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As a multidisciplinary area of scientific inquiry, 
neuropsychology is often defined as the study of 
brain–behavior relationships. However, as an area 
of psychological practice, clinical neuropsychol-
ogy has been described as the application of neu-
ropsychological principles of brain–behavior 
relationships to the assessment, diagnosis, and 
rehabilitation of changes in human behavior that 
arise across the lifespan from known or suspected 
illnesses or injuries affecting the brain [1]. To this 
definition, we can also add the assessment of cog-
nitive changes associated with medical interven-
tions (e.g., open-heart surgery, epilepsy surgery) 
and treatments (e.g., deep brain stimulation, phar-
macologic treatments). Whether the focus is on 
changes in cognition induced by abnormal medi-
cal conditions or those in response to treatments 
and interventions, the focus of the clinical neuro-
psychologist in everyday practice is on change.

The assessment of meaningful neurocognitive 
change is particularly relevant for the evaluation 
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of older adults suspected of having underlying 
neurodegenerative disorders. Because the diag-
nosis of dementia as well as mild cognitive 
impairment (MCI) requires evidence of cognitive 
decline over time [2], it is critical to distinguish 
between age-related decrements in cognition 
(e.g., memory, processing speed, executive func-
tions) believed to be part of “normal” aging [3–5] 
and those early clinical changes that are patho-
logical and disease-related (e.g., neurodegenera-
tive disorders, cerebrovascular disease, stroke, 
diabetes, etc.). Traditional single-point evalua-
tions are limited in this context as they only cap-
ture a picture of the patient’s current abilities at a 
single point in time. Unless the patient’s perfor-
mances deviate markedly from an inferred pre-
morbid baseline, it is difficult for the practitioner 
to know whether these point estimates of a 
patient’s abilities are meaningfully different from 
expectation [6]. To overcome the limitations of 
single-point assessments, clinicians increasingly 
are turning to serial assessments to determine 
whether patients’ observed trajectories of change 
over time significantly deviate from those seen in 
normal aging [7, 8]. Unlike single-point assess-
ments where the clinician must infer a premorbid 
baseline, the patient’s initial scores serve as their 
observed baseline. Armed with an appropriate 
conceptual framework and some simple tools, 
serial assessments provide the informed practitio-
ner a powerful means for assessing diagnostically 
meaningful change.
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In this chapter, we will briefly discuss the 
clinical use of norm-referenced neuropsycho-
logical tests, contrasting two underlying 
approaches to interpreting these norms in tradi-
tional single-point assessments. With this as a 
backdrop, we will then turn our attention to the 
use of serial assessments to objectively monitor 
and assess cognitive changes over time, discuss-
ing the unique advantages and challenges of 
serial assessments. An overview and distillation 
of reliable change methods will be presented and 
applied to a case example, demonstrating how 
these methods can be used as effective tools to 
inform the clinical evaluation of the individual 
patient. In the end, we hope to leave the reader 
with an appreciation that change is a unique 
variable with its own inherent statistical proper-
ties and clinical meaning.

�Norms and How We Use Them 
in Single-Point Assessments

In clinical practice, when we see a patient for 
the first time, we use norm-referenced tests so 
that we can compare the performances of the 
individual patient to an external reference 
group. The norms simply describe the distribu-
tion of scores on a given test obtained by a ref-
erence group, which can be a sample from the 
general population, a well-screened group of 
healthy community-living individuals (i.e., 
robust norms), or a patient group with a spe-
cific condition of interest. To infer meaning 
from our patient’s scores, we can take two very 
distinct approaches to answer different clinical 
questions [6]. The first approach is descriptive, 
that is, where does my patient’s score fall with 
respect to the reference population along a 
standardized metric (e.g., standard scores, 
z-scores, percentile ranks)? We often apply 
descriptive labels such as “above average” or 
“below average” for ranges of scores in rela-
tion to the mean of the sample, and using stan-
dardized measures of the distribution of scores, 
we can assign percentile ranks that tell us how 
common or uncommon the specific score is 
within the reference population.

While the descriptive approach is useful in 
identifying where our patient’s scores fall within a 
reference population, it does not address whether 
our patient’s scores are impaired or not. To do this, 
we must take a diagnostic approach where we ask 
the question “does my patient’s score deviate from 
premorbid expectations (i.e., where I expect the 
score to have been in the absence of an intervening 
illness or injury), and if so, by how much?” The 
reference standard is now the individual’s premor-
bid status, not the mean of the reference popula-
tion. In the absence of having baseline information, 
the clinician must infer this and often relies on 
demographic information [9] and performance on 
crystallized ability measures such as oral reading 
derived from normative reference groups (e.g., the 
Test of Premorbid Functioning [10]). Deviations 
from this individual comparison standard can also 
be placed on a standardized metric (e.g., T-scores, 
z-scores), and percentile ranks assigned to the 
deviations if we know the characteristics of the 
distribution of the deviation scores between the 
premorbid estimate and observed performance on 
a given test. Note that the focus is on the distribu-
tion of the deviation scores, not the distribution of 
either the premorbid estimates or the observed 
scores on a given test.

While the diagnostic approach allows us to 
quantify whether an individual’s current perfor-
mance deviates from estimates of his or her demo-
graphically predicted premorbid ability level, we 
are still constrained to describing the deviation in 
terms of base rates—how common or uncommon 
the deviation is for our patient relative to premorbid 
expectations. To be diagnostically useful, the clini-
cian must further establish validity evidence. As 
neuropsychologists move more concertedly toward 
evidence-based practice [11], it is no longer suffi-
cient to simply rely on personal case records, unsys-
tematic observations, or general knowledge as 
validity [12]. Increasingly, clinicians must become 
skilled in performing evidence-based reviews of the 
literature [13] that allow the integration of “…best 
research derived from the study of populations to 
inform clinical decisions about individuals within 
the context of the provider’s expertise and individual 
patient values with the goal of maximizing clinical 
outcomes and quality of life…” (Chelune, 2017, 
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p  160). Our interpretation that discrepancies of a 
certain magnitude are statistically more frequent in 
populations that have a specific condition of inter-
est, such as amnesic MCI, than would be expected 
at this level of discrepancy in a normal population 
should be founded on empirical evidence.

To illustrate the points above, let us consider 
the example of super clinician, Dr. Bob, who 
works in a memory disorders clinic and uses the 
test MegaMemory to evaluate memory com-
plaints. Knowing that a patient’s memory score 
on MegaMemory is one standard deviation below 
the estimated premorbid level informs Dr. Bob 
that the base rate of deviations of this magnitude 
occurs in only 16% of cases where there is an 
absence of an intervening illness or injury. 
However, after carefully reading the chapter on 
validity in the test manual for MegaMemory, Dr. 
Bob finds that the publisher conducted a case-
controlled study using MegaMemory that com-
pared equal numbers of patients with amnesic 
MCI and normal controls, a prevalence rate simi-
lar to what Dr. Bob sees in his clinic. The manual 
reports that individual deviations of one standard 
deviation or more from estimated premorbid lev-
els occurred in 64% of cases with amnesic MCI 
compared to only 16% of controls. Performing a 
Bayesian analysis of the base rates between the 
two groups [13] yielded an odds ratio of 9.3 and 
a likelihood ratio of 4.0. Based on this empirical 
evidence, Dr. Bob now feels he can interpret a 
deviation score of one standard deviation or more 
on MegaMemory as not only relatively uncom-
mon among healthy older adults but also as being 
“impaired” since deviations of this magnitude are 
four times more likely to occur in patients with 
amnesic MCI than in healthy controls, and among 
patients with amnesic MCI, deviations of this 
magnitude are nine times more likely to occur 
than deviations of lesser magnitude.

�Using Serial Assessments to Identify 
Meaningful Change

Although neuropsychological tests are generally 
designed to assess the current state or capacity of 
an individual, repeated assessments are increas-

ingly common in neuropsychological practice 
and outcomes research [14, 15]. This has become 
especially true in geriatric settings where the 
determination of meaningful changes in cogni-
tion over time is essential for both the diagnosis 
of dementia and for planning therapeutic provi-
sions and long-term care for patients and caregiv-
ers [6, 16]. Serial observations and longitudinal 
comparisons are classic tools in science, and their 
use in clinical practice requires clinicians to 
understand test–retest change scores as unique 
cognitive variables with their own statistical and 
clinical properties that are different from the test 
measures from which they were derived [17].

Like single-point diagnostic assessments dis-
cussed above, serial assessments share (a) a focus 
on change between two points in time (albeit one 
observed and the other inferred); (b) estimates of 
change based on individual comparison stan-
dards rather than population standards; (c) a 
focus on the psychometric properties of the dis-
crepancy or change scores rather than on the test 
scores themselves (i.e., the properties of the dis-
tribution of change scores); (d) use of base-rate 
information to determine whether a change or 
discrepancy score is common or uncommon; and 
(e) impairment inferred on the basis of validity 
studies that demonstrate that large and relatively 
rare change scores are statistically more common 
in patient groups with a known condition of inter-
est than would be expected among the reference 
population.

Although serial assessments share much in 
common with single-point assessments, they also 
pose unique interpretative challenges because 
two or more sets of scores are involved. Under 
ideal test–retest conditions, a patient’s retest per-
formance should be the same as that observed at 
baseline, and any change or deviation from base-
line would be clinically relevant. However, in the 
absence of perfect test stability and reliability, the 
clinician must deal with the residuals of these sta-
tistical properties, namely, bias and error.

Bias  Bias represents a systematic change in per-
formance. The most important source of systematic 
bias in clinical practice is the variable of interest, 
that is, the effect of disease progression over time, 
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the impact of a surgical or pharmacological inter-
vention, or the effect of rehabilitation. However, 
second only to the variable of interest, the most 
common source of bias in serial cognitive assess-
ment is a positive practice effect in which perfor-
mance is enhanced by previous test exposure, 
although negative biases can also occur such as 
those seen in aging [18]. For example, in a meta-
analysis on practice effects on commonly used 
neuropsychological tests, Calamia et  al. (2012) 
reported a mean practice effect of approximately 
+0.24 standard deviation units but noted that age 
decreased practice effects by approximately 0.004 
per year after the age of 40 [19]. Other forms of 
systematic bias on retest performance are educa-
tion, gender, clinical condition, baseline level of 
performance, and retest interval [19–22]. Where 
large, positive practice effects are expected, the 
absence of change may actually reflect a decrement 
in performance. To make accurate diagnoses, the 
clinician must separate the effects of the variable of 
interest from other sources of bias.

Error  In addition to systematic biases, tests 
themselves are imperfect tools and can introduce 
an element of random error. For our purposes 
here, we will only consider two sources of error 
affecting serial assessment, both of which are 
inversely related to the test’s reliability. The first is 
measurement error or the fidelity of the test, and it 
refers to the theoretical distribution of random 
variations in observed test scores around an indi-
vidual’s true score, which is characterized by the 
standard error of measurement (SEM). Because 
the SEM is inversely related to a test’s reliability, 
tests with low reliability (<0.70) have large SEMs 
surrounding a person’s true score at both baseline 
and on retest, and large test–retest differences can 
occur simply as random fluctuations in measure-
ment. Conversely, small test–retest changes can 
be reliable and clinically meaningful for tests with 
high reliability (>0.90). Test–retest reliabilities of 
0.70 or greater are often considered to be the min-
imum acceptable standard for psychological tests 
in outcome studies [23], and practitioners should 
be wary when interpreting cognitive change 
scores on tests that have lower reliabilities.

The second source of error affecting change 
scores is regression to the mean, which refers to 
the susceptibility of retest scores to regress 
toward the mean of the scores at baseline. The 
more a score deviates from the population mean 
at baseline, the more likely it will regress back 
toward the mean on retest. How much a score 
regresses depends on the reliability of the test. 
Again, scores on tests with high reliability show 
less susceptibility to regression to the mean than 
those on tests with lower reliability. The bottom 
line for clinicians when planning to perform 
serial assessments and faced with two tests pur-
ported to assess the same cognitive construct—
choose the one with the better reliability!

Alternate forms  Alternate forms are often touted as 
an effective means for avoiding or minimizing prac-
tice effects due to test familiarity. Carefully con-
structed alternative forms may attenuate the effects 
of content-specific practice for some measures [24]. 
However, research demonstrates that alternate 
forms used in serial assessments still show signifi-
cant practice effects [25]. While alternate forms 
may dampen practice effects due to content famil-
iarity, they do not control for procedural learning 
and other factors that contribute to the overall prac-
tice effect. More importantly, rote use of alternate 
forms in serial assessment ignores other factors that 
impact interpretation of test–retest change scores, 
namely, reliability and error [17].

�Reliable Change in Serial 
Assessments with Older Adults

It should be clear that the interpretation of test–
retest change scores is not a straightforward matter, 
and making accurate diagnostic judgments about 
whether an older adult has shown significant dete-
rioration (or improvement) in cognitive status over 
a retest interval requires us to consider the role of 
bias and error in our measurements. Bias and error 
are problems only to the degree that they are 
unknowns and not taken into account when inter-
preting change scores. In this section, we will dis-
cuss reliable change methods, a family of related 
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statistical procedures that attempt to take into 
account the impact of differential practice effects 
and other systematic biases, measurement error, 
and regression to the mean on the interpretation of 
change scores. We do not intend to do a compre-
hensive or in-depth review of these procedures, and 
the interested reader is directed to other sources for 
more complete coverage [15, 17, 21, 22, 26–28]. 
Rather, we wish to distil the essential features of 
reliable change methods and demonstrate how 
these tools can be used diagnostically to evaluate 
meaningful cognitive change in older adults.

�Reliable Change: A Statistical 
Approach to Meaningful Change

To understand the concept of reliable change, we 
need to distinguish between what is statistically 
significant at a group level and what is clinically 
meaningful at the individual level. Repeated 
measure tests of statistical significance tell us 
whether the mean difference between two groups 
of a given magnitude is a reliable difference that 
would not be expected to occur by chance at 
some predefined probability level (e.g., p < 0.05). 
However, the base rates of such differences at the 
level of the individual may actually occur with 
some regularity even when no real behavioral dif-
ference. For this reason, Matarazzo and Herman 
have urged clinicians to routinely consider base-
rate data in their clinical interpretation of test–
retest evaluations [29].

�Reliable Change: The Basic Model

Reliable change methods all fundamentally strive 
to evaluate the base rates of difference scores in a 
population and to determine whether the differ-
ence between scores for an individual is statisti-
cally rare and cannot be accounted for by various 
sources of bias (e.g., practice) or error (e.g., mea-
surement error and regression to the mean). Like 
a ruler or yardstick that measures change from 
point A to point B along a standard metric 
(inches/yards), the basic form for any reliable 
change method is a ratio: reliable change 

(RC) = (change score)/(standard error), where 
the standard error describes the dispersion of 
change scores that would be expected if no actual 
change had occurred [30]. This is simply the dis-
tribution of test–retest scores one would see in a 
reference population. RC is typically expressed 
as a standardized z-score under the unit curve that 
has a mean of 0 and a standard deviation of 1.0. 
The base rate of a given RC value being equal to 
the percentile associated with the z-score, for 
example, a z-score or RC of −1.64, falls at the 
bottom fifth percentile. The various reliable 
change methods reported in the literature primar-
ily vary along two dimensions: whether the 
change score in the numerator is a simple-
difference or a predicted-difference score and 
whether the standard error in the denominator 
represents a measure of dispersion (observed or 
estimated) around the mean of difference scores 
or around a regression line.

Simple versus predicted-difference change 
scores  For the change score component of the 
RC ratio, when we do follow-up evaluations on a 
patient, we generally look at the retest scores and 
compare them with the baseline score (retest−
baseline) to see if the difference is positive or 
negative. This is the simple-difference approach. 
When no difference is expected over the retest 
interval (perfect stability), the simple-difference 
change score reflects the patient’s individual devi-
ation from a population mean difference score of 
0 or no expected change. However, as we have 
noted earlier, there are many sources of bias 
affecting retest scores, with practice often exerting 
a strong positive bias. As a result, the actual popu-
lation mean of the test–retest change scores is 
positive and has led to the development of a prac-
tice-adjusted simple-difference approach [31]. 
For example, the mean retest performance on the 
Wechsler Memory Scale-III (WMS-III) 
Immediate Memory Index is 13.4 points higher 
than at baseline when readministered several 
weeks later [32]. If our 68-year-old male patient 
that we are following for suspected dementia has 
a baseline score of 97 and a retest score of 100, 
has he actually shown an improvement of 3 points 
when the average retest change score is 13.4 or a 
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decrement of −10.4 points (13.4 − 3 = −10.4) 
from expected change? To adjust for expected 
practice effects, Chelune and colleagues have 
suggested centering the change score component 
of the RC deviations around the mean of the 
expected practice effect and calculating the 
change score discrepancy from this mean [31].

The second approach to calculating the change 
score component of the RC ratio is the predicted-
difference method. This is a regression-based 
approach that uses a patient’s baseline perfor-
mance to predict what his/or her retest score is 
expected to be at retest, with the regression equa-
tion being one derived from an appropriate refer-
ence sample. The discrepancy between the 
patient’s actual observed retest score and the pre-
dicted retest score (Y − Y′) constitutes the change 
score discrepancy. Entering the baseline score as 
a predictor of the retest score into the regression 
equation allows practice effects to be modeled as 
a function of baseline performance (rather than as 
a constant) while also accounting for regression to 
the mean [33], two aspects not accounted for by 
the simple-difference approach. As in any regres-
sion approach, the equation can be univariate, 
using only the baseline score as the sole predictor, 
or multivariate, using additional information from 
other potential sources of bias as predictors, such 
as age, education, gender, and retest interval. In 
the example above of the 68-year-old male patient 
suspected of dementia, a regression-based equa-
tion using baseline WMS-III Immediate Memory 
Index scores and age was computed for the WMS-
III test–retest standardization sample [17]. Given 
a baseline score of 97 for a 68-year-old normal 
individual, the predicted retest score would be 
108.8. Our patient’s predicted change score devi-
ation is −8.8 points (observed retest score of 100 
minus the predicted test score of 108.8). The 
reader will note that the −8.8-point predicted 
change score discrepancy is smaller than the 
−10.4-point simple-difference change score. The 
reason for this is that the regression-based pre-
dicted change score modeled not only practice 
effects (a positive bias) but also age (a negative 
bias), which dampened the expected practice 
effect, resulting in a smaller (although perhaps 
more accurate) expected retest score.

Measures of dispersion for the simple-difference 
method  Once the individual’s change score dis-
crepancy has been computed, we have a measure 
of change but do not know whether the change is 
large or small without having a standard metric to 
evaluate the dispersion of change scores that 
would occur in the absence of real change (i.e., 
changes simply due to error). This is reflected in 
the denominator of the RC ratio, and the choice 
of the measure of dispersion has been the subject 
of much debate and refinement in the reliable 
change literature [15, 17, 22, 26, 27, 34]. The 
simplest version of the standard error component 
of the RC ratio is simply the standard deviation 
of the observed change score discrepancies. In 
our dementia case example with the WMS-III, 
the mean test–retest change score obtained from 
the WAIS-III/WMS-III Technical Manual is 13.4 
[32]. However, like many test manuals and nor-
mative studies that report the means and standard 
deviations of the test and retest scores, the stan-
dard deviation of difference (change) scores was 
not reported. With permission from the test pub-
lisher, Chelune calculated the actual standard 
deviation of change scores for the WMS-III 
Immediate Memory Index from the retest sample 
and found it to be 10.2 [17]. With this measure of 
dispersion, we can calculate the RC magnitude of 
our patient’s change score by dividing the 
observed practice-adjusted simple-difference 
score (−10.4) by the standard deviation of 
differences (10.2) and obtain an RC z-score of 
−1.02. A z-score of this magnitude would be 
expected to occur in only about 15% of cases 
when no real change has occurred. Is this suffi-
ciently rare to classify our patient’s change 
score as meaningful? Most studies of reliable 
change invoke a 90% RC confidence interval 
(z-score ± 1.64), in which only 5% of cases would 
be above or below this level of change. For our 
patient’s change score to reach this level of 
decline, he would have needed a retest score 
between 93 and 94. It is worth emphasizing that a 
seemingly minor decrement in performance (e.g., 
3–4 standard score points in this case), a change 
that many clinicians might call “within the range 
of the test’s variability,” actually reflects a reli-
able change when corrected for expected practice 
effects and measurement error.
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In the absence of having the actual standard 
deviation of difference scores, it is possible to 
estimate it in one of several ways. Jacobsen and 
Truax initially introduced the Reliable Change 
Index (RCI) as a means for calculating RC with 
only knowledge of the simple-difference change 
score and the standard error of the difference 
scores (Sdiff), a measure of dispersion derived 
from SEM for the test at baseline [35]. Chelune 
and colleagues later adapted the RCI by adjusting 
for the mean practice effect [31]. In a further 
refinement, Iverson suggested a modified RCI 
that used the SEM at both baseline and at retest to 
calculate the Sdiff [36]. Comparison of the two 
versions of the Sdiff suggests that Iverson’s method 
produces a closer estimate of the actual disper-
sion of change scores than that of Jacobsen and 
Truax. In the case of our WMS-III Immediate 
Memory example, the Iverson method produces a 
Sdiff of 9.9 compared to 8.8 for the Jacobson and 
Truax method, where the actual standard devia-
tion of differences was 10.2. A final common 
estimate of the observed dispersion of change 
scores is the standard error of prediction, which 
represents the standard error of a retest score pre-
dicted from a baseline score in a regression equa-
tion where the test reliability coefficient is the 
standardized beta coefficient [17]. In our WMS-
III example, the standard error of prediction for 
the Immediate Memory Index is 10.1, very close 
to the observed standard deviation of actual 
change scores, namely, 10.2.

Standardized regression-based (SRB) approach. 
As noted in our discussion of the simple versus 
predicted methods of calculating the change score 
discrepancy in the RC ratio, the predicted-differ-
ence method generates predicted retest scores (Y′) 
for individuals based on their specific baseline 
performances (X) using linear regression and then 
subtracts this from their observed retest scores (Y) 
to obtain their personal change score discrepancy 
(Y − Y′). Additional sources of potential bias (e.g., 
age, education, gender) can be added to the regres-
sion equation in a multivariate manner [33]. As 
noted earlier, this approach allows practice effects 
to be modeled as a function of individual baseline 
performance as well as accounting for regression 

to the mean. This might be particularly important 
as these two variables interact (e.g., the practice 
effects may be attenuated by regression to the 
mean for someone with a high baseline score, 
whereas practice effects are enhanced by regres-
sion to the mean for an individual with a low ini-
tial baseline score). However, unlike the 
simple-difference approach where the standard 
error term in the denominator of the RC ratio 
reflects the dispersion of change scores around the 
mean of the change scores, the predicted-
difference approach typically uses the standard 
error of the estimate (SEE) for the regression 
equation in the denominator of the RC ratio to 
reflect the dispersion of scores around the regres-
sion line. In our case example with the WMS-III 
Immediate Memory Index [17], the regression 
equation for predicting retest scores was given as:

	

Y

SEE

’ ( . ) ( . )

. ,

= + −
+

Baseline score Age

with an of

* *1 00 0 097

18 45 10..24 	

The first part of this equation gives us an indi-
vidual’s predicted retest score that can be used to 
calculate the change-score discrepancy compo-
nent of the RC ratio, whereas the SEE gives us 
the standard error term for the denominator. The 
reader will note that the SEE for the regression 
line is the same as the observed standard devia-
tion of the simple-difference change scores.

While several authors have noted that the vari-
ous RC methods produce relatively similar results 
[22, 30], the SRB RC-approach has generally 
become the preferred method for individual pre-
diction, provided that the clinician has access to 
prediction equations derived from reference sam-
ples appropriate to their patients. While there is a 
growing body of such SRB equations for a vari-
ety of tests commonly used with older adults [8, 
9, 16, 20, 37, 38], and some tests such as the 
fourth edition of the Wechsler Adult Intelligence 
and Memory Scales have incorporated RC algo-
rithms into their scoring software [10], there is 
still a paucity of published longitudinal SRB 
data. Fortunately, as will be seen in the next sec-
tion, John Crawford and Paul Garthwaite have 
developed a simple but powerful tool for building 
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regression equations from summary data that can 
be applied to the individual case [39].

Regression models of reliable change derived 
from summary data  As noted by Crawford and 
Garthwaite [39], not all neuropsychologists are 
aware that it is possible to construct regression 
equations for predicting an individual’s retest 
performance from their baseline performance 
simply using sample summary data, for which 
there is a potential wealth of clinically useful 
information available in test manuals and the 
published literature. To build univariate regres-
sion equations from summary data alone, one 
only needs the means and standard deviations for 
test and retest scores, the size of the sample, and 
the test–retest reliability coefficient (or alter-
nately the t-value from a pair-samples t test). In 
their 2007 paper, Crawford and Garthwaite delin-
eate the statistical steps necessary to build such 
regression equations, as well as the further steps 
needed to compute the associated statistics for 
drawing inferences concerning the individual 
case. Recognizing that the computations involved 
are tedious and prone to error, Crawford and 
Garthwaite also developed a compiled calculator 

that is available for download at no cost from the 
following web address: http://www.abdn.
ac.uk/∼psy086/dept/regbuild.htm

To use this calculator, one only need input the 
sample summary data and the patient-specific 
test–retest scores. Using the summary data from 
Chelune [17], Table 5.1 illustrates the output gen-
erated for our hypothetical 68-year-old patient 
whose baseline Immediate Memory Index was 
97 at baseline and 100 on retest. The output is 
remarkably similar to that presented in previous 
sections for our patient example using various 
RC methods. Generally, the various approaches 
would predict our patient to have a retest score of 
109–110 given his baseline score of 97. His 
observed retest score of 100 is 9–10 points below 
expectations (RC z-score deviation of about 
−1.0), which would likely occur in only about 
15% of a sample for which there were no signifi-
cant intervening events affecting cognition.

Although the Crawford and Garthwaite’s 
regression calculator presented here is univariate 
[39], it has recently been expanded to handle 
multiple predictors, and this executable calcu-
lator is also available for download online at 

Table 5.1  Output from Crawford and Garthwaite’s [39] calculator to build regression equations from sample summary 
data for a hypothetical patient with test–retest scores of 97 and 100 on the Wechsler Memory Scale-III Immediate 
Memory Index

Inputs
Mean for predictor variable (X) in sample used to build the equation  =  100.2
Standard deviation for predictor variable (X) in sample  =  15.9
Mean for the criterion variable (Y) in sample  =  113.7
Standard deviation for the criterion variable (Y) in sample  =  19.2
Correlation between predictor and criterion variable  =  0.85
Sample size  =  297
Individual’s score on the predictor (X) variable  =  97
Individual’s obtained score on Y  =  100
Outputs
Regression equation built from the summary data: Y  =  10.8532  +  (1.0264  *  X)
Standard error of estimate for regression equation  =  10.1314
Analysis of the individual case
Individual’s predicted score from regression equation  =  110.4155

Discrepancy (obtained minus predicted) between individual’s obtained and predicted scores  =  −10.4155

Standardized discrepancy between individual’s obtained and predicted scores  =  −1.0262
Significance test (t) on the standardized discrepancy between individual’s obtained and predicted scores:
One-tailed probability  =  0.1528
Estimated percentage of population obtaining a discrepancy more extreme than individual  =  15.280799%
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http://www.abdn.ac.uk/∼psy086/dept/RegBuild_
MR.htm [40].

Advanced concepts and models of reliable 
change  The various RC methods we have 
described so far only consider measuring change 
as a discrete event across two points in time. 
However, there are many clinical situations 
where individuals are assessed serially across 
multiple time points, and change may be better 
described in terms of trajectories of change and 
intraindividual rates of cognitive decline. Early 
attempts to assess reliable change across multiple 
time points either averaged reliability coefficients 
and measures of dispersion between the various 
time points to arrive at composite indices of RC 
[41] or computed separate RC indices between 
each pair of time points [38]. Recently, more 
innovative approaches have been employed to 
model change as a trajectory or slope across mul-
tiple time points.

It is beyond the scope of this chapter to do 
more than alert the reader to some of these inno-
vative approaches and to provide exemplars. 
Some investigators are using regression models 
that attempt to predict an individual’s perfor-
mance at time point2 + n by entering into regres-
sion formula not only baseline performance but 
the practice effects between previous time points. 
For example, Duff and associates [8] developed 
multivariate SRB equations for several neuropsy-
chological tests widely used with older adults 
that used baseline performance, demographic 
variables, and short-term practice effects (base-
line to 1 week) in predicting retest scores 1 year 
later. Attix and colleagues [42] developed SRB 
normative neuropsychological trajectories for a 
variety of test measures administered five times 
at 6-month intervals by entering in successive 
performances at each time point as predictors of 
subsequent performance at the next time point. 
Other investigators have focused on developing 
regression models that compare an individual’s 
slope of performance across multiple time points 
to that of a control sample [43, 44]. Still others 
are using variations of longitudinal linear mixed 
models to estimate age-adjusted mean slopes and 

confidence intervals of change to identify 
individuals whose performances begin to deviate 
from expectation [7, 45]. Growth mixture model-
ing has also been applied to longitudinal data sets 
to identify subgroups of individuals who show 
different cognitive trajectories over time [46–49]. 
Clearly, we are on the verge of seeing a new gen-
eration of RC methods to assess reliable change 
in patients’ performances over time.

�A Case Example: Application 
of Reliable Change Methods 
in Clinical Practice

The accumulation of pathophysiological changes 
characteristic of Alzheimer’s disease (AD) is 
believed to develop years, if not decades, before 
the clinical expression of frank memory loss and 
general cognitive decline [50]. To maximize the 
efficacy of emerging disease-modifying therapies 
and to support continued functional independence, 
early detection of Alzheimer’s disease (AD) and 
other neurodegenerative disorders is paramount 
[46, 51]. Descriptive clinical states such as cogni-
tive impairment but not dementia (CIND) and 
MCI have been introduced to describe abnormal 
cognitive states that place individuals at increased 
risk for progressing to AD [52]. However, these 
clinical states describe individuals who are already 
symptomatic. One does not wake up one day with 
dementia or MCI. Rather, cognitive decline, like 
neurodegenerative disease, is a dynamic process 
that evolves over time. Hence, serial neuropsycho-
logical evaluations have come to play an important 
role in documenting cognitive decline in geriatric 
settings.

Let us consider a case example of a 63-year-old, 
right-handed man with a Ph.D. Our patient is a suc-
cessful professor of sociology at a major university 
and a married father of three children. His past 
medical history is significant for depression and 
some cardiac issues, both currently well controlled. 
He has been stable on his medications for many 
years, and they are not thought be an issue with 
respect to cognition. Our patient has noticed insidi-
ous and progressive memory difficulties for about 
2  years and presents to our cognitive disorders 
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clinic for evaluation. His neurologist obtains a 
Mini-Mental State Exam score of 30/30 but on fur-
ther bedside testing notes some subtle memory dif-
ficulties. The neurologist decides to refer the patient 
to us for comprehensive neuropsychological evalu-
ation. We perform our evaluation and find that the 
patient has a relatively circumscribed pattern of 
memory deficit within the context of otherwise 
normal findings (see baseline scores in Table 5.2). 
Our impression is that this patient has amnesic 
MCI.  We know from the research literature that 
patients with MCI have an increased risk of show-
ing further decline and developing a frank demen-
tia. However, we also know that some of these 
individuals revert back to “normal” when seen in 
follow-up [53, 54]. We share these observations 
with our referring neurologist and recommend that 
the patient be referred for a follow-up evaluation in 
1 year to assess whether there has been any evi-
dence of significant interval change in his neuro-
cognitive status. Seeing the wisdom in our 
recommendations, the neurologist agrees and 
orders repeat testing in a year.

The patient returns 12  months later, and we 
repeat his evaluation. As we can see from the 
test–retest data summarized in Table 5.2, some of 
our patient’s scores have gotten worse and some 
have gotten better. To understand which of these 
changes are reliable and meaningful given the 
different psychometric properties of the tests in 
our battery and to place them on a common met-
ric, we turned to RC methods. For our purposes 
here, we computed reliable change information 
using the predicted-difference method. Using the 
test–retest data presented in the manuals for the 
tests or from longitudinal research studies with 
samples of healthy older adults, we entered the 
sample summary data into Crawford and 
Garthwaite’s regression calculator [39] along 
with our patient’s baseline and retest scores. In 
the right-hand columns of Table 5.2, we present 
the patient’s predicted retest scores given his 
baseline performances, the observed–predicted 
discrepancy (Y − Y′), and the associated z-scores 
and population percentiles associated with the 
predicted-difference discrepancies. From these 
data, we can see that the patient’s memory has 
continued to significantly deteriorate. We also 

note that his global mental status on the Mattis 
Dementia Rating Scale [55] and on the WAIS-III 
verbal comprehension index [32] shows signs of 
notable deterioration. At this point, we can confi-
dently say that the patient’s current test results 
reflect some further deterioration in his capacity 
to learn and remember new information as well 
as some increased difficulties with verbal intel-
lectual abilities. While he is still likely to meet 
the criteria for MCI rather than dementia, his 
increased difficulties with verbal skills are worri-
some for a neurodegenerative disorder such as 
Alzheimer’s disease.

�Future Directions: Change 
as a Neurocognitive Biomarker

As noted earlier, practice effects are defined as 
improvements in test scores due to repeated 
exposure to the testing materials. Traditionally, 
practice effects have been viewed as error vari-
ance that need to be controlled, managed, or 
otherwise accounted for in our interpretation 
of change. However, practice effects, like cog-
nitive change in general, seem to be a unique 
variable that can potentially provide clinically 
useful information about diagnosis, prognosis, 
presence of brain pathology, and treatment rec-
ommendations for our patients [59]. Over the 
past several years, we have been prospectively 
examining practice effects as a neurocognitive 
biomarker in the development of dementia in 
older adults.

In an initial study examining practice effects in 
community-dwelling seniors with MCI, we 
observed two subgroups: those that benefited from 
practice across 1 week and those that did not [60]. 
Those that showed significant gains after repeat 
testing could no longer be classified as MCI, as 
they now appeared intact. These MCI participants 
might reflect “accidental” MCI [53, 54]. 
Conversely, the MCI participants that did not ben-
efit from practice retained their original diagnostic 
classification, and these participants more likely 
demonstrate the construct of MCI.  In this way, 
short-term practice effects provide diagnostic 
information that was not available with baseline 
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Table 5.2  Clinical case example of test–retest scores and reliable change (RC) information based on data in bold using 
Crawford and Garthwaite’s [39] approach to derive RC regression equation from sample summary data

Test

Baseline scores Follow-up scores Reliable change (RC) information

Raw
Standard 
score T-score Raw

Standard 
score T-score

Predicted 
retest 
score

Discrepancy 
(Y  −  Y′)

RC 
z-score

Population 
percentile

Global mental status
Mini-mental state 
exama

29 28 28.57 −0.58 −0.33 37

Mattis Dementia 
Rating Scale: Totalb

140 11 133 8 135.5 −6.36 −1.48 7

Wechsler tests
Test of premorbid 
functioningc

125 118 124.25 −6.25 −1.13 13

WAIS-III Adult Intelligence Scaled

General ability index 82 126 58 77 119 43
Verbal comprehension 46 131 61 40 118 49 130.43 −12.43 −3.07 <1
Perceptual 
organization

36 111 47 37 114 50 115.11 −1.11 −0.19 43

Processing speed 19 96 41 20 99 43 100.14 −1.14 −0.17 43
Memory measures
WMS-III memorye

Logical 
memory-immediate

30 8 35 20 4 21 9.88 −5.88 −3.14 <1

Logical 
memory-delayed

14 8 37 4 3 18 10.61 −7.61 −3.87 <1

Digit spand 20 13 53 21 13 53 13.26 −0.26 −0.20 42
Hopkins Verbal Learning Testf

Total trials 1–3 22 37 17 28 23.36 −6.36 −1.35 9
Delay 0 <20 0 <20 2.61 −2.61 −0.95 17
Brief Visuospatial Memory Testf

Trials 1–3 12 31 2 <20 13.46 −11.46 −2.21 <1
Delay 0 <20 0 <20 2.25 −2.25 −1.01 16
Language
Boston Naming Testg 58 13 58 13 57.72 0.28 0.12 55
Controlled Oral Word 
Associationf

46 13 49 13 45.32 3.68 0.41 66

Visuospatial functions
Judgment of line 
orientationh

30 16 28 14 23.48 4.52 0.83 79

KBNA complex figure 
and clock drawing 
totali

54 12 55 14 10.98 3.02 1.21 88

Executive functions
Trail-making A timef 38 8 33 10 39.39 −6.93 0.44 67
Trail-making B timef 63 11 97 8 70.89 26.12 −0.51 30
KBNA practical 
problem and conceptual 
shifting totali

29 13 29 13 11.53 1.47 0.58 70

Notes: Sources of normative data used in developing RC prediction equations
aTombaugh [38]
bPedraza et al. [55]
cHoldnack and Drozdick [10]
dThe Psychological Corporation [32]; Table 3.8
eThe Psychological Corporation [32]; Table 3.11
fDuff et al. [8]
gDuff et al. [56]
hDuff et al. [57]
iDarby et al. [58]
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Fig. 5.1  Cognitive change across 1 year in patients with 
differential practice effects. Note MCI + PE = individuals 
with mild cognitive impairment who showed large practice 
effects across 1  week; MCI − PE = individuals with mild 

cognitive impairment who showed minimal practice effects 
across 1  week; y-axis = age-corrected standard score 
(M = 100, SD = 15) on total scale score of the Repeatable 
Battery for the Assessment of Neuropsychological Status

data. Others also have found practice effects to be 
diagnostically useful in MCI [61].

Prognostically, the presence of practice effects 
suggests a better outcome, whereas the absence 
of practice effects suggests a poorer outcome. In 
two independent samples of individuals with 
MCI, we have observed that practice effects pre-
dict future cognition, above and beyond baseline 
cognition [8, 62]. As seen in Fig. 5.1, when we 
followed our two MCI subgroups across 1 year, 
those that benefitted from practice across 1 week 
tended to remain cognitively stable across 1 year, 
and those that did not show the expected practice 
effects across 1  week tended to decline across 
1 year [63].

In a sample of 25 older adults without demen-
tia (some intact, some with MCI), we observed 
that practice effects across 1  week were nega-
tively associated with amyloid deposition using 
F-18 flutemetamol positron-emission tomogra-
phy (PET) imaging [64]. As seen in Fig.  5.2, 
smaller than expected practice effects (i.e., lower 
values on the x-axis) were seen in subjects with 
greater amyloid deposition (i.e., greater values on 
the y-axis). In this same cohort, we also noted 
that smaller practice effects across 1 week were 
associated with brain metabolism on fluorodeox-

yglucose (FDG) PET imaging, such that smaller 
practice effects were associated with brain hypo-
metabolism [65].

Lastly, we have examined the utility of practice 
effects in predicting treatment response. In a small 
sample of community-dwelling and cognitively 
intact older adults, within-session practice effects 
predicted response to a memory training course: 
those that showed practice effects displayed larger 
gains related to the cognitive intervention than 
those that did not show robust practice effects [66]. 
Although these findings need to be replicated, 
practice effects appear to contribute to a clinician’s 
decision about diagnosis, prognosis, brain pathol-
ogy, and treatment response, especially in older 
adults with memory difficulties.

�Conclusion

The assessment of cognitive change lies at the very 
heart of clinical neuropsychology. Understanding 
change and how we assess it with our various test 
measures is complex and challenging, yet given an 
appropriate conceptual framework and some simple 
statistical tools, it is something that neuropsycholo-
gists can do uniquely well. Test–retest practice effects 
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Fig. 5.2  Practice effect across 1 week is associated with amyloid deposition in non-demented older adults. On the x-axis, 
lower values reflect smaller than expected practice effects. On the y-axis, greater values reflect more amyloid deposits

are not simply statistical artifacts and something to be 
suppressed but rather something to be understood. 
Especially among older adults, the capacity to learn 
and benefit from exposures to new experiences to 
potentially guide future behavior has adaptive value 
and may be a biological marker of neural integrity 
that has diagnostic significance.

�Clinical Pearls

•	 Patients deserve empirically based clinical 
decisions and recommendations.

•	 Test–retest change scores are unique variables 
with their own statistical and clinical proper-
ties that are different from the test measures 
from which they were derived.

•	 Where large positive practice effects are 
expected, the absence of change may actually 
reflect a decrement in performance.

•	 When planning to perform serial assessments 
and faced with two tests purported to assess 
the same cognitive construct, choose the one 
with the better reliability.

•	 Use of alternate forms in serial assessment 
may attenuate, but not eliminate, practice 
effects and do not address other factors that 
affect the interpretation of change scores, 
namely, bias and error.

•	 Test–retest reliabilities of 0.70 or greater are 
often considered to be the minimum accept-
able standard for psychological tests in out-
come studies, and practitioners should be 
wary when interpreting cognitive change 
scores on tests that have lower reliabilities.

•	 The basic form for any reliable change method 
is a ratio: reliable change (RC) = (change 
score)/(standard error), where the standard 
error describes the dispersion of change 
scores that would be expected if no actual 
change had occurred.

•	 The various reliable change methods reported 
in the literature primarily vary along two 
dimensions: (a) whether the change score in 
the numerator is a simple-difference or a 
predicted-difference score and (b) whether the 
standard error in the denominator represents a 
measure of dispersion (observed or estimated) 
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around the mean of difference scores or 
around a regression line.

•	 Not all neuropsychologists are aware that it is 
possible to construct regression equations for 
predicting an individual’s retest performance 
from his/her baseline performance by simply 
using sample summary data, for which there is 
a potential wealth of clinically useful informa-
tion available in test manuals and the pub-
lished literature.

•	 For computing regression equations using 
sample summary data for individual cases, see 
Crawford and Garthwaite’s univariate online 
calculator, and enter your patient-specific 
test–retest scores: http://www.abdn.ac.
uk/~psy086/dept/regbuild.htm. For multivari-
ate data, see the website at http://www.abdn.
ac.uk/~psy086/dept/RegBuild_MR.htm.

•	 Although traditionally viewed as a source of 
bias, practice effects may provide valuable 
information about a patient’s diagnosis, prog-
nosis, brain pathology, and treatment response, 
especially for older adults with memory 
difficulties.
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