
Gerhard P. Hancke
Ernesto Damiani (Eds.)

 123

LN
CS

 1
07

41

11th IFIP WG 11.2 International Conference, WISTP 2017
Heraklion, Crete, Greece, September 28–29, 2017
Proceedings

Information Security
Theory and Practice

Lecture Notes in Computer Science 10741

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

Gerhard P. Hancke • Ernesto Damiani (Eds.)

Information Security
Theory and Practice
11th IFIP WG 11.2 International Conference, WISTP 2017
Heraklion, Crete, Greece, September 28–29, 2017
Proceedings

123

Editors
Gerhard P. Hancke
City University of Hong Kong
Hong Kong
China

Ernesto Damiani
University of Milan
Milan
Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-93523-2 ISBN 978-3-319-93524-9 (eBook)
https://doi.org/10.1007/978-3-319-93524-9

Library of Congress Control Number: 2018947334

LNCS Sublibrary: SL4 – Security and Cryptology

© IFIP International Federation for Information Processing 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 11th WISTP International Conference on Information Security Theory and Prac-
tice attracted research contributions covering theoretical and practical aspects of
security and privacy, especially for future ICT technologies. Technical concepts such
as ambient intelligence, cyber-physical systems, and Internet of Things provide a vision
of an information society in which: (a) people and physical systems are surrounded
with intelligent interactive interfaces and objects, and (b) environments are capable of
recognizing and reacting to the presence of different individuals or events in a seamless,
unobtrusive, and invisible manner. The success of future ICT technologies will depend
on how secure these systems are and to what extent they protect the privacy of indi-
viduals and individuals trust them.

In response to the call for papers, 35 papers were submitted to the conference from
20 different countries. Each paper was reviewed by at least three members of the
Program Committee, and evaluated on the basis of its significance, novelty, and
technical quality. The reviewing was double-blind, with the identities of the authors not
revealed to the reviewers of the papers and the identities of the reviewers not revealed
to the authors. The Program Committee’s work was carried out electronically; each
paper received at least three reviews followed by a Program Committee discussion to
finalize decisions. Of the submitted papers, the Program Committee accepted eight full
papers and four short papers. The technical contributions were presented in five
technical sessions, and the program also included three invited talks by Prof. George
Spanoudakis (City University London, UK), Prof. Fabio Martinelli (National Research
Council of Italy, Italy), and Dr. Louis Marinos (ENISA, Greece).

We thank all authors and participants who contributed to make this event a great
success, the Technical Program Committee members and additional reviewers who
worked on the program, and the volunteers who handled aspects of the organization
behind the scenes. We greatly appreciate the input from members of the WISTP
Steering Committee, whose help and advice was invaluable, and the support of
IFIP WG 11.2: Pervasive Systems Security. We would also like to thank the general
chair, Ioannis Askoxylakis, and the other local organizers at FORTH-ICS for sup-
porting for this event and providing assistance with general arrangements.

September 2017 Gerhard P. Hancke
Ernesto Damiani

Organization

General Chair

Ioannis Askoxylakis FORTH-ICS, Greece

Program Chairs

Ernesto Damiani Università degli Studi di Milano, Italy
Gerhard Hancke City University of Hong Kong, Hong Kong,

SAR China

Local Organizers

Nikolaos Petroulakis FORTH-ICS, Greece
Andreas Miaoudakis FORTH-ICS, Greece
Panos Chatziadam FORTH-ICS, Greece

Steering Committee

Angelos Bilas FORTH-ICS and University of Crete, Greece
Sara Foresti Università degli Studi di Milano, Italy
Javier Lopez University of Malaga, Spain
Konstantinos

Markantonakis
ISG-SCC, Royal Holloway University of London, UK

Joachim Posegga Institute of IT-Security and Security Law
at the University of Passau, Germany

Jean-Jacques Quisquater ICTEAM, Catholic University of Louvain, Belgium
Damien Sauveron XLIM, University of Limoges, France

Program Committee

Mohamed Ahmed
Abdelraheem

SICS, Swedish ICT, Sweden

Raja Naeem Akram Royal Holloway, University of London, UK
Fahad Alharby Naif Arab University for Security Sciences,

Saudi Arabia
Claudio A. Ardagna Università degli Studi di Milano, Italy
Ioannis Askoxylakis FORTH-ICS, Greece
Hervé Chabanne Morpho, France
Serge Chaumette LaBRI, University of Bordeaux, France

Mauro Conti University of Padua, Italy
José María De Fuentes Universidad Carlos III de Madrid, Spain
Kurt Dietrich NXP Semiconductors, Netherlands
Ruggero Donida Labati Università degli Studi di Milano, Italy
Sara Foresti Università degli Studi di Milano, Italy
Flavio Garcia University of Birmingham, UK
Yong Guan Iowa State University, USA
Julio Hernandez-Castro University of Kent, UK
Michael Hutter Cryptography Research, USA
Sushil Jajodia George Mason University, USA
Süleyman Kardas Batman University, Turkey
Mehmet Sabir Kiraz TUBITAK Bilgem, Turkey
Andrea Lanzi Università degli studi di Milano, Italy
Maryline Laurent Institut Mines-Telecom, France
Albert Levi Sabanci University, Italy
Tieyan Li Huawei, Singapore
Javier Lopez University of Malaga, Spain
Vashek Matyas Masaryk University, Czech Republic
Sjouke Mauw University of Luxembourg, Luxembourg
Nele Mentens KU Leuven, Belgium
Alessio Merlo University of Genoa, Italy
David Naccache Ecole Normale Suprieure, France
Vladimir A. Oleshchuk University of Agder, Norway
Joachim Posegga University of Passau, Germany
Kai Rannenberg Goethe University Frankfurt, Germany
Kouichi Sakurai Kyushu University, Japan
Pierangela Samarati Università degli Studi di Milano, Italy
Siraj Ahmed Shaikh Coventry University, UK
Nils Tippenhauer Singapore University of Technology and Design,

Singapore
Denis Trcek University of Ljubljana, Slovenia
Michael Tunstall Cryptography Research, USA
Umut Uludag TUBITAK Bilgem, Turkey
Anjia Yang Jinan University, China
Stefano Zanero Politecnico di Milano, Italy
Vincent Zhuang City University of Hong Kong, SAR China

VIII Organization

Additional Reviewers

Duygu Karaoglan Altop
Martin Gunnarsson
Chhagan Lal
Jiasi Weng
Christophe Petit
Davide Quarta
Madeline Cheah
Warren Connell
Yuto Nakano
Ming Li

Yasir Khan
Yanjiang Yang
Wenjie Yang
Partha Sarathi Roy
Sridhar Venkatesan
Giuseppe Cascavilla
Chunhua Su
Andreea-Ina Radu
Fei Xie

Sponsoring Institutions

CyberSure Project (http://www.cybersure.eu/)

Organization IX

Contents

Security in Emerging Systems

A Secure and Trusted Channel Protocol for UAVs Fleets. 3
Raja Naeem Akram, Konstantinos Markantonakis, Keith Mayes,
Pierre-François Bonnefoi, Amina Cherif, Damien Sauveron,
and Serge Chaumette

Philanthropy on the Blockchain . 25
Danushka Jayasinghe, Sheila Cobourne, Konstantinos Markantonakis,
Raja Naeem Akram, and Keith Mayes

Security of Data

Long White Cloud (LWC): A Practical and Privacy-Preserving
Outsourced Database . 41

Shujie Cui, Ming Zhang, Muhammad Rizwan Asghar,
and Giovanni Russello

JACPoL: A Simple but Expressive JSON-Based Access Control
Policy Language . 56

Hao Jiang and Ahmed Bouabdallah

Trusted Execution

EmLog: Tamper-Resistant System Logging for Constrained Devices
with TEEs . 75

Carlton Shepherd, Raja Naeem Akram,
and Konstantinos Markantonakis

How TrustZone Could Be Bypassed: Side-Channel Attacks on a Modern
System-on-Chip . 93

Sebanjila Kevin Bukasa, Ronan Lashermes, Hélène Le Bouder,
Jean-Louis Lanet, and Axel Legay

Defences and Evaluation

Formalising Systematic Security Evaluations Using Attack Trees
for Automotive Applications. 113

Madeline Cheah, Hoang Nga Nguyen, Jeremy Bryans,
and Siraj A. Shaikh

Examination of a New Defense Mechanism: Honeywords 130
Ziya Alper Genç, Süleyman Kardaş, and Mehmet Sabir Kiraz

AndroNeo: Hardening Android Malware Sandboxes by Predicting
Evasion Heuristics. 140

Yonas Leguesse, Mark Vella, and Joshua Ellul

Protocols and Algorithms

A More Efficient 1–Checkable Secure Outsourcing Algorithm
for Bilinear Maps . 155

Öznur Kalkar, Mehmet Sabir Kiraz, İsa Sertkaya,
and Osmanbey Uzunkol

A Selective Privacy-Preserving Identity Attributes Protocol
for Electronic Coupons . 165

Pau Conejero-Alberola, M. Francisca Hinarejos,
and Josep-Lluís Ferrer-Gomila

Revisiting Two-Hop Distance-Bounding Protocols: Are You Really
Close Enough? . 177

Nektaria Kaloudi and Aikaterini Mitrokotsa

Author Index . 189

XII Contents

Security in Emerging Systems

A Secure and Trusted Channel Protocol
for UAVs Fleets

Raja Naeem Akram1, Konstantinos Markantonakis1, Keith Mayes1,
Pierre-François Bonnefoi2, Amina Cherif2,4, Damien Sauveron2,3(B),

and Serge Chaumette3

1 Information Security Group Smart Card Centre, Royal Holloway,
University of London, Egham, UK

{r.n.akram,k.markantonakis,keith.mayes}@rhul.ac.uk
2 XLIM (UMR CNRS 7252/Université de Limoges), MathIS, Limoges, France

{pierre-francois.bonnefoi,damien.sauveron}@unilim.fr,
amina.cherif@etu.unilim.fr

3 LaBRI (UMR CNRS 5800/Université de Bordeaux), Talence, France
serge.chaumette@labri.fr

4 LARI (Université Mouloud Mammeri de Tizi-Ouzou), Tizi-Ouzou, Algeria

Abstract. Fleets of UAVs will be deployed in near future in reliabil-
ity and safety critical applications (e.g. for smart cities). To satisfy the
stringent level of criticality, each UAV in the fleet must trust the other
UAVs with which it communicates to get assurance of the trustworthi-
ness in information received and to be sure not to disclose information to
an unauthorized party. In addition, to be protected against an attacker
willing to eavesdrop and/or modify the exchanged data, the communica-
tion channel needs to be secured, i.e. it has to provide confidentiality and
integrity of exchanges. The work presented here is based on our previous
research which concluded that it is required that each UAV includes a
Secure Element (which we called ARFSSD standing for Active Radio
Frequency Smart Secure Device) to withstand an adversary with a high
attack potential. In this paper, we propose a secure and trusted channel
protocol that satisfies the stated security and operational requirements
for a UAV-to-UAV communication protocol. This protocol supports three
main objectives: (1) it provides the assurance that all communicating
entities can trust each other and can trust their internal (secure) soft-
ware and hardware states; (2) it establishes a fair key exchange process
between all communicating entities so as to provide a secure channel; (3)
it is efficient for both the initial start-up of the network and when resum-
ing a session after a cold and/or warm restart of a UAV. The proposed
protocol is formally verified using CasperFDR and AVISPA.

1 Introduction

There are increasing number of application-areas that consider the usage of
Unmanned Aerial Vehicles (UAVs), and specially of fleets of UAVs. It is thus of
major importance to propose security mechanisms to provide strong guarantees

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
G. P. Hancke and E. Damiani (Eds.): WISTP 2017, LNCS 10741, pp. 3–24, 2018.
https://doi.org/10.1007/978-3-319-93524-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93524-9_1&domain=pdf

4 R. N. Akram et al.

in terms of reliability, safety, privacy-protection and security. Regardless of the
field of applications, whether military or civil, fleets of UAVs of course have to
operate as planed and they thus should resist an adversary trying to tamper its
reliability and safety, for instance by conducting attacks on the communication
network between the UAVs to make them crash or misbehave. In addition, if
in most civilian applications privacy-protection of end-users collected data is a
required property for them to be accepted or certified-for-use, in military appli-
cations security (in term of confidentiality and integrity) of on-board data (i.e.
the collected data and also the pre-loaded data) is a mandatory requirement.

As shown in [1] which dealt with adversary models for UAVs fleets, each UAV
must be equipped with a Secure Element (SE) so as to withstand an adversary
with a high attack potential. In this paper, based on presence of such SEs, we
propose a secure and trusted channel protocol that satisfies the stated security
and operational requirements for a UAV-to-UAV communication protocol.

1.1 Contribution

In this paper, our main goals are to propose a secure and trusted channel protocol
for fleets of UAVs, and to compare its security and performance with similar
protocols.

The salient contributions of this paper are the following:

1. proposed a Secure and Trusted Channel Protocol (STCP) to establish a secure
channel between the communicating UAVs and to provide security assurance
that each UAV is in the secure and trusted state;

2. defined comparison criteria for secure channel protocols along with the related
security analysis;

3. validated the proposed protocol with a mechanical formal tools: CasperFDR
and AVISPA.

1.2 Structure of the Paper

Section 2 briefly presents the domain of UAVs fleets, the associated security
issues, how by providing the assurance to communication partners that the nodes
are secure and trustworthy SEs can help to secure the fleet and the rational
for a STCP. Section 3 discusses the existing work carried out in terms of UAV
applications and secure channel protocols from a traditional computer security
perspective. Section 4 discusses the proposed security comparison criteria and
the proposed protocol for a SE-equipped UAVs fleet. In Sect. 5, before to for-
mally analyze the proposed protocol using CasperFDR and AVISPA, we first
compare it with different secure channel protocols of the related work based on
the security comparison criteria previously defined. Finally in Sect. 6 we present
future research directions and conclude the paper.

A Secure and Trusted Channel Protocol for UAVs Fleets 5

2 UAVs Fleet and Rationale for a STCP

A fleet of UAVs is composed of a set of small and light UAVs flying in swarm
formation and collaborating together to achieve the entrusted mission. Each
UAV is equipped with sensors which might be different of those of the other
UAVs of the fleet. Additionally, for reliability reasons, there might be some
redundant sensors. Since UAVs fleets can cover large geographic areas they are a
possible replacement for regular big and expensive drones used in the past both
in military and civilian applications. For instance, in the civilian applications
such fleets of UAVs can be used for monitoring forest fires, searching missing
people in avalanches, etc. As illustrated Fig. 1, to collaborate together, UAVs
have to communicate. However if the recipient, application (3) running on UAV
C, is not in the scope of the sender, the application (1) running on UAV A,
the message must be routed like in a Mobile Ad hoc Network (MANet) by
intermediary nodes (UAVs), here UAV B.

DD

CC

BB

11

22

33

44

AA

Applica on Layer

User Network Layer

Applica on Iden es: 1, 2, 3, 4
Network Iden es: A, B, C, D

Fig. 1. Example of communication in UAVs fleet

2.1 Assets to Protect, Adversary Model and SE

Depending on the applications in which such a fleet is deployed and of the chosen
adversary model, the assets to protect differ. In terms of information security,
assets are the valuable data (here, data also includes the software application:
intellectual property) of the owner of the UAVs fleet but are also valuable for
attackers. Figure 2 depicts the general targets of an attacker on an individual
UAV. There are different kinds of assets that might interest them, among which:

– pre-loaded data: i.e. flight-plan of the mission, cryptographic keys used to
secure the communications, code of the applications running on the UAV,
etc.

– collected data: i.e. photos, coordinates of points of interest (enemies or allies
in case of a military application), etc.

– communication-related data: i.e. routing tables, session keys, etc.

6 R. N. Akram et al.

An a acker

Interests of the a acker

Sensors

Wireless
communica on

Memory and processing units

Fig. 2. Attacker interests

In our previous work [1], we have considered a strong adversary model with
a high attack potential, e.g. the adversary has the capabilities and knowledge
to capture a UAV in a functional state, to perform side-channel attacks or fault
injections or other physical, software or combined attacks in order to gain access
to (or to modify for his/her profit) some secret data (e.g. cryptographic keys),
software or hardware. We have proposed a rationale which concluded that such
a strong adversary model made sense, especially in the context of military usage
of UAVs fleets, since the opponent can be a government-controlled organization
capable of performing forensic analysis or attacks of the UAVs. Based on these
conclusions we have derived the security and functional requirements and we
have analyzed which one among several existing Secure Elements (e.g. Trusted
Platform Module, active RFID, smart card) might be added to individual UAVs
of the fleet to enhance the security up to the target assurance level.

Unfortunately none of them fulfilled all the criteria and we have proposed to
use the one satisfying most of the requirements, i.e. the UCOM smart card (a
smart card based on the User-Centric Ownership Model [2]), and to supplement
it with the only missing feature which was the long range RF communication
capability. This new SE, that we have named ARFSSD (Active Radio Frequency
Smart Secure Device), is depicted Fig. 3.

Fig. 3. Our implementation of the ARFSSD SE

We do not intend to detail this SE, still we have to explain how it is used to
equip each UAV and what are its security features since we use them to propose
in this paper the missing secure and trusted channel protocol required to secure
UAVs fleets.

A Secure and Trusted Channel Protocol for UAVs Fleets 7

2.2 SE Usage and Its Security Features

As illustrated Fig. 4, a fleet of SE-equipped UAVs enables to build a control
network layer between the SEs to provide high level of security for any exchanges
in the upper network layers. This control network layer makes it possible to
ensure that intermediary UAVs of the same fleet will not have access to the
routed information (not even to the destination address if this is required for
some privacy reasons). To ensure this kind of security properties, the destination
address can be ciphered and the deciphering process can be done in the secure
element which will decide if the message is for its own UAV or if it must be
forwarded to another UAV of the fleet. Obviously the payload is also ciphered.

In addition, the SEs can also offer security services (like cryptography, secure
storage and processing capabilities) to the application layer. In a UAVs fleet
composed of UAVs belonging to several distinct owners or even in a UAVs fleet
shared by several owners and running different applications. It might be possible
to consider that some intermediary UAVs can be selfish. The presence of SEs
enables to solve such an issue since the UAV itself is not aware of the routing
decisions and some collaborative mechanisms can be also added (for instance
based on reputation, or on retribution).

DD

CC

BB

11

22

33

44

AA

Applica on Layer

User Network Layer

Control Network Layer
SE

Applica on Iden es: 1, 2, 3, 4
Network Iden es: A, B, C, D

Fig. 4. Fleet of SE-equipped UAVs

In short, the SE depicted Fig. 4 can be defined as a long range RF-enabled
UCOM smart card. One of the interests to have an SE equipped with long range
communication capability is that the SEs altogether form an overlay network for
specific control operations. This control network is parallel to the communication

8 R. N. Akram et al.

network, called User Network, that already exists between UAVs. In this paper
we will not detail the characteristics of the RF interface of the SEs (which
should be different of those of UAV: e.g. the interface can use a different RF
spectrum; the bandwidth can be smaller but the radio coverage can be larger).
Our objective is to propose a protocol to establish a secure and trusted channel
between these SEs which are the roots of trust and security for a UAVs fleet
architecture withstanding an adversary with a high attack potential.

The overall architecture of a UCOM based smart card [2] is illustrated in
Fig. 5. Basically it is a multiapplication smart card supplemented with new com-
ponents. The most important for our protocol is the TEM (Trusted Environment
& Execution Manager) which is represented as a layer between the smart card
hardware and the runtime environment. This illustration provides a schematic
view of the architecture and does not imply that all communications between
the runtime environment and the hardware goes through the TEM.

Fig. 5. UCOM smart card architecture

As depicted Fig. 6, the TEM is supporting the Trusted Computing Base
(TCB) by providing several similar functionalities (usually present on TPM
chip) which are useful for our protocol. The attestation handler and the self-
test manager are the main building blocks that can be used to ensure a kind
of trusted boot. More details on how the TEM is implemented and what are
the roles of the different components are available in [3]. Basically, the self-test
manager and the attestation handler can provide the assurance that the current

Fig. 6. Trusted platform module for smart card architecture

A Secure and Trusted Channel Protocol for UAVs Fleets 9

hardware and software state is secure as it was at the time of third party eval-
uation. This attestation process, called Platform State Verification/Assurance,
can be requested by an internal entity on the card (e.g. an application) or by a
remote party.

These functionalities of the TEM will be used in the secure and trusted
channel protocol proposed in Sect. 4.

2.3 Rationale for a STCP

A Secure Channel Protocol (SCP) by definition provides either or both of entity
authentication and key exchange between communicating parties (end points). A
SCP preserves the confidentiality and integrity of the messages on the considered
channel but not at the end points.

Nevertheless, there can be implicit assurance in the integrity and security of
the end points as described by ETSI TS 102 412 [4] in the domain of the smart
card industry. This document states that the smart card is a secure end point
under the assumption that it is a tamper-resistant device. This type of assurance
can be extrapolated to other devices that are implicitly trusted because of offline
business relationships or because of a property of the device itself.

However, for a critical system like a fleet of UAVs it is not just implicit trust
that is required but also explicit trust validation, to counter any potential threat.
The explicit trust assurance should be provided by the UAVs (here the SE-
equipped UAVs) that are participating in the communication of the UAVs fleet.
This would build in an assurance that only secure and trusted devices (explicitly
trusted devices with per-protocol run assurance) will participate in the UAVs
fleet, potentially countering physically altered devices and/or re-introduction of
a decommissioned device.

A trusted channel is a secure channel that is cryptographically bounded to
the current state of the communicating parties [5]. This state can be a hardware
and/or a software configuration, and ideally it requires a trustworthy component
to validate that it is effectively as claimed. Such a component, in most instances,
is a TPM [6] as demonstrated in [7–9].

Even though in a fleet of UAVs, individual devices will have prior relation-
ships with each other (at least through the owners of the UAVs – in case of a
multi-owners UAVs fleet, prior relationship must be defined as seen in Sect. 4.4),
when establishing a secure channel, individual devices should still ensure that
they are not only communicating with an authenticated device but also that the
current state of this device is secure.

3 Related Work

In this section, we review the existing work in two different areas: UAVs fleet
and Secure Channel Protocols (SCPs).

10 R. N. Akram et al.

3.1 Related Work on Security Concerns of UAVs Fleets

This section describes different work related to UAV secure communications.
In [10], the authors proposed a secure channel protocol between individual

UAVs and a ground station (GS). When a data communication with GS is pos-
sible, the UAVs send their collected data. To avoid that an attacker can retrieve
plaintext data in case a UAV is captured, each block of data is ciphered with
a one-time key generated by a key stream. This protocol is efficient to protect
the confidentiality of sensed data. To protect against the forgery of messages, a
tamper-resistant element (i.e. an SE) is required. In [11], the authors also pro-
posed a protocol to secure communication between individual UAVs and a GS
along with ensuring that an illegitimate access to sensed data is not easily avail-
able to an attacker. However the proposal is not as efficient as [10] due to the
use Off-the-Record messaging to provide strong properties (e.g. deniability that
does not able a GS to prove to other parties that a specific message was received
from a specific UAV – this property is useful to protect journalism sourcing)
which are useless in the context of UAVs fleet.

In [12], the authors presented their HAMSTER (HeAlthy, Mobility and Secu-
rity based data communication archiTEctuRe) solution for unmanned vehicles.
However the paper rather describes a security framework and cryptographic
schemes than secure channel protocols. In the paper, they proposed some bench-
mark of ECC-based schemes (instead of RSA since ECC is more suitable for
constrained devices) the performance of which was measured on a PC. However,
the security of the private keys are not addressed.

In [13], the authors proposed SUAP, a secure reactive routing protocol the
main cons of which is that it does not consider an adversary with a high attack
potential. However, it is efficient to detect and prevent routing (e.g. wormhole,
blackhole) attacks.

In [14], the authors proposed a secure communication protocol between UAVs
and smart objects. If this is not exactly the same objective as that of our pro-
posal, this paper was interesting since it took into account the capture of a
UAV. The proposed protocol was based on efficient Certificateless Signcryption
Tag Key Encapsulation Mechanism using ECC. However the solution does nei-
ther address smart objects capture nor the peer-to-peer communication mode of
the UAVs fleet.

3.2 Related Work on Secure Channel Protocols

In this section, we restrict the discussion to the protocols that are proposed for
general-purpose computing environments or to those that are used as references
for comparison in the discussions to come.

The concept of trusted channel protocol was proposed by Gasmi et al. [5]
along with the adaptation of the TLS protocol [15]. Later Armknecht et al. [8]
proposed another adaptation of OpenSSL to accommodate the concept of trusted
channels; similarly, Zhou and Zhang [7] also proposed a SSL-based trusted chan-
nel protocol.

A Secure and Trusted Channel Protocol for UAVs Fleets 11

In Sect. 5.2, we will compare the proposed STCP with the existing protocols.
These protocols include the Station-to-Station (STS) protocol [16], the Aziz-
Diffie (AD) protocol [17], the ASPeCT protocol [18], Just-Fast-Keying (JFK)
[19], trusted TLS (T2LS) [5], GlobalPlatform SCP81 [20], the Markantonakis-
Mayes (MM) protocol [21], and the Sirett-Mayes (SM) protocol [22].

This selection of protocols is intentionally broad so as to include well-
established protocols like STS, AD and JFK. We also include the ASPeCT pro-
tocol, which is designed specifically for value-added services of mobile networks.
Similar to our proposal where we require trust assurance during the protocol
run, T2LS meets this as it provides trust assurance, whereas other protocols
like SCP81, SM, and MM are specific to smart cards and are representative
for embedded low-power devices. In addition, we have included the secure and
trusted channel protocol, P-STCP [9], which is designed for resource-restricted
and security-sensitive environments, and has some similar design requirements
to those of the proposed protocol.

4 Secure and Trusted Channel Protocol

In this section, we begin the discussion with the security comparison criteria,
followed by the protocol notation, the pre-setup and then the actual protocol
proposal. This section concludes with a discussion of how the secure channel is
re-established if one of the devices is restarted or resets the protocol.

4.1 Security Comparison Criteria

For a protocol to support the UAVs fleet, it should meet, at minimum, the
security and operational requirements listed below:

(G1)Mutual Entity Authentication: All nodes in the network should be able
to authenticate to each other to avoid masquerading by a malicious entity.

(G2) Asymmetric Architecture: Exchange of certified public keys between
the entities to facilitate the key generation and entity authentication process
must be provided.

(G3) Mutual Key Agreement: Communicating parties will agree on the
generation of a key during the protocol run.

(G4) Joint Key Control: Communicating parties will mutually control the
generation of new keys to prevent one party from choosing weak keys or
predetermining any portion of the session key.

(G5) Key Freshness: The generated key will be fresh to the protocol session
to protect against replay attacks.

(G6) Mutual Key Confirmation: Communicating parties will provide
implicit or explicit confirmation that they have generated the same keys dur-
ing a protocol run.

(G7) Known-Key Security: If a malicious user is able to obtain the session
key of a particular protocol run, it should not enable him/her to retrieve
long-term secrets (private keys) or session keys (future and past).

12 R. N. Akram et al.

(G8) Unknown Key Share Resilience: In the event of an unknown key share
attack, an entity X believes that it has shared a key with Y, where the entity
Y mistakenly believes that it has shared the key with entity Z �= X . The
proposed protocols should adequately protect against this attack.

(G9) K ey Compromise Impersonation (KCI) Resilience: If a malicious
user retrieves the long-term key of an entity Y, it will enable him/her to
impersonate Y. Nevertheless, key compromise should not enable him/her to
impersonate other entities to Y [23].

(G10) Perfect Forward Secrecy: If the long-term keys of the communicating
entities are compromised, this will not enable a malicious user to compromise
previously generated session keys.

(G11) Mutual Non-Repudiation: Communicating entities will not be able
to deny that they have executed a protocol run with each other.

(G12) Partial Chosen Key (PCK) Attack Resilience: Protocols that claim
to provide joint key control are susceptible to this type of attack [24]. In this
type of attack, if two entities provide separate values to the key generation
function then one entity has to communicate its contribution value to the
other. The second entity can then compute the value of its contribution in
such a way that it can dictate its strength (i.e. it is able to generate a partially
weak key). However, this attack depends upon the computational capabilities
of the second entity. Therefore, the proposed protocols should adequately
prevent PCK attack.

(G13) Trust Assurance (Trustworthiness): The communicating parties not
only provide security and operation assurance but also validation proofs that
are dynamically generated during the protocol execution.

(G14) Denial-of-Service (DoS) Prevention: The protocol should not
require the individual nodes to allocate a large set of resources to the extent
that it might contribute to a DoS attack.

(G15) Privacy: A third party should not be able to know the identities of the
SE-equipped UAVs.

For a formal definition of the terms (italicized) used in the above list, the
reader is referred to [25]. The requirements listed above are later used as a point
of reference to compare the selected protocols in Table 3.

4.2 Protocol Notation

The notations used in the protocol description are listed in Table 1.

4.3 Pre-protocol Setup

The proposed protocol requires certain pre-protocol setup operations as listed
below:

1. Each UAV that is part of the fleet has an ARFSSD, so called SE for concision
reasons.

A Secure and Trusted Channel Protocol for UAVs Fleets 13

Table 1. Notations used in protocol description.

SE1 :Denotes an ARFSSD ‘1’.
SE2 :Denotes an ARFSSD ‘2’.
A → B :Message sent by an entity A to an entity B.
TEMX :Denotes the TEM of an entity X
Xi :Represents the identity of an entity X.
grX :Diffie-Hellman exponential generated by an entity X.
CX :Signature key certificate of an entity X.
NX :Random number generated by an entity X.
X‖Y :Represents the concatenation of the data items X, Y in the given

order.
[M]Ke

Ka
:Message M is encrypted by the session encryption key Ke and then
MAC is computed using the session MAC key Ka. Both keys Ke and
Ka are generated during the protocol run.

SignX(Z):Signature generated on data Z by the entity X using a signature
algorithm [26].

H(Z) : Is the result of generating a hash of data Z.
Hk(Z) :Result of generating a keyed hash of data Z using key k.
SCookie :Session cookie generated by one of the communication entities. It

indicates the session information and facilitates protection against
DoS attacks along with (possibly) providing the protocol session
resumption facility.

V RA−B :Validation request sent by entity A to entity B. In response entity
B provides a security and reliability assurance to entity A.

SASA−B :Security assurance generation by entity A that provides trust vali-
dation to the requesting entity B.

2. Each SE in the fleet is pre-configured with the signature verification keys
of the owners of its partners (i.e. public keys of the owners of SE-equipped
UAVs – note that all UAVs can have the same owner) to be able to verify the
signature verification key of each SE contained in CSE . Each owner willing
his/her UAVs to take part of the fleet has to certify the SEs public key with
his/her signature key and he/she has to provide his/her public key to the
other owners willing to use his/her UAVs.

3. Each SE is also pre-configured with the signature verification keys of the
certification body which has assessed the security of the SE and its TEM
to be able to verify the signature verification key of each SE contained in
CTEMSE

. This certification of TEM public key is part of the UCOM smart
card manufacturing process [27].

4. Each SE is also pre-configured with the security assurance values for the
trusted and secure state of its communication partners.

One additional interest of our proposal is to support a multi-owner fleet of UAVs
(UAVs can be owned by different parties). It is also possible to filter the UAVs
authorized from “less” trusted owners by adding the SE identities attached to
trusted UAVs.

14 R. N. Akram et al.

4.4 Proposed Protocol

The messages of the protocol are listed in Table 2 and are described below.

Message 1. The SE1 generates a random number NSE1 and computes the
Diffie-Hellman exponential grSE1 . The “H(grSE1‖NSE1‖SE1i‖SE2i)” serves as
a session cookie “SCookie”, and it is appended to each subsequent message
sent by both devices. It indicates the session information, facilitates protec-
tion against DoS attacks and provides the protocol session resumption facility,
which is required if a protocol run is interrupted before it successfully concludes.
Finally, SE1 will request SE2 to provide assurance of its current state.

Table 2. Secure and trusted channel protocol (STCP).

1. SE1 → SE2 : SE1i‖SE2i‖NSE1‖grSE1‖V RSE1−SE2‖SCookie

2. SE2 → SE1 : SE2i‖SE1i‖NSE2‖grSE2‖[SignSE2(SE2 − Data)‖SignTEMSE2(SE2 − V alidation)‖
: CSE2‖CTEMSE2]

Ke
Ka

‖V RSE2−SE1‖SCookie

: SE2 − Data = H(SE2i‖SE1i‖grSE1‖grSE2‖NSE1‖NSE2)
: SE2 − V alidation = SASSE2−SE1‖NSE1‖NSE2

3. SE1 → SE2 : [SignSE1(SE1 − Data)‖SignTEMSE1(SE1 − V alidation)‖CSE1‖CTEMSE1]
Ke
Ka

‖SCookie

: SE1 − Data = H(SE1i‖SE2i‖grSE2‖grSE1‖NSE2‖NSE1)
: SE1 − V alidation = SASSE1−SE2‖NSE2‖NSE1

Message 2. In response, SE2 generates a random number, and a Diffie-Hellman
exponential grSE2 . It can then calculate the kDH = (grSE1)rSE2 (mod n) which
will be the a shared secret from which the rest of the keys will be generated.
The encryption key is generated as Ke = HkDH

(NSE1‖NSE2‖“1”) and a MAC
key as Ka = HkDH

(NSE1‖NSE2‖“2”).
Subsequently, the TEM generates a state validation message signed by

the TEM private key represented in the protocol as “SignTEMSE2(SE2 −
V alidation)”. SE2 will also request SE1 to provide assurance of its current state.

On receipt of this message, SE1 will first generate the session keys. It will
then verify SE2’s signature and validation proof generated by the TEM of SE2
after having verified that CSE2 and CTEMSE2 are genuine. As the signature key
belongs to the TEM of SE2, an attacker cannot masquerade this signature. By
verifying the signature, SE1 can ascertain the current state is measured by the
TEM of SE2. Now SE1 can verify whether the security assurance value represents
a trusted and secure state (or not) because since our pre-protocol setup, SE1
would have the security assurance value of a trusted and secure state of SE2.

Furthermore, SE1 will check the values of the Diffie-Hellman exponentials
(i.e. grSE1 and grSE2) and of the generated random numbers to avoid man-in-
the-middle and replay attacks.

Message 3. SE1 will then generate a message similar to message 2, a signature
by SE1 and trust validation proof generated by its TEM.

A Secure and Trusted Channel Protocol for UAVs Fleets 15

On receipt of the message, SE2 will verify the two certificates, the trust
validation proof and generate keys. It will also check the values of the Diffie-
Hellman exponentials and of the generated random numbers to avoid man-in-
the-middle and replay attacks.

4.5 Post-protocol Process

The shared material generated from the Diffie-Hellman exponential can be used
to generate more keys than just the session encryption and MAC keys of the
protocol. If this is not desirable then the session encryption and MAC keys can
be saved as master session keys.

4.6 Protocol Resumption

The protocol is run the first time that two SE-equipped UAVs of the fleet have to
communicate together. The session cookie, SCookie is used to facilitate the session
resumption subsequent exchanges. However, based on a predefined policy (e.g.
based on the elapsed time since the first protocol run), the SE might require the
protocol to be executed again to refresh the master session keys.

5 Protocol Evaluation

In this section, we first discuss the information analysis of the protocols, and
then compare different protocols with our proposal based on the comparison
criteria defined above. Finally, we provide a formal analysis using CasperFDR
and AVISPA.

5.1 Brief Informal Analysis

Throughout this section, we refer to the protocol comparison criteria of Sect. 4.1
by their respective numbers as listed in the same section.

During the proposed protocol, in messages 2 and 3 the communicating entities
authenticate each other, which satisfies G1. Similarly, for G2, all communicating
entities have exchanged cryptographic certificates to facilitate an authentication
and trust validation proof (generated and signed by the TEM) before the SE-
equipped UAVs are deployed (pre-deployment configuration).

The proposed protocol satisfies requirements G3, G4, G5 and G12 by first
requiring SE1 and SE2 to generate the Diffie-Hellman exponential; computa-
tional cost is thus equal on both sides. Similarly, exponential generation also
assures that both devices will have equal input to the key generation process.
Messages 2 and 3 are encrypted using the keys generated during the protocol
execution, thus providing mutual key confirmation (satisfying G6).

In the proposed protocol, session keys generated in one session have no link
with the session keys generated in the other sessions, even when the session
is established between the same devices. This enables the protocol to provide

16 R. N. Akram et al.

resilience against known-key security (G7). This unlinkability of session keys is
based on the fact that each entity not only generates a new Diffie-Hellman expo-
nential but also a random number, both of which are used during the protocol
for key generation. Therefore, even if an adversary A finds out about the expo-
nential and random numbers of a particular session, it will not enable him/her
to generate past or future session keys.

Furthermore, to provide unknown key share resilience (G8), the proposed
protocol includes the Diffie-Hellman exponentials along with generated random
numbers and each communicating entity then signs them. Therefore, the receiv-
ing entity can then ascertain the identity of the entity with which it has shared
the key.

The protocol can be considered to be a KCI-resilient (G9) protocol, as protec-
tion against the KCI is based on the digital signatures. In addition, the crypto-
graphic certificates of each signature key also include its association with a par-
ticular device. Therefore, if A has knowledge of the signature key of a device, it
can only masquerade this particular device to other devices but not others to it.

Table 3. Protocol comparison on the basis of the stated goals (see Sect. 4.1)

Goals Protocols

STS AD ASPeCT JFK T2LS SCP81 MM SM P-STCP SSH SSL Proposed
protocol

G1 ∗ ∗ ∗ ∗ ∗ ∗ −∗ −∗ ∗ (∗) ∗ ∗
G2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗ ∗ ∗ ∗
G3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗ ∗ ∗ ∗
G4 ∗ ∗ ∗ ∗ (∗) ∗ ∗ (∗) (∗) ∗
G5 ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗ ∗ ∗ ∗
G6 ∗ ∗ ∗ ∗ −∗ ∗ ∗ ∗ ∗
G7 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
G8 ∗ ∗ ∗ ∗ ∗ ∗ ∗ −∗ ∗ ∗ ∗ ∗
G9 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

G10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
G11 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
G12 (∗) (∗) (∗) (∗) (∗) (∗) ∗ ∗ ∗ ∗
G13 (∗) (∗) ∗ −∗ ∗ (∗) (∗) ∗
G14 ∗ (∗) ∗ (∗) (∗) ∗
G15 (∗) ∗ ∗ (∗) ∗ (∗) (∗) ∗
Note: ∗ means that the protocol meets the stated goal, (∗) shows that the protocol can
be modified to satisfy the requirement, and – ∗ means that the protocol (implicitly) meets
the requirement not because of the protocol messages but because of the prior relationship
between the communicating entities.

The proposed protocol also meets the requirement for perfect forward secrecy
(G10) by making the key generation process independent of any long-term keys.

A Secure and Trusted Channel Protocol for UAVs Fleets 17

The session keys are generated using fresh values of Diffie-Hellman exponentials
and random numbers, regardless of the long term keys: they are signature keys.
Therefore, even if eventually A finds out the signature key of any entity it will
not enable him/her to determine past session keys. This independence of long
term secrets from the session key generation process also enables the protocol to
satisfy G7.

Communicating entities in the STCP share signed messages with each other
that include the session information, thus providing mutual non-repudiation
(G11). G14 is ensured by the inclusion in the protocol of the session cookie,
which provides a limited protection against DoS, and by the fact that individual
devices have pre-configurations of communication partners which enable them
to drop a connection if an entity trying to connect with them is not able to
authenticate.

To satisfy G15, the device identities are basically a random string that should
not have any link with the function of the device. This would hinder an attacker
from eavesdropping a protocol run to determine which SE is communicating on
the wireless channel.

Finally, the TEMs of all SE-equipped UAVs provide trust validation proof
signed by the TEM private key. This provides mutual validation of the trust
between communicating devices, confirming that the other device is operating
in a secure and reliable state (G13).

5.2 Revisiting the Requirements and Goals

Table 3 provides a comparison between the protocols listed in Sect. 3.2 and the
proposed protocol in terms of the required goals (see Sect. 4.1).

As shown in Table 3, the STS protocol meets the first eleven goals. The main
issue with the STS protocol is that it does not provide adequate protection
against partial chosen key attacks (G12) and privacy protection (G15). The
remaining goals are not met by the STS because of the design architecture and
deployment environment, which did not require these goals. Similarly, the AD
protocol does not meet G6, G10, G11 and G13–G15.

The ASPeCT and JFK protocols meet a large set of goals. Both of these
protocols can easily be modified to provide trust assurance (requiring additional
signatures). Both of these protocols are vulnerable to partial chosen key attacks.
However, in Table 3 we opt for the possibility that the ASPeCT and JFK pro-
tocols can be modified to meet this goal because in a fleet of UAVs all commu-
nicating SE may be of the same computation power and have a strong offline
pre-deployment relationship.

The T2LS protocol meets the trust assurance goal by default. However, for
the remaining goals it has the same results as the SSL protocol. A point in favour
of the SCP81, MM, and SM protocols is that they were designed for the smart
card industry where there is a strong and centralised organisational model. Most
of these protocols, to some extent, have a similar architecture, in which a server
generates the key and then communicates that key to the client. There is no
non-repudiation as they do not use signatures in the protocol run.

18 R. N. Akram et al.

Both SSH and SSL meet a large set of requirements and also have the poten-
tial to be extended to satisfy the additional requirements. However, to provide
a flexible, backward compatible and universally acceptable architecture these
protocols have too many optional parameters. Such flexibility is one of the main
causes of most of the issues that these protocols have been plagued with in the
last couple of years, heartbleed being the most infamous vulnerability.

The only difference between the P-STCP and the proposed protocol (except
for the message structure) is the number of rounds to successfully complete a
protocols run. P-SCTP has four messages (2-round protocol) and the proposed
protocol uses 3 messages (1.5-round protocol).

As can be seen from Table 3, the proposed protocol satisfies all goals that
were described in Sect. 4.1.

5.3 Protocol Verification by CasperFDR and AVISPA

We selected the CasperFDR approach for formal analysis of the proposed pro-
tocol. The Casper compiler [28] takes as input a high-level description of the
protocol, together with its security requirements along with the definition of an
attacker and of its capabilities. The compiler then translates the description into
the process algebra of Communicating Sequential Processes (CSP) [29]. The CSP
description of the protocol can be machine-verified using the Failures-Divergence
Refinement (FDR) model checker [30]. The intruder’s capabilities modeled in the
Casper script for the proposed protocol are as follows:

– an intruder can masquerade any entity in the network,
– an intruder can read the messages transmitted in the network, and
– an intruder cannot influence the internal process of an entity in the network.

The security specification for which CasperFDR evaluates the network is
shown below. The listed specifications are defined in the #Specification section
of the Casper script:

– the protocol run is fresh and both applications are alive,
– the key generated by the entity A is known only to the entity B (A and B

are communication partners/devices),
– entities mutually authenticate each other and have mutual key assurance at

the conclusion of the protocol,
– long-term keys of communicating entities are not compromised, and
– an intruder is unable to deduce the identities from observing the protocol

messages.

The CasperFDR tool evaluated the protocol and did not find any feasible
attack(s). The script is provided in AppendixA.

Similarly, we scripted the proposed protocol in to High-Level Protocol Spec-
ification Language (HLPSL), as protocol description language for Automated
Validation of Internet Security Protocols and Applications (AVISPA) [31]. The

A Secure and Trusted Channel Protocol for UAVs Fleets 19

HLPSL is then translated into an intermediate language, which is an input to
four different verifiers - as part of the AVISPA. These verifiers include SATMC,
CL-AtSe, OFMC and TA4SP. Based on this analysis, no viable attack in the
context of the operational environment of the protocol was found. The script is
provided in AppendixB.

6 Conclusion and Future Research Directions

In this paper, we outlined the concept of fleets of UAVs and discussed why such
an architecture requires a secure channel for communication. The data com-
municated over a UAVs fleet has a strong requirement for confidentiality and
integrity. To satisfy this requirement, communicating devices should have some
cryptographic secrets to provide confidentiality and integrity. To generate these
cryptographic secrets, the SEs run a secure channel protocol. In this paper, we
proposed a secure channel protocol that not only provides mutual authentica-
tions and key sharing between the communicating entities but also provides
assurance that each of the devices is in a secure and trusted state. We compared
our proposed protocol with a list of selected protocols. Finally, we evaluated
our protocol using CasperFDR and AVISPA, showing that it is secure against a
number of attacks.

In future work, we will explore the major issues of detecting and neutralising
wireless jamming and DoS attackers, along with building a strong mitigating
framework.

Acknowledgments. The authors from XLIM acknowledge the support of:

– the SFD (Security of Fleets of Drones) project funded by Région Limousin;
– the TRUSTED (TRUSted TEstbed for Drones) project funded by the CNRS INS2I

institute through the call 2016 PEPS (“Projet Exploratoire Premier Soutien”) SISC
(“Sécurité Informatique et des Systèmes Cyberphysiques”);

– the SUITED (Suited secUrIty TEstbed for Drones), SUITED2 and UNITED
(United NetworkIng TEstbed for Drones), UNITED2 projects funded by the MIRES
(Mathématiques et leurs Interactions, Images et information numérique, Réseaux et
Sécurité) CNRS research federation.

The authors from LaBRI acknowledge the support of:

– the TRUSTED (TRUSted TEstbed for Drones) project funded by the CNRS INS2I
institute through the call 2016 PEPS (“Projet Exploratoire Premier Soutien”) SISC
(“Sécurité Informatique et des Systèmes Cyberphysiques”);

– the SUITED-BX, SUITED2-BX and UNITED-BX, UNITED2-BX projects funded
by LaBRI and its MUSe team.

Appendix A CasperFDR Script

#Free variables
datatype Field = Gen | Exp(Field, Num) unwinding 2
hkSE2, hkSE1, iMsg, rMsg, EnMaKey : Field
SE1, SE2, U: Agent

20 R. N. Akram et al.

gSE1, gSE2: Num
nSE1, nSE2, SE1Val, SE2Val: Nonce
VKey: Agent->PublicKey
SKey: Agent->SecretKey
InverseKeys = (VKey, SKey), (EnMaKey, EnMaKey), (Gen, Gen), (Exp, Exp)

#Protocol description
0. -> SE2 : SE1 [SE1!=SE2] <iMsg := Exp(Gen,gSE2)>
1. SE2 -> SE1 : SE2, nSE2, iMsg%hkSE2 <EnMaKey := Exp(hkSE2, gSE1); rMsg :=
Exp(Gen,gSE1)>
2. SE1 -> SE2 : nSE1, rMsg%hkSE1 <EnMaKey := Exp(hkSE1, gSE2)>
3. SE2 -> SE1 : nSE2, nSE1
4. SE1 -> SE2 : {{rMsg, U, nSE2}{SKey(U)}}{EnMaKey} [rMsg==hkSE2]
5. SE2 -> SE1 : {{iMsg,SE2, nSE1}{SKey(SE2)}}{EnMaKey} [iMsg==hkSE1]
6. SE1 -> SE2 : {{SE1OSHash, SE1, nSE2}{SKey(SE1)}}{EnMaKey}

#Actual variables
ADev1, ADev2, ME: Agent
GSE1, GSE2, GMalicious: Num
NSE1, NSE2, SE1VAL, SE2VAL, NMalicious: Nonce

#Processes
INITIATOR(SE2, SE1, U, SE2VAL, gSE2, nSE2) knows SKey(SE2), VKey
RESPONDER(SE1, SE2, U, SE1VAL, gSC, nSC) knows SKey(U), SKey(SC), VKey

#System
INITIATOR(ADev2, ADev1, ADev2Val, GSE2, NSE2)
RESPONDER(ADev1, ADev2, ADev1Val, GSE1, NSE1)

#Functions
symbolic VKey, SKey

#Intruder Information
Intruder = ME
IntruderKnowledge = {ADev2, ADev2, ME,
GMalicious, NMalicious, SKey(ME), VKey}

#Specification
Aliveness(SE2, SE1)
Aliveness(SE1, SE2)
Agreement(SE2, SE1, [EnMaKey])
Secret(SE2, EnMaKey, [SE1])
Secret(SE1, U, [SE2])

#Equivalences
forall x, y : Num . Exp(Exp(Gen, x), y) = Exp(Exp(Gen, y), x)

Appendix B AVISPA Script

role se_1 (A,B: agent,
G : text,

PK1,PKTM1: public_key,
CSE1,CTMSE1: message,

H,Hk, MAC, SIGN: hash_func,
SND, RCV : channel(dy))

played_by A
def=

local NS1, NS2, Rs1, Rs2 : text,
State : nat,
VR1, VR2 : text,
SAS1, SAS2, Sdata1, Sdata2 : text,
Success : text,
Svalid1, Svalid2 : text.text.text,
Kdh, Ke, Ka : message,
PK2, PKTM2 : public_key,
Scookie : message,
CSE2, CTMSE2 : message

const sec_kdh1, sec_ke1, sec_ka1 : protocol_id
init State:= 0

transition

A Secure and Trusted Channel Protocol for UAVs Fleets 21

1. State=0 /\ RCV(start) =|>
State’:=2 /\ NS1’:= new() /\ Rs1’ := new()

/\ SND(A.B.NS1’.exp(G, Rs1’).VR1.Scookie)

2. State=2 /\ RCV(B.A.NS2’.exp(G, Rs2’).Sdata2’.Svalid2’.
{SIGN(Sdata2’)}_(inv(PK2’)).{SIGN(Svalid2’)}_(inv(PKTM2’)).
MAC(Ka’.{{SIGN(Sdata2’)}_(inv(PK2’)).
{SIGN(Svalid2’)}_(inv(PKTM2’)).CSE2’.CTMSE2’}_Ke’)
.VR2.Scookie) =|>

State’:= 4 /\ SAS1’:= new()
/\ Svalid1’:= SAS1’.NS2’.NS1
/\ Sdata1’:= H(A.B.exp(G, Rs2’).exp(G, Rs1).NS2’.NS1)
/\ Kdh’ := exp(exp(G, Rs2’), Rs1)
/\ Ke’:= {Hk(NS1.NS2’.1)}_Kdh’
/\ Ka’:= {Hk(NS1.NS2’.2)}_Kdh’
/\ SND(A.B.Sdata1’.Svalid1’.{SIGN(Sdata1’)}_(inv(PK1)).

{SIGN(Svalid1’)}_(inv(PKTM1)).MAC(Ka’.
{{SIGN(Sdata1’)}_(inv(PK1)).
{SIGN(Svalid1’)}_(inv(PKTM1)).CSE1.CTMSE1}_Ke’).Scookie)

/\ waitness (A,B, ns1, NS1)
3. State= 4 /\ RCV(Success’) =|>

State’:=6 /\ request (A,B, ns2, NS2)
/\ secret (Kdh,sec_kdh1, {A,B})
/\ secret(Ke, sec_ke1, {A,B})
/\ secret(Ka, sec_ka1, {A,B})

end role
role se_2 (B,A: agent,

G : text,
PK2,PKTM2: public_key,

CSE2,CTMSE2: message,
H,Hk, MAC, SIGN: hash_func,

SND, RCV : channel(dy))
played_by B

def=
local NS2, NS1, Rs2, Rs1 : text,
State : nat,

VR2, VR1 : text,
SAS2, SAS1, Sdata2, Sdata1 : text,
Success : text,
Svalid2, Svalid1 : text.text.text,
Kdh, Ke, Ka : message,
PK1, PKTM1 : public_key,
Scookie : message,
CSE1, CTMSE1 : message
const sec_kdh2, sec_ke2, sec_ka2 : protocol_id
init State:= 1

transition
1. State=1 /\ RCV(A.B.NS1’.exp(G, Rs1’). VR1.Scookie) =|>

State’:= 3 /\ NS2’:= new() /\ Rs2’:=new() /\ SAS2’:= new()
/\ Sdata2’:= H(B.A.exp(G, Rs1’).exp(G, Rs2’). NS1’.NS2’)
/\ Svalid2’:= SAS2’.NS1’.NS2’
/\ Kdh’ := exp(exp(G, Rs1’), Rs2’)
/\ Ke’ := {Hk(NS1.NS2’.1)}_Kdh’
/\ Ka’ := {Hk(NS1.NS2’.2)}_Kdh’
/\ SND (B.A.NS2’.exp(G, Rs2’). Sdata2’.Svalid2’.
{SIGN(Sdata2’)}_(inv(PK2)). {SIGN(Svalid2’)}_(inv(PKTM2))
.MAC(Ka’.{{SIGN(Sdata2’)}_(inv(PK2)).
{SIGN(Svalid2’)}_(inv(PKTM2)).CSE2.CTMSE2}_Ke’).VR2.Scookie)
/\ waitness (B,A, ns2, NS2’)

2. State=3 /\ RCV (A.B.Sdata1’.Svalid1’.{SIGN(Sdata1’)}_(inv(PK1’)).
{SIGN(Svalid1’)}_(inv(PKTM1’)).MAC(Ka.{{SIGN(Sdata1’)}_(inv(PK1’)).
{SIGN(Svalid1’)}_(inv(PKTM1’)).CSE1’.CTMSE1’}_Ke).Scookie)

=|>
State’:= 5 /\ request(B,A,ns1, NS1)

/\ SND(Success’)
/\ secret (Kdh,sec_kdh2, {B,A})
/\ secret(Ke, sec_ke2, {B,A})
/\ secret(Ka, sec_ka2, {B,A})

end role
role session (A,B: agent,

G: text,
H,Hk, MAC, SIGN: hash_func)

def=
local SA, RA, SB, RB : channel(dy),

CSE1, CSE2, CTMSE1, CTMSE2: message,
PK1, PK2, PKTM1, PKTM2: public_key

composition
se_1(A,B, G, PK1, PKTM1, CSE1, CTMSE1, H,Hk, MAC, SIGN, SA, RA)

/\ se_2(B, A, G, PK2, PKTM2, CSE2, CTMSE2, H, Hk, MAC, SIGN, SB,
RB)
end role
role environment() def=

22 R. N. Akram et al.

const ns1, ns2 : protocol_id,
a, b : agent,
pk1, pk2, pki : public_key,
g : text,
h, hk, mac, sign : hash_func

intruder_knowledge = {a, b, i, pk1, pk2, pki, inv(pki), g, h, hk,
mac, sign}

composition
session (a ,b, g, h, hk, mac, sign)

/\ session (a ,i , g, h, hk, mac, sign)
/\ session (i ,b , g, h, hk, mac, sign)

end role
goal
secrecy_of sec_kdh1, sec_kdh2 , sec_ke1, sec_ke2, sec_ka1, sec_ka2
authentication_on ns1
authentication_on ns2
end goal

environment ()

References

1. Akram, R.N., Bonnefoi, P.F., Chaumette, S., Markantonakis, K., Sauveron, D.:
Secure autonomous UAVs fleets by using new specific embedded secure elements.
In: 2016 IEEE TrustCom/BigDataSE/ISPA, pp. 606–614, August 2016

2. Akram, R.N., Markantonakis, K., Mayes, K.: A paradigm shift in smart card own-
ership model. In: 2010 International Conference on Computational Science and Its
Applications, pp. 191–200, March 2010

3. Akram, R.N., Markantonakis, K., Mayes, K.: Trusted platform module for smart
cards. In: 2014 6th International Conference on New Technologies, Mobility and
Security (NTMS), pp. 1–5, March 2014

4. Smart Cards; Smart Card Platform Requirements Stage 1 (Release 9), European
Telecommunications Standards Institute (ETSI), France, Technical Specification
ETSI TS 102 412 (V9.1.0), June 2009. http://www.etsi.org/deliver/etsi ts/102400
102499/102412/09.01.00 60/ts 102412v090100p.pdf

5. Gasmi, Y., Sadeghi, A.-R., Stewin, P., Unger, M., Asokan, N.: Beyond secure chan-
nels. In: Proceedings of the 2007 ACM Workshop on Scalable Trusted Computing,
STC 2007, pp. 30–40. ACM, New York (2007)

6. Trusted Platform Module Main Specification, Trusted Computing Group, Techni-
cal report (2011)

7. Zhou, L., Zhang, Z.: Trusted channels with password-based authentication and
TPM-based attestation. In: International Conference on Communications and
Mobile Computing, vol. 1, pp. 223–227 (2010)

8. Armknecht, F., Gasmi, Y., Sadeghi, A.-R., Stewin, P., Unger, M., Ramunno, G.,
Vernizzi, D.: An efficient implementation of trusted channels based on OpenSSL.
In: Proceedings of the 3rd ACM Workshop on Scalable Trusted Computing, ser.
STC 2008, pp. 41–50. ACM, New York (2008)

9. Akram, R.N., Markantonakis, K., Mayes, K.: A privacy preserving application
acquisition protocol. In: Min, G., Marmol, F.G. (eds.) 11th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications
(IEEE TrustCom 2012), Liverpool, United Kingdom. IEEE Computer Society,
June 2012

10. Blazy, O., Bonnefoi, P.-F., Conchon, E., Sauveron, D., Akram, R.N., Markanton-
akis, K., Mayes, K., Chaumette, S.: An efficient protocol for UAS security. In: 2017
Integrated Communications Navigation and Surveillance (ICNS) (2017)

http://www.etsi.org/deliver/etsi_ts/102400_102499/102412/09.01.00_60/ts_102412v090100p.pdf
http://www.etsi.org/deliver/etsi_ts/102400_102499/102412/09.01.00_60/ts_102412v090100p.pdf

A Secure and Trusted Channel Protocol for UAVs Fleets 23

11. Steinmann, J.A., Babiceanu, R.F., Seker, R.: UAS security: encryption key nego-
tiation for partitioned data. In: 2016 Integrated Communications Navigation and
Surveillance (ICNS), pp. 1E4-1–1E4-7, April 2016

12. Pigatto, D.F., Gonçalves, L., Roberto, G.F., Rodrigues Filho, J.F., Floro da Silva,
N.B., Pinto, A.R., Lucas Jaquie Castelo Branco, K.R.: The HAMSTER data com-
munication architecture for unmanned aerial, ground and aquatic systems. J. Intell.
Robot. Syst. 84(1), 705–723 (2016). https://doi.org/10.1007/s10846-016-0356-x

13. Maxa, J.A., Mahmoud, M.S.B., Larrieu, N.: Extended verification of secure
UAANET routing protocol. In: 2016 IEEE/AIAA 35th Digital Avionics Systems
Conference (DASC), pp. 1–16, September 2016

14. Won, J., Seo, S.-H., Bertino, E.: A secure communication protocol for drones and
smart objects. In: Proceedings of the 10th ACM Symposium on Information, Com-
puter and Communications Security, ser. ASIA CCS 2015, pp. 249–260. ACM, New
York (2015). https://doi.org/10.1145/2714576.2714616

15. Dierks, T., Rescorla, E.: RFC 5246 - The Transport Layer Security (TLS) Protocol
Version 1.2, Technical report, August 2008

16. Diffie, W., van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Crypt. 2(2), 107–125 (1992)

17. Aziz, A., Diffie, W.: Privacy and authentication for wireless local area networks.
IEEE Pers. Commun. 1, 25–31 (1994)

18. Horn, G., Preneel, B.: Authentication and payment in future mobile systems. In:
Quisquater, J.-J., Deswarte, Y., Meadows, C., Gollmann, D. (eds.) ESORICS 1998.
LNCS, vol. 1485, pp. 277–293. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055870

19. Aiello, W., Bellovin, S.M., Blaze, M., Canetti, R., Ioannidis, J., Keromytis, A.D.,
Reingold, O.: Just fast keying: key agreement in a hostile internet. ACM Trans.
Inf. Syst. Secur. 7, 242–273 (2004)

20. Remote Application Management over HTTP, Card Specification v 2.2 - Amend-
ment B. GlobalPlatform Specification, September 2006

21. Markantonakis, K., Mayes, K.: A secure channel protocol for multi-application
smart cards based on public key cryptography. In: Chadwick, D., Preneel, B. (eds.)
CMS 2004. ITIFIP, vol. 175, pp. 79–95. Springer, Boston, MA (2005). https://doi.
org/10.1007/0-387-24486-7 6

22. Sirett, W.G., MacDonald, J.A., Mayes, K., Markantonakis, K.: Design, installa-
tion and execution of a security agent for mobile stations. In: Domingo-Ferrer,
J., Posegga, J., Schreckling, D. (eds.) CARDIS 2006. LNCS, vol. 3928, pp. 1–15.
Springer, Heidelberg (2006). https://doi.org/10.1007/11733447 1

23. Blake-Wilson, S., Johnson, D., Menezes, A.: Key agreement protocols and their
security analysis. In: Darnell, M. (ed.) Cryptography and Coding 1997. LNCS, vol.
1355, pp. 30–45. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0024447

24. Mitchell, C., Ward, M., Wilson, P.: Key control in key agreement protocols. Elec-
tron. Lett. 34(10), 980–981 (1998)

25. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC, Boca Raton (1996)

26. Furlani, C.: FIPS 186–3: Digital Signature Standard (DSS). National Insti-
tute of Standards and Technology (NIST) Std., June 2009. http://csrc.nist.gov/
publications/fips/fips186-3/fips 186-3.pdf

27. Akram, R.N., Markantonakis, K., Mayes, K.: A dynamic and ubiquitous smart card
security assurance and validation mechanism. In: Rannenberg, K., Varadharajan,
V., Weber, C. (eds.) SEC 2010. IAICT, vol. 330, pp. 161–172. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15257-3 15

https://doi.org/10.1007/s10846-016-0356-x
https://doi.org/10.1145/2714576.2714616
https://doi.org/10.1007/BFb0055870
https://doi.org/10.1007/BFb0055870
https://doi.org/10.1007/0-387-24486-7_6
https://doi.org/10.1007/0-387-24486-7_6
https://doi.org/10.1007/11733447_1
https://doi.org/10.1007/BFb0024447
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
https://doi.org/10.1007/978-3-642-15257-3_15

24 R. N. Akram et al.

28. Lowe, G.: Casper: a compiler for the analysis of security protocols. J. Comput.
Secur. 6, 53–84 (1998)

29. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–
677 (1978)

30. Ryan, P., Schneider, S.: The Modelling and Analysis of Security Protocols: The
CSP Approach. Addison-Wesley Professional, Boston (2000)

31. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005). https://doi.org/
10.1007/11513988 27

https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/11513988_27

Philanthropy on the Blockchain

Danushka Jayasinghe(B), Sheila Cobourne, Konstantinos Markantonakis,
Raja Naeem Akram, and Keith Mayes

Smart Card and IoT Security Centre, Information Security Group,
Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

{Danushka.Jayasinghe.2012,Sheila.Cobourne.2008}@live.rhul.ac.uk,
{K.Markantonakis,R.N.Akram,Keith.Mayes}@rhul.ac.uk

Abstract. One of the significant innovations that came out of Bitcoin is
the blockchain technology. This paper explores how the blockchain can
be leveraged in the philanthropic sector, through charitable donation
services in fiat currency or Bitcoin via a web-based donor platform. The
philanthropic model is then used for a case study providing humanitarian
aid for a community living in a challenging geographical environment
with limited internet availability. An SMS based mobile payment system
is proposed for provisioning the received donations using the existing
GSM network, very basic mobile phones and One Time Password (OTP)
security tokens. The proposed scheme is finally evaluated for security
while discussing the impact it has on charities and donors.

Keywords: Blockchain · Bitcoin · Rootstock · Philanthropy
Smart contract · Multi-signatures · Hosted wallet · SMS · Charity
OTP · Security token

1 Introduction

Bitcoin is a decentralised cryptocurrency system which works on a peer-to-peer
network, using blockchain technology [8,18]. Blockchain technology has gained
rapid interest due to its decentralised nature and strong security properties
[22,23]. However, blockchains are not limited to decentralised cryptocurrencies,
but can also be applied to other innovative ideas such as smart contracts, record-
ing asset ownerships, cross-border payment solutions, trade finance, etc. [21,22].

A report by the UK Charities Aid Foundation [10] identifies that for chari-
ties, blockchains can increase transparency, openness and trust whilst reducing
transaction costs and providing new opportunities for fundraising. We explore
this by introducing a generic blockchain based philanthropic model that uses a
web-based donation platform where donors can choose which charity projects
to support, through donations in Bitcoin or fiat currency [17]. In the proposed
scheme, the charity will maintain hosted Bitcoin Wallets for registered users:
back-end payments are done via multi-signature Bitcoin transactions to enhance
security: more advanced services can be offered using Smart Contracts via the
c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
G. P. Hancke and E. Damiani (Eds.): WISTP 2017, LNCS 10741, pp. 25–38, 2018.
https://doi.org/10.1007/978-3-319-93524-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93524-9_2&domain=pdf

26 D. Jayasinghe et al.

Rootstock platform [2]. This allows the charity to provide feedback on how each
individual donation was used (donation transparency), along with secure, cheap
and speedy transactions and an infrastructure that can be used for donation pro-
visioning. This generic philanthropic model is then applied to financial aid distri-
bution in offline geographical environments such as warzones, disaster areas and
economically deprived areas of the world where the basic technological infras-
tructure necessary for a blockchain solution is not available. In these challenging
conditions, conventional internet-based money transfer may not be possible and
physical cash handling may be fraught with danger. Using our solution, Bit-
coin payments can be done using basic mobile phones, an SMS mobile payment
system utilising an existing GSM network and low-cost security tokens.

The main contributions of the paper are: (1) a new philanthropic model that
leverages the Bitcoin blockchain/Smart Contract Platform for charitable dona-
tions/provisioning and (2) an SMS based Bitcoin mobile payment system that
can be used in an offline environment. The paper is structured as follows. Bene-
fits of Blockchains are identified in Sect. 2. Our philanthropic model is introduced
in Sect. 3, and in Sect. 4, this is applied to a use case of humanitarian aid in a
disconnected environment. The proposed scheme is evaluated in Sect. 5, and the
discussion is concluded and future research directions outlined in Sect. 6.

2 Benefits of Blockchain Solutions for Charities/Donors

Blockchain solutions can provide advantages when used in conjunction with char-
itable giving [10,11,15]. For example, the Royal National Lifeboat Institution
(RNLI) in the UK has accepted Bitcoin since August 2015 [7]. BitGive Foun-
dation’s (GiveTrack) allows donors to trace Bitcoin transactions (donations) in
real time [5] Bitcoin solutions can benefit both charities and donors as follows:

1. Donation transparency: by using Bitcoin addresses for donations there is a
publicly available audit trail detailing exactly where a particular donation went.

2. Reducing transaction costs: Low International transaction fees are a fea-
ture of blockchain payments as seen in Table 1. Bitcoin Currency (BTC), United
States Dollar (USD), Great British Pound (GBP).

Table 1. Comparison of transaction fees

Transaction method Fee BTC Fee USD Fee GBP Speed

Bitcoin (average 645 bytes)a 0.0001 $0.25 £0.20 Roughly 50min [9]

Western Unionb - $14.83 £8.90 Less then 1 h

Western Unionb - $11.50 £6.90 Next day

MoneyGramb - $16.50 £9.90 Less then 1 h

Riab - $10.00 £6.00 Same day
aBitcoin transaction fees are calculated on transaction size, not monetary value [8].
bBased on remittance transfer of 120 GBP from the United Kingdom to Uganda [20].

Philanthropy on the Blockchain 27

3. Donation speed: All Bitcoin transactions are broadcast immediately. Each
transaction that is included in a valid mined block and added to the blockchain
is called a confirmation which takes just over seven minutes [8,9]. With each
subsequent block mined, the number of confirmations for that particular trans-
action increases by one. It is common practice to wait until at least six confirma-
tions [18], taking roughly fifty minutes [9]. Some transactions could be consid-
ered to be complete after only one or two confirmations. This is fast compared
to existing methods which could take several days [23]: see Table 1.

4. Donation provisioning: Provisioning the donations to beneficiaries can be
challenging. For example, humanitarian financial aid distribution in warzones
can be hindered if the country’s banking system is subject to sanctions. Bitcoin
payments bypass the banking system and donations can reach their intended
target, without requiring the charity to transport large amounts of cash [10].

3 The Blockchain Philanthropic Model

We propose a system where a donor can make their donation in Bitcoin via
a Donor Platform. Each charity/project on the donor platform has a Bitcoin
address, with the ‘granularity’ ranging from one Bitcoin address per project
through to a central Bitcoin address for the charity. These standalone Bitcoin
addresses can be funded by donors using a standard pay to address (Pay To
Public Key Hash) Bitcoin transaction. Bitcoin donors can use any Bitcoin wal-
let/client to donate, or use fiat currency that gets converted to Bitcoin auto-
matically by using an online exchange. Once a donation is made, the donor
can query the blockchain to see whether the donated funds have been used or
not. The charity then uses the donations to allocate financial aid to individual
beneficiaries. Beneficiaries can then perform Bitcoin transactions for day-to-day
activities.

3.1 Bitcoin Transaction Methods

We propose that donations can be used by the charity for donation provision-
ing and subsequent SMS payment processing via one of two Bitcoin payment
methods: Multi-Signature Addresses and Smart Contracts.

Option 1: Multi-Signature Addresses are derived using a multi-signature
process, where more than one private key is needed to authorise a transaction.
For example, a 2-of-3 multi-signature is when a Bitcoin address is associated
with three private keys and at least two out of the three private keys are needed
to authorise a Bitcoin transaction. In our proposal, we use ‘Pay To Script Hash’
(P2SH) transactions to process multi-signatures. To generate a multi-signature,
a Full Redeem Script which includes details of the three public keys is hashed
to generate a hashed Redeem Script which becomes the P2SH multi-signature.
The Full Redeem Script is shared between all key-holding entities. The Redeem
Script can be used to verify the transferred amount and whether its being sent

28 D. Jayasinghe et al.

to the correct multi-signature address. It also gives details about how many
signatures are needed to make a payment. The recipient needs to provide the
full redeem script to spend the received Bitcoins.

Option 2: Smart Contracts can be defined as a set of instructions represented
in computer code published on a distributed network, that receives inputs, exe-
cutes instructions and provides outputs. It can enable a charity to offer additional
features such as: routine provisioning of donations when beneficiaries are low in
cash, issuance of small micro-finance loans, record keeping, donation requests
to donors and automatic audit reports of a charity activity. Running advanced
smart contracts on the Bitcoin network is not possible, however, a suitable plat-
form would be Rootstock (RSK) [2], which is a sidechain that is based on a
2-Way peg mechanism. The 2-Way peg is a method to convert BTC into Smart
Bitcoin Currency (SBTC) and vice-versa. When a user intends to convert BTC
to SBTC, some BTC are locked in Bitcoin and the same amount of SBTC is
unlocked in RSK and vice-versa [2]. Provisioning of donations, payments between
beneficiaries and transaction fees to execute instructions are paid using SBTC.
The smart contract is then published in the RSK network i.e. the contract exists
on every node joining the network, including miners. To execute an instruction
in the smart contract, the charity broadcasts a message to the RSK network. A
small transaction fee is paid for this process (“Gas”). A smart contract can be
instructed to receive two or more signatures (similar to multi-signature function-
ality) via programmable logic before a transaction can be executed and broadcast
to the peer-to-peer network.

4 The Philanthropic Model in an Offline Environment

Blockchain based schemes have constraints, such as requiring Internet and com-
patible devices: computers, tablets or smart phones that can perform crypto-
graphic processes. People in a geographical area without reliable Internet facil-
ity would find it difficult to use the hosted wallet based transactions. There is
more GSM network coverage than Internet access in most countries around the
world [16], and the use of mobile phones within the GSM network coverage is
considerably higher compared to other communication technologies [16], so this
points us to consider an Short Message Service (SMS)-based solution.

4.1 SMS Payments and Bitcoin

SMS m-payment systems have been extremely successful in the developing world,
most notably M-PESA in Kenya [6]. The SMS approach has been extended to
perform Bitcoin transactions [1,3]. However, all these schemes require the user
to have initial online access to set up and maintain their Wallet. Attempts to
integrate Bitcoin directly with M-PESA in Kenya have largely been unsuccessful
due to business pressures [24]. Other proposals need smartphone apps to interact
with online Bitcoin wallets e.g. BTC Wallet [12]. As none of these existing solu-
tions is suitable, we propose a novel SMS based mobile payment system which

Philanthropy on the Blockchain 29

acts as a gateway to transact with the blockchain, using Bitcoin wallets hosted
on beneficiaries’ behalf by the charity (Hosted Wallet). Offline beneficiaries can
then make and receive Bitcoin payments using SMS messaging on basic mobile
phones along with a One Time Password (OTP) security token, that provides
some assurance that only a genuine user can send an SMS to make a transaction.

4.2 Security Requirements and Adversarial Model

The proposed scheme must satisfy the following security requirements. Confi-
dentiality: sensitive information should not be disclosed to unauthorised par-
ties. Integrity: information must not be tampered with by unauthorised parties.
Authentication: all participants in a transaction must be authorised and all
transaction data must be genuine. Non-repudiation: none of the participants
in a transaction can subsequently deny taking part in it. Availability: services
should not be denied to authorised users (distributed denial of service - DDoS).

In a humanitarian aid setting, the adversarial model is as follows [14].
State Level Attackers (SL): high levels of skill/resources, employed by gov-
ernment agencies to attack commercial/government systems. State sponsored
cyber attacks on humanitarian operations have been recorded. Cyber Crimi-
nals (CC): are organised groups who attack systems for money, who also have

Fig. 1. Philanthropic model and SMS payment system architecture

30 D. Jayasinghe et al.

high levels of skill and resources. Hacktivists (Ha): have moderate skills and
resources and use digital tools to mount attacks for ideological reasons. Insiders
(In): may have low levels of technical skill and resources, corrupt users, char-
ity workers or merchants can be particularly dangerous if they have privileged
access to data.

4.3 Proposed SMS-Based Bitcoin Payment Scheme

The charity creates Hosted Wallets for beneficiaries, and during a secure regis-
tration process at the local office, issues OTP tokens that will be used to make
payment requests. Our proposal involves interactions between a number of enti-
ties, described below: the relationship between entities is illustrated in Fig. 1.

Bitcoin Payment Server (BPS): manages hosted Bitcoin Wallets on behalf of
beneficiaries, securely holds Bitcoin keys for each account holder and is connected
to the Bitcoin/RSK peer-to-peer network. Charity Local Office (LO): located
at the disconnected environment, registers phone numbers of users and manages
distribution of OTP tokens. Charity Head Quarters (HQ): geographically
distant from the aid environment, and has online access/secure servers: the HQ
holds relevant Bitcoin private keys for all payers. Charity Head Quarters
Backup Server (HQB): backup server which also holds relevant Bitcoin pri-
vate keys for all payers. One Time Password (OTP) Token: cheap Hash-
based One Time Password (HOTP) security token used with every SMS trans-
action. SMS-Gateway: server that sends and receives SMS transmissions1 to
and from the telecommunication network, and is connected to the BPS. Addi-
tionally, we make the following assumptions: Charity Head Quarters (HQ):
The charity operates on an international level while providing humanitarian aid
for offline beneficiaries. It is a reputable and trusted entity, with secure premises
and online access/backup servers which may be geographically distant from the
aid environment. Donors: Potential donors must have online access to use the
donor platform. Donor Platform: Hosted on a secure web server adhering to
industrial standard security controls to prevent attacks (such as: Denial of Ser-
vice, website defacing, content manipulation, etc.). Bitcoin Payment Server
(BPS): Secure server managed under industrial standard security controls to
prevent attacks. All security keys are kept encrypted and stored securely to min-
imise the risk of data breaches. Phones: All users of the system possess sim-
ple mobile phones (‘feature phones’) that are protected by security code/access
PINs, and the local existing GSM network can be used for SMS messages. Secure
Registration: At the LO, all users of the system must register their mobile num-
bers and be issued with cheap Hash-based One Time Password (HOTP) security
tokens. Mobile numbers are assigned an OTP identifier and Bitcoin wallet. All
registration details are sent to the BPS (encrypted using the LO’s private key),
in batches if the LO’s internet connection is intermittent. Security Token:
This is a cheap hardware security token that generates HMAC-Based (HOTP)
passcodes when the user requests (“event-driven”). These codes remain valid
1 All SMS messages used in the proposal are within the standard 160 character length.

Philanthropy on the Blockchain 31

until used by the authenticating application. Typical OTP lengths are 8 digits
or 6 alphanumeric characters, and are generated by standardised algorithms e.g.
RFC4226 [19]. The BPS can generate a user’s transaction OTP using the same
algorithm. Trust: SMS-Gateway and BPS are trusted & secure. Mobile phones
are not. Bitcoin wallet addresses: All the Bitcoin wallet addresses and Bitcoin
transactions use a 2-of-3 multi-signature process. The key holding entities are
the BPS, charity HQ and HQB. So when the BPS receives a payment request, it
cannot broadcast a valid Bitcoin transaction to the Bitcoin peer-to-peer network
without it being authorised by one of the other keyholders.

4.4 Processing a Bitcoin Payment Request

Payments can be made from charity worker to beneficiary, beneficiary to mer-
chant, or merchant to merchant2, and the message flow is shown in Fig. 2. The
notation used is shown in Table 2, security credentials for each entity are shown
in Table 3 and the content of each SMS messages used is shown in Table 4. For
simplicity of exposition, the following description shows the Head Office (HQ)
providing the second Bitcoin key.

Fig. 2. SMS payment message flow

2 Merchants could use an existing Bitcoin address, registered and associated with a
short Merchant ID by the BPS, used instead of PhP /PhR in transactions.

32 D. Jayasinghe et al.

Table 2. Notation used in proposed SMS payment scheme

Notation Description

AddrX Bitcoin multi-signature address for entity X

BPS/PhX Bitcoin payment server (entity)/Phone number of entity X

BALX Bitcoin balance in Account ACX for entity X

EK(Z)/X→Y Encryption of data Z with key K/Message sent from X to Y

HQ/HQB Head quarters (entity)/Head quarters backup location (entity)

LO/P/R Local office (entity)/Payer (entity)/Recipient (entity)

OTPX One time password generated by entity X

PKX/SKX Public/Secret key pair of entity X

SX/TrHash Bitcoin private key of entity X (signing key)/Transaction Hash

TrAmt/TrNo Transaction amount/Transaction number

TXID Unique transaction ID of a transaction recorded in the
blockchain. Also referred to as the Transaction Hash (TrHash)

(Z)SignK Signature on data Z with signature key K

TrFee Transaction fee paid to the Bitcoin miner

RawTr Raw transaction created for signing

ParTr Partial signed transaction created after signing RawTr

ComTr Complete signed transaction created after signing ParTr

ReSc Full redeem script used for the Bitcoin multi-signature address

RSKHash Rootstock transaction hash

RSK-AddSC RSK smart contract address, unique for the contract and never
changes

RSK-AddX−Y RSK public key (RSK address) of entity X kept securely with
entity Y

SRSK−X−Y RSK private key of entity X kept securely with entity Y

Gas Transaction fee paid to execute instructions on the smart
contract

Stage 1: Payment Request: to make a payment, the Payer (P) types an
SMS with payment instructions (PayReq SMS), and sends it to a local phone
number provided by the charity, to be forwarded to the charity’s BPS via the
SMS-Gateway. The BPS retrieves Bitcoin wallets for both Payer and Recipient,
checks TrAmt is not greater than BALP, pseudo-randomly generates a three-
digit number, unique per transaction TrNo, and then sends AuthReq SMS asking
for Payer’s OTP. The Payer presses a button on the OTP token, then sends Auth
SMS containing the resulting OTP to authorise the transaction. The BPS checks
the TrNo, generates OTPBPS and compares to the received OTPP . If any checks
fail, TransDenied SMS is sent to the Payer. If all checks are passed then the BPS
proceeds to making a Bitcoin payment, using one of the two proposed options.

Philanthropy on the Blockchain 33

Stage 2: Bitcoin Transaction Processing

Option 1: Multi-signature Process: The BPS first generates a Raw Trans-
action (RawTr) which includes the Full Redeem Script (ReSc), the new multi-
signature address associated for the receiver where the payment is going to,
TrAmt and TrFee. The RawTr then needs to be signed by minimum 2 partic-
ipants in turn to generate a valid Bitcoin transaction. The BPS first signs the
RawTr using the corresponding Payer private key SP and forwards the Partial
Signed Transaction (ParTr) to the HQ for signing.
BPS→HQ: ParTr = (ReSc,AddrR,TrAmt,TrFee)SignSP

To authorise the payment request, HQ first verifies the ParTr to check the
payment amount and number of signatures needed. Once satisfied, HQ signs
this using its private payer Bitcoin key SP−HQ to generate the Complete Signed
Transaction ComTr and sends this back to the BPS.
HQ→BPS: ComTr =(ParTr)SignSP −HQ

The BPS then broadcasts the ComTr to the Bitcoin peer-to-peer network.
Once broadcast, a unique transaction-id (TXID) or the recipient’s Bitcoin
address can be used to trace the transaction on the blockchain. The Bitcoin
miner who first publishes the valid block in the blockchain that also includes our
Bitcoin transaction is paid the TrFee for the payment. This is the first confirma-
tion for the transaction. The BPS then waits for the transaction to be confirmed
in the agreed number of blocks before generating the SMSs.

Option 2: Smart Contract Process: The BPS calls the Smart Contract and
authorises the TrAmt and the Gas is paid by using the SRSK−P−BPS .
BPS→RSK: RSK-AddSC ,RSK-AddP ,RSK-AddR,TrAmt,Gas

Once the message gets broadcast in the RSK network, the HQ or the HQB calls
the smart contract which act as the second set of instructions needed by the
smart contract to execute the transaction. HQ/HQB uses the SRSK−P−HQ/HQB

to authorise the paid amount TrAmt and the transaction fee Gas.

Table 3. Credentials used in proposed SMS payment scheme

Entity Keys and other assets

Payer/Recipient No keys, PIN for phone, HOTP token (no PIN) for making
payments

BPS SP−BPS , AddrP−BPS , AddrR−BPS , PKLO, PhX , OTPX

HQ SP−HQ, SRSK−HQ, ReSc

HQB SP−HQB , SRSK−HQB , ReSc

LO SKLO, physical OTP tokens, phone numbers (payers/recipients),
plus registration details/OTP allocation details

Donor SDonor/VDonor

Donor platform AddrProject

34 D. Jayasinghe et al.

Table 4. SMS payment messages

Message Content

PayReq SMS PhP , TrAmt, PhR

AuthReq SMS TrNo, AuthReq

Auth SMS PhP , TrNo, OTPP

TransDenied SMS PhP , TrNo, PhR, Denied

PayConf SMS TrNo, TrAmt, PhR, BALP , TXID

RecConf SMS TrNo, TrAmt, PhP , BALR, TXID

PayConfRSK SMS TrNo, TrAmt, PhR, BALP , RskHash

RecConfRSK SMS TrNo, TrAmt, PhP , BALR, RskHash

HQ/HQB→RSK: RSK-AddSC ,RSK-AddP−HQ,RSK-AddR,TrAmt,Gas
When instructions are received from both BPS and HQ/HQB, the Smart Con-
tract executes a transaction to transfer the value TrAmt to the recipient. The
unique transaction details are recorded instantly on the RSK blockchain in the
format of a hash (RskHash). The BPS does not need to wait for a transaction
confirmation as there is instant confirmation when using the RSK platform.

Stage 3: Payment Finalisation: Once the payment is done, the BPS updates
the payer/recipient balances and sends confirmation messages via the SMS-
Gateway: PayConf SMS or PayConfRSK SMS to the Payer and RecConf SMS
or RecConfRSK SMS to the Recipient. TXID/RskHash are included as unique
IDs that can be used to trace the transaction on the Bitcoin/RSK blockchains.

5 Analysis

In this section, we discuss SMS security and analyse the proposal against security
requirements shown in Sect. 4.2. A summary of targets that adversaries may
attack along with suggested countermeasures is shown in Table 5.

SMS Security Issues: SMS messages are not encrypted by default and the
SMS service is vulnerable to man-in-the-middle attacks and spoofing [4]. Attack
methods include interception/redirection using false base stations in GSM net-
works, eavesdropping at the Short Message Service Centre (SMSC), and SS7
hacking [13]. Adversaries who might target the SMS system are SL, CC and In,
aiming to create fraudulent transactions. Although these issues are not addressed
directly in our proposal, measures have been included which provide some deter-
rent to would-be attackers. The use of the OTP means that replay attacks
will fail, and the AuthReq SMS from the charity should alert users to poten-
tially fraudulent transactions. Additional assurance comes from including both
TXID/RSKHash and TrNo in confirmation SMSs: these can be used to cross
check with the Bitcoin/RSK blockchain and in a verbal comparison between
Payer and Recipient respectively, to provide an extra level of assurance that the

Philanthropy on the Blockchain 35

transaction is correct. These measures provide a higher level of security than
other SMS Bitcoin schemes: e.g. in Coinapult SMS, the user sends an SMS con-
taining a security code sent by the payment service in a previous SMS, which
offers limited assurance that the transaction is genuine.

Table 5. Attack targets, adversaries and countermeasures

Target SL CC Ha In Countermeasure

Donor platform y y y Hosted on a secure web server adhering to
industrial standard security controls to
defend against: DDoS, website defacing,
content manipulation

HQ/HQB/BPS
(DDoS)

y y HQ/HQB has secure premises and backup
servers: BPS managed under industrial
standard security controls and best
practices to prevent attacks

HQ/HQB/BPS
(privilege
escalation)

y y y Use of security controls such as: access
control, routine web-application
vulnerability assessment/patching and
storing keys encrypted

SMS
(MNO/GSM)

y y GSM/SMS security issues partially
mitigated by OTP 2FA and
TXID/RSKhash on confirmations

SMS spoof y y y OTP/TXID/RSKhash gives some assurance
that payment is genuine

SMS replay y y y OTP prevents replay attacks

Blockchain/RSK
(DDoS)

y y DDoS attacks not viable in distributed
ledger, and integrity is innate in blockchain
solutions

Security Requirements

Confidentiality-Security of Bitcoin private keys: If a Bitcoin private key
or Bitcoin wallet is lost or not accessible, then the Bitcoin value recorded to that
Bitcoin address cannot be transferred. The 2-of-3 multi-signature process avoids
this risk by allowing any two out of the three private key holders to recover the
Bitcoins. Donor anonymity: Anonymous donations may introduce manage-
ment issues for the charity, as this may need special reporting and investigation
due to possible money laundering/fraud regulations. To comply with these, a
charity policy may be needed requiring identification for donations over a cer-
tain amount. Server attacks (HQ/HQB/BPS): Adversaries SL and CC will
aim at obtaining keys, transaction data and identity information: Ha may wish
to find embarrassing data. Table 5 shows recommended countermeasures.

36 D. Jayasinghe et al.

Integrity-Blockchain ensures the integrity by providing an immutable record
of past transactions. RSK blockchain is mined by the same miners in the Bit-
coin peer to peer network. Double-spending prevented by using proof-of-work
using SHA256 hashing similar to Bitcoin and uses a checkpointing service pro-
vided by a federation of well-known and respected Bitcoin community members
[2]. Server attacks(HQ/HQB/BPS/Donor Platform): the donation plat-
form may be targeted by: CC to change published content by replacing the
charity’s Bitcoin addresses with addresses belonging to the criminals; Ha may
aim to vandalise the content; SL may tamper with it to undermine the credibility
of the charity. Transaction records at the BPS may be tampered with by CC,
SL to make fraudulent transactions. SMS Replay Attacks: countered using
the OTP in the SMSAuth message. Potential attackers here are SL, CC and In.

Authentication-Authenticating the payment request SMS: OTP security
tokens are used for two-factor authentication. The charity’s BPS authenticates
the user by verifying the OTP included in the SMS, so if a phone is lost/stolen,
an attacker cannot make a valid transaction. The OTP is valid until it is received
and processed by the BPS, so network delays will not cause adverse effects. This
should give some protection against spoofing attacks by adversaries Sl, CC and
In. Mobile Phones: The handset’s PIN protection will present a barrier to
attackers who steal the phone. Transaction Number: In a point-of-sale trans-
action, the beneficiary and the merchant can compare the TrNo received on
confirmation messages before a purchased product is handed out. Social engi-
neering: Aimed at obtaining privileged access to data at HQ/BPS, so security
awareness training will be needed. However, an insider at the BPS/HQ/HQB is
not able to transmit a transaction alone because of the use of multi-signatures.

Availability-Recovering lost Bitcoins: If any one of the three Bitcoin private
key holders loses their key the remaining two parties can recover the Bitcoins.
DDoS Attacks: The donor platform, HQ/HQB and BPS are an attractive
targets for SL, Ha DDoS attacks: see Table 5 for countermeasures. DDOS on the
blockchain are not viable due to its innate security and distributed nature.

6 Conclusion and Future Work

This paper first identified the advantages of blockchains for charities, then dis-
cussed how blockchain solutions could be employed, even with their potential
constraints. The first contribution is a new philanthropic model that leverages
the Bitcoin blockchain. The payment system uses either a 2-of-3 multi-signature
transaction process with the Bitcoin network, or a smart contract for advanced
functionality utilising the RSK network. The second contribution is an SMS Bit-
coin payment system that can be used in an offline environment via the exist-
ing GSM network. This proposal was then evaluated against security require-
ments. It must be noted that, the volatility of Bitcoin exchange value poses a
financial risk for the charity. However, in an environment where the banking
system/economy may have collapsed, using Bitcoin might be the only viable

Philanthropy on the Blockchain 37

option. Our solution is aimed at a closed eco-system where payments are made
within a constrained geographical environment, thus minimising the effects of
Bitcoin price volatility. As a long-term solution to this, the charity may replace
the Bitcoin blockchain with a private blockchain solution to give more control
over exchange prices. Other future work include a practical implementation of
the proposed scheme to identify potential limitations and take timing measure-
ments. Also, we would like to investigate how the philanthropic model could be
applied in different situations e.g. when smartphones and Internet connectivity
are available or in an ad-hoc network that replaces the existing GSM network.

References

1. Coinapult SMS. https://coinapult.com/sms/info
2. Rootstock platform. http://www.rsk.co/
3. BTC For SMS (2017). http://www.btcforsms.com/
4. FlexiSpy (2017). https://www.flexispy.com/en/features/spoof-sms.htm
5. GiveTrack: Donation tracking, March 2017. https://bitgivefoundation.org/bitcoin-

charity-2-0-initiative/
6. M-PESA, December 2016. https://www.safaricom.co.ke/personal/m-pesa
7. Birkwood, S.: Is Bitcoin the ideal charity currency or a cause for concern?, Jan-

uary 2015. http://www.thirdsector.co.uk/analysis-bitcoin-ideal-charity-currency-
cause-concern/fundraising/article/1326549

8. Bitcoin.org: Bitcoin wiki (2014). https://en.bitcoin.it/wiki/Main Page
9. Blockchain.info: Average transaction confirmation time. https://blockchain.info/

charts/median-confirmation-time. Accessed Nov 2016
10. Charities Aid Foundation: Giving Unchained: Philanthropy and the Blockchain
11. Davies, R.: Public Good by Private Means: How philanthropy shapes Britain.

Alliance Publishing Trust (2016)
12. Gautham: BTC.com Wallet App, September 2016. http://www.newsbtc.com/

2016/09/19/btc-com-wallet-app-sms-bitcoin/
13. Gibbs, S.: SS7 hack explained: what can you do about it?, April 2016. https://

www.theguardian.com/technology/2016/apr/19/ss7-hack-explained-mobile-
phone-vulnerability-snooping-texts-calls

14. Gilman, D.: Cyber-Warfare and Humanitarian Space, October 2014. http://
commstech-hub.eisf.eu/uploads/4/0/2/4/40242315/daniel gilman cyberwarfare
and humanitarian space eisf october 2014.pdf

15. ImpACT Coalition: Through a glass DARKLY: The case for accelerating the drive
for accountability, clarity and transparency in the charity sector. Technical report
(2013)

16. International Telecommunications Union (ITU): ICT Facts And Figures 2016.
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2016.
pdf. Accessed Oct 2016

17. Mankiw, N.: Principles of Microeconomics, vol. 10. Cengage Learning (2006)
18. Nakamoto, S.: Bitcoin: a peer-to-peer e-cash system. Bitcoin.org (2008). http://

www.bitcoin.org/bitcoin.pdf
19. RFC 4226: HOTP: An HMAC-Based One-Time Password Algorithm, December

2005. http://www.ietf.org/rfc/rfc4226.txt
20. The World Bank: Remittance prices worldwide (2016). https://remittanceprices.

worldbank.org/en. Accessed Dec 2016

https://coinapult.com/sms/info
http://www.rsk.co/
http://www.btcforsms.com/
https://www.flexispy.com/en/features/spoof-sms.htm
https://bitgivefoundation.org/bitcoin-charity-2-0-initiative/
https://bitgivefoundation.org/bitcoin-charity-2-0-initiative/
https://www.safaricom.co.ke/personal/m-pesa
http://www.thirdsector.co.uk/analysis-bitcoin-ideal-charity-currency-cause-concern/fundraising/article/1326549
http://www.thirdsector.co.uk/analysis-bitcoin-ideal-charity-currency-cause-concern/fundraising/article/1326549
https://en.bitcoin.it/wiki/Main_Page
https://blockchain.info/charts/median-confirmation-time
https://blockchain.info/charts/median-confirmation-time
http://www.newsbtc.com/2016/09/19/btc-com-wallet-app-sms-bitcoin/
http://www.newsbtc.com/2016/09/19/btc-com-wallet-app-sms-bitcoin/
https://www.theguardian.com/technology/2016/apr/19/ss7-hack-explained-mobile-phone-vulnerability-snooping-texts-calls
https://www.theguardian.com/technology/2016/apr/19/ss7-hack-explained-mobile-phone-vulnerability-snooping-texts-calls
https://www.theguardian.com/technology/2016/apr/19/ss7-hack-explained-mobile-phone-vulnerability-snooping-texts-calls
http://commstech-hub.eisf.eu/uploads/4/0/2/4/40242315/daniel_gilman_cyberwarfare_and_humanitarian_space_eisf_october_2014.pdf
http://commstech-hub.eisf.eu/uploads/4/0/2/4/40242315/daniel_gilman_cyberwarfare_and_humanitarian_space_eisf_october_2014.pdf
http://commstech-hub.eisf.eu/uploads/4/0/2/4/40242315/daniel_gilman_cyberwarfare_and_humanitarian_space_eisf_october_2014.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2016.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2016.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://www.ietf.org/rfc/rfc4226.txt
https://remittanceprices.worldbank.org/en
https://remittanceprices.worldbank.org/en

38 D. Jayasinghe et al.

21. Walport, M.: Distributed ledger technology: beyond blockchain. UK Government
Office for Science, Technical report, p. 19 (2016)

22. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper (2014)

23. Wright, A., De Filippi, P.: Decentralized blockchain technology and the rise of lex
cryptographia. SSRN 2580664 (2015)

24. Young, J.: Former Kipochi CTO Explains Controversial M-Pesa Deal, Jan-
uary 2016. http://www.newsbtc.com/2016/01/11/former-kipochi-ceo-explains-
controversial-m-pesa-bitcoin-deal/

http://www.newsbtc.com/2016/01/11/former-kipochi-ceo-explains-controversial-m-pesa-bitcoin-deal/
http://www.newsbtc.com/2016/01/11/former-kipochi-ceo-explains-controversial-m-pesa-bitcoin-deal/

Security of Data

Long White Cloud (LWC): A Practical
and Privacy-Preserving Outsourced

Database

Shujie Cui(B), Ming Zhang, Muhammad Rizwan Asghar,
and Giovanni Russello

The University of Auckland, Auckland, New Zealand
scui379@aucklanduni.ac.nz,

{ming.zhang,r.asghar,g.russello}@auckland.ac.nz

Abstract. To fully benefit from a cloud storage approach, privacy in
outsourced databases needs to be preserved in order to protect informa-
tion about individuals and organisations from malicious cloud providers.
As shown in recent studies [1,2], encryption alone is insufficient to pre-
vent a malicious cloud provider from analysing data access patterns
and mounting statistical inference attacks on encrypted databases. In
order to thwart such attacks, actions performed on outsourced databases
need to be oblivious to cloud service providers. Approaches, such as
Fully Homomorphic Encryption (FHE), Oblivious RAM (ORAM), or
Secure Multi-Party Computation (SMC) have been proposed but they
are still not practical. This paper investigates and proposes a practical
privacy-preserving scheme, named Long White Cloud (LWC), for out-
sourced databases with a focus on providing security against statisti-
cal inferences. Performance is a key issue in the search and retrieval of
encrypted databases. LWC supports logarithmic-time insert, search and
delete queries executed by outsourced databases with minimised infor-
mation leakage to curious cloud service providers. As a proof-of-concept,
we have implemented LWC and compared it with a plaintext MySQL
database: even with a database size of 10M records, our approach shows
only a 10-time slowdown factor.

1 Introduction

Cloud computing provides organisations with virtually unlimited storage and
computational power at attractive prices. One of the main challenges of outsourc-
ing large databases to the cloud is to secure data from unauthorised access. A
naive approach is to use standard encryption techniques for protecting the data.
However, using this approach, no operations could be performed on encrypted
databases.

Ideally, one would like to perform operations such as search, insert and update
directly on encrypted databases without letting cloud providers learn informa-
tion about both the query and the data stored in the database. For such sce-
narios, the Searchable Symmetric Encryption (SSE) scheme has been proposed,
c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
G. P. Hancke and E. Damiani (Eds.): WISTP 2017, LNCS 10741, pp. 41–55, 2018.
https://doi.org/10.1007/978-3-319-93524-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93524-9_3&domain=pdf

42 S. Cui et al.

where symmetric keys are used for encrypting the data and queries. SSE was
first introduced by Song et al. in [3] in 2000 and several more research efforts
have been presented since then. Unfortunately, most of the existing SSE schemes
suffer from one or more of the issues listed below.

• Information Leakage. During data search, the correlation between the
queries and the matched data is leaked to the cloud server. This correlation
can be exploited by a determined attacker to break the encryption scheme
as shown in recent studies [1,4]. Approaches like Oblivious RAM (ORAM)
[5–7] or Private Information Retrieval (PIR) [8,9] could be used to minimise
information leakage. However, these schemes are very costly and/or can only
be applied in static settings, meaning they do not scale well when dealing
with dynamic data updates and delete operations.

• Lack of Support for a Full-Fledged Multi-User Access. The vast
majority of existing approaches support a very basic key distribution scheme,
where all users share the same key. We refer to these as Single User (SU)
schemes. Another common approach is to have a read-only key shared among
all the users and one special key for inserting/updating data. We refer to
these as Semi Fledged Multiple User (SFMU) schemes. In both cases, if a
user misplaces a key or needs to have her access revoked, then a new key
needs to be generated and the data requires re-encryption under the new key.
Instead, in a Full-Fledged Multi-User (FFMU) scheme, any authorised user
is able to read and write data from and to the database, respectively [10]. An
FFMU scheme better fulfils needs of modern organisations, where users need
to access and update data and are able to join and leave the organisation at
any time without affecting rest of the users.

Our contribution is to propose a very efficient sub-linear Dynamic SSE
(DSSE) scheme, named Long White Cloud (LWC), able to support a high
throughput of queries while minimising information leakage. In terms of effi-
ciency, our scheme is similar to Stefanov et al. [11] and Ishai et al. [12]. However,
unlike their approach, our scheme is designed for large organisations, where
users might join and leave at any time. Therefore, we want to support an FFMU
scheme to simplify the user registration and revocation. At the same time, we
want that each user is able to insert a new record, update existing records, and
retrieve any data from the database.

The main idea in LWC is to use a hybrid private/public cloud approach. In
such an approach, organisations maintain a private part of the infrastructure
on their local premises while outsourcing the rest to a public cloud provider,
such as Amazon or Google. In LWC , the private cloud is used to maintain data
structures for speeding up the query processing and to perform operations in
order to minimise information leakage. The public cloud instead is mainly used
as an encrypted data store.

The rest of this paper is structured as follows: Sect. 2 gives an overview of
the related work. Section 3 presents the system model, threat model, an abstract
architecture of LWC . Section 4 describes key management and explains how we

Long White Cloud (LWC) 43

represent the data. Section 5 explains the database queries supported by the
LWC scheme. Section 6 analyses security aspects of LWC . Section 7 evaluates
the performance of LWC and compares it with a cleartext MySQL database.
Section 8 concludes by highlighting the main contributions and results of the
LWC scheme.

2 Related Work

Since the seminal work by Song et al. [3], many searchable schemes have been
proposed and the research in this area has been extended in several directions.
We focus mainly on three aspects of the encrypted search: key management,
search efficiency and information leakage. A thorough and up-to-date survey and
comparison of the current literature can be found in our paper [13]. We stress
here that, with this work, we aim at proposing an FFMU scheme that minimises
information leakage while supporting sub-linear search. Most importantly, our
scheme is very efficient thus practical. Before discussing the rest, we first set the
context and informally define the properties related to information leakage.

• Search Pattern Privacy (SPP) refers to the property where the cloud
server is not able to distinguish if two (or more) queries are the same or not.

• Access Pattern Privacy (APP) means the cloud server is unable to learn
if two (or more) real result sets overlap or not.

• Size Pattern Privacy (SzPP) is achieved if the cloud server is unable to
learn the size of returned (real) records.

• Operation Pattern Privacy (OPP) ensures the cloud server cannot tell
if the executed query is a select, update, delete, or insert.

Fig. 1. System entities and their interactions in LWC : A DBA is responsible for running
the setup (Step I then Step II). A DBU encrypts the query, which could be insert,
select, update or delete. A DBU sends the encrypted query to the OPS (Step 1). The
OPS communicates with the CS in an oblivious manner (Step 2). The OPS returns
encrypted results (in case of select) back to the DBU (Step 3). The DBU can decrypt
and get access to the requested data.

44 S. Cui et al.

3 Overview of LWC

3.1 System Model

The system involves the following entities, also shown in Fig. 1:

• A DataBase User (DBU) represents an authorised user who is allowed to
access, retrieve and update information in the outsourced database.

• A DataBase Administrator (DBA) is responsible for the setup and man-
agement of the outsourced database. It is also responsible for the management
of DBUs. A DBA is considered to act on behalf of the organisation that out-
sources the database.

• The Operations Proxy Server (OPS) is under the direct control of the
DBA. With the help of the OPS, a DBA can grant, revoke and regulate access
to the outsourced database. For database operations, the DBU interacts with
the OPS to run all kinds of queries including insert, select, update and delete.

• The Cloud Server (CS) is part of the public infrastructure that provides
cloud storage services. The CS is usually hosted and operated by a third party
service with full access control over its cloud storage. It is expected to provide
only two main operations: read and write.

• The Key Management Authority (KMA) is responsible for issuing
encryption keys. Once the scheme is initialised, the KMA supplies encryption
keys to new DBUs and the OPS. Typically, the KMA is under the complete
control of the DBA and is online only when the DBA requests encryption keys
for new DBUs. In other words, it can go offline after a DBU gets registered.

3.2 Threat Model

The KMA is assumed to be a fully trusted entity. The DBUs are responsible for
securely keeping their keys (and decrypted information). We assume that the
OPS is deployed on the private cloud; whereas, the CS is hosted on a public
cloud infrastructure. The OPS is assumed to be trusted but may be potentially
vulnerable to external attacks since it communicates with the external world. As
the vast majority of the existing SSE schemes consider, including all the works
listed in [13], the CS is assumed to be honest-but-curious. That is, the CS follows
the protocol correctly, but may be interested to read the information or to try
and discover statistical inferences on its database access and operations. DBUs
may collude among themselves but they do not learn anything more than what
they would learn individually. A DBU colluding with the CS reveals no useful
information. An active or revoked DBU is unable to decrypt communication
between other DBUs and the OPS.

3.3 System Interactions

LWC aims at minimising potential information leakage while supporting sub-
linear search in a multi-user setting. The interactions between the entities are

Long White Cloud (LWC) 45

shown in Fig. 1. The following sequence of steps takes place to initialise and run
the system. The DBA sets up the OPS (Step I) and then prepares the database
on the CS (Step II). The DBA brings the KMA online to distribute encryption
keys between participating DBUs and the OPS. Using her key, a DBU encrypts
and issues queries including insert, search, update and delete.

As shown in Fig. 1, a query is processed in two main phases. In the first
phase, the DBU sends the encrypted query to the OPS (Step 1) and then the
OPS consults the local lookup table for finding locations of the records stored
on the CS. In the second phase, the OPS uses these locations to fetch the data
from the CS. To avoid any potential information leakage, the OPS queries the
requested information in an oblivious manner (Step 2). The oblivious access
hides from the CS the actual query issued by the DBU or the result set returned
to the DBU. If the query is select, the OPS sends the encrypted result back to
the DBU (Step 3). Finally, the DBU decrypts the encrypted results using her
private key.

4 Key Management and Data Representation

4.1 Key Management

LWC supports the FFMU access. That is, if the DBU key is stolen or compro-
mised, the system can still work without requiring re-encryption of the data with
new keys and re-distribution of the new keys to the authorised users. In LWC ,
for each DBU, the KMA generates two keys (KDBU , KU). The KMA forwards
both (KDBU , KU) keys to the DBU but only KDBU to the OPS. The key KU

is a shared key across all DBUs and the key KDBU is a DBU specific key that
is shared with the OPS. The OPS stores all the DBU specific keys in a key
store. Using both KDBU and KU , the DBU can issue queries and decrypt the
search result. For revoking a DBU, the DBA instructs the OPS to remove the
corresponding KDBU key from its key store. Without loss of generality, instead
of using KDBU , a secure channel (say using SSL) can be established to protect
communication between the DBU and the OPS.

4.2 Data Structure for the CS

The data stored on the CS is organised with three different data units, as shown
in Fig. 2. As a whole, the database is a set of n blocks {b0, . . . , bn−1}. The
OPS uploads or downloads data to or from the CS block by block. Each block
consists of m slots {s0, . . . , sm−1}. Each slot stores a single record. A tuple of
block number and slot number (bi, sj) uniquely identifies a stored record in the
database. Specifically, we define a slot as empty if it holds no record. An empty
slot may hold null or a random bit string. On the contrary, a slot is full if it is
occupied by a DBU inserted record. Furthermore, each slot contains l cells. In
other words, each encrypted record in a slot is divided into l data cells. Overall,
each block is a set of m ∗ l data cells {c0, . . . , cm∗l−1}. Data re-encryption in

46 S. Cui et al.

Fig. 2. Database on the CS: A database con-
sists of a set of n blocks {b0, . . . , bn−1}. Each
block contains m slots {s0, . . . , sm−1}, where a
slot stores a single record. Each slot sj has l
cells.

Fig. 3. A sample of B+tree
with 3 branches and 3 lay-
ers. The entry on each node
is an encrypted keyword, and
a pointer points to a list of
(bi, sj) indicating the record
store location on the CS.

LWC is implemented by permuting data cells (see Sect. 5.3). Assume each data
cell is w-bit long, there are 2w possible cell values, and each encrypted record is
fixed to w ∗ l bits.

4.3 Data Structure for the OPS

In LWC , the search operation is performed on the OPS. Considering the OPS
is trusted, any data structures that support sub-linear search, such as inverted
index technique proposed in [14] and the red-black tree introduced in [15], could
be used. In this work, we use a series of B+trees [16] for managing indexing
information on the OPS, which aims at supporting sub-linear search. Each field in
a record is stored on a different B+tree (see Fig. 3) and hence it provides a simple
and efficient method to query for keywords across different fields. Each entry in
the tree is a tuple of an encrypted keyword and a list of (bi, sj) indicating the
locations of the records containing this keyword on the CS. We can notice that
the unique keyword number in each field determines the size of the corresponding
tree, which is much less than the number of records on the CS. To further reduce
the storage overhead, the OPS could hash the encrypted keyword first before
inserting it into the tree.

The OPS also stores a list of flags to mark if each slot is full or empty. Using
this information, the OPS can pick an empty slot and store the inserted record.

5 Query Execution

In LWC , a DBU can issue queries for inserting, updating, searching, and deleting
records. A query may include simple keywords or conjunctions/disjunctions of
conditions, like “select * from Staff WHERE name = Alice AND age = 25”. As
mentioned in Sect. 3.3, the queries are mainly processed in two phases by LWC .

The first phase aims to get the locations of records (for a select query) or an
empty slot (for an insert query) on the CS. Technically, it involves 4 steps on
the DBU and the OPS. The detail of each step is shown in Fig. 4.

Long White Cloud (LWC) 47

5.1 Encryption on the DBU

The first two steps, which are part the first phase, are completed by the DBU.
The system components, running on the DBU end, include the encryption and
decryption utilities. Each query is processed in two rounds of encryptions on the
DBU using two different functions ε : Q → εKU

(Q) and ε : EQ → εKDBU
(EQ). ε

is a deterministic symmetric encryption to make the encrypted data searchable
and retrievable. In the first round of encryption, the query Q is encrypted using
KU , a key shared among all DBUs. On one hand, it ensures the data could be
accessed by all the DBUs. On the other hand, it also means the encrypted query
EQ and search pattern are not protected from other DBUs. To address this issue,
we introduce the second round of encryption, where EQ gets re-encrypted under
KDBU . The second round of encryption ε is semantically secure. Because KDBU

is unknown to other DBUs, they are unable to learn EQ and search pattern.
Without loss of generality, we could issue a password to each DBU for authenti-
cation and then use SSL/TLS to establish a secure channel between the DBU and
the OPS to deliver EQ. ε−1 and ε−1 are the their corresponding decryption func-
tions. Note that the first round of encryption is only performed over the keywords
in Q. That is, the logical conditions and operators in EQ are in cleartext (for
the OPS). For instance, “select * from Staff WHERE εKU

(name) = εKU
(Alice)

AND εKU
(age) = εKU

(25)”. However, in the second round of encryption, EQ is
encrypted as a whole, which means all the information in EQ is protected.

Fig. 4. Query execution: A DBU encrypts a
query Q twice with KU and then KDBU . The
encrypted query EEQ is sent to the OPS.
The OPS decrypts it with KDBU to get EQ,
and then look ups an empty slot for inserting
a record or searches B+ trees according to
the type of the query.

Fig. 5. Oblivious access between
the OPS and the CS: The OPS first
downloads a set of blocks, which
contains the required slots, and
then performs three steps (inverse
permutation, updating empty
slots, and permutation) after
which the blocks are uploaded
back to the CS.

5.2 Index Search on the OPS

As shown in Fig. 4, the last two steps of a query execution are performed by the
OPS. The OPS is responsible for parsing the query, searching for the locations
of the corresponding records on the CS database and fetching those records.

48 S. Cui et al.

In case of a select query, the OPS returns those records to the DBU. Parsing
EEQ on the OPS enables LWC to execute any kind of query, which could
involve conjunctions, disjunctions and other logical operators for a multi-keyword
search, update and delete queries. As shown in Fig. 4, the components on the
OPS includes the ε−1 for decrypting EEQ, B+ trees for managing indexing
information to enable sub-linear search.

In the third step, the OPS removes the outer layer encryption of EEQ to
get the executable query EQ by running the inverse stream cipher function
ε−1 : EEQ → EQ.

For an insert query, the next step is to check the flags list and find an empty
location (bi, sj) to hold the record. Next, the selected location (bi, sj) will be
added to the corresponding entry in the B+ tree for each field (see Fig. 3). If the
related entry is already in the tree, we just add the (bi, sj) to its list. Otherwise,
a new entry will be created. Note that the keywords in trees are encrypted, which
ensures data confidentiality even if the OPS gets compromised.

In case of search, delete and update queries, the fourth step is to search the
B+ trees and find out which records on the CS match the query. The B+tree
search incurs O(logbN), where N denotes the total number of nodes in the
tree and b represents the branching factor of the tree. For efficiency reasons,
we suggest having a separate tree for each field in the table. Recall the sample
query, two predicates “εKU

(name) = εKU (Alice)” and “ε(age)KU
= εKU

(25)”
are searched over two trees separately. Once the location tuple list is searched
out for each separate keyword, the final search result is the combination of them
according to the logical operator between keywords, which is in cleartext on
the OPS.

With these locations, the second phase is to execute (i.e., insert, select,
update or delete) on the CS database obliviously, which is explained in Sect. 5.3.

5.3 Oblivious Access

In LWC , we aim to protect operation pattern, size pattern, access pattern and
search pattern from the CS. The OPS gets the location tuples for the query. If the
OPS sends the tuples to the CS directly, the CS could learn these patterns easily.
The data should be accessed in an oblivious manner. The detail of the oblivious
access between the OPS and the CS is shown in Fig. 5. The OPS performs the
following three steps: inverse permutation, update slots and permute. The detail
of each step is given below.

Recall that all the data stored on the CS is encrypted using KU , which is a
key shared among all the DBUs. This implies that KU is still known to DBUs
that have been revoked. A revoked DBU can collude with the CS to decrypt
the data stored on the CS. To address the problem, instead of re-encrypting the
data, we propose a more efficient approach. The idea is to shuffle the data cells
between different records in each block with a pseudo-random permutation π.
That is, all the data cells in each block are permuted in an invertible way, which
is only known to the OPS. Consequently, the DBU is unable to decrypt the data
without the assistance of the OPS. In each permuted block, the data in each slot

Long White Cloud (LWC) 49

is no longer a complete record. The permutation seed for each block is kept by
the OPS. Note that to make the permutation invertible for the CS, we should
set m ∗ l � 2w, where m ∗ l is the number of data cells in a block and w is bit
length of a data cell.

Before any operation, the OPS has to download the matched records from
the CS. If the matched slots are distributed in k blocks, the CS will download γ
blocks, where k < γ. k of them are the matched blocks, the rest γ −k blocks are
picked randomly. Note that all blocks from the database must be picked through
a single request from the OPS. After receiving γ blocks, the OPS first performs
π−1 over the m ∗ l data cells for each block to recover the data order. In the
second step, actions (described below) are taken based on the query type:

• If EQ is a select query, all the matched slots will be sent to the DBU.
• If EQ is a delete query, the OPS just changes flags of these matched slots to

mark them empty and does nothing over the records in each block.
• If EQ is an update query, the matched records will be updated with the new

values.
• If EQ is an insert query, the new records will be inserted into the selected

slot.

After that, the OPS updates or fills a number of empty slots with random
bit strings for each block. In the third step, all the data cells in each block are
permuted again with a new seed. Finally, the γ updated blocks are written back
to the CS. The security of LWC is analysed in Sect. 6.

5.4 Data Decryption

In case of a select query, there is one more phase between the OPS and the DBU,
i.e., the decryption of the result. Once the records in each block are retrieved,
the OPS will extract the records satisfying the query. Before sending them to
the DBU, the OPS first encrypts it with ε. Since the encryption key KDBU is
unique for each DBU, the search result could only be decrypted by the DBU
who issued the query. Considering ε is semantically secure, the access pattern
can not be inferred from the interaction between the DBU and the OPS. To hide
the size pattern, the OPS could add a set of dummy data into the result. On the
DBU, two rounds of decryptions will be performed to get the cleartext records.

6 Security Analysis

In this section, we analyse how the oblivious access described in Sect. 5.3 could
protect size pattern, access pattern and operation pattern from the CS.

Recall that we say SzPP is achieved if the CS cannot learn how many records
are matched for each query. LWC achieves SzPP with two techniques. First, the
OPS downloads data from the CS block by block, rather than slot by slot. It is
unknown to the CS how many slots are matched with the query in each block.
Second, γ blocks are downloaded by the OPS for each access. Here γ is a random

50 S. Cui et al.

number determined by load on the OPS, but independent from the real matched
blocks. Note that, for the same query, if load on the OPS is different, the value
of γ would be different. In other words, from the number of accessed blocks, the
CS is unable to infer anything about search pattern.

Similarly, access pattern is also protected at two different levels. Since the
data is downloaded block by block, it is unknown to the CS which slots in each
block are matched with the query. If only the matched blocks are downloaded
by the OPS, given the number of matched records is unknown to the CS, in the
view of the CS, each record in a block could be a matched one or not with 50%
probability. Furthermore, matched blocks are also protected by random blocks.
When γ blocks are downloaded for a query, there are 2γ possible block access
patterns. The probability that the CS could guess the real block access pattern
successfully is 1

2γ . Moreover, from the relationship between downloaded blocks,
the CS is unable to infer search pattern.

Theorem 1. If the γ − k blocks are picked randomly, LWC partially achieves
SPP.

Proof. (sketch) Since EQ is never sent to the CS, the CS could only infer search
pattern from the relationship between size patterns and the relationship between
accessed blocks. If access patterns and size patterns of two queries are the same,
there is a high probability that the queries are the same, and vice versa. As
we mentioned above, search pattern cannot be inferred from size pattern, since
they are always variable no matter whether the queries are the same or not. In
LWC , due to the random blocks, access patterns are also always variable for
all queries. More specifically, for the same queries, γ − k random blocks could
make their block access patterns different. However, for different queries, γ − k
random blocks may cause an overlap between their block access patterns. In the
view of the CS, each block could be the matched one or random with the same
probability. It has no advantage to infer search pattern from the overlap between
block access patterns. There are 2m possible slot access patterns in each block.
The probability that queries have the same slot access patterns in one block is
1

22m . However, the CS could learn the two queries are different when the two
accessed block sets are totally different. To avoid such leakage, the OPS could
download the whole database each time, but it is costly.

Theorem 2. If the encrypted records are indistinguishable from random bit
strings and if π is a pseudo-random permutation, LWC achieves OPP.

Proof. (sketch) To protect operation pattern, the OPS always performs the same
operations. Specifically, no matter what type the query is, the OPS updates or
fills a number of the empty slots with random bit strings. If the query is insert,
the selected empty slot will be filled with the new record. If the query is update,
the matched slots will be updated with new values. But, in the view of the
CS, there are always some slots that are updated or filled in each block for
each access. Since the encrypted record is indistinguishable from a random bit
string, the CS is unable to learn if the slot is filled with a record or random

Long White Cloud (LWC) 51

Fig. 6. End-to-end search time in LWC . Fig. 7. Query throughput compar-
isons for database schemes.

bit string, making insert and update queries indistinguishable. If the query is
delete, the records are removed by changing the flags, but the values in each
block are unchanged like the select query. Moreover, the m ∗ l slots in each
block are permuted again with a new seed before uploading them to the CS.
Consequently, which slots and how many slots are updated or filled, and if slots
are updated partially or completely are also protected from the CS.

The problem is, for select and delete queries, if all the slots in accessed
blocks are filled with DBU inserted records, the OPS would not be able to insert
or update random bit strings. Recall that there are 2w different cell values in
the system. Even if all the data cells will be permuted again, the number of
each unique cell value in each block remains unchanged for select and delete
operations. With the frequency information of each data cell value, the CS could
distinguish update from select and delete operations. To solve this problem, we
set a block is full when θ out of m slots are occupied by records and do not insert
any records into it anymore, where θ < m. That is, each block always has at
least m− θ empty slots to fill random bit strings. Therefore, whatever the query
type is, the frequency of data cell values is changed all the time. In practice, we
can set θ = �2w/l�. In this case, the frequency of each data cell value could be
changed.

Although the OPS is trusted, considering the data stored in the B+ trees
are encrypted, the queries received from the DBUs are encrypted as well. Thus,
compromising the OPS will not put any data at risk. However, SPP, APP and
OPP might not be guaranteed, since the data and queries are encrypted using
a deterministic algorithm. We aim at further investigating these issues in our
future work.

7 Experimental Evaluation

In this section, we analyse performance of LWC . For all the experiments, we
used a PC powered by Intel i5-4670 3.40 GHz processor and 8 GB of RAM using
Linux Ubuntu 15.04. Note that we have chosen a very basic PC setup to show

52 S. Cui et al.

that LWC can achieve high performance even when deployed on cheap hardware.
The prototype is programmed in C and is compiled using GCC version 4.9.2.
No parallel operations or hyper-threading were implemented. All data structures
are stored in RAM. For the experiment, we set the OPS to pick up to 2 ·k blocks
from the CS for each query, where k is the number of blocks needed to execute
the query. We fixed the maximum size of a record inserted at 128 bytes the
number of cells in a slot was set at 256 cells.

The experiments presented in the following were set up as follows. All the
entities (the DBU, the OPS and the CS) were executed on the same machine.
However, where required, we used a simulated round-trip network latency for the
links between each entity. In the following, the queries with a single predicate
were executed on a database with 10 million records and all the results were
averaged over 10 trials.

First, we measured the end-to-end time for a DBU to perform a search oper-
ation varying the number of the returned records between 100 to 1 million. The
results are shown in Fig. 6 in milliseconds (ms). These measurements include
also the time on the DBU to encrypt the query and decrypt all the returned
records. As a baseline, we executed the same experiments using a plaintext
MySQL database where the client and the database were deployed on the same
machine without any network latency. With no network latency, LWC end-to-
end search time on an average was between 2 (when 100 records were returned)
and 10 times slower than the plaintext MySQL. Given that in LWC the DBU
and the CS do not interact directly but through the OPS, we have performed
the same experiments but introducing a simulated round trip network latency of
25 ms, 50 ms and 100 ms. As we can see in Fig. 6, the effect of network latency
on search time rapidly reduces when the result size increases. In any case, with
a result size of 1 million records, the end-to-end search time is under 1 s even
when 100 ms network latency is introduced.

To investigate the penalty introduced by the OPS, we have compared the
query throughput of LWC with schemes proposed by Stefanov et al. [11] and
Ishai et al. [12]. To the best of our knowledge, both schemes are currently the
best in term of performance when compared with other SSE schemes. The results
of this comparison are presented in Fig. 7. Note that, at the time of the writing
of this paper, we could not get access to their implementations. The graphs for
Stefanov’s and Ishai’s schemes in Fig. 7 are plotted using the data presented in
their respective papers. The comparison shown in Fig. 7 is an approximation for
two main reasons: (1) in Ishai’s paper, there are no throughput values for result
sizes smaller than 1K; (2) while Ishai’s scheme has been tested on a hardware
configuration very similar to ours, results by Stefanov et al. were collected on
a top of the line hardware configuration with a maximum degree of parallelism
at 32. Therefore, the results presented in Fig. 7 for Stefanov’s scheme have been
normalised as executed on a single core.

The comparison in Fig. 7 shows that LWC on average has a throughput about
twice that of Stefanov’s when no parallelism is used. For instance at 10,000
results, the throughput of LWC is 852 queries per second, where Stefanov’s

Long White Cloud (LWC) 53

Fig. 8. Time taken for executing an
insert query in LWC .

Fig. 9. Time taken for executing a
delete query in LWC .

scheme achieves 450 queries per second. Though the comparisons are on the log
scale, the results on individual data points indicate that LWC has a significantly
higher throughput. LWC is also seen to easily outperform the results in Ishai’s
scheme.

We also provide the latency results for insert, update and delete operations
with simulated end-to-end network latencies.

Figure 8 plots the times for an insert query including network latency in
seconds. It is observed that LWC takes around over 0.1 s to insert 1K records
and up to 100 s for inserting 10M records. We also observe that the effect of
network latency diminishes when a large number of records are inserted.

Figure 10 plots the time for an update query with network latency. We can
observe that LWC can update 1M records in just under 4 s. Again, the network
latency effect diminishes when a large number of records are updated.

Finally, Fig. 9 plots the time for a delete query including network latency.
LWC can delete 1M records in under 4 s. Note that, in LWC , the steps executed

Fig. 10. Time taken for executing an
update query in LWC .

Fig. 11. The performance compari-
son between AES-CBC and permu-
tation operations.

54 S. Cui et al.

for the delete operation are similar to the update. The only difference is that
in a delete operation there is not replacing of the old with new value like in an
update.

To achieve OPP and resist against the collusion between the DBU and CS,
the OPS could also encrypt each block with other cryptographic primitives, like
AES-CBC, rather than permuting data cells. However, permuting data cells is
more efficient than re-encryption. We did another test and compared the perfor-
mance of permutation with AES-CBC encryption. AES-CBC with 256-bit key
implemented in MIRACL 7.00 C library was used for the test. For permutation,
we set the size of each data cell to 1 byte. Before getting all the required blocks,
the OPS could first pre-generate new seeds for accessed blocks and pre-compute
the new orders. As shown in Fig. 11, permutation is more efficient than AES-
CBC when the block size is between 512 and 16384 bytes. When the block size
is greater than 216 bytes, the data cell can be set to 2 bytes, which will make
the permutation more efficient.

We can conclude our analysis by discovering that even though LWC requires
the OPS to perform most of the computation, its centralised nature does not
degrade performance of the system. LWC achieves a high throughput perfor-
mance and even with network latency simulations, returning 1 million records
from a database of 10 million records takes less than a second including the
time on the DBU to decrypt the returned results. When compared with a plain-
text database, LWC results 10 times slower but achieves a high level of privacy.
Finally, our comparison with other similar works, with all its current limitations,
shows that LWC has a higher throughput for any result size while it still provides
a very flexible key management scheme not supported by Stefanov’s and Ishai’s
schemes. Moreover, LWC supports more privacy properties when compared with
existing schemes.

8 Conclusion and Future Work

In this paper, we proposed LWC , a dynamic searchable encrypted scheme for
hybrid outsourced databases with a full-fledged multi-user key management.
LWC is a sub-linear scheme that does not leak information on its search pattern,
access pattern, size pattern and operation pattern. The experimental results
indicate that LWC is able to achieve high performance without requiring top of
the line hardware. We have compared LWC with two relevant high-performance
approaches: Stefanov et al. [11] and Ishai et al. [12]. LWC outperforms both
while providing a higher level of privacy and a more flexible key management.

In our future work, we plan to extend the capabilities of the B+ tree imple-
mentation to support range queries. It also remains to be explored how to move
most of the operations to the untrusted cloud server, but without compromising
on security.

Long White Cloud (LWC) 55

References

1. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: Ray, I., Li, N., Kruegel, C. (eds.) SIGSAC 2015, pp.
668–679. ACM (2015)

2. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: Ray, I., Li, N., Kruegel, C. (eds.) SIGSAC 2015, pp. 644–
655. ACM (2015)

3. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: S&P 2000, pp. 44–55. IEEE Computer Society (2000)

4. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: ramification, attack and mitigation. In: NDSS 2012. The Internet Soci-
ety (2012)

5. Ostrovsky, R.: Efficient computation on oblivious rams. In: Ortiz, H. (ed.) STOC
1990, pp. 514–523. ACM (1990)

6. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious rams.
J. ACM 43(3), 431–473 (1996)

7. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C.W., Ren, L., Yu, X., Devadas, S.:
Path ORAM: an extremely simple oblivious RAM protocol. In: Sadeghi, A., Gligor,
V.D., Yung, M. (eds.) SIGSAC 2013, pp. 299–310. ACM (2013)

8. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

9. Williams, P., Sion, R.: Usable PIR. In: NDSS 2008. The Internet Society (2008)
10. Asghar, M.R., Russello, G., Crispo, B., Ion, M.: Supporting complex queries and

access policies for multi-user encrypted databases. In: Juels, A., Parno, B. (eds.)
CCSW 2013, pp. 77–88. ACM (2013)

11. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryption
with small leakage. In: NDSS 2013, vol. 71, pp. 72–75 (2013)

12. Ishai, Y., Kushilevitz, E., Lu, S., Ostrovsky, R.: Private large-scale databases with
distributed searchable symmetric encryption. In: Sako, K. (ed.) CT-RSA 2016.
LNCS, vol. 9610, pp. 90–107. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29485-8 6

13. Cui, S., Asghar, M.R., Galbraith, S.D., Russello, G.: Secure and practical search-
able encryption: a position paper. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017.
LNCS, vol. 10342, pp. 266–281. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-60055-0 14

14. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric
encryption: improved definitions and efficient constructions. In: Juels, A., Wright,
R.N., di Vimercati, S.D.C. (eds.) CCS 2006, pp. 79–88. ACM (2006)

15. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 258–274. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1 22

16. Jannink, J.: Implementing deletion in B+-trees. SIGMOD Rec. 24, 33–38 (1995)

https://doi.org/10.1007/978-3-319-29485-8_6
https://doi.org/10.1007/978-3-319-29485-8_6
https://doi.org/10.1007/978-3-319-60055-0_14
https://doi.org/10.1007/978-3-319-60055-0_14
https://doi.org/10.1007/978-3-642-39884-1_22

JACPoL: A Simple but Expressive
JSON-Based Access Control Policy

Language

Hao Jiang and Ahmed Bouabdallah(B)

IMT Atlantique, Site of Rennes, 35510 Cesson-Sevigne, France
{hao.jiang,ahmed.bouabdallah}@imt-atlantique.fr

Abstract. Along with the rapid development of ICT technologies, new
areas like Industry 4.0, IoT and 5G have emerged and brought out the
need for protecting shared resources and services under time-critical and
energy-constrained scenarios with real-time policy-based access control.
The process of policy evaluation under these circumstances must be exe-
cuted within an unobservable delay and strictly comply with security
objectives. To achieve this, the policy language needs to be very expres-
sive but lightweight and efficient. Many existing implementations are
using XML (Extensible Markup Language) to encode policies, which is
verbose, inefficient to parse, and not readable by humans. On the con-
trary, JSON (JavaScript Object Notation) is a lightweight, text-based
and language-independent data-interchange format that is simple for
humans to read and write and easy for machines to parse and gener-
ate. Several attempts have emerged to convert existing XML policies
and requests into JSON, however, there are very few policy specification
proposals that are based on JSON with well-defined syntax and seman-
tics. This paper investigates these challenges, and identifies a set of key
requirements for a policy language to optimize the policy evaluation per-
formance. According to these performance requirements, we introduce
JACPoL, a descriptive, scalable and expressive policy language in JSON.
JACPoL by design provides a flexible and fine-grained ABAC (Attribute-
based Access Control), and meanwhile it can be easily tailored to express
a broad range of other access control models. This paper systematically
illustrates the design and implementation of JACPoL and evaluates it in
comparison with other existing policy languages. The result shows that
JACPoL can be as expressive as existing ones but more simple, scalable
and efficient.

Keywords: Real-time access control · Lightweight policy language
JSON · Fast policy evaluation

1 Introduction

Access control is an important security mechanism involving user specified poli-
cies to determine the actions that a principal can perform on resources. Typically,
c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
G. P. Hancke and E. Damiani (Eds.): WISTP 2017, LNCS 10741, pp. 56–72, 2018.
https://doi.org/10.1007/978-3-319-93524-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93524-9_4&domain=pdf

A Simple but Expressive JSON-Based Access Control Policy Language 57

the access requests are intercepted and analyzed by a PEP (Policy Enforcement
Point), which then transfers the request details to a PDP (Policy Decision Point)
for evaluation and authorization decision [1]. In most implementations, the state-
less nature of PEP enables its ease of scale. However, the PDP has to consult the
right policy set and apply the rules therein to reach a decision for each request
and thus is often the performance bottleneck of policy-based access control sys-
tems. Therefore, a policy language determining how policies are expressed and
evaluated is important and has a direct influence on the performance of the PDP.

Especially, in nowadays, protecting private resources in real-time has evolved
into a rigid demand in domains such as home automation, smart cities, health
care services and intelligent transportation systems, etc., where the environments
are characterized by heterogeneous, distributed computing systems exchanging
enormous volumes of time-critical data with varying levels of access control in a
dynamic network. An access control policy language for these environments needs
to be very well-structured, expressive but lightweight and easily extensible [2].

In this paper, we investigate the relationship between the performance of the
PDP, the language that is used to encode the policies and the access requests
that it decides upon, and identify a set of key requirements for a policy lan-
guage to guarantee the performance of the PDP. We argue that JSON would be
more efficient and suitable than other alternatives (XML, etc.) as a policy data
format in critical environments. According to these observations, we proposed a
simple but expressive access control policy language (JACPoL) based on JSON.
A PoC (Proof of Concept) has been conducted through the implementation of
JACPoL in a policy engine operated in reTHINK testbed [3]. At last we carefully
positioned JACPoL in comparison with existing policy languages.

The main contribution of this work is therefore the definition of JACPoL,
which utilizes JSON to encode a novel access control policy specification lan-
guage with well-defined syntax and semantics. We identify key requirements and
technical trends for future policy languages. We incidentally propose the new
notion of Implicit Logic Operators (ILO), which can greatly reduce the size and
complexity of a policy set while providing fine-grained access control. We also
elaborate on the applicability of JACPoL on ABAC model, RBAC model and
their combinations or their by-products. Last but not least, our implementation
leads to a novel and performant policy engine adopting the PDP/PEP architec-
ture [1] and JACPoL policy language based on Node.js1 and Redis2.

The remainder of this paper is structured as follows. In Sect. 2, we refine our
problematic by delimiting precisely its perimeter. In Sect. 3 we illustrate in depth
with representative policy examples the design of our policy language in terms
of the constructs, semantics and other important features like Implicit Logic
Operators, combining algorithms and implementation. Section 4 further evalu-
ates JACPoL and compares it with other existing access control policy specifica-
tion languages. The ABAC-native nature of JACPoL is detailed in Sect. 5 along
with a comprehensive discussion on other possible application of JACPoL to

1 nodejs.org.
2 redis.io.

https://nodejs.org/en/
https://redis.io/

58 H. Jiang and A. Bouabdallah

ARBAC (Attribute-centric RBAC) and RABAC (Role-centric ABAC) security
models. In Sect. 6 we summarize our work and discuss future research directions.

2 Problem Statement

In the past decades, a lot of policy languages have been proposed for the speci-
fication of access control policies using XML, such as EPAL [6], X-GTRBAC [7]
and the standardized XACML [8]. Nevertheless, it is generally acknowledged that
XACML suffers from providing poorly defined and counterintuitive semantics [9],
which makes it not good in simplicity and flexibility. On the other hand, XML
performs well in expressiveness and adaptability but sacrifices its efficiency and
scalability, compared to which JSON is considered to be more well-proportioned
with respect to these requirements, and even simpler, easier, more efficient and
thus favored by more and more nowadays’ policy designers [10–13].

To address the aforementioned inefficiency issues of the XML format, the
XACML Technical Committee recently designed the JSON profile [18] to be used
in the exchange of XACML request and response messages between the PEP and
PDP. However, the profile does not define the specification of XACML policies,
which means, after the PDP parses the JSON-formatted XACML requests, it
still needs to evaluate the parsed attributes with respect to the policies expressed
in XML. Leigh Griffin and his colleagues [12] have proposed JSONPL, a policy
vocabulary encoded in JSON that semantically was identical to the original
XML policy but stripped away the redundant meta data and cleaned up the
array translation process. Their performance experiments showed that JSON
could provide very similar expressiveness as XML but with much less verbosity.
On the other hand, as much as we understand, JSONPL is merely aimed at
implementing XACML policies in JSON and thus lacks its own formal schema
and full specification as a policy specification language [19].

Major service providers such as Amazon Web Services (AWS) [20] have a
tendency to implement their own security languages in JSON, but such kind of
approaches are normally for proprietary usage thus provide only self-sufficient
features and support limited use cases, which are not suitable to be a common
policy language. To the best of our knowledge, there are very few proposals that
combine a rich set of language features with well-defined syntax and semantics,
and such kind of access control policy language based on JSON has not even
been attempted before and as such JACPoL can be considered to be an original
and innovative contribution.

3 JACPoL Detailed Design

This section presents JACPoL in depth. We first recall the foundations
of JACPoL, and then introduce its structures with an overview of how an access
request is evaluated with respect to JACPoL policies. After that, we describe
the syntax and semantics in detail along with policy examples.

A Simple but Expressive JSON-Based Access Control Policy Language 59

3.1 Fundamental Design Choices

The goal is to design a simple but expressive access control policy language. To
achieve this, we beforehand introduce the important design decisions for JACPoL
as below.

First, JACPoL is JSON-formatted [21].
Second, JACPoL is attribute-based by design but meanwhile supports

RBAC [14]. When integrating RBAC, user roles are considered as an attribute
(ARBAC) [26], or attributes are used to constrain user permissions (RABAC)
[27], which obtains the advantages of RBAC while maintaining ABAC’s flexibil-
ity and expressiveness.

Third, JACPoL adopts hierarchically nested structures similar to XACML.
The layered architecture as shown in Fig. 1 not only enables scalable and fine-
grained access control, but also eases the work of policy definition and manage-
ment for policy designers.

Forth, JACPoL supports Implicit Logic Operators which make use of JSON
built-in data structures (Object and Array) to implicitly denote logic operations.
This allows a policy designer to express complex operations without explicitly
using logical operators, and makes JACPoL policies greatly reduced in size and
easier to read and write by humans.

Fifth, JACPoL supports Obligations to offer a rich set of security and network
management features.

3.2 Policy Structure

JACPoL uses hierarchical structures very similar to the XACML standard [22].
As shown in Fig. 1, JACPoL policies are structured as Policy Sets that consist
of one or more child policy sets or policies, and a Policy is composed of a set
of Rules.

Because not all Rules, Policies, or Policy Sets are relevant to a given
request, JACPoL includes the notion of a Target . A Target determines whether
a Rule/Policy/Policy Set is applicable to a request by setting constraints on
attributes using simple Boolean expressions. A Policy Set is said to be Appli-
cable if the access request satisfies the Target , and if so, then its child Policies
are evaluated and the results returned by those child policies are combined using
the policy-combining algorithm; otherwise, the Policy Set is skipped without fur-
ther examining its child policies and returns a Not Applicable decision. Likewise,
the Target of a Policy or a Rule has similar semantics.

The Rule is the fundamental unit that is evaluated eventually and can gener-
ate a conclusive decision (Permit or Deny specified in its Effect field). The Con-
dition field in a rule is a simple or complex Boolean expression that refines the
applicability of the rule beyond the predicates specified by its target, and is
optional. If a request satisfies both the Target and Condition of a rule, then
the rule is applicable to the request and its Effect is returned as its decision;
otherwise, Not Applicable is returned.

60 H. Jiang and A. Bouabdallah

For each Rule, Policy , or Policy Set , an id field is used to be uniquely identi-
fied, and an Obligation field is used to specify the operations which should be per-
formed (typically by a PEP) before or after granting or denying an access request,
while a Priority is specified for conflict resolution between different Rules, Poli-
cies, or Policy Sets.

Fig. 1. JACPoL’s hierarchical nested structure

3.3 Syntax and Conventions

JACPoL uses JSON syntax to construct and validate its policies. A policy must
follow correct JSON syntax to take effect. In this subsection, we do not provide
a complete description of what constitutes valid JSON [21]. However, below is a
list of fundamental characteristics of JSON:

• JSON is built on two universal data structures: object and array .
• An object is denoted by braces ({}) that can hold multiple name-value pairs.

For each name-value pair, a colon (:) is used to separate the name and the
value, whilst multiple name-value pairs are separated by comma (,) as in the
following example: {"id": 1, "effect": "permit"}.

• An array is denoted by brackets ([]) that can hold multiple values separated
by commas (,) as in the following example: ["Monday", "Friday", "Sunday"].

• A value can be a string in double quotes, or a number, or a Boolean value
(true or false), or null , or an object or an array .

• Whitespace can be inserted between any pair of JSON tokens ({ } [] " , :).

In the subsequent subsections, we will elaborate on the syntax and semantics for
each policy element. To illustrate better, the following conventions are used:

• The following characters are special characters used in the description of the
grammar and are not included in the policy syntax: < > ... () |.

• If an element allows multiple values, it is indicated using the repeated values,
commas, and an ellipsis (...). Example: [<rule_block>, <rule_block>, ...].

• A question mark (?) following an element indicates that element is optional.
Example: {"condition"?: <boolean_expression>}.

A Simple but Expressive JSON-Based Access Control Policy Language 61

• A vertical line (|) between elements indicates alternatives. Parentheses define
the scope of the alternatives. The default value is underlined if the field is
optional. Example: {"algorithm"?: ("permitOverrides"|"firstApplicable")}.

• Elements that must be literal strings are enclosed in double quotation marks.

3.4 Policy Sets, Policies and Rules

This subsection describes the grammar of the Policy Set , the Policy and
the Rule. In JACPoL, a policy set, a policy, or a rule always starts and ends
with a brace, which denotes a policy set block, a policy block, or a rule block.

Policy Set Block. Figure 2 describes the grammar of the policy set block, which
is composed of six name-value pairs that exactly correspond to the six elements
of a policy set. As shown in the figure, the "id" field is a string which can be
either numeric or descriptive to uniquely identify a policy set. The "target"
specifies a Boolean expression indicating the resources, subjects, actions or the
environment attributes to which the policy set is applied. The "policies" stores
a list of policy blocks with each one corresponding to a policy. The "algorithm"
field specifies the name of a decision-combining algorithm to compute the final
decision according to the results returned by its child policies. The "obligation"
specifies actions to take in case a particular conclusive decision (Permit or Deny)
is reached. The "priority" provides a numeric value indicating the weight of the
policy set when its decision conflicts with other policy sets under the highest-
Priority algorithm.

{

 "id":
 "target"?:
 "policies":
 "algorithm"?:
 "obligation"?:
 "priority"?:

<string>,
<boolean_expression>,
[<policy_block>, <policy_block>, ...],
("permitOverrides"|"denyOverrides"|"firstApplicable"|"highestPriority"),
<obligation_statement>,
<number>

}

Fig. 2. Grammar of the policy set block

Note that elements like target, algorithm, obligation and priority are optional
and, if omitted, the predefined default values would be taken (e.g., target: true,
algorithm: firstApplicable, obligation: null , priority: 0.5).

Policy Block. As shown in Fig. 3, a policy block contains an id, a target, an
algorithm, an obligation and a priority similar to a policy set. The difference is,
it has a "rules" list that holds one or more rule blocks instead of policy blocks.

Rule Block. Figure 4 describes the grammar of the rule block. Unlike a policy
set block or a policy block, a rule block does not contain any leaf nodes like child
policies or child rules and thus a decision-combining algorithm field is not needed

62 H. Jiang and A. Bouabdallah

{
 "id": <string>,
 "target"?: <boolean_expression>,

 "rules": [<rule_block>, <rule_block>, ...],
 "algorithm"?: ("permitOverrides"|"denyOverrides"|"firstApplicable"|"highestPriority"),
 "obligation"?: <obligation_statement>,
 "priority"?: <number>

}

Fig. 3. Grammar of the policy block

either. Instead, it possesses a "condition" element that specifies the condition for
applying the rule, and an "effect" element that, if the rule is applied, would be
the returned decision of the rule as either Permit or Deny . In comparison to a
target, a condition is typically more complex and often includes functions (e.g.,
"greater-than") for the comparison of attribute values, and logic operations (e.g.,
"and", "or") for the combination of multiple conditions. If either the target or the
condition is not satisfied, a Not Applicable would be taken as the result instead
of the specified effect. Note that the Condition is by default true if omitted.

{
"id":
"target"?:
"effect":
"condition"?:
"obligation"?:
"priority"?:

<string>,
<boolean_expression>,
("permit"|"deny"),
<boolean_expression>,
<obligation_statement>,
<number>

}

Fig. 4. Grammar of the rule block

3.5 Targets and Conditions

As aforementioned, a Target or a Condition is a Boolean expression specifying
constraints on attributes such as the subject, the resource, the environment,
and the action of requests. The Boolean expression of a Target is often simple
and very likely to be just a test of string equality, but that of a condition can
be sometimes complex with constraints on multiple attributes (attribute condi-
tions).

Attribute Condition is a simple Boolean expression that consists of a key-
value pair as shown below:

{"< attribute_expression >": <condition_expression >}

The key is an attribute expression in string format that specifies an attribute
or a particular computation between a set of attributes; the value is a condition
expression, which is a JSON block composed of one or more operator-parameter

A Simple but Expressive JSON-Based Access Control Policy Language 63

pairs specifying specifically the requirements that the attribute expression needs
to meet. The simplest format of an attribute condition is to verify the equality
/inequality between the attribute (e.g., time) and the parameter (e.g., 10:00:00)
using comparative operators (e.g., greater-than, less-than, equal-to, etc.):

{"<attribute >": {"<comparative_operator >": <parameter >}}

However, there are also cases where we have multiple constraints (operator-
parameter pairs) on the same attribute, connected by logical relations like AND,
OR, NOT, which are respectively denoted by the keywords allOf , anyOf
and not .

Logical Operators. JACPoL uses logical operators in a form of constructing
key-value pairs. The logical operator is the key and, depending on the number
of arguments, allOf and anyOf operators are to be followed by an array ([])
of multiple constraints, while the not operator is to be followed by an object
({ }). An allOf operation would be evaluated to true only if all subsequently
included constraints are evaluated to true, but an anyOf operation would be
true as long as there is at least one of the constraints which is true. An not
operation would be true if the followed constraint is evaluated to false. Logical
operators can be nested to construct logical relations such as not any of, not
all of. For example, an attribute condition containing multiple constraints with
nested logical operators as below:

{"sumOf x y": {"not": {" anyOf ": [
{" between ": "j k"},
{" equals ": "z"}]}}}

in which the string "sumOf x y" is an attribute expression. The key-
word sumOf defines a function to compute the sum of attributes x and y, which
is to be evaluated by the subsequent condition expression. Please note that a
parameter like j, k or z can also possibly be another attribute instead of an
explicit value.

In addition, logical operators can also be used to combine multiple attribute
conditions in order to express complex constraints on more than one attribute
easily and flexibly. As an example, the condition below expresses constraints on
two attributes and would be evaluated to true only when both (allOf the two)
constraints are met:

{"allOf ": [<attribute_condition >, <attribute_condition >]}

Less Is More: Implicit Logical Operators. A complex condition might con-
tain many logical operators which make the policy wordy and hard to read. To
overcome this, we make use of JSON’s built-in data structures, object and array ,
and define following implicit logical operators as alternatives to allOf and anyOf :

• An object is implicitly an allOf operator which would be evaluated to true
only if all the included key-value pairs are evaluated to true.

• An array is implicitly an anyOf operator which would be evaluated to true
as long as at least one of its elements is evaluated to true.

64 H. Jiang and A. Bouabdallah

For example, below is a condition statement using implicit logical operators to
verify if it is working hour.

{
"time ":{" between ": ["09:00 12:00" , "14:00 18:00"]} ,
"weekday ": {"not": {" equals": [" saturday", "sunday "]}}

}

As a comparison, below is for the same verification with explicit logical operators.

{
"allOf ": [{

"time": {"anyOf ": [
{" between ": "09:00 12:00"} ,
{" between ": "13:00 18:00"}]}

},{
"weekday ": {"not": {" anyOf ": [

{" equals ": "saturday"},
{" equals ": "sunday "}]}}}]

}

Apparently, implicit operators save a lot size and make policies more readable,
which has later turned out to be very useful in our policy engine implementation.

3.6 Combining Algorithms

In JACPoL, policies or rules may conflict and produce totally different decisions
for the same request. JACPoL resolves this by adopting four kinds of decision-
combining algorithms: Permit-Overrides, Deny-Overrides, First-Applicable, and
Highest-Priority. Each algorithm represents a different way for combining mul-
tiple local decisions into a single global decision:

• Permit-Overrides returns Permit if any decision evaluates to Permit ; and
returns Deny if all decisions evaluate to Deny .

• Deny-Overrides returns Deny if any decision evaluates to Deny ; returns Per-
mit if all decisions evaluate to Permit .

• First-Applicable returns the first decision that evaluates to either of Permit
or Deny . This is very useful to shortcut policy evaluation.

• Highest-Priority returns the highest priority decision that evaluates to either
of Permit or Deny . If there are multiple equally highest priority decisions
that conflict, then deny-overrides algorithm would be applied among those
highest priority decisions.

Please note that for all of these combining algorithms, Not Applicable is returned
if not any of the child rules (or policies) is applicable. Hence, the set of possible
decisions is 3-valued.

A Simple but Expressive JSON-Based Access Control Policy Language 65

3.7 Obligations

JACPoL includes the notion of obligation. An Obligation optionally specified in
a Rule, a Policy or a PolicySet is an operation that should be performed by the
PEP in conjunction with the enforcement of an authorization decision. It can be
triggered on either Permit or Deny. We employ the format as below to express
obligations in JACPoL:

{"<dec i s i on >": {"<operat ion >": [<parameter >, <parameter >,
. . .] } }

For example, the obligation below is for the access control of a document.

{
"permit ": {" watermark ": [" DRAFT "]},
"deny": {

"feedback ": [" ACCESS DENIED"],
"notify ": [" admin@gmail.com", "hr@gmail.com"]

}
}

It specifies that if an access request is denied, the user would be informed with an
access denied message and the administrator and HR would also be notified; if an
access request is approved, watermark the document "DRAFT" before delivery.
It worths to be mentioned that the referred obligations have an eminently locale
nature in the sense that their execution is the exclusive prerogative of the PEP
which can possibly rely on the information available in the PIP [1]. More general
and distributed obligations deserve a dedicated investigation.

3.8 Implementation

We implemented JACPoL in a Javascript/Node.js/Redis based policy engine [24]
which is available on Github. As shown in Fig. 5, the policy engine employs the
classical PDP/PEP architecture [1]. The PDP retrieves policies from the PRP
(Policy Retrieval Point), and evaluates authorization requests from the PEP by
examining the finite relevant attributes against the policies. If more attributes are
required to reach a decision, the PDP will request the PIP (Policy Information
Point) as an external information source. The latter may also be requested in
the case of obligations.

The non-blocking nature of Node.js allows the system to provide an efficient
and scalable access control, and a Redis server was employed to enable flexible
and high-performance data persistence and caching. In order to validate its func-
tionality, we have deployed this policy engine on a messaging node of reTHINK
project [23]. This reTHINK policy engine [24] adopted the ABAC model and
customized the vocabulary of JACPoL for the requirements of reTHINK frame-
work. With JACPoL based lightweight policies, Node.js based non-blocking I/O,
and Redis based fast caching, it provided a highly performant access control
according to various tailored attributes in an expressive and flexible way [25]. In

66 H. Jiang and A. Bouabdallah

PEP

PDP

Protected
Resource

PRP

PIP

Fig. 5. Policy engine architecture

reTHINK, in addition to comparative operators greaterThan, lessThan, equal-
sTo, JACPoL is extended to support more operators as listed in Fig. 6 with a
rule example:

Fig. 6. Other supported operators (left) and a rule example (right)

4 Comparative Analysis

This section evaluates JACPoL with a comprehensive comparison to other pre-
and post-XACML policy languages, which respectively are JSONPL [19], AWS
IAM [20], XACML [8], Ponder [5], Rei [29], XACL [30], KAoS [31], EPAL [6], and
ASL [32], followed by a simple quantitative comparison with XACML in terms
of processing delay. To begin with, we have identified the following requirements
for an access control policy language to meet the increasing needs of security
management for today’s ICT systems:

• Expressiveness to support wide range of policy needs and be able to specify
various complex, advanced policies that a policy maker intend to express [4].

• Extensibility to cater for new features or concepts of policy in the future [5].
• Simplicity to ease the policy definition and management tasks for the policy

makers with different levels of expertise. This includes both conciseness and
readability to avoid long learning curve and complex training.

A Simple but Expressive JSON-Based Access Control Policy Language 67

• Efficiency to ensure the speed for machines to parse the policies defined by
humans. This can be affected by policy structure, syntax, and data format.

• Scalability to ensure the performance as the network grows in size and com-
plexity. This is important especially in large-scale or multi-domain networks.

• Adaptability to be compatible with any access control tasks derived from an
ICT system. Any user could directly tailor the enforcement code and related
tool set provided by the policy language to their authorization systems.

Table 1 shows the complete evaluation of these policy languages. In the table,
‘�’ and ‘�’ respectively indicate ‘support’ and ‘strongly support’, while ‘+’,
‘++’, ‘+++’ and ‘++++’ mean ‘poor’, ‘good’, ‘very good’ and ‘excellent’. The
comparison mainly focuses on their design and implementation choices regard-
ing authorization, obligation, index, syntax and scheme, and their performance
with respect to the six previously defined criteria. Among these features, index
refers to whether there exists a special item for policy engine to retrieve the
required policies more efficiently.

Table 1. Evaluation and comparison between JACPoL and other policy languages

Like many other languages, JACPoL provides support for authorization and
obligation capabilities as previously introduced. In addition, it includes a concept
of Target within each Policy Set , Policy and Rule to allow efficient policy index.
In terms of expressiveness, JACPoL, Rei and KAoS extensively support the
specification of constraints, which can be set on numerous attributes in a flexible
expression [33].

On the other hand, compared to XML-based languages, JSON-based
JACPoL is simpler and more efficient, but meanwhile, we have to admit that
JSON is less sophisticated than XML, which accordingly may make JACPoL
less extensible. JACPoL is scalable and the reasons are twofold: first, its effi-
cient performance in policy index and evaluation allows it to deal with complex
policies under a large-scale network environment; second, its concise semantics
and lightweight data representation make it easily replicable and transferable
for distributed systems. As for adaptability, compared to other languages, the
application specific nature of AWS IAM makes it relatively harder to be adapted
to other systems.

A more comprehensive, quantitative and systematic performance evaluation
(in terms of speed, memory consumption, etc.) of JACPoL is in progress at

68 H. Jiang and A. Bouabdallah

the moment and would be detailed in a future paper [34]. However, we present
the results of a preliminary test as below in Figs. 7 and 8 which hopefully can
provide some insights on the outperformance of JACPoL over XACML. We
assessed respectively how both languages’ policy processing time increases with
the growth of nesting layers (policy depth) and with the growth of sibling rules
(policy scale). First we used the two languages to express the same policy set with
400 recursively nesting child policies, and recorded the delay when each child
policy was evaluated until the deepest one was reached. The result is depicted
in Fig. 7. Then we did the same with a policy set containing 400 sibling child
policies and got the result in Fig. 8. Each experiment was repeated 1000 times
conducted using Python on a Windows 10 PC with 16GB memory and a 2.6GHz
Intel core i7-6700HQ processor. From this simple test we can preliminarily see
that JACPoL is more efficient and scalable and processed with less latency than
XACML thanks to its JSON syntax and well-defined semantics.

 (1
0-4

s)

Fig. 7. Effect of policy depth

 (1
0-4

s)

Fig. 8. Effect of policy scale

5 Application of JACPoL to Security Models

5.1 RBAC vs ABAC

In policy-based access control systems, a request for access to protected resources
is evaluated with respect to a policy that defines which requests are autho-
rized. The policy itself conforms to a security model upstream chosen by the
system security administrator because it elegantly copes with the constraints
associated with the targeted information system. In the RBAC model, roles are
pre-defined and permission sets for resources are pre-assigned to roles. Users
are then granted one or more roles in order to receive access to resources [16].
ABAC, on the other hand, relies on user attributes for access decisions. These
include: subject attributes, which are attributes concerning the actor being evalu-
ated; object attributes, which are attributes of the resource being affected; action
attributes, which are attributes about the operation being executed; and envi-
ronment attributes, which provides other contextual information such as time
of the day, etc. [15]. Generally speaking, RBAC is simple, static and auditable,
but is not expressive nor context-aware, while ABAC, by contrast, provides

A Simple but Expressive JSON-Based Access Control Policy Language 69

fine-grained, flexible and dynamic access control in realtime but is complex and
unauditable. Combining these two models judiciously to integrate their advan-
tages thus becomes an essential work in recent research [16,17,27,28].

5.2 Attribute-Centric RBAC Application

JACPoL can be implemented to express permission specification policies (PSP)
in an attribute-centric RBAC model. For example, Fig. 9 defines a policy set with
each policy specifying permissions that are associated to the targeted role. When
evaluating a request, the PDP first retrieves all the roles (e.g., from the PIP) that
are pre-assigned to the requester, and then examines the permission policies that
are associated to these roles to reach a decision. Unlike other traditional statically
defined RBAC permissions, JACPoL allows its permissions to be expressed in
a quite dynamic and flexible way similar to ABAC. Please note that the role
attribute is suggested to be placed as the target for the topmost level of policies
in order to allow an easier view of user permissions as shown in Fig. 9.

Permit Overrides Target: ARBAC

Permit Overrides Target: role1

Permission Specification Rule1

Permission Specification Rule2

Permit Overrides Target: role2

Permission Specification Rule3

Permission Specification Rule4

Permit Overrides Target: role3

Permission Specification Rule5

Permission Specification Rule6

PSP set
target: ARBAC

permit overrides

PSP 1
target: role1

permit overrides

PSP 2
target: role2

permit overrides

PSP 3
target: role3

permit overrides

Rule1 Rule2 Rule3 Rule4 Rule5 Rule6

roles

true/false true/false true/false true/false true/false true/false

PDP

TRUE?FALSE?

DENY PERMIT

Fig. 9. An example ARBAC permission specification policy and its structure tree

5.3 Role-Centric ABAC Application

JACPoL can also be used to implement a language for permission filtering poli-
cies (PFP) in a role-centric ABAC model [27]. Similar to the ABAC model in
Fig. 5, but in addition to external attributes, the PDP also relies on the PIP
to get role permission sets which, as defined by NIST RBAC model, specify the
maximum set of available permissions that users can have. These permission sets
can be further constrained by the filtering policies based on JACPoL, as shown
in Fig. 10. Note that this time the target of each PFP maps each object to a sub-
set of the filtering rules. At the same time, the target and condition of each rule
determine whether or not the rule is applicable. The applicable filtering rules
are invoked one by one against each of the permissions in the permission set. If

70 H. Jiang and A. Bouabdallah

any of the rules return FALSE, the permission is then blocked and removed from
the available permission set for the current session. At the end of this process,
the final available permission set available to users therefore will be the inter-
section of P and R, where P is the set of permissions assigned to the subject’s
active roles and R is the set of permissions specified by the applicable JACPoL
rules [28].

Deny Overrides Target: RABAC

Deny Overrides Target: obj1

Permission Filtering Rule1

Permission Filtering Rule2

Deny Overrides Target: obj2

Permission Filtering Rule3

Permission Filtering Rule4

Deny Overrides Target: obj3

Permission Filtering Rule5

Permission Filtering Rule6

PFP set
target: RABAC
deny overrides

PFP 1
target: object1
deny overrides

PFP 2
target: object2
deny overrides

PFP 3
target: object3
deny overrides

Rule1 Rule2 Rule3 Rule4 Rule5 Rule6

for each permission (operation, object)

true/false true/false true/false true/false true/false true/false

Permission Set

TRUE?FALSE?

REMOVE permission (operation, object)

Fig. 10. An example RABAC permission filtering policy and its structure tree

6 Conclusion

Traditionally, performance has not been a major focus in the design of access
control systems. Applications are emerging, however, that require policies to be
evaluated with a very low latency and high throughput. Under this background,
we designed and implemented JACPoL, a fast JSON-based, attribute-centric and
light-weight access control policy language. JACPoL provides a good solution for
policy specification and evaluation in such applications with low processing delay.
We evaluated our policy language with respect to a set of representative criteria
in comparison with other existing policy languages. The evaluation showed that
JACPoL can be as expressive as XACML but more simple, scalable and efficient.
On the other hand, JACPoL leaves room for future improvements in many areas.
For example, obligation capabilities can be further enhanced and delegation
support can be formally introduced. By priority, we are currently conducting a
more comprehensive experimental performance evaluation with extensive policy
sets for various real-world use cases, in which a more systematic and quantitative
evaluation criteria (e.g., speed, memory usage, etc.) would be considered.

Acknowledgement. This work has received funding from the European Union’s Hori-
zon 2020 research and innovation programme under the grant agreement No. 645342,
project reTHINK. We gratefully acknowledge support from our colleagues in this

A Simple but Expressive JSON-Based Access Control Policy Language 71

project, Jamal Boulmal (Apizee), Jean-Michel Crom and Simon Becot (Orange Labs).
This work would hardly be possible without their valuable suggestions and help.

References

1. Yavatkar, R., Pendarakis, D., Guerin, R.: A Framework for Policy-Based Admission
Control. IETF, RFC 2753, January 2000

2. Borders, K., Zhao, X., Prakash, A.: CPOL: high-performance policy evaluation.
In: The 12th ACM Conference on Computer and Communications Security. ACM
(2005)

3. reTHINK Project Testbed: Deliverable D6.1: Testbed Specification (2016). https://
bscw.rethink-project.eu/pub/bscw.cgi/d35657/D6.1%20Testbed%20specific-
ation.pdf. Accessed 17 May 2017

4. He, L., Qiu, X., Wang, Y., Gao, T.: Design of policy language expression in SIoT.
In: Wireless and Optical Communication Conference, pp. 321–326. IEEE (2013)

5. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy specifica-
tion language. In: Sloman, M., Lupu, E.C., Lobo, J. (eds.) POLICY 2001. LNCS,
vol. 1995, pp. 18–38. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44569-2_2

6. Ashley, P., Hada, S., Karjoth, G., Powers, C., Schunter, M.: Enterprise privacy
authorization language (EPAL). IBM Research, March 2003

7. Bhatti, R., Ghafoor, A., Bertino, E., Joshi, J.B.: X-GTRBAC: an XML-based
policy specification framework and architecture for enterprise-wide access control.
ACM Trans. Inf. Syst. Secur. (TISSEC) 8(2), 187–227 (2005)

8. OASIS XACML Technical Committee: eXtensible access control markup language
(XACML) Version 3.0. Oasis Standard, OASIS (2013). http://docs.oasis-open.org/
xacml/3.0/xacml-3.0-core-spec-os-en.html. Accessed 17 May 2017

9. Crampton, J., Morisset, C.: PTaCL: a language for attribute-based access con-
trol in open systems. In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS,
vol. 7215, pp. 390–409. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28641-4_21

10. Crockford, D.: JSON – The fat-free alternative to XML, vol. 2006. http://www.
json.org/fatfree.html. Accessed 17 May 2017

11. El-Aziz, A.A., Kannan, A.: JSON encryption. In: 2014 International Conference
on Computer Communication and Informatics (ICCCI). IEEE (2014)

12. Griffin, L., Butler, B., de Leastar, E., Jennings, B., Botvich, D.: On the performance
of access control policy evaluation. In: 2012 IEEE International Symposium on
Policies for Distributed Systems and Networks (POLICY), pp. 25–32. IEEE (2012)

13. W3schools: JSON vs XML. www.w3schools.com/js/js_json_xml.asp. Accessed 24
May 2017

14. Ferraiolo, D.F., Kuhn, D.R.: Role-based Access Controls. arXiv preprint
arXiv: 0903.2171, 12 March 2009

15. Hu, V.C., Ferraiolo, D., Kuhn, R., et al.: Guide to attribute based access control
(ABAC) definition and considerations. NIST Special Publication 800.162 (2013)

16. Empower ID: Best practices in enterprise authorization: The RBAC/ABAC hybrid
approach. Empower ID, White paper (2013)

17. Coyne, E., Weil, T.R.: ABAC and RBAC: scalable, flexible, and auditable access
management. IT Prof. 15(3), 0014–16 (2013)

https://bscw.rethink-project.eu/pub/bscw.cgi/d35657/D6.1%20Testbed%20specific-ation.pdf
https://bscw.rethink-project.eu/pub/bscw.cgi/d35657/D6.1%20Testbed%20specific-ation.pdf
https://bscw.rethink-project.eu/pub/bscw.cgi/d35657/D6.1%20Testbed%20specific-ation.pdf
https://doi.org/10.1007/3-540-44569-2_2
https://doi.org/10.1007/3-540-44569-2_2
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://doi.org/10.1007/978-3-642-28641-4_21
https://doi.org/10.1007/978-3-642-28641-4_21
http://www.json.org/fatfree.html
http://www.json.org/fatfree.html
www.w3schools.com/js/js_json_xml.asp
http://arxiv.org/abs/0903.2171

72 H. Jiang and A. Bouabdallah

18. David, B.: JSON Profile of XACML 3.0 Version 1.0. XACML Committee Specifi-
cation 01, 11 December 2014. http://docs.oasis-open.org/xacml/xacml-json-http/
v1.0/cs01/xacml-json-http-v1.0-cs01.pdf. Accessed 26 May 2017

19. Steven, D., Bernard, B., Leigh, G.: JSON-encoded ABAC (XACML) policies.
FAME project of Waterford Institute of Technology. Presentation to OASIS
XACML TC concerning JSON-encoded XACML policies, 30 May 2013

20. Amazon Web Services: AWS Identity and Access Management (IAM) User Guide.
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html. Accessed
27 May 2017

21. ECMA International: ECMA-404 The JSON Data Interchange Standard. http://
www.json.org/. Accessed 27 May 2017

22. Ferraiolo, D., et al.: Extensible access control markup language (XACML) and next
generation access control (NGAC). In: Proceedings of the 2016 ACM International
Workshop on Attribute Based Access Control. ACM (2016)

23. reTHINK Project. github.com/reTHINK-project/. Accessed 27 May 2017
24. reTHINK CSP Policy Engine. github.com/reTHINK-project/dev-msg-node-nodejs/

tree/master/src/main/components/policyEngine. Accessed 27 May 2017
25. reTHINK Deliverable 6.4: Assessment Report, reTHINK H2020 Project
26. Obrsta, L., McCandlessb, D., Ferrella, D.: Fast semantic attribute-role-based access

control (ARBAC) in a collaborative environment. In: 2012 8th International Con-
ference on Collaborative Computing: Networking, Applications and Worksharing
(CollaborateCom), Pittsburgh, PA, USA, 14–17 October 2012

27. Jin, X., Sandhu, R., Krishnan, R.: RABAC: role-centric attribute-based access
control. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2012. LNCS, vol. 7531,
pp. 84–96. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33704-
8_8

28. Kuhn, D.R., Coyne, E.J., Weil, T.R.: Adding attributes to role-based access control.
Computer 43(6), 79–81 (2010)

29. Kagal, L., Finin, T., Joshi, A.: A policy language for a pervasive computing envi-
ronment. In: IEEE 4th International Workshop on Proceedings of Policies for Dis-
tributed Systems and Networks, POLICY 2003. IEEE (2003)

30. Hada, S., Kudo, M.: XML Access Control Language: provisional authorization for
XML documents (2000)

31. Uszok, A., Bradshaw, J.M., Jeffers, R.: KAoS: a policy and domain services frame-
work for grid computing and semantic web services. In: Jensen, C., Poslad, S.,
Dimitrakos, T. (eds.) iTrust 2004. LNCS, vol. 2995, pp. 16–26. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-24747-0_2

32. Jajodia, S., Samarati, P., Subrahmanian, V.S.: A logical language for expressing
authorizations. In: Proceedings of IEEE Symposium on Security and Privacy. IEEE
(1997)

33. Neuhaus, C., Polze, A., Chowdhuryy, M.M.: Survey on healthcare IT systems:
standards, regulations and security. No. 45. Universitätsverlag Potsdam (2011)

34. Jiang, H., Bouabdallah, A.: Towards A JSON-Based Fast Policy Evaluation Frame-
work. Work in progress

http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/cs01/xacml-json-http-v1.0-cs01.pdf
http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/cs01/xacml-json-http-v1.0-cs01.pdf
http://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
http://www.json.org/
http://www.json.org/
http://github.com/reTHINK-project/
http://github.com/reTHINK-project/dev-msg-node-nodejs/tree/master/src/main/components/policyEngine
http://github.com/reTHINK-project/dev-msg-node-nodejs/tree/master/src/main/components/policyEngine
https://doi.org/10.1007/978-3-642-33704-8_8
https://doi.org/10.1007/978-3-642-33704-8_8
https://doi.org/10.1007/978-3-540-24747-0_2

Trusted Execution

EmLog: Tamper-Resistant System
Logging for Constrained Devices

with TEEs

Carlton Shepherd(B), Raja Naeem Akram, and Konstantinos Markantonakis

Smart Card and Internet of Things Security Centre, Information Security Group,
Royal Holloway, University of London, Surrey, UK

{carlton.shepherd.2014,r.n.akram,k.markantonakis}@rhul.ac.uk

Abstract. Remote mobile and embedded devices are used to deliver
increasingly impactful services, such as medical rehabilitation and assis-
tive technologies. Secure system logging is beneficial in these scenarios to
aid audit and forensic investigations particularly if devices bring harm
to end-users. Logs should be tamper-resistant in storage, during exe-
cution, and when retrieved by a trusted remote verifier. In recent years,
Trusted Execution Environments (TEEs) have emerged as the go-to root
of trust on constrained devices for isolated execution of sensitive appli-
cations. Existing TEE-based logging systems, however, focus largely on
protecting server-side logs and offer little protection to constrained source
devices. In this paper, we introduce EmLog – a tamper-resistant logging
system for constrained devices using the GlobalPlatform TEE. EmLog
provides protection against complex software adversaries and offers sev-
eral additional security properties over past schemes. The system is eval-
uated across three log datasets using an off-the-shelf ARM development
board running an open-source, GlobalPlatform-compliant TEE. On aver-
age, EmLog runs with low run-time memory overhead (1 MB heap and
stack), 430–625 logs/second throughput, and five-times persistent stor-
age overhead versus unprotected logs.

Keywords: System logging · Embedded security · Trusted computing

1 Introduction

System logs record features such as user activity, resource consumption, periph-
eral use and error details. Logs are also used to enforce user accountability
and to establish audit trails for forensics, event reconstruction and intrusion
detection [16]. Consequently, logs are routinely targeted by attackers to con-
ceal evidence of wrongdoing, and should be stored securely to preserve the
auditability of a compromised system – as recommended by NIST [16] and ISO
27001:2013 [14]. Not only should logs be stored in a way that cryptographically
preserves their confidentiality and integrity, but trusted computing primitives,
e.g. Trusted Platform Modules (TPMs), have been identified as desirable in
c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
G. P. Hancke and E. Damiani (Eds.): WISTP 2017, LNCS 10741, pp. 75–92, 2018.
https://doi.org/10.1007/978-3-319-93524-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93524-9_5&domain=pdf

76 C. Shepherd et al.

existing proposals [4,32]. Such technologies have been used for tamper-resistant
storage of logging keys, performing cryptographic operations, and providing evi-
dence of platform integrity to third-party verifiers using remote attestation.

However, the advent of low-cost, mass-produced Internet of Things (IoT)
devices complicates the use of trusted computing for tamper-resistant logging.
Numerous proposals suggest using IoT devices for remote health monitoring [24],
identifying fires and gas leakages [6], and detecting falls and injuries in the
homes of the elderly and disabled [26] – all of which are natural applications for
tamper-resistant logging. Unfortunately, discrete hardware TPMs, which under-
pin many existing proposals, cannot directly host arbitrary applications with-
out additional processes, such as launching and locally attesting applications
from a TPM-backed virtual machine [4,25]. Including such processes within the
device’s Trusted Computing Base (TCB) – the set of software and hardware
components essential to its security – widens the scope for introducing security
and performance defects [21,31]. One promising solution is the Trusted Execu-
tion Environment (TEE), which offers TPM-like functionality alongside strong
isolated execution of critical applications, while using the core execution hard-
ware of conventional operating systems. TEEs have become widely-deployed in
recent years, notably in the form of Intel Software Guard eXtensions (SGX) and
TEEs built on ARM TrustZone. Indeed, Trustonic estimated that one billion
devices contained their TrustZone-based TEE alone in early 2017 [33]. However,
TEE-based logging schemes – discussed in Sect. 2 – have hitherto applied only
server-side TEEs to protect logs transmitted from remote devices.

In this paper, we present EmLog, which leverages the GlobalPlatform TEE
and ARM TrustZone for protecting logs at source on mobile and embedded
systems. EmLog offers further security benefits over past work, including pub-
lic verifiability of log origin, resilience to TEE key compromise, and supports
secure I/O with peripheral devices. After reviewing related work (Sect. 2), we
formalise the requirements and threat model in Sect. 4. EmLog is implemented
on an off-the-shelf ARM development board hosting OP-TEE [19] – an open-
source and GlobalPlatform-compliant TEE that uses TrustZone (Sect. 6) – and
evaluated using three datasets in Sect. 7. Finally, we conclude our work in Sect. 8
and identify future areas of research. To our knowledge, this is the first attempt
at preserving logs on constrained devices using a standardised TEE. The contri-
butions of this paper are: (1), the development of a novel secure logging scheme
for creating tamper-resistant logs with trust assurances, tailored for ARM-based
constrained devices, like wearables and sensing platforms; and (2), a test-bed
implementation using a GlobalPlatform-compliant TEE that uses ARM Trust-
Zone, with performance benchmarks across three datasets. The results indicate
that EmLog has low run-time memory footprint, five-times persistent storage
overhead, and 430–625 logs/sec throughput.

2 Related Work

Existing proposals may be categorised as: (1), secure untrusted system logging,
focusing on cryptographic methods for detecting tampered logs on untrusted

EmLog: Tamper-Resistant Logging for Constrained Devices with TEEs 77

platforms; and (2), trusted logging, for applying trusted hardware primitives for
log preservation. We briefly examine key proposals and their contributions.

2.1 Secure Untrusted System Logging

Schneier and Kelsey [27] propose the use of MACs with linear one-way hash
chains to protect log integrity. Each chain entry is found by successively hashing
the log content with the previous log’s hash, which is accompanied by a MAC
keyed under the hash of the previous MAC key. The initial key is a pre-shared key
(PSK) between the logging device and a trusted verifier, which allows the MAC
hash chain to be recomputed and verified. Bellare and Yee [3] propose a similar
scheme using the formalised notion of forward integrity in which it is computa-
tionally infeasible to alter past entries after a key compromise. This is achieved
by updating the secret key at regular time intervals (epochs) using an update
process based on a chain of pseudo-random functions to key the log MACs in
each epoch. Holt [13] proposed Logcrypt, which uses public-key cryptography
alongside MACs to achieve public verifiability, so third-parties can authenticate
the origin of log entries without knowledge of a secret PSK – shortfalls of [3,27].
Ma and Tsudik [20] introduce FssAgg, which uses an aggregated chain of sig-
natures to achieve public verifiability and to thwart truncation attacks, where
an attacker aims to delete a tail-end subset of log entries. Yavuz et al. [34] pro-
posed LogFAS, which addresses both challenges with better storage and compu-
tational complexity than [13,20] using the Schnorr signature scheme. Recently,
Hartung [12] presented four attacks against LogFAS [34] and two variants of
FssAgg [20], which enables secret key recovery and log forgery; as a result, both
schemes are dissuaded from use.

2.2 Secure Logging with Trusted Hardware

Early work by Chong et al. [7] explored trusted hardware (Java iButton) to
protect the initial PSK of the Schneier and Kelsey scheme [27]. Later, Sinha
et al. [32] suggested a using a TPM with a forward integrity scheme based on
branched key chaining. Logs are divided into epochs (blocks), each comprising
a sequence of hash-chained log entries (sub-epochs). The root entries of each
epoch are hash-chained with past epochs, which creates a two-dimensional hash
chain to prevent re-ordering attacks in which an attacker re-orders log blocks
to mislead auditors. For each new epoch, the previous epoch’s logs are securely
stored using the TPM’s seal functionality, which encrypts the logs with a TPM-
bound key so only that particular TPM can decrypt/‘unseal’ them. Böck et al. [4]
explore the use of AMD’s Secure Virtual Machine (SVM) – an early inception
of the TEE – for launching a syslog client daemon and logging application
from the TPM’s secure boot chain. The logger executes with access to TPM-
bound key-pairs for encrypting and signing log entries. Upon request, the logs
are decrypted and transmitted to the verifying party; the TPM keys are certified
for authenticating that signed logs originated from the SVM.

78 C. Shepherd et al.

Nguyen et al. [23] propose streaming medical logs to a server application in
Intel SGX (see Sect. 3) that applies the tamper-resistance. Logs are sent to the
Intel SGX application (‘enclave’) over TLS, which computes a hash chain com-
prising a signature of each record; TPMs are used to authenticate the medical
devices to the server, and on the server’s end to securely store log hash chains
using its sealing mechanism. Karande et al. [15] introduce SGX-Log, which pro-
tects server-side device logs received from remote devices. SGX-Log, like [32],
uses block-based hash chains with SGX’s secure storage for log integrity and
confidentiality. The authors note that continual sealing also provides resilience
to attacks in which large volumes of logs in memory are lost due to an unau-
thorised power loss. Remote attestation is also suggested to authenticate the
server enclave before transmitting the logs. The proposed scheme is evalu-
ated using three datasets, yielding a small (<7%) overhead versus a non-SGX
implementation.

2.3 Discussion

Modern TPM- and TEE-based approaches [4,15,23,32] still fall short of satis-
fying many desirable properties identified in past work. Public verifiability of
origin, as in [4], has not been addressed in recent TEE loggers, which could be
potentially useful to authenticate system data from remote devices, e.g. generat-
ing trust scores from log data for access control [2] and continuous authentication
[22,29]. Recent TEE-based schemes, i.e. [15,23], focus primarily on protecting
logs after being received by a server-side log processing application; an attacker
on the source device may simply tamper the logs before reaching the server that
applies some tamper-resistance algorithm. To complicate matters, source devices
are unlikely to transmit logs in real-time to minimise network and computational
overhead, and so secure storage methods should be used to preserve unsent logs.
Additionally, TEEs typically contain other security-critical applications, e.g. for
fingerprint matching (as in Android1) and payment tokenisation (see Samsung
Pay2). As a result, a TEE-based logging mechanism should operate with reason-
able resource consumption, e.g. run-time memory, to limit the rise of Denial of
Service (DoS) conditions.

3 Trusted Execution Environments (TEEs)

GlobalPlatform defines a TEE as an isolated execution environment that “pro-
tects from general software attacks, defines rigid safeguards as to the data and
functions a program can access, and resists a set of defined threats” [9]. TEEs
aim to isolate applications from integrity and confidentiality attacks from a con-
ventional operating system. Applications in the conventional OS and TEE –
referred to as ‘untrusted’ and ‘trusted’ worlds respectively in GlobalPlatform

1 https://source.android.com/security/authentication/fingerprint-hal.
2 http://developer.samsung.com/tech-insights/pay/device-side-security.

https://source.android.com/security/authentication/fingerprint-hal
http://developer.samsung.com/tech-insights/pay/device-side-security

EmLog: Tamper-Resistant Logging for Constrained Devices with TEEs 79

nomenclature – reside in separate memory address spaces, and trusted hardware
is used to monitor and prevent unauthorised memory accesses from the untrusted
world. TEE applications may allocate shared memory spaces or expose prede-
fined functions via an API mediated by a high-privilege secure monitor. Next,
we summarise the leading commercial TEE architectures.

The GlobalPlatform (GP) TEE maintains two worlds for all trusted and
untrusted applications. A TEE-based kernel is used for scheduling, memory man-
agement, cryptographic methods and other basic OS functions; TEE-resident
Trusted Applications (TAs) may access OS functions exposed by the GP TEE
Internal API (see Fig. 1). The GP TEE Client API [9] defines the interfaces for
communicating with TAs from untrusted world applications. The GP specifica-
tions also cover the use of external secure elements (GP Secure Element API),
secure storage, and networking (GP Sockets API) [11]. One method for instanti-
ating the GP TEE is using ARM TrustZone, which enables two isolated worlds to
co-exist in hardware. This is achieved using two virtual cores for each world per
physical CPU core and an extra CPU bit, the NS bit, for distinguishing between
untrusted/secure world execution modes. TrustZone provides secure I/O with
peripheral devices connected over standard interfaces, e.g. SPI and GPIO, by
routing interrupts to the TEE OS. This is performed via the TrustZone Pro-
tection Controller (TZPC), responsible for securing on-chip peripherals, and the
TrustZone Address Space Controller (TZASC) for protecting memory-mapped
devices from untrusted world accesses.

Fig. 1. GlobalPlatform TEE architecture.

Intel Software Guard Extensions (SGX) is an extension to the X86-64
instruction set that enables on-demand creation of ‘enclaves’ per application.
Enclaves reside in isolated memory regions within RAM with accesses mediated
by the CPU, which is considered trusted [8]. Enclaves may access the mem-
ory space of a regular OS, but not vice-versa, and enclaves cannot access other

80 C. Shepherd et al.

enclaves arbitrarily. Like TPMs, SGX offers secure storage through ‘sealing’ in
which data is encrypted and made accessible only to that enclave. Remote attes-
tation enables third-party verification of enclaves and secret provisioning using
Enhanced Privacy ID (EPID) – a Direct Anonymous Attestation (DAA) pro-
tocol by Brickell and Li [5]. SGX has been supported from the release of the
Skylake microarchitecture (from 2015).

Despite some high-level similarities, SGX is not GlobalPlatform-compliant.
Intel SGX is currently restricted solely to Intel CPUs, while the GP TEE is
typically deployed on ARM System-on-Chips (SoCs) using TrustZone, as used
by many IoT devices, e.g. Raspberry Pi 33, NEST thermostat4, and 95% of
consumer wearables according to ARM [1]. The reader is referred to [30] for a
detailed survey of secure and trusted execution environments for IoT devices.

4 System Requirements

We formalise the requirements for a TEE-based system for protecting logs on
constrained devices. The proposal should satisfy the following security and func-
tional requirements drawn from the issues identified in Sect. 2:

R1. Isolated execution: the system shall process logs in an environment iso-
lated from a regular ‘rich’ OS, e.g. Android, to provide strong integrity
assurances of the application and data under execution.

R2. Forward integrity : the integrity of a given block of logs shall not be affected
by a key comprise of a previous block.

R3. Log confidentiality : on-device log confidentiality should be preserved to
prevent the disclosure of potentially sensitive entries.

R4. Remote attestation: the proposal shall allow third-parties to verify the
logging application’s integrity post-deployment to provide assurances that
logs were sourced from an integral and authentic platform.

R5. Secure log retrieval : authorised third-parties shall be able to securely
retrieve device logs without human intervention.

R6. Public verifiability : the system shall allow third-parties to authenticate the
origin of log entries without access to private key information.

R7. Truncation attack-resistant : the system shall be resistant to attacks that
aim to delete a contiguous subset of tail-end log entries.

R8. Re-ordering attack-resistant : the proposal shall resist attempts to change
the order of entries in the log sequence.

R9. Power-loss resilience: the loss of tamper-resistant logs shall be minimised
in the event of a device power-loss.

R10. Suitable root of trust : a root of trust for constrained device architectures
shall be used, ideally without requiring additional security hardware.

3 https://www.raspberrypi.org/products/.
4 https://nest.com.

https://www.raspberrypi.org/products/
https://nest.com

EmLog: Tamper-Resistant Logging for Constrained Devices with TEEs 81

The threat model considers two adversary types:

– On-device software adversary : a software-based attacker that compromises
the system at time t and attempts to arbitrarily alter, forge or observe logs
produced before t. This may operate at any protection level in the untrusted
world, i.e. Rings 0–3, including arbitrarily altering execution flow and access-
ing non-TEE kernel space services.

– Network adversary : an adversary that attempts to arbitrarily alter, forge,
replay or observe logs between the source device and the verifier over a net-
work channel, e.g. WiFi/802.11. The attacker may also attempt to masquer-
ade as a legitimate party to either end-point to collect logs illicitly.

Like past work, we trust the TEE and do not attempt to secure untrusted
world logs after a compromise after time t, since a kernel-mode adversary may
simply read/write directly to the kernel message buffer used to queue log entries
(see Sect. 5.1). We also consider hardware and related side-channel attacks, e.g.
power analysis, beyond the scope of this work, as these threats fall outside the
security remit of TEEs. The reader is referred to the GlobalPlatform TEE Pro-
tection Profile [9] for a specification of their protection scope.

5 EmLog Architecture Design

We assume the presence of a GlobalPlatform-compliant TEE, a service provider
that provisions EmLog into the TEE before deployment, and a third-party wish-
ing to retrieve all or a partial set of the device’s logs. The GP TEE, which
maintains two sets of applications for each world, necessitates two logging com-
ponents: one that collects logs from untrusted world applications and transmits
these to the TEE over the GP Client API, and another that applies the protec-
tion algorithm within the TEE and responds to retrieval requests. An extension
of the hash matrix in [15,32] is proposed to apply the tamper-resistance scheme
within the GP TEE, which achieves integrity protection and public verifiability
(Sect. 5.2). Next, the log blocks are stored every n blocks, or at a time epoch t,
using the secure storage functionality of the GP TEE. After receiving a retrieval
request, the source TEE authenticates the remote verifier and vice-versa, after
which the blocks are unsealed and transmitted over a secure channel between
the TEEs (Sect. 5.3). We illustrate this process in Fig. 2.

5.1 Log Collection

A conventional (Linux) kernel uses an internal message ring buffer to store log
messages, which is made available to user space monitoring applications, such as
dmesg and klogd, using the sys syslog syscall. For user-mode logging, syslogd
listens on /dev/log, where logs are registered to using the syslog function from
the C standard library. Logs are subsequently written to file or transmitted
through the syslog protocol to a remote server over UDP. Some implementa-
tions, e.g. syslog-ng, provide further functionality like streaming logs over TCP
with TLS. For collecting untrusted world logs, we suggest a syslogd variant that
transmits logs to the EmLog TA within the GP TEE via the GP Client API.

82 C. Shepherd et al.

Fig. 2. High-level TEE-based logging workflow.

5.2 Block Generation

We propose a variant of the hash matrix used in [15,32] for log sequence integrity.
Here, hash sequences are created in which each block key, bK, is derived using
a one-way hash function, h, over the previous block key and current block ID,
bID; that is, bKbID = h(bKbID−1, bID). The initial block key (bID = 0) is
derived from a device-specific Root Logging Key (RLK). Each block key is used
to derive an individual message key, k, for keying an HMAC in a similarly chained
fashion, i.e. k(bID,mID) = h(k{bID,(mID−1)},mID) for log entry mID in block
bID, up to the block size m. Note that bK is used to derive k when mID = 0.
A block-based approach provides power-loss resilience and truncation resistance
(developed further in Sect. 5.3) while allowing the retrieval of subsets, i.e. blocks
i to j, without transmitting all logs from the genesis block (bID = 0) to the
remote verifier.

As it stands, this scheme is vulnerable to forgery attacks if just a single
block key is compromised: an adversary can apply h on the leaked key with the
next block ID to forge subsequent blocks and entries therein. Storing RLK and
deriving keys within trusted hardware, e.g. an secure element (SE) or TPM, is
desirable, but this adds hardware complexity to already-constrained devices with
respect to raw component and integration costs. TEEs provide strong resilience
to software attacks, but, unfortunately, are not invulnerable to developer-induced
programming and API errors. The impact of RLK and block key divulgence,
however, can be limited using key derivation, as described below.

Key Derivation. We suggest a simple scheme as follows: (1), intermediate keys
(IKs) are derived from the RLK using a secure key derivation function, each of
which serves c blocks; (2), each IK derives an initial block key, bKbID, for that
block group, before sealing the IK immediately to storage; (3), bKbID is used to
generate the block’s message-specific keys; (4), the next bKbID is derived using
kdf(bKbID−1, bID) for up to c blocks, after which another IK is generated. In
past proposals, a block key disclosure would require re-provisioning RLK – a
device-specific, possibly hardware-infused key, which would affect the device in

EmLog: Tamper-Resistant Logging for Constrained Devices with TEEs 83

Fig. 3. Proposed two-dimensional, signature-based log structure.

perpetuity without potentially costly intervention. Our approach (Fig. 3) limits
the damage wrought by a compromised block key by affecting only future blocks
in that group. In the worst case, besides divulging RLK, the exposure of IK can
compromise only c blocks at most.

For the key derivation function, we suggest the HMAC-based extract-and-
expand KDF (HKDF) by Krawczyk [17,18] (RFC 5689). HKDF takes keying
material and a non-secret salt as input, and repeatedly generates HMACs under
the input to return cryptographically strong output key material. Unlike plain
hash functions, used prevalently in past work, HKDF produces provably strong
key material from as-strong or weaker input key material.

Log Integrity and Verifiability. For log message integrity, first compute
hmac(�(bID,mID)) for message � with block ID, bID, and message ID, mID,
under key k(bID,mID) – derived from the previous message key or, for mID = 0,
the block key. Each k should be immediately deleted from memory to limit mem-
ory consumption and exposure. This does not prevent auditing log sequences,
since message keys may be regenerated from the pre-shared RLK.

In current symmetric-only schemes [7,15,27,32], public verification of log
origin (R6 in Sect. 4) requires knowledge of block and message keys on all inter-
ested devices, derived ultimately from RLK. Revealing RLK is evidently undesir-
able because it enables the malicious creation and manipulation of valid blocks.
Rather, we propose signing each block with an efficient signature scheme, σ, such
as ECDSA, and a device-specific signing key-pair (pk, sk) over the concatenation
of the block message HMACs (Fig. 3). This key-pair should be certified to pro-
vide data origin authentication. The RLK and key-pair should be accessible only
to the TEE, which is achievable using the TEE’s secure storage mechanism or,
for hardware tamper-resistance (with its complexities), using an external SE as

84 C. Shepherd et al.

suggested by GlobalPlatform [9]. In some circumstances, logs may contain sen-
sitive data, in which case we suggest limiting verifiability to whitelisted entities,
e.g. devices from the same manufacturer or service provider. It is also observed
that the block size, m, is inversely proportional to the number of signing oper-
ations; smaller block sizes will incur more signing operations for a given set of
log entries (see Sect. 7 for this overhead).

5.3 Secure Storage and Remote Retrieval

Real-time log streaming is likely to be detrimental for power- and network-
limited devices, and we suggest storing blocks prior to eventual transmission
within the TEE’s secure storage. Secure storage can be implemented in two ways
according to GlobalPlatform: (1), using the file system and storage medium, e.g.
flash drive, controlled by the untrusted world “as long as suitable cryptographic
protection is applied, which must be as strong as that used to protect the TEE
code and data itself” [10]. Or (2), using hardware controlled only by the TEE,
e.g. an external SE. Method (2) is resilient against adversaries that aim to
delete encrypted records from the file system5, but naturally requires additional
security hardware. For method (1), log blocks are sealed using authenticated
encryption (AES in GCM mode) with a key derived specifically for the TA
under execution from a separate, device-specific root storage key. This prevents
other TAs or other entities from accessing secured data, thus providing on-device
log confidentiality (R3), integrity and authenticity.

Securely storing every completed block, i.e. in [15], may yield undesirable
performance overhead for the devices targeted in this work. Rather, the param-
eters c (block group size) and m (block length) can control the number and size
of blocks kept in RAM respectively. This satisfies truncation attack-resistance
(R7) and power-loss resilience (R9), in addition to R3, by limiting the number
of new blocks kept in memory (for sufficiently small values of c and m).

In past work, log retrieval is proposed using TLS [23], or one-way remote
attestation for authenticating the platform of the remote verifier [15]. (Many
remote attestation protocols, e.g. [5], typically enable secure channels to be boot-
strapped, over which unsealed logs can be transmitted securely). However, the
remote authority, which may itself process logs in its own TEE [15,23], is likely
to request reciprocal trust assurances from the source TEE, i.e. remote attesta-
tion for both the source and verifying entities. Rather than performing one-way
attestation separately for both entities, one alternative is mutual TEE attes-
tation [28] in which both communicating TEEs are attested and authenticated
within the protocol run. Similarly, a secure channel can be bootstrapped from
[28] between the TEE end-points over which unsealed logs can be transmitted
securely without exposing them to untrusted world elements.

5 Note that, in general, arbitrary log deletion is difficult to prevent robustly without
dedicated WORM (Write-Once, Read-Many) storage.

EmLog: Tamper-Resistant Logging for Constrained Devices with TEEs 85

6 Implementation

We implemented EmLog using OP-TEE – an open-souce, GlobalPlatform com-
pliant TEE by Linaro [19] – with Debian (Linux) as the untrusted world OS.
An untrusted world application was developed for collecting log entries from file,
which were sent subsequently to the EmLog TA using the GP Client API [9].
Each entry was processed into a data structure comprising a 4-byte message ID,
32-byte HMAC (SHA-256) tag, and 256-byte field for the entry text. The GP
Internal API [10] was used to interface with the cryptographic and secure stor-
age methods; in OP-TEE, cryptographic methods are implemented using the
LibTomCrypt library, and we opted for secure storage in which data is encrypted
to the untrusted world file system (residing on 32 GB eMMC flash memory).
256-bit ECDSA (NIST secp256r1 curve) was used to sign each block, which was
placed into a separate data structure comprising the processed messages and a
4-byte block ID; currently, only the NIST curves are defined in the GP TEE
specifications. The GP Internal API defines its own memory allocation func-
tions, i.e. TEE Malloc and TEE Free, for dynamically (de-)allocating memory
to regions accessible only to the TA, which were used frequently for memory-
managing blocks and messages at run-time.

Unsurprisingly, memory consumption quickly became problematic when
working with large datasets (discussed in Sect. 7). For the current OP-TEE
release, 32 MB RAM is allocated for the TEE kernel and all resident TAs, with
the rest allocated to the untrusted world OS. For a standard TA, the Linaro
Working Group6 stipulates a default stack and heap size at 1 kB (stack) and
32 kB (data) respectively, both of which can be increased up to a maximum
1 MB per TA.

7 Evaluation

EmLog was evaluated using a HiKey LeMaker – an ARM development board
with a Huawei HiSilicon Kirin 620 SoC with 2 GB RAM and an ARM Cortex A53
CPU (eight-cores at 1.2 GHz with TrustZone extensions). Such specifications are
typical of modern medium-to-high end IoT-type systems, such as the Raspberry
Pi 3 and Nest Thermostat. The proposal was benchmarked using three log file
datasets, described briefly:

1. U.S. Securities and Exchange Commission (SEC) EDGAR: Apache logs from
access statistics to SEC.gov. We use the latest dataset7 with over a million
entries (192 MB). (Mean entry length: 115.08 characters; S.D.: 5.73).

6 https://wiki.linaro.org/WorkingGroups/Security/OP-TEE.
7 http://www.sec.gov/dera/data/Public-EDGAR-log-file-data/2016/Qtr2/

log20160630.zip.

https://wiki.linaro.org/WorkingGroups/Security/OP-TEE
http://www.sec.gov/dera/data/Public-EDGAR-log-file-data/2016/Qtr2/log20160630.zip
http://www.sec.gov/dera/data/Public-EDGAR-log-file-data/2016/Qtr2/log20160630.zip

86 C. Shepherd et al.

2. Mid-Atlantic Collegiate Cyber Defense Competition (CDC): IDS logs from
the U.S. National CyberWatch MACCDC event, with ∼166,000 (27 MB) of
Snort fast alert logs8. (Mean entry length: 165.27 characters; S.D.: 38.21).

3. EmLogs: Our dataset from OP-TEE OS boot, initialisation and GlobalPlat-
form test suite logs via the xtest command, and untrusted world logs from
dmesg. Over 25,000 records (1.7 MB). (Mean entry length: 94.14; S.D.: 49.33).

The results are shown in Tables 1, 2, 3 and 4 and Fig. 4. Table 1 shows
the mean CPU time to derive 256-bit IKs, block and message keys from a
pre-generated RLK using HKDF. These were measured over 1,000 iterations
within the EmLog TA using the GlobalPlatform TEE Time method for system
time, implemented using the ARM Cortex CNTFRQ (CPU frequency) and CNTPCT
(count) timing registers. Table 1 shows the mean time for sealing and unsealing
IKs and blocks (for m = 100, averaged across all entries) via the GP Internal
API. Table 2 lists the mean 256-bit ECDSA and HMAC-SHA256 times com-
puted across all entries, while Table 3 shows the mean creation and verification
times of message blocks for each dataset (for varying values of m, the num-
ber of entries per block), as well as block groups. In this context, verification
encompasses the time to reconstruct the hash matrix in Fig. 3 and to verify the
block signatures and message HMACs. Group creation and verification time was
measured for varying values of c (blocks per group), which included the time
for sealing and unsealing blocks to secure storage respectively. Table 4 shows
the mean persistent memory consumption of logs in secure storage, which was
measured directly from /data/tee in the untrusted world file system, where
OP-TEE stores sealed TA files. Lastly, Fig. 4 shows the relative performance of
secure storage, key derivation and block and group creation/verification times
from Table 1.

Table 1. Mean key derivation and secure storage times (milliseconds; S.D. in brackets).

Key derivation Secure storage seal Secure storage unseal

IK Block Key Message Key IK Block IK Block

1.530 (0.067) 1.541 (0.062) 1.547 (0.088) 59.46 (3.78) 115.8 (5.36) 48.22 (2.73) 94.88 (2.80)

Table 2. Mean HMAC and ECDSA generation and verification times (milliseconds).

HMAC (SHA-256) ECDSA (NIST P256)

Create 0.056 (0.020) 20.14 (1.29)

Verify 0.059 (0.014) 20.77 (1.33)

8 http://www.secrepo.com/maccdc2012/maccdc2012 fast alert.7z.

http://www.secrepo.com/maccdc2012/maccdc2012_fast_alert.7z

EmLog: Tamper-Resistant Logging for Constrained Devices with TEEs 87

Table 3. Mean block and group generation and verification times (milliseconds).

Dataset Block Group (fixed at m = 100)

(m =)10 100 250 500 (c =)1 10 25 50*

(1)Create 40.14 (2.1) 70.45 (2.2) 115.6 (2.6) 198.7 (3.6) 229.4 (6.4) 1898 (30.2) 4622 (48.1) 9101 (80.2)

Verify 41.18 (1.5) 71.88 (1.7) 114.8 (1.9) 204.3 (2.1) 213.4 (5.7) 1634 (23.7) 3967 (50.0) 8302 (78.3)

(2)Create 39.84 (1.9) 68.34 (1.7) 117.2 (1.7) 202.3 (2.0) 231.7 (7.3) 1910 (28.1) 4687 (64.0) 9323 (81.5)

Verify 40.05 (1.6) 66.15 (1.8) 119.9 (1.8) 199.0 (2.0) 215.2 (6.1) 1658 (23.8) 4046 (47.3) 8165 (73.9)

(3)Create 42.14 (3.0) 69.07 (2.1) 118.6 (2.3) 201.9 (3.2) 230.0 (6.9) 1890 (27.0) 4621 (42.8) 9274 (79.0)

Verify 40.01 (1.6) 69.28 (1.8) 120.4 (1.8) 200.4 (1.9) 217.3 (6.4) 1656 (25.2) 4132 (48.1) 8188 (75.5)

* Heap size set to 2MB to accommodate all data. All other experiments recorded with the maximum

recommendation of 1MB.

Fig. 4. (a), Relative block creation and verification times versus block length; (b),
relative group generation and verification for varying numbers of blocks; (c), persistent
memory consumption for per block secure storage; (d), relative memory consumption
for group secure storage; and (e), raw key derivation and secure storage times.

Table 4. Persistent memory consumption for per block secure storage (kilobytes).

Block Sizes

(m =)10 50 100 250 500 750 1000 2500

16.38 40.96 73.73 155.65 307.20 454.66 606.21 1495.04

7.1 Discussion

Little to our surprise, block generation and verification time scales linearly with
message length, which, for large values of m, is influenced heavily by the key
derivation operations (approximately 1.5 ms per message, shown in Table 1).

88 C. Shepherd et al.

At smaller values, e.g. m = 10, this is dominated mostly by the ECDSA overhead
(∼20 ms, as per Table 2). Figure 4 indicates that the relative timing overhead is
∼80–100% for every 100 message increase in the block length.

Group creation and verification times rise significantly with the number of
blocks, c, kept in RAM before secure storage. This is driven significantly by
the secure storage overhead, which is measured at approximately 115.8 ms and
94.88 ms for sealing and unsealing respectively (Table 1). Despite this, however,
even the largest group sizes, c = 25 and c = 50 (2,500 and 5,000 entries in total),
completed between 4.0 to 9.3 s, corresponding to a throughput of approximately
538 and 625 logs per second. At first, it seems attractive to maximise c to avoid
the expense of secure storage operations, which caused the throughput to drop
to ∼430 and 525 entries for the smallest groups (c = 1 and c = 10 blocks).
Maintaining many blocks in RAM, however, increases the impact of a power-
loss; systems that log infrequently may see significant data loss if large numbers
of logs spread over a large period of time are lost. Consequently, c should be set
based on the expected log and transmission frequencies.

For memory consumption, all experiments were conducted within the Linaro
Working Group’s run-time recommendations (1 MB stack and heap), except for
c = 50 blocks (5,000 entries), which required 2 MB of each. Expectedly, persis-
tent memory consumption of block secure storage (Fig. 4) scales linearly with
message size. Our test-bed uses a fixed 256-byte text field for each log entry,
which accounts for the broadly similar performance across all datasets. We also
calculated the persistent memory consumption compared with the mean size of
raw logs; the relative consumption is large for small block sizes (m < 250), due
likely to the fixed-size meta-data used by OP-TEE to manage cross-TA secure
storage objects. For larger block sizes, this converges to slightly under five-times
overhead versus raw logs; the absolute size of smaller block sizes remains low,
however, at 16–155 kilobytes, according to Table 4.

7.2 Requirements Comparison

We compare the features of EmLog’s with previous work in Table 5 using the
requirements in Sect. 4. Notably, the use of ARM TrustZone and the GlobalPlat-
form TEE makes it appropriate for mobile and embedded devices targeted in
this work (R10), unlike SGX-based schemes, which are restricted to Intel CPUs
associated with laptop, desktop and server machines. EmLog satisfies the fea-
tures of related cryptographic and trust-based proposals, such as resistance to
truncation (R7) and re-ordering (R8) attacks, and public verifiability of log ori-
gin (R6). We also offer forward integrity protection for compromised block keys
(R2) using more sophisticated key derivation, thus moving the cost-reward ratio
further away from an attacker. By avoiding TPMs, however, we relinquish strong
hardware tamper-resistance, and we urge caution of our work in high-security
domains, e.g. military and governmental use, where complex hardware and side-
channel attacks are reasonable threats.

EmLog: Tamper-Resistant Logging for Constrained Devices with TEEs 89

Table 5. Security requirements comparison of related work.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Root of trust

Untrusted world schemes

Schneier and Kelsey [27] – ✗ ✓ – – ✗ ✗ ✗ – – –

Bellare and Yee [3] – ✓ ✓ – – ✗ ✗ ✗ – – –

FssAgg [20] – ✓ ✗ – – ✓ ✓ ✓ – – –

Logcrypt [13] – ✓ ✓ – – ✓ ✗ ✗ – – –

LogFAS [34] – ✓ ✗ – – ✓ ✓ ✓ – – –

Trusted logging

Chong et al. [7] ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ Java iButton

Sinha et al. [32] ✗ ¶ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✗ TPM

Böck et al. [4] ✓ ✗ ¶ ✓ ✗ ✓ ✗ ✗ ✗ ✗ TPM & AMD SVM

Nguyen et al. [23] ✓ ✗ ¶ ✓ ¶ ✗ ✓ ✓ ✓ ✗ Intel SGX

SGX-Log [15] ✓ ¶ ✓ ✓ ¶ ✗ ✓ ✓ ✓ ✗ Intel SGX

EmLog ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ GlobalPlatform TEE

✓– Satisfies requirement; ✗– Does not satisfy; ¶– Partially satisfies; (–) – N/A.

8 Conclusion

In this paper, we introduced EmLog – a tamper-resistant logging scheme for
modern constrained device using the GlobalPlatform TEE and ARM TrustZone.
We began with a two-part review of related work in Sect. 2 by summarising
cryptographic proposals and those reliant upon trusted hardware for tamper-
resistant logging. Next, the features of TEEs were assess in further detail in
Sect. 3, before formulating the requirements and the threat model in Sect. 4
using past work. After this, we introduced the architectural design and pro-
posed an improved log preservation algorithm for providing public verifiability
of log origin and key exposure resilience. We described the implementation of
EmLog in Sect. 6 and presented indicative performance results using diverse
datasets in Sect. 7. For the first time, our work brings secure, TEE-based log-
ging to mobile and embedded devices, and protects against strong software-
based untrusted world and network adversaries. Our evaluation shows that
EmLog yields five-times persistent storage overhead versus raw logs for applying
tamper-resistance; runs within reasonable run-time memory constraints for TEE
applications, as stipulated by the Linaro Working Group; and has a through-
put of up to 625 logs/sec. In future work, we aim to investigate the following
avenues:

– Group logging schemes for multiple devices. Expand EmLog to allow secure
and efficient sharing of logs with nearby devices. This could be used in schemes
that compute trust scores prior to making group decisions [2], e.g. authenti-
cating users via contextual data from multiple wearable devices.

– Privacy-preserving log usage. At present, devices that wish to use logs will
receive raw logs, which may reveal privacy-sensitive data. In future work, we

90 C. Shepherd et al.

aim to explore privacy-preserving methods for using logs without exposing
raw entries to other devices.

– TEE performance comparison. We hope to evaluate EmLog under other TEE
instantiations, namely Intel SGX and other GP-compliant TEEs, such as
TrustTonic’s Kinibi, especially for micro-controllers on low-end IoT devices.

Acknowledgements. Carlton Shepherd is supported by the EPSRC and the British
government as part of the Centre for Doctoral Training in Cyber Security at Royal
Holloway, University of London (EP/K035584/1). The authors would also like to thank
the anonymous reviewers for their valuable comments and suggestions.

References

1. ARM: Markets: Wearables (2017). https://www.arm.com/markets/wearables
2. Bao, F., Chen, I.-R.: Dynamic trust management for Internet of Things applica-

tions. In: International Workshop on Self-aware Internet of Things, pp. 1–6. ACM
(2012)

3. Bellare, M., Yee, B.: Forward integrity for secure audit logs. Technical report,
Computer Science and Engineering Department, University of California at San
Diego (1997)

4. Böck, B., Huemer, D., Tjoa, A.M.: Towards more trustable log files for digital
forensics by means of trusted computing. In: 24th International Conference on
Advanced Information Networking and Applications, pp. 1020–1027. IEEE (2010)

5. Brickell, E., Li, J.: Enhanced privacy ID from bilinear pairing for hardware authen-
tication and attestation. Int. J. Inf. Privacy Secur. Integrity 1(1), 3–33 (2011)

6. Chen, D., Wang, M.: A home security ZigBee network for remote monitoring appli-
cations. In: International Conference on Wireless, Mobile and Multimedia Net-
works, pp. 1–4. IET (2006)

7. Chong, C.N., Peng, Z., Hartel, P.H.: Secure audit logging with tamper-resistant
hardware. In: Gritzalis, D., De Capitani di Vimercati, S., Samarati, P., Katsikas,
S. (eds.) SEC 2003. ITIFIP, vol. 122, pp. 73–84. Springer, Boston, MA (2003).
https://doi.org/10.1007/978-0-387-35691-4 7

8. Costan, V., Devadas, S.: Intel SGX explained. IACR Cryptology ePrint Archive,
2016:86 (2016). https://eprint.iacr.org/2016/086.pdf

9. GlobalPlatform: TEE Protection Profile (v1.2) (2014)
10. GlobalPlatform: TEE Internal Core API (v1.1.1) (2016)
11. GlobalPlatform: TEE System Architecture (v1.1) (2017)
12. Hartung, G.: Attacks on secure logging schemes. IACR Cryptology ePrint Archive,

2017:95 (2017). https://eprint.iacr.org/2017/095.pdf
13. Holt, J.E.: Logcrypt: forward security and public verification for secure audit logs.

In: Proceedings of the 2006 Australasian Workshops on Grid Computing and E-
research, pp. 203–211. Australian Computer Society Inc. (2006)

14. International Standards Organisation: ISO/IEC 27001:20133 - Information Tech-
nology, Security Techniques, Information Security Management Systems, Require-
ments (2013). https://www.iso.org/standard/54534.html

15. Karande, V., Bauman, E., Lin, Z., Khan, L.: SGX-log: securing system logs With
SGX. In: Proceedings of the 2017 Asia Conference on Computer and Communica-
tions Security, ASIA CCS 2017, NY, USA, pp. 19–30. ACM (2017)

https://www.arm.com/markets/wearables
https://doi.org/10.1007/978-0-387-35691-4_7
https://eprint.iacr.org/2016/086.pdf
https://eprint.iacr.org/2017/095.pdf
https://www.iso.org/standard/54534.html

EmLog: Tamper-Resistant Logging for Constrained Devices with TEEs 91

16. Kent, K., Souppaya, M.: Guide to computer security log management. NIST Spec.
Publ. 800-92 (2006)

17. Krawczyk, H.: Cryptographic extraction and key derivation: the HKDF scheme. In:
Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 631–648. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 34

18. Krawczyk, H., Eronen, P.: RFC 5869 - HMAC-based Extract-and-expand Key
Derivation Function (HKDF), May 2010. https://tools.ietf.org/html/rfc5869

19. Linaro: OP-TEE: Open Portable Trusted Execution Environment (2017). https://
www.op-tee.org/

20. Ma, D., Tsudik, G.: A new approach to secure logging. ACM Trans. Storage 5(1),
2 (2009)

21. McCune, J.M., Li, Y., Qu, N., Zhou, Z., Datta, A., Gligor, V., Perrig, A.: TrustVi-
sor: efficient TCB reduction and attestation. In: 2010 IEEE Symposium on Security
and Privacy, pp. 143–158. IEEE (2010)

22. Micallef, N., Kayacık, H.G., Just, M., Baillie, L., Aspinall, D.: Sensor use and
usefulness: trade-offs for data-driven authentication on mobile devices. In: IEEE
International Conference on Pervasive Computing and Communications, pp. 189–
197. IEEE (2015)

23. Nguyen, H., Acharya, B., Ivanov, R., Haeberlen, A., Phan, L.T.X., Sokolsky, O.,
Walker, J., Weimer, J., Hanson, W., Lee, I.: Cloud-based secure logger for medical
devices. In: IEEE 1st International Conference on Connected Health: Applications,
Systems and Engineering Technologies, pp. 89–94, June 2016

24. Patel, S., Park, H., Bonato, P., Chan, L., Rodgers, M.: A review of wearable sensors
and systems with applications in rehabilitation. J. Neuro-Eng. Rehabil. 9(1), 21
(2012)

25. Perez, R., Sailer, R., van Doorn, L., et al.: vTPM: virtualizing the trusted platform
module. In: Proceedings of the 15th USENIX Security Symposium, pp. 305–320
(2006)

26. Rashidi, P., Mihailidis, A.: A survey on ambient-assisted living tools for older
adults. IEEE J. Biomed. Health Inform. 17(3), 579–590 (2013)

27. Schneier, B., Kelsey, J.: Secure audit logs to support computer forensics. ACM
Trans. Inf. Syst. Secur. (TISSEC) 2(2), 159–176 (1999)

28. Shepherd, C., Akram, R.N., Markantonakis, K.: Establishing mutually trusted
channels for remote sensing devices with trusted execution environments. In: 12th
International Conference on Availability, Reliability and Security (ARES), pp. 7:1–
7:10. ACM (2017)

29. Shepherd, C., Akram, R.N., Markantonakis, K.: Towards trusted execution of
multi-modal continuous authentication schemes. In: Proceedings of the 32nd Sym-
posium on Applied Computing, pp. 1444–1451. ACM (2017)

30. Shepherd, C., Arfaoui, G., Gurulian, I., Lee, R.P., Markantonakis, K., Akram,
R.N., Sauveron, D., Conchon, E.: Secure and trusted execution: past, present, and
future - a critical review in the context of the Internet of Things and cyber-physical
systems. In: 15th IEEE International Conference on Trust, Security and Privacy
in Computing and Communications, pp. 168–177 (2016)

31. Singaravelu, L., Pu, C., Härtig, H., Helmuth, C.: Reducing TCB complexity for
security-sensitive applications: three case studies. In: ACM SIGOPS Operating
Systems Review, vol. 40, pp. 161–174. ACM (2006)

32. Sinha, A., Jia, L., England, P., Lorch, J.R.: Continuous tamper-proof logging using
TPM 2.0. In: Holz, T., Ioannidis, S. (eds.) Trust 2014. LNCS, vol. 8564, pp. 19–36.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08593-7 2

https://doi.org/10.1007/978-3-642-14623-7_34
https://tools.ietf.org/html/rfc5869
https://www.op-tee.org/
https://www.op-tee.org/
https://doi.org/10.1007/978-3-319-08593-7_2

92 C. Shepherd et al.

33. Trustonic: Adoption of Trustonic Security Platforms Passes 1 Billion Device
Milestone, February 2017. https://www.trustonic.com/news/company/adoption-
trustonic-security-platforms-passes-1-billion-device-milestone/

34. Yavuz, A.A., Ning, P., Reiter, M.K.: Efficient, compromise resilient and append-
only cryptographic schemes for secure audit logging. In: Keromytis, A.D. (ed.) FC
2012. LNCS, vol. 7397, pp. 148–163. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32946-3 12

https://www.trustonic.com/news/company/adoption-trustonic-security-platforms-passes-1-billion-device-milestone/
https://www.trustonic.com/news/company/adoption-trustonic-security-platforms-passes-1-billion-device-milestone/
https://doi.org/10.1007/978-3-642-32946-3_12
https://doi.org/10.1007/978-3-642-32946-3_12

How TrustZone Could Be Bypassed:
Side-Channel Attacks on a Modern

System-on-Chip

Sebanjila Kevin Bukasa1,2(B), Ronan Lashermes1,2, Hélène Le Bouder3,
Jean-Louis Lanet1,2, and Axel Legay2

1 LHS-PEC, Rennes, France
2 TAMIS INRIA, Rennes, France

{sebanjila.bukasa,ronan.lashermes,helene.lebouder,
jean-louis.lanet,axel.legay}@inria.fr

3 IMT Atlantique, Rennes, France
helene.lebouder@imt-atlantique.fr

Abstract. Side-channel attacks (SCA) exploit the reification of a com-
putation through its physical dimensions (current consumption, EM
emission, . . .). Focusing on Electromagnetic analyses (EMA), such anal-
yses have mostly been considered on low-end devices: smartcards and
microcontrollers. In the wake of recent works, we propose to analyze
the effects of a modern microarchitecture on the efficiency of EMA (here
Correlation Power Analysis and template attacks). We show that despite
the difficulty to synchronize the measurements, the speed of the targeted
core and the activity of other cores on the same chip can still be accom-
modated. Finally, we confirm that enabling the secure mode of TrustZone
(a hardware-assisted software countermeasure) has no effect whatsoever
on the EMA efficiency. Therefore, critical applications in TrustZone are
not more secure than in the normal world with respect to EMA, in accor-
dance with the fact that it is not a countermeasure against physical
attacks. For the best of our knowledge this is the first application of
EMA against TrustZone.

Keywords: ARM TrustZone · Side-Channel Analysis (SCA)
Raspberry Pi 2

1 Introduction

Embedded devices have never been so pervasive in our everyday life. Smart-
phones are already widespread and will continue to be present all around the
world. Internet-of-Things (IoT) devices are poised to become ubiquitous. In par-
allel, more diverse and more critical applications are accessed with these devices:
credit cards or other payment methods such as Apple Pay [5,23], password man-
agers [10] or two factors authentication (2FA) are some examples.

Considering the information security, these devices offer a new set of possible
threats: the attacker can have physical access to the device. Think of a stolen
c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
G. P. Hancke and E. Damiani (Eds.): WISTP 2017, LNCS 10741, pp. 93–109, 2018.
https://doi.org/10.1007/978-3-319-93524-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93524-9_6&domain=pdf

94 S. K. Bukasa et al.

smartphone or a set-top box allowing access to pay-TV whose user would prefer
the TV without having to pay.

These problems have already been faced by the smartcard industry in the
past [16].

Yet apart from embedded secure elements (eSE, which are basically smart-
card IPs in a chip), modern System-on-Chip (SoC) fail to implement counter-
measures against physical attacks. The reasons may be the highly competitive
market for these chips that do not play well with the prudent pace needed to
obtain secure devices. The fact that the sensitivity of these modern SoCs to phys-
ical attacks is not well known does not support a much needed consideration for
these attacks.

Modern chips are increasingly complex, including several peripherals, work-
ing at high clock speed, including several memory levels, numerous cores, and
security extensions such as TrustZone (defined in Sect. 2), the influence of all
this activity on a SoC is of particular interest when it comes to physical attacks.
This is what we want to verify in this paper by experimentally setup physical
attacks.

Motivations: Our main objective is to expose the risks faced by users using
embedded devices for critical operations when they are not protected against
physical attacks. Most physical attacks are performed on low-end devices (micro-
controllers and smartcards) and we investigate if they can be transposed easily
to high-end devices. We verify that the TrustZone implementation does not offer
any protection against side-channels leakages (TrustZone is only advertised as a
software security solution by ARM, not hardware), and even multicore compu-
tations has no influence on these leakages.

Contribution: Two different attacks have been experimentally realized on a
device representing a modern smartphone. We will use two use-cases for that
purpose: the secret-key cryptography key recovery, and a Personal Identification
Number (PIN) recovery.

These attacks have been realized while monitoring the impact of different
features of the device.

Organization of this paper: The paper is organized as follows. Trusted Environ-
ment Execution and TrustZone specific implementation are presented in Sect. 2.
In Sect. 3, Side-channel attacks (SCA) are presented and our two use cases are
detailed. Our setup and experimental results are given in Sect. 4. Finally, the
conclusion is drawn in Sect. 5.

2 Trusted Execution Environment and TrustZone

2.1 Trusted Execution Environment

Trusted Execution Environment Protection Profile (TEE PP) is a profile spec-
ified by GlobalPlatform in 2014 [1]. This TEE PP has been made specifically

How TrustZone Could Be Bypassed 95

for mobile devices, the goal was to deal with new threats in the mobile world
and to allow customers to have confidence in the TEE in order to deliver mobile
wallets, or secure mobility solutions.

A TEE is an execution environment that respect the TEE PP, meaning that
it can be trusted by users. A Trusted Application (TA) is an application running
in the TEE, it provides security related functions, and its assets include code,
program data, cryptographic keys, etc. A TEE is designed to provide isolated
execution, integrity of TA but also integrity and confidentiality of TA assets.

In order to provide a secure environment, a TEE might be working along-
side a Rich Execution Environment (REE). A TEE is in fact another execution
environment with its own Operating System (OS), the Trusted OS (TOS) and
its own applications, TAs, executing over it. The OSes are isolated and the Rich
OS (ROS) has just one entry point to the TOS.

There are several implementations of TEEs. The most notable are ARM
TrustZone, detailed in this paper and Intel SGX [11].

2.2 TrustZone

TrustZone (TZ) is a specific implementation of a TEE proposed by ARM. This
proposition is based on a few hardware-specific parts only. Security functions are
mainly performed by software implementations or by optional pieces of hardware
that can be added by each integrator. It respects GlobalPlatform specifications,
and goes into TEE PP.

TrustZone hardware architecture leads to specific software implementations,
a ROS, a TOS and the entry point (managing accesses to the secure world).

It consists in separating hardware resources into two worlds, Secure and
Normal (Non-Secure) worlds. This is achieved by adding a security-related bit
on the system bus (and therefore all bus accesses are impacted), and by adding
new privilege levels. In that way each peripheral, each data or code section are
separated between the two worlds and a core can only handle them if it is in the
right privilege mode.

Typically, a non-secure ARMv7 core has three privilege modes:

– PL0 or user mode is the least privileged and is the mode where user applica-
tion are executed in.

– PL1 or kernel mode is an intermediary privileged level and is typically where
the kernel (of the ROS) is executed.

– PL2 or hypervisor mode is the highest level and is where the hypervisor (if
any) is executed.

Now the TZ adds new modes. In addition to the previously defined non-secure
PL0, PL1 and PL2, the new modes are:

– Secure PL0, the secure user mode is where trusted applications are executed.
– Secure PL1, the secure kernel mode is the mode for the secure kernel execution

for the TOS.

96 S. K. Bukasa et al.

– Monitor mode is a new mode that must be used to transition between the
non-secure and the secure worlds.

When the core is in a secure state, the non-secure (NS) bit on the bus is set to
0. As a consequence, the systems on the bus can adapt to the security state (e.g.
a peripheral may forbid the access when NS is 0).

3 Side Channel Attacks

3.1 Definition

When discussing about the security of an algorithm, numerous mathematical
tools allow developers to prove its security. Unfortunately those tools cannot
consider the interaction of the computing unit with its physical environment.
Physical attacks are a real threat, even for algorithms proved secure mathemat-
ically. Side-channel analyses (SCA) are physical attacks based on the observa-
tion of the circuit behavior during a computation. They exploit the fact that
some physical quantities depend on intermediary values of the computation in
the device. This is the so-called leakage of information. The most classic leak-
ages are timing [15,17], power consumption [21] and electromagnetic emissions
(EM) [27]. In this paper we will focus on Electromagnetic analyses (EMA).

Side-channel analyses can be split in three families.

– The Simple Power Analysis (SPA) [20] uses directly the leakage to obtain the
secret information.

– More complex attacks that need a mathematical model for the leakage and
a statistic tool called a distinguisher. These attacks have generally a divide-
and-conquer approach. The first ones were the Differential Power Analysis
(DPA) [26] and Correlation Power Analysis (CPA) [7]. That is why this family
of Side-Channel Attack (SCA) is often called the “DPA/CPA attacks”. The
differences between attacks of this family generally come from the choice of
the model and the distinguisher.

– Template attacks are based on a statistical classification which replaces the
mathematical model for the leakage in a DPA. To implement a template
attack, a pair of identical devices is needed. One is called the profiling device,
the attacker has full control of it, and is used to learn the leakage characteris-
tics. The other is the targeted device on which the attack is carried. Template
attacks were introduced as the strongest possible side-channel attacks from an
information theoretic point of view [8]. They have been used in many attacks,
such as [3,6] since.

SCA are threats for all standard cryptosystems as Data Encryption Standard
(DES) [7,26], Advanced Encryption Standard (AES) [14,20], RSA cryptosys-
tem [12], Elliptic Curve Cryptography (ECC) [25] and for critical applications
not using cryptography, e.g. PIN verification [6]. SCA can also be used to reverse
engineer algorithms [9].

How TrustZone Could Be Bypassed 97

3.2 Previous Works

Historically, the targeted devices were mostly smartcards, microcontrollers or
cryptographic coprocessors [16] since they were the only embedded devices with
critical information on it (for credit cards and pay-TV notably). These devices
are relatively slow (under 10 MHz) and have simple architectures: a simple cache
architecture if any, shallow pipeline, ... Features that make SCA easier. As a
consequence, the smartcard industry developed strong countermeasures against
physical attacks.

However, today the same applications are more and more executed on smart-
phones, and they do not build upon the knowledge from the smartcard industry
in terms of SCA. The chips used in these devices are full featured processors
running at high speed (1GHz+, >100X faster than a smartcard), with complex
architectures (multiple cache levels, deep pipelines). SCA are therefore more
complex. Measurement equipments have to be adapted to accept much higher
frequencies. Jitter (temporal variance) is more important due to the caches,
making synchronization harder. Yet SCAs on smartphones have already been
performed. In [2], the authors have developed an EMA on an Android phone
(running at 400 MHz). They targeted the secret key of an AES implementation
in the Android BouncyCastle library. They show a key recovery in 250 traces
with their special techniques designed to take into account the desynchronization
added by the java virtual machine behavior.

How to do EMA on fast modern systems has been described in [4,19]. They
both target a Beaglebone Black board running at 1 GHz. They had to filter out
traces that where not properly synchronized due to interrupts and other operat-
ing system operations. Resynchronization and filtering are necessary to obtain
clean traces. In [4], the authors attacked their own optimized AES implemen-
tation and show that their countermeasures are effective. In [19], the authors
compared the leakage of an AES on the ARM core with respect to the NEON
coprocessor.

From these papers, we can see that transposing EMA on high end processors
requires a lot more experimental work. In particular, synchronization can be a
problem because of a virtual machine (in [2]) or because of the operating system
(in [4,19]). That in why in our case, we work in a bare-metal environment (i.e.
without an operating system) to focus on the microarchitecture influence on the
efficiency of EMA.

A second category of EMA on smartphone has been performed targeting
public-key cryptography (RSA [12,29] or ECC [13]). Synthetically, these attacks
have the same leakage principle. Public-key cryptography deals with big numbers
(3072-bit for RSA, 256-bit for ECC at the 128-bit security level). Handling these
big numbers in software requires to split them in words whose size is determined
by the chip architecture (32-bit or 64-bit in most architectures).

As an example, a multiplication of two big numbers requires looping over the
words constituting the operands. The sequence of operation in each iteration
has a leakage signature that can be identified in the frequency domain (since the
iteration is repeated several times). Interestingly, the leakage in the frequency

98 S. K. Bukasa et al.

domain occurs at a relatively low frequency compared to the clock frequency
(it corresponds to several instructions). Thereby, the attacker can identify the
leakage signature of a big numbers multiplication versus squaring (for RSA) or
point addition versus point doubling (for ECC). From this leakage, the authors
devised methods to recover the secret.

Timing attacks are possible on high-end devices, in particular [18,30] high-
lighted that cache timing attacks can be performed in order to retrieve some
informations on mobile devices, even from TrustZone.

3.3 Use Cases

To test the possibility to attack a modern SoC with EMA, two representative
use-cases have been chosen: a CPA on the AES and a template attack on a Verify
PIN algorithm.

CPA on AES. The first use-case is the well established CPA [7] applied to
the AES.

Targeted Algorithm. The Advanced Encryption Standard is a standard estab-
lished by the NIST [24] for symmetric key cryptography. It is a block-cipher,
the encryption first consists in mapping the plaintext T of 128 bits into a two-
dimensional array of 4 · 4 = 16 bytes called the State (4 rows and 4 columns).
Then, after a preliminary xor (noted ⊕) between the input and the key K0,
the AES executes 10 times a round-function that operates on the State. The
operations used during these rounds are:

– SubBytes, composed by non-linear transformations: 16 S-boxes noted SB,
working independently on individual bytes of the State. In the targeted imple-
mentation, the S-boxes use a lookup table.

– ShiftRows noted SR, a byte-shifting operation on each row of the State.
– MixColumns noted MC, a linear matrix multiplication on GF (28), working

on each column of the State.
– AddRoundKey a xor between the State and the round-key Kr, r ∈ [[0, 10]].

The Attack. In this attack the target is the key of the first round K0. To have a
divide-and-conquer approach, K0 is attacked byte per byte. There are only 256
possible values for each byte. The leakage is the EM emission measured at the
S-boxes output. It depends on known plaintexts T and the secret key K0.

So for each text T , and each guess k in [[0, 255]] a prediction P can be com-
puted.

P (T, k) = SB(T ⊕ k)

In particular it can be noted that the leakage is “value-based” and not, as
usually the case, the Hamming Weight (HW) of the value (no leakage is observed
in the HW model experimentally).

These predictions are confronted to the traces collected with a Pearson cor-
relation that shows a linear relation between measurements and predictions.

How TrustZone Could Be Bypassed 99

Template Attack on a Verify PIN Algorithm. The attack summarized
here is the attack of Bouder et al. presented in [6].

The Target: Verify PIN Algorithm. In many devices, a Personal Identification
Number (PIN) is used to authenticate the user. The main protection in the use
of a PIN comes from the fact that the user has a limited number of trials. A PIN
is an array of m digits. A True PIN is embedded in the device; and a Candidate
PIN is proposed by the user. The different values taken by the PIN are defined
in [[0, 9]]m. The Verify PIN is the algorithm which tests if the Candidate PIN
is correct or not. A good countermeasure against fault attacks is to compare
the correct and Candidate PIN twice. The algorithm for the PIN comparison in
constant time, from [28], is shown in Algorithm 1.

Algorithm 1. Comparison between candidate PIN and true PIN
1: procedure Comparison(candidate PIN CP , true PIN TP)
2: status = FALSE
3: diff = FALSE
4: fake = FALSE
5: for b = 0 to m − 1 do
6: if CP [b] �= TP [b] then
7: diff = TRUE
8: else
9: fake = TRUE

10: end if
11: if (b = m − 1) and (diff = FALSE) then
12: status = TRUE
13: else
14: fake = TRUE
15: end if
16: end for
17: return status
18: end procedure

The Attack. The goal of this attack is to retrieve the true PIN even if the number
of trials is limited. That is why a template attack is used. It is supposed that an
attacker has a profiling device and she can:

– change the true PIN in her profiling device;
– obtain many traces on her profiling device.

The attack starts with a measurement campaign on the profiling device.
Template attacks use a divide-and-conquer approach, the digits of the true PIN
are attacked separately. For each value of the pairs, candidate PIN and true PIN
(one digit each), (v, k) in [[0, 9]]2, traces are collected. Mv,k =

{
xk(i,j)

}
, i for

trace, j for time.

100 S. K. Bukasa et al.

For effective computations, both for proper floating point arithmetic and to
limit the amount of data to handle, a principal component (PCA) preprocess-
ing is used on the data and the matrix Mv,k is only considered here after this
preprocessing step. After the PCA, our traces have always 10k points each.

The covariance matrix Sv,k =
{
sk(j,j′)

}
is computed.

sk(j,j′) =
1

n − 1
· (

xkj − xkj

)t (
xkj′ − xkj′

)
.

On the targeted device, a first trace Tv = {xj} is collected, where all the
candidate PIN digits are equals to v = 0. For each digit the attacker confronts
the trace Tv to the template matrix Sv,k, with the general formula in template
attacks (Mahalanobis distance):

Fv

(
Tv|Sv,k, xk

) ∝ · exp
(

−1
2

· (
Tv − xk

) · S−1
v,k · (

Tv − xk
)t

)
.

The attack returns the guess kv for which Fv is maximal for a given Tv, or ranks
the guesses k according to the value of Fv(Tv, k).

4 Experiments

4.1 Targeted Device

A chip which is representative of what can be found in modern smartphones
is targeted. Unfortunately, the public documentation on modern SoC is often
sparse. To ease our bare-metal development process, we chose a relatively open
platform with some documentation (mostly thanks to the community around
it): the Raspberry Pi 2 (RPi2). This board possesses a BCM2836 SoC from
Broadcom and features:

– a quad-core Cortex-A7 processor (ARMv7) running at 900 MHz,
– a VideoCore IV GPU running at 250 MHz,
– 1 GB of LPDDR2 RAM memory running at 400 MHz (or 450 MHz in Turbo

mode),
– TrustZone is available.

The processor uses 2 levels of cache:

L1 : 32 KB, 4-way associative, separate data and instructions,
L2 : 512 KB, 8-way associative, unified data and instructions, shared between

GPU and CPU.

The RPi2 board features GPIOs allowing to send electric signals directly
from our code. In particular, a GPIO has been used to obtain a trigger when our
targeted code is executed. This signal is used by the oscilloscope to know when
to measure the leakage.

How TrustZone Could Be Bypassed 101

4.2 Software Implementation

Since we want to measure the impact of the micro-architecture on the side-
channel leakage, our targeted applications run on bare-metal (without OS).
Therefore there is no context switching due to the processes scheduling or any
other interruptions during the measured computation.

Our custom kernel is an aggregation of different functions, it contains two
applications. First AES is a simple naive AES implementation without any coun-
termeasures. Plaintexts are sent to the board through the UART and ciphertexts
are returned. PIN is the other application, implementing a secure verify pin
algorithm (from [28]). PIN candidates are sent to the board through the UART
which answers if it is correct or not (for experimental purposes, an unlimited
number of tries could be done without the secret destruction).

Both applications are always present in the final binary and one is selected at
start-up with a proper command sent on the UART. Additionally, a configuration
can be chosen at this step to enable or disable several features, namely the
TrustZone activation, and the multicore execution. The following configurations
have been tested:

1. Default (D): the applications are run in non-secure kernel mode on a sin-
gle core. The other cores are trapped in an empty infinite loop. Data and
instruction caches are enabled but not the MMU.

2. Multicore (M): same as default but now the other cores are active. They
generate two pseudo random numbers (using the xorshift [22] algorithm) and
compute their GCD in an infinite loop. This simulates an intense computation
on all cores (asynchronously from our targeted applications).

3. Secure (S): same as default but the application is executed in secure kernel
mode. The other core are inactive.

4. Secure and Multicore (S+M): this configuration executes our application in
secure kernel mode while the other cores are active, computing GCD in non-
secure kernel mode.

4.3 Test Bench

Our EM measurement test bench includes the following devices:

– An EM probe from Langer either a RF-R 0.3-3 or a RF-R 400-1 both with
a 30 MHz to 3 GHz bandwidth (see below),

– a Langer PA 303 preamplifier (3 GHz bandwidth) to amplify the signal from
the probe,

– a DSOS404A oscilloscope from Keysight with a 4 GHz bandwidth able to
capture up to 20 GSamples per second.

A control computer (Xeon E5-1603v3 @ 2.80 GHz, 4 cores, 40 GB RAM) is used
to orchestrate the measurements and perform the analysis with home-made tools.
In particular, special care was needed when developing our tools to achieve a
nice measurement speed, and be able to manage the vast quantity of data that

102 S. K. Bukasa et al.

resulted from the experiments. Around 7 h and 100 GB of free disk space are
necessary to capture the needed traces for the template on our test bench, and
70 h to perform an attack.

4.4 Preliminary Experiments

Now that the applications and the test bench have been described, preliminary
experiments need to be done in order to find information leakage. Where should
the EM probe be located, what can we see at this location?

For this part, a RF-R 0.3-3 probe from Langer was used (bandwidth from
30 MHz to 3 GHz). The probe is moved over the board (not only the chip since
leakage can occur at other locations) and on both sides of the board.

Then data is measured for 250 ns both during a real sbox computation and
when no computation at all is performed (idle state).

Fig. 1. A trace measured during an s-box computation. A pattern which may be a
memory access is stressed out.

A measured trace is shown on Fig. 1 corresponding to an s-box computation.
Patterns can clearly be seen but do not seem synchronized with our computation.
A spectrum measurement shows that this pattern main frequency is 400 MHz
which corresponds to the RAM memory frequency.

Yet even in the presence of these patterns, no leakage was detected with the
small RF-R 0.3-3 probe.

How TrustZone Could Be Bypassed 103

Using the big RF-R 400-1 probe instead, the same patterns are present but
a leakage can now be detected.

Finally, after a trial-and-error phase, we settle to use the big RF-R 400-1
probe on the back side of the board since this configuration was the best for us
to detect a leakage with a CPA. We cannot guarantee that there is no location
were the leakage is more spatially concentrated in the absence of a systematic
spatial characterization of the leakage (requiring additional apparatus).

4.5 Experimental Results

CPA. The first attacks are CPA on the first round of an AES encryption. Since
we are mostly interested in the leakage, we focus on the recovery of one key byte
only, yet the attack can easily be generalized to retrieve the full key. The S-boxes
are implemented using a look-up table (C array) and no countermeasures are
used.

What Does Not Work. To perform the attack, various tries (probe, synchro-
nization points, models) have to be done to find a leakage on the default (D)
configuration.

We do not find any leakage with the small RF-R 0.3-3 probe, whatever the
location (which does not mean that a leaking location for this probe does not
exists). The RF-R 400-1 probe is used instead and allows to find a leakage.

The classic Hamming Weight model (meaning that the EM leakage is linearly
dependant on the Hamming Weight of the value of interest) does not work. We
find the EM leakage is directly linked to the value instead. This was not expected
and may hint that new leakage models must be developed for modern SoC.

Finally, the synchronization is the most difficult part of an experimental
SCA. In our case, our application runs on bare-metal and no synchronization
issue can be caused by an operating system or a virtual machine. Nonetheless,
S-boxes are implemented with look-up tables. Meaning that desynchronization
can be caused by the memory hierarchy fetching the s-box result. Indeed, when
measuring the duration of an s-box with a GPIO raised and fallen before and
after the s-box, we observe an important jitter (which can also be attributed to
the GPIO subsystem). In order to properly synchronize trigger signal on the first
s-box result, a GPIO is raised just before the second s-box execution. Since this
second execution is done as soon as the first result is obtained we are synchronous
with the first s-box result.

CPA Leakage Analysis. The CPA results can give information on the leakage
characteristics. A CPA is carried on 200k traces of 5k points under 20 min: 18 min
to acquire the data and 2 min to compute the CPA results.

The highest positive correlation peak lasts around 20 samples, i.e. 1 ns. By
comparison, the core clock has a 900 MHz frequency, i.e. a clock cycle lasts 1.1 ns.
In particular, it means that our measurement jitter is low enough to detect a
leakage that lasts 1 ns. Additionally it explains why synchronization is so hard
on high end devices: a 2 ns jitter can add a significant noise over a 1 ns signal

104 S. K. Bukasa et al.

Fig. 2. CPA result for the Default (D) configuration, 200k traces and 20 GS/s (smallest
features take 7 samples as per the maximum bandwidth (3 GHz)). Black is for the good
key value, grey for all others.

(by comparison, light can travel only around 30 cm in 1 ns). Smaller correlation
peaks can be observed: one is 12 ns before the main peak, a second is 41 ns after
the same main peak (timing measured for positive peak) (Fig. 2).

All positive peaks are followed by a negative one, this common feature in CPA
is usually explained by a value-dependent temporal shift, i.e. in the Hamming
Weight model, a 1 or a 0 on a wire have different associated capacitance and
as a consequence different speed. However in our settings, the Hamming Weight
model is not correct and therefore this explanation does not hold. Yet we did
not found a proper explanation for this phenomenon.

We cannot have any certitude to explain these peaks without further informa-
tion on the chip microarchitecture. Yet the timings suggest a fast memory access
(cache): we may be visualizing the data transiting in the memory hierarchy.

CPA Results for the Different Configurations. In this paragraph, the influence
of the different configurations is tested on the CPA results.

The correlation values as shown on Table 1 around 3%, is low in all cases.
The leakage signal is hidden behind the noise generated by the numerous SoC
subsystems. Yet the power of the CPA means that the secret can be found even
in noisy cases. The results shown here required 200k traces acquired in 18 min.

How TrustZone Could Be Bypassed 105

Table 1. For 5000 samples, 200k traces and a total duration of 250 ns (20 GS/s)

Configuration Maximum correlation Peak sample value

D 3.1% 2745

S 3.4% 2746

M 3.7% 2746

S+M 3.6% 2747

The leakage peaks appeared nearly at the same sample for all configurations,
simply meaning that the S and M configurations do not impact the timing of
the leakage (no cache/memory interference).

Template Attacks. The second attack is a template attack on a Verify PIN
algorithm. At first, the small RF-R 0.3-3 probe has been used. Attacks where
successful but results were not reproducible: any small variation in our setup
(probe position in particular) gave different results.

Since we are interested in the variation of the efficiency of the attack with
or without some microarchitecture features enabled, the big RF-R 400-1 probe
was preferred (giving reproducible results).

Finally, we use the same RF-R 400-1 probe for both attacks.
The results of these attacks are presented in the Table 2. One attack (one

row of Table 2) requires 7 h of measurements and 70 h of computation split as
follows:

– 1 h to perform the PCA learning step (create the transformation matrix),
– 3 h to apply the PCA transformation over all acquired traces,
– 10 h to compute the template classes,
– 50–60 h to perform the attack on the 150k test traces.

The template attack [6] is particularly efficient to detect whether the secret
PIN digit is equal to the candidate or not. Here, the success metric used is the
ratio of successful detection that the secret PIN digit is equal to the candidate
(for 10 digit values, a purely random method would have a 10% success rate).

For the 10 secret digit values (for 1 candidate value only), template classes
where created from the measurement of 200k traces. In other words, for each
secret value, 200k traces where measured and used to characterize the signal
corresponding to this secret (forming one template class). This is the learning
dataset.

Then 15k additional traces where measured, here again for each secret value.
This is the test dataset. Our success rate is measured by trying to match these
10 · 15k = 150k traces to each one of the 10 template classes.

Let r be the actual, true, success rate and p the measured success rate. We
can define the maximum error as a value E guaranteeing |p − r| < E. Let σ
be our confidence level, i.e. σ = 3 means that we have a 3 standard deviations
confidence (≈99.7%).

106 S. K. Bukasa et al.

We can link our maximum error and our confidence in this error with
the Eq. 1.

E = σ ·
√

p · (1 − p)
n

(1)

where n is the number of measurements (normal approximation method of the
binomial confidence interval).

For p = 0.5, n = 15000 and σ = 3, we obtain E = 1.22% (E is maximized for
p = 0.5). In the following result tables, the success rate is given with a confidence
of 3 standard deviations (99.7%) that the error is below 1.22%.

Table 2. Success rates of the template attacks.

Setup Sampling rate Measure duration Success rate

D 10 Gsamples/s 2µs (20 kpts) 37.84%

S 10 Gsamples/s 2µs (20 kpts) 38.3%

M 10 Gsamples/s 2µs (20 kpts) 37.88%

S+M 10 Gsamples/s 2µs (20 kpts) 36.40%

D 20 Gsamples/s 2.5µs (50 kpts) 35.19%

S 20 Gsamples/s 2.5µs (50 kpts) 32.85%

M 20 Gsamples/s 2.5µs (50 kpts) 18.45%

S+M 20 Gsamples/s 2.5µs (50 kpts) 17.81%

First, we observe on Table 2 that with a 10 GS/s sampling rates, the attacks
success rate is approximately 37.3% independently of the configuration (all
results are in our error interval of 1.22%). The TrustZone and the activ-
ity of other cores have no effect on the attack success rate.

It can be observed on the last two rows of Table 2 that using a bigger sam-
pling rate can decrease the success rate, below our error interval. We attribute
this paradoxical effect to our principal component analysis (PCA) preprocess-
ing that select the dimensions maximizing the variance. Since at the end of the
PCA 10 kpts traces are obtained whatever the size of the input traces (20 kpts or
50 kpts), it is possible that the preprocessing reduces our success rate by max-
imizing variance not linked with the secret, such as variance generated by the
activity of other cores.

Therefore, the preprocessing is able to efficiently compress the template data
(traces size divided by 5), but at the cost of a reduced success rate. Template
attacks may be less sensitive to bad synchronization but they require much
bigger computing resources and one has to be careful with the preprocessing (as
Table 2 shows).

How TrustZone Could Be Bypassed 107

5 Conclusion

The difficulty of adapting side-channel attacks to high-end devices has often
been supposed. We have seen that the true difficulty arises from the need for a
more precise synchronization with the leakage.

If the attacker is able to synchronize, simple attacks (CPA) have been shown
to be successful. The activity of other cores and the utilization of TrustZone
have no effect on the attacks efficiency. As expected the TrustZone, a hardware-
assisted software protection mechanism, offers no SCA protection. It may be a
problem when most TrustZone capable devices are embedded systems that may
endure physical attacks.

Yet if synchronization is not possible, there are some attacks (e.g. template
attacks) that are able to exploit the time dimension as any other dimension. We
hint that such techniques may be more common in the future to overcome the
true difficulty with high-end devices: dealing with time precision (problem even
worse with an OS or a virtual machine). Here again TrustZone or the activity of
other cores have no incidence. But with these attacks, managing the big amount
of data generated by our measures may prove to be the limiting factor, requiring
better computing resources.

Even if side-channel attacks techniques have to be adapted to the new chal-
lenges created by high-end devices, there is no reasons that they will not be
as successful as on smartcards. The smartphone industry in particular should
rapidly move to SCA-proof technologies before the development of these attacks.

References

1. TEE Protection Profile. http://www.commoncriteriaportal.org/files/ppfiles/anssi-
profil PP-2014 01.pdf

2. Aboulkassimi, D., Agoyan, M., Freund, L., Fournier, J., Robisson, B., Tria, A.: Elec-
tromagnetic analysis (EMA) of software AES on Java mobile phones. In: 2011 IEEE
International Workshop on Information Forensics and Security, pp. 1–6, November
2011

3. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template attacks
in principal subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol.
4249, pp. 1–14. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063 1

4. Balasch, J., Gierlichs, B., Reparaz, O., Verbauwhede, I.: DPA, bitslicing and mask-
ing at 1 GHz. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015, pp. 599–619.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4 30

5. Betters, E.: Apple pay: How it works (2016). http://www.pocket-lint.com/
news/130870-apple-pay-explained-what-is-it-and-how-does-it-work. Accessed 14
Feb 2017

6. Bouder, H.L., Barry, T., Couroussé, D., Lashermes, R., Lanet, J.L.: A template
attack against VERIFY PIN algorithms. In: Secrypt (2016)

7. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

http://www.commoncriteriaportal.org/files/ppfiles/anssi-profil_PP-2014_01.pdf
http://www.commoncriteriaportal.org/files/ppfiles/anssi-profil_PP-2014_01.pdf
https://doi.org/10.1007/11894063_1
https://doi.org/10.1007/978-3-662-48324-4_30
http://www.pocket-lint.com/news/130870-apple-pay-explained-what-is-it-and-how-does-it-work
http://www.pocket-lint.com/news/130870-apple-pay-explained-what-is-it-and-how-does-it-work
https://doi.org/10.1007/978-3-540-28632-5_2

108 S. K. Bukasa et al.

8. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

9. Clavier, C.: An improved SCARE cryptanalysis against a secret A3/A8 GSM algo-
rithm. In: McDaniel, P., Gupta, S.K. (eds.) Information Systems Security, pp. 143–
155. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77086-2 11

10. Corpuz, J.: Mobile password managers (2017). http://www.tomsguide.com/us/
pictures-story/662-best-mobile-password-managers.html. Accessed 14 Feb 2017

11. Costan, V., Devadas, S.: Intel SGX explained. Cryptology ePrint Archive, Report
2016/086 (2016). http://eprint.iacr.org/2016/086

12. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E.: Stealing keys from PCs using
a radio: cheap electromagnetic attacks on windowed exponentiation. In: Güneysu,
T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 207–228. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4 11

13. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E., Yarom, Y.: ECDSA key extrac-
tion from mobile devices via nonintrusive physical side channels. In: Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS 2016, pp. 1626–1638. ACM, New York (2016). https://doi.org/10.1145/
2976749.2978353

14. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In:
Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3 27

15. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

16. Koeune, F., Standaert, F.-X.: A tutorial on physical security and side-channel
attacks. In: Aldini, A., Gorrieri, R., Martinelli, F. (eds.) FOSAD 2004-2005.
LNCS, vol. 3655, pp. 78–108. Springer, Heidelberg (2005). https://doi.org/10.1007/
11554578 3

17. Foo Kune, D., Kim, Y.: Timing attacks on pin input devices. In: Proceedings of the
17th ACM Conference on Computer and Communications Security, pp. 678–680.
ACM (2010)

18. Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.: Armageddon: cache
attacks on mobile devices. In: USENIX Security Symposium, pp. 549–564 (2016)

19. Longo, J., De Mulder, E., Page, D., Tunstall, M.: SoC It to EM: electromagnetic
side-channel attacks on a complex system-on-chip. In: Güneysu, T., Handschuh,
H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 620–640. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48324-4 31

20. Mangard, S.: A simple power-analysis (SPA) attack on implementations of the AES
key expansion. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp.
343–358. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36552-4 24

21. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards, vol. 31. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
0-387-38162-6

22. Marsaglia, G., et al.: Xorshift RNGs. J. Stat. Softw. 8(14), 1–6 (2003)
23. Nguyen, L.: Samsung pay: How it works (2016). http://www.androidauthority.

com/samsung-pay-everything-you-need-to-know-678123/. Accessed 14 Feb 2017
24. NIST: Specification for the Advanced Encryption Standard. FIPS PUB 197 197,

November 2001

https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-540-77086-2_11
http://www.tomsguide.com/us/pictures-story/662-best-mobile-password-managers.html
http://www.tomsguide.com/us/pictures-story/662-best-mobile-password-managers.html
http://eprint.iacr.org/2016/086
https://doi.org/10.1007/978-3-662-48324-4_11
https://doi.org/10.1145/2976749.2978353
https://doi.org/10.1145/2976749.2978353
https://doi.org/10.1007/978-3-540-85053-3_27
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/11554578_3
https://doi.org/10.1007/11554578_3
https://doi.org/10.1007/978-3-662-48324-4_31
https://doi.org/10.1007/3-540-36552-4_24
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
http://www.androidauthority.com/samsung-pay-everything-you-need-to-know-678123/
http://www.androidauthority.com/samsung-pay-everything-you-need-to-know-678123/

How TrustZone Could Be Bypassed 109

25. Oswald, E.: Enhancing simple power-analysis attacks on elliptic curve cryptosys-
tems. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
82–97. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 8

26. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

27. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7 17

28. Riviere, L.: Sécurité des implémentations logicielles face aux attaques par injection
de faute sur systemes embarqués. Ph.D. thesis, Telecom Paris Tech (2015)

29. Uno, H., Endo, S., Hayashi, Y.I., Homma, N., Aoki, T.: Chosen-message elec-
tromagnetic analysis against cryptographic software on embedded OS. In: 2014
International Symposium on Electromagnetic Compatibility, Tokyo, pp. 314–317,
May 2014

30. Zhang, N., Sun, K., Shands, D., Lou, W., Hou, Y.T.: Truspy: cache side-channel
information leakage from the secure world on arm devices (2016)

https://doi.org/10.1007/3-540-36400-5_8
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17

Defences and Evaluation

Formalising Systematic Security
Evaluations Using Attack Trees
for Automotive Applications

Madeline Cheah(B), Hoang Nga Nguyen, Jeremy Bryans, and Siraj A. Shaikh

Institute for Future Transport and Cities, Coventry University,
Coventry CV1 5FB, UK

{cheahh2,hoang.nguyen,jeremy.bryans,siraj.shaikh}@coventry.ac.uk

Abstract. Vehicles are insecure. To protect such systems, we must begin
by identifying any weaknesses. One approach is to apply a systematic
security evaluation to the system under test. In this paper we present
a method for systematically generating tests based on attack trees. We
formalise the attack trees as provably-equivalent process-algebraic pro-
cesses, then automatically generate tests from the process-algebraic rep-
resentation. Attack trees may include manual input (and thus so will
some test cases) but scriptable test cases are automatically executed.
Our approach is inspired by model based testing, but allows for the fact
that we do not have a specification of the system under test. We demon-
strate this methodology on a case study and find that this is a viable
method for automation of systematic security evaluations.

Keywords: Automotive security · Attack trees · Secure design
Security testing · Bluetooth

1 Introduction

Vehicles are extremely reliant on software and connectivity to enable the func-
tionality desired by customers. The explosion of diverse technologies in cars has
meant that cybersecurity of vehicles has become a mainstream concern for man-
ufacturers; such concerns arise out of a number of attacks on components [4,14],
internal vehicular network [5,12] and through external interfaces [4,10]. System-
atic and automated testing to assure against many such attacks is a challenge,
and an ad-hoc approach (i.e. a subjective prioritisation of when and where to
test) usually means there is less than optimal coverage of vulnerabilities.

The contribution of this paper is a well-founded methodology to system-
atically evaluate the cybersecurity of a vehicle, using a model checker and a
translation of attack trees into a process algebra. The methodology is inspired
by model-based security testing.

The rest of the paper is organised as follows. In Sect. 2, we discuss related
work. Section 3 contains the semantics of attack trees as source-sink graphs and
c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
G. P. Hancke and E. Damiani (Eds.): WISTP 2017, LNCS 10741, pp. 113–129, 2018.
https://doi.org/10.1007/978-3-319-93524-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93524-9_7&domain=pdf

114 M. Cheah et al.

the traces model of CSP [20]. This is followed by an overview of our methodology
in Sect. 4, including a translation function for attack trees into the traces model of
CSP, and a demonstration of the equivalence of the two models. We then discuss
the implementation of this methodology (Sect. 5) and apply it to a case study
involving diagnostic devices that attach to the vehicular on-board diagnostics
port (Sect. 6). Section 7 concludes the paper.

2 Related Work

We discuss the attack tree formalism in an automotive context in Sect. 2.1 and
model based security testing in Sect. 2.2.

2.1 Attack Trees

The foundations of formal descriptions of attacks were laid by [15] and in par-
ticular their process algebraic nature was recognised in [28]. Automotive specific
attack trees have also been discussed in literature where [24] looked at attack
tree generation and gave formal descriptions of the trees. This is orthogonal to
our research (in translating low level attack trees) as in our case the trees have
already been pre-built based on reconnaissance of a black box system, rather
than the automatic generation of an attack tree from a fully specified system-
under-test (SUT).

Attack tree generation is still challenging as the SUT has unknown specifi-
cations (black box). Other examples of attack trees in the automotive context
are those as described in the ‘E-safety vehicle intrusion protected applications’
(EVITA) project [21] and the SAE J3061 Cybersecurity Guidebook for Cyber-
Physical Vehicle Systems [23], although these are informal. Application of exe-
cutable attack trees has been demonstrated [3], however, automation was limited
to test case execution. The attack trees were informally described and manually
created.

2.2 Model-Based Security Testing

Model-based security testing (MBST) is a special case of model-based testing
(MBT) with a focus on security requirements. One can find a succinct classifi-
cation of different approaches with respect to MBT and MBST in [8,27], where
MBT is comprised of the following: (1) A formal model of the SUT is collected
usually from specification documents as the result of the design phase of the
SUT, or constructed from system requirements. This model can be at different
abstraction levels where the most abstract one contains all possible behaviours;
(2) Test case filter criteria are then determined. They are usual informal descrip-
tions capturing a subset of behaviours of the formal model which can be drawn
from the requirements or the structure of the formal model (e.g., state cov-
erage, transition coverage). In terms of MBST, these criteria concentrate on
system security such as security properties (e.g., confidentiality, integrity and
availability), security mechanisms, and the environment (e.g., attack strategies).

Formalising Systematic Security Evaluations Using Attack Trees 115

(3) These criteria are then formalised into test case specifications, usually com-
patible with the formal model. (4) Given the formal model of the SUT and the
test case specifications, test cases are automatically generated by different tech-
nologies such as model checking, theorem proving, or graph search algorithms.
Finally, (5) these test cases are executed on the SUT to provide verdicts. This
involves translation of test cases from the abstract level of the formal model into
concrete test scripts that are executable on SUT. Then, the execution result is
translated back to the abstract level for comparison with the expected output
of the generated test cases.

3 Semantic Models

In this section we give the formal notation and source-sink semantics of attack
trees (Sect. 3.1) and the notation and finite trace semantics of the formal lan-
guage Communicating Sequential Process (CSP) (Sect. 3.2).

3.1 Attack Trees

Attack trees were first created to describe the actions of an attacker in an
methodical manner [25].

Attack trees contain a set of leaf nodes, structured using the operators con-
junction (AND) and disjunction (OR). The leaf nodes represent atomic attacker
actions, the AND nodes are complete when all child nodes are carried out, and OR
nodes are complete when at least one child node is complete.

Extensions have been proposed using Sequential AND (or SAND) [13]. There
are two types of ordering: time dependent or condition dependent. In this paper
we adopt the condition dependent paradigm.

We follow the formalisation of attack trees given in [13,15]. If A is the set
of possible atomic attacker actions, the elements of the attack tree T are A ∪
{OR,AND ,SAND}, and an attack tree is generated by the following grammar,
where a ∈ A:

t ::= a | OR(t , . . . , t) | AND(t , . . . , t) | SAND(t , . . . , t)

Attack tree semantics have been defined by interpreting the attack tree as a
set of series-parallel (SP) graphs [13]. Definition of SP graphs requires first the
definition of source-sink graphs and here we use the definitions from [13].

Definition 1: A source-sink graph over A is a tuple G = (V ,E , s, z) where V
is a set of vertices, E is a multiset of edges with support E∗ ⊆ V ×A×V , s ∈ V
is a unique source and z ∈ V is a unique sink, and s �= z .

The sequential composition of G and another graph G ′, denoted by G · G ′

results from the disjoint union of G and G ′ and linking the sink of G with
the source of G ′. Thus, if ∪̇ denotes the disjoint union and E [s/z] denotes the
multiset of E where vertices z are replaced by s, then G .G ′ can be defined as:

G · G ′ = (V \ {z}∪̇V ′,E [s′/z ′]∪̇E ′, s, z ′)

116 M. Cheah et al.

Parallel composition, denoted by G ‖ G ′ is similar (differing only in that two
sources and two sinks are identified) and can be defined as:

G ‖ G ′ = (V \ {s, z}∪̇V ′,E [s′/s,z ′/z]∪̇E ′, s ′, z ′)

Definition 2: The set GSP over A is defined inductively by:

For a ∈ A,
a−→ is an SP graph,

If G and G ′ are SP graphs, then so are G · G ′ and G ‖ G ′.

Hence, the full SP graph semantics for attack tree T can be given by the
function:

[[·]]SP : T → P(GSP)

This is defined recursively. If a ∈ A, ti ∈ T, and 1 ≤ i ≤ k , then

[[a]]SP = { a−→}
[[OR(t1, . . . , tk)]]SP =

⋃k
i=1[[ti]]SP

[[AND(t1, . . . , tk)]]SP = {G1 || . . . || Gk | (G1, . . . ,Gk) ∈ [[t1]]SP × . . .× [[tk]]SP}
[[SAND(t1, . . . , tk)]]SP = {G1 · . . . ·Gk | (G1, . . . ,Gk) ∈ [[t1]]SP × . . . × [[tk]]SP}
where [[t]]SP = {G1, . . . ,Gk} corresponds to a set of possible attacks Gi

Since, in this paper, we base the construction of the attack tree on pene-
tration testing techniques, all leaves on the tree can be considered actions. The
combination of these actions can be translated into the processes that form part
of a test case. This is conducive to the use of process algebra such as Com-
municating Sequential Processes (CSP) and furthermore the equivalence of the
semantics (see Sect. 3.2) means that we can use synonymous operators to trans-
form a pre-built attack tree.

3.2 CSP

We give here a brief overview of the subset of CSP that we use in this paper. A
more complete introduction may be found in [20].

Given a set of events Σ, CSP processes are defined by the following syntax:

P ::= Stop | e → P | P1 � P2 | P1; P2 | P1 ‖
A
P2 | P1 ||| P2

where e ∈ Σ
and A,B ⊆ events. For convenience, the set of CSP processes defined via the

above syntax is denoted by CSP.
To mark the termination of a process, a special event � is used.
In the above definition, the process Stop is the most basic one, which does not

engage in any event and represents deadlock. In addition, Skip is an abbreviation
for � → Stop. It only exhibits � and then behaves as Stop.

The prefix e → P specifies a process that is only willing to engage in the
event e, then behaves as P . The external choice P1 � P2 behaves either as P1

Formalising Systematic Security Evaluations Using Attack Trees 117

or as P2. . The sequential composition P1; P2 initially behaves as P1 until P1

terminates, then continues as P2.
The generalised parallel operator P1 ‖

A
P2 requires P1 and P2 to synchronise

on events in A ∪ {�}. All other events are executed independently. Finally, the
interleaving operator P1 ||| P2 allows both P1 and P2 to execute concurrently
and independently, except for �.

There are different semantics models for CSP processes [20]. For the purpose
of this paper, we recall the finite trace semantics. A trace is a possibly empty
sequence of events from Σ and may terminate with �. As usual, let Σ∗ denote
the set of all finite sequences of events from Σ, 〈〉 the empty sequence, and
tr1 � tr2 the concatenation of two traces tr1 and tr2; then the set of all traces is
defined as Σ∗� = {tr � en | tr ∈ Σ∗ ∧ en ∈ {〈〉, 〈�〉}}.

The trace tr1 is a prefix of a trace tr2, written as tr1 ≤ tr2, iff ∃ tr ′ : tr1�tr ′ =
tr2. Events in A ⊆ Σ ∪ {�} may be abstracted away from a trace tr by a hiding
operator, written as tr \ A and defined as

tr \ A =

⎧
⎪⎨

⎪⎩

〈〉 if tr = 〈〉
〈a〉 � (tr ′ \ A) if tr = 〈a〉 � tr ′ ∧ a /∈ A
tr ′ \ A if tr = 〈a〉 � tr ′ ∧ a ∈ A.

For convenience, when A = {a}, we shall simply write tr \ a. In general, the
trace semantics of a process P is a subset traces(P) of Σ∗� consisting of all traces
which the process may exhibit. It is formally defined recursively as follows:

– traces(Stop) = {〈〉};
– traces(e → P) = {〈〉} ∪ {〈e〉 � tr | tr ∈ traces(P)};
– traces(P1 � P2) = traces(P1) ∪ traces(P2);
– traces(P1; P2) = traces(P1) ∩ Σ∗

∪ {tr1 � tr2 | tr1 � 〈�〉 ∈ traces(P1) ∧ tr2 ∈ traces(P2)};
– traces(P1 ‖

A
P2) = {tr ∈ tr1 ‖

A
tr2 | tr1 ∈ traces(P1) ∧ tr2 ∈ traces(P2)}

where tr1 ‖
A
tr2 = tr2 ‖

A
tr1 is defined as follows with a, a ′ ∈ A and b, b′ /∈ A:

• 〈〉 ‖
A

〈〉 = {〈〉}; 〈〉 ‖
A

〈a〉 = ∅; 〈〉 ‖
A

〈b〉 = {〈b〉};

• 〈a〉 � tr1 ‖
A

〈b〉 � tr2 = {〈b〉 � tr | tr ∈ 〈a〉 � tr1 ‖
A
tr2};

• 〈a〉 � tr1 ‖
A

〈a〉 � tr2 = {〈a〉 � tr | tr ∈ tr1 ‖
A
tr2}

• 〈a〉 � tr1 ‖
A

〈a ′〉 � tr2 = ∅ where a �= a ′;

• 〈b〉 � tr1 ‖
A

〈b′〉 � tr2 = {〈b〉 � tr | tr ∈ tr1 ‖
A

〈b′〉 � tr2}∪
{〈b′〉 � tr | tr ∈ 〈b〉 � tr1 ‖

A
tr2}

– traces(P1 ||| P2) = {tr ∈ tr1 ||| tr2 | tr1 ∈ traces(P1) ∧ tr2 ∈ traces(P2)}
where tr1 ||| tr2 = tr1 ‖

∅
tr2.

Therefore, traces(P1 ||| P2) = traces(P1 ‖
∅
P2).

118 M. Cheah et al.

A process P is said to trace-refine a process Q (written Q �T P) if
traces(P) ⊆ traces(Q). There are other flavors of refinement, but we restrict
ourselves to trace refinement below.

4 Methodology

In this section we present an overview of the whole methodology (Fig. 1) of our
paper. The context of our work is the automotive industry. Vehicle manufactur-
ers often incorporate off-the-shelf (OTS) components into their work, and their
specifications are not always available. Manufacturers thus have to approach
testing with this uncertainty.

We begin by assuming a System under Test (SUT), which may be either an
OTS component or contain one. We also assume the existence of a corresponding
attack tree (see Fig. 1). Section 6 illustrates our approach with an attack tree
developed for a vehicle network that includes a Bluetooth connection. It is worth
observing here that an attack tree for Bluetooth systems essentially systematises
the known attacks on Bluetooth, and therefore although it may be updated as
new attacks are constructed, the development of the attack tree is a one-off cost.
The same attack tree will work for any Automotive Bluetooth system.

If a specification (or abstract model) of the SUT is available we use it, but
in many cases (including the example in Sect. 6) the specification of the SUT
is confidential or contains confidential components. In this case we can under-
approximate a specification to begin the process. Successive iterations of the
process allow us to refine this under-approximation. We illustrate this under-
approximation in Sect. 5. The approach is to generate tests against this model.
Tests are automatically generated using FDR, the refinement checker for CSP.
The specification and the attack tree are compared. Each possible route through
the attack tree represents a potential attack, and the Test Case Generator com-
piles a list of all the attacks that the specification permits. Note that in the case
of an under-approximated specification all possible attacks will be permitted.

The next step is to convert the formal tests into implementation tests. This
process is detailed in Sect. 5.2. Note that these implementation tests are in fact
attacks (or potential attacks) on the SUT. Not all the test implementation tests
generated from an attack tree can be fully automated. The attack tree may
contain nodes that require manual input, in which case the implementation tests
will require (partial) manual interaction. The ones that do not require manual
input may be executed directly on a Testbed. The report contains the test results.
Since tests are really attacks on the SUT, we consider a test to be successful if
the attack succeeds.

In the remainder of this section we present in more detail the transformation
of attack trees to CSP processes (Sect. 4.1), as well as a proof of the equivalence
of the semantic models.

Formalising Systematic Security Evaluations Using Attack Trees 119

Fig. 1. Overview of our formal systematic security methodology

4.1 Transforming Attack Trees into CSP Processes

In this section we use the process algebra CSP to describe the attack tree. We
choose CSP because as a process algebra it is able to represent and combine the
actions of the attack tree into a set of processes that could subsequently be used
for test case generation.

In principle, the logic gates of the attack tree can be considered CSP operators
[11] as follows:

– Since the AND logic gate demands that all actions must be successful for
the branch to be considered complete, the interleave operator (|||) is used.
This operator joins processes that operate concurrently but without them
necessarily interacting or synchronising.

– The sequential composition operator (;) is used for the SAND logic gate. The
former echoes the SAND logic gate, in that the first process must terminate
successfully before the next is allowed;

– The external choice operator (�) (where any process could be chosen depen-
dent on the environment in which it operates) is used for the OR logic gate.

Formally, we define the following transformation function trans : TSAND →
CSP where Σ = A:

– trans(a) = a → Skip for a ∈ A;
– trans(OR(t1, . . . , tn)) = trans(t1) � . . . � trans(tn);
– trans(AND(t1, . . . , tn)) = trans(t1) ||| . . . ||| trans(tn);
– trans(SAND(t1, . . . , tn)) = trans(t1); . . . ; trans(tn);

In order to show the correctness of the above transformation, it is necessary
to make the two semantics in GSP and Σ∗� compatible for comparison. Recall
from [13] that each SP graph represents a possible way to carry out an attack.
In such a graph, an AND vertex indicates that actions along its branches must
be executed. However, there is no restriction on the order of their executions. In

120 M. Cheah et al.

other words, their executions are interleaving in general. Therefore, it is possible
to serialise the actions from a SP graph where parallel compositions of graphs is
considered as interleaving and sequential composition as concatenation. Given
G in GSP , let serials(G) denote the set of all possible ways to serialise G , which
is formally defined as follow:

– serials(a−→) = {〈a〉};
– serials(G1 ‖ G2) = {tr ∈ tr1 ||| tr2 | tr1 ∈ serials(G1) ∧ tr2 ∈ serials(G2)};
– serials(G1 · G2) = {tr1 � tr2 | tr1 ∈ serials(G1) ∧ tr2 ∈ serials(G2)}.

For convenience, we denote the set of all prefixes from serials(G) by pserials(G),
i.e., pserials(G) = {tr | ∃ tr ′ ∈ serials(G) : tr ≤ tr ′}. We also denote
pserials(t) =

⋃
G∈[[t]]SP pserials(G) for all attack trees t ∈ TSAND .

The correctness of transforming attack trees into CSP processes is guaranteed
by the following result:

Lemma 1. ∀ t ∈ TSAND , pserials(t) = traces(trans(t)) \ �.

Proof. The proof is done by induction on the structure of t .

Base case: Consider t = a; then, [[t]]SP = { a−→} and pserials(t) = {〈〉, 〈a〉}. We
also have trans(t) = a → Skip and traces(trans(t)) = {〈〉, 〈a〉, 〈a,�〉}. Hence, it
is straightforward that pserials(t) = traces(trans(t)) \ �.

Induction Step:

Case t = OR(t1, . . . , tn): It is straightforward that
– [[t]]SP =

⋃
i=1,...,n [[ti]]SP , and

– traces(trans(t)) = traces(trans(t1) � . . . � trans(ti)).
Then, we have

tr ∈ pserials(t) ⇔ ∃G ∈ [[t]]SP : tr ∈ pserials(G)
⇔ ∃ i ∈ {1, . . . ,n},G ∈ [[ti]]SP : tr ∈ pserials(G)
⇔ ∃ i ∈ {1, . . . ,n} : tr ∈ pserials(ti)
⇔ tr ∈ traces(trans(ti)) \ � by induction hypothesis
⇔ tr ∈ traces(trans(t)) \ �.

Case t = AND(t1, . . . , tn): It is obvious that:
– [[t]]SP = {G1 ‖ . . . ‖ Gn | Gi ∈ [[ti]]SP ∀ i = 1, . . . ,n}, and
– traces(trans(t)) = traces(trans(t1) ||| . . . ||| trans(ti)).

Then, we have

tr ∈ pserials(t) ⇔ ∃G ∈ [[t]]SP : tr ∈ pserials(G)
⇔ ∀ i ∈ {1, . . . ,n},∃Gi ∈ [[ti]]SP :

tr ∈ pserials(G1 ‖ . . . ‖ Gn)
⇔ ∀ i ∈ {1, . . . ,n},∃Gi ∈ [[ti]]SP , tr ′ ∈ serials(G1 ‖ . . . ‖ Gn) :

tr ≤ tr ′

⇔ ∀ i ∈ {1, . . . ,n},∃Gi ∈ [[ti]]SP , tri ∈ serials(Gi) :
tr ′ ∈ tr1 ||| . . . ||| tn ∧ tr ≤ tr ′

⇔ ∀ i ∈ {1, . . . ,n},∃ tri ∈ traces(trans(ti)) \ � :
tr ′ ∈ tr1 ||| . . . ||| tn ∧ tr ≤ tr ′ by induction hypothesis

⇔ ∀ i ∈ {1, . . . ,n},∃ tr ′
i ≤ tri ∈ traces(trans(ti)) \ � :

tr ∈ tr ′
1 ||| . . . ||| t ′

n

⇔ tr ∈ traces(trans(t)) \ �.

Formalising Systematic Security Evaluations Using Attack Trees 121

Case t = SAND(t1, . . . , tn): It is obvious that:
– [[t]]SP = {G1 · . . . · Gn | Gi ∈ [[ti]]SP ∀ i = 1, . . . ,n}, and
– traces(trans(t)) = traces(trans(t1); . . . ; trans(tn)).

Then we have:

tr ∈ pserials(t) ⇔ ∃G ∈ [[t]]SP : tr ∈ pserials(G)
⇔ ∀ i ∈ {1, . . . ,n},∃Gi ∈ [[ti]]SP :

tr ∈ pserials(G1 · . . . · Gn)
⇔ ∀ i ∈ {1, . . . ,n},∃Gi ∈ [[ti]]SP , tr ′ ∈ serials(G1 · . . . · Gn) :

tr ≤ tr ′

⇔ ∀ i ∈ {1, . . . ,n},∃Gi ∈ [[ti]]SP , tri ∈ serials(Gi) :
tr ′ ∈ tr1 � . . . � tn ∧ tr ≤ tr ′

⇔ ∀ i ∈ {1, . . . ,n},∃ tri ∈ traces(trans(ti)) \ � :
tr ′ ∈ tr1 � . . . � tn ∧ tr ≤ tr ′ by induction hypothesis

⇔ ∀ i ∈ {1, . . . ,n},∃ tr ′
i ≤ tri ∈ traces(trans(ti)) \ � :

tr ∈ tr ′
1

� . . . � t ′
n

⇔ tr ∈ traces(trans(t)) \ �.

5 Implementation

We provide a prototype implementation of our proposed methodology. This
implementation is built using Python 2.7 and requires as input an attack tree
and a formal model of the SUT. It then automatically carries out three main
tasks: (1) translates an input attack tree into a CSP process; (2) uses this process
and the formal model of the SUT to generate test cases; and (3) executes all
the generated test cases by associating each one with a sequence of predefined
primitive test scripts. Task 1 is a straightforward implementation of function
trans from Sect. 4.1. In the rest of this section, we discuss the implementation
of tasks 2 and 3 in detail.

5.1 Test Case Generation

Let us assume that the formal model of the SUT is given as a CSP process Sys.
Furthermore, the behaviours of the attacker are also given in terms of an attack
tree t , which is then transformed into a CSP process trans(t). We shall use trace
refinement in CSP to extract test cases following [16]. To this end, trans(t) acts
as a filter criterion to select test cases among all possible runs of the system
captured by Sys. As in [16], we define a fresh event attackSucceed to mark the
end of an attack, which indicates that an attack is successfully executed. We
form the following filter

TestPurpose = trans(t); (attackSucceed → Stop)

which captures all attacks extended with the marking event attackSucceed at the
end. Then, we establish the following trace refinement:

Sys � TestCases �T Sys ‖
Σ\{attackSucceed}

TestPurpose

122 M. Cheah et al.

In this refinement, TestCases encodes test cases that have previously been gen-
erated. By combining it with Sys using the external choice operator, a fresh
test case, i.e., different from the generated ones, will be generated if one exists.
Sys ‖

Σ\{attackSucceed}
TestPurpose encapsulates all attack traces that can be car-

ried out with respect to the formal model Sys. These attack traces are ended with
the marking event attackSucceed, which does not belong to Sys, hence, gives rise
to counter examples of the refinement. Initially, TestCases = TestCases0 = Stop,
i.e., corresponding to an empty set of test cases. This refinement is checked by
calling FDR [26]. If an attack trace exists, FDR will provides a counter example
of the form 〈a1, . . . , an , attackSucceed〉 where a1, . . . , an ∈ Σ \ {attackSucceed}.
We encode this trace as a test case tc1 = a1 → . . . → an → attackSucceed →
Stop. After TestCases is rebuilt as TestCases = TestCases1 = TestCases0 � tc1,
the above refinement check is called again and again to extract further test cases
tc2, . . . and to construct TestCase2, . . . until no further counter example can be
found. In this implementation, the calls to checking refinements and extracting
counter examples are facilitated by API functions provided by FDR [26].

5.2 Test Case Execution

Test cases that are generated can now be assigned programmatic functions that
would allow for execution. This is dependant on implementation of the system
and so would necessarily be specific rather than abstract. Furthermore, as the
attack tree in this case is based on penetration testing, not all actions (such as
“social engineering”) are scriptable, largely due to requiring manual intervention.
All such actions are indicated in the implementation.

Given an attack tree t , let scriptable(t) denote the set of its scriptable leaves.
Then, each scriptable leaf a ∈ scriptable(t) is associated with a primitive test
script script(a). A generated test case tc = a1 → . . . → an → attackSucceed →
Stop is automatically executable if ai ∈ scriptable(t) for all i = 1, . . . ,n. Then,
executing an automatically executable test case means to execute all test scripts
script(a1), . . . , script(an) sequentially. If all such scripts are executed success-
fully, the test case is called passed, otherwise failed. Note that a passed test case
means that the SUT is not secure with respect to the attack encoded by this
test case. Conversely, the SUT is impervious to this attack.

In this paper, we use the example of an aftermarket on-board diagnostics
(OBD-II) dongle attached to the vehicle (see Sect. 5). Executable test cases are
written in Python 2.7 to enable compatibility with Bluetooth functions.

6 Case Study

We take here a case study of evaluating the intra-vehicular network with the
attack goal of vehicle compromise. The attack tree (see Sect. 6.2) for this goal
is based around access through a Bluetooth-enabled aftermarket device that
attaches to the vehicle’s on-board diagnostic (OBD-II) port. These devices were

Formalising Systematic Security Evaluations Using Attack Trees 123

originally created so that enthusiasts and hobbyists were able to read information
from their own vehicles for diagnostic and maintenance purposes. The devices
(or dongles) contain an ELM327 chip [7] which serves as an RS-232 interpreter.
“Attention Modem” (AT) commands are used to configure the chip through any
serial terminal. The device used for this case study was the OBDLINK MX, with
an ELM chip version of 1.3, attached to a 2013 small hatchback from a major
manufacturer. Through such a device, an attacker is able to gain access to the
intra-vehicular CAN bus remotely and potentially push messages directly into
the vehicle [1,2]. The risk of compromise is exacerbated by the fact that these
OBD-II devices are usually highly insecure, being wireless, and with weak PINs
that are made public (such as 0000 or 1234) [17].

6.1 Vehicular Communications

Messages that are sent through the dongle on to the CAN bus takes the form of
either a raw Controller Area Network (CAN) frame (Sect. 6.1) or a diagnostic
message (Sect. 6.1) (that is translated into a CAN frame by the dongle).

CAN Messages. The CAN protocol is the primary mode of communication
inside the vehicle. The latest version is CAN 2.0, first specified in 1991 [19] and
embodied as an ISO standard (ISO11898) in 2003.

The standard CAN packet comprises (up to) 11 bits for the message ID,
followed by (up to) 8 bytes of data, then a cyclic redundancy check (16 bits) for
error detection. The full 8 bytes of data need not be used. Information for a door
sensor, for example, may only require 1 bit. Conversely a message can be spread
across many frames.

Arbitration, should nodes on the CAN network transmit simultaneously, is
based on message prioritisation. This prioritisation is determined using the mes-
sage ID, with the lowest ID being the highest priority; implementation usually
means that mission-critical messages are the ones assigned lower IDs.

Assignment of IDs along with data payload is manufacturer specific, however,
reuse is common to save on the cost of redesigning a network [18].

Reverse engineering of CAN messages is difficult considering volume and vari-
ety of content that is transmitted. This is especially the case without an Original
Equipment Manufacturer’s (OEM’s) typically confidential CAN database, which
contains definitions for every message and signal. However, specific CAN mes-
sages for discrete events (such as unlocking doors) can be obtained relatively
easily through trial and error.

CAN data is transmitted in a bus configuration; any Electronic Control Unit
(ECU) on the network has access to all messages. There is no addressing; each
ECU listens to a set of IDs which then triggers pre-determined functionality.

Diagnostic Messages. Parameter IDs (PIDs) are used to perform diagnostic
functions or request data from the vehicle specifically through OBD-II port; done
through a query-response mechanism where a PID query comprises the CAN ID

124 M. Cheah et al.

7DF followed by 8 data bytes. The first byte is data length (usually 02) with the
second byte the mode and the third byte typically the PID. The combination of
modes and PIDs can then be transmitted and a response received from whatever
in-vehicle module is responsible. The response CAN ID is typically 8 (in hex)
higher than the message ID that the responding ECU answers to.

The first ten modes (01 to 0A), described in SAE J1979 (E/E Diagnostic Test
Modes) [22], are standard to all compliant vehicles: PID is only the 2nd byte, with
the 3rd to 8th byte unused. With non-standard modes, PIDs could extend to 3rd
byte. Manufacturers, are not obliged to implement all standard commands, and
additionally could also define functions for non-standard PIDs. There is much
information that could be gathered through this port. For example, sending the
mode 09 with PID 02 retrieves the Vehicle Identification Number (VIN), which
is unique to vehicles, used for maintenance to recovery of stolen vehicles.

6.2 Attack Tree Translation

The attack tree used for this case study is shown in Fig. 2. Figure 2 also lists test
scripts corresponding to leaves in this attack tree. If a leaf is not scriptable, it
is denoted as a manual leaf.

The function trans(Vehicle Compromise) (see Sect. 4.1), gives the translation
of this tree into CSP as below:

Attacker = Vehicle Compromise
Vehicle Compromise = Connect to device; Cause Vehicle Compromise
Connect to device = Using legitimate device � Spoof previously paired device

Using legitimate device = Determine pairing status; Connect to serial port
Determine pairing status = action Determine pairing status → Skip
Connect to serial port = action Connect to serial port → Skip
Spoof previously paired device =

Find the link key from local or remote device
||| Change address of local device

Change address of local device =
action Change address of local device → Skip

Find the link key from local or remote device =
action Find the link key from local or remote device → Skip

Cause Vehicle Compromise =
Using OBD messages

� Run through all messages
� Flooding with raw CAN messages

Flooding with raw CAN messages =
Predetermine CAN messages; Send flood with CAN messages

Predetermine CAN messages =
Using passive monitoring

� Using OEM CAN database
� Using reverse engineering

Send flood with CANmessages = action Send flood with CAN messages → Skip

Formalising Systematic Security Evaluations Using Attack Trees 125

Using OEM CAN database = action Using OEM CAN database → Skip
Using passive monitoring = action Using passive monitoring → Skip
Using reverse engineering = action Using reverse engineering → Skip
Run through all messages = Run through standard ; Run through non standard

Run through standard = action Run through standard → Skip
Run through non standard = action Run through non standard → Skip
Using OBD messages = Flood with set OBD messages
Flood with set OBD messages = action Flood with set OBD messages → Skip

Fig. 2. Attack tree, with attack goal of compromising the vehicle through an aftermar-
ket Bluetooth-enabled OBD-II device

Reconnaissance was defined as “to find as much information as possible”
(meaning the subsequently generated formal attack tree would be much larger).
Many of the steps were manual and non-sequential.

6.3 Results

We generate test cases using the implementation in Sect. 5.1. Given the small
size of the attack tree, we use the most abstract model for the SUT where all
behaviours are accepted (the most insecure model) to generate a total of 15
test cases. Results from the run of test cases against an actual implementation
are given in Table 1. Three of the test cases passed (i.e. they were executed
successfully), and we highlight test case 3 (TC3 in Table 1) for further analysis.

The action of flooding with a particular diagnostic message resulted in loss of
function in the vehicle of both electronics and engine. This violates the security
property of availability by causing a denial of service. Additionally, injection of

126 M. Cheah et al.

Table 1. Test cases that were run against a real world vehicle

TC# Execution result

1 unexecutable action Find the link key from local or remote device

2 unexecutable action Change address of local device

3 Passed

4 unexecutable action Find the link key from local or remote device

5 unexecutable action Change address of local device

6 Passed

7 unexecutable action Find the link key from local or remote device

8 Passed

9 unexecutable action Using OEM CAN database

10 unexecutable action action Using reverse engineering

11 unexecutable action Change address of local device

12 unexecutable action Find the link key from local or remote device

13 unexecutable action Change address of local device

14 unexecutable action Change address of local device

15 unexecutable action Find the link key from local or remote device

messages into the CAN bus also changes the stream of CAN bus signals that
would normally be expected in vehicles. This violates the security property of
integrity (in which no unauthorised modification should be allowed). Protecting
against this could involve the addition of gateways in the SUT, which could
either filter out floods of messages (by defining thresholds for the number of
these messages that could be sent through at any given time). Alternatively, such
messages (unless from an authorised source) could be disallowed completely.

The other test cases (all involving permutations of finding a link key, and
changing the address) were not scripted because they required manual interven-
tion. The former because it would need a remote device set to enable logging
on the Host Controller Interface (not always possible) or to manually acquire
data from a vehicle to find where the link key has been stored (which would have
required hardware removal). The latter is automatable (for example, using a tool
called Spooftooph [6]), however, either hardware removal or social manipulation
is involved to find knowledge of an address that is already stored on the vehicle.

Other branches that were unscripted involves reverse engineering CAN mes-
sages to inject, which involves manual trial and error due to the sheer volume
and variety of messages that are on the CAN bus at any one time. Using an OEM
CAN database would enable automation, but availability is often non-existent
due to commercial confidentiality. The branch that ended with successful test
cases all involved using a legitimate device. That is, a device that was under our
control, which we could use to test weaknesses in the vehicular implementation.

Formalising Systematic Security Evaluations Using Attack Trees 127

TC (3) = action Determine pairing status →
action Connect to serial port → action Flood with set OBD messages →
attack succeed → Stop
TC (6) = action Determine pairing status →
action Connect to serial port → action Run through standard →
action Run through non standard → attack succeed → Stop
TC (8) = action Determine pairing status →
action Connect to serial port → action Using passive monitoring →
action Send flood with CAN messages → attack succeed → Stop

Fig. 3. Test cases that succeeded

7 Conclusion and Future Work

We have demonstrated the translation of an informal attack tree into a formal
structure using the process algebra CSP and proved equivalence. We use this
tree to generate test cases automatically, and assign executions to scriptable test
cases. We execute the test cases on a real-world vehicle (although this could be
substituted with a testbed, with input from an OEM to reflect a real architecture,
without the cost or risk to a test vehicle [9]). Thus, the full testing process is one
step further to automation, and furthermore, the formal model of the attack tree
could also be used for formal verification should the specifications of the system-
under-test be available. Limitations are around how a tree is created (still largely
manual) and certain actions within the attack tree requiring manual intervention.
The aim is for the entire process (at an abstract level) to resemble Fig. 1. The
work with testbeds (as in work done by [9]) as well as manual testing could
continue to assist in further refinement of the models created.

References

1. Argus Cybersecurity: Argus Cyber Security Working with Bosch to Promote Public
Safety and Mitigate Car Hacking (2017). http://bit.ly/2tNBLsm

2. Cheah, M., Bryans, J., Fowler, D.S., Shaikh, S.A.: Threat intelligence for bluetooth-
enabled systems with automotive applications: an empirical study. In: Proceedings
of the 47th IEEE/IFIP Dependable Systems and Networks Workshops: Security
and Safety in Vehicles (SSIV). IEEE, Denver, June 2017

3. Cheah, M., Shaikh, S., Haas, O., Ruddle, A.: Towards a systematic security eval-
uation of the automotive bluetooth interface. J. Veh. Commun. 9(7), 8–18 (2017)

4. Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage, S.,
Koscher, K., Czeskis, A., Roesner, F., Kohno, T.: Comprehensive experimental
analyses of automotive attack surfaces. In: Proceedings of 20th USENIX Security
Symposium, pp. 77–92. USENIX Association, San Francisco, August 2011

5. Cho, K.T., Shin, K.G.: Error handling of in-vehicle networks makes them vulner-
able. In: Proceedings of the 23rd ACM SIGSAC Conference on Computer and
Communications Security, pp. 1044–1055. ACM, New York, October 2016

http://bit.ly/2tNBLsm

128 M. Cheah et al.

6. Dunning, J.: SpoofTooph (2012). http://bit.ly/2tiOx5O
7. ELM Electronics: ELM Electronics: OBD. http://bit.ly/2s0yZPZ
8. Felderer, M., Zech, P., Breu, R., Buchler, M., Pretschner, A.: Model-based security

testing: a taxonomy and systematic classification. Softw. Test. Verif. Reliab. 26(2),
119–148 (2015)

9. Fowler, D.S., Cheah, M., Shaikh, S.A., Bryans, J.: Towards a testbed for auto-
motive cyberecurity. In: Process of the 10th International Conference on Software
Testing, Verification and Validation: Industry Track. IEEE, Tokyo, March 2017

10. Greenberg, A.: Hackers remotely kill a jeep on the highway-with me in it (2015).
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

11. Hoare, C.: Communicating Sequential Processes, Electronic edn. Prentice Hall
International, Upper Saddle River (1985)

12. Hoppe, T., Kiltz, S., Dittmann, J.: Security threats to automotive CAN networks
- practical examples and selected short-term countermeasures. Reliab. Eng. Syst.
Saf. 96(1), 11–25 (2011)

13. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees
with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015.
IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18467-8 23

14. Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S., McCoy,
D., Kantor, B., Anderson, D., Shacham, H., Savage, S.: Experimental security
analysis of a modern automobile. In: Proceedings of the 2010 IEEE Symposium on
Security and Privacy, pp. 447–462. IEEE, Oakland, May 2010

15. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://
doi.org/10.1007/11734727 17

16. Nogueira, S., Sampaio, A., Mota, A.: Test generation from state based use case
models. Form. Asp. Comput. 26(3), 441–490 (2014)

17. Oka, D.K., Furue, T., Langenhop, L., Nishimura, T.: Survey of vehicle IoT blue-
tooth devices. In: 2014 IEEE 7th International Conference on Service-Oriented
Computing and Applications, pp. 260–264. IEEE, Matsue, November 2014

18. Pretschner, A., Broy, M., Kruger, I.H., Stauner, T.: Software engineering for auto-
motive systems: a roadmap. In: Proceedings of the FOSE’07 2007 Future of Soft-
ware Engineering, pp. 55–71. IEEE, Minneapolis, May 2007

19. Robert Bosch GmbH: CAN Specification Version 2.0 (1991). http://esd.cs.ucr.edu/
webres/can20.pdf

20. Roscoe, A.: Understanding Concurrent Systems, 1st edn. Springer, London (2010).
https://doi.org/10.1007/978-1-84882-258-0

21. Ruddle, A., Ward, D., Weyl, B., Idrees, S., Roudier, Y., Friedewald, M., Leim-
bach, T., Fuchs, A., Gurgens, S., Henniger, O., Rieke, R., Ritsscher, M., Broberg,
H., Apvrille, L., Pacalet, R., Pedroza, G.: EVITA project: deliverable D2.3 - secu-
rity requirements for automotive on-board networks based on dark-side scenarios.
Technical report (2009). http://www.evita-project.org/Deliverables/EVITAD2.3.
pdf

22. SAE International: SAE J1979 E/E Diagnostic Test Modes (2014). http://
standards.sae.org/j1979 201408/

23. SAE International: J3061: Cybersecurity Guidebook for Cyber-Physical Vehicle
Systems (2016). http://standards.sae.org/j3061 201601/

24. Salfer, M., Schweppe, H., Eckert, C.: Efficient attack forest construction for auto-
motive on-board networks. In: Chow, S.S., Camenisch, J., Hui, L.C., Yiu, S.M.
(eds.) 17th International Conference (ISC) on Information Security, October 2014

http://bit.ly/2tiOx5O
http://bit.ly/2s0yZPZ
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/11734727_17
https://doi.org/10.1007/11734727_17
http://esd.cs.ucr.edu/webres/can20.pdf
http://esd.cs.ucr.edu/webres/can20.pdf
https://doi.org/10.1007/978-1-84882-258-0
http://www.evita-project.org/Deliverables/EVITAD2.3.pdf
http://www.evita-project.org/Deliverables/EVITAD2.3.pdf
http://standards.sae.org/j1979_201408/
http://standards.sae.org/j1979_201408/
http://standards.sae.org/j3061_201601/

Formalising Systematic Security Evaluations Using Attack Trees 129

25. Schneier, B.: Attack trees: modeling security threats (1999). http://www.schneier.
com/paper-attacktrees-ddj-ft.html

26. University of Oxford: FDR3 - The CSP Refinement Checker. https://www.cs.ox.
ac.uk/projects/fdr/

27. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012)

28. Vigo, R., Nielson, F., Nielson, H.R.: Automated generation of attack trees. In: Pro-
ceedings of the 27th Computer Security Foundations Symposium. IEEE, Vienna
(2014)

http://www.schneier.com/paper-attacktrees-ddj-ft.html
http://www.schneier.com/paper-attacktrees-ddj-ft.html
https://www.cs.ox.ac.uk/projects/fdr/
https://www.cs.ox.ac.uk/projects/fdr/

Examination of a New Defense
Mechanism: Honeywords

Ziya Alper Genç1(B), Süleyman Kardaş2, and Mehmet Sabir Kiraz3

1 University of Luxembourg, Luxembourg City, Luxembourg
ziya.genc@uni.lu

2 Batman University, Batman, Turkey
3 TÜBİTAK BİLGEM, Gebze, Turkey

Abstract. Past experiences show us that password breach is still one
of the main methods of attackers to obtain personal or sensitive user
data. Basically, assuming they have access to list of hashed passwords,
they apply guessing attacks, i.e., attempt to guess a password by trying
a large number of possibilities. We certainly need to change our way of
thinking and use a novel and creative approach in order to protect our
passwords. In fact, there are already novel attempts to provide password
protection. The Honeywords system of Juels and Rivest is one of them
which provides a detection mechanism for password breaches. Roughly
speaking, they propose a method for password-based authentication sys-
tems where fake passwords, i.e., “honeywords” are added into a password
file, in order to detect impersonation. Their solution includes an auxil-
iary secure server called “honeychecker” which can distinguish a user’s
real password among her honeywords and immediately sets off an alarm
whenever a honeyword is used. However, they also pointed out that their
system needs to be improved in various ways by highlighting some open
problems. In this paper, after revisiting the security of their proposal, we
specifically focus on and aim to solve a highlighted open problem, i.e.,
active attacks where the adversary modifies the code running on either
the login server or the honeychecker.

Keywords: Passwords · Cracking · Honeywords · Code modification

1 Introduction

Password based authentication is a widely used technique throughout the Inter-
net due to its simplicity and efficiency. However, this mechanism brings the
potential risk of user credentials’ being stolen in a server compromise event. In
fact, there have been many incidents that confirm the significance of this threat
where an adversary were able to obtain the database, which contains the user-
names and the corresponding password hashes [1,5,7]. Once the breach occurs, it
is at the mercy of authentication authority to disclose the details of the incident
unless the adversary publishes the credentials.

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
G. P. Hancke and E. Damiani (Eds.): WISTP 2017, LNCS 10741, pp. 130–139, 2018.
https://doi.org/10.1007/978-3-319-93524-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93524-9_8&domain=pdf

Examination of a New Defense Mechanism: Honeywords 131

Authentication systems employ cryptographic measures to protect the user
credentials, however, many users have tendency to choose weak passwords i.e.,
common words that can be easily guessed by a dictionary attack [3,4]. Due to
the advancements in GPU technology, the hash value of a common password
(i.e., a word in a dictionary) can be cracked efficiently. These kinds of attacks
may allow user credentials to be obtained by an adversary. Existing servers
are capable of blocking any illegitimate login attempt when the authentication
servers employ additional security mechanisms (e.g., SMS that is used for 2 factor
authentication) [10,11]. Even though such multi-factor authentication solutions
improve the security against any illegitimate login attempt, these solutions do
not provide any detection of password breaches.

In order to detect whether the password file has been stolen or not, Juels and
Rivest [6] proposed the use of “honeywords”, that is, a set of fake passwords that
are mixed with the user’s real password and the hash values of these passwords
(real password and honeywords) are stored in the password file. Suppose that this
file is compromised and all hash values in the file are cracked, the adversary still
does not know which one is the real password. Note that the user or the adver-
sary sends LS identity and password in order to request login. Then, LS checks
whether a submitted password is among a user’s honeywords but even when
this check succeeds, LS needs to consult another secure component, HC, to know
whether the index of the retrieved honeyword is that corresponding to the user’s
real password. HC alerts the administrator otherwise, since having observed an
honeyword signals that the password file might have been compromised.

Our Contributions. In this paper, we first examine the Honeywords system of
Juels and Rivest [6] and propose a practical improvement to solve a highlighted
open problem. We enhanced the security of the Honeywords protocol against
active code modification attacks where the adversary is assumed to modify the
code running on either the login server or the honeychecker.

Roadmap. The outline of this paper is as follows. Section 2 describes the brute-
force and dictionary attacks on passwords and their connection with the Hon-
eywords system. Section 3 gives a detailed overview of Honeywords scheme. In
Sect. 4, we present our improvements against active adversaries. Security analysis
of our enhanced model is given in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Offline Brute-Force and Dictionary Attacks

Brute-force password cracking is one of the most popular attack types related
to passwords. In a typical scenario, first, the adversary steals the password hash
file. Next, a set which contains only the presumed characters that appear in
a password is created. Then the adversary creates a combination of characters
from this set, computes its hash and compares the hash value with the password
hash. This process continues until a match is found [2].

There exist several techniques which increase the success rate of attackers
while performing a brute-force attack. As an example, Weir et al. [12] developed

132 Z. A. Genç et al.

a state of the art password cracking algorithm which uses probabilistic, context-
free grammars. Kelley et al. [8] showed that using Weir’s attack, one billion
guess is enough to crack % 40.3 of the passwords that comply with the “basic8”
policy, i.e., a password must have at least 8 characters. In the meantime, parallel
processing capabilities of GPUs have been increased dramatically. For example,
using hashcat1, an open source password recovery software, cracking speed of
hashes has reached 101.3 × 109 passwords per second for SHA1 on a single high
computing cluster2 which is commercially available [9].

Brute-force attacks sometimes can be applied efficiently depending on the
password policy of the system. Assume that a user creates a password consisting
of letters in the English alphabet which complies with the basic8 policy. The
required time to span the password space of this password can be computed as
follows:

Time =
Password space length

Cracking speed

Considering the worst case and applying the above formula, we find that using
the previously mentioned cluster, an adversary can crack the SHA-1 hash of that
password in

(26)8 passwords

101.3 × 109 passwords per second
≈ 2.06 s.

Offline dictionary attack is similar to brute-force, with one difference. In this
type of attack, an adversary computes the hash of words (possibly with salt) from
a list that consists of strings which are typically derived from a dictionary. The
adversary compares these hashes with the password hashes. The intention is to
try dictionary words (which are more likely to be a user’s password) rather than
sequences of random characters. Most users unfortunately do not choose strong
passwords for the sake of easy memorization. On the contrary, they choose weak
passwords that are simple concatenations of dictionary words, common names,
birthdays, city/street names, or easily guessable phrases.

3 Review of Honeywords System

Juels and Rivest proposed a novel authentication scheme called Honeywords sys-
tem [6]. The central idea behind the Honeywords system is to change the struc-
ture of the password storage in such a way that each user is associated with a
password and a set of fake passwords. The fake passwords are called honeywords.
The union of all honeywords and the password is called sweetwords. As soon as
a honeyword is submitted during the login process, it is automatically detected
that the password database has been stolen. Hence, unlike conventional systems,
honeywords based solutions can easily detect password database breaches.

The Honeywords system works as follows. As in the many conventional sys-
tems, users choose a username and a password during the registration phase.

1 https://hashcat.net/hashcat/.
2 https://gist.github.com/epixoip, Retrieved on June 22, 2017.

https://hashcat.net/hashcat/
https://gist.github.com/epixoip

Examination of a New Defense Mechanism: Honeywords 133

Fig. 1. Credentials database of a LS in the
Honeywords system

Fig. 2. Data stored on a HC

Next, the Login Server (LS) generates honeywords for the password and creates
a record in credentials database. In each record, the ordering of the sweetwords
is randomly chosen by the LS. Furthermore, LS sends the corresponding user
ID and the index of the real password to Honeychecker (HC), which is an auxil-
iary server designed to store the index of the password. Let ui and H() denote
the username of user i and the hash function used in the system, respectively.
H(swi,j) denotes the hash of jth sweetword of user i. A typical example of cre-
dentials table is demonstrated in Fig. 1.

HC stores the user IDs and the index of the passwords among the honeywords.
Neither username nor password itself is submitted to HC during the authentica-
tion. Moreover, HC is designed as an hardened server which can only be accessed
by LS. A typical structure of the data stored in HC is demonstrated in Fig. 2.

Note that HC accepts only two types of messages: Check and Set.

– Check(i, j) means to confirm whether j = ci. If j = ci, HC returns True,
otherwise it returns False and triggers the alarm.

– Set(i, j) means to set ci = j.

During the authentication phase, user submits her username and password.
LS tries to find the corresponding record for that username in the credentials
database. If a record exists, LS computes the hash of submitted password and
tries to find a match in the hashes of sweetwords. If there is no match, then
the submitted password is wrong and the access is denied. If there is a match,
LS sends the corresponding user ID and the matching index to HC. Next, HC
finds the record which corresponds to the user ID and compares the received
index value with the one stored in its database. If the result is true, then the
access is granted. Otherwise, the HC returns false and follows the system policy,
e.g., creates an alert and notifies the administrators. Authentication phase of
the Honeywords system is depicted in Fig. 3.

The Honeywords system is originally designed with the assumption that the
adversary can steal the hashed passwords and can invert the hashes to obtain
the passwords. Also, it is assumed that the adversary cannot compromise both
LS and HC in the same time period. Under this assumption, the Honeywords
system protect passwords against brute-force and dictionary attacks described
in Sect. 2. The Honeywords system aims at detecting password database breaches
and helps deterring only offline dictionary attacks where it is assumed that the

134 Z. A. Genç et al.

Fig. 3. Login scheme of a system using honeywords

adversary has stolen the password hashes and left the system. As also pointed
out by Juels and Rivest, there are multiple open problems to solve in order to
withstand active attacks.

4 Our Proposed Solutions

In this section, we focus on the following open problem which is highlighted in
the original paper [6]:

How can a honeyword system best be designed to withstand active attacks,
e.g., malicious messages issued by a compromised computer system or code
modification of the computer system (or the honeychecker)?

For this scenario, we deal with the active attacks in which the adversary
makes code modifications on the Honeywords system where the adversary basi-
cally executes a malicious code on LS and set the index of the password to a
new value that corresponds to a recovered honeyword. In the lights of these cir-
cumstances, the Honeywords system needs to be improved in order to withstand
these advanced types of attacks.

4.1 Defending Against Malicious Code Modifications

An adversary may gain privileges to modify the running code on components of
the Honeywords system. We only consider the cases where an adversary corrupts
the component of LS that performs Set and Check commands. In that case, the
parameters of these commands can be altered by the adversary. Similarly, HC
can also be corrupted and send maliciously modified responses to LS. To mitigate
these attacks, a reliable auditing mechanism is needed to check and verify the
correctness of LS and HC. We classify the attack scenarios into two cases as
follows.

Examination of a New Defense Mechanism: Honeywords 135

Preventing Malicious Modifications on Set and Check Commands: A
malicious adversary may target on modifying Set and Check commands that are
run on the HC in order to gain more advantages for her attacks. He could call
these command from the corrupted LS. In this context, in order to detect a mali-
cious activity of a corrupted or legal LS, HC can verify whether the user requests
a password change. If confirmed, HC will process Set command. Otherwise, the
request would not be valid which detects the malicious activity by LS. In order
to validate the origin of the Set request, HC may use some helper data. Following
the design principles of the original protocol and keep the amount of data at HC
at a minimum level it is possible to ask a security question or send a validation
code to the mobile phone of the user. We follow the latter approach since it is
in wide spread use and a practical way of adding another factor of authentica-
tion. The system roughly works as follows: during the registration, LS asks the
user to enter the registration information including mobile number. The mobile
number will be stored by HC. In order to accomplish this task, we overload the
Set function as follows:

Fig. 4. Sign up scheme to mitigate against malicious code modification of LS.

– Set(i, j)
– Set(i, j, phn)

where phn denotes the phone number. Note that Set(i, j) function is the same
as the Set function in the original Honeywords system. Set(i, j, phn) is invoked
whenever a user registers to the system. Set(i, j) is invoked whenever a user
changes her password. While the login procedure depicted in Fig. 3 did not
change, the sign up of our enhanced Honeywords system is depicted in Fig. 4.

If the password change request is received, LS will generate new honeywords
and randomly permute the sweetwords. Next, LS will send Set(i, ci) to HC. HC
generates a one time pad nonce and using phn sends it to user via SMS. The
user submits nonce to LS which forwards it to HC for validation. The password
change scheme is depicted in Fig. 5.

136 Z. A. Genç et al.

Fig. 5. Password Change scheme to mitigate against malicious code modification of
HC.

Preventing Malicious Code Modification on HC: In this scenario, an
adversary can modify HC and can send illegitimate responses to LS. In order to
verify the correctness of HC, we propose an efficient probabilistic method which
audits HC periodically. More concretely, there will be built-in user accounts in LS
whose passwords will be known to LS. Since LS knows the result of these Check
messages by itself, it can easily verify them with the ones coming from HC. More
formally, let b be the user ID of a built-in account and cb be the index of the
password which is known to LS. A scheduled service at LS takes the following
actions to test the correctness of HC.

Algorithm 1. Test Correctness of Honeychecker
1: function IsCorrupted(bID , cbID) � bID : built-in user ID, cbID : built-in index
2: response ← false
3: isCorrupt ← true
4: response ← Check(bID , cbID)
5: if response = true then:
6: isCorrupt = false

7: return isCorrupt

This test will be repeated periodically for all built-in accounts to increase
the probability of detection. For simplicity, let the probability of receiving a
legitimate response from a compromised HC be fixed (p). After t number of
tests, the probability of detecting a malicious activity P is computed as

P = 1 −
t∏

i=1

pi

where t denotes the number of tests and pi denotes the probability of receiving
an legitimate response from the malicious adversary and ∀i, pi = p.

Examination of a New Defense Mechanism: Honeywords 137

If HC responds uniformly at random, then the equality yields

P = 1 −
t∏

i

p = 1 −
t∏

i

1
n

= 1 − 1
nt

where n denotes the number of honeywords per user. Given n = 20 as suggested
by [6], only two test is enough to achieve the correctness check with probability
P > 0.997.

5 Security Analysis

In this section, we analyze the security of our enhanced system. We follow the
case by case approach to perform the security analysis. We begin with the case
that the adversary has compromised the LS.

Theorem 1. Under the assumption that the honeywords are indistinguishable
from passwords, if the LS is compromised, then the enhanced system depicted in
Fig. 4 detects illegitimate login attempts and the incident of password breaches
with probability 1 − 1

n where n is the number of sweetwords.

Proof. Assume that the adversary compromised the LS and obtained the user
IDs and sweetwords, i.e., sw1, sw2, . . . , swn. Since the index of the password, ci
is stored securely in the HC, the adversary will try to guess the password among
honeywords. There are n−1 honeywords per user and the probability of guessing

the password is
1
n

. In other words, the adversary will fail and the system will

detect the credentials breach with probability 1 − 1
n

. ��

Next we continue with the case that the adversary steals the information
from HC.

Theorem 2. Our enhanced system does not disclose any information about the
passwords if an adversary steals only HC database.

Proof. Assume that an adversary steals HC database. According to the design
principles of the Honeywords system LS does not send any information about
passwords to HC. Therefore, the adversary cannot not obtain any information
about the passwords as only i, ci and phn records are stored in HC. ��

Next, we prove the security of our enhanced system in the case that the
adversary modifies the code running on LS. We assume that any abnormal devi-
ation from the protocol would be noticed by the system administrators (e.g., by
auditing network logs), and therefore, adversary would have to restrict itself to
modify existing functions for attacking the system. Thus, we consider abuse of
only existing functions of LS, i.e., Set and Check commands.

138 Z. A. Genç et al.

Theorem 3. Our enhanced system does not disclose the passwords with prob-
ability 1 − 1

n where n is the number of sweetwords if an adversary maliciously
modifies the running code on LS. Also, the probability of unauthorized password
change is negligible.

Proof. Assume that an adversary maliciously modifies the running code on LS.
A corrupted LS would send only Set or Check messages to HC (other abnormal
behaviors would be detected by the administrators). However, a malicious Check
message would be detected and the alarm would be set off by HC with probability
1− 1

k where k is the number of honeywords. Similarly, in the case that adversary
sends malicious Set messages, HC will ask a validation code which is sent to the
user’s mobile phone. However, the probability of sending a valid combination
without possessing the mobile phone is negligible. Thus, the adversary will also
fail to send a malicious Set request. ��

Finally, we analyze the case that the adversary modifies the code running on
HC.

Theorem 4. Our enhanced system does not disclose any information about the
passwords if an adversary maliciously modifies the running code on HC.

Proof. Consider that the adversary modifies the code running on HC. The
TestHoneychecker routine will check the correctness of the Check messages and
detect malicious responses with probability P = 1 − ∏t

i=1 pi, where t denotes
the number of tests and pi denotes the probability of receiving an illegitimate
response. The HC does not contain any useful information that would help to
adversary developing a meaningful attack strategy. Hence, if the HC maliciously
responds to the Check messages, LS will detect with probability P . ��

Hence, our scheme has all the security properties of the primitive system
designed in [6], plus it is more robust to code modification attacks.

6 Conclusion

Juels and Rivest [6] propose an interesting defense mechanism under a common
attack scenario where an adversary steals the file of password hashes and inverts
most or many of the hashes. The Honeywords system provides a powerful defense
against this attack. Namely, even if the adversary recovers all of the hashes in
the password file, he cannot try to login to the system without a high risk of
being detected. On the other hand, the original Honeywords system is not a com-
plete solution for the password management problem. The scenarios in which an
adversary modifies running code on LS or HC is left as open problem. In this
work, we review the original Honeywords system and focused on solving that
problem. Namely, we enhanced the Honeywords system through adding addi-
tional security checks. Our additions are inexpensive and practical, and can be
easily integrated into the primitive scheme. Moreover, we discussed the security
of our enhanced protocol and showed that it is robust against code modification
attacks.

Examination of a New Defense Mechanism: Honeywords 139

Acknowledgments. Ziya Alper Genç’s research is supported by a partnership
between SnT/University of Luxembourg and pEp Security S.A. Mehmet Sabır Kiraz’s
work is supported by a grant from Ministry of Development of Turkey provided to the
Cloud Computing and Big Data Research Lab Project (project ID: 2014K121030).

References

1. Burgess, M.: How to Check if Your Linkedin Account was Hacked, May 2016.
http://www.wired.co.uk/article/linkedin-data-breach-find-out-included

2. Conklin, A., Dietrich, G., Walz, D.: Password-based authentication: a system per-
spective. In: Proceedings of the Proceedings of the 37th Annual Hawaii Interna-
tional Conference on System Sciences (HICSS 2004) - Track 7, HICSS 2004 - vol.
7, pp. 701–702. IEEE Computer Society, Washington, DC (2004)

3. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceed-
ings of the 16th International Conference on the World Wide Web. Association for
Computing Machinery Inc. (2007)

4. Furnell, S., Dowland, P., Illingworth, H., Reynolds, P.: Authentication and super-
vision: a survey of user attitudes. Comput. Secur. 19, 529–539 (2000)

5. Gallagher, S.: Yahoo Admits It’s been Hacked Again, and 1 Billion Accounts
were Exposed, December 2016. https://arstechnica.com/security/2016/12/yahoo-
reveals-1-billion-more-accounts-exposed-and-some-code-may-have-been-stolen/

6. Juels, A., Rivest, R.L.: Honeywords: making password-cracking detectable. In: Pro-
ceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security, CCS 2013, vol. 38, pp. 145–160. ACM (2013)

7. Keane, J.: Security Researcher Dumps 427 Million Hacked Myspace Passwords
Online, July 2016. https://www.digitaltrends.com/social-media/myspace-hack-
password-dump/

8. Kelley, P.G., Komanduri, S., Mazurek, M.L., Shay, R., Vidas, T., Bauer, L.,
Christin, N., Cranor, L.F., Lopez, J.: Guess again (and again and again): mea-
suring password strength by simulating password-cracking algorithms. In: IEEE
Symposium on Security and Privacy, pp. 523–537 (2012)

9. Sagitta: Brutalis - GPU Compute Nodes. https://sagitta.pw/hardware/gpu-
compute-nodes/brutalis/

10. Wang, D., Wang, P.: Two birds with one stone: two-factor authentication with
security beyond conventional bound. IEEE Trans. Depend. Secur. Comput. (2017).
https://ieeexplore.ieee.org/document/7558124/

11. Wang, D., Gu, Q., Cheng, H., Wang, P.: The request for better measurement: a
comparative evaluation of two-factor authentication schemes. In: Proceedings of
the 11th ACM on Asia Conference on Computer and Communications Security,
ASIA CCS 2016, pp. 475–486. ACM, New York (2016)

12. Weir, M., Aggarwal, S., de Medeiros, B., Glodek, B.: Password cracking using
probabilistic context-free grammars. In: Proceedings of the 2009 30th IEEE Sym-
posium on Security and Privacy, SP 2009, pp. 391–405. IEEE Computer Society,
Washington, DC (2009)

http://www.wired.co.uk/article/linkedin-data-breach-find-out-included
https://arstechnica.com/security/2016/12/yahoo-reveals-1-billion-more-accounts-exposed-and-some-code-may-have-been-stolen/
https://arstechnica.com/security/2016/12/yahoo-reveals-1-billion-more-accounts-exposed-and-some-code-may-have-been-stolen/
https://www.digitaltrends.com/social-media/myspace-hack-password-dump/
https://www.digitaltrends.com/social-media/myspace-hack-password-dump/
https://sagitta.pw/hardware/gpu-compute-nodes/brutalis/
https://sagitta.pw/hardware/gpu-compute-nodes/brutalis/
https://ieeexplore.ieee.org/document/7558124/

AndroNeo: Hardening Android Malware
Sandboxes by Predicting Evasion

Heuristics

Yonas Leguesse(B), Mark Vella, and Joshua Ellul

University of Malta, Msida 2080, Malta
{yonas.leguesse.05,mark.vella,joshua.ellul}@um.edu.mt

Abstract. Sophisticated Android malware families often implement
techniques aimed at avoiding detection. Split personality malware for
example, behaves benignly when it detects that it is running on an anal-
ysis environment such as a malware sandbox, and maliciously when run-
ning on a real user’s device. These kind of techniques are problematic for
malware analysts, often rendering them unable to detect or understand
the malicious behaviour. This is where sandbox hardening comes into
play. In our work, we exploit sandbox detecting heuristic prediction to
predict and automatically generate bytecode patches, in order to disable
the malware’s ability to detect a malware sandbox. Through the devel-
opment of AndroNeo, we demonstrate the feasibility of our approach
by showing that the heuristic prediction basis is a solid starting point to
build upon, and demonstrating that when heuristic prediction is followed
by bytecode patch generation, split personality can be defeated.

Keywords: Android · Malware sandbox hardening
Sandbox evasion heuristics · Bytecode patching

1 Introduction

Android powers most mobile devices, and has recently surpassed Windows
to become the Internet’s most used operating system [1]. AntiVirus company
McAfee reported [2] that in Q4 (2016) they witnessed a 72% increase of unique
mobile malware samples collected in Q3, with over 2.4 million detections in
Q4 alone. These staggering numbers are rendering automated malware analysis
tools essential for analysts. A popular approach for automated malware analysis
involves the use of malware analysis sandboxes, where the analyst sets up an envi-
ronment in which a malware sample can run whilst its relevant operations and
behaviour is collected for analysis. Neuner et al. [3] provided an interesting com-
parison of available Android malware sandboxes, where system emulation plays
a central role in the provision of a safe inspection environment. Sophisticated
malware often use techniques that allow them to detect and thwart the sand-
box’s analysis. One popular approach is commonly referred to as split-personality
malware [4], where the generic evasion approach is as follows:
c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
G. P. Hancke and E. Damiani (Eds.): WISTP 2017, LNCS 10741, pp. 140–152, 2018.
https://doi.org/10.1007/978-3-319-93524-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93524-9_9&domain=pdf

AndroNeo: Hardening Android Malware Sandboxes 141

if(isSandbox ()){

System.exit ();

} else{

continueMaliciousOperations ();

}

This code pattern allows malware to behave in two different manners, i.e.
executing System.exit() or continueMaliciousOperations(), depending on
whether the environment is a sandbox or not. The distinguishing factors are
established within isSandbox(), which is where the sandbox detection tech-
niques are implemented. These checks can come in the form of a simple one-line
verification or more complex checks such as performance analysis. Further still,
malware can shift malicious operations to event handlers that are only likely to
be triggered on real devices (e.g. SMS received events).

In this work, through the development of AndroNeo, we demonstrate the
ability to automatically generate emulator based sandbox detection techniques,
whilst providing the sandbox with the means to avert and disable the malware’s
split personality capabilities. In other words, we managed to predict the checks
being made within isSandbox(), and ensure that the heuristic checks fail even
when running in a sandboxed environment. This ensures that the behaviour
of continueMaliciousOperations() is exposed to the sandbox probes. More-
over, we demonstrate that Jing’s [5] heuristic prediction basis is a solid starting
point for our work. We analysed a set of a number of real malware samples,
exposing the presence of the identified heuristic data. The results demonstrated
that numerous instances of the malware samples exhibit the use of the discovered
heuristic, indicating the potential use of some sort of emulator or sandbox detec-
tion. We also developed a prototype implementation that takes advantage of data
collected throughout the heuristic prediction process in order to automatically
generate sandbox hardening capabilities. Our evaluation demonstrates that our
proposed technique is able to predict and disable sandbox detecting capabilities
without prior knowledge of the employed heuristic checks.

2 Background and Related Work

2.1 Sandbox Detection

The use of emulation underpins sandbox construction (e.g. Ananas [6] and
Mobile-sandbox [7]), since it easily provides isolation and efficient system state
restoration. However, emulation provides an easy target for malware to evade
sandbox analysis through sandbox detection. For example, Jing et al. [5] devel-
oped a tool (Morpheus) that is able to automatically generate heuristics that
can detect Android emulators. Pestas et al. [8] outlined three categories of eva-
sion techniques based on static properties, dynamic sensor information, and
VM-related intricacies of the Android emulator that can be used for sandbox
detection. Maier et al. [9] developed a tool called Sand-Finger that uses a fin-
gerprinting approach which gathers information on several sandboxes and uses

142 Y. Leguesse et al.

this information to identify which particular sandbox is being used. Vidas and
Christin [10] categorized four classes of sandbox detection techniques based on
differences in behaviour, performance, hardware components, and software com-
ponents. These sandbox detecting techniques are problematic for malware ana-
lysts, since they expose potential weaknesses in their sandboxes, and that is
where sandbox hardening comes into play.

2.2 Sandbox Hardening

Hardened sandboxes are ones that are not so easily bypassed. Gajrani et al.
[11] took this threat into account, and set out to develop techniques that help
malware analysts build a hardened sandbox analysis environment by identify-
ing commonly used sandbox detecting techniques and patching them by apply-
ing emulator modifications, system image modifications, and by applying run-
time hooks. Another sandbox hardening approach involves the use of bare-metal
devices which drops the need of emulation altogether. The bare-metal approach
was applied by Mutti et al. with the tool BareDroid [12]. Kirat et al. [13] mention
how there is a constant tension between the quality, stealthiness, and efficiency
of a malware sandbox. Trying to improve one of the factors often results in com-
promises in the remaining two. A bare-metal approach does bring about many
negative efficiency implications in terms of cost and time. For example, in the
experimentation of BareDroid, the authors mention that a full restore which is
required after every analysis takes 141 s, thus causing a scalability issue. On the
other hand, system restore time on an emulator is almost negligible. They also
mentioned that the quality of the analysis is often adversely affected since probes
that rely on system emulation, such as taint analysis on native code, cannot be
used. Moreover, the use of bare-metal sandboxes can create new sandbox detect-
ing heuristics when attempting to address these issues. It is evident that because
of the advantages provided by system emulation, bare-metal is not a fix-all app-
roach, and emulator based sandboxes will not be fully replaced by bare-metal
ones. In our work, we will be focusing on hardening those that are still based on
emulation.

Sandbox hardening can be applied to different components of a sandbox. One
approach involves the modification of emulator properties [11]. Certain proper-
ties are easy to modify, however others are not modifiable out of the box and
require hardware emulation tweaking. The modifications are sensitive in nature
since any misconfiguration could easily corrupt the system. Besides modifying
the emulator, one may also choose to directly modify the application’s bytecode.
By modifying the sandbox detecting parts of the code directly in the application,
it is possible to force the application into failing sandbox detecting checks, even
when running in a sandbox. Another hardening technique involves patching the
Android Framework. By modifying the Android Framework APIs, one can con-
trol the results of the class method invocations, thus manipulating the sandbox
detection verification checks. Even though this approach can be very effective,
the downside is that it would require custom modifications for every Android
OS version.

AndroNeo: Hardening Android Malware Sandboxes 143

3 AndroNeo

AndroNeo builds upon an evasion heuristic generation technique, Morpheus
[5]. While Morpheus focuses on the automatic generation of sandbox detecting
heuristics, AndroNeo aims to provide automated sandbox hardening capabili-
ties. The proposed technique involves utilising the generated heuristics, as well
as properties obtained throughout the generation process, in order to produce
sandbox hardening patches for the malware’s Dalvik bytecode.

The notion of a distinguisher is a central component: A Distinguisher
refers to a distinctive characteristic that can be used to classify an environment
as a sandbox or an actual device. These distinguishers can fall under one of
two categories: Sandbox Profile Distinguishers, or Device Profile Distinguishers.
Sandbox Profile Distinguishers refer to a set of distinguishers that contain
properties found in most sandboxes environments. In other words, if the system
on which the malware is being analysed contains a property within the Sandbox
Profile, then it is likely that it is in fact a sandbox. On the other hand Device
Profile Distinguishers refer to a set of distinguishers that contain proper-
ties found in most mobile devices. In other words, if the system on which the
malware is being analysed contains a property within the Device Profile, then
it is likely that it is an actual device and not an emulator. As Fig. 1 depicts,
the distinguisher generation stage is split in two phases. The first phase starts
off with a recon task that operates upon samples of real devices and sandboxes
in order to generate recon datasets that contain candidate distinguishers. The
second step of this phase produces the device and sandbox profiles as charac-
terized by the computed profile distinguishers that identify them as such. The
resulting distinguisher profiles are used during a second stage to automatically
harden the sandbox. The distinguisher profiles themselves provide the required
information to locate the patch points and to generate the code patches that
deactivate evasion. The following sections present the individual steps in detail.

3.1 Reconnaissance

Let S be the set of n sample sandboxes, and D be the set of m sample devices,
S = {s1, s2, . . . , sn} and D = {d1, d2, . . . , dm}. Let X represent the set of all
sample sandboxes and devices, i.e. X = S ∪ D.

The reconnaissance (or recon) phase involves the extraction of data from
the sandboxes and devices, that can potentially be used to identify sandboxes.
The recon works by parsing all of the Android API classes [14] in each ele-
ment in S and D, and invoking all of their available methods and reading
of class constants. Every recon execution on a sandbox or device produces
what we refer to as a recon dataset. Let Mx be the set of class constants
and methods of all Android API classes accessible from sandbox or device x:
Mx = {m|m ∈ (ApiMethodCalls ∪ ApiClassConstants),∃x ∈ X}, e.g.: Mx =
{getDeviceId(), . . . , getLineNumber(), Build.DEV ICE, . . . , Build.SERIAL}.
The function v(m,x) denotes the value returned when calling/read-
ing m within the context of x ∈ X, e.g.: v(getDeviceID(), s1) =

144 Y. Leguesse et al.

"000000000000000". The set Rx represents the resulting set of key value
pairs obtained by invoking all methods and constants available for the
device or sandbox x i.e.: Rx = {(m, v(m,x)),∀m ∈ Mx,∃x ∈ X}
e.g.: Rs1 = {(getDeviceId(), "000000000000000"), . . . , (getLineNumber(),
"15555215554")}. The set RX represents the set of all recons from the set
of devices and/or sandboxes in X. i.e.: RX = {Rx|∀x ∈ X}.

Fig. 1. AndroNeo

3.2 Calculating Distinguishers

Let r = (m, v(m,x)) ∈ Rx where m ∈ Mx and x ∈ X. We are interested
in the ratios |rS|

|S| and |rD|
|D| where |rS| and |rD| represent the number of times

r is present in S and D respectively. For example, if getDeviceId() returns
"000000000000000" for every sandbox in our set of sample sandboxes then we
are interested in the ratio |(getDeviceId(),“000000000000000”)S|

|S| = 1. This ratio tells
us that all sandboxes returned the value of "000000000000000", and therefore

AndroNeo: Hardening Android Malware Sandboxes 145

points towards a property that could be used to identify a sandbox, i.e. a sandbox
profile distinguisher.

On the other hand, if for example the value of the class constant Build.TAGS
is "release-keys" for every device in our set of sample devices then we are
interested in the ratio |(Build.TAGS,“release−keys”)D|

|D| = 1. This ratio tells us that
all devices returned the value of "release-keys", and therefore points towards a
property that could be used to identify a device, i.e. a device profile distinguisher.

Sandbox Profile. The set PS represents all sandbox profile distinguishers:
PS = {(m, v) | (m, v) = (m, v(m, si)) ∈ Rsi ,

|rS|
|S| > τ > |rD|

|D| ,∃si ∈ S}. The
elements in PS provide us with a list of properties that can be used to identify
a sandbox. Let us assume that we have a device or sandbox x0, and we want
to determine whether or not x0 is a sandbox. For every (m, v(m,x0)) ∈ Rx0 if
(m, v(m,x0)) ∈ PS then this indicates that x0 is a sandbox.

Device Profile. The set PD represents all device profile distinguishers: PD =
{(m, v) | (m, v) = (m, v(m, dj)) ∈ Rdj

, |rD|
|D| > τ > |rS|

|S| ,∃dj ∈ D}. The elements
in PD provide us with a list of properties that can be used to identify a sandbox,
or rather the lack of a device. Let us assume that we have a device or sandbox
x0, and we want to determine whether or not x0 is a sandbox. Then for every
(m, v(m,x0)) ∈ Rx0 if (m, v(m,x0)) /∈ PD then this indicates that x0 is not a
device, and therefore a sandbox. The Sandbox and Device profiles correspond
to what Morpheus [5] refers to as S-pool and D-pool respectively. Additionally,
our profiles make use of a tunable threshold (τ), and retain the obtained Device
Dataset values for the patch generation phase.

3.3 Patch Generation

Let s0 be the sandbox that requires hardening. Since s0 is in fact a sandbox,
then there is a good chance that for every (m, v) ∈ PS , it is also the case
that (m, v(m, s0)) ∈ PS . These occurrences can provide malware with sandbox
detecting capabilities. In order to hide the presence of these values, we will re-
use data that was collected during the recon phase. For every (m, v) ∈ PS ,
we need to identify a corresponding (m, v(m, di)) ∈ Rdi

, where di ∈ D and
(m, v(m, di)) /∈ PS . The bytecode can then be modified to ensure that for every
(m, v) ∈ PS , v(m, s0) returns v(m, di), thus emulating the value of a real device.

In the case of device profile distinguishers since s0 is a sandbox, then there
is a good chance that for every (m, v) ∈ PD, (m, v(m, s0)) /∈ PD. This time,
the bytecode needs to be modified to in such a way that for every (m, v) ∈ PD,
v(m, s0) returns v, thus emulating the value of a real device (since this time v
indicates a value that is commonly found on devices). The following process is
used to patch the malware’s bytecode:

146 Y. Leguesse et al.

Input: sandbox detecting malware apk
Output: patched malware apk′

bytecode = apk.getBytecode();
for (m, v) ∈ PS do

deviceVal = v(m, di) | (m, v(m, di)) ∈ Rdi ,
∃di ∈ D, and (m, v(m, di)) /∈ PS

bytecode.scan(m).replaceWith(deviceVal);
end
for (m, v) ∈ PD do

bytecode.scan(m).replaceWith(v);
end
return apk.rebuild() -> apk′;

4 Experimentation

A number of experiments were carried out in order to evaluate the capabilities
of automatically generated sandbox detection heuristics, whilst demonstrating
the effectiveness of the hardening process just presented.

4.1 Experiment Setup

We developed an Android application that allowed us to collect data by invoking
all possible Android API class methods and constant values through the use of
the Reflection API. Apktool was used to decode and re-compile the applications,
whilst a number of bash scripts allowed us to patch the smali code generated
through the apktool, according to the identified distinguishers. The environment
in which the experimentation was conducted, consisted of a number of Android
sandboxes and emulators (Sanddroid [15], NVISO ApkScan [16], Droidbox [17],
Android 7.0 Emulator, Android 6.0 Emulator), and a set of Android devices
(Samsung Galaxy S4, Nexus 5x, Nexus 5, Nexus 6P, OnePlus X). Moreover, we
used a set of 7160 real malware samples from VirusShare [18]. In our case studies,
we made use of the popular DroidBox sandbox, which is also the underlying
dynamic analysis tool of several Android sandboxes [3].

4.2 Distinguisher Profiles

In order to validate the relevance of the identified profile distinguishers and
test their potential in identifying evasion checks, we cross-checked our findings
against the malware samples. Table 1 enlists the results of the top 10 sandbox
profile distinguishers. The results were calculated by identifying the number of
malware samples that contained instances of (m, v) ∈ PS , where both m and
v are found in the same class. For example, the results show that out of the
7160 malware samples, we found 2395 applications that invoked the method
getDeviceId(). The invocation of this method on its own is not necessarily sus-
picious, however when we see that 794 of these applications also looked for the
string "000000000000000" within the same class, then this fact increases the

AndroNeo: Hardening Android Malware Sandboxes 147

likelihood that this call is made for emulator detection purposes. The numbers
in Table 1, are somewhat conservative since they only represent cases where both
instances of the invocation (e.g.: getDeviceId()) and the corresponding distin-
guisher value (e.g.: "000000000000000") were found to be in the same class.
There may very well be a few additional cases where the distinguisher values are
defined in a class different to the distinguisher method/field invocation. More-
over, there is also the possibility that the distinguisher values are encrypted or
hashed, and are therefore not identified during the crosscheck against the mal-
ware samples. Nevertheless, when it comes to the actual patching, these cases
will still be patched using the bytecode modification approach, since it is the
field or method call (e.g.: getDeviceId()) that is being modified. These results
show that it is very likely that the automatically generated heuristics are being
used to detect sandboxes or emulators by malware families in the wild, providing
validity to Jing’s [5] assumptions.

Table 1. Sandbox profile distinguishers in malware samples

Method/field Count Value Count

Build.MODEL 2478 sdk 2352

getDeviceId 2395 000000000000000 794

getNetworkOperatorName 1522 Android 665

Build.DEVICE 1150 generic 594

Build.BOARD 992 unknown 561

Build.MANUFACTURER 1404 unknown 255

Build.CPU ABI 306 x86 95

getSubscriberId 1830 310260000000000 53

getSimOperatorName 432 Android 23

Build.TAGS 378 test-keys 17

4.3 Case Studies

In order to verify that the detected profile distinguishers contain actual evasion
checks, and that the proposed patch generation step effectively deactivates them,
we chose two representative samples and conducted a more in-depth investiga-
tion. We chose the samples on the basis that they form part of two widespread
malware families, Crosate and Pincer, as well as the availability of thorough doc-
umentation [19] of their behaviour. This information provides the ground truth
with which to compare the results obtained by AndroNeo. Through Droidbox,
we proceeded with analyzing both the original and patched samples, with the
resulting behaviour observed in both instances being compared to the ground
truth. We generated a bytecode hardening class, containing the data neces-
sary for AndroNeo to spoof the return values of the identified distinguishers

148 Y. Leguesse et al.

(i.e. bytecode.scan(m).replaceWith(v) step in Sect. 3 C). The code below is
a snippet from the hardening class.

Field Declarations

const -string v0, "release -keys"

sput -object v0, Lharden/Harden;->FIELD18:Ljava/lang/String;

....

Method Declarations

.method public static method14 () Ljava/lang/String;

....

const -string v0 , "353627074120224"

return -object v0

.end method

Crosate. Crosate is a bot with the ability to steal SMSs, call logs, contact
information, send SMS, record a call, and makes a phone call. However, when
executing in DroidBox, it terminates itself, thus hiding all bot to Command and
Control (CNC) communication. The listing below contains Crosate’s code where
the sandbox detection check is made:

public void onCreate () {

....

String BotID = tm.getDeviceId ();

....

if (BotID.indexOf("000000000000000") != -1) {

System.exit (0);

}

In the last three lines the application checks the value of BotID, which returns
the value of getDeviceId() (i.e. the phone’s IMEI). If it finds that the IMEI
contains "000000000000000" then it calls System.exit(0). The listing below
contains the code of the patched version of Crosate:

public void onCreate () {

....

String BotID = AGHardening.method14 ();

....

if (BotID.indexOf("000000000000000") != -1) {

System.exit (0);

}

Here one can see that again the code checks the value of BotID and com-
pares it with "000000000000000". However, this time BotID is not returning
getDeviceId(), but is instead invoking method14() from our hardening class.
As we saw earlier, method14() now returns "353627074120224" instead of the
sandbox’s IMEI. Therefore, in our patched version the check will fail and the
System.exit(0) method will not be invoked, thus performing all of the malicious
operations as it would on a actual device. The application also calls several other
methods such as getLineNumber1() and getNetworkOperatorName(), which
can also be used to identify a sandbox. All of these instances were replaced with

AndroNeo: Hardening Android Malware Sandboxes 149

their corresponding device values found in the hardening class. Comparing the
analysis report of the original Crosate sample and the hardened version exposed
the difference in their behaviour. The original version showed very little activity,
and the entire report only produced 21 log entries. On the other hand, the mod-
ified version produced 191 log entries, which clearly showed additional activities
and services being started, as well as device data being exfiltrated. As confirmed
by a review of the malware’s code, the results demonstrated that the additional
170 log entries were generated by the services and activities that were only
launched if the sandbox detecting code failed, and thus the System.exit(0)
was not invoked. This also corresponded to the expected behaviour as docu-
mented by Nigam [19]. This demonstrates the successful automatic patching
of the malware’s sandbox detecting capabilities, exposing the malware’s split
personalities.

Pincer. Pincer is another bot that only communicates with the CNC server
when it detects that the device is an actual device and not a sandbox. Therefore,
our assumption was that we would only see network communication with the
CNC once we patched the malware sample. The listing below outlines the several
checks that Pincer invokes in order to distinguish between a sandbox and a
device. Fortunately, our tool was able to predict these checks and patch them
accordingly.

if (C0024b.m108d(context). toLowerCase (). equals("android")

|| C0024b.m106b(context). equals(" 000000000000000")

|| C0024b.m107c(context). equals("15555215554")

|| AGHardening.FIELD21.toLowerCase (). equals("sdk")

|| AGHardening.FIELD21.toLowerCase (). equals("generic")) {

C0018a.m68a(context , true);

} else {C0014a.m50a(context , jSONObject , new C0023d ());}

The listing below shows the methods from where the distinguishers are
invoked, and how they were identified and modified.

public static String m106b(Context context) {

return AGHardening.method14 ();

}

public static String m107c(Context context) {

return AGHardening.method6 ();

}

public static String m108d(Context context) {

return AGHardening.method8 ();

}

Therefore, all of the methods and constants involved in the sandbox detecting
checks were replaced with our methods and fields in the hardening class, forcing
them to return actual device values instead of the sandbox’s values. Pincer was
an interesting case study since initially both the patched and original versions
seemed to return the same logs. The patching itself did not fail. However, the
parts of the code where the split personality occur are only executed once a

150 Y. Leguesse et al.

command is received from the CNC. Only once we simulated the receipt of a
CNC command could we observe the differences in behaviour. This issue falls
outside the scope of AndroNeo, however it is included in the scope extension.
Comparing the analysis report of the original Pincer sample and the hardened
version exposed the difference in behaviour. The original version did not show
any network communication corresponding to our simulated CNC commands.
The modified version, on the other hand, reported the network connections and
the IP addresses of the CNC, and responded to the commands that we requested.
Moreover, the modified version also attempted to access image files on the SD
card, a behaviour that was not present in the original version. Once again this
case study clearly demonstrates the successful patching of the malware’s sandbox
detecting capabilities, exposing the malware’s split personalities. The patched
malware’s behaviour corresponded to the expected behaviour as documented by
Nigam [19].

It is important to note that in our tests the detection and patching of dis-
tinguishers was done in an automated manner. The identified distinguishers
retrieved from our sample sandboxes and devices were able to predict and patch
the sandbox detection techniques used by these malware samples without being
explicitly told what to look for.

5 Scope Extension

5.1 Limitations

Even though the evaluation produced promising results, and the prototype suc-
cessfully patched well known malware samples in an automated manner, one
must bear in mind that heavily obfuscated malware within scope is not cur-
rently handled. There still exist evasion techniques that may not be identified
and patched in the current implementation. For example, malware obfuscation
through the use of native code, direct Binder IPC invocations, or malware pack-
ers will not be handled by the prototype. Another limitation is that currently our
recon implementation only utilises Java reflection in order to invoke the methods
and class fields and collect system information. Morpheus’s artefact collector on
the other hand implements additional techniques, such as the use of a directory
walker that identifies the presence of emulator specific files and folders, in order
to generate heuristics based on these artefacts.

5.2 Proposed Extensions

AndroNeo is planned to be extended subject to further experimentation in the
following ways:

Improve Bytecode Patching. In its current state AndroNeo is not able to
tackle self-modifying malware that implement techniques such as runtime class
loading to hide its malicious code. To overcome this, AndroNeo would need to
implement a form of dynamic patching.

AndroNeo: Hardening Android Malware Sandboxes 151

Implement All of Morpheus’ Artefact Retrievers. Extending AndroNeo
to include other such sources of system information, such as the ones imple-
mented by Morpheus, could generate additional heuristics.

Extend to All Sandbox Detecting Techniques. The current scope is limited
to hardening sandbox detecting techniques based on static emulator properties.
However, the proposed methodology can be evolved to tackle event-based, or
user presence based techniques. Whether or not heuristic prediction can tackle
these types of evasion techniques requires further investigation. Alternatively, an
interesting avenue could involve merging our techniques with other techniques,
such as the one proposed by Pooryousef and Amini [20], that are aimed at tack-
ling the exposure of event-driven actions. Moreover, one could extend AndroNeo
to build upon alternative heuristic generation techniques [21] in order to patch
their corresponding generated heuristics.

6 Conclusion

Android malware families demonstrate the ability of detecting malware anal-
ysis sandboxes using detection heuristics. To tackle this problem we presented
AndroNeo, a tool that automatically hardens malware analysis sandboxes to dis-
able the malware’s sandbox detection capabilities. AndroNeo identifies sandbox
detecting capabilities within an Android application and alters and disables its
functionality. Moreover, we presented a prototype implementation of AndroNeo
demonstrating its capabilities on real malware families. AndroNeo would benefit
from straightforward extensions in terms of complete reuse of Morpheus, and
other extensions requiring further thought, such as the ability to patch event-
based, or user presence based sandbox detecting techniques.

References

1. Techcrunch: Android overtakes windows as the internet’s most used operating sys-
tem. https://techcrunch.com/2017/04/03/statcounter-android-windows. Accessed
01 May 2017

2. Mcafee. 2016 mobile threat report. https://www.mcafee.com/us/resources/
reports/rp-mobile-threat-report-2016.pdf. Accessed 02 May 2017

3. Neuner, S., van der Veen, V., Lindorfer, M., Huber, M., Merzdovnik, G., Mulaz-
zani, M., Weippl, E.R.: Enter sandbox: Android sandbox comparison. CoRR,
abs/1410.7749 (2014)

4. Maier, D., Protsenko, M., Muller, T.: A game of droid and mouse: the threat of
split-personality malware on android. Comput. Secur. 54, 2–15 (2015)

5. Jing, Y., Zhao, Z., Ahn, G.-J., Hu, H.: Morpheus: automatically generating heuris-
tics to detect android emulators. In: Proceedings of the 30th Annual Computer
Security Applications Conference, pp. 216–225. ACM (2014)

6. Eder, T., Rodler, M., Vymazal, D., Zeilinger, M.: Ananas-a framework for analyz-
ing android applications. In: 2013 Eighth International Conference on Availability,
Reliability and Security (ARES), pp. 711–719. IEEE (2013)

https://techcrunch.com/2017/04/03/statcounter-android-windows
https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf
https://www.mcafee.com/us/resources/reports/rp-mobile-threat-report-2016.pdf

152 Y. Leguesse et al.

7. Spreitzenbarth, M., Freiling, F., Echtler, F., Schreck, T., Hoffmann, J.: Mobile-
sandbox: having a deeper look into android applications. In: Proceedings of the 28th
Annual ACM Symposium on Applied Computing, pp. 1808–1815. ACM (2013)

8. Petsas, T., Voyatzis, G., Athanasopoulos, E., Polychronakis, M., Ioannidis, S.: Rage
against the virtual machine: hindering dynamic analysis of android malware. In:
Proceedings of the Seventh European Workshop on System Security, p. 5. ACM
(2014)

9. Maier, D., Muller, T., Protsenko, M.: Divide-and-conquer: why android malware
cannot be stopped. In: 2014 Ninth International Conference on Availability, Reli-
ability and Security (ARES), pp. 30–39. IEEE (2014)

10. Vidas, T., Christin, N.: Evading android runtime analysis via sandbox detection.
In: Proceedings of the 9th ACM Symposium on Information, Computer and Com-
munications Security, pp. 447–458. ACM (2014)

11. Gajrani, J., Sarswat, J., Tripathi, M., Laxmi, V., Gaur, M.S., Conti, M.: A robust
dynamic analysis system preventing sandbox detection by android malware. In:
Proceedings of the 8th International Conference on Security of Information and
Networks, pp. 290–295. ACM (2015)

12. Mutti, S., Fratantonio, Y., Bianchi, A., Invernizzi, L., Corbetta, J., Kirat, D.,
Kruegel, C., Vigna, G.: Baredroid: large-scale analysis of android apps on real
devices. In: Proceedings of the 31st Annual Computer Security Applications Con-
ference, pp. 71–80. ACM (2015)

13. Kirat, D., Vigna, G., Kruegel, C.: Barebox: efficient malware analysis on bare-
metal. In: Proceedings of the 27th Annual Computer Security Applications Con-
ference, pp. 403–412. ACM (2011)

14. Anrdroid API classes. https://developer.android.com/reference/classes.html.
Accessed 01 May 2017

15. Sandroid: Android malware sandbox. http://sanddroid.xjtu.edu.cn. Accessed 01
Mar 2017

16. Nviso apkscan, scan android applications for malware. https://apkscan.nviso.be/.
Accessed 01 May 2017

17. Droidbox: Dynamic analysis of android applications. https://github.com/pjlantz/
droidbox. Accessed 01 May 2017

18. Virusshare.com - because sharing is caring. https://virusshare.com/. Accessed 01
May 2017

19. Nigam, R.: A timeline of mobile botnets. Virus Bulletin, March 2015
20. Pooryousef, S., Amini, M.: Enhancing accuracy of android malware detection

using intent instrumentation. In: Proceedings of the 3rd International Conference
on Information Systems Security and Privacy - Volume 1, ICISSP, pp. 380–388.
INSTICC, ScitePress (2017)

21. Paleari, R., Martignoni, L., Roglia, G.F., Bruschi, D.: A fistful of red-pills: how to
automatically generate procedures to detect CPU emulators. In: USENIX Work-
shop on Offensive Technologies (WOOT) (2009)

https://developer.android.com/reference/classes.html
http://sanddroid.xjtu.edu.cn
https://apkscan.nviso.be/
https://github.com/pjlantz/droidbox
https://github.com/pjlantz/droidbox
https://virusshare.com/

Protocols and Algorithms

A More Efficient 1–Checkable Secure
Outsourcing Algorithm for Bilinear Maps

Öznur Kalkar1(B), Mehmet Sabir Kiraz1, İsa Sertkaya1,
and Osmanbey Uzunkol2

1 Mathematical and Computational Sciences, TÜBİTAK BİLGEM, Kocaeli, Turkey
{oznur.arabaci,mehmet.kiraz,isa.sertkaya}@tubitak.gov.tr

2 Faculty of Mathematics and Computer Science, FernUniversität in Hagen,
Hagen, Germany

osmanbey.uzunkol@gmail.com

Abstract. With the rapid advancements in innovative technologies like
cloud computing, internet of things, and mobile computing, the paradigm
to delegate the heavy computational tasks from trusted and resource-
constrained devices to potentially untrusted and more powerful services
has gained a lot of attention. Ensuring the verifiability of the outsourced
computation along with the security and privacy requirements is an
active research area. Several cryptographic protocols have been proposed
by using pairing-based cryptographic techniques based on bilinear maps
of suitable elliptic curves. However, the computational overhead of bilin-
ear maps forms the most expensive part of those protocols. In this paper,
we propose a new 1–checkable algorithm under the one-malicious version
of a two-untrusted-program model. Our solution is approximately twice
as efficient as the single comparably efficient 1–checkable solution in the
literature, and requires only 4 elliptic curve point additions in the preim-
age and 6 field multiplications in the image of the bilinear map.

Keywords: Outsourcing computation · Bilinear maps · Security
Privacy

1 Introduction

The flexibility of cloud computing comes with innovative and cost-effective solu-
tions for both individuals and enterprises. The main advantages include ubiqui-
tous and on-demand network access, using resources in a pay-per manner, scal-
ability of the underlying services, location independence, and rapid elasticity
[21]. Accordingly, the proposals to delegate the mostly expensive and sometimes
energy consuming computations from trustful resource-constrained devices (e.g.,
sensors, RFID cards, SIM cards) to untrusted or even malicious external appli-
cations and services (e.g., cloudlets, large scale cloud service providers) have
been increasing dramatically. The demand of weak clients to outsource costly
computational tasks to external powerful services while preserving security and

c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
G. P. Hancke and E. Damiani (Eds.): WISTP 2017, LNCS 10741, pp. 155–164, 2018.
https://doi.org/10.1007/978-3-319-93524-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93524-9_10&domain=pdf

156 Ö. Kalkar et al.

privacy becomes more and more crucial in accordance with the interplay of cloud
computing paradigm with the new advancements and novel solutions in internet
of things (IoT) and mobile technologies. In order to assure security and privacy
in such scenarios, the most crucial part of the underlying cryptographic tech-
niques is not to get the private cryptographic values out of the secure memory.
Therefore, one can only apply masking techniques in such a way that it can
be outsourced to a (potentially) untrusted server to perform further compu-
tations. However, one also has to verify simultaneously that the computations
are indeed correct without having an additional significant overhead. Hence,
efficiently verifiable outsourcing to untrusted or even malicious services while
ensuring the desired level of security and privacy has become a subject of many
recent research activities, and forms a new challenge especially in the presence
of malicious services [9,18] (Fig. 1).

Fig. 1. A typical verifiable outsourcing mechanism with two servers

Many cryptographic applications realizing novel security and privacy solu-
tions demand to use pairing-based primitives in order to overcome different chal-
lenges in the realm of cloud computing, internet of things and mobile technolo-
gies. Pairing-based cryptography is realized by using bilinear maps of carefully
chosen elliptic curves [6,7,15]. Computing such bilinear maps is the most ineffi-
cient and expensive part of those solutions. Although, there are plenty of research
results aiming to reduce the computational cost of the computation of bilinear
maps [3,4,7,13,17], these computations are still far away of being feasible for
resource-constrained environments. Even worse, new research results imply that
the key sizes must be increased to achieve the desired security level [2].

1.1 Related Work

Hohenberger and Lysyanskaya gave the first formal security model for secure
and verifiable outsourcing of cryptographic computations in the presence of

A More Efficient 1–Checkable Secure Outsourcing Algorithm 157

malicious powerful devices or services [14]. Subsequently, Chevallier-Mames et al.
proposed the first cryptographic protocol for outsourcing the computation of
bilinear maps [11]. However, this delegation process brought some additional
challenges. Firstly, no sensitive informations has to be revealed to the untrusted
parties. However, one needs to establish a mechanism in which the validity of
the outsourced computation can effectively be verified by the client, since the
external device can otherwise cheat the client by deliberately manipulating the
desired result.

Chen et al. classified the security models based on the number of servers
being involved in the outsourcing process [10]:

– One-Untrusted Program (OUP): There exists a single malicious server per-
forming the delegated computation.

– One-Malicious version of a Two-Untrusted Program (OMTUP): There exist
two untrusted servers performing the delegated computation but exactly one
of them may also behave maliciously.

– Two-Untrusted Program (TUP): There exist two untrusted servers perform-
ing the delegated computation and both of them may simultaneously behave
maliciously, but they do not maliciously collude.

Tian et al. improves the checkability result of the work of Chen et al. [10]
with some additional computations under the TUP assumption in [25]. Both
studies have two main phases; offline computation and online computation. In
the offline phase, the client prepares some precomputed values. The online phase
consists of masking the sensitive values and using the precomputed values from
the offline phase to prepare the necessary requests. Both algorithms suffer from
being only probabilistically checkable implementations (both are 1/2–checkable
implementations). However, as outlined by Canard et al. [8], an outsourcing algo-
rithm not ensuring sufficient checkability property could lead to severe security
issues especially in the case of authentication protocols. Hence, it is highly desir-
able to have an efficient outsourcing mechanism having 1–checkable property,
i.e. potentially malicious external services can never cheat the clients since the
verification of the outsourced computation works with probabilty 1.

Chevallier-Mames et al. proposed the first 1–checkable outsourcing mecha-
nism for bilinear maps in the OUP setting [11] which subsequently was improved
by Kang et al. [16] and Canard et al. [8]. These mechanisms suffer unfortunately
from being inefficient since directly embedding the computation of bilinear maps
inside the trusted devices are more efficient than utilizing their outsourcing
mechanism.

Chen et al. used two servers under the OMTUP assumption with an offline
phase to propose a 1/2–checkable outsourcing mechanism using 5 point additions
in the preimage of the bilinear map and 4 multiplications in the image of the
bilinear map. A similar 1/2–checkable result was later proposed by Tian et al. [25]
improving the online phase with 4 point additions in the preimage of the bilinear
map and 3 multiplications in the image of the bilinear map. Subsequently, Lin et
al. also proposed another 1/2–checkable outsourcing mechanism improving the
tuple-sizes and offline phase of the previous mechanisms [19].

158 Ö. Kalkar et al.

Recently, Luo et al. proposed the first efficient 1–checkable outsourcing mech-
anism for bilinear maps under the OMTUP assumption requiring only 8 point
additions in the preimage of the bilinear map and 6 multiplications in the image
of the bilinear map [20].

1.2 Our Contributions

In this paper, we propose a new and highly efficient outsourcing mechanism for
bilinear maps following the steps of Chen et al. and Tian et al.’s work. The main
advantage our mechanism is to provide 1–checkability property which ensures
that external servers never can cheat the users. Our 1–checkable outsourcing
mechanism is given under the OMTUP assumption for bilinear maps. Compared
to the only efficient solution of Luo et al. [20], our mechanism is approximately
twice more efficient requiring only 4 point additions in the preimage of the bilin-
ear map and 6 multiplications in the image of the bilinear map. Furthermore,
our mechanism is almost as efficient as existing 1/2–checkable solutions. In par-
ticular, our mechanism only needs 3 more multiplications in the image of the
bilinear map in order to achieve a 1–checkable outsourcing algorithm.

2 Security Model

We follow the security model proposed by Hohenberger and Lysyanskaya [14],
and we use one-malicious version of a two-untrusted program (OMTUP) model.
More concretely, there are two untrusted cloud servers in this model performing
the outsourced computation where only one of them is assumed to be malicious.

Definition 1. A pair of algorithms (T,U1, U2) are an α-efficient implementa-
tion of an algorithm Alg if (1) they are an outsource-secure implementation of
Alg, and (2) ∀ inputs x, the running time of T is ≤ an α-multiplicative factor
of the running time of Alg(x).

Definition 2. A pair of algorithms (T,U1, U2) are an β-checkable implementa-
tion of an algorithm Alg if (1) they are an outsource-secure implementation of
Alg, and (2) ∀ inputs x, if U ′

i , i = 1, 2 deviates from its advertised functionality
during the execution of T (U ′

1,U ′
2)(x), T will detect the error with probability ≥ β.

Definition 3. A pair of algorithms (T,U1, U2) are an (α, β)-outsource secure
implementation of an algorithm Alg if they are both α-efficient and β-checkable.

3 Verifiable Secure Outsourcing of Bilinear Maps

3.1 Bilinear Maps

Definition 4. Let (G1,+) and (G2,+) be two additive cyclic groups of order
q and (G3, ·) be a multiplicative cyclic group of order q, where q is a prime
number. Let also P1 and P2 be generators of G1 and G2, respectively. Assume
that Discrete Logarithm Problem (DLP) is hard in both G1 and G2. A bilinear
map is a map e : G1 × G2 → G3 satisfying the following properties [5,12,24]:

A More Efficient 1–Checkable Secure Outsourcing Algorithm 159

– Bilinearity: For all P, P ′ ∈ G1, Q,Q′ ∈ G2, e is a group homomorphism in
each component, i.e.
1. e(P + P ′, Q) = e(P,Q) · e(P ′, Q),
2. e(P,Q + Q′) = e(P,Q) · e(P,Q′).

– Non-degeneracy: e is non-degenerate in each component, i.e.,
1. For all P ∈ G

∗
1, there is an element Q ∈ G2 such that e(P,Q) �= 1,

2. For all Q ∈ G
∗
2, there is an element P ∈ G1 such that e(P,Q) �= 1.

– Computability: There exists an algorithm which computes the bilinear map
e efficiently.

3.2 Precomputations

In order to speed up the algorithms, some computations are required to be
performed offline. For this, we will use BPV+ method proposed by Wang et al.
[26] and applied by Tian et al. [25]. BPV+ uses two tables; a static table ST , and
a dynamic table DT . Values in the static table are used to construct the values
in the dynamic table. After each invocation of Rand(), values in the dynamic
table needs to be refreshed in an idle time of the device. Dynamic table consists
of the following tuple:

(αP1, xP1, yP1, αP1 − xP1, αP1 − yP1,mP2, nP2, βP2, e(P1, P2)αβ).

Rand. We now describe the precomputation algorithm called Rand(). At each
invocation of Rand(), a tuple is returned and removed from the dynamic table.
Then, at some convenient time, a new tuple is created from the values in the
static table and stored in the dynamic table. Below, we describe the creation
process of static and dynamic tables.

– Preprocessing:
1. Generate n random elements α1, · · · , αn ∈ Zq.
2. For j = 1, · · · , n compute βj1 = αjP1, j2 = αjP2.
3. Compute e(P1, P2).
4. Store the values of αj , βj1 , βj2 and, e(P1, P2) in the static table ST.

– Point generation:
1. Randomly generate S ⊂ {1, · · · , n} such that |S| = k.
2. For each j ∈ S, randomly select Kj ∈ {1, · · · , h − 1}, where h > 1 is a

small integer.
3. Compute

α =
∑

j∈S

αjKj mod q.

If α = 0 mod q, start again. Otherwise, compute

αP1 ≡
∑

j∈S

Kj · βj1 mod q.

160 Ö. Kalkar et al.

4. Following the above procedure, compute similarly the elements
xP1, yP1,mP2, nP2, βP2.

5. Compute αP1 − xP1, αP1 − yP1.
6. Calculate e(P1, P2)αβ .
7. Store (αP1, xP1, yP1, αP1 − xP1, αP1 − yP1,mP2, nP2, βP2, e(P1, P2)αβ)

in the dynamic table DT.

3.3 Our Algorithm: OutPair

Let T denote the trusted device with limited computational power which wants
to outsource the pairing computation, Ui(M,N) → e(M,N), i ∈ {1, 2}
denotes untrusted party Ui taking (M,N) as input and returning e(M,N).

Our algorithm OutPair takes A ∈ G1, B ∈ G2 as inputs and produces e(A,B)
as output.

1. T runs Rand() in order to get the following values:

(αP1, xP1, yP1, αP1 − xP1, αP1 − yP1,mP2, nP2, βP2, e(αP1, βP2)).

2. T computes
A − αP1, B − nP2, B − mP2, B − βP2,

and queries U1 in random order as follows:

– U1(A − αP1,mP2) → A11,
– U1(A − αP1, B − nP2) → A12,
– U1(αP1 − xP1, B − βP2) → A13,
– U1(yP1, B − βP2) → A14.

Then similarly, T queries U2 in random order as follows:
– U2(A − αP1, nP2) → A21,
– U2(A − αP1, B − mP2) → A22,
– U2(αP1 − yP1, B − βP2) → A23,
– U2(xP1, B − βP2) → A24.

3. Upon receiving computation results from both servers, T checks if
– A11A22

?= A21A12,
– A13A24

?= A23A14.
If the check is not successful, then T outputs an “error”. Otherwise, T com-
putes and outputs

A11A22A13A24e(P1, P2)αβ .

A More Efficient 1–Checkable Secure Outsourcing Algorithm 161

3.4 Security Analysis

Theorem 1. Under the OMTUP assumption, the algorithms (T, (U1, U2)) are
an outsource-secure 1–checkable implementation of OutPair for calculating the
bilinear map e(A,B) = OutPair(A,B), where the input (A ∈ G1, B ∈ G2) may
be honest secret, honest protected, or adversarial protected.

Proof. The correctness of (T, (U1, U2)) is straight forward. If T wants to evalu-
ate e(A,B), at the last step of OutPair T needs to compute D1D2e(P1, P2)αβ .
Taking D1,D2, α, β as defined in OutPair:

D1D2e(P1, P2)
αβ = A11A22A13A24e(P1, P2)

αβ

= e(A − αP1, mP2)e(A − αP1, B − mP2)e(αP1 − xP1, B − βP2)

e(xP1, B − βP2)e(P1, P2)
αβ

= e(A − αP1, B)e(αP1, B − βP2)e(P1, P2)
αβ

= e(A, B)e(αP1,−βP2)e(P1, P2)
αβ

= e(A, B).

Next, we prove the security of the algorithm as follows. First of all, let
(E,U ′

1, U
′
2) be a probabilistic polynomial-time (PPT) adversary that interacts

with a PPT algorithm T in the OMTUP model, and S1, S2 be the simulators in
Pair One, Pair Two, respectively.

– Pair One: We below show that EV IEW i
real

∼EV IEWideal to ensure that the
external adversary E learns nothing.
If the input (A,B) is honest protected, or adversarial protected, then the simu-
lator S1 behaves the same way as in the real execution. There is no secret input,
so S1 does not require to access secret inputs. Hence, suppose that (A,B) is an
hones secret input. Then the simulator S1 behaves as follows: Upon receiving
the input in round i, S1 ignores it, selects a series of random points of the form
((a − a1)P1, b1P2, (b − b2)P2, (a1 − a2)P1, b3P2, a3P1, b2P2, (b − b1)P2, (a1 −
a3)P1, a2P1), and makes the following queries to U ′

1 and U ′
2.

• U1((a − a1)P1, b1P2) → A11,
• U1((a − a1)P1, (b − b2)P2) → A12,
• U1((a1 − a2)P1, b3P2) → A13,
• U1(a3P1, b3P2) → A14.
• U2((a − a1)P1, b2P2) → A21,
• U2((a − a1)P1, (b − b1)P2) → A22,
• U2((a1 − a3)P1, b3P2) → A23,
• U2(a2P1, b3P2) → A24.

If A11A22 = A21A12 and A13A24 = A23A14, S1 sets Y i
p = ∅, Y i

u = ∅, repi = 0;
otherwise S1 sets Y i

p = error, Y i
u = ∅, repi = 1. For both cases, S1 saves the

appropriate states. In the real and ideal experiments, the input distributions
are computationally indistinguishable for U ′

1 and U ′
2. In the ideal experiment,

inputs are chosen uniformly random. In the real experiment, inputs that are
generated by Rand are re-randomized. In the i−th round, there are two pos-
sibilities:

162 Ö. Kalkar et al.

• U ′
1 and U ′

2 performs honestly: S1 gives the correct output which is the
same as the output of (T, (U1, U2)).

• One of U ′
1 and U ′

2 gives an incorrect output: In the ideal experiment, S1

detects the mistake and result in “error”. In the real experiment, T does
the same thing.

Thus, EV IEW i
real

∼EV IEW i
ideal and by the hybrid argument, we conclude

that EV IEWreal∼EV IEWideal.
– Pair Two: We now show that UV IEWreal∼UV IEWideal which ensures that

the untrusted software (U1, U2) learns no information.
Upon receiving an input on round i, S2 behaves exactly like S1, generates
random inputs and saves the appropriate states. Also, In the ith round of
the real experiment, T re-randomizes the inputs to (U ′

1, U
′
2). Hence, for each

round i, we have UV IEW i
real

∼UV IEW i
ideal. Hence, by the hybrid argument,

we conclude that UV IEWreal∼UV IEWideal. ��

4 Comparison

For the comparison table in Fig. 2, we use the following abbreviations:

– SM: Scalar multiplication in G1,G2

– ME: Modular exponentiation in G3

– PA: Point addition in G1,G2

– PC: Pairing computation
– FM: Field multiplication in G3

Also, k is the size of the set used at step 1 of point generation, and h is the
size of the set used at step 2 of point generation. For a more detailed explanation
of k, h we refer to [22].

Chen[10] Tian[25] AKSU[1] Lin[19] Luo[20] Ren[23] OutPair

Checkability
1/2 1/2 1/2 1/2 1 1 1

Client’s Workload
PA 5 4 4 4 8 8 4
FM 4 3 3 3 6 14 6

Servers’s Workload
PC 8 6 4 6 4 6 8
ME 0 0 0 0 0 4 0

Precomputations
SM 9 3 2 2 0 8 0
ME 0 2 2 2 1 0 1
PA 0 5(k+h-3) 4(k+h-3) 4(k+h-3) 2(k+h-3) + 2 0 6(k+h-3) + 2
PC 3 0 0 0 0 6 0

Fig. 2. Comparison of OutPair with the state-of-the-art schemes

A More Efficient 1–Checkable Secure Outsourcing Algorithm 163

As one can see from the comparisons, we achieve the 1–checkability property
by reducing the client’s workload in the online phase at the expense of adding
small computational overhead to the offline phase.

5 Conclusion

In this paper, we propose a highly efficient outsourcing algorithm for bilin-
ear maps with 1–checkability property. Our 1–checkable outsourcing mechanism
basically ensures that external servers never can cheat the honest clients. Com-
pared to the state-of-the-art, our mechanism is approximately twice more effi-
cient requiring only 4 elliptic curve point additions in the preimage of the bilinear
map and 6 field multiplications in the image of the bilinear map. Furthermore,
our mechanism is almost as efficient as existing 1/2–checkable solutions. In par-
ticular, our mechanism only needs 3 more multiplications in the image of the
bilinear map. For future work, it is interesting and highly desirable to propose
such efficient algorithms in the presence of only one untrusted server, i.e. in the
One-Trusted Program (OUP) assumption.

References

1. Arabacı, O., Kiraz, M.S., Sertkaya, I., Uzunkol, O.: More efficient secure outsourc-
ing methods for bilinear maps. Cryptology ePrint Archive, Report 2015/960 (2015).
http://eprint.iacr.org/2015/960

2. Barbulescu, R., Duquesne, S.: Updating key size estimations for pairings. Cryptol-
ogy ePrint Archive, Report 2017/334 (2017). http://eprint.iacr.org/2017/334

3. Barreto, P., Galbraith, S., Higeartaigh, C., Scott, M.: Efficient pairing computation
on supersingular abelian varieties. Des. Codes Cryptogr. 42(3), 239–271 (2007).
https://doi.org/10.1007/s10623-006-9033-6

4. Beuchat, J.-L., González-Dı́az, J.E., Mitsunari, S., Okamoto, E., Rodŕıguez-
Henŕıquez, F., Teruya, T.: High-speed software implementation of the optimal ate
pairing over Barreto–Naehrig curves. In: Joye, M., Miyaji, A., Otsuka, A. (eds.)
Pairing 2010. LNCS, vol. 6487, pp. 21–39. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17455-1 2

5. Blake, I., Seroussi, G., Smart, N.: Advances in Elliptic Curve Cryptography. Lon-
don Mathematical Society Lecture Note Series. Cambridge University Press, New
York (2005)

6. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. J. Cryp-
tol. 17(4), 297–319 (2004). https://doi.org/10.1007/s00145-004-0314-9

8. Canard, S., Devigne, J., Sanders, O.: Delegating a pairing can be both secure and
efficient. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS,
vol. 8479, pp. 549–565. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
07536-5 32

9. Chen, X.: Introduction to secure outsourcing computation. Synth. Lect. Inf. Secur.
Priv. Trust 8(2), 1–93 (2016)

http://eprint.iacr.org/2015/960
http://eprint.iacr.org/2017/334
https://doi.org/10.1007/s10623-006-9033-6
https://doi.org/10.1007/978-3-642-17455-1_2
https://doi.org/10.1007/978-3-642-17455-1_2
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/978-3-319-07536-5_32
https://doi.org/10.1007/978-3-319-07536-5_32

164 Ö. Kalkar et al.

10. Chen, X., Susilo, W., Li, J., Wong, D., Ma, J., Tang, S., Tang, Q.: Efficient algorithms
for secure outsourcing of bilinear pairings. Theor. Comput. Sci. 562, 112–121 (2015).
http://dblp.uni-trier.de/db/journals/tcs/tcs562.html#ChenSLWMTT15

11. Chevallier-Mames, B., Coron, J.S., McCullagh, N., Naccache, D., Scott, M.: Secure
delegation of elliptic-curve pairing. Cryptology ePrint Archive, Report 2005/150
(2005)

12. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008)

13. Hess, F., Smart, N., Vercauteren, F.: The eta pairing revisited. IEEE Trans. Inf.
Theory 52(10), 4595–4602 (2006)

14. Hohenberger, S., Lysyanskaya, A.: How to securely outsource cryptographic com-
putations. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 264–282. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30576-7 15

15. Joux, A.: A one round protocol for tripartite Diffie-Hellman. J. Cryptol. 17(4),
263–276 (2004). https://doi.org/10.1007/s00145-004-0312-y

16. Kang, B.G., Lee, M.S., Park, J.H.: Efficient delegation of pairing computation
(2005)

17. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In:
Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36.
Springer, Heidelberg (2005). https://doi.org/10.1007/11586821 2

18. Kumar, K., Liu, J., Lu, Y.H., Bhargava, B.: A survey of computation offloading
for mobile systems. Mob. Netw. Appl. 18(1), 129–140 (2013). https://doi.org/10.
1007/s11036-012-0368-0

19. Lin, X.J., Qu, H., Zhang, X.: New efficient and flexible algorithms for secure out-
sourcing of bilinear pairings. Cryptology ePrint Archive, Report 2016/076 (2016).
http://eprint.iacr.org/2016/076

20. Luo, Y., Fu, S., Huang, K., Wang, D., Xu, M.: Securely outsourcing of bilinear
pairings with untrusted servers for cloud storage. In: Trustcom/BigDataSE/ISPA
(2016)

21. Mell, P., Grance, T.: The NIST definition of cloud computing. NIST Special Pub-
lication, pp. 800–145 (2011)

22. Nguyen, P.Q., Shparlinski, I.E., Stern, J.: Distribution of modular sums and the
security of the server aided exponentiation (2000)

23. Ren, Y., Ding, N., Wang, T., Lu, H., Gu, D.: New algorithms for verifiable out-
sourcing of bilinear pairings. Sci. China Inf. Sci. 59(9), 99103 (2016)

24. Shacham, H.: New paradigms in signature schemes. Ph.D. thesis, Stanford, CA,
USA (2006)

25. Tian, H., Zhang, F., Ren, K.: Secure bilinear pairing outsourcing made more effi-
cient and flexible. In: Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS 2015, pp. 417–426. ACM,
New York (2015). https://doi.org/10.1145/2714576.2714615

26. Wang, Y., Wu, Q., Wong, D.S., Qin, B., Chow, S.S.M., Liu, Z., Tan, X.: Securely
outsourcing exponentiations with single untrusted program for cloud storage. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 326–343.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9 19

http://dblp.uni-trier.de/db/journals/tcs/tcs562.html#ChenSLWMTT15
https://doi.org/10.1007/978-3-540-30576-7_15
https://doi.org/10.1007/s00145-004-0312-y
https://doi.org/10.1007/11586821_2
https://doi.org/10.1007/s11036-012-0368-0
https://doi.org/10.1007/s11036-012-0368-0
http://eprint.iacr.org/2016/076
https://doi.org/10.1145/2714576.2714615
https://doi.org/10.1007/978-3-319-11203-9_19

A Selective Privacy-Preserving Identity
Attributes Protocol for Electronic

Coupons

Pau Conejero-Alberola(B), M. Francisca Hinarejos,
and Josep-Llúıs Ferrer-Gomila

University of the Balearic Islands, Ctra. de Valldemossa, km 7,5, 07120 Palma, Spain
{pau.conejero,xisca.hinarejos,jlferrer}@uib.es

Abstract. Electronic coupons (e-coupons) are a very effective market-
ing tool. In some scenarios, it is necessary to check some customer’s
personal attributes at the redeeming phase (e.g. age, title, citizenship,
etc.). But customers may be reluctant to use e-coupons if their privacy
is in danger. Digital certificates and credentials could be suitable for
validating customer attributes. However, a bad use of such electronic
documents entails a loss of privacy, revealing more identity attributes
than necessary. Here, we present the first secure protocol for e-coupons,
achieving verification proofs of identity, with selective disclosure of cus-
tomer’s certified attributes. On the other hand, our proposal meets other
necessary security requirements, such as forging protection and double-
redeem protection.

Keywords: E-coupon · Security · Identity · Privacy

1 Introduction

A coupon is a usually small piece of printed paper that lets you get a service or
product for free or at a lower price (Merriam-Webster definition). It is an effective
marketing instrument [1], and quite used because merchants and customers are
benefited. One one hand, merchants can increase loyalty of their customers or
attract new customers. On the other hand, customers can achieve better prices or
gifts. In this paper we deal with a type of e-coupon that is addressed to a group
of customers that must meet certain identity requirements, for example, being
in a certain age group, being resident in a specific country, etc. A real example of
this type of promotions is found in a well-known chain of hamburgers [2], whose
promotional bases indicate: customers must be over a certain age, resident in X,
and have to purchase product Y.

Paper based coupons, redeemed face-to-face, allow the merchant to easily ver-
ify compliance with established requirements, using paper documents (such as an
identity card). Such verification does not usually result in a high loss of privacy,
because verification is instantaneous without the merchant registering private
c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
G. P. Hancke and E. Damiani (Eds.): WISTP 2017, LNCS 10741, pp. 165–176, 2018.
https://doi.org/10.1007/978-3-319-93524-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93524-9_11&domain=pdf

166 P. Conejero-Alberola et al.

information of the customers in their systems. But in the case of e-coupons,
exchanges are made electronically, and therefore “verification documents” must
also be in electronic form to be redeemed face-to-machine.

Digital certificates and credentials are suitable to provide authenticated infor-
mation about customers. These documents are signed by a trusted third party,
which assumes the responsibility of validating the data contained in them. But
those documents contain more information than may be necessary in certain e-
coupon scenarios, with the consequent risk of loss of privacy. As a result, many
customers are reluctant to provide personal data, beyond the strictly necessary
for the purpose they want to perform. Our goal is to maximize the privacy of cus-
tomers, that is, only that information strictly necessary to validate compliance
with the requirements of the e-coupon must be disclosed.

Contribution. We present the first e-coupon scheme with a selective and ver-
ified personal data disclosure mechanism, which provides a better degree of pri-
vacy, allowing the issuance of e-coupons for eligible customers. On the other
hand, customer’s compliance of requirements is verified during the redeem.

This paper is organized as follows. Section 2 reviews the related work.
Section 3 defines the proposed scheme, the security requirements and the cryp-
tographic background. Section 4 specifies in detail all the phases of the proposed
protocol. Section 5 includes a brief security analysis, and finally, Sect. 6 lists the
conclusions of this paper.

2 Related Work

In this section, we will review those most significant proposals that have shown
concern about the authentication and privacy of customers.

As a first contribution of e-coupons, Kumar et al. [3] show that targeted e-
coupons are intended for a group of customers who meet certain requirements,
and they indicate that customers must be identified.

In contrast, Jakobsson et al. [4] state that an e-coupon system should not
expose customer privacy more than other advertising system. They present a
proposal where no attribute of the customer is verified.

Chang et al. [5] present a scheme with a registration phase, where the cus-
tomer provides personal information to the issuer. Therefore, e-coupons are iden-
tified, but merchants do not receive this information from the customer.

Aigner et al. [6] explain two e-coupon schemes. One of them has an authen-
tication process for the customer in front of the issuer and merchant.

Chang and Sun [7] explain a scheme where the customer and merchant must
be registered at a trusted third party, indicating a mutual authentication.

Chang et al. [8] provide two e-coupon schemes, one for specific registered
customers (with better discounts) and the other for non-specific customers.

Liu et al. [9] provide a proposal, in which customers remain anonymous if
they are honest. Their scheme achieves traceability against dishonest customers.

As a conclusion, we can affirm that there is no previous solution that requires
the authentication of some attributes of the customer, and that this authentica-
tion takes place without revealing other data related to that customer. That is,

A Selective Privacy-Preserving Identity Attributes Protocol 167

the selective disclosure of attributes is a problem that has not been addressed
so far in the area of e-coupons.

3 Scheme: Scenario and Security

In this section, we describe our proposal. First, we detail the scenario, the entities
involved, their role and we outline the e-coupon structure. Then, the security
requirements and the cryptographic background are defined.

3.1 Scenario

We define a custom environment, offering an online distribution marketing por-
tal, using daily e-coupons promotions to be redeemed in manufacturer’s branches
for eligible and registered customers. The proposed scenario allows different
grades of privacy using an Idemix [10] service, a selective method to disclose
customer identity attributes. We consider the following entities: Trusted Third
Party (TTP), Issuer, Merchant and Customer.

Trusted third party T is in charge of issuing the Idemix credentials based on
a digital certificate, and carrying the system public parameters.

Issuer I is in charge of issuing and distributing e-coupons. In this scenario, I
has to ensure that the credential has not been used previously for registering, and
only one-time e-coupon is delivered per customer C. A registered C can request
the e-coupon policy from the portal, which defines the redemption requirements
to compute the identity proof. If the proof is valid then I issues the e-coupon.

Merchant M is in charge of verifying if the e-coupon is valid and has not
been used before at the same M. As the e-coupon was issued for a specific C,
the merchant M has to ensure if C has the right to use it.

C is the actor who makes use of the platform to generate the identity proofs
of its credential attributes, and requests and redeems the e-coupons.

Next, the promotional e-coupon is detailed as follows: SN represents the
identifier of the selected e-coupon, I1 includes the offer data of the promotion, I2
contains all the public parameters to prove the ownership of the e-coupon during
the redemption phase, and T1 − T2 define the time interval for redeeming.

3.2 Security Requirements

The protocol has to consider and guarantee the following security requirements:

– Owner authentication: Merchants should be able to verify the customer’s e-
coupon ownership during the redeem phase.

– Anonymity: The system has to provide full anonymity during the registra-
tion phase and redeem phase. The scheme allows a selective personal data
disclosure during the issuance phase.

– Unforgeability: All the parts have to be able to verify if an e-coupon has been
issued by an authorized issuer, and if the e-coupon has not been manipulated.

168 P. Conejero-Alberola et al.

– Double-redeem protection: The system must provide protection about intents
of reusing an e-coupon at the same merchant in an offline mode.

– Issuer non-repudiation: Once a valid e-coupon has been issued, issuer should
not able to deny it.

– Non-transferability: Customers should not be able to share e-coupons.

3.3 Cryptographic Background

We briefly review the cryptography techniques that will be used in our proposal.

ZKP: Zero-Knowledge Proof
The aim of a zero-knowledge proof is to prove the validity of a statement given to
a verifier. This kind of proof is suitable to prove the possession of a secret without
revealing the content. The Schnorr protocol [11] is an identification scheme based
on discrete logarithms, that can be used as a interactive zero knowledge proof.
Figure 1 shows in detail the three steps (commitment, challenge and response)
involved in the protocol.

Fig. 1. Schnorr protocol

ABC: Attribute-Based Credential
The aim of an attribute-based credential is to provide an authentication mech-
anism based on a selective attributes method. In this way, every credential con-
tains attributes that the user can either reveal or keep hidden. Idemix is an
ABC protocol based on a Camenisch-Lysyanskaya (CL) signature scheme [12],
that provides a solution for strong privacy-preserving authentication with a dis-
closure method of certified attributes. Table 1 defines the Idemix parameters
involved in the protocol.

A Selective Privacy-Preserving Identity Attributes Protocol 169

Table 1. Idemix protocol parameters

S CL-signature scheme, credential structure, context

x Master secret key

mH1 Master secret key attribute

mHi Credential/proof hidden attributes

mKi Credential/proof known attributes

common Public parameters

T Commitment prove values (aggregation of t-values)

T ’ Commitment verify values (aggregation of t-values)

c Challenge prove

c’ Challenge verify

si Response values (s-values)

P Proof = (c,si,common)

ni Random value

4 Proposal

This section is divided into two main subsections. The first subsection defines
the prerequisites for the system set-up, and the second subsection explains in
detail each step of the proposed protocol.

4.1 System Set-Up

In this scheme, the entities T and I previously generated an asymmetric key
pair. As a first step, C generates a master secret key x as mH1 and enrolls a
digital residence certificate with two fields: PersonalID as mH2 and Zipcode as
mH3 in T . Then, T generates a serial number attribute to identify the creden-
tial as mK1 . Once the structure of the credential is defined, both parties agree
to run the CL-signature scheme (Algorithm 1) to create the signature over the
attributes specified in the credential structure. As a first step, C calls the function
CL.commit to build the commitment for each of the hidden {mHi

} attributes
using the system parameters retrieved from T ((n, S, Z, {Ri}i∈M)). As a result,
C obtains U as an aggregation of commitments. Then, C sends U to I, and I has
to call the function CL.sign to prepare the pre-signature with the aggregation
of U and the known {mKi

} attributes. Finally, I sends the pre-signature to C,
and C calls the function CL.build to compute the signature. Figure 2 shows the
credential [(mH1 ,mH2 ,mH3 ,mK1), (CL Signature)].

170 P. Conejero-Alberola et al.

Algorithm 1. Camenisch-Lysyanskaya signature
1: function CL.commit({mi}i∈MH

, (n, S, Z, {Ri}i∈M))

2: v′ ← Random()

3: U ← Sv′
mod n

4: for each i ∈ MH do

5: U ← U · R
mi
i

mod n

6: return (U, v′)
7: function CL.sign(U, {mi}i∈M\MH

, (n, S, Z, {Ri}i∈M), (p′, q′))
8: v′′ ← Random()

9: U ← U · Sv′′
mod n

10: for each i ∈ M \ MH do

11: U ← U · R
mi
i

mod n

12: Q ← Z · U−1 mod n

13: e ← RandomPrime()

14: d ← e−1 mod (p′ · q′)
15: A ← Qd mod n

16: return (A, e, v′′)
17: function CL.build(v′, (A, e, v′′))
18: v ← v′ + v′′

19: return (A, e, v)

Fig. 2. Idemix credential structure

4.2 Phases

The phases of our system are: Customer registration, where the system checks
the eligibility of the user and gets registered in the portal; Issue, that consists
of selecting an eligible promotion and disclose the required identity attributes
for issuing an e-coupon; Redeem, where the customer redeems an e-coupon at a
merchant. Table 2 defines the notation used in the description of the phases.

Phase 1 Customer registration
As a first step, C contacts with I to prove her eligibility to be registered in the
portal, following the protocol flow described in Fig. 3. Then, I sends a random
value ni to C, required to build a proof (Algorithm2). First, C has to define
the proof specification, which contains the disclosed and undisclosed attributes.
That is, mK1 as a known attribute, while mH1 , mH2 , mH3 remain hidden.
During the registration phase there is not a disclosure of hidden attributes. C
calls the function ProveCL.randomise to generate a randomised signature, and
the function ProveCL.tvalues to compute the commitment T over the aggre-
gation of the undisclosed attributes, and the randomised signature (t-values).

A Selective Privacy-Preserving Identity Attributes Protocol 171

Table 2. Protocol parameters

x Master secret key

y Schnorr public key

z Schnorr value

t Schnorr commitment

c Schnorr challenge

r Schnorr response

Policy e-coupon promotion policy

Coupon SN | I1 | I2 | T1 | T2

Sign(Coupon) I’s signature on the e-coupon

pkI Issuer public key

pkT Trusted third party public key

Next, C calls the ProveCL.challenge function to compute the challenge c, and
computes the responses {si} for every t-value. As a result, the following certified
and signed P proof is generated: P = (c, (ê, v̂, {m̂1}, {m̂2}, {m̂3}), common). The
computed proof P will be used to demonstrate the eligibility of C as a physical
person who has certified attributes.

Fig. 3. Redeem protocol flow

C sends the generated proof P to I, and I has to verify the proof P (Algo-
rithm3). Then, I calls the function VerifyCL.tvalues to validate the received
P, computing the aggregation of the randomised signature, the disclosed {mKi

}
attributes and the undisclosed {mHi

} attributes. Then, I calls the function
VerifyCL.challenge to compute the challenge c’ to be compared against the
received proof P. If the proof P is accepted, I has to check the non-reusability
of the credential, checking the credential serial number in an internal database.
If the credential has not been used, I sends an ACK to C. At this point, C is
eligible to get registered in the portal. Moreover, I has to store the serial number
of the credential in an internal database to prevent multiple registration using
the same credential.

172 P. Conejero-Alberola et al.

Algorithm 2. Build Proof
1: Protocol : BuildProof [IN: {m1,S,ni,OUT: {P}]

2: ProveCL.randomise(S) → (e, v′),common

3: ProveCL.tvalues(S,common) → (ẽ, ṽ, {m̃i}i∈mH
), T

4: ProveCL.challenge(context,common,T ,ni) → c

5: ProveCL.svalues(S, (e, ẽ, ṽ, {m̃i}i∈mH
),c) → s-values

6: return P = (c,s-values,common)

Algorithm 2.1. Prove CL
1: function ProveCL.randomise([(A, e, v), (n, S, Z, {Ri}i∈M)])

2: r ← Random()

3: A′ ← A · Sr mod n

4: Common ← A′

5: v′ ← v − e · r

6: return (e, v′), A′

7: function ProveCL.tvalues([{mi}i∈mH
, (n, S, Z, {Ri}i∈M)], (A′))

8: ẽ ← Random()

9: ṽ ← Random()

10: Z̃ ← A′ẽ · Sṽ mod n

11: for each i ∈ mH do

12: m̃i ← Random()

13: Z̃ ← Z̃ · R
m̃i
i

mod n

14: return (ẽ, ṽ, {m̃i}i∈mH
), Z̃

15: function ProveCL.challenge(context, common,T, ni)

16: c := H(context, common,T, ni)

17: return (ê, v̂, {m̂i}i∈mH
)

18: function ProveCL.svalues({mi}i∈mH
, (e, ẽ, ṽ, {m̃i}i∈mH

), c)

19: ê ← ẽ + c · e

20: v̂ ← ṽ + c · v′

21: for each i ∈ mH do

22: m̂i ← m̃i + c · mi

23: return (ê, v̂, {m̂i}i∈mH
)

Algorithm 3. Verify Proof
1: Protocol : V erifyProof [IN: {S, (c,s-values,common), ni}, OUT: { accept or reject P}]

2: V erifyCL.tvalues(S,P) → T ’

3: V erifyCL.challenge(context,common,T ’,ni) → c’

4: return If c ≡ c’ accept P or reject otherwise

Algorithm 3.1. Verify CL
1: function VerifyCL.tvalues([{mi}i∈mK

), (n, S, Z, {Ri}i∈M), [c, (ê, v̂, {m̂i}i∈mH
), A′])

2: Ẑ ← Z−c · A′ê · Sv̂ mod n

3: for each i ∈ mK do

4: Ẑ ← Ẑ · R
c·mi
i

mod n

5: for each i ∈ mH do

6: Ẑ ← Ẑ · R
m̂i
i

mod n

7: return Ẑ

8: function VerifyCL.challenge(context, common,T′, ni)

9: c′ := H(context, common,T, ni)

10: return c′

A Selective Privacy-Preserving Identity Attributes Protocol 173

Phase 2 Issue protocol
When C wants to request a promotion from the portal, has to follow the protocol
flow described in Fig. 4. As a first step, she has to request the specified e-coupon
using its SN . Next, I replays with the policy of the selected e-coupon and a fresh
random number ni to C, required to build a proof (Algorithm2). First, C has to
use the proof specification of the received promotion policy, which defines the
disclosed and undisclosed attributes to be proven. In our schema all the promo-
tions have to be redeem by customers who live in a specified area. So, the zip code
attribute mH3 has to be disclosed as mK2 to check the residence requirement.
That is, mK1 , mK2 are known attributes, while mH1 , mH2 remain hidden. C calls
the function ProveCL.randomise to generate a randomised signature, and the
function ProveCL.tvalues to compute the commitment T over the aggregation
of the undisclosed attributes and the randomised signature (t-values). Next, C
calls the ProveCL.challenge function to compute the challenge c, and com-
putes the responses {si} (s-values) for every t-value. As a result, the following
certified and signed proof P is generated: P = (c, (ê, v̂, {m̂1}, {m̂2}), common).
The computed proof P will be used to demonstrate the residence area of C, in
particular the zip code.

Fig. 4. Issue protocol flow

C sends the generated proof P to I, and I has to verify the proof P (Algo-
rithm3). Then, I calls the function VerifyCL.tvalues to validate the received
P, computing the aggregation of the randomised signature, the disclosed {mKi

}
attributes and the undisclosed {mHi

} attributes. Then, I calls the function
VerifyCL.challenge to compute the challenge c’ to be compared against the
received proof P. If the proof P is accepted, I sends an ACK to C. Then, C con-
tacts with T to obtain the Schnorr public parameters to compute the Schnorr
public key y and the Schnorr commitment t. After that, both values are sent
to I. Next, I includes the Schnorr parameters obtained from C inside I2, and
prepares all the remaining data to be included inside the Coupon as the offer
information and the time interval to be redeem. As the last step, I signs the
issued Coupon and delivers Sign(Coupon) to C.

174 P. Conejero-Alberola et al.

Phase 3 Redeem protocol
During the redeem protocol (see Fig. 5), M has to check that Sign(Coupon) pre-
sented by C, is not a fake copy. Thus, M has to verify the signature using the I’s
pkI . If the verification is successful, M has to check if C is the legitimate owner
of Coupon. To do that, M starts the Schnorr identity protocol (see Sect. 3.3) to
verify if C is able to answer a generated challenge using the information inside
the I2. M generates a time-variant random challenge c and sends it to C. Then,
C has to compute the response s and send it back to M. As a result, M verifies
the received response to know if C is eligible to redeem Coupon. If the verifica-
tion is successful, M checks if the SN has not been used before, and if the time
interval between T1 and T2 have not expired. If both verifications are successful,
M redeem Coupon and stores the SN in a local non-persistent database. In our
scheme, portal offers e-coupons with a small limited lifetime period of use since
the moment that I issues the e-coupons. As a last step, M sends an ACK to C.

Fig. 5. Redeem protocol flow

5 Security Analysis

In this section we include a brief security analysis of the following requirements:

1. Owner authentication: During the issuance phase, C generates a public value
y linked to the master secret key x. Only the legitime owner of x will be able
to resolve the challenge-response step during the redemption phase.

2. Anonymity: During the registration phase, C sends the disclosed attributes
to I. In our scheme only the known attributes, as the serial number of the
credential, was disclosed, while the other identity attributes remains hidden.

3. Unforgeability: I generates a digital signature Sign(Coupon) during the issu-
ing phase. Any forged e-coupon that is not generated by I, or it is modified
will be detected during the redemption verification as illegal.

4. Double-redeem protection: In our scheme we only consider the double-redeem
issue if C tries to use the e-coupon more than one time in the same M, which
is resolved by using a memory database to check the redeemed e-coupons.
Also, there is a lifetime period to mitigate the impact if the same C tries to
use the e-coupon in different M. In addition, it is possible to use a global
database between all the merchants.

A Selective Privacy-Preserving Identity Attributes Protocol 175

5. Issuer non-repudiation: A credential proof can be verified with the corre-
sponding pkT , so the T can not deny it. An e-coupon can be verified with
the corresponding pkI , so the I can not deny it.

6. Non-transferability: If C shares the e-coupon, it has to expose its master
secret key x to other customers to pass the challenge-response step during
the redeem phase. Thus, the protocol must to discourage customers to reveal
a valuable secret which is linked with the credential.

6 Conclusions and Further Work

Our proposal offers a portal to retrieve e-coupons, depending on the issuer pro-
motion requirements. Customers can generate proofs from a digital certificate
to prove identity requirements with a selective privacy mechanism. We offer
a trusted registration mechanism providing anonymity. The design of the sys-
tem has been performed taking into account security and privacy requirements
described for e-coupons. As a future work, we want to extend this solution to
other scenarios and build a prototype. Moreover, the security and the perfor-
mance analysis will be presented in a formal way.

Acknowledgments. This work is partially financed by the European Social
Fund and the Spanish Government under the projects TIN2014-54945-R and TIN2015-
70054-REDC.

References

1. Coupon Savings Report (2016). https://www.nchmarketing.com/nchpressreleases.
aspx. Accessed 17 Aug 2017

2. Terms and Conditions - Christmas promotion 31 days. https://app.mcdonalds.es/
landing/legal/legal31DiasLocosNavidad.html. Accessed 17 Aug 2017

3. Kumar, M., Anand, R., Jhingran, A., Mohan, R.: Sales promotions on the Internet.
In: Proceedings of the 3rd USENIX Workshop on Electronic Commerce, pp. 167–
176, Boston (1998)

4. Jakobsson, M., Mackenzie, P.D., Stern, J.P.: Secure and lightweight advertising on
the web. J. Comput. Telecommun. Netw. 31(11), 1101–1109 (1999)

5. Chang, C.C., Wu, C.C., Lin, I.C.: A secure e-coupon system for mobile users. Int.
J. Comput. Sci. Netw. Secur. 6(1), 273–280 (2006)

6. Aigner, M., Dominikus, S., Feldhofer, M.: A system of secure virtual coupons using
NFC technology. In: Proceedings of IEEE International Conference on Pervasive
Computing and Communication Workshops, pp. 362–366, New York (2007)

7. Chang, C.C., Sun, C.Y.: A secure and efficient authentication scheme for e-coupon
systems. Wirel. Pers. Commun. 77(4), 2981–2996 (2014)

8. Chang, C.C., Lin, I.C., Chi, Y.L.: Secure electronic coupons. In: Proceedings - 10th
Asia Joint Conference on Information Security, AsiaJCIS 2015, pp. 104–109 (2015)

9. Liu, W., Mu, Y., Yang, G., Yu, Y.: Efficient E-coupon systems with strong user
privacy. Telecommun. Syst. 64, 695–708 (2017)

10. Camenisch, J., Mödersheim, S., Sommer, D.: A formal model of identity mixer.
In: Kowalewski, S., Roveri, M. (eds.) FMICS 2010. LNCS, vol. 6371, pp. 198–214.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15898-8 13

https://www.nchmarketing.com/nchpressreleases.aspx
https://www.nchmarketing.com/nchpressreleases.aspx
https://app.mcdonalds.es/landing/legal/legal31DiasLocosNavidad.html
https://app.mcdonalds.es/landing/legal/legal31DiasLocosNavidad.html
https://doi.org/10.1007/978-3-642-15898-8_13

176 P. Conejero-Alberola et al.

11. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–
174 (1991)

12. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

https://doi.org/10.1007/3-540-36413-7_20

Revisiting Two-Hop Distance-Bounding
Protocols: Are You Really Close Enough?

Nektaria Kaloudi1 and Aikaterini Mitrokotsa2(B)

1 University of the Aegean, Samos, Greece
n.kaloudi033@gmail.com

2 Chalmers University of Technology, Gothenburg, Sweden
aikmitr@chalmers.se

Abstract. The emergence of ubiquitous computing has led to multiple
heterogeneous devices with increased connectivity. In this communica-
tion paradigm everything is inter-connected and proximity-based authen-
tication is an indispensable requirement in multiple applications includ-
ing contactless payments and access control to restricted services/places.
Distance-bounding (DB) protocols is the main approach employed to
achieve accurate proximity-based authentication. Traditional distance-
bounding requires that the prover and the verifier are in each other’s
communication range. Recently, Pagnin et al. have proposed a two-hop
DB protocol that allows proximity-based authentication, when the prover
and the verifier need to rely on an intermediate untrusted party (linker).
In this paper, we investigate further the topic of two-hop distance-
bounding. We analyse the security of the Pagnin et al. protocol for inter-
nal adversaries and we investigate the impact of the position of the linker
in the distance-bounding process. We propose a new two-hop DB proto-
col that is more lightweight and avoids the identified problems. Finally,
we extend the protocol to the multi-hop setting and we provide a detailed
security analysis for internal adversaries.

Keywords: Distance-bounding · Authentication · Relay attacks

1 Introduction

Ubiquitous computing technologies have affected radically our communications.
Multiple heterogeneous devices are inter-connected and proximity-based authen-
tication has been adopted in a wide range of applications e.g., remote unlock-
ing, contactless payments, proximity cards for access control in services/places.
Distance-bounding (DB) protocols [1,2] is a valuable tool in this ubiquitous
computing paradigm, since they determine an upper bound on the physical
distance between two communicating parties by measuring the round-trip-time
between the exchanged challenges and responses. Distance-bounding protocols
have received a lot of attention in the literature and multiple works have been
published focusing on the selection of optimal parameters for DB protocols [3–5],
c© IFIP International Federation for Information Processing 2018
Published by Springer International Publishing AG 2018. All Rights Reserved
G. P. Hancke and E. Damiani (Eds.): WISTP 2017, LNCS 10741, pp. 177–188, 2018.
https://doi.org/10.1007/978-3-319-93524-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93524-9_12&domain=pdf

178 N. Kaloudi and A. Mitrokotsa

on related privacy issues [6,7], as well as multiple attacks [8–11] against existing
DB protocols and proposed solutions [12–14] that combat identified weaknesses.
Furthermore, the concept of grouping proof distance-bounding protocols [15] has
been recently introduced in order to provide not only a proof of the presence
of multiple provers at the same time but also assurance regarding the physi-
cal proximity of the provers. However, in many cases (e.g., communication in
Vehicular ad-hoc Networks (VANETs) and Wireless Sensor Networks (WSNs)),
we need to have a proof of proximity even when the two main parties prover
and verifier are not in the direct communication range of each other, but have
to rely on an untrusted intermediate node (linker). Recently, Pagnin et al. [16]
proposed an extension of traditional DB protocols that can verify the proximity
of both next-hop and two-hop neighbours.

In this article, we investigate the security of the Pagnin et al. [16] protocol
for internal adversaries and we identify three weaknesses. We discuss how the
location of intermediate untrusted linkers affects the DB process and we propose
a new two-hop DB protocol that overcomes the identified problems, requires
no computation from the linker, and provides lower attack success probabilities
in comparison to the Pagnin et al. protocol. Finally, we investigate how the
proposed two-hop DB protocol can be extended to the multi-hop setting [17]
i.e., when multiple intermediate linkers are used to reach the prover and we
discuss how the attack success probabilities are affected.

2 Two-Hop Distance Bounding

Traditional one-hop DB protocols consider two “legitimate” parties: a single ver-
ifier and a single prover within one-hop communication range. Pagnin et al. [16]
introduced the concept of two-hop DB which involves three entities: a trusted
verifier (V), an untrusted prover (P) and an untrusted in-between linker (L).
The goal is to bound the distance between V and P, while relying on the inter-
mediate untrusted linker L. More precisely, P wants to be authenticated by V,
while V wants to bound the distance of P. The prover P is not in the com-
munication range of the verifier V (two-hop neighbours), while L is within the
communication range (one-hop) of both V and P. All nodes (P, V and L) use
the same communication channel.

The two-hop DB protocol proposed by Pagnin et al. is depicted in Fig. 1 and
employs two secret keys: xVL shared between V and L, and xVP shared between
V and P. NV , NP and NL denote random nonces, fy() a pseudorandom function,
Ency() an encryption function and MACy() a function that computes a message
authentication code. All three functions use an appropriate key here denoted as
y. More precisely, it is composed of the following phases:

– Initialization phase: V, L, P generate randomly their corresponding
nonces. Both V and L use the pseudorandom function h and the secret
key xVL in order to calculate two n-bit sequences a0 and a1, while P uses
the pseudorandom function h with the key xVP to generate the d0 and
d1 registers.

Revisiting Two-Hop Distance-Bounding Protocols 179

– Distance-bounding phase: In this phase, a fast bit exchange phase takes
place, where V sends out one bit ci to L and starts two clocks tL and tP . L
responds to both V and P with one calculated bit �i = (aci)i and V stops
the first timer tL. The delay time of the responses enables V to compute an
upper-bound on the next-hop distance with L and after observing the second
timer tP , it computes the other bound on the two-hop distance with P. This
phase is time-critical and is separated by n rounds of timed challenge/response
exchanges.

– Verification phase: After V receives P’s nonce, �i from L and the responses
ri, it computes the d0, d1 registers in order to verify ri and �i. According
to the result, V measures the bound on the physical distance to V using the
clocks tL, tP .

Verifier V Linker L Prover P
xVL, xVP xVL xVP

Initialisation phase

NV ←{0, 1}m NV−−−−−−−→
NL←−−−−−−− NL ←U {0, 1}m NL−−−−−−−→

a0 = fxVL(NV , NL) a0 = fxVL(NV , NL) NP ←{0, 1}m

a1 = Enca0(xVL) a1 = Enca0(xVL) d0 = fxVP(NL, NP)
d1 = Encd0(xVP)

Distance-bounding phase
for i = {1, . . . , n}

pick ci ∈ {0, 1}
Start Clocks ci−−−−−−−→ if ci /∈ {0, 1}, halt
Stop Clock tL

�i←−−−−−−− else �i = (aci)i
�i−−−−−−−→ if �i /∈ {0, 1} halt
ri←−−−−−−− else ri = (d�i)i

Stop Clock tP
ri←−−−−−−−

Verification phase
NP ,�,r,MACxVP (�,r)←−−−−−−−−−−− NP ,�,r,MACxVP (�,r)←−−−−−−−−−−−

d0 = fxVP(NL, NP)
d1 = Encd0(xP)
check that ΔtLi, ΔtP i < tallowed ∀i = {1, . . . , n}
Verify �, r and MACxVP(�, r)

Fig. 1. The Pagnin et al. [16] two-hop distance-bounding protocol.

2.1 Security Analysis

We describe what are the effects of a malicious linker L in the different phases
of the Pagnin et al. protocol and analyse malicious behaviour that has not been
considered before. We need to stress that the first two described security issues

180 N. Kaloudi and A. Mitrokotsa

are related to weaknesses of the Pagnin et al. protocol to identify possible mod-
ifications of the transmitted messages that may subsequently lead to denial of
service (DoS) attacks.

Verifier V Linker L Prover P
xVL, xVP xVL xVP

Initialisation phase

NV ←{0, 1}m NV−−−−−−−→
NL1←−−−−−−− NL1 ←U {0, 1}m NL2−−−−−−−→

a0 = fxL(NV , NL1) NL2 ←U {0, 1}m NP ←{0, 1}m

a1 = Enca0(xVL) a′
0 = fxL(NV , NL2) d0 = fxVP(NL2, NP)
a′
1 = Enca0(xVL) d1 = Encd0(xVP)

Fig. 2. Attack using different nonces.

– Malicious L in the initialisation phase: A malicious L that receives NV from
V, could send different nonces NL1 and NL2 to V and P correspondingly
(Fig. 2), thus, disrupting the whole protocol and leading P and V to compute
different registers d0 = fxVP (NL2 , NP) i.e., computed by P in the initialisa-
tion, and d′

0 = fxVP (NL1 , NP) i.e., computed by V in the verification phase.
Consequently, the computation will be completely different and as a result
the protocol will fail.

– Malicious L in the verification phase: Similarly to the previous attack, a mali-
cious L could modify the transmitted NP , thus disrupting the computation
of d0 by V and consequently leading to the failure of the protocol. This can
be easily detected if a MAC of the nonce NP is also sent. Although this would
not stop the DoS attack, it would definitely be useful to detect on time the
misbehaviour of L.

– Malicious L in the distance-bounding phase: A malicious L can act as a man-
in-the-middle and perform the attack that was initially described by Kim
et al. [18] against one-hop DB protocols [19]– against the Pagnin et al. [16]
protocol in order to recover bits of the key xVP , when as Enc function is
employed the one time pad i.e., d1 = d0 ⊕ xVP . More precisely, L can during
the DB phase, toggle the value of one bit �i i.e., �′

i �= �i transmit the same �′
i

to V and P and leave all other messages untouched. Then, L can observe the
verifier’s reaction. If V accepts P, it means that P’s answer ri was correct.
Thus, the bit of the key xVP i will be 0, because d0i = d1i. If V does not
accept then d0i �= d1i, thus, xVP i = 1. We should note that in the Pagnin et
al. protocol is stated: “V computes d0 and d1 and verifies that all received �i
and ri, ∀i ∈ {1, . . . , n} are correct.” However, this leaves rather unclear if V
actually computes �i or simply verifies that the �is and ris received during
the distance-bounding phase match the ones received during the verification

Revisiting Two-Hop Distance-Bounding Protocols 181

phase. To avoid this attack, the necessary condition is that V should recom-
pute �i using �i = (aci)i in the verification phase and verify the received
�i’s. If this recomputation is performed, then the attack will not be success-
ful and the protocol will be aborted because V will see the differences in �i.
However, if V simply verifies that the values of � and r received in the DB
phase match the ones received in the verification phase and the corresponding
MACxVP (�, r) the attack can be performed successfully.

2.2 Effects of Possible Positions of the Linker

It is easy to see that the estimated distance between V and P in two-hop DB
mainly depends on the position of L. More precisely, L can be located either on
the same line with the other two entities or anywhere else between them. In the
second case, a triangle is formed. Let us denote by t1 the estimated time required
to transmit a message from V to L and t2 the corresponding time required to
transmit a message from L to P. t1 and t2 can be easily estimated using the
ΔtPi

and ΔtLi
in a two-hop DB protocol [16]. Let us denote by d(A,B) the

actual distance between two entities A and B.
If we construct a segment d (V,L) and a circle with centre L (Fig. 3, where P

and P ′ denote possible locations of the prover), then P can be any point inside
or on this circle. We would like to estimate the third side of the formed triangle
d (V,P). If we knew the included angle between d(V,L) and d(L,P), then we
could determine the length of the third side. For instance, when the angle is
equal to 180◦ i.e., V, P and L are all in the diameter of the circle with centre
L then d(V,P) = d(V,L) + d(L,P) ≈ c(t1 + t2) where c denotes the speed of
light. Thus, in that case we have minimal error in estimating d(V,P) using a
two-hop DB.

•
L

•
V

•
P

•
P ′

t1

t2

Fig. 3. Depiction of possible locations of a linker, a verifier, and a prover.

We may distinguish two cases in determining the estimation error ε on the
physical distance between V and P:

182 N. Kaloudi and A. Mitrokotsa

L’s Position is Unknown. Using the triangular inequality, we have an upper
and lower bound for the distance: c | t1−t2 | −ε < d (V,P) < c(t1+t2)−ε where
ε denotes the error in the distance-bounding process. If we have multiple linkers
Lj , j ∈ {1, . . . , m} in the communication range of V and P, we can run multiple
times a two-hop DB protocol. We denote by tj,1 the estimated time required
to transmit a message from V to Lj and by tj,2 the estimated time required to
transmit a message from P to Lj . By observing the different sums (tj,1 + tj,2),
we can deduce which linker is closer (i.e., produces the smallest sum) and thus,
which Lj has the smallest error in the distance estimation, but we cannot find
its exact position.

L’s Position is Known. In this case, if we know the exact position of V
and L, we can find the position of P and consequently d(V,P). However, to
achieve this with high accuracy, we need to have at least three linkers in the
communication range of V and P. We may run a DB protocol three times
each for a different linker Lj , where j ∈ {1, 2, 3} to get a good estimate of
the three distances d(Lj ,P). If we consider that dLjP denotes the estimated
distance via the DB protocol we can consider dLjP ≈ d(Lj ,P). Then, using
trilateration [20] we can determine the exact location of P. We can compute
d (V,P) =

√
(xV − x)2 + (yV − y)2, where xV , yV are the coordinates of V and

x, y the coordinates of P. If we know the angle between d(V,Lj) and d(Lj ,P)
this computation is simplified, i.e., if the triangle is orthogonal we only need
to know the locations of two linkers. Alternatively, using the Received Signal
Strength Indicator (RSSI) method [21] by employing multiple reference points
and using the strength of the transmitted signals, we are able to estimate the
distance between V and P. After computing d(V,P), it is easy to see that the
estimation error of the distance dVP computed via a two-hop DB protocol is
ε = dVP − d(V,P).

Selection of the Best Common Neighbour: In any case, the linker L,
should be a common neighbour of both V and P. Several linkers may be located
in the range of V. For every linker Lj in the communication range δ of the
verifier V it holds d (V,Lj) � δ. Obviously, if in order to reach P, the verifier
V has to rely on multiple linkers (e.g., L1 and L2), the error estimation will
increase. Optimally, we want to choose the linker Lj that satisfies the condition
max{d(V,Lj)} ≤ δ, while at the same time gives the lowest estimation error ε
among the possible linkers.

3 The Proposed Two-Hop DB Protocol

In this section, we describe a novel two-hop DB protocol (depicted in Fig. 4), that
overcomes the problems identified in Sect. 2.1, while requires no computation
from the intermediate linker i.e., L simply relays messages between V and P.
Furthermore, the proposed protocol as we will show in the security analysis
presents higher resistance to the attacks considered by Pagnin et al. [16] for
internal adversaries.

Revisiting Two-Hop Distance-Bounding Protocols 183

We consider the same setting of a verifier V, an untrusted linker L, and an
untrusted prover P that wants to be authenticated and prove its proximity. We
also consider that there is only one secret key xVP that is shared between V
and P. In the initialization phase, we would like to be sure that L transfers
the correct nonces. A simple solution is that each node uses the shared key to
compute a MAC on the nonce it sends. As a result, P and V can understand
if the received nonce from L has been altered or not. Subsequently, V and P
compute the values a0 and a1 using a pseudorandom function and an encryption
function correspondingly. In the distance-bounding phase, V chooses a random
challenge bit, which is forwarded by L to P, while P computes and sends back
the responses ri = a(ci)i ∀i ∈ {1 . . . , n}. Finally, in the verification phase, P
sends c, r and the corresponding MACxV,P (c, r) that is forwarded by L and
finally verified by V.

Verifier V Linker L Prover P
xVP xVP

Initialisation phase

NV ←{0, 1}m
NV ||MACxVP (NV)−−−−−−−−−−→ NV ||MACxVP (NV)−−−−−−−−−−→
NP ||MACxVP (NP)←−−−−−−−−−− NP ||MACxVP (NP)←−−−−−−−−−− NP ←{0, 1}m

a0 = fxVP(NV , NP) a0 = fxVP(NV , NP)
a1 = Enca0(xVP) a1 = Enca0(xVP)

Distance-bounding phase
for i = {1, . . . , n}

pick ci ∈ {0, 1}
Start Clock ci−−−−−−−→ ci−−−−−−−→

Stop Clock tP
ri←−−−−−−− ri←−−−−−−− ri = (aci)i

Verification phase
c,r,MACxVP (c,r)←−−−−−−−−− c,r,MACxVP (c,r)←−−−−−−−−−

check that ΔtP i < tallowed ∀i ∈ {1, . . . , n}
Verify c, r and MACxVP(c, r)

Fig. 4. Efficient two-hop distance-bounding protocol.

3.1 Security Analysis

In this section, we analyse the security of the proposed two-hop DB protocol,
considering internal adversaries as in [16].

Case A - Dishonest Prover P̃, honest linker L: A dishonest prover P̃
might be located far away from L and may want to appear closer. So, in the
distance-bounding phase P̃ has to send the wrong response r̃i before it receives
the challenge ci from L. Since ri is determined by the two response registers a0

184 N. Kaloudi and A. Mitrokotsa

and a1, P̃ knows ri if a0i = a1i. If a0i �= a1i then P̃ has to guess the response
ri. Thus, the success probability is

(
3
4

)n.

Case B - Honest Prover P, dishonest linker L̃: L̃ may want to shorten
the distance between P and V. We may consider two main strategies: In the
first strategy, L̃ waits for ci from V and sends it to P. Then, L̃ sends a random
response before receiving ri from P. Since ri is determined by a0, a1, and ci, the
success probability is equal to

(
1
2

)
per round. In the second strategy, L̃ sends

a random challenge before receiving ci from V. Then, L̃ waits for the response
from P and forwards it to V when it sends ci. The success probability is again
equal to

(
1
2

)
per round. Thus, the overall success probability is

(
1
2

)n.
We need to note here that the problems identified in Sect. 2.1, when L is

malicious do not apply in the new protocol. By computing the MAC of the
nonces in the initialisation phase, L cannot modify the nonces without being
detected, while there is no need to transfer NP in the verification phase. Also
the Kim et al. [18] attack cannot be applied since a MAC of all transmitted ci’s
and ri’s is verified at the end.

Case C - Dishonest Prover P̃, dishonest linker L̃: We may discriminate
into two sub-cases.

– P̃ and L̃ do not collaborate: In this sub-case, the success probability depends
on whether Case A or Case B succeeds. More precisely, the success probability
depends on whether P̃ can guess ri correctly with probability

(
3
4

)n (Case A).
For a dishonest L̃ (Case B), the success depends on guessing ci and ri correctly
(i.e., (12)n). Thus, the overall success probability is

(
5
8

)n, (i.e.,
(
3
4

)
for Case

A or
(
1
2

)
for Case B).

– P̃ and L̃ collaborate: In this sub-case, P̃ collaborates with L̃ in order to
appear within the allowed distance bound. P̃ has two options: to reveal some
information about his secret key xVP (something he does not want to do) or
to send one register a0 or a1 to L̃. Thus, in the latter case L̃ can compute
the half of responses ri correctly and send them in time to V. The other half,
have to be guessed by L̃. So, the overall success probability of the attack in
this sub-case is

(
3
4

)n.

We should point out that in the above security analysis the focus is mainly
on distance-shortening attacks since DB protocols are mainly employed in
proximity-based authentication settings. In case that a malicious linker on pur-
pose delays to relay information between P and V this would lead to failure of
the protocol when the condition ΔtPi

< tallowed does not hold.

3.2 Extension to the Multi-hop DB Setting

Up to now, we have considered two-hop DB protocols where P and V need to rely
on a single intermediate linker. In this section, we investigate how the proposed
two-hop DB protocol can be extended to a multi-hop setting i.e., when V and P
have to rely on multiple intermediate linkers Lj where j ∈ {i, . . . , m}. Multi-hop

Revisiting Two-Hop Distance-Bounding Protocols 185

V
er
ifi
er

V
L
in
ke

r
L 1

L
in
ke

r
L 2

..
.

L
in
ke

r
L m

P
ro
ve

r
P

x
VP

x
VP

In
it
ia
li
sa
ti
on

p
h
as
e

N
V

←
{0

,1
}m

N
V
||M

A
C

x
VP

(N
V
)

−−
−−

−−
−−

−−
→

N
V
||M

A
C

x
VP

(N
V
)

−−
−−

−−
−−

−−
→

N
V
||M

A
C

x
VP

(N
V
)

−−
−−

−−
−−

−−
→

..
.

N
V
||M

A
C

x
VP

(N
V
)

−−
−−

−−
−−

−−
→

N
P

||M
A

C
x
VP

(N
P
)

←−
−−

−−
−−

−−
−

N
P

||M
A

C
x
VP

(N
P
)

←−
−−

−−
−−

−−
−

N
P

||M
A

C
x
VP

(N
P
)

←−
−−

−−
−−

−−
−

..
.

N
P

||M
A

C
x
VP

(N
P
)

←−
−−

−−
−−

−−
−

N
P

←
{0

,1
}m

a
0
=

f x
VP
(N

V,
N

P)
a
0
=

f x
VP
(N

V,
N

P)
a
1
=

En
c a

0
(x

VP
)

a
1
=

En
c a

0
(x

VP
)

D
is
ta
n
ce

-b
ou

n
d
in
g
p
h
as
e

fo
r

i
=

{1
,.

..
,n

}

pi
ck

c i
∈

{0
,1

}
S
ta
rt

C
lo
ck

c i
−−

−−
−−

−→
c i

−−
−−

−−
−→

c i
−−

−−
−−

−→
..
.

c i
−−

−−
−−

−→
S
to

p
C
lo
ck

t P
r i

←−
−−

−−
−−

r i
←−

−−
−−

−−
r i

←−
−−

−−
−−

..
.

r i
←−

−−
−−

−−
r i
=

(a
c i
) i

V
er
ifi
ca

ti
on

p
h
as
e

c,
r,
M
A
C
x
VP

(c
,r
)

←−
−−

−−
−−

−−
c,

r,
M
A
C
x
VP

(c
,r
)

←−
−−

−−
−−

−−
c,

r,
M
A
C
x
VP

(c
,r
)

←−
−−

−−
−−

−−
..
.

c,
r,
M
A
C
x
VP

(c
,r
)

←−
−−

−−
−−

−−
ch
ec
k
th
at

Δ
t P

i
<

t a
llo
w
ed

∀i
∈

{1
,.

..
,n

}
V
er
ify

c,
r
an

d
M
A
C

x
VP
(c

,r
)

F
ig
.
5
.
E

x
te

n
d
ed

m
u
lt

i-
h
o
p

d
is

ta
n
ce

-b
o
u
n
d
in

g
p
ro

to
co

l

186 N. Kaloudi and A. Mitrokotsa

distance estimation as a generalisation of distance-bounding was proposed for
the first time by Mitrokotsa et al. [17]. In our proposed multi-hop DB protocol,
similarly as before, the goal of V is to determine an upper-bound of the distance
to P and the role of intermediates Lj is to forward the messages to P. Our
proposed multi-hop DB protocol (depicted in Fig. 5) is a natural extension of
the proposed two-hop DB protocol; we discuss briefly its security in this section.
It is easy to see that the protocol is similar to the proposed two-hop DB protocol.

The security analysis of the multi-hop DB protocol is similar to the one for
the two-hop DB protocol.

Case A - Dishonest Prover P̃, honest linkers L’s: The overall success
probability remains

(
3
4

)n since only P is dishonest.

Case B - Honest Prover P, dishonest linkers L̃’s: When we have one
dishonest linker the success probability is (12)n as we have shown. It is easy to
see that even if we have k dishonest linkers the overall success probability is
again (12)n since there is no dependency on the forwarded messages.

Case C - Dishonest Prover P̃, dishonest linkers L̃’s: We have two sub-
cases:

– P̃ and L̃ do not collaborate: This sub-case depends on the Cases A and B.
Either P̃ (Case A) will succeed with probability

(
3
4

)
or k L̃’s (Case B) will

succeed with probability
(
1
2

)
. Thus, the overall success probability is

(
5
8

)n.
– P̃ and L̃’s collaborate: If P̃ collaborates with k L̃’s i.e., reveals either a0 or

a1 (thus, half of the responses) then, the overall success probability will be(
3
4

)n. Either P̃ (Case A) will succeed with probability
(
3
4

)
or k L̃’s (Case

B) will succeed with probability
(
1
2

)
. Thus, the overall success probability is(

5
8

)n.

Table 1 summarises the best case attack success probabilities for the three pro-
tocols that we studied in this paper. It covers all the cases of malicious internal
participants.

Table 1. Best case attack success probabilities

Protocol P̃, L P, L̃ P̃, L̃ collaboration P̃, L̃ no collaboration

Two-hop DB
(
3
4

)n (
3
4

)n (
3
4

)n (
3
4

)n

New two-hop DB
(
3
4

)n (
1
2

)n (
3
4

)n (
5
8

)n

Multi-hop DB
(
3
4

)n (
1
2

)n (
3
4

)n (
5
8

)n

4 Conclusion

In this paper, we investigated the problem of two-hop DB protocols. More pre-
cisely, we examined the security of the first two-hop DB protocol [16] and we

Revisiting Two-Hop Distance-Bounding Protocols 187

identified some weaknesses. We also discussed how the location of the linker
may affect the distance-bounding process. Furthermore, we proposed a novel
two-hop DB protocol, that does not require any computation from the inter-
mediate linker, does not suffer from the identified weaknesses and reduces the
attack success probabilities for internal adversaries. Finally, we investigated how
the proposed two-hop DB protocol can be extended to the multi-hop DB setting
and how the attack success probabilities are affected.

Acknowledgements. This work was partially supported by the People Programme
(Marie Curie Actions) of the European Union’s Seventh Framework Programme
(FP7/2007-2013) under REA grant agreement no 608743, the VR grant “PRECIS:
Privacy and Security in Wearable Computing Devices” no 621-2014-4845, the STINT
grant “Secure, Private & Efficient Healthcare with wearable computing no IB2015-6001
and the ERASMUS+HE2015 project.

References

1. Dimitrakakis, C., Mitrokotsa, A.: Distance-bounding protocols: are you close
enough? IEEE Secur. Priv. 13(4), 47–51 (2015)

2. Mitrokotsa, A.: Authentication in constrained settings. In: Ors, B., Preneel, B.
(eds.) BalkanCryptSec 2014. LNCS, vol. 9024, pp. 3–12. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21356-9 1

3. Dimitrakakis, C., Mitrokotsa, A., Vaudenay, S.: Expected loss bounds for authen-
tication in constrained channels. In: Proceedings of INFOCOM 2012, Orlando,
Florida, March 2012

4. Dimitrakakis, C., Mitrokotsa, A., Vaudenay, S.: Expected loss analysis for authen-
tication in constrained channels. J. Comput. Secur. 23(3), 309–329 (2015)

5. Mitrokotsa, A., Peris-Lopez, P., Dimitrakakis, C., Vaudenay, S.: On selecting the
nonce length in distance-bounding protocols. Comput. J. 56, 1216–1227 (2013)

6. Mitrokotsa, A., Onete, C., Vaudenay, S.: Location leakage in distance bounding:
why location privacy does not work. Comput. Secur. 45, 199–209 (2014)

7. Aumasson, J.-P., Mitrokotsa, A., Peris-Lopez, P.: A note on a privacy-preserving
distance-bounding protocol. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.)
ICICS 2011. LNCS, vol. 7043, pp. 78–92. Springer, Heidelberg (2011). https://doi.
org/10.1007/978-3-642-25243-3 7

8. Pagnin, E., Yang, A., Hu, Q., Hancke, G., Mitrokotsa, A.: HB+ DB: distance
bounding meets human based authentication. Future Gener. Comput. Syst. 80,
627–639 (2016)

9. Mitrokotsa, A., Dimitrakakis, C., Peris-Lopez, P., Castro, J.C.H.: Reid et al’.s
distance bounding protocol and mafia fraud attacks over noisy channels. IEEE
Commun. Lett. 14(2), 121–123 (2010)

10. Bay, A., Boureanu, I., Mitrokotsa, A., Spulber, I., Vaudenay, S.: The Bussard-
Bagga and other distance-bounding protocols under attacks. In: Kuty�lowski, M.,
Yung, M. (eds.) Inscrypt 2012. LNCS, vol. 7763, pp. 371–391. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38519-3 23

11. Mitrokotsa, A., Onete, C., Vaudenay, S.: Mafia fraud attack against the RC
distance-bounding protocol. In: Proceedings of the 2012 IEEE RFID Technology
and Applications (IEEE RFID T-A), pp. 74–79. IEEE Press, Nice, November 2012

https://doi.org/10.1007/978-3-319-21356-9_1
https://doi.org/10.1007/978-3-642-25243-3_7
https://doi.org/10.1007/978-3-642-25243-3_7
https://doi.org/10.1007/978-3-642-38519-3_23

188 N. Kaloudi and A. Mitrokotsa

12. Pagnin, E., Yang, A., Hancke, G.P., Mitrokotsa, A.: HB+ DB, mitigating man-in-
the-middle attacks against HB+ with distance bounding. In: Proceedings of the
8th ACM Conference on Security & Privacy in Wireless and Mobile Networks, New
York, NY, USA, 22–26 June 2015, pp. 3:1–3:6 (2015)

13. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Practical and provably secure distance-
bounding. J. Comput. Secur. 23(2), 229–257 (2015)

14. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Practical and provably secure distance-
bounding. In: Proceedings of the 16th Information Security Conference (ISC), Dal-
las, Texas, USA, November 2013

15. Karlsson, C., Mitrokotsa, A.: Grouping-proof-distance-bounding protocols: keep
all your friends close. IEEE Commun. Lett. 20(7), 1365–1368 (2016)

16. Pagnin, E., Hancke, G., Mitrokotsa, A.: Using distance-bounding protocols to
securely verify the proximity of two-hop neighbours. IEEE Commun. Lett. 19(7),
1173–1176 (2015)

17. Mitrokotsa, A., Onete, C., Pagnin, E., Perera, M.: Multi-hop distance estimation:
how far are you? Cryptology ePrint Archive, Report 2017/705 (2017). http://
eprint.iacr.org/2017/705

18. Kim, C.H., Avoine, G., Koeune, F., Standaert, F.-X., Pereira, O.: The swiss-knife
RFID distance bounding protocol. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008.
LNCS, vol. 5461, pp. 98–115. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-00730-9 7

19. Tu, Y.J., Piramuthu, S.: RFID distance bounding protocols. In: Proceeidngs of 1st
International EURASIP Workshop on RFID Technology (2007)

20. Shih, C.Y., Marrón, P.J.: Cola: complexity-reduced trilateration approach for 3D
localization in wireless sensor networks. In: 2010 Fourth International Conference
on Sensor Technologies and Applications (SENSORCOMM), pp. 24–32, July 2010

21. Papamanthou, C., Preparata, F.P., Tamassia, R.: Algorithms for location estima-
tion based on RSSI sampling. In: Fekete, S.P. (ed.) ALGOSENSORS 2008. LNCS,
vol. 5389, pp. 72–86. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-92862-1 7

http://eprint.iacr.org/2017/705
http://eprint.iacr.org/2017/705
https://doi.org/10.1007/978-3-642-00730-9_7
https://doi.org/10.1007/978-3-642-00730-9_7
https://doi.org/10.1007/978-3-540-92862-1_7
https://doi.org/10.1007/978-3-540-92862-1_7

Author Index

Akram, Raja Naeem 3, 25, 75
Asghar, Muhammad Rizwan 41

Bonnefoi, Pierre-François 3
Bouabdallah, Ahmed 56
Bryans, Jeremy 113
Bukasa, Sebanjila Kevin 93

Chaumette, Serge 3
Cheah, Madeline 113
Cherif, Amina 3
Cobourne, Sheila 25
Conejero-Alberola, Pau 165
Cui, Shujie 41

Ellul, Joshua 140

Ferrer-Gomila, Josep-Lluís 165

Genç, Ziya Alper 130

Hinarejos, M. Francisca 165

Jayasinghe, Danushka 25
Jiang, Hao 56

Kalkar, Öznur 155
Kaloudi, Nektaria 177

Kardaş, Süleyman 130
Kiraz, Mehmet Sabir 130, 155

Lanet, Jean-Louis 93
Lashermes, Ronan 93
Le Bouder, Hélène 93
Legay, Axel 93
Leguesse, Yonas 140

Markantonakis, Konstantinos 3, 25, 75
Mayes, Keith 3, 25
Mitrokotsa, Aikaterini 177

Nguyen, Hoang Nga 113

Russello, Giovanni 41

Sauveron, Damien 3
Sertkaya, İsa 155
Shaikh, Siraj A. 113
Shepherd, Carlton 75

Uzunkol, Osmanbey 155

Vella, Mark 140

Zhang, Ming 41

	Preface
	Organization
	Contents
	Security in Emerging Systems
	A Secure and Trusted Channel Protocol for UAVs Fleets
	1 Introduction
	1.1 Contribution
	1.2 Structure of the Paper

	2 UAVs Fleet and Rationale for a STCP
	2.1 Assets to Protect, Adversary Model and SE
	2.2 SE Usage and Its Security Features
	2.3 Rationale for a STCP

	3 Related Work
	3.1 Related Work on Security Concerns of UAVs Fleets
	3.2 Related Work on Secure Channel Protocols

	4 Secure and Trusted Channel Protocol
	4.1 Security Comparison Criteria
	4.2 Protocol Notation
	4.3 Pre-protocol Setup
	4.4 Proposed Protocol
	4.5 Post-protocol Process
	4.6 Protocol Resumption

	5 Protocol Evaluation
	5.1 Brief Informal Analysis
	5.2 Revisiting the Requirements and Goals
	5.3 Protocol Verification by CasperFDR and AVISPA

	6 Conclusion and Future Research Directions
	Appendix A CasperFDR Script
	Appendix B AVISPA Script
	References

	Philanthropy on the Blockchain
	1 Introduction
	2 Benefits of Blockchain Solutions for Charities/Donors
	3 The Blockchain Philanthropic Model
	3.1 Bitcoin Transaction Methods

	4 The Philanthropic Model in an Offline Environment
	4.1 SMS Payments and Bitcoin
	4.2 Security Requirements and Adversarial Model
	4.3 Proposed SMS-Based Bitcoin Payment Scheme
	4.4 Processing a Bitcoin Payment Request

	5 Analysis
	6 Conclusion and Future Work
	References

	Security of Data
	Long White Cloud (LWC): A Practical and Privacy-Preserving Outsourced Database
	1 Introduction
	2 Related Work
	3 Overview of LWC
	3.1 System Model
	3.2 Threat Model
	3.3 System Interactions

	4 Key Management and Data Representation
	4.1 Key Management
	4.2 Data Structure for the CS
	4.3 Data Structure for the OPS

	5 Query Execution
	5.1 Encryption on the DBU
	5.2 Index Search on the OPS
	5.3 Oblivious Access
	5.4 Data Decryption

	6 Security Analysis
	7 Experimental Evaluation
	8 Conclusion and Future Work
	References

	JACPoL: A Simple but Expressive JSON-Based Access Control Policy Language
	1 Introduction
	2 Problem Statement
	3 JACPoL Detailed Design
	3.1 Fundamental Design Choices
	3.2 Policy Structure
	3.3 Syntax and Conventions
	3.4 Policy Sets, Policies and Rules
	3.5 Targets and Conditions
	3.6 Combining Algorithms
	3.7 Obligations
	3.8 Implementation

	4 Comparative Analysis
	5 Application of JACPoL to Security Models
	5.1 RBAC vs ABAC
	5.2 Attribute-Centric RBAC Application
	5.3 Role-Centric ABAC Application

	6 Conclusion
	References

	Trusted Execution
	EmLog: Tamper-Resistant System Logging for Constrained Devices with TEEs
	1 Introduction
	2 Related Work
	2.1 Secure Untrusted System Logging
	2.2 Secure Logging with Trusted Hardware
	2.3 Discussion

	3 Trusted Execution Environments (TEEs)
	4 System Requirements
	5 EmLog Architecture Design
	5.1 Log Collection
	5.2 Block Generation
	5.3 Secure Storage and Remote Retrieval

	6 Implementation
	7 Evaluation
	7.1 Discussion
	7.2 Requirements Comparison

	8 Conclusion
	References

	How TrustZone Could Be Bypassed: Side-Channel Attacks on a Modern System-on-Chip
	1 Introduction
	2 Trusted Execution Environment and TrustZone
	2.1 Trusted Execution Environment
	2.2 TrustZone

	3 Side Channel Attacks
	3.1 Definition
	3.2 Previous Works
	3.3 Use Cases

	4 Experiments
	4.1 Targeted Device
	4.2 Software Implementation
	4.3 Test Bench
	4.4 Preliminary Experiments
	4.5 Experimental Results

	5 Conclusion
	References

	Defences and Evaluation
	Formalising Systematic Security Evaluations Using Attack Trees for Automotive Applications
	1 Introduction
	2 Related Work
	2.1 Attack Trees
	2.2 Model-Based Security Testing

	3 Semantic Models
	3.1 Attack Trees
	3.2 CSP

	4 Methodology
	4.1 Transforming Attack Trees into CSP Processes

	5 Implementation
	5.1 Test Case Generation
	5.2 Test Case Execution

	6 Case Study
	6.1 Vehicular Communications
	6.2 Attack Tree Translation
	6.3 Results

	7 Conclusion and Future Work
	References

	Examination of a New Defense Mechanism: Honeywords
	1 Introduction
	2 Offline Brute-Force and Dictionary Attacks
	3 Review of Honeywords System
	4 Our Proposed Solutions
	4.1 Defending Against Malicious Code Modifications

	5 Security Analysis
	6 Conclusion
	References

	AndroNeo: Hardening Android Malware Sandboxes by Predicting Evasion Heuristics
	1 Introduction
	2 Background and Related Work
	2.1 Sandbox Detection
	2.2 Sandbox Hardening

	3 AndroNeo
	3.1 Reconnaissance
	3.2 Calculating Distinguishers
	3.3 Patch Generation

	4 Experimentation
	4.1 Experiment Setup
	4.2 Distinguisher Profiles
	4.3 Case Studies

	5 Scope Extension
	5.1 Limitations
	5.2 Proposed Extensions

	6 Conclusion
	References

	Protocols and Algorithms
	A More Efficient 1–Checkable Secure Outsourcing Algorithm for Bilinear Maps
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Security Model
	3 Verifiable Secure Outsourcing of Bilinear Maps
	3.1 Bilinear Maps
	3.2 Precomputations
	3.3 Our Algorithm: OutPair
	3.4 Security Analysis

	4 Comparison
	5 Conclusion
	References

	A Selective Privacy-Preserving Identity Attributes Protocol for Electronic Coupons
	1 Introduction
	2 Related Work
	3 Scheme: Scenario and Security
	3.1 Scenario
	3.2 Security Requirements
	3.3 Cryptographic Background

	4 Proposal
	4.1 System Set-Up
	4.2 Phases

	5 Security Analysis
	6 Conclusions and Further Work
	References

	Revisiting Two-Hop Distance-Bounding Protocols: Are You Really Close Enough?
	1 Introduction
	2 Two-Hop Distance Bounding
	2.1 Security Analysis
	2.2 Effects of Possible Positions of the Linker

	3 The Proposed Two-Hop DB Protocol
	3.1 Security Analysis
	3.2 Extension to the Multi-hop DB Setting

	4 Conclusion
	References

	Author Index

