (v45–v54)

Test drivers Sitespeed.io (v3), Webpagetest (v3.0)

Servers Apache (v2.4.20), NGINX (v1.10), NodeJS (v6.2.1), H2O (v2.1)

Network - DUMMYNET (cable and cellular) (provided by Webpagetest)

- Fixed TC NETEM (cable and cellular)

- Dynamic TC NETEM (cellular) [10]

Metrics All Navigation Timing values [28], SpeedIndex [19], firstPaint,
visualComplete, other Webpagetest metrics [20]

Visualizations Packet timeline (TCP and h2), h2 priority dependency trees.
Boxplots, linegraphs and CDFs of recorded metrics

to load, but does not say anything about how progressively it was rendered in
that time frame. In other words: a page that stays empty for 5 s and only renders
content during the last 0.6 s (page A) will have a better observed loadEventEnd
performance than a page that finishes loading at 7.5 s, but that had its main
content drawn by 2.5 s (page B), while the latter arguably yields the better
end-user experience. In order to capture the degree to which the page loads pro-
gressively, Google introduced the SpeedIndex metric [19], which measures how
fast a page renders, not just loads. Inconsistencies between loadEventEnd and
SpeedIndex results can indicate that a resource was fast to load but slow to
have visual impact. Like loadEventEnd, SpeedIndex is expressed in ms and so
for both metrics lower values mean better performance.

Finally, we performed most of our tests using three versions of the HTTP
protocol: the secure HTTPS/2 (h2s) and HTTPS/1.1 (h1s) and also the unen-
crypted HTTP/1.1 (h1c), because many websites still use this “cleartext”
version. We do not include h2c, as modern browsers choose to only support
h2s for security reasons. Note additionally that switching from h1c to a secure
setup (either h1s or h2s) could have its own performance impact as TLS connec-
tions typically require additional network round-trips to setup. In the following
sections, we will use h2 to refer to h2s, and h1 refers to both h1s and h1c.

Most of our graphs will show loadEventEnd on the Y-axis. Individual data
points will typically represent aggregates (e.g., median, average) of 10 to 100
page loads. Each experiment was repeated at least five times. Unexpected dat-
apoints and anomalies across runs were analyzed further by manually checking
the collected output of individual page loads (e.g., screenshots/videos, .har files,
waterfall charts, .pcap files). The line plots will show the median values under
Good network conditions, as do the Cumulative Distribution Functions (CDFs).
The box plots will show the median as a horizontal bar and the average as a
black square dot, along with the 25th and 75th percentiles and min and max
values as the whiskers. Some box plots use a logarithmic scale on the Y-axis to

Web Performance Characteristics of HTTP/2 93

allow for large values. To be able to compare our results using the SpeedIndex
metric, we make sure our loaded resources have a strong visual impact on the
visible “above the fold” part of the website.

Some of our results were obtained using hand-crafted experiments on syn-
thetic data. These test cases are intended to demystify the underlying behavior
of the protocols and their implementations, and so are often not entirely realistic
or involve extreme circumstances. However, most of our results were obtained
using more realistic data based on existing websites. We expect that, compared
to the experiments on synthetic pages, these test cases will show similar but
more nuanced results and trends.

Readers are encouraged to review our full dataset (which encompasses results
not presented in this paper (e.g., for other browser/server combinations and test
pages)), setup details and source code via https://speeder.edm.uhasselt.be.

4 Multiplexing over a Single TCP Connection

4.1 Background

One of the major downsides of HTTP/1.1 is that it only allows a single resource
to be requested and sent on an individual TCP connection at any given time.
As such, the problem of Head-Of-Line (HOL) blocking is introduced, where the
delivery of the initial resource(s) can block later resources (e.g., if the initial
resource is very slow to be generated, is very small (so it does not take up the
full possible bandwidth) or is very large). To work around this problem, modern
browsers typically open up to six parallel HTTP/TCP connections to a single
origin server. This way, even if one or more of the connections suffer from HOL
blocking, the others can serve key resources as soon as possible. In tandem, devel-
opers have adopted the practice of merging several smaller resources into larger
files, a practice called “concatenation” or “bundling”. This approach causes the
number of individual resources to go down and with them the number of needed
TCP connections and HTTP requests. On the other hand, concatenation has the
adverse effect that it reduces the fine-grained cacheability of individual, smaller
resources.

Another h1 best practice is that of “hostname sharding”. Web developers
will typically distribute their resources over a number of individual servers with
different hostnames (for example by using a CDN). The browser will open up to
six connections per hostname, resulting in a total of 17–60 parallel h1 connec-
tions across all hostnames6 per page load. This leads to massively parallel page
loads, but also introduces significant overheads on the server side in order to sup-
port this large amount of connections and their state management. The down-
sides of both concatenation and sharding (reduced cacheability and higher over-
head, respectively) do not always outweigh their observed page load performance
benefits [12].

6 http://www.browserscope.org/.

https://speeder.edm.uhasselt.be
http://www.browserscope.org/

94 R. Marx et al.

In response, HTTP/2 tries to solve the root issue of HOL blocking by deliv-
ering multiple resources over a single TCP connection concurrently, using mul-
tiplexing. In practice, smaller chunks of individual resources are encapsulated in
conceptual “streams” and are then interleaved on the single connection. Section 5
discusses in detail how h2 decides on the resources’ interleaving order with a
priority-based dependency tree. The HTTP/2 specification [3] actively encour-
ages this single connection setup. For example, it includes a mechanism for coa-
lescing requested HTTP connections to separate hostnames onto a single TCP
connection if the hosts use the same HTTPS certificate and resolve to the same
IP address, this way effectively “undoing” a typical sharded h1 setup. HTTP/2
Server Push can also only be used for resources on the same domain (see Sect. 6).

In theory, h2’s approach should render the h1 best practices of concatena-
tion and sharding obsolete [12]. In practice however, the single TCP connection
might also be more susceptible to adverse network conditions than h1’s parallel
approach. With h1, if one or more of the parallel connections would incur packet
loss or high jitter, the possibility exists that the other connections would remain
unimpaired. With just a single h2 connection, all resources will be impacted
when the network deteriorates. In effect, this could introduce transport-layer
HOL blocking, induced by TCP’s guarantee of in-order delivery combined with
re-transmits when packet loss is present [21]. If the impact of packet loss is sig-
nificant, h2 might in practice also benefit from sharding on multiple connections
(see Sect. 4.2).

4.2 Head-of-Line Blocking in Practice with Images

In order to assess the impact of concatenation and sharding on both h1 and
h2 page load performance in varying network conditions, the experiments in
Fig. 1 compare three cases: (left) concatenated into a single resource on one
host, (middle) non-concatenated on one host, (right) non-concatenated on four
hosts (“sharded”). In practice, for the sharded case, for h1 the browser will
open the maximum amount of connections (24, six per hostname) and a single
connection per hostname for h2 (four in our case). The observed h1 connections
are all configured with Keep-Alive and do not use pipelining.

In h1 the problem of HOL blocking is most apparent when trying to download
many smaller files, as browsers only open six parallel connections. Since these
smaller files do not fully take up the available bandwidth and each individual
resource request requires a full Round-Trip-Time (RTT) delay, this overhead
quickly adds up. For this, we consider three experiments in Fig. 1: (a) a large
number (i.e., 380) of small files, (b) a medium number (i.e., 42) of medium sized
files and (c) a medium number (i.e., 30) of large files. We choose images because
they typically incur a low processing overhead from the browser. We look at
more complex JavaScript/CSS cases in the next section.

For Fig. 1(a) we observe that h2 significantly outperforms h1 when there is
no concatenation (middle), but that using a single concatenated image largely
reduces h2’s benefit and brings it somewhat on a par with h1 (left). This is
expected as the single h2 connection can efficiently multiplex the many small

Web Performance Characteristics of HTTP/2 95

Fig. 1. Synthetic test cases concerning HOL blocking with images. h2 performs well
for many small files but deteriorates for less or larger files. Sharding only helps h2 for
larger files.

96 R. Marx et al.

files. It is of note that the concatenated version is two to five times faster overall,
even though (in a rare compression fluke) its file size is much higher than the
sum of the individual file sizes. Additionally, we see that sharding deteriorates
h2’s performance, while only marginally benefiting h1 (right). Because the files
are that small, h2’s multiplexing was at its best in the single host case and
maximized the single connection’s throughput, while in the sharded setting it
has less data to multiplex per connection. Conversely, sharding empowers h1 to
open up more connections, but still suffers from HOL blocking on the small files.

Figure 1(b) shows relatively little differences and no clear consistent winners
between the concatenated (left) and separate files (middle) over one host. This
is somewhat expected for h2, as in both cases it sends the same amount of
data over the same connection, but not for h1. We would expect the six parallel
connections to have more impact, but it seems they can actually hinder on
good network conditions. This is probably because of the limited bandwidth
in our emulated cellular network, where the six connections contend with each
other, while a single connection can consume the full bandwidth by itself. Unlike
h2’s behaviour in (a), we see that here h2 does not get significantly faster for
the concatenated version. This indicates that the higher measurements in (a)
(middle) are in large part due to the overhead of handling the many individual
requests. Similarly, sharding (right) shows inconsistent behavior: sometimes it
helps and sometimes it hurts h2; it shows impressive benefits for h1c but smaller
gains for h1s. We posit that the additional overhead of setting up extra secured
HTTPS connections (both for h1s and h2s) limits the effectiveness of the higher
parallel throughput. Overall, we can state that there is no clear winner here, nor
for the three different setups, nor for the three protocols.

Lastly, in Fig. 1(c) we see that h2 struggles to keep up with h1 for the larger
files and performs significantly worse under bad network conditions (note the
y-axis’ log scale). Due to the much larger amount of data, h1’s larger amount
of parallel connections do help here, while packet loss impacts the fewer h2
connections more. This is immediately apparent when comparing the NoLoss and
Good network conditions in Fig. 1(c) (middle): the h1 measurements are very
similar while the single h2 connection is almost 80% slower in this case (note that
the NoLoss and Good conditions are identical except for the amount of packet
loss introduced). As expected, utilizing additional parallel connections (right)
benefits both h1 and h2, helping mitigate HOL blocking for h1 and lessening the
impact of loss when compared to a single h2 host. The SpeedIndex measurements
(not included here) show very similar trends for all of the experiments discussed
in Fig. 1.

In conclusion, we can say that while h2 indeed helps for many smaller files,
it still loses to concatenated versions of those files, both over h1 and h2. This
indicates that the current h2 implementations can incur heavy costs for handling
individual resources, though this primarily poses a large problem for many (>42)
files (see also Sect. 4.3). We can also conclude that h2’s single connection setup
seems to suffer from bad network conditions, but not excessively more than h1,
and the performance drop largely depends on the observed case. Similarly, we

Web Performance Characteristics of HTTP/2 97

have observed that using multiple parallel connections for h2 can help mitigate
this problem (especially for websites with large objects), but that it can also lead
to slower load times (for many, smaller objects). These findings are consistent
with the previous work of Goel et al. [10], who overall observed that if sharding
helps for h2, sharding over more hosts helps more, but there are diminishing
returns with each increase in the amount of hosts. Additionally, Mi et al. [21]
decisively show that large files can increase the time to download smaller files by
99% over a single h2 connection. They propose an extension to h2 that allows
migrating resource requests between parallel TCP connections (also in a mul-
tipath TCP setting). Interestingly, Manzoor et al. [16] have shown empirically
that various browsers are already using multiple parallel connections for h2 in
the wild (although this was never observed during our tests). This might indi-
cate that the browser vendors are aware of the beneficial nature of this practice.
However, to the best of our knowledge, the browser vendors have yet to present
their own results on this issue.

4.3 HOL Blocking in Practice with CSS and JavaScript

HOL Blocking with CSS and JavaScript with loadEventEnd. The dis-
cussion in Sect. 4.2 has clearly shown the impact of network conditions and the
amount of parallel connections of h2’s performance. It has also shown that due
to HOL blocking, h2 seems to shine when loading a large amount of smaller files,
but that it is not necessarily faster when the amount of files is lower. In order to
investigate this property further and determine the point where HOL blocking is
overcome, we observe two experiments in Fig. 2: 500 <div>-elements are styled
using (left) simple CSS files (single CSS rule per <div>) and (right) complex JS
files (multiple statements per <div>). We vary the degree of CSS and JS code
concatenation, from one file (full concatenation) to 500 files (no concatenation).
Figure 2 plots full results in (a) and shows more detail for one to 30 files in (b).
We resorted to CSS and JS files in these experiments instead of images because
they typically include additional processing from the browser, which can also
impact page load time performance, as we will see. The data shown here is from
tests using the Good network condition.

The big-picture trends in Fig. 2(a) look very similar to Fig. 1(a) (left and
middle): h2 again clearly outperforms h1 as the number of files rises and shows
a much better progression towards larger file quantities than the quasi linear
growth of h1. Interesting is also the performance of Firefox: while its h1 results
(not shown in Fig. 2 for clarity) look almost identical to Chrome, its h2 values
are much lower, indicating that it has a more efficient implementation that scales
better to numerous files.

Looking at the zoomed-in data in Fig. 2(b), we do see somewhat different
patterns. For the simple CSS files the trends are relatively stable, with h1c
outperforming h2 and h2 beating h1s. This changes at about 30–40 files, where
h2 finally takes the overall lead. For the more complex JS files (right), this
tipping point comes much later around 100 files. The measurements for one to
ten JS files are also much more irregular when compared to CSS. Because h1

98 R. Marx et al.

Fig. 2. Synthetic test cases for HOL blocking with CSS/JS files. h2 performs well for
many files but there is no clear winner for the more concatenated cases. Image taken
from our previous work [18].

shows the same incongruous data as h2, we can assume this can be accounted to
the way the browser handles the computation of the larger incoming files. The
performance of a multithreaded or otherwise optimized handling of multiple
files can depend on how many files are being handled at the same time. This
would also explain the very high h2 measurements for a single JS file in Firefox
(consistent over multiple runs of the experiment). In additional tests, smaller JS
files and larger CSS files also showed much more stable trends, indicating that
especially large JS files incur a large computational overhead. Note as well that
the timings for a smaller amount of JS files are sometimes higher than those for
the larger amounts, indicating that concatenation might not always be optimal
here (for none of the protocols). Poor network conditions (not shown here) show
similar trends to Good networks, but the h2 tipping points come later: 40–50
files for simple CSS, 150 for complex JS.

All in all, we can see that h2 only overcomes h1’s HOL blocking problems at
a relatively large amount of individual files (30+ in the best case). While most
websites do include that many resources, our results also show that concatenating

Web Performance Characteristics of HTTP/2 99

files together (thus again reducing the total resource count) can overall be faster
than sending individual files for all protocols (especially for CSS files and many
images, see Fig. 1(a)). This again confirms our earlier thesis that browsers intro-
duce a lot of overhead per individual resource/request, regardless of the actual
size of the data (though Firefox seems to have a more efficient implementation
than chrome, at least for h2) and that this issue needs to be resolved first before
h2 can overtake h1 and its best practices.

HOL Blocking with CSS and JavaScript with SpeedIndex. For the tests
in the previous Sect. 4.3, the SpeedIndex results were significantly different from
the loadEventEnd measurements and merit separate discussion. Figure 3 shows
the same experiment but depicts SpeedIndex for Google Chrome. We notice
that the data for the simple CSS files (left) looks very similar to Fig. 2, but the
results for the complex JS files (right) do not. Since the SpeedIndex metric gives
an indication of how progressively a page renders (Sect. 3) and because we know
from Fig. 2 that h1 takes much longer than h2 to load large amounts of small
files, we can only conclude that under h2 the JS files take much longer to have
an effect on the page rendering, to skew the SpeedIndex in this way.

Fig. 3. Synthetic test cases for HOL blocking with CSS/JS files (SpeedIndex metric).
h2 SpeedIndex for JavaScript indicates that it is much slower to start rendering than
h1. Image taken from our previous work [18].

We manually checked this assumption using screenshots and found that for
h1 the JS was indeed progressively executed as soon as a file was downloaded,
but with h2 the JS code was applied in “chunks”: in larger groups of 50 to 300
files at a time and mostly towards the end of the page load. We first assumed
this was because of erroneous multiplexing: if all the files are given the same
priority and weight, their data will be interleaved, delaying the delivery of all
files (see Sect. 5). Captures of h2 frame data in Google Chrome however showed
that each file i was requested as dependent on file i - 1, and that file data
was fully delivered in request order (consistent with the behaviour described

100 R. Marx et al.

in Sect. 5). We can once more only conclude that the browser implementation
somehow delays the processing of the files, either because of their JS complexity
or because the handling of many concurrent h2 streams is not optimized yet.
This argument is supported by the SpeedIndex results for Firefox (not shown
here, for clarity), as its h2 values are much lower than those of h1, indicating
that Firefox has a more efficient h2 implementation than Chrome.

If the browsers’ handling of CSS code would be similar to that of JS code,
we would expect to see similar results in Fig. 3 (left) and (right). However, if the
CSS files would also be applied individually as soon as they were downloaded,
the h1 SpeedIndex values would be much lower than the observed measure-
ments. We found that the browser delays execution of all CSS until they have
all been downloaded and processed for both h1 and h2, despite our experiments
having been built specifically to prevent this. This is again unexpected browser
behaviour (though probably not directly related to the h2 implementation) and
we plan to look deeper into this in future work, as discussed in [18].

5 Resource Prioritization

5.1 Background

As demonstrated in Sect. 4, h2 solves the h1 Head-Of-Line blocking problem
by allowing multiple resources to be sent on the same connection at the same
time. To make this possible, each resource is assigned to its own conceptual
“stream” and these streams are then multiplexed over the single underlying
TCP connection. The data from the individual files is split up in chunks and can
thus be interleaved with chunks from other files. This is especially interesting for
resources that are partly directly available but that need slow I/O operations
to complete (e.g., an HTML template that fetches content from a database).
Using multiplexing, chunks from other resources can be sent while the data of
the “delayed” resource is being fetched, resulting in less idle time on the TCP
connection. Alternatively, when concurrently sending a very large and a very
small file, the data from the small file might be multiplexed with parts of the
larger file so the receiver does not need to wait for the larger file to be fully
downloaded to receive the smaller resource [21].

To this end, the h2 specification [3] details the concept of a “dependency
tree”. Nodes in this dependency tree represent individual h2 streams, while the
root of the dependency tree denotes the underlying TCP connection. New nodes
are added to the tree as new resources are requested and nodes can be removed
when their corresponding resources have been fully downloaded. A parent-child
relationship between nodes indicates that the child’s transmission should be
postponed until its ancestor has been downloaded completely (or until it is tem-
porarily impossible to make progress on the parent resource). Conversely, a sib-
ling relationship between nodes allows bandwidth to be distributed among the
siblings proportionally to their “weight” (i.e., ∈ [1,256]), thus allowing multiple
resources to be interleaved in a very fine-grained way. The h2 buildup of the
tree is decided by the browser at runtime and communicated to the server using

Web Performance Characteristics of HTTP/2 101

HEADERS or PRIORITY frames. This general setup allows for a lot of flexibility
in how the dependency tree is effectively constructed and maintained by the
browser during the page load.

Figure 4 shows example dependency trees from Google Chrome (a) and
Mozilla Firefox (b) respectively. It is apparent that Chrome chooses a very
sequential setup, where each node is the only child of its parent (rendering indi-
vidual stream weights effectively useless). It does however maintain an internal
“priority order” depending on the type and location of the resource (e.g., a CSS
file in the <head> will be given a Highest priority level, while an image in the
<body> will have a Low overall importance). If a new resource is discovered, it
will be not be added at the end of the full tree, but rather after the last exist-
ing resource with the same priority level. Firefox utilizes similar priority bins
internally (indicated by e.g., leaders, followers, unblocked) but chooses to
build its priority tree in a radically different way from Chrome. Firefox adds
“ghost” nodes for each of these priority levels (which do not directly represent
an h2 resource or stream) to be able to group the h2 streams that belong to this
category as siblings. This allows Firefox to use a more complex prioritization
strategy for its h2 implementation.

...

Highest

256

256

256

...

High

220

220

220

220

183

...

Normal

183

183

183

147

...

Low

147

147

147

...

Lowest

110

110

110

110

256(a)

leaders unblocked background

1101201

...

XHR, <body> JS, ...followers speculative

...

HTML, images, fonts, favicon, ...

...

<head> & <body> CSS, <head> JS, ...

11

(b)

Fig. 4. HTTP/2 dependency tree layout of (a) Chrome and (b) Firefox. Numbers
indicate node weights.

5.2 Evaluation of Prioritization Strategies

As Chrome’s and Firefox’s approaches for the h2 dependency trees are funda-
mentally different (Fig. 4), it is difficult to directly compare both options and
see which one performs best. This is due to the fact that the both browsers are
internally optimized for their specific strategy, implying that using a different
strategy will skew the results. Instead, we implement two alternative, less com-
plex prioritization strategies to see how much better (or worse) the browser’s
more advanced approach works.

The first alternative algorithm, Round Robin (RR), is the default behaviour
specified in the h2 specification [3]. All h2 streams are made siblings under the
root node and each is given an equal weight. In effect, this causes all active

102 R. Marx et al.

resources to be given an equal share of the bandwidth and leads to heavy mul-
tiplexing. The second algorithm, First-Come-First-Served (FCFS), approaches
the way h1 works. The dependency tree is purely linear and each new node is
added as the bottom leaf node; FCFS is thus a much less advanced version of
Chrome’s strategy as it will never inject new nodes between two existing nodes.
FCFS entails that the current resource has to be sent fully before (any part of)
the next resource can be sent, effectively disabling multiplexing.

These two alternative algorithms are implemented by modifying the H2O
server source code. The server simply ignores the priority directives from the
browser (which is allowed behaviour as per the h2 specification [3]) and builds
its own dependency tree using the rules described above.

Figure 5 shows the CDF results for the Firefox browser in Poor network
conditions. We take a corpus of 40 websites (see Sect. 8 for details) and load
them 20 times with each protocol/prioritization strategy; the median values are
used in the CDF.

Fig. 5. HTTP/2 prioritization strategies in Firefox for a Poor network condition.
Round Robin is clearly detrimental for SpeedIndex and h1s is consistently faster than
h2.

We can deduce that the impact of the different h2 prioritization strategies
is moderate for the loadEventEnd metric, with h2 measurements being very
similar. However, the SpeedIndex metric clearly shows worse performance when
using the Round Robin strategy. This is expected, as it will take longer for
resources to be fully downloaded and because, as we have discussed in Sect. 4.3,
browsers will often wait for a full resource (or group of resources) to be down-
loaded before re-rendering the page. This is a remarkable result because, as men-
tioned before, Round Robin is the default prioritization behaviour prescribed by
the h2 specification and in our tests it was seen in effect in both Microsoft’s
Edge and Apple’s Safari browsers (which do not seem to employ a custom pri-
oritization strategy at this time).

We performed similar tests for Google Chrome and on the various other
network emulation settings detailed in Sect. 3. The results displayed in Fig. 5

Web Performance Characteristics of HTTP/2 103

are among the most distinct of all our evaluated data, meaning that other
tests showed even less differences between the different strategies, especially
for improved network conditions. This indicates that the adopted prioritiza-
tion strategy is not a major influencer of h2 page load performance, except on
poor networks and then only when used in the most straightforward way. This
reflects previous work by Bergan [4], who found that Chrome’s implementation
only clearly outperforms a completely random strategy in 31% of the observed
pages.

Finally, when looking at the browsers’ prioritization strategies, we found
that their implementations are often still lacking in their support of cutting-
edge web technologies. For example, the new Service Worker concept7 allows
developers to register a JS-based “client-side proxy” that can intercept and per-
form custom processing on all requests the browser emits. We found that all h2
requests passing through such a Service Worker lost all of their intelligent pri-
oritization information, leading to Chrome defaulting to a FCFS-alike strategy,
while Firefox exhibited pure RR behaviour. This is probably an implementa-
tion oversight and we expect this to be fixed in the future. As another example,
developers can indicate to the browser that certain JS files are less important
using the async/defer attributes. Chrome correctly assigns a Low priority to
those resources, but in Firefox they are regarded as normal, high-priority JS
files. We believe that these and similar browser implementation errors could be
responsible, at least partly, for some contradictory results in other work (Sect. 2).

6 Server Push

6.1 Background

In HTTP/1.1, the browser can only receive resources that it has explic-
itly requested. Typically, the user agent first fetches the HTML page (e.g.,
index.html), which it then parses to discover other referenced resources. As such,
it takes at least one RTT before the browser can start requesting critical CSS/JS
files and a minimum of two RTTs before they are downloaded. Especially on slow
networks, this can have a large performance impact. In response, the HTTP/2
specification [3] describes a novel mechanism called “Server Push”. This allows
the server to decide to send along additional resources with previously requested
resources, not having to wait for the browser to request them first, thus poten-
tially saving a full RTT.

In theory, developers could push all necessary resources of a website along
with the original HTML request and thus eliminate additional RTTs completely.
In practice however, Server Push is limited by TCP’s congestion control mech-
anisms. For example, in its “slow start” phase, TCP sends only a small amount
of data at the beginning of the connection and then exponentially ramps up its
speed if no packet loss or delays are present. In practice, the TCP congestion

7 https://developers.google.com/web/fundamentals/getting-started/primers/service-
workers.

https://developers.google.com/web/fundamentals/getting-started/primers/service-workers
https://developers.google.com/web/fundamentals/getting-started/primers/service-workers

104 R. Marx et al.

window starts at about 14 KB for modern Linux kernels (as used in our exper-
iments) [17], severely limiting the amount of resource data we can push during
the first RTT. Given this behaviour, h2 Server Push’s benefits should increase
the longer the TCP connection stays open (i.e., the congestion window grows as
the connection gets “warmer”), as more data can be pushed in a single RTT.

Server Push could be a good fit for the popular modern Single Page App
(SPA) setup. In this paradigm, the loaded page routinely requests additional
data from the server using a (REST) API, thus keeping the TCP connection
active. The API’s response will then no longer just consist of the structured
xml/json data, but can also contain the pushed subresources (e.g., images)
mentioned in the data. Another interesting use case is to deploy Server Push
from a network intermediary, such as a CDN proxy. In this setup, the browser
typically connects to the proxy, which in turn connects to the origin server. The
proxy can then “warm up” its connection to the browser by pushing static assets
(mainly CSS/JS/font files) while it waits for the dynamic HTML and other data
to arrive from the origin. This use case is discussed in-depth by Zarifis et al. [30],
who show up to 27% web page load time improvements when using Server Push
in this fashion.

However, the page load performance of Server Push can be very dependent on
knowledge of the correct priority of the resources it wants to push and how they
fit into the page loading process. The main reason for this is that large parts of
common network stack implementations use buffered I/O, both on the OS-level
and in the network itself [5]. Once data is queued in these intermediate buffers,
it is often impossible to remove it or replace it with other data. If we then, for
example, would immediately push three very large image files along with the
initiating request and their data fills up all buffers, the browser’s request for a
more critical CSS file will be delayed because we cannot re-prioritize the less
important image data in the buffers. This makes for large practical difficulties
in determining which resources to push and when [30]. This problem is enlarged
by the fact that the h2 specification [3] does not include a mechanism for the
browser to signal to the server which files it has already cached. Consequently,
the server will potentially push files which the browser already has, wasting
bandwidth and delaying other resources.

6.2 Experimental Evaluation

While a full in-depth evaluation of the discussed characteristics of h2 Server
Push is out of scope for this work, we can nevertheless demonstrate several of the
discussed aspects using a very simple example. We use the existing Push demo
by Bradley Fazon8, based on the www.eff.org frontpage. This page has a single
“critical CSS” file (which is responsible for the main look-and-feel of the site and
thus a good Push target) and a good mix of additional CSS, JS and image files
without being too complex. We make sure the initial HTML code is smaller than

8 https://github.com/bradleyfalzon/h2push-demo.

www.eff.org
https://github.com/bradleyfalzon/h2push-demo

Web Performance Characteristics of HTTP/2 105

14 KB (by removing some metadata and enabling gzip compression), reducing
the on-network HTML size from 42 KB to 9 KB.

Figure 6 shows the results from tests using the Apache webserver because
NGINX does not yet support h2 Server Push. The SpeedIndex results are dis-
played because these should be most affected. We observe five different experi-
ments: (1) push the single “critical CSS” file, (2) push all the CSS/JS files (10
files), (3) push all (images + CSS/JS + one font), (4) push all images (18 files)
and (5) the reference measurement (original, no push). We see that pushing the
one “critical CSS” file does indeed improve the SpeedIndex measurements, but
not excessively so. It is unexpected however that pushing all CSS/JS performs
a little better than just the “critical CSS” in the Good network condition. We
found that in practice the initial data window is often a bit larger than 14 KB,
so it can accommodate more than just the single CSS file. However, this is not
always the case and other runs of the same experiment show less optimal results
(which can also be seen in the Poor network condition). Given a larger data win-
dow, the “Push all” test case should perform similarly to pushing the CSS/JS
resources, but it is consistently a bit slower. It turned out that we pushed the
single font file at the very end, after all the images. The font data should have
been given a higher h2 priority than the images, but due to an Apache bug9 this
was not the case and the font data had to wait, delaying the final render. This
also explains why pushing just the images performs worse than the reference:
the much more important CSS and JS is delayed behind the image data.

Fig. 6. Realistic test case for HTTP/2 Push. Pushing the wrong assets or in the wrong
order can deteriorate performance.

The discussed aspects and challenges make Server Push difficult to fine-tune
to achieve optimal performance. Due to this and the fact that many popular h2
server implementations do not yet support Server Push, Zimmerman et al. [31]
found that out of their observed 5.38 million HTTP/2 enabled domains, only
595 actively used Server Push.
9 https://icing.github.io/mod h2/nimble.html.

https://icing.github.io/mod_h2/nimble.html

106 R. Marx et al.

7 HPACK Header Compression

7.1 Background

HTTP uses the concept of Headers to convey various types of metadata about
its requests and responses between the user agent and the server. These headers
are typically prepended to the actual message body. Some popular header names
are Content-Type, Keep-Alive, Cache-Control and Cookie. This last header
is useful to bind multiple requests and responses to the same conceptual “user
session”, allowing applications to provide stateful interactions. Cookies typically
contain a numeric user ID or session token but can also include more complex
(serialized) data, which can make them relatively large in practice [29].

The headers are often repeated with each individual message, which can be
wasteful with respect to bandwidth usage, especially in the case of large metadata
like Cookie. HTTP/2 attempts to solve this deficiency by introducing HPACK
[24], a compression algorithm specifically tuned to the HTTP header format.
HPACK combines a pre-defined dictionary of known prolific header names and
values with a dynamic shared dictionary per connection that is built up at run-
time (at both the server and browser side), based on the header data that is
actually being sent during the session. As such, HPACK will perform better
with large amounts of similar files or cases with large dynamic metadata, as
it learns the repeating data on-the-fly. For example, the first time a header of
the form Cookie: value is sent on the connection, it is stored in the dynamic
dictionary. The next time this specific header would be sent, it can be wholly
replaced by a reference to the dictionary entry, which is identical on both client
and server.

7.2 Experimental Evaluation

To demonstrate the behaviour of HPACK, we use data gathered during our
experiments from Sect. 4, which include only typical HTTP headers and no cook-
ies are set. Table 2 details three cases: (a) 10 large images, (b) 42 medium images
and (c) 400 complex JS files. The BytesOut measurements consist of all data
that was sent by the browser and thus include primarily HTTP request headers
and TLS connection setup data. The actual header-induced overhead is even
larger if we also consider HTTP response headers.

For the cases with one host server, we can clearly see that HPACK signif-
icantly reduces the overall header size when compared to h1, with a factor of
more than five for case (c). It is also apparent that the header overhead is typ-
ically relatively low but can grow to 27% for many individual files on h1s (as
each of those files requires a separate request and response message). Looking
at the sharded setup with four host servers, we see that while both protocols
produce more overhead from the extra connections, h2s relatively suffers more
than h1s, especially for (a) and (b) (note that the h1s overhead is mainly due
to the TLS overhead from opening 24 connections compared to the six for the
single host case and four for sharded h2s). This is expected, as h2s now has

Web Performance Characteristics of HTTP/2 107

less data to learn from on each individual connection and optimize its dynamic
compression scheme. This is another argument of h2 to favor using only a single
underlying TCP connection.

It is of note that these observed header compression results are arguably too
low to have a significant impact on the performance of any individual page load
of a realistic website. However, when viewed on a larger scale (e.g., cumulatively
across all the servers in a data center or CDN) these savings can add up and
make a significant difference in the overall bandwidth usage of popular websites.
Related work from Cloudflare [1] indicates that on average HPACK reduces
HTTP header size by 30% and overall HTTP/2 egress traffic by 1.4%, with
outliers of up to 15% for individual websites.

Table 2. Total bytes sent by Google Chrome (∼HTTP headers) and ratio to total
page size. For many small files, the HTTP header overhead is significant. Sharding
over multiple hosts decreases the effectiveness of HPACK header compression.

File count Protocol Total page
size

1 host 4 hosts

BytesOut % of total
page size

BytesOut % of total
page size

(a) 10 large
files

h2s 2177600 504 0.02% 1227 0.05%

h1s 2177600 2419 0.1% 2993 0.1%

(b) 42 medium
files

h2s 1075000 649 0.06% 1362 0.1%

h1s 1075000 2786 0.2% 3346 0.3%

(c) 400 small
files

h2s 610000 29580 4% 38680 6%

h1s 610000 165300 27% 177600 29%

8 HTTP/2 Performance for Realistic Web Pages

8.1 Experimental Setup

While the synthetic test cases from the previous sections (excluding Sect. 5) are
useful to assess the individual h2 performance techniques in isolation, they are
not always representative for real websites. We will now look at some more real-
istic test cases. We will first present results for a corpus of nine manually selected
website landing pages (corpus A), which all contain either many smaller images
(e.g., media/news sites) or fewer but larger images (e.g., product landing pages
with large images taking up most of the “above the fold” space). The compo-
sition of this corpus is motivated by the goal of enabling easy and meaningful
comparison with our synthetic experiments in Sect. 4.2. As we will see however,
while the resulting findings showed clear trends, it was difficult to pinpoint their

108 R. Marx et al.

underlying causes. In response, we executed additional tests on a second, larger
corpus of 40 landing pages (corpus B) taken from the Alexa Top 50 and Moz
Top 500 rankings10. These pages were selected primarily on their total filesize,
with 10 pages being low-weight (<500 KB), 10 pages medium-weight (≥500 KB,
≤1 MB) and 20 pages heavy-weight (>1 MB). All pages were cloned using the
wget tool11 so that they could be served locally in the Speeder experimental
setup (Sect. 3).

The experimental setup is meant to simulate what would happen if a devel-
oper would switch their h1 site to h2 by naively moving all their own assets
over to a single server (disabling sharding) but still downloading some external
assets from third party servers (e.g., Google analytics, some JS libraries). This
approach is similar to the one adopted in [27]. We expect to see good h2 perfor-
mance compared to h1, as the latter has only six parallel connections to work
with and h2 can optimally use its single TCP connection.

The results for corpus A are from server NGINX v1.10, browsers Google
Chrome v54 and Mozilla Firefox v49 and test runner webpagetest v2.19. Each
page was loaded at least 10 times. The results for corpus B were obtained later
during our research through the standard H2O server v2.1, Google Chrome v58,
Mozilla Firefox v54 and webpagetest v3.0. Each page was loaded at least 20
times. We will display the median values. For more details on both test corpora
and the Speeder setup, we refer to our website (see Sect. 3).

8.2 Experimental Results

Figure 7 shows the median loadEventEnd and SpeedIndex measurements
for corpus A over Good and Poor networks. Globally, we can state that
loadEventEnd and SpeedIndex are often similar for the three protocols on the
Good network, indicating that the page load times of the tested pages are mostly
network dependent, with the rendering having to wait for assets to come in. This
explains why Poor network conditions can have a very large impact on page
load time performance (see Fig. 7(right)). In various cases, h2’s SpeedIndex is
far above that of h1 even if their loadEventEnd values are similar, indicating
that h2 is slower to start rendering, consistent with our observations in Sect. 4.3.
h1c is faster than h2 in almost all of the cases and h2 is almost never much faster
than h1s. Note that this is somewhat against our hypothesis, as h1s has to make
due without the benefits of sharding. A more in-depth discussion of some of the
outliers in Fig. 7 can be found in [18].

Looking more closely at the results for Poor networks in Fig. 7, we see that h2
is sometimes much slower than h1 but sometimes is also relatively similar. Given
the limited size of corpus A, it was difficult to pinpoint the underlying reasons
for this inconsistent behaviour. Suspecting that the total page size and amount
of objects on the page had a large influence (both from the corpus A results and
our synthetic tests in Sect. 4), we ran additional tests on the larger corpus B. The

10 http://www.alexa.com/topsites, https://moz.com/top500.
11 https://www.gnu.org/software/wget/.

http://www.alexa.com/topsites
https://moz.com/top500
https://www.gnu.org/software/wget/

Web Performance Characteristics of HTTP/2 109

Fig. 7. Nine realistic websites from corpus A on the dynamic Good and dynamic Poor
network models. There is very similar performance under Good network conditions,
but h2 clearly suffers from Poor conditions. Image taken from our previous work [18].

110 R. Marx et al.

results in Fig. 8 show that our thesis was indeed correct: the low-weight pages
(left) have similar SpeedIndex performance for h1s and h2s even on the Poor
network, while for the heavier pages (right) h2 clearly suffers. The results for
the loadEventEnd metric showed similar though less pronounced trends for the
Poor network and only small differences in the three protocols’ measurements
on the Good network.

Fig. 8. Differences in SpeedIndex for low-weight and heavy-weight pages from corpus
B in Poor network conditions. Heavy-weight pages clearly cause h2 to suffer more and
are faster to load under h1s.

Finally, it is difficult to directly compare our results for realistic pages to
related work, since few authors present results from a large corpus of locally
cloned web pages over various network conditions with modern h2 implementa-
tions or for the SpeedIndex metric. The closest related work loads pages directly
on the internet via various networks and shows more positive loadEventEnd
results for h2 than our tests do, for example that 80% of pages on faster net-
works clearly benefit from h2 [26]. This percentage is lower on slower networks
but there h2 typically also has a higher benefit. We are unable to confirm their
findings with our measurements. The most recent related work [31] loads pages
over a high speed link and concludes that 51% of the tested pages are ≥5% faster
over h2 when compared to h1s, which is also contradictory to our realistic test
case results.

9 Discussion

Conceptually, the ideal HTTP/2 setup will use a single TCP connection to multi-
plex a large amount of small and individually cacheable site resources. This mit-
igates the HTTP/1.1 application-layer HOL blocking issue and helps to reduce
the h1 overhead of many parallel connections, while also maximizing the effi-
ciency of the underlying TCP protocol. Together with advanced resource prior-
itization strategies, Server Push and HPACK header compression, this can lead
to (much) faster load times than are possible today over h1, with less overhead.

Web Performance Characteristics of HTTP/2 111

Unfortunately, as our experiments have shown, this ideal setup is not yet
viable. While h2 is indeed faster than h1 when loading many small files (Figs. 1
and 2), it is still often slower than loading concatenated versions of those files over
h2 (Sect. 4.2). Looking at the SpeedIndex metric results (Figs. 3, 7 and 8) also
shows that h2 is frequently later to start rendering the page than h1. HTTP/2
also struggles when downloading large files (Figs. 1 and 8) and its performance
can quickly deteriorate when used in bad network conditions. In our observa-
tions, h2 is in most cases currently either a little slower than or on a par with
h1 and shows both the most improvement and worst deterioration in extreme
circumstances.

The good news is that almost all of the encountered problems limiting h2’s
performance seem to be due to inefficient implementations in the used server
and browser software. Firstly, while loading many smaller files incurs its own
considerable browser overhead, the comparison of Chrome and Firefox in Fig. 2
tells us that this overhead can be reduced, as Firefox seems to have especially
optimized its pipeline for large amounts of files. Secondly, the fact that h2 is later
to start rendering than h1 is also due to ineffective processing of the h2 data,
since we have confirmed that resources are received well in time to enable faster
first paints (Sect. 4.3). Thirdly, several cases in which h2 underperformed could
be attributed to the server or browser not correctly (re-)prioritizing individual
assets (Sects. 5 and 6). As these implementations mature, we can expect many
of these issues to be resolved.

However, h2 still retains some core limitations, mostly due to its single under-
lying TCP connection, which seems to simultaneously be its greatest strength
and weakness. TCP’s congestion control algorithms can lead h2 to suffer sig-
nificantly from packet loss on Poor networks (most obvious when downloading
multiple large files (Figs. 1 and 8)) and can heavily impact the effectiveness of h2
on newly established connections (Sect. 6). We have to nuance these statements
however, as in practice h2 actually performs quite admirably and usually does
not suffer more from bad networks than h1, despite using fewer connections.
Additionally, we have found that h2 can also benefit from using multiple con-
nections in bad networks, especially in the cases where its performance problems
are greatest.

The other discussed h2 performance aspects do not seem to have as large an
impact as the use of the single TCP connection. While prioritization is certainly
important, the exact strategy that is used seems to have relatively little impact
in most cases. Chrome and Firefox use wildly different algorithms to build their
dependency trees (Sect. 5). Similarly, HPACK has only a limited impact on the
total used bandwidth for most normal cases and will probably not directly affect
individual page load times (Sect. 7). Finally, h2 Server Push sounds like a pow-
erful optimization but takes a lot of work and special network setup (e.g., CDN
intermediaries) to save more than a single RTT on a page load (Sect. 6). Further
work is needed to determine how to optimize both h2 resource prioritization and
Server Push.

112 R. Marx et al.

Recognizing that the core h2 performance problems stem primarily from
the use of TCP, the new QUIC protocol [6] implements its own application-
layer reliability and congestion control logic on top of UDP. QUIC removes the
transport-layer HOL blocking by allowing out-of-order delivery of packets, differ-
ently handles re-transmits in the case of loss, reduces the amount of round-trips
needed to establish a new connection and allows larger initial data transmissions.
Running h2 on top of QUIC could greatly benefit h2’s multiplexing setup.

As such, we can conclude that the HTTP/2 protocol specification is a solid
foundation for the next steps in bringing better page load performance to the
web and reducing overall overhead. It will however take some time for imple-
mentations to mature and the QUIC protocol to be finalized before we will see
its largest benefits in practice.

10 Conclusion

In this work we have discussed and evaluated four salient performance-related
aspects of the new HTTP/2 protocol: using a single underlying TCP connec-
tion (Sect. 4), prioritization of multiple resources over this single connection
(Sect. 5), the new Server Push construct (Sect. 6) and HPACK header compres-
sion (Sect. 7). Our evaluation was comprehensive and varied, looking both at
synthetic and realistic test cases, over a variety of software, performance metrics
and emulated network conditions.

Our results have shown that the switch to the single multiplexed TCP con-
nection has by-and-large the biggest performance impact when comparing h2 to
h1’s multiple parallel connections. While in most cases h2 performs similarly to
or slightly better than h1 (while inducing much less overhead), poor network
conditions coupled with large files can cause h2’s performance to deteriorate.
The emerging QUIC protocol might help h2 overcome these problems by switch-
ing to UDP, while in the mean time using multiple concurrent h2 connections
can also help.

Other discovered performance problems, such as h2 delaying the time to start
rendering web page content, were likely to stem primarily from incomplete or
erroneous h2 implementations and are expected to be solvable in time. Similarly,
prioritization and Server Push both have potential but require future work to
determine their best practices.

Acknowledgements. This work is part of the imec ICON PRO-FLOW project. The
project partners are among others Nokia Bell Labs, Androme, Barco and VRT. Robin
Marx is a SB PhD fellow at FWO, Research Foundation - Flanders, project number
1S02717N. Thanks to messrs Goel, Michiels, Robyns, Menten, Bonné and our anony-
mous reviewers for their help.

Web Performance Characteristics of HTTP/2 113

References

1. Alpichi, K.: HTTP Pipelining. https://blog.cloudflare.com/hpack-the-silent-killer-
feature-of-http-2/ (2017). Accessed 08 Aug 2017

2. Beheshti, H.: HTTP/2: What No One’s Telling You (2016). http://www.slideshare.
net/Fastly/http2-what-no-one-is-telling-you. Accessed 01 Mar 2017

3. Belshe, M., Peon, R., Thomson, M.: HyperText Transfer Protocol Version 2 (2015).
https://tools.ietf.org/html/rfc7540. Accessed 01 Mar 2017

4. Bergan, T.: Benchmarking HTTP/2 Priorities, October 2016. https://docs.google.
com/document/d/1oLhNg1skaWD4 DtaoCxdSRN5erEXrH-KnLrMwEpOtFY/

5. Bergan, T., Pelchat, S., Buettner, M.: Rules of Thumb for
HTTP/2 Push (2016). https://docs.google.com/document/d/
1K0NykTXBbbbTlv60t5MyJvXjqKGsCVNYHyLEXIxYMv0

6. Carlucci, G., De Cicco, L., Mascolo, S.: HTTP over UDP: an Experimental Inves-
tigation of QUIC. In: Proceedings of the ACM Symposium on Applied Computing,
pp. 609–614. ACM (2015)

7. Corbel, R., Stephan, E., Omnes, N.: HTTP/1.1 pipelining vs HTTP2 in-the-clear:
performance comparison. In: 2016 13th International Conference on New Technolo-
gies for Distributed Systems (NOTERE), pp. 1–6, July 2016

8. Erman, J., Gopalakrishnan, V., Jana, R., Ramakrishnan, K.K.: Towards a
SPDY’ier Mobile Web? In: Proceedings of the Ninth ACM Conference on Emerg-
ing Networking Experiments and Technologies, CoNEXT 2013, pp. 303–314. ACM,
New York (2013). https://doi.org/10.1145/2535372.2535399

9. Everts, T., Kadlec, T.: WPO Stats (2017). https://wpostats.com/. Accessed 03
Aug 2017

10. Goel, U., Steiner, M., Wittie, M.P., Flack, M., Ludin, S.: HTTP/2 performance in
cellular networks: poster. In: Proceedings of the 22nd Annual International Confer-
ence on Mobile Computing and Networking, MobiCom 2016, pp. 433–434. ACM,
New York (2016). https://doi.org/10.1145/2973750.2985264

11. Gooding, M., Garza, J.: Real World Experiences with HTTP/2 (2016). https://
www.slideshare.net/JavierGarza18/real-world-experiences-with-http2-michael-
gooding-javier-garza-from-akamai. Accessed 01 Mar 2017

12. Grigorik, I.: High Performance Browser Networking. O’Reilly Media Inc,
Sebastopol (2013)

13. Kohavi, R., Deng, A., Longbotham, R., Xu, Y.: Seven rules of thumb for web site
experimenters. In: Proceedings of the 20th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 1857–1866. ACM (2014)

14. Krasnov, V.: HPACK: The Silent Killer (feature) of HTTP/2 (2017). https://
developer.mozilla.org/en-US/docs/Web/HTTP/Connection management in
HTTP 1.x#HTTP pipelining. Accessed 08 Aug 2017

15. Liu, Y., Ma, Y., Liu, X., Huang, G.: Can HTTP/2 really help web performance
on smartphones? In: 2016 IEEE International Conference on Services Computing
(SCC), pp. 219–226. IEEE (2016)

16. Manzoor, J., Drago, I., Sadre, R.: The curious case of parallel connections in
HTTP/2. In: International Conference on Network and Service Management
(CNSM), pp. 174–180. IEEE (2016)

17. Marx, R.: HTTP/2 Push: The Details (2016). http://calendar.perfplanet.com/
2016/http2-push-the-details/. Accessed 01 Mar 2017

https://blog.cloudflare.com/hpack-the-silent-killer-feature-of-http-2/
https://blog.cloudflare.com/hpack-the-silent-killer-feature-of-http-2/
http://www.slideshare.net/Fastly/http2-what-no-one-is-telling-you
http://www.slideshare.net/Fastly/http2-what-no-one-is-telling-you
https://tools.ietf.org/html/rfc7540
https://docs.google.com/document/d/1oLhNg1skaWD4_DtaoCxdSRN5erEXrH-KnLrMwEpOtFY/
https://docs.google.com/document/d/1oLhNg1skaWD4_DtaoCxdSRN5erEXrH-KnLrMwEpOtFY/
https://docs.google.com/document/d/1K0NykTXBbbbTlv60t5MyJvXjqKGsCVNYHyLEXIxYMv0
https://docs.google.com/document/d/1K0NykTXBbbbTlv60t5MyJvXjqKGsCVNYHyLEXIxYMv0
https://doi.org/10.1145/2535372.2535399
https://wpostats.com/
https://doi.org/10.1145/2973750.2985264
https://www.slideshare.net/JavierGarza18/real-world-experiences-with-http2-michael-gooding-javier-garza-from-akamai
https://www.slideshare.net/JavierGarza18/real-world-experiences-with-http2-michael-gooding-javier-garza-from-akamai
https://www.slideshare.net/JavierGarza18/real-world-experiences-with-http2-michael-gooding-javier-garza-from-akamai
https://developer.mozilla.org/en-US/docs/Web/HTTP/Connection_management_in_HTTP_1.x#HTTP_pipelining
https://developer.mozilla.org/en-US/docs/Web/HTTP/Connection_management_in_HTTP_1.x#HTTP_pipelining
https://developer.mozilla.org/en-US/docs/Web/HTTP/Connection_management_in_HTTP_1.x#HTTP_pipelining
http://calendar.perfplanet.com/2016/http2-push-the-details/
http://calendar.perfplanet.com/2016/http2-push-the-details/

114 R. Marx et al.

18. Marx, R., Quax, P., Faes, A., Lamotte, W.: Concatenation, embedding and shard-
ing: do HTTP/1 performance best practices make sense in HTTP/2? In: Pro-
ceedings of the 13th International Conference on Web Information Systems and
Technologies (WEBIST 2017), pp. 160–173. INSTICC, ScitePress (2017)

19. Meenan, P.: Speed Index (2012). https://sites.google.com/a/webpagetest.org/
docs/using-webpagetest/metrics/speed-index. Accessed 01 Mar 2017

20. Meenan, P.: Webpagetest (2016). https://webpagetest.org. Accessed 01 Mar 2017
21. Mi, X., Qian, F., Wang, X.: SMig: stream migration extension for HTTP/2. In:

Proceedings of the Ninth ACM Conference on Emerging Networking Experiments
and Technologies (CoNEXT 2016), pp. 121–128 (2016)

22. Netravali, R., Goyal, A., Mickens, J., Balakrishnan, H.: Polaris: faster page loads
using fine-grained dependency tracking. In: 13th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 2016) (2016)

23. de Oliveira, I.N., Endo, P.T., Melo, W., Sadok, D., Kelner, J.: Should i wait or
should i push? A performance analysis of push feature in HTTP/2 connections.
In: Proceedings of the Workshop on Fostering Latin-American Research in Data
Communication Networks. ACM (2016)

24. Peon, R., Ruellan, H.: HPACK: Header Compression for HTTP/2 (2015). https://
www.rfc-editor.org/rfc/rfc7541.txt. Accessed 07 Aug 2017

25. de Saxcé, H., Oprescu, I., Chen, Y.: Is HTTP/2 really faster than HTTP/1.1?
In: IEEE Conference on Computer Communications Workshops (INFOCOM), pp.
293–299. IEEE (2015)

26. Varvello, M., Schomp, K., Naylor, D., Blackburn, J., Finamore, A., Papagiannaki,
K.: Is the web HTTP/2 yet? In: Karagiannis, T., Dimitropoulos, X. (eds.) PAM
2016. LNCS, vol. 9631, pp. 218–232. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-30505-9 17

27. Wang, X.S., Balasubramanian, A., Krishnamurthy, A., Wetherall, D.: How speedy
is SPDY? In: NSDI, pp. 387–399 (2014)

28. Wang, Z.: Navigation Timing API (2012). https://www.w3.org/TR/navigation-
timing. Accessed 01 Mar 2017

29. Yue, C., Xie, M., Wang, H.: An automatic HTTP cookie management system.
Comput. Netw. 54(13), 2182–2198 (2010)

30. Zarifis, K., Holland, M., Jain, M., Katz-Bassett, E., Govindan, R.: Making effec-
tive use of HTTP/2 server push in content delivery networks. Technical report,
University of Southern California, Networked Systems Laboratory, January 2017

31. Zimmermann, T., Rüth, J., Wolters, B., Hohlfeld, O.: How HTTP/2 pushes the
web: an empirical study of HTTP/2 server push. In: 2017 IFIP Networking Con-
ference and Workshops (2017)

https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/metrics/speed-index
https://webpagetest.org
https://www.rfc-editor.org/rfc/rfc7541.txt
https://www.rfc-editor.org/rfc/rfc7541.txt
https://doi.org/10.1007/978-3-319-30505-9_17
https://doi.org/10.1007/978-3-319-30505-9_17
https://www.w3.org/TR/navigation-timing
https://www.w3.org/TR/navigation-timing

CUBE System: A REST and RESTful
Based Platform for Liquid Software

Approaches

Clay Palmeira da Silva(B), Nizar Messai(B), Yacine Sam(B),
and Thomas Devogele(B)

Université de Tours, 30 Avenue du Monge, Tours, France
clay.palmeiradasilva@etu.univ-tours.fr,

{nizar.messai,yacine.sam,thomas.devogele}@univ-tours.fr

Abstract. In the last years, a multi-host environment, that means, hav-
ing at our disposal multiple connected devices, had become common in
our daily lives. We are inundated with many services and applications
with a promise to enhance our daily. However, the opposite occurs. We
spend too much time and effort to use the same services in all multi-
hosts we own. For dealing with this gap, we propose a model based on
some principles of Service-Oriented Architecture (SOA) to achieve Liquid
Software concepts. This approach requires a service design with an inno-
vate and a unified interface which can drift between different connected
devices and bring us with its behavior and complexities. In this context,
based on REST and RESTful principles and constraints we propose an
innovate centric-basic architecture to deal with multi-hosts. The CUBE,
once finished, will allow that both services and multi-hosts discovery for
migration across its system to enhance the usability of all devices owned
by the same user.

Keywords: REST · RESTful · Multi-hosts · Services
Liquid software · CUBE

1 Introduction

In the last years, a multi-host environment, that means, having at our disposal
multiple connected devices, had become common in our daily lives. Each device
differs from others regarding a processing and storage capacities. Moreover, we
spend too much time and effort to use the same services in all multi-hosts what
we owned.

In this scenario, we find the same service or software provided from different
kinds of platforms. Thus, the user must repeat her/his efforts each time when
trying to use those services or software on all different devices.

One attempt to make user daily enhanced with all these different services
and platforms, a Service-Oriented Architecture started to be adopted to unify

c© Springer International Publishing AG, part of Springer Nature 2018
T. A. Majchrzak et al. (Eds.): WEBIST 2017, LNBIP 322, pp. 115–131, 2018.
https://doi.org/10.1007/978-3-319-93527-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93527-0_6&domain=pdf

116 C. P. da Silva et al.

services. For this, developers have been widely adopted to use the concept of
RESTful, and a large number of APIs or frameworks have been created and
defined as so, although, several studies indicate that many APIs are not fully
RESTful [9].

RESTful principles require the use of hypermedia. Thus, API or Frameworks
which apply XML or JSON on their codes do not make use of hypermedia
handling, since these languages are not able to deal with hypermedia [16]. Fur-
thermore, to be defined as a Level 3 RESTful API means to have the ability to
change the current state of a resource through hypermedia. Thus, according to
[16], APIs which do not deal with hypermedia are not fully mature and cannot
be defined as RESTful.

Thus, this leads us to another insight: Is the HTTP protocol used entirely
and correctly? [17], Is the REST architecture respected? In other words, are
the required design constraints defined by [16], followed to achieve RESTful
principles?

Initially, these unanswered questions still require further investigation in our
research. Meanwhile, other related issues drive us in different directions, such as:
(i) Maturity Software [15]; (ii) Instantiation Resources [16,17]; (iii) HTTP Link
Header [2,14]; (iv) API Conversation [9] and (v) Liquid Software [1,12].

These directions lead us to assess how Web Services are built. While they
exchange representations of their resources with consumers, they never provide
direct access to the actual state of the underlying resources [15]. Therefore, the
Web does not support pointers [15], and URIs are used to construct all repre-
sentations with their resources on the Web, relating, connecting and associating
them.

All these different approaches and techniques are driven towards a common
interest, of attempting to find a way to enhance communications through API,
Web Services, and Frameworks, using or not the concepts of Liquid Software,
detailed later in this paper. However, an approach or methodology which can
combine these techniques to achieve results is still unavailable.

It is in this scenario that we present our CUBE model based on a user-
centric architecture approach, to support multiple connected devices owned by
the same user. Once the information is acquired from a Server, it is possible to
share data with all the connected devices in the same user-network through a
trigger. Thus, the approach is not only a technology integrator but also a way
of saving resources.

This paper is an extension of [20]. It describes the concepts of our CUBE sys-
tem for the design of Web applications and how to extend current technologies
to support its novel requirements. The paper is structured as follows: Sect. 2 pro-
vides background regarding the previously mentioned main constraints. Section 3
provides extended discussions regarding our findings while Sect. 4 describes the
Use Case system diagram. Section 5 deals with the description of the Implemen-
tation Model. Section 6 gives concluding remarks highlighting future research
directions.

CUBE System: A REST and RESTful Based Platform 117

2 Liquid Software Approach Motivations

This section describes how different techniques and perceptions led us to our
proposal, and how we extracted the best state-of-art practices and built them
into our CUBE model.

2.1 RESTful Principals and Constraints

We can assume that, while service-oriented computing becomes adopted every
day, SOAP-based APIs is more and more giving place for REST-based
approaches. According to [2] in 2014, 2125 SOAP-based APIs were developed,
against 6833 REST-based ones.

To be defined as RESTful, the platform should follow some principles, as
described in [16], which, in general, lead to high system performance, reduced
consumption, high interoperability and security in all devices, as well as encap-
sulated legacy systems.

In addition, RESTful services should also respect some constraints, such as:
(i) Stateless interaction [16], (ii) Resource linking, (iii) Identification or address-
ability of resources [2], (iv) Uniform interface, (v) Hypermedia as a mechanism
for decentralized resources and (vi) Self-describing messages [14].

Thus, when all these principles and constraints are put together as best prac-
tices to create a REST-based application (API or Framework), another problem
emerges: Which language can be used to support a level 3 RESTful characteris-
tic? What should be the choice to support hypermedia controls? These questions
lead to the concept of maturity software addressed in the next subsection.

2.2 Maturity Software

A level 3 RESTful characteristic relies on the ability of a service to change the
set of links that are given to a client based on the current state of a resource
[11,16]. In this context hypermedia support controls, XML and JSON [22] are
not able to achieve a real Level 3. On the other hand Atom, XHTML or JSON-L
can do so [16].

However, what exactly does this mean? An API to be defined as RESTful
should be fully mature, thus, making use of hypermedia to model the relationship
between resources. As put simply by [15] that hypermedia drives systems to
transform their application state.

Still, according to [15], the hypermedia system is described by participants
as a transferring resource representation that contains links according to an
application protocol.

The maturity level of service also affects the quality attributes of the archi-
tecture in which the service is embedded [16]. That is why a standardized and
uniform interface was applied to each resource to remove unnecessary variations
and to enabling all services to interact with all resources within the architecture,
thus promoting interoperability and serendipitous reuse [16,23].

118 C. P. da Silva et al.

2.3 Instantiation Resources

In a scenario of multiple devices, the instantiation resource feature is significantly
essential. As a necessity of most RESTful Web Services, which enables clients
to create new resource identifiers and set the corresponding state to an initial
value [16].

Consequently, a resource can either be set by the service or by the client.
Thus, it is possible to assume that the URI created by the service is unique,
while it is possible that multiple clients generate the same identifier [16]. This
feature can be used to provide a new set of services delivered by different servers
to the same client. However, to do this, the approach proposal described by [12]
should be modified for an inside perspective, the connected devices share the
services.

In this aspect, we allow for the use of the POST, GET, SET and DELETE
to be managed by the API to achieve the result expected by the client. Thus,
it seems necessary to establish a better appliance of semantics concepts, not
only in the Instantiation Resources but also in the Link Header, which changes
significantly according to client behavior.

However, when accessing a social media platform such as Linkedln through
Facebook or Google, authorization from the client is required, and these plat-
forms often accuse a security error when attempting integration. It is notewor-
thy that the certificate to access the different resources is not provided by the
Servers/Services, but by the client through an encrypted password.

2.4 Link Header

A Link header is a powerful HTML resource, although not usually correctly
applied. It gains significant value in REST-based approaches. Some exciting
research has been conducted in this regard, as seen in [10], which proposes to
discover REST resources as the user navigates. Their work seems promising but
depends too much on perfect assumptions to obtain results.

Another similar approach is composed of RESTful-linked services on the
Web, as proposed by [2]. Despite their effort and proposal, there is a lack of
concern with the use of Semantics to achieve better results.

In fact, when the link header is used correctly, it is possible to include one or
more hyperlinks. Thus, multiple targets are shown to be selected by the client.
This solution gives rise to other issues, e.g., which URI should the client follow
and does its selection imply the expected result by the client? If so, how should
the consumer’s choice of the URI be conducted to obtain the expected outcome?

These issues still require attention to enhance the Link Header. It is essential
not only to flood the consumer with all URIs but also to give a well-defined set
of useful URIs.

CUBE System: A REST and RESTful Based Platform 119

2.5 API Conversation

We can define an API Conversation as a set of communication activities between
two or more participants [9]. Thus, the focus is on communication between a
consumer and a RESTful Web API. From the client’s perspective, this means
an interaction with a particular API to fulfill a goal. Thus, the resources are the
building blocks of each RESTful Web API [9].

When a consumer requires multiple request/response interactions, she/he
wishes to exchange published resources with one or more consumers. Therefore,
it is possible to have various RESTful APIs emerging from the navigation within
a Web through hypermedia relationships sponsors by consumers [2,9,12,16].
Figure 1 illustrates how multiple requests can occur at the same time.

Fig. 1. How a client can use data from different services. Figure from [9].

However, in this scenario, still according to [9], four examples of RESTful
conversation types were collected: (i) Redirect, (ii) Accessing Resources Collec-
tions (iii) Try-Confirm-Cancel, and (iv) Long Running Requests. Each example
has a different way to deal with the RESTful conversation.

In this context, was identified another issue: A model API which combines
multiple basic conversation types. That means, how we can use semantics as
mediation support (repository) for dealing with multi REST API conversations.
Furthermore, we can use semantics to (i) Build, (ii) Read, (iii) Evaluate, (iv)
Compare and (v) Enhance multiple REST APIs conversations.

120 C. P. da Silva et al.

2.6 Liquid Software

Despite being a technology mentioned at the end of the 90s [8], over two decades
ago, we have seen no significant enhancements in this method. However, one
thing has changed, our behavior, since most of the time, we use at least two
Internet-connected devices at the same time.

When we expand this perspective for the available possibilities, such as lap-
tops, smartphones, tablets, phablets, game consoles, smart TVs, car display,
watches, augmented reality glasses, digital cameras and photo frames, home
appliances and so on [1], we obtain a perspective of insufficient resources to deal
with this amount of devices at the same time.

Despite the considerable amount of connected devices, there is another con-
straint concerning the user-device experience. According to [12], there are three
main categories: (1) Sequential Screening, (2) Simultaneous Screening and (3)
Collaboration Scenario.

Until today, despite all the available technologies, we are not able to obtain
a simple data-flow without starting from zero each time. An example is while a
person leaves a particular place, she/he decides to begin writing a message on a
mobile device, but enters the car, so continues the action using speech resources
through the car, then, when arriving at the final destination finishes the message
on a laptop, desktop or a smart TV.

Currently, there is no fluid exchange of information through all platforms,
connected devices, and so forth. Protocols, messages, and certificate standard-
ization to achieve full data-flow through connected devices are still lacking.

3 CUBE Model Proposal

It is a fact that multiple devices are a growing trend. However, despite all efforts
in the last years, much must still to be developed to deal with this issue in a
synchronized way.

The Internet was built to allow for caching of across its infrastructure, which
can be helpful in many aspects. For example, a subsequent request for the same
page along the same network path may be satisfied by a cached representation
[15]. However, when we think of 1 or N connected devices to a user who needs
to access her/his email, all this caching becomes useless.

When we think about computer-to-computer systems, a cost regarding trans-
actional atomicity and also scalability is present [9,15]. Despite the efforts to
build a system using Liquid Software principles [1,8,12], there is a lack of archi-
tecture or framework able to deal with all the involved requirements, principles
and constraints. Thus, it is in this scenario where we propose our user-centric
based CUBE model, Fig. 2. It is possible to describe the CUBE model as a com-
bination of two circumscribed cubes. Inside, the INNER CUBE represents the
devices and surrounds the user (in red). Outside, the OUTER CUBE represents
the services which the user can access from any point in the INNER CUBE.

The model description follows this sequence: A Server (S1) requests an ordi-
nary service (So). It needs to wait for the sum of the response time (

∑
t). The

CUBE System: A REST and RESTful Based Platform 121

Fig. 2. The user is in the center surrounded by devices (inner CUBE) and services
(outer CUBE).

time can be influenced by the sum of the distance to each service (
∑

d), which
can change according to the availability of routers. Once the Server (S1) has
received the service (So), it keeps all data as a cache. A second Server (S2),
which needs the same data once requested by (S1), does not need to follow the
entire path that (S1) followed since all that (S2) requires is the data.

After the first request from (S2), if other Servers receive online requests of the
same data from (S1), all resources used in the initial (S1) search are saved. With
this feature, we also enhance energy consumption and throughput, among others.
A comparison with a TCP-IP model, as displayed in the Fig. 3, can project how
CUBE would act.

Fig. 3. All devices could use the same data after acquiring. from [20].

122 C. P. da Silva et al.

It is important to realize that each Server (S1, S2, ...Sn) is, in fact, a connected
device owned by the same user. Since all the credentials, certifiers, headers and
data in each layer of the TCP is already owned by the first Server (S1), there is
no need to perform all these steps again, since the owner is the same.

To activate any new device on its network, the user will need a trigger, such
as a fingerprint or an encrypted password. By adding a device, we can combine
two methods. First, the graph methodology [5] of level search, which can begin
at any arbitrary node to all adjacent nodes. Second, using the Dijkstra algorithm
[4] to search for the minimal distance from a node to another.

As for choosing a CUBE is to be as the adequate model for the approach, a
Quadtree is applied [18]. The quadtree model is generally used to describe a class
of hierarchical data structures whose common property based on the principle of
recursive decomposition of space. According to [18], they can be differentiated by
the following: (1) The type of data that they represent, (2) The guiding principle
of the decomposition process, and (3) The resolution (variable or not).

Regarding the geometrical limitation of the CUBE, as an example, eight dif-
ferent devices using eight servers at the same time, two ways of dealing with this
type of organization are available. The first is in the inner CUBE (devices), as
the connection between vertices can provide a new device - volume approach,
while the same principle can be applied to the outer CUBE (services). If tech-
nology limitations are present, another way to manage too many devices in the
same user-network is duplicating the CUBE, which is possible using the Tridi-
mensional approach of Archytas of Tarentum [3,13].

We understand that the CUBE can be a model which could share restrictions
or also act as a proxy to filter all Internet requests in the same network. Thus,
brings forward the concept of domestic systems and their profiles sharing the
same services but at different levels of a request.

As discussed, there are many current constraints which require attention,
such as increasingly connected devices attempt to gain our attention. However,
following the data-flow of these devices still require a significant effort to bring
forward a unique platform.

However, to use the best practices, a perspective of the business process
is required. While this approach deals with produced and consumed resources,
a limited and linear vision of multi-connected systems is still prevalent. This
scenario brings us to an edge which requires not depleting our resources, while,
at the same time, providing all technical features.

4 Use Case Diagram

Due to its size and complexity, we will present the model from a theoretical
perspective. However, it is possible to see how the data can be used and see
fluidity through the devices.

The priority in this flowchart is to establish the Layers Compliance, as shown
in Fig. 4. Thus, we can understand how we can have RESTful approach separate
from other REST ones.

CUBE System: A REST and RESTful Based Platform 123

Fig. 4. Each layer implements a different task based on REST and RESTful platforms.

Flowchart readings in Fig. 5 begins with a User defining her/his first con-
nected device to use it. The primary safety measure is passing through the
process Basic requirements, where some procedures are executed, as to verify if
there is enough energy in the device to start the process.

In the sequence, at the same time when the user chooses Device1, another
process called Inner Cube starts. Then it will create the INNER CUBE, which is
responsible for keeping an updated list of hosts and also discovering all connected
ones owned by the user.

Back to Device1, for which the Authentication Process starts. Several steps
will be running, among them, checking Internet connection availability. In this
process, two Layers of the model are implemented, the Application and Request
Layers, which are now able to deal with the users requests. Then, the next step
can be either to synchronize the client and server sessions, (which is not explicitly
drawn as a step in the flowchart in Fig. 5) or to start another process.

Meanwhile, the OUTER CUBE is created, once its subprocess was finished,
it can be able to provide for the User a synchronized system of her/his use
services: those available for any device of the user.

The automatic process Saving Data has the responsibility to retrieve data
from the Authentication Process and the OUTER CUBE. We present here
another Layer Compliance, the Data Layer, which, after treatment, will send
data to the INNER CUBE.

One detail about the Data Layer, which for now is modeled in two perspec-
tives. First, we adopt a level 2 Host extensions for IP Multicasting. This feature
allows for a host to join and leave host groups, as to send IP datagrams to host
groups [7]. In this scenario, our Device1 will act as a host for all others in the
INNER CUBE. To allow for one host to be the central node of a group, RFC
1112 [7] needs specific adaptations over ICMP and IGMP protocols for a range
IP group address, e.g., 224.0.0.22. This approach optimizes the buffer required
in the devices but imposes to be limited by the IP group address. However, still
according to the RFC 1112, is possible to store a routing table in the host device.

124 C. P. da Silva et al.

Fig. 5. How is the data-flow in the CUBE model when a service is started by a client.

For the second approach, we plan to use the P2P principals, based on the
CHORD algorithm [21]. We can use the IP owned by the device and share the
data across all devices in the INNER CUBE. However, this drives us forward
two gaps, 1. Once the data is split over the user network, how we assure the
packages assembled will reproduce it correctly and 2. Must we have copies of the
P2P assembly on each device? For now, these gaps and also the Data layer still
require our attention and modeling efforts to be aligned with the other Layers
and produce the expected outcome.

The outputs provided by the previous process lead us to two different paths.
First, if our answer is affirmative a service loop starts until the user chooses

CUBE System: A REST and RESTful Based Platform 125

to stop her/his activities, does not change the Device and call the process Save
Session, which will send data to the INNER CUBE. Alternatively, for the second
path, the user decides to change the device and continue to use her/his services
in another place. In this case, INNER CUBE is also called to treat the user
request sending forward the output provided.

Flowchart reading finishes with the Conversation Layer, the last one of the
Layers Compliance. In our model, this layer has a unique behavior: to act as a
pool area where all kinds of API can emerge, from Client or Server.

The pool will provide a place for the APIs changing data status of hypermedia
formats. That is the main reason for this layer to be completely RESTful, as one
of the level 3 RESTful characteristics relays in the ability of a service to change
the set of links that are given to a client based on the current state of a resource
[20].

5 Illustrative Scenario

This section describes how the CUBE model can run services across its struc-
ture, through a scenario of a multi-host environment for a Web-mail client. We
illustrate this scenario in Fig. 6 and detail it hereafter. We would like to note that
the system is still under development, and we expect some preliminary results
to demonstrate its feasibility.

We must assume three conditions: 1. The user chooses a connected mobile
as her/his first device and 2. She/he decides to run an email service and 3. The
Car Operation Systems (COS) has a commanding voice available. Step 1 runs
all internal procedures required for the authentication process and connection
availability. Thus, in Step 2, the Application and Request layers, both REST,
with StormPath and Node.js respectively, make the token creation and send the
HTTP responses for the required service.

The user continues on the client mail. Then, the data-flow goes to Step 3,
which is still under the assessment of the best methodology to use. However, this
step is essential to define how the data will flow across the multi-host network.

Step 4 works under Semantic rules, based on the work presented in [19], where
APIs can emerge both to client or server, to allow for the change in hypermedia
status across the multi-platform. This step is also the Conversation Layer, built
as fully RESTful. Moreover, all APIs that arrive at this layer is already secured
by the token created in Step 1. Despite being shown as a linear model, the
Conversation Layer is available at all times, allowing for data-change between
devices and operational systems.

In Step 5, the user will move by car. Hosted by a COS, the CUBE will
be displayed as an icon to retrieve all data/session/connections achieved previ-
ously herein. At this time, the available multi-hosts are synchronized, allowing
a resume of any task, at any time.

The user arrives at her/his destination, leaving Step 5 with all synchronized
data in her/his mobile until turning on her/his laptop, based on iOS, which

126 C. P. da Silva et al.

Fig. 6. The cube works as an ESB for the multi-platform environment.

will retrieve all data produced so far. Before finishing the process, an Internet
connection is verified to allow the GET/POST/DEL methods to run.

CUBE System: A REST and RESTful Based Platform 127

Across this small scenario, we can tell that our contribution can start any
service, local or not, no matter the chosen device. Thus, this kind of behavior
is similar to those based on Enterprise Services BUS (ESB), once implements a
software architecture for distributed computing. That means, whereas in general,
any application using ESB can behave as server or client in turns, based on the
EBS primary goal of an application integration of the heterogeneous and complex
landscapes [6].

6 Multi-hosts Modeling API Implementation

The previous section has described how a service can flow through an environ-
ment with multiple connected devices. In this section, we present our CUBE
model as an API, and how its modules work in our proposal to integrate both
different devices and services on the same platform. An abstract perspective of
the API modules is given in Fig. 7, which we will describe hereafter.

The content management system 101 includes two application portions 103
and 105, two applications program interface (API) portions 102 and 106, devel-
oped in JavaScript, and a database portion 104. Each portion provides a separate
aspect of the content management system 101.

Starting from the external entity 100, the content management system, 101
will interact on two fronts, the user side and services environments. First, in the
user environment 100, a device is specified as the first one. Its choice is made
from a network of all connected devices available and owned by the same user.

In the Second, at the services environment 107, the CUBE will be able to
receive and respond to different types of requests made by the user. Meanwhile,
all those services will be synchronized in another part of the module, in the
API 106. Moreover, under the resources saving perspective, this feature allows
reducing consumption and throughput over the distributed infrastructure of the
Internet.

These two external entities to the CUBE model interact directly with the
two central concepts of our proposal. The INNER CUBE 102 and the OUTER
CUBE 106, the two APIs for devices and services respectively. Thus, these both
APIs are responsible for treating the different inputs and outputs to provide
normalized responses for each interaction.

As next step, the INNER CUBE 102 has as main activity to interact with
the user’s devices 100, which can be changed during the service execution, and
also treat requests in REST format, portion 103, through the layers Application
and Request described previously.

Once the data has been treated and classified, access controls in the following
layers set and make use of the metadata on the individual pieces of content. Users
can see different data depending on the role that they are trying to accomplish
in a specific device. Customized views into the data can be provided, and data
integrity and minimal user confusion can be ensured.

128 C. P. da Silva et al.

Fig. 7. The CUBE API works with multiple devices and services.

Workflows can be made to depend on content classification. For example, the
image files may be shared inside multi-host environment, allowing their access to
all system. In the opposite, an on-demand video must be redirected to each device
in use, that means, changed by the user in her/his flow. Thus, this may require
the use of complex classification-based workflows, therefore, automatically route
for all connected and available devices.

While services and devices change, the information as sessions retrieved by
the API 102, and also the data received can be stored in the database portion
104 via application module 103. Thus, when any change of device is required, the
user does not need to start from scratch to retrieve or fill in her/his information.

The application portion 105, working as a pool area, is built under RESTful
principles and is responsible for changing information across the multi-platform
environment. Moreover, this part of the module provides a secure connection for
the user devices through a token created in the INNER CUBE 102 by the join
of User ID from device’s and service which are provided by the OUTER CUBE
106. This type of addressability through a resource identification allows the pool
to ensure a stateless interaction between services.

CUBE System: A REST and RESTful Based Platform 129

While services and data are requested by the OUTER CUBE 106, the con-
versation layer, portion 105, connects with the services environment 107. Its
connection and data are stored in the database 104. Moreover, this feature gives
the flexibility and fluidity required in the Liquid Software approach.

We notice that this kind of long description to access the APIs is not linear.
That means, once all the connected devices are identified, they will be available
for the user changing according to her/his needs. Thus, the APIs will be available
for all devices. Moreover, it will be possible to resume the running activity in
any device still available. For this purpose, the API will be displayed as an icon
and synchronized among all the devices.

7 Conclusions

Until today, work with the same services or applications in different devices is
still a challenge which requires more investigation. Moreover, there is still a gap
to achieve both a multi-host and services synchronization over multi-platforms,
described herein. Furthermore, we have presented our CUBE Model under the
principles of Liquid Software, which should be a trend in a world which is more
and more connected each day.

Throughout an User-Centric approach and combining principles of REST
and RESTful model, our proposition, is a model able to converge multiple and
heterogeneous environments with different behavior and complex systems. Thus,
it displays the ability required in dealing with all the challenges of the Internet
platform in a multi-host environment.

To achieve fluidity, the CUBE Model applies the best practices of different
technologies described herein. Moreover, the model aims to fulfill the principals
and constraints of these technologies regarding the issues of security, stateless
interactions and providing a uniform interface shared by all resources, across
separated layers for the REST and RESTful applications.

Our future steps drive us for the specification of the Data Layer regarding
our objectives. Once defined, we can attach this Layer to our model and test it
under the principles of Liquid Software. The last step stands in establishing the
basic semantic rules to run in the Conversation Layer to achieve level 3 Maturity
and allow for a change status in hypermedia data. After these results, we will
model the CUBE as an API and evaluate it. Besides, we will assess whether the
CUBE will be a model for a framework or an application able to deal with the
increasing requests of connected devices.

130 C. P. da Silva et al.

References

1. Gallidabino, A., Pautasso, C., Ilvonen, V., Mikkonen, T., Systä, K., Voutilainen,
J.P., Taivalsaari, A.: On the architecture of liquid software: technology alterna-
tives and design space. In: Proceedings of 13th Working IEEE/IFIP Conference
on Software Architecture (WICSA). IEEE (2016)

2. Bennara, M., Mrissa, M., Amghar, Y.: An approach for composing restful linked
services on the web. In: Proceedings of the 23rd International Conference on
World Wide Web, WWW 2014 Companion, pp. 977–982. ACM, New York (2014).
https://doi.org/10.1145/2567948.2579222

3. Boyer, C., Merzbach, U.: A History of Mathematics. Wiley (2011). https://books.
google.fr/books?id=bR9HAAAAQBAJ

4. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2),
163–177 (2001). https://doi.org/10.1080/0022250X.2001.9990249

5. Bulitko, V., Lustrek, M., Schaeffer, J., Bjornsson, Y., Sigmundarson, S.: Dynamic
control in real-time heuristic search. J. Artif. Intell. Res. 32, 419–452 (2008)

6. Chappell, D.: Enterprise Service Bus. O’Reilly Media Inc., Sebastopol (2004)
7. Deering, S.: Host extensions for IP multicasting. RFC 1112, RFC Editor, August

1989. https://www.rfc-editor.org/info/rfc1112
8. Hartman, J.J., Bigot, P.A., Bridges, P., Montz, B., Piltz, R., Spatscheck, O.,

Proebsting, T.A., Peterson, L.L., Bavier, A.: Joust: a platform for liquid software.
Computer 32(4), 50–56 (1999)

9. Haupt, F., Leymann, F., Pautasso, C.: A conversation based approach for modeling
REST APIs. In: Proceedings of the 2015 12th Working IEEE/IFIP Conference
on Software Architecture, WICSA 2015, pp. 165–174. IEEE Computer Society,
Washington, DC, USA (2015). https://doi.org/10.1109/WICSA.2015.20

10. John, D., Rajasree, M.S.: RESTDoc: describe, discover and compose restful seman-
tic web services using annotated documentations. Semant. Technol. 4(1), 37–49
(2013). http://airccse.org/journal/ijwest/papers/4113ijwest03.pdf

11. Lanthaler, M., Gütl, C.: A semantic description language for restful data services to
combat semaphobia. In: 5th IEEE International Conference on Digital Ecosystems
and Technologies, IEEE DEST 2011, pp. 47–53, May 2011

12. Mikkonen, T., Systä, K., Pautasso, C.: Towards liquid web applications. In:
Cimiano, P., Frasincar, F., Houben, G.-J., Schwabe, D. (eds.) ICWE 2015. LNCS,
vol. 9114, pp. 134–143. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19890-3 10

13. O’Connor, J., Robertson, E.F.: Archytas of Tarentum (1999). http://www-history.
mcs.st-andrews.ac.uk/Biographies/Archytas.html. Accessed 24 Jan 2017

14. Panziera, L., De Paoli, F.: A framework for self-descriptive restful services. In:
Proceedings of the 22nd International Conference on World Wide Web, WWW
2013 Companion, pp. 1407–1414. ACM, New York (2013). https://doi.org/10.
1145/2487788.2488183

15. Parastatidis, S., Webber, J., Silveira, G., Robinson, I.S.: The role of hypermedia in
distributed system development. In: Proceedings of the First International Work-
shop on RESTful Design, WS-REST 2010, pp. 16–22. ACM, New York (2010).
https://doi.org/10.1145/1798354.1798379

16. Pautasso, C.: RESTful web services: principles, patterns, emerging technologies.
In: Bouguettaya, A., Sheng, Q., Daniel, F. (eds.) Web Services Foundations, pp.
31–51. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7518-7 2

17. Richardson, L., Ruby, S.: Restful Web Services, 1st edn. O’Reilly, sebastopol (2007)

https://doi.org/10.1145/2567948.2579222
https://books.google.fr/books?id=bR9HAAAAQBAJ
https://books.google.fr/books?id=bR9HAAAAQBAJ
https://doi.org/10.1080/0022250X.2001.9990249
https://www.rfc-editor.org/info/rfc1112
https://doi.org/10.1109/WICSA.2015.20
http://airccse.org/journal/ijwest/papers/4113ijwest03.pdf
https://doi.org/10.1007/978-3-319-19890-3_10
https://doi.org/10.1007/978-3-319-19890-3_10
http://www-history.mcs.st-andrews.ac.uk/Biographies/Archytas.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Archytas.html
https://doi.org/10.1145/2487788.2488183
https://doi.org/10.1145/2487788.2488183
https://doi.org/10.1145/1798354.1798379
https://doi.org/10.1007/978-1-4614-7518-7_2

CUBE System: A REST and RESTful Based Platform 131

18. Samet, H.: An overview of quadtrees, octreess and related hierarchical data struc-
tures. Theoretical Foundations of Computer Graphics and CAD, 1st edn. Springer,
Heidelberg (1988)

19. da Silva, C.P.: Text2MARK: a text mining tool to aid knowledge representation -
(MARK2). In: 2014 14th International Conference on Intelligent Systems Design
and Applications, pp. 199–204, November 2014

20. da Silva, C.P., Messai, N., Sam, Y., Devogele, T.: Diamond - a cube model pro-
posal based on a centric architecture approach to enhance liquid software model
approaches. In: Proceedings of the 13th International Conference on Web Infor-
mation Systems and Technologies - Volume 1, WEBIST, pp. 382–387. INSTICC,
ScitePress (2017)

21. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: a
scalable peer-to-peer lookup service for internet applications. SIGCOMM Comput.
Commun. Rev. 31(4), 149–160 (2001)

22. Trinh, T.D., Wetz, P., Do, B.L., Kiesling, E., Tjoa, A.M.: Semantic mashup compo-
sition from natural language expressions: preliminary results. In: Proceedings of the
17th International Conference on Information Integration and Web-based Appli-
cations & Services, iiWAS 2015, pp. 44:1–44:9. ACM, New York (2015). https://
doi.org/10.1145/2837185.2837194

23. Vinoski, S.: Serendipitous reuse. IEEE Internet Comput. 12, 84–87 (2008)

https://doi.org/10.1145/2837185.2837194
https://doi.org/10.1145/2837185.2837194

Harnessing Community Knowledge
in Heterogeneous Rule Engines

Kennedy Kambona(B), Thierry Renaux, and Wolfgang De Meuter

Software Languages Lab, Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussels, Belgium

{kkambona,trenaux,wdemeuter}@soft.vub.ac.be
http://soft.vub.ac.be

Abstract. Currently, there is a lack of rule-based approaches that offer
rich semantics that developers can use to exploit community knowl-
edge contributed by distributed heterogeneous clients. Such abstractions
can be useful in a number of applications to deal with the problem
of orchestrating data patterns in a heterogeneous setting. This work
presents scope-based reasoning in heterogeneous rule engines as a means
to capture collective intelligence via community knowledge. Using scoped
rules, rule designers can detect patterns in real-time data and to realise
grouping structures in heterogeneous applications backed by a common
rule-based system. The proposed solution exploits the fact that much
of the heterogeneous community knowledge significant when performing
reasoning and deductions can be structured hierarchically. We evaluate
our work through a simulated case study, confirming that our technique
presents a viable approach for efficiently processing community knowl-
edge in heterogeneous environments.

Keywords: Rule-based systems · Community knowledge · Rete
Scopes · Business rules

1 Introduction

As a result of today’s dynamic software environment, clients require real-
time processing in modern data-intensive applications: where the clients con-
tribute data as events and expect to receive instantaneous feedback through
notifications. Events can consist of both low-level data, such as raw GPS coordi-
nates, and high-level data that other applications depend on, such as detecting
a package that is late for delivery. Such event data can be sent continuously
over distributed networks to application servers in various forms as out-of-order,
partially unbounded and/or time-varying sequences. Accordingly, there is a cur-
rent need for knowledge-intensive techniques that ease the dynamic definition of
constraints in order to extract value from such continuous, reactive event data.
This will enable the system to infer potential higher-level knowledge that con-
tributed data may uncover. Currently, the technologies available to meet these
c© Springer International Publishing AG, part of Springer Nature 2018
T. A. Majchrzak et al. (Eds.): WEBIST 2017, LNBIP 322, pp. 132–160, 2018.
https://doi.org/10.1007/978-3-319-93527-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93527-0_7&domain=pdf

Harnessing Community Knowledge in Heterogeneous Rule Engines 133

goals is often times complicated and limiting due to the non-determinism and
sheer volume of data to discern patterns on [1].

Recent advancements in tackling this problem has re-discovered the use of
forward-chaining rule-based systems (RBS) in areas that embrace the use of
business rules [2]. Rule-based systems provide a declarative approach that rep-
resents the conceptual logic of a system in an application-independent way. The
fundamental power that rule-based systems expose is not only from complex
inference mechanisms but also from the ability for them to embrace rich knowl-
edge bases that reflect aspects of the real world [3].

Fundamentally, rule engines were designed in the era where isolated com-
puting was prevalent. At the time, rule engines were programmed to encode a
localised set of rules and to work on homogeneous data. In contrast, the online
software ecosystem is definitively characterised by a heterogeneous environment
where different types of client devices contribute vastly diverse types of data
for processing. Sharing brought about by Utility Computing [4] is significant in
exploiting the collective knowledge that can be discovered from the data that
these devices contribute.

Sharing however unearths issues that can be attributed to classically-isolated
rule engine design. Classical rule engines suffer from a lack of proper modular-
isation when installed to serve heterogeneous settings with shared data: they
are characterised by a flat design space where activations could be observed
from all data without discriminating their sources. They are thus said to be
non-reentrant [1]. Most rule-based approaches provide basic techniques that do
not intrinsically support the flexibility and expressiveness in customising specific
client behaviour. The methods employed to mitigate these problems unnecessar-
ily retract the gains made by using a rule-based system in the first place: they
increase the complexity of application development making it fallible, and mud-
dles the design of the conceptual logic of the application. They furthermore lack
the proper mechanisms in which to exploit improvements in efficiency that can
be realised in a heterogeneous setup.

In this work we augment the support the efficient processing of heterogeneous,
multi-user applications through a technique that enforces the consolidation and
partitioning of client constraints and data defined using special rule-based pro-
gramming constructs. We present scoped rules, that enable rule creators to dis-
tinguish between events pertaining to different sources while keeping this logic
cleanly separated from the application logic. As such, the basic purpose of the
rule is not muddied with the logic required for distinguishing clients, leaving the
logical intent of a rule easy to understand for a rule creator.

At the same time, scoping enables the system to exploit a number of per-
formance optimisations in the server’s rule engine during its matching process.
The approach of encoding the physical, structural or other logical organisations
of multi-user applications eases the computational workload of the inference
algorithm. We show that the underlying rule engine can effectively use such
abstractions to generally decrease the engine’s overall response time and thus
improving overall processing efficiency when compared to classic methods.

134 K. Kambona et al.

The document is organised as follows. Section 1.1 discusses the significance
of incorporating community knowledge and presents a motivating example of
a representative heterogeneous application. Sections 2–5 describe the proposed
heterogeneous rule-based system and its execution semantics. Section 6 then pro-
ceeds to evaluate the work against current methods, and Sect. 7 outlines the ways
in which similar approaches can be used to support the capture of community
knowledge in other heterogeneous environments. Section 8 recapitulates the main
points and points out some limitations and possible avenues for future improve-
ments.

1.1 The Significance of Community Knowledge

Value is a significant feature when reasoning on data contributed by client devices
to discern useful patterns [4]. Discovering interesting patterns from such inter-
mittent, dispersed or entangled pieces of data greatly improves data quality. A
good analogy for this is the ancient Parable of the Blind Men and the Elephant
that originated from the Rigveda collection from ancient India [5]. The fable
describes a number of blind men sizing up an unknown object, a large elephant.
Their goal is to try and determine what the object or creature is, and project
the result to the others. Each man feels only one part of the elephant’s body
and are then required to describe the elephant based on this. Since each man
has only a limited, local perspective of the elephant, they come up with different
conclusions of what the object can be: for instance, each says the elephant could
be a wall, a spear or a rope depending on the limited region (respectively, the
side, the tusk or the tail) they can access, Fig. 1. The fable ends with the blind
men in complete disagreement of what the object is.

Fig. 1. The Blind Men and the Elephant – Each blind man has a limited view of the
elephant and come up with different conclusions of what the object is (Image sourced
from [6]).

In the same way, value from data contributed by a variety of sources or
clients can potentially be increased if it is processed collectively (cf., discovering
that the object is indeed an elephant). This will significantly increase its value

Harnessing Community Knowledge in Heterogeneous Rule Engines 135

because the information is fed into a deterministic process where patterns within
a set of collective information can be ascertained. One field where this manner of
processing is of practical significance is in the organisational intelligence domain,
where the result is often termed as collective intelligence [7].

This work goes further in defining a concise collection of useful information
sourced from different clients that can be grouped according to logical or physical
structures, that we denominate as community knowledge. Community knowl-
edge is important in the context of heterogeneous systems due to the vastness
and diversity of the types of information that can be produced, collected and
processed from different clients. This type of composite knowledge encompasses
the variety of data that is often contributed in these environments.

This outlook stands above other similar approaches because a diverse range
of autonomous sources can contribute reactive data in one integrated system.
This has a profound effect on its complexity and the relationships that can be
unearthed. For example, traditional systems were focused on relating features
with a single independent entity, such as age, date of birth, gender, etc. Today,
an individual’s features as well as relationships form a social connection with
other entities through relatable hobbies and other interests. In traditional sys-
tems, individuals are only linked if they have same basic features. In a modern,
dynamic community, two individuals can be linked via these social connection
relationships even though they do not share any of these intrinsic features.

1.2 Motivating Example

We now present a representative practical example that motivates the need for
exploiting community knowledge in a heterogeneous environment. To highlight
the requirements that such a system should meet, we describe a scenario of a
security monitoring system in an university environment that monitors access
patterns. The service can be deployed in a heterogeneous configuration (such as
through a Cloud Access Security Broker [8]) to monitor and log access in several
institutions. The example follows that explained in [1].

University Services Access Control. The security departments of universi-
ties in Brussels have embarked on improving the security of their campuses. They
have passed regulations that require the security departments enforce protocols
to monitor accesses of all staff and other students and staff in their institutions.

Devices that scan badges issued to students and staff have been installed at
major access points throughout the university premises. The badges are contact-
less smart cards that can be read by the access devices. To gain access to any
part of the university, a person is required to scan their badge on the device.
We outline some of the security protocols that have been drafted by the security
department from the regulations below.

136 K. Kambona et al.

1. Students at all levels (bachelor, master, etc.) have access to classrooms during
class times on weekdays

2. Only vehicles of students and staff are allowed to enter the underground
parking in campus buildings

In Fig. 2 we illustrate a simplified common structure for a university consist-
ing of different hierarchies: personnel, physical structures and research depart-
ment hierarchies. As a result, specific departments and units can therefore define
custom access policies:

3. Biology department students are allowed access to all labs in the
(sub)departments in the weekends if accompanied by senior academic staff

4. Only campus bank employees and consultants have access to the bank back
office during working hours

Fig. 2. Structural organisation of a university [1] – The structures can be modelled as
physical locations, research groups and personnel; spanning students, staff and physical
structures.

A system supporting this example should be capable of defining both types
of policies, and of processing the requests from all users efficiently against the
protocols at varied times whenever any request is made. For instance in policy
1, when a student on a university accesses a classroom during class times the
monitoring dashboard would show a status to indicate whether the access is
acceptable or otherwise. Such kind of processing model is common in forward-
chaining rule-based systems in the complex event processing domain.

Harnessing Community Knowledge in Heterogeneous Rule Engines 137

2 The Serena Rule-Based System

The example outlined in the previous section is a representative of a reactive het-
erogeneous application. In this work, we particularly target the dynamic design
of such knowledge-intensive, data-driven applications that continuously stream
data back and forth between clients and the server. These systems are required
to manage the shared knowledge base reused by the various applications they
support. In order to reason about data sent by client devices and to extract
higher-level knowledge from it, it is vital that the value of the sent data be
processed efficiently. Instead of hard-coding all this shared knowledge using con-
ventional techniques, developers often encode this knowledge in the form of rules
to specify detection logic. In such situations, a modern rule engine can be used
to accommodate the knowledge for all clients of a heterogeneous configuration.
This is the main idea behind the design of the Serena framework [1].

2.1 The Serena Framework

Serena is a rule-based framework that augments an event-driven web server with
a forward-chaining inference engine that processes event data reactively using
rules. In Serena clients create and install the logic reactive rules that define the
complex events they are interested in. The rules specify which data to match,
and once activated the rule can send this activation as notification to clients.

2.2 Serena’s Execution Semantics

Producing efficient rule-based functionality requires maximum efficiency due
to complex pattern-matching techniques of rule-based semantics. Reducing the
amount of matching in rules therefore guarantees faster server execution. The
Serena runtime is based on the production systems model of knowledge repre-
sentation [9], which uses data-sensitive rules rather than sequenced instructions
as the basis of computation.

We use the university access control’s example protocol 1 to explain the
semantics of execution in a typical heterogeneous rule engine.

Rule Syntax. Rules support defining constraints that will enforce pattern-
matching within conditions in order to execute some actions. The university
policies from the scenario in Sect. 1.2 can be easily expressed in a rule-based
format. We show such a rule to be added by a university security staff using a
syntax similar to JSON Rules [10] in Listing 1.1 for the classroom protocol 1.
Remember that the protocol specified that students are only allowed access to
classrooms on weekdays. The rule in JSON format is received by the framework’s
server when shipped from the client.

138 K. Kambona et al.

Listing 1.1. Rule for allowing classroom accesses to a student.
1 {rulename: "classtime-access1",
2 conditions:[
3 {type:"student", name: "?name"},
4 {type:"accessdevice", name:"?dev", location:"classroom"},
5 {type:"accessreq", id: "?reqid", person: "?name", time: "?t", device: "?dev"},
6 {type:"$test", expr:"(hourBetween(?t, 8, 20) && (isWeekday(?t) == true))"}
7],
8 actions:[
9 {assert: {type: "accessrep", reqid:"?reqid", allowed: true}}

10]
11 }

The rule consists of a name, the left-hand side (LHS) and the right-hand
side (RHS). The rulename identifies the rule. The LHS contains conditions
(lines 2–6) that specify constraints on incoming events for event detection. The
RHS contains the actions to be taken when the conditions have been fulfilled
(lines 8–10). The LHS of the listed rule definition captures the access request
from a person on an ID scanning device within the specified time periods (line
6). In the rule the ‘?’ operator denotes a variable binding (e.g. ?name in lines 3
& 5).

When all the conditions specified in the LHS are satisfied, then the actions
defined in the RHS are activated. In the example rule, the RHS asserts that the
access request has been granted by the reply in line 9 from the request captured
in line 5.

The Rete Algorithm. When the rule engine receives the rule it builds a
discrimination network via the Rete algorithm [11] in its inference engine. Rete
compiles rules into a data-flow graph that filters facts (data) as they propagate
through nodes performing a match-select-execute process. Rete inference engines
perform efficient matching, a technique that reasons over the data to detect
consistent bindings for constraints in rules that need to be fulfilled. Efficient
matching is achieved by exploiting two characteristics. The first is structural
similarity which involves sharing similar nodes when building the graph. The
second is temporal redundancy which is the caching of intermediate matched
data tokens between cycles of incoming results, albeit at the price of higher
memory usage from the added caches.

The Rete Graph. We show the graph for the classtime-access rule previously
shown in Listing 1.1 after addition in the server. The graph consists of two
regions, the alpha and beta network. The alpha network contains alpha nodes
that perform intra-condition tests, such as the leftmost alpha node that checks
if a fact is of type student.

The beta network is built in the lexical order of the conditions in a rule,
forming a left-associative binary tree. Two-input beta nodes or join nodes per-
form tests or joins between conditions on their left and right inputs. Each beta
node is associated with its beta memory and holds the intermediate join test
results. The leftmost beta node in Fig. 3 from [1] performs joins for a the name
of a students with the name of the person performing the access request.

Harnessing Community Knowledge in Heterogeneous Rule Engines 139

If the test passes, it will create a token of both facts in the result and send it
to the next node. Each beta node can be connected to subsequent nodes in the
beta network as a left input. In most beta nodes the right input is connected to
the output of an alpha node’s memory. In Fig. 3, the second beta node receives
the token and performs joins of facts from a scanning accessdevice with the
device of the accessrequest made.

Fig. 3. The Rete graph built for the classtime access rule – The graph contains alpha
and beta nodes with intermediate memories [1].

The beta network also hosts the nodes that represent test conditions as beta
test nodes, e.g., the third beta node in Fig. 3 that checks for the compatibility
of the time that the access request was made. The last beta nodes in any Rete
graph represent the full activation of a particular rule (or in some cases, rules)
and is named a terminal node. If a token reaches a terminal node then the
rule associated with that node, in this case the classtime access rule, will be
instantiated.

The Matching Process. In Serena, every fact base update triggers a matching
process. The matching process searches for consistent bindings between facts and
the existing rules. Incoming data is received by the server which it creates an
instances of facts. The facts are then inserted into the graph from the root node.
Facts traverse down the network as they are processed and forwarded by nodes,
which store intermediate computations in local memories.

If a number of students arrive at the university by accessing campus entry
points, this data can be captured and inserted as facts into the rule engine.
The student facts will be inserted into the network starting from the root node
and will eventually be stored as the intermediate results in the student node.
Similarly, the access devices that are online will be stored in the memory of the

140 K. Kambona et al.

accessdevice node. The beta node 1 now will perform its join operations
when an access request fact is received.

When a student requests access to a classroom at around 12pm (this request
should be granted), the engine will receive it and eventually add it as an
accessrequest fact to the Rete graph. The fact will be sent from the root to
the accessrequest node. This node will store the fact in its alpha memory
and will send it to its child, beta node 1.

It will be received at the right input beta node 1, causing a right activation
which will issue a request for all the items in its left parent to compute consistent
bindings for the fact. On the other hand, a left activation is triggered when a
data item is received at the left input: where the join test will request all items
from the node’s right parent (which is always an alpha memory).

The beta node 1 will therefore request items from its left parent the student
alpha node. The alpha node will send all student facts that it contains. Beta
node 1 now proceeds to perform its join test (s.name == r.person), which
checks if the name of any of the student facts is the same as that of the
accessrequest fact.

When the person that made the request matches the name, then node first
creates a new token by appending the student fact with the access request
fact, stores this intermediate result in its beta memory, and sends the new token
to its child, node 2. Thereafter, the same sequence of steps occur at node 2, but
this time a left activation is triggered to find out compatible access devices by
performing join tests (r.device == d.name) on all devices from the alpha
memory of accessdevice.

If a compatible device is found then a token is created and sent to the test
node 3 that checks whether the time for the request is within 8 am and 8 pm.
The time 12 pm succeeds the test, so the token finally reaches the terminal node,
which means that the rule should be activated. In this case, the request made by
a student to enter the classroom will be granted, and this rule and its bindings
are sent to the scheduler for execution and eventual notification to the client.

The Cost of Matching. The matching stage determines the rules that are
relevant to the current state of the fact base for activation. As identified in [12],
a major bottleneck in the Rete algorithm is, unsurprisingly, the expensive com-
putations during this stage. Concretely, as much as 90% of the execution of a
Rete-based system can be spent in the match phase, with the number of join
comparisons made dominating the time the matching process takes. For this
reason, the main area of improvement when looking for avenues to speed up
any Rete-based rule engine execution is join computations during the matching
process.

3 Reentrancy in Heterogeneous Rule-Based Systems

Reentrancy is a phenomenon used to describe programs written in such a way
that the same copy in memory can be shared by multiple users effectively. A pro-
gram is reentrant if distinct executions of the program on distinct inputs cannot

Harnessing Community Knowledge in Heterogeneous Rule Engines 141

affect each other, whether run sequentially or concurrently [13]. Reentrant code
is a requirement in common multi-user systems such as operating systems, where
system programmers ensure that whenever a program is executed for a partic-
ular user there can be no other instructions that can modify data intended for
another user. This way if the program is interrupted due to scheduling optimisa-
tions, for example, the program can be re-entered at any point in time without
concern that programs that were executing during the interruption modified any
of its data1.

Rule engines were not conceptually designed to work in the heterogeneous
environment. This is because rule-based systems are characterised by a uni-
form design space where a number of unordered rules are referencing a global
working memory. When ported to heterogeneous environments such as in the
multi-tenancy [1] context, these rule-based systems are revealed to be intrinsi-
cally non-reentrant where in this flat design space activations could be observed
from all asserted facts without discriminating their sources. We exemplify the
problem next using the university access control example.

3.1 Example: Non-reentrancy in Classical Rule-Based Systems

Now the security team of the university, University1, has installed their rule
in the Serena server running a heterogeneous RBS. The team from the second
university, University2, designs several rules using protocols extracted from
the same security regulations. We observe the situation when they proceed to
näıvely upload their similar classtime access rule.

In Rete rules are technically shared in their entirety within the network. As
mentioned, structural similarity promotes sharing of nodes performing the same
test but corresponding to different rules. When a security person from Univer-
sity2 adds their classtime access rule classtime-access2, this results in the Rete
graph that is structurally the same as before the addition of the rule – however
this time the terminal node is tagged with activation of both rules. Because
the terminal node was tagged with both rules, when a student from either uni-
versity makes an access request in a classroom both rules will be activated on
both clients, University1 and University2. This can indeed be an undesirable
result in heterogeneous setups, since now both companies can have notifications
of granted accesses from unknown parties on their dashboards or in their system
logs.

This simple example exposes the fact that in order to fully exploit capturing
community knowledge in a rule-based system operating in a heterogeneous setup,
it is vital that the system should avail mechanisms in which problems brought
forth due to lack of reentrancy be suitably addressed.

Classic rule-based systems are thus said to be fundamentally non-reentrant.
Given varied data sources, rules intended for one specific source or a number of

1 Reentrancy as used here relates to the notion of reentrant procedures in multiuser
systems programming and excludes those related to concurrent access and recursive
method calls.

142 K. Kambona et al.

sources can be activated by data from other sources. Therefore, multiple hetero-
geneous data sources can lead to unexpected behaviour during execution cycles
of the rule engine. One undesirable consequence is that rule activations can be
observed from all asserted facts without discriminating their specific sources. In
effect, the difficulty in localising rule control makes it hard to orchestrate the
behaviour of rules in these settings.

3.2 Common Workarounds in Classical Rule-Based Systems

To fully exploit community knowledge in rule-based systems within heteroge-
neous contexts, there is need to solve the lack of reentrancy brought about by
sharing in the Rete network. In [1] we describe traditional techniques applied by
developers of rule-based systems to enforce discrimination during execution in a
Rete graph. The techniques included using relation facts to introduce situational
state in the execution cycle and test expressions to perform beta tests on tokens
using discriminatory test conditions in rules.

The two approaches have similar limitations. It is generally undesirable to
have rule condition logic (or application logic) interspersed with event source
identification as noted in [14] in the context of notifications in event-based sys-
tems. This is mainly because they pollute the logical intent of the rule making
it unnecessarily complex.

In more complex rules, it becomes tedious to distinguish which conditions
need to be infused with the information that identifies clients and which ones
do not. Using ad-hoc methods forces rule designers to hard-code distinctions
between clients and their data sources, and quickly becomes complex and fal-
lible as the number of clients and the relationships between them increase; or
when the relationships become complicated to enforce using rule semantics. In a
heterogeneous setup, failure to properly make these distinctions can also cause
unintended rule activations to leak in other clients.

In summary, these classical methods are problematic because they (1) draw
context knowledge into application components that relates to the interaction
with outside entities rather than the rule implementation (2) pollute the logical
intent of the rule designer (3) complicate rule implementation and makes the
process fallible (4) in some cases impact the underlying Rete graph by creating
additional nodes requiring more computations.

3.3 The Role of Client Relationships in Community Knowledge

Rule complexity quickly becomes more tedious in heterogeneous configurations.
In this section we show the significance of relationships in exploiting community
knowledge, especially in situations that contain more complex internal struc-
tures.

Usually, heterogeneous setups contain complex structures that are mod-
elled according to physical or logical relationships among participating clients.
These relationships can be based on aspects such as the principle of locality
among interacting components in event-based systems [14] and encapsulation

Harnessing Community Knowledge in Heterogeneous Rule Engines 143

Fig. 4. Rete graph for policy 3 with additional tests for department-level checks [1].

in object-oriented systems. In simple situations these relationships can based
on the practical application-specific semantics tied to underlying structures,
operations and processes of clients. For instance, research groups can belong to
(sub)departments, hobbies can be categorised into hierarchies of interest groups
and sensor area zones can be contained in levels of administrative units.

Consider the rule from protocol 3 that specified that students from a depart-
ment in the university can have special access times to their (sub-)departmental
labs. The rule developed for the protocol is shown in Listing 1.2. There are two
access requests in lines 7 & 8 from the student and the senior academic staff, so
we need to check if they come from the same department and if the department is
biology or bioinformatics (line 9) as per the policy and the defined struc-
ture in Fig. 2 (note that the rule is more complex if the student and academic
come from different departments). The resulting Rete graph for policy 3 with
test expressions is shown in Fig. 4. Defining rules for such situations increases
the problems brought about by a lack of reentrancy as seen in the expression in
line 9, which tries to capture data from the same biology department or its
sub-department bioinfomatics. In the graph, node 4 contains further tests
that implement the above constraints.

Listing 1.2. Rule for biology dept. weekend lab access.
1 {rulename: "biology_weekend_access",
2 conditions:[
3 {$stu: {type:"student", name: "?stuname"}},
4 {$stf: {type:"staff", name: "?stfname"}},
5 {$d: {type:"accessdevice", name: "?dev", location:"labs"}},
6 {type:"accessreq", person: "?stuname", device: "?dev"},
7 {type:"accessreq", person: "?stfname", device: "?dev"},
8 {type:"$test", expr:"(areInSameUni($stu.dept,$stf.dept,$d.dept))"}
9 {type:"$test", expr:"(($stu.dept == $stf.dept) && ($stf.dept == $d.dept) &&

↪→ ($d.dept == ’biology’ || $d.dept == ’bioinformatics’))"}
10 / * ... action ... * /

11 }

144 K. Kambona et al.

4 Requirements for Heterogeneous Rule-Based Systems

This section outlines the requirements of heterogeneous RBSes to suitably pro-
vide flexible mechanisms that can be used to exploit capturing community
knowledge.

4.1 Metadata Model for Managing Client Data

Heterogeneous RBSes require an approach that imposes a uniform and consistent
model supporting the identification of clients as event sources thus enabling the
mapping of data items (and rules) from different contexts to specific client(s).
This in effect will form the basis for the underlying rule engine to be able to
ascertain the sources of constraints and events; using this to determine their
respective execution contexts. The proposed approach should use a metadata
architecture that is application-agnostic in order to promote the normal seman-
tics of a rule-based system thus absolving the end-user application from the
nuances that would exist without the model. On the server side, the approach
should also be able to reason about the data model with the least effect on the
underlying processing cycle of the rule engine.

4.2 Formalised Model for Grouping Clients

One of the challenges that heterogeneous RBSes face is ways in which to parti-
tion execution contexts, brought about as a direct result of how client rules are
shared within the Rete graph generated by the inference engine for efficiency pur-
poses. Many heterogeneous environments with relationships form communities
through some form of grouping [15]. A heterogeneous RBS can use this aspect to
provide an extensible model that captures the structures of clients and describes
any possible compositions dynamically. In addition, this approach can be effec-
tively captured in a more flexible way through a formalism that is based on
the aforementioned metadata definitions. The formal model should be designed
around a hierarchical structure that lends itself well in progressively describing
the relationships between identified application-dependent classifications, useful
in different real-world scenarios.

4.3 Execution Model for Selective Computations

During execution, rule engines do not provide selective matching by imposing
any discrimination in rule execution: all rules are under consideration in a match
cycle. Indeed, the diversity of data sources in a heterogeneous setup requires
further precision in the execution context. Even the selection strategy of rule
activation never actually depends on selective rule matching, but in reality is
based on the recency of an instantiation and requires special ordering of rules. An
extensible formalism can be exploited to effectively perform selective execution
of the rule engine by discriminating or consolidating the data residing in the

Harnessing Community Knowledge in Heterogeneous Rule Engines 145

heterogeneous system. These computations are those that try to perform the
“are the tokens that we want to match originating from the same source?” -
check that is needed to find consistent bindings for the different data sources, to
avoid unintended activations with data from unwanted sources. The implication
therefore is that the internal structures of clients should be reflected in the
runtime in order for it to efficiently process the requests within the confines
of each client’s configuration or constraints. Implementing these proposals will
result in the rule engine performing selective execution of rules thereby, in a
number of cases, reducing the amount of computations performed by the engine
during its execution cycle.

4.4 Flexible Model for Notification Semantics

In such heterogeneous contexts, a notification is a message sent to a specific
client(s) that reifies an event resulting from a rule activation. The notification
carries the data that accompanies the activation, but may also contain addi-
tional metadata such as the time of activation and the owner of the rule. One
issue that arises that is exclusive to heterogenous configurations is who to notify,
or precisely, which client(s) that should receive the notification of the rule acti-
vation. In the default scenario, the user that added the rule should receive the
notification. However, the issue of composition can be fully embraced to group
sets of clients that share some commonality or goal, similar to engineering noti-
fications in event-based systems [14]. The aim of such composition is to specify
boundaries for notification delivery: it semantically restricts the distribution of
notifications of a rule activation from the RBS. The boundaries should be able
to be specified using a clearly-defined notification semantics.

5 Scoping in Heterogeneous RBS

The solution presented in the Serena framework [1] introduces scoping in hetero-
geneous RBSes by embracing the concepts of physical or logical groups of clients
and their relationships.

Serena models groups internally with the aim of using these representations
to enforce data discrimination in the rule engine. It describes a structural rep-
resentation that uses the notion of a group as a primitive. Serena represents the
group hierarchy as a directed acyclic graph with the groups as the nodes with
the clients connected to different groups at different levels in the graph. It also
uses scopes to represent the common relationships between groups as a scope
hierarchy.

5.1 Supported Scopes in Serena

Serena supports the following scope operations, depicted in Fig. 5 with reference
to the university security access control example. Constraints imposed by pro-
tocols in heterogeneous setups (such as the classtime access rule) can be defined
using these scopes.

146 K. Kambona et al.

– subgroupof (Fig. 5c): Only data added by the specified group or any of its
subgroups are included in this scope. This scope is suitable for a departmental
rule for computer science that will only apply to members of that department
or sub-departments (web info systems, software engineering, bioinformatics).
Its dual is supergroupof .

– visibleto (Fig. 5a): This scope captures data from clients in groups that have
the same ancestor in the hierarchy, e.g., capturing the data that pertains to
senior academic researchers in one project collaborating with other personnel
within the same university.

– peerof (Fig. 5b): Data items that originate from peers, or groups at the same
level in the hierarchy, will be considered in this scope. A researcher would for
example create a rule with this scope that applies to members in computer
science and biology departments.

– private (Fig. 5d): The private scope will exclusively source data from the
specified group and none else – not even its subgroups or parent group. This
scope is suitable for data that applies to a specific group, e.g., when targeting
devices at the campus entrance gates and not those in its related subgroups
elsewhere on campus premises.

– public (Fig. 5e): The public scope captures all data from all defined groups in
the hierarchy. This could be useful for collaboration in the universities by shar-
ing security information between them for data from the devices/student/staff
in all the groups.

5.2 Defining Scoped Rules in Serena

Instead of embedding logic for distinguishing clients in the main logic of the rule,
Serena exposes scoped rule definitions by extending normal rule syntax with
scope-based definitions. The scope definitions specify scope-based constraints on
client groups and the relationships between them. A similar approach is observed
when enforcing temporal logic in rules: Allen in [16] proposed rule extensions
for temporal constraints for point-based or interval semantics, which have been
implemented in various systems today, e.g., [17]. The example of protocol 3’s
biologyweekendaccess rule using scope constraints is shown in Listing 1.3.

Listing 1.3. Scoped rule for biology dept. weekend lab access.
1 {rulename: "biology_weekend_access",
2 conditions:[
3 {$stu: {type:"student", name: "?stuname"}},
4 {$stf: {type:"staff", name: "?stfname"}},
5 {$d: {type:"accessdevice", name: "?dev", location:"labs"}},
6 {type:"accessreq", id: "?reqid1", person: "?stuname", time: "?t1", device:

↪→ "?dev"},
7 {type:"accessreq", id: "?reqid2", person: "?stfname", time: "?t2", device:

↪→ "?dev"},
8 {type:"$test", expr:"(hourBetween(?t, 8, 20) && (isWeekend(?t1, ?t2) == true) &&

↪→ isNear(?t1, ?t2))"}
9],

10 scopes:["biology supergroupof ($stu & $stf & $d)", "$stf private senior"],
11 actions:[
12 {assert: {type: "accessrep", reqid:"?reqid1", allowed: true}}
13],
14 notify:["subgroupof administrative"]
15 }

Harnessing Community Knowledge in Heterogeneous Rule Engines 147

Fig. 5. Scopes supported in Serena [1].

The rule is similar to Listing 1.2. It however has an additional scopes section
(line 10) where the bound condition variables in line 3, 4, and 5 in the scope
constraint are referenced to check whether the student, staff and device facts are
all tagged to belong to the general biology department using supergroupof.
The additional scope check in line 10 enforces the constraint that the staff mem-
ber be from the senior academic group. The rule therefore fulfills constraints
of Protocol 3 that specified that lab accesses made in the weekends by a student
are allowed only if they are accompanied by a senior academic staff member in
the biology department, or any of its subdepartments.

5.3 Encoding the Group Hierarchy

Community knowledge requires means in which to determine the compatibility of
different sources of heterogeneous data. Rather than performing computation-
ally expensive scope checks (such as path traversals in a hierarchical setting)

148 K. Kambona et al.

Serena builds an encoding that aims to perform near constant-time operations
to entirely determine compatibility of data in a heterogeneous setup. This is
vital because during the match-execute cycle, Rete can perform combinatorial
processing in its computations in the beta network as the dataset increases:
therefore client group path traversals will dramatically affect the performance
per cycle. The basic idea is that we precompute the scope check, store and main-
tain them efficiently as an encoding that will be used to expeditiously process
scope constraints.

The encoding is based on the transitive closure, a significant component mod-
elling most relationships in knowledge and representation systems as identified
in [18] that makes our encoding suitable for querying binary relationships – pre-
cisely the kinds of operations that the inference engine performs when perform-
ing a scope check between left and right inputs. We next outline the encoding
process.

The Groups Hierarchy as a Poset. Initially, Serena captures the group
hierarchy from an administrator as a partially-ordered set (poset). The example
hierarchy in can be represented as a poset (P,�) with the binary relation �
defined as ‘is subgroup of ’, that suffices for most cases.

The poset P has an element (a, b) iff a is part of b. With P we can perform
well-defined operations such as calculating the bounds (LUB, GLB) and extrema
(maximals, minimals). For instance the maximal in the group hierarchy of Fig. 2
can be represented as a poset (P,�) with the binary relation � defined as ‘is
a part of ’ (the general � relation ‘is subgroup of ’ is enough for most cases).
The poset P has an element (a, b) iff a is part of b, so elements include (inter-
nal, personnel) and (computer science, science dept). The poset however has a
limitation of manually searching and traversing the pairs when processing scope
operations.

The Groups as a Lattice. A lattice offers improvements over the poset by
representing the group hierarchy in a form that is more efficient to encode and
compute than the earlier poset representation. The Serenas framework therefore
converts the groups poset to a lattice L, see Appendix A.2. This leads to the
hierarchy depicted as the hasse diagram in Fig. 6. Other distinct hierarchies can
have their own top-level element same as �.

Encoding the Lattice. With the lattice L, Serena performs a customised bit-
vector encoding process that lays its basis on the method by Aı̈t-Kaci [19]. The
description is outlined in detail in Appendix C. The process performs calculations
for all groups G in the group hierarchy. The result is a binary matrix encoding
Mϑ of the group hierarchy shown in Fig. 7, with the following properties:

Harnessing Community Knowledge in Heterogeneous Rule Engines 149

Fig. 6. The lattice Hasse diagram – Serena uses the lattice to encode the hierarchy
(Image sourced from [1]).

(i) The labels on the rows of Mϑ represent the groups in L; and similarly for
the columns. The first row represents � and the last row represents ⊥.

(ii) An entry Mϑ(a,b) has a 1 if group a = group b or if group b is an ancestor
of group a in L, and 0 otherwise.

(iii) An entry Mϑ(b,a) has a 1 if group a = group b or if group b is an
descendant of group a, and 0 otherwise.

(iv) An element a is a maximal iff the row Mϑ(a,∗) has a 1 only at Mϑ(a,a) and
at Mϑ(a,�).

(v) An element a is a minimal iff the column Mϑ(∗,a) has a 1 only at Mϑ(a,a)

and at Mϑ(⊥,a).

The process further generates and stores the level or depth of each group
in the hierarchy. The indexes of all the maximals can also be stored for faster
reference.

Scoping with Mϑ – The Mϑ is used as the basis of performing scope oper-
ations in the rule engine. To facilitate this Serena adds scope tests or guards
at appropriate nodes when building the Rete network. The guards are used to
perform scoping operations in the beta nodes during the matching process.

– visibleto: A scope check of a visibleto b the involves checking if the result
of Mϑ(a,∗) ∧ Mϑ(b,∗) is a maximal in Mϑ as per property (iv).

– peerof: A scope check of a peerof b includes calculating if Level(a) =
Level(b) from the encoding process of Mϑ.

– subgroupof: A scope check of a subgroupof b is true if the result
of Mϑ(a,∗) ∧ Mϑ(b,∗) = Mϑ(b,∗) as per property (ii). Conversely, b is a
supergroupof a.

150 K. Kambona et al.

Fig. 7. The hierarchy as a matrix encoding Mϑ – The rows and columns represent
groups in the hierarchy [1].

– private: To find out a private b it can check if Mϑ(a,∗)∧Mϑ(b,∗) = Mϑ(a,∗)
as per property (ii) and (iii).

– public: A scope check of a public b includes checking if we Mϑ(a,∗)∧Mϑ(�,∗)
= Mϑ(�,∗) from properties (ii) and (i).

During execution, Serena performs scope operations efficiently using these oper-
ations. It retrieves the values in the matrix and performs binary operations from
the encoding in near-constant time.

5.4 Scoped Execution and Notifications

The matching process stage is where any rule engine performs most of its com-
putation. As mentioned in the previous section, matching in scoped rule engines
involves updating the beta network with scope guards that check compatibility
of left and right inputs. One way of building the rule in Listing 1.3 is shown in
the Rete graph of Fig. 8. The main difference is in the beta node 3 where we now
have in place a scope check, a more compact and efficient way to discriminate
the tokens for the node to process. The scoping module will use Mϑ to perform
the binary operations from the scope guards in the figure denoted with angle
brackets.

On a left or right activation, Serena first performs the encoded scope check
on the fact from the alpha memory or the token’s fact respectively. If the
check passes the join computation proceeds as normal. For instance, when a
token reaches beta node 3, it triggers a left activation to find a compatible
accessdevice. Serena will first perform the supergroupof scope check on
the devices as defined in Sect. 5.3. For example, if the access request is made
from a device dev in the bioinformatics subgroup, the engine performs
the supergroup check on the alpha memory’s device fact, which in this case
succeeds:

Harnessing Community Knowledge in Heterogeneous Rule Engines 151

Mϑ(biology,∗) ∧ Mϑ(bioinformatics,∗) = Mϑ(biology,∗)

10100100010000000
&10100100110000010
10100100010000000(biology)

Similar operations are performed for the student supergroup check and the
private scope check for the senior staff member from the academic personnel
group using Mϑ. If successful, we have established the facts are compatible and
proceed to the join operation for node 3.

Fig. 8. The Rete graph for biology weekend access with scopes – Scopes act as guards
that ensure compatibility of data. [1]

The final aspect of rule activation is determining who to notify, and specif-
ically, which group of clients should receive a notification. Serena rules expose
a notify construct that specifies notifications once the rule is fired. In line 14
of Listing 1.3 specifies the groups to notify once the rule is fired. The notifica-
tion scopes are similar to the matching scopes but in this case they can enforce
notification constraints to a group, subgroup, or direct clients. Serena invokes
similar binary operations as in Sect. 5.3 to determine the groups to notify as
when performing a scope check during matching.

6 Experimental Evaluation

The evaluation in [1] used the University Services Access Control scenario
detailed in Sect. 1.2 to investigate whether the scoping metadata architecture

152 K. Kambona et al.

has significant computational benefits over traditional techniques in current rule
engines. The aggregated results in that work showed evidence of a better over-
all performance of the scoped engine compared to traditional approaches using
expression test and relation facts.

In this paper we compare the scoped approach to the rulebook or module-
based approach (see Sect. 7) for implementing heterogeneous applications using
rule-based systems. We focus on investigating whether scoping has significant
computational benefits over the module-based approach in such situations.

6.1 Setup

For the setup, we used the 3 sample universities from the security access control
example in Sect. 1.2. We also incorporated similar protocols as prescribed for
the scenario. However, as modules represent logically distinct rulebooks, there
was need to split the policies according to the relevant university. As expected,
in this case some policies were duplicated: for instance, the classroom access
protocol that applies collectively to all universities needs to be replicated over
the modules.

The evaluation was implemented using a simulation running on an event-
driven web server. The final application had a total of 61 groups in hierarchies,
40 access rules, and 73 concurrent clients across 3 sample universities. All clients
were connected to the server concurrently through websocket connections, with
the Node.js server running with an AMD Opteron Processor 6272 at 2.1 Ghz
and 20 GB RAM.

6.2 Method

In the simulation, universities receive the same intermittent access requests from
various clients with the aim of computing whether the requests deviate from
their own protocols as rules. Each simulation was modelled with intermittent
requests in ranges of between 1–5 s, limited to 12-h similar to the scope-based
simulation in [1]. The requests model students and staff from different depart-
ments or personnel levels randomly accessing various university locations. We
recorded the resource usage and computations performed during the simulation,
and compared the results.

6.3 Results and Discussion

The results of the runs were aggregated and depicted in the graphs shown in
Fig. 9. The figure shows the total number of join computations recorded, the
number of activations observed and the RSS (Resident Set Size) memory con-
sumed.

The computations in the module instances were observed to be less than
those of the unscoped approach – this is because of the additional checks in
the unscoped rules that need to enforce data discrimination, and thus lead to

Harnessing Community Knowledge in Heterogeneous Rule Engines 153

more computations that need to be performed. The scoped approach certainly
has fewer computations because it instead uses the encoded matrix to perform
scope checks. Remember that join computations have been observed as the most
expensive computations in Rete inference engines, Sect. 2.2.

The instances of the module based approach process a higher number of
activations than the unscoped approach within the same time interval of 12 h.
Indeed, having separate module instances would result in fast computations than
the traditional unscoped approach. The limitation of the module-based approach
is unearthed by viewing its memory consumption: the memory used by the mod-
ule instances is significantly higher compared to all other approaches. This is
because the instances have increased redundancy, and this leads to the duplica-
tion of the working memory, graph nodes and intermediate memories utilised by
the rule engine.

Fig. 9. Results for the experimental evaluation – The scoped rule engine approach
performs comparatively similar to the module-based approach and outperforms the
unscoped approach. The scoped engine also uses less resources than both approaches.

The results showed that the module-based approach exhibited similar per-
formance as our scoped approach in terms of the rule activations processed: but
both outperformed the traditional unscoped approach. The main cost of the
module-based approach is however the high amounts of memory utilisation due
to duplication of resources. This effectively means that the module-based app-
roach suffers from scalability problems, since more instances would be needed

154 K. Kambona et al.

as clients are added to the system, resulting in significantly higher utilisation
of resources. In this sense, our scoped approach enjoys both the benefits of a
relatively good performance that utilises less resources during execution.

7 Related Work

We delve into research that provide mechanisms that can be used to control rule
engine execution, useful when implementing rule-based solutions in heteroge-
neous settings. Following the discussions, Table 1 presents a summarised result
of the related work in a 5-star ranking system.

Table 1. Comparison of RBSes and other systems for supporting heterogeneity.

7.1 Rule-Based Systems

Entry Points in JBoss Drools. Drools [2] is a Java-based rule engine based
on the Rete algorithm. The engine can deal with event streams that are of high
volume and require correlation by receiving and processing inputs from multiple
entry points. Entry points can be thought of a particular pipe where events
from a source flood into the system. New entry points are declared by implicitly
referencing them in rule conditions.

When inserting events data into the engine, however, Drools requires entry
points to be directly referenced and it therefore lacks a proper meta architecture.
Furthermore, entry points do not offer any formalised model for more advanced
relationships that can be present in heterogeneous contexts as well as addressing
multiple entry-points as a single composable unit. The engine also does not offer
any notification model as a feedback mechanism for rule activations.

Harnessing Community Knowledge in Heterogeneous Rule Engines 155

Peers in Jess. Jess [20] is a Java-based rule engine that can provide reasoning
to Web servers as a backend tool. Jess exposes peering of its engine, designed
to be used in the scenario of pools of Web applications. Conceptually, peers
are an evolution of multiple Rete instances. One ‘initial’ Rete engine instance
is created and rules added to it, creating the compiled Rete graph. Thereafter,
multiple independent peers can be created which will share the compiled rules
and templates, but each peer contains its own enclosed working memory, execu-
tion context and agenda. All peers share the same rule set: changes to the rule
set by any of the instances will thus be reflected on the other peers.

Jess’ peering does not provide a metadata model that will effectively manage
the different data and sources. The implementation of the separation of instances
can be therefore intertwined with application logic, an issue that may complicate
the development of heterogeneous applications. Even though peers are instanti-
ated from the initial Rete engine, Jess offers no mechanisms for managing peers
that would promote advantages such as addressing multiple peers as a single
abstraction. Additionally, when using the peer system in Jess, the programmer
needs to ascertain which data will go to which peer. In cases that aim to take
advantage of collective intelligence in heterogeneous environments, it is usually
unclear to ascertain which peer(s) should receive data from a particular source.
Jess also does not expose functionality for managing notifications for responding
to clients in the event of a rule activation.

Rule Modules in CLIPS. CLIPS [21] is a Rete-based rule engine that was
primarily written in C. It provides modular management for larger rule bases
through the use of rule modules. A rule module can be though of as a rulebook,
having a set of rules that can be grouped together to leverage explicit control
by restricting the access of the enclosed rules by other modules. Modules can
therefore be used by rules to control execution. By limiting access to rules, a
module functions in the same way as a rule book, allowing facts and rules to be
only visible to the module. Each module has its own Rete graph and agenda for
its rules.

CLIPS rule modules provide modular abstractions for grouping related rules.
However, CLIPS exposes a generic model where facts need to be manually be
tagged to a particular rule module during fact data definitions. The CLIPS
engine also does not provide any abstractions for managing rule modules that
could be used as model for representing the various client structures. Fur-
thermore, constructs are available in rule modules that allow programmers to
‘steal’ the rule engine’s focus to execute a named module. This unnecessarily
complicates the programming of heterogeneous rule-based applications, because
rule designers are required to orchestrate rule interactions. This unnecessarily
detracts the inference engine from its own control of execution. Finally, in CLIPS
notifications to individual clients need to be programmed manually.

156 K. Kambona et al.

7.2 Visibility in Event-Based Systems

Event-based systems are increasingly applied in heterogeneous context. Per-
haps the closest approach is the work about event notifications in the system
REBECA [22]. The designers aim to provide abstractions for structuring event-
based systems. The work proposes a way to solve the dialect problem by limiting
the visibility of notifications in bundled consumers using broker overlays. Only
the components that are intended to receive notifications (the intended con-
sumers) are able to ‘see’ notifications filtered by their local event broker.

The work however, only focuses on notification semantics and does not suit-
ably address the actual matching or processing of events. Furthermore, the broker
architecture presupposes the existence of some form of an overlay network which
requires a more complex management scheme and is not the primary focus of
the platform that this work aims to support.

7.3 Schema Sharing in Multi-tenant Databases

Multi-tenant database systems can support heterogeneity by mapping the con-
text of clients into the existing patterns of conventional databases. The closest
work in such heterogeneous databases is the shared schema/tables approach.
Using this approach the schema is create once and different tenants are mapped
directly onto it. This method has the lowest cost and can host the largest number
of tenants per server, but has a much higher complexity to implement.

More recent advances have proposed the use of extension tables that reify
the concept of a tenant to the database layer, where the database engine can
associate each request to a tenant and forwards it to the appropriate storage site.
These database schemes are fundamentally designed to process static data and
they have static configurations that can degrade in performance when ported
to reactive systems with eager incremental processing as with forward-chaining
RBSes.

8 Conclusions and Future Work

Community knowledge is significant in today’s heterogeneous systems because
of the vastness and diversity of real-time data produced by different clients. This
work described a framework that supports scope-based reasoning in heteroge-
neous systems with the aim of supporting reasoning using community knowledge
by mitigating the consistency problems that such systems exhibit.

Scoped rules contain an extended rule-based syntax that allows rule design-
ers to define scope constraints. The work presented uses groups and common
relationships between them to build an internal representation that captures
the scopes present in many domains. Scopes are a control structure for hetero-
geneous rule-based languages because they specify a selection of which rules a
scope-aware inferencer will consider at a particular time during execution. The
scoped model is therefore useful to capture the inherent organisation of client

Harnessing Community Knowledge in Heterogeneous Rule Engines 157

representations and to define such constraints in rules for the reasoner, thereby
harnessing community knowledge in a shared heterogeneous instance. The eval-
uation showed that the proposed scoped approach enjoys both the benefits of a
relatively good performance that utilises less resources during execution.

As future work we would like to investigate support for client-defined dynamic
scopes, which will have an impact on the encoding method and the intermediate
memories in the Rete graph at runtime.

Acknowledgements. Thierry Renaux is supported by a doctoral scholarship from
the Agency for Innovation by Science and Technology in Flanders (IWT), Belgium.

Appendix

A Definitions

A.1 Posets

A poset (P,�) is a set P and a binary relation �, such that for all a, b, c ∈ P ,
the following properties always hold:

1. a � a (reflexivity)
2. a � b and b � c implies a � c (transitivity)
3. a � b and b � a implies a = b (antisymmetry)

Poset Operations. Bounds. Given A ⊆ P , an element b ∈ P is called an
upper bound of A if a � b for all a ∈ A. b is a least upper bound or LUB if b � a
whenever a is an upper bound of A. The dual of the least upper bound is known
as the greatest lower bound or GLB2.

Extrema. The maximal of a poset P, abbreviated �P �, is an element m ∈ P
that is not greater than any other element in P according to �. More formally,

�P � = ∀b ∈ P, b � m (1)

If there is one unique maximal element in P , we call it the maximum. The dual
of the maximal is known as the minimal,
P � and a unique minimal is known as
the minimum.

A.2 Lattices

If in a poset P every pair has at least an LUB ∧ and a GLB ∨, then the poset
P with the features (P,�,∧,∨) is said to be a lattice L. One way to transform
the poset P in into a lattice is by adding a parent � to every maximal and a
child ⊥ to every minimal in P .
2 The LUB ∨ of P is also known as the join or suprema of A. The GLB ∧ is the meet

or infima of A.

158 K. Kambona et al.

The Covering Relation. We say for two elements a, b ∈ P , a is covered by b
if b immediately follows a in the poset ordering (i.e. a is an immediate successor
of b). More formally,

a ≺ b iff a � b and �c s.t. a � c � b, c �= a, c �= b (2)

This enables us to depict a lattice in a hasse diagram, where a curve goes from
b to a iff a ≺ b.

Lattice Levels. In this paper we define the level of an element a in a lattice
as the longest distance of a from the maximum of the lattice (in this case, �) to
the element, i.e.,

Lvl(a) =

⎧
⎨

⎩

0 when a has no predeces-
sors in P and,

max({Lvl(b)) | b � a}) + 1 otherwise.
(3)

where � is the dual of ≺.

B Operations with ϑ

Having L we can define a mapping ϑ from L to another lattice (S ⊆,∩,∪) such
that for every a, b ∈ L,

ϑ(a ∧ b) = ϑ(a) ∩ ϑ(b), (4)

ϑ(a ∨ b) = ϑ(a) ∪ ϑ(b). (5)

If ϑ is invertible, then this makes it easy to calculate ∨ and ∧. ∀ a, b ∈ L,

a ∧ b = ϑ−1(ϑ(a) ∩ ϑ(b)), (6)

a ∨ b = ϑ−1(ϑ(a) ∪ ϑ(b)). (7)

C Matrix Encoding

We use the encoding method mentioned in [19] taking ϑ as the transitive closure,
with a modification that will enable us to map a lattice L to an encoded matrix
Mϑ.

– Instead of starting with ⊥, start with � as the first element. Assign ϑ(�) = 0.
– Move to the next elements level by level downwards in L and calculate the

bitcode of each element as a vector.

Harnessing Community Knowledge in Heterogeneous Rule Engines 159

– The bitcode of an element a ∈ L is obtained by

ϑ(a) = 2i−1 ∨
∨

a≺x

ϑ(x) (8)

where i is the number of elements visited since �, and a ≺ x represents
predecessors of a; therefore ϑ(x) is the code of each predecesor of a.

– An entry in the new matrix Mϑ for a is the reverse of the bitcode obtained
by (8), without the most significant bit.

With this encoding, we can perform operations in Eqs. (6) and (7) having ∩
as the bitwise AND and ∪ as bitwise OR in Mϑ.

References

1. Kambona, K., Renaux, T., De Meuter, W.: Reentrancy and scoping for multi-
tenant rule engines. In: Proceedings of the 13th International Conference on Web
Information Systems and Technologies (WEBIST), ScitePress (2017, to appear)

2. Browne, P.: JBoss Drools Business Rules. Packt Publishing Ltd., Birmingham
(2009)

3. Lenat, D., Feigenbaum, E.A.: On the thresholds of knowledge. In: Proceedings of
IJCA, pp. 1173–1182 (1987)

4. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commun.
ACM 53, 50–58 (2010)

5. Jamison, S.W., Brereton, J.P.: The Rigveda: The Earliest Religious Poetry of India,
vol. 1. Oxford University Press, New York (2014)

6. The Baseline Company: The blind men and the elephant. (http://www.
theblindelephant.com/the blind elephant fable.html). Accessed 04 Nov 2016

7. Allee, V.: The Knowledge Evolution: Expanding Organizational Intelligence. Rout-
ledge, New York (1997)

8. Fernandez, E., Yoshioka, N., Washizaki, H.: Cloud access security broker (CASB):
a pattern for secure access to cloud services. In: 4th Asian Conference on Pattern
Languages of Programs, Asian PLoP 2015, Tokyo, Japan (2015)

9. Newell, A.: Production systems: models of control structures. Technical report,
DTIC Document (1973)

10. Giurca, A., Pascalau, E.: JSON rules. In: Proceedings of the of 4th Workshop on
Knowledge Engineering and Software Engineering, KESE, vol. 425, pp. 7–18 (2008)

11. Forgy, C.L.: On the efficient implementation of production systems. Ph.D. thesis,
Carnegie-Mellon University (1979)

12. Miranker, D.P.: TREAT: A New and Efficient Match Algorithm for AI Production
System. Morgan Kaufmann, San Francisco (2014)

13. Wloka, J., Sridharan, M., Tip, F.: Refactoring for reentrancy. In: Proceedings of
the the 7th Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Foundations of Software Engineering, pp.
173–182. ACM (2009)

14. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems. Springer,
Heidelberg (2006). https://doi.org/10.1007/3-540-32653-7

http://www.theblindelephant.com/the_blind_elephant_fable.html
http://www.theblindelephant.com/the_blind_elephant_fable.html
https://doi.org/10.1007/3-540-32653-7

160 K. Kambona et al.

15. Grund, M., Schapranow, M., Krueger, J., Schaffner, J., Bog, A.: Shared table access
pattern analysis for multi-tenant applications. In: IEEE Symposium on Advanced
Management of Information for Globalized Enterprises, AMIGE 2008, pp. 1–5
(2008)

16. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26,
832–843 (1983)

17. Wang, F., Liu, P.: Temporal management of RFID data. In: Proceedings of the
31st International Conference on Very Large Data Bases, VLDB Endowment, pp.
1128–1139 (2005)

18. Agrawal, R., Borgida, A., Jagadish, H.V.: Efficient management of transitive rela-
tionships in large data and knowledge bases. SIGMOD Rec. 18, 253–262 (1989)

19. Aı̈t-Kaci, H., Boyer, R., Lincoln, P., Nasr, R.: Efficient implementation of lattice
operations. ACM Trans. Program. Lang. Syst. 11, 115–146 (1989)

20. Friedman-Hill, E.: JESS in Action, vol. 46. Manning, Greenwich (2003)
21. Riley, G.: Clips: an expert system building tool (1991)
22. Fiege, L., Mezini, M., Mühl, G., Buchmann, A.P.: Engineering event-based systems

with scopes. In: Magnusson, B. (ed.) ECOOP 2002. LNCS, vol. 2374, pp. 309–333.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47993-7 14

https://doi.org/10.1007/3-540-47993-7_14

Bringing Scientific Blogs to Digital
Libraries: An Integration

Process Workflow

Fidan Limani(B), Atif Latif, and Klaus Tochtermann

ZBW – Leibniz Information Center for Economics, Kiel, Germany
{f.limani,a.latif,k.tochtermann}@zbw.eu

Abstract. Scientific blogging is continuously gaining importance in
research communities as a complementary support to scientists dur-
ing different phases of research and publication lifecycle. By enabling
early feedback from the community (peers commenting on one’s work
as early as the first draft, for example), and providing faster time-to-
publish cycles, or tracking audience reach to some extent (via Web
2.0 features, such as shares, likes, etc.), it is becoming an important
medium for research(ers). While blogs certainly bring their differences
when compared to the more traditional research papers (shorter than
typical research articles; include tags – a way of community-driven con-
trolled vocabulary – to aid during blog post retrieval, etc.), they are
becoming attractive as complementary scientific resources for Digital
Libraries (DL). In this work, we present a complete workflow that spans
retrieval, processing, vocabulary handling, and finally integration of a
scientific blog posts collection to a DL collection. Moreover, the Use case
scenarios that demonstrate the value of the workflow outcome to Digital
Libraries along with future development plans are also presented in this
paper.

Keywords: Scientific blogs · Digital Libraries · Integration workflow
Linked Data

1 Introduction: Social Scientific What?

Web 2.0, or the “read-write” Web, has enabled higher and easier levels of
engagements with the audiences. This, in turn, has stirred individual and group
publication initiatives that find these tools practical in terms of networking,
collaboration, ease of publication and (unofficial) reviewing from the commu-
nity, etc. In the case of scientific blogging, for example, authors can easily share
their research work with the community, even continuously – as the research
develops, be it a result or roadblock that is being shared; whereas the readers
are able to provide feedback to this work as it progresses along those results
or roadblocks. Burgelman et al. [2] report on “Science 2.0” development, as
enabled by tools and changing research behavior practices (spurred by factors
c© Springer International Publishing AG, part of Springer Nature 2018
T. A. Majchrzak et al. (Eds.): WEBIST 2017, LNBIP 322, pp. 161–178, 2018.
https://doi.org/10.1007/978-3-319-93527-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93527-0_8&domain=pdf

162 F. Limani et al.

such as lowering entrance barriers, offering processing data and capabilities to
wider audiences, etc.), characterized by increased number of authors, publica-
tions, and data available to consume, reuse, and comment by the community. In
another study, (Mahrt and Puschmann [9]) find “a dual role of blogs as channels
of internal scholarly communication as well as public debate” among the moti-
vations for scientific blogging. Furthermore, the same study finds that science
bloggers especially value the community feedback on their posts – an additional
argument for the development and acceptance of “Science 2.0” from the research
community.

Traditional publication repositories have already moved on to embrace the
benefits of Semantic Web technologies. Projects that structure and represent
Digital Library (DL) repositories as machine-readable, and link them up and
make them available to the Linked Open Data (LOD) cloud are pretty common
(according to the “State of the LOD Cloud 2017”1, publications take the second
largest data set on the LOD). The Library of Congress Linked Data Service2

offering standards and vocabularies used by the library; the British Library’s
LOD initiative3; the Swedish National Library Open Data project including bib-
liography and authority data4; German National Library of Economics’s Econ-
Stor LOD project5; are just some of the LOD projects from the domain of DL
repositories.

As scientific blogging is getting more contributions and prominence in the
research community, we see major benefits from putting all the author, publica-
tions, and research data contributions to use in different scenarios and environ-
ments. In this work we focus on (1) Integrating them with the more traditional
DL publication archives, and (2) “Porting” scientific blogs on the Web of Data
for supporting applications benefiting from these resources in the future.

2 Motivation and Use Cases

2.1 Motivation

After many requests from the scientific blogging community, the German
National Library of Economics (ZBW) is considering the opportunity of extend-
ing its repository by including scientific blog posts from the domain of economics
and offer it to its users alongside the standard research publications. This is the
single most important motivation for this study. This motivation is just part of
a broader picture of increasing scientific blog contributions and their adoption
in the scientific work flows, which furthermore emphasizes the importance of
publications from the scientific blogging community.

1 http://lod-cloud.net/.
2 http://id.loc.gov.
3 http://bnb.data.bl.uk.
4 http://libris.kb.se.
5 http://linkeddata.econstor.eu/beta.

http://lod-cloud.net/
http://id.loc.gov
http://bnb.data.bl.uk
http://libris.kb.se
http://linkeddata.econstor.eu/beta

Bringing Scientific Blogs to Digital Libraries 163

2.2 Use Cases

Following are the main use cases that motivated our research

1. Heterogeneous Data Integration: Blog collections do not adhere to a standard-
ized metadata structure and often rely on different vocabularies from the ones
adopted by DLs. In a situation like this, a user interested in resources in both
DL and scientific blog resources would have to query these collections sep-
arately, using the different vocabulary terms. Thus, there is an opportunity
to alleviate this situation and combine these collections in a uniform “query
space”. EconStor, our DL of choice, metadata are already structured and rep-
resented in RDF [6]. As a framework, this representation is well equipped to
handle combination of heterogeneous resources.

2. Semantic Annotation of Blog Post Collections: More and more resources are
being added to the Web of Data, benefiting in this way both publishers (mak-
ing their resource machine-understandable and available to an additional pool
of users) and consumers of those resources (for example when integrating
these resources in environments of interest, DL repositories in our case). In
case scientific blog post publishers are interested in making their content avail-
able on this platform, they should not be concerned with any technological
barriers to achieve this goal.

3. Dataset Profiling: If “isolated”, the scientific blog post collection has limited
value for the user. Linking these resources with relevant entries in exter-
nal collections and knowledge bases (KB), indexed using different controlled
vocabularies (CV) – thesauri and classification schemes, in our case – from
the one used by scientific blogs, but that have been aligned with, is another
value-adding step for the end user. In this way we provide different “profiles”
for every blog post in our collection, all depending on the external resource(s)
it links to, enabling the user a more elaborate and rich (search) experience.
The user search experience could see improvements from related resources
to their current reading from the fields of economics, social sciences, or agri-
culture; retrieve additional information (and context) from a KB, such as
DBpedia; include relevant resources from a German-specific or international,
multilingual collection; etc.

4. Dataset Analysis: Summarizing datasets by offering useful statistics as explo-
ration tips for users is quite important. This especially holds for large datasets
that could prove challenging for users to grasp in order to use them to their
full capacity (e.g., identifying resources of certain features, closer to their
area of interest). In this regards, scientific blog posts semantification lends us
various analysis options, such as highly commented/discussed (expressed via
user comments to) blog posts; most featured/covered subject in the collection
(based on their topic coverage); “trending” subjects for a given period of time
(based on the number of blog posts for a given subject); the top contributing
authors per subject/topic, which would, in a way, identify expert groups on
certain subjects/topics; or, in the context of aligned CVs of different (linked)
datasets, suggest publications by an author in external KBs; etc.

164 F. Limani et al.

3 Related Work

Blog post collections require established publication and dissemination infras-
tructure, as well as increased visibility of their content. DL repositories have
this, and would consider an added value by offering them alongside their original
bibliographic content. There is solid research done on mapping relational data
(RDB) to graph representation, as well as publishing and integrating heteroge-
neous collections, part of which also includes social web data. Furthermore, DL
repositories are more and more moving to the Web of Data making this possible
inclusion even easier with already established approaches and practices.

Auer et al. [1] present common motivations for representing RDB in Resource
Description Framework (RDF) data model; the use cases for integrating RDB
with structured sources or existing RDF on the web (Linked Data6) correspond
to a great extent with our motivation for this work. Moreover, Spanos et al.
[13] survey the proposed approaches for mapping and integrating RDB content
to/with the Web of Data, with citing semantic annotation of dynamic web pages
and mass generation of Semantic Web data as some of the key motivations of
the work.

Holgersen et al. [3], with their semantic-web based framework, part of the
Swedish “The Open Library” project implementation, transform social content
repository data (user-generated content in the form of tags, reviews, comments,
etc.) in a Resource Description Framework (RDF) machine-readable format,
to further enrich it by related data from external collections, and provide (as
a Web Service) the resulting data to libraries that hold related bibliographic
records to benefit from (this enrichment). As a result, libraries can associate
and show all their bibliographic records and related social content to their users.
Hu et al. [4] publish a journal collection based on Linked Data principles, which,
besides bibliographic data, includes information on the publication submission
and review process of the journal, such as reviewers’ comments, editors’ decisions,
author replies, to name few of the (meta)data. The data is further enhanced by
relevant resources from the LOD Cloud, such as DBpedia and Semantic Web
Dog Food7, and made available as part of the LOD Cloud8.

Atif et al. [6] go through both conceptual and practical aspects of publishing
an Open Access (OA) repository as Linked Data. To demonstrate the poten-
tial from this undertaking, they link up the repository collection with the LOD
Cloud datasets (via mappings to an economics thesaurus, lexicon-related service,
and an economics classification system – all part of the LOD Cloud) for contex-
tualizing the OA repository collection and enabling more discerning queries to
be conducted over it.

Powell et al. [10] demonstrate fusing library and non-library data from dis-
parate resources by applying Semantic Web technologies to the task. They rely
on RDF as a common data model, and use graph-based analysis and visualization

6 http://linkeddata.org/.
7 http://data.semanticweb.org/.
8 http://lod-cloud.net/.

http://linkeddata.org/
http://data.semanticweb.org/
http://lod-cloud.net/

Bringing Scientific Blogs to Digital Libraries 165

to generate useful information on the resulting data for the user. In another work,
Yoose and Perkins [14], in a survey on LOD adoption in libraries, including archives
and museums, report important and increasing number of L(O)D projects that
free library resources from specific library representation formats, benefiting the
consumption of this data from interested parties, and further improve the library
experience for its users by enriching this (meta)data with relevant resources from
the LOD Cloud datasets.

Passant et al. [11] research the application of Semantic Web technologies
in an industry context for enhancing the Enterprise 2.0 setting. In their study
they present a paradigm for reusing collaboratively-built knowledge in the enter-
prise, contained in different fragmented information resources and represented
across heterogeneous data formats, which, to also provide more insightful query
capabilities to the end users.

Due to the said prominence of blog posts, there are other research efforts
for collecting and developing value-adding services based on these resources. In
a related undertaking, Papadokostaki et al. [12] develop a platform for storing,
indexing and searching blog posts. In their effort they apply semantic web tech-
nologies throughout the project, starting from developing a custom ontology for
modeling the blog posts, storing the resulting posts (as RDF) in a triplestore,
as well as relying on a Linked Data format (JSON-LD) for their REST services;
when modeling the domain - news articles, the authors develop a new ontology.
All blog posts added to the collection are also made available to the Linked
Open Data cloud. Users of the portal can benefit from searching the blog post
collection created by automatic ingestion of blog posts, or have the possibility
of manually adding blog posts to the collection. The BlogForever platform (see
Kalb et al. [5]) focuses on archiving operations for the blogosphere; in address-
ing the potential “information silos” from this undertaking (blogs from different
domains, using different vocabularies, etc.), the authors adopt Linked Data prin-
ciples in their approach. A common domain model for blog archiving and a set
of vocabularies enable exposing resulting blog archives as LOD. The benefits
from this work are manifold, such as: possibility to search across different blog
archives; link archives to external resources or collections; etc.

Harnessing the value from connecting heterogeneous resources – in this case
blogs and DLs – is specifically the motive for our work in this paper. In this
work, we integrate blog post collections external to and independent of the DL
collection for increased visibility to the former, and enriched offer of the latter.
Blog posts typically are not pre-related or do not refer to DL publications (such
as via a publication DOI, or other identification mechanisms); and bloggers write
on any topic they deem important, regardless of the DL repository publications.

4 Methodology

This section details the applied methodology, including the dataset selection for
this work, its (pre)processing and augmentation, modeling and conversion, as

166 F. Limani et al.

well as enrichment (via linking) from other resources. For additional information
pertaining to Sects. 4.1 and 4.2, we refer you to our previous work in Limani
et al. [7]).

4.1 Data Selection

In order to support our use cases, our dataset selection contains a DL repository
and a blog post collection. A final component, a thesaurus, is also presented
here for contextual information; its role will be detailed as we go further in the
section.

1. DL Repository: Our requirements for this part are open access policy of the
repository holding the DL collection, and potentially the existence of a con-
trolled vocabulary in order to emulate the DL environment as closely as possi-
ble. The former eases the aspects of retrieving and using collection resources,
whereas the latter brings up the challenge of streamlining resources with dif-
ferent vocabularies. EconStor9, the DL representative choice for this work, is
an open access publication platform for the domain of economics and related
fields, supporting publication (at the time of writing with more than 140
thousands working papers, journal articles and conference proceedings, etc.)
dissemination for many institutions, as well as providing its collection meta-
data to other academic repositories.

2. Scientific Blog Collection: For this part we needed qualitative and rich blog
collection to pair up with the standard that EconStor collection employs.
With over 40 K blog posts from the domain of economics that we harvested
for this work, we chose the The Wall Street Journal10 blog for our work. A
few notes are in order to provide the rationale of our choice of the WSJ as our
scientific blog representative. There are two main reasons for our decision:
(a) Although not scientific blog per se, being a popular authority on eco-

nomics publishing, it provides a useful resource for a DL that covers the
economics (and related fields’) domain. We feel this could be a real use
case that users of the DL will appreciate (and there is an evaluation plan
to assess this as our future work); in the same way, other similar publi-
cations – relevant and of high quality as the DL collection – could serve
in the same way for our research process workflow.

(b) For our workflow we needed a rich selection of blog posts in order to
demonstrate its usefulness in a DL setting. For that we needed a single,
rich blog to save us from having to deal with different approaches espe-
cially during the blog posts retrieval, and one with regular updates and
high-quality posts and relevant authors. The WSJ is just one of the many
such collections that offer blogging on relevant and up-to-date topics from
the economics domain.

9 http://econstor.eu.
10 blogs.wsj.com.

http://econstor.eu
http://blogs.wsj.com

Bringing Scientific Blogs to Digital Libraries 167

3. The Standard Thesaurus for Economics (STW11): With about 6.000 descrip-
tors (both in German and English), it is a rich vocabulary primarily cov-
ering the domain of economics, as well as related fields (law, sociology,
politics, etc.), used for indexing and retrieval operations for EconStor publi-
cations. Furthermore, its alignment with other CVs and collections increase
its “reach” and value: thesauri for social sciences and agriculture (TheSoz and
Agrovoc, respectively); classification system for publications from the fields of
economics (JEL), as well as with publications used in German libraries (Ger-
man National Library Integrated Authority File); or even relations to a KB
(DBpedia). These alignments are important to mention as they enable the
realization of some of the benefits listed in Sect. 2 of this paper, in “Dataset
profiling” and “Dataset analysis” subsections.

4.2 Dataset (pre)Processing and Augmentation

The “Data selection” subsection emphasized on the differences between selected
data sets – DL and scientific blog collections. To account for this aspect, our
methodology includes activities that (i) bridge the “terminology” gap between
the heterogeneous data sets, and (ii) identify blog post metadata that are impor-
tant for our use cases. Specifically, we conduct:

1. Automatic Term Assignment based on a CV: Having to deal with heteroge-
neous resources brings its own challenges to the table. Namely, after having
selected our data set as described in the previous subsection, we need to work
with their inherent differences seamlessly. With vocabularies used in either
collection being the most prominent difference, we need to be able to conduct
all our analysis on these collections as if it were a single, homogeneous data
set, regardless of any of the differences mentioned so far.
Having the DL data set (EconStor) described by the STW thesaurus deter-
mined a similar requirement for the blog post collection – i.e., describe it
using the same set of vocabulary terms. Due to the fact that blog posts are
created at a frequent pace (every blog could have many posts added every
day), we needed to automate this step. In this work we used a mature and
popular automatic indexer (MAUI12) to automatically assign terms to every
WSJ blog post. One advantage that MAUI gives us is the possibility to specify
a CV as a source from where to choose terms from during the term assign-
ment process. This is exactly what we needed for our case: MAUI suggested
terms to WSJ blog posts using the STW thesaurus as a source. Examples of
this term assignment can be found in the “Process workflow” section.

2. Blog Post Metadata Selection: Blogs differ in the attributes they employ in
their post collection. In our case, besides the usual blog post metadata, such
as author, title, content, and publication date, we also retained blog post com-
ments for each blog. Some social web features, such as “shares” and “tweets”,

11 http://zbw.eu/stw.
12 https://code.google.com/p/maui-indexer/.

http://zbw.eu/stw
https://code.google.com/p/maui-indexer/

168 F. Limani et al.

although present in the data set, were left out of the current research analysis.
We have plans to include them in our future work.

4.3 Dataset Modeling and RDF Conversion

This part of the methodology covers three activities that complete the data set
modeling and conversion process, including: (i) listing selected vocabularies for
the blog post collection, (ii) providing the technical details of mapping the blog
post collection from a relational database to RDF13 via a platform that “wraps”
the RDB into a virtual RDF graph; and (iii) combining EconStor and WSJ blog
post collections in a single collection, to be used as a unified query space; this
activity also provides for query and exploration capabilities via an HTTP server
for RDF data.

1. Blog Post Vocabulary Selection: Despite the Web 2.0 nature, blog posts reflect
the common metadata that a DL publication has, such as post title, publi-
cation date, content, terms describing the post; whereas also having some
additional aspects that are inherent to them, such as user-generated feedback
(blog post comments and other Web 2.0 “features” like shares, tweets, etc.).
The key vocabularies selected for modeling blog post collections are SIOC14

(and SIOC Types module) and the Dublin Core Metadata Initiative15; the
former covering especially well the user-generated content, whereas the lat-
ter the typical publications metadata. An example representation of a blog
post is shown in Fig. 1 below, with a single comment and subject keyword
(“Marketing”, in this case) due to easier readability. One of the key parts
of the modeling refer to blog posts and related comments, with SIOC Types
BlogPost and Comment classes used for the blog post and their comments,
respectively. The modeling requirements of blog posts did not necessitate
developing a new ontology, so we reused already established vocabularies for
this process.

2. Mapping Relational Data to RDF: The DL collection is represented via
Resource Description Framework (RDF) standards as (RDF) triples, whereas
the scientific blog post collection is stored in a relational database. To bring
both collections into the same model, we use a specific platform to generate
an RDF data dump of the blog post collection. This requires mapping the
relational database tables and columns to RDF classes and properties, based
on the vocabularies identified beforehand. With this both data sets are com-
bined in a single data model – RDF.

Figure 1 displays the key classes and properties used to model the blog
post collection. The modeling is based on three “entities” of a WSJ blog post:
the blog post itself, its comments, and the subject it covers (represented here
based on the STW terms automatically assigned to the post). The blog post

13 https://www.w3.org/RDF/.
14 http://rdfs.org/sioc/spec/.
15 http://dublincore.org/specifications/.

https://www.w3.org/RDF/
http://rdfs.org/sioc/spec/
http://dublincore.org/specifications/

Bringing Scientific Blogs to Digital Libraries 169

entity and comment entities are mapped to SIOC Types BlogPost and Com-
ment classes, respectively; the last class - that of blog post terms - uses a
D2RQ platform-internal “vocabulary”. The properties used to describe this
entity, i.e. the subject it covers and the link to the STW URI, were enough
to support our use cases; we did not find it necessary to use a vocabulary to
specifically model the blog post terms beyond the one that D2RQ platform
provided during mapping.

3. Unified Query Space over Data Sets: At this point both collections use the
STW thesaurus to describe their resources; this implies a closer connection
of the data sets and renders them more integrated than just two data sets
sharing the same representation (RDF, in this case). Rather, this enables
us to address the combined data sets as being part of a single “information
space”. In this way, we can solely rely on the STW terms to search resources
in both data sets.

Fig. 1. Classes (colored in blue) and properties modeling a blog post instance. Source:
Limani et al. [8]. (Color figure online)

5 Tying It All: A Process Workflow

After discussing the methodology followed in this work, in this section we turn to
a concrete implementation - represented as a process workflow which is depicted
in Fig. 2. In following, we provide technical details and rationale for every process
of this workflow. Concretely, we show the complete process of making scientific
blog posts available to the DL environment, and provide technical details and

170 F. Limani et al.

information about the tools used to achieve this goal. We believe that this could
help anyone planning to apply or extend the workflow according to their needs
for their DL environment or in a completely new project. We provide some
potential extension examples as we go through the process.

Fig. 2. Process workflow: from “raw” blog posts to access within DL.

1. Data Set Retrieval: EconStor is already available as RDF and regularly
updated; furthermore, it is also available for download (as RDF data dump).
The WSJ blog post collection, on the other hand, needed some effort. Based
on the URL pattern of the WSJ blogs, we retrieved all blog posts from the dif-
ferent categories that WSJ supports. Blog post collections are more dynamic
in nature, as they get new posts and updates (comments, shares, etc.) to
existing posts. We retrieved posts of a certain period, and that suits our
experimentation purposes.
Potential extension for this step: Depending on the datasets of interest, the
retrieval process could entail different approach, such as using an API that
makes resources of interest easily available.

2. (Pre)Processing Blog Posts: After retrieving a single blog post, we extracted
elements of importance to our experiment (as described earlier in the paper)
by relying on the CSS description that WSJ employs for the different post
elements. Sometimes the author names are part of the post contents. We
relied on NLP operations (Apache OpenNLP16 in this case) to identify (and
remove) author names from post content. A final operation for this process
adds to the list of elements by (automatically) assigning STW thesaurus terms
to every blog post; MAUI was configured to assign up to 5 terms from the
STW to every post, and the result is stored in a RDB.
Just to afford the idea of this last operation, Table 1 lists few examples from
the process of automatic term assignment with MAUI. The first column stores
the title of the blog post; with it, we can guess to some extent what the topic
of the post is. The second column stores the terms (or tags) that are used

16 https://opennlp.apache.org/.

https://opennlp.apache.org/

Bringing Scientific Blogs to Digital Libraries 171

to describe the post; these tags are specific to WSJ blogs, and are used by
its authors and readers to find posts of interest. The third column represents
the terms that MAUI automatically assigned to every blog by choosing the
terms from the STW thesaurus.
Potential extension for this step: Any other pre-processing activity that one
could need, such as: using a different (automatic) indexer and/or CV to assign
terms to resources; applying different enrichment activity, such as linking a
resource to an external KB, for example; using any NLP-based operation that
the new domain/application could requirement; etc.

Table 1. Several blog posts as described by their tags and the STW thesaurus after
automatic indexation.

Blog post title Original terms Auto-assigned terms from
STW

The Growing Scarcity of
Series B Venture Rounds

Culture; Investors/Raising
capital; Investor

Marketing; Market; Seed;
Enterprise

Fueling the Next
Generation of Innovation

Business model; Culture;
Entrepreneur

Enterprise, Needs,
Innovation, Fuel

Understand the Risks of
Going Public Before You
Ring the Bell

Business model; Culture;
Investor

Risk; Listed company;
Publication; IPO

Why Design Matters More
than Moore

Culture; Customer
acquisition; Investor;
Weekend read

Designers; Engineering;
Technology; Metalloid

Don’t Fall in Love with
Your First Idea

Business model; Culture;
Entrepreneur; Getting to
Product Market Fit

Emotion; Marketing;
Marketing; Joint
production

3. Access and Query: The D2RQ platform17 “wraps” a RDB and provides access
to it as if it were a graph DB. In our case, since the blog post collection was
stored in a RDB, we decided to use D2RQ. One prerequisite to this option
is to provide a mapping file that D2RQ will use to map RDB columns to
graph representation. This way, we can have a “direct” access to the blog
post collection as if it were a graph, or generate a RDF data dump to be used
later on. We choose the latter to have the complete blog post collection as
RDF data set, later to be combined with the DL collection (already available
as RDF).
Potential extension for this step: The datasets could be directly represented
as RDF, thus eliminating the requirement for any intermediary tools for access
and query of datasets. For example, having the datasets stored as RDF in a
triplestore solution, as opposed to “extending” RDB solution’s feature set to

17 http://d2rq.org/.

http://d2rq.org/

172 F. Limani et al.

provide SPARQL access. Moreover, in case other/new vocabularies are appli-
cable for a different domain or a new application, one can always change the
mapping rules in the D2RQ platform to accommodate for this requirement.
In this case, as one would expect, changes introduced should be accounted
for during the query process.

4. Availability and Storage of RDF Data Sets: Now that both data sets are
represented in the same way (RDF graphs), and use the same term vocabulary
(STW thesaurus), we needed a way to integrate them in a single data set and
demonstrate the use cases envisioned for this work. We choose Apache Jena
Fuseki SPARQL server18 for this purpose.
We loaded both data sets as a single data “unit”, with 2 different named
graphs in order to provide flexibility when implementing use cases, such as
when required to access or query only one of the data sets. Such was the case
in one of our use cases where we wanted to select relevant blog posts after the
DL user has accessed a publication from the DL collection. In the use cases
section you can see more on the usability of the separate graphs for the two
data sets.
Potential extension for this step: Depending on the technical choices from the
previous activities of the workflow, one can choose a solution for this step,
such as graph, NoSQL, or any other storage solution that suits their needs.

5. Vocabulary Bridging: Any Ontology Alignment/Matching?: One of the key
decisions planned in our methodology and implemented via our process work-
flow is the one regarding the challenge stemming from having to integrate
different vocabularies, DL and blog posts in this case. For example, EconStor
uses a thesaurus to describe and base information retrieval services on it,
whereas the WSJ uses its own categories and terms to describe posts. Fur-
thermore, even for blogs themselves, there is a difference in terms of vocabu-
laries used. This makes it a real challenge to try to align or map vocabularies
used in a DL with all the different vocabularies that could be employed by
blogs.
This is where the automatic indexer comes into play: by using the STW the-
saurus to automatically assign terms to all blog posts (currently, we are only
using WSJ posts, but a DL will most likely include more blogs), we effectively
bridge the terminology gap, thus eliminate the need to pursue other alterna-
tives, such as ontology alignment or mapping between the STW thesaurus,
in our example, with the vocabularies adopted by the blogs.
Potential extension for this step: One can choose to develop a vocabulary
that specifically covers the domain of blogs (as some of the related work pre-
sented in the paper have chosen to do), and then try the arsenal of approaches
of ontology alignment/matching to bridge the vocabulary gap.

6. SPARQLing for More Insight: One benefit from our methodology, especially
the dataset representation in RDF, is the capability for more insightful
queries. For example, one could be interested to know the female authors
active with blog posts during a certain period of time on the topic of

18 https://jena.apache.org/documentation/fuseki2/index.html.

https://jena.apache.org/documentation/fuseki2/index.html

Bringing Scientific Blogs to Digital Libraries 173

“technology transfer”; or some of the most commented (shared, or liked, etc.)
blog posts during the financial crisis of 2008, and similar queries. The fact
that it is the query language for Linked Data, opportunities for more percep-
tive querying are great.
The following SPARQL code listing shows an example that lists WSJ blog
posts and EconStor publications related to the term “Technology transfer”
published since 2014/2015. The code queries the named graphs – econstor
and wsj – with the same query, and “combines” the results (note the UNION
operand) into a single result list; namespace definitions are omitted for
brevity.
Potential extension for this step: The query can be refined by specifying nar-
rower or broader terms from the STW thesaurus, in case there are many or
few results from the query; filtering results based on a number of parameters,
such as comments, tweets, shares, etc.

Listing 1.1. A SPARQL example querying heterogeneous datasets.

SELECT ? publ ? t i t l e
From Named <http :// l o c a l h o s t :3030/EconstorWSJ/data/ econstor>
From Named <http :// l o c a l h o s t :3030/EconstorWSJ/data/wsj>
WHERE {{

Graph ?g {
?publ a ?o ;
econStorDC : i s su ed ? date ;
econStorDC : t i t l e ? t i t l e ;
econStorDC : keyword ”Technology t r a n s f e r ” .
Values ?o {swc : Paper}
Filter (? date >= ”2015”ˆˆxsd : gYear) }}

UNION {
Graph ?g{

?publ a ?o ;
dcterms : c r eated ? date ;
dcterms : t i t l e ? t i t l e .

? term a vocab : keywords ;
dc : sub j e c t ”Technology t r a n s f e r ” ;
vocab : keywords b log post post ID ?publ .

Values ?o { s i o c t : BlogPost}
Filter (? date >= ”2014−01−01”ˆˆxsd : date) }}}

Our proposed methodology, and the process workflow implementation driven
by it, can be adopted/adapted for similar work by other DLs that seek to inte-
grate emerging scientific publications into their collections. In our case we dealt
with a DL that relies on a domain-specific thesaurus, and plans to integrate blog
posts from that same domain. However, new use cases and possibly completely
new applications, thus new extensions to the workflow are more than encouraged
to pursue by interested parties.

6 Use Case Scenario Demonstration

In this section we represent several use case scenarios implemented from inte-
grating the DL repository and the scientific blog post collection.

174 F. Limani et al.

Although DL users are not expected to know SPARQL in order to search the
collection, by exploring some query scenarios, we want to demonstrate that this
collection can serve as a data store on top of which we can build a standard user
interface for search that users understand (keyword-based search, in the same
way they use a search engine or search a document in their computer). While
SPARQL can support insightful queries of the data, we would like to also mention
at this point that the queries we show are constrained by the metadata in both
dataset. For example, we could explore the contribution of female bloggers from
a certain region, during the “financial crisis” period, for example, had he had
the (meta)data in our datasets.

1. Search Across the “Unified Query Space” (EconStsor and WSJ datasets): The
user searches for publications related to the subject of “technology transfer”
in EconStor and WSJ datasets. As mentioned earlier, there are several types
of publications archived in EconStor, but, in this case, the user is interested in
research papers (i.e., swc:Paper), published since 2014. The search returns
four results in total, with three results coming from the EconStor dataset,
and one coming from the blog post collection. This just demonstrates the
possibility for the user to search across two diferent datasets described with
the same thesaurus term(s), and see a result of publications from correspond-
ing datasets (treating the datasets as if they are one source of information).
The following listing shows the SPARQL query that implements this use case
scenario.

2. Retrieve Relevant Blog Posts for a DL Publication: This scenario is related to
the previous one: the user initially searches the DL collection (i.e., EconStor)
and selects a publication that she wants to further examine. We search the
blog post collection for additional publications that could be of interest to
her based on the STW term(s) that describe the publication she is currently
reading. The user searches for (swc:Paper) publications from EconStor that
cover the subject of “Human capital”, published from 2014 and onward. The
user selects the publication titled “Labour market integration, human capital
formation, and mobility” from the result list. Using the same STW term
(“Human capital”) that describes the selected publication, gives us 1 blog post
from the WSJ collection, titled “Q&A: Golub Capital’s David Golub on GE
Capital’s Divestiture”, as well as 7 other posts described with the “related”
STW term “Human resources” that could further complement user’ reading
experience. This further emphasizes the role that the (STW) thesaurus can
play in providing alternative results for the user by using its structure, such
as via “narrow”, “broad”, or “related” terms.

3. Search the Scientific Blog Post Collection Alone: In another scenario, the
user searches for the newest blog posts covering a certain subject. During
this scenario, the user can decide to factor in the number of comments that
a blog post has, i.e. the post that stirred the most feedback/discussion on a
given subject, or explore the most used STW terms from the collection, in
order to have a understanding on the variety of blog posts that constitute the

Bringing Scientific Blogs to Digital Libraries 175

collection. Let’s see how these two search strategies work for our blog post
collection:
(a) Highest Number of Comments: This search, filtered by posts published

from 2015 and on, lists the following top 3 blog posts with the high-
est number of comments: “Facebook Plans a ‘Dislike’ Button, but Only
for Empathy, Zuckerberg Says” with 18 comments; “Microsoft Expected
to Unveil Next-Gen Windows Phone and Surface Tablet” with 12 com-
ments; and “Alabama Judges’Reprehensible’ Conduct Merits Impeach-
ment, Judiciary Says”, the last post stressing a judicial misconduct by a
judge, with 8 user comments from the blog readers.

(b) The Most Featured Blog Posts by STW Term: This is an attempt to
mimic “topic trending” in the blog post collection – showing the extent
to which certain subjects are covered (via posts) in the blogging com-
munity. In our case, searching for the most used STW terms in the blog
post collection results with the top 3 most used terms “Enterprise”, “Per-
sonalization”, and “Share”. This provides some hints to DL users about
the most represented/covered subjects from the blog post collection, in
case they want to use that information to guide their exploration of this
collection.

(c) A Combination of the Two: Having identified the most used STW terms,
the user can further explore the most commented on blog post from a
popular subject, which with regards to our blog post collection results
to combining posts on the subject of “Enterprise”, “Personalization”, or
“Share” (as discussed above), and blog posts that attracted the most
attention in the blog community.

7 Benefits

The key benefits relate to the automatic indexing and semantic annotation of
the scientific blog post collection, its integration with the DL collection in a
unified (in terms of querying and resource description via the STW thesaurus)
dataset, as well potential data profiling and analysis operations. Following are
the emphasis on these aspects:

1. Semantic Annotation and Representation of Blog Post Collections: Having
the DL collection published as LOD dictates the methodology of blog post
collection integration with the DL. Without any effort from the bloggers’ side,
we have modeled and represented this collection in the same way as the DL
collection – thus making them part of the same “model” (RDF, in this case),
and automatically indexed it (based on the STW thesaurus) – thus bridging
the terminology gap between these different resources and integrating them
at a terminology level.

2. Integration of Heterogeneous Collections in a Unified “Query Space”: Meeting
DL’s interest to include heterogeneous resources – blog posts from the same
domain, we have integrated the latter and made it available as a resource
collection to the former. The users of the DL library, as shown with our queries

176 F. Limani et al.

over the resulting dataset collection, are able to retrieve relevant resources via
different scenarios.

3. Data Profiling and Analysis: both indirect benefits from relying on STW
for indexing the blog post collection. STW’s alignment with other thesauri,
classification systems, and external KBs enables us to enrich the user search
experience by linking up scientific blog posts of interest to the user with
external, related resource collections. Moreover, we are able to provide useful
information about the dataset to the user, such as “trending” topics/subject
for a given time period, the most popular topic/subject, or the blog posts that
sparred the most debate with the users. For more details, see the implemented
use case scenario implementations from Sect. 5 of the research paper.

8 Conclusion and Future Work

In this section we present our final thoughts on the research endeavor, as well
as present its follow up steps for the near future.

– Summary of Conclusions: With our undertaking we have addressed a DL
requirement for integrating non-library resources a scientific blog post collec-
tion and making it available to its users as a complementary or additional
content in their search operations. In doing so, we have pre-processed the
non-library resources in order to bring them up to par with vocabulary-wise
with the DL practices (assigning STW terms, in this case); modeled them
according to the DL collections representation (RDF, in this case), by select-
ing a set of suitable vocabularies (and corresponding classes and properties);
and finally converting them from a relational database to an RDF representa-
tion using the D2RQ platform. Furthermore, in order to support the use case
scenarios, we loaded both the library and non-library datasets on separate
named graphs of a single dataset on a SPARQL server.

– Future Work: One of the follow up efforts is developing a prototype enabling
evaluation scenarios with the users. Furthermore, we would also like to com-
pare our algorithmic approach (i.e. for generating recommendations of blog
posts) with state of the art similarity measures from Graph-based and con-
ventional Machine Learning approaches. We are of view that this comparative
evaluation will help us to improve the accuracy and recall of our generated
recommendations. Currently, in order to query the unified dataset implies
knowledge of SPARQL, which is not a skill that common DL users should
have in exploring a DL collection.
Another research follow up direction is that of analysis that would bring more
value to the user (search) experience in view of the newly-added blog post
collection, such as publications similarity based on the STW thesaurus struc-
ture and graph representation properties, to name a few.
There is also work planned regarding the evaluation of our work. Some of the
preliminary research questions are to be directed towards establishing the
complementarity of blog posts to DL resources, with the underlying hypoth-
esis being that blog posts add value to and provide the serendipity effect for

Bringing Scientific Blogs to Digital Libraries 177

DL users. The prototype should be able to answer these initial questions,
as well as raise new questions for the final evaluation (handling information
overload could be such a question, that could potentially hamper or cancel
the role of blog posts).

– Limitations: During this phase, we are relying on SPARQL to explore the
resulting EconStor and WSJ blog post datasets, although a typical DL user
does not and should not have to have any knowledge of SPARQL or, at a
more general level, Semantic Web technologies to access and use DL services.
A solution involving a graphical user interface would enable a more comfort-
able environment for users, and enable them reap the benefits of our research
without the higher technological barrier that Semantic Web technologies rep-
resent for common users.

References

1. Auer, S., Feigenbaum, L., Miranker, D., Fogarolli, A., Sequeda, J.: Use Cases and
Requirements for Mapping Relational Databases to RDF. Working draft, The
World Wide Web Consortium (W3C) (2010). https://www.w3.org/TR/rdb2rdf-
ucr/. Accessed 14 June 2016

2. Burgelman, J.-C., Osimo, D., Bogdanowicz, M.: Science 2.0 (change will happen.).
First Monday 15(7) (2010). Accessed 28 June 2016

3. Holgersen, R., Preminger, M., Massey, D.: Using semantic web technologies to
collaboratively collect and share user-generated content in order to enrich the pre-
sentation of bibliographic records. Code4Lib J. 17 (2012). http://journal.code4lib.
org/articles/6695. Accessed 20 June 2016

4. Hu, Y., Janowicz, K., McKenzie, G., Sengupta, K., Hitzler, P.: A linked-data-driven
and semantically-enabled journal portal for scientometrics. In: Alani, H., et al.
(eds.) ISWC 2013. LNCS, vol. 8219, pp. 114–129. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-41338-4 8

5. Kalb, H., Lazaridou, P., Trier, M.: Establishing interoperability of a blog archive
through linked open data. In: GI-Jahrestagung, pp. 1931–1936 (2013)

6. Latif, A., Borst, T., Tochtermann, K.: Exposing data from an open access repos-
itory for economics as linked data. D-Lib Magaz. 20(9–10) (2014). http://www.
dlib.org/dlib/september14/latif/09latif.html. Accessed 7 June 2016

7. Limani, F., Latif, A., Tochtermann, K.: Scientific social publications for digital
libraries. In: Proceedings of 20th International Conference on Theory and Practice
of Digital Libraries (2016)

8. Limani, F., Latif, A., Tochtermann, K.: Bringing scientific blogs to digital libraries.
In: Proceedings of the 13th International Conference on Web Information Sys-
tems and Technologies (WebIST), Porto, Portugal, pp. 284–290, 25–27 April 2017.
https://doi.org/10.5220/0006295702840290

9. Mahrt, M., Puschmann, C.: Science blogging: an exploratory study of motives,
styles, and audience reactions. J. Sci. Commun. 13(3), 1–16 (2014)

10. Powell, J., Collins, L., Martinez, M.: Semantically enhancing collections of library
and non-library content. D-Lib Magaz. 16(7–8) (2010). http://www.dlib.org/dlib/
july10/powell/07powell.html. Accessed 10 June 2016

11. Passant, A., Laublet, P., Breslin, G., Decker, S.: SemSLATES: Weaving Enterprise
2.0 into the Semantic Web (2010)

https://www.w3.org/TR/rdb2rdf-ucr/
https://www.w3.org/TR/rdb2rdf-ucr/
http://journal.code4lib.org/articles/6695
http://journal.code4lib.org/articles/6695
https://doi.org/10.1007/978-3-642-41338-4_8
http://www.dlib.org/dlib/september14/latif/09latif.html
http://www.dlib.org/dlib/september14/latif/09latif.html
https://doi.org/10.5220/0006295702840290
http://www.dlib.org/dlib/july10/powell/07powell.html
http://www.dlib.org/dlib/july10/powell/07powell.html

178 F. Limani et al.

12. Papadokostaki, K., Charitakis, S., Vavoulas, G., Panou, S., Piperaki, P.,
Papakonstantinou, A., Kondylakis, H., et al.: News articles platform: semantic
tools and services for aggregating and exploring news articles. In: International
Conference on Integrated Information (2016)

13. Spanos, D.-E., Stavrou, P., Mitrou, N.: Bringing relational databases into the
semantic web: a survey. Semantic Web 3(2), 169–209 (2012)

14. Yoose, B., Perkins, J.: The LOD landscape in libraries and beyond. J. Libr. Meta-
data 13(2–3), 197–211 (2013)

Enhanced Querying of Open Data Portals

Mauro Pelucchi, Giuseppe Psaila(B), and Maurizio Toccu

University of Bergamo, Bergamo, Italy
giuseppe.psaila@unibg.it, mauro.pelucchi@tabulaex.com,

maurizio.toccu@unibg.it

Abstract. Open Data portals have become a common service provided
by many Public Administrations around the world, where they openly
publish many data sets concerning citizens and territories, in order to
increase the amount of information made available for people, firms and
public administrators. As an effect, Open Data corpora has become so
huge that it is impossible to deal with them by hand; as a consequence,
it is necessary to develop tools for effectively querying corpora of open
data, in order to find the desired data sets.

In our previous work [1], we presented a novel technique to query open
data corpora. In this paper, we present an evolution of that technique,
obtained by refining some steps and by introducing some novelties. We
still rely on the blindly querying approach: the user does not have to
know in advance the actual structure of possibly thousands of data sets,
but formulates the query trying to characterize the items of interests;
in fact, a novelty of our approach is that our technique looks for single
items within data sets, not for data sets. Then, the technique tries to
rewrite the query by exploiting the catalog of the corpus in order to find
the most similar and relevant terms.

The main enhancement introduced in the technique and presented in
this paper is the way the technique looks for similar terms in the catalog,
that now is based on a semantic approach: the WordNet dictionary is
exploited to get synonyms of terms in the query. Furthermore, a new set
of experiments has been performed, in order to prove the effectiveness of
the enhanced technique.

1 Introduction

Citizens looking for information concerning territories and citizenship now con-
sider obvious to look for them in an Open Data Portal, i.e., a web site in which
Public Administrations publish data sets concerning their activities and citizens.
Since these data sets are open, i.e. publicly available for any interested people
and organizations, they are called Open Data.

Data sets published by Open Data Portals are Structured data sets: in the
simplest form, they are CSV files with a fixed number of fields, with field names
reported in the first line. Alternatively, they are often represented as vectors
of JSON objects, without nesting (they must be represented in a flat way),
and (less frequently) as structured XML documents (without exploiting nesting
c© Springer International Publishing AG, part of Springer Nature 2018
T. A. Majchrzak et al. (Eds.): WEBIST 2017, LNBIP 322, pp. 179–201, 2018.
https://doi.org/10.1007/978-3-319-93527-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93527-0_9&domain=pdf

180 M. Pelucchi et al.

capabilities of XML). In practice, data sets are always thought as tables: an item
in the data set (CSV row, JSON object, XML element) represents a table row.

The hugeness of Open Data corpora published by open data portals asks for
tools to effectively query Open Data corpora. In particular, it is not possible
to think that a user knows the actual structure of thousands of data sets in a
corpus: he/she queries the corpus in a blind way ; then, it is responsibility of the
engine to adapt the query to the structure of data sets actually published in the
corpus.

In our previous work [1], we proposed a technique to query a corpus of open
data, that exploits the blindly querying approach. In particular, the technique
takes the original query and rewrites it, by looking for similar terms that are
actually present in the structure of data sets and can be effective in getting
the desired data sets. Furthermore, an important novelty of our technique is
that it looks for single items within data sets, i.e., items that satisfy a selection
condition specified in the query by the user.

For example, a user might want to get information about high schools located
in a given city named “My City”, being interested in their name, address and
reputation. The query mechanism should be able to focus the search on those
data sets that actually contain the items of interest, and retrieve them. However,
at the same time, it should be able to extend the search to those data sets
that could potentially contain items of interest, by considering similar names
in the corpus catalog (i.e., the list of data sets in the corpus and their fields).
For example, a data set with field “city name” or simply “city” in place of
“cityname”.

In this paper, we proposed an enhanced version of the technique proposed in
[1]. Apart from minor improvements, obtained by reorganizing some processing
steps, the major improvement concerns the way queries are rewritten. In fact,
given a term, we look not only for lexicographic similar terms present in the cat-
alog, but also for semantically similar terms: we exploit the WordNet dictionary
to get synonyms. This way, our technique is able to better explore the corpus,
fostering the blindly querying approach.

The new version of the technique has been implemented in the Hammer
prototype and validated by means of an experimental campaign.

The paper is organized as follows. Section 2.1 gives some preliminary defini-
tions. Section 2.2 formally defines the problem we are dealing with. In Sect. 3,
the overall query process is presented, presenting the global view of the tech-
nique. Next sections presents the technique in details: Sect. 4 presents the main
innovation of this paper, i.e., the identification of alternative terms for terms
in the query, on the basis of semantic similarity (synonyms in WordNet dictio-
nary) and lexicographic similarity; Sect. 5 explains the steps that lead to obtain
rewritten queries; Sects. 6 and 7 present the core of the technique, i.e., extrac-
tion of relevant keywords from within rewritten queries an the final steps of the
technique, where rewritten queries are actually used to find out data sets and
relevant items are extracted from within them. The experimental evaluation is

Enhanced Querying of Open Data Portals 181

shown in Sect. 8, while Sect. 9 discusses some related works. Section 10 draws the
conclusions.

2 Problem Statement

In this section, we precisely state the problem. To do that, we need to introduce
some preliminary concepts.

2.1 Preliminary Definitions

Definition 1: Data Set (From [1]). An Open Data Set ods is described by
a tuple

ods : <ods id, dataset name, schema,metadata>

where ods id is a unique identifier, dataset name is the name of the data set (not
unique); schema is a set of fields names, metadata is a set of pairs (label, value),
which are additional meta-data associated with the data set. ��
Definition 2: Instance and Items (From [1]). With Instance, we denote the
actual content of data sets. It is a set of items, where an item is a row of a CSV
file or data table, as well as a flat object in a JSON vector. ��

Many open data portals provide open data sets in several formats. Commonly,
they adopt CSV (comma separated values), but it is becoming frequent the
adoption of JSON (JavaScript Object Notation) and XML.

The adoption of JSON is motivated by the fact that, now, it has become the
de-facto standard for data sharing in the world of Web Services. A JSON file is
easy to read, much lighter than XML and JavaScript (the programming language
used for developing client-side web applications) natively interprets JSON data.

However, in the open data world, it is used only as an alternative represen-
tation for flat tabular data: a CSV file can always be transformed into a vector
of JSON objects, where all objects in the vector have the same structure, i.e.,
the same fields and fields have only simple values (there are not nested objects).

Consequently, JSON capabilities to describe nested complex structures, as
well as collections of heterogeneous objects, are not exploited in this context.

To illustrate, consider Fig. 1. We report a fragment of the open data set
named Local Authority Maintained Trees published on the London Data Store,
that is the official open data portal of London City. Notice how a flat CSV file
(in the upper part of the figure) can be easily transformed into a vector of JSON
objects (lower part of the figure). As the reader can see, the price to pay is that
the JSON version is more verbose, since field names must be repeated for each
object. However, in the optic of integrating the items extracted from several
open data sets, having different structures, into a unique collection of results,
JSON is the natural representation format for our tool.

182 M. Pelucchi et al.

Fig. 1. Fragment from the data set Local Authority Maintained Trees published in the
London Data Store.

Definition 3: Global Meta-Data (From [1]). The list of fields of items in the
open data set ods is ods.schema. We call the triple <data set name, schema,
metadata> the Global Meta-Data of the data set. ��
Definition 4: Corpus and Catalog (From [1]). With C = {ods1, ods2, . . . }
we denote the corpus of Open Data sets. The catalog of the corpus is the list of
descriptions, i.e., global meta-data, of open data sets in C (see Definition 1). ��

At this point, we can introduce the concept of Query, to illustrate the app-
roach we propose to query an open data corpus.

Definition 5: Query (From [1]). Given a Data Set Name dn, a set P of field
names (properties) of interest P = {pn1, pn2, . . . } and a selection condition sc
on field values, a query q is a triple q :<dn, P, sc>. ��

As the reader can see, a section condition must be specified in the query: this
way, the user can narrow his/her search only to items of interest.

Now, we define a concept that will be very useful throughout the paper.

Enhanced Querying of Open Data Portals 183

Definition 6: Query Term (From [1]). With Query Term (term for simplicity)
we denote a data set name q.dn, a field name appearing in q.P, in q.sc, a constant
appearing in q.sc. ��

Note that a term could be also compound by many words, in general two
words, separated by blank spaces, underscores or lines. In fact, property names
in open data sets can contain blanks, underscores and lines.

2.2 Problem Definition

Consider an open data corpus published by an Open Data Portal. Queries allow
users to retrieve, from within the corpus C, those data sets, possibly having
the specified name q.dn or a similar one, that contain items (e.g., rows or JSON
objects) with the desired field names q.P (or similar) and can be actually filtered
on the basis of the selection condition q.sc, so that users can obtain filtered items.
By relying on the definition of a relevance measure for data sets (in Sect. 7), we
can define the overall problem. However, we first of all report a statement, that
explain what properties the relevance measure must provide.

Statement 1: Relevance Measure. Consider an open data set odsi. We
need to define a Relevance Measure rm(odsi) ∈ [0, 1], suitable to evaluate the
relevance of the data set w.r.t. the query. Since we rely on the blindly querying
approach, the relevance measure must provide the following features:

1. An open data set could be relevant for the query even if does not contain all
terms specified in the query;

2. An open data set could be relevant for the query even if it contains terms
that are lexicographically similar to the ones specified in the query;

3. An open data set could be relevant for the query even if it contains terms that
are semantically similar (synonyms) to the ones specified in the query. ��
The previous statement states what we expect from a relevance measure. It

will be defined later in the paper. On this basis, we can define the problem.

Problem 1 (From [1]): Given a Relevance Measure rm(ods) ∈ [0, 1] of a data
set ods ∈C, and a minimum threshold th rm ∈ [0, 1], a data set ods is relevant
if rm(ods) > 0 and rm(ods) ≥ th rm.

The result set RS = {o1, o2, . . . } of query q is the set of items (rows or
JSON objects) oi such that odsj is a relevant data set, oi ∈ Instance(odsj) and
oi satisfies the selection condition q.sc. ��
Example 1: The sample query about schools in Sect. 1 becomes:

q :< dn = [Schools]
P = {[Name], [Address], [Reputation]},
sc = ([City]="My City" AND [Type]="High School") > .

Based on Statement 1, we expect to get items in data sets having field [Name],
or field [School Name] in its place (lexicographic similarity), as well as field
[Address] or, in its place , [Street] (semantic similarity). ��

184 M. Pelucchi et al.

3 Processing Steps

The contribution of this paper is a novel technique to solve Problem 1. The
technique moves from the one previously presented in [1], but modified and
enriched with semantics.

The proposed technique is built around a query mechanism based on the
Vector Space Model [2], encompassed in a multi-step process devised to deal
with the high heterogeneity of open data sets and the blindly query approach
(the user does not know the actual schema of data sets in the corpus). Recall that,
in our vision, the user performs a blindly query, but asks for specific field names
and for items (rows or JSON objects) that satisfy precise selection conditions.
The system is fully aware of data sets schemata, but due to their heterogeneity
it is not possible to rely only on exact matching. Thus, it is necessary to focus
the search, identifying those terms in the query that mostly represent the query
essence and the capability of the query to select items within data set instances.
At the same time, it is necessary to expand the search space, considering terms
which are similar to those in the query, in order to address the fact that users
are unaware of actual schemata of data sets.

Moving from the above considerations, we defined the steps performed by
our technique.

– Step 1: Term Extraction and Retrieval of Alternative Terms. The set T (q)
of terms is extracted from within the query q. Then, for each term t ∈ (q),
the set Alt(t) of similar terms is build. A term t′ ∈ Alt(t) either if it is lex-
icographically similar (based on a string-similarity measure) or semantically
similar (synonym) based on WordNet dictionary, or a combination of both.
Terms in Alt(t) are actually present in the catalog of the corpus.

– Step 2: Neighbour Queries. For each term t ∈ T (q), alternative terms Alt(t)
are used to to derive, from the original query q, the Neighbour Queries, i.e.,
queries which are similar to q. Both q and the derived neighbour queries are
in the set Q of queries to process.

– Step 3: Keyword Selection. For each query to process nq ∈ Q, keywords
K(nq) are selected from terms in nq, in order to find the most representa-
tive/informative terms for finding potentially relevant data sets.

– Step 4: VSM Data Set Retrieval. For each query nq ∈ Q, the selected keywords
K(nq) are used to retrieve data sets based on the Vector Space Model [2]
approach: in this way, the set of possibly relevant data sets is obtained.

– Step 5: Schema Fitting. The full set of field names in each query nq ∈ Q is
compared with the schema of each selected data set, in order to compute the
relevance measure rm. Data sets whose schema better fits the query will be
more relevant than other data sets.

– Step 6: Instance Filtering. Instances of relevant data sets (i.e., with relevance
measure greater than or equal the minimum threshold th rm) are processed
in order to filter out and keep only the items (rows or JSON objects) that
satisfy the selection condition.

In the next sections, we will discuss each processing step in details.

Enhanced Querying of Open Data Portals 185

4 Retrieving Alternative Terms

Following Statement 1 (motivated by the blindly querying approach), for each
term in the query we have to identify a pool of alternative terms, on the basis of
semantic similarity, lexicographic similarity or both. The retrieval of semantically
similar terms is the main novelty introduced in this paper, w.r.t. paper [1].

4.1 WordNet and Synonyms

The major innovation w.r.t. [1] is the semantic enrichment based on WordNet
[3]. The idea is that alternative terms of t are synonyms of t, in addition to
similar terms.

However, the application of this idea is complicated by the fact that property
names in data sets could not be simple words, but words attached each other
with or without some characters such as blanks, lines or underscores.

First of all, let us define the basic concept of WordNet SynSet.

Definition 7: WordNet Synset. Given a term t, function WNSynSet(t)
returns the set of synonyms of term t, based on WordNet dictionary. Note that
WNSynSet(t) = ∅, either if t does not exist or if t have no synonyms. ��

On this basis, we can further generalize, in order to capture compound terms.
Suppose that a term t is formed by two terms t′ and t”. The intuition is that the
synset of t should be the Cartesian product WnSynSet(t′) × WnSynSet(t′′).
The following definition precisely defines the concept.

Definition 8: Synset for Compound Terms. Consider a term t and replace
underscores and lines with blanks, obtaining the blanked term t′. Two situations
may occur.

1. Explicit Compound Term. If t′ contains more than one term, i.e., r′ = t1 •
t2 • . . . • tn (the “•” is the string composition operator), the synset for the
compound term is

CompoundSynSet(t)
= (({t1} ∪ WNSynSet(t1)) × ({t2} ∪ WNSynSet(t2))
× . . . × ({tn} ∪ WNSynSet(tn))) − {t′}

i.e., for each term ti, we look for the synset from WordNet and combine them
with a Cartesian product (since original terms are considered too, the original
blanked term t′ could be obtained and must be removed).

2. Implicit Compound Term. If term t does not contain blanks, underscores and
lines, we try to discover implicit compound terms.
Consider the length l = |t| > 0 of term t. With lsi we denote the left substring
of length i, while with rs(l−i) we denote the corresponding right substring of
length l − i.

CompoundSynSet(t)
= ∪i=1···(l−1)(({lsi} ∪ WNSynSet(lsi))

× ({rs(l−i)} ∪ WNSynSet(rs(l−i))) − {lsi • rs(l−i)})

186 M. Pelucchi et al.

i.e., we extract any pair of substrings from t and look for their synsets in
WordNet. Notice that the final set could be empty. ��
Now, we can aggregate all possible synonyms into the set of Preliminary

Alternative Terms.

Definition 9: Preliminary Alternative Terms. Given a term t, the set of
Preliminary Alternative Terms is obtained by uniting all possibly synonyms and
the term t itself: Alt(t) = {t} ∪WNSynSet(t) ∪ CompoundSynSet(t). ��

Notice that term t is an alternative term of itself, so that it can be natively
considered for lexicographic similarity.

4.2 Lexicographic Similarity

Once the preliminary set of alternative terms has been computed, it is necessary
to assess it against the catalog of the corpus. In fact, terms (included the original
one) may not be present in the catalog, so it is necessary to replace them with
similar terms that are actually present in the catalog. To this end, we have
to rely on a lexicographic string similarity measure. In this context, one of the
most feasible lexicographic similarity functions is the Jaro-Winkler measure (see
[4,5]), because it gives more importance to strings with a common prefix: given
two terms t and t′, sim(t, t′) ∈ [0, 1] (if 1, t and t′ coincides; if 0, t and t′ are
completely different).

Definition 10: Top-most Similar Terms. Consider a term t. Given an inte-
ger number Max Alt and a minimum threshold th sim∈ [0, 1] for lexicographic
similarity, TopMost(t,Max Alt, th sim) = {t1, . . . , tn} (with n = Max Alt) is
the set of Max Alt top-most terms w.r.t. sim(t, ti) that are actually present in
the catalog of the corpus, such that sim(t, ti) ≥ th sim. ��

The idea is that we do not consider all possible similar terms, but only the
most similar ones actually present in the catalog of the corpus.

Anyway, potentially alternative terms must be weighted, in order to measure
their usefulness as alternative terms.

Definition 11: Weight of Alternative Terms. Given a term t, consider the
set of preliminary alternative terms Alt(t) and a term t′. The weight of term t′

as an alternative term for t, denoted as watt(t′), is defined as follows.

– If t′ ∈ Alt(t) and t′ is actually present in the catalog, watt(t′) = 1; if t′ is not
present in the catalog, it is watt(t′) = 0.

– If t′ �∈ Alt(t) and it is actually present in the catalog, watt(t′) = sim(t, t′),
where t ∈ Alt(t) with highest lexicographic similarity. If t′ is not present in
the catalog, it is watt(t′) = 0. ��
At this point, we can specify which terms are actually considered alternative

for a given term t in the query q.

Enhanced Querying of Open Data Portals 187

Definition 12: Alternative Terms. Consider a term t ∈ T (q) and the set
of preliminary alternative terms Alt(t). The set of Alternative Terms Alt(t) for
term t is defined as follows:

Alt(t) = {t′|((t′ ∈ Alt(t) ∨ (t′ ∈ TopMost(t,Max Alt, th sim) ∧ t ∈ Alt(t)))
∧ watt(t′) > 0} ��

In other words, we consider as alternative terms for a query term t, the
term t itself if present in the catalog, the synonyms that are actually present in
the catalog and all terms, actually present in the catalog, as much as possible
lexicographically similar either to t or to a synonym. Parameters Max Alt and
th sim can be varied to tune the the effectiveness.

5 Deriving Neighbour Queries

Once for each term t ∈ T (q) the set Alt(t) of alternative terms is derived, we can
perform the query rewriting phase, obtaining the so-called Neighbour Queries.

Definition 13: Neighbour Query. Consider the original query q, with its
term vector T (q) = [t1, . . . , tn] and a vector of weights W(q), where W (q)[i] = 1,
for each term ti = T (q)[i]. A neighbour query pnq, with its term vector T(pnq)
and its weight vector W(pnq), is obtained as follows:

– |T(pnq)| = |T(q)|.
– One or more terms ti ∈ T (q) are replaced with one term chosen from the set of

alternative terms, t ij ∈Alt(t i). If t i is not replaced, T(pnq)[i]=t i; otherwise,
T(pnq)[i]=t ij . Correspondingly, the new potential neighbour query pnq is
obtained by performing the same replacements in the text of query q.

– The vector of weights for the potential neighbour query is as follows: if t i is
not replaced, W(pnq)[i]= 1; otherwise, W(pnq)[i]= watti(t

i
j)). ��

Any query obtained by replacement of one or more terms is a potential
neighbour query. However, their number could be high and the query could
be possibly too far away from the original query; therefore, we have to prune
those potential neighbour queries that may be too distant, based on the cosine
similarity metric applied to the weight vectors.

Definition 14: Queries to Process. Given the original query q, for each
potential neighbour query p, p we compute the CosineSim(W(q), W(p)).

The set Q of (neighbour) queries to process contains the Max N (integer
number) potential neighbour queries with top-most cosine similarity values. ��

Note that not necessarily the original query q is present in Q: in fact, the
absence of some terms in the catalog can cause that it is not obtained as neigh-
bour query.

Also notice that Max N is a parameter that can be changed to tune effec-
tiveness of retrieval. In our experiments, we set it to 10: this way, we avoid the
combinatorial explosion of queries to process.

188 M. Pelucchi et al.

6 Keyword Selection

Consider a query nq ∈ Q. Terms appearing in nq are not equally impor-
tant/informative for the query. If the set of terms used to retrieve possibly rel-
evant data sets contains terms that are not important or much less important
than others, in Step 4 we can retrieve data sets that may be not actually rele-
vant for the query. Thus, we adopted a keyword selection technique that extracts,
from a query nq ∈ Q, the set of (meaningful) keywords K(nq).

The technique we adopted in [1], that hereafter we report, was inspired by the
technique introduced in [6] for the context of classical search engines. However,
we introduced several variations (structure of the graph and scores) to cope with
peculiarities of our problem.

The keyword selection technique proceeds as follows (from [1]):

1. The Term Graph is built, where each node corresponds to a term in the query
nq and an edge connects two terms and weights their relationship (see Fig. 3
for a sample graph discussed after the keyword selection algorithm reported
in Fig. 2).

2. An iterative algorithm:
(a) Chooses the most relevant term.
(b) Modifies the weights of not selected terms, propagating a decreasing

reduction of informativeness to neighbours of the selected term.
3. Only most informative terms are kept and inserted into the keywords set

K(nq).

Term Graph Construction. Each node in the Term Graph corresponds to a
term in the query. There are three types of nodes: one Data Set Name Node,
corresponding to the data set name nq.dn; Field Nodes, corresponding to field
names in nq.P or in nq.sc; Value Nodes, corresponding to constants appearing
in comparison predicates in nq.sc.

Nodes are connected each other by an edge if terms are related to each other.
In particular: a field node is connected with the data set name node; two field
nodes are connected if they are the operands of the same comparison predicate
in nq.sc; a field node and a value node are connected if the field (described by the
field node) is compared with the constant value (described by the value node)
by a comparison predicate in nq.sc.

Each node (term) has two scores: a representativeness score, denoted as
r score, and an informativeness score, denoted as i score.

Definition 15: Representativeness Score (From [1]). The representative-
ness score r score denotes the capability of the term to find a relevant data set,
i.e., how much it represents a specific subset of data sets. In particular, we con-
sider two components for representativeness: Intrinsic Representativeness and
Extrinsic Representativeness. The former is related to the presence of the term
in the query; we denote it as irep(t) (where t is a term). The latter is related
to the presence of the term in global meta-data of data sets, thus it measures

Enhanced Querying of Open Data Portals 189

the actual capability of the term to focus the search; we denote the extrinsic
representativeness as erep(t). Both irep and erep are defined in the range [0, 1].

The r score of a term is obtained by combining the intrinsic and the extrinsic
representativeness, by means of the average of them, i.e., r score= (irep(t) +
erep(t))/2. This way, both contribute and balance each other. ��
Intrinsic Representativeness. Depending on the role played by a term in the
query, we established different values for the intrinsic representativeness.

– The intrinsic representativeness of the Data Set Name is irep(t) = 1.0 if there
exists a data set nq.dn in the corpus C ; otherwise, irep(t) = 0.0.

– The intrinsic representativeness of a Field Name is irep(t) = 0.5 if there exists
at least a data set that has a field named t ; otherwise, irep(t) = 0.0.
The intrinsic representativeness for string value nodes and date value nodes,
is irep(t) = 0.5, while it is irep(t) = 0.2 for numerical value nodes.

Extrinsic Representativeness. The approach we adopted to define the extrin-
sic representativeness, is inspired by the idf (inverse document frequency) mea-
sure [2]. Its classical definition is idf = log(D/d(t)), where D is the total number
of documents, while d(t) is the number of documents that contain term t. The
lower the number of documents that contain t, the higher the value of idf, because
term t is more capable to focus the search on relevant documents.

Moving from this idea, we defined the extrinsic representativeness in order
to be in the range [0, 1] and to be suitable for our context.

Definition 16: Normalized Data Set Frequency (From [1]). Consider the
corpus C of open data sets and its cardinality |C |. Consider a term t, the set
Matched(t) of data sets that contain term t in global meta-data (such that
Matched(t)⊆C) and its cardinality |Matched(t)|.

The Normalized Data Set Frequency of term t is defined as

ndf(t) = log2

(|Matched(t)|
|C| + 1

)

that is defined in the range [0, 1].
If term t is contained in the global meta-data of all data sets, ndf(t) = 1

(the argument of the logarithm is 2). If term t is not contained in any global
meta-data, ndf(t) = 0, because the argument of the logarithm is 1. ��
Definition 17: Extrinsic Representativeness (From [1]). Given a term t
and its normalized data set frequency ndf(t), its Extrinsic Representativeness is
defined as:

erep(t) = 1 − ndf(t) ifndf(t) > 0
erep(t) = 0 ifndf(t) = 0

��

190 M. Pelucchi et al.

The rationale is the following: if a term is very frequent, its extrinsic represen-
tativeness is close to 0, because it is not able to focus the search. In contrast, not
frequent terms are able to focus the search, and their extrinsic representativeness
is close to 1.

Definition 18: Informativeness Score (From [1]). The informativeness score
i score measures the degree of information that could be obtained by selecting a
term as keyword. At the beginning, an initial value is set: we chose i score= 1.0
for data set name nodes and field nodes that appear in the selection condition
nq.sc. We chose i score= 0.8 for value nodes and field nodes appearing only in
nq.P. In fact, constants are naturally less informative than data set names and
field names; furthermore, they are less likely to appear in meta-data of data
sets, thus the data set retrieval step based on VSM would result ineffective. The
same is for field names not appearing in the selection condition: they are less
informative than those appearing in the selection condition.

During the keyword selection process, the selection of a term affects the
informativeness of neighbours: in fact, selecting two neighbours may be redun-
dant. Consequently, the procedure will modify the i score values of not selected
terms. ��
Keyword Selection Algorithm. We now report the keyword selection algo-
rithm, that we introduced in [1]. The algorithm is inspired by the algorithm
reported in [6], but modified because, in our term graph, edges are neither

Fig. 2. Procedure KeywordSel, that selects possibly relevant keywords (introduced
in [1]).

Enhanced Querying of Open Data Portals 191

labeled nor weighted. The main procedure of the algorithm, named KeywordSel,
is reported in Fig. 2.

The algorithm works on the input sets of nodes and edges; notice that nodes
have an additional field named marked, denoting selected nodes when true.

The main cycle from lines 2 to 13, at each step selects the node not yet
selected with the highest value for i score + r score, provided that the sum is
greater than 1. This is because below this threshold the capability of retrieving
significant data sets becomes too low. The for loop from line 4 to line 8 looks for
the highest i score + r score value (and the corresponding node) in not marked
nodes. Then, the if instruction at line 9 verifies that the selected node (if any)
has the sum i score + r score greater than 1: if so, the node is marked as selected,
the corresponding term is inserted into the keyword set K and the procedure
UpdateIScore is called (line 12) to propagate a reduction of informativeness.

Procedure UpdateIScore performs the update of the i score, by propagat-
ing from the selected node. The propagation mechanism can be described in a
recursive way.

– Starting from the selected node s, for each node z′ connected with s, the
reduction factor is rf(z′) = s.r score /2/n, where n is the number of nodes
connected with s.

– Consider a node z that just received a reduction factor rf(z) and the set
Out(z) of nodes connected to z that have not received yet a reduction factor.
For each node z′∈Out(t), the reduction factor is rf(z′) = rf(z)/2/|Out(z)|.
The propagation continues until all nodes have a reduction factor.

– For each node z, the i score is decreased by the reduction factor rf(z), i.e.,
z.i score = z.i score − rf(z) (where the lower bound is z.i score = 0).

This way, the representativeness of the selected node decreases the informa-
tiveness of neighbours; the reduction becomes lower and lower as the distance
from the selected node increases.

Figure 3a reports the initial term graph for the query in Example 1. Figure 3b
shows how i score values change, showing the propagation from the selected node
(City) to the other nodes.

Fig. 3. Initial state of the Term Graph (a) and after the first keyword selection (b).
The triple in each node is (i score, irep, erep) (presented in [1]).

192 M. Pelucchi et al.

7 Data Set Retrieval

Each query nq ∈ Q has associated the vector K(nq) of keywords selected in
step 3 (Sect. 6). Now, in step 4, the Vector Space Model [2] is applied to retrieve
possibly relevant data sets.

The VSM approach relies on the concept of inverted index created on the
bases of terms in the global meta-data of each data set. Definitely, in our context
the inverted index IN implements a function f(t) → {ods id1, ods id2, . . . }, that,
given a term t, returns the set of data set identifiers whose global meta-data
contain term t.

Consider a vector of keywords K(nq) = [k1, . . . , kn]. Then, given a data
set identifier ods id, the occurrences of keywords associated with ods id in the
inverted index IN are represented by the vector m(ods id) = [p1, . . . , pn], where
pj = 1 if the data set is associated with the keyword, pj = 0 otherwise.

The Keyword-based Relevance Measure krm(ods, nq) of a data set ods for a
query nq∈Q is the average of pj values. The maximum value of krm(ods) is 1,
obtained when the data set is associated with all the keywords, while values less
than 1 but greater than a minimum threshold th krm, which is a parameter of
the technique.

7.1 Schema Fitting

Step 5 of our technique computes, for each data set retrieved in Step 4, the final
relevance measure rm, by composing the keyword-based relevance measure krm
of a data set with the fitting degree of its schema w.r.t. the field names in the
query. This step is necessary to identify, among all retrieved data sets, those
having an instance that can be effectively processed by the selection condition
nq.sc.

We adopt an approach based on a weighted inclusion measure, where the
weight of each field name depends on the role played in the query by the field
name.

Definition 19: Schema Fitting Degree (From [1]). Consider a data set ods
and its schema ods.schema =<pn1, pn2, . . . >. Then, consider a query nq ∈ Q
and the set of field names N = {n1, . . . , nk} that appear in the selection condition
nq.sc and/or in the list of field names of interest nq.P. For each name ni ∈ N , a
weight wi ∈ [0, 1] is associated (see Definition 20), depending on the role played
by ni in the query. The Schema Fitting Degree sfd(ods, nq) is defined as:

sfd(ods, nq) =
|N |∑
i=1

wi × p(ni) /

|N |∑
i=1

wi

where function p(ni) = 1 if there exists a field name pnj = ni in nq.schema,
p(ni) = 0 otherwise. ��

The following definition defines how names are weighted.

Enhanced Querying of Open Data Portals 193

Definition 20: Weight (From [1]). The weight wi of a field name ni ∈ N is

wi = max(pwi, scwi)

where pwi is the weight due to the presence of ni in the list nq.P of fields of
interest in the query, while scwi is the weight due to the presence of ni in the
selection condition nq.sc.

– pwi = 0.5 if field name ni ∈ nq.P (may be relevant to have this field in the
resulting items); pwi = 0 otherwise.

– scwi = 1 if the selection condition nq.sc contains one single predicate with
ni, or the predicates in the condition are ANDed each other; scwi = 0.7 if
predicates are ORed each other. ��
Finally, we define the relevance measure for a data set.

Definition 21: Data Set Relevance Measure (From [1]). Consider a data
set ods and a query nq ∈ Q. Given its Keyword-based Relevance Measure
krm(ods, nq) and its schema Fitting Degree sfd(ods), the Relevance Measure
of data set ods w.r.t. query nq is

rm(ods, nq)
= (1 − α) × krm(ods, nq) + α × sfd(ods, nq)

where α = 0.6. The data set relevance measure rm(ods) is

rm(ods) = max(rm(ods, nqi)),

for each nqi ∈ Q. ��
The rationale is that the schema fitting degree corrects the keyword-based

relevance measure. The reason is simple: the keyword-based relevance measure is
obtained by querying the inverted index in a blind mode, i.e., irrespective of the
fact that a keyword is a data set name, a field name or a word appeared in meta-
data. The keyword-selection mechanism partially corrects this blind approach,
to discard those data sets that could result accidentally relevant.

Nevertheless, in order to perform item selection from downloaded data sets,
how the field names in the query match the actual schema of data sets becomes
crucial, because it is impossible to evaluate the selection condition if fields in the
condition are not present (all or partially) in the schema of the data sets. This
also motivates the choice of α = 0.6.

Finally (see Sect. 2.2), the minimum threshold th rm is used to discard less
relevant data sets and keep only those such that rm(ods) ≥ th rm.

The process concludes with Step 6, where instances of selected data sets are
downloaded from the portal; then, each data set instance is filtered, in order
to extract only items (CSV rows or JSON objects) that actually match the
neighbour query nq ∈ Q that best fits with the data set schema.

Selected items constitute the result set of the process (see Problem 1 in
Sect. 2.2).

194 M. Pelucchi et al.

8 Experimental Evaluation

We implemented our technique in a prototype named Hammer (see [7], for a
description of the prototype) and evaluated the effectiveness of the technique.

In [1], we performed experiments on a set of 2301 open data sets published
by the Africa Open Data portal1. That portal was chosen due to the high hetero-
geneity of data sets in terms of themes and languages However, for the enhanced
technique we are describing in this paper, enriched with semantics provided
by WordNet dictionary, we considered only English language. Therefore, experi-
ments were done on a different Open Data portal, i.e., the New York City portal2.
This portal publishes 1711 data sets, ranging from data concerning territory to
the list of taxi drivers with temporarily-suspended license. In particular, this
latter type of data sets continuously vary, so, in order to guarantee the repeata-
bility of experiments, we had to carefully formulate queries, in order to look for
stable data sets.

We performed 6 different queries. They are reported in Fig. 4. Hereafter, we
describe them.

– In query q1, we look for data concerning water consumption in year 2015 and
year 2016. We are interested in properties named year, population (served

Fig. 4. Queries for the experimental evaluation.

1 https://africaopendata.org/.
2 https://data.cityofnewyork.us.

https://africaopendata.org/
https://data.cityofnewyork.us

Enhanced Querying of Open Data Portals 195

by the water provider), consumption (of water in the year) and per capita
consumption in the year.

– In query q2, we look for performance indicators from 911, the emergency
phone service in USA. In particular, we are interested in monthly reports
concerning generic public contacts, or daily average calls for crimes against
persons or for crimes against property. Notice that the name of the desired
data set is performance, since we wanted to specify a very generic data set
name, to stress the capabilities of the technique.

– In query q3, we look for data concerning the state of fountains in the borough
named M, being interested in the location of the fountain and if the dispensed
water can be drunk.

– In query q4 we look for information about health-care facilities in Bronx
borough.

– In query q5, we look for data concerning bacteriological analysis of water in
the city water distribution network, since January 1, 2016 (notice that the
date is written as "2016-01-01T00:00:00", to stress the similarity search).

– Finally, query q6 looks for data about leaks in city water distribution net-
works, concerning faucets, in order to evaluate the cost of the leaks.

To perform the evaluation, we downloaded all the data sets and we explored
and manually labeled every data set and item as correct or wrong w.r.t. each
query3.

We performed 4 tests, in order to evaluate the effects of varying some param-
eters. Hereafter, we recall the parameters and report the values we adopted for
them.

– Max N : the max number of neighbour queries to select to process is set to
10.

– Max Alt : the maximum number of similar alternative terms is set to 3.
– th sim: for the minimum threshold for lexicographic similarity, we chose two

distinct values, i.e., 0.8 and 0.9.
– th krm: for the minimum threshold for Keyword-based Relevance Measure, we

considered two different values, i.e., 0.2 and 0.3.
– th rm: for the threshold for the global relevance measure, we considered two

different values, i.e., 0.2 and 0.3.

Not all the combinations of varying parameters were considered, to simplify
the analysis. We defined 4 configurations (tests).

– For Test 1, th sim = 0.9, th krm = 0.3 and th rm = 0.3;
– For Test 2, th sim = 0.9, th krm = 0.2 and th rm = 0.2;
– For Test 3, th sim = 0.8, th krm = 0.3 and th rm = 0.3;
– For Test 4, th sim = 0.8, th krm = 0.2 and th rm = 0.2;

3 We used Open Refine (http://openrefine.org) a powerful tool to work with messy
data.

http://openrefine.org

196 M. Pelucchi et al.

Table 1. Evaluation of experimental results.

Precision (%) for data sets

Query Test 1 Test 2 Test 3 Test 4

q1 8.33 0.71 8.33 0.71

q2 100.00 100.00 100.00 100.00

q3 100.00 7.69 100.00 7.69

q4 100.00 100.00 100.00 10.00

q5 100.00 3.70 100.00 3.70

q6 100.00 100.00 100.00 100.00

Precision (%) for items

Query Test 1 Test 2 Test 3 Test 4

q1 1.57 0.09 0.33 0.01

q2 100.00 100.00 100.00 100.00

q3 100.00 100.00 100.00 100.00

q4 100.00 100.00 100.00 100.00

q5 100.00 5.15 100.00 5.15

q6 100.00 100.00 100.00 100.00

Table 2. Comparison of T Test 1 with the baselines obtained by means of Google CSE
and Apache Solr.

Recall (%) for data sets

Query Google CSE Apache Solr Test 1

q1 100.00 20.00 100.00

q2 0.00 0.00 100.00

q3 100.00 5.00 100.00

q4 100.00 15.00 100.00

q5 0.00 0.00 100.00

q6 100.00 10.00 100.00

Precision (%) for data sets

Query Google CSE Apache Solr Test 1

q1 20.00 6.67 8.33

q2 0.00 0.00 100.00

q3 5.00 2.63 100.00

q4 15.00 2.56 100.00

q5 0.00 0.00 100.00

q6 10.00 100.00 100.00

Enhanced Querying of Open Data Portals 197

In the first section of Table 1, we report precision as far as the retrieval of
data sets is concerned, before filtering items. We do not report recall, because we
obtained always (for the 6 queries of the experiment) a value of 100%: this means
that the desired data sets are always retrieved; consequently, precision becomes
the key metric to analyze. In this respect (i.e., as far as precision is concerned),
we notice that in case of queries q1, q3 and q5, the reduction of values for th krm
and th rm (Test 2 ad Test 4), affects the precision, meaning that the technique
retrieves a larger number of data sets. Then, we expect that this phenomenon
will negatively affect item precision, i.e., precision concerning retrieval of single
items.

Observe that both recall and precision are insensitive to the variation of
parameter th sim.

Let us consider now the retrieval of single items. The second part of Table 1
reports the precision, while recall is not reported because, even in this case, we
always obtained 100%. Again, as for data sets, all wished items are retrieved,
so it is important to verify, through precision, how many non-wished items are
provided in the results.

In this respect (i.e., as far as item precision is concerned), most of queries
retrieve exactly the desired items and nothing more. This is not true for queries
q1 and q5. In particular, query q1 retrieves a very large number of items that
are not related to the original query: this is because the query is formulated in
a very generic way, then rewriting the query with synonyms causes the search
space to dramatically enlarge.

Looking at item precision for query q5, we notice that, for Test 1 and Test 3,
the thresholds th krm and th rm set to 0.3 determines a precision of 100%, while
reducing them to 0.2 causes the search space to dramatically enlarge, obtaining
a very poor item precision (meaning that a large number of false positive items
are provided).

From our experiment, we can conclude that our technique behaves better with
Test 1 configuration, i.e., with th sim = 0.9, th krm = 0.3 and th rm = 0.3.
The reason is that our approach is greedy during the VSM Data Set Retrieval ;
then, in the Schema Fitting step the search space is narrowed and data set
instances are downloaded. With th krm = 0.2, the VSM retrieval becomes too
greedy and retrieves data sets that are too far away fro the rewritten query.

Finally, the insensitiveness to th sim is determined by the Max N = 10
parameter, i.e.,, the maximum number of queries to process, that keeps only
the 10 neighbour queries with terms that are more similar to chosen alternative
terms (synonyms).

Baselines. To complete the evaluation, we had to choose a suitable baseline.
In effect, we identified two possible tools that could provide a suitable baseline:
Google CSE and Apache Solr.

Google Custom Search Engine (CSE)4 is a version of Google search engine
targeted to a specific web site. We exploited it as baseline, having targeted it to

4 https://cse.google.com/.

https://cse.google.com/

198 M. Pelucchi et al.

the New York City Open Data Portal, submitting query strings obtained com-
posing terms from within our queries (obviously, without selection condition).
We considered data sets provided in the first two pages.

Apache Solr [8], is an open source enterprise search engine, developed on top
of Apache Lucene. Although it is necessary to preliminarily download and index
the corpus; however, it is considered one of the best general purpose information
retrieval tool currently available.

Table 2 shows the results of our comparison: the upper part compares recall,
while the lower part compares precision.

As far as recall is concerned, notice that Google CSE works better than
Apache Solr, providing 100% of recall when it succeeds; surprisingly, it shows
an on/off behavior, showing a recall of 0% for queries q2 and qw5. In contrast,
our technique is able to retrieve all data sets, because it combines synonyms and
lexicographic similarity.

As far as data set precision is concerned, obviously we obtain a precision of
0% for queries q2 and q5, because neither Google CSE nor Apache Solr retrieves
the wished data sets. Again, Google CSE performs better than Apache Solr : our
explanation of this phenomenon is that Google CSE effectively adopt language
dictionaries and is able to deal with synonyms. The reader can see that our
technique, when working with Test 1 configuration, is generally better, apart
from the case of query q1, for which Google CSE retrieves less false positive
data sets.

9 Related Works

Querying Open Data portals, with specific techniques providing the ability of
selecting specific data items, is a young research area and, at the best of our
knowledge, we are in the pioneering phase. However, many researchers are rea-
soning about Open Data management.

In [9] Khosro et al., present the state of art in Linked Open Data (LOD), with
issues and challenges. Moreover, the authors motivate this topic by exploiting
the projects analyzed in the five major computer science areas (Intelligence,
Multimedia, Sensors, File System and Library), and present the future trends
and directions in LOD.

The Open Data world is related to the Linked Data world. In fact, standard-
ized proposals are typically used to describe published Linked Open Data. The
RDF (Resource Description Framework) [10] is widely used for this purpose.
Furthermore, the standard query language for RDF is called SPARQL Standard
Protocol and RDF Query Language [11]. W.r.t. our proposal, it is very general
and devoted to retrieve those data sets with certain features. However, highly
skilled people in computer science are able to use it. In contrast, our query tech-
nique is very easy for not skilled people and closer to the concept of query in
information retrieval.

Similar considerations are done in [12], where the authors presents DBPedia:
the RDF approach is not suitable for non expert users that need a flexible and
simple query language.

Enhanced Querying of Open Data Portals 199

In this paper we do not consider Linked Open Data: we query a corpus of
Open Data Sets, in general not related to each other, thus, not linked at all.

The idea of extending our approach to a pool of federated Open Data Corpora
is exciting. A pioneer work on this topic is [13], but they still rely on SPARQL
as query language.

The heterogeneity of Open Data asks for the capability of NoSQL databases.
In [14], the authors report their experience with Elasticsearch (distributed full-
text search engine [15]), highlighting strengths and weaknesses.

Both Elastic Search [15] and Apache Solr [8] demonstrated to be very efficient
information retrieval tools and, for this reason, they have become very popular.
However, they provide basic support to retrieval and, as we discussed in Sect. 8,
they do not deal with dictionaries and semantic aspects of search.

As far as the previous version of our technique is concerned [1], the enhanced
version presented in this paper demonstrated to be much more effective: this is
due to the addition of semantics, on the basis of the WordNet dictionary, that
provides synonyms for query terms.

Our technique has been implemented within a prototype that we called Ham-
mer. In [7] we discussed the challenge of implementing the Hammer prototype
in an efficient way, based on state-of-the-art technologies for Big Data. Notice
that the heterogeneity of Open Data asks for such modern technical solutions:
in fact, many data sets are published as JSON data sets. JSON has become
the de-facto standard for exchanging information in the Big Data world and,
besides retrieval, NoSQL databases are providing support for storing and pro-
cessing large volumes of JSON data sets. Novel query languages and frameworks
for specifying complex transformations on possibly geo-tagged JSON data sets
are becoming necessary, as shown in [16,17].

10 Conclusion

This paper presents an evolution of the technique we presented in [1] to retrieve
items (rows in CSV files or objects in JSON vectors) contained in data sets
published by an open data portal. The main characteristics of the basic approach
are kept: users blindly query the published corpus; the technique both focuses
the search on relevant terms and expands the search by generating neighbour
queries. The main enhancement introduced in the technique concerns the query
rewriting mechanism: in the new version, we do not rely only on lexicographic
similarity but also on semantic similarity; in other words, we replace terms with
synonyms obtained by means of WordNet dictionary.

To validate the technique, we performed experiments on the New York City
Open Data Portal. A pool of 6 queries allowed us to prove the goodness of our
approach, that significantly improved performance w.r.t. the previous version
of the technique. Furthermore, in order to better evaluate the effectiveness, we
compared the results with those provided by two distinct baselines, i.e., Google
Custom Search Engine (CSE) and Apache Solr. We observed that our technique
performs better both in terms of recall and precision.

200 M. Pelucchi et al.

Currently, the technique must be further improved as far as the precision is
concerned: in fact, we are going to study how to reduce the number of retrieved
false positive data sets and, consequently, the number of false positive items,
that remain the weak point of the technique when the query is formulated in a
too generic way.

Certainly, one direction we are going to follow to improve the effectiveness
of the technique is the exploitation of explicit correlations between terms, that
can be obtained by performing a preliminary analysis of correlated terms in the
meta-data catalog.

Nevertheless, execution times are also a relevant issue in this domain, that
is related with the Big Data world. In fact, we want to go beyond what we did
in [7], where we addressed this issue applying modern technologies for Big Data
processing.

References

1. Pelucchi, M., Psaila, G., Toccu, M.: Building a query engine for a corpus of open
data. In: Proceedings of the 13th International Conference on Web Information Sys-
tems and Technologies (WEBIST-2917) INSTICC, pp. 126–136. ScitePress, Porto
(2017)

2. Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to Information
Retrieval, vol. 1. Cambridge University Press, Cambridge (2008)

3. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38, 39–41
(1995)

4. Winkler, W.E.: The state of record linkage and current research problems. In:
Statistical Research Division, US Census Bureau, Citeseer (1999)

5. Jaro, M.A.: Advances in record-linkage methodology as applied to matching the
1985 census of Tampa, Florida. J. Am. Statis. Assoc. 84, 414–420 (1989)

6. Liu, J., Dong, X., Halevy, A.Y.: Answering structured queries on unstructured
data. In: WebDB, vol. 6, Citeseer, Chicago, Illinois, USA, pp. 25–30 (2006)

7. Pelucchi, M., Psaila, G., Toccu, M.: The challenge of using map-reduce to query
open data. In: Proceedings of the 6th International Conference on Data Science
Technologies and Applications DATA-2017, INSTICC. ScitePress, Madrid (2017)

8. Shahi, D.: Apache solr: An introduction. In: Apache Solr. Springer, Heidelberg,
pp. 1–9 (2015). https://doi.org/10.1007/978-1-4842-1070-3 1

9. Khosro, S.C., Jabeen, F., Mashwani, S., Alam, I.: Linked open data: towards the
realization of semantic web - a review. Indian J. Sci. Technol. 7, 745–764 (2014)

10. Miller, E.: An introduction to the resource description framework. Bull. Am. Soc.
Inf. Sci. Technol. 25, 15–19 (1998)

11. Clark, K.G., Feigenbaum, L., Torres, E.: Sparql protocol for rdf. World Wide Web
Consortium (W3C) Recommendation, p. 86 (2008)

12. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -
2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-76298-0 52

13. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: Fedx: a federation
layer for distributed query processing on linked open data. In: The Semantic Web:
Research and Applications. Extended Semantic Web Conference, vol. 6644, pp.
481–486. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21064-8

https://doi.org/10.1007/978-1-4842-1070-3_1
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-540-76298-0_52
https://doi.org/10.1007/978-3-642-21064-8

Enhanced Querying of Open Data Portals 201

14. Kononenko, O., Baysal, O., Holmes, R., Godfrey, M.: Mining modern repositories
with elastic search. In: MSR, Hyderabad, India, 29–30 June 2014

15. Gormley, C., Tong, Z.: Elasticsearch: The Definitive Guide: A Distributed Real-
Time Search and Analytics Engine. O’Reilly Media, Inc., Massachusetts (2015)

16. Bordogna, G., Capelli, S., Psaila, G.: A big geo data query framework to correlate
open data with social network geotagged posts. In: Bregt, A., Sarjakoski, T., van
Lammeren, R., Rip, F. (eds.) GIScience 2017. LNGC, pp. 185–203. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56759-4 11

17. Bordogna, G., Ciriello, D.E., Psaila, G.: A flexible framework to cross-analyze het-
erogeneous multi-source geo-referenced information: the J-CO-QL proposal and its
implementation. In: Proceedings of the International Conference on Web Intelli-
gence, pp. 499–508. ACM (2017)

https://doi.org/10.1007/978-3-319-56759-4_11

A Taxonomy for App-Enabled Devices:
Mastering the Mobile Device Jungle

Christoph Rieger1(B) and Tim A. Majchrzak2

1 ERCIS, University of Münster, Münster, Germany
christoph.rieger@ercis.de

2 ERCIS, University of Agder, Kristiansand, Norway
tima@ercis.de

Abstract. While the term application is known for a long time, what we
now refer to as mobile apps has facilitated task-oriented, interoperable
software. The term was initially only used for smartphones and tablets,
but desktop software now is also referred to as apps. More important
than the wording, however, is the trend towards app-enablement of many
further kinds of devices such as smart TVs and wearables. App-enabled
devices usually share some characteristics and developing apps is often
similar. However, many complexities must be mastered: Device fragmen-
tation and cross-platform app development already are challenging when
only considering smartphones. When trying to grasp the field as a whole,
app-enabled devices appear as a jungle: it becomes increasingly hard to
get an overview. Devices might not be easy to categorize let alone to
compare. Investigating similarities and differences is not straightforward,
as the outer appearance might be deceiving, and technological peculiar-
ities are often complex in nature. This article aims at mastering the
jungle. For this purpose, we propose a taxonomy for app-enabled devices.
It provides clear terms and facilitates precision when discussing devices.
Besides presenting the taxonomy and the rationale behind it, this article
invites for discussion.

Keywords: App · Mobile app · Taxonomy · Categorization
Smart devices · Wearable · Smartphone · Tablet

1 Introduction

The continuous growth of the mobile device market [2] and the recent emergence
of devices such as smart watches [3] and connected vehicles [4] has attracted
much attention from academia and industry. In the past decade, particularly

This article greatly extends the short paper [1] presented at WEBIST 2017. It has
been updated to reflect the latest developments, includes new content based on
additional work as well as on the discussions at the conference, and has been amended
with a comprehensive discussion. Please note that verbatim content from the short
paper is not explicitly highlighted but for figures and tables already included there.

c© Springer International Publishing AG, part of Springer Nature 2018
T. A. Majchrzak et al. (Eds.): WEBIST 2017, LNBIP 322, pp. 202–220, 2018.
https://doi.org/10.1007/978-3-319-93527-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93527-0_10&domain=pdf

A Taxonomy for App-Enabled Devices: Mastering the Mobile Device Jungle 203

the app ecosystem facilitated a trend towards task-oriented, interoperable soft-
ware, arguably started with the advent of Apple’s iPhone in 2007 [5] and the App
Store in 2008 [6]. For traditional mobile devices (i.e. smartphones and tablets),
the competition has yielded two major platforms (Android and iOS). However,
whether these two will prevail can hardly be estimated, yet. Moreover, develop-
ing for such devices in a unified way is still not possible in all cases and with ease
(cf. also [7]). Several approaches for cross-platform development have been pro-
posed to avoid the costly re-development of the same app for different platforms
(cf., e.g., [8,9]).

Technological development has continued in the meantime and many new
device types have emerged. Most of them fall under the umbrella term mobile
devices and are concerned by the research field of mobile computing. Typically,
they are more-or-less app-enabled. While app enablement is no fixed or even
defined term (to the best of our knowledge), it can be understood as follows:

An app-enabled device provides hardware that allows it to be used for
multiple (typically many) purposes and in changing contexts – possibly
even unforeseen by the device manufacturer – while the actual versatility
of the device is achieved through means of extensible software that comes in
small, interchangeable pieces which are usually provided by third parties.

Thus, it typically are apps that make such devices particularly useful and
that extend the possibilities they offer. However, mobile devices that follow our
rough definition differ greatly in intended use, capabilities, input possibilities,
computational power, and versatility, to name just a few aspects. In early visions
of a world connected by ubiquitous mobile devices, these were only thought of
as tabs, pads, and boards [10]. So-called “smart devices” such as smart watches
and smart TVs are most prominent in the realm of consumer devices and exhibit
double-digit sales growths over the past years [11,12], but plenty of possibilities
exist with regard to the physical embodiment of virtual assistants. Furthermore,
hardware in professionally contexts can be surprisingly similar to consumer-
hardware; apps can make them seem even more akin. Lines towards sensor-driven
devices for the Internet of Things (IoT) are often blurred and it is not always
clear how to properly categorize a device [13]. This makes it hard to discuss, or,
actually, to even correctly name them. The resulting blurriness makes it hard
to delimit research and practical work. Much worse, when speaking and writing
about mobile devices, the level of precision is often not as high as it is when
well-known concepts are discussed. While this is normal for emerging fields, it is
particularly noticeable for work on mobile computing. To our observation, there
are only slow improvements.

We believe that more precision in speaking and writing will eventually also be
beneficial for research on mobile devices and their app-enablement. These devices
provide a plethora of new opportunities for intelligent and context-adaptive
software. At the same time, they pose technical challenges regarding the devel-
opment for new platforms and regarding heterogeneous hardware features. Inter-
estingly, these challenges can be quite similar despite seemingly very different
devices, as they can be completely different despite originating from the same

204 C. Rieger and T. A. Majchrzak

kind of device. Moreover, app-enablement does not necessarily bring compati-
bility and portability. Naturally, running the same app on a variety of devices
is normally desirable. If we still rely on cross-platform approaches and search
for a development unifier merely for smartphones and tablets [7], developing for
heterogeneous mobile devices is an endeavour far greater in complexity. It would
probably be ideal to reach something like a progression in functionality: the same
app would function on many devices but respectively provide the highest level
of functionality achievable on the given hardware and with the available other
software. It must be doubted, however, that such an ideal can be reached as long
as we do not even properly know what we are talking about.

While a plethora of case studies and contributions for individual device
types – mainly focused an smartphones and tablets – can be found in the sci-
entific literature (e.g., [14–18]), a comprehensive study of the general field of
app-enabled devices is missing. With our WEBIST position paper [1], we set
out to close this gap by contributing a taxonomy for app-enabled consumer
devices. This contribution got favourable comments, encouraging us to provide
an extension of our work with this article. The taxonomy aims at

– helping authors to clearly express what kind of device(s) they refer to,
– providing researchers and practitioners with more discriminatory power when

referring to topics from modern mobile computing, and
– giving the general public a more straightforward understanding of similarities

and differences between devices, both technically and tangibly.

Similar as in the prior paper, we have put much effort into literature work
(cf. the next section), although the useful literature remains scarce. While the
taxonomy has only been slightly updated to reflect the latest developments,
we delve deeper into the theoretic dimension and also extend our discussion.
Therefore, the work presented in this paper keeps a research-in-progress flavour,
since it is impossible to suggest that our taxonomy is in its final state. However,
it should be considered sufficiently stable for practical application. Any follow-up
work from now on will honour this by either providing downward compatibility
and (or alternatively) by explicating changes. We believe that more work will
continue to be required; while we of course hope for this article to become a
state-of-the reference, it should also stimulate further work. The mid-term goal
remains to be a de-facto standard.

The remainder of this article is structured as follows. Section 2 takes an
updated look at relevant literature in the narrow sense; related work to specific
aspects is referenced throughout the paper. Then, our proposal for a taxonomy is
presented in Sect. 3. Section 4 discusses the taxonomy with regard to its current
and future applicability. Finally, we conclude and give an outlook in Sect. 5.

2 Related Work

If you consider the topic of our article broadly, a plethora of related work exists.
Looking at it in more detail, hardly any closely-related approaches can be cited.

A Taxonomy for App-Enabled Devices: Mastering the Mobile Device Jungle 205

This is not really surprising: all papers that deal with apps and app-enabled
devices must (at least implicitly) explain what they actually deal with. However,
no systematic work exists that defines kinds of devices, modes of app-enablement,
notions of mobility of devices, and so on.

Particularly since Apple’s iPhone founded the smartphone device class, which
soon saw many devices follow, many papers have been published on the modern
notion of mobile computing, centring around devices that are propelled by apps.
However, even overview papers typically focus on one category of devices. For
example, [19] classify apps by usage states but limit themselves to smartphones.
Moreover, the scientific literature so far has only rudimentarily captured the
latest developments in device development. [20], for instance, provide an overview
of smart watch app markets with focus on the type of apps as well as privacy
risks through third party trackers.

To make sure that we do not miss an existing taxonomy (or similar work),
we conducted an extensive literature search. We focus on work from 2012 or
later, where the first broader range of smart watches such as the Pebble had
already been presented. Together with the increasing variety in devices, new
operating systems have appeared since then. Examples are Android Wear and
watchOS, which focus on wearable devices [21,22] as well as webOS and Tizen,
which address a wider range of smart devices [23,24]. Additionally, also the
app ecosystems have matured, with HTML5 gaining momentum and possible
technological unifiers such as progressive web apps (PWAs) [7] emerging.

In our search, we deliberately excluded the keywords application and system.
The first yielded many results that were not applicable since the term was mostly
used to mean utilization of something. The latter had originally been used to
describe e.g. cyber-physical systems but now proved to be too generic. Also,
the medical area was excluded as these papers focus on apps for therapeutic
purposes and do not contribute to the question of app-enabled devices. We thus
used the following search string in the Scopus database:

TITLE-ABS-KEY(
(app-enabled OR app OR app-based)

AND
(mobile OR smart OR intelligent OR portable)

AND
(device OR vehicle OR “cyber-physical system” OR CPS OR gadget)

AND
(classification OR categorization OR overview OR comparison OR review →
OR survey OR framework OR model OR landscape OR “status quo” →
OR taxonomy)

)
AND PUBYEAR AFT 2011
AND (EXCLUDE (SUBJAREA, “MEDI”))

A search on 01-08-2017 yielded 1,268 results. Of these, not a single paper
provided an approach for classification, let alone a complete taxonomy. To com-
plicate matters, some papers mention that there are other smart devices than

206 C. Rieger and T. A. Majchrzak

smartphones and tablets but do not go into detail. Only four papers went beyond
a perspective on “classical” mobile devices: Some authors focus on specific com-
binations of devices, including Neate et al. [25] who analyse the use case of second
screening that combines smart TVs with additional mobile devices and Singh
and Buford [26] who describe cross-device team communication apps for desktop,
smartphones and wearables. Regarding more generalized approaches, Queirós
et al. [27] focus on context-aware apps also suitable for novel mobile devices
using the example of an automotive app. Finally, Koren and Klamma [28] con-
sidered the integration of heterogeneous Web of Things device types by adopting
a middleware approach.

In summary, the result set reveals no closely related work to which we can
limit ourselves. However, we can draw from a myriad of sources that tackle some
aspects that are relevant for a taxonomy of app-enabled devices. This finding
aligns with the motivation for our paper. Obviously, other authors struggled
with putting different device categories into context because no proper framing
exists.

Despite not necessarily focussing on multiple device categories, work on cross-
platform app development is conceptually related. Usually, cross-platform devel-
opment exclusively targets traditional mobile devices such as smartphones and
tablets, e.g. “the diversity in smart-devices (i.e. smartphones and tablets) and in
their hardware features; such as screen-resolution, processing power, etc.” [29].
However, considering the differences in platforms, versions, and also at least
partly in the hardware is similar to considering a different type of device. In
fact, the difference in screen size between some wearables (such as some smart
watches) and smartphones with small screens is less profound than between
the same smartphones and tablets. Therefore, comparisons that target cross-
platform app development have paved the way towards this article. This partic-
ularly applies to such works that include an in-depth discussion of criteria, such
as by [8,30–32].

A part of the difficulty with related work is the term app-enabled (or app-
enablement) by itself. While it is often said that devices are enabled by apps,
or that apps facilitate their functionality, it is usually not explained what this
exactly means. But in the simplest devices that make use of computer hardware,
software plays an important role; in consequence, merely being capable of run-
ning software that fulfills more than basic functionality is not enough to describe
the term.

The typical usage that we also follow is to denote an app-enabled device
as one that by its hardware and foundational software (such as the operation
system or platform) alone provides far less versatility than it is able to offer in
combination with additional applications. Such apps are not (all) pre-installed
and predominantly provided by third party developers unrelated to the hard-
ware vendor or platform manufacturer; moreover, the possibilities provided by
apps typically increase over time after a device has been introduced. In addi-
tion, apps may expose use cases not originally intended or even imagined. While
this still is no profound definition, it provides a demarcation for the time being.

A Taxonomy for App-Enabled Devices: Mastering the Mobile Device Jungle 207

In particular, it rules out pure Internet-of-Things devices as well as computa-
tional equipment that only is occasionally firmware-updated or that is not built
for regular interaction with human users.

3 Taxonomy of App-Enabled Devices

In the following, we describe the preconditions of a taxonomy before describing
how a device categorization can be tailored. We deem three dimensions to be
viable as the static structure for classification. Eventually, we propose a catego-
rization that captures the status quo. It positions current and foreseeable future
device classes according to this matrix.

3.1 Basic Considerations

Categorizing app-enabled devices is difficult: there is a wide variety of possible
hardware features across all types of devices, which even further increases. For
example, in the past fingerprint scanners were restricted to few notebooks but
today also appear on smartphones because of simplified user authentication and
changing security requirements with regard to the device purpose (consumer vs.
commercial). If classes are set – such as the widely acknowledged distinction
between smartphones and tablets – there still is a heterogeneity of device capa-
bilities within each class. For instance, the first smartwatches offered only a few
sensors. Current devices have many more sensors, and their characteristics can
differ significantly depending on the target sector (such as low-end vs. high-end).

Any simple solution is prone to not sufficiently discriminate. For example,
processing power does not differ a lot between smartphones and tablets any-
more, and microphones are no distinguishing feature for voice-controlled devices.
The fast-paced technological progress manifests as a constant stream of new
devices, partly rendering previous devices obsolete. Moreover, device types con-
verge, illustrated e.g. by the phablet phenomenon (devices that fall in between
smartphones and tablets).

Mobility in the strict sense even is no exclusive feature; smart TVs for exam-
ple are not really mobile. Cars with smart entertainment systems or even self-
driving features might be app-enabled, but it can be disputed whether the whole
car is the device and thereby the device is actually mobile by itself. As a result,
a taxonomy of app-enabled devices mandates a more open categorization along
several dimensions, allowing for partial overlaps and future additions. In the
following, we present steps towards such a taxonomy.

3.2 Dimensions of the Taxonomy

We position app-enabled devices with regard to the three dimensions media rich-
ness of inputs, media richness of outputs, and the degree of mobility. Instead of
enumerating concrete technologies that are available today or may be introduced

208 C. Rieger and T. A. Majchrzak

in the future, each dimension should rather be regarded as continuously increas-
ing intensity and variability of the particular capability, with several exemplary
cornerstones depicted in the following. This approach not only provides the high-
est degree of objectivity but also should keep the taxonomy flexible enough to
capture future developments without actually changing the dimensions.

Media richness of inputs describes the characteristic user input interface for
the respective device class. Thereby, it captures how human users can interact
with a device. Additional machine-to-machine communication through the same
or distinctive interfaces is not considered.

None refers to fully automated data input through sensors.1

Pass-through represents the indirect manipulation through data exchange with
an external device (which in turn might originate from user input) whose
purpose is not solely to provide the user interface for the main device.2

Buttons including switches and dials, are (physically) located at the device and
provide rather limited input capabilities.

Remote controls including also joysticks and gamepads, refer to dedicated
devices that are tethered or wirelessly connected to the app-enabled device.
Technically, they merely make use of buttons, switches, dials etc. but provide
a richer experience due to being decoupled from the device.

Keyboards are also dedicated devices to control the target devices, but with
more flexible input capabilities due to a variety of keys. Input still is discrete.

Pointing devices refer to all dedicated devices to freely navigate and manip-
ulate the (mostly graphical) user interface, for example mouse, stylus, and
graphic tablet. While these devices technically still provide discrete input,
the perception of input is continuous.

Touch adds advanced input capabilities on the device itself, allowing for more
complex interactions such as swipe and multi-touch gestures. Strictly speak-
ing, within this category simple touch events and several forms of increasingly
complex multi-touch gestures can be subdivided.

Voice-based devices are not bound to tangible input surfaces but can be con-
trolled without haptic contact.

Gestures allow for a hands-free user interaction with the device, for example
using gloves or motion sensing. Technologically, different solutions are possi-
ble, e.g. based on gyroscopes, cameras, and lidars [33,34].

Neural interfaces can be expected to become the richest form of user inputs
by directly tapping into the brain or nervous system of the human operator.3

As the second dimension, media richness of outputs describes the main output
mechanisms for the respective device class. Similarly to the input, human users
1 Strictly, most if not all input is done via sensors, but none at this point denotes no

manual activity by a user.
2 For example, an autonomous device with a companion smartphone app for remote

handling can be subsumed under this category.
3 Since the possibilities of neural interfaces are yet very limited and any work so far

is experimental, future developments might mandate splitting up this category into
different kinds of neural interfaces.

A Taxonomy for App-Enabled Devices: Mastering the Mobile Device Jungle 209

are concerned as the receivers; possible machine-to-machine communication is
not relevant for this dimension.

None refers to no user-oriented communication by the device itself. This applies
to cyber-physical actuators with direct manipulation of real-world objects
(e.g., switching on light).

Pass-through includes mechanisms that in general or in some situations do
not produce human-directed output of their own but pass it through to a
connected managing device (e.g., a smartphone) which retrieves information
and handles user output.

Screen output is the prevalent form of user communication found in app-enabled
devices. Although a clear subdivision is not possible, several classes are typi-
cally observed, ranging from tiny screen displays (<3′′) to small screens such
as for smartphones (<6′′), medium screens for handheld devices (<11′′), large
screens (≤20′′), and usually permanently installed huge screens >20′′.

Projection refers to the first type of disembodied device output to a device-
external surface without physical contact.

Voice-based output extends the disembodiment with auditive output to com-
municate with the user without physical contact.

Augmented reality includes virtual reality applications and hologram repre-
sentations, further increases the richness of device outputs by modifying or
fully replacing the perceived reality around the user.

Neural interfaces connect directly to the user in order to a achieve a tightly
coupled human-computer interaction.4

Finally, the combination of input and output characteristics ignores different
application areas of the respective device class. For example, intelligent switches
and drones for aerial photography can both be remotely controlled and have
no direct output, but can hardly be grouped as being in the same device class.
Whereas several studies deal with usage characteristic particular devices such
as smartphones (e.g., [35]), to the best of our knowledge no closely related work
exists on context-dependent device usage across different mobile devices. There-
fore, the degree of mobility describes the usage characteristics as the third dimen-
sion on a high level. With regard to trends such as ubiquitous computing [36],
this dimension also reflects the pervasiveness and integration of mobile devices
in everyday activities – from on-demand usage of stationary devices to always
connected autonomous assistants.

Stationary devices are permanently installed and have no mobile characteristics
during use.

Moveable devices can be carried to the place of use. This includes an “on-the-
go” utilization, such as a smartphone being used while walking.

4 Similarly to the considerations for the input, it will need to be seen whether neural
interfaces for output require some form of subdivision. Technology so far is in an
early experimental state.

210 C. Rieger and T. A. Majchrzak

Wearable devices are designed for a more extensive usage and availability
through the physical contact with the user. In contrast to “mobile”, trans-
porting the device is implicit and often hands-free.

Self-moving devices provide the capability to move themselves (directly or
indirectly controlled by the user). Ultimately, autonomous devices represent
the richest form of mobility for app-enabled devices.

3.3 Categorizing the Device Landscape

The proposed dimensions allow for an initial categorization of the device land-
scape. Figures 1, 2 and 3 (pages (9) to (11)) visualize the three-dimensional
categorization of different device classes using three two-dimensional projections
for better readability. Also, Table 1 summarizes the device classes discussed in
this paper.

Fig. 1. Matrix of input and output dimensions (adapted from [1]).

As depicted in Fig. 1, many devices classes can be assigned to distinct posi-
tions in the two-dimensional space of input/output media richness. However, it
should be noted that the ellipses represent (current) major interaction mech-
anisms within the device classes. For example, smartphones also have a few
physical buttons but are mainly operated by touch input. Individual devices
may also deviate from the presented position, for instance specialized or experi-
mental devices that do not (yet?) constitute a distinct class of devices. Addition-
ally, devices might be extended. For example, through special plugs computer
mouses can typically be attached to smartphones. Since this is normally meant
for debugging purposes, “pointing devices” would not normally be considered an

A Taxonomy for App-Enabled Devices: Mastering the Mobile Device Jungle 211

Fig. 2. Matrix of output and mobility dimensions (adapted from [1]).

input for smartphones. Similarly, so-called pico projectors allow image projection
from smartphones and tablets. They are no typical mean for output, although
this might change in the future.

Not all devices falling into a device class must necessarily implement all
possibilities of that class. Therefore, ellipses are a well-suited representation as
opposed to, e.g., the maximum value for the respective devices. A good approx-
imation would be to consider at least 80% of all devices to match a category,
with the lowest and the highest decile being outliers. For example, convertibles
as hybrid devices between keyboard-based notebooks and touch-oriented tablets
are not considered as they still represent a small minority in both categories.

The chosen level of abstraction implies that the taxonomy dimensions are
intended to be rather static. Instead of chasing the actual technological develop-
ment to reflect the latest emergence of devices, only seldom and slow changes are
necessary to keep them up to date. Nevertheless, the categorization of classes
is more dynamic and will need to be regularly checked for continued relevance.
Moreover, classes might need to be split or at least be adapted regarding their
placement on the dimensions’ continuum when new possibilities arise. Thus, we
explain some noteworthy classes exemplarily and rely on the general understand-
ing of the well-known classes (such as smartphones).

212 C. Rieger and T. A. Majchrzak

Fig. 3. Matrix of input and mobility dimensions (adapted from [1]).

Figure 1 reveals differences in the specificity (i.e., represented size) of the
device classes. Some of them fill specific spots in the diagram, either due to tech-
nical restrictions (smart TVs evolved from traditional remote-controlled TVs
with large screens) or special purposes (smart glasses enable hands-free interac-
tion and visualization). Less specific device classes exist for two reasons. On the
one hand, terms such as smart home comprise every technology that relates to
a specific domain, subsuming very heterogeneous devices – thereby such a class
represents an excellent high-level overview yet a poor low-level discriminating
power. On the other hand, underspecified device classes such as implants and
smart personal agents are presented as they are due to their novelty; there are
few devices on the market and a high level of uncertainty must be ascertained
regarding future hardware characteristics and interaction patterns.

Differences in the device classes can also be explained with regard to media
richness theory (MRT). MRT describes a corridor of effective communication
with matching levels of message ambiguity and media richness [37]. When apply-
ing this idea to the input and output characteristics of app-enabled devices,
similar observations can be made. For example, IoT devices have only rudi-
mentary possibilities for direct user input but also give not much feedback in
return. Notebooks allow for medium levels of input richness through keyboard

A Taxonomy for App-Enabled Devices: Mastering the Mobile Device Jungle 213

Table 1. App-enabled device classes and their position in the continuum.

Device class Input richness Output richness Degree of
mobility

AR/VR
headset

Remote - Pointing Augmented reality Wearable

Console Remote Small - Huge Stationary

Desktop PC Keyboard - Pointing Large - Huge Stationary

Drone Pass-through - Pointing None - Pass-through Self-moving

Fitness
trackers

None - Button Pass-through - Tiny Wearable

Implant Neural any Wearable

any Neural Wearable

IoT None - Button None - Pass-through Stationary

Netbook Keyboard - Pointing Medium Moveable

Notebook Keyboard - Touch Large Moveable

Personal robot None - Pass-through None - Voice Self-moving

Smart car Touch - Voice Medium - Large Self-moving

Smart glasses Touch - Voice Augmented reality Wearable

Smart home None - Touch None - Tiny Stationary

Smart
personal agent

Voice None - Voice Stationary-
Moveable

None - Voice Voice Stationary-
Moveable

Smartphone Touch - Voice Small Moveable

Smart TV Remote Huge Stationary

Smartwatch Touch - Voice Pass-through - Tiny Wearable

Tablet Pointing - Touch Medium Moveable

and mouse input, with large screens as more flexible output capabilities. Further-
more, smart glasses directly embed their output into the real world by projection.
Consequently, their voice-based input is equally rich in order to handle complex
user interactions.

Figure 2 depicts the combination of output media richness and mobility.
Unsurprisingly, a general tendency towards large screen output for stationary
devices can be observed. With increasing mobility, output capabilities develop
in two directions. On the one hand, screen sizes tend to diminish, from small
screens on smartphones to very limited fitness tracker screens and screen-less
drones. On the other hand, output capabilities become richer and overcome
traditional screen-based approaches due to recent technological developments
enabling intangible outputs, for instance augmented/virtual reality (AR/VR)
headsets. It can also be observed that device classes with a high degree of

214 C. Rieger and T. A. Majchrzak

mobility are more variable and occupy larger spaces of the continuum. This
is potentially caused by a fragmentation into various domains of application, or
their novelty of appearance with insufficient time to establish wide-spread inter-
action patterns. Especially autonomously moving devices such as smart cars and
personal robots, are driven by the increased availability of sensor technology and
not restricted to particular output capabilities.

Finally, Fig. 3 visualizes the relationship between input media richness and
mobility. Usually, an increasing degree of mobility entails less physical input
mechanisms with dedicated buttons and keys. This might be attributed to prac-
ticability reasons, for example using voice commands is easier for wearable smart
glasses than requiring dedicated input devices. In addition, smarter devices are
usually more complex with regard to their output, and equally sophisticated
input capabilities are necessary to match this level as explained by media richness
theory. Consoles, for instance, provide basic navigation functionalities. Desktop
personal computers and notebooks can be equipped with intelligent software such
that keyboard and mouse are helpful means for interaction, and smart personal
agents integrate advanced interpretation mechanisms that allow for voice-based
communication in everyday situations.

MRT also partly explains why there are areas in the continuum with no
assigned device class. Rich forms of user input such as gestures overcomplicate
interactions for devices that have just small screens and therefore are typically
equipped with limited sensing and processing resources. On the other extreme,
devices with barely a few buttons do not provide sufficiently flexible input capa-
bilities to manipulate large screens (such as several fingers multi-touch on a small
smart watch). Of course, empty spaces in the taxonomy might also be caused
by a lack of technological progress or use cases so far. Thus, they might actually
be filled by future devices, or existing classes might “stretch” into these areas.
For example, voice interfaces just recently emerged as mainstream technology
in various devices from smartphones to smart home applications but augmented
reality devices are still an active field of research. In general, with the evolution
and differentiation of input media, existing device classes might extend towards
further areas or even converge. For example, consider convertibles, such as the
Lenovo Yoga Book, which represent hybrid devices between keyboard-based net-
books and touch-optimized tablets utilizing docking or folding mechanisms. Also,
the evolution of one device class might render another obsolete; this can currently
be observed with smartwatches cannibalizing the market for fitness trackers with
more advanced input and output capabilities.

4 Discussion

The field of modern mobile computing does not show signs of less rapid progress.
It, thus, is likely that amendments will need to be made. Additionally, we will
need to keep updating the taxonomy once it has been acknowledged by the
scientific community. Moreover, a taxonomy should be appealing for the use by
practitioners, particularly in a field where scientific research and technological

A Taxonomy for App-Enabled Devices: Mastering the Mobile Device Jungle 215

progress go hand-in-hand. Therefore, this section presents ideas for discussion
that go beyond the narrower focus of Sect. 3.

4.1 Alternative Categorization Schemes

Devices can be categorized according to other device features. Not all are com-
patible with our taxonomy, nevertheless we deem several of them noteworthy.

Simple schemes such as a categorization by hardware feature (e.g., camera
resolution, raw computing power, touch screen availability) or usage (e.g., busi-
ness, entertainment, sports, or communication) fail to provide clear criteria for
a taxonomy. While they may even pose discriminatory power, they do not nec-
essarily help with forming adequate classes of devices. In particular, a fast adap-
tation and convergence of available technologies could be observed in the past
years. Using simple hardware features for categorization would thus be prone to
quickly becoming obsolete. To give some examples: so-called phablets blur the
lines between smartphones and tablets; cameras with resolutions a few years
ago only imaginable in professional photography equipment now are routinely
built into many mobile devices; and gyroscope sensors have found wide-spread
adoption in a variety much mobile hardware for a variety of purposes.

Matrix-based categorizations allow for a better juxtaposition on two dimen-
sions, for instance regarding the input and output characteristics of app-
enabled devices. However, the heterogeneity of devices within a device class
provides insufficient discriminating power. For example, medium-sized, touch-
based screens are usual interfaces both for tablets and for the infotainment sys-
tems within smart cars. Similarly, distinguishing between apps for embedded
or stand-alone devices is not always possible due to different types of device
integrations within a device category (cf. e.g. [4] for smart cars).

Therefore, the third dimension chosen for our taxonomy adds the degree of
mobility to distinguish between similar device hardware in different usage con-
texts. Other potential approaches for categorizing devices include the degree of
integration, automation, or intelligence attainable or provided by the device. This
reaches from simple input/output devices with limited app interaction (such as
fitness trackers), to interoperable software (such as smartphones), highly cross-
linked and automated devices (in the IoT or smart home field), and finally to
intelligent machines. While we deem it reasonable to discuss such an optional
fourth dimension, we do not think the taxonomy would profoundly gain more
discriminatory power. The added complexity would not be justified as the under-
lying assumption of increasing processing complexity is to some extent already
encoded in the richness of inputs and outputs.

An alternative or possibly additional means for categorization is a graph,
more specifically a tree. This way, categorization would get a hierarchical char-
acter that could for example honour development history and be subdivided.
Additionally, this representation would be well suited to reveal similarities in
particular features. If shown as a polytree such as sketched in Fig. 4, even com-
plex dependencies could be displayed (a smart watch, for example as a combina-
tion of wrist-worn fitness trackers and basic smartphone functionality). However,

216 C. Rieger and T. A. Majchrzak

Fig. 4. Exemplary alternative classification approach.

while a tree representation surely is charming for its depiction of dependencies
and historical connections, it poses far less discriminatory power than the taxon-
omy we designed. Blending both possibilities, for instance using a multi-layered
representation of several trees that show the connection between device classes
from different perspectives or for various criteria, would become too complex to
be practical.

4.2 Further Development

Firstly, future discussion needs to include the demarcation of devices to be
included. As argued earlier, mobility is not necessarily the proper boundary.
App-enablement has proven to be feasible, yet we will need to find (or provide)
a profound definition for it. This is an ongoing task.

Secondly, it needs to be determined how the taxonomy can be kept up to
date. In many other cases, taxonomies have proven to be either too detailed
and thus requiring constant adjustments, or too little detailed and thus lacking
discriminatory power. In any case, taxonomies that are used in any not entirely
static field ought to evolve.

Due to a restriction to three orthogonal dimensions and clearly distinguish-
able values in each of it, we are optimistic that the taxonomy will be future-proof.
Nevertheless, proper ways of deciding when adaptations are needed and what
developments can be reflected without changes need to be defined. As part of
this, we will need to scrutinize how to handle the differences in precision regard-
ing categories. For example, it is very well understood what a smartphone is;

A Taxonomy for App-Enabled Devices: Mastering the Mobile Device Jungle 217

smart homes, and to an even higher degree neural devices are (yet) diffuse with
a lack of devices and applications to characterize them.

Thirdly, we so far have limited ourselves to consumer devices. This includes
many devices that are also used for professional purposes, but arguably not all.
Beyond that, some specialised devices are (so far) solely used for professional
means. Examples can be found in industry, particularly in logistics. However,
some of these might simply be subsumed by consumer devices. It could be said
that, e.g., the devices used by parcel couriers are very similar to smartphones,
despite the difference in form and the absence of a general purpose utilization.
Moreover, commercial (and, similarly, military) devices might be derivatives of
consumer hardware that has been “hardened” and more extensively tested. The
same applies to special devices from areas such as healthcare or crisis prevention
and response. While such devices typically have specific capabilities (such as
error-tolerance), on an abstract level they again are very similar to general pur-
pose hardware. Thus, an updated taxonomy could try to include non-consumer
devices. However, due to the complexity that arises particularly with devices
that are so specialised that information regarding them is scarce, we deem the
current limitation justified. Additionally, if kinds of devices are seldom addressed
in writing, including them in a taxonomy arguably is superfluous anyway.

Fourthly, it should be scrutinized how the taxonomy can be provided in
a form that is useful for researchers and for practitioners. Most scientists know
taxonomies for research topics enforced by publication outlets.5 Quite often these
feel more like a “try to fit somewhere” game, particularly if a paper tackles a
contemporary topic and the taxonomy provides little flexibility. If we want our
taxonomy to be helpful for researchers, and – probably even harder to achieve –
employed by practitioners, it needs to be easy to use yet powerful. Achieving this
will be very valuable, as can e.g. be seen for cross-platform development, where
new approaches can be clearly categorized by their characteristics. We think that
our taxonomy should allow to put each device into exactly one class – choosing
several applicable classes might be practical for the above named paper-theme
categories, but we do not deem it practical for the purpose of our taxonomy.

The four discussion points have also illustrated the limitations of our work.
Besides these issues that need to be worked on, an eventual verification of the
taxonomy is mandated. Our planned work to further on this topic is sketched in
the next section.

It would also be possible to develop the taxonomy towards an ontology
(cf. [39]), possibly resulting in automated categorization aid which would also
take ideas from the alternative polytree-based categorization as discussed in the
previous section. For an unknown device, a decision tree could be traversed, lead-
ing to a prediction which kind of device is at hand. However, this would require
rich semantic data (to allow inference), and it is currently not clear whether such
an ontology would be considered to have much more value than the taxonomy
already possesses.

5 An example is be the ACM Computing Classification System, firstly presented in
1964 and revised in 1991, 1998, and 2012 [38] (cf. also [39]).

218 C. Rieger and T. A. Majchrzak

5 Conclusion and Outlook

With this article, we have proposed a taxonomy for app-enabled devices. It builds
on a position paper presented in April 2017 – and it remains the first such work.
The taxonomy is based on three dimensions: the media richness of inputs and
of outputs, and the degree of mobility. Examined separately, each dimension is
relatively simple. In combination, they provide high discriminatory power. This
becomes particularly evident when categorizing the current device landscape.
We have provided figures that support this assessment throughout this paper.
In general, it has proven to be much easier to use “flat” representations of two
dimensions at a time than to render a 3D model – at least for publication.

The presented taxonomy can be considered as a milestone, and we deem
it to be static for now. Undoubtedly, progress in the field will mandate future
changes, but these will rather lead to a new version of the taxonomy than to
a new taxonomy. Nonetheless, this article should still act as an invitation for
discussion. After all, the taxonomy is but a step towards a more unified view of
mobile computing and a solidified theoretic base in this field. Moreover, future
work will need to continue with keeping a systematic overview of app-enabled
devices.

A better theoretic understanding of mobile computing, producible advice for
practice, and word towards unified development mark the pillars of our future
work. As a part of this, we will use the taxonomy and also put it up for further
discussion, e.g. as part of conference talks. Additionally, we will now reach out
to our partners from practice and ask them for an assessment. If the taxonomy
will become well adopted, empirical work should follow.

As we already wrote in the position paper, we do not hope for our work
to become “yet another computer science taxonomy”. Therefore, we hope that
this article can illustrate the usefulness of a taxonomy and spark the interest for
employing it.

References

1. Rieger, C., Majchrzak, T.A.: Conquering the mobile device jungle: towards a tax-
onomy for app-enabled devices. In: Proceedings of the 13th International Con-
ference on Web Information Systems and Technologies (WEBIST), pp. 332–339.
SciTePress (2017)

2. Statista Inc.: Global smartphone shipments forecast from 2010 to 2020 (2016).
https://www.statista.com/statistics/263441/

3. Chuah, S.H.W., Rauschnabel, P.A., Krey, N., Nguyen, B., Ramayah, T., Lade, S.:
Wearable technologies: the role of usefulness and visibility in smartwatch adoption.
Comput. Hum. Behav. 65, 276–284 (2016)

4. Coppola, R., Morisio, M.: Connected car: technologies, issues, future trends. ACM
Comput. Surv. 49(3), Article No. 46 (2016)

5. Apple Inc.: Apple reinvents the phone with iPhone (2007). http://www.apple.com/
pr/library/2007/01/09Apple-Reinvents-the-Phone-with-iPhone.html

https://www.statista.com/statistics/263441/
http://www.apple.com/pr/library/2007/01/09Apple-Reinvents-the-Phone-with-iPhone.html
http://www.apple.com/pr/library/2007/01/09Apple-Reinvents-the-Phone-with-iPhone.html

A Taxonomy for App-Enabled Devices: Mastering the Mobile Device Jungle 219

6. Apple Inc.: iPhone app store downloads top 10 million in first weekend (2008).
http://www.apple.com/pr/library/2008/07/14iPhone-App-Store-Downloads-
Top-10-Million-in-First-Weekend.html

7. Biørn-Hansen, A., Majchrzak, T.A., Grønli, T.M.: Progressive web apps: the pos-
sible web-native unifier for mobile development. In: Proceedings of the 13th Inter-
national Conference on Web Information Systems and Technologies (WEBIST),
pp. 344–351. SciTePress (2017)

8. Heitkötter, H., Hanschke, S., Majchrzak, T.A.: Evaluating cross-platform develop-
ment approaches for mobile applications. In: Cordeiro, J., Krempels, K.-H. (eds.)
WEBIST 2012. LNBIP, vol. 140, pp. 120–138. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-36608-6 8

9. El-Kassas, W.S., Abdullah, B.A., Yousef, A.H., Wahba, A.M.: Taxonomy of cross-
platform mobile applications development approaches. Ain Shams Eng. J. 8, 163–
190 (2015)

10. Weiser, M.: The computer for the 21st century. Sci. Am. 265, 94–104 (1991)
11. Statista Inc.: Global smart tv unit sales from 2014 to 2018 (in millions) (2017).

https://www.statista.com/statistics/540675/global-smart-tv-unit-sales/
12. Statista Inc.: Smartwatches (2017). https://www.statista.com/study/36038/

smartwatches-statista-dossier/
13. Ibarra-Esquer, J.E., González-Navarro, F.F., Flores-Rios, B.L., Burtseva, L.,

Astorga-Vargas, M.A.: Tracking the evolution of the internet of things concept
across different application domains. Sensors 17, 1379 (2017)

14. Heitkötter, H., Majchrzak, T.A., Kuchen, H.: Cross-platform model-driven devel-
opment of mobile applications with MD2. In: Shin, S.Y., Maldonado, J.C. (eds.)
Proceedings of the 28th Annual ACM Symposium on Applied Computing (SAC),
SAC 2013, pp. 526–533. ACM (2013)

15. Jones, C., Jia, X.: The AXIOM model framework: transforming requirements to
native code for cross-platform mobile applications. In: Ferreira Pires, L. (ed.) 2nd
International Conference on Model-Driven Engineering and Software Development.
IEEE (2014)

16. Chauhan, J., Mahanti, A., Kaafar, M.A.: Towards the era of wearable comput-
ing? In: Proceedings of 2014 CoNEXT on Student Workshop, CoNEXT Student
Workshop 2014, pp. 24–25. ACM (2014)

17. Busold, C., Heuser, S., Rios, J., Sadeghi, A.-R., Asokan, N.: Smart and secure
cross-device apps for the internet of advanced things. In: Böhme, R., Okamoto,
T. (eds.) FC 2015. LNCS, vol. 8975, pp. 272–290. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47854-7 17

18. Dageförde, J.C., Reischmann, T., Majchrzak, T.A., Ernsting, J.: Generating app
product lines in a model-driven cross-platform development approach. In: 49th
Hawaii International Conference on System Sciences (HICSS), pp. 5803–5812
(2016)

19. Jesdabodi, C., Maalej, W.: Understanding usage states on mobile devices. In: Pro-
ceedings of 2015 ACM International Joint Conference on Pervasive and Ubiquitous
Computing, UbiComp 2015, pp. 1221–1225. ACM (2015)

20. Chauhan, J., Seneviratne, S., Kaafar, M.A., Mahanti, A., Seneviratne, A.: Char-
acterization of early smartwatch apps. In: 2016 IEEE International Conference on
PerCom Workshops 2016 (2016)

21. Google Inc.: Android wear (2016). https://android.com/wear
22. Apple Inc.: WatchOS (2016). https://www.apple.com/watchos/
23. LG Electronics: WebOS for LG Smart TVs (2016). http://www.lg.com/uk/

smarttv/webos

http://www.apple.com/pr/library/2008/07/14iPhone-App-Store-Downloads-Top-10-Million-in-First-Weekend.html
http://www.apple.com/pr/library/2008/07/14iPhone-App-Store-Downloads-Top-10-Million-in-First-Weekend.html
https://doi.org/10.1007/978-3-642-36608-6_8
https://doi.org/10.1007/978-3-642-36608-6_8
https://www.statista.com/statistics/540675/global-smart-tv-unit-sales/
https://www.statista.com/study/36038/smartwatches-statista-dossier/
https://www.statista.com/study/36038/smartwatches-statista-dossier/
https://doi.org/10.1007/978-3-662-47854-7_17
https://android.com/wear
https://www.apple.com/watchos/
http://www.lg.com/uk/smarttv/webos
http://www.lg.com/uk/smarttv/webos

220 C. Rieger and T. A. Majchrzak

24. The Linux Foundation: Tizen (2016). https://www.tizen.org
25. Neate, T., Jones, M., Evans, M.: Cross-device media: a review of second screening

and multi-device television. Pers. Ubiquit. Comput. 21, 391–405 (2017)
26. Singh, K., Buford, J.: Developing WebRTC-based team apps with a cross-platform

mobile framework. In: 13th IEEE Annual Consumer Communications and Net-
working Conference, CCNC 2016 (2016)

27. Queirós, R., Portela, F., Machado, J.: Magni - a framework for developing context-
aware mobile applications. In: Rocha, Á., Correia, A.M., Adeli, H., Reis, L.P.,
Costanzo, S. (eds.) WorldCIST 2017. AISC, vol. 571, pp. 417–426. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56541-5 43

28. Koren, I., Klamma, R.: The direwolf inside you: end user development for hetero-
geneous web of things appliances. In: Bozzon, A., Cudre-Maroux, P., Pautasso, C.
(eds.) ICWE 2016. LNCS, vol. 9671, pp. 484–491. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-38791-8 35

29. Humayoun, S.R., Ehrhart, S., Ebert, A.: Developing mobile apps using cross-
platform frameworks: a case study. In: Kurosu, M. (ed.) HCI 2013. LNCS, vol.
8004, pp. 371–380. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-39232-0 41

30. Sommer, A., Krusche, S.: Evaluation of cross-platform frameworks for mobile appli-
cations. Lecture Notes in Informatics (LNI) P-215, pp. 363–376 (2013)

31. Dalmasso, I., Datta, S.K., Bonnet, C., Nikaein, N.: Survey, comparison and eval-
uation of cross platform mobile application development tools. In: 2013 9th Inter-
national Wireless Communications and Mobile Computing Conference (IWCMC)
(2013)

32. Rieger, C., Majchrzak, T.A.: Weighted evaluation framework for cross-platform
app development approaches. In: Wrycza, S. (ed.) SIGSAND/PLAIS 2016. LNBIP,
vol. 264, pp. 18–39. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46642-2 2

33. Lahiani, H., Kherallah, M., Neji, M.: Vision based hand gesture recognition for
mobile devices: a review. In: Abraham, A., Haqiq, A., Alimi, A.M., Mezzour, G.,
Rokbani, N., Muda, A.K. (eds.) HIS 2016. AISC, vol. 552, pp. 308–318. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-52941-7 31

34. Bhowmik, A.K.: 39.2: Invited paper: natural and intuitive user interfaces: tech-
nologies and applications. In: SID Symposium Digest of Technical Papers, vol. 44,
pp. 544–546 (2013)

35. Hintze, D., Hintze, P., Findling, R.D., Mayrhofer, R.: A large-scale, long-term
analysis of mobile device usage characteristics. In: Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, pp. 1–21 (2017)

36. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a
vision, architectural elements, and future directions. Future Gener. Comput. Syst.
29, 1645–1660 (2013)

37. Daft, R.L., Lengel, R.H., Trevino, L.K.: Message equivocality, media selection, and
manager performance: implications for information systems. MIS Q. 11, 355 (1987)

38. ACM Computing Classification System ToC (2015). http://www.acm.org/about/
class

39. Cassel, L.N., Palivela, S., Marepalli, S., Padyala, A., Deep, R., Terala, S.: The new
ACM CCS and a computing ontology. In: Proceedings of 13th ACM/IEEE-CS
Joint Conference on Digital Libraries (JCDL), pp. 427–428. ACM (2013)

https://www.tizen.org
https://doi.org/10.1007/978-3-319-56541-5_43
https://doi.org/10.1007/978-3-319-38791-8_35
https://doi.org/10.1007/978-3-319-38791-8_35
https://doi.org/10.1007/978-3-642-39232-0_41
https://doi.org/10.1007/978-3-642-39232-0_41
https://doi.org/10.1007/978-3-319-46642-2_2
https://doi.org/10.1007/978-3-319-46642-2_2
https://doi.org/10.1007/978-3-319-52941-7_31
http://www.acm.org/about/class
http://www.acm.org/about/class

Attaining Role-Based, Mandatory,
and Discretionary Access Control for Services
by Intercepting API Calls in Mobile Systems

Yaira K. Rivera Sánchez1(&), Steven A. Demurjian1,
and Lukas Gnirke2

1 University of Connecticut, Storrs, CT 06269, USA
ykrs@engineer.uconn.edu, Steven.Demurjian@uconn.edu

2 Oberlin College, Oberlin, OH 44074, USA

Abstract. Mobile applications are quickly replacing traditional desktop com-
puting for gaming, social media, email, web browsing, health and fitness,
business usage, etc. Many of these mobile apps require that sensitive informa-
tion (protected health information (PHI) and personally identifiable information
(PII)) be displayed, accessed, modified, and stored. In the healthcare domain,
there is a need for health information exchange (HIE) among patients and
medical providers across a wide range of health information technology
(HIT) systems such as electronic health records, e-prescribing, etc., all of which
involve highly-sensitive data (PII and PHI) that is exchanged back and forth
between the mobile application and its server-side repository/database. In the U.
S. in 2015, the Office of the National Coordinator issued a report on certification
rules for EHRs that has required that HIT vendors develop RESTful APIs for
EHRs and other systems so that patients and medical providers using mobile
health (mHealth) applications via the cloud can easily access their healthcare
data from multiple sources. This necessitates the consideration that access
control mechanisms are candidates to protect highly-sensitive data of such
applications via the control of who can call which service. The paper presents
the attainment of role-based (RBAC), mandatory (MAC), and discretionary
(DAC) access control for RESTful API and cloud services via an Intercept-
ing API Calls approach that is able to define and enforce users of mobile apps to
limit the API/cloud services that can be invoked depending on a user’s per-
missions. The presented Intercepting API Calls approach is demonstrated via an
existing mHealth application.

Keywords: Access control � Application Programming Interface (API)
Authorization � Mobile application
Representational state transfer (REST) services
Role-based access control (RBAC) � Mandatory access control (MAC)
Discretionary access control (DAC)

© Springer International Publishing AG, part of Springer Nature 2018
T. A. Majchrzak et al. (Eds.): WEBIST 2017, LNBIP 322, pp. 221–248, 2018.
https://doi.org/10.1007/978-3-319-93527-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93527-0_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93527-0_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93527-0_11&domain=pdf

1 Introduction

Mobile applications span a broad spectrum of complexity, including games, social net-
working, email, web browsing, financial management, health and fitness, etc. For both
personal and business usage, there is a need to insure that access to secure information is
controlled, ranging from protected health information (PHI) and personally identifiable
information (PII) to confidential data that is displayed, accessed, modified, and stored. In
healthcare, there has been a transition from paper-based to electronic health records
(EHRs) with eight out of ten physicians in the U.S. utilizing EHRs in their practices [1].
Despite this progress, there is still a need for a significant next step to allow patients and
medical providers to easily access healthcare data that is distributed acrossmultiple EHRs
and other health information technology (HIT) systems. To support these actions, health
information exchange (HIE) for the interoperation across sources has the potential to
reduce healthcare data expenses where healthcare institutions could save up to $77.8B in
the U.S. [2]. In support of the emergence of cloud computing in healthcare, the Mean-
ingful Use Stage 3 [3] guidelines require all health information technology (HIT) systems
(e.g., electronic health records (EHR), personal health records (PHR), etc.) to have API
services to access, modify, and exchange health-related data. If services are the primary
means of access, there must be a way to control who can invoke which service at which
time. Access control mechanisms are commonly utilized to secure highly sensitive data in
order to control which information each user can access/store in a particular system, with
the proviso that disclosing the wrong information could lead to serious consequences [4].
The three dominant access control models [5] to achieve this are: role-based access
control (RBAC) which defines roles with permissions on objects that are assigned to
users; discretionary access control (DAC) where security policies are established based
on the user’s identity and authorization and can be delegated; and, mandatory access
control (MAC) where sensitivity levels (Top Secret, Secret, Confidential, and Unclas-
sified) are assigned to objects (classifications) and users (clearances) to control who can
see what. This paper explores the usage of role-based (RBAC) [6, 7], mandatory
(MAC) [8], and discretionary (DAC) [9] access control to manage which user of a mobile
application is allowed to invoke specific API services. This required the evolution of
RBAC andMAC to support permissions on services (as opposed to the usual object view)
at a model level applied to a setting where a mobile application is using RESTful APIs
and, by adding delegation permissions to services in support of DAC.

Thework presented in this paper focuses on securing highly sensitive information (PII
and PHI) that is present in many mobile applications and is accessible via an API, where
the data transactions between a mobile app and a server are performed via invocations to
the services of the API. This is achieved via the utilization of RBAC,MAC, andDAC in a
two-phase process of definition and enforcement on a user of a mobile app with a given
role to control which services of the app’s API can be invoked. First, RBAC/MAC
permissions are defined on a role-by-role/user basis, respectively, on the API services of
the mobile app to identify which services can be called by which user by role utilizing the
mobile app. Second, RBAC/MAC enforcement is achieved at runtime by intercepting
each of the mobile app API calls of a user by role/user basis, respectively, in order to
perform real-time RBAC/MAC permission checks.To supplement this two phase

222 Y. K. Rivera Sánchez et al.

process, delegation can be utilized to pass on RBAC and/or MAC permissions on APIs
and their services. Our choice of RBAC and MAC to control APIs and their services is
motivated by its wide usage for securing highly sensitive data for: corporate data [10] and,
in EHRs [11]. Another motivation for the latter case is the emergent Fast Healthcare
Interoperability Resources (FHIR) [12] standard for exchangeable healthcare resources
that are accessible via an API from EHRs and other health information technology
systems.

Through the mobile app API, we seek to provide a means for a user playing a
role/clearance to be constrained to deliver/store data by limiting access to API services
when utilizing the mobile app via the interception of the API calls, the actual invo-
cation of services. According to [13], every API service should be verified to ensure
that the user accessing the mobile app has the necessary permissions to manage the
requested data. The Intercepting API Calls approach presented in this paper supports
the interception of API calls by generating a new API at the service level that mirrors
the original mobile app API (in terms of signatures) and serves as a wrapper which
includes invocations to the original mobile app API to proceed based on
RBAC/MAC/DAC checks that control the data that is displayed (delivered) and
managed (stored). The larger intent of our research would be to define RBAC, MAC,
and DAC permissions on API services and intercept calls for access control permission
checks that determine the filtered information returned to the mobile app and control
information that can be stored in the mobile application’s server. To place the work
presented in this paper in its proper perspective, we briefly highlight other published
efforts. The work in this paper builds off of our previous work on authentication
requirements for mobile apps [14] that was expanded to define an approach for role-
based access control (RBAC) for mobile computing [15]. The work in this paper
significantly extends [16] which focused only on RBAC and did not include MAC and
DAC. The work in this paper operates on the direct API of the mobile application.
A related effort [17] incorporates RBAC at the cloud side, to securely control via
RBAC the cloud services that the mobile application services could invoke.

The remainder of the paper has eight sections. Section 2 states background con-
cepts, motivates the Intercepting API Calls approach by explaining the important role
of accessing information (especially PPI and PHI), and describes the Connecticut
Concussion Tracker (CT2) mHealth app for tracking concussions from kindergarten to
12th grade. Section 3 presents the high-level processing of the classic architecture of
the User Layer, Presentation Layer, Business Layer, and Data Layer and expands by
including a discussion of the integration and usage of RBAC, MAC, and DAC. Sec-
tion 4 presents a model for service-based RBAC, MAC, and DAC and, explores the
underlying processing of the approach by examining the way that API services are
categorized for RBAC and MAC. Section 5 examines the interactions and infrastruc-
ture for the combined RBAC/MAC/DAC approach for Intercepting API Calls. Sec-
tion 6 explores the automatic generation of code for the RBAC, MAC, and DAC
Intercepting API Calls enforcement via an algorithm. Section 7 illustrates the Inter-
cepting API Calls approach for RBAC, MAC, and DAC utilizing the CT2 mHealth
application. Section 8 discusses related work in security and access control mecha-
nisms for mobile applications, comparing and contrasting these efforts to our Inter-
cepting API Calls approach. Finally, Sect. 9 concludes the paper.

Attaining Role-Based, Mandatory, and Discretionary Access Control 223

2 Background Concepts, Motivation, and the CT2 mHealth
App

This section provides: background on role-based access control (RBAC) [6, 7],
mandatory access control (MAC) [8], discretionary access control (DAC) [9], and
APIs; motivation on the increasing role of APIs and a need for security; and, a review
of the Connecticut Concussion Tracker (CT2) mHealth application. First, access control
mechanisms are utilized to manage which permissions should be granted or denied in
regards to the resources of a system or application. Three of the most popular mech-
anisms are role-based access control (RBAC), mandatory access control (MAC), and
discretionary access control (DAC). In RBAC, users are assigned roles and each role
contains different permissions, which contain the policies of which operations and
objects a user with a particular role can have access to. In MAC, a security adminis-
trator assigns sensitivity levels (Top Secret (TS), Secret (S), Confidential (C), and
Unclassified (U)) to objects (classifications) and users (clearances) to control who can
see what where TS > S > C > U. In DAC, security policies (e.g., read, write, execute
permissions) are established based on a combination of the objects and on the user’s
identity and authorization and can be delegated. For the purposes of this paper, we
apply RBAC, MAC, and DAC concepts at the API level of the mobile app in support
of the Intercepting API Calls approach to define by user/role which services of the API
can be called at which times and under which conditions that are then enforced when a
service is invoked by a user/role combination.

Second, in order to do data transactions between a server/database and a mobile
application, many developers utilize the Application Programming Interface
(API) concept. This consists of different tools, protocols, and libraries used to interface
data to an application [18]. Basically, the client sends a request through the means of a
URL, the API receives the URL and interprets it, and then sends this to the data source.
The data source will then execute the request and send back a response to the API.
The API encodes the response in a human readable format (e.g., JSON, XML) and
sends the response in this format to the client. Some advantages of APIs are: utilized in
several applications as most of them are modular (e.g., Facebook Graph API [19]);
useful in applications that contain dynamic data (data that changes in a frequent
manner); facilitate the sharing of data or processes between two systems; and, are
highly interoperable [20]. The concept of API originated with traditional desktop
devices and is now being heavily utilized in mobile applications. The Intercepting API
Calls approach is aimed towards APIs that are built under the REST architectural style
[21] and that use HTTP as a transfer protocol [22].

In terms of motivating the ideas in the paper, we acknowledge one of the most
recognized options to display (deliver) and manage (store) dynamic data in a mobile app
is to utilize the concept of API. However, before attempting to implement an API, one
must evaluate their security risks and their effective management [23]. For example,
consider the recent security breaches in Snapchat and Instagram APIs. Snapchat, a
mobile app that enables users to view and send self-destructive pictures and videos [24],
had a data breach that affected 4.6 million users [25]. The company quickly posted a
statement revealing that the vulnerability allowed individuals to compile a database that

224 Y. K. Rivera Sánchez et al.

contained usernames and phone numbers of users of the mobile app and, that this
problem came from their private API. To address this issue, Snapchat is attempting to
identify which third-party applications offered in the iTunes store and Google Play store
are accessing their private API and any application that uses it is accessing Snapchat’s
information without their permission [26]. Instagram, a mobile app that allows users to
take pictures and share them with family and friends [27], had a password breach in
2015 [28]. The breach allowed a third-party application to steal more than 500,000
usernames and passwords, and used the information to post spam on Instagram accounts
without permission. To remedy this, Instagram is now reviewing all of the applications
that utilize their API and is adding new usage policies [29]. Clearly both public and
private APIs need to be continuously secured and monitored to prevent disclosure of
restricted information from occurring. To address this issue, a number of companies
have added security and associated management mechanisms to APIs.

Lastly, to serve as an example throughout the paper, the Connecticut Concussion
Tracker (CT2) mHealth application, database, and its server are utilized. CT2 is a col-
laboration between the Departments of Physiology and Neurobiology, and Computer
Science & Engineering at the University of Connecticut and Schools of Nursing and
Medicine in support of a new lawpassed in the state ofConnecticut to track concussions of
kids between ages 7 to age 19 in public schools (CT Law HB6722) [30]. The CT2

application is for Android and iOS devices and utilizes a RESTAPI in order to manage its
data. The CT2 mHealth app contains seven tabs (‘Home’, ‘List’, ‘Student’, ‘Cause’,
‘Symptoms’, ‘Follow-up’, and ‘Return’) where: the ‘Home’ tab allows the user to add a
concussion, to retrieve an open case, or to find a student by name; the ‘List’ tab which
contains the list of students the user has permission to view and, for each student gives

Fig. 1. Two screens of the CT2 mHealth app [16].

Attaining Role-Based, Mandatory, and Discretionary Access Control 225

him/her the option to add a concussion or edit an existing one; the ‘Student’ tab (left screen
in Fig. 1) allows the user to input the student’s general information (e.g., name, birthdate,
school) and the date of concussion; the ‘Cause’ tab (right screen in Fig. 1) allows the user
to specify how an where the concussion occurred; the ‘Symptoms’ tab allows users to
record the symptoms the student hadwithin 48 h and other pertinent data; the ‘Follow-up’
tab allows users to record the status of the student over time; and the ‘Return’ tab allows
users to specify when the student can return to various activities at school.

3 High-Level Processing of the Intercepting API Calls
Approach

This section explores the high-level processing of the Intercepting API Calls approach
with an emphasis on the way that invocations from the mobile application to the mobile
app API are intercepted. The Intercepting API Calls approach defines a new API (i.e., a
new set of services) that mirrors the original mobile app API (in terms of the signa-
tures) and serves as a wrapper and includes invocations to the original mobile app API
to proceed based on access control checks that control the data that is displayed
(delivered) and managed (stored). In this section, the high-level processing of the
Intercepting API Calls approach is explored in detail; this approach offers the versatility
of intercepting original API services (and their invocations), and by doing so, has no
impact on the source code of the mobile application. We differentiate between three
different APIs in the discussion: the mobile app APIs that are used by the mobile app
(i.e., the original mobile app API services); the intercepting mobile app API services
that has the same signatures as the mobile app original APIs to replace these and
provide permission checks (i.e., mirrors the signatures of the original API services);
and the renamed mobile app API services (i.e., the original mobile app APIs that are
renamed to a set of corresponding services) that are wrapped by the intercepting mobile
app API.

For the general architecture of a mobile app, we employ a client mobile app [31]
augmented with the Intercepting API Calls approach. We focus on client applications
since these are easier to maintain and assume that the app is always fully connected to
the Internet. This assumes that all of the data is processed server-side and does not
contain cache and local data. The architecture consists of four main layers as shown in
the left side of Fig. 2: the User Layer which symbolizes the users of the mobile
application; the Presentation Layer which consists of the UI components of the mobile
application; the Business Layer which contains the logic of the mobile app (e.g.,
libraries, APIs, source code); and, the Data Layer which contains all of the data the
mobile app manages (e.g., retrieves, inserts). The right side of Fig. 2 details the archi-
tecture of the Intercepting API Calls approach across the four layers in three groups. The
first group, Role/Clearance/Delegation Assignment, involves the user layer and contains
the users of the mobile app and their assigned roles/clearance/delegations. The second
group, Define Access Control Permissions on API Services, spans the presentation and
business layers and contains the original mobile app API services to retrieve/insert data
from/into the data source. This group is utilized to define access control permissions on a
role-by-role, clearance, and optional delegation basis that determine which original

226 Y. K. Rivera Sánchez et al.

mobile app API services are authorized to each role/clearance/delegation, which in turn
is assigned to different users. Once access control permissions are defined on the mobile
app API, our approach can intercept API services utilized by the mobile app in order to
perform security and permissions checks. To transition from the second to third group,
our Intercepting API Calls approach utilizes the data layer as a pass via the renamed API
service invocations, and as a result, does not require modifying the source code of the
mobile app in order to achieve. Lastly, the third group, Enforce Access Control Per-
missions on API Services, contains the RBAC, MAC, and DAC policies that need to be
incorporated in the original data source(s) so that they can be enforced. This includes a
new set of intercepting API services that must be defined and then utilized to replace the
original mobile app API services to enforce the defined access control policies to control
the data that is displayed (delivered) and managed (stored) on a user/role/clearance
combination.

To illustrate the third group, Fig. 3 details the modifications of the original API
services that are needed for interception. Specifically, for a mobile app, there is a set of
original mobile app API services, as shown in the left side of Fig. 3. To maintain the

Fig. 2. Intercepting API calls approach architecture.

Attaining Role-Based, Mandatory, and Discretionary Access Control 227

functionality of the mobile app and provide an ability to continue to invoke services by
name, the original mobile app API services are renamed (as shown on the right side of
Fig. 3) in order to reuse the original name of the original service for the new inter-
cepting API services so that the original services from the mobile app remain
unchanged (would now be occurring against the intercepting services). For each
original mobile app API service, we define a corresponding intercepting API service, as
shown in the bottom part of Fig. 3, that is able to: perform RBAC, MAC, and DAC
security checks for the user/role/clearance combination; call the corresponding mobile
app API service (if it is allowed); and then return either filtered data (retrievals) or
success/failure (inserts, updates, or deletes) status.

The mobile app is still able to invoke the same original API services by name and
signature, which are now the intercepting API services (with the same signature) that
are able to step in and interrupt the process when they are called/invoked. As a result,
the intercepting API services act as a wrapper that adds a security layer to the original
API services. The dashed arrows in Fig. 3 indicate that the process of renaming the
original API services as well as the process of creating the intercepting file needs to be
done only once. Therefore, the developer only needs to create these files once and after
that security administrators can manage the RBAC, MAC, and DAC policies without
modifying the server-side portion of the mobile app through the means of a separate
user interface. The solid arrow indicates the way that the API behaves when a user
makes a request through the mobile app; first, the request is intercepted in order to be
evaluated with the pertinent access control policies and then, depending on the result,
we either proceed to execute the request or send an error message to the user who sent
the request.

Fig. 3. Conceptual API process [16].

228 Y. K. Rivera Sánchez et al.

4 A Model for Services-Based RBAC, MAC, and DAC

This section presents a model for services-based RBAC, MAC, an DAC, by discussing
the way that the API of a mobile app is viewed from a security perspective in order to
control who can invoke which service(s) of an API at which times, and the way that
each service is viewed from a security standpoint. The model presented upgrades
traditional object-based permission of RBAC, MAC, and DAC to be service based. In
support of this process, we categorize the services on an API in different ways. The idea
behind the Intercepting API Calls approach is to secure highly-sensitive information
that is present in mobile applications and is accessible via an API. To support this
focus, we assume that data transactions between a mobile app and a server are per-
formed via an API. Through this mobile app API, we seek to provide a means for a user
playing a role, and possibly contain a clearance, to be constrained to deliver/store data
when utilizing the mobile app via the interception of the invocations of API services.
The Intercepting API Calls approach makes use of the ability to define permissions on
the services of the API in three different ways. First, the API can be partitioned into
Secure/Unsecure services (Defn. 4) where the Secure services can be assigned on a
role-by-role basis (user’s role in Defn. 1), thereby supporting RBAC. Not all of the API
services need to be in the secure category; for example, API services to load drop
downs, display web content, etc., may not need to be secure. The Secure API services
are the ones that lead to data that is stored/edited/displayed that must be controlled by
role. Second, the API can be partitioned into Labeled/Unlabeled services (Defn. 5)
where each Labeled service has a classification and Labeled services can be assigned
based on a user’s clearance (Defns. 2v2 and 3), thereby supporting MAC. Similar to
secure services, Labeled services are a subset of the API that require control from a
security perspective and can be assigned to classifications. As mentioned in the RBAC
perspective for the secure category, not all of the API services need to be in the labeled
category. The Labeled API services are the ones that lead to data that is
stored/edited/displayed that must be controlled by classifications. Unlabeled services
need not be assigned and are available to any user. Third, if an API is partitioned by
using either RBAC or MAC, an original user (Defn. 6) or a delegated user with pass-on
delegation authority (Defns. 7 and 8) can delegate a full (Defns. 9 and 11) or a partial
(Defns. 10 and 12) set of their services to a delegated user.

Defn. 1: A role r is defined as a two-pair r = <rID, rName> with unique identifier rID
and name rName.
Example: The CT2 app has several roles, one of which would be for a
parent: r = <rID4, Parent>.

Defn. 2: A user u is defined as a tuple <uID, uName, uCLR>, with unique uID identifier,
name uName and optional clearance uCLR 2 {TS, S, C, U} that signifies that
a user is limited to information (UI) in the GUI by MAC and services
(API) that satisfy the established MAC properties (e.g., simple integrity,
simple security, liberal *, strict *, etc.).
Example: The CT2 app has a user with top secret clearance <uID1, Karen,
TS>.

Attaining Role-Based, Mandatory, and Discretionary Access Control 229

Defn. 3: A user u that has a clearance uCLR (Defn. 2) assigned has also a read
property and a write property assigned to control access to a service a as
follows:
Read Properties:

– Simple Security (SS-r): User u has read access on service a iff uCLR �
aCLS.

– Strict * (Read) (S*-r): User u has read access on service a iff uCLR =
aCLS.

Write Properties:

– Simple Integrity (SI-w): User u has write access on service a iff uCLR �
aCLS.

– Strict * (Write) (S*-w): User u has write access on service a iff uCLR =
aCLS.

– Liberal * (L*-w): User u has write access on service a iff uCLR � aCLS.

Given Defn. 3, we revise Defn. 2 as below:

Defn. 2 v2: A user u is defined as a tuple <uID, uName, uCLR, uMACRD, uMACWR>,
where uMACRD 2 {SS, S*} and uMACWR 2 {SI, S*, L*}.
Updated Example: The CT2 app has four users each with different
clearances and read/write properties: UCT

2 = {u1 = <uID1, Karen, TS, SS-
r, L*-w>, u2 = <uID2, Carmen, C, S*-r, S*-w>, u3 = <uID3, Joe, C, SS-r,
S*-w>, u4 = <uID4, Peter, S, SS-r, S*-w >}, where: nurse Karen can read
down and write up and has the most privileges, parent Carmen is limited
to one level secret; and, coach Joe and AT Peter can both read down and
write equal.

Defn. 4: The API bMA of a mobile application MA can be partitioned into two
disjoint sets Secure API rb and Unsecure API lb in regards to the
services that are to be assigned by role:

• Secure API rb � bMA are the services of MA that need to be
controlled.

• Unsecure API lb � bMA are the services of MA that do not need to
be controlled where bMA = rb [lb and rb \ lb = ∅ (e.g., lb =
bMA – rb).

Example: The following services are utilized in the API that provides
and stores data for the CT2 mobile application:

– GET/states – Gets the list of states available
– POST/concussions/followup/add/{concussionEventId} – Inserts

follow up data of a student into the database

The first service stated above does not need to be secured since all of the
users of the mobile application can view the list of states (this is not

230 Y. K. Rivera Sánchez et al.

Table 1. Secure/Unsecure services of CT2.

Secure/Unsecure Service name

Secure GET/user/:userId
Secure GET/userAccounts/account/:userId

Secure GET/useraccounts/:username/:password
Secure GET/userRoleSchool/:userid
Secure POST/userAccounts/add

Secure GET/students/school/:schoolId
Secure GET/student/:studentId

Secure GET/students/:firstName/:lastName
Secure GET/student/guardians/:studentId
Secure POST/students/add

Secure POST/students/update/:studentId
Secure POST/students/guardian/add

Secure POST/students/guardian/update/:guardianId
Secure GET/concussion/:concussionId
Secure GET/concussion/followups/:concussionId

Secure GET/concussion/followup/symptoms/:recordId
Secure GET/concussions/school/:schoolId

Secure GET/concussions/student/:studentId
Secure GET/concussions/user/:userId
Secure GET/concussions/status/:incidentId/:status

Secure POST/concussions/add
Secure POST/concussions/update/:incidentId

Secure POST/concussions/followup/add/
:concussionEventId

Secure POST/concussions/followup/update/
:followUpId/:referenceId+

Secure GET/concussion/symptoms/:referenceId+

Secure/Unsecure Service name

Unsecure GET/states

Unsecure GET/regions/:stateId
Unsecure GET/districts/:regionId
Unsecure GET/schools/all

Unsecure GET/schools/:districtId
Unsecure GET/schools/:schoolId

Unsecure GET/menu/assessmentTools
Unsecure GET/menu/eventLocations
Unsecure GET/menu/contactMechanisms

Unsecure GET/menu/medicalimaging
Unsecure GET/menu/diagnosingroles

Unsecure GET/menu/headLocation
Unsecure GET/menu/sports
Unsecure GET/menu/symptoms

Unsecure GET/menu/symptoms/within
Unsecure GET/menu/symptoms/lingering

Unsecure GET/menu/roles

Attaining Role-Based, Mandatory, and Discretionary Access Control 231

confidential data), nonetheless, the second service needs to be secured
since only a subset of the roles available are allowed to add students’
follow up data. Table 1 summarizes the secure/unsecure services that
are partitioned from the REST API of CT2.

Defn. 5: The API bMA of a mobile application MA can be partitioned into two
disjoint sets Labeled API db and Unlabeled API hb in regards to the
services that are to be controlled by classifications:

• Labeled API db � bMA are the services of MA that need to be
controlled.

• Unlabeled API hb � bMA are the services of MA that do not need to
be controlled where bMA = db [hb and db \ hb = ∅ (e.g., hb = bMA

– db).

Example: The service GET/concussion/followups/:concussionId and the
service POST/concussions/followup/add/:concussionEventId can be
placed in both the secure API set and the labeled API set since these
services retrieve/add highly-sensitive data. Table 2 summarizes the
labeled/unlabeled services that are partitioned from the REST API of
CT2.
Note that a labeled service can have a sensitivity level of unclassified.
In MAC, data often moves from level to level, so what is unclassified
today, could be confidential or secret at a later point it time; this could
be true of services. Only the labeled services presented in Table 2 have
classifications as shown in Table 3. The unlabeled services in Table 2
are all related to the display of menu drop down values, selection values,
etc.

Defn. 6: An original user, ou, is a user that owns a given role.
Defn. 7: A delegated user, du, is a user to who a role will be delegated.
Defn. 8: Pass On Delegation Authority (PODA) is a Boolean value assigned to a

user which determines if he/she can delegate his/her permissions to
another user (poda = true) or not (poda = false).
Example: In the CT2 app, Nurse Karen can be an original user, ou, with
the original role, or, nurse. If a school needs substitute nurse Lois to
cover for Karen, Karen could delegate her original role or to Lois as the
delegated user du and can also authorize Lois to delegate the delegated
role further (poda = true).

Defn. 9: A Full RBAC Services (FRS) Delegation dFRS = <ou, or, du, dr, u,
poda, timePeriod> delegates all of the assigned secure service
permissions u 2 rp from an original user, ou, with an original role,
or, to a delegated user, du, with a delegated role dr = or with the
potential to pass on (poda is true or false), and timePeriod = {startTime,
endTime} which represents the period of time in which the du has
access to the delegated permissions.
Example: The original user ou Karen <uID1, Karen, TS, SS-r, L*-w>
seeks to delegate original role or nurse and all of the secure assigned

232 Y. K. Rivera Sánchez et al.

Table 2. Labeled/Unlabeled services of CT2.

Labeled/Unlabeled Service name

Labeled GET/user/:userId
Labeled GET/userAccounts/account/:userId

Labeled GET/useraccounts/:username/:password
Labeled GET/userRoleSchool/:userid
Labeled POST/userAccounts/add

Labeled GET/students/school/:schoolId
Labeled GET/student/:studentId

Labeled GET/students/:firstName/:lastName
Labeled GET/student/guardians/:studentId
Labeled POST/students/add

Labeled POST/students/update/:studentId
Labeled POST/students/guardian/add

Labeled POST/students/guardian/update/:guardianId
Labeled GET/concussion/:concussionId
Labeled GET/concussion/followups/:concussionId

Labeled GET/concussion/followup/symptoms/:recordId
Labeled GET/concussions/school/:schoolId

Labeled GET/concussions/student/:studentId
Labeled GET/concussions/user/:userId
Labeled GET/concussions/status/:incidentId/:status

Labeled POST/concussions/add
Labeled POST/concussions/update/:incidentId

Labeled POST/concussions/followup/add/
:concussionEventId

Labeled POST/concussions/followup/update/
:followUpId/:referenceId+

Labeled GET/concussion/symptoms/:referenceId+

Labeled/Unlabeled Service name

Unlabeled GET/states

Unlabeled GET/regions/:stateId
Unlabeled GET/districts/:regionId
Unlabeled GET/schools/all

Unlabeled GET/schools/:districtId
Unlabeled GET/schools/:schoolId

Unlabeled GET/menu/assessmentTools
Unlabeled GET/menu/eventLocations
Unlabeled GET/menu/contactMechanisms

Unlabeled GET/menu/medicalimaging
Unlabeled GET/menu/diagnosingroles

Unlabeled GET/menu/headLocation
Unlabeled GET/menu/sports
Unlabeled GET/menu/symptoms

Unlabeled GET/menu/symptoms/within
Unlabeled GET/menu/symptoms/lingering

Unlabeled GET/menu/roles

Attaining Role-Based, Mandatory, and Discretionary Access Control 233

services of her Nurse role the delegated user du Lois, a substitute school
nurse for one day: del = <uID1, rID3, uID5, rID3, u, false, {2017-07-
31T09:00:00+00:00, 2017-12-15T07:00:00+00:00}>.

Defn. 10: A Partial RBAC Services (PRS) Delegation dPRS = <ou, or, du, dr, u′,
poda, timePeriod> delegates a subset of the assigned secure service
permissions u′ 2 rp and u′ � u from an original user, ou, with an
original role, or, to a delegated user, du, with a dr = or with the
potential to pass on (poda is true or false) and timePeriod = {startTime,
endTime} which represents the period of time in which the du has
access to the delegated permissions.
Example: The original user ou Karen <uID1, Karen, TS, SS-r, L*-w>
seeks to delegate original role or nurse and only a subset of the secure
services assigned to her Nurse role the delegated user du Lois, a
substitute school nurse for one day to only log on and be able to read
(GET services) information on students: del = <uID1, rID3, uID5, rID5, u′,
false, {2017-07-31T09:00:00+00:00, 2017-12-15T07:00:00+00:00}>,
where u′ = {GET/user/:userid, …, GET/userRoleSchool/:userid,
POST/userAccounts/:add, …, GET/student/guardians/:studentID}.

Table 3. Classifications for labeled services of CT2.

Classification Service name

Confidential GET/user/:userId
Confidential GET/userAccounts/account/:userId
Confidential GET/useraccounts/:username/:password
Confidential GET/userRoleSchool/:userid
Top Secret POST/userAccounts/add
Confidential GET/students/school/:schoolId
Confidential GET/student/:studentId
Confidential GET/students/:firstName/:lastName
Confidential GET/student/guardians/:studentId
Confidential POST/students/add
Top Secret POST/students/update/:studentId
Confidential POST/students/guardian/add
Confidential POST/students/guardian/update/:guardianId
Confidential GET/concussion/:concussionId
Secret GET/concussion/followups/:concussionId
Secret GET/concussion/followup/symptoms/:recordId
Confidential GET/concussions/school/:schoolId
Confidential GET/concussions/student/:studentId
Confidential GET/concussions/user/:userId
Confidential GET/concussions/status/:incidentId/:status
Confidential POST/concussions/add
Top Secret POST/concussions/update/:incidentId
Secret POST/concussions/followup/add/:concussionEventId
Top Secret POST/concussions/followup/update/:followUpId/:referenceId+
Secret GET/concussion/symptoms/:referenceId+

234 Y. K. Rivera Sánchez et al.

For MAC, if we choose to delegate, then we are delegating a combination of the
clearance of the user and the read and write properties for the user; this allows the
delegated user to access the appropriate labeled services by classification. In Full MAC
Services Delegation, a user delegates all of his/her labeled services permissions
(user/CLR/read-write properties) to a delegated user. In Partial MAC Services Dele-
gation, a user delegates his/her read-write properties and a CLR that is less secure that
his current level, thereby automatically resulting in a subset of methods that is at most
the same of the original clearance level but is more often less.

Defn. 11: A Full MAC Services (FMS) Delegation dFMS = <ou, oclr, oprops, du,
dclr, dprops, X, poda, timePeriod> delegates all of the assigned labeled
service permissions X 2 up from an original user, ou, with an original
clearance, oclr, and original read/write properties, oprops, to a delegated
user du with a delegated clearance dclr = oclr and delegated read/write
properties, dprops = oprops with the potential to pass on (poda is true or
false) and timePeriod = {startTime, endTime} represents the period of
time in which the du has access to the delegated permissions.
Example: The original user ou Karen <uID1, Karen, TS, SS-r, L*-w> seeks
to delegate her MAC privileges (CLR and read/write properties) and all of
the labeled services she has permission to access to the delegated user du
Lois, a substitute school nurse for one day: del = <uID1, TS, SS-r, L*-w,
uID5, TS, SS-r, L*-w, X, false, {2017-07-31T09:00:00+00:00, 2017-12-
15T07:00:00+00:00}>.

Defn. 12: A Partial MAC Services (PMS) Delegation dPMS = <ou, oclr, oprops, du,
dclr, dprops, X′, poda, timePeriod> delegates a subset of the assigned
labeled service permissions X′ up � X and X′ 2 up from an original user,
ou, with an original clearance, oclr, and original read/write properties,
oprops, to a delegated user du with a delegated clearance dclr = oclr and
delegated read/write properties, dprops = oprops with the potential to
pass on (poda is true or false) and timePeriod = {startTime, endTime}
represents the period of time in which the du has access to the delegated
permissions.
Example: The original user ou Karen <uID1, Karen, TS, SS-r, L*-w> seeks
to delegate her MAC privileges (CLR and read/write properties) and only
GET services she has permission to the delegated user du Lois, a substitute
school nurse for one day: del = <uID1, TS, SS-r, L*-w, uID5, C, SS-r, L*-w,
X′, false, {2017-07-31T09:00:00+00:00, 2017-12-15T07:00:00+00:00}>,
where X′ = {GET/user/:userid, GET/userAccounts/account/:userid, …,
GET/concussion/symptoms/:reference ID}.

Intercepting calls for unsecure and unlabeled services are automatically passed
through since there are no required security checks. A given mobile application can
have a partitioning of the API into: Secure/Unsecure in support of RBAC,
Labeled/Unlabeled in support of MAC, or both. In addition, the Intercepting API Calls
approach requires minimal or no changes to the UI of the mobile application other than
for the need to identify a given role/clearance for a session being initiated by a user.

Attaining Role-Based, Mandatory, and Discretionary Access Control 235

In this case, we incorporate the functionality of original API services into REST or API
services that are utilized to intercept the original API calls to disable the delivery of
content to the user.

Figure 4 conceptualizes the RBAC, MAC, and DAC permissions associated with
services. The secure/unsecure services from Defn. 4 and Table 1 are assigned by role
with the user acquiring these services when they choose a role for a given session (a
user may have multiple roles but is limited to one role per mobile application session).
This allows RBAC to be used to control services independent of MAC. The
labeled/unlabeled services from Defn. 5 and Table 2 are accessible based on a user’s
clearance that dominates the classification of the services under the properties (simple
security, liberal-*, etc.). This allows MAC to control services independent of RBAC. In
addition, we can control services for security policies of users that have both RBAC
and MAC. This can be achieved by classifying the services of an API as
secure/unsecure in support of RBAC and then extending security by classifying secure
services even further as labeled/unlabeled services in support of MAC. Note that secure
services can be classified as either labeled/unlabeled but unsecured services can only be
classified as unlabeled services (dashed arrows shown in Fig. 4). The left side of Fig. 4
depicts the way that API services can be delegated. The services can be delegated by an
original user (Defn. 6) or a delegated user (Defn. 7) with pass on delegation authority
(represented as User A in Fig. 4) in four different ways: Full RBAC Services
(FRS) Delegation in Defn. 9 to delegate all of his/her allowed Secure services to a
delegated user (biggest circle on the left within User B box in Fig. 4); Partial RBAC
Services (PRS) Delegation in Defn. 10 to delegate a portion of his/her allowed Secure
services to a delegated user (smallest circle on the left within User B box in Fig. 4);
Full MAC Services (FMS) Delegation in Defn. 11 to delegate all of his/her allowed
Labeled services to a delegated user (biggest circle on the right within User B box in
Fig. 4); and, Partial MAC Services (PMS) Delegation to delegate a portion of his/her
allowed Labeled services to a delegated user (smallest circle on the right within User B
box in Fig. 4).

Fig. 4. RBAC, MAC, and DAC permissions for API services.

236 Y. K. Rivera Sánchez et al.

5 An RBAC/MAC/ DAC Approach for Intercepting
API Calls

This section discusses the interactions and infrastructure of the Intercepting API Calls
approach for RBAC, MAC, and DAC. To begin, Fig. 5 depicts the detailed interactions
of the approach. The steps from the user’s perspective from left to right are: login to
his/her mobile app account; for successful login, extract the user’s role/clearance that is
part of the login credentials; store the extracted user role/clearance in a secure access
token in order to use it in future API calls; utilize the mobile app which results in
multiple mobile app API calls and are intercepted (data processing in top of Fig. 5);
and, the intercepted API call interacts with the access control permissions and policies
to enforce the defined security before invoking the original mobile app API call. There
are two possible requests that can occur as an end result of the interactions:
insert/update/delete requests where the data that the user is trying to
insert/update/delete is not allowed if the user/role/clearance combination does not have
permission to do so; and, retrieve requests where the data that the user/role/clearance
combination is trying to retrieve is filtered according to his/her role/clearance.

In the insert/update/delete request (via an intercepting mobile app API call in the
upper portion of the Access Control API oval in Fig. 5), the request is intercepted to
perform the access control checks, and depending on the response, the action is either
done (the original mobile app API call is allowed) or not. In the retrieve request the
user is trying to retrieve data (via an intercepting mobile app API call in the lower
portion of the Access Control API oval in Fig. 5), the data source performs this action
but the mobile app API is intercepted to allow access control checks to be performed.
This allows the intercepted API call to determine if the user has access to all/some/none
parts of the data with the resulting original API call returning data (all/some case) or
null/error message (none case).

To manage which resources a specific role and/or clearance can access, we store the
access control policy in a database, represented in Fig. 6 as an entity-relationship
diagram to support our service-based RBAC, MAC, and DAC approach. Once the
user’s role and/or clearance has been verified, we can access the specific permission we
want to evaluate through the means of an API service as stated in the previous para-
graph. The database would hold the roles and/or clearances for each user of each
mobile app along with the permissions for each role and/or clearance to each HIT
system supported with the HAPI FHIR server. Specifically, to track which services of
which FHIR RESTful APIs for each HIT are authorized by role and/or clearance to a
user of a particular mHealth app. Moreover, the secure_unsecure_services and the
labeled_unlabeled_services entities provides details of whether a user has access to the
resource he/she requested or not by his/her role or clearance, respectively. In addition,
the security policy tables store information about the available CRUD services,
resources, roles (RBAC), clearances (MAC), classifications (MAC), read and write
constraints (MAC), and delegations (DAC).

Attaining Role-Based, Mandatory, and Discretionary Access Control 237

6 RBAC/MAC/DAC Intercepting API Calls Enforcement
Code

This section reviews the algorithm that is able to automatically generate the Inter-
cepting API Calls enforcement code for RBAC, MAC, and DAC permission checks
that can occur dynamically and in real time. The primary changes to support the
Intercepting API Calls approach are made in the backend of the mobile app (server-side
– bottom portion of Fig. 2) and include the addition of RBAC, MAC, and DAC
security policies in a permission database to create the mapping from the original
mobile app.

Fig. 5. Interactions for the intercepting API calls approach.

238 Y. K. Rivera Sánchez et al.

API services to the corresponding new intercepting API services as shown in Fig. 6.
Each new intercepting API service has the same signature (same address and parameter)
as its original counterpart, so that the intercepting API call can substitute for the original
API call of the mobile app to allow the aforementioned security checks for retrieve and
insert/update/delete requests. As a result, the Intercepting API Calls approach effectively
wraps the original mobile app calls. The mobile app now seamlessly invokes the inter-
cepting API calls. These Intercepting API Calls enforcement code contains the appro-
priate RBAC, MAC, and DAC security checks, adding a layer of security to enforce the
policies. The renamed original mobile app API services are invoked based on the out-
comes of the security checks. The end result is that the mobile app appears differently
based on the user/role combination, to limit information that is delivered (retrieve request)
or that impacts the data that is stored (insert/update/delete requests).

Fig. 6. ER diagram for supporting the intercepting API calls approach.

Attaining Role-Based, Mandatory, and Discretionary Access Control 239

The Intercepting API Calls approach utilizes an algorithm to automatically generate
the intercepting code. Pseudo-code for the algorithm is shown in Fig. 7. In order to
automatically generate the enforcement code for the approach, we need to create a file
that contains the same API services as the original mobile app API via the generate
function Access_Control_API_Generator which has a parameter that contains an
array of all the API services available in the mobile application (line 1 of Fig. 7). For
each of the API services in the array, we obtain the parameters (if any), which are
stored in a database and store these (line 3 of Fig. 7) in a variable. Once we obtain the
parameters of the API call that is being evaluated, we can generate the heading of the
intercepting API call function by using the current API call as well as its parameters (if
any) (line 4 of Fig. 7). After generating the heading for the intercepting API call
function, we then generate the body of the API call, which contains the security
policies for that specific call and invokes the original mobile app API call if the user has
access to it (line 6 of Fig. 7). The resulting heading and body of the current API call is
stored in an array (line 7 of Fig. 7). Once all of the intercepting calls have been created,
we traverse the array in which they are stored in order to generate the intercepting file
(line 9 of Fig. 7).

To demonstrate the algorithm in Fig. 7, Fig. 8 contains the actual PHP enforcement
code that we implemented in order to generate our approach to the API of the CT2

mobile app. The function presented in Fig. 8 is utilized to generate the services in the
intercepting API. In order to create a renamed original API service for each of the
original mobile app API services, we need the name of the service we are going to
generate, if the service needs to be secured by adding permissions and, the name of the
file in which we add the generated service (line 1 of Fig. 8). Note that the permissions
we add in each of the intercepting services (if needed) are a layer of security that is not
part of the original API services (lines 3–13 of Fig. 8). Basically, there are three different
types of security permissions we can enforce: permissions based on a user’s role,
permissions based on a user’s clearance and MAC properties and, permissions based on
delegations. To verify if the user has access to the requested API service, we access the
security policy stored in the database which contains the entities secure_unse-
cure_services, frs_delegation, prs_delegation, labeled_unlabeled_services,
fms_delegation, pms_delegation entities shown in Fig. 6 of Sect. 6 that specify the

Fig. 7. Pseudo code algorithm to generate enforcement code of intercepting API calls approach.

240 Y. K. Rivera Sánchez et al.

requested API service’s role/classification (lines 3–7 and lines 11–13 of Fig. 8). If the
role/clearance that is been verified does have permission to perform the requested action,
then the service proceeds to access the service in the renamed API file (lines 8–10 of
Fig. 8); otherwise, the intercepting API service returns a null value (line 12 of Fig. 8).
Nonetheless, if the renamed API service does not need to verify a user’s role in order to
be executed then the intercepting call invokes it directly, in other words, the intercepting
API service does not add security permissions in this case (lines 8–10 of Fig. 8). Finally,
the generated API service gets written in the file that serves as the intercepting API (line
15 of Fig. 8).

The code given in Fig. 8 generates, for each original services of the CT2 API, a
REST API for generating an intercepting API file in support of the Intercepting API
Calls approach. This is shown in Fig. 9 for the original CT2 API service updateStudent
while Fig. 10 shows the renamed CT2 API of the aforementioned service.

Fig. 8. Code for generating the body of the API services in the CT2 API.

Fig. 9. Portion of generated code for the intercepting API.

Attaining Role-Based, Mandatory, and Discretionary Access Control 241

7 Implementation of RBAC/MAC/DAC Intercepting API
Calls

To evaluate the Intercepting API Calls approach, the Connecticut Concussion Tracker
(CT2) mobile application, database, and its server are utilized as an example. As
currently designed, the CT2 app supports RBAC, MAC, and DAC that allows for the
different screens and the content of different screens to be available by role, clearance,
and delegations. There are four roles: the Nurse role, which has access to all tabs for a
school nurse to manage a student’s concussion incident from its occurrence to its
resolution; the Athletic Trainer (AT) role which has access to home, list, student, cause,
and symptoms tabs to do a limited preliminary assessment if a concussion incident
occurs at the event; the Coach role, which has access to home, list, student and cause
tabs to report a concussion incident at an athletic event with very limited information
on the student; and, the Parent role, which has access to home, list, student, cause, and
symptoms tabs to both report a concussion incident on his/her child while attending the
athletic event or to track the current status of his/her children that have ongoing
concussions. In addition, each of the users of the mobile app have a clearance assigned
and delegation permissions.

Programmatically, we have source code for the Android version of the CT2 app and
a REST API that accesses the concussion MySQL database. The source code of the
mobile app is organized by tabs that are loaded for a given user/role combination, and
each tab is augmented with if/else conditions that either display the data on a tab if it
was available in the database or display an error message stating that the contents
couldn’t be retrieved. The realization of the Intercepting API Calls approach is
achieved without any modification to the mobile app UI and is intended to allow fine-
grained access control on the information that is displayable and/or storable of the
authorized tabs for each user/role/clearance combination. There is a very clear mapping

Fig. 10. Portion of generated code for the renamed API.

242 Y. K. Rivera Sánchez et al.

from the process described in this section and the accompanying figures to its real-
ization in CT2. The database is augmented with a table that contains a list of all the API
services available along with a service_id, and tables that contain the security policies
that determine which invocations the available roles/clearances have access to (se-
cure_unsecure_services and labeled_unlabeled_services entities in Fig. 6 of Sect. 5).
Given these database changes, we then take the original CT2 REST API services and
rename as shown in Fig. 3. Afterwards, a set of new CT2 intercepting REST API
services are defined that perform a series of RBAC, MAC, and DAC checks and if
successful, invoke the corresponding renamed original CT2 REST API services.

From a process perspective, the steps follow the top portion of Fig. 5. The user logs
on to the CT2 mobile app and his/her role/clearance is stored in a global variable in
order to support the class that manages the API services. Figure 11 illustrates the
impact of the Intercepting API Calls and associated process for a user with the role of
Coach and with a clearance of Confidential (C) which has access to only the home, list,
student, and cause tabs. This role-clearance combination can add basic information on
the ‘Student’ tab and can add information in the ‘Cause’ tab and, after adding the
information, can view but not edit. The original mobile app CT2 API services support
the insert of information in the database and the intercepting API call in this case allows
that first save to occur. At a later point in time, if the user attempts to edit and perform
another save, the intercepting API call in this case, performs the access control check
that does not allow the edit. As a result, when a user with the role of Coach and with a
clearance of C that is using the ‘Cause’ tab attempts to save, the intercepting API call
alerts that he/she does not have permission to perform that action. The other tabs of

Fig. 11. ‘Cause’ screen for the role of Coach in CT2 [16].

Attaining Role-Based, Mandatory, and Discretionary Access Control 243

CT2, ‘Symptoms’, ‘Follow-Up’ and ‘Return’, are still visible within the app. However,
when a user with the Coach role and with a clearance of C attempts to access one of
these tabs, the application tries to obtain the pertinent data via the former original CT2

API call that has been replaced by a new CT2 intercepting API call that checks for
permissions and returns that the specified role-clearance combination does not have
permission to retrieve the data for those screens.

8 Related Work

There are many efforts that propose access control mechanisms to secure mobile
applications by limiting the permissions and resources a mobile app can access in
different areas of the mobile device/app. In this section, we discuss several existing
approaches that attempt to apply access control mechanisms on different locations on a
mobile device and, we explain the way our approach compares and contrasts. The first
area of related work involves sensor management on smartphones that is commonly
addressed by applying access control mechanisms to the sensors of a mobile device so
that mobile apps obtain fine-grained permissions. This facilitates the managing of
sensor data in mobile apps (e.g., user’s location, use of Bluetooth) [32, 33]. BlurSense
[32] and SemaDroid [33] allow users to define and add privacy filters to sensor data,
through the means of a user interface, that is being used on their mobile applications. In
contrast to these efforts, our work presented in this paper focuses on API access control
management for the API services that are utilized within a mobile app to populate data
in the app and to add/edit data and store it in a data source. In other words, instead of
focusing on modifying the operating system to filter sensor data we modify the backend
of a specific mobile app and filter the data that a user can have access to according to
his/her role/clearance/delegation permissions, which can include sensor data as well if
there was an API service included in the intercepted API that managed this.

The second area of related work involves permission control in Android in which
access control can be applied on the mobile device itself. There are many existing
approaches [34–39] that focus on applying fine-grained access control policies to
mobile devices that contain Android as their operating system. This is due to the fact
that Android contains a coarse-grained access control mechanism when it comes to
allowing permissions in mobile applications. In other words, in order for a user to
install a mobile app he/she needs to accept all of the permissions that the app requires.
This may disregard the fact that some permissions may not be necessary for the app to
function and that some of the permissions may not make sense for the app that is being
downloaded and could result in using the allowed component for malicious purposes
(e.g., a flashlight app tells user it needs permission to get the user’s location). Adding
fine-grained access control to the APIs that Android uses for the device and apps to
function properly has been addressed by: mocking the values that an app receives in
order to function [34] (e.g., mocking latitude and longitude coordinates); extending the
security policies of the mobile device [35–37]; by rewriting the bytecode of the mobile
device [38]; and by adding security modules to the mobile device [39]. Moreover,
another effort by [40] utilizes MAC to provide security in mobile computing by
proposing and implementing FlaskDroid, a security architecture that provides

244 Y. K. Rivera Sánchez et al.

mandatory access control in both middleware and kernel layers of Android OS. The
purpose of this work is to apply fine-grained MAC security policies to Android OS
services such as LocationManager and Audio Services. The end result is that the
applications that form part of the device conforms to these finer-grained security
policies rather than utilizing the ones the device provides. A final effort [41] involves
modifying Android OS and applies context-based access control restrictions in mobile
devices. The intent is to allow a user of a mobile device to create a security policy that
establishes which resources/services of his/her mobile device their installed mobile
applications should have access to. In contrast to these efforts, our work presented in
this section focuses on applying access control mechanisms to the APIs that are not part
of the mobile system itself. In addition, most of these works are specific for Android
OS/API while ours can be implemented for any type of application (even though we
focus on the mobile setting) since our access control approach is enforced server-side.

The third area of related work involves role-based access control and extensions
that expand RBAC with context-aware techniques in order to provide finer-grained
access control security policies to those systems that contain highly sensitive data. One
effort does this by proposing an RBAC model with a spatiotemporal extension for web
applications [42] and another effort proposes a similar approach but for mobile
applications [43]. The access control system made for web applications [42] can be
applied to an existing system as a dll component. Another approach proposes a
dynamic RBAC approach for Android devices [44]. That approach focuses on modi-
fying the Android framework to provide a uniform security policy to mitigate security
risks in mobile devices that are utilized by users who are part of an enterprise.
Moreover, an effort [45] proposed a model that extends RBAC to generate RBAC
conceptual policies. Nevertheless, the aforementioned effort does not provide details of
which specific application domain(s) the approach could support. Finally, the approach
[46] utilizes user attributes to provide access control for business processes in mobile
computing and uses RBAC in combination of context-aware access control mecha-
nisms. Basically, the approach identifies the tasks that are available in a system, assigns
roles to the users of that system and, establishes which roles have permissions of which
tasks and under what context. Our approach can augment their work by including
additional RBAC, MAC, and DAC capabilities server-side. Our Intercepting API Calls
approach could easily be extended to support other types of access control such as
attribute-based access control (ABAC) [47] and identity-based access control (IBAC)
[48] in order to generate finer-grained access control. Our Intercepting API Calls
approach can also be applied to mobile web applications and, it is not domain-specific;
this contrasts to the discussed related work.

9 Conclusion

This paper presented an API-based access control approach on the interactions between
the UI and the mobile applications’ API services to control by RBAC, MAC, and/or
DAC permissions which invocations are allowed to be invoked on a user-by-user basis
through the generation of an intercepting API that mirrors the original mobile appli-
cation’s API. Section 1 introduced what we wanted to accomplish with the

Attaining Role-Based, Mandatory, and Discretionary Access Control 245

Intercepting API Calls approach. Section 2 defined background concepts, motivated
the Intercepting API Calls approach by explaining the important role of the API in
accessing information, and exposed details of the CT2 mHealth app. Section 3 pre-
sented the high-level processing of the Intercepting API Calls approach using the
classic architecture of the User Layer, Presentation Layer, Business Layer, and, Data
Layer. Section 4 defined a service-based model for RBAC, MAC, and DAC, and
detailed the underlying processing of the Intercepting API Calls approach by exam-
ining the way that API services are categorized. Section 5 examined the
RBAC/MAC/DAC approach for Intercepting API Calls with a focus on the Interactions
and Infrastructure for the Intercepting API Calls approach. Section 6 explored the
automatic generation of RBAC, MAC, and DAC enforcement code for the Intercept-
ing API Calls approach via an algorithm. Section 7 illustrated the Intercepting API
Calls approach via the CT2 mHealth application. Finally, Sect. 8 discussed related
work in security and access control mechanisms for mobile applications.

References

1. Heisey-Grove, D., Patel, V.: Any, certified, and basic: quantifying Physician EHR adoption
through 2014, September 2015. https://www.healthit.gov/sites/default/files/briefs/
oncdatabrief28_certified_vs_basic.pdf

2. Walker, J., Pan, E., Johnston, D., Adler-Milstein, J., Bates, D.W., Middleton, B.: The value
of health care information exchange and interoperability. Health Aff. 24(2), 10–18 (2005)

3. Himss: Meaningful use stage 3 final rule. http://www.himss.org/ResourceLibrary/
genResourceDetailPDF.aspx?ItemNumber=44987. Accessed 2016

4. Rindfleisch, T.C.: Privacy, information technology, and health care. Commun. ACM 40(8),
93–100 (1997)

5. Sandhu, R.S., Samarati, P.: Access control: principles and practice. IEEE Commun. Mag. 32
(9), 40–48 (1994)

6. Ferraiolo, D., Kuhn, R: Role-based access control. In: Proceedings of the NIST-NSA
National (USA) Computer Security Conference, pp. 554–563 (1992)

7. Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D., Chandramouli, R.: Proposed NIST standard
for role-based access control. ACM Trans. Inf. Syst. Secur. (TISSEC) 4, 224–274 (2001)

8. Bell, D.E., La Padula, L.J.: Secure computer system: unified exposition and multics
interpretation. MITRE Corp. (1976)

9. Department of Defense: Department of Defense Trusted Computer System Evaluation
Criteria, 26 December 1985

10. West, A.: 5 Roles of role based access control (2015). https://www.itouchvision.com/5-roles-
of-role-based-access-control-the-software-security-guard/

11. Fernández-Alemán, J., Señor, I., Lozoya, P., Toval, A.: Security and privacy in electronic
health records: a systematic literature review. J. Biomed. Inform. 46(3), 541–562 (2013)

12. FHIR: Welcome to FHIR (2016). https://www.hl7.org/fhir/index.html
13. Cobb, M.: API security: how to ensure secure API use in the enterprise. http://searchsecurity.

techtarget.com/tip/API-security-How-to-ensure-secure-API-use-in-the-enterprise. Accessed
11 Mar 2014

246 Y. K. Rivera Sánchez et al.

https://www.healthit.gov/sites/default/files/briefs/oncdatabrief28_certified_vs_basic.pdf
https://www.healthit.gov/sites/default/files/briefs/oncdatabrief28_certified_vs_basic.pdf
http://www.himss.org/ResourceLibrary/genResourceDetailPDF.aspx?ItemNumber=44987
http://www.himss.org/ResourceLibrary/genResourceDetailPDF.aspx?ItemNumber=44987
https://www.itouchvision.com/5-roles-of-role-based-access-control-the-software-security-guard/
https://www.itouchvision.com/5-roles-of-role-based-access-control-the-software-security-guard/
https://www.hl7.org/fhir/index.html
http://searchsecurity.techtarget.com/tip/API-security-How-to-ensure-secure-API-use-in-the-enterprise
http://searchsecurity.techtarget.com/tip/API-security-How-to-ensure-secure-API-use-in-the-enterprise

14. Rivera Sánchez, Y.K., Demurjian, S.A.: Towards user authentication requirements for
mobile computing. In: Malik, A., Anjum, A., Raza, B. (eds.) Innovative Solutions for Access
Control Management, pp. 160–196. IGI Global (2016). http://www.igi-global.com/book/
innovative-solutions-access-control-management/146981

15. Rivera Sánchez, Y.K., Demurjian, S.A., Conover, J., Agresta, T., Shao, X., Diamond, M.:
An approach for role-based access control in mobile applications. In: Mukherja, S. (ed.)
Mobile Application Development, Usability, and Security, pp. 117–141. IGI Global (2016).
http://www.igi-global.com/book/mobile-application-development-usability-security/154083

16. Rivera Sánchez, Y.K., Demurjian, S.A., Gnirke, L.: An intercepting API-based access
control approach for mobile applications. In: Proceedings of the 13th International
Conference on Web Information Systems and Technologies (WEBIST), pp. 137–148. April
2017. http://www.scitepress.org/Papers/2017/63543/63543.pdf

17. Rivera Sánchez, Y.K., Demurjian, S.A., Baihan, M.: Achieving RBAC on RESTful APIs for
mobile apps using FHIR. In: Proceedings of the 5th IEEE International Conference on
Mobile Cloud Computing, Services, and Engineering, pp. 177–184. IEEE Mobile Cloud,
April 2017. https://ieeexplore.ieee.org/document/7944884/

18. Beal, V.: API - application program interface (2004). http://www.webopedia.com/TERM/A/
API.html

19. Facebook (2014). https://developers.facebook.com/docs/graph-api
20. Flanders, D., Ramsey, M., McGregor, A.: The advantage of APIs (2012). https://www.jisc.

ac.uk/guides/the-advantage-of-apis
21. REST API Tutorial, Learn REST: A RESTful Tutorial (2012). http://www.restapitutorial.

com/
22. Rouse, M.: HTTP (Hypertext Transfer Protocol), 15 July 2006. http://

searchwindevelopment.techtarget.com/definition/HTTP
23. Collet, S.: API security leaves apps vulnerable: 5 ways to plug the leaks (2015). http://www.

csoonline.com/article/2956367/mobilesecurity/api-security-leaves-apps-vulnerable-5-
waysto-plug-the-leaks.html

24. Snapchat (2011). https://www.snapchat.com/
25. Snapchat: Finding Friends with Phone Numbers (2013). http://blog.snapchat.com/post/

71353347590/finding-friends-with-phone-numbers
26. Zeman, E.: Snapchat lays down the law on third-party apps (2015). http://www.

programmableweb.com/news/snapchat-lays-down-law-third-partyapps/2015/04/07
27. Instagram (2010). https://www.instagram.com/
28. Dellinger, A.J.: This Instagram app may have stolen over 500,000 usernames and passwords

(2015). http://www.dailydot.com/debug/instaagent-instagram-app-malware-ios-android/
29. Larson, S.: Instagram restricts API following password breach, will review all apps going

forward (2015). http://www.dailydot.com/debug/instagram-api-restrictions/
30. Connecticut General Assembly: Substitute for Raised H.B. No. 6722 (2015). https://www.

cga.ct.gov/asp/CGABillStatus/CGAbillstatus.asp?which_year=2015&selBillType=
Bill&bill_num=HB6722

31. Microsoft Corporation: Mobile Application Architecture Guide (2008). http://robtiffany.
com/wpcontent/uploads/2012/08/Mobile_Architecture_Guide_v1.1.pdf

32. Cappos, J., Wang, R., Yang, Y., Zhuang, Y.: Blursense: dynamic fine-grained access control
for smartphone privacy. In: Sensors Applications Symposium (SAS) 2014. IEEE (2014).
https://doi.org/10.1109/SAS.2014.6798970

33. Xu, Z., Zhu, S.: Semadroid: a privacy-aware sensor management framework for
smartphones. In: Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy, pp. 61–72. ACM (2015)

Attaining Role-Based, Mandatory, and Discretionary Access Control 247

http://www.igi-global.com/book/innovative-solutions-access-control-management/146981
http://www.igi-global.com/book/innovative-solutions-access-control-management/146981
http://www.igi-global.com/book/mobile-application-development-usability-security/154083
http://www.scitepress.org/Papers/2017/63543/63543.pdf
https://ieeexplore.ieee.org/document/7944884/
http://www.webopedia.com/TERM/A/API.html
http://www.webopedia.com/TERM/A/API.html
https://developers.facebook.com/docs/graph-api
https://www.jisc.ac.uk/guides/the-advantage-of-apis
https://www.jisc.ac.uk/guides/the-advantage-of-apis
http://www.restapitutorial.com/
http://www.restapitutorial.com/
http://searchwindevelopment.techtarget.com/definition/HTTP
http://searchwindevelopment.techtarget.com/definition/HTTP
http://www.csoonline.com/article/2956367/mobilesecurity/api-security-leaves-apps-vulnerable-5-waysto-plug-the-leaks.html
http://www.csoonline.com/article/2956367/mobilesecurity/api-security-leaves-apps-vulnerable-5-waysto-plug-the-leaks.html
http://www.csoonline.com/article/2956367/mobilesecurity/api-security-leaves-apps-vulnerable-5-waysto-plug-the-leaks.html
https://www.snapchat.com/
http://blog.snapchat.com/post/71353347590/finding-friends-with-phone-numbers
http://blog.snapchat.com/post/71353347590/finding-friends-with-phone-numbers
http://www.programmableweb.com/news/snapchat-lays-down-law-third-partyapps/2015/04/07
http://www.programmableweb.com/news/snapchat-lays-down-law-third-partyapps/2015/04/07
https://www.instagram.com/
http://www.dailydot.com/debug/instaagent-instagram-app-malware-ios-android/
http://www.dailydot.com/debug/instagram-api-restrictions/
https://www.cga.ct.gov/asp/CGABillStatus/CGAbillstatus.asp%3fwhich_year%3d2015%26selBillType%3dBill%26bill_num%3dHB6722
https://www.cga.ct.gov/asp/CGABillStatus/CGAbillstatus.asp%3fwhich_year%3d2015%26selBillType%3dBill%26bill_num%3dHB6722
https://www.cga.ct.gov/asp/CGABillStatus/CGAbillstatus.asp%3fwhich_year%3d2015%26selBillType%3dBill%26bill_num%3dHB6722
http://robtiffany.com/wpcontent/uploads/2012/08/Mobile_Architecture_Guide_v1.1.pdf
http://robtiffany.com/wpcontent/uploads/2012/08/Mobile_Architecture_Guide_v1.1.pdf
http://dx.doi.org/10.1109/SAS.2014.6798970

34. Beresford, A., Rice, A., Skehin, N., Sohan, R.: MockDroid: trading privacy for application
functionality on smartphones. In: 12th Workshop on Mobile Computing Systems and
Applications, Phoenix, Arizona (2011)

35. Benats, G., Bandara, A., Yu, Y., Colin, J., Nuseibeh, B.: PrimAndroid: privacy policy
modelling and analysis for android applications. In: Symposium on Policies for Distributed
Systems and Networks (POLICY 2011) (2011)

36. Wang, Y., Hariharan, S., Zhao, C., Liu, J., Du, W.: Compac: enforce component-level access
control in android. In: Proceedings of the 4th ACM Conference on Data and Application
Security and Privacy, San Antonio, Texas, USA (2014)

37. Jin, X., Wang, L., Luo, T., Du, W.: Fine-grained access control for HTML5-based mobile
applications in android. In: 16th Information Security Conference (ISC) (2015)

38. Hao, H., Singh, V., Du, W.: On the effectiveness of API-level access control using bytecode
rewriting in android. In: 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, Hangzhou, China (2013)

39. Backes, M., Bugiel, S., Gerling, S., von Styp-Rekowsky, P.: Android security framework:
extensible multi-layered access control on android. In: 30th Annual Computer Security
Applications Conference (2014)

40. Bugiel, S., Heuser, S., Sadeghi, A.: Flexible and fine-grained mandatory access control on
android for diverse security and privacy policies. In: 22nd USENIX Security Symposium,
pp. 131–146 (2013)

41. Shebaro, B., Oluwatimi, O., Bertino, E.: Context-based access control systems for mobile
devices. Fellow, IEEE (2015)

42. Aich, S. Mondal, S., Sural, S., Majumdar, A.K.: Role based access control with
spatiotemporal context for mobile applications. Trans. Comput. Sci. IV (2009). Special
Issue on Security in Computing

43. Abdunabi, R., Sun, W., Ray, I.: Enforcing spatio-temporal access control in mobile
applications. Computing 96(4), 313–353 (2014)

44. Rohrer, F., Zhang, Y., Chitkushev, L., Zlateva, T.: DR BACA: dynamic role based access
control for android. In: 29th Annual Computer Security Applications Conference, New
Orleans, Louisiana, USA (2013)

45. Fadhel, A., Bianculli, D., Briand, L., Hourte, B.: A model-driven approach to representing
and checking RBAC contextual policies. In: CODASPY 2016, pp. 243–253. ACM (2016)

46. Schefer-Wenzl, S., Strembeck, M.: Modelling context-aware RBAC models for mobile
business processes. Int. J. Wireless Mob. Comput. (IJWMC) 6(5), 448 (2013)

47. Coyne, E., Weil, T.: ABAC and RBAC: scalable, flexible, and auditable access management.
IT Prof. 15(3), 14–16 (2013)

48. Jericho Systems (2014). https://www.jerichosystems.com/technology/glossaryterms/
identity_based_access_control.html

248 Y. K. Rivera Sánchez et al.

https://www.jerichosystems.com/technology/glossaryterms/identity_based_access_control.html
https://www.jerichosystems.com/technology/glossaryterms/identity_based_access_control.html

Assisted End User Development
for Non-programmers: Awareness,

Exploration and Explanation
of Composite Web Application

Functionality

Carsten Radeck(B) and Klaus Meißner

Faculty of Computer Science, Technische Universität Dresden,
Dresden, Germany

{carsten.radeck,klaus.meissner}@tu-dresden.de

Abstract. Mashing up existing components allows end users to build
custom web applications in order to fulfill situation-specific needs. How-
ever, creating and even using mashup applications still turn out to be
complicated tasks for non-programmers. Main challenges include under-
standing the composite nature of mashups and their functionality. Non-
programmers typically lack awareness for inter-widget communication and
understanding of the functionality individual components and especially a
set of combined components provide. Thus, they may struggle to use com-
ponents as intended. Prevalent mashup approaches provide no or limited
concepts and assistance tools in this regard, resulting in more or less suc-
cessful trial and error strategies of users. In this paper, we introduce novel
techniques for exploration, explanation and awareness of mashup function-
ality. These concepts assist non-programmers to better understand and
to be aware of the capabilities that components and their interplay in a
mashup provide. Based on annotated component descriptions, interactive
explanations and stepwise tutorials are generated and presented directly
in the components’ user interface. Additionally, mashup functionality can
be explored and active inter-widget communication is visualized to foster
awareness of non-programmers. We present our iterative design process
which led us from early concepts towards our current solution. The pro-
posed approach is validated with the help of a prototypical implementa-
tion within our mashup platform and evaluated by means of a user study.
The results indicate that our concepts helps non-programmers to better
understand and leverage the functionality of composite web applications.

Keywords: Mashup · Awareness · Inter-widget communication
Generated tutorials · End User Development · Assistance

1 Introduction

As the number of web resources, services and application programming interfaces
increases, the mashup paradigm is an approach to re-use and combine such com-
c© Springer International Publishing AG, part of Springer Nature 2018
T. A. Majchrzak et al. (Eds.): WEBIST 2017, LNBIP 322, pp. 249–275, 2018.
https://doi.org/10.1007/978-3-319-93527-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93527-0_12&domain=pdf

250 C. Radeck and K. Meißner

ponents in a broad variety of application scenarios to provide added value. Uni-
versal composition approaches enable platform-independentmodeling ofmashups.
Therein, apply components spanning all application layers, ranging from data and
logic services to user interface (UI)widgets, are uniformly described and composed.

In principle, the mashup paradigm and end user development complement each
other quite well, allowing to better meet situational niche requirements of users.
However, it is still cumbersome for end users, and especially non-programmers, to
develop and even use composite web application (CWA). They face several chal-
lenging tasks in CWA development and usage, as for instance pointed out by [1,2].
In this paper, we pay special attention to the following two challenges: (1) under-
stand what single components are capable of and what functionality they provide
in interplay, as well as (2) become aware of inter-widget communication (IWC).

Our platform adheres to universal composition and enables users to build
and use custom, situational CWA. Non-programmers can modify an application
while it is executed. This way, they get instant feedback on their composition
actions. Components are semantically annotated with the capabilities they pro-
vide. Building up on this, capabilities of arbitrary composition fragments are
automatically calculated [1]. This allows our mashup environment to offer tools
for continuous assistance. With this, we tackle the challenges that we mentioned
above and that we detail in a reference scenario now.

Non-programmer Bob uses an existing mashup for travel planning recom-
mended by a friend. It combines two maps, a route calculator, a weather wid-
get and two components for searching points of interest and hotels. Since Bob
is neither familiar with the overall mashup nor the individual components, he
has understanding problems of which functionality the application provides and
which not and how to achieve it. For example, Bob is unsure why there are
two maps, whether the location in a map effects other components, and if yes,
which kind of effect. Further, he does not know how to find hotels near the
target location. Normally he would have to explore the application manually in
a trial and error style, but platform supports Bob in gaining insight. First, an
overview panel displays the mashup functionality, possibly composed of several
sub-functionalities. It allows Bob to inspect what tasks he can solve with the
application at hand and which components partake in certain functionalities.
This way, Bob comprehends that one map serves for selecting the start loca-
tion, while the other is used to select the target location of a route. Since Bob
has no clue about how to see a list of routes, he activates an explanation tool,
which shows interactive animations of necessary steps and interactions he has
to perform. It highlights elements of the component UI, indicates sequential and
parallel work-flows and complements this with textual descriptions of what to
do. Such explanations not only work for component interplay, but for capabili-
ties of single components and how these are reflected on the component UI, too.
This helps Bob understand that he can move a marker or type the location name
in an input field of either map to select a location. Bob has not yet noticed the
communication relation between one map and the weather widget, since these are
positioned far away from each other on the screen. A platform feature animates

Assisted End User Development for Non-programmers 251

the data flow whenever it occurs, utilizing the same visualization techniques as
in the explanation tool. Consequently, Bob gets aware of data transfer between
both widgets.

In order to implement the reference scenario and to tackle the challenges
stated above, there are at least the following foundational requirements:

– There need to be appropriate mechanisms that explain mashup functionalities
to non-programmers. Tutorials for components can be statically provided by
developers, but this is not feasible for CWA since they are developed ad-
hoc by end users combining components in unforeseen ways. Explanations
should be optically consistent for all CWA. Hence, it seems inappropriate to
rely on component-provided tutorials and combine them. Explanations have
to be offered automatically for arbitrary mashups, should be interactive and
directly presented in the UI of components.

– Concepts are required to foster awareness for IWC when it occurs. An app-
roach has to work for arbitrary communication relations and should directly
operate in components’ UI, since this actually can help users, as pointed out
by [3].

Most prevalent mashup approaches support users with visual composition
metaphors and recommendations. But assisting users in understanding a CWA
and in becoming aware of IWC are neglected or very limited so far. Traditional
approaches like static help pages and forums lack suitability, too. As a main
contribution, we introduce a set of generic concepts for exploration, explana-
tion, and awareness of the capabilities of arbitrary CWA in this paper. These
techniques allow non-programmers to investigate the functionality of single com-
ponents and the entire mashup. With the help of component annotations, step-
wise tutorials that give instructions on how to achieve capabilities are generated.
Thereby, textual explanations and graphical highlights in the component UI are
combined. In addition, we propose concepts to make users aware of IWC when
it occurs. These techniques are especially valuable as they work for unforeseen
combinations of black-box components. We conduct a user study to evaluate our
concepts.

This article is an extended version of the paper presented at WEBIST 2017
[4]. The remaining paper is structured as follows. In Sect. 2 we discuss related
work. We outline our overall assisted end user development (EUD) approach in
Sect. 3 then. First iterations of our design process are subject of Sect. 4. Based
on the lessons learned, we introduce our concepts for exploration, explanation
and awareness of IWC in Sect. 5. Details on our implementation and on a user
study we conducted are described in Sect. 6. Finally, Sect. 7 concludes the paper
and outlines future work.

2 Related Work

Three types of performance support can be distinguished [5]. Intrinsic support is
inherent to the system, seamlessly integrated with the UI as well as the behav-
ior of the system. There is no break in users’ workflow, but such techniques

252 C. Radeck and K. Meißner

are limited in extent because they compete with the normal application for the
limited UI space. Extrinsic support is directly integrated with the system as
well, yet not in the primary workspace. Such support is often contextualized
regarding the user task and typically requires the user to invoke or accept it [5].
Examples include explanations, demonstrations and wizards. Our approach can
be assigned to this category. External support, like forums, tutorials and help
pages on the web, is not integrated with the workspace itself. Since it typically
lacks context specificity, users must ad hoc transfer provided knowledge to their
current task context. External support is well suited for developer-provided con-
tent, like components, and introductions to static content. However, in context
of CWA, that serve short-termed, situation-specific needs, combine components
in unforeseen ways, and are subject iterative refinement, they lack practicability
and suitability.

A goal of the Idea Garden [6] is to help users to overcome design barriers. To
this end, suggestions for problem solving strategies are presented in an extrinsic
manner. Suggestions also include step-by-step instructions on how to perform a
strategy. However, suggestions are often general and context-free and establish
no direct link to the component UI. The Whyline [7] provides support for users
to debug their programs. To this end, developers construct “why did” and “why
did not” questions using menus and referencing objects involved in an algorithm.
An answers is shown as a graph, visualizing actions that happened at runtime
and arrows that represent causality. This approach operates on a more source
code oriented level than our concept and there is no visualization of active data
transfer. A debugging interface for Yahoo! Pipes is proposed in [8]. Certain types
of anomalies are automatically detected in pipes. Users are supported by a “to-
fix list” of bugs that highlights corresponding erroneous modules, displays error
messages and gives hints on possible solutions. This approach helps users to
identify problems that hinder a pipe from working properly, while we try to
explain which functionality a working mashup provides and how a user has to
interact with it.

Most mashup EUD platforms provide at least external support. But as we
explicate in the remainder of this section, intrinsic and extrinsic approaches are
missing or very limited. There are composition metaphors that can also be used
to explain what should go on in a mashup. Typically, a derivation of “if-then”
is employed, e. g., in IFTTT 1, CapView [9], PEUDOM [10] and NaturalMash
[11]. In rather simple scenarios, the resulting composition logic is suitable to
explain functionality to non-programmers. However, the required link to the
actual UI is missing in IFTTT and CapView. In the PEUDOM platform com-
munication channels are created and modified in a dedicated dialog by selecting
an event and an operation. To explain a channel, a short sentence describes the
causal relation. However, there is no means for explaining the overall mashup
functionality. In a widget editor, the link between data schema and UI can be
established graphically. But these techniques are not utilized to explain widget
functionality later on. In NaturalMash [11] restricted natural language defines

1 https://ifttt.com/.

https://ifttt.com/

Assisted End User Development for Non-programmers 253

the composition logic. Conceptually, when selecting text fragments, correspond-
ing UI elements are highlighted. However, neither details nor an evaluation on
this aspect are available. Similar to this work, we utilize generated labels, but
also present animations for complex composition fragments directly within the
UI of a CWA. In the FAST-Wirecloud approach [12] behaviors are composition
fragments of a mashup that represent a functionality. Behaviors feature natural
language descriptions and are used to ease the composition process, but not to
explain a mashup at runtime. SOA4all [13] propose assisted composition of web
services. Therein, templates are prototypical compositions and show similarity
to task models. Users can choose templates from a taxonomy and have to select a
service per task in order to complete the composition. The association of service
to task is a high-level explanation of a service’s functionality. However, besides
that, there are no other features. Several approaches like [14–16] display the com-
position logic including inter-component connections with the help of abstract
graph visualizations. However, such concepts are rather technical and presenting
the actual functionality achieved and its relation to the UI is not considered. [14]
additionally support users with a generated textual description of the mashup
composition at hand. Again, this text is rather technical than domain-oriented.
Further there is no relation to the component UI and no means to make users
aware of IWC at runtime.

The OMELETTE approach features a live development mashup environ-
ment. A distinct composition paradigm is followed, where per default all possi-
ble communication channels between widgets are established. As pointed out in
[2], this results in challenges for awareness and control of users. Thus, features
fostering awareness for IWC have been proposed [3]. The communication rela-
tions of widgets are visualized as arrows on the canvas and active data transfer
is indicated by highlighting involved widgets. However, the authors point out,
that suitable visualization techniques are still an open research question. Fur-
ther, explanations of the functionality communication relations provide as well
as tutorials are missing. Within the Linked Widgets Platform [16] active wid-
gets are highlighted, which can be considered as a limited means to make users
aware of IWC. The MashupEditor [17] highlights UI elements of widgets and
draws arrows to illustrate communication channels. We use similar base tech-
niques, but also present animations and textual explanations to the user.

To sum up, none of the presented concepts fulfills all the requirements
stated in Sect. 1. Therefore, we propose novel, generic techniques for exploration,
explanation and awareness of CWA functionality, that are adequate for non-
programmers.

3 Assisted End User Development of Mashups with
CRUISE

In this section we outline the core characteristics and foundations of the CRUISE
mashup platform [1] and relate the concepts we present in this paper to it.

254 C. Radeck and K. Meißner

The CRUISE mashup platform strives to enable end users to build cus-
tom CWA. Thereby, we specifically address non-programmers, defined as web-
experienced domain experts without programming knowledge. They typically
know their problem and possible solutions in terms of domain concepts and tasks
to perform, but fail to map such solutions on technical requirements or mashup
compositions. Composition platforms for non-programmers should meet crucial
requirements, see e. g. [12,13]. Considering this, applying scenario-based tech-
niques and conducting user studies, we derived the following design goals for our
approach.

Development Process. An iterative process with continuous assistance and
instant feedback on composition steps is required.

Level of Abstraction. Technical details, concepts and terminology have to hid-
den from users. Instead, when communicating with non-programmers, domain
concepts and vocabulary should be utilized.

Assisted Start. Appropriate tools for accessing or searching components and
applications are necessary, especially in case a user has only a vague idea.

Assisted Composition. An intuitive composition metaphor and automation
are required.

Recommender System. Users should be supported by recommendations dur-
ing development. In context of this paper it is especially relevant, that rec-
ommendations are presented in a suitable way.

Assist Usage and Understanding. As pointed out in Sect. 1, non-
programmers need support to explore, understand and be aware of the com-
posite functionality of CWA.

In order to fulfill these requirements, as shown in Fig. 1, our EUD approach
builds up on a semantic model layer, which is the foundation for several base mech-
anisms. Both layers enable EUD tools, suitable for non-programmers, according to
our development and usage paradigm, which we denote Live Sophistication.

Fig. 1. Overview of the CRUISE platform for mashup EUD.

Assisted End User Development for Non-programmers 255

3.1 Model Layer

The CRUISE platform follows a model-driven approach to create and execute
mashups. Arbitrary Web resources and services can be encapsulated as com-
ponents. In line with universal composition, components of all application lay-
ers are uniformly described and treated as black boxes, based on a common,
generic component model. The latter characterizes components by means of sev-
eral abstractions: events and operations with typed parameters, typed proper-
ties, and capabilities. The declarative Semantic Mashup Component Description
Language (SMCDL) provides a concrete syntax for the component model. In
addition, it features semantic annotations to clarify the meaning of component
interfaces and capabilities [9]. To this end, properties and parameters refer to
domain ontology concepts to indicate data semantics. All aspects of a CWA are
modeled with the help of the Mashup Composition Model (MCM). This includes
the components to be integrated, application screens with their layout and tran-
sitions, and the event-based communication of components.

Fig. 2. The capability meta-model [4].

Capabilities allow to model functional and behavioral semantics of compo-
sition fragments, i. e., of components, applications as well as patterns. Inspired
by research on task models, capabilities describe what a composition fragment
is able to do or which functionality it provides, like displaying a location or
searching hotels. To this end, capabilities essentially are tuples (activity, entity)
– denoted activity entity from now on – and express which activity or task
is performed on or with which domain object, e. g. search hotel. As shown in
Fig. 2, references to semantic concepts described in ontologies back the descrip-
tion with formal semantics providing domain-specific knowledge and allow for
reasoning. To achieve a capability, it may be necessary for the user to partake
and interact with the UI or not. Therefore, UI and system capabilities are dis-
tinguished. To establish hierarchical structures, capabilities can be composite.

256 C. Radeck and K. Meißner

The relation of children of a composite capability is defined by a connective,
e. g., parallel and sequential. In case of sequences, capabilities are chained to
define the order using next and previous. See Fig. 3 for an example of a compos-
ite capability.

Fig. 3. Exemplified composite capability with an indicated view binding.

View bindings are a concept particular for UI capabilities. They link the
semantic layer and the UI of a component, as indicated in Fig. 3. Basically, a view
binding comprises interaction steps, modeled as atomic, parallel or sequential
operations. Atomic operations point to DOM elements, using a selector language,
e. g. CSS selectors, can name the elements and define interaction techniques,
like click and sweep (see lines 3 and 6 in Listing 1). To reduce complexity of
annotating and algorithmic processing, composite operations are restricted to
one layer of atomic operations. Each UI capability can be equipped with multiple
view bindings, which are considered alternatives then, e. g., if it is possible to
select a location via typing something in a text field or double clicking a map
(lines 2 and 5).

1 <capability activity="Select" entity="Location">
2 <viewbinding >
3 <atomicoperation element="input[id$=’mapTextField ’]" interaction="type"

/>
4 </viewbinding >
5 <viewbinding >
6 <atomicoperation element="div[id$=’locationMarker ’]" elementName="map

marker" interaction="dragAndDrop" />
7 </viewbinding >
8 </capability > ...

Listing 1. Excerpt of a SMCDL descriptor (from [4]).

In CRUISE, composition knowledge is represented by multiple, complement-
ing aspects. Patterns model meaningful or statistically significant composition
fragments, e. g., complex constellations of several components connected via
certain channels. In addition, domain ontologies are leveraged to derive more
abstract patterns on a semantic level and to estimate the semantic relevance of
patterns in a given context. Finally, implicit and explicit user feedback on com-
ponents, CWA, and recommendations enriches those aspects. Since the feedback

Assisted End User Development for Non-programmers 257

context, comprising information like the user, composition context, and recom-
mendation type, is kept, validity and suitability of composition fragments and
recommendations in certain contexts are learned over time.

3.2 Base Mechanisms

Assisted EUD of mashups comes with a set of base algorithms and mechanism,
which build up on the model layer and offer the functionality required by EUD
tools.

Semantic data mediation techniques [18] foster component re-use by solving
interface incompatibilities, increasing the opportunities to combine components.
For instance, different granularity, abstraction and units of component interface
parameters can be mediated as long as the underlying domain models allows that.

Based on capabilities of components and communication channels within a
mashup, an algorithm estimates the capabilities of patterns and applications [1].
The concepts we present in this paper build up on the derived capability models.

A recommender system gives advice on composition fragments to users [19].
In order to embrace the highly iterative and ad-hoc development of CWA and
to meet the requirements of our target group of users, triggers define when rec-
ommendations should be presented. Several trigger types can be distinguished,
e. g., user-demanded, proactive and reactive. This allows our platform to cover a
multitude of scenarios and conditions, providing assistance throughout the devel-
opment and usage process. Deriving recommendations is based on patterns and
semantic knowledge. Viewers are responsible for displaying recommendations to
users. Implicit and explicit feedback, for example, selection statistics and user
ratings, is gathered by the recommender system and influences candidate rank-
ing. Accepted recommendations are automatically integrated into a new or the
current CWA. To this end, patterns are mapped to adaptation techniques and
the adaptation system implements those techniques.

3.3 EUD Process and Tools

A fundamental feature of our approach is the mashup development and usage
paradigm, which we refer to as Live Sophistication. Therein, run time and devel-
opment time of a CWA are strongly interwoven. Users can seemingly switch
between editing and using an application. Communication with users takes place
on capability level and necessary mappings to composition model changes are
handled transparently by the platform. According to Live Sophistication, non-
programmers perform several activities in a highly iterative manner: search for
suitable composition fragments; compose an application, e. g., add components
and connect them; users get recommendations, either explicitly on demand or
implicitly upon system initiative; they use a CWA and have to understand its
purpose and how to handle it. As indicated in Fig. 1, most activities are optional
and iterative in themselves. Further, appropriate EUD tools support each activity.

258 C. Radeck and K. Meißner

In order to realize Live Sophistication, the CRUISE architecture, illustrated
in Fig. 4, features a mashup runtime environment (MRE) that not only manages
mashups’ lifecycle, but additionally provides most base mechanisms and a set of
EUD tools. An MRE relies on server-side repositories and services.

Fig. 4. Architectural overview of the CRUISE platform.

As an important assistance feature, our platform helps non-programmers
in getting started with their mashup composition. A personalized dashboard
offers several entry points. There are listings of recently used and otherwise
relevant components and compositions, enabling users to browse the catalog.
Furthermore, multiple search options are offered, like keyword-based and faceted
search. A wizard guides non-programmers in expressing and decomposing their
functional requirements in terms of capabilities.

In addition, a MRE is equipped with composition tools. For instance, differ-
ent views on the current CWA are provided: The live view is mainly intended for
usage and thus only component UIs are visible to the user. Complementing this,
there are overlay views, like the CapView [9], that display component and compo-
sition model details and mainly serve for development purposes. Furthermore,
tools like the aforementioned CapView and our novel explanation techniques,
which are subject to this paper, explain the capabilities originating from com-
ponents and their interplay within the current mashup in a textual and visual
manner. Regarding CapView, we re-use its label generator, which creates human
readable text from capabilities, but provide explanation techniques directly in
the component UI rather than in an abstract view.

Recommendations are shown to users in dedicated viewers, e. g., the rec-
ommendation panel, and viewers integrated in other platform utilities, like
CapView. Viewers and rating dialogs are responsible to collect user feedback,
which is stored in conjunction with the feedback context.

Assisted End User Development for Non-programmers 259

The explanation techniques we present in this paper, serve to assist non-
programmers in exploring and understanding the capabilities of CWA.

3.4 Summary

In summary, referring to the high-level design goals stated at the beginning of
this section, we propose the following solutions and approaches.

Development Process. In Live Sophistication, development and run time of
a CWA are seemingly interwoven. This allows for highly iterative processes
and fosters instant feedback on user’s composition actions. An MRE not only
executes mashups but is equipped with proper tools, support each phase.

Level of Abstraction. Capabilities, respectively, their view bindings and the
labels from their annotations, are the main means to communicate with users.
This way, domain tasks and entities are emphasized while technical concepts
are completely hidden. We adhere to the WYSIWYG principle in our MRE
and all tools where applicable.

Assisted Start. Our platform provides several entry points into the composition
and usage process of CWA. Dashboard as well as requirements wizard enable
exploratory search, addressing users with vague ideas.

Assisted Composition. Utilizing domain ontologies, pattern mining, and
semantic data mediation, CRUISE is able to derive composition knowledge
and automatically integrate it. From a users point of view, composition takes
place at capability level.

Recommender System. Our platform features a hybrid recommender system
that suggests components, applications as well as patterns. Recommended
patterns are visualized using capabilities. We detail our solution in Sect. 5.3.

Assist using and Understand. Our approach comprises novel explanation
techniques that help non-programmers to understand and utilize composite
applications.

In this paper we specifically focus on our proposal for assisting users to
understand, explore and be aware of the capabilities a CWA provides. Next, we
describe first iterations of our design process and the lessons learned.

4 First Approaches and the Lessons Learned

Although the primary purpose of the CapView [9] is performing composition
tasks, it also features basic means for inspection and navigation of component
capabilities. CapView is an overlay of the live view and positions capability
representations above the components that provide them (see Fig. 5). Connec-
tion lines between capabilities represent communication channels on capability
level. Labels are generated according to a rule set, incorporating ontology con-
cepts referred to in capabilities. When a capability is selected, the labels of all
other capabilities, with which it can be connected, are adapted to create short

260 C. Radeck and K. Meißner

sentences which reflect cause and effect. This way, the functionality of communi-
cation channels is explained to users. Non-UI components are handled specially.
In CapView, a representative icon is attached to connections where the compo-
nent is involved. The live view features a non-UI component panel, listing
components by name and icon. In both cases, generated labels state the func-
tionality.

Fig. 5. CapView prototype in a rather complex CWA [4].

We evaluated this first iteration of concepts with several small user stud-
ies. As a main result of the study presented in [9], we found that task-oriented
labels, their contextualized adaptation to form sentences and positioning capa-
bilities above components has potential. But we also identified some drawbacks.
For example, since CapView is an overlay and abstracts from instance data
and component UI, some users struggled to understand how to actually achieve
capabilities. We conducted a further small user study with the aim to deepen
our problem understanding by identifying conceptual and usability issues users
face in our composition environment. Five non-programmers participated, were
briefly introduced to our prototype and then asked to solve several tasks. Differ-
ent CWA, like a route search mashup with two maps and a route calculator, were
presented to the users. The tasks aimed at testing if users understand component
and application functionality and if existing tools are accepted and usable. As
example tasks, the participants were asked to identify the overall mashup capa-
bilities and to name components contributing to capability search route. They
had to list which components interact and entitle the resulting functionality, and
were asked to describe how to search points of interest. Finally, we encour-
aged the participants to freely use a CWA and thereby mention understanding
problems and suggest improvements.

This user study delivered manifold results. We confirmed some known and
identified new issues with CapView as a tool to understand CWA. As main prob-
lems we identified switching into a dedicated view, i. e., leaving the live view, and

Assisted End User Development for Non-programmers 261

users struggling with realizing the link between CapView and corresponding ele-
ments in the component UI. In consequence, users experimented in the live view
rather than using CapView. Few users were unable to cope with CapView at all.
In general, we found that even in rather simple scenarios users may face under-
standing problems when using components or applications they are unfamiliar
with or which do not match with their expectations. For example, some users
misinterpreted the purpose components serve for, since they expected that it is
determined by positioning on the canvas or the temporal sequence they interact
with components. Moreover, users were sometimes unaware of inter-widget com-
munication, e. g., between map and weather widget. In this point, we confirm
the findings of [2]. Directed data flow caused confusion when a bidirectional syn-
chronization was assumed, e. g., between maps and route calculator. Users often
ignored the non-UI component panel or misunderstood it as advertisement.

Fig. 6. The discontinued CompCapView approach [4].

Since CapView is not designed to give hints about overall capabilities of a
CWA at hand, we developed CompCapView as an extension that supports
composite capabilities, see Fig. 6. Basic principles are the same, e. g., it over-
lays the live view and capability representations are drawn above the compo-
nents that provide these capabilities. Depending on the current position within
the capability hierarchy, representations of child capabilities are drawn and con-
nected to each other. In case of a sequential relation of capabilities, their order is
mentioned by numbers. All root capabilities are shown initially. CompCapView
allowed to zoom in and out within the hierarchy. Additionally, a panel dis-
playing CWA capabilities as a tree-like structure was developed. It is syn-
chronized with the current view. In case of CompCapView it propagates the

262 C. Radeck and K. Meißner

currently selected capability which is focused and highlighted subsequently. In
context of the live view, all components providing or partaking in the selected
capability are highlighted.

For evaluation purpose, we conducted a small user study according to the
thinking aloud method. Six persons participated, which were in average 23 years
old and all had no knowledge about mashups and programming. They worked or
studied in different sectors, like medical engineering, retail, economy, and social
pedagogy. The study based on a prototype of CompCapView and the capability
panel within our MRE.

After a brief introduction to the concepts of CompCapView, participants
were asked to solve several tasks that tested the core principles of CompCapView.
For instance, the participants should name the overall capability of a given appli-
cation and describe the sequence in which components cooperate to achieve it.
In addition, we were for instance interested in whether the navigation between
layers is comprehensible and usable and if the participants understand the mean-
ing of connections. Finally, we measured the SUS and Task Load Index. As a
main result, all of the participants were able to determine the overall mashup
capability and 5/6 stated correctly which components actually contribute to
mashup functionality. Most participants understood the layering concept (4/6)
and the relation of composite capability representations and the actual mashup
components (5/6). But only 3 of 6 participants correctly identified sequential
or parallel capabilities. Several remarks and comments addressed implementa-
tion rather than conceptual issues. However, as a crucial conceptual problem
connections of composite capabilities were misinterpreted as an indicator for
order, which was further complicated by assumed reading directions. This study
revealed, that especially the navigation panel was considered useful since it pro-
vides on overview and quick access to CWA capabilities. The resulting aver-
age system usability scale (SUS) score of 66 indicates acceptable, yet limited
usability. The Task Load Index questionnaires attested medium mental demand
and effort. Although the participants considered frustration low to medium and
time demand low, and were satisfied with their performance, this underpins that
the ComCapView concepts have some potential but lack suitability for non-
programmers.

In summary, from these findings and observations, we amongst others con-
clude that:

– explanations techniques should operate directly within the UI of components;
– visual capability connections have to carry an intuitive semantics; and
– composite capabilities should be accessible via an overview panel.

Next, we present our current approach that incorporates the lessons learned.

Assisted End User Development for Non-programmers 263

5 Current Approach: Explanation Techniques for CWA

In this section, we present in detail our concepts for assisting users to understand
what functionality a CWA provides and how to use it. The proposed explana-
tion techniques serve different purposes, like to give an overview on capabilities,
provide detailed stepwise instructions and make users aware of IWC.

5.1 Preliminaries and Foundation

As already mentioned in Sect. 3, components are semantically annotated with
capabilities according to our component model. Each UI capability should carry
view bindings in SMCDL. Based on the capabilities of components, capabilities of
arbitrary composition fragments result from the capabilities and communication
channels of components. Their connections defined both within components and
by IWC can be analyzed to derive a capability graph as presented in [1]. Such a
graph consists of capability links as edges and capabilities as nodes. Capability
links represent inter-component communication channels and intra-component
relations as defined in SMCDL.

In light of these modeling concepts, several constellations of capabilities and
view bindings must be considered by explanation techniques based on capability
graphs. Figure 7 summarizes main cases which we refer to throughout the concept
description.

Fig. 7. Main constellations to be considered (adapted from [4]).

Isolated subgraphs that are coherent in themselves are called capability
chains. From a capability graph, an overlaying hierarchy graph is calculated per
capability chain [1]. In this process, composite capabilities representing higher
level functionalities offered by a CWA are estimated. To identify the interaction
steps for a composite capability, it is necessary to recurse the hierarchy graph
until reaching atomic capabilities. This leads to the corresponding capability
chains, allowing to apply the cases introduced above.

264 C. Radeck and K. Meißner

5.2 Core Visualization Concepts

The proposed explanation techniques directly operate within the UI of compo-
nents rather than in abstract views. To achieve this in context of our black-
box component model, view bindings declaratively define links between UI and
capabilities. Three basic visual element types are consistently used within the
explanation techniques in order to cover all cases outlined in Fig. 7.

View binding Frames. Highlight UI elements referenced by view bindings.
Arrows. Connect view binding frames and represent capability links whereby

they indicate data flow direction.
Description Boxes. Display textual explanations of capabilities and interaction

steps. They are positioned near view binding frames or arrows, minimizing
overlap. The text is context-sensitively generated from capability and view
binding annotations.

Per default, a view binding frame is created for each DOM element refer-
enced by the selectors of atomic view binding operations of a capability c. If c
is a system capability or offers no view binding, the entire component panel is
framed. In the special case of non-UI components a description box is rendered
and framed. UI elements that are referenced by view bindings but invisible at
the time needed, e. g., when a component uses tabs, pose further challenges.
It may technically be possible to make such elements visible, e. g., via declara-
tive instructions in SMCDL or imperative implementations that are invoked by
the MRE. However, this leads to high effort for component developers and it
seems questionable whether such solutions work generically. Thus, we employ a
simplified, generic solution: Should a referenced element be invisible, the whole
component panel is framed and a textual hint is shown in description boxes.

5.3 Assistance Features

We propose a set of generic explanation techniques that are based on the capabil-
ities described in SMCDL, the capability and hierarchy graphs of a CWA, and the
visual element types introduced above. These are: Capability panels enumerating
capabilities of mashups and components; a recommendation panel that displays
recommended patterns emphasizing their capabilities; the inspection mode for
exploration of capabilities and capability links in the UI of components; and the
tutorial mode which presents step-by-step instructions; as well as the awareness
mode indicating data flow at runtime.

Inspection Mode. The inspection mode allows non-programmers to explore
the functionality of components and CWA. Its main purpose is to present capa-
bility chains of a mashup, describe their functionality and indicate corresponding
UI elements. This way, the inspection mode can be understood as CapView inte-
grated within the live view.

The inspection mode can be activated and deactivated via a dedicated menu
button. Once it is active, all inter-component capability links are visualized

Assisted End User Development for Non-programmers 265

Fig. 8. Exemplified inspection mode for single components.

Fig. 9. Exemplified inspection mode for an inter-component capability [4].

by drawing view binding frames and arrows. Intra-component links are hidden
initially in case they are not transitively connected to inter-component links, and
are shown on demand. The rationale for this is to avoid confusing appearance.
An additional reason is that component capabilities are often known to users.

When the user explores a component’s UI, the corresponding capability panel
appears. Furthermore, view binding frames become visible as soon as the asso-
ciated UI elements are hovered as illustrated in the left part of Fig. 8. In cases 2
and 3, all other elements referenced in sister atomic operations are highlighted as
well, cf. right side of Fig. 8. In addition, a description box appears and provides
access to the tutorial mode for that capability, via a”play button”. It contains a
generated text that is derived from the capability re-using the concepts from [9].
If the capability whose view binding is hovered is part of a capability chain, all
corresponding arrows and frames are emphasized, and intra-component chains
become visible. Additionally, the description text mentions all capabilities of
a link, pointing out cause and effect. To this end, sentences are formed from
the capabilities and communication channels involved, paying attention to link
direction and the hovered capability. We extended the label generator [9] to

266 C. Radeck and K. Meißner

also include component names and to connect several capability labels by “and”
(case 7) and “or” (case 6). When hovering special text fragments, like compo-
nent names and capability labels, component panel or view binding frame are
highlighted.

As Fig. 9 shows, when selecting an arrow, it and all other arrows and view
binding frames belonging to the represented capability link are emphasized and
a description box is displayed. Again, users can watch a tutorial to learn in detail
what to do.

We briefly mentioned in Sect. 3 that components can be arranged in different
application views, requiring special considerations. In the inspection mode, com-
ponents partaking in a capability chain but currently invisible are represented by
their icon, which is positioned at the border and serves as view binding frame.
Further, its description box allows to switch to the corresponding application
screen.

Tutorial Mode. The tutorial mode focuses on explaining necessary interaction
steps rather than the full detail of capabilities. Hence, UI capabilities are of
main interest and are required to generate stepwise instructions. Tutorials can
be accessed via buttons in capability panels and in description boxes of the
inspection mode.

When the tutorial mode is activated for a capability or a capability chain, it
visualizes and highlights the view binding frames of the first interaction step by
graying out the remaining CWA, see Fig. 10. This way, user attention is directed.
A description box appears, comprising a generated text as well as a navigation

Fig. 10. Exemplified tutorial mode for a single component [4].

Assisted End User Development for Non-programmers 267

bar. The latter features controls to auto-play, close, pause, step forward, step
back in the tutorial. The generated description texts mention the interaction
technique and the element name as defined in the view binding, the capability
achieved as well as the component name. Again, the sentence structure depends
on the position of the capability in a capability link in order to properly reflect
cause and effect.

Figure 10 illustrates example tutorials for cases 1 and 4 in its upper part. In
case 2 one tutorial step per atomic operation exists, see lower part of Fig. 10,
while in case 3 there is a single step and a text mentioning all atomic opera-
tions in conjunction. Similarly, in case 6 all source capabilities of a capability
link are mentioned in one step, with one description box per source capability.
In contrast, a constellation like in case 7 results in separate steps per source
capability.

Tutorials also involve non-UI components. To do so, an additional step is
included, that visualizes a description box displaying the component’s name,
icon and capabilities provided in context of the capability chain to be explained.
For an example, please refer to Fig. 11. Analogously, components are handled
that provide a capability to be explained in a step but that are not displayed
in the current application view. In this case, the description box also allows to
switch to the corresponding view and back.

Fig. 11. Exemplified tutorial mode for an inter-component capability [4].

268 C. Radeck and K. Meißner

Awareness Mode. The awareness mode’s purpose is to make users aware of
data exchange through IWC when it occurs at run time of an arbitrary CWA. To
this end, it builds upon the presented visualization concepts for inter-component
capability links. By means of a dedicated button in the menu bar, the awareness
mode can be activated.

Whenever an event is fired on a communication channel, the corresponding
capability c is determined from the component description and saved as start
capability cs. In case c is no UI capability and linked with preceding capabilities,
cs is set to the first UI capability from the predecessors if there is one. Analo-
gously ct is obtained at the target side of a capability link. Then, an animation
of configurable duration starts. It first displays the view binding frames of cs
as exemplified in the upper part of Fig. 12. Further, a description box with a
generated text indicates the capability just achieved. Next, an arrow is shown,
followed by the view binding frames of ct and a corresponding description box,
cf. lower part of Fig. 12.

Case 7, i. e., when several interactions are necessary in order to join all data
before ct can actually be performed, requires particular consideration. The last
animation step is postponed and instead the view binding frames of the required
other capabilities are shown and highlighted for a while, each complemented
with a description box expressing necessary interactions. As soon as all input is
provided, the animation continues with the frames and description boxes of ct. In
case a component providing cs or ct is not part of the current application view,
we apply the approach known from the inspection mode: An icon represents the
component and acts as view binding frame.

Fig. 12. Exemplified awareness mode for two instants [4].

Assisted End User Development for Non-programmers 269

Capability Panels. Capability panels give overview and insight on the capa-
bilities of components or mashups. A capability panel represents the tree-like
hierarchy graphs of a CWA or lists the capabilities of a single component, as
indicated in Fig. 8. Therein, capabilities are textually described using generated
labels. When a capability is selected by the user, the tutorial mode can be acti-
vated for it. Capability Panels are also synchronized with the inspection mode:
When a user hovers a view binding there, affected capability panels highlight
the corresponding capability.

Understanding Recommendations. A recommendation panel depicts rec-
ommended composition steps to users. As exemplified in Fig. 13, a novel two-
step approach for visualizing recommendations takes place. Thereby, we largely
build up on the capabilities of the underlying patterns. As a prerequisite, rec-
ommended patterns are clustered according to their capabilities. In a first step,
all clusters are presented to the user with the help of generated labels, e. g.,
display weather info. When the user made his choice, descriptions for each
pattern from that cluster appear. These contain component icons and additional
text fragments, that supplement the cluster label to form a short sentence.
The description mentions component names and the corresponding capabili-
ties. When hovering these text parts, the component is highlighted or the view
binding frame appears, respectively. In the previous example, a pattern-specific
text extension may be ‘‘in Weather Forecast by the location selected
in Map’’.

To sum up, we introduce novel, generic explanation techniques that help
non-programmers to explore, to learn how to use and to become aware of CWA
capabilities.

Fig. 13. Example recommendation menu (left side) with extension suggestions for a
CWA [4].

270 C. Radeck and K. Meißner

6 Evaluation

Details on the prototype we developed within the CRUISE mashup platform and
the user study we conducted for validation and evaluation are subject to this
section.

6.1 Implementation

We implemented a prototype of the proposed explanation techniques as part of
the CRUISE platform. Specifically, we extended the client-side of our MRE,
which is developed using web technologies like HTML5 and CSS3. Several
JavaScript frameworks are employed. For example, Bootstrap Popovers2 serves
for rendering description boxes and jsPlumb3 is used for drawing arrows based on
SVG. Bootstrap Tour4 offers the necessary functionality to implement stepwise
tutorials. The capability and hierarchy graphs of the current CWA are calcu-
lated by a dedicated web service and managed by the MRE as a JSON object. It
is analyzed in order to setup corresponding data structures for the explanation
techniques. Thereby, capability chains are processed in several ways: Interme-
diate system capabilities, e. g., in case of non-UI components, are skipped and
information about composite capabilities, multiple view bindings of a capabil-
ity and parallel or sequential operations are used to derive all interaction steps.
Building up on this, Bootstrap Tours are instantiated and configured accord-
ingly. Upon activation, the prototype of all three modes creates a transparent
overlay div element per component. It serves as canvas for rendering view bind-
ing frames, description boxes and arrows. Further, we implemented the CWA
capability and recommendation panels. Figure 14 illustrates the tutorial mode,
explaining the capability display weather in case of a rather simple mashup
of two components.

6.2 User Study

Methodology. We conducted a user study in order to evaluate the proposed
concepts presented in Sect. 5. Ten non-programmers from very different back-
ground and sectors, e. g., forestry, mechanical engineering, photography, eco-
nomics, sale and medicine, participated. They were in average 31 years old,
ranging from 16 to 56. See Tables 1 and 2 for details. We created two groups, each
with five persons. Group A used our mashup platform without, group B with the
explanation techniques. According the think-aloud method, all participants were
asked to individually solve several tasks and thereby articulate their thoughts
about next required steps, expected system behavior and how the actual system
response matches their expectations. Multiple tasks of increasing complexity in
context of three different CWA had to be solved by our participants.

2 http://getbootstrap.com/javascript/.
3 https://jsplumbtoolkit.com/.
4 http://bootstraptour.com/.

http://getbootstrap.com/javascript/
https://jsplumbtoolkit.com/
http://bootstraptour.com/

Assisted End User Development for Non-programmers 271

Fig. 14. Prototypical tutorial mode within the CRUISE mashup runtime environment.

1. The first application served for showing a weather forecast and therefore
comprised a weather widget and a map.

2. Furthermore, a mashup composed of two maps and a route search widget
allows to plan routes.

3. The most complex application, shown in Fig. 15 is built of 8 components that
offer three overall mashup capabilities: searching routes, displaying weather
and searching points of interest.

Simpler tasks demanded from participants to identify and achieve component
capabilities, e. g., selecting a location in map, which can be done in several ways.
Further, we tested if the users were able to identify and perform capabilities
provided by component interplay. For example, participants were asked to find
routes using the second CWA, and to search for points of interest with the help
of the third mashup. As a further example, they had to identify the overall
capabilities of the third CWA and the components that partake. Next, we tested

Fig. 15. Screenshot of a CWA utilized in our user study.

272 C. Radeck and K. Meißner

if participants are aware of IWC during mashup usage, for instance, between
POI list 4© and map 1© in the CWA shown in Fig. 15.

We not only created the think-aloud protocols, but additionally measured the
number of successfully solved tasks per participant. To get a widely accepted and
comparable usability measure, we further asked each person to fill out a SUS
questionnaire. Finally, users were encouraged to freely comment on things they
liked or disliked.

The main goal of our study was to show that the explanation techniques help
participants to gain insight about given CWA. This should lead to increased task
performance of group B, indicated by the number of successfully solved tasks.
In order to analyze if our claim is true, we compared the results of both groups
then.

Results and Discussion. The resulting SUS scores as well as the percentage
of successfully solved tasks Ts are illustrated in Table 1 for group A and Table 2
for group B. As can be seen, Ts differs between both groups. Without the help
of explanation techniques, participants of group A were in average able to solve
50% of the tasks, ranging from 36% to 59%. Members of group B were more
successful, as they reached an average of 79% with a minimum of 64% and
maximum of 100%. From the SUS questionnaires we learned, that participants
of group A attested our prototype a lower usability than those of group B: We
calculated an average SUS score of 57 for group A and 74 for group B.

Table 1. Results for group A (plain mashup platform).

Participant Sector Gender Age Ts SUS

P1 Engineering (student) Male 25 55% 60

P2 Warehouse Management Male 56 36% 48

P3 Medicine Female 45 55% 58

P4 Photography Female 23 55% 65

P5 Mechanical Engineering (student) Male 22 59% 63

Average 34 50% 57

We interpret these results as an indication, that our concepts seem useful and
actually help non-programmers to better understand CWA they are unfamiliar
with. An average SUS score of 74 attests good usability. We consider this as a
satisfactory outcome taking the preliminary status of our prototype into account.
From the think-aloud protocols and comments we identified potential improve-
ments especially of our prototype. For example, members of group B repeatedly
tried to directly perform steps when these were presented in a tutorial. How-
ever, this is impossible due to the invisible div element. Further, minor usability
problems like inadequate icons became obvious. Not surprisingly, participants
did not pay much attention to the capability panels of components they are

Assisted End User Development for Non-programmers 273

Table 2. Results for group B (using our concept).

Participant Sector Gender Age Ts SUS

P6 Mechanics Male 23 73% 73

P7 Sale Female 52 64% 73

P8 Photography Female 25 100% 78

P9 Forestry (student) Female 23 73% 75

P10 Economics (student) Male 16 86% 70

Average 28 79% 74

familiar with. In addition, some users revealed the limited support for parallel
sequences in our prototype. Such shortcomings are subject to future work.

In summary, the results of our user study are promising and show that the
presented concepts can improve users’ understanding of CWA functionality and
awareness of inter-widget communication. The participants which were assisted
by explanation techniques were more successful in identifying capabilities, func-
tional dependencies of components and necessary interaction steps. However,
there are threads to validity. For example, the rather small number of partici-
pants seems suitable to identify usability problems [20], but larger-scale studies
are needed to confirm our results. Further, we did not investigate if there are
side-effects from other platform features that may especially have hindered the
participants of group A. Our proposed concepts show limitations, like the sim-
plistic solution for hidden elements. More importantly, component annotations
have to be provided, which may be a demanding task, also due to different styles
(amount and granularity of capabilities and view bindings) allowed, leading to a
multitude of options to describe circumstances. However, in our opinion the pre-
sented concepts offer a lot of benefits. They function for black-box components
and arbitrary CWA. Further, the capabilities of mashups can now be explored
within the component UI in a systematic way rather than in a trial and error
style. Tutorials can be generated for CWA, lowering the effort for component
developers and resulting in a consistent appearance for all components. Tutori-
als offer contextualized instructions and operate directly in components’ UI. As
indicated by our evaluation, the explanation techniques help users to be aware
of and to understand the capabilities of mashups.

7 Conclusions

Composite web applications and end user development complement each other
quiet well. Developing and using such applications is still challenging for non-
programmers, though. Users often lack awareness of IWC and understanding of
the composite nature of CWA and their functionality. Recent mashup platforms
offer no or very limited assistance and proper tooling in this regard, which results
in trial and error strategies of non-programmers. Our mashup approach features

274 C. Radeck and K. Meißner

interwoven runtime and development time and a palette of appropriate EUD
tools continuously supporting non-programmers. This way, we aim to overcome
limitations of existing mashup platforms.

In this paper, we introduce our novel explanation techniques and give insights
on the iterative design process. It incorporates scenarios and lessons learned from
earlier concepts and the associated prototypes as well as conducted user studies.
As a result, we propose a generic approach fostering exploration, explanation and
awareness of the functionality of arbitrary CWA. Our conceptual foundation are
components annotated with provided capabilities and their view bindings. Uti-
lizing this, we visualize what single components are capable of and which inter-
actions users have to perform directly within the component UI. We apply these
core concepts to capabilities of composite web application, that result from com-
ponent interplay through inter-widget communication. An overview panel lists
mashup capabilities and step-by-step tutorials are generated. They interactively
and animatedly present required interaction steps to non-programmers and com-
plement highlighting UI elements with textual descriptions. Furthermore, these
visualization and interaction techniques are re-used to foster users’ awareness of
IWC when it occurs at run time. Finally, our concepts allow non-programmers
to comprehend the effects of recommendations. We pointed out some limitations
of our concepts. However, as indicated by our evaluation results, the proposed
solutions can actually help non-programmers to better understand CWA.

In future work we plan to perform the next cycle in our user-centered design
process, i. e., to adapt our prototype according to feedback and lessons learned
as well as to evaluate the next iteration on a larger scale. Further, we aim create
a live view extension enabling composition tasks with the help of core concepts
presented in this paper.

Acknowledgements. The work of Carsten Radeck is funded by the European Union
and the Free State of Saxony within the EFRE program.

References

1. Radeck, C., Blichmann, G., Meißner, K.: Estimating the functionality of mashup
applications for assisted, capability-centered end user development. In: Proceedings
of the 12th International Conference on Web Information Systems and Technologies
(WEBIST 2016), pp. 109–120. SciTePress (2016)

2. Chudnovskyy, O., Pietschmann, S., Niederhausen, M., Chepegin, V., Griffiths, D.,
Gaedke, M.: Awareness and control for inter-widget communication: challenges and
solutions. In: Daniel, F., Dolog, P., Li, Q. (eds.) ICWE 2013. LNCS, vol. 7977, pp.
114–122. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39200-
9 11

3. Tschudnowsky, A., Pietschmann, S., Niederhausen, M., Hertel, M., Gaedke, M.:
From choreographed to hybrid user interface mashups: a generic transformation
approach. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.) ICWE 2014. LNCS,
vol. 8541, pp. 145–162. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08245-5 9

https://doi.org/10.1007/978-3-642-39200-9_11
https://doi.org/10.1007/978-3-642-39200-9_11
https://doi.org/10.1007/978-3-319-08245-5_9
https://doi.org/10.1007/978-3-319-08245-5_9

Assisted End User Development for Non-programmers 275

4. Radeck, C., Meißner, K.: Helping non-programmers to understand the functionality
of composite web applications. In: Proceedings of the 13th International Confer-
ence on Web Information Systems and Technologies (WEBIST 2017), pp. 109–120.
SciTePress (2017)

5. Gery, G.: Attributes and behaviors of performance-centered systems. Perform.
Improv. Q. 8, 47–93 (1995)

6. Cao, C.: Helping end-user programmers help themselves - the idea garden approach.
Ph.D. thesis, Oregon State University (2013)

7. Ko, A.J., Myers, B.A.: Designing the whyline: a debugging interface for asking
questions about program behavior. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI 2004, pp. 151–158. ACM (2004)

8. Kuttal, S.K., Sarma, A., Rothermel, G.: Debugging support for end user mashup
programming. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI 2013, pp. 1609–1618. ACM (2013)

9. Radeck, C., Blichmann, G., Meißner, K.: CapView – functionality-aware visual
mashup development for non-programmers. In: Daniel, F., Dolog, P., Li, Q. (eds.)
ICWE 2013. LNCS, vol. 7977, pp. 140–155. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39200-9 14

10. Picozzi, M.: End-user development of mashups: models, compositition paradigms
and tools. Ph.D. thesis, Politecnico di Milano (2013)

11. Aghaee, S., Pautasso, C.: End-user development of mashups with NaturalMash. J.
Vis. Lang. Comput. 25, 414–432 (2014)

12. Lizcano, D., Lóez, G., Soriano, J., Lloret, J.: Implementation of end-user develop-
ment success factors in mashup development environments. Comput. Stand. Inter-
faces 47, 1–18 (2016)

13. Mehandjiev, N., Namoun, A., Lécué, F., Wajid, U., Kleanthous, G.: End Users
Developing Mashups. In: Bouguettaya, A., Sheng, Q., Daniel, F. (eds.) Web Ser-
vices Foundations, pp. 709–736. Springer, New York (2014). https://doi.org/10.
1007/978-1-4614-7518-7 28

14. Liu, X., Ma, Y., Huang, G., Zhao, J., Mei, H., Liu, Y.: Data-driven composition
for service-oriented situational web applications. IEEE Trans. Serv. Comput. 8,
2–16 (2015)

15. Chen, H., Lu, B., Ni, Y., Xie, G., Zhou, C., Mi, J., Wu, Z.: Mashup by surfing a
web of data apis. Proc. VLDB Endow. 2, 1602–1605 (2009)

16. Trinh, T.D., Wetz, P., Do, B.L., Kiesling, E., Tjoa, A.M.: Semantic mashup com-
position from natural language expressions: preliminary results. In: Proceedings
of the 17th International Conference on Information Integration and Web-based
Applications & Services (iiWAS 2015), pp. 44:1–44:9. ACM (2015)

17. Ghiani, G., Paternò, F., Spano, L.D., Pintori, G.: An environment for end-user
development of web mashups. Int. J. Hum Comput Stud. 87, 38–64 (2016)

18. Radeck, C., Blichmann, G., Mroß, O., Meißner, K.: Semantic mediation techniques
for composite web applications. In: Casteleyn, S., Rossi, G., Winckler, M. (eds.)
ICWE 2014. LNCS, vol. 8541, pp. 450–459. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-08245-5 30

19. Radeck, C., Lorz, A., Blichmann, G., Meißner, K.: Hybrid recommendation of
composition knowledge for end user development of mashups. In: Proceeding of
the ICIW 2012, the Seventh International Conference on Internet and Web Appli-
cations and Services, pp. 30–33. XPS (2012)

20. Nielsen, J.: Why you only need to test with 5 users (2000). Accessed 02 Jan 2017

https://doi.org/10.1007/978-3-642-39200-9_14
https://doi.org/10.1007/978-3-642-39200-9_14
https://doi.org/10.1007/978-1-4614-7518-7_28
https://doi.org/10.1007/978-1-4614-7518-7_28
https://doi.org/10.1007/978-3-319-08245-5_30
https://doi.org/10.1007/978-3-319-08245-5_30

Author Index

Alsubai, Shtwai 1

Bernardino, Jorge 45
Biørn-Hansen, Andreas 64

da Silva, Clay Palmeira 115
De Meuter, Wolfgang 132
Demurjian, Steven A. 221
Devogele, Thomas 115

Faes, Axel 87

Gnirke, Lukas 221
Grønli, Tor-Morten 64

Kambona, Kennedy 132

Lamotte, Wim 87
Latif, Atif 161
Limani, Fidan 161

Majchrzak, Tim A. 64, 202
Marx, Robin 87
Meißner, Klaus 249

Messai, Nizar 115
Mikkonen, Tommi 21

North, Siobhán 1

Paz, Solange 45
Pelucchi, Mauro 179
Psaila, Giuseppe 179

Quax, Peter 87

Radeck, Carsten 249
Renaux, Thierry 132
Rieger, Christoph 202
Rivera Sánchez, Yaira K. 221

Sam, Yacine 115

Taivalsaari, Antero 21
Toccu, Maurizio 179
Tochtermann, Klaus 161

Wijnants, Maarten 87

	Preface
	Organization
	Contents
	TwigStackPrime: A Novel Twig Join Algorithm Based on Prime Numbers
	1 Introduction
	2 Related Work
	3 Child Prime Label
	4 Twig Join Algorithm
	4.1 Notation
	4.2 TwigStackPrime
	4.3 Analysis of TwigStackPrime

	5 Experimental Evaluation
	5.1 Experimental Settings
	5.2 Experimental Result

	6 Conclusion and Future Work
	References

	Return of the Great Spaghetti Monster: Learnings from a Twelve-Year Adventure in Web Software Development
	1 Introduction
	2 Software Engineering Principles in the Context of Web Programming
	3 State of Web Programming Twelve Years Later – General Observations
	3.1 The Web and the Software as a Service (SaaS) Model Have Redefined Personal Computing
	3.2 JavaScript Has Become a Very Popular Programming Language
	3.3 Interactive, Visual Development on the Web Has Become Commonplace
	3.4 Web Browser Performance and JavaScript Performance Have Improved Dramatically
	3.5 HTML, CSS and the DOM Turned Out to Be Much More Persistent Than Anticipated
	3.6 Instant Worldwide Deployment and Dramatically Faster Release Cycles Have Become Commonplace

	4 Comparing Then and Now – Reflections on Software Engineering Principles
	4.1 Revisiting the Modularity and Interface Issues
	4.2 Revisiting the Consistency, Simplicity and Elegance Issues
	4.3 Revisiting the Reusability and Portability Issues
	4.4 Revisiting the Usability and User Experience Issues
	4.5 Revisiting the Development Style Issues

	5 Comparing Then and Now – Additional Observations
	6 Reflections and the Road Forward
	7 Conclusions
	References

	Web Platform Assessment Tools: An Experimental Evaluation
	Abstract
	1 Introduction
	2 Related Work
	3 Performance Testing Types
	4 Evaluated Tools
	4.1 Apache jMeter
	4.2 Apache Flood
	4.3 The Grinder
	4.4 Gatling

	5 Comparison of Web Platform Testing Tools
	5.1 Qualitative Analysis
	5.2 Quantitative Analysis
	5.3 Discussion of the Results

	6 Performance Testing with Web Search Engines
	6.1 Results with the Apache jMeter
	6.2 Results with the Grinder

	7 Accuracy of Results Using Web Search Engine
	8 Conclusions and Future Work
	References

	Progressive Web Apps for the Unified Development of Mobile Applications
	1 Introduction
	2 Research Methods
	2.1 Literature Search
	2.2 Technical Implementation
	2.3 Performance Testing

	3 Related Work
	4 Underlying Technologies and Concepts
	4.1 Regarding the Term
	4.2 Technologies
	4.3 Concepts
	4.4 Lighthouse: PWA Testing Tool
	4.5 Framework Agnosticity

	5 Results
	5.1 Feature Comparison
	5.2 Unification of Mobile App and Web Experiences
	5.3 Unification of Desktop App and Web Experiences
	5.4 Performance Comparison Between Native, Hybrid, Interpreted, Cross-Compiled and PWA

	6 Discussion
	6.1 Basics
	6.2 Feature Comparison
	6.3 Performance Comparison

	7 Conclusion and Further Work
	7.1 Conclusion
	7.2 Suggestions for Further Work

	References

	Web Performance Characteristics of HTTP/2 and Comparison to HTTP/1.1
	1 Introduction
	2 Related Work
	3 Experimental Setup with the Speeder Framework
	4 Multiplexing over a Single TCP Connection
	4.1 Background
	4.2 Head-of-Line Blocking in Practice with Images
	4.3 HOL Blocking in Practice with CSS and JavaScript

	5 Resource Prioritization
	5.1 Background
	5.2 Evaluation of Prioritization Strategies

	6 Server Push
	6.1 Background
	6.2 Experimental Evaluation

	7 HPACK Header Compression
	7.1 Background
	7.2 Experimental Evaluation

	8 HTTP/2 Performance for Realistic Web Pages
	8.1 Experimental Setup
	8.2 Experimental Results

	9 Discussion
	10 Conclusion
	References

	CUBE System: A REST and RESTful Based Platform for Liquid Software Approaches
	1 Introduction
	2 Liquid Software Approach Motivations
	2.1 RESTful Principals and Constraints
	2.2 Maturity Software
	2.3 Instantiation Resources
	2.4 Link Header
	2.5 API Conversation
	2.6 Liquid Software

	3 CUBE Model Proposal
	4 Use Case Diagram
	5 Illustrative Scenario
	6 Multi-hosts Modeling API Implementation
	7 Conclusions
	References

	Harnessing Community Knowledge in Heterogeneous Rule Engines
	1 Introduction
	1.1 The Significance of Community Knowledge
	1.2 Motivating Example

	2 The Serena Rule-Based System
	2.1 The Serena Framework
	2.2 Serena's Execution Semantics

	3 Reentrancy in Heterogeneous Rule-Based Systems
	3.1 Example: Non-reentrancy in Classical Rule-Based Systems
	3.2 Common Workarounds in Classical Rule-Based Systems
	3.3 The Role of Client Relationships in Community Knowledge

	4 Requirements for Heterogeneous Rule-Based Systems
	4.1 Metadata Model for Managing Client Data
	4.2 Formalised Model for Grouping Clients
	4.3 Execution Model for Selective Computations
	4.4 Flexible Model for Notification Semantics

	5 Scoping in Heterogeneous RBS
	5.1 Supported Scopes in Serena
	5.2 Defining Scoped Rules in Serena
	5.3 Encoding the Group Hierarchy
	5.4 Scoped Execution and Notifications

	6 Experimental Evaluation
	6.1 Setup
	6.2 Method
	6.3 Results and Discussion

	7 Related Work
	7.1 Rule-Based Systems
	7.2 Visibility in Event-Based Systems
	7.3 Schema Sharing in Multi-tenant Databases

	8 Conclusions and Future Work
	A Definitions
	A.1 Posets
	A.2 Lattices

	B Operations with
	C Matrix Encoding
	References

	Bringing Scientific Blogs to Digital Libraries: An Integration Process Workflow
	1 Introduction: Social Scientific What?
	2 Motivation and Use Cases
	2.1 Motivation
	2.2 Use Cases

	3 Related Work
	4 Methodology
	4.1 Data Selection
	4.2 Dataset (pre)Processing and Augmentation
	4.3 Dataset Modeling and RDF Conversion

	5 Tying It All: A Process Workflow
	6 Use Case Scenario Demonstration
	7 Benefits
	8 Conclusion and Future Work
	References

	Enhanced Querying of Open Data Portals
	1 Introduction
	2 Problem Statement
	2.1 Preliminary Definitions
	2.2 Problem Definition

	3 Processing Steps
	4 Retrieving Alternative Terms
	4.1 WordNet and Synonyms
	4.2 Lexicographic Similarity

	5 Deriving Neighbour Queries
	6 Keyword Selection
	7 Data Set Retrieval
	7.1 Schema Fitting

	8 Experimental Evaluation
	9 Related Works
	10 Conclusion
	References

	A Taxonomy for App-Enabled Devices: Mastering the Mobile Device Jungle
	1 Introduction
	2 Related Work
	3 Taxonomy of App-Enabled Devices
	3.1 Basic Considerations
	3.2 Dimensions of the Taxonomy
	3.3 Categorizing the Device Landscape

	4 Discussion
	4.1 Alternative Categorization Schemes
	4.2 Further Development

	5 Conclusion and Outlook
	References

	Attaining Role-Based, Mandatory, and Discretionary Access Control for Services by Intercepting API Calls in Mobile Systems
	Abstract
	1 Introduction
	2 Background Concepts, Motivation, and the CT2 mHealth App
	3 High-Level Processing of the Intercepting API Calls Approach
	4 A Model for Services-Based RBAC, MAC, and DAC
	5 An RBAC/MAC/ DAC Approach for Intercepting API Calls
	6 RBAC/MAC/DAC Intercepting API Calls Enforcement Code
	7 Implementation of RBAC/MAC/DAC Intercepting API Calls
	8 Related Work
	9 Conclusion
	References

	Assisted End User Development for Non-programmers: Awareness, Exploration and Explanation of Composite Web Application Functionality
	1 Introduction
	2 Related Work
	3 Assisted End User Development of Mashups with CRUISE
	3.1 Model Layer
	3.2 Base Mechanisms
	3.3 EUD Process and Tools
	3.4 Summary

	4 First Approaches and the Lessons Learned
	5 Current Approach: Explanation Techniques for CWA
	5.1 Preliminaries and Foundation
	5.2 Core Visualization Concepts
	5.3 Assistance Features

	6 Evaluation
	6.1 Implementation
	6.2 User Study

	7 Conclusions
	References

	Author Index

