
Chapter 13
Smartphone Sensing Technologies for
Tailored Parkinson’s Disease Diagnosis
and Monitoring

Gabriela Postolache and Octavian Postolache

Abstract Parkinsonian syndromes are a heterogeneous entity of movement disor-
ders, with various described subtypes. This systematic review aimed to examine
the available literature on smartphone applications for assessment of Parkinson’s
disease motor and nonmotor symptoms and signs. Papers published from 2013
to 2017, listed in two electronic databases—IEEE Xplore and PubMed—were
searched, to identify the works related with smartphone use for PD patients’
diagnosis and monitoring. Full-text articles were analyzed to evaluate the quality
of the reported methods and results, considering the validity, reliability, and
sensitivity of the techniques used in the measurements as well as the Grading of
Recommendations Assessment, Development and Evaluation guideline. The data
from 26 full-text articles suggest that many and relevant data can be collected
automatically and accurately via mobile phone. Inertial measurement units as well
as capacitive, force/pressure, acoustic sensors were used for the development of
smartphone-based tools to improve assessment and monitor symptoms and signs
of Parkinson’s disease. Smartphone-based information on upper limbs tremor, gait,
posture, balance, activities, and speech may improve quality of healthcare services
for Parkinson’s disease patients and their quality of life.

13.1 Introduction

I am going to take a nap now. It was more one night of struggle to continue to stay alive,
when physical infirmities and torment of soul are worsening. I remember the panic of
awakening without capacity to breathe and the effort to breathe again, the sleeplessness
produced by fear of dipping in agony of having to traipse while the body functions failures
take me through a distant place . . .where my deep love that I keep in my soul might be lost
forever. I got up with the joy of sun rays that wash my sorrow face. I must get up from bed
but fear of falling, stop me to think on other things, and to move. Sadness and frustration,
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I feel when I see my hands tremor . . .Who, why is producing these movements . . . It is not
me . . . are not mine . . . .

I am going to spend my day in front of television. Sad, in powerlessness . . . From time
to time I wish a lot to speak with someone . . . I want to talk about . . . but now they not
understand me, or they haven’t patience to listen what I said. Oh, so many neighbours that
so many time when I was healthy came to me to talk on . . . so many things . . .So many time
have passed without any visit of my neighbours or friends.

I should stand up from my chair . . . My heart began to beat strongly . . . .if I fall . . . how
many time I would wait in agony of minutes that seams hours or days until someone
would help me . . .The shame, the infirmity, the pain in my soul . . .The dead is better than
life . . . I stand up after a while and with small and rapid steps I go to kitchen . . . I need more
space . . .The dead is better than life . . . I feel the fear . . . I hope not falling . . .The dead is
better than life . . .More one day . . . .

What I am going to do today . . . as yesterday, and the day before yesterday I will spend
my time in front of television . . . sometime falling asleep, sometime bored . . .More one day
will pass. Perhaps, the dead is better than life . . .So deeply I wish to live for my dears . . . .
More one day . . . one day . . . day . . .

Although it is not a fragment from a written or spoken diary of a person with
Parkinson’s disease (PD), as the used words suggest a high degree of PD severity
that is characterized by the low ability to write or speak, it can describe the
quality of life of a person having this long-term illness. Based on observations
and report from a caregiver, the story suggests a health state with a negative
score of health-related quality of life (HRQL) measured by Health Utilities Index
(HUI) instrument. HUI is a standardized system to measure health status. The
two HUI systems HUI2 and HUI3 can describe almost 1,000,000 unique health
states [1]. The HUI2 classification system includes seven attributes—Sensation,
Mobility, Emotion, Cognition, Self-Care, Pain, and Fertility—each from three to
five levels. The HUI3 classification system comprises eight attributes—Vision,
Hearing, Speech, Ambulation, Dexterity, Emotion, Cognition, and Pain—each with
five or six levels of ability/disability. Negative scores of HRQL represent health state
considered by a person as worse than dead.

The first scientific document on Parkinson’s disease—An Essay on the Shaking
Palsy [2], reprinted in [3], with more details on the history in [4]—was published by
Dr. James Parkinson 200 years ago. Well-known individuals having the disease, such
as Pope John Paul II, actor Michael J. Fox, and boxer Muhammad Ali, contributed
to wider public awareness and scientific research on PD. Knowledge on Parkinson’s
disease seems to be present in India since ancient times. Ayurveda, an ancient system
of medicine dating around 5000–3000 B.C., characterized the kampavata disease
by symptoms that currently are considered as the main symptoms of Parkinson’s
disease as tremors, stiffness, depression, and a depletion of movement [5]. For this
disease with strong clinical resemblance with PD, the ancient Indians prescribed
diverse therapeutic plants. Moreover, a lower prevalence of PD was registered in
India, mainly in some population (i.e., Bangalore district in South Karnataka) [6].
In our knowledge, no data on the factors that produced or are associated with this
lower prevalence were published.

Heterogeneity of Parkinsonian syndrome and similarity of various clinical signs
and symptoms with those from other diseases increase the error in PD diagnosis.
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Parkinsonian syndrome is a heterogeneous entity of movement disorders, which
can be subdivided into idiopathic Parkinson’s disease, rare genetic forms of
Parkinson’s disease, as well as symptomatic and atypical Parkinsonian syndromes
(APS) [7]. Multiple system atrophy (MSA), progressive supranuclear palsy (PSP),
corticobasal degeneration (CBD), and dementia with Lewy bodies are included
into APS. Furthermore, many other disorders (i.e., essential tremor, drug-induced
Parkinsonism) may show clinical signs of Parkinsonism.

Many PD patients, both from developed or undeveloped countries, mainly those
with low accessibility to healthcare services (i.e., those who live in remote rural
areas or in countries with unaffordable healthcare services), perceive their quality
of life much lower than the age-matched control group (see [8]). A decline in
physical function measured with Short-Form Health Status Survey (SF36) in PD
patients relative to a cohort of 51,530 male health professionals and 121,701 female
registered nurses from the USA began approximately 7.5 years prior to diagnosis in
women and 3 years prior to diagnosis in men and continued to decline thereafter
with a rate of 2.35 and 1.43 points per year in women and men, respectively
(p < 0.001 for both) [9]. The decline in individuals without PD was on average
0.42 and 0.23 points per year in women and men, respectively [9]. All the eight
dimensions scored measured with the 39-item Parkinson’s Disease Questionnaire
(PDQ-39) were shown to be significantly lower in PD participants; the highest
score was found in “bodily discomfort” and the lowest in “social support” [10].
Moreover, many people diagnosed with PD do not see a neurologist [11]. Even in
most developed countries, the doctor appointments are once or twice per year (e.g.,
in Sweden 1.7 times/year with regional variation between 1.1 and 2.1) [12] and
accessibility to healthcare services is the worst in rural regions [11].

The advances in hardware miniaturization combined with increased capacity for
large data processing and storing, and in implementation of algorithm for higher
measurements accuracy and signal pattern recognition, have made the wearable
devices important tools for disease diagnosis and long-term health monitoring.
Different benefits are envisioned or are already proven: portability of medical
devices; customizability and deployment scalability; healthcare cost saving; better
communication between patients and healthcare professionals; objective measure-
ments of subjects functioning, disability, and health; increased patient access
to health information; medication reminders; to help track progress in physical
exercise regime; patient assessment and monitoring for an extended duration in
clinic or remotely; opportunities for patients in chronic condition to engage in their
healthcare; and capacity to improve the quality of healthcare services and to reduce
medical errors while reducing clinician workloads.

Modern smartphones integrate a growing number of sensors, powerful portable
media tools, connectivity to the Internet, and cloud computing resources. Major
mobile operating systems, such as Android, iOS, and Windows support customiz-
able interfaces and signal processing. In the past years, various smartphone or
tablet applications for diagnosis and monitoring of PD signs and symptoms were
developed. In this chapter, we present our analysis on smartphone applications
for Parkinson’s disease symptoms and signs assessment and monitoring. These
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sensing technologies may have great potential to improve accessibility to healthcare
services, quality of diagnosis, and treatment of patients with Parkinson’s disease as
well as to increase their everyday quality of life.

In the Sect. 13.2 of the chapter, a brief literature review on non-electronic
methods used for the assessment of Parkinson’s disease motor and nonmotor
symptoms and signs and their precision is presented, followed by the Sect. 13.3
by presentation of the methods and results on analysis of literature related to
smartphone applications for PD diagnosis and monitoring.

13.2 Non-electronic Instruments Used for PD Diagnosis

The gold standard diagnosis of PD is based on histopathological analysis, after
patient death, and requires cell loss in substantia nigra and the presence of Lewy
bodies, which stain for alpha-synuclein and ubiquitin [7]. While these criteria are
useful only post mortem, several attempts have been made for real-time effective
diagnosis and monitoring. Several biomarkers (i.e., genetic markers, biochemical
markers, neuroimaging markers, and clinical biomarkers) were described in the
last decades for diagnosis, tracking disease progression, identification of specific
therapeutic targets, or determination of the efficacy of agents designed to influence
disease progression [13–15]. However, the initial diagnosis varies greatly in PD.
Clinical diagnosis performed mainly by nonexperts might have an accuracy of
73.8% (95% CI 67.8–79.6%) [16]. The accuracy of PD diagnosis made by a
general neurologist was found to be 76% [17], and clinical diagnosis performed
by movement disorders experts rose from 79.6% (95% CI 46–95.1%) of initial
assessment to 83.9% (95% CI 69.7–92.6%) and up to 90% [18] of refined diagnosis
after follow-up [16]. When patients present atypical Parkinsonism, the accuracy of
diagnosis is low (41–88% in progressive supranuclear palsy; 50–66% in multiple
system atrophy) [19, 20]. Furthermore, in a recent prospective study with 110
subjects [21], in which the accuracy of various technologies for differentiating
diagnosis of PD and APS was tested, the clinimetrics of Unified Parkinson’s
Disease Rating Scale (UPDRS) have showed more benefits and efficacy for PD
diagnosis. In the study, the accuracy of magnetic resonance imaging (MRI), 123I-
iodobenzamide single photon-emission computed tomography (IBZM-SPECT)
analysis of the cerebrospinal fluid (CSF), and electromyography (EMG) of the anal
sphincter to diagnose PD were investigated. This study also analyzed data from: a
structured interview, including information on medical history; used medication;
presenting complaints and progression of the disease; most affected body site;
balance and fear of falling as well as from UPDRS III and IV; Hoehn and Yahr
(H&Y) score; International Cooperative Ataxia Rating Scale (ICARS) for cerebellar
symptoms; and Mini Mental State Examination (MMSE). Participants underwent
a structured interview; detailed and standardized neurological examination; and
within 6 weeks after the initial visit brain MRI, IBZM-SPECT, lumbar puncture,
and anal sphincter EMG. After 3 years, the examination was made again following
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the same procedures, for all patients. In 92 out of the 110 patients who completed
the 3-year follow-up, the initial diagnosis at baseline was correct. APS diagnosis
at baseline was incorrect in 33% of patients. Clinimetric procedures yielded 138
clinical parameters that were potentially able to differentiate between PD and APS.
Higher age, rapid disease progression, autonomic dysfunction, impaired tandem
gait, abnormal fluency, higher ICARS total score, higher UPDRS axial score, and
higher disease stage were the parameters that have shown fair to good accuracy
to differentiate between PD and APS. The study has shown that none of the
ancillary investigations contribute for better accuracy to differentiate PD and APS
but tandem gait and axial UPDRS score yielded a very good accuracy (AUC = 0.92),
a sensitivity of 73% and specificity of 92% [21].

The UPDRS scale, published in 1987 [22], and U.K. Parkinson’s Disease
Society Brain Bank Clinical Diagnostic Criteria (UKPSBB) [17] are nowadays the
most used clinical criteria for PD diagnosis. The diagnosis of PD based on the
UKPSBB criteria demands the presence of bradykinesia (slowness of initiation of
voluntary movement with progressive reduction in speed and amplitude of repetitive
actions) and at least one of the following: muscle rigidity, rest tremor, or postural
instability not caused by primary visual, vestibular, cerebellar, or proprioceptive
dysfunction. UPDRS have six parts: part I. mentation, behavior, and mood (four
items); part II. activities of daily living (13 items); part III. motor examination (13
items); part IV. complication of therapy in which dyskinesia, clinical fluctuation,
and other fluctuation are studied; part V. modified Hoehn and Yahr staging; and
part VI. Schwab and England activities of daily living scale. A shorter version
of UPDRS for the assessment of motor impairment and disabilities in PD—the
Short Parkinson’s Evaluation Scale (SPES) [23]—was created. Later, the Scale
for Outcomes in Parkinson’s disease (SCOPA) study brought some modification
to SPES, improving clinimetric aspect of the SPES scale, which resulted in a new
scale—SPES/SCOPA [24, 25]. However, the UPDRS scale has some weaknesses:
(i) it is time consuming—mean completion time is 30 min; (ii) the evaluation using
this scale is prone to clinicians’ subjectivism; (iii) several ambiguities in the written
text are present in UPDRS scale, inadequate instructions for raters, some metric
flaws, and the absence of screening questions on several important nonmotor aspects
of PD [26]. Founded on the critique that was formulated by the Task Force for Rating
Scales in Parkinson’s disease, a new scale was published in 2008 powered by the
Movement Disorder Society (MDS) [27, 28]. The MDS–UPDRS has four parts:
part I. nonmotor aspects of experiences of daily living (13 items); part II. motor
aspects of experiences of daily living (13 items); part III. motor examination (21
items); and part IV. motor complication. In comparison with UPDRS, the new scale
includes more nonmotor aspects of PD, and patients reported symptoms and signals.

Despite PD nonmotor symptoms being described for long time ago (e.g., sleep
disturbances, gastrointestinal dysfunction, bladder dysfunction, and even fatigue
were described by Dr. Parkinson) and extensive demonstration of the importance
of nonmotor aspects of experience of daily living, the PD continues to be viewed
by most clinicians as a motor disorder, and for simplicity, the UKPSBB criteria are
the most used. The nonmotor symptoms received in the last decades an increasing
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interest by their importance recognition for diagnosis purposes but also because they
are the major source of deterioration in quality of life [29]. Various nonmotor aspects
were associated with Parkinson’s disease: (i) sensory dysfunction—hyposmia,
decreased visual contrast and color discrimination, and decreased visual motion per-
ception, abnormal sensations, such as paresthesias; (ii) dysautonomia—orthostatic
hypotension (OH), constipation, urinary dysfunction, sexual dysfunction, excessive
sweating, seborrhea, and sialorrhea; (iii) sleep disorders—insomnia, rapid eye
movements (REM) behavior disorder (RBD), restless legs syndrome, periodic
limbs movements in sleep, and excessive daytime sleepiness; (iv) pain; (v) fatigue;
and (vi) neuropsychiatric features—apathy, anxiety, panic attacks, mood disorders,
hallucinations, illusions, delusions, cognitive deterioration, and ranging from mild
impairment to dementia [29]. Aging may be associated with all PD nonmotor
symptoms. However, the nonmotor symptoms are more frequent, more severe, and
in a larger number of different aspects, in PD individuals [30, 31]. Some of these
nonmotor features may be present before any motor signs are noticeable. In a study
with 115 PD patients, it was shown that most frequently self-perceived symptoms
in the early and very early prediagnosis phase (>2 years) were hyposmia (23.1%),
musculoskeletal pain (21.9%), and depression/anxiety (14.1%). In the late prediag-
nosis phase (<2 years), mild motor signs, especially asymmetric bradykinesia and
rest tremor, increasingly dominated the self-perception [32]. By measurement of
the slope of a marker in patients who have already been diagnosed with PD, then
back-extrapolating to estimate the time at which the measure crosses normal control
values was estimated as a duration of premotor (prodromal) stage, averaging 3–
15 years [33]. Prodromal disease refers to the stage wherein early symptoms or
signs of PD neurodegeneration are present, but classic clinical diagnosis based on
fully evolved motor Parkinsonism is not yet possible [34]. Extrapolation based upon
progression of the UPDRS in the early stage of PD suggests an interval of 5 years
before diagnosis [35]. Recently, MDS proposed criteria and probability methodol-
ogy for the diagnosis of prodromal PD [34]. Nonmotor as well as motor clinical
symptoms, clinical signs, and ancillary diagnostic tests were included. Assessment
of nonmotor signs as orthostatic hypotension and respiratory dysfunction (not
recommended in MDS-UPDRS) were included in recently published MDS clinical
diagnostic criteria for PD [36]. However, the nonmotor aspects of PD continue
to be more a research issue and less the support for better management of PD
patients’ treatment. Therefore, a simple objective and quantitative measure of motor
and nonmotor symptoms and signs that may be used for the diagnosis of PD in
the early stage may improve the quality of healthcare services and PD treatment
outcomes. Moreover, subjectivity impact on the measurements with instruments
that mainly use structured observation carried out by clinicians may be related to
lower effectiveness of PD diagnosis, monitoring, and treatment. Patient tracking
now available via mobile devices that align to the measurements that have shown the
greatest ability to predict and diagnose PD and that allow assessment and monitoring
of PD symptoms and signs may contribute for better therapeutic approach and
increased number of years with better quality of life for the PD patients.
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13.3 Smartphone Use for PD Diagnosis and Monitoring

13.3.1 Methods

A systematic review on papers related to smartphone applications for Parkinson’s
disease symptoms and signs assessment and monitoring was carried out. According
to Zenith’s Mobile Advertising Forecasts 2017, in 2018, 66% of individuals in 52
countries will own a smartphone, up from 63% in 2017 and 58% in 2016. Devel-
opment of many software and hardware technologies for using with smartphone
applications turns the smartphone as an affordable, user-friendly tool that may be
used in healthcare services.

Papers published from 2013 to 2018 listed in two electronic databases—Medline
via PubMed and IEEE/IET Electronic Library, IEEE Xplore—were searched by
title and abstract to identify the works related to smartphone use for diagnosis and
monitoring patients with Parkinson’s disease. Search was made using the following
terms: “smartphone AND Parkinson’s disease,” considering 5 years (2013–2017).
To be eligible for inclusion, papers were required to be available in English; include
patient(s) with Parkinson’s disease; include assessment of Parkinson’s disease
symptoms, signs, and treatment outcomes by using a smartphone. Articles were
excluded if they were a systematic review or meta-analysis; described smartphone-
based technology for treatment purposes; the articles were published in languages
other than English; and were not available in full text. Each record identified through
database searching was screened based on their title and abstract and a decision was
made based on the criteria above on the suitability of inclusion of the papers in our
analysis. The analyzed papers were categorized by technology and the symptoms
or treatment outcome that was evaluated. The analysis of full-text articles has taken
into account the validity, reliability, and sensitivity to change the technique used in
the measurements as well as the GRADE—Grading of Recommendations Assess-
ment, Development and Evaluation guideline (www.gradeworkinggroup.org). The
GRADE working group presented its initial proposal for patient management in
2004 [37]. GRADE’s four categories of quality of evidence on diagnostic test and
methods of monitoring—very low level of evidence (VLE), low level of evidence
(LLE), moderate level of evidence (MLE), and high level of evidence (HLE)—
represent a gradient of confidence in estimates of the effect of an assessment method
on patient-important outcomes. The quality of reported methods and results was
assessed by taking into account: (i) the spectrum of patients representative of who
will receive the test in clinical practice; (ii) description of the selection criteria; (iii)
what method and how it is used as a reference standard to assess the diagnostic
accuracy of the new test; (iv) independence of a new test in relation to reference
standard; (v) execution of the new test and reference standard in sufficient detail
to permit its replication; (vi) influence of knowledge of reference standard results
on the results of the new test; (vii) interpretation of test results based on the same
clinical data available as would be available when the test is used in practice; (viii)
uninterpretable/intermediate test result; (ix) withdrawals from the study [38, 39].

http://www.gradeworkinggroup.org
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NVivo10 software was used to manage the data. Decision on the quality of evidence
was based on: (i) number of subjects included in study and description of control
condition; (ii) clinimetric properties including validity, reliability, responsiveness,
and performance; (iii) influence of confounding variables and risk of bias/study
limitations; (iv) consistency of results, precision of measurements, and data report-
ing. For reliability, we required statistically significant correlations of measurements
realized using wearable technology, with those instruments considered as reference
standard or commonly accepted in clinical studies. Data on Intraclass Correlation
Coefficient (ICC) were considered for reliability analysis. For validity, statistically
significant correlations with clinical ratings (convergent validity) were required.
For responsiveness (sensitivity to change) and performance measurements, the data
on overall accuracy, sensitivity, and specificity were considered. Area under the
receiver operating characteristic (ROC) curve (AUC) < 0.70 was considered as
showing poor accuracy, 0.71–0.80 as fair accuracy, 0.81–0.90 as good accuracy, and
> 0.91 as very good accuracy. To evaluate the overall quality of each paper, using
above described criteria, a Likert scale of five points was used. A score of four
points was assigned for the best quality, zero if the criteria were not met, and one
and two if the criteria were unclear. Using these methods, we aimed to summarize
the findings related to smartphone-based tools for assessment and monitoring of
Parkinson’s diseases symptoms and signs.

13.3.2 Results

The literature search yielded 68 records, of which 60.3% were obtained from
PubMed database. More studies related to smartphone use in Parkinson’s disease
context were later identified by “snowballing” method in PubMed and ScienceDi-
rect databases. However, we present in this chapter only data identified directly
through searching IEEE Xplore and PubMed by the “smartphone AND Parkinson’s
disease” query. A total of 26 articles (38.2%) were included in the full-text format
for further evaluation (Fig. 13.1, Table 13.1). Only four papers (15.3%) were
categorized by using criteria of our analysis as having moderate level of evidence
(see Table 13.1) related to the use of smartphone-based tools for assessment or
monitoring PD symptoms and signs. The classification of the data in the papers
taking into account GRADE guideline is not intended to recommend any specific
commercial product or technology. These categories only stress what technologies
need more research to test their effectiveness.

Many clinicians and researchers have used smartphone technology for monitor-
ing various aspects of PD (i.e., bradykinesia, tremor, posture, balance, and speech).
Nowadays, many sensors are included in smartphones, and many applications were
implemented based on the progress in sensor development, communication features,
and data storing capacity of smartphone. Motor system functionalities as gait,
posture, tremor, activities, speech, as well as nonmotor functions as sleep, light
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Fig. 13.1 Flow diagram for data extraction
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headedness on standing, fatigue, anxious mood, and depression can be analyzed by
using smartphone applications or different wearable devices linked to smartphone.

The larger data from PD patients, using a smartphone, were acquired with
the mPower applications for iPhone. Within weeks after its release, over 15,000
participants enrolled in mPower [66]. The participants were asked to respond to
a subset of questions from the MDS-UPDRS and to perform short activities such
as speeded tapping for 20 s on the screen of the phone or phonating a vowel for
10 s into the microphone, multiple times a day. For those participants with PD and
taking medication, the timing of each recording with relation to their last dose of
medication was also evaluated. A quantitative measure of movements was obtained
by using algorithm that extracts different information from a signal. For example,
in addition to reporting bradykinesia by measuring the total number of taps on the
screen performed in 20 s, the accuracy of each tap related to targets on the screen was
also analyzed to obtain information on tremor. Majority of respondents to survey on
mPower app have said that their data can be used for future research, and these data
were made available for other research (https://www.synapse.org/mPower). The
prototype of mPower was developed, for the Android platform, at Johns Hopkins
University in Baltimore, Maryland, by Andong Zhan. Hopkins-PD app is also being
assessed in several trials, including one called SmartphonePD, which has been
running since 2014 [67]. The app includes also contribution of John Hopkins team
in speech processing. A wealth of information related to characteristics of speech in
PD patients was published in the last years. The research groups with members
from Czech Technical University, Brno University of Technology, and Masaryk
University, Czech Republic, stand out by the comprehensive and high-quality
methods used for speech research in PD patients [68–74]. Neurological Disorder
Analysis Tool (NDAT) was developed at the Brno University of Technology, Czech
Republic.

The position of microphone for speech recording varied in the range of 5–20 cm
in different studies with a median at 15 cm. The calibration of the microphone
recording is established using a sound-level meter placed at 15 cm from the
participant’s mouth while the participant produced for 1–2 s a prolonged “ah” at
70 dBA SPL as indicated on the sound-level meter [75]. In PD speech analysis,
the records include vowel phonation (i.e., short vowels pronounced with normal
intensity, sustained vowels pronounced with normal intensity, sustained vowels
pronounced with maximum intensity, sustained vowels pronounced with minimum
intensity but not whispered); counting number from one to 20; word pronunciation;
phrase sentence pronunciation; reading a text; reading a text with neutral emotion;
stress-modified reading task (interrogative, imperative, and indicative sentence);
diadokinetic evaluation through the rapid repetition of the syllables /pa/−/ta/−/ka/;
affirmative, interrogative and exclamatory phrases; and conversation.

Many works published in the past years have presented algorithms for automatic
identification and classification of speech impairments in PD patients (e.g., [68,
71, 72, 76]). The mean habitual conversational speech intensity level was found
being reduced by 5 dB SPL in PD group confirming hypophonia observed in
PD patients [75]. The intensity level of conversational speech was 66.86 ± 3.48

https://www.synapse.org/mPower
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db SPL in PD patients versus 71.8 ± 2.5 db SPL in the control group [75].
Speech intensity increases as PD patients increased their walking speed [77]. Using
sustained and silent vowel classification within each vowel set allowed classification
of PD patients with AUC = 84.2%, sensitivity 85.7%, and specificity 81.6% [69].
By using all vowel realization, and extracting 12 features (where seven of them were
obtained by empirical mode decomposition of the signals), the accuracy increased
to 94.0%, the sensitivity to 96.4%, and the specificity to 89.8% [43]. Good accuracy
(AUC = 88.7%), sensitivity (91.7%), and specificity (83.7%) were observed in the
case of classification based on parametrization of sustained vowel [e], although
many works have shown good accuracy of differentiation of PD patients by
sustained vowel [a] [68]. The highest pith level was significantly lower in the PD
group than in the control group, both in males (258.1 Hz vs. 353.0 Hz) and female
(361.7 Hz vs. 473.9 Hz), whereas the lowest pitch level was significantly higher in
the PD group (126.4 Hz) than that in the control group (110.4 Hz), only in males.
Voice pith range was significantly narrower in the PD group. The lowest pitch level
in the PD group was as low as that in the female control group, probably because
of the tendency of mucosal edema generally found in elderly female subjects [78].
An automatic speech recognition system that assesses the intelligibility deficits of
the patients by automatic classification of utterances of patients in comparison with
healthy controls was implemented by [79]. The proposed system had an accuracy of
up to 92% to detect Parkinson’s disease from speech.

The architecture and tests of a complex smartphone app for PD monitoring
were also recently published [56, 64]. The so-called mHealth platform integrates
motor and nonmotor assessment including cognitive, speech, sleep monitoring,
and treatment adherence monitoring. The clinicians’ platform allows personalized
prescription for medication based on periodic reports with major events. The
recommendations for modification in medication, diet, physiotherapy, and activity
are sent to the patient through the mHealth platform. The platform also has an app
for caregivers where they receive information on PD patient symptoms as well as
on patient’s adherence to the management plan. Monitoring in these studies was
realized with four devices—two insoles (Moticon, Germany), a smartphone (BQ
Aquaris E4.5) in the pocket, and one wristband (Microsoft Band, the USA). Based
on insole sensors, information on center of foot pressure trajectory (COP), stagger-
ing, balance impairments, gait variance, foot loading, freezing of gait, and fall may
be obtained. Continuous heart rate patterns (i.e., heart beat signals were acquired
with optical blood flow sensor), motion (acquired by three-axes accelerometer and
gyroscope), skin temperature, activity (i.e., gait and calories burned), and periods
of restful and light sleep were captured with Microsoft wristband. The smartphone
captures motion data (finger tapping and alternate finger tapping) and temporarily
stores the raw data in the smartphone memory and sends them to the cloud
for prolonged storage. This app was developed in the framework of a European
Union project (https://ec.europa.eu/programmes/horizon2020/en/news/pdmanager-
mhealth-platform-parkinsons-disease). Another project—PD_manager project—
aimed to develop a platform that integrates motor and nonmotor assessment
including cognitive, speech, sleep monitoring, and treatment adherence monitoring.

https://ec.europa.eu/programmes/horizon2020/en/news/pdmanager-mhealth-platform-parkinsons-disease
https://ec.europa.eu/programmes/horizon2020/en/news/pdmanager-mhealth-platform-parkinsons-disease
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Fig. 13.2 Sensing technologies for posture, gait, tremor, speech, and heart beat assessment and
their position representation

It is also aimed at delivering different services for the patients, caregivers, and
professionals based on this holistic approach. Once the data are processed and
symptoms are assessed, a knowledge management platform will be developed
to provide a Decision Support System (DSS) that suggests modifications in the
medication plan [64]. The research team communicates their plan on testing
PD_manager during 2017, involving 200 PD patients, from clinical centers in
Ioannina, Surrey, Venice, and Rome. Patients with motor fluctuations and significant
disability (Hoehn and Yahr stage 3 or greater) and with at least 3 h OFF time during
the day (based on MDS-UPDRS) are considered eligible for this study. All patients
will be daily evaluated according to UPDRS and will keep their 3-day diaries [64].

Many wearable technologies for vital signs and activities that are nowadays
commercially available (e.g., Withings, France; Polar Electro Oy, Finland; XSens
Technologies, Netherland; and FitBit, the USA) and a lot of technical and techno-
logical solutions that were presented in the last decade for wearable body sensor
network can be combined within a smartphone app. Moreover, design, implementa-
tion, and adoption of smart clothes for health monitoring and healthcare are gaining
weight in research, healthcare systems, and businesses. A comprehensive review
of smart clothes with capability of body vital functions and activity monitoring,
with potential use in neuro-motor rehabilitation, might be found in [80]. Figure 13.2
represents various sensing technologies that can be combined in a smartphone
platform and their potential position on the body.
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Smartphone applications can monitor PD patients’ (i) gait (i.e., by using
accelerometer and/or force sensors embedded in insole or shoes and also inertial
measurement unit from inside smartphone or attached to legs or waist); (ii) posture
(i.e., by using inertial measurement unit or accelerometer attached to ear or lumbar
region, and force sensors in shoes); (iii) vital signs (i.e., heart beat and respiration by
using smartphone embedded sensors or by using wearable devices attached to the
chest or arms); (iv) speech (i.e., by using a microphone from smartphone or attached
microphone); (v) daily activities (i.e., by using inertial measurement unit from
smartphone or wearable devices that include accelerometer and/or gyroscope, linked
to smartphone). Also, smartphone apps (i) may improve communication between
patients and health professionals and also between different health professionals and
informal caregivers for better PD patient healthcare; (ii) may empower and engage
patients in their treatment; (iii) may improve medication and therapy adherence;
(iv) may provide access to educational resources related to PD and healthy life
style; and (v) may contribute for reduction on PD patients’ social isolation (i.e.,
facilitating access to online social networks and information on nongovernmental
actions related to PD patients or elderly people). These technologies may contribute
to increase diagnosis accuracy and to assess fluctuating events (e.g., ON and
OFF state of PD), to capture and send alerts on some events (e.g., falls, freezing
of gate) and to better define therapeutic strategies. Simple examination using a
smartphone-based tool, during tandem walking [21] or hand grip [81] can serve
as an effective clinical assessment tool to determine changes in posture, gait,
and muscle activity. Moreover, much information on different aspects of the
disease can be obtained using smartphone apps. This information may contribute
to differentiate PD subtypes. Nowadays, different PD subtypes were described, all
having weaknesses highlighted by different clinicians. Recently, analysis of 769
PD patients with mean disease duration of 1.3 years had identified three subtypes
that were characterized by (i) psychological well-being features; (ii) nontremor
motor features, such as posture and rigidity; and (iii) cognitive features [82].
Their subsequent five-cluster model identified groups characterized by (i) mild
motor and nonmotor disease (25.4%); (ii) poor posture and cognition (23.3%);
(iii) severe tremor (20.8%); (iv) poor psychological well-being, RBD, and sleep
(18.9%); and (v) severe motor and nonmotor disease with poor psychological well-
being (11.7%). These subtypes are clearly more adequate than those described
in the previous study based on systematic review of the 242 case files of PD
patients registered at Queen Square Brain Bank for Neurological Disorders, in
which also three subtypes of PD were identified: (i) earlier disease onset (25%),
(ii) tremor dominant (31%), and (iii) nontremor dominant (36%) and rapid disease
progression without dementia (8%) subgroups [83]. Other classification of PD
patients was proposed based on the largest retrospective review of the DATATOP
trial [84] considering empiric investigator-determined UPDRS characteristics. The
800 subjects with early PD were classified as exhibiting (i) postural instability
and gait difficulty-predominant disease (PIGD; 55.1%); (ii) tremor-predominant
disease (29.1%), or an (iii) indeterminate subtype (15.8%). This classification
system has now been updated for the MDS-UPDRS motor scale [85]. The formula
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used to categorize PD patients as having the PIGD subtype involves calculating
the ratio of tremor-related items on the MDS-UPDRS to PIGD-related items [85].
Vikas Kotagal [86] questioned these classifications, considering that few patients
fit well within these discrete categories, and many patients can exhibit elements
that may be characterized as transitory from one subtype to another. He suggests a
classification of PD subtype taking into account a model of postural instability and
gait difficulty—predominant features that emphasize the overlooked pathological
influence of aging and medical comorbidities on the development of axial motor
burden and postural instability and gait difficulty predominant features. Also, he
proposes thinking the PD postural instability and gait difficulties not as a discrete
subtype but rather as multidimensional continuum influenced by several overlapping
age-related pathologies. We add to this view the suggestion for a model that takes
into consideration the influence of aging and medical comorbidities not as a linear
progression from early to severe stage of the disease but as a nonlinear model
in which the improvements produced by medication, cues exposure therapy, and
environmental factors are represented. These data will better draw upon the new
source of data from digital mobile sensors.

The large inter- and intra-subject clinical variability in clinical symptoms of PD
patients require development of methods for tailored technology considering PD
subtype and patient current and anticipated needs. Affordability of the wearable
technology, the increase in data availability related to PD patients (i.e., inclusion
and analysis of many data in open databases with acquired signals from patients
as Physionet database—www.physionet.org; REMPARK—www.rempark.eu; UC
Irvine Machine Learning Repository—Voice Recordings and Daphnet Freezing of
Gait Data Set; mPower—www.synapse.org) may contribute for better PD diagnosis
and monitoring.

13.4 Conclusions

There are important advances on smartphone-based tools for objective, relevant,
accurate information on motor and nonmotor aspects of PD. Research is still needed
to overcome various limitations of nonelectronic and smartphone-based tools for
assessments and monitoring of PD symptoms and signs and to build smartphone
applications that may improve the quality of life of PD patients. As no high-level
evidence was identified related to the use of smartphone-based applications for PD
diagnosis or monitoring, more research is needed for the validation of the new
technologies, methods, and their performances across various PD subtypes and
degrees of disease severity, in clinical laboratory settings, in home, or community
settings.

Moreover, in the near future, the development of the valid algorithms and
techniques that may allow accurate detection and differentiation of PD symptoms
against a background of various activities in home or community settings is
required. Building high level of evidence on the effectiveness of these smartphone

http://www.physionet.org
http://www.rempark.eu
http://www.synapse.org
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applications will be essential for adoption in large scale of these technologies. The
information from this chapter is therefore important for developers and researchers
interested in new technologies for PD assessment. It is also important for clinicians
who may define new strategies for improving PD diagnosis accuracy and diagnosis
of PD in the early stage, for improving the clinical care reasoning and therapeutic
decisions, and for more personalized therapeutic approaches. But for all—the
developers, researchers, and clinicians alike—it is essential that a pool of high-
level evidence is built up through many studies that people obviously are willing
to conduct.
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