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Abstract. In this study, we propose an optimum non-iterative algorithm for the
minimum cable tension solution of two degree-of-freedom cable-driven robots.
The problem is specifically defined for a cable-driven robot with one end-effector
connected to four motors by four cables. A two-cable algorithm and a three-cable
algorithm are presented with examples, then the optimal two-cable and
three-cable solutions are proven for the absolute value norm and Euclidean norm.
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1 Introduction

A cable-driven robot consists of a moving point-mass end-effector/platform, fixed
points with actuated motors/pulleys, and cables connecting the end-effector to the fixed
points. Thanks to the advantages of lightweight cables, cable-driven robots have little
inertia, high velocity/accelerations, a large workspace and high load capability. These
advantages make them suitable to be used in force feedback haptic applications (e.g.
[1–3]). However, the cable-driven robots have some disadvantages such as the fact that
cables can only pull the end-effector but not push it. In addition, it is necessary to
achieve positive tension in all the cables to avoid slacking, which might prevent proper
winding around the pulleys.

According to the number of cables m and the number of degrees-of-freedom
(DOF) n, cable-driven robots can be classified into two groups: (i) under-constrained if
m� n and (ii) fully- or over constrained if m[ n. As pointed out in the literature [1, 2],
in order to be able to produce an end-effector force in any direction while maintaining
positive tension in all cables, the number of cables must be at least nþ 1 or there must
be an external force such as gravity or a spring if the cable-driven robots are
under-constrained. When m[ nþ 1, cable-driven robots are redundantly actuated and
there is an infinite number of feasible solutions with positive cable tensions.
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Many methods have been proposed in the literature (see reviews in [1–4]) to deal
with the minimization of positive cable tension and the determination of the feasible
wrench workspace. These minimization methods can be classified as numerical and
analytical. The numerical methods are based on iterative calculations and mostly give
approximate solutions. They include a convex optimization method using Dykstra’s
alternating projection algorithm to solve minimum L2-norm cable tensions of
cable-driven robots [6]. They also include linear programming formulations for optimal
tension distribution [7] as well as a quadratic programming formulation, which can
yield good solutions even when the optimal solution is outside the feasible workspace
[11]. In [9, 10], the authors used the Karush-Kuhn-Tucker algorithm to iteratively solve
the redundancy resolution of cable-driven robots. Tang et al. [12] developed a
geometrical-based convex analysis method with less iterative calculation and com-
plexity to calculate the workspace of fully-constrained cable-driven robots and to
optimize cable tension distribution. While numerical methods based on the iterative
computation of the optimal solution are quite general and can be applied to a wide
variety of cable-driven systems, they are also usually very computationally intensive
and normally not suited for real-time control because of time constraints.

In contrast to numerical methods, analytical methods produce closed-form solu-
tions. While they are usually less general, they are preferable for real-time imple-
mentations due to lesser complexity and time demands. In [5], Fang et al. presented an
analytically-based method for optimum cable tension distribution of a 6-DOF
cable-driven robot with seven cables. However, this method can only be applied to
cable-driven robots having nþ 1 actuators. Pott [8] focused on computational speed,
real-time capability, maximum redundancy, and continuity of force distribution. He
improved a closed-form method but the minimization of cable tension has weak
solutions due to the medium feasible cable force. In [13], Mikelsons et al. focused on
the continuous solution of the cable tensions and developed an algorithm without
iterative steps for the real-time control of cable-driven robots. Since this algorithm
needs to calculate the QR decomposition of the structure matrix for each vertex of the
polytope, the approach is still computationally intensive and time inefficient. In order to
avoid discrete cases and complex calculation of the cable tension distribution, Gosselin
and Gernier [14] proposed a non-iterative algorithm to minimize the L2- and Lp-norm
of the relative force vector. However, this method can only be applied to cable-driven
robots having m ¼ nþ 1 cables because the n degree of formulation of cable tensions is
symbolically written in terms of one extra cable and a unique solution is calculated for
that cable tension, and then the remaining cable tensions are straightforwardly deter-
mined. In [15, 16], for computationally efficient tension distribution of the cable-driven
robots having only two actuated redundancies, the authors extended the barycenter
algorithm of [13] by using the centroid of a two-dimensional polytope as the desired
cable tension distribution. However, this method is computationally costly to find the
feasible continuous cable tensions. In [17], Williams et al. proposed a non-iterative
method to maintain positive cable tension for a 4-cable planar device by utilizing the
method of Shen et al. in [18].
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In this study, we present a simple algorithm to compute the minimum cable tension
solutions for a 2-DOF planar robot driven by four cables (n = 2 and m = 4). We
provide geometrical proofs of the validity of the algorithm. We consider both the
absolute value (L1) and the Euclidian (L2) norms. Our algorithm is simpler than other
non-iterative algorithms [13, 14, 16] and provides some geometrical insight about the
solution.

2 Problem Definition

Let us consider a cable-driven robot with one end-effector connected to four motors by
four cables. Each cable has a fixed entry point with the other extremity attached to a
central end-effector. All entry points Ai are on the same plane. The end-effector position
x corresponds to the point where the cables are connected together. We define the
workspace as the area where it might be possible to move x by controlling the cable
lengths. Typically, the four entry points are arranged to form a rectangle.

Let ui be the cable directions (unit vectors) corresponding to some end-effector
position x inside the workspace.

ui ¼ Ai � x
Ai � x

ð1Þ

We want to find a set ti; i ¼ 1; . . .; 4f g of cable tensions such that

f ¼ t1u1 þ t2u2 þ t3u3 þ t4u4 ð2Þ

with the constraint that cable tensions are positive or null ti � 0 and the L2 (or
Euclidian) norm is minimum.

Tk k2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t21 þ t22 þ t23 þ t24

q
! min ð3Þ

Since the square function is monotonic, the minimum for this norm is the same as
that of the squares of the cable tensions.

Another possible optimal solution might correspond to the minimum of the abso-
lute value (L1 or Manhattan) norm.

Tk k1¼ t1j j þ t2j j þ t3j j þ t4j j ! min ð4Þ

In the following sections, we first present the two-cable algorithm and the
three-cable algorithm, then consider the optimal cable tension solutions for the
Euclidian norm and then for the absolute value norm. A priori, the optimal solution
might involve any number of cables.
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3 The Two-Cable Solution

Two cables are necessary and sufficient to produce an arbitrary force in the entire
workspace. To show this, one can pick the two cables T12 = [t1, t2] that bracket the
force direction and project the force on them.

Let u1 and u2 be the direction of the two cables that bracket the force:

u1 ¼ tan�1 u1y
u1x

\u ¼ tan�1 fy
fx
�u2 ¼ tan�1 u2y

u2x
ð5Þ

By construction, the force is

f ¼ t1u1 þ t2u2 ¼ u1 u2½ �|fflfflfflfflffl{zfflfflfflfflffl}
U

t1
t2

� �
¼ UT12 ð6Þ

The solution for the cable tension is

T12 ¼ t1
t2

� �
¼ U�1f ð7Þ

Geometrically, the matrix U�1 projects the force f on the cable directions u1 and u2
as seen in Fig. 1. The fact that the two cables bracket the force insures that t1 and t2 are
always positive. For the same reason, U is always invertible (the two cable directions
bracketing f are never collinear).

Remark 1. When the force is aligned with a cable direction (u2), the two-cable algo-
rithm yields a one-cable solution. This is easy to show geometrically since the oblique
projections of f on u1 and u2 are 0 and fj j, respectively when f is aligned with u2.

Fig. 1. Example of two- and three-cable solutions in a planar workspace. Angles between the
force f and the cable directions u1, u2 and u3 correspond to −40, 10 and 95°, respectively. Left:
For the two-cable solution, the cable tensions are t1 = 0.227, t2 = 0.839. The L1 and L2-norms
are |T|1 = 1.066 and |T|2 = 0.755 respectively. Right: For the three-cable solution, the cable
tensions are t1 = 0.403, t2 = 0.714, t3 = 0.135, and the norms are ‖T‖1 = 1.252 and
‖T‖2 = 0.691, respectively. In this example, the three-cable algorithm is better than the
two-cable algorithm. The decrease of the cable tension t2 in the three-cable algorithm relative to
the two-cable algorithm is enough to compensate for the increase in cable tension t1 and t3.
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Further on, we demonstrate that the two-cable algorithm is always optimal for the
absolute value (L1) norm. However, as illustrated in Fig. 1, the two-cable algorithm
does not always provide a solution that minimizes the Euclidian (L2) norm.

4 The Euclidian Norm and the Three-Cable Solution

In this section, we describe an algorithm to compute the optimal solution for the L2-
norm. Depending on the position of the end-effector in the workspace and on the
direction of the force, this solution might involve up to three cables. The problem is
(i) to know how many cables are involved in the optimal L2-norm solution, (ii) which
cables are involved and, (iii) to compute the tensions for all cables involved.

The complete algorithm is described below. For the moment, let us assume that we
know that the optimal solution involves the three cables u1, u2 and u3. The question is
how to compute the corresponding tension.

By assumption, the external force is a linear combination of the three cable forces:

f ¼ u1 u2½ � t1
t2

� �
þ t3u3 ¼ UT12 þ t3u3 ð8Þ

Cable tensions t1 and t2 can be expressed as a function of cable tension t3:

T12 ¼ U�1 f � t3u3ð Þ ¼ U�1f � t3U
�1u3 ¼ A� t3B ð9Þ

Fig. 2. Geometric interpretation of the components of vector A and vector B. Sectors I, II, III
and IV define the cable directions ui where u1 and u2 are the force directions that bracket the force
and u3 is the direction of the third that belongs to the optimal solution.
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where U�1 is the inverse of the 2 � 2 matrix U. Written in components we have an
expression for t1 and t2 as a function of t3

t1
t2

� �
¼ a1

a2

� �
� t3

b1
b2

� �
ð10Þ

As shown in Fig. 2, geometrically, vector A is the projection of force f on cable
direction u1 and u2. Vector B is the projection of u3 on u1 and u2.

If u1 and u2 are the cable directions that bracket f , then a1 and a2 correspond to the
two-cable algorithm and must be positive. b1 and b2 are the projection of u3 on u1 and
u2. If u3 is in sector II, b1 is negative and b2 is positive. The opposite is true if u3 is in
sector IV. b1 and b2 are negative if u4 is in sector IV. Note that u3 cannot be in sector I
because we have assumed that u1 and u2 bracket the force.

In order to minimize the total cable tension for the Euclidian (L2) norm, we can
write the function for the three-cable algorithm as

Tk k2¼ t21 þ t22 þ t23 ! min ð11Þ

This implies that

0 ¼ d
dt3

t21 þ t22 þ t23
� � ¼ 2t1

dt1
dt3

þ 2t2
dt2
dt3

þ 2t3 ð12Þ

Substituting Eq. (10) with the partial derivatives into Eq. (12), can be solved for t3
as follows:

t3 ¼ a1b1 þ a2b2
1þ b21 þ b22

ð13Þ

t1 and t2 can now be computed using Eq. (10). Because we have assumed that the
optimal solution involved these three cables, t1, t2 and t3 must be positive.

The complete algorithm addresses the remaining issues, i.e. how to select the cables
involved in the optimal solution in addition to how to compute the tension for these
cables.

A Simple Minimum Cable-Tension Algorithm 73



Remark 2. Geometrical intuition might suggest that a cable must make an angle of
less than 90° with the external force as a necessary condition to be part of the optimal
solution. The example of Fig. 1 shows, however, that this is not the case. A small
contribution along cable direction u3 can improve the L2-norm solution even though
this cable makes an angle larger than 90° with respect to the external force. The above
algorithm resolves the problem of determining when the three cable solution is valid by
looking at the sign of the third cable in the two possible three-cable solutions.

Remark 3. As presented above, using the position of the end-effector and the direction
of the force, minimum cable tension algorithm makes simple calculations with
square-invertible matrix to solve how many and which cables with minimum tensions.
In addition, our algorithm does not need to calculate all the intersection points of the
feasible tension distribution polytopes like other non-iterative methods [13, 14, 16]. In
terms of computational simplicity or efficiency, our algorithm is very fast and con-
venient for real-time implementations.

5 Proofs

In this section, we provide simple proofs, based on geometric reasoning, to establish
the correctness of this algorithm. We also demonstrate that the two-cable solution is
always optimal for the absolute value (L1) norm.

We start by considering the optimal solution for a three-cable device.

Theorem 1. The two-cable algorithm gives the optimal solution for a cable-driven
system with only three cables. This is true for the L1 and L2 norms.
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Proof. Let u1 and u2 be the cable directions that bracket force f . We want to show that
u3 cannot contribute to the solution. In a system with three cables, the angle between u3
and u1 or u2 is always less than p for any position inside the workspace.

We know that the optimal three-cable solution corresponds to t1 ¼ a1 � t3b1 and
t2 ¼ a2 � t3b2. Let us select u1 and u2 as the cable directions that bracket force f . In
this case, it is easy to see that a1 and a2, the parallel projections of f on u1 and u2, must
be positive. Similarly, b1 and b2, the parallel projections of u3 on u1 and u2, must be
negative.

The L1 and L2 norms for the two-cable solution are a1 þj ja2j j and a21 þ a22
respectively, since a1 and a2 correspond to the two-cable solution. Since b1 and b2 are
negative and t3 must be positive, it is easy to see that any positive value of t3 will also
increase t1 and t2 with respect to the two-cable solution for both norms. Therefore, the
optimal solution corresponds to the two-cable solution.

Note that this demonstration does not hold for a four-cable device because there
might be a case where b1 and b2 have a different sign with four cables (this is the case
in Fig. 2 where the projection of u3 on u1 is negative and the projection of u3 on u2 is
positive).

Lemma 1. If {ui, uj, uk} is an optimal three-cable solution for a four-cable system, the
end-effector must be outside the triangular workspace defined by the corresponding
attachment points.

Proof. The lemma is proven by showing that the end-effector cannot be inside the
workspace. Let us assume that the end-effector is inside the triangular workspace
defined by attachment points of the optimal three-cable solution (see Fig. 3, left panel).
Since the fourth cable does not contribute to the optimal solution by assumption, the
three-cable solution should be optimal for this reduced three-cable system. However,
this is not possible because Theorem 1 states that all optimal solutions for a three-cable
system are two-cable solutions. Therefore, the end-effector must be outside the
workspace as shown in Fig. 3 (right panel).

Fig. 3. Representation of the end-effector inside and outside of the triangular workspace (grey
area) in the left and right panels respectively.
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Lemma 2. If {ui, uj, uk} is an optimal three-cable solution for a four-cable system, then
the direction of the force is bracketed by the cable directions of this reduced system.

Proof. From Lemma 1, we know that the end-effector position must be outside the
triangular workspace defined by the attachment points of the three-cable optimal
solution. In this configuration, the external force is necessarily bracketed by two of the
cables of this system (see gray filled area in Fig. 3, right panel).

Theorem 2. For a four-cable system, the optimal solution always involves the two
cables direction bracketing the force.

Proof. To prove this theorem, we consider separately all possible cases. (1) If optimal
solution involves only two-cables, then the force is necessarily bracketed by those two
cables that are part of the solution because the cables can only pull. (2) The one-cable
solution is a special case of the two-cable solution. (3) If the solution involves three
cables, Lemma 1 tells us that the end-effector must be outside the corresponding
workspace and Lemma 2 tells us that the force direction must be bracketed by two of
the three cables involved in the corresponding reduced system. (4) If a four-cable
solution existed (but see below), it would necessarily involve the two cables bracketing
the force.

This theorem is key to justifying the initial choice of cable directions u1 and u2 in
the above algorithm (see point 1).

Theorem 3. This theorem states the other assumptions on which the algorithm relies:
A1. A negative t3 value obtained from Eq. (13) implies that the optimal solution

involves two cables.
A2. A positive t3 obtained from Eq. (13) implies t1 and t2 must be positive.
A3. The three-cable solution is unique.
A4. For a four-cable system, the optimal solution cannot involve all cables.
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Fig. 4. Example of a configuration where the minimum L2-norm three-cable solution (vertical
dotted line) is not valid because the tension for the third cable is negative. The first two cables
correspond to the cables bracketing the force. The third cable (t3 in the left panel and t4 in the
middle panel) corresponds to the cables attached to A3 and A4 respectively. The best valid
solution is obtained by setting this cable tension to zero (vertical solid line), which corresponds to
the two-cable solution plotted in the right panel.
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Assumption 1 is used in point 3.a. Assumption 2 is used in point 3.b in the sense
that the algorithm only checks the value of t3 to identify a valid three-cable solution.
Assumption 3 is used in the sense that the algorithm does not check for the validity of
the second three-cable solution if the first one is valid.

Proof. By definition, we know that the value of t3 obtained by Eq. (13) minimizes the
L2 norm. By the formula ti ¼ ai � t3bi, the changes in t1 and t2 are linearly related to
the change in t3. Since the L2-norm is convex, we need to change t3 (and t1 and t2) as
little as possible.

To prove A1, it is enough to note that the smallest adjustment of a negative t3
needed to make it compatible with a non-null constraint corresponds to t3 = 0, which
also corresponds to the two-cable solution since T12 = A when ti = 0 (i = 3 or 4, see
Fig. 4).

A2 is proven by absurdum. We start by assuming that t3 is positive and t1 negative
and show that this leads to a contradiction. To keep the L2-norm as small as possible, t1
and t3 should change as little as possible. This means setting t3 so that
t1 ¼ a1 � t3b1 ¼ 0. However, setting t1 ¼ 0 would mean that the optimal solution did
not involve one of the two cables that bracket the force. Since this is not possible
(Theorem 2), t1 (or t2) cannot be negative if t3 is positive.

A3 is a consequence of the convexity of the L2-norm.
To prove A4, assume that an optimal four-cable solution exists, with u1 and u2

bracketing the force. We can consider the contribution of the two other cables u3 and u4
and replace this four cable system by a three cable system where the third cable u34 is
placed so that its contribution is aligned with the sum of the two contributions
t34u34 ¼ t3u3 þ t4u4. The L2 and L1 norms for this three-cable system are better than the
corresponding norms for the optimal four-cable solution since t234\t23 þ t24 or
t34j j\ t3j j þ t4j j. However, from Theorem 1 we know that the optimal solution for a
three-cable system involves only the two cables bracketing u1 and u2, therefore this
three-cable solution cannot not be optimal. This implies that our assumption that a
four-cable solution exists is not true.

Theorem 4. The two-cable solution is optimal for the L1 norm.

Proof. From Eq. (10) and the L1 norm, we have

Tk k1¼ t1j j þ t2j j þ t3j j ¼ a1 � t3b1j j þ a2 � t3b2j j þ t3j j ð14Þ

where [a1 a2] = U−1f and [b1 b2] = U−1u3 are the projection of f and u3 on u1 and u2
respectively. The cable tensions t1 and t2 must be positive since u1 and u2 are the two
cable directions that bracket the force and are part of any optimal solution (see
Theorem 2). Moreover, t3 must also be positive to be part of the optimal solution.
Therefore, we can remove the absolute value and rewrite the objective function as

Tk k1¼ a1 � t3b1 þ a2 � t3b2 þ t3 ¼ ða1 þ a2Þ � t3 b1 þ b2 � 1ð Þ ð15Þ

with the constraint t3 � 0.
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a1 þ a2 is the L1 norm for the two-cable algorithm since a1 and a2 are the projections of
f on u1 and u2. The L1-norm for the three-cable solution will be smaller only if
b1 þ b2 � 1 is positive since t3 cannot be negative. To prove that the two-cable algo-
rithm gives an optimal solution, we therefore need to prove that the three-cable solution
is impossible; that is, b1 þ b2 � 1 is always negative or b1 þ b2\1.

First, b1 and b2 cannot both be positive since u3 must be outside the sector defined
by u1 and u2, which brackets the force. If both b1 and b2 are negative, the demon-
stration is finished since b1 þ b2\1 because b1\0 and b2\0. Thus, we need to
consider only the case where b1 and b2 have a different sign.

To that end, we consider the parallelogram formed by the projection of u3 on u1 and
u2 as shown in Fig. 5. The length of the diagonal corresponding to u3 is 1

u3j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b21 þ b22 � 2b1b2 cos a

q
¼ 1 ð16Þ

Thus, we have

1 ¼ b21 þ b22 � 2b1b2 cos a ð17Þ

We want to demonstrate

b1 þ b2\1 ð18Þ

or

b1 þ b2ð Þ2¼ b21 þ b22 þ 2b1b2\1 ð19Þ

Substituting (17) into (19), we need to verify that

b21 þ b22 þ 2b1b2\b21 þ b22 � 2b1b2 cos a ð20Þ

Fig. 5. Projection of u3 on u1 and u2.
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Since b1b2 is always negative, the division will change the sign of the inequality
(20) and we can rewrite it as

1[ � cos a ð21Þ

which is always true for p� a[ 0.
Extensive simulations showed that this algorithm works. We think that we have

also proven that it is correct. It would be nice to have a geometric criterion that
indicated when there is a two- or three-cable solution for the L2-norm rather than
relying on the sign of t3 but the algorithm is also quite computationally efficient. It only
requires inverting a 2 � 2 matrix and a few additional operations and tests.

6 Conclusion

The main contribution of this study is the description of an efficient algorithm to
minimize the cable tensions of a four-cable system with two DOFs. We have also
shown that (i) the optimal solution always involves the two cables bracketing the force,
(ii) the two-cable solution is always optimal for a three-cable system, (iii) the two-cable
solution is always optimal for the L1 norm. For a four-cable system, we described the
algorithm to compute cable tensions that minimize the L2 norm, and also identified
conditions for the three-cable solution.

The reason why the L1 norm solutions involve only two cables is that the increase
in tension of the third is greater than the decrease in tension of the cable(s) bracketing
the external force. Compared to the solutions for the L1 norm, the solutions for the L2
norm tend to avoid having a relatively large cable tension. In other words, the L2 norm
will distribute the force in a way that equalizes the tension across cables more so than
the L1 norm.

The difference between the L2-norm for the two- and three-cable solutions is
generally relatively small. One might wonder from a practical point of view whether it
is worth it to consider the optimal three-cable solution for the L2 norm. One reason
might be that three maximal tension-limited cables are able to produce markedly larger
end-effector forces in some configurations than two cables.

We readily acknowledge the limits of our algorithm. In particular, we did not
consider the fact that cable tensions must generally be somewhat above zero to avoid
slacking when the end-effector moves. This problem could be handled by assuming a
minimum tension tmin on all cables and calculating the net force fmin resulting from the
minimum cable tensions. Then our algorithm could be applied to the difference f – fmin

with the desired force f to find the optimal cable tensions ti that correspond to this
difference. These cable tensions could then be added to tmin to produce the desired
force.

When we compared our algorithm against other non-iterative algorithms [13, 14,
16], from geometric point of view it provides the minimum and faster solution with a
few simple mathematical calculations. In the future, we intend to implement the pro-
posed algorithm in a planar cable-driven force-feedback device with four motors under
development for haptic applications in an educational context.
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