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Abstract. When touching an object, we focus more on some of its parts rather
than touching the whole object’s surface, i.e. some parts are more salient than
others. Here we investigated how different physical properties of rigid, plastic,
relieved textures determine haptic exploratory behavior. We produced haptic
stimuli whose textures were locally defined by random distributions of four
independent features: amplitude, spatial frequency, orientation and isotropy.
Participants explored two stimuli one after the other and in order to promote
exploration we asked them to judge their similarity. We used a linear regression
model to relate the features and their gradients to the exploratory behavior
(spatial distribution of touch duration). The model predicts human behavior
significantly better than chance, suggesting that exploratory movements are to
some extent driven by the low level features we investigated. Remarkably, the
contribution of each predictor changed as a function of the spatial scale in which
it was defined, showing that haptic exploration preferences are spatially tuned,
i.e. specific features are most salient at different spatial scales.
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1 Introduction

When humans haptically explore an object, they do not intensively touch all its areas;
rather they select some of its parts. If this selection is not completely random, it follows
that some parts are more salient than others. Saliency can be defined as the perceptual
property of a physical stimulus which makes it stand out from competing stimulation.
This concept is tightly related to attention. In fact, attention is commonly described
with the metaphor of a searchlight that intensifies the incoming sensation from a
selected part of sensorial input (e.g. [1, 2]). Obviously, the selection process that
determines which of the information that is entering our perceptual systems plays a
central role in sensation. This process reflects bottom-up aspects (i.e. properties of the
sensory signals), as well as influences from the internal state of the organism (top-down
aspects) [3]. Here we focus on the bottom-up aspects.

Bottom-up saliency had been extensively investigated in the visual domain.
Probably the highest impact implementation of a bottom-up saliency model has been
formalized by Itti and Koch [4–6], based on the results from visual search experiments
(e.g. [2]), and inspired by cortical visual processing. According to their model, the
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visual input is first linearly filtered at several spatial scales, then color, intensity and
orientation maps are computed separately, resembling the computations carried out by
neurons in the early stages of visual processing. These maps are then combined with
different weights in order to achieve a single saliency map. Fixations are predicted by a
winner-takes-all system applied to the combined map. Despite its limitations (see [7]),
Itti and Koch’s original work paved the way to the development of a large body of
computational models [8–15] proposed to predict gaze allocation.

In analogy to the investigation of visual salience (e.g., [2, 16]), haptic saliency was
often measured using search tasks. According to this paradigm, participants are pre-
sented with haptic stimuli comprising one target among a different number of dis-
tractors. They are asked to detect the target as soon as possible: The quicker the answer,
the higher the saliency of the target. Rough stimuli pop out among smooth ones,
movable targets pop out among stationary distractors, hard stimuli pop out among soft
ones (e.g., [17–19]). When stimulus parts differ only slightly in their properties (e.g.
roughness), the search for a target among distractors takes longer. However, in search
studies target and distractors differ usually only in one property and the difference was
varied only in two levels (e.g. rough vs. smooth). Thus, from these studies it can be
indeed concluded which features are salient relative to a fixed class of distractors, but
not which features and feature contrasts are salient relative to other features and how
this affects exploratory behavior. Here we aim to model haptic exploratory behavior of
complex stimuli.

We produced texture stimuli the surfaces of which were defined by haptic grating
elements that randomly varied in certain features such as amplitude, isotropy, fre-
quency or orientation. We assumed that the duration of touching certain locations at a
stimulus (“touch duration”) is directly linked to its saliency. In fact, fixation behavior is
related to visual saliency (e.g. [8]). Fixations are defined as maintained gaze at a certain
position, as opposed to transitional eye movements such as saccades or smooth pursuit.
Alternation between moving and static phases has been reported also during haptic
exploration [20]. Although the static phases could be functionally similar to fixations,
their role is not yet established. Hence, we decided to keep duration information as
dependent variable, instead of segmenting recorded movements into moving and static
phases and focusing on the latter ones. Touched position was recorded while partici-
pants explored couples of stimuli with the whole hand in order to judge their similarity.
We recorded only the position of the index finger because we assumed its position to be
highly correlated to the one of the other fingers. In fact, for five-finger haptic search on
a planar surface it was shown that finger positions were highly correlated, indicating
that they were moving as a single unit [21]. Finally, we used a linear regression model
to predict the spatial distribution of touch duration as a function of the spatial distri-
bution of selected features and their spatial gradients (as a measure of local contrast).
Thus, we could describe the link between features and haptic saliency by feature and
feature-contrast specific weights.
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2 Experiment

In every trial of the experiment participants explored two stimuli, which were relieved
textures defining a square in the horizontal plane (Fig. 1C). In order to engage par-
ticipants in a perceptual task, thus promoting the exploration of the stimuli, we asked
participants to explore the stimuli sequentially and report how similar they were. The
choice of a similarity judgment as a task demand was arbitrary and results were not
analyzed. From the movement data we computed touch duration for all the different
locations. We used a linear regression model to relate touch duration with the physical
features which defined the experimental stimuli.

2.1 Methods

Participants. 10 female students (average age 22.6 years) – naïve to the purpose of the
experiment–volunteered to participate and were reimbursed for their participation (8€/
h). All participants were right handed with no reported sensory or motor impairments
of the right hand. Informed consent was obtained from each participant. The study was
approved by the local ethics committee LEK FB06 at Giessen University and is in
accordance with the declaration of Helsinki (2008).

Apparatus. Participants sat in front of a visuo-haptic workbench, consisting of a
PHANToM 1.5A haptic force feedback device (spatial resolution 0.03 mm, used tem-
poral resolution 333 Hz), a 22″-computer screen (120 Hz, 1280 � 1024 pixel), stereo
glasses, a mirror and an exploration table. We used the PHANToM to measure the
position of the right index finger. The finger was attached to the PHANToM by a custom
made adapter, consisting of a metallic pin with a ball at its end and a plastic fingernail.
This fingernail was connected to the participant’s fingernail via an adhesive substance
and via the magnet to the metallic pin. The adapter left the finger pad uncovered and
allowed for free finger movements including six degrees of freedom. Attached to the
PHANToM participants were able to move freely in a 38 � 27 � 20 cm workspace.
The exploration table consisted of two square slots one aside the other. The test stimuli
were placed in the left slot and the comparison stimuli in the right slot. In the left slot at
the four corners of the stimulus we placed wooden toothpick tips, for the sake of
calibration. These points were used to define a projective transformation which mapped
the touched position on the horizontal stimulus plane onto arbitrary stimulus coordinates
ranging from 0 to 1, assuming the stimulus to be squared. At the end of each trial,
observers were asked to touch one randomly chosen calibration point. The average
Euclidian distance between the touched position of each calibration at the beginning of
the experiment and the touched positions of that point at the end of every trial corre-
sponded to 3.5 ± 2.3 mm, 2.5% of the stimulus length.

To guide the participants through the experiment and control the available visual
information a virtual, schematic 3D-representation of the finger and the stimuli was
occasionally displayed. To indicate the position of the stimuli the calibration points (red
spheres of 8 mm diameter) were displayed. The finger was visualized throughout the
experiment as a green sphere of 8 mm diameter. Participants looked at the virtual
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representation from 40 cm viewing distance (fixated by a chin rest) via stereo glasses
and via a mirror. The mirror, prevented participants from seeing their hand and the
stimuli. Similarity adjustments were done using a virtual slider (displayed above the
stimuli), rendered as a horizontal yellow bar with “same” and “different” marking its
ends. When participants moved the hand towards the right end the bar turned green,
indicating the level of similarity. White noise presented via headphones masked
sounds.

Stimuli. We printed haptic stimuli (13.97 � 13.97 � 0.3 cm; Fig. 1C) using a 3D
printer (Object30Pro, Stratasys, material VeroClear, nominal resolution 600 to
1600 dpi). The stimuli were generated as 2D-images (Fig. 1B), and then translated into
printable 3D models using the OpenSCAD surface() function. The dimensions of the
stimuli were chosen in a way that they could be covered by the palm of the average
hand with slightly spread fingers. The upper surface of the stimuli was defined to
spatially vary in the following features: amplitude (vertical depth), spatial frequency,
orientation and isotropy. The spatial distribution of each feature was defined by a
greyscale feature map in which corresponding feature values were color coded
(Fig. 1A). For instance in the amplitude map, white color referred to high amplitude
and in the frequency map white color indicated high spatial frequency. The feature
maps were generated as two-dimensional white noise distributions with the same size
as the stimulus. This distribution was then low pass filtered so that only the spatial
frequencies lower than the average size of a fingertip (1.27 cm) remained. Then we
scaled them to a fixed range [0 1]. By this, we created feature distributions in which the
feature values appear in blobs with a minimal size of average size of a fingertip, so that
changes can be detected by moving the index finger. To combine the features in one
stimulus (Fig. 1B), we filtered a new white noise [0 1] base texture with a filter defined

Fig. 1. Experimental stimuli. (A) Pink noise two-dimensional distributions corresponding to the
features maps. (B) Combined stimulus texture. (C) 3D Printed version of (B). (Color figure
online)
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by the feature values in each position of the feature maps, and used the values of the
filtered texture at the given position to define the combined stimulus in that same
position. Thus, the filter was oriented at a given spatial frequency and with a given
level of isotropy. Filters were defined in the frequency domain by the following
equation:

Fi ux;uy

� � ¼ e
�

ffiffiffiffiffiffiffiffiffi
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Fi being the filter correspondent to the pixel i, defined as a function of the two
dimensional Fourier frequency space (ux, uy); uxyi the frequency corresponding to the
frequency band prescribed by the frequency map (ranging from 5 to 30 cycles per
image) at the pixel i; r2f the width of the band pass filter (fixed to 0.01 cycles per
image); rai the width of a circular Gaussian function, corresponding to the degree of
isotropy from the isotropy map (ranging from 0° to 103°) at pixel i (with rai = 0°
corresponding to a completely isotropic filter); axy; the angle in the polar representation
of ux;uy, and ai the orientation of the filter, as prescribed by the orientation map
(ranging from 0° to 90°) at pixel i. Intuitively, to produce the i pixel of the combined
map, the first Gaussian term in Eq. (1) defines a Gaussian ring around the frequency
given by the i pixel of the frequency map; the second circular Gaussian term defines a
range of orientations: The bigger the range, the more isotropic the filter. The multi-
plication of the two Gaussians gives an oriented band pass filter. Amplitude was
imposed afterwards, by multiplying the combined map with the amplitude feature map
(ranging from 0.1 to 0.3 cm). Figure 2 shows examples of individual feature differ-
ences, applied uniformly in space on a random noise texture. Ten different maps were

Fig. 2. Examples of individual features differences. Top: “low” feature values, or close to
horizontal for orientation; bottom: “high” feature values (or close to vertical for orientation).
From left to right: Change of orientation (“high” or “low” ai), spatial frequency (“high” or “low”
uxyi), amplitude, as imposed by multiplicative scaling after filtering, isotropy (“high” or “low”
rai). For the example of each feature (a–d), “High” and “Low” values were set close to the
extremes of the range for that feature, whereas the values for the other features were set at
average (as shown in the “Average feature values” example).
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produced by using ten different seeds (1–10) of pseudorandom number generator of
MATLAB (The MathWorks, Inc., Natick, MA).

Procedure. At the beginning of the experiment, there was a calibration procedure.
Each participant was required to touch four calibration points (at the corners of the
stimulus) with the right index finger. At the calibrated corner a red circle (16 mm
diameter) was displayed around the wooden toothpick tip. Participants were instructed
with a schematic drawing to position their index finger in a way that the toothpick tip
was below the middle of the fingertip. After the calibration participants received two
stimuli in every trial. They were free to use the whole right hand for the exploration and
were instructed to explore the stimuli with a continuous sweep (without lifting the
hand). The test stimulus was always placed left and explored first, to prevent serial
effects. At the end of each trial, participants were asked to move the finger to a
randomly assigned corner of the left stimulus slot and position it on the toothpick tip
like in the calibration, for the purpose of measuring the position error with respect to
the initial calibration. Afterwards they indicated how similar they perceived the stimuli.
Between the trials participants moved the finger to the waiting position (at the left
corner closer to the participant), while the experimenter exchanged the stimuli. The
experiment consisted of a single session of four blocks. Each block consisted of ten
trials in which participants explored the ten different stimuli presented in random order
as a test stimulus. For each trial, the comparison stimulus was randomly chosen among
the nine remaining stimuli. Thus, each stimulus was explored as a test stimulus 4 times,
resulting in 40 trials in total, which were completed on average within 1.13 h.

Analysis. Exploratory behavior was only analyzed for the test stimulus, by computing
touch durations for each position of the stimulus. We used a multiple linear regression
approach to analyze touch duration as a function of stimulus features. Touch duration
for each position of the stimulus was computed as number of samples in which the
finger was in that position multiplied by the temporal resolution of the PHANToM
(3 ms). In order to consider the dimension of the finger, we low-pass filtered the
sampled traces in space, so that one assessed position corresponded to an area of the
stimulus of approximately the size of the finger pad. The sigma of the Gaussian
low-pass filter was chosen to be half of the finger size, estimated as 1.27 cm. After-
wards, the touch durations of each individual trial were z-score transformed, so that
each trial weighted the same in the regression analyses. The stimulus features were also
z-score transformed, so that the regression coefficients were expressed in standard
deviation units (b-weights) and thus comparable between each other. We considered
the four features: Amplitude, isotropy, frequency and orientation and their gradients, at
30 different spatial scales. Gradients were computed with a Sobel operator [22] at each
spatial scale. The spatial scales were obtained by low pass filtering the feature maps
and their gradients with Gaussian spatial filters defined by increasing sigma (width).
Sigmas were linearly spaced from zero (no filtering) to *80% of the image size, in
order to largely remove the spatial content of the feature maps. These extreme filtering
levels are useful to show spatial tuning for the touch duration as a function of each
predictor (i.e. feature map); in fact predictors at these spatial scales should be mini-
mally related to the exploratory behavior. We filtered the feature maps and their gra-
dients with the imfilter() MATLAB function, set to replicate the edges of the image
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when the filter kernel area was exceeding the border of an image. We believe that the
relationship between orientation and touch duration, and spatial frequency and touch
duration is non monotonic, therefore not suited for linear regression. In fact, orientation
is a periodic magnitude, and sensorial responses to both orientation and frequency are
described by tuning curves [23, 24]. For instance the high and low spatial frequencies
of the perceivable range are unlikely to be salient. Hence, we included only their
gradients in the linear regression analyses. Additionally, the use of gradients allowed us
to include potentially perceptually relevant information in our analyses, since the
perceptual systems can detect second order information which is not present in the
Fourier spectrum [25, 26]. Figure 3A shows the predictors used in the regression
analyses, for one of the ten stimuli. Linear regression assumes independent predictors.
The four feature maps are generated to be uncorrelated, but they relate to their gradients
and are correlated across different spatial scales. Therefore, as a first step we performed
a bivariate linear regression for each predictor separately, and selected the spatial scale
at which the single predictor was most predictive. Also, we selected the best predictor
between amplitude and its gradient, and isotropy and its gradient. We thus could use
four independent predictors for a multiple regression analysis. We performed a
regression analysis on each participant separately. After fitting a regression model with
the main effects of each predictor and all the interaction terms, we tested its b-weights
across participants. Finally, we evaluated consistency between participants by pre-
dicting touch duration of each participant based on the regression analyses on the other
participants’ data.

2.2 Results

Spatial Tuning. Figure 3B shows the bivariate regression results for each of the six
chosen predictors (feature maps) at each spatial scale. Since regression coefficients are
represented by b-weights, they are comparable across predictors. Therefore, higher
absolute value at a spatial scale than another means that the predictor at that spatial
scale has a higher linear effect than at the other spatial scale. Thus, we can look at the b-
weights as a function of the spatial scale as a tuning function. It is clear from the figure
that b-weights change for each predictor systematically with the spatial scale. One-way
repeated measures ANOVAs confirm this impression for all the predictors but isotropy
gradient (F29,261 = 9.69, 8.30, 3.18,1.22, 15.00, 26.4240; for orientation gradient,
frequency gradient, amplitude gradient, isotropy gradient, amplitude and isotropy,
respectively. All p-values < 0.005, except for isotropy gradient, p = 0.207). Features at
the most predictive spatial scales were chosen for further analyses (red circles in
Fig. 3B). Because of the higher b-weights, amplitude and isotropy were preferred to
their gradients.

Multiple Regression. Amplitude, isotropy, orientation gradient and frequency gradi-
ent were chosen as independent predictors for a multiple linear regression analysis, at
the spatial scale which best related to touch duration (red circles in Fig. 3B). A multiple
regression with all the interaction terms was performed for each participant separately.
Figure 4A depicts the average b-weights for each regression term. The statistical
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significance of these b-weights was tested by comparing them with an empirically
determined baseline by means of multiple Bonferroni-corrected t-tests. To compute the
baseline we determined a new set of b-weights under the null hypothesis that the touch
duration is randomly distributed on our stimuli. To do so, we randomized the corre-
spondence between touch duration and the positon on the stimulus, and repeated the
multiple regression for every participant. This procedure was repeated 50 times and the
resulting b-weights were averaged across repetitions. Multiple comparisons revealed a
significant effect of amplitude, isotropy and their bivariate interaction (t9 = 5.99, 6.14,
5.50; all p-values < 0.0033, which is the Bonferroni-corrected significance level for 15
comparisons). The effect of the other terms did not reach statistical significance. Results
suggest that participants spent more time exploring elevated elongated texture modu-
lations. Presumably, at low amplitude isotropy becomes less relevant.

Fig. 3. Predictors and spatial tuning. (A) Feature maps at different spatial scales: Gradients of
orientation, frequency, amplitude, isotropy, and amplitude and isotropy from top to bottom;
spatial scales from left to right. First column represents the non-filtered stimuli. The sigma of the
Gaussian low-pass filter increases and the high spatial content decreases from left to right.
(B) Spatial tuning of the features. Average b-weights for each of the feature maps at each spatial
scale, on y-axis. On x-axis the index of the spatial scale corresponding to the order of the filtered
feature maps as represented in (A). Error bars represent standard errors of the mean, computed
across participants. Red circles indicate the most predictive spatial scales, chosen for further
analyses. (Color figure online)
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Consistency Between Participants. In order to evaluate the generality of our results,
we used a regression model based on the regression analyses performed on all but one
participant, to predict that participant’s touch duration. Prediction performance for each
participant is a measure of consistency across participants, i.e. generality of our
regression results. Specifically, for each participant, we computed a linear model by
averaging the b-weights previously obtained by the individual multiple regressions
after excluding her results (n − 1 participants model). To compute the predicted touch
duration, the regression model was applied to each of the experimental stimuli (ex-
ample in Fig. 4B). Measured touch durations were expressed as a function of predicted
touch durations. R2 was computed for each participant and used as a measure of
prediction performance (Fig. 4C).

Although small for some participants, R2 showed that on average 3.4% of the variance
of the touch duration was explained by the n − 1 participants model, indicating that,
predictions can be generalized to different participants. Pearson’s correlation coefficient
were on average (mean Pearson’s r = 0.172) different from zero, t9 = 7.73, p < 0.05,
indicating that the n − 1 participants model could on average significantly predict–to
some extent–that one participant’s exploratory behavior.

2.3 Discussion

We recorded touched position when participants were exploring relieved textures to
judge their similarity. We used a set of physical properties of the textures (amplitude,
isotropy, amplitude gradient, isotropy gradient, spatial frequency gradient, and

Fig. 4. Multiple regression results. (A) Average b-weights on the y-axis. Regression terms on
the x-axis: A (amplitude), I (isotropy), dO (Orientation gradient), dF (Frequency gradient) and
their interactions. Stars indicate which b-weights were on average different from zero, after
Bonferroni correction. (B) Observed (left) and predicted by the n − 1 participants model (right)
touch duration for 2 different stimuli (bottom and top). Touch duration is color coded (blue refers
to short and red to long times). Observed touch duration is the average over 4 trials from
participant 2 (R2 = 8.54%). (C) Prediction performance of the n − 1 participants model
expressed in terms of R2 percent, on the y-axis. Participant index and average on the x-axis. The
error bar is the standard error of the mean computed between participants. (Color figure online)
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orientation gradient) to predict touch duration through a linear regression model. We
first observed for each individual predictor, despite isotropy gradient, spatial tuning, i.e.
touch duration was best predicted at an intermediate spatial scale. As a second step, we
selected the best individual predictors across spatial scales, and between original fea-
tures maps and their gradients. Finally, we modelled touch duration as a linear function
of amplitude, isotropy, spatial frequency gradient, and orientation gradient. Regression
results demonstrated that it is possible to predict exploratory behavior based on local
texture information. Significant b-weights (amplitude, isotropy and their interaction)
suggest that participants tended to preferentially explore high amplitude modulations
and anisotropic areas (aligned rather than directionally uniform) of the texture. The
positive interaction between amplitude and isotropy presumably means that when
amplitude is low, isotropy is irrelevant. Otherwise, anisotropic areas are indeed car-
rying edge information, thus potentially informative about shape of objects which
would be relevant to recognize in everyday life. Additionally, we found that one
person’s touching behavior is predictable on the bases of other participants’ exploratory
behavior at an above-chance level, given the local properties of the texture stimuli. This
indicates that, the relationship between exploratory behavior and local texture infor-
mation is to some extent consistent across participants.

In order to interpret spatial tuning, we need to consider that there is a portion of
high spatial frequencies which is not resolvable for the perceptual system. Thus, fil-
tering that portion out, removed noise from the analysis and improved predictions,
explaining why the non-filtered version of a feature map is not the best predicting
spatial scale. After a level of low-pass filtering at which most of the texture information
is removed, if the exploration information is related to the local texture properties,
predictions are again impaired. This is in fact what we found for the lowest spatial
scales.

We only investigated a subset of the possible local haptic properties of an object.
Previous research on haptic search has shown that a series of features related to
3D-shape (i.e. vertexes and edges, see [17, 27, 28]), temperature [17, 29] and com-
pliance [17, 30] have the tendency to pop out. However, our research has focused on
local texture properties, and did not include comparable features, so that, it is not
known whether in a search task high amplitude modulations and anisotropic patterns
tend to pop out. Another limitation is given by the simplicity of the linear models used.
In fact, the relationship between local texture features and exploratory behavior does
not have to be neither linear nor monotonic. We explicitly excluded spatial frequency
and orientation as predictors because of their likely non monotonic relationships with
exploratory behavior, with the effect of potentially loosing predictive power. Con-
temporary work on visual saliency is largely making use of machine learning tech-
niques like support vector machines and deep neural networks (e.g. [31–33]). It is
remarkable that with a simple linear model we predicted exploratory behavior better
than chance and we aim to extend our analyses to more powerful methods in the future.
In our experiments, we assumed that the attentional haptic focus was given by the
index finger position, which we tracked. A different assumption could potentially
change the interpretation of the results. Hence, the interpretation of the regression
coefficients should be taken with caution. For visual perception several studies showed
that exploratory behavior strongly depends on the given task (e.g., [34, 35]). Our
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participants were involved in a single task. Although the choice of a similarity judg-
ment task was meant to avoid introducing a task-specific focus on particular features,
we cannot assess to which extent haptic exploratory behavior is stimulus-driven or
task-driven. Future research could investigate the relationship between touch duration
and local texture features in a different task, in order to assess whether and how much
of the exploratory behavior is purely bottom up driven and task-independent. Finally,
in our analyses we neglected the dynamic aspects of explorations, i.e. we did not
consider previous touch behavior. As it is for vision [11], future research can exploit
dynamic aspects of touching behavior to improve predictions.

We have shown that haptic exploratory behavior is predictable based on local
texture information, even with such a simple model as linear regression. Our results
significantly extend research on haptic saliency from haptic search, which only allowed
investigating which features are salient relative to a fixed class of distractors, towards
modelling exploratory behavior on the base of local texture properties.
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