
Stateful Multi-client Verifiable
Computation

Christian Cachin1, Esha Ghosh2, Dimitrios Papadopoulos3,
and Björn Tackmann1(B)

1 IBM Research – Zurich, Rüschlikon, Switzerland
{cca,bta}@zurich.ibm.com

2 Microsoft Research, Redmond, USA
esha.ghosh@microsoft.com

3 Hong Kong University of Science and Technology, Kowloon, Hong Kong
dipapado@cse.ust.hk

Abstract. This paper develops an asynchronous cryptographic protocol
for outsourcing arbitrary stateful computation among multiple clients to
an untrusted server, while guaranteeing integrity of the data. The clients
communicate only with the server and merely store a short authenticator
to ensure that the server does not cheat. Our contribution is two-fold.
First, we extend the recent hash&prove scheme of Fiore et al. (CCS
2016) to stateful computations that support arbitrary updates by the
untrusted server, in a way that can be verified by the clients. We use
this scheme to generically instantiate authenticated data types. Second,
we describe a protocol for multi-client verifiable computation based on
an authenticated data type, and prove that it achieves a computational
version of fork linearizability. This is the strongest guarantee that can
be achieved in the setting where clients do not communicate directly; it
ensures correctness and consistency of outputs seen by the clients indi-
vidually.

Keywords: Cloud computing · Authenticated data types
Verifiable computation · Byzantine emulation · Fork linearizability

1 Introduction

Cloud services are nowadays widely used for outsourcing data and computation
because of their competitive pricing and immediate availability. They also allow
for online collaboration by having multiple clients operate on the same data; such
online services exist for, e.g., shared file storage, standard office applications,
or software solutions for specific domains. For authenticity, confidentiality, and
integrity of the data, however, the clients have to fully trust the cloud providers,
which can access and modify the raw data without the clients’ consent or notice.

The scenario we are concerned with in this paper involves multiple clients
that mutually trust each other and collaborate through an untrusted server. A

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 637–656, 2018.
https://doi.org/10.1007/978-3-319-93387-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_33&domain=pdf

638 C. Cachin et al.

practical example is a group of co-workers using a shared calendar or editing
a text document hosted on a cloud server. The protocol emulates multi-client
access to an abstract data type F . Given an operation o and a current state s,
the protocol computes (s ′, r) ← F (s, o) to generate an updated state s ′ and an
output r . The role of a client Cv is to invoke operation o and obtain response r ;
the purpose of the server is to store the state of F and to perform the computa-
tion. As an example, let F be defined for a set of elements where o can be adding
or deleting an element to the set. The state of the functionality will consist of
the entire set. The protocol requires that all clients have public keys for digital
signatures. Clients communicate only with the server; no direct communication
between the clients occurs. Our protocol guarantees the integrity of responses
and ensures fork linearizability, in the scenario where the server is untrusted and
may be acting maliciously.

Related Work. The described problem has received considerable attention
from the viewpoint of distributed systems, starting with protocols for securing
untrusted storage [33]. Without communication among clients, the server may
always perform a forking attack and omit the effects of operations by some clients
in the communication with other clients. Clients cannot detect this attack unless
they exchange information about the protocol progress or rely on synchronized
clocks; the best achievable consistency guarantee has been called fork lineariz-
ability by Mazières and Shasha [33] and has been investigated before [11,13,30]
and applied to actual systems [8,12,13,28,44]. Early works [13,28] focused on
simple read/write accesses to a storage service. More recent protocols such as
BST [44] and COP [12] allow for emulating arbitrary data types, but require
that the entire state be stored and the operations be computed on the client.
ACOP [12] and VICOS [8] describe at a high level how to outsource both the
state and the computation in a generic way, but neither work provides a cryp-
tographic security proof.

The purpose of an authenticated data type (ADT; often also referred to as
authenticated data structure) is to outsource storage of data, and the computa-
tion on it, to a server, while guaranteeing the integrity of the data. In a nutshell,
while the server stores the data, the client holds a small authenticator (some-
times called digest) that relates to it. Operations on the data are performed by
the server, and for each operation the server computes an integrity proof relative
to the authenticator. ADTs originated as a generalization of Merkle trees [34],
but instantiations of ADTs for various data types have been developed. There
exist schemes for such diverse types as sets [14,40], dictionaries [2,24,36], range
trees [31], graphs [25], skip lists [23,24], B-trees [35], or hash tables [39].

Non-interactive verifiable computation has been introduced as a concept to
outsource computational tasks to untrusted workers [20]; schemes that achieve
this for arbitrary functionalities exist [16,20,21,41] and are closely related to
SNARKs (e.g., [6]). These works have the disadvantage, however, that the client
verifying the proof needs to process the complete input to the computation
as well. This can be avoided by having the client first hash its input and then
outsource it storing only the hash locally. The subsequent verifiable computation

Stateful Multi-client Verifiable Computation 639

protocol must then ensure not only the correctness of the computation but also
that the input used matches the pre-image of the stored hash (which increases the
concrete overhead), an approach that has been adopted in several works [9,16,
17,43]. In this work, we build on the latest in this line of works, the hash&prove
scheme of Fiore et al. [17], by a mechanism that allows for stateful computation
in which an untrusted party can update the state in a verifiable manner, and that
can handle multiple clients. An alternative approach for verifiable computation
focuses on specific computation tasks (restricted in generality, but often more
efficient), such as polynomial evaluation [4,7], database queries [37,45], or matrix
multiplication [18].

All these works target a setting where a single client interacts with the server,
they do not support multiple clients collaborating on outsourced data. The only
existing approaches that capture multi-client verifiable computation are by Choi
et al. [15] and Gordon et al. [26]; yet, they only support stateless computations
where all clients send their inputs to the server once, the latter evaluates a
function on the joint data and returns the output. Another recent related work
provides multi-key homomorphic authenticators for circuits of (bounded) poly-
nomial depth [19]. Our work differs in that it allows stateful computation on data
that is permanently outsourced to the server and updated through computations
initiated by the clients. López-Alt et al. [29] address a complementary goal: they
achieve privacy, but do not target consistency in terms of linearizability of a
stateful multi-client computation. Also, their protocol requires a round of direct
communication between the clients, which we rule out.

Contributions. Our first contribution is a new and general definition of a two-
party ADT, where the server manages the state of the computation, performs
updates and queries; the client invokes operations and receives results from the
server. This significantly deviates from standard three-party ADTs (e.g. [40,42])
that differentiate between a data owner, the untrusted server, and client(s).
The owner needs to store the entire data to perform updates and publish the
new authenticator in a trusted manner, while the client(s) may only issue read-
only queries to the server. Our definition allows the untrusted server to perform
updates such that the resulting authenticator can be verified for its correctness,
eliminating the need to have a trusted party store the entire data. The definition
also generalizes existing two-party ADTs [22,38], as we discuss in Sect. 3.

We then provide a general-purpose instantiation of an ADT, based on verifi-
able computation from the work of Fiore et al. [17]. Our instantiation captures
arbitrary stateful deterministic computation, and the client stores only a short
authenticator which consists of two elements in a bilinear group.

We also devise computational security definitions that model the distributed-
systems concepts of linearizability and fork linearizability [33] via cryptographic
games. This allows us to prove the security of our protocol in a computational
model by reducing from the security of digital signatures and ADTs—all previous
work on fork linearizability idealized the cryptographic schemes.

Finally, we describe a “lock-step” protocol to satisfy the computational
fork linearizability notion, adapted from previous work [13,33]. The protocol

640 C. Cachin et al.

guarantees fork-linearizable multi-client access to a data type. It is based on our
definition of ADTs; if instantiated with our ADT construction, it is an asyn-
chronous protocol for outsourcing any stateful (deterministic) computation with
shared access in a multi-client setting.

2 Preliminaries

We use the standard notation for the sets of natural numbers N, integers Z, and
integers Zp modulo a number p ∈ N. We let ε denote the empty string. If Z is
a string then |Z| denotes its length, and ◦ is an operation to concatenate two
strings. We consider lists of items, where [] denotes the empty list, L[i] means
accessing the i-th element of the list L, and L ← L ◦ x means storing a new
element x in L by appending it to the end of the list. If X is a finite set, we
let x ←$ X denote picking an element of X uniformly at random and assigning
it to x. Algorithms may be randomized unless otherwise indicated. If A is an
algorithm, we let y ← A(x1, . . . ; r) denote running A with uniform random
coins r on inputs x1, . . . and assigning the output to y. We use y ←$A(x1, . . .) as
shorthand for y ← A(x1, . . . ; r). For an algorithm that returns pairs of values,
(y,) ← A(x) means that the second parameter of the output is ignored; this
generalizes to arbitrary-length tuples. The security parameter of cryptographic
schemes is denoted by λ.

We formalize cryptographic security properties via games, following in partic-
ular the syntax of Bellare and Rogaway [5]. By Pr[G] we denote the probability
that the execution of game G returns True. We target concrete-security defini-
tions, specifying the security of a primitive or protocol directly in terms of the
adversary advantage of winning a game. Asymptotic security follows immediately
from our statements. In games, integer variables, set, list and string variables,
and boolean variables are assumed initialized, respectively, to 0, ∅, [] and ε, and
False.

System Model. The security definition for our protocol is based on well-
established notions from the distributed-systems literature. In order to make
cryptographic security statements and not resort to modeling all cryptography
as ideal, we provide a computational definition that captures the same intuition.

Recall that our goal is to enable multiple clients C1, . . . , Cu , with u ∈ N, to
evaluate an abstract deterministic data type F : (s, o) �→ (s ′, r), where s, s ′ ∈ S
describe the global state of F, o ∈ O is an input of a client, and r ∈ A is the
corresponding output or response. Each client may exchange messages with a
server over an asynchronous network channel. The clients can provide inputs to
F in an arbitrary order. Each execution defines a history σ, which is a sequence
of input events (Cv , o) and output events (Cv , r); for simplicity, we assume
O∩A = ∅. An operation directly corresponds to an input/output event pair and
vice versa, and an operation is complete in a history σ if σ contains an output
event matching the input event.

In a sequential history, the output event of each operation directly follows
the corresponding input event. Moreover, an operation o precedes an operation

Stateful Multi-client Verifiable Computation 641

o′ in a history σ if the output event of o occurs before the input event of o′ in σ.
Another history σ′ preserves the (real-time) order of σ if all operations of σ′

occur in σ as well and their precedence relation in σ is also satisfied in σ′. The
goal of a protocol is to emulate F . The clients only observe their own input and
output events. The security of a protocol is defined in terms of how close the
histories it produces are to histories produced through invocations of an ideal
shared F .

Linearizability. A history σ is linearizable with respect to a type F [27] if and
only if there exists a sequential permutation π(σ) of σ such that

– π(σ) preserves the (real-time) order of σ; and
– the operations of π(σ) satisfy the sequential specification of F .

Satisfying the sequential specification of F means that if F starts in a specified
initial state s0, and all operations are performed sequentially as determined by
π(σ) = o1, o2, . . . , then with (sj , rj) ← F (sj−1, oj), the output event correspond-
ing to oj contains output rj .

Linearizability is a strong guarantee as it specifies that the history σ could
have been observed by interacting with the ideal F , by only (possibly) exchang-
ing the order of operations which were active concurrently. Unfortunately, as
described in the introduction, linearizability cannot be achieved in the setting
we are interested in.

Fork Linearizability. A history σ is called fork-linearizable with respect to a type
F [13,33] if and only if, for each client Cv , there exists a subsequence σv of σ
consisting only of complete operations and a sequential permutation πv (σv) of
σv such that:

– All complete operations in σ occurring at client Cv are in σv , and
– πv (σv) preserves the real-time order of σv , and
– the operations of πv (σv) satisfy the sequential specification of F , and
– for every o ∈ πv (σv) ∩ πv ′(σv ′), the sequence of events preceding o in πv (σv)

is the same as the sequence of events that precede o in πv ′(σv ′).

Fork linearizability is weaker than linearizability in that it requires consistency
with F only with respect to permutations of sub-sequences of the history. This
models the weaker guarantee that is achieved relative to a dishonest server that
partitions the set of clients and creates independent forks of the computation in
each partition. Intuitively, fork linearizability formalizes that this partitioning
attack is the only possible attack; the partitions will remain split forever, and
the executions within the partitions are linearizable. Fork linearizability is the
strongest achievable guarantee in the setting we consider [33].

Abortable Services. When operations of F cannot be served immediately, a pro-
tocol may decide to either block or abort. Aborting and giving the client a chance
to retry the operation at his own rate often has advantages compared to block-
ing, which might delay an application in unexpected ways. As in previous work

642 C. Cachin et al.

that permitted aborts [1,8,12,30], we allow operations to abort and augment F
to an abortable type F ′ accordingly. F ′ is defined over the same set of states S
and operations O as F , but returns a tuple defined over S and A ∪ {busy}. F ′

may return the same output as F , but F ′ may also return busy and leave the
state unchanged, denoting that a client is not able to execute F . Hence, F ′ is a
non-deterministic relation and satisfies F ′(s, o) = {(s,busy), F (s, o)} .

Verifiable Computation. A verifiable computation scheme VC specifies the
following. A key-generation algorithm VC.keygen that takes as input
security parameter λ and relation R ⊂ U × W and produces a pair
(ek , vk) ←$ VC.keygen(λ,R) of evaluation key ek and verification key vk . An
algorithm VC.prove that takes as input evaluation key ek , u ∈ U , and witness
w ∈ W such that (u,w) ∈ R, and returns a proof ξ ←$ VC.prove(ek , u, w). As
a concrete example, in the case of a circuit-based SNARK [16,41] the witness
w consists of the assignments of the internal wires of the circuit. An algorithm
VC.verify that takes as input the verification key vk , input u, and proof ξ, and
returns a Boolean True/False ← VC.verify(vk , u, ξ) that signifies whether ξ
is valid.

The correctness error of VC is the probability that the verification of an
honestly computed proof for a correct statement returns False. The soundness
error is the advantage of a malicious prover to produce an accepting proof of a
false statement. Both quantities must be small for a scheme to be useful.

The verifiable computation schemes we use in this work have a special prop-
erty referred to as offline-online verification, and which is defined when the set
U can be written as U = X × V . In particular, for those schemes there exist
algorithms VC.offline and VC.online such that

VC.verify(vk , (x, v), ξ) = VC.online(vk ,VC.offline(vk , x), v, ξ).

Hash&prove Schemes. We again consider the relation R ⊆ U ×W . A hash&prove
scheme HP then allows to prove statements of the type ∃w ∈ W : R(u,w) for a
given u ∈ U ; one crucial property of hash&prove schemes is that one can produce
a short proof of the statement (using the witness w), such that the verification
does not require the element u ∈ U but only a short representation of it.

In more detail, a multi-relation hash&prove scheme as defined by Fiore
et al. [17] consists of five algorithms:

– HP.setup takes as input security parameter λ and produces public parame-
ters pp ←$ HP.setup(λ).

– HP.hash takes as input public parameters pp and a value x ∈ X and produces
a hash hx ← HP.hash(pp, x).

– HP.keygen takes as input public parameters pp and a relation R and outputs
a key pair (ekR, vkR)←$HP.keygen(pp, R) of evaluation key and verification
key.

– HP.prove takes as input evaluation key ekR, values (x, v) ∈ X × V
and witness w ∈ W such that ((x, v), w) ∈ R, and produces a proof
π ←$ HP.prove(ekR, (x, v), w).

Stateful Multi-client Verifiable Computation 643

– Finally, HP.verify takes as input verification key vkR, hash hx, value v, and
proof π and outputs a Boolean denoting whether it accepts the proof, written
True/False ← HP.verify(vkR, hx, v, π).

An extractable hash&prove scheme has an additional (deterministic) algo-
rithm HP.check that takes as input pp and a hash h and outputs
True/False ← HP.check(pp, h), a Boolean that signifies whether the hash
is well-formed (i.e., there is a pre-image).

Correctness of HP is defined by requiring that the honest evaluation of the
above algorithms leads to HP.verify accepting. A hash&prove scheme has
two soundness properties, soundness and hash-soundness. At a high level, both
soundness games require an adversary to produce a proof for a false statement
that will be accepted by HP.verify. Adversary A is given public parameters
pp, evaluation key ek , and verification key vk . To break soundness, A has to
produce a proof for a statement (x, v) that is wrong according to relation R,
but the proof is accepted by HP.verify for hx ← HP.hash(pp, x) computed
honestly.

The purpose of hash soundness is to capture the scenario where HP supports
arguments on untrusted, opaque hashes provided by the adversary. For this, the
HP.hash algorithm must be extractable. The hash-soundness game operates
almost as the soundness game, but instead of x, the adversary provides a hash
h. The adversary wins if the hash h cannot be opened consistently (by the
extractor E) to satisfy the relation; for further explanation, we point the readers
to [17, Appendix A.1], but we stress that the extraction is needed in our context.

Finally, we define the collision advantage of adversary A as

Advcr

HP
(A) := Pr

[
pp ←$ HP.setup; (x, y) ←$ A(pp);
HP.hash(pp, x) ?= HP.hash(pp, y)

]

Hash&Prove for Multi-exponentiation. We recall the hash&prove scheme for
multi-exponentiation introduced as XPE in [17], but keep the details light since
we do not use properties other than those already used there. The scheme,
which we call MXP here, uses asymmetric bilinear prime-order groups Gλ =
(e,G1,G2,GT , p, g1, g2), with an admissible bilinear map e : G1 × G2 → GT ,
generators g1 ∈ G1 and g2 ∈ G2, and group order p. The main aspect we need to
know about MXP is that, it works for inputs of the form x = (x1, . . . , xn) ∈ Z

n
p

and admissible relations of MXP are described by a vector (G1, . . . , Gn) ∈ G
n
1 .

The proved relation is the following:
∏n

i=1 Gxi
i = cx for a given cx. MXP uses

a hash of the input x = (x1, . . . , xn) ∈ Z
n
p to prove correctness across different

admissible relations. The hash function is described by a vector (H1, . . . , Hn) ∈
G

n
1 . For an input x = (x1, . . . , xn) ∈ Z

n
p , the hash is computed as hx =

∏n
i=1 Hxi

i .
In a nutshell, this will be used for proving that hx and cx encode the same vector
x, with respect to a different basis.

Fiore et al. [17] prove MXP adaptively hash-sound under the Strong Exter-
nal DDH and the Bilinear n-Knowledge of Exponent assumptions. They then
combine MXP with schemes for online-offline verifiable computation that use

644 C. Cachin et al.

an encoding of the form
∏n

i=1 Gxi
i = cx as its intermediate representation, to

obtain a hash&prove scheme that works for arbitrary (stateless) computations.
We describe their construction in more detail in Sect. 4, before explaining our
scheme that follows the same idea but extends to stateful computations.

3 Authenticated Data Types

Authenticated data types, which originated as an abstraction and generalization
of Merkle trees [34], associate with a (potentially large) state of the data type
a short authenticator (or digest) that is useful for verification of the integrity of
operations on the state. In more detail, an abstract data type is described by a
state space S with a function F : S × O → S × A as before. F takes as input a
state s ∈ S of the data type and an operation o ∈ O and returns a new state s ′

and the response r ∈ A. The data type also specifies the initial state s0 ∈ S.
Here, we present a definition for what is known in the literature as a “two-

party” authenticated data type (ADT) [38]. The interaction is between a client,
i.e., a party that owns F and wants to outsource it, and an untrusted server
that undertakes storing the state of this outsourced data type and responding
to subsequent operations issued. The client, having access only to a succinct
authenticator and the secret key of the scheme, wishes to be able to efficiently test
that requested operations have been performed honestly by the server (see [38]
for a more detailed comparison of variants of ADT modes of operation). An
authenticated data type ADT for F consists of the following algorithms:

(sk , ad , a)←$ADT.init(λ): This algorithm sets up the secret key and the public
key for the ADT scheme, for security parameter λ. It also outputs an initial
amended state ad and a succinct authenticator a. We implicitly assume from
now on that the public key pk is part of the secret key sk as well as the server
state ad . We also assume that the actual initial state s0 and authenticator a
are part of ad .

π ←$ ADT.exec(ad , o): This algorithm takes an operation o, applies it on
the current version of ad , and provides a correctness proof π, from which
a response r can be extracted.

(True/False, r , a ′, t)←$ADT.verify(sk , a, o, π): The algorithm takes the cur-
rent authenticator a, an operation o, and a proof π, verifies the proof with
respect to the authenticator and the operation, outputting local output r ,
the updated authenticator a ′, and an additional authentication token t.

ad ′ ←$ADT.refresh(ad , o, t): The algorithm updates the amended state from
ad to ad ′, using operation o and authentication token t provided by the client.

An ADT has to satisfy two conditions, correctness and soundness. Correct-
ness formalizes that if the ADT is used faithfully, then the outputs received by
the client are according to the abstract data type F .

Definition 1 (Correctness). Let s0 be the initial state of data type F and
o1, . . . , om be a sequence of operations. The ADT scheme ADT is correct if in
the following computation, the assertions are always satisfied.

Stateful Multi-client Verifiable Computation 645

(sk , ad , a) ←$ ADT.init(λ) ; s ← s0
For j = 1, . . . ,m do

π ←$ ADT.exec(ad , oj)
(b, r , a ′, t) ← ADT.verify(sk , a, oj , π)
(s ′, r ′) ← F (s, oj)
assert b and r = r ′

ad ′ ←$ ADT.refresh(ad , oj , t)
(ad , a, s) ← (ad ′, a ′, s ′)

The second requirement for the ADT, soundness, states that a dishonest
server cannot cheat. The game Gsound

ADT
described in Fig. 1 formalizes that it

must be infeasible for the adversary (a misbehaving server) to produce a proof
that makes a client accept a wrong response of an operation. The variable forged
tracks whether the adversary has been successful. The list L[] is used to store
valid pairs of state and authenticator of the ADT, and is consequently initialized
with (s0, a) of a newly initialized ADT in position 0. The adversary A is initial-
ized with (ad , a) and can repeatedly query the verify oracle in the game by
specifying an operation o, the index pos ∈ N of a state on which o shall be exe-
cuted, and a proof π. The challenger obtains state s and authenticator a of the
pos-th state from the list L[]. The challenger (a) checks whether ADT.verify
accepts the proof π, and (b) computes the new state s ′ and the output r ′ using
the correct F and state s, and sets forged if the proof verified but the output r
generated by ADT.verify does not match the “ideal” output r ′.

This game formulation ensures the outputs provided to the clients are always
correct according to F and the sequence of operations performed, but also allows
the adversary to “fork” and compute different operations based on the same
state. This is necessary for proving the security of the protocol described in
Sect. 6. Unlike for the output r , the game does not formalize an explicit correct-
ness condition for ad ′ to properly represent the state s ′ of F as updated by o′;
this is only modeled through the outputs generated during subsequent opera-
tions. Indeed, in the two-party model, the internal state of the server cannot be
observed, and only the correctness of the responses provided to clients matters.

Definition 2 (Soundness). Let F be an abstract data type and ADT an ADT
for F . Let A be an adversary. The soundness advantage of A against ADT is
defined as Advsound

ADT
(A) := Pr

[
Gsound

ADT

]
.

To exclude trivial schemes in which the server always sends the complete
state to the clients, we explicitly require that the authenticator of the clients
must be succinct. More concretely, we require that the size of the authenticator
is independent of the size of the state.

Definition 3 (Succinctness). Let F be an abstract data type and ADT an
ADT with security parameter λ for F . Then ADT is succinct if the bit-length
of the authenticator a is always in O(λ).

Very few existing works seek to define a two-party authenticated data struc-
ture [22,38], since most of the literature focuses on a three-party model where

646 C. Cachin et al.

Game Gsound
ADT (A)

forged False
(sk , ad , a) $ ADT.init(λ)
L[0] (s0, a)
Averify(ad , a)
Return forged

verify(o, pos, π)

If pos > |L| then return ⊥
(s, a) L[pos]
(b, r , a ′, t) $ ADT.verify(sk , a, o, π)
If b then

(s ′, r ′) F (s, o)
If r ′ �= r then forged True
L L ◦ (s ′, a ′)
Return (True, a ′, t, r)

Else return (False, ⊥, ⊥, ⊥)

Fig. 1. The security game formalizing soundness of an ADT.

the third party is a trusted data manager that permanently stores the data and
is the sole entity capable of issuing updates.

The definition of [38] differs from ours as it only supports a limited class of
functionalities. It requires the update issuer to appropriately modify ad himself
and provide the new version to the server and, as such, this definition can only
work for structures where the part of the ad that is modified after an update
is “small” (e.g., for a binary hash tree, only a logarithmic number of nodes
are modified). The definition of [22] supports general functionalities however,
unlike ours, it cannot naturally support randomized ADT schemes as it requires
the client to be able to check the validity of the new authenticator a ′ after an
update; in case a scheme is randomized, it is not clear whether this check can
be performed. In our soundness game from Fig. 1, the adversary can only win
by providing a bad local output r (which, by default, is empty in the case of
updates) and not with a bad authenticator, which makes it possible to handle
randomized constructions. We note that our construction from Sect. 4 does not
exploit this, as it is deterministic.

4 A General-Purpose Instantiation of ADT

This section contains one main technical contribution of this work, namely a
general-purpose instantiation of ADTs defined in Sect. 3. Our scheme builds on
the work of Fiore et al. [17], which defined hash&prove schemes in which a
server proves the correctness of a computation (relative to a state) to a client
that only knows a hash value of the state. The main aspect missing from [17]
is the capability for an untrusted server to update the state and produce a new
(verifiable) hash. The hash of an updated state can be computed incrementally
as described in [17, Sect. 4.4].

Before we start describing our scheme, we recall some details of the
hash&prove scheme of Fiore et al. [17]. Their scheme allows to verifiably com-
pute a function f : Z → V on an untrusted server, where the verification by

Stateful Multi-client Verifiable Computation 647

the client does not require z ∈ Z but only a hash hz of it. In accordance with
the verifiable computation schemes for proving correctness of the computation,
they set U = Z × V and consider a relation Rf ⊆ U × W such that for a pair
(z, v) ∈ U there is a witness w ∈ W with ((z, v), w) ∈ Rf if and only if f(z) = v.
In other words, proving ∃w : ((z, v), w) ∈ Rf implies that f(z) = v. The format
of the witness w depends on the specific verifiable computation scheme in use,
e.g., it may be the assignments to the wires of the circuit computing f(z).

Fiore et al. proceed via an offline-online verifiable computation scheme VC

and a hash-extractable hash&prove scheme for multi-exponentiations MXP.
Recall that MXP uses a hash function that is described by a vector pp =
(H1, . . . , Hn) ∈ G

n
1 and computed as hz ← MXP.hash(pp, z) =

∏n
i=1 Hzi

i for
z = (z1, . . . , zn) ∈ Z

n
p . The hash hz, which is known to the client, is computed

via MXP.hash(pp, ·). The offline-online property of the scheme VC states that

VC.verify(vk , (z, v), ξ) = VC.online(vk ,VC.offline(vk , z), v, ξ).

Fiore et al. further assume that VC uses an intermediate representation of the
form VC.offline(vk , z) = cz =

∏n
i=1 Gzi

i , where the group elements G1, . . . , Gn

are included in the verification key vk . This means, in a nutshell, that MXP can
be used to prove that, for a given z, the hashes cz and hz encode the same z.

In the complete scheme, the server computes ξ←$VC.prove(ek , z, w), using
the scheme-dependent witness w referred to above, and the evaluation key ek
for the function f . It also computes cz = VC.offline(vk , z) and sends ξ and cz

to the client. The server proves to the client via MXP that cz contains the same
value z as the hash hz known to the client. The client concludes by verifying the
proof via VC.online with input cz.

Building the New Hash&Prove Scheme. Our goal is to model stateful com-
putations of the type F (s, o) = (s′, r), using the syntax of the hash&prove
scheme. Recall that the syntax of [17] does not handle stateful computations
with state updates explicitly. On a high-level, our approach can be seen as
computing a stateful F verifiably by first computing (s′,) ← F (s, o) with-
out verification (where means that the second component of the output
is ignored) and then verifiably computing F̃ ((s, s′), o) �→ (d , r) defined via
(s̄, r) ← F (s, o); d ← s̄

?= s′. In this approach, the client has to check the
proof of the verifiable computation and that d = True. Putting the output
state s′ into the input of the verifiable computation of F̃ has the advantage that
we already know how to handle hashes there: via a hash&proof scheme similar
to the one of [17]. In the following, we describe our scheme more technically. It
can be seen as a variant of [17] with two hashed inputs x and y.

In [17], the output of VC.offline(vk , z) is a single value cz that is then
related to the hash hz known to the client via MXP. As we have two individual
hashes hx and hy for the components x and y, respectively, we modify the con-
struction of [17]. For z ∈ X×Y with X = Y = Z

n
p , we modify VC.offline(vk , z)

to compute cx ← ∏n
i=1 Gxi

i and cy ← ∏n
i=1 Gyi

n+i for elements G1, . . . , G2n that
are specified in vk , and prove consistency of cx with hx and of cy with hy, again

648 C. Cachin et al.

SHP.setup(λ)
pp $ MXP.setup(λ)
Return pp

SHP.hash(pp, (x, y))
hx MXP.hash(pp, x) ; hy MXP.hash(pp, y)
Return (hx, hy)

SHP.keygen(pp, R)
(ek , vk) $ VC.keygen(λ, R)
Let G1, . . . , G2n be the “offline” elements in vk , see discussion in text.
(ek i, vk i) $ MXP.keygen(pp, (G1, . . . , Gn))
(ek o, vk o) $ MXP.keygen(pp, (Gn+1, . . . , G2n))
Return (ekR, vkR) = ((ek , vk , ek i, ek o), (vk , vk i, vk o))

SHP.prove(ekR, (x, y), v, w)
(cx, cy) VC.offline(vk , (x, y))
ξ $ VC.prove(ek , ((x, y), v), w)
πx $ MXP.prove(ek i, x, cx) ; πy $ MXP.prove(ek o, y, cy)
Return πR = (cx, cy, ξ, πx, πy)

SHP.check(pp, (hx, hy))
Return MXP.check(pp, hx) ∧ MXP.check(pp, hy)

SHP.verify(vkR, (hx, hy), v, πR)
Return VC.online(vk , (cx, cy), v, ξ) ∧ SHP.check(pp, (hx, hy))

∧MXP.verify(vk i, hx, cx, πx) ∧ MXP.verify(vk o, hy, cy, πy)

Fig. 2. The hash&prove scheme SHP for updates by untrusted servers.

using MXP. (Note that this is cz = cxcy.) As argued by [17], many existing
VC/SNARK constructions can be written in this way.

Summarizing the above, the main modifications over [17] are (i) that we
transform a stateful F into a stateless F̃ , (ii) that VC.online obtains two ele-
ments cx and cy from VC.offline, and (iii) that the output bit d has to be
checked. Our stateful hash&prove system SHP for F̃ is specified formally in
Fig. 2. We formally prove that SHP is hash sound (analogously to [17, Corol-
lary 4.1]) in the full version [10].

Building a General-Purpose ADT Using Our HP. The scheme SHP constructed
above lends itself well to building a general-purpose ADT. Note that verifiable
computation schemes explicitly construct the witness w required for the correct-
ness proof; in fact, the computation of F can also be used to produce a witness
w for the correctness according to F̃ , which is immediate for VC schemes that
actually model F as a circuit [21,41].

The general-purpose ADT GA, which is more formally described in Fig. 3,
works as follows. Algorithm GA.init generates public parameters pp and a

Stateful Multi-client Verifiable Computation 649

GA.initF (λ)

pp $ SHP.setup(λ)
(ek , vk) $ SHP.keygen(pp, RF̃)
(a,) SHP.hash(pp, (s0, ε))
Return (vk , (s0, a, ek , vk), a)

GA.execF (ad , o)

(s, a, ek , vk) ad

(s ′, r) F (s, o) � Get witness w

ξ $ SHP.prove(ek , (s, s ′), (o, r), w)
(a ′,) SHP.hash(pp, (s ′, ε))
Return π = (ξ, a ′, r)

GA.verify(sk , a, o, π)

(ξ, a ′, r ′) π ; (d , r) r ′

b d ∧SHP.verify(sk , (a, a ′), (o, r ′), ξ)
Return (b, r , a ′, ε)

GA.refreshF (ad , o, t)

(s, a, ek , vk) ad

(s ′, r) F (s, o)
(a ′,) SHP.hash(pp, (s ′, ε))
Return (s ′, a ′, ek , vk)

Fig. 3. The general-purpose ADT scheme GA that can be instantiated for any data
type F . While GA.refresh does not use the value t, it is included in the definition of
ADT as it could be useful in other schemes.

key pair (ek , vk) for SHP, and then computes the authenticator (a,) ←
SHP.hash(pp, (s0, ε)) for the initial state s0 of F . Algorithm GA.exec com-
putes the new state s ′ via F and authenticator (a ′,) ← SHP.hash(pp, (s ′, ε)),
and generates a correctness proof ξ for the computation of F̃ via SHP.prove.
We note that we explicitly write out the empty string ε, and ignore the second
output component, in algorithm (a,) ← SHP.hash(pp, (s0, ε)) to be consistent
with the hash&prove scheme syntax. We can safely ignore this argument at the
implementation level. Algorithm GA.verify checks the proof ξ via SHP.verify
and also checks the bit d output by F̃ to ensure that the authenticator a ′ is cor-
rect. Algorithm GA.refresh simply updates the server state—recomputing s ′

and a ′ can be spared by caching the values from GA.exec. Instantiating GA

with the schemes of [17] leads to a succinct ADT. We defer the soundness proof
to the full version [10].

5 Computational Fork-Linearizable Byzantine Emulation

The application we target in this paper is verifiable multiple-client computation
of an ADT F with an untrusted server for coordination. As the clients may not be
online simultaneously, we do not assume any direct communication among them.
The goal of the protocol is to emulate an abstract data type F : (s, o) �→ (s ′, r).
As the server may be malicious, this setting is referred to as Byzantine emulation
in the literature [13].

A Byzantine emulation protocol BEP specifies the following: A setup algo-
rithm BEP.setup takes as parameter the number u ∈ N of clients and outputs,
for each client v ∈ N, key information clkv , server key information svk , and
public key information pks. (The variable pks models information that is consid-
ered public, such as the clients’ public keys.) A client algorithm BEP.invoke

650 C. Cachin et al.

takes as input an operation o ∈ {0, 1}∗, secret information clk ∈ {0, 1}∗, public
keys pks ∈ {0, 1}∗ and state S ∈ {0, 1}∗, and outputs a message m ∈ {0, 1}∗

and a new state S′ ∈ {0, 1}∗. A client algorithm BEP.receive takes as input
a message m ∈ {0, 1}∗, and clk , pks , and S as above, and outputs a value
r ∈ {0, 1}∗ ∪ {abort,busy}, a message m′ ∈ {0, 1}∗ ∪ {⊥}, and a new state
S′ ∈ {0, 1}∗. The return value abort means that the operation has been aborted
because of an error or inconsistency of the system, whereas busy means that
the server is busy executing a different operation and the client shall repeat the
invocation later. A server algorithm BEP.process takes as input a message
m ∈ {0, 1}∗, purported sender v ∈ N, secret information svk ∈ {0, 1}∗, public
keys pks ∈ {0, 1}∗and state Ss ∈ {0, 1}∗, and outputs a message m′ ∈ {0, 1}∗,
intended receiver v ′ ∈ N, and updated state S′

s ∈ {0, 1}∗.
We then define the security game Gemu

BEP,u,P described in Fig. 4. Initially,
the game calls BEP.setup to generate the necessary keys; the setup phase
modeled here allows the clients to generate and distribute keys among them.
This allows for modeling, for instance, a public-key infrastructure, or just a
MAC key that is shared among all clients. (Note that we consider all clients as
honest.) The adversary A, which models the network as well as the malicious
server, is executed with input pks—the public keys of the scheme—and has
access to four oracles. Oracle invoke(v , o) models the invocation of operation
o at client Cv , updates the state Sv , and appends the input event (Cv , o) to
the history σ. The oracle returns a message m directed at the server. Oracle
receive(v ,m) delivers the message m to Cv , updates the state Sv , and outputs
a response r and a message m′. If r �= ⊥, the most recently invoked operation of
Cv completes and the output event (Cv , r) is appended to σ. If m′ �= ⊥, then m′

is a further message directed at the server. Oracle corrupt returns the server
state Ss, and oracle process(v ,m) corresponds to delivering message m to the
server as being sent by Cv . This updates the server state Ss, and may return a
message m′ to be given to Cv . The game returns the result of predicate P on
the history σ, which is initially empty and extended through calls of the types
invoke(v , o) and receive(v ,m). We define two classes of adversaries: full and
benign, that we use in the security definition.

Full Adversaries: A full adversary Afull invokes oracles in an arbitrary order.
The only restriction is that, for each v ∈ [1, u], after Afull has invoked an opera-
tion of Cv (with invoke(v , ·)), then Afull must not invoke another operation of
Cv until after the operation completes (when receive(v , ·) returns r �= ⊥). This
condition means that a single client does not run concurrent operations and is
often called well-formedness.

Benign Adversaries: A benign adversary Aben is restricted like Afull. Addition-
ally, it makes no query to the corrupt oracle and delivers exactly the messages
generated by the protocol; the order of messages belonging to different client
operations can be modified as long as the server is allowed to finish each opera-
tion before starting the next one.

The protocol must satisfy two conditions, which are made formal in Defini-
tion 4. The first condition models the security against malicious servers, and uses

Stateful Multi-client Verifiable Computation 651

Game Gemu
BEP,u,P (A)

(clk1, . . . , clku , svk , pks)
$ BEP.setup(u)

Ainvoke,receive,process,corrupt(pks)
Return ¬P(σ)

invoke(v , o)
(m, Sv) $BEP.invoke(o, clkv , pks, Sv)
σ σ ◦ (Cv , o)
Return m

receive(v , m)
(r , m′, Sv) $BEP.receive(m, clkv , pks, Sv)
σ σ ◦ (Cv , r)
Return (r , m′)

corrupt
Return Ss

process(v , m)
(m′, v ′, Ss)

$ BEP.process(m, v , svk , pks, Ss)
Return (v ′, m′)

Fig. 4. The emulation game parametrized by a predicate P.

the concept of fork linearizability as defined in Sect. 2. In more detail, we use a
predicate forkF ′ that determines whether the history σ is fork linearizable with
respect to the abortable type F ′, and the advantage of adversary Afull is defined
as the probability of producing a history that is not fork-linearizable. The second
condition formalizes linearizability with respect to benign adversaries Aben and
is defined using a predicate linF ′ ∧ liveF ′ that formalizes both linearizability and
liveness.

Definition 4. Let BEP be a protocol and F an abstract data type. The FLBE-
advantage of Afull w.r.t. BEP and F is defined as the probability of winning
the game Gemu

BEP,u,forkF ′ , where forkF ′ denotes the predicate that formalizes fork
linearizability with respect to F ′. The linearizability advantage of Aben is defined
as the probability of winning the game Gemu

BEP,u,linF ∧liveF
, using the predicate linF

that formalizes linearizability with respect to F , and liveF that formalizes that
no operations abort.

The predicates forkF ′ and linF are easily made formal following the descriptions
in Sect. 2. The predicate liveF simply formalizes that for every operation o ∈ σ
there is a corresponding output event.

6 A Lock-Step Protocol for Emulating Shared Data
Types

We describe a lock-step protocol that uses an ADT to give multiple clients access
to a data type F , and achieves fork linearizability via vector clocks [13,32,33] in
a setting where the server may be malicious. By lock-step we mean that while
the server processes the request of one client, all other clients will be blocked. We
prove the security of the scheme based on the unforgeability of the underlying
signature scheme and the soundness of the underlying ADT.

The lock-step protocol LS, which is specified formally in Fig. 5, has a setup
phase in which the keys of the ADT and one signature key pair per client are

652 C. Cachin et al.

LS.setup(u, λ)
(sk , ad , a) $ ADT.init(λ)
For v = 1 to u do (sskv , spkv) $ DS.keygen(λ)
Return ((ssk1, sk , 1), . . . , (ssku , sk , u), ad , (spk1, . . . , spku , a))

LS.invoke(ov , clkv , pks, T)
If s = ε then T (0, . . . , 0) � Obtain number of users from pks
Return (〈submit, ov 〉 , T)

LS.receive(m, (sskv , sk , v), (spk1, . . . , spku , a0), T)
If m = 〈busy〉 then return (busy, ⊥, T)
〈reply, V, �, a, ϕ′, ξ m (or abort if not possible)
(b, r, a ′, t) ADT.verify(sk , a, ov , ξ)
b b ∧ ((V = (0, . . . , 0) ∧ a = a0) ∨ DS.verify(spk �, ϕ

′,commit ◦ a ◦ V))
If ¬ ((T ≤ V) ∧ (T [v] = V [v]) ∧ b) then return (abort, ⊥, T)
T V + 1v

ϕ DS.sign(sskv ,commit ◦ a ′ ◦ T)
Return (r, 〈commit, T, a ′, ϕ, t〉 , T)

LS.process(m, v , ad0, pks, s)
If s = ε then s (ad , a, 0, ε, (0, . . . , 0), 0) � Initialize server state
(ad , a, �, ω, V, i) s
If i = 0 and m = 〈submit, o〉 then � Expect a submit message

π ADT.exec(ad , o)
Return (v , 〈reply, V, �, a, ω, π〉 , (ad , a, �, ω, V, v))

Else if i = v and m = 〈commit, T, a ′, ϕ, t〉 then � Expected commit
ad ′ ADT.refresh(ad , a, o, t)
Return (0, ⊥, (ad ′, a ′, i, ϕ, T, 0))

Else return (v , 〈busy〉 , s)

〉

Fig. 5. The lock-step protocol LS.

generated and distributed. Each client has access to the verification keys of
all other clients; this is in practice achieved by means of a PKI. The processing
then works as follows. A client Cv initiates an operation o by calling LS.invoke,
which generates a submit message with o for the server. When this message is
delivered to the server, then it generates a reply message for the client. The
client performs local computation, generates a commit message for the server,
finally completes the operation by returning the output r .

Authenticated data types ensure the validity of each individual operation
invoked by a client. After the client submits operation o, the server executes o via
ADT.exec and returns the proof π together with the previous authenticator in
reply. The client verifies the server’s computation against the previous authen-
ticator, computes the output and the new authenticator via ADT.verify, and
sends them to the server in commit. Finally, the new authenticator and the
authentication token of the ADT are sent to the server, which updates the state
via ADT.refresh.

Stateful Multi-client Verifiable Computation 653

Digital signatures are used to authenticate the information that synchronizes
the protocol state among the clients. After computing a new authenticator a ′

via ADT.verify, a client signs a ′ and sends it back to the server in commit.
When the next client initiates an operation o, the reply message from the server
contains the authenticator a ′ together with the signature. Checking the validity
of this signature ensures that all operations are performed on a valid (though
possibly outdated) state.

Vector clocks represent causal dependencies among events occurring in dif-
ferent parts of a network [3]. For clients C1, . . . , Cu , a logical clock is described
by a vector V ∈ N

u , where the v -th component V [v] contains the logical time of
Cv . In our protocol, clients increase their local logical with each operation they
perform; the vector clock therefore ensures a partial order on the operations.
Each client ensures that all operations it observes are totally ordered by updat-
ing its vector clock accordingly, and signing and communicating it together with
the authenticator. Together with the above mechanism, this ensures that the
only attack that is feasible for a server is partitioning the client set and forking
the execution.

We prove in the full version [10] that the protocol achieves fork linearizability
if the signature scheme and the ADT are secure. On a high level, we first perform
game hops in which we idealize the guarantees of the signature scheme and the
ADT used by protocol LS. We then show that the history σ produced with
idealized cryptography is fork-linearizable.

Theorem 1. The protocol described above emulates the abortable type F ′ on a
Byzantine server with fork linearizability. Furthermore, if the server is correct,
then all histories of the protocol are linearizable w.r.t. F .

Acknowledgments. This work has been supported in part by the European Com-
mission through the Horizon 2020 Framework Programme (H2020-ICT-2014-1) under
grant agreements 644371 WITDOM and 644579 ESCUDO-CLOUD and in part by the
Swiss State Secretariat for Education, Research and Innovation (SERI) under contracts
15.0098 and 15.0087. The work by Esha Ghosh was supported in part by NSF grant
CNS-1525044.

References

1. Aguilera, M.K., Frölund, S., Hadzilacos, V., Horn, S.L., Toueg, S.: Abortable and
query-abortable objects and their efficient implementation. In: ACM PODC, pp.
23–32 (2007)

2. Anagnostopoulos, A., Goodrich, M.T., Tamassia, R.: Persistent authenticated dic-
tionaries and their applications. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001.
LNCS, vol. 2200, pp. 379–393. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45439-X 26

3. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and
Advanced Topics, 2nd edn. Wiley, Hoboken (2004)

https://doi.org/10.1007/3-540-45439-X_26
https://doi.org/10.1007/3-540-45439-X_26

654 C. Cachin et al.

4. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: ACM CCS, pp. 863–874 (2013)

5. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

6. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

7. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 7

8. Brandenburger, M., Cachin, C., Knežević, N.: Don’t trust the cloud, verify:
integrity and consistency for cloud object stores. ACM TOPS 20(3), 8:1–8:30
(2017)

9. Braun, B., Feldman, A.J., Ren, Z., Setty, S.T.V., Blumberg, A.J., Walfish, M.:
Verifying computations with state. In: SOSP, pp. 341–357. ACM (2013)

10. Cachin, C., Ghosh, E., Papadopoulos, D., Tackmann, B.: Stateful multi-client ver-
ifiable computation. Cryptology ePrint Archive, Report 2017/901 (2017)

11. Cachin, C., Keidar, I., Shraer, A.: Fork sequential consistency is blocking. Inf.
Process. Lett. 109(7), 360–364 (2009)

12. Cachin, C., Ohrimenko, O.: Verifying the consistency of remote untrusted services
with commutative operations. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.)
OPODIS 2014. LNCS, vol. 8878, pp. 1–16. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-14472-6 1

13. Cachin, C., Shelat, A., Shraer, A.: Efficient fork-linearizable access to untrusted
shared memory. In: ACM PODC, pp. 129–138. ACM (2007)

14. Canetti, R., Paneth, O., Papadopoulos, D., Triandopoulos, N.: Verifiable set oper-
ations over outsourced databases. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 113–130. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54631-0 7

15. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifi-
able computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 28

16. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M.,
Parno, B., Zahur, S.: Geppetto: versatile verifiable computation. In: IEEE S&P.
IEEE (2015)

17. Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno, B.: Hash
first, argue later: adaptive verifiable computations on outsourced data. In: ACM
CCS, pp. 1304–1316. ACM (2016)

18. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In: ACM CCS, pp. 501–512 (2012)

19. Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key homomorphic
authenticators. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10032, pp. 499–530. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53890-6 17

20. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-22792-9_7
https://doi.org/10.1007/978-3-319-14472-6_1
https://doi.org/10.1007/978-3-319-14472-6_1
https://doi.org/10.1007/978-3-642-54631-0_7
https://doi.org/10.1007/978-3-642-54631-0_7
https://doi.org/10.1007/978-3-642-36594-2_28
https://doi.org/10.1007/978-3-662-53890-6_17
https://doi.org/10.1007/978-3-662-53890-6_17
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25

Stateful Multi-client Verifiable Computation 655

21. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

22. Ghosh, E., Goodrich, M.T., Ohrimenko, O., Tamassia, R.: Verifiable zero-
knowledge order queries and updates for fully dynamic lists and trees. In: Zikas,
V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 216–236. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44618-9 12

23. Goodrich, M.T., Papamanthou, C., Tamassia, R.: On the cost of persistence and
authentication in skip lists. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol.
4525, pp. 94–107. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
72845-0 8

24. Goodrich, M.T., Tamassia, R., Schwerin, A.: Implementation of an authenticated
dictionary with skip lists and commutative hashing. In: DISCEX (2001)

25. Goodrich, M.T., Tamassia, R., Triandopoulos, N.: Efficient authenticated data
structures for graph connectivity and geometric search problems. Algorithmica
60(3), 505–552 (2011)

26. Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-client verifiable
computation with stronger security guarantees. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9015, pp. 144–168. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 6

27. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

28. Li, J., Krohn, M., Mazières, D., Shasha, D.: Secure untrusted data repository
(SUNDR). In: USENIX, p. 9. USENIX Association (2004)

29. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC (2012)

30. Majuntke, M., Dobre, D., Serafini, M., Suri, N.: Abortable fork-linearizable storage.
In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol.
5923, pp. 255–269. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10877-8 21

31. Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.G.:
A general model for authenticated data structures. Algorithmica 39, 21–41 (2004)

32. Mattern, F.: Virtual time and global states of distributed systems. In: Cosnard,
M. (ed.) Proceedings of the Workshop on Parallel and Distributed Algorithms, pp.
215–226 (1988)

33. Mazières, D., Shasha, D.: Building secure file systems out of Byzantine storage. In:
ACM PODC, pp. 108–117. ACM (2002)

34. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

35. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. TOS 2(2), 107–138 (2006)

36. Naor, M., Nissim, K.: Certificate revocation and certificate update. IEEE J. Sel.
Areas Commun. 18(4), 561–570 (2000)

37. Papadopoulos, D., Papadopoulos, S., Triandopoulos, N.: Taking authenticated
range queries to arbitrary dimensions. In: ACM CCS, pp. 819–830 (2014)

38. Papamanthou, C.: Cryptography for efficiency: new directions in authenticated
data structures. Ph.D. thesis, Brown University (2011)

39. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In:
ACM CCS. pp. 437–448. ACM (2008)

https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-319-44618-9_12
https://doi.org/10.1007/978-3-540-72845-0_8
https://doi.org/10.1007/978-3-540-72845-0_8
https://doi.org/10.1007/978-3-662-46497-7_6
https://doi.org/10.1007/978-3-662-46497-7_6
https://doi.org/10.1007/978-3-642-10877-8_21
https://doi.org/10.1007/978-3-642-10877-8_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21

656 C. Cachin et al.

40. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of opera-
tions on dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
91–110. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 6

41. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy (SP) (2013)

42. Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-39658-1 2

43. Wahby, R.S., Setty, S.T.V., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM
and control flow in verifiable outsourced computation. In: NDSS (2015)

44. Williams, P., Sion, R., Shasha, D.: The blind stone tablet: outsourcing durability
to untrusted parties. In: NDSS (2009)

45. Zhang, Y., Katz, J., Papamanthou, C.: IntegriDB: verifiable SQL for outsourced
databases. In: ACM CCS, pp. 1480–1491 (2015)

https://doi.org/10.1007/978-3-642-22792-9_6
https://doi.org/10.1007/978-3-540-39658-1_2
https://doi.org/10.1007/978-3-540-39658-1_2

	Stateful Multi-client Verifiable Computation
	1 Introduction
	2 Preliminaries
	3 Authenticated Data Types
	4 A General-Purpose Instantiation of ADT
	5 Computational Fork-Linearizable Byzantine Emulation
	6 A Lock-Step Protocol for Emulating Shared Data Types
	References

