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8.1  Introduction

Acute heat exposure impairs aerobic exercise capacity via thermoregulatory 
 mediated cardiovascular adjustments, hyperthermia-induced skeletal muscle metab-
olism alterations, and central nervous system perturbations [1]. However, repeated 
exposures to heat allow for a physiological conditioning known as heat acclimation 
when exposed to hot rooms, saunas, or baths, and acclimatisation when exposed to 
naturally hot areas/environments [2]. These heat exposures induce numerous 
 integrated physiological adaptations that improve performance in the heat and 
reduce the risk of serious heat illness [3]. This chapter covers the adaptations related 
to heat acclimation, including the increase in sweat rate and plasma volume, which 
contribute to decrease in heart rate and core temperature during exercise at a given 
intensity. It also covers the resulting benefit for exercise capacity in the heat, along 
with the potential implication for exercising in cooler environments. Lastly, the 
chapter covers the methods and kinetics of induction, as well as the kinetics of 
decay. The term heat acclimation will be used as a generic term for both acclimation 
and acclimatisation.
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8.1.1  Historical Perspectives

In one of the first reports on human heat adaptations in 1768, Lind indicated that 
when relocating to East and West Indian climates, Europeans were at first affected 
by hot environments but, by length of time, habituated and lived comfortably [4]. In 
his book ‘An Essay on Diseases Incidental to Europeans in Hot Climates’, Lind did 
not yet employ the terminology ‘acclimation’, but recommended ‘a plan for all 
newly arrived Europeans’. This included behavioural strategies such a reducing 
workload, rescheduling work to avoid the heat of the day, and using shelters. Lind 
also mentioned that there were probably blood adaptations allowing Europeans to 
‘enjoy a pretty good state of health’ once adapted.

Despite the early report from Lind on adaptations to hot environments [4], 
research pertaining to heat acclimation only gained importance in the early twen-
tieth century, likely in response to requirements related to the industrial revolu-
tion. Within this context, the mining industry published some of the early 
discoveries relating to heat acclimation. For example, it was described in 1922 
that trained miners sweated more than new workers in a hot mine (4.5–8.5 L ver-
sus 2.5  L per 5  h work shift) [5]. Some mines therefore initiated acclimation 
programs for new workers as early as 1926 [6]. In the quest to optimise work 
efficiency and safety in the mining industry, Dreosti [7] performed one of the first 
scientific acclimation studies. He demonstrated that within 14 days of heat accli-
mation, heart rate was lowered and sweat rate increased, enhancing work perfor-
mance during a rock-shovelling test, with the progressive beneficial effects being 
maintained for ~1 month [8]. Dreosti [7] also reported that resting oral tempera-
ture was lower in acclimatised than un- acclimatised workers and that even a sin-
gle previous exposure was sufficient to attenuate the rise in oral temperature in hot 
environments. Subsequent observations confirmed that acclimatised mine work-
ers had a lower temperature and heart rate (after work) and an increased sweat loss 
compared with their un-acclimatised counterparts; a finding that, in association 
with an improved ability to work, was considered characteristic of heat acclimati-
sation [9]. It was also noted that the rate of heat acclimatisation seemed relatively 
rapid, as clear improvements in working capacity occurred in only 3  days [9]. 
Interestingly, miners originating from hot regions did not appear to have a usually 
high heat tolerance [10].

8.2  Physiological Adaptations

8.2.1  Sweat Rate

An improved sweat rate response is considered the hallmark indicator of heat accli-
mation. The increase in sweat rate allows for increased evaporative cooling in envi-
ronmental conditions with low vapour pressure gradients [11]. Most of the adaptive 
increase in sweat rate occurs in 3–4 days [11, 12] (Fig. 8.1). In essence, sweating 
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begins at a lower body temperature and increases to a greater amount for a given 
body temperature elevation after heat acclimation [13] (Fig. 8.2). In tropical cli-
mates, sweat rate is lower and as such less wasteful, allowing for secreted sweat to 
evaporate and cool the skin [14]. Sweat sodium concentration also decreases with 
heat acclimation for a given sweating rate [15]. The mechanisms behind the 
increase in sweat rate and the decrease in sweat sodium concentration with accli-
mation are reasonably well understood and include neurological and endocrine 
adaptations [16]. The decrease in sweat sodium concentration can start occurring 
in 2 days only and is thereafter linear during the first week of heat acclimation [17]. 
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These sweating adaptations are supported by changes in cutaneous vasodilation 
with an earlier and greater increase in skin blood flow for a given body temperature 
after heat acclimation [12] (Fig. 8.2).

8.2.2  Blood Volume

Another commonly reported adaptation with heat acclimation is an increase in 
blood volume, and more specifically plasma volume. Large alterations in blood vol-
ume in response to climatic changes have been reported as early as 1922 [18]. In 
1940, Bazett et al. [19] published a comprehensive description of the haematologi-
cal adaptations related to acclimation based on 4 studies. Using various tracers to 
quantify blood volume, their work showed that heat acclimation induces an increase 
in both plasma volume and total circulating haemoglobin. However, the plasma 
volume expansion occurred more rapidly than the increase in haemoglobin, trigger-
ing a temporary decrease in haemoglobin concentration and haematocrit [19]. The 
increase in plasma volume became a standard observation reported in most heat 
acclimation studies from the 1950s [20], and typically occurs after 3–4 days of heat 
exposure [21, 22] (Fig.  8.1). Plasma volume expansion is particularly variable 
between individual with values ranging from 3% to 27% [23–27], whereas erythro-
cyte volume is considered to remain unchanged [28].

The expansion of plasma volume in later studies was reported to be a transient 
phenomenon [29, 30], peaking around the fifth day. However, recent studies have 
suggested that plasma volume could remain expanded if the adaptation stimulus 
was maintained constant by clamping core temperature during acclimation [24, 25]. 
Plasma volume maintenance may be facilitated by the oncotic effect of an increase 
in intravascular protein content [21, 30, 31], potentially due to an increase in protein 
synthesis [32, 33], a reduction in protein loss through the cutaneous capillaries in 
response to an acclimation-induced decrease in skin blood flow [34], and a reduc-
tion in the permeability of cutaneous capillaries to large molecules [35, 36]. Plasma 
volume increase and maintenance can also be facilitated by the increase in extracel-
lular fluid due to sodium preservation [24, 25, 37]. Notwithstanding, whether 
plasma volume remains expanded when the stimulus for adaptation is constant 
requires further investigation.

Functionally, the expansion in plasma volume may improve vascular filling pres-
sure to support cardiovascular stability (i.e. increased stroke volume and arterial 
blood pressure) [21], as well as increase the specific heat of blood [38], thus improv-
ing heat transfer from the core to the skin [16]. However, an acute artificial increase 
in plasma volume does not appear to improve thermoregulatory control [22, 39] 
and, therefore, the importance of plasma volume expansion in heat acclimation is 
still debated. Even if it is probably not the main physiological mechanism improv-
ing exercise capacity in the heat, plasma volume changes might still be a marker of 
short-term acclimation as the changes in haematocrit during a heat-response test 
appear to correlate to the changes in physical performance in the heat [40, 41] 
(Fig. 8.3).

S. Racinais et al.



163

8.2.3  Cardiovascular Adaptations

As detailed in Chap. 3, an increase in core and skin temperatures during exercise 
in the heat is associated with increased cardiovascular strain [42], with a significant 
increase in heart rate along with decline in stroke volume, mean arterial pressure, 
and potentially cardiac output [43]. Some investigators believe that a high heart 
rate is the primary contributor to reduced stroke volume during prolonged exercise 
in the heat [44].

The increases in sweat rate and plasma volume support heat dissipation at the 
level of the skin. As such, it has been well described that heat acclimation improves 
evaporative cooling and lowers skin temperature more than rectal temperature, 
therefore increasing the internal thermal gradient and facilitating heat flow to the 
surface [11, 45]. This ultimately improves heat transfer via blood flow, ‘sparing’ 
blood for the rest of the circulation [11] and relieving the circulatory strain [45]. 
Indeed, an increased plasma volume will reduce heart rate and better sustain stroke 
volume during exercise in the heat [22], improving the ability to sustain blood pres-
sure and cardiac output requirements (Fig. 8.4). Thus, a decrease in heart rate at a 
given work rate is a sign of a better sustained stroke volume and perhaps cardiac 
output during exercise-heat stress. The decrease in heart rate is probably due in-part 
to the increase in plasma volume supporting greater venous return, cardiac 
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preloading, and improving ventricular filling [23, 46], but alterations in body tem-
perature and sympathetic activity can also contribute. Accordingly, a decrease in 
heart rate for a given exercise intensity in the heat is considered a hallmark of heat 
acclimation [26, 47]. It has therefore been proposed to utilise heart rate during heat 
acclimation to maintain a given level of cardiovascular strain during daily exercise- 
heat exposures (i.e. controlled heart-rate  protocol) [3] (Fig. 8.5).

Heart rate (bpm) Stroke volume (ml/beat) Cardiac output (l/min)× =

Acute heat
exposure

Heat
acclimation

Fig. 8.4 Hyperthermia increases heart rate and decreases stroke volume. A heat acclimation- 
induced increase in plasma volume may allow to partly compensate for this effect
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8.2.4  Thermal Tolerance

In addition to the various sudomotor, vasomotor, haematological, thermoregulatory, 
and cardiovascular adaptations that contribute to reduce heat strain, repeated heat 
exposure also improves thermal tolerance. Whilst heat acclimation reduces heat 
strain, thermal tolerance is a cellular adaptation allowing the cells and organisms to 
survive a higher level of strain [48–50]. Thermal tolerance largely depends on the 
heat shock protein (HSP) response [51] with HSP72 being particularly responsive 
to heat stress and exercise [52]. Briefly, HSP binds to denatured or nascent cellular 
polypeptides to provide protection and support repair from various stressors includ-
ing heat stress, fever, hypoxia, ischemia, viral infection, energy depletion, and aci-
dosis [53]. Human studies have highlighted the complexity of the HSP response. 
For example, heat acclimation has been shown to increase basal levels of intracel-
lular Hsp72 and HSP90, with individuals demonstrating the greatest physiological 
adaptations exhibiting reduced post-exercise expression (measured ex  vivo via 
water bath incubation) [54]. In contrast, basal levels of extracellular HSP72 
decreased (with an increase in the post-exercise response) after a couple of days of 
heat acclimation [55], but not after ~10 days [56, 57]. A potential increase in basal 
levels (with a decrease in the post-exercise response) after 15 days of heat acclima-
tion has also been noted [58]. In addition to the HSP response, heat stress also up- 
regulates or down-regulates numerous gene expressions [59]. Globally, these 
adaptations allow the heat-acclimated phenotype to be more tolerant to heat as well 
as to other stressors [60].

Even if heat acclimation is a broader response than thermal tolerance, and it is 
possible to induce some level of heat acclimation without inducing significant intra-
cellular Hsp70 responses [61], it is noteworthy that HSP responses may participate 
in both heat acclimation and thermal tolerance in parallel. For example, changes in 
HSP90 within cutaneous tissues might contribute to improved vasodilatory effects 
[62, 63].

8.2.5  Muscle Adaptations

Heat acclimation has been purported to act at the muscle level, possibly altering 
whole-body [64] and skeletal muscle metabolism [65, 66]. For example, the basal 
metabolic rate of young men in Asia has been reported to decrease during the 
warmer months of the year [67]. Heat acclimation has also been suggested to 
decrease oxygen uptake [68] and muscle glycogen utilisation (40–50%) [69, 70] 
during submaximal exercise in the heat, albeit the glycogen-sparing effect of heat 
acclimation may be small [65]. Heat acclimation may also reduce blood and mus-
cle lactate accumulation during submaximal exercise [66], and increase power out-
put at lactate threshold [71]. This could be linked to improved lactate removal due 
to the increase in total body water increasing splanchnic circulation [72], and to 
delayed lactate accumulation due to an increase in cardiac output and a decrease in 
metabolic rate [65, 68]. Heat acclimation may also improve muscle aerobic 
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metabolism through mitochondrial adaptations [73] and muscle capillary growth 
[74]. Lastly, heat acclimation has been shown to facilitate hypertrophy in cultured 
[75, 76] or animals [77] muscle cells, and thus increase muscle cross-sectional area 
in humans [78] (Fig. 8.6).

8.2.6  Neural Adaptations

Acute hyperthermia has been shown to decrease neural drive to the muscle [79]. 
As detailed in Chap. 4, this impairment is due to peripheral failures in neural 
drive transmission and supraspinal alterations when contractions are prolonged 
[80]. In vitro studies have suggested that heat acclimation could reverse the 
peripheral failure in neural drive transmission induced by hyperthermia [81, 82]. 
However, in humans, the peripheral failures in neural drive transmission (esti-
mated through M-wave and H-reflex evoked potentials) induced by hyperthermia 
are not reverted by heat acclimation [83]. Importantly, this suggests that the 
decrease in neural drive transmission in humans might not be linked to synaptic 
failure, but rather be a side effect of the increase in axonal conduction velocity 
which shortens depolarisation time [84, 85]. Conversely, heat acclimation partly 
restores the ability to sustain neural drive during prolonged contractions [83] 
(refer to the Chap. 4, Fig. 4.4). As this recovery is not accompanied by any spinal 
or peripheral nervous system adjustments, it suggests a supraspinal adaptation to 
heat acclimation [83]. The benefit of this adaptation for whole-body exercise 
capacity remains unclear however, as the limiting factor for prolonged exercise 
in the heat is more cardiovascular than neural [86, 87].
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8.2.7  Perceptual and Cognitive Adaptations

Acute hyperthermia increases thermal discomfort as well as the negative/positive 
affects ratio [83], potentially affecting exercise capacity [88] and cognitive func-
tion [89, 90] in the heat. Heat acclimation may not affect thermal comfort per se at 
rest [83, 91], but it can improve the ratings of thermal sensation/comfort during 
training and competition in the heat for both team-sports and endurance athletes 
[91–93]. It is however unclear to which extend this improvement participates in the 
physical performance improvement associated with acclimation. Heat acclimation 
can also protect various cognitive tasks such as psychomotor performance [94], 
attention tasks [95] and planning task [96] from the deleterious effects of 
hyperthermia.

8.3  Exercise Capacity and Physical Performance

8.3.1  In Hot Environments

From the initial studies in the mining industry, heat acclimation demonstrated an 
improved work capacity under heat stress conditions [97]. This improvement has 
been consistently verified using either natural (acclimatisation) or artificial (accli-
mation) heat exposures, with a recent meta-analysis calculating an average perfor-
mance improvement of 15% [91].

The decrease in VO2max associated with the development of hyperthermia is likely 
one of the main limiting factors for prolonged exercise performance in hot ambient 
conditions [98]. Heat acclimation can improve VO2max in temperate and hot ambient 
conditions; however, it cannot fully restore the initial decrease in VO2max imposed by 
heat stress [71, 99].

The increase in VO2max with acclimation is associated with a proportional 
improvement in exercise performance in the heat (e.g. cycling time trial) [71]. In 
some circumstances, heat acclimation may be sufficient to restore a similar level of 
performance to that observed in cooler environments [100, 101]. For example, 
power output during an outdoor cycling time trial (43 km) in 37 °C was ~16% lower 
compared to a time trial undertaken in 8 °C, with half of this decrease restored after 
1 week of heat acclimation, and the decrease almost fully compensated for after 
2 weeks of heat exposure [100] (Fig. 8.7). The magnitude to which heat acclimation 
can improve performance in the heat depends on several factors, including the 
severity of the environmental conditions (e.g. ambient temperature, relative humid-
ity, wind velocity) and the type of performance (e.g. duration, intensity). 
Notwithstanding, heat acclimation consistently improves submaximal intensity 
exercise capacity in the heat.
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8.3.2  In Temperate Environments

Whilst it is well accepted that heat acclimation improves both VO2max and exercise 
capacity in the heat, there is conflicting evidence regarding its effect on exercise 
capacity in cooler environments. On one hand, several studies did not observe any 
improvement in VO2max in cool environment following 5 days of isothermic heat 
acclimation with permissive dehydration [102], 10 days of constant intensity heat 
acclimation [101], or 14 days of heat acclimatisation [103]. On the other hand, other 
studies have reported an increase in VO2max in cool conditions following heat accli-
mation in unfit (23%) or untrained (13%) individuals [104], but also in trained ath-
letes (3–5%) [71, 99]. Whether heat acclimation improves VO2max in cool 
environments therefore remains a topic of contention.

In addition to potential improvements in VO2max, decreases in glycogen utilisa-
tion [65, 69, 70] and blood and muscle lactate accumulation [66] may also improve 
exercise capacity in cool environments following heat acclimation. The mecha-
nisms for these adaptations are unclear, but could include an increase in total body 
water facilitating lactate removal through increased splanchnic circulation [72], 
and/or an increase in cardiac output and decrease in metabolic rate delaying lactate 
accumulation [65, 105]. This can translate in an increased power output at lactate 
threshold [71, 102], VO2max [71, 99], and performance [71]. For example, heat 
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acclimation (via sauna bathing) improves run time to exhaustion in competitive run-
ners with the improvement being correlated to the increase in plasma volume and 
total blood volume [106].

Several studies have also reported that heat acclimation increased fitness level 
in team-sports athlete following pre- and in-season training camps in the heat [41, 
107, 108]. This is particularly interesting as obtaining rapid fitness improvements 
without performing specific aerobic training sessions may save time for technical 
training [41, 107, 108]. In summary, even if the benefits of heat acclimation in 
cooler environment are debated, there is no evidence to indicate that heat acclima-
tion impairs performance in cooler environments. As such, heat acclimation should 
be implemented before any event with potentially hot, even if uncertain 
conditions.

8.4  Heat Acclimation and Decay

8.4.1  Kinetics of Adaptation

The kinetics of heat acclimation adaptation and decay were one of the primary inter-
ests of the occupational studies stemming from the mining industry and military 
[109, 110]. Robinson and his collaborators [111] reported in 1943 that daily walk-
ing in a hot room for 1–1.5  h decreased heart rate, skin temperature, and rectal 
temperature, with the decrement occurring rapidly in the first 7 days of acclimation, 
and then more slowly up to 23 days. As early as 1951, Ladell [12] suggested that 
heat acclimation occurred in two phases with an initial decrease in heart rate and 
temperature threshold for sweating (within 2–3 days), followed by an increase in 
sweat rate at a given temperature and a better resistance to fatigue. Heat acclimation 
is now considered as a relatively rapid process that begins from the first day of expo-
sure, with 75–80% of the adaptations occurring in the first 4–7  days [3, 112] 
(Fig. 8.1).

Importantly, the kinetics of adaptation are based on daily heat exposure. Indeed, 
10 days of daily heat exposure was reported to induce similar adaptations than 1 
exposure every 3 day, but in the third of the time [113]. In addition, even if 1 expo-
sure every 3 days allows for some adaptations, interspacing the exposure by 1 week 
does not allow for adaptations to develop [114]. Thus, if and when allowing for rest 
days during a pre-competition taper to avoid fatigue and hypohydration [115], it 
must be accounted for that intermittent heat exposure allows for lesser adaptations 
compared to daily exposure [116].

Of note, the constraints of the competition calendar in international sports have 
led recent research to focus on short-term heat acclimation [115, 117, 118]. However, 
even if athletes benefit from only few days of acclimation [92, 115, 119], they may 
require 7–10 days to achieve near complete cardiovascular and sudomotor adapta-
tions [23, 27, 71], and two or more weeks to optimise aerobic performance in hot 
environments [100].
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8.4.2  Heat Acclimation Induction

A classic research from 1963 originally suggested that 100 min of daily exercise in 
the heat was suitable to induce heat acclimation [120]. The panel of induction meth-
ods has diversified over the years and includes active, passive, or a mixture of active 
and passive hyperthermia [121] (Fig. 8.5). The rule of thumb to induce heat accli-
mation is to increase whole-body temperature, induce profuse sweating, and elevate 
skin blood flow [122]. This can be achieved through: (1) passive heat exposure, (2) 
self-paced exercise, (3) constant work rate exercise, (4) controlled hyperthermia, or 
(5) controlled heart-rate approaches (Fig. 8.5).

Passive exposure has been used in scientific studies to isolate the effect of 
repeated heat exposure without training [83, 123, 124]. However, heat acclimation 
before competing in the heat should be as specific as possible and as such, passive 
exposure is likely not as efficient as training in the heat. Notwithstanding, repeated 
passive heat exposures allow to partially develop a heat-acclimated phenotype [125, 
126] and may be practical for athletes living in cold countries. Passive exposure 
may also include maintaining an elevated temperature post-training [106, 127], or 
even increasing temperature before active acclimation [128].

Self-paced exercise in the heat has been used for decades [129, 130], and includes 
working or training in natural heat. Self-paced heat acclimation has been largely 
replaced by more controlled methods (see below) in the recent years, but is still the 
primary method for team-sports athletes acclimatising through their natural outdoor 
training [40, 41, 107]. For endurance sports, such as cycling, choosing to naturally 
acclimatise through self-paced exercise, intensity blocks should be prioritised 
towards the beginning of the session to maintain absolute exercise intensity.

Acclimation via constant work rate exercise has been the primary model from 
which much of our knowledge on acclimation kinetics (see above) is based [13, 23, 
111, 131]. In this model, there are fixed endogenous and exogenous thermal loads 
(e.g. cycling at 160 W in 35 °C, 60% RH), representing a constant forcing function. 
However, the relative stress imposed by of those fixed load will progressively dimin-
ish as acclimation develops [11, 132–134]. This relative decrease has been sug-
gested as one of the reasons for the decline in plasma volume following its initial 
increase [24, 25]. It is important to note however, that whilst the training stimulus or 
forcing function may decrease as adaptations develop, a recent meta-analysis con-
cluded that the constant work rate acclimation leads to similar adaptations than 
clamping core temperature to maintain the forcing function (described below) [91].

Acclimation by isothermic controlled hyperthermia (i.e. clamping core tempera-
ture at 38.5 °C) has been proposed to provide a constant forcing function and thus 
maintain the acclimation stimulus as adaptations develop [24, 117, 135, 136]. This 
concept has recently seen a regain in interest, but it is not new and was proposed half 
a century ago [132, 135]. In general, isothermic protocols may not allow appropri-
ate training for athletes as the exercise intensity dramatically decreases when the 
target core temperature is reached, with exercise completely ceasing in some cir-
cumstances [137], thus reducing one of the main drivers for adaptation (i.e. 
sweating).
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Training in the heat at a given heart rate has therefore been suggested as a 
more suitable method for athletes [3]. Heart rate represents a global index of the 
cardiovascular stress imposed by the thermal stress and exercise (see above), 
and decreases rapidly with acclimation (Fig. 8.1). Thus training at a clamped 
heart rate accounts for the acute effect of heat stress via power output adjust-
ments, but then allows for maintaining a given level of cardiovascular strain as 
acclimation develops and power output increases at the pre-determined heart 
rate [3].

8.4.3  Individual Responses

There are large inter-individual differences in heat acclimation responses [40, 138], 
with some athletes acclimating in 1 week and others requiring 2 weeks or longer 
[121]. Although heat acclimation improves exercise capacity in the heat in a variety 
of populations including mine workers, military personnel, and athletes, an indi-
vidualised strategy may be required in elite athletes to truly optimise performance. 
For example, when analysing a soccer game in dry heat after 1 week of heat accli-
mation, some football players can have the same physical activity than they had 
1 week before in temperate environment, whereas other players from the same team 
have to dramatically reduce their physical activity [40]. Anecdotally, although the 
changes in performance following short-term acclimation may correlate to the 
changes in haematocrit during a heat-response test (Fig. 8.3), there is currently no 
test in temperate environment or resting blood measures allowing to quantify heat 
acclimation [27, 40, 41].

8.4.4  Decay and Re-acclimation

Early studies on miner usually working in hot ambient conditions [110, 139] or on 
soldier undergoing 12 days of acclimation [140] suggest that most adaptations are 
lost within 6–7 days without heat exposure. However, Robinson et al. [111] reported 
that 3 of 5 participants could still benefit from the adaptations induced by 23 days 
of heat acclimation 2–3 weeks after the end of the procedure, whereas two other 
participants lost most of their adaptations. This support the early study from Dreosti 
[7] suggesting that some heat acclimation benefits could be maintained for up to 
1 month after 14 days of heat acclimation. Although those early reports are informa-
tive, there is limited research available on the kinetics of heat acclimation decay. 
A recent systematic review and meta-analyses reported that despite athletes main-
taining some adaptations for several weeks after acclimation, the magnitude of 
those adaptations decreased daily by ~2.5% for heart rate and body core tempera-
ture during exercise [121]. Sweat rate showed a fast decay, but too little data was 
available to draw firm conclusions. Noteworthy is that the rate of decay may likely 
be slowed by training and regular heat exposure post-acclimation. Importantly, re-
acclimation during this period appears to be faster than the initial rate of acclimation 

8 Heat Acclimation



172

[121]. Thus, 4–5 days of re-acclimation could be enough to regain complete heat 
acclimation if undertaken within 1 month [141].

8.5  Conclusion

Repeated exercise-heat exposures induce heat acclimation, characterised by a series 
of physiological adaptations improving thermoregulation and reducing physiologi-
cal strain. These adaptations include an increase in sweat rate, a decrease in heart 
rate, and a decrease in core temperatures at a given exercise intensity. To obtain 
these adaptions, it is necessary to increase both whole-body temperature (i.e. core, 
skin, muscle, and tissue temperature), as well as stimulate profuse sweating. The 
adaptations improve exercise capacity in warm-hot environments and their transfer 
to temperate environments remains debated. Most adaptations can be obtained 
within a few days of daily heat exposure, but exercise capacity in the heat may 
improve optimally after ~2 weeks.
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