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Abstract. We investigate anonymous broadcast encryptions (ANOBE)
in which a ciphertext hides not only the message but also the target
recipients associated with it. Following Libert et al.’s generic construc-
tion [PKC, 2012], we propose two concrete ANOBE schemes with tight
reduction and better space efficiency.

– The IND-CCA security and anonymity of our two ANOBE schemes
can be tightly reduced to standard k-Linear assumption (and the
existence of other primitives). For a broadcast system with n users,
Libert et al.’s security analysis suffers from O(n3) loss while our
security loss is constant.

– Our first ANOBE supports fast decryption and has a shorter cipher-
text than the fast-decryption version of Libert et al.’s concrete
ANOBE. Our second ANOBE is adapted from the first one. We
sacrifice the fast decryption feature and achieve shorter ciphertexts
than Libert et al.’s concrete ANOBE with the help of bilinear groups.

Technically, we start from an instantiation of Libert et al.’s generic
ANOBE [PKC, 2012], but we work out all our proofs from scratch instead
of relying on their generic security result. This intuitively allows our opti-
mizations in the concrete setting.

Keywords: Broadcast encryption · Full anonymity
Chosen-ciphertext security · Tight reduction · Short ciphertext

1 Introduction

Broadcast Encryption. Broadcast encryption [Ber91,FN94] (BE) is a public-
key cryptosystem designed for securely sending information to multiple users via
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a public channel. In a BE system, we may index each user by integers 1, . . . , n
and name set U := {1, . . . , n} the universe. It would be convenient to describe
BE in the framework of Functional Encryption [BSW11]. An authority publishes
a set of public parameters generated by the Setup algorithm. Each user’s secret
key is then created by the KeyGen algorithm from the master secret key which
is the output of Setup. By invoking the encryption algorithm Enc, a sender can
create a ciphertext for users specified by a target set S ⊆ U . Any user with an
index i ∈ S is able to decrypt the ciphertext using the Dec algorithm.

The basic security requirement is collusion-resistance which ensures that a
ciphertext leaks no information about the message even when multiple users
outside the target set S decide to cooperate. More formally, it is required that

{ct ←r Enc(mpk, S,m0)} ≈c {ct ←r Enc(mpk, S,m1)}
where mpk is the public parameters, (S ⊆ U,m0,m1) are chosen by the adver-
sary; and we allow the adversary to adaptively learn secret keys for all i /∈ S.

With more powerful functional encryptions such as attribute-based encryp-
tions [SW05,GPSW06,OT10,LOS+10,CGW15], we can securely broadcast
information in a structural way which is more efficient and much easier to man-
age. However the classical BE still serves as the most general tool for broad-
casting information in the systems where users are not well-organized, e.g., a
country-wide pay-TV system.

Anonymity. Since been introduced, a series of BE schemes have been pub-
lished [FN94,NNL01,YFDL04,BGW05,DPP07,GW09,Wee16], but they only
ensure the confidentiality of the message while the target set S is entirely exposed
to the public. In fact, the description of S will be directly transmitted through
the insecure channel for decryption. However in many applications, the confi-
dentiality of the target set is also crucial. For instance, in the pay-TV setting,
everyone has access to the full list of subscribers, which is not acceptable. There-
fore, it is desirable and non-trivial to build a BE system taking both the mes-
sage and the target set into account in terms of confidentiality. In this paper, we
call the latter feature anonymity and name such a BE as anonymous broadcast
encryption [LPQ12] (ANOBE). More formally, it is required that

{ct ←r Enc(mpk, S0,m0)} ≈c {ct ←r Enc(mpk, S1,m1)}
where (m0,m1, S0, S1) are chosen by the adversary and secret keys for all i /∈
(S0 \ S1) ∪ (S1 \ S0) can be revealed. The subtlety is that any secret key for
i ∈ S0∩S1 will give an adversary the power to correctly decrypt both ciphertexts
above. In this case, m0 �= m1 is disallowed in order to avoid the trivial attack.

State of the Art. Although anonymity is crucial for BE, it has not received
much attentions to construct ANOBE with the proper security guarantee.

In 2006, Barth et al. [BBW06] first identified the anonymity (i.e., recipient
privacy in their work) in the context of encrypted file system. They introduced
the notion of ANOBE in the name of private broadcast encryption. In their work,
two constructions were described. The first one is a generic construction from
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an IND-CCA secure PKE with key-privacy and a strongly unforgeable signature
scheme. They claimed that it achieves IND-CCA security and anonymity but
in the selective (or static) model which means that the adversary must commit
the challenge target sets (S0, S1) in advance. Basically, a BE ciphertext there
is a set of PKE ciphertexts intended for every recipient in S bound together
via a signature. One drawback of this construction is that the decryption time is
proportional to |S| since each receiver has to try to decrypt each PKE ciphertext
one by one. In their second construction, they introduced a method helping a
receiver to find the right PKE ciphertext and reduced the decryption cost to
constant. However, it unfortunately relies on the random oracle model.

At PKC 2012, Libert et al. [LPQ12] formally revisited Barth et al.’s results.
They described the adaptive security for ANOBE where the adversary can choose
the challenge target sets (S0, S1) at any time (i.e., the security notation we have
reviewed), and showed that it can be achieved from IND-CCA secure PKE (plus
strongly secure signatures). Note that this result is quite strong in that the under-
lying PKE is not necessarily key-private. Moreover, the receiver can decrypt in
a constant time. However, the size of ciphertext depends on n, the size of uni-
verse. They then demonstrated that Barth et al.’s first BE is actually IND-CCA
secure and anonymous in an adaptive sense and provided an alternative con-
struction from IBE [Sha84,CHK04]. This ANOBE has shorter ciphertext (of size
O(|S|)) but requires the underlying PKE to be weakly robust [ABN10,Moh10]
and key-private, and the decryption cost increases to O(|S|). They also formal-
ized the method helping to reduce the decryption cost in Barth et al.’s second
construction [BBW06] as anonymous hint system, which can be viewed as a vari-
ant of extractable hash proof systems [Wee10]. The classical randomness-reuse
technique [Kur02,BBS03] was then formally studied to reduce the ciphertext
size. Finally, a concrete ANOBE based on the Kurosawa-Desmedt PKE [KD04]
was proposed. Having their generic ANOBE, they showed that the Kurosawa-
Desmedt PKE can be adapted to be key-private and robust, and also support
randomness-reuse technique.

Also at PKC 2012, Fazio and Perera [FP12] proposed an ANOBE scheme with
sublinear-size ciphertexts but with a much weaker outsider-anonymity where
users identified by S0 ∩ S1 are not considered to be malicious. More formally,
the adversary is forbidden to get any secret key for i ∈ S0 ∩ S1. However Barth
et al.’s early work [BBW06] has actually recognized such an inside attacker as a
hazard and illustrated how serious the issue is under a chosen-ciphertext attack.
In the end, we want to note that Libert et al.’s results [LPQ12] are still the
best in the sense that they achieve (1) IND-CCA security, (2) fully anonymity
and (3) random-oracle-freeness. To our best knowledge, there is no follow-up
result with all these features simultaneously even when taking the identity-based
variant into account (see recent work [HWL+16] for more details).

1.1 Contributions

In this paper, we propose two concrete ANOBE schemes. Both of them
are obtained by optimizing an instantiation of Libert et al.’s generic
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construction [LPQ12] with Cramer-Shoup PKE [CS98,CS02]. We prove, from
scratch, that they are secure in the sense of [LPQ12] from the standard k-Linear
(k-Lin) assumption and the existence of several other cryptographic primitives
(such as strongly unforgeable signature and collision-resistant hash function).

Although our proposals do not deviate from Libert et al.’s generic frame-
work [LPQ12], our new start point and customized security proof allow us to
gain shorter ciphertexts and tighter reduction than the concrete instantiation
in [LPQ12]. (Recall that it is based on Kurosawa-Desmedt PKE [KD04] and the
security result follows the generic construction directly.) A comparison between
them is shown in Table 1 where we consider instantiations of our two ANOBE
under DDH = 1-Lin (or SXDH = 1-Lin) assumption1. We note that these two
instantiations are the most efficient ones.

Table 1. Comparison of our two proposals and the concrete ANOBE from [LPQ12] in
terms of ciphertext size and reduction tightness. Table (a) is for the schemes supporting
fast decryption while we tolerate linear decryption cost in Table (b). In our comparison,
the system has n users and � is the size of target set S. We let G be a finite group
where DDH holds while G1 denotes the first source group of a bilinear group where
SXDH holds. The column “Reduction” shows the security loss.

(a) Comparing our first ANOBE with
[LPQ12] plus anonymous hint system.

Scheme |ct| Reduction

[LPQ12] (4� + 5)|G|+ 2|Zp| O(n3)

Sect. 3 (2� + 5)|G|+ 2|Zp| O(1)

(b) Comparing our second ANOBE with
[LPQ12] without anonymous hint system.

Scheme |ct| Reduction

[LPQ12] (2� + 5)|G|+ 2|Zp| O(n3)

Sect. 4 (� + 6)|G1| O(1)

Shorter Ciphertext. Our first ANOBE scheme supports fast decryption. Com-
pared with the concrete ANOBE in [LPQ12] equipped with their DDH-based
anonymous hint system2, our ANOBE can save roughly 50% bandwidth. Our
second ANOBE is derived from the first one. We sacrifice fast decryption and
peruse shorter ciphertext. Compared with concrete ANOBE in [LPQ12], our
second ANOBE works with bilinear groups and roughly saves 50% bandwidth3.
We highlight that this construction almost touches the lower bound of cipher-
text size in an anonymous broadcast encryption [KS12]. It is quite surprising
that we start from a less efficient basic PKE scheme but finally achieves better
space efficiency. We note that the Cramer-Shoup PKE [CS98,CS02] is indeed
1 We assume that (1) the verification key and signature for strongly unforgeable one-

time signatures consist of 3 group elements and 2 integers, respectively [Gro06] (see
Sect. 4, [CCS09]); (2) the authenticated encryption with key-binding property has a
ciphertext of roughly 2 group elements (see Sect. 6, [LPQ12]).

2 The resulting ANOBE will also support fast decryption, here we share the random-
ness between ANOBE and anonymous hint system.

3 Here we implement the concrete ANOBE from [LPQ12] using elliptic curve.
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less efficient than Kurosawa-Desmedt PKE [KD04], but it permits us to use some
customized method to optimize the system.

Tighter Reduction. In [LPQ12], their security reduction suffers from O(n3)
loss where n is the size of the universe. This makes it infeasible for large-scale sys-
tems such as aforementioned pay-TV application. In particular, we need to use
a larger group to compensate the loss, which of course increases the bandwidth
and computation costs. In our work, we prove the security of two ANOBE from
basic assumption and only suffer constant security loss, which is of both theo-
retical and practical interest. We argue that the result is non-trivial: A potential
solution is to employ an IND-CCA secure PKE with tight reduction for multiple
users (like [GHKW16,Hof17]) in Libert et al.’s generic construction [LPQ12].
However, the simulator still needs to guess which public keys will be associated
with target set which is chosen adversarially and causes significant security loss.

1.2 Technical Overview

Our starting point is an instantiation of Libert et al.’s generic construction with
Cramer-Shoup PKE [CS98,CS02]. In this overview, we first give this instantia-
tion and describe how to derive our two ANOBE schemes from it.

Starting Point. Assume a prime-order group (p,G, g). We let [a] := ga ∈ G for
all a ∈ Zp and extend it to matrix over Zp. Assume S := {i1, . . . , i�}. We can
instantiate Libert et al.’s construction using Cramer-Shoup PKE under k-Lin
assumption as below:

mpk : { [A] , [A�ki], [A�xi], [A�yi] }i∈[n], (Genots,Sig,Ver), h

ski : ki,xi,yi

ctS : { [r�A�] , [r�A�kij
] · m, [r�A�(xij

+ α · yij
)] }j∈[�], pkots, σ

where A ←r Z
(k+1)×k
p , ki,xi,yi ←r Z

k+1
p for i ∈ [n] and r ←r Z

k
p. The public

parameter mpk is basically n public keys of Cramer-Shoup PKE4 sharing [A]
which is a common technique in the multi-user setting. The ciphertext for S
contains � ciphertexts of Cramer-Shoup PKE with randomness [r�A�] reused
as [LPQ12]. Following Libert et al.’s suggestion, they are then bound together
via a strongly unforgeable signature σ under fresh verification key pkots instead
of encrypting m||pkots.

The above BE is IND-CCA secure and anonymous according to Libert et al.’s
generic result. However, we can do better by showing a tighter reduction for
this concrete ANOBE. The security loss of Libert et al.’s reduction (which is
O(n3)) is mainly caused by black-box-reduction to the underlying PKE where the
simulation need to guess some information about challenge target set. We prove
our security result from scratch. In particular, we employ the proof technique for
4 Here we use a direct generalization of Cramer-Shoup PKE under the k-Lin assump-

tion. The original Cramer-Shoup PKE corresponds to the case k = 1.



502 J. Li and J. Gong

IND-CCA PKE in the multi-user setting [GHKW16,Hof17] but adapt it to our
broadcast encryption case. We found that we can now avoid guessing adversary’s
behavior and also corresponding reduction loss.

Our First ANOBE: Shorter Ciphertext for Fast Decryption. The above
instantiation has not been equipped with anonymous hint system [LPQ12], so the
decryption cost should be O(�). (Recall that, intuitively, an anonymous hint sys-
tem can help the decryptor to find the right ciphertext component intended for
him and avoid O(�) factor.) However we observe that {[r�A�(xij

+α ·yij
)]}j∈[�]

can serve as the hints for fast decryption. This benefits from the fact that tag α
is shared by all users in S. In the decryption procedure, a user with secret key
ki,xi,yi can recover v = [r�A�(xi + α · yi)] and try to find the index j∗ such
that v = [r�A�(xij∗ + α · yij∗ )], which indicates the right ciphertext.

This already saves the bandwidth since we need the DDH-based anonymous
hint system in [LPQ12] to upgrade Libert et al.’s concrete ANOBE in order to
achieve fast decryption. Even with randomness reuse technique, this will intro-
duce 2 · |S| additional group elements to the ciphertext. The perspective here is
that {[r�A�(xij

+α·yij
)] }j∈[�] act as crucial components for achieving IND-CCA

security and hints for fast decryption at the same time while they are realized
separately in Libert et al.’s concrete ANOBE.

Our Second ANOBE: Compressing Ciphertext Again. We now ask:

Can we reduce the ciphertext size if we can tolerate slower decryption?

Observe that we have � group elements (i.e., {[r�A�(xij
+α ·yij

)]}j∈[�]) for con-
sistency check (which is necessary for IND-CCA security) in our first ANOBE.
If we assume that each recipient can correctly guess which part is intended for
him/her, we can see that only one of these � elements will be used in the decryp-
tion procedure. Therefore a promising idea is to ask all recipients to share the
consistency check process. A direct way to do so is to

replace {[r�A�(xij
+ α · yij

)]}j∈[�] with [r�A�(x + α · y)]

and publish [A�x] and [A�y] in mpk. Unfortunately, there is a fatal issue. To
do the consistency check, we should give each user x and y directly and they
will be leaked to an adversary through any corrupted user. This totally breaks
the IND-CCA security. We circumvent the difficulty by making the consistency
check public using the technique by Kiltz and Wee [KW15]. In particular, we
adapt our first ANOBE to G1 of a pairing group (p,G1,G2,GT , e) and

replace [r�A�(x + α · y)]1 with [r�A�(X + α · Y)]1

where X,Y ←r Z
(k+1)×(k+1)
p . In the public parameter mpk, we publish

([A�X]1, [A�Y]1) and ([B]2, [XB]2, [YB]2)

where B ←r Z
(k+1)×k
p and the right-hand side part allow anyone to publicly

check the ciphertext consistency.



Improved Anonymous Broadcast Encryptions 503

We have successfully compressed the ciphertext but lose the correctness of
decryption since we do not have hint system now. It is easy to fix using key-
binding symmetric encryption scheme (E,D). That is we pick session key K
from the key space of (E,D) and

replace [r�A�kij
]1 · m with [r�A�kij

]1 · K,EK(m).

We note that we are not pursuing fast decryption now. We can further get rid
of σ by defining α as in Cramer-Shoup PKE [CS98,CS02]. We sketch our second
ANOBE as follows:

mpk : (E,D), h; { [A�]1 , [A�ki]1, [A�X]1, [A�Y]1 }i∈[n]; [B]2, [XB]2, [YB]2

ski : ki

ctS : { [r�A�]1 , [r�A�kij
]1 · K, EK(m) , [r�A�(X + α · Y)]1 }j∈[�]

where all terms in gray box are shared by all users/receivers. As our first
ANOBE, the reduction loss is constant.

Compared with Libert et al.’s concrete ANOBE [LPQ12], our second ANOBE
is based on weaker assumptions — we don’t require the existence of strongly
one-time signature and (E,D) is not necessarily authenticated encryption. Fur-
thermore, in the ciphertext, we share as many components as possible among
receivers in the target set, the remaining � group elements seem to be inevitable
by the lower bound [KS12].

Organization. Our paper is organized as follows. We review some basic notions
in Sect. 2. Our two ANOBE constructions along with security analysis will be
presented in Sects. 3 and 4, respectively. We finally conclude the paper in Sect. 5.

2 Preliminaries

Notations. For n ∈ N, we define [n] := {1, 2, . . . , n}. We use a ←r A to denote
the process of uniformly sampling an element from set A and assigning it to
variable a. For two sets S0, S1, define S0	S1 := (S0 \ S1) ∪ (S1 \ S0). “p.p.t.”
stands for probabilistic polynomial time.

2.1 Anonymous Broadcast Encryption

Algorithms. Let U := [n] be the universe. A broadcast encryption (BE)
scheme consists of four algorithms (Setup,KeyGen,Enc,Dec): Algorithm Setup
takes security parameter 1λ and n as input and outputs a master public key
mpk and a master secret key msk; Algorithm KeyGen takes mpk, msk and an
index i ∈ U as input and outputs a secret key ski; Algorithm Enc takes mpk, a
message m and a subset S ⊆ U as input and outputs a ciphertext ctS ; Algorithm
Dec takes mpk, ctS and ski as input and outputs m or a failure symbol ⊥.
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Correctness. For all λ, all (mpk,msk) ←r Setup(1λ, n), all m, all S ⊆ U , and
all i ∈ S, it is required that Dec(mpk,Enc(mpk,m, S),KeyGen(mpk,msk, i)) = m.

Chosen-Ciphertext Security and Anonymity. For any adversary A , define

AdvBEA (1λ) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b = b′

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(mpk,msk) ←r Setup(1λ, n), b ←r {0, 1}
(m0,m1, S0, S1) ←r AKeyO(·),DecO(·,·)(1λ,mpk)

ct∗ ←r Enc(mpk,mb, Sb)

b′ ←r AKeyO(·),DecO(·,·)(1λ,mpk, ct∗)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

where oracles work as follows:

– KeyO: on input i, key extraction oracle KeyO outputs ski ←r

KeyGen(msk,mpk, i) and sets Qsk := Qsk ∪ {i} which is initialized to be ∅
at the beginning.

– DecO: on input (ct, i), decryption oracle DecO outputs Dec(mpk, ct, ski) when
ct∗ (a.k.a. challenge ciphertext) has not been defined or ct �= ct∗.

A broadcast encryption scheme achieves chosen-ciphertext security and
anonymity (ANO-IND-CCA) if, for all p.p.t. adversary A, AdvBEA (λ) is negli-
gible in λ under the restrictions that (1) |m0| = |m1| and |S0| = |S1|; (2)
Qsk ∩ (S0	S1) = ∅; (3) if Qsk ∩ (S0 ∩ S1) �= ∅, then m0 = m1.

2.2 Prime-Order (Bilinear) Groups

Prime-Order Group. A group generator GGen is a p.p.t. algorithm which
takes 1λ as input and outputs a description G := (p,G, g). Here G is a finite
cyclic group of prime order p and g is a random generator of G. Throughout the
paper, we will use implicit representation [EHK+13]. We let [a] := ga ∈ G for
all a ∈ Zp. For a matrix A = (aij) ∈ Z

m×n
p , we let [A] = (gaij ) ∈ G

m×n.

Prime-Order Bilinear Group. A group generator PGGen is a p.p.t. algorithm
which takes 1λ as input and outputs a description PG := (p,G1,G2,GT , e, g1, g2)
of (asymmetric) bilinear group. Here G1,G2,GT are finite cyclic groups of prime
order p and e is an admissible bilinear map. g1 ∈ G1 and g2 ∈ G2 are random
generators of G1 and G2, and gT := e(g1, g2) will be a generator of group GT .
The implicit representation is also be applied to prime-order bilinear groups: We
let [a]s := ga

s ∈ Gs for all a ∈ Zp and s ∈ {1, 2, T}. The notation can be easily
extended to matrices analogously and we let e([A]1, [B]2) := [AB]T for matrices
A and B when the multiplication is well-defined.

Cryptographic Assumption. For any k ∈ N, we call Dk a matrix distribution
if it outputs full-rank matrices in Z

(k+1)×k
p in polynomial time. We may assume

that for all A ←r Dk, the first k rows of A form an invertible matrix.
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We will use the Dk-Matrix Diffie-Hellman (Dk-MDDH) assumption in G

described as follows. The Dk-MDDH assumption in G1 and G2 are analogous.

Assumption 1 (Dk-MDDH). We say that the Dk-Matrix Diffie-Hellman
assumption holds relative to GGen, if for any p.p.t. adversary A, the following
advantage function is negligible in λ.

Advmddh
A,G (λ) := |Pr[A(G, [A], [As]) = 1] − Pr[A(G, [A], [u]) = 1]|

where G ←r GGen(1λ), A ←r Dk, s ←r Z
k
p, and u ←r Z

k+1
p .

The famous k-Linear (k-Lin) assumption is an instantiation of the Dk-MDDH
assumption. The classical decisional Diffie-Hellman (DDH) assumption (a.k.a
symmetric external Diffie-Hellman (SXDH) assumption in asymmetric bilinear
groups) is just the k-Lin assumption with k = 1. See [EHK+13] for more details.

For bilinear groups, we also use the Dk-Matrix Kernel Diffie-Hellman (Dk-
KerMDH) Assumption [MRV16], which is implied by the Dk-MDDH assumption.

Assumption 2 (Dk-KerMDH). Let s ∈ {1, 2}. We say that the Dk-Kernel
Matrix Diffie-Hellman Assumption holds relative to PGGen, if for any p.p.t.
adversary A, the following advantage function is negligible in λ.

Advkmdh
A,Gs

(λ) := Pr[A�a⊥ = 0 ∧ a⊥ �= 0 | [a⊥]3−s ←r A(PG, [A]s)]

where PG ←r PGGen(1λ),A ←r Dk.

2.3 Cryptographic Primitives

Our constructions will use the following cryptographic primitives:

– A semantically secure and key-binding symmetric encryption scheme (E,D)
with key space K. Let EK(·) and DK(·) denote the encryption and decryption
procedures under secret key K ∈ K. By key-binding [Fis99], we mean that,
for any message m and any secret key K ∈ K, there exists no K ′ ∈ K such
that K �= K ′ and DK′(EK(m)) �=⊥ (Here ⊥ indicates a decryption failure).

– A family of collision-resistant hash function H. It ensures that, given h ←r H,
it is hard to find x �= y such that h(x) = h(y) (i.e., a collision).

– A strongly unforgeable one-time signature scheme (Genots,Sign,Ver). Let
(pkots, skots) ←r Genots(1λ) be a verification key and a signing key. It is guar-
anteed that, given pkots and a signature σ ←r Sign(skots,m) for some adver-
sarially chosen message m, it is infeasible to output another message-signature
pair (m∗, σ∗) �= (m,σ) satisfying Ver(pkots,m∗, σ∗) = 1.

We will use AdvseA(λ), AdvhashA (λ) and AdvotsA (λ) to denote the advantage of adver-
sary A in violating the security of above primitives under security parameter λ.
Formal definitions can be found in the full version of the paper.
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2.4 Core Lemma

We review the core lemma in [KW15].

Lemma 1 (Core lemma, [KW15]). Let k ∈ N. For any A,B ∈ Z
(k+1)×k
p and

any (possibly unbounded) adversary A, we have

Pr

⎡

⎣
u /∈ span(A) ∧ α �= α∗ X,Y ←r Z

(k+1)×(k+1)
p

∧ π� = u�(X + α · Y) (u, α,π) ←r AO(·)(A�X,A�Y,XB,YB)

⎤

⎦ ≤ 1
p

where O(α∗) → X + α∗ · Y may only be called one time.

3 Tightly Secure ANOBE with Fast Decryption

3.1 Construction

Our first broadcast encryption scheme is described as follows.

– Setup(1λ, n): Run G := (p,G, g) ←r GGen(1λ). Sample

A ←r Dk and ki,xi,yi ←r Z
k+1
p for i ∈ [n].

Select a strongly unforgeable one-time signature scheme (Genots,Sig,Ver) and
a hash function h : {0, 1}∗ → Zp from H. The master public key is

mpk := (G, h, (Genots,Sig,Ver), [A], {[A�ki], [A�xi], [A�yi]}n
i=1)

and the master secret key is msk := ({ki,xi,yi}n
i=1).

– KeyGen(msk,mpk, i): Output the secret key ski = (ki,xi,yi).
– Enc(mpk,m, S): Let � := |S| and S = {i1, . . . , i�} ⊆ U = [n]. Sample r ←r Z

k
p

and compute [u�] := [r�A�]. Generate (skots, pkots) ←r Genots(1λ), compute
α := h(pkots) and c1 := [r�A�ki1 ] · m, v1 := [r�A�(xi1 + α · yi1)], . . . , c� :=
[r�A�ki�

] · m, v� := [r�A�(xi�
+ α · yi�

)]. Choose a random permutation τ
over [�] and compute σ := Sig(skots, ([u�], cτ(1), vτ(1), . . . , cτ(�), vτ(�))). The
ciphertext is

ct := ([u�], cτ(1), vτ(1), . . . , cτ(�), vτ(�), pkots, σ).

– Dec(mpk, ct, ski): Parse the ciphertext ct as ([u�], c̄1, v̄1, . . . , c̄�, v̄�, pkots, σ) and
the secret key ski as (ki,xi,yi). Return ⊥ if

Ver(pkots, ([u�], c̄1, v̄1, . . . , c̄�, v̄�), σ) = 0,

otherwise, compute
v := [u�(xi + α · yi)],

where α = h(pkots). If there exists j ∈ [�] such that v = v̄j , return m′ :=
c̄j/[u�ki]; otherwise, return ⊥.

It is direct to check the correctness.
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3.2 Security Result and Proof Overview

We prove the following theorem.

Theorem 1. Our broadcast encryption scheme in Sect. 3.1 is adaptively ANO-
IND-CCA secure assuming that: (1) H is collision-resistant; (2) the Dk-MDDH
assumption holds in G; (3) signature scheme (Genots,Sig,Ver) is strongly unforge-
able under one-time chosen message attack. Concretely, for any adversary A,
there exist algorithms B1,B2,B3 such that

AdvBEA (λ) ≤ Advmddh
G,B1

(λ) + AdvotsB2
(λ) + AdvhashB3

(λ) + O(1/p)

and Time(B1),Time(B2),Time(B3) ≈ Time(A).

We prove the theorem via the following game sequence. A proof sketch for
each step will be given and more details can be found in the full paper.

Game0. This game is identical to the real game described in Sect. 2.1. The
challenge ciphertext for (m0,m1, S0, S1) where S0 = {i1,0, . . . , i�,0} and
S1 = {i1,1, . . . , i�,1} is of form

ct∗ := ( ct∗1 := ([u∗�], c∗
1, v

∗
1 , . . . , c

∗
� , v

∗
� ), pk∗

ots, σ∗ := Sig(sk∗
ots, ct

∗
1) )

where u∗ ←r span(A), (sk∗
ots, pk

∗
ots) ←r Genots(1λ), and we compute

c∗
j = [u∗�kiτ(j),b

] · mb and v∗
j = [u∗�(xiτ(j),b

+ α∗ · yiτ(j),b
)], ∀j ∈ [�]

with b ←r {0, 1}, α∗ = h(pk∗
ots) and a random permutation τ over [�]. On

input (ct, i), DecO parses

ct = (ct1 = ([u�], c1, v1, . . . , c�, v�), pkots, σ),

and rejects the query if

(a) ct = ct∗ or (b) Ver(pkots, ct1, σ) = 0.

Then compute v = [u�(xi + α · yi)] with α = h(pkots). If there exists j ∈ [�]
such that v = vj , return m′ := cj/[u�ki]; otherwise, return ⊥. Let Wini

denote the event that A in Gamei guesses b correctly. Since Game0 perfectly
simulates the real game, we have AdvBEA (1λ) = |Pr[Win0] − 1/2|.

Game1. This game is identical to Game0 except that we sample u∗ ←r Z
k+1
p

when generating the challenge ciphertext ct∗. It is easy to see that this game
is indistinguishable from Game0 under the Dk-MDDH assumption. Formally,
we have the following lemma.

Lemma 2 (Game1 ≈c Game0). There exists an adversary B1 such that

|Pr[Win1] − Pr[Win0]| ≤ Advmddh
G,B1

(λ).
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Game2. This game is identical to Game1 except that DecO, on input (ct, i),
rejects the query if (a) or (b) or

(c) pkots = pk∗
ots.

This game is identical to Game1 until A submits a query with pkots = pk∗
ots

which survives under condition (a) and (b). However σ in such a query will
violate the strong unforgeability of (Genots,Sig,Ver), and this game is indis-
tinguishable from Game1. Formally, we have the following lemma.

Lemma 3 (Game2 ≈c Game1). There exists an adversary B2 such that

|Pr[Win2] − Pr[Win1]| ≤ AdvotsB2
(λ).

Game3. This game is identical to Game2 except the following substitution:

(c) pkots = pk∗
ots �−→ (c′) α = α∗

This game is identical to Game2 until A submits a query with pkots �= pk∗
ots but

α = α∗. This immediately violates the collision-resistance of H, and this game
is indistinguishable from Game2. Formally, we have the following lemma.

Lemma 4 (Game3 ≈c Game2). There exists an algorithm B3 such that

|Pr[Win3] − Pr[Win2]| ≤ AdvhashB3
(λ).

Game4. This game is identical to Game3 except that except that DecO, on input
(ct, i), rejects the query if (a) or (b) or (c′) or

(d) u /∈ span(A)

We have the following lemma stating that this game is statistically indistin-
guishable with Game3.

Lemma 5 (Game4 ≈s Game3). |Win4 − Win3| ≤ O(1/p).
Let qD be the number of decryption queries. The lemma can be proved in qD

steps. In the j-th step, assuming that the first j − 1 decryption queries have
been processed with condition (d), we demonstrate that the j-th query will
finally be rejected if it survives under condition (a), (b), (c′) with u /∈ span(A).
In other words, we can introduce condition (d) here without changing adver-
sary’s view. The proof (for the j-th step) relies on the observation that we
leak no more information than {A�xη,A�yη}η∈[n] when answering the first
j − 1 queries to DecO. With the help of condition (c′), which ensures that
α �= α∗, we can claim that u�(xi + α · yi) is independently and uniformly
distributed and thus hard to guess.

Finally, we have the following lemma which proves Theorem 1 when combin-
ing with all previous lemmas and claims.

Lemma 6. Pr[Win4] = 1/2.

This follows from the fact that (u∗ki,u∗(xi + α · yi)) are uniformly distributed
over G

2, especially unrelated to b, for all i ∈ Sb (resp. i ∈ Sb/S1−b) when
Qsk ∩ (S0 ∩ S1) = ∅ (resp. Qsk ∩ (S0 ∩ S1) �= ∅), conditioned on mpk,KeyO and
DecO. The analysis is similar to that for Lemma 5.
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Perspective. Lemmas 5 and 6 are at the core of our proof. Although our proofs
still rely on the proof technique of underlying Cramer-Shoup PKE, we get rid
of large reduction loss by carrying out the argument in the broadcast setting
directly. In particular, we employ the technique beneath the core lemma from
Kiltz and Wee [KW15] (see Lemma 1), which allows us to take all users into
account in a non-adaptive way first and then upgrade to the adaptive setting for
free. This avoids guessing adversary’s behaviour in the simulation which caused
large security loss in Libert et al.’s work [LPQ12]. Furthermore, we note that
our proof indeed involves robustness [ABN10,Moh10,LPQ12] but in an implicit
manner since we are not working with generic PKE anymore.

4 Tightly Secure ANOBE with Shorter Ciphertext

4.1 Construction

– Setup (1λ, n): Run PG := (p,G1,G2,GT , e, g1, g2) ←r PGGen(1λ). Sample

A,B ←r Dk, X,Y ←r Z
(k+1)×(k+1)
p , ki ←r Z

k+1
p for i ∈ [n].

Select a key-binding secure symmetric encryption scheme (E,D) with the key
space K := G1 and a collision-resilient hash function h ←r H mapping from
{0, 1}∗ to Zp. The master public key is

mpk :=

⎛

⎝PG, (E,D), h;
[A�]1, {[A�ki]1}n

i=1, [A�X]1, [A�Y]1

[B]2, [XB]2, [YB]2

⎞

⎠

and the master secret key is msk := {ki}n
i=1.

– KeyGen (msk,mpk, i): Output the secret key ski := ki.
– Enc (mpk,m, S): Let � := |S| and S = {i1, . . . , i�} ⊆ U . Sample r ←r Z

k
p and

compute [u�]1 := [r�A�]1. Select session key K ←r G1 and compute

c0 := EK(m), c1 := [r�A�ki1 ]1 · K, . . . , c� := [r�A�ki�
]1 · K

Choose a random permutation τ over [�] and compute

[π]1 := [r�A�(X + α · Y)]1

where α := h([u�]1, c0, cτ(1), . . . , cτ(�)). The ciphertext is

ct := ( [u�]1, c0, cτ(1), . . . , cτ(�), , [π]1 ).

– Dec(mpk, ct, ski): Parse ct as ([u�]1, c0, c̄1, . . . , c̄�, [π]1) and ski as ki. Compute
α = h([u�]1, c0, c̄1, . . . , c̄�) and check

e([π]1, [B]2)
?= e([u�]1, [(X + α · Y)B]2). (1)

If Eq. (1) does not hold, return ⊥; otherwise, do the following two steps from
j := 1.
1. Compute K ′ := c̄j/[u�ki]1 and m′ := DK′(c0). If m′ �=⊥, return m′ and

halt; otherwise, go to the second step.
2. If j = �, return ⊥ and halt; otherwise, do the first step with j := j + 1.
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Correctness. For any ciphertext ct := ([u�]1, c0, c̄1, . . . , c̄�, [π]1) for set S ⊆ U
produced by Enc, we have

e([π]1, [B]2) = e([r�A�(X + α · Y)]1, [B]2) = e([u�]1, [(X + α · Y)B]2)

where α = h([u�]1, c0, c̄1, . . . , c̄�). That is the ciphertext always satisfies Eq. (1).
Given a secret key ski = ki for i ∈ S, we know that there exists i′ ∈ [�] such
that ci′ = [r�A�ki]1 · K. The correctness of our ANOBE then follows from the
following two observations:

1. For each j < i′, we know that cj = [r�A�kj′ ]1 · K for some j′ ∈ S \ {i}, and
thus we have

cj/[u�ki]1 �= K

with overwhelming probability. From the key-binding feature of (E,D), the
decryption algorithm Dec will return nothing before the i′-th iteration.

2. It is easy to see that
ci′/[u�ki]1 = K.

By the correctness of (E,D), the decryption algorithm Dec will return m in
the i′-th iteration.

4.2 Security Result and Proof Overview

We prove the following theorem.

Theorem 2. Our broadcast encryption described in Sect. 4.1 is ANO-IND-CCA
secure assuming that: (1) H is collision-resistant; (2) the Dk-MDDH assump-
tion holds in G1; (3) the Dk-KerMDH assumptions holds in G2; (4) (E,D) is
semantically secure. Concretely, for any adversary A, there exist algorithms
B1,B2,B3,B4, such that

AdvBEA (λ) ≤ Advmddh
B1,G1

(λ) + AdvhashB2
(λ) + Advkmdh

B3,G2
(λ) + 2 · AdvseB4

(λ) + O(1/p)

and Time(B1),Time(B2),Time(B3),Time(B4) ≈ Time(A).

We prove the theorem via the following game sequence. A proof sketch for
each step will be given and more details can be found in the full paper.

Game0. This game is identical to the real game described in Sect. 2.1. The
challenge ciphertext for (m0,m1, S0, S1) where S0 = {i1,0, . . . , i�,0} and
S1 = {i1,1, . . . , i�,1} is of form

ct∗ := ( ct∗1 := ([u∗�]1, c∗
0, c

∗
1, . . . , c

∗
� ), [π∗]1 := [u∗�(X + α∗ · Y)]1 )

where u∗ ←r span(A), α∗ = h(ct∗1) and we compute

c∗
0 = EK∗(mb) and c∗

j = [u∗�kiτ(j),b
]1 · K∗, ∀j ∈ [�]
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with K∗ ←r G1 and random permutation τ over [�]. On input (ct, i), parse

ct = (ct1 = ([u�]1, c0, c1, . . . , c�), [π]1),

compute α = h(ct1) and reject the query if

(a) ct = ct∗ or (b) e([π]1, [B]2) �= e([u�]1, [(X + α · Y)B]2).

Then recover m using ki as Dec and return m. We let Wini denote the event
that A guesses b correctly in Gamei. Since Game0 perfectly simulates the real
game, we have AdvBEA (1λ) = |Pr[Win0] − 1/2|.

Game1. This game is identical to Game0 except that we sample u∗ ←r Z
k+1
p

when generating the challenge ciphertext ct∗. This game is indistinguishable
from Game0 under the Dk-MDDH assumption. Formally, we have the following
lemma and the proof is analgous to that for Lemma 2.

Lemma 7 (Game1 ≈c Game0). There exists an adversary B1 such that

|Pr[Win1] − Pr[Win0]| ≤ Advmddh
B1,G1

(λ)

Game2. This game is identical to Game1 except that DecO, on input (ct, i),
returns ⊥ if (a) or (b) or

(c) ct1 �= ct∗1 but α = α∗.

By the collision-resilience of H, this game is indistinguishable from Game1.
Formally, we have the following lemma and the proof is similar to that for
Lemma 4.

Lemma 8 (Game2 ≈c Game1). There exists an algorithm B2 such that

|Pr[Win2] − Pr[Win1]| ≤ AdvhashB2
(λ)

Game3. This game is identical to Game2 except the following substitution:

(b) e([π]1, [B]2) �= e([u�]1, [(X + α · Y)B]2) �−→ (b′) [π]1 �= [u�(X + α · Y)]1.

This game is the same as Game2 until A sends DecO a query which is rejected
by condition (b′) but survives under condition (b). One can see that such a
query immediately gives a solution to the Dk-KerMDH problem w.r.t [B]2.
Formally, we have the following lemma.

Lemma 9 (Game3 ≈c Game2). There exists an algorithm B3 such that

|Pr[Win3] − Pr[Win2]| ≤ Advkmdh
B3,G2

(λ)

Game4. This game is identical to Game3 except the following substitution

(b′) [π]1 �= [u�(X + α · Y)]1 �−→ (b′′)u /∈ span(A) ‖ [π]1 �= [u�(X + α · Y)]1.

Here “‖” denotes the OR operation which neglects the second operand if the
first one is satisfied. We have the following lemma stating that this game is
statistically close to Game3.
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Lemma 10 (Game4 ≈s Game3). |Pr[Win4] − Pr[Win3]| ≤ O(1/p).
Let qD be the number of decryption queries. The lemma will be proved in qD

steps. In the j-th step, assuming that the first j − 1 decryption queries have
been processed with condition (b′′), we demonstrate that the j-th query with
u /∈ span(A) can be rejected by condition (a), (b′), (c) with high probability.
This simply follows from Lemma 1 (the core lemma).

To complete the proof of Theorem 2, we show the following lemma.

Lemma 11. (Bounding Pr[Win4]). There exists an algorithm B4 such that

Pr[Win4] ≤ 1/2 + 2 · AdvseB4
(λ)

To prove the lemma, we consider two cases: (1) when Qsk ∩ (S0 ∩ S1) = ∅,
we can prove that [u∗�ki]1 for i ∈ Sb are independently and uniformly dis-
tributed over G1, which hide both Sb and K∗. The proof is similar to the proof
of Lemma 6. Then the semantic security of (E,D) allows us to hide mb; (2) when
Qsk∩(S0∩S1) �= ∅, we can only prove that [u∗�ki]1 for i ∈ Sb\S1−b are randomly
distributed, but it is sufficient for proving the lemma since m0 = m1.

5 Conclusion

In this paper, we described two concrete ANOBE schemes. The first one is an
instantiation of Libert et al.’s generic ANOBE. However, by working out the
proof directly, we achieved a constantly tight reduction to standard assumptions.
Furthermore, we pointed out that this scheme supports fast decryption for free
and thus enjoys shorter ciphertexts. By the second scheme, we showed how to
shorten the ciphertext again while preserving the tightness at the cost of slower
decryption.

Acknowledgment. We greatly thank Benôıt Libert for his encouragement and sup-
port. We also thank all anonymous reviewers for their constructive comments.
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