q

Check for
updates

1

Sanitizable signature schemes enable the signer of a document to declare certain
sections of the message as admissible for modification, so that another designated
party (the sanitizer) can modify them and update the signature without affecting
the authenticity and integrity of the immutable parts. The main motivation is
to balance out the verifier’'s wish to check authenticity of parts of the original
document and the signer’s desire for privacy of the sanitized data. The idea of

Invisible Sanitizable Signatures and
Public-Key Encryption are Equivalent

Marc Fischlin and Patrick Harasser(®)

Cryptoplexity, Technische Universitat Darmstadt, Darmstadt, Germany
{marc.fischlin,patrick.harasser}@cryptoplexity.de
http://www.cryptoplexity.de

Abstract. Sanitizable signature schemes are signature schemes which
support the delegation of modification rights. The signer can allow a
sanitizer to perform a set of admissible operations on the original mes-
sage and then to update the signature, in such a way that basic security
properties like unforgeability or accountability are preserved. Recently,
Camenisch et al. (PKC 2017) devised new schemes with the previously
unattained invisibility property. This property says that the set of admis-
sible operations for the sanitizer remains hidden from outsiders. Sub-
sequently, Beck et al. (ACISP 2017) gave an even stronger version of
this notion and constructions achieving it. Here we characterize the
invisibility property in both forms by showing that invisible sanitizable
signatures are equivalent to IND—CPA-secure encryption schemes, and
strongly invisible signatures are equivalent to IND—CCA2-secure encryp-
tion schemes. The equivalence is established by proving that invisible
(resp. strongly invisible) sanitizable signature schemes yield IND—CPA-
secure (resp. IND—CCA2-secure) public-key encryption schemes and that,
vice versa, we can build (strongly) invisible sanitizable signatures given
a corresponding public-key encryption scheme.

Keywords: Sanitizable signatures - Digital signatures - Invisibility
Public-key encryption + One-way functions

Introduction

sanitizable signature schemes dates back to a work by Ateniese et al. [2].

In [2], the authors introduced several security properties for sanitizable sig-
nature schemes. Besides unforgeability against outsiders, a desirable property
is immutability, which demands that even a malicious sanitizer can only alter

© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 202-220, 2018.
https://doi.org/10.1007/978-3-319-93387-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_11&domain=pdf

Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 203

admissible parts. Privacy asks that one cannot reconstruct the original docu-
ment given only the sanitized version and signature, and its strengthening called
unlinkability [7] says that one cannot determine the origin to a sanitized doc-
ument among several known possibilities. Signer and sanitizer accountability
ensure that in case of a dispute the parties can give a convincing proof of who
created a signature, the signer or the sanitizer. A less common property is trans-
parency, which should hide who created a signature, in case neither of the parties
helps to determine the originator—this stands in contrast to public accountabil-
ity, where no additional help is required to determine who signed the document.

1.1 Invisible Sanitizable Signatures

Recently, Camenisch et al. [10] formalized the notion of invisibility of sanitiz-
able signatures. This property, formerly called strong transparency in [2], should
hide which modifications a sanitizer is allowed to perform. In previous construc-
tions the description of admissible operations, denoted ADM, had usually been
attached in clear to the signature. Gong et al. [25] were the first to argue that
this information can be of value, and later Camenisch et al. showed that hid-
ing it may be a desirable goal. They also revised the theoretical framework of
sanitizable signatures in order to capture the invisibility property, and gave con-
structions achieving it based on a new type of chameleon hash functions with
ephemeral trapdoors. Soon after, Beck et al. [3] further strengthened the notion
of invisibility.

In its basic form, invisibility protects against leakage of ADM if the sanitizer
public key is only used in connection with a single signer. In applications this
means that the sanitizer must create a fresh key pair for each user. Strong
invisibility, on the other hand, allows to use the same sanitizer key pair with
multiple signers. Beck et al. use unique signatures, IND—CCA2-secure encryption,
and collision-resistant chameleon hash functions to achieve strong invisibility.

Technically, the difference between the two invisibility notions lies in the
capabilities of an adversary trying to establish which of two potential operation
sets, ADMg or ADMj, has been encoded as admissible into the signature. Given
a challenge signature, the adversary may query a sanitizing oracle on it as long
as the requested modification does not allow to distinguish the two cases trivially
(this happens e.g. if the modification is admissible for one of the two sets but
not for the other). For the basic invisibility notion the adversary can ask for
sanitizations only in connection with the public key pkg;, of the genuine signer.
In the stronger notion, the adversary can also request sanitizations of messages
signed with other, possibly maliciously chosen signer keys pkgig.

1.2 Owur Contributions

In this work we show that invisible sanitizable signature schemes and public-key
encryption schemes are equivalent. Qur equivalence proof consists of four parts.

204 M. Fischlin and P. Harasser

Invisibility Implies IND—CPA-Secure Encryption. Our first result is to show that
an invisible sanitizable signature scheme yields an IND—CPA-secure bit-encryp-
tion scheme. An invisible scheme hides the actual admissible operations for a
signature; we can use this property to securely embed a message bit b by using
one of two fixed and distinct admissible operation descriptions (ADMg or ADM;)
to build a signature ¢ under a fresh signer key pair. The ciphertext consists of
the signature o and the signer public key pkg,. Invisibility now guarantees that
no outsider is able to distinguish the two cases.

The trapdoor information for decryption is the sanitizer secret key; his public
key acts as the public key of the encryption scheme. With his secret key, the sani-
tizer can run the sanitization process and check via a distinguishing modification
which operation ADM, has been embedded: Only the admissible one (ADMy)
will result in a valid new signature. For the other operation (ADM;_;), the
modification should fail by the immutability property of the sanitizable scheme.
Note that we obviously need some other security property besides invisibility,
because it is easy to devise invisible signature schemes without any other security
property, e.g. with constant signatures.

Strong Invisibility Implies IND—CCA2-Secure Encryption. While the construc-
tion of an IND—CPA-secure scheme via the embedding of the hidden ADM may
be expected, we argue next that the same construction yields an IND—CCA2-
secure encryption scheme if the underlying sanitizable signature scheme is
strongly invisible. This result is less conventional, since it links the sanitization
for different signer keys with the ability to securely decrypt different ciphertexts.

The proof idea is to note that ciphertexts in our encryption system are of the
form (o, pkgjg). Given a challenge ciphertext (o, pkg;g), recall that for IND—CCA2-
security we must allow for oracle decryptions of ciphertexts (o, pkéig) #*
(0, pksig). Since decryption is performed via sanitization, and strong invisibil-
ity allows us to call the sanitizer for different keys pkgig, we can easily decrypt
ciphertexts of the form (o’, pkg;) with pksy # pksg. To handle ciphertexts
(0, pksig) under the original signer key we rely on the strong unforgeability
property of the signature scheme: it says that one cannot create fresh signa-
tures o’ under pkg,, and therefore an IND—CCA2-adversary cannot submit valid
oracle queries of this form.

In a sense, this result warrants the deployment of an IND—CCA2-secure
encryption scheme in the strongly invisible construction of Beck et al. [3]: Any
strongly invisible sanitizable signature scheme already implies IND—CCA2-secure
encryption systems. Note that we construct an IND—CCA2-secure bit encryption
scheme, but this is sufficient to derive an IND—CCA2-secure string encryption
scheme [14,26,31,32].

IND—CPA-Secure Encryption Implies Invisibility. Next we establish the converse
implication, i.e. from IND—CPA-secure public-key encryption schemes to invisible
sanitizable signatures. Note that the existence of the former primitive also implies
the existence of one-way functions (the argument is identical to the one in [35,
Lemma 1]), and thus of secure digital signature schemes [33,35], so that we can

Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 205

use this building block in our construction as well. Besides invisibility, the derived
sanitizable signature scheme has all the common properties, like unforgeablility,
immutability, privacy, and accountability.

The construction idea is to have the signer sign every message block of the
message with a different, ephemeral key, and then to protect this tuple of signa-
tures with an additional signature under his secret key. This “message” part of
the signature ensures unforgeability, privacy, and accountability. To enable the
sanitizer to modify the admissible blocks, the signer appends another “adminis-
trative” signature over the description ADM and the tuple of secret keys used to
sign the admissible blocks, both encrypted under the sanitizer public encryption
key to allow for invisibility. If some admissible block has to be modified, the
sanitizer can retrieve the corresponding ephemeral key via decryption, change
the message block and then update the relevant signatures in the “message”
part. Immutability (i.e., protection against inadmissible modifications from a
malicious sanitizer) then follows from the unforgeability of the underlying dig-
ital signature scheme: It is ensured by the fact that the sanitizer only receives
the signing keys for the blocks he is allowed to modify.

We stress here that our construction does not achieve some less common
properties, in particular transparency and unlinkability, and that our security
reduction is non-tight. On the other hand, we regard our work as being above
all a feasibility result, so that tightness—even though desirable—should not be
viewed as essential, and we believe that invisible, non-transparent sanitizable
signatures can have interesting applications: One can envision scenarios where it
should be impossible to learn which (if any) message blocks have the potential
to be altered, but on the other hand it should be clear who signed the document
(e.g., for legal and accountability reasons).

IND—CCA2-Secure Encryption Implies Strong Invisibility. The noteworthy prop-
erty of the above construction is that IND—CPA-security suffices to achieve (ordi-
nary) invisibility. With a slight technical twist, we interestingly achieve strong
invisibility if we now have an IND—CCA2-secure encryption scheme: Namely,
we include the signer public key in the encryption of ADM and the trapdoor
information for the sanitizer. Hence, together with our converse construction of
IND—CCA2-secure encryption from strong invisibility, we also characterize this
form of invisibility through public-key encryption.

In light of the strongly invisible construction of Beck et al. [3], which besides
an IND—CCA2-secure encryption scheme also relies on signature schemes and
collision-resistant chameleon hash functions, our solution shows that the former
(together with a regular signature scheme) suffices. Of course, the solution by
Beck et al. is significantly more efficient.

1.3 Related Work

As mentioned above, sanitizable signature schemes were introduced by Ateniese
et al. in their foundational work [2]. The first, and to this date widely adopted
security model describing this primitive is due to Brzuska et al. [5], where the

206 M. Fischlin and P. Harasser

authors formalized the unforgeability, immutability, privacy, transparency, and
accountability properties of a sanitizable signature scheme with game-based secu-
rity definitions. Later on, Brzuska et al. added the important unlinkability prop-
erty [7,9], as well as non-interactive public accountability [8,9], to the picture of
security notions—see Appendix C in the full version [21] for all the definitions.

Subsequently, the formal framework introduced in [5] came under scrutiny by
Gong et al. [25], who pointed out that sanitizable signatures formalized as above
were vulnerable to so-called rights-forge attacks. Their solution was to intro-
duce stronger versions of unforgeability, immutability and accountability, which
also consider the admissible blocks in the security experiments. Even stronger
variants of unforgeability, privacy, transparency, and accountability were later
provided by Krenn et al. [30], who decided to also track the signatures in the def-
initions (in much the same way as for regular signature schemes, when upgrading
from “ordinary” to strong unforgeability). Finally, the invisibility property was
formalized by Camenisch et al. [10], following ideas already discussed in [2], and
recently further strengthened by Beck et al. [3].

The above literature deals with sanitizable signature schemes as they are
intended here. On the other hand, we point out that there are many other
primitives and extensions that are closely related to, but slightly different from
sanitizable signature schemes as treated in this work. Among these there are
redactable signatures [4,16,18,28], sanitizable signatures where sanitizer modifi-
cations are limited to certain values [11,19,29,34] or where the signer is allowed
to add sanitizers after having signed the message [13,36], sanitizable signatures
supporting a multi-signer, multi-sanitizer paradigm [6,9,12], or allowing for san-
itization of signed, encrypted data [15,20]. More generally, we note that this
whole body of literature falls under the broad category of computing on authen-
ticated data [4,23,24]. We refer to the extensive overviews of Ahn et al. [1] and
Demirel et al. [17] for further information.

We conclude the related work overview by mentioning that our work also
continues a line of research started in [6], where the authors showed that it
is possible to construct a sanitizable signature scheme achieving unforgeability,
immutability, privacy, and accountability only assuming that arbitrary secure
signature schemes exist, i.e. only assuming that one-way functions exist. In this
regard, and in light of known separation results of public-key cryptography and
one-wayness [27], our work proves that the same does most likely not hold for
(strongly) invisible sanitizable signature schemes.

1.4 Organization

In Sect.2 we outline the syntax of sanitizable signature schemes (and the cor-
responding specific notation), give an overview of the correctness and security
notions, and discuss the invisibility property. In Sect.3 we show how to con-
struct a public-key bit-encryption scheme from an invisible sanitizable signa-
ture scheme, and we prove the corresponding security results, whereas Sect. 4 is
devoted to the converse implication. Finally, we draw some conclusions in Sect. 5.

Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 207

2 Definition of Sanitizable Signatures

2.1 Notation

The starting point of our theoretical discussion on sanitizable signatures is the
security model introduced by Brzuska et al. in [5]. However, since invisibility will
play a crucial role in our work, their framework has to be slightly adapted. Their
approach often relies on the fact that the description ADM of admissible parts
is recoverable from signatures, in direct contrast to the invisibility property
which aims to hide this information. Thus, before we can actually start with
the definition of sanitizable signatures, we need to introduce some preliminary
notation. In doing so we mainly follow the work of Camenisch et al. [10].

Messages m € M are assumed to consist of a finite number of blocks, each
block being an element from a set B (usually B C {0,1}*). The message space
M is thus a subset of B*. We use the notation m[i] to refer to the i-th block and
write m = (m[l],...,m[f]) to stress that the message m consists of ¢ blocks.

Admissible blocks in a message m = (m[1],...,m[f]) € M are identified by
means of the parameter ADM = (A4,1) € P(N) x N (also called sanitizing rights),
where [€ N denotes the total number of blocks a message must have, while
A = {a1,...,a;} is the set containing the indices of the blocks the sanitizer
is allowed to modify. Of course, here we need 1 < ay,...,a; < [, a condition
that we will always assume to be satisfied. We then say that ADM matches m
if £ = 1, in which case we write ADM(m) = T (otherwise ADM(m) = 1). If
ADM, = (Ao, 1) and ADM; = (4;,1) are two sanitizing rights matching m, we
define ADMy N ADM; := (Ao N Aj,l). Similarly, to identify admissible block
indices, we write a € ADM = (A,1)if 1 <a <!l and a € A.

If m = (m[l],...,m[{]) € M is a message, the actual modifications to cer-
tain blocks made by the sanitizer (i.e., the sanitizing instructions) are identi-
fied by means of the parameter MOD = (M,l) € P(N x B) x N, where |l € N
denotes the total number of blocks in a message and M := {(iy,m1),...,
(ix, mi)} denotes the set of changes made by the sanitizer. Here (i,/m) € M
is intended to mean that the sanitizer will replace block m[i] with m. Again,
here we need 1 < 4q,...,7; < [, which we will assume throughout. We then
say that MOD matches m if £ = [, in which case we write MOD(m) for the
message m' obtained by modifying m according to MOD, i.e. m’ = MOD(m) if
and only if m’" = (m/[1],...m/[{]) € M and, for every 1 < ¢ < £, m'[i] = m; if
i € {i1,...,ik}, and m/[i] = m[i] otherwise. We write MOD(m) = L if MOD
does not match m.

Finally, recall that the sanitizer is supposed to modify only message blocks
declared as admissible by the signer. In this regard, the following notation will
be useful: If ADM = (A,lapm) and MOD = (M, lvop) are as above, we say
that MOD matches (or is valid w.r.t.) ADM if Iapm = lmop and MC A, where
M := {i1,...,ix} is the set of indices of the blocks which the sanitizer intends to
modify (as specified by M). In this case we write MOD(ADM) = T, otherwise
MOD(ADM) = L.

208 M. Fischlin and P. Harasser

2.2 Definition of Sanitizable Signature Schemes

With the notation introduced above we are now ready to define sanitizable sig-
nature schemes. The definition is based on the one given by Brzuska et al. in [5]
but takes into account that the sanitizing rights are no longer publicly recover-
able from a valid message-signature pair. We remark here that, nonetheless, the
sanitizer is always able to learn which message blocks he can modify by trying
to sanitize them singularly and checking if the resulting signature is valid, an
operation linear in the number of blocks of the message. This is the reason why
we do not include ADM as an additional input to the Sanit algorithm: Either it
is implicitly in the signatures or it must be communicated out-of-band.

Since our definition is similar to the one in [10], we give here only a schematic
overview of the algorithms comprising a sanitizable signature scheme and their
syntax. The complete definition can be found in the full version [21].

Definition 1. A sanitizable signature scheme SSS is a tuple of eight proba-
bilistic polynomial-time algorithms SSS := (PGen, KGensig, KGensan, Sign, Sanit,
Verify, Proof, Judge), whose syntax is as follows:

~ pp s PGen(1%), to generate public parameters;

— (Pksig; Sksig) <—s KGensig(pp), to generate signing keys;

— (pKsapns Sksan) s KGensan(pp), to generate sanitization keys;

— 0« Sign(pp, m, sksig, PKsigs PKsans ADM), for signatures;

~ o'« Sanit(pp, m, 7, 5ksan, PKsig; PKsan, MOD), for sanitized signatures;

— d « Verify(pp, m, 0, pks;g, Pksan), for verification;

— s Proof (pp, m, o, {(ms, 53) }}_, , sksig, Pksig; Pksan), to generate proofs;

~ d « Judge(pp, m, 0, pks;g, Pksan,), to determine who signed the document.

2.3 Correctness and Security Properties of Sanitizable Signature
Schemes

We now turn to the definition of correctness and the statement of security prop-
erties of a sanitizable signature scheme SSS. As for correctness, we follow Brzuska
et al. [5] and subsequent work and require that the following three properties
hold. We give only an informal description here and refer to Appendix B in the
full version [21] for complete definitions, as adapted to our framework.

— Signing Correctness: Every time an honest signer signs a message m € M
with sanitizing rights matching m, he produces a valid signature o # | such
that (m, o) verifies under the corresponding public keys;

— Sanitizing Correctness: Every time the intended sanitizer honestly sanitizes
a valid message-signature pair (m,o) € M x § with sanitizing instructions
MOD matching the sanitizing rights given to him by the signer, he produces
a valid signature ¢’ # L such that (MOD(m),o’) verifies under the corre-
sponding public keys;

— Proof Correctness: Every time an honest signer generates a proof regarding a
valid message-signature pair, Judge identifies the correct accountable party.

Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 209

Next we discuss the relevant security properties of a sanitizable signature
scheme SSS. Most of these properties were introduced in their basic form by
Brzuska et al. in [5] and later in [7,8]. We will be mainly concerned with their
“strong” counterparts as formalized by Krenn et al. in [30] and later adopted
by Camenisch et al. [10] and Beck et al. [3]. The definitions we adopt take into
account that the sanitizing rights ADM (which are no longer assumed to be
publicly recoverable from a valid message-signature pair) are an information
which needs protection, as work by Gong et al. [25] has shown. In particular, by
requiring a sanitizable signature scheme to satisfy the “strong” versions of the
unforgeability, signer- and sanitizer-accountability properties, we mostly avoid
so-called rights forge attacks as discussed in [25] (for immutability the matter is
more delicate—see Appendix C in the full version [21] for further discussions).

We again give only a brief and intuitive description of the security proper-
ties here and refer the interested reader to Appendix C in the full version [21]
for complete definitions and the corresponding security experiments. Only the
notion of invisibility, central to our work, will be discussed here in detail.

Unforgeability: No adversary should be able to produce a valid message-

signature pair never seen before;

— Immutability: The sanitizer should be able to modify only message blocks
previously declared as admissible by the signer;

— Privacy: Given a valid, sanitized message-signature pair, no adversary should
be able to recover any information about the original content of the sanitized
blocks;

— Transparency: Given a valid message-signature pair, no adversary should be
able to determine whether it was the signer or the sanitizer who produced
the signature;

— Signer-Accountability: A malicious signer should not be able to produce a
valid message-signature pair (m,o) € M x S and a proof which induces
Judge into erroneously blaming the sanitizer for (m,o);

— Sanitizer-Accountability: A malicious sanitizer should not be able to produce
a valid message-signature pair (m’,0’) € M x S such that legitimate proofs
generated by the signer induce Judge into blaming the signer for (m/, o’);

— Unlinkability: Given a valid message-signature pair (m’,0’) € M x S that
has been sanitized, no adversary should be able to decide from which known
pair (m,o) € M x § it originated from;

— Non-Interactive Public Accountability: The party accountable for a valid

message-signature pair can be determined publicly, without the need of any

further information. In particular, the Proof algorithm is trivial.

2.4 (Strong) Invisibility

Loosely speaking, a sanitizable signature scheme is invisible if, given a valid
message-signature pair (m,o) € M x S, no adversary is able to decide if any
specific message block is admissible (i.e., can be modified by the sanitizer) or
immutable. This property was first introduced by Ateniese et al. in their founda-
tional work [2] under the name “strong transparency” (an expression later fallen

210 M. Fischlin and P. Harasser

into disuse, not to be confused with the notion of transparency defined in the
literature). However, they did not provide any formal definition or construction
achieving it. It was later abandoned by Brzuska et al. [5] on the grounds that it
appeared to be too strong. Indeed, since they worked under the assumption that
ADM is always publicly recoverable from a valid signature ¢ # L (in obvious
conflict with the invisibility notion), it was in fact unachievable. Later on, the
invisibility property was considered by Camenisch et al. [10], who defined it for-
mally and gave the first provably secure construction of an invisible sanitizable
signature scheme. A stronger version of invisibility was later defined by Beck et
al. in [3], where the sanitizer may use his public key with multiple signers.

In the invisibility security experiment, a signer and a sanitizer key pair are
generated and a bit b«¢{0,1} is chosen uniformly at random and kept secret.
An adversary A is given access to an oracle O'°R which, on input a message and
two sanitizing rights ADMg, ADM;, produces a signature o (under the signer
secret key and the sanitizer public key) making ADM, admissible. In addition,
A has adaptive access to restricted signing, sanitizing, and proof oracles.

We remark that, in the above experiment, a restricted signing oracle (with
fixed sanitizer public key pke,,) can be simulated by querying O'°R and putting
ADM, = ADM;. Furthermore, for sanitization requests of any message-signature
pair (m,0) € M x S with ¢« O“°R(m, ADMy, ADM;), A must be limited to
modifications matching ADMyNADM; in order to avoid trivial attacks exposing
b. This is why all queries to and answers from QYR together with the allowed
sanitizing rights ADMy N ADMj, are recorded in a “whitelist” W: Whenever A
queries Ot the oracle goes through the list W of previously signed messages,
to see which blocks the adversary is indeed allowed to modify. If the query is
accepted, the whitelist has to be updated to also include the new (sanitized)
message-signature pair, with the same sanitizing rights as the original pair (this
has to be done because a sanitized message could be sanitized again). In the
basic invisibility property the answers are only computed for the given key pkg;,.

The adversary’s goal is to guess b, i.e., to decide which set of blocks the oracle
O°R has made admissible. The scheme SSS is invisible if no efficient adversary
as above succeeds in doing so with probability significantly greater than 1/2.

We observe that the definition of invisibility already has the flavor of the
“strong” variant of the definitions given in [10,30], in that we always keep track
of the signatures in the whitelist W. On the other hand, the main drawback of
this definition is that it is not possible to query the sanitization oracle for keys
different from the challenge ones. As remarked by Beck et al. [3], this may have
undesirable consequences: A could pose as another signer and, as soon as he gets
access to a sanitization oracle, could potentially learn the bit b.

To address these concerns (and to give a definition of invisibility that also pro-
tects against dishonest signers), one can allow queries to the sanitization oracle
with public keys chosen by the adversary .A. This approach leads to the definition
of strong invisibility. The main difference between the invisibility and the strong
invisibility experiments is that the adversary is allowed oracle queries to O-°R
and 0%t with adversarially chosen public keys. A sanitizable signature scheme

Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 211

secure in this stronger sense does not suffer from the flaw mentioned above. As
a side effect, the signing oracle derived from OY°R is no longer restricted. The
formal definition of (strong) invisibility is given in the full version [21].

3 Invisible Sanitizable Signatures Imply Public-Key
Encryption Schemes

In this section we show how to construct a public-key bit-encryption scheme
from an invisible sanitizable signature scheme.

3.1 Construction

Suppose that Alice wants to send a secret bit b € {0,1} to Bob, without an
adversary A being able to learn it. To do so, Bob publicly chooses a sanitizable
signature scheme SSS and a security parameter A € N, and generates a tuple
of public parameters pp «—s PGen(1%). Observe that the block set B defined by
pp clearly must contain at least two elements—we will assume that {0,1} C B,
but for other block sets the adjustment is straightforward. Moreover, we assume
that the two-block-messages (0, 0), (1,0),(0,1) belong to the message space M,
but again our construction can be easily modified should this not be the case.

Bob then generates a sanitizer key pair (pkg,,,Sksan) <—s KGensan(pp), and
chooses a message m € M consisting of two blocks, e.g. m = (0,0). He sends
(pp, m, pks,,) to Alice over an unprotected channel, while sks,, is kept secret.

Upon receiving (pp,m, pks,,), Alice runs (pks;,, sksig) <5 KGensig(pp) to gen-
erate a signer key pair. Now, depending on whether she wants to encrypt b =0
or b = 1, she signs the message m declaring as admissible the first or the second
block, respectively. She then sends the signature o and her public key pkg;, to
Bob, while sksjg is kept secret.

Upon receiving (o, pkgj,), Bob tries to separately modify the first and the
second message block by replacing it with ‘1°. He thus sets MODg «— ({(1,1)},2)
and MOD; « ({(2,1)},2) and then computes oy <5 Sanit(pp, m, 0, sksan, PKs;g»
Pksan, MODy) and o7 < Sanit(pp, 7, 0, sksan, PKs;g, PKsan, MOD1).

Now, assuming that SSS is sanitizing correct and immutable, exactly one of
the two signatures computed by Bob will be valid. If Alice has encrypted b = 0,
then of will be valid with overwhelming probability (because of the sanitizing
correctness property), while o] will be either invalid or equal to L with very high
probability (because SSS is immutable). On the other hand, if Alice has chosen
b = 1, then of will be valid and o, not by the same argument. In the unlikely
event that both signatures are valid or both are invalid, Bob cannot decrypt the
message sent by Alice.

We thus conclude that Bob is able to correctly decrypt the bit encrypted
by Alice with very high probability by sanitizing m twice and checking the
signatures (or error messages). Moreover, if we also assume SSS to be invisible,
then any adversary A will be able to learn b only with negligible probability.
In fact, from an outsider’s perspective learning b is equivalent to establishing

212 M. Fischlin and P. Harasser

which message block is admissible, which is highly unlikely by the invisibility
assumption.

We now turn to a more rigorous definition of our public-key bit-encryption
scheme, as well as to the statement of the correctness and security properties.

Construction 1. Let SSS := (PGen, KGens;ig, KGensan, Sign, Sanit, Verify, Proof,
Judge) be a sanitizable signature scheme. We define a public-key bit-encryption
scheme II as in Fig. 1.

I1.PGen(1*): I1.Dec(ppyy, ¢, pkyz, skir):
PPsss <—s SSSPGen(lA) parse pp; = (ppsss, MH,CH,
M «+ {07 1}7 Cr + SSig X ’Csig,ph ’Cn,m),
ICH — ICSan c= (07 kaig)v pkH = kaan7
m <— (0, O) sk = sksan
PP — (PPssss M, Cr, KCrr, m) d < SSS.Verify(ppsss, m, 0,
return pp; PKsigs PKsan)
if d = L then
I1.KGen(pppy): return L
parse pp; = (PPsss; Mz, Cir, MODy « ({(1,1)},2)
’CH,m) MOD; « ({(271)}72)
(Pkgyns Sksan) ¢—s SSS.KGensan (PPsss) myg 4= MODo(m), my = MOD;(m)
Pk < Pksan, Skir <= sksan 00 5 SSS.Sanit(ppsss, M, 7, SKsan,
return (pk g, skir) Psig, PKsans MODo)
o1 s SSS.Sanit(ppsss, M, 7, Sksan,
H'Enc(ppﬂvbvpkﬂ): kaig7kaanvMOD1)
parse pp; = (PPsss, M, Crr, do < SSS.Verify(ppsss, M0, 00,
ICH? m)7 pkH = pksan . pI(§ig7 r/)kSan)
(pksig, Sksig) <—s SSS.KGensig (ppsss) dy + SSS.Verify(ppsss, m1, 01,
ADMO — ({1}7 2) kaig7 kaan)
ADM; «+ ({2},2) ifdo=T A di =1 then
0 <=5 SSS.Sign(ppsss; M, Sksig, PKsig; _ return 0
pks,,, ADM,) ifdo=L1 A di =T then
return (o, pkg;,) return 1
return L

Fig. 1. Public-key bit-encryption scheme from an invisible sanitizable signature scheme

3.2 IND—CPA-Security

We now formally state our security results about the public-key bit encryption
scheme in Construction 1.

Theorem 2. Let SSS := (PGen, KGensig, KGensan, Sign, Sanit, Verify, Proof,
Judge) be a sanitizable signature scheme, and let IT := (PGen, KGen, Enc, Dec)
be the public-key bit-encryption scheme defined in Construction 1. If SSS is san-
itizing correct, immutable and invisible, then I is correct and IND—CPA-secure.

Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 213

The proof gives a tight reduction in terms of the advantages: For any adver-
sary A playing the IND—CPA-game we construct an adversary B against the
invisibility game with roughly the same running time as A, such that

Adv'})?;CPA(A) = Advigss (V).

Note that we need the immutability property only to bound the correctness error

by 2- Adv'cmmss (M) for some efficient adversary C against the immutability game.

The proof of Theorem 2 can be found in the full version [21].

3.3 IND—-CCA2-Security

We next argue that the scheme above achieves IND—CCA2-security if SSS is
assumed to be strongly invisible. Recall that the difference to regular invisibility
is that now the adversary against strong invisibility can also make left-or-right
signature requests for (m, pks,,, ADMg, ADM;) with different sanitizer public
keys pke,, # PKsan, and sanitization requests for (m, o, pkgig, MOD) with different
signer public keys pk’Sig # pks;g- Interestingly, for our construction and proof we
only rely on the latter property.

For the security proof we also need strong unforgeability of the sanitizable
signature scheme. The reason is that ciphertexts are of the form (o, pkg;,), and
the IND—CCA2-adversary may ask for decryptions of the form (o”, pkg;,) where
it alters the signature component for the same message. This would allow to
break the security of the encryption scheme easily.

Theorem 3. Let SSS := (PGen, KGensig, KGensan, Sign, Sanit, Verify, Proof,
Judge) be a sanitizable signature scheme, and let IT := (PGen, KGen, Enc, Dec)
be the public-key bit-encryption scheme defined in Construction 1. If SSS is san-
itizing correct, strongly unforgeable, immutable and strongly invisible, then II is
correct and IND—CCA2-secure.

The proof also gives a tight reduction in terms of the advantages: For any
adversary A playing the IND—CCA2-game we construct adversaries 5 and C with
roughly the same running time as A, such that

AdvT M (\) < Adviss(A) + 2 Advegis(A).

In fact, for IND—CCA1-security regular unforgeability is sufficient. Once more, we
need immutability only to bound the correctness error. The proof of Theorem 3
can be found in the full version [21].

4 Public-Key Encryption Implies Invisible Sanitizable
Signatures

In this section we present our construction of an invisible sanitizable signature
scheme, starting from a secure public-key encryption scheme.

214 M. Fischlin and P. Harasser

4.1 Construction

Our construction based on public-key encryption follows the established encode-
and-sign paradigm and exploits the idea of using chameleon hash functions and
signing the hash values with a regular signature scheme X' (see, e.g., [2,5]). The
sanitizer can then find collisions for the hashes with the help of his trapdoor key,
allowing him to modify the message. Here, instead of chameleon hashes we use
the signature scheme X itself.

In our scheme, signatures consist of two parts: the “message” part ensures
the basic unforgeability and accountability properties, and can be created by
either of the two parties. In contrast, the “administrative” part contains the
information needed by the sanitizer to perform modifications, and can be created
only by the signer. Parts of the administrative information are encrypted under
an encryption scheme IT under the sanitizer’s public key, to ensure invisibility.

To begin with, the signer generates a key pair (pky;, sky) for X, while the san-
itizer creates keys (pk's, sk’s;) and (pky;,skyr) for X and IT, respectively. To sign
a message m = (m[1],...,m[f]), the signer generates a new key pair (pk’s, sk’s)
(1 < i < ¢) for each block of m, signs every block with the corresponding key,
and creates a tuple of signatures S := (o', ..., 0o%). He then generates a signature
omsc of the message (0,m, S, pkg;y, Pks,,) under skys. Here, m and S are signed so
that they are protected from modification by outsiders, whereas pkg;g, pks,, and
the initial bit ‘0’ are included for technical reasons (namely, domain separation).
The “message” part of the final signature o then consists of (S, omsc)-

The first part of the signature must now be complemented with the informa-
tion required to sanitize the admissible parts of the message, and to verify the
signature. To this end, the signer generates the tuple Kapy = (skg,skg, o)
containing the secret keys of the admissible blocks i; € ADM (properly padded
to ensure a length-invariant encoding), and encloses it for the sanitizing party
via encryption under pk;. In addition, we also hide the parameter ADM (to
ensure invisibility) and the signer public key (in foresight of the strongly invis-
ible version of our result) in this encryption. In summary, the signer creates an
encryption C of (pksan, Kapm, ADM) under pky and then, in order to prevent
changes in these administrative data, creates a (regular) signature oapm of the
message (1, pks,,,, V, C). Here, V := (pk}s, . .., pkl;) contains the verification keys
for the single blocks, and again the initial bit ‘1’ is included for domain sepa-
ration reasons. The “administrative” part of the signature is then (V,C,oapm),
and the final signature is o := (S, omsa, V, C, 0apMm)-

If the sanitizer receives a signature o for a message m, he first checks the
validity of the signatures S, omsag and oapw, and recovers ADM and the cor-
responding signing keys Kapm by decrypting C. Then, given valid sanitizing
instructions m’ = MOD(m), he can update the “message” part of o, leaving
the “administrative” part unchanged. He obtains S’ by substituting the relevant
entries in S with new signatures of the modified blocks under the corresponding
keys Kapwm, and updates oygq by re-signing (0,m’, S’, pkg;g, pks,,) under sks..
Finally, the sanitized signature for m’ is given by o’ = (5, ojsg, V> C, 0apm)-

Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 215

Immutability of the scheme is achieved by the fact that the sanitizer does
not know the secret keys for the blocks he is not supposed to modify, and there-
fore cannot obtain suitable replacements for signatures in S. Observe that the
signature opsa immediately ensures public accountability, since it serves as a
proof of who put the overall signature. This also implies that our scheme does
not achieve transparency. For technical reasons it neither supports unlinkability.

Remark 1. The above discussion presumes that some mild assumptions on X
and II are satisfied, which we will henceforth assume to be in place. In par-
ticular, all signature keys must be of fixed length L (this can be achieved via
padding of the keys), and the message blocks, as well as the tuples of the form
(0,m, S, pkigs Pksan) and (1, pkg,,, V,C), must lie in the message space of X
(this is no restriction, because the signatures constructed in [33,35] support
messages of arbitrary polynomial length). Also, ADM must be encoded in a
length-invariant manner, and tuples of the form (pks,,, Kapm, ADM) must lie
in the message space of IT (which can be achieved through hybrid encryption).

We now turn to a more rigorous definition of our sanitizable signature scheme,
as well as to the statement of the correctness and security results.

SSS.PGen(1*): SSS.Sign(ppsss, 7 Sksig, PKsig: PKsan, ADM):
pp;; s IT.PGen(1*) if ADM(m) = L then return L
PPy s X.PGen(1%) parse ppsss = (PPyz; PP, M), sksig = sk,
M <_Ml2 m = (m[:lL?m[lD? kaig:pk27
PPsss < (PP17: PPy, M) Pksan = (Pky7, Pk';), ADM = (4,1)
return ppgsg V0,5« 0, Kapm < 0

for 1 <i<ldo

$SS.KGensig (PPsss): (pPk’;, ski) s X.KGen(ppy;)
parse ppsss = (PP, PPx; M) V= VU{(i,pks)} S
(pky, skx) s 2.KGen(ppy) o' +5 X.Sign(ppx, mli], sk, pk)
Pksig < Pky, sksig < skx S+ Su{(i,o")}

{i,skk)} i€ A
{(,00)} else
SSS.KGensan (pPsss): o parse V= (pkb, - pk), S = (0, o')
parse ppsss = (PP, PPs, M) Kapy = (K}%DM’ L K/l%DM)
(pkyg, skir) < I1.KGen(pp ;) £ (0,m, S, pke., pke..)
(pk's, sk'’s;) s X.KGen(pps;) P T Sigy FRSan
i (pk 7, pK.) > omsG s X.Sign(ppy, ¢, sk, pky)
PKsan p H»P/E C <5 I1.Enc(pp 7, (Pksig> K apM, ADM), pk ;)
sksan (skiz,sk’;) w e (1 pke V. O)
return (pke,,, SKsan) ADA s 3 Sign(ppay, 1, sk, pkis.)
o < (S,o0msa,V,C,o0apM)
return o

return (kaig,skS;g) Kaoat < Kapag U {

Fig. 2. Invisible sanitizable signature scheme from a public-key encryption scheme:
parameter generation, signer and sanitizer key generation, and signing algorithms.

216 M. Fischlin and P. Harasser

SS5.Verify (ppss. 1, ki Py). 00 o (PPasss 1 0k Pl

— v pkgans MOD):
parse z?sjs(;l[(ﬁpm pirf[é])), if MOD(m) = L then return L

_ ’ parse ppsss = (PPr7; PP, M),
o= (S, 0'MSG7}/: C,oapM), m = (m[1] mll])

_ 1 - [b
5= (U 71' 7)7l g = (57 omsa, V, C, JADM),
V:(pk27'~-7pk2)7 V:(pklz,,pklz),
kaig = pk27

sksan = (skrr,K's), pksi = Pk,
kaan = (pkH7 pk/E),
MOD = (M, 1),
M = {(il,ml), ey (’Lk,mk)}
t < I1.Dec(pp;, C, pkyy, skir)
parse t = (pkg,, Kapm, ADM),
Kapm = (K./l\DMj .., Khpwm),
with Kipy = ski; for i € ADM
dy + SSS.Verify(ppSss, m,o, kaig7 kaan)
ifd, = L v MOD(ADM) = L Vv

kaan = (pkH7 pk,E)

t <+ (07 m, S: kaigv kaan)
di < X Verify(pps, t, omsa, pkys)
da + X Verify(ppy, t, omsc, pk's)
u < (1, pks,n, V. C)
ds < X Verify(pps, u, oapM, pKx;)
if (=1 Adp=1)V

ds =1 Vv X Verify(pps,mli],

o', pkk) = L for some 1 <i <1

then ,
return L pksiy 7# Pk, then
return L
return T

m’ <~ MOD(m)
for 1 <j<kdo _ _
0% g X.Sign(pps, mj, sklEj7 pklEj
S’ (01,...,0l)
U < (07 m,a Slv kaig? kaan)
ousc s X.Sign(ppy, u, sk, pkY)
O'/ < (SI, JI,\/ISGa V, C, O'ADM)
da <= SSS.Verify(ppsss, m’, 0, PKsig, PKsan)

SSS.Judge(ppsss, M, 0, PKsigs PKsans m):
parse ppsss = (PP, PP, M),
o= (S,omsa, V,C,oapM),
pksig = pky,
Pksan = (P77, PK')
(2 (07 m, Sv kaig7 kaan)
dy + X Verify(pps, t, omsa, pks)

do < X Verify(pps, t, omsa, pKs) if ds ZtJ_ thjn
ifdi =T A dy= 1 then re ulrn
return o

return Sig

lfdlzl A dg:Tthen
return San

return L

SSS'PrOOf(ppSSS7 m,o, {(m“ Ui)}f:h Sksig7
kaig? kaan):

return L

Fig. 3. Invisible sanitizable signature scheme from a public-key encryption scheme:
verification, sanitization, judge and proof algorithms.

Construction 4. Let X' := (PGen, KGen, Sign, Verify) be a signature scheme and
IT := (PGen, KGen, Enc, Dec) a public-key encryption scheme. We define a sani-
tizable signature scheme SSS as in Figs. 2 and 3 above.

4.2 Security

The formal security statement for our construction is given in Theorem 5. Its
proof can be found in the full version [21].

Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 217

Theorem 5. If the signature scheme X is correct and unforgeable, and the
encryption scheme II is correct, then the sanitizable signature scheme SSS in
Construction 4 is correct. If 3 is unforgeable and II is IND—CPA-secure, then
SSS is unforgeable, immutable, private, publicly accountable, and invisible.

4.3 Achieving Strong Invisibility

In the previous sections we have shown that invisibility is equivalent to
IND—CPA-secure encryption, and that strong invisibility implies IND—CCA2-
secure encryption. Here we show that the latter implication also holds in the
other direction: If we use an IND—CCA2-secure encryption scheme in our con-
struction, then we get a strongly invisible sanitizable signature scheme.

Theorem 6. If the signature scheme X is correct and unforgeable, and the
encryption scheme II is correct, then the sanitizable signature scheme SSS
in Construction 4 is correct. If X is unforgeable and II is IND—CCA2-secure,
then SSS is unforgeable, immutable, private, publicly accountable, and strongly
invisible.

The proof of Theorem 6 can be found in the full version [21].

5 Conclusions

Our results show that building invisible sanitizable signature schemes from one-
way functions alone is presumably hard, since deriving public-key encryption
from one-wayness in a black-box way is infeasible [27]. This is in contrast to
sanitizable schemes without the invisibility and transparency properties. Namely,
Brzuska et al. [6] gave a simple construction of a non-invisible, non-transparent
scheme based on regular signature schemes only.

An interesting open question concerns the minimal assumptions required
to achieve transparency for sanitizable signatures, independently of the question
regarding invisibility. It is possible to achieve all the common security properties,
except for transparency (and except for invisibility, of course), using one-way
functions alone [6,9]. Current constructions achieving transparency are based on
assumptions seemingly stronger than one-way functions, such as group signature
schemes [7], zero-knowledge proofs [22], or (chameleon) hash functions [3,10].
Finally, for a sanitizable signature scheme to be both transparent and invisible,
public-key encryption is at least necessary, as discussed here.

Acknowledgments. We thank the anonymous reviewers for their valuable comments
and suggestions. This work has been co-funded by the DFG as part of project P2 within
the CRC 1119 CROSSING.

218

M. Fischlin and P. Harasser

References

1.

10.

11.

12.

13.

Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 1-20. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28914-9_1

. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In:

De Capitani di Vimercati, S., Syverson, P., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 159-177. Springer, Heidelberg (2005). https://doi.org/10.
1007/11555827_10

. Beck, M.T., Camenisch, J., Derler, D., Krenn, S., Pohls, H.C., Samelin, K., Sla-

manig, D.: Practical strongly invisible and strongly accountable sanitizable sig-
natures. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp.
437-452. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60055-0-23

. Brzuska, C., et al.: Redactable signatures for tree-structured data: definitions and

constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87—
104. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-2_6

. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,

Schréder, D., Volk, F.: Security of sanitizable signatures revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317-336. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00468-1_18

. Brzuska, C., Fischlin, M., Lehmann, A., Schréder, D.: Santizable signatures: how

to partially delegate control for authenticated data. In: BIOSIG 2009, pp. 117-128
(2009)

. Brzuska, C., Fischlin, M., Lehmann, A., Schrioder, D.: Unlinkability of sanitizable

signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
444-461. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-
726

Brzuska, C., Pohls, H.C., Samelin, K.: Non-interactive public accountability for
sanitizable signatures. In: De Capitani di Vimercati, S., Mitchell, C. (eds.) EuroPKI
2012. LNCS, vol. 7868, pp. 178-193. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40012-4_12

. Brzuska, C., Péhls, H.C., Samelin, K.: Efficient and perfectly unlinkable sanitizable

signatures without group signatures. In: Katsikas, S., Agudo, I. (eds.) EuroPKI
2013. LNCS, vol. 8341, pp. 12-30. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-53997-8_2

Camenisch, J., Derler, D., Krenn, S., Pohls, H.C., Samelin, K., Slamanig, D.:
Chameleon-hashes with ephemeral trapdoors. In: Fehr, S. (ed.) PKC 2017. LNCS,
vol. 10175, pp. 152-182. Springer, Heidelberg (2017). https://doi.org/10.1007 /978~
3-662-54388-7_6

Canard, S., Jambert, A.: On extended sanitizable signature schemes. In: Pieprzyk,
J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179-194. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11925-5_13

Canard, S., Jambert, A., Lescuyer, R.: Sanitizable signatures with several sign-
ers and sanitizers. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012.
LNCS, vol. 7374, pp. 35-52. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31410-0-3

Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and their
application to content protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A.,
Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258-276. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-68914-0_16

https://doi.org/10.1007/978-3-642-28914-9_1
https://doi.org/10.1007/978-3-642-28914-9_1
https://doi.org/10.1007/11555827_10
https://doi.org/10.1007/11555827_10
https://doi.org/10.1007/978-3-319-60055-0_23
https://doi.org/10.1007/978-3-642-13708-2_6
https://doi.org/10.1007/978-3-642-00468-1_18
https://doi.org/10.1007/978-3-642-13013-7_26
https://doi.org/10.1007/978-3-642-13013-7_26
https://doi.org/10.1007/978-3-642-40012-4_12
https://doi.org/10.1007/978-3-642-40012-4_12
https://doi.org/10.1007/978-3-642-53997-8_2
https://doi.org/10.1007/978-3-642-53997-8_2
https://doi.org/10.1007/978-3-662-54388-7_6
https://doi.org/10.1007/978-3-662-54388-7_6
https://doi.org/10.1007/978-3-642-11925-5_13
https://doi.org/10.1007/978-3-642-31410-0_3
https://doi.org/10.1007/978-3-642-31410-0_3
https://doi.org/10.1007/978-3-540-68914-0_16

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 219

Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 532-560. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6_22

Damgard, 1., Haagh, H., Orlandi, C.: Access control encryption: enforcing infor-
mation flow with cryptography. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 547-576. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53644-5_21

de Meer, H., Pohls, H.C., Posegga, J., Samelin, K.: On the relation between
redactable and sanitizable signature schemes. In: Jiirjens, J., Piessens, F., Bielova,
N. (eds.) ESSoS 2014. LNCS, vol. 8364, pp. 113-130. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-04897-0_8

Demirel, D., Derler, D., Hanser, C., Pohls, H.C., Slamanig, D., Traverso, G.:
Overview of functional and malleable signature schemes (PRISMACLOUD deliv-
erable d4.4). Technical report (2015)

Derler, D., Pohls, H.C., Samelin, K., Slamanig, D.: A general framework for
redactable signatures and new constructions. In: Kwon, S., Yun, A. (eds.) ICISC
2015. LNCS, vol. 9558, pp. 3-19. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-30840-1_1

Derler, D., Slamanig, D.: Rethinking privacy for extended sanitizable signatures
and a black-box construction of strongly private schemes. In: Au, M.-H., Miyaji,
A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 455-474. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26059-4_25

Fehr, V., Fischlin, M.: Sanitizable signcryption: sanitization over encrypted data
(full version). Cryptology ePrint Archive, Report 2015/765 (2015). http://eprint.
iacr.org/2015/765

Fischlin, M., Harasser, P.: Invisible sanitizable signatures and public-key encryp-
tion are equivalent. Cryptology ePrint Archive, Report 2018/337 (2018). https://
eprint.iacr.org/2018/337

Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schroder, D.,
Simkin, M.: Efficient unlinkable sanitizable signatures from signatures with re-
randomizable keys. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y.
(eds.) PKC 2016. LNCS, vol. 9614, pp. 301-330. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49384-7_12

Ghosh, E., Goodrich, M.T., Ohrimenko, O., Tamassia, R.: Fully-dynamic verifiable
zero-knowledge order queries for network data. Cryptology ePrint Archive, Report
2015/283 (2015). http://eprint.iacr.org/2015 /283

Ghosh, E., Ohrimenko, O., Tamassia, R.: Zero-knowledge authenticated order
queries and order statistics on a list. In: Malkin, T., Kolesnikov, V., Lewko, A.B.,
Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 149-171. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7_8

Gong, J., Qian, H., Zhou, Y.: Fully-secure and practical sanitizable signatures. In:
Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 300-317.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21518-6_21
Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: a new app-
roach for chosen ciphertext security. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 663-681. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4_39

Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44-61 (1989)

https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-662-53644-5_21
https://doi.org/10.1007/978-3-662-53644-5_21
https://doi.org/10.1007/978-3-319-04897-0_8
https://doi.org/10.1007/978-3-319-30840-1_1
https://doi.org/10.1007/978-3-319-30840-1_1
https://doi.org/10.1007/978-3-319-26059-4_25
http://eprint.iacr.org/2015/765
http://eprint.iacr.org/2015/765
https://eprint.iacr.org/2018/337
https://eprint.iacr.org/2018/337
https://doi.org/10.1007/978-3-662-49384-7_12
http://eprint.iacr.org/2015/283
https://doi.org/10.1007/978-3-319-28166-7_8
https://doi.org/10.1007/978-3-642-21518-6_21
https://doi.org/10.1007/978-3-642-29011-4_39

220

28.

29.

30.

31.

32.

33.

34.

35.

36.

M. Fischlin and P. Harasser

Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244-262. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45760-7_17

Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: Rhee, M.S., Lee,
B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343-355. Springer, Heidelberg (2006).
https://doi.org/10.1007/11927587_28

Krenn, S., Samelin, K., Sommer, D.: Stronger security for sanitizable signatures.
In: Garcia-Alfaro, J., Navarro-Arribas, G., Aldini, A., Martinelli, F., Suri, N. (eds.)
DPM/QASA -2015. LNCS, vol. 9481, pp. 100-117. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29883-2_7

Matsuda, T., Hanaoka, G.: An asymptotically optimal method for converting bit
encryption to multi-bit encryption. In: Iwata, T., Cheon, J.H. (eds.) ASTACRYPT
2015. LNCS, vol. 9452, pp. 415-442. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48797-6_18

Myers, S., Shelat, A.: Bit encryption is complete. In: 50th FOCS, pp. 607-616
(2009)

Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: 21st ACM STOC, pp. 33—43 (1989)

Pohls, H.C., Samelin, K., Posegga, J.: Sanitizable signatures in XML signature —
performance, mixing properties, and revisiting the property of transparency. In:
Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166-182. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21554-4_10

Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: 22nd ACM STOC, pp. 387-394 (1990)

Yum, D.H., Seo, J.W., Lee, P.J.: Trapdoor sanitizable signatures made easy. In:
Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 53-68. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-13708-2_4

https://doi.org/10.1007/3-540-45760-7_17
https://doi.org/10.1007/11927587_28
https://doi.org/10.1007/978-3-319-29883-2_7
https://doi.org/10.1007/978-3-319-29883-2_7
https://doi.org/10.1007/978-3-662-48797-6_18
https://doi.org/10.1007/978-3-662-48797-6_18
https://doi.org/10.1007/978-3-642-21554-4_10
https://doi.org/10.1007/978-3-642-13708-2_4

	Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent
	1 Introduction
	1.1 Invisible Sanitizable Signatures
	1.2 Our Contributions
	1.3 Related Work
	1.4 Organization

	2 Definition of Sanitizable Signatures
	2.1 Notation
	2.2 Definition of Sanitizable Signature Schemes
	2.3 Correctness and Security Properties of Sanitizable Signature Schemes
	2.4 (Strong) Invisibility

	3 Invisible Sanitizable Signatures Imply Public-Key Encryption Schemes
	3.1 Construction
	3.2 IND-CPA-Security
	3.3 IND-CCA2-Security

	4 Public-Key Encryption Implies Invisible Sanitizable Signatures
	4.1 Construction
	4.2 Security
	4.3 Achieving Strong Invisibility

	5 Conclusions
	References

