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Abstract. Distributed Ledgers (DLs), also known as blockchains, pro-
vide decentralised, tamper-free registries of transactions among partners
that distrust each other. For the scientific community, DLs have been
proposed to decentralise and make more transparent each step of the
scientific workflow. For the particular case of dissemination and peer-
reviewing, DLs can provide the cornerstone to realise open decentralised
publishing systems where social interactions between peers are tamper-
free, enabling trustworthy computation of bibliometrics. In this paper, we
propose the use of DL-backed smart contracts to track a subset of social
interactions for scholarly publications in a decentralised and reliable way,
yielding Smart Papers. We show how our Smart Papers approach com-
plements current models for decentralised publishing, and analyse cost
implications.
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1 Introduction

With the advent of digitisation and Web technologies, dissemination of scientific
research objects has become faster and less expensive. However, several authors
(e.g. [7,11]) have pointed out that Web-based tools are currently mimicking the
print-based format used in the past. The vast potential of the Web to sepa-
rate dissemination, evaluation and retrieval aspects of publications is currently
underused. More focus needs to be placed on the quality assessment aspect of
both contributions and contributors, ensuring that proper credit is given to novel
ideas and their proponents, and on avoiding the excessive concentration of power
in the hands of the publishers and editors.

Conceptual models like Liquid Publications [7] and Dynamic Publication
Formats [11] have been proposed to leverage Semantic Web technologies to
transform research objects from static to evolutionary entities. In these mod-
els, authors collaborate on a living version of the research object that, upon
the authors’ agreement, has periodical snapshots or releases published on the
Web. Releases can be open for comments and reviews from the members of
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the public, or submitted to Calls for Contributions of conferences or journals.
Authoring tools like Dokie.li [6] go one step further and provide decentralised
implementations of living research objects that allow authors to retain the own-
ership of, and sovereignty over their data. This supplies an alternative to the
current state of play, where scholarly publication processes are centralised in
publishing houses and large technology providers. However, an under-explored
aspect in these models is how to manage the interactions between authors and
contributors of a research object in a trusted way, which is of utmost importance
for computing bibliometrics transparently. Examples of these interactions are (i)
Agreement between authors on which snapshot of a working version should be
released (ii) Agreement between authors on the attribution due to each of them
for each release of a living research object (iii) Public comments and reviews of
public releases, both as a mean to complement bibliometrics - often overlooked,
yet crucial labour in academia. From the point of view of a single scholar that co-
authors several papers with different teams, receives reviews and comments from
peers, and reviews and comments research made by others, data produced by
these interactions, used to measure their performance, is not only controlled by
her, or a single third party, but also by many other scholars (or their trustees).
Any accidental or malicious change in a data store that is out of her control
might have catastrophic impact on her performance measures.

Our work advances several Semantic Web research areas, including trust
management for the Semantic Web and decentralised scholarly publication. By
proposing a system that uses distributed ledgers and smart contracts to man-
age trust in a scenario which has been long understood as a critical showcase
of semantic technologies, we provide a timely contribution to an ongoing dis-
course on the role and future of the Web as a (re-decentralised) platform for
progress and social good. We aim at answering two research questions in the
context of open decentralised publishing systems: RQ1. How to manage releases
and their attribution agreements in a trusted way?; and RQ2. How to avoid mali-
cious/accidental modifications in remote data stores affecting the computation of
bibliometrics?

Recently, Distributed Ledger Technologies, commonly known as
Blockchains [15], have emerged as a novel tool that provides a decentralised
solution to the problem of managing transactions of digital assets among par-
ties that do not necessarily trust each other, while guaranteeing the immutability
and verifiability of records. Their record-keeping capabilities have been extended
to user-defined programs that specify rules governing transactions, a concept
known as smart contracts. Smart contracts offer guarantees of security, tamper-
resistance and absence of central control.

In this paper, we introduce a system called Smart Papers to manage the
attributions and annotations of scholar publications, filling the gap of existing
open decentralised publishing models. In our approach, a suite of four smart con-
tracts is deployed on top of the Ethereum platform, and reusability is achieved
by an unbounded number of research objects calling those contracts, and stor-
ing publication metadata in a distributed ledger. The smart contracts take the
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place of a trusted third party in keeping records, with the critical difference being
that of data and execution not being controlled by a single entity, but rather
inheriting all the guarantees of the host blockchain platform. In our Motivating
Example (Sect. 2), we highlight some of the most critical problems with current
models - issues that directly affect the quality and trustworthiness of the exist-
ing approaches. In Sect. 3, we survey the existing models and implementations
concerned with scientific authoring. We subsequently propose the Smart Papers
model (Sect.4) and its implementation in Ethereum, paying particular atten-
tion to the issues of trust, identity, and platform technological considerations.
Our discussion then progresses to cost analysis (Sect.5), after which our con-
clusions and future work recommendations are presented, in the final section of
this paper.

2 DMotivating Example

Bob and Alice are scholars from two separate institutions, who agree to collab-
orate on a publication. They begin by employing their collaborative authoring
tool of choice to start a working version of their paper. After a few weeks of work,
they decide to release a public version to receive open comments and reviews.
Charlie is a scholar from a third institution that finds Bob and Alice’s release
through an aggregator or a search engine. He reads the article and leaves some
comments on it that are stored in his personal data store and linked to the
release, for instance, using the Web Annotation ontology®.

Bob and Alice integrate Charlie’s comments in their working version. They
continue their work and eventually publish a second release. This time round,
they submit it to the Call for Contributions of a conference that uses open
reviewing. Diane is one of the assigned reviewers. Her review is linked to the
release which she read, as stored in the conference’s data store

When it is finally time for Bob, Diane and Charlie’s appraisal meeting, their
employers ask them for the dynamic publications that they have been involved
in. Bob shows the full sequence of releases of the publication, while Charlie shows
the comment he made on Bob and Alice’s paper, and Diane shows the review
she made for the conference. Employers apply their preferred credit models to
assign weights to each type of attribution described in the attribution metadata,
and quantify their values.

However, when reputation, credit, and ultimately, jobs are involved, social
interactions can go wrong, with people trying to game the system in their favour,
or to disfavour others. Below, we outline some examples of when things can go
awry:

Example 1. Alice trusts Bob for creating the releases and their attribution
metadata, as Bob controls the data store. However, Bob can publish a release
with the metadata giving more attribution to himself. If using a Trusty URI
mechanism, once the release is picked up by other agents, it is very hard to

! https://www.w3.org/TR/annotation-vocab/.
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overwrite it. In a decentralised authoring tool like Dokie.li, each author would
hold a copy of the working version, and they could independently generate the
release, but if the attribution metadata differs between them, who solves this
disagreement? How does an external agent know which copy to trust?

Example 2. Bob and Alice could collude to show different versions of the attri-
bution metadata. For example, consider that employers use two different services
to query dynamic publications linked to their faculty members. It is not hard
to imagine a semantic store that returns a different version of the attribution
metadata, depending on which agent is asking.

Example 3. Bob and Alice could collude to ignore Charlie’s comment, in an
attempt to not share part of the credit with him. In a decentralised model, a
link to the comment and Charlie’s identity should be stored in Bob and Alice’s
data store; however, if Bob and Alice control the data store, nothing prevents
them from deleting the link. Charlie would have the copy of the comment and
the link to the release, but he might have a hard time convincing a third party
(his employer for example), that the comment was not forged.

Example 4. If Diane’s review is considered unfair, the editors in control of the
data store of the conference might be tempted to make it disappear. A third
party agent querying the conference’s data store would see nothing. An agent
following links from Bob and Alice’s data store would get a dereference failure
(404). Even if Bob and Alice kept a copy of the review and a Trusty URI, how
can they prove that they are not forging a review to damage Diane’s reputation?

The common problem of these scenarios is that for all actors (Alice, Bob,
Charlie, Diane and their employers), data that is crucial to show or measure
performance is not entirely under their control, making it vulnerable to manip-
ulation. Our approach addresses this problem by empowering all collaborators
with the following:

— The notarisation of releases providing evidence that all the authors agreed to
releasing a particular version of their paper.

— The notarisation of the attribution metadata linked to a release, ensuring that
all authors have agreed on it, and guaranteeing to third parties that none of
them can tamper with it.

— A mechanism that ensures that annotations made on releases by agents other
than authors cannot be repudiated by annotators or their recipients, guaran-
teeing to both authors and third parties querying this data, that it was not
tampered with.

— An index of links and data concerning a particular dynamic publication. This
potentially facilitates the task of Web agents that compute bibliometrics, as
there is no need to either trust the data store of the authors, or to crawl the
Web in search of the comments and reviews to the publication.
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3 Related Work

Several models have been proposed to take advantage of digital and Web tools to
improve the way academic publications are produced and managed. Liquid Publi-
cations [7] proposes evolutionary, collaborative, and composable scientific contri-
butions, based on a parallel between scientific knowledge artefacts and software
artefacts, and leveraging lessons learned in collaborative software development.
Their model is based on the interaction between Social Knowledge Objects, i.e.,
digital counterparts of the traditional paper unit; people and roles, i.e., agents
involved in the scientific knowledge processes, playing various cooperating and
competing roles (from traditional ones, like author, reviewer or publisher, to
new ones derived from the model itself, like classifiers, quality certifiers, credit
certifiers); and processes to manage its lifecycle, namely: authoring collabora-
tion, access control, IPR and legal aspects, quality control and credit attribution
and computation. The Living Document model [9] aims at creating documents
that “live” on the Web by allowing them to interact with other papers and
resources. It lets authors build social networks, with their interactions defined
through the papers they write. Heller et al. [11] propose Dynamic Format Pub-
lications, where working versions are collaboratively edited by a small group of
authors, that decide when a version or revision become widely available, follow-
ing a formalised gate-keeping mechanism (e.g., consent among authors and/or
peer-review). Only the Living Document approach provided a prototype (inac-
tive at this time), and none of them discusses the security and trust implications
of their models. Our work provides a foundation that can be used to track and
manage credit attribution (and by extension, IPR and legal aspects) that can
be easily plugged into a broader authoring model.

Concerning the decentralisation of scholarly communication, Dokie.li [6] is
a fully decentralised, browser-based authoring and annotation platform with
built-in support for social interactions, through which people retain the owner-
ship of and sovereignty over their data. Dokie.li implements most of the func-
tionalities described in the previously described conceptual models in a decou-
pled way. In a nutshell, a Dokie.li document is an HTML5 document enriched
with RDFA, which is stored in the author’s personal data store. The Linked
Data Platform (LDP) protocol implementation enables the creation, update
and deletion of documents. Interactions with documents are registered using
the Web Annotations vocabulary. Documents are connected statically through
links and dynamically through Linked Data Notifications [5], proving the via-
bility of a decentralised authoring and annotation environment built according
to Web standards. Authors consider that in a fully decentralised setting, each
source is filterless and responsible for its own quality and reputation, whilst
everyone is free to selectively distrust certain sources using any mechanism they
desire. We argue that, although this assumption holds for trust in the content of
the research object, stronger measures are needed for social interaction data on
research objects that could be used to compute bibliometrics. Our approach also
aims at solving some security issues that arise in decentralised environments,
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notably, the possibility of malicious deleting or updating of records to impact
bibliometrics [14].

With respect to the application of blockchains for scholar processes, the
Blockchain for Science association maintains a living document [3] that collects
and proposes applications, use cases, visions and ventures that use blockchains
for science and knowledge creation, providing an index of the potential impact
of Distributed Ledger Technologies in all stages of the research workflow. For the
particular case of publishing and archiving, timestamping and credit attribution
of Dynamic Publications is mentioned as a promising use case. To the best of our
knowledge, the open-source system that comes closest to ours is Manubot?, a
tool for writing scholarly manuscripts via GitHub. Manubot automates citations
and references, versions manuscripts using git, and enables collaborative writ-
ing via GitHub. Data from Git related to commitment and authorship can be
used to establish attribution. An innovation introduced by Manubot’s authors 3
is the timestamping of manuscript versions on the Bitcoin blockchain, to prove
the existence of the manuscript at a given point of time in a decentralised way.
Our approach generalises Manubot’s idea to further social interactions around
publications.

Concerning the permanence and immutability of Web artefacts, Trusty
URISs [13] propose to append to URIs the cryptographic hash of the Web artefact
they represent, enabling the verification contain the content the URI is supposed
to represent. Trusty URIs are immutable in the sense that any change in an arte-
fact would change its URI as well, and permanent, under the assumption that
Web archives and search engines that crawl them are permanent. Our approach
implements functionality analogous to Trusty URIs, but also solves the further
problem of conflicting metadata: if each author could publish metadata on the
attribution about the research object, each one with its own Trusty URI, and
both can be verified to not have been tampered with, then which one should an
external agent use?

4 The Smart Papers Model

The Motivating Example (Sect.2) illustrated the importance of trust man-
agement throughout the collaborative process. When reviewing related work
(Sect. 3), we highlighted a strong need for making agreements and setting their
outcomes in stone so that they cannot be later repudiated. Furthermore, all the
essential artefacts associated with those agreements must be timestamped and
securely stored in a truly permanent way. Currently available collaborative tools
solve some trust issues, for example Dokie.li removes centralisation so that the
authoring parties do not have to rely on an intermediary to publish and anno-
tate their documents. This is a very welcome step towards removing the overhead
associated with middleman activities (publishing house), albeit it merely shifts
the trust towards the authoring parties (author, reviewer). It is easy to imagine

2 https://github.com/greenclab/manubot-rootstock.
3 https://github.com/greenelab/deep-review/pull /274.
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a situation in which the authors destroy their data, the reviewers could do the
same, and any track of their writing will be lost forever.

The purpose of our model is to provide trust where it has not existed before.
Smart Papers provide a collaborative platform that preserves a single version
of the truth throughout the collaborative process. This is somehow similar to
employing a trusted third party (e.g. a notary public) to keep track of contracts
signed by multiple parties, alongside with all the certified photocopies of all the
evidence attached to the contracts as relevant appendices. An example of such
notarised contract would be Alice and Bob signing an agreement specifying the
ordering of their names on a paper (e.g. “Bob, Alice”) and then attaching a
certified photocopy of their paper in its current version as an appendix. We use
smart contracts for maintaining all such signed agreements in order to imple-
ment Smart Papers. Table 1 summarises how smart contracts can provide the
functionality analogous to that of a traditional trusted third party.

Table 1. Blockchain smart contracts as compared to a traditional trusted third party

Notary public function Blockchain function

Authenticate parties using their legal | Identify parties cryptographically
identification

Take statutory declarations, store Store data permanently and securely
them and certify photocopies and provide real time access
Prepare and certify contractual Store and execute smart contracts
instruments

Provide a trusted record for the above | Provide a trusted record for the above

4.1 Design

To design the Smart Papers model, we shall assume that all authors successfully
identify through their ORCID (Open Researcher and Contributor ID [10]) which
is a non-proprietary alphanumeric code to uniquely identify scientific and other
academic authors and contributors. ORCIDs are mapped to authors’ signing and
encryption keys using a smart contract. The main functionality for our model
is then designed using the separation of concerns (SoC) design principle [12],
such that each contract file addresses a different concern, i.e. a different set of
information that jointly affects the global state for the Smart Papers use case.
We use UML to model the main classes corresponding to our smart contracts. It
is important to note that smart contracts and OOP classes (as modelled by the
UML) are not quite the same. The semantics are very similar in many cases, but
some fundamental differences arise from the fact that smart contracts can store
and send value and have a public address once deployed [16]. The UML diagram
in Fig. 1 shows how we group these concerns into the following four categories:
Paper, Version, Annotation and Contributor.
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Paper Version
+PaperId: uint256 +ParentPaper: uint256
+Contributors: Dynamic Array [Contributor +VersionId: uint8
+Versions: Dynamic Array [Version] +Artifact: Hash = IPFS link
+Metadata: String = RDF +Authors: Dynamic Array [Contributor
+CreateNewPaper(): uint PaperId -Stage: enum{working,published}
+RegisterContribution(PaperId, ORCID) +Metadata: String = RDF
+GetCurrentPublishedVersion(): IPFS link +GetIPFSLink(): IPFS
#CreateNewVersion(meta,artifact, multisig) +IsPublished(): Boolean
#Publishversion(VersionId, multisig) (<> |+setAuthors(Contributor[])
#RetractVersion(VersionId, multisig) +AddAnnotation(String:RDF)
#RetractPaper (PaperId,multisig) +GetAnnotations() ()
#GetCurrentWorkingVersion(): Versionid | I - - - - - __
> v
Anmotation _ Contributor
. - +0ORCID: uint256
+AnnotationId: uint25§ | — — — =>{|+ContributorType: enum{author,reviewer,...
+PaperId: uint2s6 . +ContributorIPFS: Hash = IPFS Multihash
+Versionld: uint8 | = — -~ +GetType(): enum
Contont: Steing = ROM +GetIPFSIdentity(): Hash = IPFS Multihash
+GetORCID() : uint256

Fig. 1. The Smart Papers distributed application design

To begin with, an article and its metadata (e.g., attribution encoded in the
ScoRO ontology?) is submitted by a writer (we shall refer to her as Alice, from
our motivating example earlier), and stored in a distributed file store, all of
which is recorded on the blockchain. Alice will have been set up in the system
through the use of the Contributor smart contract. In our implementation, the
Contributor contract requires Alice to have a valid ORCID as well as an IPFS
node identity belonging to her. The default type for Alice is “author”. Bob is also
set up as an “author”, but Diane uses a different argument for the Contributor
contract, and so she becomes registered as a “reviewer”.

Smart contracts often act as state machines, meaning that they have cer-
tain stages making them act differently, and in which different functions can be
invoked. A function invocation often transitions the contract into the next stage
which can be used to model work flows. We use this feature of smart contracts
to model the Smart Paper workflow, as seen is Fig. 2, which allows the partici-
pants to release new versions of their paper and to publish versions when enough
authors agree to do so.

Papers can also be retracted. As illustrated in Fig.2, once instantiated, a
Smart Paper becomes a dynamic list of versions, each of which can exist in a
working state or become published. The number of contributors and their formal
ordering is allowed to change on a per-version basis. Annotations can be left by
reviewers on published versions.

To create a new Smart Paper, either Alice or Bob call createNewPaper in
the Paper Contract which will return a valid Paperld that uniquely identifies
their new publication. This also instantiates the workflow with an initial, blank,

4 http://www.sparontologies.net /ontologies /scoro.


http://www.sparontologies.net/ontologies/scoro

312 M. R. Hoffman et al.

S| kerX

Acto Actor Actor
Actor Acto Actor

Working
Versions h-_-_'-__'_-__->h' _____ >

1 i
Published :
Smart Paper Versions I
I

Fig. 2. The workflow of a Smart Paper involves multiple working versions with dynamic
collaborators. Versions can become published and made available for annotating.

Annotations

working version of this paper manufactured by the Version contract. Bob and
Alice work on their preferred authoring tool to produce a first draft (e.g., to show
to a trusted colleague), to register it in the Smart Paper, Bob calls addNew Ver-
sion in the Version contract, including the artefact, its metadata and his sig-
nature. Before committing the transaction, the Smart Paper will wait for Alice
(marked as contributor of the paper) to also perform a call to addNew Version
using the same artefact, metadata and her signature.

The procedure is repeated each time Bob and Alice want to register a new
version. For marking a version as public, Bob calls publish Version in the Paper
contract, providing the versionID and his signature. Similar to addNew Version,
Alice needs to issue her signature through a function call to publish Version before
the Smart Paper commits the transaction. The getCurrentPublished Version and
getCurrent Working Version return a versionlD that can then become the input
to the getIPFSLink. Up to this point, we have provided a solution for the issues
between authors described in Example 1, the Smart Paper only commits a version
(including metadata) if all authors sign their agreement to it. An external agent
that gets a version from a Smart Paper instance has the assurance that it was
approved by all authors, and that the Smart Contract consistently returns the
correct version and metadata, solving the issue described in Example 2.

Interactions with external actors like reviewers or annotators, are abstracted
as Annotations. When Charlie or Diane want to leave their comment or review,
they call addAnnotation using the versionID of the version they want to com-
ment on, and their signatures. Contrary to the Version functions, no approval
from authors is needed. The annotation is registered in Ethereum’s Blockchain
and can be retrieved by calling getAnnotation. Looking back at Example 3, Char-
lie can now point to the Smart Paper to show that he made that comment. For
the case of Example 4, the Smart Paper holds a register of the reviews. Alice and
Bob can now prove that the annotation held by the Smart Paper was signed by
Diane.
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4.2 Implementation

Although in theory, the Smart Papers model could be implemented on any smart
contract-enabled platform, the choice of the implementation framework dramat-
ically impacts development time and costs. Whilst there are multiple distributed
ledger technologies, such as Corda® or HyperLedger®, that could be utilised to
develop trusted smart contract code that runs on top of the blockchain, for this
paper, we elect to develop on top of the Ethereum platform [16] which is the
most commonly used technology of its kind [2]. We defer the feasibility and cost
of development in other platforms for future analysis.

Background: Ethereum and IPFS. Ethereum is an open-source, public,
blockchain-based distributed computing platform featuring smart contract func-
tionality [16]. It plays the role of the trusted third party for all Smart Papers
agreements in our model. Ethereum blockchain was designed to be determin-
istic. This means, that everyone should always end up with the same, correct
state, if they try to replay the history of Ethereum transactions. In Ethereum,
the code execution layer is provided by the Ethereum Virtual Machine (EVM),
a Turing complete 256bit VM that allows anyone to execute code that refer-
ences and stores blockchain data in a trust-less environment. Every contract on
the Ethereum blockchain has its own storage which only it can write to; this
is known as the contracts state and it can be seen as a flexible database albeit
at a high cost. When deployed, Ethereum contracts get an address, that can be
considered similar to an URI in Ethereum’s namespace. Using this address, a
client can call functions defined in a smart contract, in a similar fashion to a
web service.

When implementing our model, we chose to store all the artefacts using IPFS
[4]. The InterPlanetary File System is used for efficiently distributing and refer-
encing hash-linked data in a way that is not centralised and does not necessarily
involve blockchain transactions, thus avoiding the economic penalties associated
with on-chain storage. In many ways, IPFS is similar to the World Wide Web,
but it could be also seen as a single BitTorrent swarm for exchanging objects.
Furthermore, the IPFS specification contains a special commit object which rep-
resents a particular snapshot in the version history of a file. This allows us to
reference resources in an immutable way, akin to Trusty URI functionality. Using
IPFS we can, therefore, limit the role of Ethereum, so that it only deals with the
application logic; the data layer is provided by the InterPlanetary (IPFS) stack,
and the two layers are integrated via hash references.

Reaching Agreements. One of the core requirements of the SmartPaper
model is the ability to provide a tool for all collaborators to agree with the
result of a certain interaction. Decision making can be implemented in different
ways. In our implementation, the number of collaborators can be unbounded,

5 https://github.com/corda/corda.
5 https://www.hyperledger.org/.
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but to make a decision, an agreement needs to be reached by all authors. We use
the multiple signature scheme to enable the authors to jointly perform specific
actions on a Smart Paper. The following Ethereum code snippet illustrates how
multiple authors’ signatures are verified by the PublishVersion() functionality
of the Paper contract before the paper can be published, ensuring they’ve all
agreed before committing to a change in their paper.

1 uint public threshold; //quorum needed to decide

2 mapping (address => bool) isCollaborator;

3 function PublishVersion (uint paperld,signature[] sigs){
require (checkSignatures(sigs));

4 //Publishing code follows :...

5 }

6 function checkSignatures(signature[] signatures){

7 if (signatures.length < threshold) throw;

8 for (uint i = 0; i < signatures.length; i++4) {

9 r = signatures[i].slice (0, 32)

10 s = signatures[i].slice (32, 64)

11 v = signatures|[i].recovery + 27

12 checkSig (v, r, s);

13 }

14 }

15 function checkSig(uint8 sigV, bytes32 sigR, bytes32 sigS) {

16 //ERC191 signature: github.com/ethereum/EIPs/issues /191

17 bytes32 txHash = sha3(byte(0x19), byte(0), this);

18 address recovered = ecrecover (txHash, sigV, sigR, sigS);

19 if (!isCollaborator[recovered]) throw;

20

21 //The following code is called upon instantiating new paper

22 function SetUpCollabs(uint threshold., address[] collabs_) {

23 if (threshold- > collabs_.length || threshold_==0) throw;

24 for (uint i=0; i<collabs_.length; i++) {

25 isCollaborator [collabs_[i]] = true;

26

27 threshold = threshold_;

28 }

The signatures array acts as an accumulator waiting for enough signatures
to be collected according to the threshold. The Publish Version function on line
3 finally becomes triggered by an event (out of the scope of this snippet). The
code example also shows how an elliptic curve signature can be parsed for every
participant (sigV, sigR and sigS arguments) on line 15. To improve on the secu-
rity of this code, a nonce should be used that is always incremented to prevent
replay attacks. We make this pattern reusable, and reference it by all func-
tions that require a quorum for a binding decision to be agreed upon. These
functions include RetractPaper(), PublishVersion(), RetractVersion() and Set-
Contributions().
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5 Discussion

5.1 Identity

Whereas most blockchain applications generally guarantee user anonymity, our
use case calls for verifying collaborators’ identities. Whilst different digital iden-
tity schemes exist, the most popular form seems to be digital certificates used
to prove ownership of a public key associated with someone’s private key. Even
though public-private cryptography can exist in a decentralised environment,
digital certificates are always issued by authorised entities.

There exist multiple such authorities which makes it difficult to implement
a universal solution. Due to the complexity of this issue, the logic for liaising
with different types of digital certificates to verify parties’ identities is normally
moved to the client’s user interface, as it would be too costly to include in smart
contracts.

5.2 Cost

Ethereum contracts are not free to execute. Currently, because of the complex
nature of the Proof of Work consensus algorithm used by most blockchains
including Ethereum, computations performed by blockchain based smart con-
tracts are expensive compared to the same computations performed by a cen-
tralised entity.

Execution of a smart contract begins with a transaction that is sent to the
blockchain. This transaction specifies the address for the contract, the argu-
ments, and an amount of Ethereum’s currency to pay for the execution. It is
commonly observed in small-to-medium size contracts that most of the cost is
taken up by a fixed “base fee”. This base fee of 21,000 is expressed in “gas” which
is an abstract unit. While gas is fixed per each transaction, it’s additionally fixed
for every operation called from within the smart contract. Each low level opera-
tion available in the EVM is called an OPCODE. These include operations such
as ADD - adding two integers together, BALANCE - getting the balance of an
account, and CREATE - creating a new contract with supplied code. Each of
these OPCODESs has a fixed amount of gas that it costs to execute. The fixed
amount of gas has been chosen by the designers of Ethereum for each OPCODE
in a way that reflects the relative complexity of that OPCODE.

Whereas gas is fixed and predictable, the amount a user pays per gas, the gas
price, is dynamic and dictated by market conditions. The price is usually given in
units of ether, Ethereum’s default currency. Miners receive ether fees based on the
amount of gas multiplied by the gas price, which incentivises them to prioritise
those transactions that attract higher fees. It also follows that the higher gas
price you are willing to pay, the faster your transaction will be processed, and the
sooner your contract will be allowed to execute. While offering a high gas price
can speed things up, there is a limit to the acceleration. Finally, when discussing
cost, it must be mentioned that Ethereum designers have planned mechanisms
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that will allow the owner of the contract to take all costs upon themselves, thus
further incentivising the users of the contract to participate in it.”

6 Evaluation

We evaluate the cost of the Smart Papers system by simulating smart contract
transactions in a local blockchain environment (Step 1) and then applying the
live gas price (Step 2). We focus on the cost of the Paper contract functionality®.

For Step 1, the Ethereum simulator testrpc? has been used, as it does not
require payments for used gas when deploying or testing smart contracts locally.
The testrpc utilty is a Node.js client that uses the ethereumjs'® JavaScript
library to simulate the blockchain ecosystem behavior and make developing
Ethereum dapps (distributed applications) faster. For estimating gas consump-
tion, we use the Web3.js library!! is the Ethereum compatible JavaScript API
that implements JSON remote procedure calls. After contract creation, we use
the estimateGas call provided by Web3 to estimate the gas amount required
to pay for our smart contracts’ functions. We arrived at ~75,000 gas per typical
Smart Paper transaction.
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Fig. 3. Average wait times for Ethereum code execution on 11 January 2018

For Step 2, the gas price can be found with ETH Gas Station [1], the de-
facto reference for understanding the current gas market conditions and miners’
current policies. The “Recommended User Gas Prices” section of ETH Gas Sta-
tion shows the range of gas prices you might pay for an expected transaction

" https:/ /blog.ethereum.org/2015/12/24 /understanding-serenity- part-i-abstraction//.
8 https://github.com/mikehoff/SmartPapers.
9 https://github.com/trufflesuite/ganache-cli.

19 https://github.com/ethereumjs.

Y https://github.com/ethereum /web3.js/.
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commitment time. Typical time ranges are known as SafeLow (<30 min), Stan-
dard (<5 min) and Fast (<2m). Figure 3 illustrates this relationship for the 11th
January 2018. Assuming the Fast (<2m) confirmation time, our graph suggests
this would cost us 50 gwei per gas on this day (gwei, also known as shannon,
is one billionth of one ether). On the same day, if we were happy to wait up to
15 min for a confirmation, gas price would have gone down to 26 gwei.

To put Steps 1 and 2 together, we use the following formula:

contractCost := baseFee + (gasUsed x gasPrice)

which yields transaction cost in the Fast range to be around 3,750,000 gwei, i.e.
0.00375 ether per Smart Paper transaction. If we are happy to wait a bit longer
(15min), this goes down to 1,950,000 gwei.

This translates to a sterling cost of £1.7 ($2.3) per Smart Paper transaction
such as publishing or retracting a paper if we want this transaction to be accepted
in 15min. Assuming that contributors have access to IPFS nodes, there is no
extra cost, in terms of gas, associated with storing of the binary artefacts.

7 Conclusions and Future Work

There is an incentive to use blockchain technology for collaborative processes
because it is inherently trustworthy. In Smart Papers, we used Ethereum to
provide the framework for collaborative authoring, and IPFS for the storage of
the papers.

We analysed a use case demonstrating how the nature of scientific publishing
would benefit from storing agreements and artefacts in a verifiable distributed
database that does not reside within the confines of a single point of failure,
and also does not rely on a centralised party to provide proofs. We found that
Distributed Ledger Technologies, by their design, are appropriate for this use
case.

We have conducted initial testing to run simulations using a suite of
Ethereum smart contracts that we have developed based on our Smart Paper
model and workflow. Future development should be focused on implementing a
robust web client, a working version contract, and the annotation functionality.

Further research work is needed to explore how the market conditions for
transaction execution may impact our design, and how market volatility could
impact user behaviour through the variable nature of gas pricing and trans-
action completion times. The stability and security of the Ethereum network
is currently seeing novel research which needs to be constantly monitored. We
would like to further explore the storage options for artefacts, metadata and
reviews, to optimise for cost and flexibility.

We believe that distributed ledgers are key to decentralised trust in collabo-
rative processes. In our case, these guarantees can be provided at a level of £1.7
($2.3) per Smart Paper transaction. Future work needs to address the cost of
more frequent operations like comments. We would also like to explore the map-
ping of the Smart Papers workflow to a relevant ontology (for example PWO
[8]) to allow each paper to be traced in a semantically standardised way.
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