
Bart Preneel 
Frederik Vercauteren (Eds.)

 123

LN
CS

 1
08

92

16th International Conference, ACNS 2018
Leuven, Belgium, July 2–4, 2018
Proceedings

Applied Cryptography 
and Network Security



Lecture Notes in Computer Science 10892

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7410



Bart Preneel • Frederik Vercauteren (Eds.)

Applied Cryptography
and Network Security
16th International Conference, ACNS 2018
Leuven, Belgium, July 2–4, 2018
Proceedings

123



Editors
Bart Preneel
imec-COSIC
KU Leuven
Heverlee
Belgium

Frederik Vercauteren
imec-COSIC
KU Leuven
Heverlee
Belgium

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-93386-3 ISBN 978-3-319-93387-0 (eBook)
https://doi.org/10.1007/978-3-319-93387-0

Library of Congress Control Number: 2018944429

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-2005-9651
http://orcid.org/0000-0002-7208-9599


Preface

ACNS 2018, the 16th International Conference on Applied Cryptography and Network
Security, was held during July 2–4, 2018, at KU Leuven, Belgium. The local orga-
nization was in the capable hands of the COSIC team at KU Leuven and we are deeply
indebted to them for their support and smooth collaboration.

We received 173 paper submissions, out of which 36 were accepted, resulting in an
acceptance rate of 20%. These proceedings contain revised versions of all the papers.
The invited keynotes were delivered by Gilles Barthe, who spoke on formal verification
of side-channel resistance and Haya Shulman who shared with the audience her per-
spective on RPKI’s Deployment and Security of BGP.

The Program Committee consisted of 52 members with diverse backgrounds and
broad research interests. The review process was double-blind. Each paper received at
least three reviews; for submissions by Program Committee members, this was
increased to five. During the discussion phase, additional reviews were solicited when
necessary. An intensive discussion was held to clarify issues and to converge toward
decisions. The selection of the program was challenging; in the end some high-quality
papers had to be rejected owing to lack of space. The committee decided to give the
Best Student Paper Award to the paper “Non-interactive zaps of knowledge” by Georg
Fuchsbauer and Michele Orrù.

We would like to sincerely thank the authors of all submissions for contributing
high-quality submissions and giving us the opportunity to compile a strong and diverse
program. We know that the Program Committee’s decisions can be very disappointing,
especially rejections of good papers that did not find a slot in the sparse number of
accepted papers.

Special thanks go to the Program Committee members; we value their hard work
and dedication to write careful and detailed reviews and to engage in interesting
discussions. A few Program Committee members, whom we asked to serve as shep-
herds, spent additional time in order to help the authors improve their works. More than
160 external reviewers contributed to the review process; we would like to thank them
for their efforts.

Finally, we thank everyone else — speakers and session chairs — for their con-
tribution to the program of ACNS 2018. We would also like to thank the sponsors for
their generous support.

We hope that the papers in this volume prove valuable for your research and
professional activities and that ACNS will continue to play its unique role in bringing
together researchers and practitioners in the area of cryptography and network security.

April 2018 Bart Preneel
Frederik Vercauteren



ACNS 2018

Applied Cryptography and Network Security 2018

KU Leuven, Belgium
July 2–4, 2018

General Chair

Bart Preneel KU Leuven, Belgium

Program Chairs

Bart Preneel KU Leuven, Belgium
Frederik Vercauteren KU Leuven, Belgium

Program Committee

Michel Abdalla ENS and CNRS, France
Masayuki Abe NTT, Japan
Elli Androulaki IBM Research, Switzerland
Alex Biryukov University of Luxembourg, Luxembourg
Marina Blanton University at Buffalo, The State University of New York,

USA
Jan Camenisch IBM Research, Switzerland
Liqun Chen University of Surrey, UK
Chen-Mou Cheng National Taiwan University, Taiwan
Naccache David ENS, France
Dieter Gollmann Hamburg University of Technology, Germany
Peter Gutmann University of Auckland, New Zealand
Shai Halevi IBM Research, USA
Goichiro Hanaoka AIST, Japan
Amir Herzberg University of Connecticut, USA
Tibor Jager Paderborn University, Germany
Marc Joye NXP Semiconductors, USA
Aniket Kate Purdue University, USA
Stefan Katzenbeisser TU Darmstadt, Germany
Florian Kerschbaum University of Waterloo, Canada
Aggelos Kiayias University of Edinburgh, UK
Kwangjo Kim KAIST, Korea
Kaoru Kurosawa Ibaraki University, Japan
Ralf Kusters University of Stuttgart, Germany



Xuejia Lai Shanghai Jiaotong University, China
Benoit Libert CNRS and ENS de Lyon, France
Dongdai Lin SKLOIS, Chinese Academy of Sciences, China
Michael Locasto SRI International, USA
Javier Lopez University of Malaga, Spain
Mark Manulis University of Surrey, UK
Atefeh Mashatan Ryerson University, Canada
Bart Mennink Radboud University, The Netherlands
Atsuko Miyaji JAIST, Japan
Refik Molva Eurecom, France
Michael Naehrig Microsoft Research, USA
Miyako Ohkubo NICT, Japan
Panos Papadimitratos KTH Royal Institute of Technology, Sweden
Thomas Peyrin Nanyang Technological University, Singapore
Josef Pieprzyk QUT, Australia
Benny Pinkas Bar-Ilan University, Israel
Bart Preneel KU Leuven, Belgium
Christian Rechberger TU Graz, Austria
Matt Robshaw Impinj, USA
Ahmad Sadeghi TU Darmstadt, Germany
Yu Sasaki NTT Secure Platform Laboratories, Japan
Willy Susilo University of Wollongong, Australia
Mehdi Tibouchi NTT Secure Platform Laboratories, Japan
Damien Vergnaud ENS, France
Ivan Visconti University of Salerno, Italy
Frederik Vercauteren KU Leuven, Belgium
Avishai Wool Tel Aviv University, Israel
Moti Yung Colombia University, USA
Jianying Zhou Singapore University of Technology and Design,

Singapore

Additional Reviewers

Aydin Abadi
Mai Ben Adar-Bessos
Megha Agrawal
Hyeongcheol Ahn
Muhamad Erza Aminanto
Hassan Asghar
Nuttapong Attrapadung
Joonsang Baek
Anubhab Baksi
Josep Balasch
Harry Barlett

Pascal Bemmann
Fabrice Benhamouda
Cecilia Boschini
Florian Bourse
Ferdinand Brasser
Niklas Büscher
Seyit Camtepe
Luigi Catuogno
Avik Chakraborti
Jagmohan Chauhan
Hao Chen

Jiageng Chen
Rongmao Chen
Yu Chen
Céline Chevalier
Rakyong Choi
Tung Chou
Sherman S. M. Chow
Peter Chvojka
Michele Ciampi
Craig Costello
Angelo De Caro

VIII ACNS 2018



Yi Deng
David Derler
Christoph Dobraunig
Manu Drijvers
Li Duan
Maria Eichlseder
Kaoutar Elkhiyaoui
Keita Emura
Oguzhan Ersoy
Thomas Espitau
Gerardo Fenandez
Carmen Fernandez
Daniel Fett
Dario Fiore
Steven Galbraith
Adria Gascon
Romain Gay
Kai Gellert
Junqing Gong
Zheng Gong
Alonso Gonzalez
Lorenzo Grassi
Clémentine Gritti
Jian Guo
Jinguang Han
Yoshikazu Hanatani
Lin Hou
Guifang Huang
Jialin Huang
Ilia Iliashenko
Vincenzo Iovino
Ai Ishida
Dirmanto Jap
Saqib Kakvi
Daniel Kales
Jean-Gabriel Kammerer
Julien Keuffer
Jongkil Kim
Markulf Kohlweiss
Florian Kohnhäuser
Takeshi Koshiba
Hugo Krawczyk
Po-Chun Kuo
Rafael Kurek
Jianchang Lai

Qiqi Lai
Ben Lapid
Jeeun Lee
Qi Li
Christopher Liebchen
Tingting Lin
Helger Lipmaa
Patrick Longa
Xiapu Luo
Yiyuan Luo
Xuecheng Ma
Takahiro Matsuda
Matthew McKague
Siang Meng Sim Meng
Weizhi Meng
Markus Miettinen
Takaaki Mizuki
Kirill Morozov
Fabrice Mouhartem
Johannes Mueller
Zakaria Najm
Toru Nakanishi
Surya Nepal
Khoa Nguyen
David Niehues
Ana Nieto
Ariel Nof
David Nuñez
Kazuma Ohara
Shinya Okumura
Kazumasa Omote
Melek Önen
Leo Perrin
Thomas Peters
Le Trieu Phong
Tran Viet Xuan Phuong
Thomas Pöppelmann
Jeyavijayan Rajendran
Sebastian Ramacher
Somindu Ramanna
Daniel Rausch
Joost Renes
Sietse Ringers
Ruben Rios
Rodrigo Roman

Yusuke Sakai
Katerina Samari
John Schanck
Guido Schmitz
Jacob Schuldt
Hwajeong Seo
Mike Simon
Luisa Siniscalchi
Chunhua Su
Koutarou Suzuki
Akira Takahashi
Katsuyuki Takashima
Harry Chandra

Tanuwidjaja
Tadanori Teruya
Yosuke Todo
Junichi Tomida
Patrick Towa
Yiannis Tselekounis
Ida Tucker
Aleksei Udovenko
Cédric Van Rompay
Dimitrios Vasilopoulos
Vesselin Velichkov
Nikita Veshchikov
Haoyang Wang
Qingju Wang
Yohei Watanabe
Keita Xagawa
Weijia Xue
Shota Yamada
Takashi Yamakawa
Hailun Yan
Guomin Yang
Kazuki Yoneyama
Hirotaka Yoshida
Hongbo Yu
Zheng Yuan
Thomas Zacharias
Rina Zeitoun
Bingsheng Zhang
Lei Zhang
Tao Zhang
Vincent Zucca

ACNS 2018 IX



Contents

Cryptographic Protocols

A Cryptographic Analysis of the WireGuard Protocol . . . . . . . . . . . . . . . . . 3
Benjamin Dowling and Kenneth G. Paterson

Distributed SSH Key Management with Proactive RSA
Threshold Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Yotam Harchol, Ittai Abraham, and Benny Pinkas

Non-interactive Zaps of Knowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Georg Fuchsbauer and Michele Orrù

Side Channel Attacks and Tamper Resistance

Formal Verification of Side-Channel Countermeasures
via Elementary Circuit Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Jean-Sébastien Coron

Drive-By Key-Extraction Cache Attacks from Portable Code . . . . . . . . . . . . 83
Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom

On the Ineffectiveness of Internal Encodings - Revisiting the DCA
Attack on White-Box Cryptography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Estuardo Alpirez Bock, Chris Brzuska, Wil Michiels,
and Alexander Treff

Continuously Non-malleable Codes with Split-State Refresh. . . . . . . . . . . . . 121
Antonio Faonio, Jesper Buus Nielsen, Mark Simkin, and Daniele Venturi

Digital Signatures

Efficient Unconditionally Secure Signatures Using Universal Hashing . . . . . . 143
Ryan Amiri, Aysajan Abidin, Petros Wallden, and Erika Andersson

Floppy-Sized Group Signatures from Lattices . . . . . . . . . . . . . . . . . . . . . . . 163
Cecilia Boschini, Jan Camenisch, and Gregory Neven

On the Security Notions for Homomorphic Signatures . . . . . . . . . . . . . . . . . 183
Dario Catalano, Dario Fiore, and Luca Nizzardo

Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent . . . 202
Marc Fischlin and Patrick Harasser



Delegatable Attribute-Based Anonymous Credentials from Dynamically
Malleable Signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Johannes Blömer and Jan Bobolz

Privacy Preserving Computation

Privacy-Preserving Ridge Regression with
only Linearly-Homomorphic Encryption. . . . . . . . . . . . . . . . . . . . . . . . . . . 243

Irene Giacomelli, Somesh Jha, Marc Joye, C. David Page,
and Kyonghwan Yoon

Privacy-Preserving Plaintext-Equality of Low-Entropy Inputs . . . . . . . . . . . . 262
Sébastien Canard, David Pointcheval, Quentin Santos,
and Jacques Traoré

Nothing Refreshes Like a RePSI: Reactive Private Set Intersection . . . . . . . . 280
Andrea Cerulli, Emiliano De Cristofaro, and Claudio Soriente

Multi-party Computation

New Protocols for Secure Equality Test and Comparison . . . . . . . . . . . . . . . 303
Geoffroy Couteau

Minimising Communication in Honest-Majority MPC by Batchwise
Multiplication Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

Peter Sebastian Nordholt and Meilof Veeningen

Best of Both Worlds in Secure Computation, with Low
Communication Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

Daniel Genkin, S. Dov Gordon, and Samuel Ranellucci

3PC ORAM with Low Latency, Low Bandwidth, and Fast Batch Retrieval . . . 360
Stanislaw Jarecki and Boyang Wei

Symmetric Key Primitives

MERGEMAC: A MAC for Authentication with Strict Time Constraints
and Limited Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

Ralph Ankele, Florian Böhl, and Simon Friedberger

KANGAROOTWELVE: Fast Hashing Based on KECCAK-p . . . . . . . . . . . . . . . . . . 400
Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche,
Ronny Van Keer, and Benoît Viguier

XII Contents



Symmetric Key Cryptanalysis

Related-Key Boomerang Attacks on Full ANU Lightweight Block Cipher . . . 421
Yu Sasaki

Generic Round-Function-Recovery Attacks for Feistel Networks
over Small Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

F. Betül Durak and Serge Vaudenay

Differential Cryptanalysis of Round-Reduced Sparx-64/128 . . . . . . . . . . . . . 459
Ralph Ankele and Eik List

Can Caesar Beat Galois? Robustness of CAESAR Candidates Against
Nonce Reusing and High Data Complexity Attacks . . . . . . . . . . . . . . . . . . . 476

Serge Vaudenay and Damian Vizár

Public Key Encryption

Improved Anonymous Broadcast Encryptions: Tight Security
and Shorter Ciphertext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497

Jiangtao Li and Junqing Gong

Time-Based Direct Revocable Ciphertext-Policy Attribute-Based
Encryption with Short Revocation List. . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

Joseph K. Liu, Tsz Hon Yuen, Peng Zhang, and Kaitai Liang

Almost Tight Multi-Instance Multi-Ciphertext Identity-Based
Encryption on Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

Xavier Boyen and Qinyi Li

Authentication and Biometrics

In-Region Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557
Mamunur Rashid Akand and Reihaneh Safavi-Naini

Formal Analysis of Distance Bounding with Secure Hardware . . . . . . . . . . . 579
Handan Kılınç and Serge Vaudenay

KRB-CCN: Lightweight Authentication and Access Control for Private
Content-Centric Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598

Ivan O. Nunes and Gene Tsudik

Assentication: User De-authentication and Lunchtime Attack Mitigation
with Seated Posture Biometric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616

Tyler Kaczmarek, Ercan Ozturk, and Gene Tsudik

Contents XIII



Cloud and Peer-to-Peer Security

Stateful Multi-client Verifiable Computation . . . . . . . . . . . . . . . . . . . . . . . . 637
Christian Cachin, Esha Ghosh, Dimitrios Papadopoulos,
and Björn Tackmann

VERICOUNT: Verifiable Resource Accounting Using Hardware
and Software Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 657

Shruti Tople, Soyeon Park, Min Suk Kang, and Prateek Saxena

Message-Locked Encryption with File Update . . . . . . . . . . . . . . . . . . . . . . 678
Suyash Kandele and Souradyuti Paul

DogFish: Decentralized Optimistic Game-theoretic FIle SHaring . . . . . . . . . . 696
Seny Kamara and Alptekin Küpçü

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

XIV Contents



Cryptographic Protocols



A Cryptographic Analysis of the
WireGuard Protocol

Benjamin Dowling(B) and Kenneth G. Paterson

Information Security Group, Royal Holloway, University of London, Egham, UK
{benjamin.dowling,kenny.paterson}@rhul.ac.uk

Abstract. WireGuard (Donenfeld, NDSS 2017) is a recently proposed
secure network tunnel operating at layer 3. WireGuard aims to replace
existing tunnelling solutions like IPsec and OpenVPN, while requiring
less code, being more secure, more performant, and easier to use. The
cryptographic design of WireGuard is based on the Noise framework. It
makes use of a key exchange component which combines long-term and
ephemeral Diffie-Hellman values (along with optional preshared keys).
This is followed by the use of the established keys in an AEAD con-
struction to encapsulate IP packets in UDP. To date, WireGuard has
received no rigorous security analysis. In this paper, we, rectify this.
We first observe that, in order to prevent Key Compromise Imperson-
ation (KCI) attacks, any analysis of WireGuard’s key exchange compo-
nent must take into account the first AEAD ciphertext from initiator
to responder. This message effectively acts as a key confirmation and
makes the key exchange component of WireGuard a 1.5 RTT protocol.
However, the fact that this ciphertext is computed using the established
session key rules out a proof of session key indistinguishability for Wire-
Guard’s key exchange component, limiting the degree of modularity that
is achievable when analysing the protocol’s security. To overcome this
proof barrier, and as an alternative to performing a monolithic analysis
of the entire WireGuard protocol, we add an extra message to the proto-
col. This is done in a minimally invasive way that does not increase the
number of round trips needed by the overall WireGuard protocol. This
change enables us to prove strong authentication and key indistinguisha-
bility properties for the key exchange component of WireGuard under
standard cryptographic assumptions.

Keywords: Authenticated key exchange · Cryptographic protocols
Formal analysis · WireGuard

1 Introduction

WireGuard: WireGuard [11] was recently proposed by Donenfeld as a replace-
ment for existing secure communications protocols like IPsec and OpenVPN. It
has numerous benefits, not least its simplicity and ease of configuration, high per-
formance in software, and small codebase. Indeed, the protocol is implemented
c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 3–21, 2018.
https://doi.org/10.1007/978-3-319-93387-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_1&domain=pdf


4 B. Dowling and K. G. Paterson

in less than 4,000 lines of code, making it relatively easy to audit compared
to large, complex and buggy code-bases typically encountered with IPsec and
SSL/TLS (on which OpenVPN is based).

From a networking perspective, WireGuard encapsulates IP packets in UDP
packets, which are then further encapsulated in IP packets. This is done care-
fully so as to avoid too much packet overhead. WireGuard also offers a highly
simplified version of IPsec’s approach to managing which security transforms get
applied to which packets: essentially, WireGuard matches on IP address ranges
and associates IP addresses with static Diffie-Hellman keys. This avoids much
of the complexity associated with IPsec’s Security Associations/Security Policy
Database mechanisms.

From a cryptographic perspective, WireGuard presents an interesting design.
It is highly modular, with a key exchange phase, called the handshake, that is
presented as being clearly separated from the subsequent use of the keys in a
data transport protocol. A key feature is the one-round (or 1-RTT) nature of
the key exchange phase. The key exchange phase runs between an initiator and
a responder. It combines long-term and ephemeral Diffie-Hellman values, exclu-
sively using Curve25519 [3], and is built from the Noise protocol framework [23].
In fact, every possible pairwise combination of long-term and ephemeral val-
ues is involved in the key computations, presumably in an effort to strengthen
security in the face of various combinations of long-term and ephemeral pri-
vate key compromise. The long-term keys are not supported by a PKI, but are
instead assumed to be pre-configured and known to the communicating parties
(or trusted on first use, as per SSH). The protocol specification includes an option
for using preshared keys between pairs of parties, to augment the DH-based
exchange and as a hedge against quantum adversaries. The key exchange phase
relies on the BLAKE2s hash function [2] for hashing parts of the transcript, to
build HMAC (a hash-based MAC algorithm), and for HKDF (an HMAC-based
key derivation function). The data transport protocol uses solely ChaCha20-
Poly1305 as specified in RFC 7539 [22] as an AEAD scheme in a lightweight
packet format. The AEAD processing incorporates explicit sequence numbers
and the receiver uses a standard sliding window technique to deal with packet
delays and reorderings.

Security of WireGuard: To the best of our knowledge, with the exception of
an initial and high-level symbolic analysis,1 WireGuard has received no rigorous
security analysis. In particular, it has not benefitted from any computational (as
opposed to symbolic) proofs. In this paper, we provide such an analysis.

We cannot prove the handshake protocol (as presented in [11]) secure because
of an unfortunate reliance on the first message sent in the subsequent data trans-
port protocol to provide entity authentication of the initiator to the responder.
Without this extra message, there is a simple Key Compromise Impersonation
(KCI) attack, violating a desirable authentication goal of the protocol. This
attack was already pointed out by Donenfeld in [11]. Strictly speaking, it means
that the key exchange phase is not 1-RTT (as the responder cannot safely send
1 https://www.wireguard.com/papers/wireguard-formal-verification.pdf.

https://www.wireguard.com/papers/wireguard-formal-verification.pdf


A Cryptographic Analysis of the WireGuard Protocol 5

data to the initiator until it has received a verified data transport message from
the initiator). We show that there is also an attack on the forward secrecy of
the protocol in the same KCI setting, similar to observations made by Krawczyk
in [18]. Such an attack recovers session keys rather than breaking authentication
properties, and is arguably more serious. However, the attack requires a partic-
ular set of compromise capabilities on the part of the attacker, so we regard it
more as a barrier to obtaining strong security proofs than as a practical attack.

On the other hand, if we take the extra message required to prevent the KCI
attack of [11] and our new attack into account, it becomes impossible to prove the
usual key indistinguishability (KI) property desired of a key exchange protocol
(and which, broadly speaking, guarantees that it can be securely composed with
subsequent use of the keys [9]). This is because the data transport protocol uses
the very keys that we would desire to prove indistinguishable from random to
AEAD-protect potentially known plaintexts. Such issues are well-known in the
analysis of real-world secure communications protocols – they are endemic, for
example, in the analysis of SSL/TLS prior to version 1.3 [16,19,21].

There are two basic approaches to solving this problem: analyse the entire
protocol (handshake and data transport) as a monolithic entity, or modify the
protocol to provide a proper key separation between keys used in the handshake
to provide authentication and keys used in the data transport layer. The former
approach has been successfully applied (see for example the ACCE framework
of [16]) but is complex, requires models highly tuned to the protocol, and results
in quite unwieldy proofs. The latter approach makes for easier analysis and high-
lights better what needs to be considered to be part of the key exchange protocol
in order to establish its security, but necessitates changes to the protocol.

Our Contributions: In this paper, we adopt the latter approach, making min-
imally invasive changes to WireGuard to enable us to prove its security. In more
detail, we work with a security model for key exchange based on that of Cre-
mers and Feltz [10] but extended to take into account WireGuard’s preshared
key option. The model allows us to handle a full range of security properties
in one clean sweep, including authentication, regular key indistinguishability,
forward security, and KCI attacks (including advanced forms in which key secu-
rity is considered). The model considers a powerful adversary who is permitted
to make every combination of ephemeral and honestly-generated long-term key
compromise bar those allowing trivial attacks, and who is able to interact with
multiple parties in arbitrary numbers of protocol runs.

We build a description of WireGuard’s key exchange phase that takes into
account all of its main cryptographic features, including the fine details of its
many key derivation and (partial) transcript hashing steps. However, in-line
with our choice of how to handle the KI/modularity problem, we make a small
modification to the handshake protocol, adding an extra flow from initiator to
responder which explicitly authenticates one party to the other. This job is cur-
rently fulfilled by the first packet from initiator to responder in the data transport
protocol. With this modification in place, we are then able to prove the secu-
rity of WireGuard’s key exchange protocol under fairly standard cryptographic



6 B. Dowling and K. G. Paterson

assumptions, in the standard model. Specifically, our proof relies on a PRFODH
assumption [8,16] (alternatively, we could have chosen to work with gap-DH and
the Random Oracle Model).

Roadmap: Section 2 provides preliminary definitions, mostly focussed on secu-
rity notions for the base primitives used in WireGuard. Section 3 describes the
WireGuard handshake protocol. Section 4 presents the security model for key
exchange that we use in Sect. 5, where our main security result, Theorem 1, can
be found. We wrap up with conclusion and future work in Sect. 6.

2 Preliminaries

Here we formalise the security assumptions that we will be using in our analysis
of WireGuard, specifically the security assumptions for pseudo-random function
(PRF) security, for Authenticated-Encryption with Associated Data (AEAD)
schemes (due to space constraints, these can be found in the full version [14]).
We use an asymptotic approach, relying on primitives that are parameterised
with a security parameter λ; all our definitions and results can be made concrete
at the expense of using extended notation. In later sections, we will suppress all
dependence on λ in our naming of primitives to ease the notation.

We let G = 〈g〉 denote a finite cyclic group of prime order q that is generated
by g. We utilise different typefaces to represent distinct objects: algorithms (such
as an adversary A and a challenger C in a security game), adversarial Queries
(such as Test or Reveal), protocol and per-session variables (such as a public-
key/secret-key pair (pk, sk), definitions for security notions (such as coll or aead),
and constant protocol values (such as InitiatorHello and ResponderHello).

We now introduce the PRFODH assumption that will be needed for our
analysis of WireGuard. The first version of this assumption was introduced by
[16] in order to prove the TLS-DHE handshake secure in the standard model.
This was subsequently modified in later works analysing real-world protocols,
such as TLS-RSA [19], the in-development TLS 1.3 [12,13], and the Extended
Access Control Protocol [7]. This assumption was generalised in [8] in order to
capture the different variants of PRFODH in a parameterised way. We give the
formulation from [8] verbatim in the full version [14].

We extend the definition from [8] similarly to [12]: compared to [8] we allow
the adversary access to ODHu and ODHv oracles before the adversary issues the
challenge query x∗. This generalisation is necessary in our analysis of WireGuard,
because public ephemeral DH values are used to compute a salt value that is used
as an input to a PRF during the key computations. We refer to our extension
as the symmetric generic PRFODH assumption.

Definition 1 (Symmetric Generic PRFODH Assumption). Let G be a
cyclic group of order q with generator g (where G, q and g all implicitly depend
on λ). Let PRFλ : G × M → K be a function from a pseudo-random function
family that takes a group element k ∈ G and a salt value m ∈ M as input, and
outputs a value y ∈ K. We define a security notion, sym-lr-PRFODH security,



A Cryptographic Analysis of the WireGuard Protocol 7

which is parameterised by: l, r ∈ {n, s,m} indicating how often the adversary is
allowed to query “left” and “right” oracles (ODHu and ODHv), where n indicates
that no query is allowed, s that a single query is allowed, and m that multiple
(polynomially many) queries are allowed to the respective oracle. Consider the
following security game �

sym-lr-PRFODH
PRF,A between a challenger C and a PPT adver-

sary A, both running on input λ.

1. The challenger C samples u, v
$← Zq and provides G, g, gu, gv to A.

2. If l = m, A can issue arbitrarily many queries to oracle ODHu, and if r = m
and sym = Y to the oracle ODHv. These are implemented as follows:
– ODHu: on a query of the form (S, x), the challenger first checks if S /∈ G

and returns ⊥ if this is the case. Otherwise, it computes y ← PRFλ(Su, x)
and returns y.

– ODHv: on a query of the form (T, x), the challenger first checks if T /∈ G

and returns ⊥ if this is the case. Otherwise, it computes y ← PRFλ(T v, x)
and returns y.

3. Eventually, A issues a challenge query x∗. It is required that, for all queries
(S, x) to ODHu made previously, if S = gv, then x �= x∗. Likewise, it is
required that, for all queries (T, x) to ODHv made previously, if T = gu,

then x �= x∗. This is to prevent trivial wins by A. C samples a bit b
$←

{0, 1} uniformly at random, computes y0 = PRFλ(guv, x∗), and samples y1
$←

{0, 1}λ uniformly at random. The challenger returns yb to A.
4. Next, A may issue (arbitrarily interleaved) queries to oracles ODHu and

ODHv. These are handled as follows:
– ODHu: on a query of the form (S, x), the challenger first checks if S /∈ G

or if (S, x) = (gv, x∗) and returns ⊥ if either holds. Otherwise, it returns
y ← PRFλ(Su, x).

– ODHv: on a query of the form (T, x), the challenger first checks if T /∈ G

or if (T, x) = (gu, x∗) and returns ⊥ if either holds. Otherwise, it returns
y ← PRFλ(T v, x).

5. At some point, A outputs a guess bit b′ ∈ {0, 1}.
We say that the adversary wins the sym-lr-PRFODH game if b′ = b and define
the advantage function

Advsym-lr-PRFODH
PRF,G,q,A (λ) = |2 · Pr(b′ = b) − 1|.

We say that the sym-lr-PRFODH assumption holds if the advantage
Advsym-lr-PRFODH

PRF,G,q,A (λ) of any PPT adversary A is negligible.

3 The WireGuard Protocol

The WireGuard protocol is, as presented in [11]2, cleanly separated into two
distinct phases:
2 And in the updated version at https://www.wireguard.com/papers/wireguard.pdf

that we rely on hereafter.

https://www.wireguard.com/papers/wireguard.pdf


8 B. Dowling and K. G. Paterson

– A key exchange or handshake phase, where users exchange ephemeral elliptic-
curve Diffie-Hellman values, as well as encrypted long-term Diffie-Hellman
values and compute AEAD keys; and

– A data transport phase, where users may send authenticated and confidential
transport data under the previously computed AEAD keys.

The handshake phase is a 1-RTT protocol in which users maintain the following
set of variables:

– A randomly-sampled session identifier IDρ for each user in the session (i.e we
use IDi to refer to the session identifier of the initiator and for the responder
we refer to IDr).

– An updating seed value Ck, is used to seed the key-derivation function at
various points during the key-exchange.

– An updating hash value Hk, is used to hash subsets of the transcript together,
to bind the computed AEAD keys to the initial key-exchange.

– A tuple of AEAD keys that are used for confidentiality of the long-term key
of the initiator, and to authenticate hash values.

– Long-term elliptic-curve Diffie-Hellman keys gu, gv of initiator and responder,
respectively.

– Ephemeral elliptic-curve Diffie-Hellman keys gx, gy of initiator and responder,
respectively.

– Optional long-term preshared key psk.

In Fig. 1 we describe the computations required to construct the key exchange
messages, which we refer to as InitiatorHello and ResponderHello. For con-
ciseness, we do not include the chaining steps required to compute the various
Ck and Hk values throughout the protocol (we instead list them in Table 1). Nor
do we make explicit the verification of the mac1, mac2 MAC values nor the time,
zero AEAD values, but assume that they are correctly verified before deriving
the session keys tki and tkr.

3.1 Remarks on the Protocol

As noted in the introduction (and noted by Donenfeld [11]), it is clear that Wire-
Guard’s 1-RTT handshake taken in isolation is not secure in the KCI setting.
This is because an attacker in possession of the responder’s long-term private
DH value v can construct the first protocol message and thence impersonate
the initiator to the responder. Our attack in Sect. 5.1 extends this authentica-
tion attack to a session key recovery attack. WireGuard protects against this
kind of KCI attack by requiring the first data transport message to be sent by
the initiator and the responder to check the integrity of this message. Strictly
speaking, then, the first data transport message should be regarded as part of
the handshake, making it no longer 1-RTT.

An attractive aspect of WireGuard (from a provable security standpoint)
is that it is “cryptographically opinionated”, meaning that the protocol has no
algorithm negotiation functionality—all WireGuard sessions will use Curve25519



A Cryptographic Analysis of the WireGuard Protocol 9

Fig. 1. A brief overview of the WireGuard Key-Exchange Protocol. For more details
on the computation of the chaining seed (Ck), hash (Hk) and intermediate key (κk)
values, refer to Table 1. Note that all verifications of MAC and AEAD values are left
implicit, but are obviously crucial to security.

for ECDH key exchange, BLAKE2 as the underlying hash function that builds
both HMAC and HKDF, and ChaCha20-Poly1305 as the AEAD encryption
scheme. As is known from the analysis of SSL/TLS, [1,4,5,15] and more gener-
ally [17], such negotiation mechanisms can lead to downgrade attacks that can
fatally undermine security especially if a protocol supports both weak and strong
cryptographic options. This decision to avoid ciphersuite negotiation simplifies
the analysis of WireGuard.

Surprisingly, the full key exchange transcript is not authenticated by either
party—the mac1 and mac2 values are keyed with public values H(label3‖gv) and
cookie and thus can be computed by an adversary. While the hash values H3, H4

and H9 are headers in AEAD ciphertexts, these H values do not contain all of
the transcript information—the session identifiers sidi and sidr are not involved
in either the seed or hash chains. This then limits the options for analysing
WireGuard, as we cannot hope to show full transcript authentication properties.
It would be a straightforward modification to include the session identifiers in the
derivation of the session keys and thus bind the session identifiers to the session
keys themselves. One could argue that the lack of binding between transcripts
and output session keys has facilitated attacks on SSL/TLS, such as the Triple



10 B. Dowling and K. G. Paterson

Table 1. A detailed look at the computation of the chaining seed (Ck) and hash
(Hk) values, as well as the intermediate AEAD keys (κk) used in the WireGuard Key-
Exchange protocol. Note that unless otherwise specified, the triples (X, Y, Z) in the
table are used in that order as the inputs to a key-derivation function KDF(X, Y, Z)
(so X is used as the keying material, Y is the salt value and Z the index of the output
key) to compute the relevant values. Finally, we denote with ∅ values that are not used
during protocol execution.

k Seed value Ck Key κk Hash value Hk

1 H(label1) ∅ H(C1‖label2)
2 (C1, g

x, 1) ∅ H(H1‖gv)

3 (C2, g
xv, 1) (C2, g

xv, 2) H(H2‖gx)

4 (C3, g
uv, 1) (C3, g

uv, 2) H(H3‖ltk)
5 ∅ ∅ H(H4‖time)
6 (C4, g

y, 1) ∅ H(H5‖gy)

7 (C6, g
xy, 1) ∅ ∅

8 (C7, g
uy, 1) ∅ ∅

9 (C8, psk, 1) (C8, psk, 3) H(H6‖KDF(C8, psk, 2))

10 ∅ ∅ H(H9‖zero)

Handshake attack [6], and so a small modification to the inputs of the chaining
values C and hash values H would strengthen the security of the protocol.

4 Security Model

We propose a modification to the eCK-PFS security model introduced by Cremers
and Feltz [10] that incorporates preshared keys and strengthens the security def-
initions accordingly. We explain the framework and give an algorithmic descrip-
tion of the security model in Sect. 4.1, and describe the corruption abilities of the
adversary in Sect. 4.2. We then describe the modifications necessary to capture
the exact security guarantees that WireGuard attempts to achieve by explaining
the differences between our partnering definitions and traditional notions of part-
nering in Sect. 4.3. We then give our modified cleanness definitions in Sect. 4.4.
Given that WireGuard uses a mix of long-term identity keys, ephemeral keys
and preshared secrets in its key exchange protocol, it is appropriate to use an
extended-Canetti-Krawcyzk model (as introduced in [20]), wherein the adversary
is allowed to reveal subsets of these secrets. It is claimed in [11] that WireGuard
“achieves the requirements of authenticated key exchange (AKE) security, avoids
key-compromise impersonation, avoids replay attacks, provides perfect forward
secrecy,” [11]. These are all notions captured by our extended eCK-PFS model,
so our subsequent security proof will formally establish that WireGuard meets
its goals.



A Cryptographic Analysis of the WireGuard Protocol 11

4.1 Execution Environment

Consider an experiment ExpeCK-PFS-PSKKE,nP ,nS ,A (λ) played between a challenger C and
an adversary A. C maintains a set of nP parties P1, . . . , PnP

(representing users
interacting with each other via the protocol), each capable of running up to nS

sessions of a probabilistic key-exchange protocol KE, represented as a tuple of
algorithms KE = (f,ASKeyGen,PSKeyGen,EPKeyGen). We use πs

i to refer to
both the identifier of the s-th instance of the KE being run by party Pi and the
collection of per-session variables maintained for the s-th instance of KE run by
Pi. We describe the algorithms below:

KE.f(λ, pki, ski, π,m) $→ (m′, π′) is a (potentially) probabilistic algorithm
that takes a security parameter λ, the long-term asymmetric key pair pki, ski of
the party Pi, a collection of per-session variables π and an arbitrary bit string
m ∈ {0, 1}∗∪{∅}, and outputs a response m′ ∈ {0, 1}∗∪{∅} and an updated per-
session state π′, acting in accordance with an honest protocol implementation.

KE.ASKeyGen(λ) $→ (pk, sk) is a probabilistic asymmetric-key generation
algorithm taking as input a security parameter λ and outputting a public-
key/secret-key pair (pk, sk).

KE.PSKeyGen(λ) $→ (psk, pskid) is a probabilistic symmetric-key generation
algorithm that also takes as input a security parameter λ and outputs a symmet-
ric preshared secret key psk and (potentially) a preshared secret key identifier
pskid.

KE.EPKeyGen(λ) $→ (ek, epk) is a probabilistic ephemeral-key generation
algorithm that also takes as input a security parameter λ and outputs an asym-
metric public-key/secret-key pair (ek, epk).

C runs KE.ASKeyGen(λ) nP times to generate a public-key/secret-key pair
(pki, ski) for each party Pi ∈ {P1, . . . , PnP

} and delivers all public-keys pki for

i ∈ {1, . . . , nP } to A. The challenger C then randomly samples a bit b
$← {0, 1}

and interacts with the adversary via the queries listed in Sect. 4.2. Eventually, A
terminates and outputs a guess b′ of the challenger bit b. The adversary wins the
eCK-PFS-PSK key-indistinguishability experiment if b′ = b, and additionally if
the session πs

i such that Test(i, s) was issued satisfies a cleanness predicate clean,
which we discuss in more detail in Sect. 4.4. We give an algorithmic description
of this experiment in Fig. 2.

Each session maintains the following set of per-session variables:

– ρ ∈ {init, resp} – the role of the party in the current session. Note that
parties can be directed to act as init or resp in concurrent or subsequent
sessions.

– pid ∈ {1, . . . , nP , �} – the intended communication partner, represented with
� if unspecified. Note that the identity of the partner session may be set
during the protocol execution, in which case pid can be updated once.

– ms ∈ {0, 1}∗ ∪ {⊥} – the concatenation of messages sent by the session,
initialised by ⊥.

– mr ∈ {0, 1}∗ ∪ {⊥} – the concatenation of messages received by the session,
initialised by ⊥.



12 B. Dowling and K. G. Paterson

Fig. 2. eCK-PFS-PSK experiment for adversary A against the key-indistinguishability
security of protocol KE.



A Cryptographic Analysis of the WireGuard Protocol 13

– kid ∈ {0, 1}∗ ∪ {⊥} – the concatenation of public keyshare information
received by the session, initialised by ⊥.

– α ∈ {active, accept, reject,⊥} – the current status of the session, ini-
tialised with ⊥.

– k ∈ {0, 1}∗ ∪ {⊥} – the computed session key, or ⊥ if no session key has yet
been computed.

– ek ∈ {0, 1}∗ × {0, 1}∗ ∪ {⊥} – the ephemeral key pair used by the session
during protocol execution, initialised as ⊥.

– psk ∈ {0, 1}∗ ×{0, 1}∗ ∪{⊥} – the preshared secret and identifier used by the
session during protocol execution, initialised as ⊥.

– st ∈ {0, 1}∗ – any additional state used by the session during protocol
execution.

Finally, the challenger manages the following set of corruption registers,
which hold the leakage of secrets that A has revealed.

– preshared keys {PSKflag1,PSKflag2, . . . , PSKflagnP
} where for each ele-

ment PSKflagi [j] ∈ PSKflagi , PSKflagi [j] ∈ {corrupt, clean,⊥} ∀ i, j ∈
[nP ] and PSKflagi [j] = ⊥ for i = j.

– long-term keys {ASKflag1, . . . ,ASKflagnP
}, where ASKflagi ∈ {corrupt,

clean, ⊥} ∀ i ∈ [nP ].
– ephemeral keys {EPKflag1, . . . ,EPKflagnP

}, where EPKflagi [s] ∈ {corrupt,
clean, ⊥} ∀ i ∈ [nP ] and s ∈ [nS ].

– session keys {RSKflag1, . . . ,RSKflagnP
}, where RSKflagi [s] ∈ {corrupt,

clean, ⊥} ∀ i ∈ [nP ] and s ∈ [nS ].

We formalise the advantage of a PPT algorithm A in winning the
eCK-PFS-PSK key indistinguishability experiment in the following way:

Definition 2 (eCK-PFS-PSK Key Indistinguishability). Let KE be a key-
exchange protocol, and nP , nS ∈ N. For a particular given predicate clean, and
a PPT algorithm A, we define the advantage of A in the eCK-PFS-PSK key-
indistinguishability game to be:

AdveCK-PFS-PSK,clean
KE,nP ,nS ,A (λ) = |Pr[ExpeCK-PFS-PSK,clean

KE,nP ,nS ,A (λ) = 1] − 1
2
|.

We say that KE is eCK-PFS-PSK-secure if, for all A, AdveCK-PFS-PSK,clean
KE,nP ,nS ,A (λ) is

negligible in the security parameter λ.

4.2 Adversarial Interaction

Our security model is intended to be as generic as possible, in order to capture
eCK-like security notions, but to also include long-term preshared keys. This
would allow our model to be used in analysing (for example) the Signal protocol,
where users exchange both long-term Diffie-Hellman keyshares used in many
protocol executions, but also many ephemeral Diffie-Hellman keyshares that are
only used within a single session. Another example would be TLS 1.3, where users



14 B. Dowling and K. G. Paterson

may have established preshared keys to reduce the protocol’s computational
overheads, or to enable 0-RTT confidential data transmission.

Our attacker is a standard key-exchange model adversary, in complete control
of the communication network, able to modify, inject, delete or delay messages.
They can also compromise several layers of secrets:

– long-term private keys, modelling the misuse or corruption of long-term
secrets in other sessions, and additionally allowing our model to capture
forward-secrecy notions.

– ephemeral private keys, modelling the use of bad randomness generators.
– preshared symmetric keys, modelling the leakage of shared secrets, potentially

due to the misuse of the preshared secret by the partner, or the forced later
revelation of these keys.

– session keys, modelling the leakage of keys by their use in bad cryptographic
algorithms.

The adversary interacts with the challenger via the queries below. An algo-
rithmic description of how the challenger responds is in Fig. 2.

– Create(i, j, role) → {(i, s),⊥}: allows the adversary to begin new sessions.
– CreatePSK(i, j) → {pskid,,⊥}: allows the adversary to direct parties to

generate a preshared key for use in future protocol executions.
– Reveal(i, s): allows the adversary access to the secret session key computed

by a session during protocol execution.
– CorruptPSK(i) → {psk,⊥}: allows the adversary access to the secret pre-

shared key jointly shared by parties prior to protocol execution.
– CorruptASK(i) → {ski,⊥}: allows the adversary access to the secret long-term

key generated by a party prior to protocol execution.
– CorruptEPK(i, s) → {ek,⊥}: allows the adversary access to the secret

ephemeral key generated by a session during protocol execution.
– Send(i, s,m) → {m′,⊥}: allows the adversary to send messages to sessions

for protocol execution and receive their output.
– Test(i, s) → {k,⊥}: sends the adversary a real-or-random session key used in

determining the success of A in the key-indistinguishability game.

4.3 Partnering Definitions

In order to evaluate which secrets the adversary is able to reveal without triv-
ially breaking the security of the protocol, key-exchange models must define
how sessions are partnered. Otherwise, an adversary would simply run a proto-
col between two sessions, faithfully delivering all messages, Test the first session
to receive the real-or-random key, and Reveal the session partner’s key. If the
keys are equal, then the Test key is real, and otherwise the session key has
been sampled randomly. BR-style key-exchange models traditionally use match-
ing conversations in order to do this. When introducing the eCK-PFS model,
Cremers and Feltz [10] used the relaxed notion of origin sessions.



A Cryptographic Analysis of the WireGuard Protocol 15

However, both of these are still too restrictive for analysing WireGuard,
because this protocol does not explicitly authenticate the full transcript. Instead,
for WireGuard, we are concerned matching only on a subset of the transcript
information – the honest contributions of the keyshare and key-derivation mate-
rials. We introduce the notion of contributive keyshares to capture this intuition.

Definition 3 (Contributive Keyshares). Recall that πs
i .kid is the concate-

nation of all keyshare material sent by the session πs
i during protocol execution.

We say that πt
j is a contributive keyshare session for πs

i if πt
j .kid is a substring

of πs
i .mr.

This definition is protocol specific because πs
i .kid is: in WireGuard πs

i .kid
consists only of the long-term public Diffie-Hellman value and the ephemeral
public Diffie-Hellman value provided by the initiator and responder; in TLS 1.3
(for example) it would consist of the long-term public keys, the ephemeral public
Diffie-Hellman values and any preshared key identifiers provided by the client
and selected by the server.

4.4 Cleanness Predicates

We now define the exact combinations of secrets that an adversary is allowed to
leak without trivially breaking the protocol. The original cleanness predicate of
Cremers and Feltz [10] allows the reveal of long-term secrets for the test session’s
party Pi at any time, which places us firmly in the setting where the adversary
has key-compromise-impersonation abilities, but only allowed the reveal of long-
term secrets of the intended peer after the test session has established a secure
session, which captures perfect forward secrecy.

We now turn to modifying the cleanness predicate cleaneCK-PFS-PSK for the
preshared secret setting.

Definition 4 (cleaneCK-PFS-PSK). A session πs
i such that πs

i .α = accept in the
security experiment defined in Fig. 2 is cleaneCK-PFS-PSK if all of the following
conditions hold:

1. The query Reveal(i, s) has not been issued.
2. For all (j, t) ∈ nP ×nS such that πs

i is a contributive keyshare session for πt
j,

the query Reveal(j, t) has not been issued.
3. If PSKflagi [πs

i .pid] = corrupt or πs
i .psk = ⊥, the queries CorruptASK(i)

and CorruptEPK(i, s) have not both been issued.
4. If PSKflagi [πs

i .pid] = corrupt or πs
i .psk = ⊥, and for all (j, t) ∈ nP × nS

such that πt
j is a contributive keyshare session for πs

i , then CorruptASK(j, t)
and CorruptEPK(j, t) have not both been issued.

5. If there exists no (j, t) ∈ nP × nS such that πt
j is a contributive keyshare

session for πs
i , CorruptASK(j) has not been issued before πs

i .α ← accept.

We specifically forbid the adversary from revealing the long-term and ephemeral
secrets if the preshared secret between the test session and its intended part-
ner has already been revealed. Since preshared keys are optional in our frame-
work, we also must consider the scenario where a preshared secret does not exist



16 B. Dowling and K. G. Paterson

between the test session πs
i and its intended partner. Similarly, we forbid the

adversary from revealing the long-term and ephemeral secrets if there exists no
preshared secret between the two parties. Finally, since WireGuard does not
authenticate the full transcript, but relies instead on implicit authentication of
derived session keys based on secret information, we must use our contributive
keyshare partnering definition instead of the origin sessions of [10]. Like eCK-PFS,
we capture perfect forward secrecy under key-compromise-impersonation attack
in condition 5, where the long-term secret of the test session’s intended partner
is allowed to be revealed only after the test session has accepted. Additionally,
we allow for the optional incorporation of preshared secrets in conditions 3 and
4, where the adversary falls back to eCK-PFS leakage paradigm if the preshared
secret between the test session and its peer either does not already exist, or has
been already revealed.

5 Security Analysis

In this section we examine the security implications of modelling the WireGuard
handshake as a 1-RTT key exchange protocol. We have already noted that this
results in a KCI attack on the protocol, also observed in [11]. However, we note
an arguably more serious attack on session key security in our eCK-PFS-PSK
security model that results from this modelling. We discuss the implications of
this attack in Sect. 5.1. Making minor modifications to the WireGuard hand-
shake protocol will allow us to prove key-indistinguishability security in the
strong eCK-PFS-PSK model. Specifically, we will add a key-confirmation mes-
sage generated by the initiator. We describe the modified WireGuard handshake
protocol in Sect. 5.2 and prove it secure in Sect. 5.3.

5.1 Attack on Forward-Secrecy Notions

We briefly describe an attack on WireGuard as a 1-RTT protocol that is allow-
able within the eCK-PFS-PSK security model. It uses the ability of the adversary
to target perfect forward secrecy combined with key-compromise-impersonation
and results in full session key recovery. Specifically, it allows the adversary to
corrupt the long-term key of a responder session, and thus impersonate any
party initiating a session to the corrupted party. Since we model WireGuard
as a 1-RTT key exchange protocol, we do not include the data transport mes-
sage that would otherwise authenticate the initiator to a responder session, and
thus the responder has to accept the session as soon as the responder has sent
the ResponderHello message (this being the last message in the 1-RTT version
of the protocol). Afterwards, the adversary is permitted to corrupt the long-
term key of the party that it is impersonating. This enables it to compute the
session key, and thus distinguish real session keys from random ones, breaking
eCK-PFS-PSK key indistinguishability. The exact details of this attack within
the eCK-PFS-PSK security model can be found in the full version [14].



A Cryptographic Analysis of the WireGuard Protocol 17

Readers may argue that this attack is implausible in a real-world setting, and
is entirely artificial, allowable only because of the severe key compromises per-
mitted in the security model. We tend to agree, and present the attack here only
as a means of illustrating that the WireGuard handshake protocol, as originally
presented in its 1-RTT form, is not only vulnerable to standard KCI attacks,
but also to key recovery attacks, and therefore not directly amenable to strong
security proofs without incorporating additional messages as part of the hand-
shake.

5.2 The Modified WireGuard Handshake

We note that in [11], the protection for a responder against KCI attacks is
to wait for authenticated data transport messages to arrive from the initiator.
Incorporating this into the WireGuard handshake would make it impossible to
prove it secure with respect to a key indistinguishability security notion, however,
because the session keys, being used in the data transport protocol, would no
longer remain indistinguishable from random when the subject of a Test query.

As explained in the introduction, there are two basic ways of surmounting
this obstacle: consider the protocol (handshake and data transport) as a mono-
lithic whole, or modify the protocol. We adopt the latter approach, and present
a modification to the WireGuard handshake protocol that allows us to prove
notions of perfect forward secrecy and defence against key-compromise imper-
sonation attacks. Figure 3 shows the modified protocol, denoted mWG. It adds
a key-confirmation message sent from the initiator to the responder, computed
using an extra derived key κ10 used solely for this purpose.

Our modifications are minor (involving at most 5 extra symmetric key oper-
ations) and do not require an additional round trip before either party can
begin sending transport data, as the responder was already required to wait for
initiator-sent data before it was able to begin safely sending its own.

5.3 Security of the Modified WireGuard Handshake

This section is dedicated to proving our main result:

Theorem 1. The modified WireGuard handshake protocol mWG is
eCK-PFS-PSK-secure with cleanness predicate cleaneCK-PFS-PSK (capturing per-
fect forward secrecy and resilience to KCI attacks). That is, for any PPT
algorithm A against the eCK-PFS-PSK key-indistinguishability game (defined
in Fig. 2) AdveCK-PFS-PSKmWG,cleaneCK-PFS-PSK,nP ,nS ,A(λ) is negligible under the prf, auth-aead,
sym-ms-PRFODH, sym-mm-PRFODH and ddh assumptions.

Due to space constraints, we point readers to the full version of this work
[14] for a more detailed security statement, as well as full details of the proof.



18 B. Dowling and K. G. Paterson

Fig. 3. The modification to the WireGuard handshake that allows eCK-PFS-PSK secu-
rity. The change is limited to an additional SenderConf message that contains the value
conf ← AEAD(κ10, 0, H10, ∅). Except for the computation of the new C10, κ10 values,
all values are computed as in the original WireGuard handshake protocol, and can be
found in Table 1.

6 Conclusions and Future Work

We gave a description of the WireGuard protocol, and demonstrated that it
has an implicit entanglement of its data transport phase and its key exchange
(or handshake) phase. This is needed to ensure protection against KCI attacks.
In turn this means that WireGuard either cannot be proven secure as a key
exchange protocol using standard key-indistinguishability notions, or it is vul-
nerable to key-recovery attacks in the KCI setting. Despite this issue, we believe
that the design of WireGuard protocol is an interesting one, and our attack is
intended more to make a subtle point about the need to cleanly separate a key
exchange protocol and the usage of its session keys in subsequent protocols.

We presented the eCK-PFS-PSK security model. This amends the previous
eCK-PFS model of [10] to cover key exchange protocols such as WireGuard that
combine preshared keys with long-term and ephemeral keys. We then made a



A Cryptographic Analysis of the WireGuard Protocol 19

minimal set of modifications to the WireGuard handshake protocol, and proved
that the modified WireGuard protocol achieves key-indistinguishability security
in our new (and strong) eCK-PFS-PSK model.

Other approaches to analysing WireGuard may also be rewarding. Instead of
separately establishing the security of the handshake and assuming it securely
composes with the data transport phase, one could imagine making a monolithic
analysis similar to the ACCE approach introduced in [16]. However, this would
require a different “record layer” modelling from that used for TLS in [16] to
allow for packet loss and packet reordering. One could also implement our modi-
fication and measure its effect on the performance of WireGuard, but we expect
it to be very small.

Finally, we made certain simplifications to simplify our analysis of Wire-
Guard. For instance we did not model the Cookie Reply messages that are
designed to protect peers that are under load, nor did we analyse WireGuard’s
key rotation mechanisms. Given its several attractive properties, WireGuard is
certainly deserving of further formal security analysis.

Acknowledgements. Dowling was supported by EPSRC grant EP/L018543/1.
Paterson was supported in part by a research programme funded by Huawei Tech-
nologies and delivered through the Institute for Cyber Security Innovation at Royal
Holloway, University of London, and in part by EPSRC grants EP/M013472/1 and
EP/L018543/1. We are grateful to H̊akon Jacobsen and Benjamin Lipp as well as the
anonymous reviewers for feedback on our work.

References

1. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman,
J.A., Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wus-
trow, E., Béguelin, S.Z., Zimmermann, P.: Imperfect forward secrecy: how Diffie-
Hellman fails in practice. In: 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS 2015 Denver, Colorado, USA, pp. 5–17 (2015)

2. Aumasson, J.-P., Meier, W., Phan, R.C.-W., Henzen, L.: The Hash Function
BLAKE. ISC. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44757-4

3. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 14

4. Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M.,
Pironti, A., Strub, P.-Y., Zinzindohoue, J.K.: A messy state of the union: taming
the composite state machines of TLS. In: 2015 IEEE Symposium on Security and
Privacy, pp. 535–552. IEEE Computer Society Press, May 2015

5. Bhargavan, K., Brzuska, C., Fournet, C., Green, M., Kohlweiss, M., Béguelin,
S.Z.: Downgrade resilience in key-exchange protocols. In: 2016 IEEE Symposium
on Security and Privacy, pp. 506–525. IEEE Computer Society Press, May 2016

6. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti, A., Strub, P.-Y.: Triple
handshakes and cookie cutters: breaking and fixing authentication over TLS. In:
2014 IEEE Symposium on Security and Privacy, pp. 98–113. IEEE Computer Soci-
ety Press, May 2014

https://doi.org/10.1007/978-3-662-44757-4
https://doi.org/10.1007/978-3-662-44757-4
https://doi.org/10.1007/11745853_14


20 B. Dowling and K. G. Paterson

7. Brendel, J., Fischlin, M.: Zero round-trip time for the extended access control pro-
tocol. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS,
vol. 10492, pp. 297–314. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66402-6 18

8. Brendel, J., Fischlin, M., Günther, F., Janson, C.: PRF-ODH: relations, instanti-
ations, and impossibility results. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 651–681. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63697-9 22

9. Brzuska, C., Fischlin, M., Warinschi, B., Williams, S.C.: Composability of Bellare-
Rogaway key exchange protocols. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.)
ACM CCS 11, pp. 51–62. ACM Press, October 2011

10. Cremers, C., Feltz, M.: Beyond eCK: perfect forward secrecy under actor com-
promise and ephemeral-key reveal. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 734–751. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33167-1 42

11. Donenfeld, J., WireGuard: next generation kernel network tunnel. In: 24th Annual
Network and Distributed System Security Symposium, NDSS 2017, San Diego,
California, USA (2017)

12. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of
the TLS 1.3 handshake protocol candidates. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS 2015, pp. 1197–1210. ACM Press, October 2015

13. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 draft-10 full and pre-shared key handshake protocol. Cryptology ePrint
Archive, Report 2016/081 (2016). http://eprint.iacr.org/2016/081

14. Dowling, B., Paterson, K.G.: A Cryptographic Analysis of the WireGuard Protocol.
Cryptology ePrint Archive, Report 2018/080, January 2018. https://eprint.iacr.
org/2018/080

15. Dowling, B., Stebila, D.: Modelling ciphersuite and version negotiation in the TLS
protocol. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 270–288.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19962-7 16

16. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 17

17. Jager, T., Paterson, K.G., Somorovsky, J.: One bad apple: backwards compatibility
attacks on state-of-the-art cryptography. In: NDSS 2013. The Internet Society,
February 2013

18. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

19. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 429–448. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 24

20. LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

https://doi.org/10.1007/978-3-319-66402-6_18
https://doi.org/10.1007/978-3-319-66402-6_18
https://doi.org/10.1007/978-3-319-63697-9_22
https://doi.org/10.1007/978-3-319-63697-9_22
https://doi.org/10.1007/978-3-642-33167-1_42
http://eprint.iacr.org/2016/081
https://eprint.iacr.org/2018/080
https://eprint.iacr.org/2018/080
https://doi.org/10.1007/978-3-319-19962-7_16
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1


A Cryptographic Analysis of the WireGuard Protocol 21

21. Morrissey, P., Smart, N.P., Warinschi, B.: A modular security analysis of the TLS
handshake protocol. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350,
pp. 55–73. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-
7 5

22. Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF Protocols. RFC 7539 (Infor-
mational), May 2015

23. Perrin, T.: The Noise Protocol Framework, October 2017. http://noiseprotocol.
org/noise.html

https://doi.org/10.1007/978-3-540-89255-7_5
https://doi.org/10.1007/978-3-540-89255-7_5
http://noiseprotocol.org/noise.html
http://noiseprotocol.org/noise.html


Distributed SSH Key Management with
Proactive RSA Threshold Signatures

Yotam Harchol1(B), Ittai Abraham2, and Benny Pinkas2,3

1 UC Berkeley, Berkeley, USA
yotamhc@berkeley.edu

2 VMware Research, Palo Alto, USA
3 Bar-Ilan University, Ramat Gan, Israel

Abstract. SSH is a security network protocol that uses public key cryp-
tography for client authentication. SSH connections are designed to be
run between a client and a server and therefore in enterprise networks
there is no centralized monitoring of all SSH connections. An attractive
method for enforcing such centralized control, audit or even revocation
is to require all clients to access a centralized service in order to obtain
their SSH keys. The benefits of centralized control come with new chal-
lenges in security and availability.

In this paper we present ESKM - a distributed enterprise SSH key
manager. ESKM is a secure and fault-tolerant logically-centralized SSH
key manager. ESKM leverages k-out-of-n threshold security to provide
a high level of security. SSH private keys are never stored at any sin-
gle node, not even when they are used for signing. On a technical level,
the system uses k-out-of-n threshold RSA signatures, which are enforced
with new methods that refresh the shares in order to achieve proactive
security and prevent many side-channel attacks. In addition, we support
password-based user authentication with security against offline dictio-
nary attacks, that is achieved using threshold oblivious pseudo-random
evaluation.

ESKM does not require modification in the server side or of the SSH
protocol. We implemented the ESKM system, and a patch for OpenSSL
libcrypto for client side services. We show that the system is scalable and
that the overhead in the client connection setup time is marginal.

1 Introduction

SSH (Secure Shell) is a cryptographic network protocol for establishing a secure
and authenticated channel between a client and a server. SSH is extensively
used for connecting to virtual machines, managing routers and virtualization
infrastructure in data centers, providing remote support and maintenance, and
also for automated machine-to-machine interactions.

This work describes a key manager for SSH. Client authentication in SSH
is typically based on RSA signatures. We designed and implemented a system
called ESKM – a distributed Enterprise SSH Key Manager, which implements
and manages client authentication using threshold proactive RSA signatures.
c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 22–43, 2018.
https://doi.org/10.1007/978-3-319-93387-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_2&domain=pdf


Distributed SSH Key Management 23

Our work focuses on SSH but has implications beyond SSH key management.
Enterprise-level management of SSH connections is a known to be a critical prob-
lem which is hard to solve (see Sect. 1.1). The solution that we describe is based
on threshold cryptography, and must be compliant with the SSH protocol. As
such, it needs to compute RSA signatures. Unfortunately, existing constructions
for threshold computation of RSA signatures with proactive security, such as
[20–22], do not tolerate temporary unavailability of key servers (which is a com-
mon feature). We therefore designed a new threshold RSA signature protocol
with proactive security, and implemented it in our system. This protocol should
be of independent interest.

Technical Contributions. In addition to designing and implementing a solution
for SSH key management, this work introduces the following novel techniques:

– Threshold proactive RSA signatures with graceful handling of non-
cooperating servers: Threshold cryptography divides a secret key between
several servers, such that a threshold number of servers is required to com-
pute cryptographic operations, and a smaller number of servers learns noth-
ing about the key. Threshold RSA signatures are well known [27]. There are
also known constructions of RSA threshold signatures with proactive security
[20–22]. However, these constructions require all key servers to participate in
each signature. If a key server does not participate in computing a signa-
ture then its key-share is reconstructed and exposed to all other servers. This
constraint is a major liveness problem and is unacceptable in any large scale
system.
This feature of previous protocols is due to the fact that the shares of thresh-
old RSA signatures must be refreshed modulo φ(N) (for a public modulus
N), but individual key servers cannot know φ(N) since knowledge of this
value is equivalent to learning the private signature key.
ESKM solves this problem by refreshing the shares over the integers, rather
than modulo φ(N). We show that, although secret sharing over the integers
is generally insecure, it is secure for proactive share refresh of RSA keys.

– Dynamic addition of servers: ESKM can also securely add key servers or
recover failed servers, without exposing to any key server any share except
its own. (This was known for secret sharing, but not for threshold RSA sig-
natures.)

– Client authentication: Clients identify themselves to the ESKM system
using low-entropy secrets such as passwords. We enable authentication based
on threshold oblivious pseudo-random function protocols [19] (as far as we
know, we are the first to implement that construction). The authentication
method is secure against offline dictionary attacks even if the attacker has
access to the memory of the clients and of less than k of the key servers.

1.1 Current SSH Situation

SSH as a Security Risk. Multiple security auditing companies report that many
large scale enterprises have challenges in managing the complexity of SSH keys.



24 Y. Harchol et al.

SSH communication security [5] “analyzed 500 business applications, 15,000
servers, and found three million SSH keys that granted access to live produc-
tion servers. Of those, 90% were no longer used. Root access was granted by
10% of the keys”. Ponemon Institute study [4] in 2014 “of more than 2,100 sys-
tems administrators at Global 2000 companies found that three out of the four
enterprises were vulnerable to root-level attacks against their systems because
of failure to secure SSH keys, and more than half admitted to SSH-key-related
compromises.” It has even been suggested by security analysts at Venafi [6] that
one of the ways Edward Snowden was able to access NSA files is by creating and
manipulating SSH keys. Recent analysis [33] by Tatu Ylonen, one of the authors
of the SSH protocol, based on Wikileaks reports, shows how the CIA used the
BothanSpy and Gyrfalcon hacking tools to steal SSH private keys from client
machines.

The risk of not having an enterprise level solution for managing SSH keys
is staggering. In a typical kill chain the attacker begins by compromising one
machine, from there she can start a devastating lateral movement attack. SSH
private keys are either stored in the clear or protected by a pass-phrase that is
typically no match for an offline dictionary attack. This allows an attacker to
gain new SSH keys that enable elevating the breach and reaching more machines.
Moreover, since many SSH keys provide root access, this allows the attacker to
launch other attacks and to hide its tracks by deleting auditing controls. Finally,
since SSH uses state-of-of-the-art cryptography it prevents the defender from
having visibility to the attackers actions.

Motivation. A centralized system for storing and managing SSH secret keys has
major advantages:

– A centralized security manager can observe, approve and log all SSH con-
nections. This is in contrast to the peer-to-peer nature of plain SSH, which
enables clients to connect to arbitrary servers without any control by a cen-
tralized authority. A centralized security manager can enforce policies and
identify suspicious SSH connections that are typical of intrusions.

– Clients do not need to store keys, which otherwise can be compromised if
a client is breached. Rather, in a centralized system clients store no secrets
and instead only need to authenticate themselves to the system (in ESKM
this is done using passwords and an authentication mechanism that is secure
against offline dictionary attacks).

In contrast to the advantages of a central key server, it is also a single point
of failure, in terms of both availability and security. In particular, it is obviously
insecure to store all secret keys of an organization on a single server. We therefore
deploy n servers (also known as “control cluster nodes” – CC nodes) and use
k-out-of-n threshold security techniques to ensure that a client can obtain from
any k CC nodes the information needed for computing signatures, while any
subset of fewer than k CC nodes cannot learn anything useful about the keys.
Even though computing signatures is possible with the cooperation of k CC
nodes, the private key itself is never reconstructed. Security is enhanced by
proactive refresh of the CC nodes: every few seconds the keys stored on the



Distributed SSH Key Management 25

Fig. 1. General system architecture

nodes are changed, while the signature keys remain the same. An attacker who
wishes to learn a signature key needs to compromise at least k CC nodes in the
short period before a key refresh is performed.

Secret Key Leakage. There are many side-channel attack vectors that can be used
to steal keys from servers (e.g., [2,23,30]). Typically, side-channel attacks steal a
key by repeatedly leaking little parts of the secret information. Such attacks are
one of the main reasons for using HSMs (Hardware Secure Modules). Proactive
security reduces the vulnerability to side-channel attacks by replacing the secret
key used in each server after a very small number of invocations, or after a
short timeout. It cab therefore be used as an alternative to HSMs. We discuss
proactive security and our solutions is Sects. 2.2 and 3.2. (It is also possible to
use both threshold security and HSMs, by having some CC nodes use HSMs for
their secret storage.)

Securing SSH. The focus of this work is on securing client keys that are used
in SSH connections. Section 2.1 describes the basics of the handshake protocol
used by SSH. We use Shamir’s secret sharing to secure the storage of keys. The
secret sharing scheme of Shamir is described in Sect. 2.2. We also ensure security
in the face of actively corrupt servers which send incorrect secret shares to other
servers. This is done using verifiable secret sharing which is described in Sect. 2.2.
The main technical difficulty is in computing signatures using shared keys, so
that no server has access to a key neither in computation nor in storage. This is
achieved by using Shoup’s threshold RSA signatures (Sect. 2.2). We also achieve
proactive security, meaning that an attacker needs to break into a large subset
of the servers in a single time frame. This is enabled by a new cryptographic
construction that is described in Sect. 3.

1.2 ESKM

ESKM (Enterprise SSH Key Manager) is a system for secure and fault-tolerant
management of SSH private keys. ESKM provides a separation between the



26 Y. Harchol et al.

security control plane, and the data plane. The logically-centralized control plane
is in charge of managing and storing private keys in a secure and fault-tolerant
manner, so that keys are never stored in any single node at any given time. The
control plane also provides centralized management services, such as auditing
and logging for network-wide usage of secrets, and key revocation.

The general architecture of ESKM is presented in Fig. 1. The control plane
is composed of a security manager (SM) and a control cluster (CC). The ESKM
CC is a set of servers that provide the actual cryptographic services to data
plane clients. These servers can be located in the same physical site (e.g., a
datacenter), in multiple sites, or even in multiple public clouds. These servers
can be run in a separate hardened machine or as VMs or a container. They
do not require any specialized hardware but can be configured to utilize secure
hardware as a secondary security layer.

Threshold Cryptography. The ESKM control plane leverages k-out-of-n threshold
security techniques to provide guarantees for both a high level of security and
for strong liveliness. Secrets are split into n shares, where each share is stored on
a different control plane node. In order to retrieve a secret or to use it, at least
k shares are required (k < n). Specifically, in order to sign using a private key,
k out of n shares of the private key are used, but the private key itself is never
reconstructed, not even in memory, in cache, or in the CPU of any machine.
Instead, we use a threshold signature scheme where each node uses its share of
the private key to provide a signature fragment to the client. Any k of these
fragments are then transformed by the client to a standard RSA signature. Any
smaller number of these fragments is useless for an attacker, and in any case,
the shares, or the private key, cannot be derived from these fragments.

Proactive Security. ESKM also provides a novel proactive security protocol that
refreshes the shares stored on each CC node, such that the shares are randomly
changed, but the secret they hide remains the same. This protects against a
mobile adversary and side-channel attacks, since keys are refreshed very fre-
quently while on the other hand any successful attack must compromise at least
k servers before the key is refreshed. Known constructions of proactive refreshing
of threshold RSA signatures are inadequate for our application:

– In principle, proactive refreshing can be computed using generic secure multi-
party computation (MPC) protocols. However, this requires quite heavy
machinery (since operations over a secret modulus need to be computed in
the MPC by a circuit).

– There are known constructions of RSA threshold signatures with proactive
security [20–22], but these constructions require all key servers to participate
in each signature. If a key server does not participate in computing a signa-
ture then its key-share is reconstructed by the other servers and is exposed,
and therefore this key server is essentially removed from the system. This
constraint is a major liveness problem and is unacceptable in any large scale
system.



Distributed SSH Key Management 27

Given these constraints of the existing solutions for proactively secure thresh-
old RSA, we use a novel, simple and lightweight multi-party computation pro-
tocol for share refresh, which is based on secret sharing over the integers.

While secret sharing over the integers is generally insecure, we show that
under certain conditions, when the secret is a random integer in the range
[0 . . . R) and the number n of servers is small (nn � R), then such a scheme is
statistically hiding in the sense that it leaks very little information about the
secret key. In our application |R| is the length of an RSA key, and the number n
of servers is at most a double-digit number. (The full version of this paper [16]
contains a proof of security for the case where the threshold is 2, and a conjec-
ture and a proof sketch for the general case.) Our implementation of proactive
secret sharing between all or part of the CC nodes, takes less than a second, and
can be performed every few seconds.

Provisioning New Servers. Using a similar mechanism, ESKM also allows dis-
tributed provisioning of new CC nodes, and recovery of failed CC nodes, without
ever reconstructing or revealing the key share of one node.

Minimal Modifications to the SSH Infrastructure. As with many new solutions,
there is always the tension between clean-slate and evolution. With so much
legacy systems running SSH servers, it is quite clear that a clean-slate solution
is problematic. In our solution there is no modification to the server or to the
SSH protocol. The only change is in a very small and restricted part of the client
implementation. The ESKM system can be viewed as a virtual security layer on
top of client machines (whether these are workstations, laptops, or servers). This
security layer manages secret keys on behalf of the client and releases the client
from the liability of holding, storing, and using multiple unmanaged secret keys.
In fact, even if an attacker takes full control over a client machine, it will not be
able to obtain the secret keys that are associated with this client.

Abstractly, our solution implements the concept of algorithmic virtualization:
The server believes that a common legacy single-client is signing the authenti-
cation message while in fact the RSA signature is generated via a threshold
mechanism involving the client and multiple servers.

Implementation and Experiments. We fully implemented the ESKM system: a
security manager and a CC node, and a patch for the OpenSSL libcrypto for
client side services. Applying this patch makes the OpenSSH client, as well as
other software that uses it such as scp, rsync, and git, use our service where
the private key is not supplied directly but is rather shared between CC nodes.
We also implemented a sample phone application for two-factor human authen-
tication, as discussed in Sect. 4.2.

We deployed our implementation of the ESKM system in a private cloud and
on Amazon AWS. We show by experiments that the system is scalable and that
the overhead in the client connection setup time is up to 100 ms. We show that
the control cluster is able to perform proactive share refresh in less than 500 ms,
between the 12 nodes we tested.



28 Y. Harchol et al.

Summary of Contributions:

1. A system for secure and fault-tolerant management of secrets and private keys
of an organization. ESKM provides a distributed, yet logically-centralized
control plane that is in charge of managing and storing the secrets in a secure
and fault-tolerant manner using k-out-of-n threshold signatures.

2. Our main technical contribution is a lightweight proactive secret sharing pro-
tocol for threshold RSA signatures. Our solution is based on a novel utilization
of secret sharing over the integers.

3. The system also supports password-based user authentication with security
against offline dictionary attacks, which is achieved by using threshold obliv-
ious pseudo-random evaluation (as is described in Sect. 3.4).

4. We implemented the ESKM system to manage SSH client authentication
using the standard OpenSSH client, with no modification to the SSH protocol
or the SSH server.

5. Our experiments show that ESKM has good performance and that the system
is scalable. A single ESKM CC node running on a small AWS VM instance
can handle up to 10K requests per second, and the latency overhead for the
SSH connection time is marginal.

2 Background

2.1 SSH Cryptography

The SSH key exchange protocol is run at the beginning of a new SSH connec-
tion, and lets the parties agree on the keys that are used in the later stages of
the SSH protocol. The key exchange protocol is specified in [32] and analyzed
in [7,28]. The session key is decided by having the two parties run a Diffie-
Hellman key exchange. Since a plain Diffie-Hellman key exchange is insecure
against active man-in-the-middle attacks the parties must authenticate them-
selves to each other. The server confirms its identity to the client by sending
its public key, verified by a certificate authority, and using the corresponding
private key to sign and send a signature of a hash computed over all messages
sent in the key exchange, as well as over the exchanged key. This hash value is
denoted as the “session identifier”.1

Client authentication to the server is described in [31]. The methods that
are supported are password based authentication, host based authentication,
and authentication based on a public key signature. We focus on public key
authentication since it is the most secure authentication method. In this method
the client uses its private key to sign the session identifier (the same hash value
signed by the server). If the client private key is compromised, then an adversary
with knowledge of that key is able to connect to the server while impersonating
1 Security cannot be proved under the sole assumption that the hash function is

collision-resistant, since the input to the function contains the exchanged key. In [28]
the security of SSH is analyzed under the assumption that the hash function is a ran-
dom oracle. In [7] it was analyzed under the assumption that the function essentially
implements a PRF.



Distributed SSH Key Management 29

as the client. Since the client key is the only long-lived secret that the client
must keep, we focus on securing this key.

2.2 Cryptographic Background

Shamir’s Secret Sharing. The basic service provided by ESKM is a secure
storage service. This is done by applying Shamir’s polynomial secret sharing [26]
on secrets and storing each share on a different nodes. Specifically, given a secret
d in some finite field, the system chooses a random polynomial s of degree k − 1
in that field, such that s(0) = d. Each node 1 ≤ i ≤ n stores the share s(i). k
shares are sufficient and necessary in order to reconstruct the secret d.

Proactive Secret Sharing. One disadvantage of secret sharing is that the
secret values stored at each node are fixed. This creates two vulnerabilities: (1)
an attacker may, over a long period of time, compromise more than k − 1 nodes,
(2) since the same shares are used over and over, an attacker might be able to
retrieve them by exploiting even a side channel that leaks very little information
by using de-noising and signal amplification techniques.

The first vulnerability is captured by the mobile adversary model, in this
model the adversary is allowed to move from one node to another as long as
at most k − 1 nodes are compromised at any given two-round period [24]. For
example, for k = 2, the adversary can compromise any single node and in order
to move from this node to another node the adversary must have one round in
between were no node is compromised.

Secret sharing solutions that are resilient to mobile adversaries are called
proactive secret sharing schemes [18,34]. The core idea is to constantly replace
the polynomial that is used for sharing a secret with a new polynomial which
shared the same secret. This way, knowing k−1 values from each of two different
polynomials does not give the mobile attacker any advantage in learning the
secret that is shared by these polynomials.

Proactive secret sharing is particularly effective against side-channel attacks:
Many side-channel attacks are based on observing multiple instances in which
the same secret key is used in order to de-noise the data from the side channel.
By employing proactive secret sharing one can limit the number of times each
single key is used, as well as limit the duration of time in which the key is used
(for example, our system is configured to refresh each key every 5 s or after the
key is used 10 times).

Feldman’s Verifiable Secret Sharing. Shamir’s secret sharing is not resilient
to a misbehaving dealer. Feldman [11] provides a non-interactive way for the
dealer to prove that the shares that are delivered are induced by a degree k
polynomial. In this scheme, all arithmetic is done in a group in which the discrete
logarithm problem is hard, for example in Z∗

p where p is a large prime.
To share a random secret d the dealer creates a random degree k polynomial

s(x) =
∑

0≤i≤k aix
i where a0 = d is the secret. In addition, a public generator g



30 Y. Harchol et al.

is provided. The dealer broadcasts the values ga0 , . . . , gak and in addition sends
to each node i the share s(i). Upon receiving s(i), ga0 , . . . , gak , node i can verify
that gs(i) =

∏
0≤j≤k(gaj )ij

. If this does not hold then node i publicly complains
and the dealer announces s(i). If more than k nodes complain, or if the public
shares are not verified, the dealer is disqualified.

Shoup’s Threshold RSA Signatures. The core idea of threshold RSA sig-
nature schemes is to spread the private RSA key among multiple servers [8,12].
The private key is never revealed, and instead the servers collectively sign the
requested messages, essentially implementing a secure multi-party computation
of RSA signatures.

Recall that an RSA signature scheme has a public key (N, e) and a private
key d, such that e · d = 1 mod φ(N). A signature of a message m is computed
as (H(m))d mod N , where H() is an appropriate hash function.

An n-out-of-n threshold RSA scheme can be easily implemented by giving
each server a key-share, such that the sum of all shares (over the integers) is
equal to d [8,12]. Such schemes, however, require all parties to participate in
each signature. This issue can be handled using interactive protocols [13], some
with potentially exponential worst case costs [25,34]. These protocols essentially
recover the shares of non-cooperating servers and reveal them to all other servers,
and are therefore not suitable for a system that needs to operate even if some
servers might be periodically offline.

To overcome these availability drawbacks, Shoup [27] suggested a threshold
RSA signing protocol based on secret sharing, which provides k-out-of-n recon-
struction (and can therefore handle n − k servers being offline). Shoup’s scheme
is highly practical, does not have any exponential costs, is non-interactive, and
provides a public signature verification. (However, it does not provide proactive
security.)

We elaborate more on the details of the threshold RSA signature scheme
suggested by Shoup: The main technical difficulty in computing threshold RSA is
that polynomial interpolation is essentially done in the exponent, namely modulo
φ(N). Polynomial interpolation requires multiplying points of the polynomial by
Lagrange coefficients: given the pairs {(xi, s(xi))}i=1,...,k for a polynomial s() of
degree k − 1, there are known Lagrange coefficients λ1, . . . , λk such that s(0) =∑

i=1,...,k λis(xi). The problem is that computing these Lagrange coefficients
requires the computation of an inverse modulo φ(N). However, the value φ(N)
must be kept hidden (since knowledge of φ(N) discloses the secret key d). Shoup
overcomes this difficulty by observing that all inverses used in the computation
of the Lagrange coefficients are of integers in the range [1, n], where n is the
range from which the indexes xi are taken. Therefore, replacing each Lagrange
coefficient λi with Δ · λi, where Δ = n!, converts each coefficient to an integer
number, and thus no division is required.

We follow Shoup’s scheme [27] to provide a distributed non-interactive veri-
fiable RSA threshold signature scheme. Each private key d is split by the system
manager into n shares using a random polynomial s of degree k − 1, such that
s(0) = d. Each node i of the system receives s(i).



Distributed SSH Key Management 31

Given some client message m to be signed (e.g., a SSH authentication string),
node i returns to the client the value

xi = H(m)2·Δ·s(i) mod N,

where H is a hash function, Δ = n!, and N is the public key modulus.
The client waits for responses from a set S of at least k servers, and performs

a Lagrange interpolation on the exponents as defined in [27], computing

w =
∏

i

x
2·λS

i
i

where λS
i is defined as the Lagrange interpolation coefficient applied to index i

in the set S in order to compute the free coefficient of s(), multiplied by Δ to
keep the value an integer. Namely,

λS
i = Δ ·

∏
j∈S\{i} j

∏
j∈S\{i}(j − i)

∈ Z

The multiplication by Δ is performed in order to cancel out all items in the
denominator, so that the computation of λS

i involves only multiplications and
no divisions.

The result of the interpolation is w = (H(m))4Δ
2·d. Then, since e is relatively

prime to Δ, the client uses the extended Euclidean algorithm to find integers
a, b such that 4Δ2a + eb = 1. The final signature (H(m))d is computed as
y = wa ·H(m)b = (H(m)d)4Δ

2a · (H(m)de)b = (H(m)d)4Δ
2a+eb = (H(m))d. The

client then verifies the signature by verifying that H(m) = ye (where e is the
public key).

Share Verification: Shoup’s scheme also includes an elegant non-interactive
verification algorithm for each share. This means that the client can quickly
detect invalid shares that might be sent by a malicious adversary which controls
a minority of the nodes, and use the remaining honest majority of shares to inter-
polate the required signature. We only describe the highlights of the verification
procedure. Recall that an honest server must return xi = H(m)2·Δ·s(i), where
only s(i) is unknown to the client. The protocol requires the server to initially
publish a value vi = vs(i), where v is a publicly known value. The verification is
based on well known techniques for proving the equality of discrete logarithms:
The server proves that the discrete log of (xi)2 to the base (H(m))4Δ, is equal
to the discrete log of vi to the base v. (The discrete log of (xi)2 is used due to
technicalities of the group Z∗

N .) The proof is done using a known protocol of of
Chaum and Pedersen [9], see Shoup’s paper [27] for details. The important issue
for our system is that whenever the shares s(i) are changed by the proactive
refresh procedure, the servers’ verification values, vs(i), must be updated as well.

Using polynomial secret sharing for RSA threshold signatures gives very good
liveliness and performance guarantees that are often not obtainable using com-
parable n-out-of-n RSA threshold signatures. The main drawback of Shoup’s



32 Y. Harchol et al.

scheme, as well as of all other known polynomial secret sharing schemes for
RSA, is that they do not provide an obvious way to implement proactive secu-
rity, which will redistribute the servers shares such that (1) the new shares still
reconstruct the original signature (2) the old shares of the servers contain no
information that can help in recovering the secret key from the new shares.
Proactive security gives guarantees against a mobile adversary and against side
channel attacks as discussed in the introduction. We address this drawback and
provide a novel proactive scheme for Shoup’s threshold signatures in Sect. 3.

3 ESKM Cryptography

In this section we describe the cryptographic novelties behind the ESKM system,
for cryptographic signing and for storage services for secret keys. We focus on
RSA private keys as secrets, as they are the most interesting use case of ESKM.
However, the same techniques can be applied to other secrets as well. ESKM
uses Shamir’s secret sharing in order to securely split secrets, such that each
share is stored on a different CC node. Given a secret d, the ESKM manager
creates a random polynomial s over φ(N) such that s(0) = d. It then provides
each node i with the value of s(i).

Threshold signatures are computed according to Shoup’s protocol. We focus
in this section on the new cryptographic components of our construction, which
support three new features:

1. Proactive refresh of the shares of the secret key.
2. Recovery and provisioning of new servers (this is done by the existing servers,

without the help of any trusted manager).
3. Support for password-based user authentication (with security against offline

dictionary attacks).

3.1 Security Model

The only entity in the ESKM system that is assumed to be fully trusted is
the system manager, which is the root of trust for the system. However, this
manager has no active role in the system other than initializing secrets and
providing centralized administrative features. In particular, the manager does
not store any secrets.

For the ESKM control cluster nodes (CC) we consider both the semi-honest
and malicious models and we provide algorithms for both. In the semi-honest
model, up to f = k − 1 CC nodes can be subject to offline attacks, side-channel
attacks, or to simply fail, and the system will continue to operate securely. In
the malicious model we also consider the case of malicious CC nodes that inten-
tionally lie or do not follow the protocol. Note that our semi-honest model is
also malicious-abortable. That is, a node which deviates from the protocol (i.e.,
behaves maliciously) will be detected and the refresh and recovery processes
will be aborted, so the system can continue to operate, although without share
refreshing and node recovery.



Distributed SSH Key Management 33

Clients are considered trusted to access the ESKM service, based on the
policy associated with their identity. Clients have to authenticate with the ESKM
CC nodes. Each authenticated client has a policy associated with its identity.
This policy defines what keys this client can use and what secrets it may access.
We discuss the client authentication issue in Sect. 3.4.

3.2 Proactive Threshold Signatures

In order to protect CC nodes against side-channel and offline attacks, we use a
proactive security approach to refresh the shares stored on each CC node. The
basic common approach to proactive security is to add, at each refresh round, a
set of random zero-polynomials. A zero-polynomial is a polynomial z of degree
k − 1 such that z(0) = 0 and all other coefficients are random. Ideally, each
CC node chooses a uniformly random zero-polynomial, and sends the shares of
this polynomial to all other participating nodes. If only a subset of the nodes
participate in the refresh protocol, the value that the zero-polynomial assigns
for the indexes of non-participating nodes must be zero. All participating nodes
verify the shares they receive and add them, along with the share they produce
for themselves, to their original shares. The secret is therefore now shared by
a new polynomial which is the sum of the original polynomial s() and the z()
polynomials that were sent by the servers. The value of this new polynomial at
0 is equal to s(0) + z(0) = s(0) + 0 = d, which is the original secret. This way,
while the shares change randomly, the secret does not change as we always add
zero to it.

As is common in the threshold cryptography literature, a mobile adversary
which controls k − 1 nodes at a specific round and then moves to controlling
� > 0 new nodes (as well k − � − 1 of nodes that it previously controlled), must
have a transition round, between leaving the current nodes and controlling the
new nodes, where she compromises at most k − � − 1 nodes. Even for � = 1
this means that the adversary has at most k − 2 linear equations of the k − 1
non-zero coefficients of z. This observation is used to prove security against a
mobile adversary.

The Difficulty in Proactive Refresh for RSA: The proactive refresh algo-
rithm is typically used with polynomials that are defined over a finite field. The
challenge in our setting is that the obvious way of defining the polynomial z
is over the secret modulus φ(N) = (p − 1)(q − 1). On the other hand, security
demands that φ(N) must not be known to the CC nodes, and therefore they
cannot create a z polynomial modulo φ(N). In order not to expose φ(N) we
take an alternative approach: Each server chooses a zero polynomial z over the
integers with very large random positive coefficients (specifically, the coefficients
are chosen in the range [0, N − 1]). We show that the result is correct, and that
the usage of polynomials over the integers does not reduce security.

With respect to correctness, recall that for all integers x, s, j it holds that
xs = xs+j·φ(N) mod N . The secret polynomial s() satisfies s(0) = d mod φ(N).
In other words, interpolation of this polynomial over the integers results in a



34 Y. Harchol et al.

value s(0) = d + jφ(N) for some integer j. The polynomial z() is interpolated
over the integers to z(0) = 0. Therefore, xs(0)+z(0) = xd+j·φ(N)+0 = xd mod N .

With regards to security, while polynomial secret sharing over a finite field
is perfectly hiding, this is not the case over the integers. For example, if a poly-
nomial p() is defined over the positive integers then we know that p(0) < p(1),
and therefore if p(1) happens to be very small (smaller than N) than we gain
information about the secret p(0). Nevertheless, since the coefficients of the poly-
nomial are chosen at random, we show in [16, Appendix B] that with all but
negligible probability, the secret will have very high entropy. To the best of our
knowledge, this is the first such analysis for polynomial secret sharing over the
integers.

The Refresh Protocol for Proactive Security. Algorithm 1 presents our
share refresh algorithm for the malicious model. This is a synchronous distributed
algorithm for n nodes, with up to f = k − 1 malicious or faulty nodes, where
n = 2f + 1. The dealer provides the initial input parameters to all nodes. Note
that verification is done over some random prime field vp and not over the RSA
modulus N (vp > N).

For the semi-honest-malicious-abortable CC nodes model, Round 3 of the
algorithm is not necessary anymore, as well as signature validation for verifica-
tion values (lines 4, 9) and the completion of missing information in line 21.

Proactive Refresh of Verification Information: Secret sharing over the
integers allows to refresh the secret shares, but this is not enough. To obtain
verifiable RSA threshold signatures we also need to refresh the verification infor-
mation to work with the new shares, as is done in line 19 of the protocol.

Security: The security analysis of the proactive share refresh appears in the full
version of our paper [16]. Unlike secret sharing over a finite field, secret sharing
over the integers does not provide perfect security. Yet, since in our application
the shares are used to hide long keys (e.g., 4096 bits long), then revealing a small
number of bits about a key should be harmless: in the worst case, leaking σ bits
of information about the secret key can only speed up attacks on the system
by a factor of 2σ (any algorithm A that breaks the system in time T given σ
bits about the secret key can be replaced by an algorithm A′ that breaks the
system in time 2σT given only public information, by going over all options for
the leaked bits and running A for each option).

The degradation of security that is caused by leaking σ bits can therefore be
mitigated by replacing the key length |N | that was used in the original system
(with no leakage), by a slightly longer key length which is sufficiently long to
ensure that the best known attacks against the new key length are at least 2σ

times slower than the attacks against the original shorter key length.
In the full version of the paper [16] we prove an upper bound on the amount

of information that is leaked about the secret key in 2-out-of-n proactive secret
sharing, and state a conjecture about the case of k-out-of-n proactive secret
sharing, for k > 2. (The exact analysis of the latter case seems rather technical,



Distributed SSH Key Management 35

Algorithm 1. Malicious Model Share Refresh Algorithm for Node i
Input parameters:
si - current share of node i; N - public key modulus;
p - an upper bound on the coefficients of the zero polynomial(typically, p = N);
n - number of nodes; f - maximal number of faulty nodes (f = k − 1)
v - used as the base for verification of exponents; vs1 , . . . , vsn - verification values;
vp - verification field; H - hash function for message signing
(Note: computations mod N , unless noted otherwise)

Round 1:
1: Choose αi

1, . . . , α
i
k−1 ∼ U([0, p)) to create a zero-polynomial zi(x) =

∑k−1
q=1 αi

q · xq

over the integers.
2: Compute shares zi

1 = zi(1), . . . , zi
n = zi(n)

3: Compute vαi
1 , . . . , vαi

k−1 over vp

4: Compute Sigi ← H(vαi
1 , . . . , vαi

k−1)

5: for each node � �= i Send zi
�, (v

αi
1 , . . . , vαi

k−1), Sigi to node �
Round 2:

6: for each received share z�
i from node � do

7: Verify that H(vα�
1 , . . . , vα�

k−1) = Sig�

8: Verify that vz�
i =

∏k−1
q=1

(
vα�

q

)iq

mod vp

9: If verification failed then Report node �
10: end for
11: if verified at least f + 1 shares then
12: Let s∗

i = si +
( ∑

verified shares �
z�

i

)
. (Summation is over the integers)

13: For each j, compute vs∗
j = vsj

∏n
�=1

∏k−1
q=1 vα�

q·jq

= vsj
∏

� vz�
j mod vp.

14: Send OK messages to everyone with Sig� of each verified sender �,
(vs∗

1 , . . . , vs∗
n), and with a report of missing or invalid shares.

15: else Abort
16: end if

Round 3:
17: Compare signatures in all received OKs
18: Publicly announce everything known by node i on disputed and missing shares to

everyone (there are up to f such shares)
Round 4:

19: Complete missing information using information sent in Round 3: Update s∗
i ,

Update vs∗
1 , . . . , vs∗

n , Ignore OKs and shares of identified malicious nodes.
20: if received at least f + 1 valid OKs then
21: Commit new share: si ← s∗

i

22: Commit vs∗
1 , . . . , vs∗

n

23: else Abort
24: end if

and we leave it as an open question.) For the case of n = 16 servers and k = 2,
the upper bound implies that, except with probability 2−40, an adversary learns
at most 22 bits of knowledge about the secret key.



36 Y. Harchol et al.

3.3 Recovery and Provisioning of CC Nodes

Using a slight variation of the refresh protocol, ESKM is also able to securely
recover CC nodes that have failed, or to provision new CC nodes that are added
to the system (and by that increase reliability). The process is done without
exposing existing shares to the new or recovered nodes, and without any existing
node knowing the share of the newly provisioned node.

The basic idea behind this mechanism is as follows: A new node r starts
without any shares in its memory. It contacts at least k existing CC nodes.
Each one of these existing nodes creates a random polynomial z() such that
z(r) = 0 and sends to each node i the value z(i) (we highlight again that these
polynomials evaluate to 0 for an input r). If all nodes are honest, each node
should simply add its original share s(i) to the sum of all z(i) shares it received,
and compute s∗(i) = s(i) +

∑
z(i). The result of this computation, s∗(), is a

polynomial which is random except for the constraint s∗(r) = s(r). Node i then
sends s∗(i) to the new node r, which then interpolates the values it received and
finds s∗(r) = s(r). Since we assume that nodes may be malicious, the algorithm
uses verifiable secret sharing to verify the behavior of each node.

The pseudo-code for the recovery process is presented in [16]. Algorithm 2
in [16] presents the pseudo-code for each existing CC node participating in the
recovery process. Algorithm 3 in [16] presents the logic of the recovered node.

We note that if this mechanism is used to provision an additional node (as
opposed to recovery of a failed node), it changes the threshold to k-out-of-n+1.
The security implication of this should be taken into account when doing so.

3.4 Threshold-Based Client Authentication

ESKM CC nodes need to verify their clients’ identity in order to securely serve
them and associate their corresponding policies and keys. However, in order to
be authenticated clients must hold some secret that represents their identity, and
hence we have a chicken-and-egg problem: Where would this secret be stored?

The adversary model assumes that an adversary might control some CC
nodes (but less than k CC nodes), and might have access to the client machine.
The adversary must also be prevented from launching an offline dictionary attack
against the password.

Human Authentication: A straightforward authentication solution could be to
encrypt the private key using a password and store it at the client or in the CC
nodes, but since the password might have low entropy this approach is insecure
against offline dictionary attacks on the encrypted file. In addition, passwords
or hashes of passwords must not be recoverable by small server coalitions.

A much preferable option for password-based authentication is to use a
threshold oblivious pseudo-random function protocol (T-OPRF), as suggested
in [19]. A T-OPRF is a threshold modification to the concept of an OPRF. An
OPRF is a two-party protocol for obliviously computing a pseudo-random func-
tion FK(x), where one party knows the key K and the second party knows x.



Distributed SSH Key Management 37

At the end the protocol the second party learns FK(x) and the first party
learns nothing. (At an intuitive level, one can think of the pseudo-random func-
tion as the equivalent of AES encryption. The protocol enables to compute the
encryption using a key known to one party and a plaintext known to the other
party.) A T-OPRF is an OPRF where the key is distributed between multiple
servers. Namely K is shared between these servers using a polynomial p such
that p(0) = K. The client runs a secure protocol with each of the members of a
threshold subset of the servers, where it learns Fp(i)(x) from each participating
server i. The protocol enables the client to use this data to compute FK(x).
The details of the T-OPRF protocol, as well as its security proof and its usage
for password-based threshold authentication, are detailed in [19]. (In terms of
availability, the protocol enables the client to authenticate itself after success-
fully communicating with any subset of the servers whose size is equal to the
threshold.)

The T-OPRF protocol is used for secure human authentication as follows:
The T-OPRF protocol is run with the client providing a password pwd and the
CC nodes holding shares of a master key K. The client uses the protocol to
compute FK(pwd). Note that the password is not disclosed to any node, and the
client must run an online protocol, rather than an offline process, to compute
FK(pwd). The value of FK(pwd) can then be used as the private key of the client
(or for generating a private key), and support strong authentication in a standard
way. For example, the client can derive a public key from this private key and
provide it to the ESKM system (this process can be done automatically upon
initialization or password reset). Thus, using this scheme, the client does not
store any private information, and solely relies on the password, as memorized
by the human user. Any attempt to guess the password requires running an
online protocol with the CC nodes. This approach can be further combined with
a private key that is stored locally on the client machine or on a different device
such as a USB drive, in order to reduce the risk from password theft.

Machine Authentication: For automated systems (e.g., scripts running on
servers), a client machine must locally store a single private key which authen-
ticates it to the ESKM system. This key can be stored either in main memory
or on secure hardware (e.g., Amazon KMS). In terms of costs, this is of course
better than storing a massive number of client-server keys in such costly services.
In addition, any usage of this single private key is fully and securely audited by
the ESKM CC nodes. In an unfortunate case of theft, the key can be immedi-
ately revoked without having to log into multiple destination server machines
and revoke the key separately on each one of them.

4 ESKM System Design

In this section we describe the design details of the ESKM system, which is pre-
sented in Fig. 1. The system includes a logically-centralized control plane, which
provides security services, and a data plane, which consumes these services.



38 Y. Harchol et al.

4.1 ESKM Control Plane

The ESKM control plane provides security services for network users, whether
these are humans or machines. It manages identities, access policies, private keys
and secret storage. It also provides centralized auditing and logging capabilities.
The control plane is divided into two key parts: the security manager (SM) and
the control cluster (CC).

ESKM Security Manager. The ESKM security manager (SM) is a single
(possibly replicated) node that serves as the entry point for all administrative
and configuration requests from the system. It manages CC nodes with regards
to policy enforcement, storage of secrets, revocation of keys and policies, etc. It
is also a central access point for administrators for the purpose of auditing and
logging. The SM gives privileged admins the right to read audit logs, but not to
delete or prune them (this can be done at each CC node separately).

The SM provides a service for key generation.2 Upon request, given some key
specification, the SM can generate a private key for an identity, and immediately
share it with the CC nodes. It then returns the public key to the user who
requested the generation of the key, but the private key and its shares are deleted
from the SM memory. The private key is never revealed or stored on disk.

ESKM Control Cluster. The ESKM control cluster (CC) is a set of servers,
referred to as “CC nodes”. These servers are not replicas. Each CC node imple-
ments the CC node specification with regards to the communication protocol.
However, each CC node stores different shares of the secrets they protect. In
order to add robustness, each CC node can be implemented by a different ven-
dor, run on a different operating system, or a different cryptography library.

A CC node provides two main services: signing, and secret storage and
retrieval. The signing service is based on the threshold signatures discussed in
Sects. 2 and 3. The storage and retrieval service is based on secret sharing as
discussed in Sect. 2.

Proactive Share Refresh. The CC nodes have a module that is responsible for
executing the share refresh algorithm presented in Sect. 3.2. A refresh policy has
a future start date, duration of a single refresh round, and an interval between
each two successive rounds. A refresh policy also specifies what to do in case of
a failure on a refresh round. A failure can be caused by a malicious or faulty
node, or by some misconfiguration such as unsynchronized clocks. The available
options are to ignore the failure as possible, report the failure and try to continue,
report and abort the ongoing round, report and abort all future refresh rounds
of this policy, or report and abort the CC node completely.

2 The only way to prevent key generation by a single entity is by running a secure
multi-party protocol for RSA key generation. However, such protocols, e.g., [17], are
too slow to be practical, especially when run between more than two servers, and
therefore we did not implement them.



Distributed SSH Key Management 39

Secure Recovery and Provisioning. The CC nodes also have a module that
is responsible for receiving and responding to recovery requests. Upon receiv-
ing such a request, the CC node executes the recovery algorithm described in
Sect. 3.3. In addition, each CC node web server can initialize a recovery request
and send it to the active CC nodes.

Auditing. One important feature of ESKM is the ability to provide fault-tolerant
network-wide auditing of private key usage. Each CC node keeps track of the
requests it handles and the signatures it produces, in a local log system.

In order to provide fault-tolerance of up to f = k − 1 failures, the SM is
allowed to query CC nodes for log entries in order to compose audit reports.
Deletion or pruning of CC node logs can only be done by the administrator of a
CC node. Thus, even if f nodes are compromised, an attacker cannot wipe their
traces by deleting the logs.

This centralized and robust auditing service provides two powerful features.
The first feature is the ability to have a system wide view of all SSH sessions,
and thus a centralized control and option of activating immediate system-wide
user revocation. The second feature is fault-tolerance and threshold security that
are provided by implementing the distributed auditing over the CC nodes.

4.2 ESKM Data Plane

The only modification in the data plane that is required in order to incorporate
ESKM is in the SSH client. In particular, we implemented ESKM in the client
by adding a patch to the libcrypto library of OpenSSL.

Authentication to ESKM CC Nodes. A client connects to a CC node
over a secure channel. The CC node authenticates itself using a certificate.
Client authentication depends on the type of the client: a human or an auto-
mated machine: Client edge machines are operated by humans, while client core
machines are automated. When using ESKM, a human infiltrator must authen-
ticate to ESKM from an edge machine in order to log into a core machine, and
by that to perform a lateral movement to other machines. Thus, by hardening
the authentication for edge machines we protect the entire network.

Machine-to-Machine Authentication. Automated clients (core machines) use
SSH client private key authentication in order to authenticate with CC nodes.

Human Authentication. We employ two-factor authentication for human clients
to authenticate with CC nodes. We use password authentication as something-
you-know, and a private key as something-you-have.

Our preferred password authentication method is using threshold OPRF,
as discussed in Sect. 3.4. However, we also support two weaker methods:
SSH/HTTPS password-based authentication, and authentication using a pri-
vate key that is stored encrypted by the user’s password. We give users the
ability to configure their installation of ESKM with their preferred method.



40 Y. Harchol et al.

For the “something you have” authentication, we use RSA private keys that
can be installed on the client machine, a secure USB device, or on the user’s
smartphone. In the latter case, when the phone is notified when an authentication
request arrives, and the user is asked to enter a password or use her thumbprint
in order to authorize the smartphone to perform the RSA signing. The signature
is tunneled through a special CC node back to the client machine to complete
the authentication.

5 Experimental Results

The implementation of the ESKM system is described in [16, Appendix A].
We evaluated our implementation of the ESKM system by deploying it in

VMs in a private cloud. Our setup includes 14 VMs: One VM runs the ESKM
security manager, twelve VMs serve as ESKM CC nodes, and one VM serves as
a local client. Each VM on the private cloud is allocated a single CPU core of
type Intel Xeon E5-2680, with clock speed of 2.70 GHz. Most VMs do not share
their physical host. We also deploy one CC node on an AWS t2.micro VM.

The client agent performance experiment tests the latency overhead intro-
duced by our client agent, for the execution of the RSA sign function in libcrypto,
compared to a standard execution of this function using a locally stored private
key. Another measurement we provide is the throughput of the client agent.

ESKM Client Performance in a Private Cloud. We first use the twelve
CC nodes that are deployed in our private cloud. We measure client agent per-
formance as a function of k - the minimal number of CC nodes replies required
to construct the signed authentication message. The figure in [16, Fig. 3] shows
the results of this experiment. Even when k is high, the latency overhead does
not exceed 100 ms, and the throughput of the client agent does not drop below
19 requests per second. We note that the throughput can be greatly improved
using batching techniques, when request frequency is high.

Client Performance with a Public Cloud CC Node. As mentioned in
Sect. 4.1, for enhanced security, CC nodes may also be placed in a public cloud,
and one share from these remote CC nodes must be used in order to make a
progress. We repeated the previous experiments with a CC node deployed in
AWS (t2.micro instance). The additional latency was 103 ms on average.

Client Performance with Failing CC Nodes. The figure in [16, Fig. 4] shows
the throughput and latency of the client agent every second over time, when
during this time more and more CC nodes fail. After each failure there is a
slight degradation in performance. However, these changes are insignificant and
the performance remains similar even when most CC nodes fail.

ESKM CC Node Performance. We evaluated the performance of an AWS
CC node by measuring the CPU utilization and memory usage of the process, as
a function of the number of sign requests it processed per second. The figure in
[16, Fig. 5] presents the results of these measurements: our CC node is deployed



Distributed SSH Key Management 41

on a single-core low-end VM, and is able to handle thousands of sign requests
per second without saturating the CPU.

Proactive Share Refresh. We tested our proactive share refresh algorithm
implementation to find how fast all 12 CC nodes can be refreshed. Usually, the
algorithm requires less than 500 ms to complete successfully. However, in some
rare cases this is not enough due to message delays. We set the refresh to be
done at least every two seconds, and to limit the length of a single refresh round
to at least one second.

CC Node Recovery. We also tested our node recovery algorithm implementa-
tion and found that it provides similar performance as the refresh algorithm. In
all our tests, the recovery process required less than 500 ms in order to complete
successfully. As for the refresh algorithm, we recommend to use a duration of at
least one second to avoid failures that may occur due to message delays.

6 Related Work

Polynomial secret sharing was first suggested by Shamir [26]. Linear k-out-of-k
sharing of RSA signatures was suggested by Boyd [8], Frankel [12]. Desmedt and
Frankel [10] observed that RSA k-out-of-n threshold signatures is challenging
because the interpolation of the shares is over φ(n). Frankel et al. [13] provided
methods to move from polynomial to linear sharing and back. This technique is
interactive and not practical.

Rabin [25] provided a simpler proactive RSA signature scheme, using a two
layer approach (top is linear, bottom uses secret sharing). This protocol is used
in Zhou et al. [34] use in COCA. The scheme leaks information publicly when
there is a failure and hence does not seem suitable against a mobile adversary.
It also can incur exponential costs in the worst case.

Wu et al. [29] proposed a library for threshold security that provides encryp-
tion, decryption, signing, and key generation services. Their scheme is based on
additive RSA signatures, and in order to provide threshold properties they use
exponential number of shares as in previous additive schemes.

Shoup [27] suggested a scheme that overcomes the interpolation problem, and
provides non-interactive verification, that is resilient to an adversary controlling a
minority. Gennaro et al. [14] improve Shoup’s scheme to deal with large dynamic
groups. Gennaro et al. [15] provide constructions for verifiable RSA signatures
that are secure in standard models, but require interaction.

Centralized management of SSH keys has recently been the focus of several
open source projects: BLESS by Netflix [3], and Vault by Hashicorp [1]. They
do not provide threshold signature functionality, but instead resort to the more
traditional single node approach.

7 Conclusion

We presented ESKM : an Enterprise SSH Key Manager. ESKM advocates a
logically-centralized and software-defined security plane that is decoupled from



42 Y. Harchol et al.

the data plane. By separating the security functionality we can incorporate
cutting-edge cryptography in a software defined manner.

Our implementation shows that with minimal changes to the OpenSSL
library in the client, one can significantly increase the security of enterprise
SSH key management without making any changes to the server SSH deploy-
ment. In this sense, ESKM provides a virtual layer of security on top of any
existing legacy SSH server implementation. Our experiments show that ESKM
incurs a modest performance overhead on the client side. Our implementation of
the ESKM control plane is scalable and fault-tolerant, and is able to proactively
refresh the shares of CC nodes in a distributed way every few seconds.

References

1. Hashicorp Vault. https://github.com/hashicorp/vault
2. Heartbleed bug. http://heartbleed.com
3. Netflix Bless. https://github.com/Netflix/bless
4. Ponemon report. https://www.venafi.com/assets/pdf/Ponemon 2014 SSH Securi

ty Vulnerability Report.pdf
5. SSH report. https://www.ssh.com/iam/ssh-key-management/
6. Venafi report. https://www.venafi.com/blog/deciphering-how-edward-snowden-

breached-the-nsa
7. Bergsma, F., Dowling, B., Kohlar, F., Schwenk, J., Stebila, D.: Multi-ciphersuite

security of the secure shell (SSH) protocol. In: Proceedings of the 2014 ACM Con-
ference on Computer and Communications Security, pp. 369–381 (2014)

8. Boyd, C.: Digital multisignatures. In: Cryptography and Coding (1986)
9. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.

(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4 7

10. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 28

11. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
FOCS 1987, pp. 427–438 (1987)

12. Frankel, Y.: A practical protocol for large group oriented networks. In: Quisquater,
J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 56–61.
Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 8

13. Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M.: Optimal resilience proactive
public-key cryptosystems. In: FOCS 1997, pp. 384–393 (1997)

14. Gennaro, R., Halevi, S., Krawczyk, H., Rabin, T.: Threshold RSA for dynamic
and Ad-Hoc groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
88–107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3 6

15. Gennaro, R., Rabin, T., Jarecki, S., Krawczyk, H.: Robust and efficient sharing of
RSA functions. J. Cryptol. 20(3), 393 (2007)

16. Harchol, Y., Abraham, I., Pinkas, B.: Distributed SSH key management with proac-
tive RSA threshold signature. Cryptology ePrint Archive (2018)

17. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key generation and
threshold paillier in the two-party setting. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 313–331. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-27954-6 20

https://github.com/hashicorp/vault
http://heartbleed.com
https://github.com/Netflix/bless
https://www.venafi.com/assets/pdf/Ponemon_2014_SSH_Security_Vulnerability_Report.pdf
https://www.venafi.com/assets/pdf/Ponemon_2014_SSH_Security_Vulnerability_Report.pdf
https://www.ssh.com/iam/ssh-key-management/
https://www.venafi.com/blog/deciphering-how-edward-snowden-breached-the-nsa
https://www.venafi.com/blog/deciphering-how-edward-snowden-breached-the-nsa
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/3-540-46885-4_8
https://doi.org/10.1007/978-3-540-78967-3_6
https://doi.org/10.1007/978-3-642-27954-6_20
https://doi.org/10.1007/978-3-642-27954-6_20


Distributed SSH Key Management 43

18. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
44750-4 27

19. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: TOPPSS: cost-minimal password-
protected secret sharing based on threshold OPRF. Cryptology ePrint Archive,
Report 2017/363 (2017). http://eprint.iacr.org/2017/363

20. Jarecki, S., Saxena, N.: Further simplifications in proactive RSA signatures. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 510–528. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 28

21. Jarecki, S., Saxena, N., Yi, J.H.: An attack on the proactive RSA signature scheme
in the URSA ad hoc network access control protocol. In: Proceedings of the 2nd
ACM Workshop on Security of ad hoc and Sensor Networks, SASN, pp. 1–9 (2004)

22. Kong, J., Zerfos, P., Luo, H., Lu, S., Zhang, L.: Providing robust and ubiquitous
security support for MANET. In: ICNP (2001)

23. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: 2015 IEEE Symposium on Security and Privacy, SP 2015,
pp. 605–622. IEEE Computer Society (2015)

24. Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended
abstract). In: PODC 1991, pp. 51–59. ACM, New York (1991)

25. Rabin, T.: A simplified approach to threshold and proactive RSA. In: Krawczyk,
H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 89–104. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055722

26. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
27. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.

LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 15

28. Williams, S.C.: Analysis of the SSH key exchange protocol. In: Chen, L. (ed.)
IMACC 2011. LNCS, vol. 7089, pp. 356–374. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25516-8 22

29. Wu, T.D., Malkin, M., Boneh, D.: Building intrusion-tolerant applications. In:
USENIX Security (1999)

30. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: 23rd USENIX Conference on Security Symposium, SEC
2014, pp. 719–732. USENIX Association, Berkeley (2014)

31. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Authentication Protocol. Internet
Requests for Comments, RFC 4252 (2004)

32. Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Transport Layer Protocol. Internet
Requests for Comments, RFC 4253 (2004)

33. Ylonen, T.: Bothanspy & Gyrfalcon - analysis of CIA hacking tools for SSH, August
2017. https://www.ssh.com/ssh/cia-bothanspy-gyrfalcon

34. Zhou, L., Schneider, F.B., Van Renesse, R.: COCA: a secure distributed online
certification authority. ACM Trans. Comput. Syst. 20(4), 329–368 (2002)

https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/3-540-44750-4_27
http://eprint.iacr.org/2017/363
https://doi.org/10.1007/978-3-540-30576-7_28
https://doi.org/10.1007/BFb0055722
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/978-3-642-25516-8_22
https://doi.org/10.1007/978-3-642-25516-8_22
https://www.ssh.com/ssh/cia-bothanspy-gyrfalcon


Non-interactive Zaps of Knowledge

Georg Fuchsbauer1,2(B) and Michele Orrù1,2(B)

1 Inria, Paris, France
2 École normale supérieure, CNRS, PSL University, Paris, France

{georg.fuchsbauer,michele.orru}@ens.fr

Abstract. While non-interactive zero-knowledge (NIZK) proofs require
trusted parameters, Groth, Ostrovsky and Sahai constructed non-
interactive witness-indistinguishable (NIWI) proofs without any setup;
they called their scheme a non-interactive zap. More recently, Bellare,
Fuchsbauer and Scafuro investigated the security of NIZK in the face
of parameter subversion and observe that NI zaps provide subversion-
resistant soundness and WI.

Arguments of knowledge prove that not only the statement is true,
but also that the prover knows a witness for it, which is essential for
anonymous identification. We present the first NIWI argument of knowl-
edge without parameters, i.e., a NI zap of knowledge. Consequently, our
scheme is also the first subversion-resistant knowledge-sound proof sys-
tem, a notion recently proposed by Fuchsbauer.

Keywords: Non-interactive proofs · Argument of knowledge
Subversion resistance

1 Introduction

The concept of zero-knowledge proof systems, first proposed by Goldwasser et al.
[GMR89], is a central tool in modern cryptography. Consider an NP relation R
which defines the language of all statements x for which there exists a witness
w so that R(x,w) = true. In a zero-knowledge proof for R a prover, knowing a
witness, wants to convince a verifier that x is in the language. The protocol must
be complete, that is, if the prover knows a witness for x then it can convince the
verifier; it should be sound, in that no malicious prover can convince the verifier
of a false statement, and zero-knowledge: the execution of the protocol reveals
no information to the verifier (beyond the fact that x is in the language).

Feige and Shamir [FS90] proposed a relaxation of zero-knowledge called wit-
ness indistinguishability, which only requires that it is indistinguishable which
witness was used to compute a proof. This notion turns out to be sufficient in
many contexts. Non-interactive zero-knowledge proofs (NIZK) [BFM88] allow
the prover to convince the verifier by only sending a single message. However,
they rely on the existence of a common-reference string (CRS) to which prover
and verifier have access. The CRS is assumed to have been set up by some

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 44–62, 2018.
https://doi.org/10.1007/978-3-319-93387-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_3&domain=pdf


Non-interactive Zaps of Knowledge 45

trusted party, which represents a serious limitation for all applications of NIZK
in scenarios where parties mutually distrust each other.

Dwork and Naor [DN00] constructed a two-round witness-indistinguishable
proof system for NP in the plain model, that is, where no trusted CRS is assumed.
In their protocol the first message (sent from the verifier to the prover) can
be fixed once and for all, and the second one provides the actual proof. They
called such protocols zaps. Barak et al. [BOV03] introduced the concept of non-
interactive zaps, where the prover sends a single message to deliver the proof.
Non-interactive zaps are thus non-interactive proof systems without a CRS.
Since in this scenario it is impossible to achieve zero-knowledge [GO94], wit-
ness indistinguishability (WI) is the best one can hope for. Groth, Ostrovsky,
and Sahai constructed the first non-interactive zaps from standard assumptions
[GOS06a]. Subsequently [GOS06a], there have been many works extending this
line of research [BW06,BW07,Gro06].

All aforementioned schemes guarantee that proofs can only be computed
for valid statements. Arguments of knowledge are proof systems that satisfy a
stronger notion of soundness. They require the prover to know a witness for the
proved statement. This is formalized via the notion of knowledge soundness that
demands that for each prover there exists an efficient extractor which can extract
a witness from the prover whenever the latter outputs a valid proof. (When this
holds for computationally bounded provers only, we speak of arguments rather
than proofs.) Since, by definition, false statements have no witnesses, knowledge
soundness implies the standard notion of (computational) soundness.

Succinct non-interactive arguments of knowledge (SNARKs) are non-
interactive proof systems with short (that is, independent of the size of the
statement or the witness) efficiently verifiable proofs that satisfy knowledge
soundness. SNARKs were initially introduced for verifiable computation and are
now the most widely deployed proof systems in the real world. They are used
in cryptocurrencies such as Zcash [BCG+14], which guarantees anonymity via
zero-knowledge SNARKs. As for all NIZK systems, a drawback of SNARKs is
that they require a CRS, that is, they require a one-time trusted setup of public
parameters. Since for SNARKs every CRS has a simulation trapdoor, subversion
of these parameters leads to full compromise of soundness.

Subversion Resistance. Motivated by the subversion of trusted public param-
eters in standardized cryptographic protocols led by mass-surveillance activities,
Bellare et al. [BFS16] investigate what security properties can be maintained for
NIZK when its trusted parameters are subverted. CRS’s for NIZK are espe-
cially easy to subvert, since they must be subvertible by design: zero knowledge
requires that an honest CRS must be indistinguishable from a backdoored one,
where the backdoor is the trapdoor used to simulate proofs.

Bellare et al. defined multiple security properties that protect against param-
eter subversion: subversion soundness (S-SND) means that no adversary can
generate a malicious CRS together with a valid proof for a false statement;
subversion zero knowledge (S-ZK) requires that even if the adversary sets up
the CRS, there exists a simulator able to produce its full view; and subversion



46 G. Fuchsbauer and M. Orrù

witness indistinguishability (S-WI) formalizes that even for proofs that were
made under a subverted CRS, it is still infeasible to tell which of two witnesses
was used.

Following Goldreich and Oren [GO94], Bellare et al. [BFS16] also showed that
it is impossible to achieve subversion soundness and (standard) zero-knowledge
simultaneously. For subversion-sound proof systems, subversion witness indistin-
guishability is thus the best one can hope for. The authors [BFS16] observe that
since proof systems that do not rely on a CRS cannot succumb to CRS-subversion
attacks, non-interactive zaps [GOS06a] achieve both S-SND and S-WI.

Bellare et al. did not consider the stronger notion of knowledge soundness,
which is the notion achieved by SNARKs, and which in many applications is
the required notion for the used proof systems. For example, for all kinds of
anonymous authentication, users prove knowledge of signatures (often called
certificates or credentials, depending on the context); in this case soundness is
not sufficient, as signatures always exist, but in the security proof they must
actually be extracted in order to rely on their unforgeability. Fuchsbauer [Fuc18]
has recently defined a subversion-resistant notion of knowledge soundness but
left it open to give a scheme that achieves it. Such a scheme would protect
against possible parameter subversion in any context where proving knowledge
of a witness is required.

Our Contribution. Our result can be summarized as follows:

(i) We provide the first non-interactive zap with knowledge soundness; that is,
a witness-indistinguishable proof system without parameters for which there
exists an extractor that recovers a witness from every valid proof.

(ii) Our zap is also the first fully subversion-resistant WI argument-of-knowledge
system. In particular, it satisfies the recently defined notion of subversion
knowledge soundness [Fuc18], as well as subversion witness indistinguisha-
bility [BFS16] (the strongest notion compatible with S-SND).

Bellare et al. [BFS16] introduce a new type of knowledge-of-exponent assump-
tion, which they call DH-KE. They prove (standard) soundness and subversion
zero knowledge of their main construction under DH-KE and the decision lin-
ear assumption (DLin) [BBS04]. Our construction builds on the DLin-based
non-interactive zap from [GOS06a], whose soundness we upgrade to knowledge
soundness, assuming DH-KE. As for this zap, the language of our proof system
is circuit satisfiability and thus universal. Groth et al. [GOS06a] starting point is
a “dual-mode” [GOS06b,PVW08] non-interactive proof system, for which there
are two indistinguishable types of CRS: one leading to proofs that are perfectly
sound and the other leading to proofs that are perfectly WI. To construct a
non-interactive zap, they let the prover choose the CRS. As the prover could
choose a CRS that leads to “unsound” proofs, the prover must actually choose
two CRS’s that are related in a way that guarantees that at least one of them
is of the “sound” type. It must then provide a proof of the statement under
both of them. The authors [GOS06a] then show that this protocol still achieves
computational WI.



Non-interactive Zaps of Knowledge 47

We turn their construction into a proof of knowledge by again doubling
the proof, thereby forcing the prover to prove knowledge of a trapdoor which
allows to extract the witness from one of the sound proofs. We prove our non-
interactive zap of knowledge secure under the same assumptions as Bellare et al.’s
S-ZK+SND scheme. Our result is summarized in the following theorem.

Theorem 1. Assuming DLin and DH-KE, there exists a non-interactive zap for
circuit satisfiability that satisfies knowledge soundness. The proof size is O(λk),
where λ is the security parameter and k is the size of the circuit.

Let us finally note that our system also implies a proof system which achieves
(standard) knowledge soundness, (standard) zero knowledge and subversion wit-
ness indistinguishability. This is obtained by plugging our zap of knowledge into
the construction by Bellare et al. [BFS16] that achieves SND, ZK and S-WI.

Their scheme uses a length-doubling pseudorandom generator (PRG) and
a CRS contains a random bit string σ of length 2λ (where λ is the security
parameter). A proof for statement x is a zap for the following statement: either
x is a valid statement or σ is in the range of the PRG. Using a zap of knowledge
(ZaK), knowledge soundness follows from knowledge soundness of the ZaK since
with overwhelming probability σ is not in the range of the PRG. (The extractor
must thus extract a witness for x.) Zero knowledge follows from WI of the zap,
as after replacing σ with an element in the range of the PRG, proofs can be
simulated using a preimage of σ. Finally, S-WI follows from S-WI of the zap.

Related Work. Since the introduction of non-interactive zaps [BOV03,
GOS06a], a number of papers have studied and provided different (and more
efficient) implementations of zaps. Groth and Sahai [GS08] provided a more gen-
eral framework for NIWI and NIZK proofs, which leads to more efficient proofs
for concrete languages (instead of circuit satisfiability). Furthermore, their proof
system can also be based on other assumptions apart from DLin, such as SXDH,
allowing for shorter proofs.

Bitanski and Paneth [BP15] presented a different approach to constructing
zaps and WI proofs based on indistinguishability obfuscation (iO), but construc-
tions using iO are only of theoretical interest. Ràfols [Ràf15] showed how to base
non-interactive zaps on Groth-Sahai proofs, thereby achieving an improvement
in efficiency (by a constant factor) over the original construction [GOS06a]. Her
construction can be implemented in asymmetric (“Type-1”) pairing groups.

Her scheme can also serve as the starting point for a scheme achieving knowl-
edge soundness and we explore this in the full version [FO18]. (See Table 1 for an
overview.) Although this scheme is more efficient, we decided to concentrate on
building a scheme from [GOS06a], as we can prove it secure under the assump-
tions that underlie Bellare et al.’s [BFS16] SND+S-ZK scheme; in contrast, a
scheme built on asymmetric bilinear groups would require an analogue of the
DH-KE assumption in such groups (we refer to it as ADH-KE in [FO18]). This
is a qualitatively different assumption, as without a symmetric pairing it cannot
be checked whether the triple returned by the adversary is of the right form
(see Fig. 3); it would thus not be efficiently decidable if an adversary has won



48 G. Fuchsbauer and M. Orrù

Table 1. Efficiency and security of the original zaps and our constructions of zaps of
knowledge, where w is the number of wires, g the number of gates and |G| is the size
of an element of a group G.

Protocol Efficiency Assumptions

Zap [GOS06a] (18w + 12g + 5) |G| DLin

Zap of knwlg, Sect. 5 (36w + 24g + 14) |G| DLin, DH-KE

Zap [Ràf15] (of knwlg; [FO18]) (12w + 8g + 3) (|G1|+|G2|) SXDH (ADH-KE)

the game. Finally, our main scheme achieves tight security, whereas our proof
of knowledge soundness with asymmetric pairings (which we present in the full
version [FO18]) has a security loss that is linear in the circuit size.

2 Preliminaries

Notation. Let λ be the security parameter. We let M.rl(λ) be a length function
in λ defining the length of the randomness for a probabilistic machine M. When
sampling the value a uniformly at random from the set S, we write a ←$ S. When
sampling the value a from the probabilistic algorithm M, we write a ← M.
We use := to denote assignment. Elements of Zp are denoted in lower case,
group elements are denoted with capital letters. We employ additive notation
for groups. Let R be a relation between statements denoted by φ and witnesses
denoted by w. By R(φ) we denote the set of possible witnesses for the statement
φ in R. We let L(R) := {φ : R(φ) �= ∅} be the language associated to R.

We consider the language of circuit satisfiability, which is NP-complete. For
a binary circuit C, the set R(C) is the set of inputs w that satisfy C(w) = 1.
Without loss of generality, we assume that circuits consist solely of NAND gates.
Unless otherwise specified, all following algorithms are assumed to be randomized
and to run in time poly(λ). As Bellare et al. [BFS16], who follow [Gol93], we
only consider uniform machines to model the adversary A and the extractor
Ext. (See [BFS16,Fuc18] for discussions on how this choice affects the hardness
assumptions and security guarantees.)

Bilinear Groups. Throughout this work, we make use of prime-order abelian
groups equipped with a (symmetric) bilinear map. Concretely, we assume the
existence of groups G,GT of odd prime order p of length λ and an efficiently
computable non-degenerate bilinear map e : G×G → GT . That is, the map e is
such that for all U, V ∈ G and a, b ∈ Zp : e(aU, bV ) = ab · e(U, V ), and if U is a
generator of G, then e(U,U) is a generator of GT . We say that a bilinear group
is verifiable if there exists an efficient verification algorithm that outputs true if
and only if Γ = (p,G,GT , e) is the description of a bilinear group. For instance,
the elliptic-curve group of [BBS04] equipped with the Weil pairing is publicly
verifiable. In most practical scenarios, the group description is embedded as a



Non-interactive Zaps of Knowledge 49

part of the protocol specification and agreed upon in advance; in these cases
there is no need for verification.

Throughout this paper, we assume the existence of a deterministic algorithm
G that, given as input the security parameter in unary 1λ, outputs a bilinear
group description Γ . The same assumption was already employed by Bellare et al.
[BFS16]. The main advantage in choosing G to be deterministic is that every
entity in the scheme can (re)compute the group from the security parameter,
and no party must be trusted with generating the group. Moreover, real-world
pairing schemes are defined for groups that are fixed for some λ. For the sake
of simplicity, we define all our schemes w.r.t. a group description Γ and assume
that the security parameter (λ ∈ N such that Γ := G(1λ)) can be derived from Γ .

Extractable Commitment Schemes. A commitment scheme Com consists of
the following three algorithms:

– (σ, τ) ← Com.K(Γ ), the key generation algorithm, outputs a CRS σ together
with the trapdoor information τ .

– (C, r) ← Com.C(σ, v), the commitment algorithm, outputs a commitment C
to the given value v together with the opening information r.

– bool ← Com.O(σ,C, v, r), the opening algorithm, outputs true if C is a com-
mitment to v witnessed by r, and false otherwise.

In our case, Com.C returns the used randomness and Com.O simply recom-
putes the commitment and checks that C = Com.C(V ; r). Consequently, correct-
ness of the scheme is trivial. To ease notation for commitments and openings,
we will always assume that the group description Γ can be deduced from σ, and
omit the opening information from the returned value.

Generally, we require commitment schemes to be hiding and binding. Loosely
speaking, a scheme is hiding if the commitment C reveals no information about v.
A scheme is binding if a cheating committer cannot change its mind about the
value it committed to. Formally, it is hard to find C, v, r, v′ and r′ such that
v �= v′ and Com.O(σ,C, v, r) = true = Com.O(σ,C, v′, r′).

We also require a perfectly binding commitment scheme to be extractable,
that is, Com is equipped with an efficient extraction algorithm Com.E that, given
as input the trapdoor information τ , recovers the value v to which C is bound.

Proof Systems. A non-interactive proof system Π for a relation R consists of
the following three algorithms:

– (σ, τ) ← Π.K(Γ ), the CRS generation algorithm that outputs a CRS σ (and
possibly some trapdoor information τ). Since we are dealing with publicly
verifiable protocols, the trapdoor information τ will be omitted in most cases
and used solely in the proofs or when combining protocols.

– π ← Π.P(σ, φ,w), a prover which takes as input some (φ,w) ∈ R and a CRS
σ, and outputs a proof π.

– bool ← Π.V(σ, φ, π) a verifier that, given as input a statement φ together with
a proof π outputs true or false, indicating acceptance of the proof.



50 G. Fuchsbauer and M. Orrù

Fig. 1. Witness indistinguishability (WI) game.

A proof is complete if every correctly generated proof verifies. If the CRS is
clear from the context, we omit σ from the arguments of Π.P or Π.V.

Zaps. A zap is a two-round, witness-indistinguishable proof system where the
first-round message is fixed “once and for all” [DN00] for all future instances of
the protocol. The notion of witness-indistinguishability [FLS90] informally states
that no PPT adversary can tell which of two possible witnesses has been used
to construct a proof.

Definition 2. A proof system Π is witness-indistinguishable (WI) for relation R
if Advwi

Π,R,A(λ) is negligible in λ for any PPT adversary A, where Advwi
Π,R,A(λ) :=

Pr
[
WIΠ,R,A(λ)

] − 1/2 and WIΠ,R,A(λ) is depicted in Fig. 1.

A zap is non-interactive if there is no first-round message from the verifier
to the prover: the prover simply sends a single message. The proof system thus
reduces to a pair (P,V) or can be considered as defined above, but with a CRS
generation algorithm that always outputs ⊥. We next define the soundness notion
for non-interactive arguments of knowledge.

Knowledge soundness [BG93] means that for any prover able to produce a
valid proof there exists an efficient algorithm, which has access to the prover’s
random coins, capable of extracting a witness for the given statement.

Definition 3. A proof system Π is knowledge-sound for R if for any PPT adver-
sary A there exists a PPT extractor Ext such that AdvksndA,Ext,R,Π(λ) is negligible
in λ, where AdvksndΠ,R,A,Ext(λ) := Pr

[
KSNDΠ,R,A,Ext(λ)

]
and KSNDA,Ext,R,Π(λ) is

defined in Fig. 2. An argument of knowledge is a knowledge-sound proof system.

Variations of this argument are often found in the literature. Most of them
allow the extractor to rewind the adversary for interactive proof systems in

Fig. 2. Game for knowledge soundness.



Non-interactive Zaps of Knowledge 51

Fig. 3. Games for Assumptions 1 (DLin) and 2 (DH-KE).

addition to black-box access, most notably for Σ-protocols. In case of non-
interactive provers the extractor is provided with the adversary’s random coins.

Assumptions. Our protocol is based on the DH-KE assumption and the exis-
tence of a homomorphic extractable commitment scheme. Such schemes have
been widely studied and there are constructions from standard assumptions such
as the subgroup decision assumption or the decisional linear (DLin) assumption
[BBS04]. For this work, we rely on the latter, which is also used in [GOS06a].

The DLin assumption [BBS04] for an abelian group G = 〈G〉 of order p states
that it is computationally difficult to distinguish (uG, vG, urG, vsG, (r + s)G)
with u, v, r, s ←$Zp from a uniformly random 5-tuple in G.

Assumption 1 (DLin). We say that the Decisional Linear assumption holds
for the group generator G if for all PPT adversaries A we have:

AdvdlinG,A (λ) := Pr
[
DLinG,A(λ)

] − 1/2 = negl(λ) ,

where the game DLinG,A(λ) is defined in Fig. 3.

The intuition behind DH-KE [BFS16] is that it is difficult for some machine
to produce a (Diffie-Hellman) DH triple (xG, yG, xyG) in G without knowing
at least x or y. The assumption is in the spirit of earlier knowledge-of-exponent
assumptions [Gro10,BCI+10], whose simplest form states that given (G, xG) ∈
G

2 it is hard to return (yG, xyG) without knowing y.

Assumption 2 (DH-KE). The Diffie-Hellman Knowledge of Exponent ass-
umption holds for the bilinear group generator G if for any PPT adversary A
there exists a PPT extractor Ext such that:

AdvdhkeG,A,Ext(λ) := Pr
[
DH-KEG,A,Ext(λ)

]
= negl(λ) ,

where the game DH-KEG,A,Ext(λ) is defined in Fig. 3.

In other variants of knowledge of exponent assumptions the adversary is pro-
vided with some auxiliary information, which amounts to a stronger assumption.
This is typically required as in the security proofs the reduction obtains a chal-
lenge which it needs to embed in the input to the adversary. In our specific case,



52 G. Fuchsbauer and M. Orrù

all the proof material is generated by the prover itself, including the CRS. Con-
sequently, the game DH-KE considers an adversary that simply takes as input
a group description, without any auxiliary information. Compared to [BFS16],
where the adversary is provided with additional information, our variant is thus
weaker.

3 An Extractable Commitment Scheme from DLin

We recall the homomorphic commitment scheme based on linear encryption
[BBS04] by Groth et al. [GOS06a]. It defines two types of key generation:
a perfectly hiding and perfectly binding one. Given a bilinear group Γ :=
(p,G,GT , e,G), it defines two key-generation algorithms Com.K(b) and Com.K(h)

producing binding and hiding keys, respectively:

Com.K(h)

τ := (ru, sv) ←$ (Z∗
p)

2; (x, y) ←$ (Z∗
p)

2

F := xG, H := yG

(U, V, W ) := (ruF, svH, (ru + sv)G)

σ := (F, H, U, V, W )

return (σ, τ)

Com.K(b)

τ := (x, y, z) ←$ (Z∗
p)

3; (ru, sv) ←$ (Z∗
p)

2

F := xG, H := yG

(U, V, W ) := (ruF, svH, (ru + sv + z)G)

σ := (F, H, U, V, W )

return (σ, τ)

In order to commit to a value m ∈ Zp, one samples r, s ←$Zp and returns:

C = Com.C(m; r, s) =
(
mU + rF,mV + sH,mW + (r + s)G

)
.

Since Com.C(m0; r0, s0)+Com.C(m1; r1, s1) = Com.C(m0 +m1; r0 + r1, s0 + s1),
commitments are additively homomorphic. A committed value is opened by
providing the randomness (r, s). Under a perfectly hiding key, a commitment
to m can be opened to any value m′, given trapdoor information τ = (ru, sv):

Com.C(m; r, s) =
(
(mru + r)F, (msv + s)V, (mru + r + msv + s)G

)

= Com.C
(
m′; r − (m′ − m)ru, s − (m′ − m)sv)

)
.

(1)

Under the DLin assumption, keys output by the perfectly hiding setup are com-
putationally indistinguishable from ones output by the perfectly binding setup.
For this reason, the perfectly hiding setup leads to computationally binding
commitments and vice versa.

We say that a triple of group elements is linear w.r.t. (F,H,G) if it is of the
form (rF, sH, (r + s)G) for some r, s ∈ Zp. Commitments to 0 are linear triples
and every commitment under a hiding key is also a linear. Under a binding key
we have:

Com.C(m; r, s) =
(
(mru + r)F, (msv + s)H, mzG + (mru + r + msv + s)G

)
.

A commitment to m is thus a linear encryption [BBS04] of mzG ∈ G1 under
randomness (mru + r,msv + s). Given a commitment C and the trapdoor infor-
mation τ = (x, y, z), one can extract the committed message. The extraction
algorithm Com.E is defined as:



Non-interactive Zaps of Knowledge 53

Com.E
(
τ, (C0, C1, C2)

)
:= dLog

(
z−1(C2 − x−1C0 − y−1C1)

)
, (2)

where dLog can be efficiently computed if the message space is of logarithmic
size; for instance, assuming m ∈ {0, 1}, we define Com.E to return 0 if (C2 −
x−1C0 − y−1C1) is the identity element, and 1 otherwise.

Theorem 4 ([GOS06a]). Assuming DLin, Com, as defined above, is an
extractable homomorphic commitment scheme that is:

– perfectly binding, computationally hiding when instantiated with Com.K(b);
– computationally binding, perfectly hiding when instantiated with Com.K(h).

The “parameter switching” technique, which defines different types of keys
that are computationally indistinguishable, has proved very useful and also
applies to encryption schemes. The idea has been defined (and named) several
times. “Parameter switching” [GOS06a] is also called “meaningful/meaningless
encryption” [KN08], “dual-mode encryption” [PVW08] and “lossy encryption”
[BHY09].

Proofs of Binarity. As a building block for their zaps Groth et al. [GOS06a]
first construct a witness-indistinguishable non-interactive proof system Bin.
Given a commitment key σ = (F,H,U, V,W ) and a commitment C ∈ G

3, it
allows to prove that C commits to a value in {0, 1} under σ. The proof is per-
fectly sound and perfectly witness-indistinguishable. (We recall their scheme in
the full version [FO18].)

4 Non-interactive Zaps

To construct a non-interactive zap (i.e., a WI proof system without a CRS),
Groth et al. [GOS06a] first construct a proof system for circuit satisfiability with
a CRS, based on the commitment scheme from Sect. 3 and their proof of binarity.
Then, in order to make their scheme CRS-less, they define the prover to pick two
CRS’s that are correlated in a way that makes it impossible for the adversary
to cheat under both of them.

As the commitment scheme described in Sect. 3 is homomorphic, it is possible
to perform linear operations on commitments, and in particular prove logical
relations between them.

First, proving that either C or C ′ := C−(U, V,W ) is linear proves that C is a
commitment to a bit. In order to prove that committed values satisfy wire assign-
ments of a NAND gate, Groth et al. [GOS06b] observe that if a, b ∈ {0, 1} then
c := ¬(a∧b) iff t := a+b+2c−2 ∈ {0, 1}. Reasoning with homomorphic commit-
ments, we have that three commitments A := (A0, A1, A2), B := (B0, B1, B2),
and C := (C0, C1, C2) are bound respectively to the values a, b, c, such that
c = ¬(a ∧ b), if and only if

T := A + B + 2 · C − 2 · (U, V,W ) (3)



54 G. Fuchsbauer and M. Orrù

Fig. 4. The (non-interactive) ZAP protocol of [GOS06a].

is a commitment to either 0 or 1. Thus, to prove that A,B,C are commitments
to values in {0, 1} and that C is a commitment to the NAND of the values in
A and B, it is sufficient to prove that A, B, C and T are all bit commitments.
With these observations, GOS construct a perfectly witness-indistinguishable
proof system Circ for circuit satisfiability as follows:

The key generation algorithm Circ.K simply emulates Com.K(h), that is, it
generates a hiding commitment key. The prover Circ.P(σ, C, w) takes as input a
circuit C and a witness w satisfying C(w) = 1, and does the following: represent
the circuit evaluation C(w) in such a way that wk is the value running in the k-th
wire. For each wk, produce a commitment Ck ← Com.C(σ,wk) to wk and prove
it is to a bit under σ using proof system Bin. For each gate, construct T from
the commitments corresponding to the ingoing and outgoing wires as above and
prove that it too is a commitment to 0 or 1. For the output commitment, create a
commitment Cout to 1 that can be easily reproduced and checked by the verifier:
Cout := Com.C(σ, 1; (0, 0)). Let Π be the collection of all other commitments
together with the respective proofs of binarity generated. Return Π.

The verifier Circ.V(σ, C,Π), computes Cout := Com.C(σ, 1; (0, 0)) and for
every gate the value T as in Eq. (3); using Bin.V, it checks that all the wire
commitments are to values in {0, 1} and respect the gates (by checking the val-
ues T ); if all verifications succeed, return true. Otherwise, return false.

Theorem 5 ([GOS06a]). Assuming DLin, Circ is a non-interactive, perfectly
sound computationally witness-indistinguishable proof system.

The reason why we cannot let the prover choose the CRS in Circ is that it
could chose it as a perfectly hiding CRS and then simulate proofs. However, if
the prover must construct two proofs under two different CRS’s which are related
in such a way that at least one of them is not linear (and thus binding), then
the prover cannot cheat. In particular, note that given a 5-tuple σ0 ∈ G

5, and
defining σ1 := σ0 +(0, 0, 0, 0, G) then at most one of σ0, σ1 is linear. At the same
time, both of them are valid CRS’s. With this last trick, it is straightforward to
construct the zap scheme ZAP, as illustrated in Fig. 4.

Theorem 6 ([GOS06a]). Assuming DLin, ZAP is a non-interactive zap with
perfect soundness and computational witness indistinguishability.

Remark 7. We note that soundness of ZAP relies only on the fact that Γ is a
bilinear group. In [GOS06a] the prover is allowed to generate Γ and it is required



Non-interactive Zaps of Knowledge 55

Fig. 5. The ZAK protocol.

that Γ is verifiable. We presented a zap for deterministically generated groups, as
considered by Bellare et al. [BFS16], which is also required for our construction
of non-interactive zaps of knowledge in the next section.

5 ZAK: A Non-interactive Zap of Knowledge

We now present our NIWI argument of knowledge for circuit satisfiability. The
high-level idea of our protocol is to double the ZAP proof of [GOS06a] and link
the two CRS’s so the prover must know the extraction trapdoor for one of them.
Whereas the protocol ZAP used two Circ proofs to construct a zap from a proof
that requires a CRS, we will use two zap proofs to not only prove circuit sat-
isfiability, but to prove knowledge of a satisfying assignment. More specifically,
knowledge soundness is obtained by generating two independent zap proofs, and
then linking the respective trapdoor information with multiple DH in a matrix
of group elements Δ. This additional matrix Δ, that we call linking element, is
constructed in such a way that (under DH-KE) it is possible to recover the trap-
door from one of the two zap proofs, and use it to extract the witness from the
commitments contained in a valid zap proof. Witness indistinguishability of the
single proofs follows immediately from [GOS06a], but our proofs also contain the
linking element Δ, which depend on the randomness of the CRS’s. We thus have
to argue that these additional elements do not harm witness indistinguishability.

Bellare et al. [BFS16] also used an extractor to recover the trapdoor hidden
in an adversarially generated CRS to construct a scheme satisfying subversion-
zero knowledge. Our protocol is detailed in Fig. 5, where by DH we denote the
algorithm that checks that δi,j is the CDH of (σ0,0)i and (σ1,0)j (see below).

The trapdoor information τ0 = (x0, y0) and τ1 = (x1, y1) is correlated in Δ
to form the following products:

Δ := [δi,j ]i,j∈{0,1} =

[
x0x1G x0y1G

y0x1G y0y1G

]

(4)



56 G. Fuchsbauer and M. Orrù

Correctness of Δ can be checked by the verification algorithm using the
bilinear map. For i = 0, 1, let the CRS be σi = (Fi,Hi, Ui, Vi,Wi), and let xi, yi

be such that:

Fi := xiG, Hi := yiG,

in which case Δ is constructed as in Eq. (4). The verifier checks that the following
holds:

e(δ0,0, G) = e(F0, F1), e(δ0,1, G) = e(F0,H1),
e(δ1,0, G) = e(H0, F1), e(δ1,1, G) = e(H0,H1).

(5)

Let us denote by DH the algorithm that, given as input Σ and Δ returns true if
all equalities of Eq. (5) are satisfied, and false otherwise. This procedure is used
by the verification equation, as detailed in Fig. 5.

We now proceed with the proof of our main result, Theorem1, which we
rephrase here for completeness:

Theorem 1. Assume that DLin and DH-KE hold for G. Then ZAK as defined
in Fig. 5 is a non-interactive zap that satisfies knowledge soundness and witness
indistinguishability. In particular, we have

AdvksndZAK (λ) ≤ 4 · Advdh-ke(λ) and Advwi
ZAK(λ) ≤ 8 · Advdlin(λ).

Completeness of the protocol is trivial: the prover (respectively, the verifier)
simply performs 4 iterations of Circ proofs (respectively, verifications), and there-
fore correctness is implied by Theorem5 and the fact that Δ as in Eq. 4 satisfies
Eq. 5. We now prove knowledge soundness and witness indistinguishability.

Proof (of computational knowledge soundness). We show that for any adversary
able to produce a valid proof we can construct a PPT extractor that can extract
a witness from such a proof with overwhelming probability.

Let A be an adversarial prover in game KSND(λ) (Fig. 2, with Π.K void). On
input 1λ, A returns a proof consisting of σi,0 = (Fi,Hi, Ui, Vi,Wi) for i ∈ {0, 1},
of Δ = [δi,j ]i,j∈{0,1} and Π = [πi,j ]i,j∈{0,1}. From A we construct four adversaries
Ai,j (for i, j ∈ {0, 1}) that execute A and output some components of the proof
produced by A, namely

(F0, F1, δ0,0) = (x0G, x1G, x0x1G), (for A0,0)
(F0, H1, δ0,1) = (x0G, y1G, x0y1G), (for A0,1)
(H0, F1, δ1,0) = (y0G, x1G, y0x1G), (for A1,0)
(H0, H1, δ0,1) = (y0G, y1G, y0y1G), (for A1,1)

where xi, yi are such that Fi = xiG, Hi = yiG, and these four equations hold if
ZAK.V(C, (Σ,Δ,Π)) returns true. By the DH-KE assumption there exist extrac-
tors Exti,j for each of the adversaries Ai,j that given its coins outputs:

x0 or x1, x0 or y1, (for Ext0,0, Ext0,1)
y0 or x1, y0 or y1 (for Ext1,0, Ext1,1)



Non-interactive Zaps of Knowledge 57

if the above equations hold. The statement (x0∨x1)∧(y0∨x1)∧(x0∨y1)∧(y0∨y1)
is logically equivalent to (x0 ∧ y0) ∨ (x1 ∧ y1). This means that together, these
four extractors allow to recover either (x0, y0) or (x1, y1), that is, the extraction
trapdoor for one of the CRS’s. Let i∗ be such that (xi∗ , yi∗) is the extracted pair.

For j ∈ {0, 1}, let Fi∗ ,Hi∗ , Ui∗ , Vi∗ ,Wi∗ ∈ G be such that σi∗,j = (Fi∗ ,Hi∗ ,
Ui∗ , Vi∗ ,Wi∗ + jG). Let j∗ ∈ {0, 1} be the smallest integer satisfying:

x−1
i∗ Ui∗ + y−1

i∗ Vi∗ − (Wi∗ + j∗G) �= 0G.

The above implies that σi∗,j∗ is not a linear tuple, which means that it is a
binding CRS. Let C(i∗,j∗),k denote the commitment to the k-th wire contained
in πi∗,j∗ . Using the extraction algorithm described in Eq. (2) we can recover this
witness:

wk = Com.E
(
(xi∗ , yi∗), C(i∗,j∗),k

)
.

It remains to prove that the extracted witness is indeed correct. Upon
receiving a valid proof from adversary A, we know from the verification equa-
tion (the subroutine DH) that each Ai,j will output a DH triple. Therefore,
extractors Exti,j together recover τi∗ = (xi∗ , yj∗) with probability at least
1 − ∑

i,j∈{0,1} AdvdhkeG,Ai,j ,Exti,j (λ), that is, by DH-KE, with overwhelming prob-
ability. Since the commitment scheme Com is perfectly binding if the CRS is
not a linear tuple (Theorem 4), a message wk is always successfully extracted.
Correctness of wk follows from the underlying proof system: by perfect sound-
ness of Bin we are guaranteed that wk ∈ {0, 1}; by perfect soundness of Circ
(Theorem 5) that each gate evaluation is correct. The bound in the construction
of the extractor is tight: we have Advksnd(λ) ≤ 4 · Advdhke(λ). �

Proof (of computational witness indistinguishability). Consider an adversary in
the WI game (Fig. 1, where Π.K is void) that makes q = q(λ) queries to the
Prove oracle, each of the form (C(k), w(k)

0 , w(k)
1 ), for 0 ≤ k < q. Consider the fol-

lowing sequence of hybrid games where H0 corresponds to WIZAK,CIRC-SAT,A(λ)
with b = 0 and H12 corresponds to WIZAK,CIRC-SAT,A(λ) with b = 1. The games
differ in how the Prove oracle is implemented, which is specified in Fig. 6 for
the first half of the hybrids (the second half is analogous). We give an overview
of all hybrids in Table 2 below.

H0 The challenger simulates an honest Prove oracle, using (for every k < q)
the first witness w(k)

0 supplied by the adversary. It outputs (Σ(k),Δ(k),Π(k)),
where in particular we recall:

Σ(k) =

[
σ
(k)
0,0 = (F (k)

0 , H(k)
0 , U (k)

0 , V (k)
0 , W (k)

0 )

σ
(k)
1,0 = (F (k)

1 , H(k)
1 , U (k)

1 , V (k)
1 , W (k)

1 )

]

and Π(k) =

[
π
(k)
0,0 π

(k)
0,1

π
(k)
1,0 π

(k)
1,1

]

.

Recall that the two rows of [Σ(k)|Π(k)] are independent zaps and that σ(k)
0,0

and σ(k)
1,0 are chosen to be hiding. The Prove oracle computes σ(k)

i,j which



58 G. Fuchsbauer and M. Orrù

Fig. 6. Overview of the simulations of the prove oracle in the first hybrid games for
the proof of WI. Hybrids H1 and H4 are defined by ignoring all boxes (the light gray

highlights the differences with respect to the previous hybrids), whereas H2 and H5

include the light boxes but not the gray one and H3 includes all boxes.

is of the form σ(k)
i,j =

(
F (k)

i , H(k)
i , U (k)

i , V (k)
i , W (k)

i + jG
)
, for i, j ∈ {0, 1}.

Furthermore, π(k)
i,j is a Circ proof using w(k)

0 under the CRS σ(k)
i,j .

H1 For every Prove query, the simulator uses witness w(k)
1 (instead of w(k)

0 ) to
produce π(k)

0,0. As the respective CRS σ(k)
0,0 was generated using the perfectly

hiding commitment setup Circ.K, the two hybrids are distributed equivalently
(any commitment under a hiding key is a random linear triple; cf. Eq. (1)).

H2 For every Prove query, the simulator now generates CRS σ(k)
0,0 as a binding

key via Com.K(b); σ(k)
0,1 is generated as before (adding (0, 0, 0, 0, G)), and so are

all proofs. Note that the linking elements Δ(k) can be constructed knowing
only the trapdoor (x(k)

1 , y(k)
1 ) of the CRS σ(k)

1,0, which remained unchanged:

Δ(k) =

[
y
(k)
1 H

(k)
0 y

(k)
1 F

(k)
0

x
(k)
1 H

(k)
0 x

(k)
1 F

(k)
0

]

. (6)

H1 and H2 are computationally indistinguishable under the DLin assumption:
given a DLin challenge (F,H,U, V,W ), the reduction can exploit the ran-
dom self-reducibility property of DLin to construct q instances of the DLin
challenge: ∀k < q select x̄(k), ȳ(k), r̄(k), s̄(k), z̄(k) ←$Zp and compute σ(k)

0,0 as(
x̄(k)F, ȳ(k)H, r̄(k)x̄(k)F + z̄(k)x̄(k)U, s̄(k)ȳ(k)H + z̄(k)ȳ(k)V, (r̄(k) + s̄(k))G

+z̄(k)W
)
.

Each σ(k)
0,0 is a random linear tuple if and only if the DLin challenge is, and

it is a uniformly random tuple if the DLin challenge is, as shown in [BFS16].



Non-interactive Zaps of Knowledge 59

Table 2. Overview of changes throughout the hybrids: (h) denotes hiding setup;
(b) denotes binding setup; wb identifies the witness used to produce the proof.

Hybrid σ
(k)
0,0 π

(k)
0,0 σ

(k)
0,1 π

(k)
0,1 σ

(k)
1,0 π

(k)
1,0 σ

(k)
1,1 π

(k)
1,1

H0 (h) w0 (b) w0 (h) w0 (b) w0

H1 w1

H2 (b)

H3 (h)

H4 w1

H5 (b)

H6 (h)

H7 w1

H8 (b)

H9 (h)

H10 w1

H11 (b)

H12 (h) w1 (b) w1 (h) w1 (b) w1

Computing σ(k)
1,0 as in H1 (hiding) and defining Δ as in Eq. 6, the simulator

generates the rest of the game as defined. It returns the adversary’s guess
and thus breaks DLin whenever the adversary distinguishes H1 and H2.

H3 The simulator replaces each CRS σ(k)
0,1 for all k < q with a hiding commitment

and defines σ(k)
0,0 := σ(k)

0,1 − (0, 0, 0, 0, G), which is therefore (once again) bind-
ing. More specifically, the simulator creates a linear tuple invoking Circ.K:

σ(k)
0,1 =

(
x(k)
0 G, y(k)

0 G, x(k)
0 r(k)G, y(k)

0 s(k)G, (r(k) + s(k))G
)

where x(k)
0 , y(k)

0 , r(k), s(k) ←$Zp.
The two distributions are proven computationally indistinguishable under
DLin by an argument analogous to the one for H1 → H2. This time the
challenger constructs all the instances of the DLin challenge for σ(k)

0,1, while
σ(k)
0,0 is derived. From there, the proof proceeds identically.

H4 The simulator replaces each proof π(k)
0,1 by using w(k)

1 instead of w(k)
0 (∀k < q).

This hybrid is equivalently distributed as the previous one; this is proved via
the same argument as for H0 → H1.

H5 The simulator switches σ(k)
0,1 from a hiding to a binding key. This game hop is

analogous to the hop H1 → H2 (which switched σ(k)
0,0 from hiding to binding).

H6 The simulator switches σ(k)
0,0 from binding to hiding. Indistinguishability from

the previous hybrid is shown analogously to the hop H2 → H3. Note that
in this hybrid the first zap (σ(k)

0,0, π
(k)
0,0, π

(k)
0,1) is distributed according to the

protocol specification, but using witness w(k)
1 .



60 G. Fuchsbauer and M. Orrù

Hybrids H7 to H12 are now defined analogously to hybrids H1 to H6, except for
applying all changes to σ(k)

1 and π(k)
1,0 and π(k)

1,1. In hybrid H12 the adversary is
then given arguments of knowledge for witness w1.

As the difference between hybrids H1 and H12 is bounded by 8 times the
advantage of a DLin distinguisher, the adversary has total advantage

Advwi
ZAK,C,A(λ) ≤ 8 · AdvdlinZAK,C,A(λ) = negl(λ) .

The bound is thus tight. �

Acknowledgements. The authors would like to thank the anonymous reviewers of
PKC 2018 and ACNS 2018 for their helpful comments. The first author is supported
by the French ANR EfTrEC project (ANR-16-CE39-0002). The second author is sup-
ported by ERC grant 639554 (project aSCEND).

References

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-28628-8 3

[BCG+14] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, I., Tromer,
E., Virza, M.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE
Computer Society Press, May 2014

[BCI+10] Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.:
Efficient indifferentiable hashing into ordinary elliptic curves. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 237–254. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 13

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM
Press, May 1988

[BFS16] Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS:
security in the face of parameter subversion. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 777–804. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53890-6 26

[BG93] Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-48071-4 28

[BHY09] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for
encryption and commitment secure under selective opening. In: Joux, A.
(ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9 1

[BOV03] Barak, B., Ong, S.J., Vadhan, S.: Derandomization in cryptography. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 299–315. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 18

[BP15] Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguisha-
bility from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B.
(eds.) TCC 2015. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46497-7 16

https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-642-14623-7_13
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-540-45146-4_18
https://doi.org/10.1007/978-3-662-46497-7_16


Non-interactive Zaps of Knowledge 61

[BW06] Boyen, X., Waters, B.: Compact group signatures without random oracles.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 26

[BW07] Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size
group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 1–15. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-71677-8 1

[DN00] Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS, pp. 283–
293. IEEE Computer Society Press, November 2000

[FLS90] Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In: 31st FOCS,
pp. 308–317. IEEE Computer Society Press, October 1990

[FO18] Fuchsbauer, G., Orrú, M.: Non-interactive zaps of knowledge. Cryptology
ePrint Archive, Report 2018/228 (2018)

[FS90] Feige, U., Shamir, A.: Witness indistinguishable and witness hiding proto-
cols. In: 22nd ACM STOC, pp. 416–426. ACM Press, May 1990

[Fuc18] Fuchsbauer, G.: Subversion-zero-knowledge SNARKs. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 315–347. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76578-5 11

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[GO94] Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof
systems. J. Cryptol. 7(1), 1–32 (1994)

[GOS06a] Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new tech-
niques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
97–111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 6

[GOS06b] Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowl-
edge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol.
4004, pp. 339–358. Springer, Heidelberg (2006). https://doi.org/10.1007/
11761679 21

[GS08] Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78967-3 24

[Gol93] Goldreich, O.: A uniform-complexity treatment of encryption and zero-
knowledge. J. Cryptol. 6(1), 21–53 (1993)

[Gro06] Groth, J.: Simulation-sound NIZK proofs for a practical language and con-
stant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006). https://doi.
org/10.1007/11935230 29

[Gro10] Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
8 19

[KN08] Kol, G., Naor, M.: Cryptography and game theory: designing protocols for
exchanging information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 320–339. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8 18

https://doi.org/10.1007/11761679_26
https://doi.org/10.1007/978-3-540-71677-8_1
https://doi.org/10.1007/978-3-540-71677-8_1
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-540-78524-8_18
https://doi.org/10.1007/978-3-540-78524-8_18


62 G. Fuchsbauer and M. Orrù

[PVW08] Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and
composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 554–571. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85174-5 31

[Ràf15] Ràfols, C.: Stretching groth-sahai: NIZK proofs of partial satisfiability.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.
247–276. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46497-7 10

https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-662-46497-7_10
https://doi.org/10.1007/978-3-662-46497-7_10


Side Channel Attacks and Tamper
Resistance



Formal Verification of Side-Channel
Countermeasures via Elementary Circuit

Transformations

Jean-Sébastien Coron(B)

University of Luxembourg, Luxembourg City, Luxembourg
jean-sebastien.coron@uni.lu

Abstract. We describe a technique to formally verify the security of
masked implementations against side-channel attacks, based on elemen-
tary circuit transforms. We describe two complementary approaches: a
generic approach for the formal verification of any circuit, but for small
attack orders only, and a specialized approach for the verification of spe-
cific circuits, but at any order. We also show how to generate security
proofs automatically, for simple circuits. We describe the implementation
of CheckMasks, a formal verification tool for side-channel countermea-
sures. Using this tool, we formally verify the security of the Rivain-Prouff
countermeasure for AES, and also the recent Boolean to arithmetic con-
version algorithms from CHES 2017.

Keywords: Side-channel attacks and countermeasures
High-order masking · Security proof · Automated security analysis

1 Introduction

The Masking Countermeasure. Masking is the most widely used counter-
measure against side-channel attacks for block-ciphers and symmetric-key algo-
rithms. In a first-order countermeasure, all intermediate variables x are masked
into x′ = x ⊕ r where r is a randomly generated value. For such countermea-
sure, it is usually straightforward to verify its security against first-order attacks;
namely it suffices to check that all intermediate variables have the uniform distri-
bution, or at least that their distribution is independent from the key; therefore
an attacker processing the side-channel leakage of intermediate variables sepa-
rately (as in a first-order attack) does not get useful information.

However second-order attacks combining the leakage on x′ and r can be
mounted in practice, so it makes sense to design masking algorithms resisting
higher-order attacks. This is done by extending Boolean masking to n shares
with x = x1 ⊕ · · · ⊕ xn; in that case an implementation should be resistant
against t-th order attacks, in which the adversary combines leakage information
from at most t < n intermediate variables.

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 65–82, 2018.
https://doi.org/10.1007/978-3-319-93387-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_4&domain=pdf


66 J.-S. Coron

Security Proofs. In principle any countermeasure against high-order attacks
should have a security proof, but such proof can be either missing, incomplete, or
incorrect. In this paper we describe the construction of a tool, called CheckMasks,
to automatically verify the security of high-order masking schemes.

The first step is to specify what it means for a masking countermeasure to be
secure, i.e. what is the security model. Such formalization was initiated by Ishai
et al. in [ISW03]. In this model, the adversary can probe at most t wires in the
circuit, but he should not learn anything about the secret key. The approach for
proving security is based on simulation: one must show that any set of t wires
probed by the adversary can be perfectly simulated without the knowledge of
the secret-key. This shows that the t probes do not bring any useful information
to the attacker, since he could run this simulation by himself.

More precisely, the simulation technique consists in showing that any set of
t probes can be perfectly simulated by the knowledge of only a proper subset of
the input shares xi. At the beginning of the algorithm an original variable x is
shared into n shares xi. When x is part of the secret-key, this pre-sharing cannot
be probed by the adversary. Since any subset of at most n−1 input shares xi are
uniformly and independently distributed, the simulation of the probed variables
can be performed without knowing the secret-key.

The main result in [ISW03] is to show that any circuit C can be transformed
into a new circuit C ′ of size O(t2 · |C|) that is resistant against an adversary
probing at most t wires in the circuit. The construction is based on secret-sharing
every variable x into n shares with x = x1 ⊕ · · · ⊕ xn, and processing the shares
in a way that prevents a t-limited adversary from leaning any information about
the initial variable x, using n ≥ 2t + 1 shares.

Formal Verification of Masking. The formal verification of the masking
countermeasure was initiated by Barthe et al. in [BBD+15]. The authors describe
an automated method to prove the security of masked implementation against
t-th order attacks, for small values of t (in practice, t < 5). The method only
works for small values of t because the number of possible t-tuples of intermediate
variables grows exponentially with t. To formally prove the security of a masking
algorithm, the authors describe an algorithm to construct a bijection between
the observations of the adversary (corresponding to a t-tuple of intermediate
variables) and a distribution that is syntactically independent from the secret
inputs; this implies that the adversary learns nothing from this particular t-tuple
of intermediate variables. All possible t-tuples of intermediates variables are then
examined by exhaustive search.

The authors obtain a formal verification of various masked implementations,
up to second order masked implementation of AES, and up to 5-th order for the
masked Rivain-Prouff multiplication [RP10]. In particular, the authors were able
to rediscover some known attacks and discover new ways of attacking already
broken schemes. Their approach is implemented in the framework of EasyCrypt
[BDG+14], and relies on its internal representations of programs and expressions.



Formal Verification of Side-Channel Countermeasures 67

The main drawback of the previous approach is that it can only work for
small orders t, since the running time is exponential in t. To overcome this
problem, in a follow-up work [BBD+16], Barthe et al. studied the composition
property of masked algorithms. In particular, the authors introduce the notion
of strong simulatability, a stronger property which requires that the number
of input shares necessary to simulate the observations of the adversary in a
given gadget is independent from the number of observations made on output
wires. This ensures some separation between the input and the output wires: no
matter how many output wires must be simulated (to ensure the composition
of gadgets), the number of input wires that must be known to perform the
simulation only depends on the number of internal probes within the gadget.

The paper [BBD+16] has a number of important contributions that we sum-
marize below. Firstly, the authors introduce the t-NI and t-SNI definitions. The
t-NI security notion corresponds to the original security definition in the ISW
probing model [ISW03]; it requires that any tc ≤ t probes of the gadget circuit
can be simulated from at most tc of its input shares. The stronger t-SNI notion
corresponds to the strong simulatability property mentioned above, in which
the number of input shares required for the simulation is upper bounded by the
number of probes tc in the circuit, and is independent from the number of output
variables |O| that must be simulated (as long as the condition tc+|O| < t is satis-
fied). We recall these definitions in Sect. 2, as they are fundamental in our paper.

The authors show that the t-SNI definition allows for securely composing
masked algorithms; i.e. for a construction involving many gadgets, one can prove
that the full construction is t-SNI secure, based on the t-SNI security of its
components. The advantages are twofold: firstly the proof becomes modular and
much easier to describe. Secondly as opposed to [ISW03] the masking order does
not need to be doubled throughout the circuit, as one can work with n ≥ t + 1
shares, instead of n ≥ 2t + 1 shares. Since most gadgets have complexity O(n2),
this usually gives a factor 4 improvement in efficiency. In [BBD+16], the authors
prove the t-SNI property of several useful gadgets: the multiplication of Rivain-
Prouff [RP10], the mask refreshing based on the same multiplication algorithm,
and the multiplication between linearly dependent inputs from [CPRR13].

Moreover, in [BBD+16] the authors also machine-checked the multiplication
of Rivain-Prouff and the multiplication-based mask refreshing in the EasyCrypt
framework [BDG+14]. The main point is that their machine verification works
for any order, whereas in [BBD+15] the formal verification could only be per-
formed at small orders t. However, the approach seems difficult to understand
(at least for a non-expert in formal methods), and when reading [BBD+16] it is
far from obvious how the automated verification of the countermeasure can be
implemented concretely; this seems to require a deep knowledge of the EasyCrypt
framework.

Finally, the authors built an automated approach for verifying that an algo-
rithm constructed by composing provably secure gadgets is itself secure. They
also implemented an algorithm for transforming an input program P into a pro-
gram P ′ secure at order t; their algorithm automatically inserts mask refreshing
gadgets whenever required.



68 J.-S. Coron

Our Contributions. Our main goal in this paper is to simplify and extend the
formal verification results from [BBD+15,BBD+16]. We describe two comple-
mentary approaches: a generic approach for the formal verification of any circuit,
but for small attack orders only (as in [BBD+15]), and a specialized approach
for the verification of specific circuits, but at any order (as in [BBD+16]).

For the generic verification of countermeasures at small orders, we use a dif-
ferent formal language from [BBD+15]. In particular we represent the underly-
ing circuit as nested lists, which leads to a simple and concise implementation in
Common Lisp, a programming language well suited to formal manipulations. We
are then able to formally verify the security of the Rivain-Prouff countermeasure
with very few lines of code. Our running times for formal verification are similar
to those in [BBD+15]. Thanks to this simpler approach, we could also extend
[BBD+15] to handle a combination of arithmetic and Boolean operations, and
we have formally verified the security of the recent Boolean to arithmetic conver-
sion algorithm from [Cor17c]. To perform these formal verifications we describe
the implementation of CheckMasks, our formal verification tool for side-channel
countermeasures.

For the verification of specific gadgets at any order (instead of small orders
only with the generic approach), our technique is quite different from [BBD+16]
and consists in applying elementary transforms to the circuit, until the t-NI or
t-SNI properties become straightforward to verify. We show that for a set of well-
chosen elementary transforms, the formal verification time becomes polynomial
in t (instead of exponential with the generic approach); this implies that the
formal verification can be performed at any order. Using our CheckMasks tool,
we provide a formally verified proof of the t-SNI property of the multiplication
algorithm in the Rivain-Prouff countermeasure, and of the mask refreshing based
on the same multiplication algorithm; in both cases the running time of the
formal verification is polynomial in the number of shares n.

Finally, we show how to get the best of both worlds, at least for simple
circuits: we show how to automatically apply the circuit transforms that lead to
a polynomial time verification, based on a limited set of generic rules. Namely
we identify a set of three simple rules that enable to automatically prove the t-
SNI property of the multiplication based mask refreshing, and also two security
properties of mask refreshing considered in [Cor17c].

Source Code. The source code of our CheckMasks verification tool is publicly
available at [Cor17a], under the GPL v2.0 license.

2 Security Properties

In this section we recall the t-NI and t-SNI security definitions from [BBD+16].
For simplicity we only provide the definitions for a simple gadget taking as
input a single variable x (given by n shares xi) and outputting a single variable
y (given by n shares yi). Given a vector of n shares (xi)1≤i≤n, we denote by
x|I := (xi)i∈I the sub-vector of shares xi with i ∈ I. In general we wish to



Formal Verification of Side-Channel Countermeasures 69

simulate any subset of intermediate variables of a gadget from the knowledge of
as few xi’s as possible.

Definition 1 (t-NI security). Let G be a gadget taking as input (xi)1≤i≤n

and outputting the vector (yi)1≤i≤n. The gadget G is said t-NI secure if for any
set of tc ≤ t intermediate variables, there exists a subset I of input indices with
|I| ≤ tc, such that the tc intermediate variables can be perfectly simulated from
x|I .

Definition 2 (t-SNI security). Let G be a gadget taking as input (xi)1≤i≤n

and outputting (yi)1≤i≤n. The gadget G is said t-SNI secure if for any set of tc
intermediate variables and any subset O of output indices such that tc + |O| ≤ t,
there exists a subset I of input indices with |I| ≤ tc, such that the tc intermediate
variables and the output variables y|O can be perfectly simulated from x|I .

The t-NI security notion corresponds to the original security definition in
the ISW probing model, in which n ≥ 2t + 1 shares are required. The stronger
t-SNI notion allows for securely composing masked algorithms, and allows to
prove the security with n ≥ t+1 shares only [BBD+16]. The difference between
the two notions is as follows: in the stronger t-SNI notion, the size of the input
shares subset I can only depend on the number of internal probes tc and is
independent of the number of output variables |O| that must be simulated (as
long as the condition tc + |O| ≤ t is satisfied). The t-SNI security notion is very
convenient for proving the security of complex constructions, as one can prove
that the t-SNI security of a full construction based on the t-SNI security of its
components.

3 Formal Verification of Generic Circuits for Small Order

In this section, we show that the t-NI and t-SNI properties can be easily verified
formally for any Boolean circuit, using a generic approach. As in [BBD+15] the
complexity of the formal verification is exponential in the number of shares n,
so this can only work for small n.

3.1 The RefreshMasks Algorithm

To illustrate our approach we first consider the RefreshMasks algorithm below
from [RP10]; see Fig. 1 for an illustration.

We first recall a straightforward property of the RefreshMasks algorithm:
when the intermediate variables of the algorithm are not probed, any subset
of n − 1 output shares yi of RefreshMasks is uniformly and independently dis-
tributed. In the next section, we show how to formally verify this property.

Lemma 1. Let (yi)1≤i≤n be the output of RefreshMasks. Any subset of n − 1
output shares yi is uniformly and independently distributed.



70 J.-S. Coron

Algorithm 1. RefreshMasks
Input: x1, . . . , xn, where xi ∈ {0, 1}k

Output: y1, . . . , yn such that y1 ⊕ · · · ⊕ yn = x1 ⊕ · · · ⊕ xn

1: yn ← xn

2: for i = 1 to n − 1 do
3: ri ← {0, 1}k

4: yi ← xi ⊕ ri
5: yn ← yn ⊕ ri � yn,i = xn ⊕ ⊕i

j=1 rj
6: end for
7: return y1, . . . , yn

x1 · · · xi · · · xn−1 xn

r1

...
ri

...
rn−1

y1 · · · yi · · · yn−1 yn

Fig. 1. The RefreshMasks algorithm, with the randoms ri accumulated on the last
column.

3.2 Formal Verification of Circuits

Circuit Representation. We represent a circuit with nested lists, using the
prefix notation. Consider for example the circuit taking as input x and y and
outputting x ⊕ y; we represent it as (+ X Y). Similarly the circuit computing
x · y is represented as (∗ X Y). To represent more complex circuits the lists are
recursively nested. For example, to represent the circuit x · (y ⊕ z), we write
(∗ X (+ Y Z)). If a circuit has many outputs, we represent the list of outputs
without any prefix operator; for example, the circuit outputting (x⊕y, x ·y) can
be represented as ((+ X Y) (∗ X Y)).

It is easy to write a program in Common Lisp that generates the circuit
corresponding to RefreshMasks; we refer to [Cor17a] for the source code. For
example, we obtain for n = 3 input shares:

> ( RefreshMasks ’ (X1 X2 X3) )
((+ R1 X1) (+ R2 X2) (+ R2 (+ R1 X3) ) )

which corresponds to y1 = r1⊕x1, y2 = r2⊕x2 and y3 = r2⊕(r1⊕x3). Note that
the above RefreshMasks function in Common Lisp takes as input a list of n shares
(here n = 3) and outputs a list of n shares; therefore it can be easily composed
with other such Common Lisp functions to create more complex circuits.



Formal Verification of Side-Channel Countermeasures 71

List Substitutions. We now explain how to formally verify Lemma1. Con-
sider for example the two output variables (+ R1 X1) and (+ R2 (+ R1 X3)) from
above. We would like to show that these two variables are uniformly and inde-
pendently distributed. Since the random R2 is used only once in those two out-
puts, it can play the role of a one-time pad, and we can perform the following
substitution in the second output:

(+ R2 (+ R1 X3)) −→ R2

Namely, since R2 is used only once, the distribution of (+ R2 (+ R1 X3)) is the
same as the distribution of R2. Starting with the above list of two output vari-
ables, we can perform the following sequence of elementary substitutions:

((+ R1 X1) (+ R2 (+ R1 X3))) −→ ((+ R1 X1) R2) −→ (R1 R2)

The first substitution is possible because R2 is used only once, and the second
substitution is possible because R1 is used only once after the first substitution.
Since we have obtained two distinct randoms (R1 R2) at the end, the two output
variables are uniformly and independently distributed, as required.

Formal Verification. To formally verify Lemma1, it suffices to consider all
possible subsets of n − 1 output shares yi among n, and check that for every
subset, we obtain after a series of elementary substitutions a list of n−1 distinct
randoms. These substitutions are easy to implement in Common Lisp. Namely it
suffices to perform a tree search to count the number of times a given random R is
used, and if a random R is used only once, we can then perform the substitution:

(+ R X) −→ R (1)

In the particular case of Lemma 1, there are only n subsets to consider, so
the formal verification is performed in polynomial time. We obtain for example
for n = 3:

> (Check−RefreshMasks−Uni 3)
Input : (X0 X1 X2)
Output : ((+ R1 X0) (+ R2 X1) (+ R2 (+ R1 X2) ) )
Case 0 : ((+ R2 X1) (+ R2 (+ R1 X2) ) ) => ((+ R2 X1) (+ R2 R1) )

=> ((+ R2 X1) R1) => (R2 R1)
Case 1 : ((+ R1 X0) (+ R2 (+ R1 X2) ) ) => ((+ R1 X0) R2)

=> (R1 R2)
Case 2 : ((+ R1 X0) (+ R2 X1) ) => ((+ R1 X0) R2) => (R1 R2)

The above transcript shows that Lemma 1 is formally verified for n = 3; namely
in all 3 possible cases, after a sequence of elementary substitutions, we obtain a
list of 2 distinct randoms, showing that the two output variables are uniformly
and independently distributed; see [Cor17a] for the source code.



72 J.-S. Coron

3.3 Security Properties of RefreshMasks

In this section we show how to formally verify some existing properties of Refresh-
Masks. We first consider the straightforward t-NI property, for t = n − 1.

Lemma 2 (t-NI of RefreshMasks). Let (xi)1≤i≤n be the input of Refresh-
Masks and let (yi)1≤i≤n be the output. For any set of tc ≤ n − 1 intermediate
variables, there exists a subset I of input indices such that the tc intermediate
variables can be perfectly simulated from x|I , with |I| ≤ tc.

Formal Verification of the t-NI Property of RefreshMasks. The t-NI prop-
erty of RefreshMasks is straightforward because in the definition of RefreshMasks,
any intermediate variable depends on at most one input xi; therefore any subset
of tc probes can be perfectly simulated from the knowledge of at most tc inputs
xi. Consider for example RefreshMasks with n = 3 as previously:

> ( RefreshMasks ’ (X1 X2 X3) )
((+ R1 X1) (+ R2 X2) (+ R2 (+ R1 X3) ) )

If we probe the two intermediate variables (+ R1 X1) and (+ R1 X3), then the
knowledge of the two inputs X1 and X2 is sufficient for the simulation; moreover
we cannot perform any substitution because the random R1 is used twice. On
the other hand if we probe the two variables (+ R2 X2) and (+ R1 X3), we can
perform the substitution:

((+ R2 X2) (+ R1 X3)) → (R2 (+ R1 X3)) → (R2 R1)

showing that the knowledge of the input variables X2 and X3 is not required for
that simulation.

More generally, to verify the t-NI property of any circuit, it suffices to exhaus-
tively consider all possible tc-tuples of intermediate variables for all tc ≤ t, and
verify that after a set of elementary substitutions the knowledge of at most tc
input variables is needed for the simulation of the tc-tuple.

Other Security Properties of RefreshMasks. We perform a formal verification
of several non-trivial properties of RefreshMasks that were used to prove the
security of the Boolean to arithmetic conversion algorithm from [Cor17c]; the full
version of this paper [Cor17b]. The first property is the following: if the output yn
is among the tc probed variables, then we can simulate those tc probed variables
with tc − 1 input shares xi only, instead of tc as in Lemma 2. This property
was crucial for obtaining a provably secure Boolean to arithmetic conversion
algorithm in [Cor17c].

Lemma 3 (RefreshMasks [Cor17c]). Let x1, . . . , xn be the input of a Refresh-
Masks where the randoms are accumulated on xn, and let y1, . . . , yn be the out-
put. Let tc be the number of probed variables, with tc < n. If yn is among the
probed variables, then there exists a subset I such that all probed variables can
be perfectly simulated from x|I , with |I| ≤ tc − 1.



Formal Verification of Side-Channel Countermeasures 73

As previously, to perform a formal verification of Lemma3, it suffices to
consider all possible tc-tuples of intermediate variables (where yn is part of the tc-
tuple) and show that after a sequence of elementary substitutions, there remains
at most tc − 1 input variables. In the full version of this paper [Cor17b], we
argue that it is actually sufficient to perform such verification for tc = n−1 only,
instead of all 1 ≤ tc ≤ n − 1. The timings of formal verification are summarized
in Table 1. Although we are only able to verify Lemma3 for small values of
n, this still provides some confidence in the correctness of Lemma 3 for any n.
We refer to the full version of this paper [Cor17b] for some other properties of
RefreshMasks and their formal verification for small values of n.

Table 1. Formal verification of Lemma 3, for small values of n.

n #variables #tuples Security Time

3 9 36 � ε

4 13 286 � ε

5 17 2,380 � ε

6 21 20,349 � 0.2 s

7 25 177,100 � 1.5 s

8 29 1,560,780 � 17 s

9 33 13,884,156 � 195 s

3.4 Formal Verification of t-SNI Properties: The FullRefresh and
SecMult Algorithms

It is easy to see that that the RefreshMasks algorithm from the previous section
does not achieve the stronger t-SNI property, as already observed in [BBD+16].
Namely one can probe the output y1 = r1 ⊕ x1 and the internal variable yn,1 =
r1 ⊕ xn. This gives y1 ⊕ yn,1 = x1 ⊕ xn and therefore the knowledge of both
inputs x1 and xn is required for the simulation, whereas only tc = 1 internal
variable has been probed.

The FullRefresh Algorithm. We recall below an improved mask refreshing algo-
rithm that does satisfy the t-SNI property for t = n− 1, as shown in [BBD+16].
The algorithm FullRefresh is based on the masked multiplication from [ISW03]
and was already used in [ISW03,DDF14]. Note that the algorithm has complex-
ity O(n2) instead of O(n) for RefreshMasks.

Lemma 4 (t-SNI of FullRefresh [BBD+16]). Let (xi)1≤i≤n be the input shares
of the FullRefresh operation, and let (yi)1≤i≤n be the output shares. For any
set of tc intermediate variables and any subset O of output shares such that
tc + |O| < n, there exists a subset I of indices with |I| ≤ tc, such that the tc
intermediate variables as well as the output shares y|O can be perfectly simulated
from x|I .



74 J.-S. Coron

Algorithm 2. FullRefresh
Input: x1, . . . , xn

Output: y1, . . . , yn such that
⊕n

i=1 yi =
⊕n

i=1 xi

1: for i = 1 to n do yi ← xi

2: for i = 1 to n do
3: for j = i + 1 to n do
4: r ← {0, 1}k � Referred by ri,j
5: yi ← yi ⊕ r � Referred by yi,j

6: yj ← yj ⊕ r � Referred by yj,i

7: end for
8: end for
9: return y1, . . . , yn

Formal Verification of FullRefresh. In the following, we describe the formal
verification of Lemma 4 using our CheckMasks tool. As previously we first imple-
ment the FullRefresh algorithm in Common Lisp; for example, we get the follow-
ing output for n = 3 shares:

> ( Fu l lRe f r e sh ’ (X1 X2 X3) )
((+ R2 (+ R1 X1) ) (+ R3 (+ R1 X2) ) (+ R3 (+ R2 X3) ) )

Using our CheckMasks tool, the (n − 1)-SNI property in Lemma4 can be
easily verified for small values of n. Namely it suffices to compute the list of all
(n−1)-tuples of intermediate variables (including the outputs yi) and check that
every such (n − 1)-tuple can be perfectly simulated from the knowledge of at
most tc inputs xi, where tc is the number of non-output variables in the (n− 1)-
tuple. Consider for example the two variables (+ R2 (+ R1 X1)) and (+ R1 X2)

in the circuit above for n = 3; since (+ R2 (+ R1 X1)) is an output variable, the
simulation must be performed using at most a single input xi. We obtain using
elementary substitutions:

((+ R2 (+ R1 X1)) (+ R1 X2)) → (R2 (+ R1 X2)) → (R2 R1)

and therefore no input xi is actually needed to simulate those two variables.
However if we probe the two variables (+ R2 (+ R1 X1)) and X2, we can perform
the substitutions:

((+ R2 (+ R1 X1)) X2) → (R2 X2)

and therefore the knowledge of X2 is required for the simulation.1 Note that
the running time to consider all possible (n− 1)-tuples of intermediate variables
is exponential in n. We summarize in Table 2 the running time of the formal
verification of FullRefresh, up to n = 6. In Sect. 5 we will show how to formally
verify Lemma 4 in time polynomial in n, so that the formal verification can be
performed for any number of shares n used in practice.

1 This is still according to the t-SNI property, because (+ R2 (+ R1 X1)) is an output
variable and therefore tc = 1.



Formal Verification of Side-Channel Countermeasures 75

Table 2. Formal verification of the t-SNI property of FullRefresh for t = n − 1, for
small values of n.

n #variables #tuples Security Time

3 12 66 � ε

4 22 1,540 � 0.02 s

5 35 52,360 � 0.6 s

6 51 2,349,060 � 46 s

The Rivain-Prouff Countermeasure. The Rivain-Prouff countermeasure for
AES is based on an extension over F2k of the masked AND gate from [ISW03]. It
enables to securely compute a n-sharing of the product c = a·b over F2k , from an
n-sharing of a and b. The algorithm was proven t-SNI in [BBD+16]. In the full
version of this paper [Cor17b], we recall the corresponding SecMult algorithm,
and we show how to formally verify its t-SNI property for small values of n, for
t = n − 1.

4 Formal Verification of Boolean to Arithmetic
Conversion

In this section we show how to extend [BBD+15] to handle a combination of
arithmetic and Boolean operations. This enables to formally verify the security
of the high-order Boolean to arithmetic conversion algorithm recently described
at CHES 2017 [Cor17c], with a t-SNI security proof for n ≥ t+1. The algorithm
can be seen as a generalization of Goubin’s algorithm [Gou01] to any order, still
with a complexity independent of the register size k. Although the algorithm
has complexity O(2n), instead of O(n2 · k) in [CGV14], for small values of n it
is an order of magnitude more efficient. The algorithm takes as input n Boolean
shares xi such that

x = x1 ⊕ · · · ⊕ xn

and using a recursive algorithm computes n arithmetic shares Di such that

x = D1 + · · · + Dn (mod 2k)

Boolean to Arithmetic Conversion. The algorithm from [Cor17c] is based
on the affine property of the function Ψ(x, r) := (x ⊕ r) − r (mod 2k). As illus-
trated in Fig. 2 the algorithm is recursive and makes two recursive calls to the
same algorithm C with n − 1 inputs. For n = 2 one uses a t-SNI variant of
Goubin’s algorithm:

D1 =
(
(x1 ⊕ r1) ⊕ Ψ(x1 ⊕ r1, r2 ⊕ (x2 ⊕ r1))

) ⊕ Ψ(x1 ⊕ r1, r2) (2)
D2 = x2 ⊕ r1 (3)



76 J.-S. Coron

R ψ R F C +

R F C

x D

Fig. 2. Sequence of operations in the Boolean to arithmetic conversion algorithm from
[Cor17c].

For n ≥ 3 the algorithm works as follows. One first performs a mask refreshing
R, while expanding the xi’s to n + 1 shares. One obtains, from the definition of
the Ψ function:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn+1

= (x1 ⊕ · · · ⊕ xn+1 − x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= Ψ(x1, x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

From the affine property of the Ψ function, the left term can be decomposed
into the xor of n shares Ψ(x1, xi) for 2 ≤ i ≤ n + 1, where the first share is
(n ∧ 1) · x1 ⊕ Ψ(x1, x2):

x = (n ∧ 1) · x1 ⊕ Ψ(x1, x2) ⊕ Ψ(x1, x3) ⊕ · · · ⊕ Ψ(x1, xn+1) + x2 ⊕ · · · ⊕ xn+1

We obtain that x is the arithmetic sum of two terms, each with n Boolean
shares; this corresponds to the two branches in Fig. 2. One then performs a mask
refreshing R on both branches, and then a compression function F that simply
xors the last two shares, so there remains only n − 1 shares on both branches.
One can then apply the Boolean to arithmetic conversion C recursively on both
branches, taking as input n − 1 Boolean shares (instead of n), and outputting
n − 1 arithmetic shares; we obtain:

x =
(
A1 + · · · + An−1

)
+

(
B1 + · · · + Bn−1

)
(mod 2k)

Eventually it suffices to do some additive grouping to obtain n arithmetic shares
as output, as required:

x = D1 + · · · + Dn (mod 2k)

We refer to [Cor17c] for the details of the algorithm. The algorithm is proven
t-SNI secure with n ≥ t + 1 shares in [Cor17c].

Algorithm Representation. In Sect. 3.3 we have described a formal verifica-
tion of the security properties of RefreshMasks that are required for the secu-
rity proof of the above Boolean to arithmetic conversion algorithm in [Cor17c].
However this provides only a partial verification of the algorithm, since in that
case the adversary is restricted to only probing the Boolean operations per-
formed within the RefreshMasks. To obtain a full verification, we must consider



Formal Verification of Side-Channel Countermeasures 77

an adversary who can probe any variable in the Boolean to arithmetic algorithm.
In that case the formal verification becomes more complex as we must handle
both Boolean and arithmetic operations.

Since in our nested list representation we have already using the + operator
for the xor, we use the ADD keyword to denote the arithmetic sum. For example,
the final additive grouping can be represented as:

> ( addit ive−grouping ’ (A1 A2) ’ (B1 B2) )
( (ADD A1 B1) A2 B2)

which corresponds to the three arithmetic shares D1 = A1+B1 (mod 2k), D2 =
A2 and D3 = B2. We also use the PSI operator to denote the application of
the Ψ function. For example, the Boolean to arithmetic conversion algorithm for
n = 2 gives from (2) and (3):

> ( convba ’ (X1 X2) )
((+ (+ (+ X1 R1) (PSI (+ X1 R1) (+ R2 (+ X2 R1 ) ) ) )

(PSI (+ X1 R1) R2) )
(+ X2 R1) )

Simplification Rules. Given a list of intermediate variables that must be sim-
ulated, as previously we must use a set of simplification rules to determine how
many inputs xi are required for the simulation. For the verification of Boolean
circuits in the previous section, this was relatively straightforward as we had
essentially a single simplification rule, namely replacing x ⊕ r by r when the
random r appears only once in the intermediate variables. However when com-
bining arithmetic and Boolean operations the formal verification becomes more
complex and we used the following simplification rules. We illustrate every rule
by an example that can be run from the source code [Cor17a].

• Rule 1: when ω = x1 + x2 mod 2k must be simulated, simulate both x1 and
x2.

> ( prop−add ’ ( (ADD X1 X2) ) )
(X1 X2)

• Rule 2: from the affine property of the function Ψ , replace Ψ(x, y) ⊕ Ψ(x, z)
by x ⊕ Ψ(x, y ⊕ z).

> ( r ep lace−ps i ’(+ (PSI A B) (PSI A C) ) )
(+ A (PSI A (+ B C) ) )

• Rule 3: from the definition of Ψ , replace Ψ(x, y) by (x ⊕ y) − y mod 2k; we
denote by SUB the arithmetic subtraction.

> ( replace−psi−sub ’ ( PSI A B)
(SUB (+ A B) B)



78 J.-S. Coron

• Rule 4: when a random r is used only once, replace x ⊕ r by r, and similarly
for x + r mod 2k and x − r mod 2k. This is an extension of the rule given by
(1).

> ( i t e r− s imp l i f y ’((+ X1 R1) (ADD X2 R2) (SUB X3 R3) ) )
(R1 R2 R3)

• Rule 5: when a random r is not used in two intermediate variables e1 and e2,
replace the simulation of (e1 ⊕ r, e2 ⊕ r) by the simulation of (r, (e1 ⊕ r)⊕ e2);
this corresponds to the change of variable r′ = e1 ⊕ r.

> ( s impl i fy−x ’((+ R1 X1) (+ R1 X2) ) )
(R1 (+ (+ R1 X1) X2) )

• Rule 6: when Ψ(x1, x2) must be simulated, simulate both x1 and x2.

> ( prop−psi ’ ( ( PSI A B) ) )
(A B)

We note that the order in which the rules are applied matters. For example,
once Rule 3 has been applied, Rule 2 cannot be applied to the same expression,
because the PSI operator has been replaced by SUB. One must therefore use the
right strategy for the application of the rules; an overview is provided in Fig. 3.
In particular, we only apply Rule 3 if subsequently applying Rule 4 enables to
eliminate the SUB operator, and Rule 6 is only applied as a last resort, when
other rules have failed.

R1 R2 R4 R3+R4 R5 R6
no

yes yes
no no

yes yes
no

Fig. 3. The rule application strategy for the formal verification of Boolean to arithmetic
conversion.

Formal Verification. In order to verify the t-SNI property of the Boolean to
arithmetic algorithm, as previously we must check that for all possible (n − 1)-
tuples of intermediate variables (including the outputs Di), the number of input
variables xi’s that remain after the application of the above rules is always ≤ tc,
where tc is the number of non-output variables in the (n − 1)-tuple.

We summarize in Table 3 the timings of formal verification for the algorithm
in [Cor17c]. Note that the Boolean to arithmetic conversion algorithm has com-
plexity O(2n), and therefore the number of possible (n−1)-tuples of intermediate
variables is O(2n

2
); that is why we could only perform the formal verification

up to n = 5.



Formal Verification of Side-Channel Countermeasures 79

Table 3. Formal verification of the t-SNI property of the Boolean to arithmetic con-
version algorithm from [Cor17c].

n #variables #tuples Security Time

2 11 11 � ε

3 48 1,128 � 0.08 s

4 133 383,306 � 85 s

5 312 387,278,970 � 88 h

5 Formal Verification in Polynomial Time

The main drawback of the previous approach is that it has exponential complex-
ity in the number of shares n, because the number of t-tuples to consider grows
exponentially with n. In this section we describe a new approach for proving
the security of a side-channel countermeasure. Instead of performing a simula-
tion of the probed variables as in [ISW03], our approach consists in applying a
sequence of elementary circuit transforms, until the transformed circuit becomes
so simple that the security property becomes straightforward to verify. The main
advantage is that in the context of formal verification, our new approach seems
much easier to verify formally than the classical simulation-based approach from
[ISW03]. For Boolean circuits our technique is based on the following two ele-
mentary transforms:

• The Random-zero transform: we set to 0 a subset of the randoms ri used in
the circuit.

• The One-time-pad transform: if a random r appears only once in a circuit,
and moreover r is not probed, we can replace any variable x ⊕ r by r.

The Random-Zero Transform. Our first circuit transformation consists in
setting to 0 a subset of the randoms ri used in the circuit. The transform only
applies to additively masked circuits.

Definition 3 (Additive masking). Let C be a circuit taking as input x1, . . . ,
xn. We say that C is additively masked if every intermediate variable y in the
circuit can be written as y = f(x1, . . . , xn) + g(r1, . . . , rn), where g is a linear
function.

For example, the circuit computing y = x1 ·x2 +r1 +r2 is additively masked,
while the circuit computing y = x1 · r1 is not. Most side-channel countermea-
sures for block-ciphers are additively masked. In particular, this holds for the
RefreshMasks, FullRefresh and SecMult algorithms considered in the previous sec-
tions. The following lemma shows that it is sufficient to consider the security
of a simpler circuit C0 where a subset of the randoms are fixed to 0. Namely if
there is an attack against the original circuit C, then the same attack applies
against C0; see the full version of this paper [Cor17b] for the proof.



80 J.-S. Coron

Lemma 5 (Random-zero transform). Let C be an additively masked circuit
and let C0 be the same circuit as C but with a subset of the randoms fixed to 0.
Anything an adversary can compute from a set of probes in C, he can compute
from the same set of probes in the circuit C0.

Remark 1. Lemma 5 does not hold for general circuits; consider for example the
circuit taking as input sk and outputting (sk ·r, r); when considering the output
only, the circuit would be secure when r is fixed to 0, but the output leaks the
secret sk whenever r �= 0.

Application: t-NI of RefreshMasks. The t-NI property of RefreshMasks, as
stated in Lemma 2, is easily verified formally using the Random-zero transform.
Namely, if we fix all randoms of RefreshMasks to 0, we obtain the identity func-
tion, which is trivially t-NI. For example, we obtain for n = 4:

> ( check−refreshmasks−tni−poly 4)
Input : (X1 X2 X3 X4)

Output : ((+ R1 X1) (+ R2 X2) (+ R3 X3) (+ R3 (+ R2 (+ R1 X4 ) ) ) )

Random zero => (X1 X2 X3 X4)
Id en t i t y func t i on : T

Note that the verification is performed in polynomial time in n, while in the
generic approach the complexity would be exponential in n when examining all
possible t-tuples.

The One-Time Pad Transform. The One-time Pad transform is defined as
follows: if a random r is used only once in a circuit, and moreover r is not probed,
then we can replace the variable x ⊕ r by r. Note that in principle the variable
x can still be probed, so it must not be removed from the circuit.

We can assume that a certain random r has not been probed when we have
an upper bound on the number of probes in the circuit, as it is the case for
the t-NI and t-SNI properties. For example, if a circuit contains n randoms ri
but the adversary has only access to t = n − 1 probes, then we are guaranteed
that at least one of the random ri has not been probed, and we can apply the
One-time Pad transform on this random. The proof technique then consists in
considering all possible n cases separately (corresponding to the non-probed ri,
for 1 ≤ i ≤ n), and then applying the admissible One-time Pad transform in
each case.

Formal Verification in Polynomial-Time. More generally, the proof strat-
egy is to perform a sequence of elementary circuit transforms until we obtain
a simple circuit C for which the t-NI or t-SNI properties is straightforward to
verify. In the full version of this paper [Cor17b] we illustrate this approach by
providing a formal verification of the same security properties of the Refresh-
Masks, FullRefresh and SecMult algorithms as considered in Sect. 3, but this time
with complexity polynomial in n, instead of exponential. This implies that the



Formal Verification of Side-Channel Countermeasures 81

security of these algorithms can be formally verified for any value of n for which
the countermeasure would be used in practice. We refer to [Cor17a] for the source
code of the formal verification.

6 Towards Automatic Generation of Security Proofs

The drawback of the previous approach is that for the security verification to
happen in polynomial time, we must select ourselves the right sequence of circuit
transforms. Instead we would like to have the circuit transforms being selected
automatically by our verification tool, based on a limited set of elementary rules,
and still in polynomial-time.

In the following, we show that this can be achieved for simple circuits based
on the three following rules. We denote by P the property that must be checked;
for example, for t-NI security, the property P would require that any t-tuple
of intermediate variables is simulatable from a subset of the inputs x|I , with
|I| ≤ t. Below we denote by Cotp the circuit yi = xi ⊕ ri for 1 ≤ i ≤ n (see the
full version of this paper [Cor17b]). We assume that the property P is already
verified by Cotp, so that P does not need to be verified explicitly for Cotp.

(R1) Perform a loop to select and remove the subset of the circuit that is
unprobed.

(R2) Apply the random-zero transform, except on randoms used only once in
the circuit.

(R3) Check whether the resulting circuit is equal to Cotp. Otherwise check the
property P for all possible t-tuple of probes.

We show in the full version of this paper [Cor17b] that from the three above
rules, we can formally verify in polynomial time the main properties of Refresh-
Masks and FullRefresh considered in this paper.

References

[BBD+15] Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B.,
Strub, P.-Y.: Verified proofs of higher-order masking. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 457–485.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-
5 18. https://eprint.iacr.org/2015/060

[BBD+16] Barthe, G., Beläıd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub,
P.-Y., Zucchini, R.: Strong non-interference and type-directed higher-
order masking. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, 24–28 Octo-
ber 2016, pp. 116–129 (2016). Publicly available at https://eprint.iacr.org/
2015/506.pdf. See also a preliminary version, under the title “Composi-
tional Verification of Higher-Order Masking: Application to a Verifying
Masking Compiler”, publicly available at https://eprint.iacr.org/2015/506/
20150527:192221

https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
https://eprint.iacr.org/2015/060
https://eprint.iacr.org/2015/506.pdf
https://eprint.iacr.org/2015/506.pdf
https://eprint.iacr.org/2015/506/20150527:192221
https://eprint.iacr.org/2015/506/20150527:192221


82 J.-S. Coron

[BDG+14] Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub,
P.-Y.: EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.)
FOSAD 2012-2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10082-1 6

[CGV14] Coron, J.-S., Großschädl, J., Vadnala, P.K.: Secure conversion between
boolean and arithmetic masking of any order. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 188–205. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44709-3 11

[Cor17a] Coron, J.-S.: CheckMasks: formal verification of side-channel countermea-
sures (2017). Publicly available at https://github.com/coron/checkmasks

[Cor17b] Coron, J.-S.: Formal verification of side-channel countermeasures via
elementary circuit transformations. Cryptology ePrint Archive, Report
2017/879 (2017). https://eprint.iacr.org/2017/879

[Cor17c] Coron, J.-S.: High-order conversion from Boolean to arithmetic masking.
In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 93–
114. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 5

[CPRR13] Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel
security and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol.
8424, pp. 410–424. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-43933-3 21

[DDF14] Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing
attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-55220-5 24

[Gou01] Goubin, L.: A sound method for switching between boolean and arithmetic
masking. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 3–15. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44709-1 2

[ISW03] Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 27

[RP10] Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
413–427. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15031-9 28

https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-662-44709-3_11
https://github.com/coron/checkmasks
https://eprint.iacr.org/2017/879
https://doi.org/10.1007/978-3-319-66787-4_5
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/3-540-44709-1_2
https://doi.org/10.1007/3-540-44709-1_2
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-642-15031-9_28


Drive-By Key-Extraction Cache Attacks
from Portable Code

Daniel Genkin1,2, Lev Pachmanov3, Eran Tromer3,4(B), and Yuval Yarom5,6

1 University of Pennsylvania, Philadelphia, PA, USA
danielg3@cis.upenn.edu

2 University of Maryland, College Park, MD, USA
3 Tel Aviv University, Tel Aviv, Israel

{levp,tromer}@tau.ac.il
4 Columbia University, New York, NY, USA
5 University of Adelaide, Adelaide, Australia

yval@cs.adelaide.edu.au
6 Data61, Sydney, Australia

Abstract. We show how malicious web content can extract crypto-
graphic secret keys from the user’s computer. The attack uses portable
scripting languages supported by modern browsers to induce contention
for CPU cache resources, and thereby gleans information about the mem-
ory accesses of other programs running on the user’s computer. We show
how this side-channel attack can be realized in WebAssembly and PNaCl;
how to attain fine-grained measurements; and how to extract ElGamal,
ECDH and RSA decryption keys from various cryptographic libraries.

The attack does not rely on bugs in the browser’s nominal sandbox-
ing mechanisms, or on fooling users. It applies even to locked-down plat-
forms with strong confinement mechanisms and browser-only function-
ality, such as Chromebook devices.

Moreover, on browser-based platforms the attacked software too may
be written in portable JavaScript; and we show that in this case even
implementations of supposedly-secure constant-time algorithms, such as
Curve25519’s, are vulnerable to our attack.

1 Introduction

Since their introduction [5,29,30,36], microarchitectural side channel attacks
have become a serious security concern. Contrary to physical side channels,
which require physical proximity for exploitation, microarchitectural attacks only
require the attacker to execute code on the target machine. Even without spe-
cial privileges, such code can contend with concurrently-executing target code
for the use of low-level microarchitectural resources; and by measuring the thus-
induced timing variability, an attacker can glean information from the target
code. Many such resources have been analyzed and exploited, including branch
predictors and arithmetic units, but contention for cache resources has been

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 83–102, 2018.
https://doi.org/10.1007/978-3-319-93387-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_5&domain=pdf


84 D. Genkin et al.

proven to be particularly devastating. Cache attacks allow fine grained moni-
toring of memory access patterns, and can extract cryptographic keys [5,29,30],
website fingerprints [28], and keystrokes [15]; see [11] for a survey.

Less is known, however, about realistic attack vectors by which cache attacks
(and other microarchitectural attacks) be deployed in practice. Most research
has assumed that the attacker has the ability to run native code on the tar-
get machine. This makes sense for scenarios such as attacks across virtual
machines [17,31,37], especially in public compute clouds, or attacks between
different users sharing the same PC. But in the typical end-user setting, hard-
ware devices are not shared by multiple mistrusting users. Moreover, native code,
run locally by a user, usually executes in a security context that allows access
to that user’s data, making security-savvy users reluctant to run such untrusted
code.

Recent works [13,28] made progress towards effective cache attacks on end-
user devices, using JavaScript code running in the target’s browser and without
requiring native code execution. However, since JavaScript is far-removed from
the native platform, the information obtained by a JavaScript attacker is severely
degraded. Indeed compared to attacks which are based on native-code execu-
tion, those works were only able to detected coarse-scale events (distinguishing
between websites loaded in another browser tab or ASLR de-randomization),
leaving open the feasibility of monitoring and exploiting fine-grained events.

Thus, in this work we focus on the following question: (a) Are there prac-
tical deployment vectors for microarchitectural attacks on single-user
devices, that are capable of extracting fine-grained information (such
as cryptographic keys), and do not require privileged user operations
(such as software installation or native code execution)? In particular,
do such attacks apply to locked-down platforms, such as Chromebook running
Chrome OS, where functionality is restricted to sandboxed web browsing?

Even when microarchitectural information leakage occurs, its exploitability
depends on the implementation of the attacked software. Modern cryptographic
software is often designed with side channels in mind, employing mitigation tech-
niques that require low-level details of the executed code—first and foremost,
to make it constant-time. This picture changes when cryptographic software is
deployed as portable high-level code, where the final code and memory layout are
left to the whims of a just-in-time compiler. On the one hand, defensively exercis-
ing the requisite control becomes more difficult. On the other hand, the attacker
too has to cope with increased variability and uncertainty, so it is not obvious
that leakage (if any) is at all exploitable. We thus ask: (b) Do portable pro-
gram representations compromise the side-channel resilience of (sup-
posedly) constant-time algorithms?

1.1 Our Results

We answer both questions in the affirmative. (a) We present cache side-channel
attacks which can be executed from a web page loaded in a sandboxed browser



Drive-By Key-Extraction Cache Attacks from Portable Code 85

Fig. 1. Attack scenario screenshot. The targeted user opens an online streaming web-
site in Tab 2. Clicking within this tab (e.g., to start a movie) causes a pop-under to
open up as Tab 3. The malicious advertisement in Tab 3 then monitors the cache
activity on the target machine. When an encrypted email is received and decrypted
using Google’s encrypted email extension (in Tab 1), the malicious advertisement in
Tab 3 learns information about the user’s secret key.

environment, and are capable of extracting keys from ElGamal and RSA imple-
mentations. (b) We demonstrate key extraction even from an implementation
of Curve25519 ECDH, which was explicitly designed to minimize side channel
leakage, but becomes susceptible due to use of high-level JavaScript.

Our attacks do not require installing any software on the target machine,
and do not rely on vulnerabilities in the browser’s nominal isolation mechanisms
(e.g., they work even if Same Origin Policy and Strict Site Isolation are perfectly
enforced). Rather, they glean information from outside the browser’s sandbox
purely by inducing and measuring timing variability related to memory accesses
outside its sandbox. All the target user has to do in order to trigger the attack
is to have its browser execute malicious code embedded in a comprised website.

Drive-By Attack. The main attack scenario we investigate is a “drive-by” web
attack, where the attacker’s code is embedded in a web page and is automatically
activated when it is rendered by the user’s browser. This can happen when the
user explicitly visits the attacker’s web page (e.g., enticed by phishing), or a page
into which the attacker can inject HTML code (e.g., by a cross-site scripting
attack). Most deviously, the attack may be automatically triggered when the
user visits unrelated third-party web sites, if those sites display ads from web ad
services that support non-static ads (JavaScript, pop-under or IFRAME ads).

Concretely, we embedded the attack code in an advertisement, which we
submitted to a commercial web ad service. Whenever a user navigated to a site
that uses that service, and our ad was selected for display, the attack code was
triggered (see Fig. 1). This code measured the memory access patterns on the
user’s machine, and sent it to our server for analysis. When the targeted crypto-
graphic software happens to be repeatedly invoked using some secret key during



86 D. Genkin et al.

the time when the ad was shown in some browser tab (even in the background),
our code extracted the secret key in as little as 3 min. This works even across
processes and browsers (e.g., JavaScript ad in Firefox attacking cryptographic
code running in Chrome).

Attacking Curve25519. One of our attacks targets a JavaScript implementa-
tion of Curve25519 Elliptic Curve Diffie-Hellman (ECDH) [6]. The implementa-
tion attempts to mitigate side-channel leakage by using a nearly constant-time
Montgomery-ladder scalar-by-point multiplication, but the in-browser compila-
tion from JavaScript introduces key-dependent control flow, which we can detect
and exploit by a portable code-cache side-channel attack.

Measurement Technique. We implement the cache measurement procedure
using portable code running within the browser. To achieve the measurement
resolution required to mount an attack on ElGamal and ECDH, we used PNaCl
or WebAssembly. These are architecture-independent code representations which
browsers execute in a sandbox—analogously to JavaScript, but lower-level and
more efficient. PNaCl is supported by desktop versions of the Chrome and
Chromium browsers since 2013, and automatically executed by the browser with-
out user involvement. WebAssembly is the standardization of the idea behind
PNaCl. It is supported by all major browsers and enabled by default since 2017.

Like JavaScript, PNaCl and WebAssembly are sandboxed, subject to Same
Origin Policy, and isolated from host resources such as the filesystem and other
processes. However, the portable code (inevitably) uses the underlying microar-
chitectural resources of the CPU it is executing on, and in particular the data
cache. Thus, it can induce the memory-contention effects required for cache side-
channel attacks. Using this, and additional techniques, the portable code can
execute a variant of the Prime+Probe attack of [29], to detect which memory
addresses are accessed by other processes.

Compared to the two prior works on portable-code cache attacks (see
Sect. 1.3), our use of a portable but low-level program representation, as opposed
to JavaScript in [28], reduces measurement overheads and provides better tim-
ing sources on modern browsers; and by using a precise eviction set construction
algorithm (adapting the approach of [23] to the portable setting) we moreover
reduce the eviction sets’ size by ×64 compared to [13]. Taken together, these
attain the requisite temporal resolution for several cryptanalytic attacks.

Challenges. Launching cache attacks involves numerous challenges, such as
recovering the mapping between the memory and the cache, and identifying
cache sets corresponding to security-critical accesses (see [23] for a detailed list).
Mounting the attack from portable code introduces several additional challenges:

1. Emulated environment: Both PNaCl and WebAssembly modules run inside
an emulated 32-bit environment, preventing access to useful host platform
services such as huge pages, mlock() and posix memalign().



Drive-By Key-Extraction Cache Attacks from Portable Code 87

2. Slower memory access: memory accesses using (current implementations of)
portable architectures incur an overhead compared to native execution, reduc-
ing the measurements’ temporal resolution.

3. Inability to flush the CPU pipeline and cache: PNaCl and WebAssembly do
not support instructions for flushing the CPU pipeline, the cache or avoiding
out-of-order execution, as needed by many native-code attacks.

4. Inaccurate time source: Architecture independence forces PNaCl applications
to only use generic interfaces or indirect measurements to measure time.
WebAssembly modules can interact with external APIs only using JavaScript,
hence they are limited to the time sources available to JavaScript code.
Moreover, the cryptographic software we attack is implemented in JavaScript,
which introduces yet more challenges:

5. Unpredictable memory layout: The target’s JavaScript code is compiled anew
at every page load, and moreover, its memory allocations are done in an
unpredictable way at every invocation.

6. No shared memory: Many prior cache attacks relied on the attacker code and
target code having some shared memory (e.g., AES S-tables or code), due to
shared libraries or memory deduplication, not unavailable here.

1.2 Targeted Hardware and Software

Chromebook. We demonstrate the attacks on a Chromebook device (Samsung
XE550C22) which is tailored for running Chrome OS 58.0.3029.112 (a locked-
down version of Linux running the Chrome web browser), including all of its
security measures. It is equipped with an Intel Celeron 867 Sandy-bridge 1.3 GHz
CPU featuring a 2048 KB L3 cache divided into 4096 sets and 8 ways.

HP Laptop. The attacks are mostly independent of the operating system, and
of the precise CPU model (within a CPU family). To demonstrate this, we also
execute the attacks on an HP EliteBook 8760w laptop, running Kubuntu 14.04
with Linux kernel 3.19.0-80, with an Intel i7-2820QM Sandy Bridge 2.3 GHz
CPU featuring a 8192KB L3 cache divided into 8192 sets and 16 ways.

Elliptic. Elliptic [18] is an open-source JavaScript cryptographic library, pro-
viding efficient implementations of elliptic-curve cryptographic primitives such
as Elliptic Curve Diffie-Hellman (ECDH). Elliptic is widely used (over 20M
downloads), and underlies more than a hundred dependent projects including
crypto-currency wallets. Elliptic supports state-of-the-art elliptic curve construc-
tions such as Curve25519 [6], which was designed to offer increased resistance to
side channel attacks. We show that while Elliptic’s implementation does use the
Montgomery-ladder method with apparently constant execution time, memory
access leakage induced by the JavaScript routines does allow for key extraction.



88 D. Genkin et al.

Google’s End-to-End Library. End-to-End is an open-source JavaScript
cryptographic library developed by Google for use by websites and browser plug-
ins. To facilitate email encryption and signing directly inside the user’s browser,
End-to-End supports the OpenPGP standard, as documented in RFC 4880. End-
to-End is the cryptographic engine for many browser plugins such as E2EMail,
Google encrypted email extension, and Yahoo’s fork of EndToEnd.

OpenPGP.js. OpenPGP.js is a popular open-source library for browser-based
cryptographic operations, and in particular encrypted email. Similarly to End-to-
End, OpenPGP.js implements the OpenPGP standard and is widely deployed
in web applications and browser plug-ins. These include password managers,
encrypted mail clients and other applications. To create seamless user experience,
some of those plug-ins (e.g., ProtonMail and CryptUp) automatically decrypt
received content upon opening the received email.

1.3 Related Work

Cache Attacks. Cache attacks were introduced over a decade ago [5,29,30,
36]. Initial attacks exploited the L1 and L2 data caches [29,35], however later
attacks targeted other caches, such as the L1 instruction cache [1,4] the shared
last level cache [16,23] and specialized caches including the branch prediction
unit [2,3,10] and the return stack buffer [7]. Recent works [13,34] were able to
extract information without using huge pages. See [11] for a survey.

Cache Attacks from Portable Code. The first published browser-based
cache attack was shown by [28]. Using JavaScript, they detected coarse cache
access patterns and used them to classify web sites rendered in other tabs. They
did not demonstrate attacks that use fine-grain cache monitoring (such as key
extraction attacks). Moreover, following [28] web browsers nowadays provide
reduced timer precision, making the techniques of [28] inapplicable.

Recently, [13] achieved higher cache-line accuracy, and used it to derandomize
the target’s ASLR from within it’s browser. They relied on constructing very
large eviction sets, resulting in low temporal resolution of the memory access
detection, well below what is required for key extraction attacks (see Sect. 3).

The Rowhammer attack [20] was also implemented in JavaScript by [14].

Speculative Execution Attacks. Going beyond cryptographic keys, cache
attacks can be also leveraged to read memory contents across security domains.
The Meltdown [22] and Spectre [21] attacks exploit the CPU’s speculative exe-
cution to let a process glean memory content to which it does not have access
permissions, by accessing that memory directly (Meltdown) or by inducing the
valid owner of that memory to access it within a mispredicted branch (Spectre).
In both attacks, the read is invalid and the architectural state will eventually be
rewound, but the carefully-crafted side effects on the cache can be observed.



Drive-By Key-Extraction Cache Attacks from Portable Code 89

These attacks rely on cache covert channels, for which very coarse cache mea-
surements suffice, as opposed to our side-channel setting, which necessitates fine-
grained cache measurements. Meltdown further requires the attacker to access a
protected memory that is mapped into its own address space; this is inapplicable
to portable code. Web-based Spectre does not work across browser processes (of
different browsers or tabs).

Side-Channel Attacks on ElGamal Encryption. Several works show side-
channel attacks on implementations of ElGamal encryption. [39] show a cross-
VM attack on ElGamal that exploits the L1 data cache and the hypervi-
sor’s scheduler. Our attack is loosely modeled after [23], who implemented a
Prime+Probe attack [29] targeting an implementation of ElGamal. Recently,
[12] show a physical (electromagnetic) side-channel attack on ElGamal running
on PCs.

2 Preliminaries

2.1 Portable Code Execution

JavaScript is the oldest and most common portable programing language
that can be executed inside the web browser. For intensive computational
tasks, JavaScript is much slower than native applications; NaCl, PNaCl and
WebAssembly are alternative, more efficient solutions.

PNaCl. Modern Chrome browser support Google Native Client (NaCl) [38].
This is a sandboxing technology which enables secure execution of native code
as part of untrusted web applications, which can run compiled code at near-
native speeds and fine-grained control over the memory usage. While NaCl
deploys architecture-dependent (through OS-independent) code, the subsequent
Portable Native Client (PNaCl) achieves full cross-platform portability by split-
ting the compilation process into two parts. First, the developer compiles the
source code into an intermediate representation, called a bitcode executable. Next,
as part of loading the code to the host browser, the bitcode executable is auto-
matically translated to the host-specific machine language. PNaCl is enabled by
default on Chrome browsers and does not require user interaction.

WebAssembly. WebAssembly is the standardized successor of PNaCl, stan-
dardized by the World Wide Web Consortium (W3C), and supported by all
major web browsers on all operating systems, including mobile platforms. Sim-
ilarly to PNaCl, WebAssembly defines a binary format which can be executed
in a sandboxed environment inside the browser. Code is represented in simple
stack machine, with a limited set of operations (mostly arithmetical and memory
accesses). This is translated, by the browser, to the host’s native instruction set,
allowing it to be executed in near-native speed.



90 D. Genkin et al.

The simple abstract machine severely limits the environment observable
to WebAssembly code. As oppose to PNaCl, the limited instruction set of
WebAssembly does not directly expose any of the system’s APIs; function-
ality beyond simple computation is exposed only via call-outs to interpreted
JavaScript code, which are relatively slow.

Web Workers and JavaScript’s SharedArrayBuffer. Web Workers is an
API designed to allow JavaScript code to run heavy computational tasks in
a separate context, without interfering with the user interface, using multiple
threads. The communication between the main JavaScript context and Web
Workers threads can be done using an asynchronous messaging system, or via
the SharedArrayBuffer API which can allocate a shared memory buffer and
coordinate access to it using synchronization primitives.

3 Constructing Eviction Sets

The Prime+Probe attack relies on having an eviction set for every targeted cache
set. The main obstacle to constructing these sets is the requirement of finding
the mapping between the internal addresses used in the attacker’s program and
the cache sets they map to In the case of both PNaCl and WebAssembly, the
mapping from memory addresses to cache sets consists of multiple abstraction
layers, as follows. The portable runtime emulates a 32-bit execution environment,
which is mapped (by the browser) into the hosting process’s virtual address
space, which is in turn mapped (by the operating system) into physical memory.
Neither mapping is made available to the portable code. Lastly, physical memory
addresses are mapped (by the CPU) to cache sets; Intel does not disclose this
mapping, but it has been reverse-engineered. Despite two levels of indirections
with unknown mapping, and complications introduced by the third one, we can
find the mapping of memory blocks to sets.

Past Approaches. Several prior works [14,23,24] describe techniques for cre-
ating the eviction sets using huge pages: a CPU feature that allows pages in
the page table to have a very large size (typically 2 MB instead of 4 KB), for
improved address translation efficiency (e.g., reduced TLB thrashing).

Because both the physical and the virtual starting addresses of a huge page
must be a multiple of a huge page size, the virtual address and its corresponding
physical address share the least significant 21 bits. In particular, that means
that given a virtual address in a huge page, we know bits 0–20 of the physical
address and consequently we know the index within a slice of the cache set that
the virtual address maps to.

Avoiding Huge Pages. Recent attacks [13,34] were able to avoid huge pages,
at the cost of imposing other limitations. The attack of [34] assumes consecutive
physical memory allocation and deterministic heap behavior. Those assumptions



Drive-By Key-Extraction Cache Attacks from Portable Code 91

allows the attacker to find the cache set index up to a fixed offset, providing as
much information as using huge pages. Unfortunately, they are generally inap-
plicable, and for JavaScript code running in a browser environment, due to its
complex garbage collection pattern, we empirically did not observe any alloca-
tion pattern between different execution of the decryption operations.

Next, the work of [13] avoided huge pages by only using the 6 bits shared
between the virtual address and physical address to construct the eviction-sets.
In this approach, all cache-sets sharing the 6 least significant bits are mapped
to a single large eviction set. However, using such large eviction sets increases
probing time by a factor of ×64 (compared to smaller eviction sets which are
designed to only evict a single cache set) thus reducing the channel’s bandwidth.
Large eviction sets also induce higher measurement noise due to unrelated mem-
ory accesses. While that method suffices to derandomize ASLR, key extraction
attacks requires fine-grained, low-noise measurements of the target’s memory
access, with temporal resolution on the order of a big-integer multiplication.

3.1 Methodology

We now describe our methodology of constructing eviction sets by recovering the
mapping from memory blocks to cache sets. As described above, the mapping
consists of several layers. The work of [23] introduced an algorithm for uncov-
ering the mapping between the physical address and cache slices, without the
knowledge of the CPU’s internals. However, the algorithm assumed knowledge
of the cache set index, acquired by using huge pages. This assumption does not
hold for PNaCl and WebAssembly since they do not provide access to huge
pages. Instead we generalize this algorithm to the portable environment.

Constructing Eviction Sets from Portable Environment. Portable code
only has access to the 12 least significant bits of the physical address, due to the
fact that “page offset” goes through the mapping between portable environment
and physical address space. Thus, the portable code knows the 6 least significant
bits of the cache set index, but is missing the 4 or 5 most significant bits.

To overcome this, we first find eviction sets for all of the cache sets that have
indices with 6 least significant bits being zero. To that end, we create a large
pool of memory address whose least significant 12 bits are zero. Applying the
algorithm of [23] on the pool results in initial eviction set for each cache set
index with 6 least significant bits equal to 0. Then, by enumerating each of the
possible values for the 6 least significant bits, we extend each initial eviction set
to 64 eviction sets, each corresponding to a single cache set.

However, for the algorithm to work, we need to modify the eviction testing
procedure. This is since when running on a system configured with regular-size
memory pages, performing eviction testing as described accesses a large num-
ber of memory pages. This stresses the address translation mechanism, and in
particular causes evictions from the Translation Lookaside Buffer (TLB), which
is a specialized cache used for storing the results of recent address translations.



92 D. Genkin et al.

These TLB evictions causes delays in memory accesses even when the accessed
memory block is cached. In particular, this introduces noise when checking if the
witness block is successfully evicted.

Handling TLB Noise. Eviction testing finds whether accessing a list of mem-
ory blocks forces a cache eviction of a specific, witness, memory block. To address
the TLB noise, we modify the eviction testing approach, ensuring that the TLB
entry for the witness block is updated before we measure the access time. We
achieve this by accessing another memory block in the same page as the witness.
Thus the eviction testing algorithm becomes: access the witness to ensure it is
in the cache; access each memory block in the list of memory blocks; access a
memory block in the same page as the witness (to ensure the TLB entry for the
page is updated); and finally measure the access time to the witness (which will
be short if the witness is in the cache or long if accessing the list of memory
blocks evicts the witness from the cache).

Handling Additional Noise. Even after handling the noise from the TLB,
the increased footprint of our methodology and the overhead of the portable
environment causes high measurement noise. We handle this noise by repeating
the contracting stage, randomizing the order of the tested elements each time,
and calculating the intersection between the constructed eviction sets.

3.2 Implementation

PNaCl Implementation. The above approach requires several capabilities.
In order to distinguish between slow memory accesses (corresponding to cache
misses) and fast memory accesses (corresponding to cache hits) the attack code
must gain accesses to a timing source of sufficient resolution. Conveniently,
PNaCl provides a clock gettime() function which provides time at nanosec-
ond accuracy (when called with clock realtime parameter). Next, in order to
construct the eviction sets in PNaCl’s execution environment we allocate a suf-
ficiently large contiguous buffer (approximately 4 times larger than the size of
the LLC). Using this buffer and the aforementioned timing source, we performed
the phases outlined above for the construction of the eviction sets.

WebAssembly Implementation. As discussed in Sect. 2.1, PNaCl has been
available for a few years, but only on Chrome browser. Using the newer
WebAssembly standard, along with Web Workers and SharedArrayBuffers
allowed us to reimplement the approach without using browser-specific features.
Similarly to PNaCl, in order to construct eviction sets we obtain a high-precision
timer, and a contiguous allocated memory buffer.

The work of [28] prompted the web browser developers to reduce the precision
of the time source available to JavaScript code. Unlike PNaCl, WebAssembly
does not have access to system’s APIs like clock gettime(). Thus, we use



Drive-By Key-Extraction Cache Attacks from Portable Code 93

an alternative technique, based on an intentional inter-thread race condition
(see [33] for a recent survey of JavaScript timing sources, including this one).

In this approach, we allocate a SharedArrayBuffer array within the main
JavaScript context, and pass it to a “Timer” Web Worker which iteratively incre-
ments the value in the first cell of the array in a tight loop. To learn the current
time, the main context reads that cell. The naive implementation, accessing
the array directly, did not work due to runtime optimization of supposedly-
redundant reads. To overcome this, we used the Atomics API to force reading
from the array (with sufficiently small performance penalty).

Next, we construct our eviction sets using WebAssembly.Memory contiguous
buffer accessible both for JavaScript and WebAssembly. Accessing to this buffer
from WebAssembly, and using the time source described above, allows us to
identify cache misses using the above techniques.

Exprimental Results. On the Chromebook machine described in Sect. 1.2 we
used the PNaCl implementation. Out of the 4096 sets, withing less then a minute
we were able to construct 4032–4160 eviction sets (some duplicate eviction set
was not removed during the collect phase). For the HP EliteBook 8760w laptop
equipped with 8192 cache set, constructing the eviction sets took 11 min using
the PNaCl and resulted in 7680–8320 eviction sets (with some duplicates as well).
Using the WebAssembly implementation we were able to construct eviction sets
on Chrome and Firefox as well. Constructing the eviction sets took 60–70 min
and yield 7040–7680 eviction sets.

4 Attacking Elliptic

This section shows that even highly regular algorithms, which do not perform
key-dependent operations or memory accesses, can produce exploitable side
channel leakage when implemented in high-level programming languages such
as JavaScript. We empirically demonstrate this on Elliptic’s Curve25519-based
ECDH implementation, which uses the Montgomery ladder method.

4.1 Deployment

Our attack scenario is based on running cache-monitoring portable code, using
either of PNaCl or WebAssembly, inside the target’s browser. We now describe
a specific attack scenario which does not require the user to install any malicious
application or even actively browse to the attacker’s website.

Pop-Under Advertisement. Pop-Under advertisement is a common tech-
nique to circumvent pop-up protection used in modern web browsers. Once the
user clicks anywhere inside the web page, a new browser tab containing the
requested web page is shown with while the previous tab (which is now hidden)
is redirected to an advertisement loaded from the attacker’s website.



94 D. Genkin et al.

Attack Scenario. We created an advertisement leading to a web page contain-
ing our portable attack code and submitted it to a web ad service. The targeted
user opened a web browser (either Chrome or Firefox, and on either the Chrome-
book or HP laptops described in Sect. 1.2), accessed a third party web page which
uses the ad service, and clicked anywhere within the page. Consequentially (cour-
tesy of the ad service), our advertisement was opened in a background tab and
started monitoring the cache access patterns on the target machine. Concur-
rently, the user opened a third tab, in the Chrome browser, which performed
ECDH key-exchange operations using Ellipstic’s Curve25519. Neither the web-
site used to trigger the attack, nor the ad service, were controlled by the attacker;
and the user never typed or followed a link to an attacker-controlled website.

4.2 Key Extraction

ECDH. Elliptic curve Diffie Hellman (ECDH) is a variant of the Diffie-Hellman
key exchange protocol [8] performed over suitable elliptic curves. Given a curve
over a finite field F and a generator point G ∈ (F × F), in order to generate a
key Alice chooses a random scalar k as a private key and computed the public
key by [k]G (here and onward, we use additive group notation with and [k]G
denoting scalar-by-point multiplication of k and G). In order to compute the
shared secret, Bob sends his public key G′ = [k′]G to Alice (where k′ is Bob’s
secret key). Alice and Bob then recover the shared secret by computing [k]G′

and [k′]G, respectively. Notice that [k]G′ = [k]([k′]G) = [k′]([k]G) = [k′]G.

Curve25519. Curve25519 is an elliptic curve introduced by [6] and standard-
ized by RFC 7748. Curve25519 was specifically designed to increase resistance
to side channel attacks and other common implementation issues.

Scalar-By-Point Multiplication. In order to increase side channel resistance,
implementations of Curve25519-based ECDH often use the Montgomery lad-
der [26] to perform the scalar-by-point multiplication operation. See Algorithm 1.
Notice that the algorithm performs the same number and order of addition and
double operations, regardless of the value of ki, making it more side channel
resistant compared to other multiplication algorithms [19,27].

Inapplicability of Data Cache Leakage. The Montgomery ladder scalar-
by-point multiplication routine attempts to achieve side channel resistance by
being highly regular. Each iteration of the main loop of Algorithm 1 accesses
both of the internal variables (a and b) and performs a single elliptic curve
add operation followed by a single elliptic curve double operation. In particular,
both operations are performed, in the same order, irrespective of the value of
the current secret key bit (ki). Thus, the Montgomery powering ladder does not
leak the secret key via key-dependent sequences of double and add operations,
or key-dependent memory accesses to a table of precomputed values. As we



Drive-By Key-Extraction Cache Attacks from Portable Code 95

Algorithm 1. Elliptic’s Point Multiplication (simplified).
Input: A scalar k and a point P where the k =

∑n−1
i=0 ki2

i.
Output: b = [k]P .
1: procedure scalar by point multiplication(k, P )
2: a ← P, b ← O � O is the point of infinity
3: for i ← n to 1 do
4: if ki = 0 then
5: a ← a.add(b) � a + b
6: b ← b.double() � [2]b
7: else
8: b ← a.add(b) � a + b
9: a ← a.double() � [2]a

10: return b

have empirically validated, Elliptic’s implementation of Algorithm 1, running on
Chrome, is almost constant time, without key-dependent timing deviations.

While Algorithm 1 does leak the secret key via memory accesses performed
to the operand of the elliptic curve double operation (Lines 6 and 9) as well as
the memory accesses to the result of the elliptic curve add operation (Lines 5
and 8), this leakage is hard to exploit due to JavaScript’s memory allocation
mechanism. Concretely, since each iteration of the main loop always updates
both variables, Elliptic’s implementation always allocates new objects for the
updated values, at different and changing memory addresses. As we empirically
verified, the addresses of a and b change with each iteration of the main loop,
without any obvious patterns. This makes monitoring memory accesses to a and
b difficult, since the attacker has to predict and monitor a different cache set at
every iteration of the main loop.

While the memory re-allocation countermeasure was probably unintentional,
this countermeasure combined with the inherent regularity of the Montgomery
ladder scalar by point multiplication routine prevent the use of the data cache
as a source of side channel leakage.

Finding a Leakage Source. We choose, instead, to conduct a code-cache
side-channel attack. In this approach we identify a key-dependent change in the
target’s control flow. During the ECDH operation, we monitor the code cache
accesses via PNaCl or WebAssembly, deduce control flow changes, and from
these, recover the key.

An immediate candidate for such key-dependent control flow would be the
if-else statement in Line 4 of Algorithm 1. However, distinguishing between dif-
ferent cases of the if-else statement in Line 4 appears to be difficult, since both
case are very similar, call the same functions in the same order, have the same
length and are relatively small (each consisting of only two code lines).

While a high-level examination of Algorithm 1 does not reveal any additional
key-dependent control flow, we do observe that Algorithm 1 invokes the double
operation in Line 6 on variable b, while in Line 9 it is invoked on object a. While



96 D. Genkin et al.

Fig. 2. Cache accesses as detected by the attacker during ECDH key exchange over
Curve25519 by Elliptic. Trace 3 (left) contains cache misses observed by the attacker
during the scalar-by-point multiplication. On the right, which only shows Trace 3, it
can clearly be noticed that the cache-misses corresponds to key bits of 1, while sequence
without cache-misses of 20µs corresponds to bits of 0.

in a low-level programing language the execution of different code paths is usu-
ally explicit, in a high-level language such as JavaScript, the compiler/interpreter
is at liberty to select different execution paths for performing identical opera-
tions on different data. Empirically, this indeed occurs here. We were able to
empirically distinguish, using code cache leakage, between the double operation
performed in Line 6 (on variable b) from the double operation in Line 9 (per-
formed on a)—thus attaining key extraction.

Monitoring Elliptic’s Side Channel Leakage with WebAssembly. We
demonstrated our WebAssembly attack in a cross-browser, cross-process sce-
nario. We used the HP laptop to launch two separate web browser instances:
Chrome, running a page that uses Elliptic’s implementation of Curve25519-based
ECDH, and Firefox, running a third-party web site presenting advertisements
from our advertisement provider. After clicking inside the third-party web site,
our WebAssembly attack code was loaded as a pop-under ad, and automatically
started the eviction-set construction procedure described in Sect. 3. The CPU of
this HP laptop has 8192 cache sets, and each Curve25519 ECDH key exchange
lasts 2.5 ms. Hence, after the construction procedure, our code sampled each of
the 8192 eviction sets, performing Prime+Probe cycle every 380µs for a duration
of 22 ms, for a total sampling time of about 3 min.

Monitoring Elliptic’s Side Channel Leakage with PNaCl. Alternatively,
we opened two tabs in the Chromebook’s browser: one tab running our PNaCl
attack code, and the other running Elliptic’s implementation of Curve25519-
based ECDH, with each key exchange lasting 4.5 ms. Next, we sampled each of
the 4096 eviction sets, performing Prime+Probe cycle every 3µs for a duration
of 35 ms, totally sampling for less than 3 min.

Leakage Analysis. Out of the acquired traces, for each of the sampling meth-
ods we identified 5 as containing the side channel leakage described above.
Figure 2 shows some out of the acquired traces using PNaCl on the Chrome-
book machine, Trace 3 (left) contains the information regarding the secret key.



Drive-By Key-Extraction Cache Attacks from Portable Code 97

As can be seen from the right part of Fig. 2, showing only Trace 3, a sequence of
10µs of cache-misses cache-misses followed by 5µs of cache-hits in the monitored
set corresponds to a bit of 1, while 20µs of cache-hits corresponds to 0 bit.

Using this, we automated the extraction of keys from traces, yielding correct
extraction of up to 236 (out of 252) bits of the secret key from individual traces.
Combining 4 traces of key-exchange operations we were able to extract all the
252 bits of the secret key. For the WebAssembly attacks, the acquired traces and
automated algorithm are very similar, and likewise result in full key extraction.

5 Attacking ElGamal

5.1 Attacking End-to-End

ElGamal [9] is a public-key crptosystem based on hardness of computing discrete
logarithms. In a nutshell, to decrypt a ciphertext (c1, c2), one has to compute the
shared secret s = cx1 mod p and then recovers the message by computing m′ =
c2 ·s−1 mod p. To compute the modular exponentiation during decryption, End-
to-End uses a variant of the fixed-window (m-ary) exponentiation algorithm [25,
Algorithm 14.109]. The algorithm divides the secret exponent into equal-sized
groups of bits called windows, performing a single multiplication for each window
using a precomputed value for every possible windows value.

Our attack largely follows the technique of [23] and consists of two phases.
In the online phase we collect many memory access traces, with the aim of cap-
turing enough samples of accesses to memory locations that store the table of
pre-computed multipliers. In the offline phase we analyse the collected traces to
identify the traces that correspond to memory locations that store pre-computed
multipliers. From these, we recover information on the operands of the multipli-
cations, from which we deduce bits of the exponent and then recover the key.

Monitoring End-to-End’s Side Channel Leakage. Following Sect. 4 we
opened two tabs in the Chromebook’s browser: one running our PNaCl attack
code, and the other running End-to-End’s ElGamal, where each decryption oper-
ation lasts 1.58 s on the Chromebook device. Next, we selected 8 random cache
sets and monitored them in parallel, performing a Prime+Probe cycle on each of
the cache sets once every 31.5µs for a duration of 5 s. We repeated this process
sequentially for about 74 min, acquiring 7100 traces.

Leakage Analysis. Figure 3 shows the side channel leakage from an End-to-
End ElGamal decryption. Traces 3 and 19 contains cache misses observed during
the multiplication operations used by the exponentiation algorithm. To extract
the key, we applied offline processing: denoising, clustering, merging, conflict
resolution and key recovery. This took 90 min (cost: under $6 on Amazon EC2).
We ran our attack on several random ElGamal keys with 3072-bit public primes,
both on the Chromebook and the HP laptop, successfully extracting the entire
secret exponent in every trial.



98 D. Genkin et al.

Fig. 3. Cache accesses as detected by the attacker during ElGamal decryption by End-
to-End (left) and OpenPGP.js (right). Intensity represents the number of cache misses.
Traces 3 and 19 on the left, and trace 11 and 19 on the right, contain cache misses
observed by the attacker during the multiplication operations used by the exponentia-
tion algorithm. Trace 2 (right) shows code-cache misses in the execution of the modular
multiplication code during an OpenPGP.js decryption operation; the different intervals
between the multiplications leak the location of sequences of zero bits.

End-to-End’s implementation of RSA [32] decryption operations uses the
same fixed-window routine to perform modular exponentiation. Thus, our attack
is applicable for extracting RSA keys, even tough End-to-End implemented
ciphertext blinding countermeasure against side-channel attacks.

5.2 Attacking OpenPGP.js

OpenPGP.js implements ElGamal decryption using sliding-window exponentia-
tion [25, Algorithm 14.85]. Similarly to fixed-window exponentiation, the sliding
window algorithm also use indexes a table of precomputed multipliers, on every
multiplication operation. However, for speed, sequences of 0-bits are handled by
simply performing corresponding squaring operations. Thus, the sliding-window
algorithm leaks the location and length of zero sequences, and has been proven
less resistant to side-channel attacks [23].

To measure the leakage we used an analogous setup to the one used in
Sect. 5.1. Using the Chromebook, we opened two browser tabs with one tab
running our PNaCl attack code while the other tab was performing ElGamal
decryption operations using the OpenPGP.js. We monitored random cache sets,
performing a Prime+Probe cycle on each set every 20µs for a period of 0.62 s.
The cache access patterns observed by the attacker reveal when a specific win-
dow value is used during the multiplication operations, Fig. 3 (right) shows the
side channel leakage from one ElGamal decryption operation. Finally, the squar-
ing operations performed by the sliding-window algorithm reveal long sequences
of zero exponent bits This additional source leakage in Trace 2 of Fig. 3 (right)
by monitoring the executions of the modular multiplication code.

6 Conclusion

In this paper we present a method for implementing an LLC-based Prime+Probe
attack on an multiple cryptographic libraries ranging from ElGamal to state-of-
the-art Curve25519-based ECDH using portable code executing inside a sand-
boxed web browser. We successfully deployed the attack using a commercial ad



Drive-By Key-Extraction Cache Attacks from Portable Code 99

service that triggers the attack code from third-party websites, and automati-
cally starts monitoring the memory access patterns when users navigate to the
ad. To our knowledge, this is the first demonstration of a drive-by cache attack,
and the first portable cryptographic side channel attack.

Unlike prior works, our attack target is implemented using a portable code.
Yet, even without the knowledge of the target’s memory layout, the attack suc-
cessfully extracts the target’s ElGamal and ECDH keys. Finally, we show that in
spite of their secure design, Chromebooks are vulnerable to cache based attacks.

Countermeasures. Side-channel resistant code requires constant-time imple-
mentation and avoiding secret dependent branches and memory accesses. These
approaches are very delicate, and may fail when on different hardware or with
different compilers. Using these techniques in JIT-compiled environments is an
unexplored area that we leave for future work. Meanwhile, cryptographic opera-
tions in JavaScript should to delegated to suitable native implementations, such
as (extensions of) WebCrypto API.

Limitations. Constructing eviction sets as described in Sect. 3 depends on the
cache structure and eviction policy: in particular, an inclusive LLC, and an
LRU (or similar) eviction policy. While both assumptions hold for modern Intel
CPUs, other vendors may differ. Some of our attacks (Sect. 4) requires only a few
minutes of sampling time (corresponding to about a thousand decryptions), and
suggest a realistic threat to affected systems that conduct frequent decryptions.
Others (Sect. 5) requires over an hour of sampling time, but should none the
less indicate that observable leakage is prevalent across diverse cryptographic
algorithms and implementations, and is expoitable by portable code.

Thus, the threat of cache timing side-channel attacks from sandboxed
portable code must be considered, and mitigated, in the design of modern sys-
tems where such code is trivially controlled by attackers.

Acknowledgments. This work was partially inspired by unpublished work on
portable cache attacks done jointly with Ethan Heilman, Perry Hung, Taesoo Kim
and Andrew Meyer.

Daniel Genkin, Lev Pachmanov and Eran Tromer are members of the Check Point
Institute for Information Security. Yuval Yarom performed part of this work as a vis-
iting scholar at the University of Pennsylvania.

This work was supported by the Australian Department of Education and Training
through an Endeavour Research Fellowship; by the Blavatnik Interdisciplinary Cyber
Research Center (ICRC); by the Check Point Institute for Information Security; by
the Defense Advanced Research Project Agency (DARPA) and Army Research Office
(ARO) under Contract #W911NF-15-C-0236; by the Israeli Ministry of Science and
Technology; by the Israeli Centers of Research Excellence I-CORE program (center
4/11); by the Leona M. & Harry B. Helmsley Charitable Trust; by NSF awards #CNS-
1445424 and #CCF-1423306; by the 2017–2018 Rothschild Postdoctoral Fellowship;
by the Warren Center for Network and Data Sciences; by the financial assistance
award 70NANB15H328 from the U.S. Department of Commerce, National Institute



100 D. Genkin et al.

of Standards and Technology; and by the Defense Advanced Research Project Agency
(DARPA) under Contract #FA8650-16-C-7622. Any opinions, findings, and conclu-
sions or recommendations expressed are those of the authors and do not necessarily
reflect the views of ARO, DARPA, NSF, the U.S. Government or other sponsors.

References

1. Acıiçmez, O., Brumley, B.B., Grabher, P.: New results on instruction cache attacks.
In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 110–124.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 8

2. Acıiçmez, O., Gueron, S., Seifert, J.-P.: New branch prediction vulnerabilities in
OpenSSL and necessary software countermeasures. In: Galbraith, S.D. (ed.) Cryp-
tography and Coding 2007. LNCS, vol. 4887, pp. 185–203. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77272-9 12

3. Acıiçmez, O., Koç, Ç.K., Seifert, J.-P.: Predicting secret keys via branch predic-
tion. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 225–242. Springer,
Heidelberg (2006). https://doi.org/10.1007/11967668 15

4. Acıiçmez, O., Schindler, W.: A vulnerability in RSA implementations due to
instruction cache analysis and its demonstration on OpenSSL. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 256–273. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-79263-5 16

5. Bernstein, D.J.: Cache-timing attacks on AES (2005). http://cr.yp.to/papers.
html#cachetiming

6. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 14

7. Bulygin, Y.: CPU side-channels vs. virtualization malware: the good, the bad or
the ugly. In: ToorCon (2008)

8. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644–654 (1976)

9. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

10. Evtyushkin, D., Ponomarev, D., Abu-Ghazaleh, N.B.: Understanding and mitigat-
ing covert channels through branch predictors. TACO 13(1), 10:1–10:23 (2016)

11. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. J. Cryptograph. Eng.
8(1), 1–27 (2018)

12. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E.: Stealing keys from PCs using
a radio: cheap electromagnetic attacks on windowed exponentiation. In: Güneysu,
T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 207–228. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4 11

13. Gras, B., Razavi, K., Bosman, E., Bos, H., Giuffrida, C.: ASLR on the line: practical
cache attacks on the MMU. In: NDSS (2017)

14. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: a remote software-induced
fault attack in JavaScript. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.)
DIMVA 2016. LNCS, vol. 9721, pp. 300–321. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40667-1 15

15. Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automating attacks
on inclusive last-level caches. In: USENIX, pp. 897–912 (2015)

https://doi.org/10.1007/978-3-642-15031-9_8
https://doi.org/10.1007/978-3-540-77272-9_12
https://doi.org/10.1007/11967668_15
https://doi.org/10.1007/978-3-540-79263-5_16
https://doi.org/10.1007/978-3-540-79263-5_16
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-662-48324-4_11
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15


Drive-By Key-Extraction Cache Attacks from Portable Code 101

16. İnci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Cache attacks
enable bulk key recovery on the cloud. In: Gierlichs, B., Poschmann, A.Y. (eds.)
CHES 2016. LNCS, vol. 9813, pp. 368–388. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53140-2 18

17. Inci, M.S., Gülmezoglu, B., Apecechea, G.I., Eisenbarth, T., Sunar, B.: Seriously,
get off my cloud! cross-VM RSA key recovery in a public cloud. IACR Cryptology
ePrint Archive, p. 898 (2015)

18. Indutny, F.: Fast elliptic curve cryptography in plain JavaScript (2017). https://
github.com/indutny/elliptic

19. Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 22

20. Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J., Lee, D., Wilkerson, C., Lai, K.,
Mutlu, O.: Flipping bits in memory without accessing them: an experimental study
of DRAM disturbance errors. In: ISCA, pp. 361–372 (2014)

21. Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard,
S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: exploiting speculative
execution. ArXiv e-prints (2018)

22. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S., Kocher,
P., Genkin, D., Yarom, Y., Hamburg, M.: Meltdown. ArXiv e-prints (2018)

23. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: Symposium on Security and Privacy, pp. 605–622 (2015)

24. Maurice, C., Weber, M., Schwartz, M., Giner, L., Gruss, D., Boano, C.A., Römer,
K., Mangard, S.: Hello from the other side: SSH over robust cache covert channels
in the cloud. In: NDSS (2017)

25. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-
raphy, 1st edn. CRC Press, Boca Raton (1996)

26. Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243 (1987)

27. Okeya, K., Kurumatani, H., Sakurai, K.: Elliptic curves with the montgomery-
form and their cryptographic applications. In: Imai, H., Zheng, Y. (eds.) PKC
2000. LNCS, vol. 1751, pp. 238–257. Springer, Heidelberg (2000). https://doi.org/
10.1007/978-3-540-46588-1 17

28. Oren, Y., Kemerlis, V.P., Sethumadhavan, S., Keromytis, A.D.: The spy in the
sandbox: practical cache attacks in JavaScript and their implications. In: ACM
SIGSAC, pp. 1406–1418 (2015)

29. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 1

30. Percival, C.: Cache missing for fun and profit. In: Presented at BSDCan (2005).
http://www.daemonology.net/hyperthreading-considered-harmful

31. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud!
Exploring information leakage in third-party compute clouds. In: CCS, pp. 199–212
(2009)

32. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

33. Schwarz, M., Maurice, C., Gruss, D., Mangard, S.: Fantastic timers and where to
find them: high-resolution microarchitectural attacks in JavaScript. In: Kiayias, A.
(ed.) FC 2017. LNCS, vol. 10322, pp. 247–267. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70972-7 13

https://doi.org/10.1007/978-3-662-53140-2_18
https://doi.org/10.1007/978-3-662-53140-2_18
https://github.com/indutny/elliptic
https://github.com/indutny/elliptic
https://doi.org/10.1007/3-540-36400-5_22
https://doi.org/10.1007/978-3-540-46588-1_17
https://doi.org/10.1007/978-3-540-46588-1_17
https://doi.org/10.1007/11605805_1
http://www.daemonology.net/hyperthreading-considered-harmful
https://doi.org/10.1007/978-3-319-70972-7_13
https://doi.org/10.1007/978-3-319-70972-7_13


102 D. Genkin et al.

34. Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard
extension: using SGX to conceal cache attacks. In: Polychronakis, M., Meier, M.
(eds.) DIMVA 2017. LNCS, vol. 10327, pp. 3–24. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-60876-1 1

35. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. J. Cryptol. 23(1), 37–71 (2010)

36. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES
implemented on computers with cache. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.)
CHES 2003. LNCS, vol. 2779, pp. 62–76. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-540-45238-6 6

37. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: USENIX, pp. 719–732 (2014)

38. Yee, B., Sehr, D., Dardyk, G., Chen, J.B., Muth, R., Ormandy, T., Okasaka, S.,
Narula, N., Fullagar, N.: Native client: a sandbox for portable, untrusted x86 native
code. In: IEEE Symposium on Security and Privacy, pp. 79–93 (2009)

39. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: CCS, pp. 305–316 (2012)

https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-540-45238-6_6
https://doi.org/10.1007/978-3-540-45238-6_6


On the Ineffectiveness of Internal
Encodings - Revisiting the DCA Attack

on White-Box Cryptography

Estuardo Alpirez Bock1,2(B), Chris Brzuska1,2, Wil Michiels3,4,
and Alexander Treff1

1 Hamburg University of Technology, Hamburg, Germany
{estuardo.alpirezbock,brzuska,alexander.treff}@tuhh.de

2 Aalto University, Espoo, Finland
3 NXP Semiconductors, Eindhoven, The Netherlands

wil.michiels@nxp.com
4 Technische Universiteit Eindhoven, Eindhoven, The Netherlands

Abstract. The goal of white-box cryptography is to implement crypto-
graphic algorithms securely in software in the presence of an adversary
that has complete access to the software’s program code and execution
environment. In particular, white-box cryptography needs to protect the
embedded secret key from being extracted. Bos et al. (CHES 2016) intro-
duced differential computational analysis (DCA), the first automated
attack on white-box cryptography. The DCA attack performs a statisti-
cal analysis on execution traces. These traces contain information such as
memory addresses or register values, that is collected via binary instru-
mentation tooling during the encryption process. The white-box imple-
mentations that were attacked by Bos et al., as well as white-box imple-
mentations that have been described in the literature, protect the embed-
ded key by using internal encodings techniques introduced by Chow et
al. (SAC 2002). Thereby, a combination of linear and non-liner nibble
encodings is used to protect the secret key. In this paper we analyse the
use of such internal encodings and prove rigorously that they are too
weak to protect against DCA. We prove that the use of non-linear nibble
encodings does not hide key dependent correlations, such that a DCA
attack succeeds with high probability.

Keywords: White-box cryptography
Differential computational analysis · Software execution traces
Mixing bijections

1 Introduction

When an application for mobile payment runs in software on Android or other
open platforms, it needs to protect itself as it cannot rely on platform security.
In particular, the cryptographic algorithms used within an application need to
c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 103–120, 2018.
https://doi.org/10.1007/978-3-319-93387-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_6&domain=pdf


104 E. Alpirez Bock et al.

be secured against adversaries who have a high degree of control over the envi-
ronment. In 2002, Chow et al. [9,10] introduced white-box cryptography, which
aims at remaining secure even when the adversary has full control over the exe-
cution environment. As mobile payment became widely used and as its security
nowadays often relies on software security only, Visa and Mastercard made the
use of white-box cryptography for mobile payment applications mandatory [15].

A necessary requirement for secure white-box cryptography is that an adver-
sary cannot extract the embedded secret key from the implementation. However,
hiding the secret key is not always enough to achieve security in the white-box
attack scenario. For example, if a mobile payment application uses a secret key
for authentication by encrypting a challenge, then an adversary may simply try
to copy the white-box program performing the encryption and run it on another
device. The adversary could successfully use the functionality of the white-box
program without knowing the value of its embedded secret key.

While it seems clear that a white-box program needs to achieve more than
just security against key extraction, hiding the secret key remains a difficult task
to achieve for real-life applications. Chow et al. [9,10] suggest to implement a
symmetric cipher with a fixed key as a network of look-up tables (LUT). The key
is compiled into a table instead of being stored in plain in the implementation. To
achieve robustness against reverse-engineering, Chow et al. propose to obfuscate
the lookup tables and the intermediate results via a combination of linear and
non-linear encodings. The idea of implementing symmetric ciphers as such an
obfuscated network of LUTs has caught on in the white-box community since
then, see, e.g., [7,11]. While the LUT-based white-box designs only store the
keys obfuscated in lookup tables, all aforementioned LUT-based designs turn
out to be susceptible to key extraction attacks performed via differential and
algebraic cryptanalysis (see [4,14,16,17]). Specifically, these attacks invert the
obfuscation process by deriving the applied encoding functions after which the
key can easily be recovered.

In real-life applications, mounting cryptanalysis and reverse engineering
attacks requires abundant skills and time from an adversary. Thus, Bos et al. [6]
and Sanfelix et al. [20] introduced automated key extraction attacks that are
substantially simpler and faster to carry out. The authors call their method
differential computational analysis (DCA) and describe it as the software coun-
terpart of the differential power analysis (DPA), a method for attacking cryp-
tographic hardware implementations [13]. Bos et al. [6] monitor the memory
addresses accessed by a program during the encryption process and display them
in the form of software execution traces. These software execution traces can also
include other information that can be monitored using binary instrumentation,
such as stack reads or register values. These traces serve the following three
goals. (1) They can help to determine which cryptographic algorithms was imple-
mented. (2) The traces provide hints to determine where roughly the crypto-
graphic algorithm is located in the software implementation. (3) Finally and most
importantly, the traces can be statistically analyzed to extract the secret key.
The automated DCA attack turned out to be successful against a large number



On the Ineffectiveness of Internal Encodings 105

of publicly available white-box implementations. It has since then become a pop-
ular method for the evaluation of newly proposed white-box implementations [5]
and software countermeasures for white-box cryptography [2].

In this paper, we analyze why step (3) of the attack by Bos et al. [6] actually
works and show which types of encodings are susceptible to the DCA attack.
The work of Sasdrich et al. [21] takes a first step towards this understanding.
They use the Walsh transform to show that the encodings used by their white-
box AES design are not balanced correlation immune and thus are susceptible
to the DCA attack. In this paper, we aim at giving a structured exposition to
improve our understanding of the power of the DCA attack.

Our Contribution. In this paper we provide an annotated step-by-step graphical
presentation of the key-extraction step of the DCA attack, which relies on a
difference of means distinguisher, and explain how to interpret the results. Our
presentation follows the style that Kocher [12] and Messerges [18] used for the
(analogous) differential power analysis on hardware implementations.

Further, we analyse how the presence of internal encodings on white-box
implementations affects the effectiveness of the DCA attack. Here, we focus on
the encodings suggested by Chow et al. [9,10], which are a combination of linear
and non-linear transformations. We start by studying the effects of a single
linear transformation. We show that the DCA attack can successfully extract
the key from a look-up table when it only uses linear or affine encodings. Next,
we consider the effect of non-linear nibble encodings and prove that the use of
nibble encodings provides conditions so that the DCA attack succeeds. Namely,
when we attack a key-dependent look-up table encoded via non-linear nibble
encodings, we always obtain a difference of means curve with values equal to
either 0, 0.25, 0.5, 0.75 or 1 for the correct key guess. The results obtained from
these analyses help us determine why the DCA attack also works in the presence
of both linear and non-linear nibble encodings as we discuss shortly in the end of
the paper and in more detail in the extended version [1]. Throughout the paper,
we also present experimental results of the DCA attack when performed on single
key-dependent look-up tables and on complete white-box implementations. In
all cases, the experimental results align with the theoretical observations.

2 White-Box Cryptography Implementations

White-box cryptography can be seen as special-purpose obfuscation, but is usu-
ally not discussed in this way. In particular, general -purpose obfuscation with
perfect security is known to be impossible [3] and the hope is that achieving
perfect security or at least a good level of security for a specific algorithm is still
feasible. The most popular approach in academic literature (and perhaps also
beyond) for white-box implementations of symmetric encryption is to encode the
underlying symmetric cipher with a fixed key as a networks of look-up tables
(LUT). In particular, the LUTs depend on the secret key used in the cipher. An
additional protection technique is to apply linear and non-liner internal encod-
ings which are used to encode the intermediate state between LUTs. Another



106 E. Alpirez Bock et al.

popular technique are external encodings which are applied on the outside of
the cipher and help to bind the white-box to an application. In this paper, we
focus solely on internal encodings, because, as Bos et al. point out in [6], applying
external input and output encodings yields an implementation of a function that
is not functionally equivalent to AES anymore and thus, some of its security can
be shifted to other programs. Moreover, this paper focusses on using internal
encodings for LUT-based white-box constructions of AES. We will focus on the
encodings and refer to the LUT-based construction as an abstract design. The
interested reader may find the work by Muir [19] a useful read for a more detailed
description on how to construct an LUT-based white-box AES implementation.
In the following, we introduce the concept of internal encodings.

Consider an LUT-based white-box implementation of AES, where the LUTs
depend on the secret key. Internal encodings can now help to re-randomize those
LUTs to make it harder to recover secret-key information based on the LUTs.
Such internal encodings were first suggested by Chow et al. [9,10]. We now
discuss two types of encodings.

Non-linear Encodings. Recall that the secret key is hard-coded in the LUTs.
When non-linear encodings are applied, each LUT in the construction becomes
statistically independent from the key and thus, attacks need to exploit key
dependency across several LUTs. A table T can be transformed into a table T ′

by using the input bijections I and output bijections O as follows:

T ′ = O ◦ T ◦ I−1.

As a result, we obtain a new table T ′ which maps encoded inputs to encoded
outputs. Note that no information is lost as the encodings are bijective. If table
T ′ is followed by another table R′, their corresponding output and input encod-
ings can be chosen such that they cancel out each other. Considering a complex
network of LUTs of an AES implementation, we have input- and output encod-
ings on almost all look-up tables. The only exceptions are the very first and
the very last tables of the AES implementation, which take the input of the
algorithm and correspondingly return the output data. The first tables omit the
input encodings and the last tables omit the output encodings. As the internal
encodings cancel each other out, the encodings do not affect the input-output
behaviour of the AES implementation.

Size Requirements. Descriptions of uniformly random bijections (which are non-
linear with overwhelming probability) are exponential in the input size of the
bijection. Therefore, a uniformly random encoding of the 8-bit S-box requires a
storage of 28 bytes. Although this may still be acceptable, the problem arises
when two values with a byte encoding need to be XORed. An encoded XOR has
a storage requirement of 216 nibbles. As we need many of them, this becomes
an issue. Therefore, one usually splits longer values in nibbles of 4 bits. When
XORing those, we only need a lookup table of 28 nibbles. However, by moving
to a split non-linear encoding we introduce a vulnerability since a bit in one



On the Ineffectiveness of Internal Encodings 107

nibble does no longer influence the encoded value of another nibble in the same
encoded word. To (partly) compensate for this, Chow et al. propose to apply
linear encodings whose size is merely quadratic in the input size and thus, they
can be implemented on larger words.

LinearEncodings. Chowetal. suggest toapply linearencodingstowordsthatare
input or output of an XOR-network. These linear encodings have as width the com-
plete word and are applied before the non-linear encodings discussed above. While
the non-linear encodings need to be removedbefore performing anXOR-operation,
onecanperformtheXORonlinearlyencodedvalues(duetocommutativity).There-
fore, one usually refers to linear encodings as mixing bijections.

The linear encodings are invertible and selected uniformly at random. For
example, we can select L and A as a mixing bijections for inputs and outputs of
table T respectively:

A ◦ T ◦ L−1.

As stated above, it is not necessary to cancel the effect of the linear encodings
before an XOR-operation. However, after the XOR-operation we obtain an out-
put which is still dependent on the linear function A and the effect of A needs to
be eventually removed, e.g. at the end of an AES round. In this case, dedicated
tables in the form of Ln ◦ A−1 are introduced, where Ln is the corresponding
linear encoding needed for the next LUT. In the white-box designs of Chow et
al. we have 8-bit and 32-bit mixing bijections. The former encode the 8-bit S-box
inputs, while the latter obfuscate the MixColumns outputs.

3 Differential Computational Analysis

We now revisit the DCA attack on white-box implementations, which aims
at finding key dependent correlations by analysing memory access informa-
tion recorded during the encryption process. To display the tracked memory-
information in so called software execution traces, one proceeds as follows: one
fixes one bit of information of the bit string that describes the memory address
and displays whether the bit was 0 or 1 at each memory access performed during
the execution. For more details on the acquisition of software traces, see the orig-
inal DCA paper by Bos et al. [6]. In this section we provide a detailed description
of one statistical method to analyse such software execution traces, namely the
difference of means method. Note that this method corresponds 1-to-1 to the
difference of means method as presented by Kocher using power traces [12]. Nev-
ertheless we now show the results obtained from a difference of means analysis
when performed using a group of software traces. The two attack capabilities
required to perform the DCA attack are as follows:

– execute the white-box program under attack several times in a controlled
environment with different input messages.

– knowledge of the plaintext1 values given to the program as input.
1 The attack works analogously when having access to the ciphertexts. The attacker

needs access to either plaintexts or ciphertexts.



108 E. Alpirez Bock et al.

The goal of the attack is to determine the first-round key of AES as it allows to
recover the entire key. The first-round key of AES is 128 bits long and the attack
aims to recover it byte-by-byte. For the remainder of this section, we focus on
recovering the first byte of the first-round key, as the recovery attack for the
other bytes of the first round key proceeds analogously. For the first key byte,
the attacker tries out all possible 256 key byte hypotheses kh, with 1 ≤ h ≤ 256,
uses the traces to test how good a key byte hypothesis is, and eventually returns
the key hypothesis that performs best according to a metric that we specify
shortly. For sake of exposition, we focus on one particular key-byte hypothesis
kh. The analysis steps on a DCA attack are performed as follows.

1. Collecting Traces: We first execute the white-box program n times, each
time using a different plaintext pe, 1 ≤ e ≤ n as input. For each execution, one
software trace se is recorded during the first round of AES. Figure 1 shows a
single software trace consisting of 300 samples. Each sample corresponds to one
bit of the memory addresses accessed during execution.

Fig. 1. Single software trace consisting of 300 samples

2. Selection Function: We define a selection function for calculating an
intermediate state-byte z of the calculation process of AES. More precisely, we
calculate a state-byte which depends on the key-byte we are analysing in the
actual iteration of the attack. The selection function returns only one bit of z,
which we refer to as our target bit. The value of our target bit will be used
as a distinguisher in the following steps. In this work, our selection function
Sel(pe, kh, j) calculates the state z after the SBox substitution in the first round.
The index j indicates which bit of z is returned, with 1 ≤ j ≤ 8.

Sel(pe, kh, j) := SBox(pe ⊕ kh)[j] = b ∈ {0, 1}. (1)

Depending on the white-box implementation being analysed, it may be the
case that strong correlations between b and the software traces are only observ-
able for some bits of z, i.e. depending on which j we choose to focus on. Thereby,
we perform the following Steps 3, 4 and 5 for each bit j of z.

3. Sorting of Traces: We sort each trace se into one of the two sets A0 or
A1 according to the value of Sel(pe, kh, j) = b:

For b ∈ {0, 1} Ab := {se|1 ≤ e ≤ n, Sel(pe, kh, j) = b}. (2)



On the Ineffectiveness of Internal Encodings 109

4. Mean Trace: We now take the two sets of traces obtained in the previous
step and calculate a mean trace for each set. We add all traces of one set sample
wise and divide them by the total number of traces in the set. For b ∈ {0, 1}, we
define

Āb :=

∑
s∈Ab

s

|Ab| . (3)

5. Difference of Means: We now calculate the difference between the two
previously obtained mean traces sample wise. Figure 2 shows the resulting dif-
ference of means trace:

Δ = |Ā0 − Ā1|. (4)

Fig. 2. Difference of means trace for correct key guess

6. Best Target Bit: We now compare the difference of means traces
obtained for all target bits j for a given key hypothesis kh. Let Δj be the differ-
ence of means trace obtained for target bit j, and let H(Δj) be the highest peak
in the trace Δj . Then, we select Δj as the best difference of means trace for kh,
such that H(Δj) is maximal amongst the highest peaks of all other difference of
means traces, i.e. ∀ 1 ≤ j′ ≤ 8, H(Δj′

) ≤ H(Δj).
In other words, we look for the highest peak obtained from any difference

of means trace. The difference of means trace with the highest peak H(Δj) is
assigned as the difference of means obtained for the key hypothesis kh analysed in
the actual iteration of the attack, such that Δh := Δj . We explain this reasoning
in the analysis provided after Step 7.

7. Best Key Byte Hypothesis: Let Δh be the difference of means trace
for key hypothesis h, and let H(Δh) be the highest peak in the trace Δh. Then,
we select kh such that H(Δh) is maximal amongst all other difference of means
traces Δh, i.e. ∀ 1 ≤ h′ ≤ 256, H(Δh′

) ≤ H(Δh).

Analysis. The higher H(Δh), the more likely it is that this key-hypothesis is the
correct one, which can be explained as follows. The attack partitions the traces
in sets A0 and A1 based on whether a bit in z is set to 0 or 1. First, suppose that
the key hypothesis is correct and consider a region R in the traces where (an
encoded version of) z is processed. Then, we expect that the memory accesses in
R for A0 are slightly different than for A1. After all, if they would be the same,
the computations would be the same too. We know that the computations are



110 E. Alpirez Bock et al.

different because the value of the target bit is different. Hence, it may be expected
that this difference is reflected in the mean traces for A0 and A1, which results in
a peak in the difference of means trace. Next, suppose that the key hypothesis is
not correct. Then, the sets A0 and A1 can rather be seen as a random partition
of the traces, which implies that z can take any arbitrary value in both A0 and
A1. Hence, we do not expect big differences between the executions traces from
A0 and A1 in region R, which results in a rather flat difference of means trace.

To illustrate this, consider the difference of means trace depicted in Fig. 2.
This difference of means trace corresponds to the analysis performed on a white-
box implementation obtained from the hack.lu challenge [8]. This is a public
table-based implementation of AES-128, which does not make any use of internal
encodings. For analysing it, a total of 100 traces were recorded. The trace in Fig. 2
shows four spikes which reach the maximum value of 1 (note that the sample
points have a value of either 0 or 1). Let � be one of the four sample points in
which we have a spike. Then, having a maximum value of 1 means that for all
traces in A0, the bit of the memory address considered in � is 0 and that this
bit is 1 for all traces in A1 (or vice versa). In other words, the target bit z[j]
is either directly or in its negated form present in the memory address accessed
in the implementation. This can happen if z is used in non-encoded form as
input to a lookup table or if it is only XORed with a constant mask. For sake of
completeness, Fig. 3 shows a difference of means trace obtained for an incorrect
key-hypothesis. No sample has a value higher than 0.3.

Fig. 3. Difference of means trace for incorrect key guess

The results of the DCA attack shown in this section correspond to the attack
performed using software traces which consist of the memory addresses accessed
during the encryption process. The attack can also be performed using software
traces which consist of other type of information, e.g., the stack writes and/or
reads performed during encryption. In all cases, the analysis is performed in an
analogous way as explained in this section.

Successful Attack. Throughout this paper, considering the implementation of
a cipher, we refer to the DCA attack as being successful for a given key k, if
this key is ranked number 1 among all possible keys for a large enough number
of traces. It may be the case that multiple keys have this same rank. If DCA



On the Ineffectiveness of Internal Encodings 111

is not successful for k, then it is called unsuccessful for key k. Remark that in
practice, an attack is usually considered successful as long as the correct key
guess is ranked as one of the best key candidates. We use a stronger definition
as we require the correct key guess to be ranked as the best key candidate.

Alternatively when attacking a single n-bit to n-bit key dependent look-up
table, we consider the DCA attack as being successful for a given key k, if this
key is ranked number 1 among all possible keys for exactly 2n traces. Thereby,
each trace is generated by giving exactly 2n different inputs to the look-up table,
i.e. all possible inputs that the look-up table can obtain. To get the correlation
between a look-up table output and our selection function, the correlation we
obtain by evaluating all 2n possible inputs is exactly equal to the correlation we
obtain by generating a large enough number of traces for inputs chosen uniformly
at random. We use this property for the experiments we perform in the following
section.

4 Effect of the Encodings

Chow et al. [9] recommend a combination of linear and non-linear encodings
as means to protect key dependent look-up tables in a white-box implementa-
tion. These types of encodings are the methods usually applied in the literature
and in several publicly available white-box implementations. In this section we
analyse how these types of encodings affect the effectiveness of the DCA attack.
Namely, if intermediate values in an implementation are encoded, it becomes
more difficult to re-calculate such values using a selection function as defined in
Step 2 of the DCA, as this selection function does not consider any encodings
(see Sect. 3). For our analyses in this section, we first build single look-up tables
which map an 8-bit long input to an 8-bit long output. More precisely, these
look-up tables correspond to the key addition operation merged with the S-box
substitution step performed on AES. As common in the literature, we refer to
such look-up tables as T-boxes. We apply the different encoding methods to the
outputs of the look-up tables and obtain encoded T-boxes. Note that Chow et
al. merge the T-box and the MixColumns operation into one 8-to-32 bit look-up
table and encode the look-up table output via a 32-bit linear transformation.
However, an 8-to-32 bit look-up table can be split into four 8-to-8 bit lookup
tables, which correspond to the look-up tables used for our analyses.2

Following our definition for a successful DCA attack on an n-to-n look-up
table given in Sect. 3, we generate exactly 256 different software traces for attack-
ing a T-box. Our selection function is defined the same way as in Step 2 of Sect. 3
and calculates the output of the T-boxes before it is encoded. The output of the
T-box is a typical vulnerable spot for performing the DCA on white-box imple-
mentations as this output can be calculated based on a known plaintext and
a key guess. As we will see in this section, internal encodings as suggested by
2 It can be the case that the four lookup tables are, in isolation, not bijective. In that

case, our results do not apply directly. It is left as an exercise to adapt them to this
setting.



112 E. Alpirez Bock et al.

Chow et al. cannot effectively add a masking countermeasure to the outputs of
the S-box.

4.1 Linear Encodings

The outputs of a T-box can be linearly encoded by applying linear transforma-
tions. To do this, we randomly generate an 8-to-8 invertible matrix A. For each
output y of a T-box T , we perform a matrix multiplication A · y and obtain an
encoded output m. We obtain a new look-up table lT , which maps each input x
to a linearly encoded output m. Figure 4 displays this behaviour.

T-Box A
x m

Fig. 4. An lT-box maps each input x to a linearly encoded output m.

We now compute the DCA on the outputs of an lT , constructed with a ran-
domly generated invertible matrix A. Figure 5 shows the results of the analysis
when using the correct key guess. Since we are attacking only an 8 × 8 look-up
table, the generated software traces consist only of 24 samples. No high peaks
can be seen in the difference of means trace, i.e., no correlations can be identi-
fied and thus, the analysis is not successful if the output of the original T-box
is encoded using the matrix A.

Fig. 5. Difference of means trace for the lT-box

The results shown in Fig. 5 correspond to the DCA performed on a look-up
table constructed using one particular linear transformation to encode the output
of one look-up table. We observe that the DCA as described in Sect. 3 is not
effective in the presence of this particular transformation. The theorem below



On the Ineffectiveness of Internal Encodings 113

gives a necessary and sufficient condition under which linear transformations
provide protection against the DCA attack.

Theorem 1. Given a T-box encoded via an invertible matrix A. The difference
of means curve obtained for the correct key hypothesis returns a peak value equal
to 1 if and only if the matrix A has at least one row i with Hamming weight
(HW ) = 1. Otherwise, the difference of means curve obtained for the correct key
hypothesis returns peak values equal to 0.

Proof. For all 1 ≤ j ≤ 8 let y[j] be the jth bit of the output y of a T-box. Let
aij ∈ GF (2) be the entries of an 8 × 8 matrix A, where i denotes the row and j
denotes the column of the entry. We obtain each encoded bit m[i] of the lT-box
via

m[i] =
∑

j

aij · y[j] =
∑

j:aij=1

y[j]. (5)

Suppose that row i of A has HW (i) = 1. Let j be such that aij = 1. It follows
from Eq. (5) that m[i] = y[j]. Let kh be the correct key hypothesis and let bit
y[j] be our target bit. With our selection function Sel(pe, kh, j) we calculate the
value for y[j] and sort the corresponding trace in the set A0 or A1. We refer
to these sets as sets consisting of encoded values m, since a software trace is a
representation of the encoded values. Recall now that y[j] = m[i]. It follows that
m[i] = 0 for all m ∈ A0 and m[i] = 1 for all m ∈ A1. Thus, when calculating the
averages of both sets, for Ā[i], we obtain Ā0[i] = 0 and Ā1[i] = 1. Subsequently,
we obtain a difference of means curve with Δ[i] = 1, which leads us to a successful
DCA attack.

What’s left to prove is that if row i has HW (i) > 1, then the value of bit
y[j] is masked via the linear transformation such that the difference of means
curve obtained for Δ[i] has a value equal to zero. Suppose that row i of A has
HW (i) = l > 1. Let j be such that aij = 1 and let y[j′] denote one bit of y, such
that aij′ = 1. It follows from Eq. (5) that the value of m[i] is equal to the sum of
at least two bits y[j] and y[j′]. Let kh be the correct key hypothesis and let y[j′]
be our target bit. Let ⇀v be a vector consisting of the bits of y, for which aij = 1,
excluding bit y[j′]. Since row i has HW (i) = l, vector ⇀v consists of l − 1 bits.
This means that ⇀v can have up to 2l−1 possible values. Recall that each non-
encoded T-box output value y occurs with an equal probability of 1/256 over
the inputs of the T-box. Thus, all 2l−1 possible values of ⇀v occur with the same
probability over the inputs of the T-box. The sum of the l−1 bits in ⇀v is equal to
0 or 1 with a probability of 50%, independently of the value of y[j′]. Therefore,
our target bit y[j′] is masked via

∑
j:aij=1,j �=j′ y[j] and our calculations obtained

with Sel(pe, kh, j′) only match 50% of the time with the value of m[i]. Each set
Ab consists thus of an equal number of values m[i] = 0 and m[i] = 1 and the
difference between the averages of both sets is equal to zero. �

One could be tempted to believe that using a matrix which does not have
any identity row serves as a good countermeasure against the DCA. However, we
could easily adapt the DCA attack such that it is also successful in the presence



114 E. Alpirez Bock et al.

of a matrix without any identity row. In Step 2, we just need to define our
selection function such that, after calculating an 8-bit long output state z, we
calculate all possible linear combinations LC of the bits in z. Thereby, in Step 3
we sort according to the result obtained for an LC. This means that we perform
Steps 3 to 5 for each possible LC (28 = 256 times per key guess). For at least
one of those cases, we will obtain a difference of means curve with peak values
equal to 1 for the correct key guess as our LC will be equal to the LC defined
by row i of matrix A. Our selection function calculates thus a value equal to the
encoded value m[i] and we obtain perfect correlations.

Note that Theorem 1 also applies in the presence of affine encodings. In case
we add a 0 to a target bit, traces Ā0 and Ā1 do not change and in case we add a
1 the entries in Ā0 and Ā1 that relate to the target bit change to 1 minus their
value. In both cases, the difference of means value does not change.

To illustrate how the effect of linear encodings is shown on complete white-
box implementations, we now perform the DCA attack on our white-box imple-
mentation of AES which only makes use of linear encodings. This is a table
based implementation which follows the design strategy proposed by Chow et
al., but only uses linear encodings. We collect 200 software traces, which consist
of the memory addresses accessed during the encryption process. We use our
selection function Sel(pe, kh, j) = z[j]. Figure 6 shows the difference of means
trace obtained for the correct key guess.

Fig. 6. DCA results for our white-box implementation with linear encodings

Figure 6 shows one peak reaching a value of 1 (see sample 3001). Since the
peak reaches the value of 1, we can again say that our selection function is
perfectly correlated with the targeted bit z[j], even though the output z was
encoded using a linear transformation. Since our partition was done with our
selection function calculating the output of the T-box, our results tell us that
the matrix used to encode the T-box outputs contains at least one identity row.

4.2 Non-linear Encodings

Next, we consider the effect that non-linear encodings have on the outputs of
a T-box. For this purpose, we randomly generate bijections, which map each
output value y of the T-box to a different value f and thus obtain a non-linearly



On the Ineffectiveness of Internal Encodings 115

encoded T-box, which we call OT-box. Recall that a T-box is a bijective func-
tion. If we encode each possible output of a T-box T with a randomly generated
byte function O and obtain the OT-box OT , then OT does not leak any infor-
mation about T . Namely, given OT , any other T-box T ′ could be a candidate
for constructing the same OT-box OT , since there always exists a corresponding
function O′ which could give us OT ′ such that OT ′ = OT . Chow et al. refer to
this property as local security [10]. Based on this property, we could expect resis-
tance against the DCA attack for a non-linearly encoded T-box. For practical
implementations, unfortunately, using an 8-to-8 bit encoding for each key depen-
dent look-up table is not realistic in terms of code size (see Sect. 4.1 of [19] for
more details). Therefore, non-linear nibble encodings are typically used to encode
the outputs of a T-box. The output of a T-box is 8-bits long and each half of the
output is encoded by a different 4-to-4 bit transformation and both results are
concatenated. Figure 7 displays the behaviour of an OT-box constructed using
two nibble encodings.

T-Box

O1

O2

x

f [1...4]

f [5...8]

Fig. 7. Non-linear encodings of the T-Box outputs

Encoding the outputs of a T-box via non-linear nibble encodings does not
hide correlations between the secret key of the T-box and its output bits as
proved in the theorem below. When collecting the traces of an OT-box to perform
a DCA using the correct key hypothesis, each (encoded) nibble value is returned
a total of 16 times. Thereby, all encoded nibbles that have the same value are
always grouped under the same set Ab in Step 3. Therefore, we always obtain a
difference of means curve which consists of only 5 possible correlation values.

Theorem 2. Given an OT-box which makes use of nibble encodings, the differ-
ence of means curve obtained for the correct key hypothesis kh consists only of
values equal to 0, 0.25, 0.5, 0.75 or 1.

Proof. We first prove that the mean value of the set A0 is always a fraction of 8
when we sort the sets according to the correct key hypothesis. The same applies
for the set A1 and the proof is analogous. For all 1 ≤ j ≤ 8 let yd[j] be the jth
bit of the output y of a T-box, where d ∈ {1, 2} refers to the nibble of y where bit
j is located. Let kh be the correct key hypothesis. With our selection function
Sel(pe, kh, j) we calculate a total of 128 nibble values yd, for which yd[j] = 0.



116 E. Alpirez Bock et al.

As there exist only 8 possible nibble values yd for which yd[j] = 0 holds, we obtain
each value yd a total of 16 times. Each time we obtain a value yd, we group its
corresponding encoded value fd under the set A0. Recall that an OT-box uses
one bijective function to encode each nibble yd. Thus, when we calculate the
mean trace Ā0 and focus on its region corresponding to fd, we do the following:

Ā0[fd] =
16fd
128

+ · · · +
16f ′

d

128
=

fd
8

+ · · · +
f ′
d

8
,

with fd �= f ′
d. We now prove that the difference between the means of sets A0

and A1 is always equal to the values 0, 0.25, 0.5, 0.75 or 1. Let fd[j] be one bit
of an encoded nibble fd.

– If fd[j] = 0 is true for all nibbles in set A0, then this implies that fd[j] = 1 is
true for all nibbles in set A1, that is Ā0[j] = 8

8 and Ā1[j] = 0
8 . The difference

between the means of both sets is thus Δ[j] = |08 − 8
8 | = |0 − 1| = 1.

– If fd[j] = 1 is true for 1 nibble in set A0, then fd[j] = 1 is true for 7 nibbles in
set A1, that is, the difference between both means is Δ[j] = |18 − 7

8 | = |68 | =
0.75.

– If fd[j] = 1 is true for 2 nibbles in set A0, then fd[j] = 1 is true for 6 nibbles
in set A1, that is, the difference between both means is Δ[j] = |28 − 6

8 | = |48 | =
0.5.

– If fd[j] = 1 is true for 3 nibbles in set A0, then fd[j] = 1 is true for 5 nibbles
in set A1, that is, the difference between both means is Δ[j] = |38 − 5

8 | = |28 | =
0.25.

– If fd[j] = 1 is true for 4 nibbles in set A0, then fd[j] = 1 is true for 4 nibbles in
set A1, that is, the difference between both means is Δ[j] = |48 − 4

8 | = |08 | = 0.

The remaining 4 cases follow analogously and thus, all difference of means traces
consist of only the values 0, 0.25, 0.5, 0.75 or 1. �

A peak value of 0.5, 0.75 or 1 is high enough to ensure that its corresponding
key candidate will be ranked as the correct one. We now argue that, when we use
an incorrect key guess, nibbles with the same value may be grouped in different
sets. If we partition according to an incorrect key hypothesis kh, the value we
calculate for yd[j] does not always match with what is calculated by the T-box
and afterwards encoded by the non-linear function. It is not the case that for
each nibble value yd for which yd[j] = 0, we group its corresponding encoded
value fd in the same set. Therefore, our sets Ab consist of up to 16 different
encoded nibbles, whereby each nibble value is repeated a different number of
times. This applies for both sets A0 and A1 and therefore, both sets have similar
mean values, such that the difference between both means is a value closer to
zero.

To get practical results corresponding to Theorem 2, we now construct 10 000
different OT-boxes. Thereby, each OT-box is based on a different T-box, i.e. each



On the Ineffectiveness of Internal Encodings 117

one depends on a different key, and is encoded with a different pair of functions
O1 and O2. We now perform the DCA attack on each OT-box. The DCA attack
is successful on almost all of the 10 000 OT-boxes with the exception of three.
In all cases, the difference of means curves obtained when using the correct key
hypotheses return a highest peak value of 0.25, 0.5, 0.75 or 1. The three OT-
boxes which cannot be successfully attacked return peak values of 0.25 for the
correct key guess. For each of the three cases, the correct key guess is not ranked
as the best key candidate because there exists at least one other key candidate
with a peak value slightly higher or with the same value of 0.25. The table
below summarizes how many OT-boxes return each peak value for the correct
key hypotheses.

Peak value for correct key Nr. of OT-boxes

1 55

0.75 2804

0.5 7107

0.25 34

We now perform the DCA attack on our table-based white-box implemen-
tation of AES which only makes use of non-linear nibble encodings. We collect
2000 software traces, which consist of the memory addresses accessed during the
encryption process. Figure 8 shows the difference of means trace obtained when
using the correct key byte with our selection function.

Fig. 8. DCA results for our white-box implementation with non-linear encodings

Figure 8 is flat with one peak with a value very close to 0.75 (see sample 1640),
another peak with a value very close to 0.5 (see sample 1750). Additionally, the
value of two peaks is very close to 0.25. This result corresponds to the difference
of means results obtained with our OT-box examples and to Theorem2. Based on
the results shown in this section we can conclude that randomly generated nibble
encodings do not effectively work as a countermeasure for hiding key dependent
correlations when performing the difference of means test. Additionally, we learn
one way to increase our success probabilities when performing the DCA: when



118 E. Alpirez Bock et al.

ranking the key hypotheses, if no key candidate returns a peak value which really
stands out (0.5 or higher), we could rank our key candidates according to the
convergence of their peaks to the values 0.25 or 0. In the extended version of
this paper, we describe this generalization of the DCA attack in more detail [1].

4.3 Combination of Linear and Non-linear Encodings

We now discuss shortly the effectiveness of the DCA when performed on white-
box implementations that make use of both linear and non-linear encodings to
protect their key-dependent look-up tables. For a more detailed description of
the effect of this type of encodings, we refer the reader to the extended version
of this paper [1]. The combination of both encodings is the approach proposed
by Chow et al. in order to protect the content of the look-up tables from reverse
engineering attempts. The output of each key-dependent look-up table, such
as a T-box, is first encoded by a linear transformation and afterwards by the
combination of two non-linear functions.

We now perform the DCA attack on the OpenWhiteBox challenge by Chow.3

This AES implementation was designed based on the work described in [9,19].
We collect 2000 software traces which consist of values read and written to the
stack during the first round. We define our selection function the same way as
in Sect. 3, Sel(pe, kh, j) = z[j]. For the correct key byte 0x69 we obtain the
difference of means trace shown in Fig. 9.

Fig. 9. Difference of means results for the OpenWhiteBox Challenge when using the
correct key guess and targeting bit z[2]

Figure 9 shows a flat trace with 7 peaks reaching a value of almost 0.5 (see
e.g. sample 327). Due to this trace, the key byte 0x69 is ranked as the best key
candidate and the DCA attack is successful. The peak values shown in Fig. 9 cor-
respond to those described in Theorem2. We discuss these results shortly based
on Theorems 1 and 2. From Theorem 1 we can conclude that, when considering
an output bit of a T-box, it is important that all bits can still be transformed in
all possible values (i.e., 0 and 1) for achieving resistance against the DCA. When
a white-box uses the combination of linear and non-linear encodings and we tar-
get an output bit, we need to consider the output of a T-box as two individual

3 https://github.com/OpenWhiteBox/AES/tree/master/constructions/chow.

https://github.com/OpenWhiteBox/AES/tree/master/constructions/chow


On the Ineffectiveness of Internal Encodings 119

nibbles. Thereby, it is important that each nibble can be transformed into each
possible value in GF (24). If that is the case, we can avoid correlation values
such as those mentioned in Theorem 2 caused by the use of non-linear nibble
encodings.

5 Conclusions

As automated attacks on white-box implementations become more popular, it is
important to understand the experimental success of the original DCA attack in
order to aim for resistance against such attacks. Internal encodings as suggested
by Chow et al. do not effectively hide information regarding the outputs of a key
dependent look-up table. Therefore, the use of such encodings makes a white-
box implementation very vulnerable against DCA. In this work we focused on
analysing these types of encodings due to their popularity amongst the white-box
community and hope that our results motivate the further research on efficient
alternatives for internal encodings in white-box cryptographic designs.

Acknowledgments. The authors would like to thank the anonymous referee for
his/her helpful comments. The authors would like to acknowledge the contribution
of the COST Action IC1306. Chris Brzuska is grateful to NXP for supporting his chair
for IT Security Analysis.

References

1. Alpirez Bock, E., Brzuska, C., Michiels, W., Treff, A.: On the ineffectiveness of
internal encodings - revisiting the DCA attack on white-box cryptography (2018).
https://eprint.iacr.org/2018/301

2. Banik, S., Bogdanov, A., Isobe, T., Jepsen, M.: Analysis of software countermea-
sures for whitebox encryption. IACR Trans. Symmetric Cryptol. 2017(1), 307–328
(2017)

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44647-8 1

4. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-
4 16

5. Bogdanov, A., Isobe, T., Tischhauser, E.: Towards practical whitebox cryptogra-
phy: optimizing efficiency and space hardness. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10031, pp. 126–158. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 5

6. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 11

https://eprint.iacr.org/2018/301
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-662-53887-6_5
https://doi.org/10.1007/978-3-662-53140-2_11


120 E. Alpirez Bock et al.

7. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: another attempt.
Cryptology ePrint Archive, Report 2006/468 (2006). http://eprint.iacr.org/2006/
468

8. Bédrune, J.-B.: Hack.lu 2009 reverse challenge 1 (2009). https://2017.hack.lu/
9. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography

and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7 17

10. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol.
2696, pp. 1–15. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
44993-5 1

11. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-H.,
Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-24209-0 19

12. Kocher, P., Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power anal-
ysis. J. Cryptogr. Eng. 1, 5–27 (2011)

13. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

14. Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a
white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 14

15. Mastercard Mobile Payment SDK: Security guide for MP SDK v1.0.6.
White paper (2017). https://developer.mastercard.com/media/32/b3/
b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-
v2.0.pdf

16. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao – Lai white-box
AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol.
7707, pp. 34–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
35999-6 3

17. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated white-box
AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS,
vol. 6498, pp. 292–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17401-8 21

18. Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of power analysis
attacks on smartcards. In: Proceedings of the USENIX Workshop on Smartcard
Technology, WOST 1999, Berkeley, CA, USA, p. 17. USENIX Association (1999)

19. Muir, J.A.: A tutorial on white-box AES (2013). https://eprint.iacr.org/2013/104.
pdf

20. Sanfelix, E., de Haas, J., Mune, C.: Unboxing the white-box: practical attacks
against obfuscated ciphers. In: Presentation at BlackHat Europe 2015 (2015).
https://www.blackhat.com/eu-15/briefings.html

21. Sasdrich, P., Moradi, A., Güneysu, T.: White-box cryptography in the gray box.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 185–203. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5 10

http://eprint.iacr.org/2006/468
http://eprint.iacr.org/2006/468
https://2017.hack.lu/
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-642-24209-0_19
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-43414-7_14
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-642-17401-8_21
https://eprint.iacr.org/2013/104.pdf
https://eprint.iacr.org/2013/104.pdf
https://www.blackhat.com/eu-15/briefings.html
https://doi.org/10.1007/978-3-662-52993-5_10


Continuously Non-malleable Codes
with Split-State Refresh

Antonio Faonio1(B), Jesper Buus Nielsen2, Mark Simkin2,
and Daniele Venturi3

1 IMDEA Software Institute, Madrid, Spain
antonio.faonio@imdea.org

2 Aarhus University, Aarhus, Denmark
3 Sapienza University of Rome, Rome, Italy

Abstract. Non-malleable codes for the split-state model allow to encode
a message into two parts, such that arbitrary independent tampering on
each part, and subsequent decoding of the corresponding modified code-
word, yields either the same as the original message, or a completely
unrelated value. Continuously non-malleable codes further allow to tol-
erate an unbounded (polynomial) number of tampering attempts, until
a decoding error happens. The drawback is that, after an error hap-
pens, the system must self-destruct and stop working, otherwise generic
attacks become possible.

In this paper we propose a solution to this limitation, by leveraging a
split-state refreshing procedure. Namely, whenever a decoding error hap-
pens, the two parts of an encoding can be locally refreshed (i.e., without
any interaction), which allows to avoid the self-destruct mechanism. An
additional feature of our security model is that it captures directly secu-
rity against continual leakage attacks. We give an abstract framework for
building such codes in the common reference string model, and provide a
concrete instantiation based on the external Diffie-Hellman assumption.

Finally, we explore applications in which our notion turns out to
be essential. The first application is a signature scheme tolerating an
arbitrary polynomial number of split-state tampering attempts, with-
out requiring a self-destruct capability, and in a model where refresh-
ing of the memory happens only after an invalid output is produced.
This circumvents an impossibility result from a recent work by Fuijisaki
and Xagawa (Asiacrypt 2016). The second application is a compiler for
tamper-resilient RAM programs. In comparison to other tamper-resilient
compilers, ours has several advantages, among which the fact that, for
the first time, it does not rely on the self-destruct feature.

Keywords: Non-malleable codes · Tamper-resilient cryptography

1 Introduction

Tampering attacks are subtle attacks that undermine the security of crypto-
graphic implementations by exploiting physical phenomena that allow to mod-
ify the underlying secrets. Indeed, a long line of works (see, e.g., [3,4,16,18])
c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 121–139, 2018.
https://doi.org/10.1007/978-3-319-93387-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_7&domain=pdf


122 A. Faonio et al.

has established that black-box interaction with a tampered implementation can
potentially expose the entire content of the secret memory. Given this state of
affairs, protecting cryptographic schemes against tampering attacks has become
an important goal for modern cryptographers.

An elegant solution to the threat of tampering attacks against the mem-
ory comes from the notion of non-malleable codes (NMCs), put forward by
Dziembowski et al. [10]. Intuitively, a non-malleable encoding (Encode,Decode)
allows to encode a value M into a codeword C ←$ Encode(M), with the guaran-
tee that a modified codeword ˜C = f(C) w.r.t. a tampering function f ∈ F , when
decoded, yields either M itself, or a completely unrelated value. An important
parameter for characterizing the security guarantee offered by NMCs is the class
of modifications F that are supported by the scheme. Since non-malleability
is impossible to obtain for arbitrary (albeit efficient) modifications,1 research
on NMCs has focused on constructing such schemes in somewhat restricted, yet
interesting, models. One such model that has been the focus of intensive research
(see, e.g., [1,2,12,17]) is the split-state model, where the codeword C consists
of two parts (C0, C1) that can be modified independently (yet arbitrarily). This
setting is also the focus of this paper.

Unfortunately, standard NMCs protect only against a single tampering
attack,2 To overcome this limitation, Faust et al. [12] introduced continuously
non-malleable codes (CNMCs for short), where the attacker can tamper for an
unbounded (polynomial) number of times with the codeword, until a decoding
error happens which triggers the self-destruction of the device. As argued in [12],
the self-destruct capability is necessary, as each decoding error might be used to
signal one bit of information about the target codeword.

Another desirable feature of non-malleable codes is their ability to addition-
ally tolerate leakage attacks, by which the adversary can obtain partial infor-
mation on the codeword while performing a tampering attack. Note that in the
split-state model this means that the adversary can leak independently from
the two parts C0 and C1. All previous constructions of leakage-resilient NMCs
either achieve security in the so-called bounded-leakage model [1,12,17], where
the total amount of leakage (from each part) is upper-bounded by a value � that is
a parameter of the scheme, or only satisfy non-continuous non-malleability [11].

Our Contributions. We introduce a new form of CNMCs (dubbed R-CNMCs)
that include a split-state algorithm for refreshing a valid codeword. The refresh
procedure is invoked either after a decoding error happens, or in order to amplify
resilience to leakage, and takes place directly on the memory and without the

1 As it can be seen by considering the tampering function that first decodes the code-
word, flips one bit of the message, and then encodes the result.

2 When using NMCs to obtain security against memory tampering, one can still obtain
security against continuous attacks by enforcing a re-encoding of the secret key after
each invocation; however, this comes with several disadvantages [11], among which
the fact that the encoding process is considerably more complex than the decoding
process.



Continuously Non-malleable Codes with Split-State Refresh 123

need of a central unit. Our new model has a number of attractive features, which
we emphasize below.

– It captures security in the so-called noisy-leakage model, where between each
refresh the adversary can leak an arbitrary (yet independent) amount of
information on the two parts C0, C1, as long as the leakage does not reveal
(information-theoretically) more than � bits of information. Importantly, this
restriction is well-known to better capture realistic leakage attacks.

– It avoids the need for the self-destruct capability in some applications. Besides
mitigating simple denial-of-service attacks, this feature is useful in situations
where a device (storing an encoding of the secret state) is not in the hands
of the adversary (e.g., because it has been infected by a malware), as it still
allows to (non-interactively) refresh the secret state and continue to safely
use the device in the wild.

Our first contribution is an abstract framework for constructing R-CNMCs,
which we are able to instantiate under the external Diffie-Hellman assumption.
This constitutes the first NMC that achieves at the same time continuous non-
malleability and security under continual noisy leakage, in the split-state model
(assuming an untamperable common reference string).

Next, we explore applications of R-CNMCs. As second contribution, we show
how to construct a split-state3 signature scheme resilient to continuous (non-
persistent) tampering and leakage attacks, without relying on the self-destruct
capability, and where the memory content is refreshed in case a decoding error
is triggered. Interestingly, Fujisaki and Xagawa [13] recently showed that such
a notion is impossible to achieve for standard (i.e., non split-state) signature
schemes, even if the self-destruct capability is available; hence, our approach can
be interpreted as a possible way to circumvent the impossibility result in [13].

Our third contribution consists of two generic compilers for protecting ran-
dom access machine (RAM) computations against tampering attacks. Here, we
build on the important work of Dachman-Soled et al. [7], who showed how to
compile any RAM to be resilient to continual tampering and leakage attacks, by
relying both on an update and a self-destruct mechanism. We refer the reader to
Sect. 5 for further details on our RAM compilers. Below, we highlight the main
technical ideas behind our code construction.

Code Construction. The starting point of our code construction is the recent
work of Faonio and Nielsen [11]. The scheme built in [11] follows a template
that originates in the work of Liu and Lysyanskaya [17], in which the left side
of the encoding stores the secret key sk of a PKE scheme, whereas the right
side of the encoding stores a ciphertext c, encrypting the encoded message M ,
plus a non-interactive zero-knowledge (NIZK) argument that proves knowledge
of the secret key under the label c; the PKE scheme is chosen to be a continual-
leakage resilient storage friendly PKE (CLRS friendly PKE for short) scheme
3 This means that the signing key is made of two shares that are stored in two separate

parts of the memory, and need to be combined upon signing.



124 A. Faonio et al.

(see Dodis et al. [9]), whereas the NIZK is chosen to be a malleable NIZK argu-
ment of knowledge (see Chase et al. [5]). Such a code was shown to admit a
split-state refresh procedure, and, at the same time, to achieve bounded-time
non-malleability.

The NM code of [11] does not satisfy security against continuous attacks. In
fact, an attacker can create two valid codewords (C0, C1) and (C0, C

′
1) such that

Decode(C0, C1) �= Decode(C0, C
′
1). Given this, the adversary can tamper the left

side to C0 and the right side to either C1 or C ′
1 according to the bits of the right

side of the target encoding. In a non-persistent model, the adversary can leak all
the bits of C1 without activating the self-destruct mechanism. More in general,
for any R-CNMC it should be hard to find two valid codewords (C0, C1) and
(C0, C

′
1) such that Decode(C0, C1) �= Decode(C0, C

′
1). This property, which we

call “message uniqueness”, was originally defined in [12].4

Going back to the described code construction, an attacker can sample a
secret key sk and create two ciphertexts, c0 for M and c′ for M ′, where M �= M ′,
together with the corresponding honestly computed NIZKs, and thus break mes-
sage uniqueness. We fix this issue by further binding the right and the left side
of an encoding. To do so, while still be able to refresh the two parts indepen-
dently, we keep untouched the structure of the right side of the codeword, but
we change the message that it carries. Specifically, the ciphertext c in our code
encrypts the message M concatenated with the randomness r for a commitment
γ that is stored in the left side of the codeword together with the secret key
for the PKE scheme. Observe that “message uniqueness” is now guaranteed by
the binding property of the commitment scheme. Our construction additionally
includes another NIZK for proving knowledge of the committed value under
the label sk , in order to further link together the left and the right side of the
codeword.

Proof Strategy. Although our construction shares similarities with previous work,
our proof techniques diverge significantly from the ones in [11,12]. The main
trick of [12] is to show that given one half of the codeword it is possible to
fully simulate the view of the adversary in the tampering experiment, until a
decoding error happens. To catch when a decoding error happens, [12] carries on
two independent simulators in an interleaved fashion; as they prove, a decoding
error happens exactly when the outputs of the two simulations diverge. The
main obstacle they faced is how to succinctly compute the index where the two
simulations diverge so that they can reduce to the security of the inner leakage-
resilient scheme storage (see Dav́ı et al. [8]) they rely on. To solve this, [12]
employs an elegant dichotomic search-by-hash strategy over the partial views
produced by the two simulators. At this point the experiment can terminate,
4 Faust et al. also consider “codeword uniqueness”, where the fact that
Decode(C0, C1) �= Decode(C0, C

′
1) is not required. However, this flavor of uniquness

only allows to rule-out so-called super continuous non-malleability, where one asks
that not only the decoded value, but the entire modified codeword, be independent
of the message. It is easy to see that no R-CNMC can satisfy “codeword uniqueness”,
as for instance C′

1 could be obtained as a valid refresh of C1.



Continuously Non-malleable Codes with Split-State Refresh 125

and thanks to a specific property of the leakage-resilient storage scheme, the
simulator can “extract” the view.

Unfortunately, we cannot generalize the above proof strategy to multiple
rounds. In fact, the specific property of the leakage-resilient storage scheme they
make use of is inherently one shot. Specifically, the property allows the adversary
to get an half of the leakage-resilient codeword. However, to allow this the adver-
sary must lose leakage oracle access to the other half of the codeword. In our
case, we would need to repeat the above trick again and again, after a decoding
error and a subsequent refresh of the target encoding happens; however, once
we ask for an entire half of the codeword, even if we refreshed the codeword, we
cannot regain access to the leakage oracles5. We give a solution to this problem
by relying on a simple information-theoretic observation.

Let (X0,X1) be two random variables, and consider a process that inter-
leaves the computation of a sequence of leakage functions g1, g2, g3, . . . from X0

and from X1. The process continues until, for some index i ∈ N, we have that
gi(X0) �= gi(X1). We claim that ḡi(X0) := g1(X0), g2(X0), · · · , gi−1(X0) do not
reveal more information about X0 than what X1 and the index i already reveal.
To see this, consider ˜H∞(X0 | ḡi(X0)) to be the average conditional min-entropy
of X0, which is, roughly speaking, the amount (in average) of the uncertainty of
X0 given ḡi(X0) as side information. Now, since ḡi(X0) and ḡi(X1) are exactly
the same random variables we can derive6:

˜H∞(X0 | ḡi(X0)) = ˜H∞(X0 | ḡi(X1)) ≥ ˜H∞(X0 | X1, i).

The above observation implies that the size of the view of the adversary, although
much larger than the leakage bound, does reveal only little information.

We can already give a different proof of security for the scheme in [12] where
the reduction to the inner-product leakage-resilient storage loses only a factor
O(κ) in the leakage bound (instead of O(κ log κ)). Briefly, the idea is to carries
on two independent simulators in an interleaved fashion (as in [12]) and, at each
invocation, outputting first the hashes7 of the simulated tampered codeword,
then, if the hashes match, leak the full simulated tampered codeword avoiding,
in this way, the dichotomic search-by-hash strategy. The information-theoretic
observation above guarantees that only the last hashes (which will be different)
reveals information. The latter implies that the amount of leakage is bounded
by O(κ).

2 Preliminaries and Building Blocks

We introduce the cryptographic primitives on which we build. For space reasons,
standard notation and formal definitions are deferred to the full version of the
paper.
5 In particular, this property does not hold for a CLRS friendly PKE scheme.
6 In the last equation, we also use that the output of a function is at most as infor-

mative as the input.
7 By collision resistance of the hash function, if the two hashes match then the simu-

lated tampered codewords are the same for both the simulators.



126 A. Faonio et al.

Oracle Machines. Given a pair of strings X = (X0,X1) ∈ ({0, 1}∗)2 define the
oracle O∞(X) to be the split-state leakage oracle that takes as input tuples of
the form (β, g), where β ∈ {0, 1} is an index and g is a function described as
a circuit, and outputs g(Xβ). An adversary A with oracle access to O∞(X) is
called �-valid, for some � ∈ N, if for all β ∈ {0, 1} the concatenation of the
leakage functions sent by A is an �-leaky function of Xβ (i.e., the total amount
of leakage does not reduce the entropy of Xβ by too much).

Given two PPT interactive algorithms A and B we write (yA; yB) ← (A(xA) �
B(xB)) to denote the execution of algorithm A (with input xA) and algorithm
B (with input xB). The string yA (resp. yB) is the output of A (resp. B) at the
end of such interaction. In particular, we write A � O∞(X) to denote A having
oracle access to the leakage oracle with input X. Moreover, we write A � B,C
to denote A interacting in an interleaved fashion both with B and with C.

Non-interactive Zero-Knowledge. Let R ⊆ {0, 1}∗ × {0, 1}∗ be an NP-relation;
the language associated with R is LR := {x : ∃w s.t. (x,w) ∈ R}. We typically
assume that given a pair (x,w) it is possible to efficiently verify whether (x,w) ∈
R or not. Roughly, a non-interactive argument (NIA) for an NP-relation R
allows to create non-interactive proofs for statements x ∈ L, when additionally
given a valid witness w corresponding to x. More formally, a NIA NIA :=
(CRSGen,Prove,Ver) for R, with label space Λ, is a tuple of PPT algorithms
specified as follows (1) The (randomized) initialization algorithm CRSGen takes
as input the security parameter 1κ, and creates a common reference string (CRS)
ω ∈ {0, 1}∗; (2) The (randomized) prover algorithm Prove takes as input the
CRS ω, a label λ ∈ Λ, and a pair (x,w) such that (x,w) ∈ R, and produces a
proof π ←$ Proveλ(ω, x,w); (3) The (deterministic) verifier algorithm Ver takes
as input the CRS ω, a label λ ∈ Λ, and a pair (x, π), and outputs a decision bit
Verλ(ω, x, π).

Completeness means that for all CRSs ω output by CRSGen(1κ), for all labels
λ ∈ Λ, and for all pairs (x,w) ∈ R, we have that Verλ(ω, x,Proveλ(ω, x,w)) = 1
with all but a negligible probability. As for security, we require the following
properties.

– Adaptive multi-theorem zero-knowledge: Honestly computed proofs do
not reveal anything beyond the validity of the statement, and, as such, can
be simulated given only the statement itself.

– Φ-Malleable label simulation extractability: Our construction will be
based on a so-called label-malleable NIA, parametrized by a set of label trans-
formations Φ, where for any φ ∈ Φ, the co-domain of φ is a subset of Λ. For
such NIAs, given a proof π under some label λ ∈ Λ, one can efficiently gen-
erate new proofs π′ for the same statement under a different label φ(λ), for
any φ ∈ Φ (without knowing a witness); this is formalized via an additional
(randomized) label-derivation algorithm LEval, which takes as input the CRS
ω, a transformation φ ∈ Φ, a label λ ∈ Λ, and a pair (x, π), and outputs a new
proof π′. The property we need intuitively says that a NIA satisfies knowl-
edge soundness, except that labels are malleable w.r.t. Φ. More in details,



Continuously Non-malleable Codes with Split-State Refresh 127

there exists a knowledge extractor K that for any adversary which can query
polynomially many simulated proofs of false statements and then it produces
a tuple (x, λ, π) where π is a valid NIZK proof for (x, λ) can extract either
(1) the witness for x or (2) a transformation φ ∈ Λ which maps φ(λ′) = λ
and (x, λ′) was precedently queried by the adversary.

– Label derivation privacy: It is hard to distinguish a fresh proof for some
statement x (with witness w) under label λ, from a proof re-randomized using
algorithm LEval w.r.t. some function φ ∈ Φ; moreover, the latter should hold
even if (x,w, λ, φ) are chosen adversarially (possibly depending on the CRS).

Public-Key Encryption. A public-key encryption (PKE) scheme is a tuple of
algorithms PKE = (Setup,KGen,Enc,Dec) with the usual syntax. We will require
two additional algorithms, the first one to re-randomize a given ciphertext, and
the second one for re-randomizing the secret key (without changing the cor-
responding public key). More formally: The (randomized) algorithm UpdateC
takes as input a ciphertext c, and outputs a new ciphertext c′; The (random-
ized) algorithm UpdateS takes as input a secret key sk , and outputs a new secret
key sk ′.

As for security, we require the following properties.

– CLRS friendly PKE security: This property is essentially a strengthen-
ing of semantic security, where the adversary can additionally observe noisy
independent leakages from S0 = sk and S1 = c (c is the challenge ciphertext).

– Ciphertext-update privacy: The distributions of fresh and updated
ciphertexts are the same.

– Secret-key-update privacy: The distributions of fresh and updated keys
are the same.

Additionally, we make use of a (non-interactive) commitment scheme
COM = (CRSGen,Commit) with statistical hiding and computationally bind-
ing and of an authenticated encryption scheme SKE := (KGen,Enc,Dec). This
notions are standard therefore we defer the definitions to the full version of the
paper.

3 Non-malleability with Refresh

A coding scheme in the CRS model is a tuple of polynomial-time algorithms
CS = (Init,Encode,Decode) with the following syntax: (1) The (randomized)
initialization algorithm Init takes as input the security parameter 1κ, and outputs
a CRS ω ∈ {0, 1}∗; (2) The (randomized) encoding algorithm Encode takes as
input the CRS ω and a message M ∈ M, and outputs a codeword C ∈ C; (3)
The (deterministic) decoding algorithm Decode takes as input the CRS ω and a
codeword C ∈ C, and outputs a value M ∈ M∪{⊥} (where ⊥ denotes an invalid
codeword). A coding scheme is correct if for all ω output by Init(1κ), and any
M ∈ M, we have P[Decode(ω,Encode(ω,M)) = M ] = 1, where the probability
is taken over the randomness of the encoding algorithm.



128 A. Faonio et al.

We consider coding schemes with an efficient refreshing algorithm. Specifi-
cally, for a coding scheme CS we assume there exists a randomized algorithm
Rfrsh that, upon input the CRS ω and a codeword C ∈ C, outputs a codeword
C ′ ∈ C. For correctness we require that for all ω output by Init(1κ), we have
P[Decode(ω,Rfrsh(ω,C)) = Decode(ω,C)] = 1, where the probability is over the
randomness used by the encoding and refreshing algorithms.

Split-State Model. In this paper we are interested in coding schemes in the
split-state model, where a codeword consists of two parts that can be refreshed
independently and without the need of any interaction. More precisely, given a
codeword C := (C0, C1), the refresh procedure Rfrsh(ω, (β,Cβ)), for β ∈ {0, 1},
takes as input either the left or the right part of the codeword, and updates
it. Sometimes we also write Rfrsh(ω,C) as a shorthand for the algorithm that
independently executes Rfrsh(ω, (0, C0)) and Rfrsh(ω, (1, C1)).

Correctness here means that for all ω output by Init(1κ), for all C ∈ C, and
for any β ∈ {0, 1}, if we let C ′ = (C ′

0, C
′
1) be such that C ′

β ←$ Rfrsh(ω, (β,Cβ))
and C ′

1−β = C1−β , then P[Decode(ω,C ′) = Decode(ω,C)] = 1.

3.1 The Definition

We give the security definition for continuously non-malleable codes with split-
state refresh (R-CNMCs for short). Our notion compares two experiments, which
we denote by Tamper and SimTamper (cf. Fig. 1). Intuitively, in the experi-
ment Tamper we consider an adversary continuously tampering with, and leak-
ing from, a target encoding C = (C0, C1) of a message M ∈ M (the message
can be chosen adaptively, depending on the CRS). For each tampering attempt
(f0, f1), the adversary gets to see the output ˜M of the decoding corresponding
to the modified codeword ˜C = (f0(C0), f1(C1)). Tampering is non-persistent,
meaning that each tampering function is applied to the original codeword C,
until, eventually, a decoding error happens; at this point the adversary is allowed
to make one extra tampering query (f∗

0 , f∗
1 ), and, if the corresponding tampered

codeword ˜C∗ is valid and is not an encoding of the original message M , it receives
a refresh of ˜C∗ (otherwise the adversary receives M or ⊥). After that, the tar-
get encoding C is refreshed, and the adversary can start tampering with, and
leaking from, the refreshed codeword. (Below we explain why this extra feature
is useful.)

In the experiment SimTamper, we consider a simulator S = (S0,S1), where
S0 outputs a simulated CRS, while S1’s goal is to simulate the view of the
adversary in the real experiment; the simulator S1, in faking a tampering query
(f0, f1), is allowed to output a special value 
, signaling that (it believes) the
adversary did not change the encoded message, in which case the experiment
replaces 
 with M ; We stress that the simulator S is stateful; in particular
algorithms S0,S1 implicitly share a state.



Continuously Non-malleable Codes with Split-State Refresh 129

TamperCS,A(κ, �, q):
i ← 0; err, stop ← 0
ω ← Init(1κ)
(M, s0) ← A0(ω)
C0 := (C0

0 , C0
1 ) ←$ Encode(ω, M)

For all i ∈ [0, q]:
si+1 ← (A1(si) � O∞(Ci), Otamp(Ci))
Ci+1 ←$ Rfrsh(ω, Ci)
i ← i + 1; err, stop ← 0

Return A2(sq).

SimTamperA,S(κ, �, q):
i ← 0
ω ←$ S0(1κ)
(M, s0) ← A0(ω)
For all i ∈ [0, q]:
si+1 ← (A1(si) � S1(Leak, ·), OS1

sim tamp(·))
i ← i + 1

Return A2(sq).

Oracle Otamp(Ci, (f0, f1)):
Upon (Tamp, f0, f1):

M̃ = Decode(ω, f0(Ci
0), f1(Ci

1))
If (M̃ = ⊥) then err ← 1
If ((err = 1) ∨ (stop = 1))

M̃ ← ⊥
Return M̃

Upon (Final, f∗
0 , f∗

1 ):
stop ← 1
C̃∗ = (f∗

0 (Ci
0), f∗

1 (Ci
1))

M̃∗ = Decode(ω, C̃∗)
If (M̃∗ ∈ {⊥, M}) then C̃′ ← M̃∗

Else, C̃′ ←$ Rfrsh(ω, C̃∗)
Return C̃′.

Oracle OS1
sim tamp(·):

Upon (Tamp, f0, f1):
M̃ ←$ S1(Tamp, f0, f1)
If (M̃ = �) then M̃ ← M

Return M̃
Upon (Final, f∗

0 , f∗
1 ):

C̃′ ←$ S1(Final, f∗
0 , f∗

1 )
If ((C̃′ = �) ∨ (Decode(ω, C̃′) = M))

C̃′ ← M

Return C̃′

Fig. 1. Experiments defining continuously non-malleable codes with split-state refresh.

Definition 1 (Continuous non-malleability with split-state refresh).
For κ ∈ N, let � = �(κ) be a parameter. We say that a coding scheme CS is
an �-leakage-resilient and continuously non-malleable code with split-state refresh
(R-CNMC for short) if for all adversaries A := (A0,A1,A2), where A0 and A2 are
PPT algorithms and A1 is an �-valid deterministic polynomial-time algorithm,
there exists a PPT simulator S = (S0,S1) and a negligible function ν : N → [0, 1]
such that, for any polynomial q(κ), the following holds:

∣

∣P
[

TamperCS,A(κ, �, q) = 1
] − P

[

SimTamperA,S(κ, �, q) = 1
]∣

∣ ≤ ν(κ),

where the experiments TamperCS,A(κ, �, q) and SimTamperA,S(κ, �, q) are
defined in Fig. 1.

We give some intuitions on why the extra tampering query is meaningful. First,
observe that for (standard) continuously non-malleable codes, the notion of non-
persistent tampering is strictly stronger than the notion of persistent tamper-
ing. This is because the effect of any sequence of persistent tampering functions



130 A. Faonio et al.

f1, f2, f3, · · · can be simulated in the non-persistent setting by the sequence of
tampering functions f1, f2 ◦ f1, f3 ◦ f2 ◦ f1, · · · . For R-CNMCs, instead, we can-
not simulate persistent tampering, as in such a setting the refreshing procedure
can be invoked on invalid codewords. The extra tampering query in our defini-
tion allows for some flavor of persistent tampering, in that the adversary gets
to see a refresh of the tampered codeword, as long as the codeword is valid8.
Unfortunately, it is impossible to further generalize our definition to handle the
refreshing of invalid codewords.9

As additional remark, we notice that in the Tamper security game the adver-
sary does not have a “direct” access to a refresh oracle (namely, an oracle that,
under request of the adversary, would refresh the codeword). We skim this extra
detail to not overload the (already heavy) notation. However, the choice comes
without loss of any generality. In fact, we can simulate an adversary that makes
explicit call to a refreshing oracle by an adversary stop, and return its state (this
would indeed trigger a refresh in the experiment), and restart again in the next
iteration of the Tamper experiment.

4 Code Construction

Let PKE = (Setup,KGen,Enc,Dec,UpdateC,UpdateS) be a CLRS friendly
PKE scheme, with secret-key space SK. We assume there exists an efficient
polynomial-time function PK that maps a secret key to the corresponding pub-
lic key. Let COM = (CRSGen,Commit) be a commitment scheme in the CRS
model. Consider the following NP-relations, parametrized by the PKE and the
commitment scheme, respectively:

R0 := {(pk , sk) : pk = PK(sk), sk ∈ SK} ,

R1 := {((ω, γ), (M, r)) : γ = Commit(ω,M ; r)} .

Let Φ0 and Φ1 be two sets of label transformations defined below:

Φ0 := {φ : ∃pk , sk s.t. (∀m, r) Dec(sk , φ(Enc(pk ,m; r))) = m, pk = PK(sk)}
Φ1 := {φ : (∀sk) PK(sk) = PK(φ(sk))} .

8 A sequence of persistent tampering functions f1, f2, · · · , fq followed by a refresh-
ing (on tampered codeword) can be simulated in the non-persistent setting by the
sequence of concatenation of tampering functions (as described above) and then
invoking a final tampering query with tampering function set to f1 ◦ f2 ◦ ... ◦ fq.

9 This can be seen by the following attack. Consider an attacker that computes offline
a valid codeword (C0, C1), and then makes two extra tampering queries (in two
subsequent rounds, say, i and i + 1) such that the first query overwrites (Ci

0, C
i
1)

with (Ci
0, C1), and the second query overwrites (Ci+1

0 , Ci+1
1 ) with (C0, C

i+1
1 ); by

combining the refreshed codewords obtained as output, the adversary gets a refresh
of the original codeword, which cannot be simulated in the ideal experiment (recall
that the refresh algorithm updates the two shares independently).



Continuously Non-malleable Codes with Split-State Refresh 131

Notice that R0,R1, Φ0 and Φ1 are implicitly parametrized by the public param-
eters ρ ∈ {0, 1}∗ of the PKE scheme. Finally, let U0 and U1 be the following sets
of label transformations:

U0 := {UpdateC( · ; ru) : ru ∈ {0, 1}∗}
U1 := {UpdateS( · ; ru) : ru ∈ {0, 1}∗} .

It is easy to verify that Uβ ⊆ Φβ , for β ∈ {0, 1}. In fact, for β =
0, by the correctness of the PKE scheme, there exists sk such that
P[Dec(sk ,UpdateC(Enc(pk ,m))) = m] = 1 and pk = PK(sk); similarly, for β = 1,
again by correctness of the PKE scheme, for any sk ′ ←$ UpdateS(pk , sk) we have
that PK(sk) = PK(sk ′).

Scheme Description. Let NIA0 = (CRSGen0,Prove0,Vrfy0, LEval0) and
NIA1 = (CRSGen1,Prove1,Vrfy1, LEval1) be NIAs for the above defined rela-
tions R0 and R1. Our code CS = (Init,Encode,Decode) works as follows.

– Init(1κ): For β ∈ {0, 1}, sample ωβ ←$ CRSGenβ(1κ), ω ← CRSGen(1κ), and
ρ ← Setup(1κ). Return ω = (ω0, ω1, ω, ρ).

– Encode(ω,M): Parse ω := (ω0, ω1, ω, ρ), sample (pk , sk) ←$ KGen(ρ), and
r ←$ {0, 1}∗. Compute c ←$ Enc(pk ,M ||r), γ = Commit(ω,M ; r), and π0 ←$

Provec
0(ω0, pk , sk), and π1 ←$ Provesk1 (ω1, (ω, γ), (M, r)). Set C0 := (pk , c, π0)

and C1 := (sk , γ, π1), and return C := (C0, C1).
– Decode(ω,C): Parse ω := (ω0, ω1, ω, ρ) and C := (C0, C1), where C1 :=

(sk , γ, π1) and C0 = (pk , c, π0). Compute M ||r := Dec(sk , c), and if the fol-
lowing conditions hold return M else return ⊥:
I. Left check: Verc0(ω0, pk , π0) = 1.

II. Right check: Versk1 (ω1, (ω, γ), π1) = 1.
III. Cross check: Commit(ω,M ; r) = γ.

– Rfrsh(ω, (β,Cβ)): Parse ω := (ω0, ω1, ω, ρ), C0 := (pk , c, π0), and C1 =
(sk , γ, π1). Hence:

• For β = 0, pick r0upd ←$ {0, 1}∗, let c′ := UpdateC(c; r0upd) and π′
0 ←$

LEval0(ω0,UpdateC(·; r0upd), (pk , c, π0)), and return C ′
0 := (pk , c′, π′

0).
• For β = 1, pick r1upd ←$ {0, 1}∗, let sk ′ := UpdateS(sk ; r1upd), and π′

1 ←$

LEval1(ω1,UpdateS(·; r1upd), ((γ, ω), sk , π1)), and return C ′
1 := (γ, sk ′, π′

1).

We show the following result. In the full version we provide a concrete instanti-
ation of our code, based on fairly standard computational assumptions.

Theorem 1. Let PKE be a PKE scheme with message space Mpke and public-
key space PK, let COM be a commitment scheme with message space M, and
let NIA0 (resp. NIA1) be a NIA w.r.t. the relations R0 (resp. R1). Define
μ(κ) := log |M|, μpke(κ) := log |Mpke|, and δ(κ) := log |PK|.

For any � ∈ N, assuming that PKE is an (� + 3μ + 2κ + max{δ, μpke})-
noisy CLRS-friendly PKE scheme, that COM is a non-interactive statistically
binding commitment scheme, and that NIA0 (resp. NIA1) satisfies adaptive
multi-theorem zero-knowledge, Φ0-malleable (resp. Φ1-malleable) label simulation



132 A. Faonio et al.

extractability, and label derivation privacy, then the coding scheme CS described
above is an �-leakage-resilient continuously non-malleable code with split-state
refresh.

Proof Intuition. The proof of the above theorem is quite involved. We provide
some highlights here. We defer the formal proof to the full version of the paper.
Consider a simulator (S0,S1), where S0 simulates a fake CRS ω = (ω0, ω1, ω, ρ)
by additionally sampling the corresponding zero-knowledge and extraction trap-
doors for the NIAs (which are then passed to S1). At the core of our simulation
strategy are two algorithms T0 and T1, whose goal is essentially to emulate the
outcome of the real tampering experiment, with the important difference that T0

is only given the left part of a (simulated) codeword C0 and the left tampering
function f0, whereas T1 is given (C1, f1).

The simulator S1 then works as follows. Initially, it samples a fresh encoding
(C0, C1) of 0μ. More in details, the fresh encoding comes from the (computa-
tionally close) distribution where the proofs π0 and π1 are simulated proofs. At
the beginning of each round, it runs a simulated refresh procedure in which the
ciphertext c is updated via UpdateC (and the simulated proof π0 is re-computed
using fresh randomness), and similarly the secret key sk is updated via UpdateS
(and the simulated proof π1 is re-computed using fresh randomness). Hence, for
each tampering query (f0, f1), the simulator S1 runs ˜M0 := T0(C0, f0), ˜M1 :=
T1(C1, f1), and it returns ˜M0 as long as ⊥ �= ˜M0 = ˜M1 �= ⊥ (and ⊥ otherwise).
The extra tampering query (f∗

0 , f∗
1 ) is simulated similarly, based on the out-

come of the tampering simulators (T0,T1). We briefly describe the tampering
simulators T0 and T1:

– Algorithm T0 lets f0(C0) := (˜pk , c̃, π̃0). If the proof π̃0 does not verify, it
returns ⊥. Else, if (˜pk , c̃, π̃0) = (pk , c, π0), it returns 
. Else, it extracts the
proof π̃0, this leads to two possible outcomes10:
(a) The extractor outputs a secret key ̂sk which is used to decrypt c̃, and the

tampering simulator returns the corresponding plaintext ˜M .
(b) The extractor outputs a transformation φ which maps the label of the

simulated proof π0, namely the encryption of 0μ, to c̃. In this case the
tampering function f0 has modified the original ciphertext c to the mauled
ciphertext c̃ which is an encryption of the same message, so we can safely
output 
.

– Algorithm T1 lets f1(C1) := (γ̃, ˜sk , π̃1). If the proof π̃1 does not verify, it
returns ⊥. Else, if (γ̃, ˜sk , π̃1) = (γ, sk , π1), it returns 
. Else, it extracts the
proof π̃1, again, this leads to two possible outcomes:
(a) the extractor outputs the committed message ˜M (along with the random-

ness of the commitment), so the tampering simulator can simply return
˜M .

10 The above description is simplified, in that extraction could potentially fail, however,
this happens only with negligible probability when the proof verifies correctly.



Continuously Non-malleable Codes with Split-State Refresh 133

(b) The extractor outputs a transformation φ which maps the label of the
simulated proof π1, namely the original secret key sk , to the mauled secret
key ˜sk . In this case, the mauled proof ˜π1 must be a valid proof which
instance is the original commitment, so, again, we can safely output 
.

To show that the above simulator indeed works, we use a hybrid argument where
we incrementally change the distribution of the ideal tampering experiment until
we reach the distribution of the real tampering experiment. Each step introduces
a negligible error, thanks to the security properties of the underlying building
blocks. Perhaps, the most interesting step is the one where we switch the cipher-
text c from an encryption of zero to an encryption of the real message (to which
we always have to append the randomness of the commitment); in order to show
that this change is unnoticeable, we rely on the CLRS storage friendly security
of the PKE scheme. In particular, this step of the proof is based on the following
observations:

– The reduction can perfectly emulate the distribution of the CRS ω, and of
all the elements (pk , π0, γ, π1), except for (c, sk). However, by outputting
(0μ||r,M ||r) as challenge plaintexts—where r ∈ {0, 1}∗ is the randomness
for the commitment—the reduction can obtain independent leakages from C0

and C1 with the right distribution.
– Refresh of codewords can also be emulated by exploiting the fact that the

reduction is allowed to update the challenge secret key and ciphertext.
– The reduction can answer tampering queries from the adversary by using T0

and T1 as leakage functions. The main obstacle is to ensure that T0 and T1

are �-leaky, where � ∈ N is the leakage bound tolerated by the PKE scheme.
Luckily, by using carefully the information-theoretic argument explained in
the Introduction, we can show that this is indeed the case, which allows
simulation to go through. In particular, between each refresh the reduc-
tion needs to interleave the executions of T0 and T1 until their outputs
diverge. So let q be the number of tampering queries that the simulator per-
forms until triggering a decoding error. The leakage that the reduction needs
to perform during this stage (namely, between two consecutive refresh) is
T0(C0, f

0
0 ),T1(C1, f

0
1 ), . . . ,T0(C0, f

q
0 ),T1(C1, f

q
1 ) where (f0

0 , f0
1 ), . . . , (fq

0 , fq
1 )

is the list of tampering functions applied. By the information-theoretic argu-
ment:

˜H∞(C0 | T0(C0, f
0
0 ), . . . ,T0(C0, f

q
0 ))

= ˜H∞(C0 | T1(C1, f
0
1 ), . . . ,T0(C1, f

q−1
1 ),T0(C0, f

q
0 )).

In fact, the outputs of the T0(C0, f
i
0) and T0(C0, f

i
0) is exactly the same when

i < q. Moreover:

˜H∞(C0 | T1(C1, f
0
1 ), . . . ,T0(C1, f

q−1
1 ),T0(C0, f

q
0 ))

≥ ˜H∞(C0 | C1, q,T
0(C0, f

q
0 )).



134 A. Faonio et al.

Because the output of a function cannot be more informative than the inputs
of the function itself. Lastly, we can notice that C1 gives little information
about C0 and that q and T0(C0, f

q
0 ) can decrease the min-entropy of C0 of at

most their size which is O(κ). The reduction, therefore, is a valid adversary
against for the CLRS storage-friendly security experiment of the PKE.

Remark 1 (On the refresh procedures). The notion of split-state refresh does not
imply that a refreshed codeword is indistinguishable from a freshly sampled one.
And indeed the codeword of our CNMC-R is not, as the public key pk (resp.
the commitment γ) do not change after the refresh algorithms are executed.
However, the latter is not required for our proof, as the only thing that matters
is that the information about the target codeword that the adversary gathers
before a refresh takes place will not be useful after the refresh. Put differently, the
adversary could potentially leak the entire values pk and γ, but this information
would not be useful for breaking the security of the scheme.

5 Applications

Tamper-Resilient Signatures Without Self-destruct. Consider a signa-
ture scheme SS. We would like to protect SS against tampering attacks with the
memory, storing the signing key sk . As observed originally by Gennaro et al. [14],
however, without further assumptions, this goal is too ambitious. Their attack
can be circumvented by either assuming the self-destruct capability, or a key-
update mechanism.

Interestingly, Fujisaki and Xagawa [13] observed that, whenever the key-
update mechanism is invoked only after an invalid output is generated, the goal
of constructing tamper-resilient signature is impossible, even assuming the self-
destruct capability. The idea behind the attack is to generate two valid pairs of
independent signing/verification keys, and thus to overwrite the original secret
key with either of the two sampled signing keys in order to signal one bit of the
original key. Note that such an attack never generates invalid signatures, thus
rendering both the self-destruct capability and a key-update mechanism useless.

In the full version of the paper we show that it is possible to avoid self-
destruct and obtain tamper-resilient signatures against arbitrary attacks in the
split-state model.

RAM Compilers. Consider a RAM machine, where both the data and the
program to be executed are stored in the random access memory. Such a RAM
program is modeled as a tuple consisting of a CPU and its memory. At each clock
cycle the CPU fetches a memory location and performs some computation. We
focus on read-only RAM programs that do not change the content of the memory
after the computation is performed. More in details, a read-only RAM program
Λ = (Π,D) consists of a next instruction function Π, a state state stored in
a non-tamperable but non-persistent register, and some database D. The next



Continuously Non-malleable Codes with Split-State Refresh 135

instruction function Π takes as input the current state state and input inp, and
outputs an instruction I and a new state state′. The initial state is set to (start, �).

A RAM compiler is a tuple of algorithms Σ = (Setup,CompMem,CompNext).
Algorithm Setup takes as input the security parameter 1κ, and outputs an untam-
perable CRS ω. The memory compiler CompMem takes as input the CRS ω, and
a database D, and outputs a database ̂D along with an initial internal state
state. The next instruction function Π is compiled to ̂Π using CompNext and
the CRS. To define security, we compare two experiments (cf. Fig. 2). The real
experiment features an adversary A that is allowed, via the interface doNext,
to execute RAM programs on chosen inputs step-by-step; upon input x, oracle
doNext(x) outputs the result of a single step of the computation, as well as the
memory location that is accessed during that step. Additionally, adversary A can
also apply tampering attacks that are parametrized by two families of functions
Fmem and Fbus, where: (1) Each function f ∈ Fmem is applied to the compiled
memory. (2) Each function f ∈ Fbus is applied to the data in transit on the bus.

The ideal experiment features a simulator S that is allowed, via the interface
Execute, to execute RAM programs on chosen inputs in one g;. Upon input x,
oracle Execute(x) outputs the result of the entire computation and the list of
all the memory locations that were accessed during that computation. Briefly,
a RAM compiler is tamper-resilient if for all possible logics Π, and all efficient
adversaries A, there exists a simulator S such that the real and ideal experiment
are computationally indistinguishable. A formal definition follows.

Definition 2 (Tamper simulatability). A compiler Σ = (Setup,CompMem,
CompNext) is tamper simulatable w.r.t. (Fbus,Fmem) if for every next instruction
function Π, and for every PPT adversary A, there exists a PPT simulator S and
a negligible function ν : N → [0, 1] such that, for all PPT distinguishers D and
any database D, we have that:
∣

∣

∣P

[

D(TamperExecFbus,Fmem

A,Σ,Λ (κ)) = 1
]

− P

[

D(IdealExecS,Λ(κ)) = 1
]∣

∣

∣ ≤ negl(κ)

with Λ := (Π,D), and where the experiments TamperExecFbus,Fmem

A,Σ,Λ and
IdealExecS,Λ(κ) are defined in Fig. 2.

We propose two compilers for protecting arbitrary RAM computations
against tampering attacks.

First Compiler. The first compiler achieves security in a model where only
non-persistent tampering on the buses is allowed. The compiler encodes a ran-
dom secret key k for an authenticated encryption scheme using a R-CNMC; let
(K0,K1) be the corresponding codeword. Then, the compiler encrypts each data
block in the original memory D, along with its index, under the key k; let E be
the encrypted memory. The encoded memory is made of two parts D0 := (K0, E)
and D1 := (K1, E). When fetching the location j, the compiled RAM program
first reads and decodes (K0,K1), and stores k in the untamperable register; then,
it loads E [j] from both D0 and D1 and checks that, indeed, they are the same



136 A. Faonio et al.

Experiment TamperExec
Fbus,Fmem
A,Σ,Λ (k):

ω ← Setup(1κ);
Parse Λ as (D̄, Π̄); Q ← ∅;
D ← CompMem(ω, D̄), D′ ← D;
Π ← CompNext(ω, Π̄);
b ← A(ω) � doNext((D′, Π), ·), Otamp(·)

)
;

Return (b, Q).

Experiment IdealExecS,Λ(κ):
Q ← ∅;
b ← S(1κ) � Execute(Λ, ·), Add(·));
Return (b, Q).

Oracle Add(x):
Q ← Q ∪ {x};

Oracle Otamp:
Upon (TampMem, f):

If f ∈ Fmem, then set D ← f(D).
Upon (TampBus, f):

If f ∈ Fbus, then set D′ ← f(D).

Oracle doNext((D, Π), x):
If state = (start, �)

inp ← x; Q ← Q ∪ {x}
(I, state′) ← Π(state, inp)
If I = (read, v)

inp ← D[v]; state := state′

If I = (stop, z), then state ← (start, �)
Else, state := state′

Output I.

Oracle Execute((D, Π), x):
state ← (start, �), I ← ∅;
repeat I′ ← doNext((D, Π), x); I ← I‖I′;
until I′ = (stop, v);
Output I

Fig. 2. Experiments defining security of a RAM compiler.

ciphertext, which is then decrypted.11 If an error happens, the compiled RAM
invokes the refresh mechanism.

The reason behind the redundant encoding of E can be explained using the
information-theoretic observation described in the introduction of the paper.
In fact, the mauled ciphertexts from D0 (resp. D1) can be arbitrary functions
of the non-malleable encoding K0 (resp. K1). However, as long as the mauled
ciphertexts from D0 are equal to the mauled ciphertexts from D1, the amount of
information they carry about K0 is bounded by the amount of information that
K1 reveals about K0. If the two ciphertexts are not equal, some information
about K0 may be leaked, but in this case the codeword is refreshed and the
leaked information becomes useless.

In the full version of the paper we prove the following theorem and give the
details of the construction.

Theorem 2 (Informal). Let n, κ ∈ N be parameters. Assume there exists a
coding scheme that is poly(κ, log n)-leakage-resilient R-CNMC and assume there
exists an authenticated encryption scheme with ciphertext space of length at least
poly(log n). Then there exists a tamper-resilient RAM compiler w.r.t. (Fbus, ∅)
for RAM programs with database of length n, where Fbus is the family of split-
state tampering functions.
11 The compiled RAM program additionally needs to check that the encrypted index

is equal to j, in order to avoid shuffling attacks.



Continuously Non-malleable Codes with Split-State Refresh 137

Tamper-Resilient for Persistent Tampering. The above compiler is not secure
against adversaries that can tamper persistently with the memory. In fact, such
attackers can “copy-paste” the value K0 (resp. K1) in a part of the memory
D0 (resp. D1) that is not refreshed, and restore these values at a later point,
bypassing the refreshing procedure.

To partially overcome this problem we assume that, once a decoding error
is triggered, the system can switch in a safe mode where the communication
between CPU and memory is tamper free. While in safe mode, the system will
perform a consistency check. To minimize the dependency on the assumption
we constraint the consistency check to be succinct, meaning that its complexity
depends only on the security parameter and not on the size of the RAM program.
Finally, if the consistency check passes, the refresh procedure will be executed
otherwise the self-destruct is triggered. In the full version of the paper we prove
the following theorem and give the details of the construction.

Theorem 3 (Informal). Let n, κ ∈ N be parameters. Assume there exists a
coding scheme that is poly(κ, log n)-leakage-resilient R-CNMC and assume there
exists an authenticated encryption scheme with ciphertext space of length at least
poly(log n). Moreover, assume the system can switch in safe mode for poly(κ)
number of operations and self destruct, then there exists a tamper-resilient RAM
compiler w.r.t. (Fbus,Fmem) for RAM programs with database of length n, where
both Fbus and Fmem are the family of split-state tampering functions.

The Compiler of [7]. In order to better compare our RAM compilers with pre-
vious work, we first describe the compiler of Dachman-Soled et al. [7] in some
details. The starting point is a RAM program Λ = (Π,D) that is previously
compiled using an Oblivious RAM [15], and later encoded using a (split-state)
locally-updatable and locally-decodable non-malleable code (LULD-NMC)12. In
particular, one first samples a random key k for an authenticated encryption
scheme, encrypts all the locations D[i] block by block, and finally computes a
Merkle tree of the encrypted blocks. A non-malleable encoding (K0,K1) of k
together with the root of the Merkle tree is computed and the resulting code-
word is composed of (K0,K1), the encrypted memory D′, and the merkle tree T .
Since the encoded memory D′ is encrypted block-by-block, it is possible to locally
decode it and update it using Ω(log n) operations,13 where n is the number of
blocks in D.

The security model in [7] is a flavour of the standard 2-split-state model tam-
pering model, where the adversary can choose tampering functions f = (f1, f2).
Tampering function f1 is any tampering function supported by the underlying
2-split-state NMC that was used to compute (K0,K1) and the function can
depend on the encrypted memory blocks D′, and the merkle tree T . Tampering
function f2 enables the adversary to tamper with the memory and the merkle
tree, but the function does not depend on the codeword (K0,K1).
12 The compiler, more generally, can be instantiated with any kind of (standard) NMC,

for concreteness we consider only the instantiation based on split-state NMC.
13 In a subsequent work, Dachman-Soled et al. [6] showed that, in order to have security

against “reset attacks”, the overhead of Ω(log n) is necessary.



138 A. Faonio et al.

Comparison. Finally, let us review the main differences between our RAM com-
pilers and the one by Dachman-Soled et al. [7]. First, the compiler of [7] can
handle very general RAM programs that can also write on the memory. Our
compilers, instead, are specifically tuned for RAMs that make only read oper-
ations (recall that we want to avoid write-back operations); this feature allows
us to exploit the non-interactive refresh procedure of the underlying R-CNMC.
The read-only model is strictly weaker than the model that is considered in [7]
and reset attacks cannot exist in our model. This enables us to avoid the use
of a Merkle tree and obtain a construction similar to the one given in [7], thus
reducing the overhead from Ω(log n) to O(1).

Second, the compiler of [7] only achieves security in a variant of the regular
split-state model (as described above), whereas both our compilers are secure in
the standard split-state model. On the downside, we require an untamperable
CRS, which is not needed in [7].

Third, we do not aim to hide the access pattern of the RAM machine. Notice
that the latter can be avoided using ORAMs (as done in [7]). However, we think
of this as an orthogonal problem. In fact, in some cases, ORAMs could be, more
efficiently, replaced by constant-time implementations, or by fixed-pattern ones
(for example when hardening cryptographic primitives).

Lastly, our first compiler is the first RAM compiler that achieves security
against continuous attacks without relying on the self-destruct capability. This
feature allows us also to tolerate non-malicious hardware faults that may affect
the data of the bus accidentally, while at the same time maintaining security
against malicious tampering attacks. We notice that a similar property could be
achieved in the scheme of [7] by applying a layer of error-correcting code over the
non-malleable encoding. This allows to transparently correct the hardware faults
as long as these faults are supported by the capability of the error correcting code
and otherwise self destruct. On the other hand, our compiler cannot correct such
hardware faults, but it can detect them (without any bound on their nature)
and trigger a refresh before safely continuing the computations.

References

1. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: STOC, pp. 459–468 (2015)

2. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: STOC, pp. 774–783 (2014)

3. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

4. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4


Continuously Non-malleable Codes with Split-State Refresh 139

5. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof sys-
tems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 281–300. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4 18

6. Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Tight upper and lower bounds for
leakage-resilient, locally decodable and updatable non-malleable codes. In: Fehr,
S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 310–332. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54365-8 13

7. Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updat-
able non-malleable codes and their applications. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 427–450. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6 18

8. Dav̀ı, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121–137. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4 9

9. Dodis, Y., Lewko, A.B., Waters, B., Wichs, D.: Storing secrets on continually leaky
devices. In: FOCS, pp. 688–697 (2011)

10. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Innovations in
Computer Science, pp. 434–452 (2010)

11. Faonio, A., Nielsen, J.B.: Non-malleable codes with split-state refresh. In: Fehr,
S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 279–309. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54365-8 12

12. Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465–488. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 20

13. Fujisaki, E., Xagawa, K.: Public-key cryptosystems resilient to continuous tam-
pering and leakage of arbitrary functions. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10031, pp. 908–938. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 33

14. Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258–277.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1 15

15. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: STOC (1987)

16. Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine.
In: IEEE Symposium on Security and Privacy, pp. 154–165 (2003)

17. Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517–
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 30

18. Otto, M.: Fault attacks and countermeasures. Ph.D. thesis, University of Pader-
born, Germany (2006)

https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-662-54365-8_13
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-642-15317-4_9
https://doi.org/10.1007/978-3-662-54365-8_12
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-662-53887-6_33
https://doi.org/10.1007/978-3-540-24638-1_15
https://doi.org/10.1007/978-3-642-32009-5_30


Digital Signatures



Efficient Unconditionally Secure
Signatures Using Universal Hashing

Ryan Amiri1, Aysajan Abidin2(B), Petros Wallden3, and Erika Andersson1

1 SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University,
Edinburgh EH14 4AS, UK

{ra2,e.andersson}@hw.ac.uk
2 imec-COSIC, KU Leuven, Leuven, Belgium

aysajan.abidin@esat.kuleuven.be
3 LFCS, School of Informatics, University of Edinburgh, 10 Crichton Street,

Edinburgh EH8 9AB, UK
petros.wallden@ed.ac.uk

Abstract. Digital signatures are one of the most important crypto-
graphic primitives. In this work we construct an information-theoretically
secure signature scheme which, unlike prior schemes, enjoys a number of
advantageous properties such as short signature length and high genera-
tion efficiency, to name two. In particular, we extend symmetric-key mes-
sage authentication codes (MACs) based on universal hashing to make
them transferable, a property absent from traditional MAC schemes. Our
main results are summarised as follows.

– We construct an unconditionally secure signature scheme which,
unlike prior schemes, does not rely on a trusted third party or anony-
mous channels.

– We prove information-theoretic security of our scheme against forg-
ing, repudiation, and non-transferability.

– We compare our scheme with existing both “classical” (not employ-
ing quantum mechanics) and quantum unconditionally secure signa-
ture schemes. The comparison shows that our new scheme, despite
requiring fewer resources, is much more efficient than all previous
schemes.

– Finally, although our scheme does not rely on trusted third parties,
we discuss this, showing that having a trusted third party makes our
scheme even more attractive.

Keywords: Digital signatures · Information-theoretic security
Transferable MAC · Universal hashing

1 Introduction

Digital signatures are one of the most widely used cryptographic primitives and
are indispensable for information and communications security. Secure digital

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 143–162, 2018.
https://doi.org/10.1007/978-3-319-93387-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_8&domain=pdf


144 R. Amiri et al.

signature schemes offer authenticity and integrity, non-repudiation, and transfer-
ability of digital content. However, the public-key digital signature schemes that
are currently in use, such as RSA [1], ElGamal DSA [2] and ECDSA [3], provide
only computational security, and rely on unproven hardness assumptions in num-
ber theory. This implies that algorithmic breakthrough and/or the advancement
in computing technologies may one day render such digital signature schemes
totally insecure. Another emerging threat to the security of these schemes is
from quantum computers, which can use Shor’s algorithm [4] to efficiently solve
the underlying “hard” problems and break all pre-quantum public-key cryp-
tosystems. In response to this threat, the field of post-quantum cryptography is
being developed. One can argue and ask whether quantum computers will ever
be built. Large companies such as Google, Microsoft and IBM certainly seem
to think it’s possible, and are allocating significant resources to research in this
area. Furthermore, the National Security Agency (NSA) in the USA is also tak-
ing the threat from quantum computers very seriously, and in August 2015, the
NSA recommended a transition to post-quantum secure algorithms [5].

In post-quantum cryptography, there exist “quantum-safe” public-key cryp-
tosystems which are not yet known to be vulnerable to quantum attacks. Such
schemes range from the historical McEliece cryptosystem [6], which is based
on error-correcting codes, to more recent ones based on hash functions, lat-
tices and multivariate polynomials. The security of these “quantum-safe” alter-
natives is based upon (again unproven) hard problems, some of which have
not yet stood the test of time1. We stress again that even if the underlying
problems were proven to be hard to solve, the security of such schemes is still
only computational, and relies on the adversary having bounded computational
resources. If we want signature schemes with “everlasting” security or are unsure
of the resources available to our adversary, computational security may not be
sufficient.

An alternative to “quantum-safe” public key signature schemes are uncon-
ditionally secure signature (USS) schemes, where security does not rely on any
unproven assumptions, nor on bounds placed on the adversary’s computational
resources. Instead, these schemes provide information-theoretic security. Such a
high level of security, however, comes at a cost. So far, all USS schemes have
been significantly less efficient than their quantum-safe competitors in terms
of signature length, re-usability and key sizes. A more restrictive disadvantage
however, is that all USS schemes use secret keys, rather than public keys.

USS schemes require a setup phase in which secret keys are distributed among
participants before messages can be signed or verified. Therefore, they do not
have the universal verifiability property inherent to standard public-key digital
signature schemes. Due to this restriction, it is clear that USS schemes are not
a suitable replacement for many core applications where digital signatures are
used. Nevertheless, there may still be applications where USS schemes are useful
for particularly important communications, for example in high-value banking

1 In lattice-based cryptography [7] for example, it is not quite clear anymore whether
all such protocols are truly quantum resistant [8,9].



Efficient Unconditionally Secure Signatures Using Universal Hashing 145

transactions, when signing important legal documents, or securing sensitive gov-
ernment communications. Due to the requirement of distributing secret shared
keys between participants, USS schemes should not be viewed as a standalone
product. Instead, it should be viewed as a complement to existing QKD systems
in fixed networks environments.

In this work, we propose a new USS scheme based on universal hashing.
Compared to the previous USS schemes in the literature, our scheme enjoys a
number of favourable properties such as short secret key lengths, short signature
length, and high efficiency. Before we proceed, we first briefly survey the USS
schemes which are already proposed in the literature. For a detailed overview,
we refer the interested reader to [10] and the references therein.

1.1 Related Works

There are two lines of work on USS schemes: one on “classical” schemes (not
employing quantum mechanics), and the other taking advantage of quantum-
mechanical features. Although our scheme is entirely classical, it is similar to
the quantum USS scheme proposed in Ref. [11].

Classical USS Schemes. The first attempt to construct an USS scheme was
suggested by Chaum and Roijakkers [12], using authenticated broadcast chan-
nels, secret authenticated channels and also using untraceable sending protocols.
Their scheme, however, only allows users to sign single-bit messages, and is there-
fore impractical. Moreover, the Chaum-Roijakkers scheme does not offer ade-
quate transferability, which is crucial for a signature scheme, because the secu-
rity is weakened as the message-signature pair is transferred among recipients.
Pfitzmann and Waidner [13] also considered USS schemes (which they called
pseudo-signatures) and constructed a scheme, somewhat related to ours, which
could be used to generate information-theoretically secure Byzantine agreement.
Their scheme built upon the protocol by Chaum and Roijakkers, but allowed
longer messages to be signed and verified, though the scheme still required
authenticated broadcast channels and untraceable sending protocols for imple-
mentation. Our scheme removes the requirement of authenticated broadcast
channels by employing a method similar to secret sharing techniques [14].

Later, Hanaoka et al. [15] proposed an USS scheme relying on a trusted
authority for key distribution, the existence of which allowed improvements both
in efficiency and security over the scheme by Chaum and Roijakkers, at the cost
of introducing this additional trust assumption. This scheme further improved
all existing USS protocols by making the signature scheme re-usable. Neverthe-
less, the lengths of both the signature and the secret keys needed to generate
signing/verification algorithms were still rather long, severely limiting its use in
practice. A later variation of this scheme was proposed by Hanaoka et al. in
[16]. This scheme sacrificed the re-usability of the previous scheme to achieve a
reduction in the size of the secret keys needed to generate signing/verification
algorithms by approximately a factor of 10.



146 R. Amiri et al.

Security notions of classical USS schemes are proposed and analysed in
Shikata et al. [17] as well as Swanson and Stinson [18].

Quantum USS Schemes. There are also quantum USS schemes, first pro-
posed by Gottesman and Chuang [19], in which security is derived from the
laws of quantum physics. Lu and Feng [20] proposed a quantum USS scheme
using quantum one-way functions, though it required a trusted authority (which
they called an arbiter) to resolve disputes. Quantum USS schemes were first
experimentally demonstrated by Clarke et al. [21]. While these early quantum
schemes require long-term quantum memories (which are highly impractical to
realise, effectively rendering these schemes unusable), the more recently proposed
schemes do not [11,22,23]. Quantum USS schemes without quantum memories
have also been experimentally demonstrated [24,25]. Furthermore, these recent
schemes and their experimental demonstrations use the already ripe technologies
required for quantum key distribution [26].

1.2 Contributions

In this work, we propose an USS scheme which naturally extends uncondition-
ally secure message authentication schemes. The main difference between an
unconditionally secure message authentication code and an USS scheme is that
signature schemes ensure the transferability of signed content, while authen-
tication codes do not. We propose a simple method, similar to secret sharing
[14], allowing unconditionally secure authentication codes to be transformed into
USS schemes. Our method requires only minimal trust assumptions and fewer
resources than previous USS schemes. We do not assume a trusted authority, nor
the existence anonymous channels or authenticated broadcast channels. Instead,
we only require participants to share short secret keys pairwise, and that the
majority of participants are honest. Our contributions can be summarised as
follows.

1. We construct an USS scheme that, unlike prior schemes, does not rely on a
trusted authority, anonymous channels or broadcast channels (Sect. 3).

2. We prove information-theoretic security of our scheme against forging, repu-
diation, and non-transferability (Sect. 4).

3. We compare our scheme with existing both classical and quantum USS
schemes. The comparison shows that our new scheme has a number of unpar-
alleled advantages over the previous schemes (Sect. 5).

The distribution stage of our scheme derives from the Generalised P2 proto-
col described in Ref. [27]. However, instead of participants distributing bits, in
our scheme a sender shares with each of the remaining protocol participants
(or recipients) a set of keys (hash functions) from a family of universal hash
functions. This conceptual difference leads to vast efficiency improvements (see
Sect. 5) as it allows the distribution stage to be performed only once for all pos-
sible future messages, as opposed to Generalised P2 in which the distribution



Efficient Unconditionally Secure Signatures Using Universal Hashing 147

stage is performed independently for each future message. This is because, in
our scheme, a signature for a message is a vector of tags generated by applying
the hash functions to the message. Our scheme can be viewed as an extension
of MAC schemes, and therefore its practical implementation is straightforward
and efficient.

2 Preliminaries

We begin by formally defining an USS scheme.

Definition 1 ([27]). An USS scheme Q is an ordered set {P,M, Σ, L, Gen,
Sign, Ver} where

– The set P = {P0, P1, . . . , PN}, is the set containing the signer, P0, and the
N potential receivers.

– M is the set of possible messages.
– Σ is the set of possible signatures.
– Gen is the generation algorithm that gives rise to the functions Sign and Ver,

used respectively to generate a signature and verify its validity. More pre-
cisely, the generation algorithm specifies the instructions for the communica-
tion that takes place in the distribution stage of the protocol. Based on the data
obtained during the distribution stage, the generation algorithm instructs how
to construct the functions Sign and Ver. The generation algorithm includes
the option of outputting an instruction to abort the protocol.

– Sign: M → Σ is a deterministic function that takes a message m ∈ M and
outputs a signature σ ∈ Σ.

– L = {−1, 0, 1, . . . , lmax} is the set of possible verification levels of a signed
message. A verification level l corresponds to the minimum number of times
that a signed message can be transferred sequentially to other recipients. For
a given protocol, the maximum number of sequential transfers that can be
guaranteed is denoted by lmax ≤ N .

– Ver: M × Σ × P × L → {True,False} is a deterministic function that takes a
message m, a signature σ, a participant Pi and a level l, and gives a boolean
value depending on whether participant Pi accepts the signature as valid at
the verification level l.

Definition 2. For a fixed participant, Pi, at a fixed verification level, l, we
denote the verification function as Veri,l(m,σ) := Ver(m,σ, i, l).

Definition 3. A signature σ on a message m is i-acceptable if Veri,0(m,σ) =
True.

The meaning of this definition is that participant Pi will accept (m,σ) as a valid
message-signature pair at the lowest verification level, l = 0.

Definition 4. An USS protocol Q is correct if Veri,l(m,Sign(m)) = True for
all m ∈ M, i ∈ {1, . . . , N}, and l ∈ L.



148 R. Amiri et al.

The signature protocol presented in this paper uses almost strongly universal
hash function families.

Definition 5 ([28]). Let F = {f : M → T } be a set of functions such that

1. For any m ∈ M, t ∈ T , |{f ∈ F : f(m) = t}| = |F|/|T |.
2. For any m1,m2 ∈ M, t1, t2 ∈ T , such that m1 �= m2, |{f ∈ F : f(m1) =

t1 and f(m2) = t2}| ≤ ε |F|
|T | .

Then we say F is ε-ASU2. The domain of each function in F is the message
set, M, and the range is the set of tags, T .

The efficiency of our protocol relies on the ability to find an ε-ASU2 set which
is “small”.

Proposition 1 ([29]). Let a := log |M| and b := log |T |, be the size (in bits) of
the message and tag respectively2. Let F be an ε-ASU2 set with ε = 2/|T |. It is
possible to specify an element of F using y bits of data, where y = 3b + 2s and
s is such that a = (b + s)(1 + 2s).

3 The Protocol

The protocol contains N + 1 participants: a sender P0 and N receivers,
P1, . . . , PN . Before the protocol, all participants agree on an ε-ASU2 family of
functions, F , where ε = 2/|T |. The basic idea is for the sender to give each
recipient a number of keys (hash functions) which will be used in future to
authenticate a message by appending tags (hash values) to the message being
sent. To check the signature, participants will apply their hash functions to the
message, and check that the outcome matches the tags appended to the message
by the sender. They will count the number of mismatches between their hash
values and the appended tags, and only accept the message if they find less than
a threshold amount of mismatches. However, if the sender were to know which
hash functions are held by which participant, she could choose to append appro-
priate tags such that one recipient accepts the message while another does not,
thereby breaking transferability of the scheme. To ensure transferability then,
each recipient will group the hash functions received from the sender into N
equally sized sets (of size k), and send one set (using secret channels) to each
other recipient, keeping one for himself. The recipients test each of the N sets
independently.

Transferability Levels. The situation is further complicated if the sender
is in collusion with some of the recipients. In that case, the sender can have
partial knowledge on who holds which keys, which forces us to define levels of
transferability. Levels of transferability are perhaps confusing, so here we will try
to highlight the need for such levels. Imagine that a sender is in collusion with
2 In this paper all logarithms are taken to base 2.



Efficient Unconditionally Secure Signatures Using Universal Hashing 149

a single recipient. In this case, the sender knows k of the keys held by honest
recipient H1, and k of the keys held by honest recipient H2 - namely he knows
the keys that were forwarded by his dishonest partner. For these known keys,
the sender can attach tags that are correct for H1, and are incorrect for H2.
Therefore, based on the number of colluding adversaries, the sender is able to
bias the number of mismatches and the number of incorrect sets found between
each honest party. To ensure transferability then, we require that the second
verifier accepts a message as authentic even if each set contains a higher number
of mismatches, and there are more invalid sets than found by the first verifier.
Of course, to ensure security against forging, we cannot allow message-signature
pairs containing too many errors to be accepted, and so there must be a cap
on the highest level of mismatches acceptable by anyone. This leads to levels
of verification, and a limit on the number of times a message is guaranteed
to be transferable in sequence. For clarity, suppose then there are three levels
of verification, l0, l1 and l2. Accepting a message at any of these levels means
the message is guaranteed to have originated with the claimed sender. If H1

accepts a message at level l2 (the highest verification level, i.e. the level with
the fewest errors in the signature), then he can forward it to H2, who will first
try to accept the message at level l2. If he finds too many mismatches for the
message to be accepted at level l2, he will instead try to verify at level l1. The
protocol ensures that if H1 found the message to be valid at level l2, then H2

will find the message to be valid at level l1 with high probability. Therefore, with
three verification levels, accepting the message at level l2 guarantees that the
message can be transferred at least twice more. In practice, the message may be
transferred many more times, since with honest participants it is highly likely
that H2 will also find the message valid at level l2 and they will not need to
move to the next verification level.

With this in mind, to begin the protocol we must first decide the maximum
number of dishonest participants we want our protocol to be able to tolerate
(which, as per the proceeding paragraph, will impact our verification levels). We
set this to be ω such that ω < (N + 1)/2, since the protocol cannot be made
secure using the majority vote dispute resolution process if more than half of
the participants are dishonest. We also define the notation dR := (ω − 1)/N ,
where dR is the maximum fraction of dishonest recipients possible when the
sender is part of the coalition. As in previous protocols, there are two stages –
the distribution stage and the messaging stage.

3.1 Distribution Stage

1. The sender independently and uniformly at random selects (with replace-
ment) N2k functions from the set F , where k is a security parameter. We
denote these by (f1, . . . , fN2k) and refer to them as the signature functions.

2. To each recipient, Pi, the sender uses secret classical channels to transmit
the functions (f(i−1)Nk+1, . . . , fiNk). This requires the sender to share Nky
secret bits with each recipient.



150 R. Amiri et al.

3. Each recipient Pi randomly splits the set {(i − 1)Nk + 1, . . . , iNk} into N
disjoint subsets of size k, which we denote Ri→1, . . . , Ri→N . He then uses
the secret classical channels to send Ri→j and Fi→j := {fr : r ∈ Ri→j} to
recipient Pj . To securely transmit the signature functions and their positions
requires each pair of participants to share ky+k log(Nk) secret bits. Following
this symmetrisation, participant Pi holds the Nk functions given by Fi :=⋃N

j=1 Fj→i and their positions given by Ri :=
⋃N

j=1 Rj→i. We refer to these as
the key functions and function positions of participant Pi. The participants
will use these to check a future signature declaration.

3.2 Messaging Stage

1. To send message m ∈ M to Pi, the sender sends (m,Sigm), where

Sigm := (f1(m), f2(m), . . . , fN2k(m)) = (t1, . . . , tN2k).

Since the tags have size b, the signature is N2kb bits in size.
2. For message m and the signature elements tr such that r ∈ Rj→i, participant

Pi defines the following test

Tm
i,j,l =

{
1 if

∑
r∈Rj→i

g(tr, fr(m)) < slk

0 otherwise
(1)

where sl is a fraction defined by the protocol, such that 1/2 > s−1 > s0 >
. . . > slmax

, and g(., .) is a function of two inputs which returns 0 if the inputs
are equal, and 1 if the inputs are different. For each fixed l, if the outcome of
the test is 1, we say that that test is passed at level l. Essentially, this test
checks whether the signature matches what the recipient expects to receive,
but allows for a certain number, slk, of errors. For any verification level, the
recipient will perform N such tests, one for each j = 1, . . . , N . Note that
participant Pi knows all of the signature functions fi′ with i′ ∈ Ri and so can
perform all tests without interaction with any other participant.

3. Participant Pi will accept (m,Sigm) as valid at level l if

N∑

j=1

Tm
i,j,l > Nδl (2)

That is, participant Pi accepts the signature at level l if more than a fraction of
δl of the tests are passed, where δl is a threshold given by δl = 1/2+(l+1)dR.
Therefore, we see that each participant can accept/reject a message without
interacting with any other recipient in the messaging stage.

4. To forward a message, Pi simply forwards (m,Sigm) to the desired recipient.

Note that the number of dishonest participants the protocol is able to tolerate is
directly related to the number of allowed transferability levels, according to the
parameter δl = 1/2 + (l + 1)dR. Specifically, the maximum transferability level
for a given number of dishonest participants is set by (lmax + 1)dR < 1/2.



Efficient Unconditionally Secure Signatures Using Universal Hashing 151

4 Security

Informally, USS schemes must provide the following security guarantees [18]:

1. Unforgeability: Except with negligible probability, it should not be possible
for an adversary to create a valid signature.

2. Transferability: If a verifier accepts a signature, he should be confident that
any other verifier would also accept the signature.

3. Non-repudiation: Except with negligible probability, a signer should be unable
to repudiate a legitimate signature that he has created.

Formal security definitions covering both quantum and classical USS schemes
were first provided in Ref. [27]. For completeness, the definitions are reproduced
in AppendixA. Below we prove that the scheme presented in Sect. 3 is secure
against each type of dishonest behaviour. The security analysis for transferability
and non-repudiation is similar to the one provided in Ref. [27], and as such it is
presented in AppendixB.

Theorem 1. The protocol defined in Sect. 3 is secure against forging attempts.
Letting H2 denote the binary entropy, we find

P(Forge) ≤ (N − ω)2 2−k(1−H2(s0)). (3)

Proof. In order to forge, a coalition, C (which does not include the signer),
with access to a single message-signature pair (m,Sigm), must output a distinct
message-signature pair (m′,Sigm′) that will be accepted (at any level l ≥ 0) by
a participant Pi /∈ C. We consider forging to be successful if the coalition can
deceive any (i.e. at least one) honest participant.

It is easiest for the coalition to forge a message at the lowest verification level
l = 0, so we consider this case in what follows. We assume that the coalition
hold a valid message-signature pair (m,Sigm). We first restrict our attention to
the coalition trying to deceive a fixed participant, and we will prove that this
probability decays exponentially fast with the parameter k. We then use this to
bound the general case where the target is not a fixed participant. Therefore,
for now, we fix the recipient that the coalition wants to deceive to be Pi /∈ C.

To successfully forge, the coalition should output a message-signature pair,
(m′,Sigm′), that passes at least Nδ0 + 1 of the N tests that Pi performs in
step 2 of the messaging stage, where m′ �= m and δ0 = 1/2 + dR, meaning
Nδ0 + 1 = N/2 + ω. By the definition of the protocol, the number of members
in a coalition is at most ω. The coalition knows Fj→i and Rj→i for all Pj ∈ C,
so they can use this knowledge to trivially ensure that Pi passes ω of the N
tests performed at level l = 0. To pass the required Nδ0 + 1 tests, the coalition
must pass a further N/2 tests out of the N −ω remaining tests. The first step in
computing this probability is to calculate the probability of the coalition being
able to create a signature such that, for a single Pj /∈ C, Tm′

i,j,0 = 1, i.e. the
probability that the coalition can guess the tags forwarded from a single honest
recipient Pj to Pi.



152 R. Amiri et al.

Let pt denote the probability that the coalition can force Tm′
i,j,0 = 1, when

they have no access to (Fj→i, Rj→i), i.e. pt is the probability that the coalition
can create a message-signature pair that will pass the test performed by Pi for
the functions received from Pj /∈ C. As per the protocol, Pj sent (Fj→i, Rj→i)
to Pi using secure channels and therefore Fj→i and Rj→i are unknown to the
coalition. However, we assume the coalition possess a valid message-signature
pair (m,Sigm), from which they can gain partial information on (Fj→i, Rj→i).
Let us denote the k unknown functions in Fj→i by u1, . . . , uk, and consider how
the coalition might try to guess the value of t′1 := u1(m′), given t1 := u1(m),
where m′ �= m.

Since F is ε-ASU2, using Definition 5 the coalition immediately knows u1 is
in a set F1 ⊂ F which has size |F|/|T |. Upon receiving message m′, Pi will be
expecting to find tag t′1 in the signature. The coalition does not know t′1 though,
so the best they can do is to pick a random function in F1, and hope that this
function also maps m′ to the unknown t′1. Again by Definition 5, the fraction of
functions in F1 that map m′ to t′1 is at most 2/|T |. Therefore, the probability
that the coalition chooses a function that gives the correct tag for message m′

is 2/|T |. This is independently true for each of the k unknown functions.
Let X be the random variable that counts how many incorrect tags the

coalition declares. Then X follows a binomial distribution and we have

pt = P(X < ks0) =
ks0−1∑

v=0

(
k

v

)(
2

|T |

)k−v (

1 − 2
|T |

)v

. (4)

This decays exponentially fast with the parameter k. For example, it may be
desirable to choose a small tag length in order to minimise the length of the
signature. For |T | = 4 the signature is 2N2k bits in size and we have

pt =
ks0−1∑

v=0

(
k

v

) (
1
2

)k

≈ 2−k(1−H2(s0)). (5)

Of course, choosing a larger tag size will increase security against forging. We
will now give an upper bound for the probability of forging against a fixed
participant. We start by computing the probability of passing at least one of the
unknown N − ω tests, which is given by

P (FixedForge) ≤ 1 − (1 − pt)N−ω ≈ (N − ω)pt, (6)

where we have used the fact that pt 	 1 in the approximation.
The total number of honest recipients is N − ω and for successful forging we

only require that any one of them is deceived. Using the probability of forging
against a fixed participant, we can bound the probability of deceiving any honest
participant as

P (Forge) = 1 − (1 − P (FixedForge))N−ω ≈ (N − ω)2pt, (7)

where we have used the fact that P (FixedForge) 	 1 in the approximation. We
again note that this probability decays exponentially fast with parameter k, and
thus the protocol is secure against forging attempts.



Efficient Unconditionally Secure Signatures Using Universal Hashing 153

Theorem 2. The protocol defined in Sect. 3 is secure against non-transferability
attempts. Defining Np := [(N(1 − dR)][N(1 − dR) − 1]/2, we find

P(Non-Transferability) ≤ Np(N(δl − dR) + 1) exp
(

− (sl−1 − sl)2

2
k

)

. (8)

Proof. See AppendixB.

Theorem 3. The protocol defined in Sect. 3 is secure against repudiation
attempts. We find

P(Rep) ≤ Np(N(δl − dR) + 1) exp
(

− (s−1 − s0)2

2
k

)

. (9)

Proof. See AppendixB.

We note here that Eqs. (3), (8) and (9) are independent of the message size,
meaning the signature size will be constant with respect to the size of the message
being sent.

5 Comparisons

5.1 Classical USS Schemes

In this section we compare the performance of our protocol to the one proposed
in [15] constructed using polynomials over a finite field. We will refer to this
protocol as the HSZI scheme. Since the HSZI scheme allows all participants to
send multiple messages, we extend our protocol to facilitate a comparison.

Consider the protocol described in Sect. 3, except that now each participant
performs the distribution stage ψ times in the role of the sender. Trivially, this
extended distribution stage allows all participants in the scheme to send up to
ψ messages securely in the role of sender. We call this the extended protocol and
all comparisons are made with reference to this scheme.

This extended scheme still enjoys a number of advantages when compared to
the HSZI scheme. Namely,

1. We require fewer trust assumptions – our scheme does not require any trusted
authority.

2. Security in our scheme can be tuned independently of message size, resulting
in shorter signature lengths.

3. Our scheme scales more efficiently (with respect to message size) in terms of
the number of secret shared bits required by participants.

We will look at the second and third advantages in more detail. According to
Theorem 3 of [15] (translated to our notation) the HSZI scheme has

|Σ| = q(ω+1), |S| = q(ω+1)(ψ+1), |V| = qω+(N+1)(ψ+1), (10)

where Σ is the set containing all possible signatures, S is the set containing
all possible signing algorithms, V is the set containing all possible verification
algorithms, q is the number of elements in the chosen finite field and ψ is the
number of times the keys can be reused.



154 R. Amiri et al.

Signature Length. Let us first consider the size of the signature. Since the
signature must be transmitted with the message, it is desirable to have as small
a signature as possible. In the HSZI scheme the message m is an element of the
finite field, meaning the size of the finite field must be at least as big as the size
of the message set, i.e. q ≥ |M|. Accordingly, in what follows we set q = |M|.
Equation (10) implies that (ω + 1) log(|M|) is the bit-length of the signature.
The authors also show that the HSZI scheme provides security proportional to
1/|M|.

Immediately we see that both the size of the signature and the security level
depend on the size of the message to be sent. On the other hand, in our scheme
the signature length is 2N2k bits, regardless of the message length. The security
level of our scheme depends on the parameter k, but is independent of the length
of the message being signed. This allows our scheme to bypass the optimality
results presented in Ref. [15]. Specifically, the authors show that the signature
generated by the HSZI scheme is optimally small for a given security level. By
decoupling the security level from the size of the message being sent, we are able
to generate smaller signatures while maintaining security.

Secret Key Requirements. We now consider the number of secret shared
bits required to securely distribute the signing/verification keys. In the HSZI
scheme, to secretly send the signing and verification keys to all participants, the
trusted authority must hold

[
(ω + 1)(ψ + 1) + ω + (N + 1)(ψ + 1)

]
log(|M|) = O(Nψ log |M|) (11)

secret shared bits with each participant (as implied by Eq. (10)).
For the hash scheme, each recipient must share Nky secret bits with the

sender (to receive the signature functions), and ky + k log(Nk) with every other
recipient (to forward on a selection of the key functions and their positions).
For the extended protocol, where the distribution stage is performed ψ times for
each participant acting as sender, each participant must share: (i) Nky secret
bits with each of the N recipients for the ψ rounds in which he is the sender; and
(ii) Nky bits with the sender and ky + k log(Nk)) secret bits with each of the
(N − 1) other recipients for each of the Nψ rounds when he is not the sender.
This is a total of

N2kψy + Nψ
[
Nky + k(N − 1)(y + log(Nk))

]

= Nkψ(3N − 1)y + N(N − 1)kψ log(Nk)
= Nkψ(3N − 1)(6 + 2s) + N(N − 1)kψ log(Nk)

= O
(
N2kψ(log log |M| + log Nk)

)

(12)

secret shared bits per recipient. The second equality follows using Proposition 1
with b = 2. The last equality follows using the Lambert W function to find a lead-
ing order approximation for s when s is large [30]. The results are summarised
in Table 1 below.



Efficient Unconditionally Secure Signatures Using Universal Hashing 155

The table shows that the signature length in our scheme is constant with
respect to the size of the message to be signed. On the other hand, the signature
length in the HSZI scheme increases linearly with the bit-length of the message
to be signed. Similarly, the secret shared key required by our scheme increases
logarithmically with the bit-length of the message, whereas the increase in the
HSZI scheme is linear in the bit-length of the message.

The fact that our scheme scales unfavourably with respect to the number of
participants is due to the lack of a trusted authority, meaning participants must
perform the pairwise exchange process. As discussed below, this N2 scaling can
be removed from the hash scheme by introducing a trusted authority.

Table 1. Comparison of the signature length and secret shared keys required for various
signature protocols. Our scheme scales favourably with respect to the message length,
a = log |M|, both in terms of signature length and required secret shared key. The
“Quantum” column refers to the two most efficient quantum USS schemes at present,
described in [23,27].

Hash scheme HSZI Quantum

Signature 2N2k (ω + 1)a O(N2a)

Secret key O
(
N2ψ(log a + log N)

)
O(Nψa) O

(
N2ψ(a + log N)

)

Disadvantages. Due to the inclusion of a trusted authority, the HSZI scheme
enjoys a number of advantages over our scheme. These are:

1. Pairwise secret shared keys between all participants are not required by the
HSZI scheme. Instead, each participant only needs a shared secret key with
the trusted authority. This means that the HSZI scheme scales favourably
with respect to the number of protocol participants.

2. Participants in the HSZI scheme are able to enter the protocol even after the
distribution stage. The new participant only needs to communicate with the
trusted authority to join.

3. The HSZI protocol has unlimited transferability, whereas our scheme can only
guarantee transferability a finite number of times.

While these advantages are significant, they are only possible due to the existence
of a trusted authority – an additional trust assumption not present in our scheme.
Our scheme could easily be modified to include a trusted authority, in which case
it would achieve the same three benefits above, as well as being significantly more
efficient.

A trusted authority could be included into our scheme as follows. In the
distribution stage, the signer would send Nk functions to the trusted authority,
where N is an arbitrarily large number chosen to be the maximum number
of participants able to verify the senders signature. When the sender wants
to send a signed message, the trusted authority randomly (and secretly) sends
k of the Nk functions to the recipient. Recipients could either obtain their k



156 R. Amiri et al.

functions at the start of the protocol (i.e. have a distribution stage), or simply
request the functions from the trusted authority as and when needed. Security
against forging would follow as before from the properties of ε-ASU2 sets, while
security against repudiation would come from the fact that the trusted authority
distributes the functions out at random, so each honest participant would have
the same expected number of mismatches with any signature declaration.

5.2 Quantum USS Schemes

A central motivating factor in the study of quantum USS schemes was that they
seemed to require fewer resources than classical USS schemes. This benefit came
at a cost, and all quantum USS schemes proposed have been much less efficient
than classical USS schemes3.

Until now, this decrease in efficiency had been justified by the fact that
quantum protocols do not require broadcast channels, anonymous channels, or
a trusted authority. Instead, the only assumption is that a limited number of
the participants are dishonest, and that the participants all share a number of
secret bits, which could be expanded via QKD.

However, the classical scheme presented in this paper makes the same trust
assumptions as quantum USS schemes, and still achieves two key advantages.
Namely, our scheme generates much shorter signatures and requires significantly
fewer secret shared bits. One of the reasons for the increase in efficiency is that,
so far, all quantum USS schemes have been of the Lamport-type, in which the
distribution stage must be performed for every possible future message. On the
other hand, our scheme does not follow this blueprint, and instead requires users
to share hash functions in the distribution stage, which can be used to sign any
future message (up to some chosen size).

Efficiency. Here we consider the signature length and secret shared bit require-
ments of our scheme, and compare it to Generalised P2, the most efficient realis-
able quantum USS scheme. We assume that a group of N + 1 = 51 participants
are trying to sign a 1Mb message to a security level of 10−10. For comparing
to quantum USS schemes, rather than considering the extended protocol, we
assume the participants perform the regular distribution stage as specified in
Sect. 3, i.e. there is a designated sender and only one message to be sent. In
order to have lmax = 1, we assume that at most ω = 13 participants are dishon-
est meaning dR = 0.24. We also choose s−1 = 0.41, s0 = 0.21 and s1 = 0.01 so
as to have even gaps between the verification levels4.

3 Although it may appear from Table 1 that quantum USS schemes scale comparably
to the HSZI scheme, in fact the constant of proportionality for the quantum schemes
is very large, meaning that for all practical purposes the HSZI scheme is far more
efficient.

4 This choice is somewhat arbitrary, but is chosen to minimise the required signature
lengths.



Efficient Unconditionally Secure Signatures Using Universal Hashing 157

With these parameters, Eqs. (3), (8) and (9) show that k = 1700 is necessary
for the message to be secure to a level of 10−10. Given this value of k, the
signature length is 8.50 × 106 bits and each recipient must hold a total of 7.69 ×
106 secret shared bits (shared over the different participants).

When considering Generalised P2, we assume the sender signs the 1 Mb mes-
sage bit-by-bit, each to a level of 10−10. Overall this gives a lower security level
than signing the message as a whole, but makes the protocol significantly more
efficient5. Equations (24), (29) and (31) of Ref. [27] can be used to show that
the resulting signature length is 4.25 × 1012, and that each recipient must hold
a total of 5.96 × 1012 secret shared bits (shared over the different participants).

This example shows just how powerful our new scheme is when compared to
existing quantum schemes – even for a relatively small message, our scheme is
6 orders of magnitude more efficient both in terms of signature size and secret
shared bit requirements. Our results show that quantum USS schemes must
either be drastically improved, or find a new source of motivation if they are to
remain competitive.

A Security Definitions

In this section we formally define security in USS protocols. We begin by defining
the notion of a dispute resolution process.

In the messaging stage of the protocol all participants are able to check the
validity of a message-signature pair without communicating with any other par-
ticipant. Nevertheless, there may still be scenarios in which disagreements arise
regarding whether a message is valid or not. For example, the sender may deny
having ever sent a message, even though a recipient who (allegedly) followed the
correct procedure found the message to be valid. In these cases, the participants
need a method of deciding who is telling the truth. This is done via the dispute
resolution process.

Definition 6. When the validity of a message-signature pair (m,σ) is in dis-
pute, we invoke a majority vote dispute resolution method MV(m,σ), defined by
the following rule:

1. MV(m,σ) = Valid if Ver(i,−1)(m,σ) = True for more than half of the users.
2. MV(m,σ) = Invalid otherwise

where Ver(i,−1)(m,σ) is the verification function at level l = −1.

Essentially, all participants check the message-signature pair at level −1 and
the majority decision prevails. The l = −1 verification level is only used in dis-
pute resolution, and not in normal runs of the protocol. The dispute resolution
process is expensive, as it requires all participants to communicate to decide

5 Signing the message as a whole would require participants to share secret keys of

size O(2|M|) = O(2106), which is clearly impossible.



158 R. Amiri et al.

whether the message is valid or not. It is expected that even dishonest partic-
ipants would not try to force dispute resolution, since losing would come with
consequences and the procedure ensures that honest participants prevail as long
as they are in the majority. Dispute resolution should be thought of as akin to
taking legal action; in the vast majority of cases it does not happen, but its
existence is necessary to prevent dishonesty.

Signature schemes must be secure against three types of security threat –
forging, repudiation and non-transferability.

Definition 7 (Forging). Let Q be an USS protocol and let C ⊂ P be a coalition
of malevolent parties, not including the signer P0. Suppose that the coalition holds
any valid message-signature pair (m,σ) and can use this to output a message-
signature pair (m′, σ′) with m′ �= m. We define Forging to be the function:

ForgC(Q,m′, σ′) =

{
1 if (m′, σ′) is i-acceptable for some Pi /∈ C

0 otherwise.
(13)

Definition 8 (Non-Transferability). Let Q be an USS protocol and C ⊂ P a
coalition of malevolent participants including the signer P0. Suppose that C out-
puts a message-signature pair (m,σ) and a verification level l. We define Non-
Transferability to be the function:

NonTransC(Q,m, σ, l) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if Ver(i,l)(m,σ) = True for some Pi /∈ C and
Ver(j,l′)(m,σ) = False for some 0 ≤ l′ < l

and some j �= i, Pj /∈ C

0 otherwise.
(14)

Definition 9 (Repudiation). Let Q be an USS protocol and C ⊂ P a coalition
of malevolent participants including the signer P0. Suppose that C outputs a
message-signature pair (m,σ) and a verification level l. We define Repudiation
to be the function:

RepC(Q,MV,m, σ) =

⎧
⎪⎨

⎪⎩

1 if (m,σ) is i-acceptable for some Pi /∈ C and
MV(m,σ) = Invalid

0 otherwise.
(15)

We say that the protocol is secure against forging/non-transferability/
repudiation if the probability of a dishonest coalition being successful decays
exponentially fast with respect to some security parameter.

B Security Proofs

In this section we prove Theorems 2 and 3 stated in Sect. 4.



Efficient Unconditionally Secure Signatures Using Universal Hashing 159

B.1 Proof of Theorem 2

In order to break the transferability of the protocol, a coalition C (which includes
the signer P0) must generate a signature that is accepted by recipient Pi /∈ C at
level l, while also being rejected by another recipient Pj /∈ C at a level l′ < l.

The task of the coalition is easiest if l′ = l − 1 and so we consider this case
in what follows. To provide an upper bound, we allow for the biggest coalition
C that includes NdR recipients and the sender, i.e. all the dishonest partici-
pants. For simplicity, again we will fix the participants whom the coalition is
trying to deceive to be the honest participants Pi and Pj , while all other hon-
est participants are labelled with the index h. In general, transferability fails if
the coalition forms a signature that is not transferable for at least one pair of
honest participants (Pi, Pj). Therefore, we should take into account all possible
pairs of honest participants. We begin by focusing on the case of a fixed pair of
participants, and at the end we give the more general expressions.

The first step is to compute pml,l−1 , which is the probability that: (i) test
Tm

i,h,l is passed (i.e. the tags sent from honest participant Ph to recipient Pi

are accepted at level l); and (ii), the test Tm
j,h,l−1 fails (i.e. the tags sent from

honest participant Ph to recipient Pj are rejected at level l−1). Since the sender
P0 is dishonest, it can be assumed that the coalition know all the signature
functions. However, they are unaware of the sets Rh→i and Rh→j . Therefore,
the coalition can control the number of mismatches the signature will make with
the signature functions originally sent to Ph, but they cannot separately bias the
number of mismatches the signature will make with the functions in Fh→i and
Fh→j . Therefore, when participants Pi and Pj test the functions sent to them
by an honest participant Ph, they will both have the same expected fraction of
mismatches; we call this fraction pe.

It is helpful to use the following bound

pml,l−1 = P(Pi passes test at level l AND Pj fails test at level l − 1)
≤ min{P(Pi passes test at level l),P(Pj fails test at level l − 1)}.

(16)

The probability of passing the test at level l when pe > sl can be bounded using
Hoeffding’s inequalities to be below exp(−2(pe−sl)2k). The probability of failing
the test at level l − 1 when pe < sl−1 can similarly be bounded to be smaller
than exp(−2(sl−1 −pe)2k). Note that sl−1 > sl and so the above two cases cover
all possible values for pe. Since we are taking the minimum over both cases, the
optimal choice for the coalition is to have these probabilities equal to each other.
This is achieved by choosing pe = (sl +sl−1)/2. In this case we obtain the bound
pml,l−1 ≤ exp

(
− (sl−1−sl)

2

2 k
)

, which decays exponentially with k.
For a test that involves a member of C it is trivial for the coalition to make

two recipients disagree in any way they wish, i.e. they can make Tm
i,c,l and Tm

j,c,l−1

take any values they wish. However, the number of those tests is at most NdR,
which is the maximum number of recipients in the coalition. For the participant
Pi to accept a message at level l, he needs strictly greater than Nδl of the
tests to pass at this level. On the other hand, for the participant Pj to reject



160 R. Amiri et al.

the message at level l − 1, less than or equal to Nδl−1 of tests must pass at this
level. Therefore, since it holds that δl = δl−1+dR, in order for the coalition to be
successful, the honest participants Pi and Pj need to disagree on at least NdR+1
tests. As we saw, the coalition can easily make them disagree on the NdR tests
originating from coalition members, but they still have to disagree on at least
one more test originating from an honest recipient. There are N(δl − dR) + 1
such tests (tests originating from an honest recipient that were passed by Pi),
and the Pj need only reject one of them for the coalition to succeed. Therefore,
we have

P(Fixed Non-Transferability) ≤ 1 − (1 − pml,l−1)
N(δl−dR)+1

≈ (N(δl − dR) + 1)pml,l−1 .
(17)

Lastly, we consider the general case, where the participants Pi and Pj are not
fixed. We find

P(Non-Transferability) ≤ 1 − (1 − P(Fixed Non-Transferability))Np

≈ Np(N(δl − dR) + 1)pml,l−1 ,
(18)

where Np := [(N(1 − dR)][N(1 − dR) − 1]/2. Again, this decays exponentially
with k, and thus the protocol is secure against non-transferability.

B.2 Proof of Theorem 3

The proof is a special case of non-transferability, see Sect. 5 A of [27]. We find

P(Rep) ≤ Np(N(δ0 − dR) + 1)pm0,−1 . (19)

As for non-transferability, this goes to zero exponentially fast with k, and thus
the protocol is secure against repudiation.

References

1. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

2. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

3. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

4. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Goldwasser, S., (ed.) Proceedings 35th Annual Symposium on Foundations
of Computer Science. SFCS 1994, vol. 35, pp. 124–134. IEEE Computer Society
(1994)

5. National Security Agency: Cryptography Today, August 2015. https://www.nsa.
gov/ia/programs/suiteb cryptography/

6. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory (1978)

https://doi.org/10.1007/3-540-39568-7_2
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/


Efficient Unconditionally Secure Signatures Using Universal Hashing 161

7. Micciancio, D.: Lattice-based cryptography. In: van Tilborg, H.C.A., Jajodia,
S. (eds.) Encyclopedia of Cryptography and Security. Springer, Boston (2011).
https://doi.org/10.1007/978-1-4419-5906-5 417

8. Song, F.: A note on quantum security for post-quantum cryptography. In: Mosca,
M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 246–265. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11659-4 15

9. Biasse, J.F., Song, F.: On the quantum attacks against schemes relying on the
hardness of finding a short generator of an ideal in Q(ζpn) (2015)

10. Amiri, R., Andersson, E.: Unconditionally secure quantum signatures. Entropy
17(8), 5635–5659 (2015)

11. Wallden, P., Dunjko, V., Kent, A., Andersson, E.: Quantum digital signatures with
quantum-key-distribution components. Phys. Rev. A 91(4), 042304 (2015)

12. Chaum, D., Roijakkers, S.: Unconditionally-secure digital signatures. In: Menezes,
A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 206–214. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3 15

13. Pfitzmann, B., Waidner, M.: Information-theoretic pseudosignatures and byzantine
agreement for t ≥ n/3. IBM (1996)

14. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
15. Hanaoka, G., Shikata, J., Zheng, Y., Imai, H.: Unconditionally secure digital signa-

ture schemes admitting transferability. In: Okamoto, T. (ed.) ASIACRYPT 2000.
LNCS, vol. 1976, pp. 130–142. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44448-3 11

16. Hanaoka, G., Shikata, J., Zheng, Y.: Efficient unconditionally secure digital sig-
natures. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 87(1), 120–130
(2004)

17. Shikata, J., Hanaoka, G., Zheng, Y., Imai, H.: Security notions for unconditionally
secure signature schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS,
vol. 2332, pp. 434–449. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-46035-7 29

18. Swanson, C.M., Stinson, D.R.: Unconditionally secure signature schemes revisited.
In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 100–116. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20728-0 10

19. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv preprint
quant-ph/0105032 (2001)

20. Lu, X., Feng, D.: Quantum digital signature based on quantum one-way functions.
In: ICACT 2005, vol. 1, pp. 514–517. IEEE (2005)

21. Clarke, P.J., Collins, R.J., Dunjko, V., Andersson, E., Jeffers, J., Buller, G.S.:
Experimental demonstration of quantum digital signatures using phase-encoded
coherent states of light. Nat. Commun. 3, 1174 (2012)

22. Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quan-
tum memory. Phys. Rev. Lett. 112(4), 040502 (2014)

23. Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using
insecure quantum channels. Phys. Rev. A 93(3), 032325 (2016). https://doi.org/
10.1103/PhysRevA.93.032325

24. Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson,
E., Jeffers, J., Buller, G.S.: Realization of quantum digital signatures without the
requirement of quantum memory. Phys. Rev. Lett. 113(4), 040502 (2014)

25. Donaldson, R.J., Collins, R.J., Kleczkowska, K., Amiri, R., Wallden, P., Dunjko, V.,
Jeffers, J., Andersson, E., Buller, G.S.: Experimental demonstration of kilometer-
range quantum digital signatures. Phys. Rev. A 93(1), 012329 (2016)

https://doi.org/10.1007/978-1-4419-5906-5_417
https://doi.org/10.1007/978-3-319-11659-4_15
https://doi.org/10.1007/3-540-38424-3_15
https://doi.org/10.1007/3-540-44448-3_11
https://doi.org/10.1007/3-540-44448-3_11
https://doi.org/10.1007/3-540-46035-7_29
https://doi.org/10.1007/3-540-46035-7_29
https://doi.org/10.1007/978-3-642-20728-0_10
https://arxiv.org/abs/quant-ph/0105032
https://doi.org/10.1103/PhysRevA.93.032325
https://doi.org/10.1103/PhysRevA.93.032325


162 R. Amiri et al.

26. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dušek, M., Lütkenhaus, N.,
Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys.
81(3), 1301 (2009)

27. Arrazola, J.M., Wallden, P., Andersson, E.: Multiparty quantum signature
schemes. Quantum Inf. Comput. 16, 435–464 (2016)

28. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18, 143–154 (1979)

29. Bierbrauer, J., Johansson, T., Kabatianskii, G., Smeets, B.: On families of hash
functions via geometric codes and concatenation. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 331–342. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48329-2 28

30. Abidin, A., Larsson, J.Å.: New universal hash functions. In: Armknecht, F., Lucks,
S. (eds.) WEWoRC 2011. LNCS, vol. 7242, pp. 99–108. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34159-5 7

https://doi.org/10.1007/3-540-48329-2_28
https://doi.org/10.1007/3-540-48329-2_28
https://doi.org/10.1007/978-3-642-34159-5_7


Floppy-Sized Group Signatures
from Lattices

Cecilia Boschini1,2(B), Jan Camenisch1, and Gregory Neven1

1 IBM Research, Zurich, Switzerland
{bos,jca,nev}@zurich.ibm.com

2 Università della Svizzera Italiana, Lugano, Switzerland

Abstract. We present the first lattice-based group signature scheme
whose cryptographic artifacts are of size small enough to be usable in
practice: for a group of 225 users, signatures take 910 kB and public keys
are 501 kB. Our scheme builds upon two recently proposed lattice-based
primitives: the verifiable encryption scheme by Lyubashevsky and Neven
(Eurocrypt 2017) and the signature scheme by Boschini, Camenisch, and
Neven (IACR ePrint 2017). To achieve such short signatures and keys,
we first re-define verifiable encryption to allow one to encrypt a func-
tion of the witness, rather than the full witness. This definition enables
more efficient realizations of verifiable encryption and is of independent
interest. Second, to minimize the size of the signatures and public keys
of our group signature scheme, we revisit the proof of knowledge of a
signature and the proofs in the verifiable encryption scheme provided in
the respective papers.

Keywords: Lattices · Group signature · Verifiable encryption

1 Introduction

Lattice-based cryptography has made substantial advances and now includes
public-key encryption schemes [30,31] and digital signature schemes [14,15,27]
that are essentially as practical as those based on traditional number-theoretic
assumptions: all keys and outputs are less than 1 kB for 128 bits of security.
Somewhat more complex primitives such as identity-based encryption [15,19]
can be implemented with keys and ciphertexts being around 4 kB, and the best
blind signature scheme [35] has artifacts of around 100 kB. For group signa-
tures [13], however, the lattice-based schemes known are much less efficient than
their traditional counterparts, despite the attention they have recently received.

In a group signature scheme, the group manager provides distinct secret keys
to each user, who is then able to sign messages anonymously on behalf of the
group. While anyone can check that a message was signed by a group member,
only the opener is able to recover the identity of the originator of a signature.
Group signatures are particularly useful in scenarios where remote devices need
to be authenticated as valid devices, but privacy imposes that individual devices
c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 163–182, 2018.
https://doi.org/10.1007/978-3-319-93387-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_9&domain=pdf


164 C. Boschini et al.

can only be identified by a designated authority. Examples include government-
issued electronic identity (eID) cards, where each issued smart card creates iden-
tity claims as signed statements about its attributes, without needing to fully
identify its owner [6], or remote anonymous attestation of computing platforms,
where devices prove which software they execute [9].

A typical approach to construct a group signature scheme is to use a signature
scheme, an encryption scheme, and a non-interactive zero-knowledge proof of
knowledge (NIZK PoK) [1,5,12] as follows. The group public key consists of the
group manager’s signature public key and the opener’s encryption public key. A
user’s secret key is a signature by the group manager on the identity of the user.
To sign a message, the user encrypts her identity under the opener’s public key
and creates a NIZK PoK of a signature on the encrypted value.

The main obstacle in achieving an efficient scheme with this approach is the
efficiency of the NIZK PoK and the choice of signature and encryption schemes
that allow for an efficient NIZK PoK. In this paper, we build a dynamic group
signature scheme by combining the recent signature scheme with protocols by
Boschini et al. [8] and the recent (verifiable) encryption scheme by Lyubashevsky
and Neven [29]. Both these schemes already come with NIZK proofs of knowledge
of a signature and of a plaintext, but their straightforward combination results
in a group signature scheme that is not practical due to its large signature size.

Our Techniques and Results. Boschini et al. [8] presented a (relaxed) signature
scheme allowing for efficient zero-knowledge proofs of knowledge of a signature
on a hidden message, where a signature on a polynomial with small coefficients
m is a vector S of small-coefficient polynomials (or “short” vector) such that
[A|B|C + mG|1]S = u, where the public key contains row vectors A,B,C,G
and a polynomial u. To prove knowledge of a signature on a hidden message, the
prover first generates a commitment F = b−1(C+mG+E) to m, where b is a
random small-coefficient polynomial and E is an error vector. The commitment
F can be plugged into the verification equation by computing a short vector
S′ such that [A|B|F|1]S′ = u. The prover can then use Lyubashevsky’s Fiat-
Shamir with aborts technique [27] to prove knowledge of

(I) [A|B|F|1]S̄ = c̄u (II) [FT |GT |1]

⎡
⎣
b̄
m̄
Ē

⎤
⎦ = c̄′C.

The relaxed verifiable encryption scheme of Lyubashevsky and Neven [29]
can encrypt a witness x to a relation Mx = y so that decryption is guaranteed
to yield (x̄, c̄) such that Mx̄ = c̄y. The most straightforward way to build a
group signature scheme would be to combine it with the above building blocks,
letting a user’s signing key be given by a signature S by the group manager on
the user’s identity m, and letting a group signature be a non-interactive proof of
relations (I) and (II), combined with a verifiable encryption to allow the opener
to recover the user’s identity m.



Floppy-Sized Group Signatures from Lattices 165

The problem with this approach is that the Lyubashevsky-Neven verifiable
encryption scheme encrypts the full witness [S ; b̄ ; m̄ ; ĒT , rather than just
the witness m, resulting in a very long signature size. In this paper, we define
a variant of relaxed verifiable encryption that encrypts only part of the witness,
resulting in a much shorter signature size. In this way, given F as before, it is
possible to encrypt the message m and still prove that it was used to construct
F, without having to also encrypt S, b, and E. Moreover, we prove relations (I)
and (II) in two separate proofs, resulting in better parameters.

Our group signature scheme satisfies anonymity and traceability as defined
by Bellare et al. [4] in the random-oracle model. Analogously to the non-lattice-
based world, where schemes under weak assumptions do exist [3,4] but truly
practical schemes typically require stronger assumptions [1,7], we also prove our
scheme secure under relatively strong assumptions. Namely, we follow the app-
roach by Boschini et al. [8] and use two interactive assumptions that can be
interpreted in two different ways. One can either believe the interactive assump-
tions as stated, in which case we obtain a tight security reduction and the most
efficient parameters for our scheme, resulting in signatures of 910 kB for a group
of 225 users and 80 bits of security. Alternatively, one can see our assumptions
as being implied by the standard Ring-SIS and Ring-LWE assumptions through
a complexity leveraging argument. To compensate for the loose reduction, the
parameters increase, resulting in signatures of 1.72 MB.

Related Work. The early lattice-based group signature schemes [10,20] have
signature sizes that are linear in the number of group members and are there-
fore mainly proofs of concepts, unsuitable for any practical application. Later
schemes [21,25,34] are asymptotically more efficient with signature sizes being
logarithmic in the number of users.

Making use of the advances in lattice-based signature schemes, a num-
ber of group signature schemes were proposed following the general construc-
tion approach we have outlined earlier [21,23–26,37]. These schemes use as
proof of knowledge protocols either an adaptation of Stern’s protocol [36] or
the “single-bit-challenge” version of the lattice-based Fiat-Shamir protocol by
Lyubashevsky [27]. As these proofs have soundness error 2/3 and 1/2, respec-
tively, they need to be repeated sufficiently many times in parallel, resulting
in group signature schemes that can hardly be considered practical. None of
these scheme give concrete parameters, providing asymptotic efficiency analyses
instead. The only exception is the scheme by Libert et al. [23] which is the most
efficient scheme prior to ours, with signatures over 60 MB and public keys of
4.9 MB for a group size of only 210 users for 80 bits of security – still much less
efficient than ours.

2 Prerequisites
We denote vectors and matrices with upper-case letters. Column vectors are
denoted as V =

[
v1 ; . . . ; vn

]
and row vectors as V =

[
v1 . . . vn

]
. Sampling and

element x from a distribution D will be denoted as x $←−D. If x is sampled from



166 C. Boschini et al.

a uniform over a set A, we will abuse the notation and write x $←−A. With x ← a
we will denote that x is assigned the value a. When necessary, we will denote
the uniform distribution over a set S as U(S).

2.1 Polynomial Rings

Consider the polynomial ring Rq = Zq/〈xn + 1〉 for a prime q ≡ 5 mod 8.
Elements in the ring are polynomials of degree at most n− 1 with coefficients in
[−(q − 1)/2, (q − 1)/2] and operations between ring elements are done modulo
q. Let deg(a) be the degree of the polynomial a. For an element a =

∑n−1
i=0 aixi

in Rq, the standard norms are computed as ‖a‖1 =
∑

i |ai|, ‖a‖ =
√∑

i a2
i

and ‖a‖∞ = max |ai|. For any K|n, we can construct a subring R(K)
q of Rq as

the subset of elements a ∈ Rq such that a =
∑K−1

i=0 aixin/K . For integer p, Rp

(resp., R(K)
p ) is the subset of Rq (resp., R(K)

q ) that contains polynomials with
coefficients in [−(p − 1)/2, (p − 1)/2]. Lemma 1 shows that the ring Rq has a
large set of invertible elements that are easy to identify.

Lemma 1 ([29, Lemma 2.2]). Let Rq = Zq[x]/〈xn +1〉 where n > 1 is a power
of 2 and q is a prime congruent to 5 mod 8. This ring has exactly 2qn/2 − 1
elements without an inverse. Moreover, every non-zero polynomial a in Rq with
‖a‖∞ <

√
q/2 has an inverse.

There are some easy bounds on the norm of the product of polynomials.

Lemma 2. For a,b ∈ Rq it holds: ‖ab‖∞ ≤ min {‖a‖∞‖b‖1, (q − 1)/2}. More-
over, let a, b ∈ Rq be such that n‖a‖∞ · ‖b‖∞ ≤ (q − 1)/2. Then we have that
‖ab‖ ≤ ‖a‖‖b‖√n and ‖ab‖∞ ≤ ‖a‖∞‖b‖∞n ≤ q−1

2 .

2.2 Lattices

An integer lattice is an additive subgroup of Zn. Every lattice Λ is generated by
a basis B = {b1, . . . ,bk} ∈ Z

n×m, where m is called dimension of the lattice.
Such lattice is denoted by Λ = L(B). If k = n and the vectors in the basis
are linearly independent the lattice is a full-rank lattice. The Gram-Schmidt
orthogonalization of a full-rank basis B is denoted by B̃ = {b̃1, . . . b̃n}. Let
λ̃(L(B)) = minB′s.t.L(B′)=L(B) ‖B̃′‖. For a matrix A ∈ Z

n×m, Λ⊥ is the lattice:
Λ⊥ = L⊥(A) = {x ∈ Z

m |Ax = 0 mod q} ⊆ Z
m . We define the discrete

Gaussian distribution centered in c with standard deviation σ on a full-rank
lattice Λ as DΛ,c,σ(v) = e− π‖v−c‖2

σ2 /
∑

u∈Λ e− π‖u−c‖2

σ2 for all v ∈ Λ, and 0 on all
the other points in the space. Let D⊥

A,u,σ be the distribution of the vectors s
such that s ∼ D

Zn,0,σ conditioned on As = u mod q.

Lemma 3 (cf. [2, Lemma 1.5], [27, Lemma 4.4]). Let A ∈ Z
n×m with 211 < m

and u ∈ Z
n
q . For σ ≥ λ̃(L⊥(A)) it holds:

Pr
s

$←− D⊥
A,u,σ

(‖s‖ > 1.05σ
√

m)<2−5 and Pr
s

$←− D⊥
A,u,σ

(‖s‖∞ >8σ) < m2−46.

In particular, the inequalities hold also when s $←−D
Zm,u,σ.



Floppy-Sized Group Signatures from Lattices 167

2.3 Lattices over Rings

Lattices over the polynomial ring Rq can be defined similarly to lattices over
Zq. Indeed, given A ∈ R1×m

q we can construct m-dimensional lattice L⊥(A)
as Λ⊥ = L⊥(A) = {V ∈ (Z[x]/〈xn + 1〉)m |AV = 0 mod q} ⊆ Rm

q . Consider
the obvious embedding that maps a polynomial to the vector of its coefficients.
Then Λ⊥ can be also seen as a nm-dimensional integer lattice over Z. With
a slight abuse of notation, we will write y $←− DRq,u,σ to indicate that y was
sampled from D

Zn,u,σ and then mapped to Rq. Similarly, we omit the 0 and
write

[
y1 . . . yk

]
$←− Dk

Rq,σ to mean that a vector y is generated according to
D

Zkn,0,σ and then gets interpreted as k polynomials yi.
We recall some results about sampling an element from a Gaussian distribu-

tion over a lattice given some trapdoor.

Theorem 1 (adapted from [32]). Let A be a vector in R1×�
q and X be a

matrix in R�×m
q . Also define the gadget matrix G =

[
1 q1/m� . . . q(m−1)/m�].

Then for any invertible m ∈ Rq, there is an algorithm that can sample from the
distribution D⊥[

A AX + mG
]
,u,σ

for any σ ∼ q
1
m s1(X) > λ̃(Λ⊥(

[
A AX + mG

]
))

for any u ∈ Rq.

Lemma 4. Suppose U ∈ R1×k
q and V ∈ R1×m

q are polynomial vectors, and
BU ,B(U,V ) are bases of Λ⊥(U) and Λ⊥(

[
U V

]
) respectively such that ‖B̃U‖,

‖B̃(U,V )‖ < σ
√

π/ ln(2n + 4). Then, there exists an algorithm SampleD(U,V,B,
u, σ), where B is either BU or B(U,V ), that can efficiently sample from the
distribution D⊥[

U V
]
,u,σ

for any u ∈ Rq.

2.4 Hardness Assumptions

We recall two well-studied lattice problems over rings: Ring-SIS and Ring-LWE.

Definition 1 (Ring-SISm,q,β problem). The Ring-SISm,q,β problem is given a
vector A ∈ R1×(m−1)

q to find a vector S ∈ Rm
q such that

[
A 1

]
S = 0 and

‖S‖ ≤ β.

Definition 2. The Ring-LWED distribution outputs pairs (a,b) ∈ Rq × Rq

such that b = as + e for a uniformly random a from Rq and s, e sampled from
distribution D. The Ring-LWEk,D decisional problem on ring Rq with distribu-
tion D is to distinguish whether k pairs (a1,b1), . . . , (ak,bk) were sampled from
the Ring-LWED distribution or from the uniform distribution over R2

q.

There is a polynomial-time reduction from solving the shortest vector prob-
lem over rings to Ring-SIS [28, Theorem 5.1] and a polynomial-time quantum
reduction from solving the shortest vector problem over rings to Ring-LWE with
Gaussian error distribution (cf. [30]). The root Hermite factor δ introduced by
Gama and Nguyen [18] is used to estimate the hardness of the lattice problems
for given parameters in the security reductions.



168 C. Boschini et al.

Boschini et al. [8] introduce new hardness assumptions to be able to prove
their schemes secure with or without complexity leveraging. The idea is to state
the assumptions in two forms, selective and adaptive. The schemes are proved
secure assuming the adaptive variants of the assumptions. Then, a reduction
from adaptive to selective is proved using complexity leveraging, and Ring-SIS
and Ring-LWE are reduced to the selective version. Hence, allowing the use of
complexity leveraging it is possible to base the security of the schemes on Ring-
SIS and Ring-LWE, otherwise security is guaranteed under the adaptive version
of the new hardness assumptions (cf. Assumptions 1 and 3).

Assumption 1. Consider the following game between an adversary A and a
challenger for fixed m ∈ N and distribution D:

1. The challenger outputs a uniformly random C $←− R1×m
q to A.

2. A sends back m ∈ U .
3. The challenger picks a uniformly random bit b $←− {0, 1}. If b = 1, it samples

an error vector E $←− Dm and s $←−D, and sends F = (C+mG−E)s−1 to A.
Otherwise, it sends a uniform F $←−R1×m

q to A.
4. A sends a bit b′ to the challenger.

The advantage of A in winning the game is
∣∣Pr(b = b′) − 1

2

∣∣. The assumption
states that no PPT A can win the previous game with non-negligible advantage.

Assumption 2 (Selective variant of Assumption 1). Consider the game
of Assumption 1, but with steps 1 and 2 switched, meaning, A outputs m ∈ U
before being given C. The assumption states that no PPT adversary can win this
previous game with non-negligible advantage.

Boschini et al. proved that Assumption 2 is at least as hard as Ring-LWE
with m samples and distribution D. It is possible to reduce Assumption 2 to 1
with a complexity leveraging argument by guessing the value of m ∈ U .

Assumption 3. Let Σ̄ = {(c1,S, c2) ∈ C̄ × R3+2m
q × Rq : ‖S‖ ≤ N ′ ∧ ‖c2‖ ≤

C ′} for some fixed parameters. Consider the following game between an adver-
sary A and a challenger for fixed m ∈ N and distribution D:

1. The challenger chooses a $←−Rq, C $←− R1×m
q , and X $←−D2×m

Rq,σt
. It sets A =

[a|1] and B = AX + G, where G =
[
1 q1/m� . . . q(m−1)/m�].

2. The challenger runs A on input
[
A B C 1

]
, giving it access to a ran-

dom oracle H : {0, 1}∗ → Rq and an oracle OS that on input m ∈
U and a string α ∈ {0, 1}∗ outputs a small vector

[
S ; 0

]
in the coset

L⊥(
[
A B C + mG 1

]
) + H(α) such that ‖S‖ ≤ NS.

3. Algorithm A outputs m̄ ∈ Ū , ᾱ ∈ {0, 1}∗, c̄1 ∈ C̄, a ring element c̄2 and a
vector S̄. Algorithm A wins the game if (c̄1, S̄, c̄2) ∈ Σ̄, m̄ ∈ Ū , such that S is
a short vector of the coset L⊥(

[
A B C̄ 1

]
)+c2H(ᾱ)) where C̄ = c̄1C− m̄G,

and (m̄c̄−1
1 , ᾱ) was not queried to the OS oracle.

The assumption states that no PPT algorithm A can win the game with non-
negligible probability.



Floppy-Sized Group Signatures from Lattices 169

Assumption 4 (Selective variant of Assumption 3). Consider the game
of Assumption 3, but where step 1 is preceded with a step where A, on input only
the security parameter λ, outputs the message m̄ ∈ Ū , and in step 3 outputs
the remaining items ᾱ, c̄1, c̄2 ∈ C̄, and S̄. The assumption states that no PPT
adversary can win this previous game with non-negligible advantage.

Theorem 2 (Hardness of Assumption 4). Let A be a probabilistic algorithm
that breaks Assumption 4 in time t with probability εA. Then there exists a prob-
abilistic algorithm B that either breaks Ring-LWEm,Dσ

in time t with probability
εA or Ring-SIS3+m,q,βs

in time t with probability εB ≥ (εA−εLWE)/(2·|C̄|), where
βs = N ′2 + σ2

t

π n2(
√

2 +
√

m + log n)2(2
√

2Kc)2N ′2 + σ2

π n(1 +
√

2 + log n)2(C ′2 +
(1.05σt

√
n)2), εLWE is the probability of breaking the Ring-LWE problem over

Rq in time t, in the Random Oracle Model.

The bound βs is different from the original result, as we choose larger message
and challenge spaces. From complexity leveraging (guessing m̄ in Ū and c̄1 in C̄)
it follows that breaking Assumption 4 implies breaking Assumption 3.

2.5 Group Signature

A group signature is a set of algorithms (GPGen,GKGen,UKGen,OKGen,GSign,
GVerify,GOpen) run by a group manager, an opener and users. The group sig-
nature parameters gpar are generated via GPGen(1λ) (where λ is the secu-
rity parameter). The group manager and the opener generate their keys run-
ning (gpk , gsk) ← GKGen(gpar) and (opk , osk) ← OKGen(gpk) respectively.
If a user wants to join, she sends her identity to the group manager and
obtains back her user secret key usk ← UKGen(gsk , id). The user can sign
a message M on behalf of the group using her secret key with the algo-
rithm GSign(usk , gpk , opk ,M). A signature sig on a message M can be verified
with the algorithm {1, 0} ← GVerify(M, sig , gpk , opk). Finally, the opener can
recover the identity of the group member that signed a message M running
id ← GOpen(M, sig , osk). We require the scheme to be correct (honestly gen-
erated signatures satisfy verification and can be opened to the identity of the
signer), traceable (the group manager should be able to link every signature
to the user who produced it) and anonymous (signatures produced by different
users should be indistinguishable).

2.6 One-Time Signature

A One-Time Signature (OTS) scheme for message set M is a triple (OTSGen,
OTSSign,OTSVf), where (sk , vk) ← OTSGen(1λ) is the key generation algo-
rithm, ots ← OTSSign(sk ,msg) is the signing algorithm and 0/1 ← OTSVf(vk ,
msg , ots) is the verification algorithm. Correctness requires that for all security
parameters λ ∈ N the verification of a honestly generated signature always out-
puts 1. An OTS is unforgeable if, given sk , vk , no adversary can come up with a
signature on a message msg ′ w.r.t. vk after seeing a signature on msg generated



170 C. Boschini et al.

using sk . In particular, the Lamport signature [22] is quantum-secure, thus it
can be used with the relaxed Σ-protocol.

2.7 Relaxed ZK Proofs

Given two NP-languages L ⊆ L̄ defined by the relations R ⊆ R̄ respectively,
a relaxed Σ-protocol for L, L̄ is a three-rounds two-party protocol between
PPT algorithms (P,V) that satisfies standard completeness and zero-knowledge,
but where extraction is only guaranteed to output a witness w such that
(x,w) ∈ R̄. A protocol can be made non-interactive using Fiat-Shamir trans-
form [17]. Simulation-soundness of the transform can be ensured (cf. [16]) by a
property called “quasi-unique responses”: it should be impossible for an adver-
sary to create two valid transcripts that differ only in the responses. Applying
the Fiat-Shamir transform to a relaxed Σ-protocol with quasi-unique responses
results in a relaxed NIZK proof, i.e., a non-interactive protocol that satisfies clas-
sical completeness, unbounded non-interactive zero-knowledge and the following
relaxed definition of simulation soundness:

Definition 3 (Relaxed unbounded simulation soundness). There exists
a PPT simulator S such that for all PPT adversaries A,

Pr
[
VS1(x∗, π∗) = 1 ∧ x∗ �∈ L̄ ∧ (x∗, π∗) �∈ Q : (x∗, π∗) ← AS1,S′

2(1λ)
]

is negligible, where Q is the set of tuples (x, π) where A made a query S2(x) and
obtained response π.

It is also possible to obtain relaxed unbounded simulation soundness using
an OTS scheme with the Fiat-Shamir transform. A formal description and full
proof of the construction can be found in the work by Boschini et al. [8].

To instantiate such protocols over lattices, consider the languages (L, L̄) asso-
ciated with the following relations:

R =
{
((A,U), (S,1)) ∈ R�×m

q × R1×�
q × Rm

q × {1} : AS = U, ‖S‖ ≤ N
}

R̄ =
{
((A,U), (S̄, c̄)) ∈ R�×m

q × R1×�
q × Rm

q × C̄ : AS̄ = c̄U, ‖S‖ ≤ N̄2, ‖S‖∞ ≤ N̄∞
}

where 0 < N ≤ N̄2, 0 < N̄∞ and, if the set of the challenges used in the
protocol is C, the set of relaxed challenges is C̄ = {c − c′ : c, c′ ∈ C}. Finding
a witness (S, c) for an element (A,U) of the language L̄ is hard under the
computational assumption that Ring-SISN̄ is hard. In the relaxed Σ-protocol
for L, L̄, the prover P samples a masking vector Y $←−Dm

σ and sends T = AY to
the verifier V. Next, V samples a challenge c ∈ C and sends it back to P. The
prover constructs Z = Y + cS and, depending on rejection sampling (see [27,
Theorem 4.6]), either aborts or sends it to V. The verifier accepts if AZ−cU = T
and ‖Z‖ ≤ 1.05σ

√
mn =: N2, ‖Z‖∞ ≤ 8σ =: N∞. The zero-knowledge property

is guaranteed by rejection sampling. A standard deviation σ = 12T , where T is
a bound on the norm of cS obtained from N , guarantees that the prover outputs



Floppy-Sized Group Signatures from Lattices 171

something with probability greater than (1 − −2100)/e (cf. [27, Theorem 4.6]).
Setting N̄2 = 2N2 = 2.1σ

√
mn and N̄∞ = 2N∞ = 16σ allows to prove that this

is a relaxed Σ-protocol.
The proof-system we introduced can be adapted to prove that a component

si of S is in a subring R(2Km )
q by using as challenge space C = R(2Kc )

3 , that

is a subset of R(2Km )
q when Km ≥ Kc and sampling the i-th element of the

“masking” vector Y from R(2Km )
q . Hence the output vector Z = Sc+Y is such

that zi ∈ R(2Km )
q . The verifier has to check also this latter condition before

accepting.

2.8 Relaxed Signatures

Boschini et at. [8] introduced a new lattice-based relaxed signature scheme, i.e.,
a signature (SParGen,SKeyGen,Sign,SVerify) where the verification algorithm is
relaxed to accept signature on messages coming from a set M̄ larger than the
set M of signed messages. The signature is proved unforgeable under a relaxed
notion of unforgeability under chosen-message attacks that includes as a forgery
a signature on a message in M̄ that is the image of a message in M through
some function f that was not signed by the signing oracle. The relaxation in
the definition is necessary in order to combine the signature with the relaxed
Σ-protocol (see Sect. 2.7).

Given that we reduce the unforgeability of the group signature directly to the
hardness of Assumption 1, we do not discuss security of the signature here. We
only remark that we use a different set of messages, namely U = R(16)

3 , while the
original lattice instantiation signs messages composed by a small polynomial and
a bit-string. When using it in the group signature, the small polynomial m ∈ U
encodes a user’s identity, but there is no need for the bit string. Therefore, we
substitute the output of the hash of the bit-string with a constant polynomial
u chosen uniformly at random in Rq during the key generation and sign only
messages in M = U . The modified scheme is trivially still unforgeable under
Assumption 3 in the Random Oracle Model.

Parameters Generation. The parameters spar are generated by SParGen(1λ)
and include (n, q,m, σt, σ, r,N,N ′, C ′,C) where: n is a power of 2, q is a prime,
q ≡ 5 mod 8, m determines the gadget vector G in Theorem 1, σt is standard
deviation of the distribution of the trapdoor, σ = q1/m σt√

π

√
n·(√2+

√
m+log(n))

is the standard deviation of the Gaussian from which signatures are sampled,
r bounds the norm of the polynomial part of the messages in Ū = R(16)

r , N =
1.05σ

√
n(2m + 2) bounds the norm of a signature output by Sign, N ′ > N and

C ′ ≥ 1 define the set of valid signatures Σ̄, and C is uniformly random matrix
in R1×m

q .

Key generation. The signer selects a uniformly random matrix A =
[
a 1

]
in R1×2

q and an element u $←−Rq as verification key and a matrix with small



172 C. Boschini et al.

coefficients X $←− D2×m
Rq,σt

as secret signing key. The public verification key is the

vector V =
[
A B C

]
=

[
A AX + G C

] ∈ R1×(2+2m)
q .

Signing. If M = m /∈ M abort. Otherwise, the signer computes S ← SampleD
(
[
A B C + mG

]
,u, σ) (see Lemma 4) and outputs a signature sig = (1,

[
S ; 0

]
,

1). The entry (m, sig) is stored so that if a signature on m is queried twice, the
algorithm outputs always sig .

Verification. Verification of a signature sig = (c1,S, c2) on message M = m
returns 1 if

[
A B c1C + mG 1

]
S = c2u, if the message M ∈ M̄, and if the

signature sig ∈ Σ̄ = {(c1,S, c2) ∈ C̄ × R3+2m
q × Rq : ‖S‖ ≤ N ′ ∧ ‖c2‖ ≤ C ′}.

Otherwise, it returns 0.
The relaxed signature scheme is f -uf-cma secure w.r.t. the message relaxation

function f(m) = {(mc) : c ∈ C̄}.

Theorem 3. An algorithm A that breaks the f-uf-cma unforgeability of the
relaxed signature scheme in time t and probability εA can break the Assump-
tion 3 in time t with probability εA in the Random Oracle Model.

To prove knowledge of a signature on a message m without revealing m,
Boschini et al. combine the relaxed signature, a relaxed commitment and the
relaxed Σ-protocol, where the commitment is used to hide the part of the ver-
ification key of the signature that depends on m. Let S =

[
S1 ; S2 ; S3 ; 1

]
be

a signature on m w.r.t. the public key spk =
[
A B C

]
. To hide the part of the

verification equation of the signature that depends on m, Boschini et al. present
the following trick. First, construct F = b−1(C + mG + E) choosing random
E $←−R1×m

3 and b $←−R3. Assuming Assumption 1 is hard or using complexity
leveraging and assuming the hardness of Ring-LWE (cf. Sect. 2.4), we have that
F hides m1 then, set Ss to be Ss =

[
S1 ; S2 ; bS3 ; −ES3

]
. It is easy to see that

ss satisfies
[
A B F 1

]
Ss = u.

3 Relaxed Partial Verifiable Encryption

Lyubashevsky and Neven [29] defined a relaxed verifiable encryption as a scheme
to encrypt a witness w of x ∈ L such that decryption of a valid ciphertext is
guaranteed to yield a witness w̄ in the relaxed language such that (x, w̄) ∈ R̄.

The straightforward combination with the relaxed signature and commit-
ment scheme of Boschini et al. [8] does not yield a particularly efficient group
signature scheme, however, because the Lyubashevsky-Neven verifiable encryp-
tion scheme encrypts and recovers the full witness. A group signature typically
consists of a verifiable encryption of the user’s identity together with a proof that
the user knows a valid signature on the encrypted identity by the group manager.

1 Boschini et al. proved that, for U ⊂ R(16)
3 , this is actually a relaxed commitment

scheme. We do not need the relaxed binding property, hence we can choose a larger
set of messages (as long as it still guarantees the hiding property).



Floppy-Sized Group Signatures from Lattices 173

The verifiable encryption as defined by Lyubashevsky and Neven would there-
fore encrypt both the user’s identity and the signature on it, which unnecessarily
blows up the size of the verifiable ciphertext. Even when using a commitment
to the user’s identity to separate the proof of knowledge of the signature from
the verifiable encryption, the ciphertext will encrypt the user’s identity as well
as the opening information to the commitment.

We therefore introduce a variant of the Lyubashevsky-Neven relaxed verifi-
able encryption scheme called relaxed partial verifiable encryption that, rather
than decrypting the full witness w̄, recovers only a function of that witness
g(w̄) while proving knowledge of the full witness w̄. When constructing a group
signature case, we will use a function g that outputs just the user’s identity.

3.1 Definition of Relaxed Partial Verifiable Encryption

Our general definition of relaxed partial verifiable encryption are inspired by the
definition of relaxed verifiable encryption by Lyubashevsky and Neven [29] and
of verifiable encryption by Camenisch and Shoup [11]. Let L be a language with
witness relation R and let L̄ ⊇ L be a relaxed language with relaxed relation
R̄ ⊇ R. Let R̄ ⊆ L̄ × W̄ and let g : W̄ → D be a function.

Given relations R, R̄ and function g, a relaxed partial verifiable encryp-
tion scheme is composed by four algorithms (EKeyGen,Enc,EVerify,Dec). The
key generation algorithm EKeyGen(1λ) outputs a pair of keys (epk , esk). The
encryption algorithm Enc(epk , x, w, �), where (x,w) ∈ R and � ∈ {0, 1}∗ is an
encryption label, returns a ciphertext t and a proof π = (α, β, γ). Verification
EVerify(epk , x, t, π, �) returns 1 if π shows that t is a valid ciphertext w.r.t. x
and epk with label �, and returns 0 otherwise. Finally, the decryption algorithm
Dec(esk , x, t, π, �) returns a value M or a failure symbol ⊥.

Correctness. The scheme is correct if Pr [Dec(esk , x,Enc(epk , x, w, �)) = g(w)]
= 1 for all keys (epk , esk) ← EKeyGen(1λ), all (x,w) ∈ R, and all � ∈ {0, 1}∗.

Completeness. The scheme satisfies completeness if Pr[EVerify(epk ,Enc(epk , x,
w, �), �) = 1] = 1 for all keys (epk , esk) ← EKeyGen(1λ), all (x,w) ∈ R, and
all � ∈ {0, 1}∗.

Special soundness. Special soundness implies that a valid proof π is a proof of
knowledge of a valid witness w̄ for the relation R̄ and that decryption of the
ciphertext t returns g(w̄). More specifically, for all PPT adversaries A there
exists a PPT extractor E such that the following probability is negligible:

Pr

⎡
⎢⎢⎢⎢⎣

b = b′ = 1 ∧ β �= β′ ∧(
Dec(esk , x, t, �) �= g(w̄)

∨ (x, w̄) �∈ R̄
) :

(epk , esk) ← EKeyGen(1λ),
(x, t, (α, β, γ, β′, γ′), �) ← A(epk , esk),

b ← EVerify(epk , x, t, (α, β, γ), �),
b′ ← EVerify(epk , x, t, (α, β′, γ′), �)),

w̄ ← E(epk , esk , x, t, (α, β, γ, β′, γ′), �)

⎤
⎥⎥⎥⎥⎦

.

Chosen-ciphertext simulatability. There exists a simulator S that outputs
ciphertexts indistinguishable from honestly generated ones, i.e., the following
probability is negligible:



174 C. Boschini et al.

∣∣∣∣∣∣∣∣
Pr

⎡
⎢⎢⎣b = b′ :

b $←− {0, 1}, (epk , esk) ← EKeyGen(1λ),
(, x, w, �) ← ADec(esk ,·,·,·,·)(epk),
(t0, π0) ← Enc(epk , x, w), (t1, π1) ← S(epk , x, �),
b′ ← ADec(esk ,·,·,·,·)(, tb, πb)

⎤
⎥⎥⎦ − 1

2

∣∣∣∣∣∣∣∣
,

where A cannot query its Dec oracle on (x, tb, πb, �).

Observe that our definition of Special Soundness hardwires the use of Fiat-
Shamir in the general construction. It is possible to give a more general definition
of Special Soundness adapting the definition of weak simulation extractability
By Faust et al. [16], but such a definition would be beyond the scope of this
paper.

3.2 Relaxed Partial Verifiable Encryption over Lattices

Let L and L̄ be a language and its relaxed version defined w.r.t. the following
relations

Rve =
{

((A,U), (m,S,1)) ∈
(R�1×(�2+1)

q × R�1
q ) × (U × R�2

q × {1})
: A

[
m
S

]
= U mod q ∧ ‖S‖ ≤ N

}

R̄ve =
{

((A,U), (m̄, S̄, c̄)) ∈
(R�1×(�2+1)

q × R�1
q ) × (Ū × R�2

q × C̄)
: A

[
m̄
S̄

]
= c̄U mod q ∧ ‖S̄‖ ≤ N̄

}

for some sets U , Ū , C̄ ⊆ Rq and some integers �1, �2, N, N̄ > 0.
We will construct a relaxed partial verifiable encryption scheme for relations

Rve and R̄ve and function g((m̄, S̄, c̄)) = m̄/c̄ mod q. Our scheme is a modified
version of the “multi-shot” chosen-ciphertext secure verifiable encryption scheme
of Lyubashevsky-Neven. The multi-shot scheme involves multiple parallel repeti-
tions of the proof with sub-exponential challenge set sizes, and decryption takes
strictly sub exponential time (as opposed to expected polynomial time for the
one-shot scheme).

Rather than producing one big proof of knowledge of the terms in relation
Rve, we split it into two proofs, one for each term. The first proof only contains
the ciphertext equations and is repeated multiple times with a sub-exponential
challenge set to enable efficient decryption. The second includes the relation
equation as well as the ciphertext, proving that the encrypted plaintext is derived
from a valid witness. The latter proof uses an exponential-size challenge set, so
that it doesn’t need to be repeated. Let p and q be two public primes with p > 2.

Key Generation. The recipient generates two key pairs for Ring-LWE encryp-
tion [30], but discards the secret key of the second pair. It samples s1,d1, s2,
d2

$←− R3 and a $←−Rq, and computes t1 = as1 + d1 mod q and t2 = as2 +
d2 mod q. The public key is epk = (p, q,a, t1, t2), the secret key is esk = s1.

Encryption. Given a witness (m,S,1) for language member (A,U) in the rela-
tion Rve, the algorithm Enc uses the Naor-Yung technique [33] by encrypting m
twice using standard Ring-LWE encryption under public keys t1 and t2. More



Floppy-Sized Group Signatures from Lattices 175

precisely, it samples r, e1, e2, f1, f2 $←−R3 and sets v1 = p(ar + e1) mod q, w1 =
p(t1r+ f1)+m mod q, v2 = p(ar+e2) mod q, and w2 = p(t2r+ f2)+m mod q.

Then, letting A1 be the first column of the matrix A =
[
A1 A2

]
in relation

Rve, it constructs a NIZK proof Π1 using the scheme from Sect. 2.7 for the
relation

⎡
⎢⎢⎢⎢⎣

0 pa p 0 0 0 01×�2

1 pt1 0 p 0 0 01×�2

0 pa 0 0 p 0 01×�2

1 pt2 0 0 0 p 01×�2

A1 0�1×1 0�1×1 0�1×1 0�1×1 0�1×1 A2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

m
r
e1

f1
e2

f2
S

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

v1

w1

v2

w2

U

⎤
⎥⎥⎥⎥⎦
, (1)

whereby it uses the challenge set C1 = {c ∈ R3 | ‖c‖1 ≤ 32}.
To enable Lyubashevsky-Neven’s multi-shot decryption technique without

having to repeat the above proof multiple times, the encryptor again uses the
relaxed NIZK proof of Sect. 2.7 to construct a separate proof Π2 for the relation

⎡
⎢⎢⎣
0 pa p 0 0 0
1 pt1 0 p 0 0
0 pa 1 0 p 0
1 pt2 0 0 0 p

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

m
r
e1

f1
e2

f2

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣
v1

w1

v2

w2

⎤
⎥⎥⎦, (2)

whereby it includes epk , (A,U), (v1,w1,v2,w2),Π1, � in the Fiat-Shamir hash.
To obtain efficient decryption but keep the soundness error negligible, this proof
is repeated l = 11 times with challenge set C2 = R(16)

3 . The algorithm outputs
ciphertext (v1,w1,v2,w2) and proof (Π1,Π2).

Verification. The verification algorithm EVerify((p, q,a, t1, t2), (A,U), (v1,w1,
v2,w2,Π1,Π2), �) checks that Π1 and Π2 are valid relaxed NIZK proofs for
the relations of Eqs. (1) and (2), including the correct arguments epk , (A,U),
(v1,w1,v2,w2),Π1, � in the Fiat-Shamir hash of Π2.

Decryption. The decryption algorithm Dec(s1, (A,U), (v1,w1,v2,w2), (Π1,
Π2), �) first checks that the proofs are valid using the verification algorithm
above, returning ⊥ if it is not valid. It then decrypts the cihpertext by apply-
ing the Lyubashevsky-Neven multi-shot decryption on proof Π2 = (Y(1), c(1),
Z(1), . . . ,Y(l), c(l),Z(l)) by, for i = 1, . . . , l, going over all challenges c′ ∈ C2

to try to decrypt (c̄v, c̄w1) as a Ring-LWE ciphertext, where c̄ = c(i) − c′. It
does so by computing m̄′ = (w1 − v1s1)c̄ mod q, checking that ‖m̄′‖∞ < q/2C
where C is as defined in Lemma 5, and if so, compute m̄ = m̄′ mod p and return
m̄/c̄ mod q; otherwise, it returns ⊥.

Decryption Runtime. Decryption terminates in time at most 226. Indeed, if the
ciphertext is honestly generated the algorithm needs to guess the challenge only
once. On the other hand, for a dishonestly generated ciphertext the probability
that verification succeeds and still decryption fails is negligible. Indeed, if the



176 C. Boschini et al.

adversary could answer only one challenge c, when making the random oracle
queries the probability of hitting always c would be 1/(� · |C2|). Hence, a second
challenge exists w.h.p. and decryption requires to guess a challenge c′ at most
|C2| ≤ 226 times.

Remark that the decryption does not recover the full witness: the algorithm
decrypts the ciphertext, but it does not recover the randomness used to generate
it or the vector S. Moreover, differently from Lyubashevsky-Neven construction,

in our case the relation A
[
m
S

]
= U holds modulo q, while in the original scheme

it has to hold modulo p. We show the correctness of the scheme using Lemma 5,
which is a variant of a result by Lyubashevsky and Neven [29, Lemma 3.1]. In
this lemma we show that, for some choice of the parameters, the decryption
always return the same value m̄/c̄ over the ring Rq. This is slightly different
from the original decryption algorithm, as in the original scheme it was enough
for decryption to return the same m̄/c̄ modulo p.

Lemma 5. Let a $←−Rq, and t = as + d where s,d $←−R3. If there exist r̄, ē, f̄ ,
m̄, c̄ such that

p(ar̄ + ē) = c̄v mod q and p(tr̄ + f̄) + m̄ = c̄w mod q (3)

and ‖p(r̄d+ f̄ − ēs)+m̄‖∞ < q/2C and ‖m̄‖∞ < p/2C, where C = maxc̄∈C̄ ‖c̄‖1

= maxc̄,c̄′∈C ‖c̄ − c̄′‖1, then

1. ‖(w − vs)c′ mod q‖∞ < q/2C and ‖(w − vs)c′ mod q mod p‖∞ < p/2C
2. for any c̄′ ∈ C̄ such that ‖(w − vs)c′ mod q‖∞ < q/2C and ‖(w − vs)c′

mod q mod p‖∞ < p/2C we have (w − vs)c̄′ mod q mod p/c̄′ = m̄/c̄.

Proof. The proof is a simple verification of the claims and it is very similar to
the proof of Lemma 3.1 in [29], hence we omit it.

Hence, for decryption to be correct, we must choose parameters that guaran-
tee that the values decrypted from Π2 using si for i = 1, 2 satisfy ‖p(r̄idi + f̄i −
ēisi) + m̄‖∞ < q/2C and ‖m̄i‖∞ < p/2C, i.e., p, q and n should be such that
16σ2(2np + p + 1) < q/2C and 16σ2 < p/2C, where C ≤ 64 as challenges come
from R(16)

3 . We enforce this condition on both ciphertexts to guarantee decryp-
tion to work using either s1 or s2. This allows to prove CCA simulatability
following the Naor-Young paradigm [33].

In the next lemma, we prove that with high probability the m̄/c̄ returned by
decryption is equal to the polynomial m̄′/c̄′ returned from an extractor for Π2.
The proof of this lemma consists only of a plain computation of the probability,
and can be found in the full version of the paper.

Lemma 6. Let m̄ and c̄ be the output of the decryption and m̄′, c̄′ be the values
extracted from Π1. Then with probability at least 1 − 2−35928, over the choice of
the opening key t, m̄/c̄ = m̄′/c̄′ (where parameters are set as in Table 1).



Floppy-Sized Group Signatures from Lattices 177

Finally, for the CCA simulatability the proofs that we use in the scheme
need to be unbounded simulation soundness. Following the same reasoning used
in Lyubashevsky and Neven, we prove that Π2 has quasi-unique responses, hence
simulation soundness. Indeed, breaking quasi-uniqueness means finding z �= z′

with �∞ norm less than 8σ2 such that Mz = Mz′ mod q, where with M we
mean the matrix in 2. Thus, either there is a non-zero tuple (y1,y2) ∈ Rq with
�∞ norm less than 16σ2 such that p(ay1+y2) = 0 mod q or py1+y2 = 0 mod q.
Imposing p > 16σ2 and 16σ2p+16σ2 < q implies that the second equality is not
possible. Also, setting (32σ2)2 < q, we can use a standard probabilistic argument
to show that for all y1, y2 of �∞ norm less than 16σ2,

Pra∈Rq
[ay1 + py2 = 0 mod q] = 2−Ω(n).

Therefore for almost all a, there will not be a short solution (y1,y2) that satisfies
ay1 + py2 = 0. Observe that the same argument works for Π1. Hence imposing
the same inequalities on σ1 yields simulation soundness also for Π1, thus for the
protocol (Π1,Π2).

Theorem 4. If Ring-LWEU(Rq) is hard and the relaxed NIZK proof system is
unbounded non-interactive zero-knowledge and unbounded simulation soundness,
the scheme (EKeyGen,Enc,EVerify,Dec) is a relaxed partial verifiable encryption
scheme w.r.t. the function g.

4 Group Signature Scheme

The combination of Boschini et al.’s relaxed signature scheme [8] with our relaxed
partial verifiable encryption scheme yields an efficient group signature with
practical parameters (see Sect. 4.2). Although the building blocks are “relaxed”
schemes, the resulting group signature enjoys non-relaxed traceability. Indeed,
the correctness of the verifiable encryption guarantees that when opening a sig-
nature, the recovered identity is in the original set of group members id (and
not in the relaxed one).

4.1 A Lattice-Based Group Signature

Let U = R(16)
3 be the set of possible user identities.

Parameters Generation. On input the security parameter λ, the algorithm runs
the parameter generator of the signature scheme par ← SParGen(1λ) and chooses
integer p, q, n where p and q are prime and p < q. It outputs gpar := (par , p, q, n).

Group Manager Key Generation. The group manager generates the keys gsk =
X and gpk = (

[
A B C 1

]
,u) by running SKeyGen and choosing a random ring

element u $←− Rq.



178 C. Boschini et al.

Opener Key Generation. The opener runs the key generation algorithm of the
verifiable encryption scheme EKeyGen(1λ) and returns the resulting key pair
(opk = epk , osk = esk).

User Key Generation. The group manager generates a signing key user identity
id = m ∈ U = R(16)

3 by running Sign(gsk ,m) to yield (1,
[
S ; 0

]
,1) as described

in Sect. 2.8. Recall that S is a short vector so that
[
A B C + mG

]
S = u mod q.

It then returns usk := S.

Signing Algorithm. The user first generates a key one-time signature key pair
(sk , vk) ← OTSGen(1λ). The user then blinds her identity m using the technique
from Sect. 2.8 by choosing random E $←−R1×m

3 and b $←− R3, and computing F =
b−1(C + mG + E). If S =

[
S1 ; S2 ; S3

]
with S1 ∈ R2×1

q and S2,S3 ∈ Rm×1
q ,

then we have that
[
A B F 1

] [
S1 ; S2 ; bS3 ; −ES3

]
= u mod q. The user can

therefore create a relaxed NIZK proof Π0 for the relation

R0 =
{
((

[
A B F 1

]
,u), (T0,1)) :

[
A B F 1

]
T0 = u ∧ ‖T0‖ ≤ N0

}

R̄0 =
{
((

[
A B F 1

]
,u), (T̄0, c̄)) :

[
A B F 1

]
T̄0 = c̄u ∧ c̄ ∈ C̄0 ∧ ‖T̄0‖ ≤ N̄0

} (4)

where she includes vk in the Fiat-Shamir hash. The parameters follow from
rejection sampling (see Sect. 2.7): the noise vector is sampled from a Gaussian
with standard deviation σ0 = 12T0, where T0 is obtained from N0 as a bound on
the norm of cT0 for c ∈ C0, and N̄0 = 2.1σ0

√
n(3 + 2m). The challenge space is

set to C0 = {c ∈ R3 : ‖c‖1 ≤ 32} so that the proof only needs to be repeated
once, as indeed |C0| > 2256.

Next, from the way F was computed, we have that
[
GT FT

Im

] [
m ; −b ; ET

]
= −CT. Setting Tve =

[−b ; ET
]

the prover can therefore use the verifiable
encryption scheme to encrypt a witness of the languages with relations

Rve =

⎧
⎨
⎩

((
[
GT FT

Im

]
,−CT), (m,Tve,1)) ∈ (Rm×(m+2)

q × Rm
q ) × (U × Rm+1

q × {1})

:
[
GT FT

Im

] [
m
Tve

]
= −CT mod q ∧ ‖Tve‖ ≤ Nve

⎫
⎬
⎭

R̄ve =

⎧
⎨
⎩

((
[
GT FT

Im

]
,−CT), (m̄, T̄ve, c̄)) ∈ (Rm×(m+2)

q × Rm
q ) × (Ū × Rm+1

q × C̄ve)

:
[
GT FT

Im

] [
m̄
T̄ve

]
= −c̄CT mod q ∧ ‖T̄ve‖ ≤ N̄ve

⎫
⎬
⎭

The user runs the encryption algorithm Enc(opk , x, w, vk) with language member
x = (

[
GT FT

Im

]
,−CT), witness w = (m,

[−b ; ET
]
,1), and the verification

key vk as the encryption label, to generate a ciphertext t = (v1,w1,v2,w2)
and proof π = (Π1,Π2). The user then computes the one-time signature
ots ← OTSSign(sk , (A,B,F,u,Π0, t, π,M)) and returns the group signature
sig = (F,Π0, t, π, vk , ots).

Verification Algorithm. The verifier checks the one-time signature by running
OTSVf(vk , (A,B,F,u,Π0, t, π,M), ots), checks the NIZK proof Π0 in the group
signature sig = (F,Π0, t, π), making sure that vk is included in the Fiat-Shamir



Floppy-Sized Group Signatures from Lattices 179

hash, and checks the encryption proof by running EVerify(opk , x, t, π, vk) with
x = (

[
GT FT

Im

]
,−CT) and with vk as the encryption label. If all tests succeed

then he outputs 1, else he outputs 0.

Opening Algorithm. The opener first verifies the group signature by running
the GVerify algorithm above. If it is invalid, then the opener returns ⊥, else it
decrypts m ← Dec(esk , x, t, π, vk) with x as above and returns id = m.

To guarantee the correctness of the scheme, the norm bounds N0, Nve and
N̄ve should be chosen carefully. First, as observed in Sect. 2.8, a honest T is gener-
ated as T =

[
S1 S2 bS3 −ES3

]
, where the vector S =

[
S1 S2 S3

] ∈ R1×(2+2m)
q

is sampled from a Gaussian with standard deviation σ. Hence it each of its com-
ponents has norm bounded by 1.05σ

√
n. Moreover, using the bounds in Lemma 2,

it holds ‖bS3‖ ≤ 8σn
√

m and ‖ − ES3‖ ≤ √∑m
i=1 ‖EiS3,i‖2

2 ≤ 8σn
√

m. Hence
we can set the bound N0 to be:

N0 =
√

(2 + m)(1.05σ
√

n)2 + m(8σn)2 + m(8σn)2.

The value Nve in Rve bounds the norm of a vector of polynomials with coefficients
in {0, 1} one of which is in R(16)

3 , hence Nve :=
√

256 + n(m2 + 1). Finally,
the parameter N̄ve bounds the norm of what is returned extracting from the
NIZK proof, hence it is computed from the standard deviation of the Gaussian
distribution used in rejection sampling as explained in Sect. 2.7.

Theorem 5 (Traceability). Our group signature scheme is traceable in the
random-oracle model if Assumption 3 holds and the relaxed partial verifiable
encryption scheme of Sect. 3 satisfies special soundness.

Theorem 6 (CCA-Anonymity). Our group signature scheme is CCA-
anonymous in the random-oracle model if Assumption 1 holds, if the NIZK
proof is statistical zero-knowledge and if the relaxed partial verifiable encryption
scheme of Sect. 3 is chosen-ciphertext simulatable.

As stated in Sect. 2.4, there are two ways to interpret Assumption 3 and
Assumption 1, either as a quite strong interactive assumption, or as implied
through a complexity leveraging argument by the Ring-LWE and the Ring-SIS
assumptions, and by the Ring-LWEm,D assumption, respectively.

4.2 Practical Parameters and Storage Requirement

In Table 1 we give a set of practical parameters for different security require-
ments and all guaranteeing λ = 80 bits of security against quantum adversaries.
Following the approach in Boschini et al. [8], we give the possibility to choose
whether to base the security of the scheme on complexity leveraging or not. All
parameters are computed w.r.t. fixed n = 211, σt = 4 and p a prime such that
log p ≤ 250. The second column contains the maximum value of the Hermite root
factor computed for the Ring-SIS instance in Theorem2. Given that not only
Assumption 4, but also the hardness of finding a witness for an element of L in



180 C. Boschini et al.

Table 1. Table of parameters for n = 211, σt = 4 and p ∼ 250 for 225 users.

Parameters Sizes

Compl. lev. δs m q σ0 σ1 σ2 gpk(MB) usk(kB) opk(kB) sig(MB)

NO 1.00352 7 ∼2115 2.891 · 1017 6.51 · 104 2.13 · 104 0.501 122.95 88.32 0.91

YES 1.0014 22 ∼2116 4.325 · 1014 9.36 · 104 2.13 · 104 1.396 224.26 89.1 1.72

Sect. 2.7 is based on that, we decided to use it to have a hardness estimate even
when relying only on the hardness of Assumption 3. The only difference with
the other case (and the reason for which δs is different) is that when assuming
complexity leveraging we need to compensate also for the tightness loss of the
reductions in Sect. 2.4, while in the other case it is only necessary to compensate
for the tightness loss in the proofs of Theorems 5 and 6. We recall that the most
efficient scheme prior to ours [23] has signatures over 60 MB and public keys of
4.9 MB for a group size of only 210 users for 80 bits of security. While they still
have to deal with big lattices (dimensions: n = 28, m = 212), their coefficients
are smaller than ours (bounded by q = 28), and this allow for more efficient
computations.

Acknowledgements. The authors thank Vadim Lyubashevsky for many helpful
discussions and the anonymous reviewers for the useful comments. This work was
supported by the ERC under grant #321310 PERCY) and the SNF under grant
#200021 157080 (Efficient Lattice-Based Cryptographic Protocols).

References

1. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure
coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6 16

2. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Math. Ann. 296(1), 625–635 (1993)

3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

4. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–
153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 11

5. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group signa-
tures. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp.
551–572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
8 29

6. Bichsel, P., Camenisch, J., Groß, T., Shoup, V.: Anonymous credentials on a stan-
dard Java card. In: ACM CCS (2009)

https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-45611-8_29


Floppy-Sized Group Signatures from Lattices 181

7. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

8. Boschini, C., Camenisch, J., Neven, G.: Relaxed lattice-based signatures with short
zero-knowledge proofs. Cryptology ePrint Archive, Report 2017/1123 (2017)

9. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM
CCS (2004)

10. Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens from
lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp.
57–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9 4

11. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 8

12. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5

13. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

14. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

15. Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 22–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45608-8 2

16. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the Fiat-Shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34931-7 5

17. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

18. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3 3

19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: ACM STOC (2008)

20. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice
assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 23

21. Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signa-
tures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT
2013. LNCS, vol. 8270, pp. 41–61. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42045-0 3

22. Lamport, L.: Constructing digital signatures from a one-way function. Technical
report SRI-CSL-98, SRI International Computer Science Laboratory (1979)

https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-642-32928-9_4
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-642-17373-8_23
https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-642-42045-0_3


182 C. Boschini et al.

23. Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1–31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5 1

24. Libert, B., Mouhartem, F., Nguyen, K.: A lattice-based group signature scheme
with message-dependent opening. In: Manulis, M., Sadeghi, A.-R., Schneider, S.
(eds.) ACNS 2016. LNCS, vol. 9696, pp. 137–155. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39555-5 8

25. Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter,
shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427–449.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 19

26. Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving
full dynamicity with ease. Cryptology ePrint Archive, Report 2017/353 (2017)

27. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

28. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006). https://doi.org/
10.1007/11787006 13

29. Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices. In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 293–
323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7 11

30. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 1

31. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 3

32. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

33. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: ACM STOC (1990)

34. Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices.
In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401–426. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46447-2 18

35. Rückert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASIACRYPT 2010.
LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8 24

36. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 2

37. Xagawa, K., Tanaka, K.: Zero-knowledge protocols for NTRU: application to iden-
tification and proof of plaintext knowledge. In: Pieprzyk, J., Zhang, F. (eds.)
ProvSec 2009. LNCS, vol. 5848, pp. 198–213. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04642-1 17

https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-319-39555-5_8
https://doi.org/10.1007/978-3-319-39555-5_8
https://doi.org/10.1007/978-3-662-46447-2_19
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-319-56620-7_11
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-662-46447-2_18
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1007/978-3-642-04642-1_17
https://doi.org/10.1007/978-3-642-04642-1_17


On the Security Notions
for Homomorphic Signatures

Dario Catalano1, Dario Fiore2, and Luca Nizzardo2(B)

1 Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italy
catalano@dmi.unict.it

2 IMDEA Software Institute, Madrid, Spain
{dario.fiore,luca.nizzardo}@imdea.org

Abstract. Homomorphic signature schemes allow anyone to perform
computation on signed data in such a way that the correctness of com-
putation’s results is publicly certified. In this work we analyze the secu-
rity notions for this powerful primitive considered in previous work,
with a special focus on adaptive security. Motivated by the complica-
tions of existing security models in the adaptive setting, we consider a
simpler and (at the same time) stronger security definition inspired to
that proposed by Gennaro and Wichs (ASIACRYPT’13) for homomor-
phic MACs. In addition to strength and simplicity, this definition has the
advantage to enable the adoption of homomorphic signatures in dynamic
data outsourcing scenarios, such as delegation of computation on data
streams. Then, since no existing homomorphic signature satisfies this
stronger notion, our main technical contribution are general compilers
which turn a homomorphic signature scheme secure under a weak defi-
nition into one secure under the new stronger notion. Our compilers are
totally generic with respect to the underlying scheme. Moreover, they
preserve three important properties of homomorphic signatures: com-
posability, context-hiding (i.e. signatures on computation’s output do
not reveal information about the input) and efficient verification (i.e.
verifying a signature against a program P can be made faster, in an
amortized, asymptotic sense, than recomputing P from scratch).

1 Introduction

Digital signatures are a fundamental cryptographic primitive for guaranteeing
the authenticity of digital information. In a digital signature scheme, a user
Alice can use her secret key sk to generate a signature σm on a message m, and
a user Bob can use Alice’s public key pk to check the authenticity of (m,σm).
The standard security notion of digital signatures, unforgeability against chosen
message attacks, says that an attacker who has access to a collection of signatures
on messages of his choice cannot produce a signature on a new message. This
notion essentially means that signatures must be non-malleable in the sense that,
from a signature on m one cannot derive a signature on some m′ �= m.

Even if in the most popular applications one wishes such a strong notion of
non-malleability, there are application scenarios where some form of malleability
c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 183–201, 2018.
https://doi.org/10.1007/978-3-319-93387-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_10&domain=pdf


184 D. Catalano et al.

can become very useful, paradoxically even for signature schemes. A notable
example is that of homomorphic signatures, a notion first proposed by Desmedt
[19] and Johnson et al. [26], defined in the context of linear network coding by
Boneh et al. [6] and later properly formalized by Boneh and Freeman [7]. This
is what we study in this work.

Homomorphic Signatures. In homomorphic signatures, a user Alice can
use her secret key sk to generate signatures σ1, . . . , σn on a collection of mes-
sages (m1, . . . ,mn) – a so-called dataset. Then the interesting feature of this
primitive is a (publicly computable) Eval algorithm that takes the signatures
σ1, . . . , σn and a program P, and outputs a signature σP,m on the message
m = P(m1, . . . ,mn) as the output of P. It is crucial that σP,m is not a signature
on just m, but on m as output of the program P. The latter observation indeed
makes sure that signatures are not “too malleable”, but they rather have a con-
trolled malleability. This means that a user Bob will use Alice’s public key pk
to check the triple (P,m, σP,m) and get convinced of whether m is the correct
output of P on messages previously signed by Alice.

In addition to this interesting functionality, what makes this primitive attrac-
tive is the following set of features. First, homomorphic signatures must be suc-
cinct, meaning that their size must be significantly smaller than the size of the
input dataset.1 Second, Bob can verify computation’s outputs without needing
to know the original dataset, a very appealing feature when considering compu-
tations on very large datasets that could not be stored locally by verifiers. Third,
homomorphic signatures are composable, in the sense that signatures obtained
from Eval can be fed as inputs to new computations. Using composability, one
can, for example, distribute different subtasks to several untrusted workers, ask
each of them to produce a proof of its local task, and use these proofs to create
another unique proof for the final job (as in the MapReduce approach). All these
features make homomorphic signatures an interesting candidate to be used for
securely delegating computation on previously outsourced data.

If the functionality of homomorphic signatures can be explained as above,
defining the security notion of this primitive is a more delicate task. The fol-
lowing paragraphs provide an explanation of the security notions and then give
an overview of our results. We warn the reader that the explanations in the
introduction intentionally hide some details of the model for ease of exposition.
A detailed formalization appears in Sect. 2.

Security of Homomorphic Signatures. Properly defining security for homo-
morphic signatures is tricky. Clearly, an homomorphic signature cannot meet the
usual unforgeability requirement [24] as the primitive does allow the adversary
to come up (honestly) with new signatures. The first satisfactory security defi-
nition was proposed by Boneh and Freeman in [7]. Intuitively, a homomorphic

1 Without the succinctness requirement homomorphic signatures are trivial to realize
as one can simply set σ = (P, (m1, σ1), . . . , (m�, σ�)).



On the Security Notions for Homomorphic Signatures 185

signature is secure if an adversary who knows the public key can only come up
with signatures that are either obtained from the legitimate signer Alice, or they
are obtained by running Eval on the signatures obtained by Alice. In other words,
the adversary can only do what is in the scope of the public evaluation algo-
rithm. Slightly more in detail, this new unforgeability game can be explained as
follows. During a training phase the adversary A is allowed to see the signatures
of messages belonging to different datasets. The adversary then wins the game if
she can produce either (1) a signature on a message m belonging to some previ-
ously unseen dataset (this is called a Type 1 forgery), or (2) for some previously
seen dataset Δ = {m1, . . . ,mn}, she manages to produce a triplet (P, σ,m),
such that σ verifies correctly but m �= P(m1, . . . ,mn) (this is called a Type 2
forgery). Again explained in words, this definition means that the adversary can
cheat either by claiming an output on a dataset that she never saw/queried, or
by claiming an incorrect output of a given program P, executed on a collection
of messages for which she saw signatures.

A noteworthy caveat of the Boneh and Freeman [7] definition is the require-
ment that the adversary submits all the messages belonging to each queried
dataset. Namely, for each queried dataset Δ, A has to ask exactly n signing
queries.2 In this work, because of this limitation, we call this notion semi-adaptive
security.3

To overcome this limitation, Freeman [21] later proposed a stronger notion
where the adversary is allowed to adaptively query messages one by one, and
even to sprinkle queries from different datasets. In this work, because of its
increased adaptivity, we call the notion in [21] adaptive security.

The Shortcomings of Adaptive Security. Adaptive security, while very
natural, has a dark side. Loosening the query-all requirement implies that the
adversary might provide a forgery (P, σ,m) that corresponds to a previously
seen dataset Δ, but for which A did not ask signing queries on all the inputs
of P. For instance, A might pretend to have a signature on m �= P(m1,m2)
without having ever made a query on m2. The issue in this case is that it is not
even possible to define what is the correct output of P in order to say whether
the adversary has cheated (i.e., if m is a correct output or not). To deal with this
issue, Freeman proposed a notion of “well-defined program” which characterizes
when the output of P can be defined in spite of missing inputs. The idea is
simple and intuitively says that a program is well defined if the missing inputs
do not change its outcome (e.g., P(m1, ·) is constant). Freeman’s definition then
considered a forgery also one that passes verification for a P not well-defined,
and called such a forgery Type 3.

Type 3 forgeries are however nasty animals. Not only they are very hard to
work with (as the security definition turns complicated), but they also make

2 We remark that the original Boneh-Freeman definition imposes the even stronger
restriction that these n messages are queried all at once.

3 We stress that semi-adaptive security does not limit the way the adversary is allowed
to choose its signing queries. It only restricts the number of signing queries permitted.



186 D. Catalano et al.

the outcome of the security experiment not efficiently computable. In fact, when
considering general functions it may not be possible to check the well-definedness
of P in polynomial time. This can be solved when P is a linear [21] or a low
degree polynomial [9,17], but the issue remains for the more general case, e.g.,
polynomial size circuits. In particular, this issue can generate troubles when
proving the security of homomorphic signatures as well as when using them in
larger protocols (as simply testing whether an adversary returned a forgery may
not be doable in polynomial time).

1.1 Our Contribution

The state of the art of security notions for homomorphic signatures, as discussed
above, seems quite unsatisfactory. Having expressive, yet easy to use, definitions
is indeed a fundamental step towards a better understanding of cryptographic
primitives.

A Stronger and Simpler Security Notion. To address the issues of adaptive
security, we consider a new security notion that is both simpler and stronger than
the one in [21]. This notion, that we call strong adaptive security, is the public key
version of the one proposed by Gennaro and Wichs [23] for homomorphic message
authenticators (the secret key equivalent of homomorphic signatures).4 Strong
adaptive security deals with the case of programs with missing inputs in a simple
way: if the triplet (P,m, σ) returned by the adversary verifies correctly and some
inputs of P were not queried during the experiment, then it is considered a
forgery (we call it a Type 3 Strong forgery).

Compared to previous notions, strong adaptive security has several advan-
tages. First, the winning condition of the experiment is efficiently computable,
thus avoiding the issues that may arise when proving and using homomorphic
signatures. Second, the new forgery definition is arguably much simpler to state
and work with. Finally, being a strengthening of adaptive security, homomor-
phic signature schemes that are strongly adaptive secure can be used in more
application scenarios as discussed before.

Realizing Strong Adaptive Security, Generically. If we aim for strong
adaptive security to be the “right” strong notion to use for homomorphic signa-
tures, then we face the problem that virtually all existing schemes are not secure
under this strong notion. This is the case for those schemes that support linear
or low-degree polynomials and were proven secure under the adaptive notion of
[21], as well as for the recently proposed leveled homomorphic scheme for cir-
cuits [25] which is only semi-adaptive secure. Notably, all these constructions
break down in the new security experiment as they do not tolerate adversaries
that issue Type 3 Strong forgeries. The only scheme which stands security in

4 With some adaptations to deal with multiple datasets which was not considered in
[23].



On the Security Notions for Homomorphic Signatures 187

this stronger model is a recent proposal of Elkhiyaoui et al. [20] which supports
constant-degree polynomials and relies on multilinear maps in the random oracle
model. To remedy this situation, our main contribution is to show that strong
adaptive security can be easily achieved without additional assumptions and in
the standard model. Specifically, our main result is a generic compiler that, start-
ing from an homomorphic signature scheme Σ satisfying semi-adaptive security,
converts Σ into a strongly adaptive secure scheme that supports the same class
of functions.

The compiler uses, as additional building block, a semi-adaptive secure sig-
nature scheme ΣOR that supports OR operations over Z2. Clearly, if Σ sup-
ports arbitrary boolean circuits, then ΣOR can be instantiated using Σ itself.
In such a case, our result is thus providing a transformation that “bootstraps”
semi-adaptive security to strong adaptive security. If, on the other hand, ΣOR

cannot be instantiated using Σ, our result still provides a way to get strong
adaptive security, under the additional assumption that semi-adaptive secure
OR-homomorphic signatures exist. Nevertheless, since very few concrete exam-
ples of OR-homomorphic signatures are known (essentially, only one [25]), even
if we think that this is not a limitation by itself, we asked whether a similar result
could be obtained out of some more widely studied primitive. Along this direc-
tion, our second result is another compiler that combines a semi-adaptive secure
scheme Σ together with a semi-adaptive secure linearly-homomorphic signature
ΣLH that works for messages over a large ring, say Zp. This combination yields
a homomorphic signature scheme that is strongly adaptive secure and supports
the same class of functions supported by Σ. A limitation of this second trans-
formation is that it applies only to schemes that are leveled homomorphic (i.e.,
for circuits of bounded depth). As an interesting feature, however, this result
shows that strong adaptive security can be obtained from linearly-homomorphic
schemes, a class of constructions for which many constructions are known (most
of which are also way more efficient in practice than [25]).

Both our transformations hold in the standard model, and they preserve
three properties of homomorphic signatures: composability, context-hiding and
efficient-verification (so, security can be upgraded without penalties). Context
hiding deals with privacy and informally says that signatures on computation’s
outputs do not reveal information on the inputs. The latter instead fully enables
the use of homomorphic signatures for verifiable delegation of computation, by
requiring that verifying a signature for a program P is asymptotically faster (in
an amortized, offline-online sense) than recomputing P from scratch (for the
formal definitions of both context hiding and efficient verification we refer to
[14]). We point out that our compilers are completely generic with respect to
the semi adaptive secure scheme. This means, for instance, that when applied to
the recent (leveled) fully homomorphic solution of [25] they lead to homomorphic
signature schemes for general circuits achieving strong adaptive security.

On the Importance of Strong Adaptive Security. As an important appli-
cation of (strong) adaptive secure homomorphic signatures, we mention certified



188 D. Catalano et al.

computation on streaming data. Consider a scenario where a user Alice out-
sources a stream of data m1,m2, . . . to an untrusted Cloud, so that the Cloud
can compute a program P on the current snapshot (m1, . . . ,mi) and post the
result publicly (e.g., on a third party website). Using homomorphic signatures,
Alice can sign each element of the data stream, while the Cloud can compute a
homomorphic signature σP,yi

on every computed result yi = P(m1, . . . ,mi) and
post (yi, σP,yi

). This way, anyone with the only knowledge of Alice’s public key
is able to check the results validity. Notably, the Cloud can produce the certified
results in a completely non-interactive fashion, and no communication between
Alice and the verifiers is needed (except, of course, for sending the public key).
In such a scenario, where datasets grow dynamically and one performs compu-
tations on their current version, (strong) adaptive security is fundamental as it
prevents the cloud from claiming to have results computed on dataset elements
that it did not receive (yet). This is particularly relevant in scenarios where there
is no communication between the signer and the verifiers, who may not be aware
of the current status of the outsourced stream. Furthermore, strong adaptive
security is important in the case of very large, potentially unbounded, datasets
(as in the streaming case) as one cannot assume that the adversary queries
the whole dataset. This actually shows an inherent limitation of semi-adaptive
security, which cannot cope with datasets of arbitrarily large, unbounded, size.
Indeed, to fit the requirements of the definition, adversaries would be required
to ask signing queries on the whole dataset. However, if datasets are unbounded
either the notion of whole dataset does not exist, or it can be approximated by
configuring the scheme to work on a dataset of exponential size, which could not
be queried in full by a polynomially bounded adversary.

As a final note, we remark that, in settings where the messages m1, . . . ,mi

are signed sequentially, one at a time, it might be tempting to address the limita-
tions of semi-adaptive security via (standard) signatures as follows. One simply
includes a signature of the largest index i signed so far. When verifying an homo-
morphic signature for P(m1, . . . ,mk), where k is the largest index touched by P,
one also requires a (standard) signature on k. This solution has the drawback of
requiring an ordering of indexes. More seriously, it only works in contexts where
messages are signed in index-increasing order. Our solution, on the other hand,
encompasses the more general case where messages are signed in completely
arbitrary order (and without imposing additional constraints on the underlying
indexes).

Other Related Work. The notion of homomorphic signature was (informally)
suggested by Desmedt [19] and later more formally introduced by Johnson et al.
[26]. The special case of linearly homomorphic signatures was first considered
by Boneh et al. [6] as a key tool to prevent pollution attacks in network coding
routing mechanisms. Following this work, several papers further studied this
primitive both in the random oracle [7,8,11,22], and in the standard model
[3–5,13,15,16,21]. In the symmetric setting realizations of linearly homomorphic
MACs have been proposed by Agrawal and Boneh in [1].



On the Security Notions for Homomorphic Signatures 189

Several recent works also considered the question of constructing homomor-
phic authenticators (i.e., signatures and/or MACs) supporting more expressive
functionalities. Boneh and Freeman in [7] proposed an homomorphic signature
scheme for constant degree polynomials, in the random oracle model. Gennaro
and Wichs [23] presented a construction of fully homomorphic MACs based on
fully homomorphic encryption in a restricted adversarial model where no verifi-
cation queries are allowed. Catalano and Fiore [9] proposed a much more efficient
homomorphic MAC solution that, while capturing a less expressive class of func-
tionalities (i.e. arithmetic circuits of polynomially bounded degree), allows for
verification queries. This latter result was further generalized in [10]. All these
constructions of homomorphic MACs achieve adaptive security.

In the asymmetric setting, Catalano, Fiore and Warinschi [17] proposed a
homomorphic signature that achieves adaptive security in the standard model,
works for constant degree polynomials and is based on multilinear maps. More-
over, Gorbunov, Vaikuntanathan and Wichs [25] recently proposed the first
homomorphic signature construction that can handle boolean circuits of bounded
polynomial depth; their scheme is secure in the semi-adaptive model, and is based
on standard lattices.

Finally, we notice that Ahn et al. [2] and Chase et al. [18] worked on malleable
signatures. In particular, [18] considered a problem similar to the one addressed
in this work, i.e., elaborating a definition that allows one to establish, in an
efficient way, when the signature produced by the adversary is a valid forgery.
They deal with this problem by formalizing the idea that the adversary “must
know” the function and the input that were used to obtain the forgery. To
formalize this idea, their definition asks for the existence of a black-box extractor
that must extract this information from what is in the view of the game and
the output of the adversary. Unfortunately, this type of definition is impossible
to achieve when one considers the case of succinct homomorphic signatures for
n-ary functions, as we do in our paper. The reason is simply that the extractor
should extract an amount of information (such as the function input) that is
much larger than what is in its input.

1.2 An Overview of Our Compiler

To obtain strongly-adaptive secure homomorphic signatures from semi-adaptive
secure ones, we propose a compiler that takes a semi-adaptive secure scheme
Σ and upgrades its security with the help of an additional building block: an
homomorphic signature scheme ΣOR that supports OR operations over Z2. The
basic idea of our compiler is to use ΣOR to additionally sign a bit ‘0’ for every
dataset input. The homomorphic properties of this scheme then guarantee that
the resulting bit remains 0 if and only if one properly operates on ‘0’ bits. This
can be achieved either directly, by employing an or-homomorphic scheme, or
indirectly, via an homomorphic signature for additions (over a sufficiently large
ring Zp). This latter construction is more efficient, but it comes with restrictions.
Indeed, to avoid false positives (i.e., invalid signatures that are interpreted as



190 D. Catalano et al.

correct ones), p should be large, i.e., larger than cd, where c is the (constant)
fan-in and d the maximum depth of the supported circuits.

More in detail, the compiler works as follows. For every dataset input m, in
addition to signing m using the scheme Σ, we also sign the bit ‘0’ using ΣOR.
So, every signature now consists of a pair (σm, σb), where σm is a signature
with the scheme Σ on some message m, and σb is a signature of a bit b with
the scheme ΣOR. Next, at every gate g we compute g homomorphically on the
σm’s components, and we compute OR homomorphically on the σb’s. Finally,
signature verification consists into the usual verification of σm (for a program P),
plus checking that σb verifies for 0 for a computation that is simply an OR of all
the dataset input bits. The reason why this makes the scheme resistant to strong
Type-3 forgeries is that when the adversary does not ask all the dataset inputs
(and thus misses a signature of ‘0’ on the missing inputs) it is forced to create
a forgery for the σb component. The latter must verify for ‘0’ by construction.
However, one of the missing bits could be set to be ‘1’ (notice indeed that the
adversary does not see it), thus making the correct output of the OR computation
‘1’. Hence the signature returned by the adversary must verify for an incorrect
output, i.e., it is a forgery for ΣOR.

Notation. We denote with λ ∈ N a security parameter. A probabilistic polyno-
mial time (PPT) algorithm A is a randomized algorithm for which there exists a
polynomial p(·) such that for every input x the running time of A(x) is bounded
by p(|x|). We say that a function ε : N → R

+ is negligible if for every positive
polynomial p(λ) there exists λ0 ∈ N such that for all λ > λ0: ε(λ) < 1/p(λ). If
S is a set, x

$← S denotes the process of selecting x uniformly at random in S.
If A is a probabilistic algorithm, y

$← A(·) denotes the process of running A on
some appropriate input and assigning its output to y. For a positive integer n,
we denote by [n] the set {1, . . . , n}.

2 Homomorphic Signatures

In this section we recall the definition of homomorphic signatures. This definition
extends the one by Freeman in [21] in order to work with the general notion of
labeled programs [23].

Labeled Programs [23]. A labeled program P is a tuple (f, τ1, . . . , τn) such
that f : Mn → M is a function of n variables (e.g., a circuit) and τi ∈ {0, 1}∗

is a label of the i-th input of f . Labeled programs can be composed as follows:
given P1, . . . ,Pt and a function g : Mt → M, the composed program P∗ is the
one obtained by evaluating g on the outputs of P1, . . . ,Pt, and it is denoted
as P∗ = g(P1, . . . ,Pt). The labeled inputs of P∗ are all the distinct labeled
inputs of P1, . . . ,Pt (all the inputs with the same label are grouped together
and considered as a unique input of P∗).



On the Security Notions for Homomorphic Signatures 191

Let fid : M → M be the identity function and τ ∈ {0, 1}∗ be any label. We
refer to Iτ = (fid, τ) as the identity program with label τ . Note that a program
P = (f, τ1, · · · , τn) can be expressed as the composition of n identity programs
P = f(Iτ1 , · · · , Iτn).

Definition 1 (Homomorphic Signature). A homomorphic signature scheme
HSig consists of a tuple of PPT algorithms (KeyGen,Sign,Ver,Eval) with the
following syntax:

KeyGen(1λ,L) the key generation algorithm takes as input a security parameter
λ, a description of the label space L (which fixes the maximum data set size
N), and outputs a public key vk and a secret key sk. The public key vk contains
a description of the message space M and the set F of admissible functions.

Sign(sk,Δ, τ,m) the signing algorithm takes as input a secret key sk, a data set
identifier Δ ∈ {0, 1}∗, a label τ ∈ L, a message m ∈ M, and it outputs a
signature σ.

Eval(vk, f, σ1, . . . , σn) the evaluation algorithm takes as input a public key vk, a
function f ∈ F and a tuple of signatures {σi}n

i=1 (assuming that f takes n
inputs). It outputs a new signature σ.

Ver(vk,P,Δ,m, σ) the verification algorithm takes as input a public key vk, a
labeled program P = (f, τ1, . . . , τn) with f ∈ F , a dataset identifier Δ, a
message m ∈ M, and a signature σ. It outputs either 0 (reject) or 1 (accept).

A homomorphic signature scheme is required to satisfy the properties of authen-
tication correctness, evaluation correctness and succinctness that we describe
below. The security property is discussed slightly later in Sect. 2.1.

Authentication Correctness. Intuitively, a homomorphic signature scheme
has authentication correctness if the signature generated by Sign(sk,Δ, τ,m)
verifies correctly for m as the output of the identity program Iτ on a dataset with
identifier Δ. More formally, a scheme HSig satisfies the authentication correctness
property if for a given label space L, all key pairs (sk, vk) ← KeyGen(1λ,L), any
label τ ∈ L, dataset identifier Δ ∈ {0, 1}∗, and any signature σ ← Sign(sk,Δ, τ,
m), Ver(vk, Iτ ,Δ,m, σ) outputs 1 with all but negligible probability.

Evaluation Correctness. Intuitively, this property says that running the
evaluation algorithm on signatures (σ1, . . . , σt) such that each σi verifies for
mi as the output of a labeled program Pi and a dataset with identifier Δ,
produces a signature σ which verifies for g(m1, . . . ,mt) as the output of the
composed program g(P1, . . . ,Pt) and same dataset Δ. More formally, fix a
key pair (vk, sk) $← KeyGen(1λ,L), a function g : Mt → M, and any set of
program/message/signature triples {(Pi,mi, σi)}t

i=1 such that Ver(vk,Pi,Δ,mi,
σi) = 1. If m∗ = g(m1, . . . ,mt), P∗ = g(P1, . . . ,Pt), and σ∗ = Eval(vk, g, σ1, . . . ,
σt), then Ver(vk,P∗,Δ,m∗, σ∗) = 1 holds with all but negligible probability.



192 D. Catalano et al.

Succinctness. A homomorphic signature scheme is said to be succinct if, for a
fixed security parameter λ, the size of signatures depends at most logarithmically
on the size of the input dataset. More formally, HSig satisfies succinctness if
there exists a polynomial p(λ) such that for all (vk, sk) $← KeyGen(1λ,L), all
(m1, . . . ,mt) ∈ Mt, all (τ1, . . . , τt) ∈ Lt, any Δ ∈ {0, 1}∗, and all functions f ∈
F , if σi

$← Sign(sk,Δ, τi,mi) and σ←Eval(vk, f, σ1, . . . , σt), then |σ| ≤ p(λ)·log t.

2.1 Security

At an intuitive level, a homomorphic signature is secure if an adversary, without
knowledge of the secret key, can only come up with signatures that it obtained
from the signer, or signatures that are obtained by running the Eval algorithm on
signatures obtained from the legitimate signer. Formalizing this intuition turns
out to be tricky and leaves space to different possibilities.

In what follows we present three different security notions for homomorphic
signatures that we call semi-adaptive, adaptive, and strong adaptive, respectively.
These notions share the same security experiment between an adversary A and
a challenger, and the only difference lies in what is considered a forgery. The
security experiment, denoted ExpUF

A,HSig(λ), proceeds as described below:

Key Generation. The challenger runs (vk, sk) $← KeyGen(1λ,L) and gives vk
to A.

Signing Queries. A can adaptively submit queries of the form (Δ, τ,m), where
Δ is a data set identifier, τ ∈ L, and m ∈ M. The challenger proceeds as
follows:

– if (Δ, τ,m) is the first query with the data set identifier Δ, the challenger
initializes an empty list TΔ = ∅ for Δ.

– If TΔ does not already contain a tuple (τ, ·) (i.e., A never asked for a
query (Δ, τ, ·)), the challenger computes σ

$← Sign(sk,Δ, τ,m), returns σ
to A and updates the list TΔ ← TΔ ∪ (τ,m).

– If (τ,m) ∈ TΔ (i.e., the adversary had already queried the tuple (Δ, τ,m)),
the challenger replies with the same signature generated before.

– If TΔ contains a tuple (τ,m′) for some message m′ �= m, then the chal-
lenger ignores the query. Note that this means that a tuple (Δ, τ, ·) can
be queried only once.

Forgery. The previous stage is executed until the adversary A outputs a tuple
(P∗,Δ∗,m∗, σ∗). The experiments outputs 1 if the tuple returned by A is a
forgery, and 0 otherwise.

To complete the description of the experiment, it remains to define when
a tuple (P∗,Δ∗,m∗, σ∗) is considered a forgery. We give below three different
forgery definitions; each of them yields a corresponding security notion for the
homomorphic signature scheme.



On the Security Notions for Homomorphic Signatures 193

Semi-adaptive Secure Homomorphic Signatures. Informally speaking, in
the semi-adaptive security game a forgery is one where either (1) the dataset
Δ∗ is “new” (i.e., no signing query (Δ∗, ·, ·) was ever made during the game),
or (2) the claimed output m∗ of P∗ is not the correct one. The crucial aspect of
this definition is that to identify what is a correct output, one assumes that the
adversary has fully specified the inputs of P∗, namely A has asked for signatures
on (Δ∗, τ∗

i ,mi), for all i = 1 to n. More formally,

Definition 2 (Semi-adaptive Security). We define Expsemi-Ad-UF
A,HSig (λ) as the

security experiment which proceeds as ExpUF
A,HSig(λ) with the addition that the

tuple (P∗ := (f∗, τ∗
1 , . . . , τ∗

n),Δ∗,m∗, σ∗) returned by the adversary A is con-
sidered a forgery if Ver(vk,P∗,Δ∗,m∗, σ∗) = 1 and either one of the following
conditions hold:

Type 1: The list TΔ∗ has not been initialised during the game.
Type 2: For all i ∈ [n], ∃ (τi,mi) ∈ TΔ∗ and m∗ �= f∗(m1, . . . ,mn).

Let Advsemi-Ad-UF
A,HSig (λ) = Pr[Expsemi-Ad-UF

A,HSig (λ) = 1] be the advantage of A against
the semi-adaptive security of scheme HSig. We say that a homomorphic signature
scheme HSig is semi-adaptive secure (or simply secure) if for every PPT adver-
sary A there exists a negligible function ε(λ) such that Advsemi-Ad-UF

A,HSig (λ) ≤ ε(λ).

We stress that in the above security experiment the adversary A is restricted
to produce Type 2 forgeries where all the inputs of the labeled program have
been queried during the experiment. This notion works well for applications
where the dataset is signed in one shot (as in the earlier proposals of homomor-
phic signatures [7]), or where one computes on the signed data only after the
whole dataset has been filled up. In contrast, in those applications where the
dataset is signed incrementally and one performs computations in between (e.g.,
in streaming applications), semi-adaptive security falls short of providing good
guarantees. The issue is that in such a dynamic setting the adversary may claim
a forgery with a labeled program containing a label τ∗ that was not queried
during the game. In this case, the input of P∗ is no longer specified and defining
whether the adversary’s output is a forgery is not captured by Definition 2. From
the literature, we note that the schemes in [6,7,22,25] are proven under a weaker
version of semi-adaptive security where the messages of every dataset have to
be queried all at once.5

Adaptive Secure Homomorphic Signatures. The issue of adversaries who
claim programs in which some of the inputs are missing in the forgery stage
was recognized earlier on by Freeman [21]. To deal with this issue, he proposed
a notion of “well-defined programs” which characterizes when the output of a
program can be defined in spite of missing inputs. Intuitively, the idea is that a
program is well-defined if the missing inputs do not change its outcome.
5 Actually, the authors of [25] mention that the proof of their scheme can be modified

to hold under a definition with adaptive queries to data items, corresponding to the
semi-adaptive security presented in this paper.



194 D. Catalano et al.

Definition 3 (Well-Defined Labeled Program [21]). A labeled program
P∗ = (f∗, τ∗

1 , . . . , τ∗
n) is well-defined with respect to a list T = {(τi,mi)}i∈I

if one of the two following cases holds:

– ∀i = 1, . . . , n : (τ∗
i ,mi) ∈ T .

– ∃ j ∈ [n] s.t. (τj , ·) /∈ T , and for all possible choices of m̃j ∈ M such that
(τj , ·) /∈ T f∗(m′

1, . . . ,m
′
n) is the same, where m′

i = mi for all i s.t. (τi,mi) ∈
T and m′

i = m̃i otherwise.

With the notion of well-defined programs, adaptive security can be defined
as follows.

Definition 4 (Adaptive Security [21]). We define ExpAd-UF
A,HSig(λ) as the secu-

rity experiment which proceeds as ExpUF
A,HSig(λ) with the addition that the tuple

(P∗ := (f∗, τ∗
1 , . . . , τ∗

n),Δ∗,m∗, σ∗) returned by the adversary A is considered a
forgery if Ver(vk,P∗,Δ∗,m∗, σ∗) = 1 and either one of the following conditions
hold:

Type 1: The list TΔ∗ has not been initialized during the game.
Type 2: P∗ is well-defined with respect to TΔ∗ , and m∗ �= f∗(m′

1, . . . ,m
′
n)

where m′
i = mi for all i s.t. (τi,mi) ∈ TΔ∗ and m′

i = m̃ (for some arbi-
trary m̃ ∈ M), otherwise.

Type 3: P∗ is not well-defined with respect to TΔ∗ .

Let AdvAd-UF
A,HSig(λ) = Pr[ExpAd-UF

A,HSig(λ) = 1] be the advantage of A against the
adaptive security of scheme HSig. We say that a homomorphic signature scheme
HSig is adaptive secure if for every PPT adversary A there exists a negligible
function ε(λ) such that AdvAd-UF

A,HSig(λ) ≤ ε(λ).

Comparing the above definition of adaptive security with the semi-adaptive
definition presented earlier, we note the following: Type 1 forgeries are identical
in both definitions. Type 2 forgeries are similar: intuitively, they both capture
the case when the adversary cheats on the result of P∗, except that Definition 4
addresses the case of missing inputs by defining what is, in this case, a correct
output (using the notion of well-defined program). Finally, Type 3 forgeries are
introduced in Definition 4 to address the remaining case in which P∗ may have
different outputs, yet the forgery verifies correctly.

From the literature, the schemes in [3,11,13,15–17,21] are proven under the
adaptive security notion presented above.

Strongly Adaptive Secure Homomorphic Signatures. The good of the
adaptive definition given above is that it addresses the issue of labeled programs
with unspecified inputs by modeling when an adversary is cheating. The model-
ing of Definition 4 however comes at the price of a rather cumbersome security
definition. Well-defined programs are certainly not the most intuitive notion to
work with. In addition, besides simplicity, the main issue with the above notion
is that deciding whether the tuple returned by the adversary is a forgery may



On the Security Notions for Homomorphic Signatures 195

not be doable in polynomial time. Indeed, making this test would require to exe-
cute f∗ on all possible values of the missing inputs (that may be exponentially
many). In the case when admissible functions are low-degree arithmetic circuits
over a large field, it has been shown that well-defined programs can be tested
probabilistically, and that Type 3 forgeries can be reduced to Type 2 ones [10].
However, for general circuits the inefficient test issue remains and can generate
troubles when proving the security of homomorphic signature schemes as well
as when using them in larger protocols (as simply testing whether an adversary
returned a forgery – wins – may not be doable in polynomial time).

To address this issue, in what follows we consider a stronger and much simpler
security definition. This notion is obtained by extending the notion of semi-
adaptive security (Definition 2) with a very simple notion of Type 3 forgeries.
The latter are just forgeries where the labeled program contains a “new” label.
The formal definition follows.

Definition 5 (Strong Adaptive Security). We define Expstrong-Ad-UF
A,HSig (λ) as

the security experiment which proceeds as ExpUF
A,HSig(λ) except that the tuple

(P∗ := (f∗, τ∗
1 , . . . , τ∗

n),Δ∗,m∗, σ∗) returned by the adversary A is considered
a forgery if Ver(vk,P∗

Δ∗ ,m∗, σ∗) = 1 and either one of the following conditions
hold:

Type 1: The list TΔ∗ has not been initialized during the game.
Type 2: For all i ∈ [n], ∃ (τi,mi) ∈ TΔ∗ and m∗ �= f∗(m1, . . . ,mn).
Type 3 Strong: there exists j ∈ [n] such that (τ∗

j , ·) /∈ TΔ∗ .

Let Advstrong-Ad-UF
A,HSig (λ) = Pr[Expstrong-Ad-UF

A,HSig (λ) = 1] be the advantage of A
against the strong adaptive security of scheme HSig. We say that a homomorphic
signature scheme HSig is strongly adaptive secure if for every PPT adversary A
there exists a negligible function ε(λ) such that Advstrong-Ad-UF

A,HSig (λ) ≤ ε(λ).

The security notion of Definition 5 now allows to detect forgeries in polyno-
mial time, and is without doubt much simpler than Definition 4. Basically, this
notion is the public-key equivalent of the security notion proposed by Gennaro
and Wichs [23] for fully-homomorphic MACs (with some cosmetic changes due
to the handling of multiple datasets).

Relation Between Security Notions. We note that the three security def-
initions presented in this Section are increasingly strong. Definition 4 is strictly
stronger than Definition 2: while all forgeries in Expsemi-Ad-UF

A,HSig (λ) are also forg-
eries in ExpAd-UF

A,HSig(λ), the converse is not true as any forgery in ExpAd-UF
A,HSig(λ)

where the labeled program P∗ contains an unqueried label is not considered a
forgery in Expsemi-Ad-UF

A,HSig (λ).
Definition 5 is strictly stronger than Definition 4. In one direction, any Type

1 and Type 3 forgery in ExpAd-UF
A,HSig(λ) yields, respectively, a Type 1 and a Type

3 Strong forgery in Expstrong-Ad-UF
A,HSig (λ), and a Type 2 forgery in ExpAd-UF

A,HSig(λ)
becomes either a Type 2 forgery or a Type 3 Strong forgery in Expstrong-Ad-UF

A,HSig (λ).



196 D. Catalano et al.

In the other direction, there exist forgeries in experiment Expstrong-Ad-UF
A,HSig (λ) that

are not considered so in ExpAd-UF
A,HSig(λ). We show this by considering the fol-

lowing adversary A. A asks signing queries (Δ, τ1,m1), (Δ, τ2,m2) and obtains
signatures σ1, σ2; it computes σ∗←Eval(vk,×, σ1, σ2), and outputs (P∗ :=
(f, τ1, τ2, τ3),Δ,m1 · m2), where f is the function f(x, y, z) = x(y + z) − xz.6

As one can see, the output of A is a Type 3 Strong forgery, since τ3 is a
label which has never been queried, while it is not a forgery in ExpAd-UF

A,HSig(λ),
since P∗ := (f, τ1, τ2, τ3) is well-defined with respect to the set of queries
TΔ = {(τ1,m1), (τ2,m2)}, and m1 · m2 is the correct output.

In addition to the fact that the security notions are strictly separated, we
also note that by using a counterexample such as the one above it is possible to
show that previously proposed homomorphic signatures (e.g., [7,17,25] are not
strong adaptive secure.

3 A Generic Transformation from Semi-adaptive
to Strong Adaptive Security

In this Section we show a technique that allows one to turn a semi-adaptive
unforgeable homomorphic signature into one that satisfies strong adaptive secu-
rity. Specifically, our main result is stated in the following theorem:

Theorem 1. If Σ is a semi-adaptive unforgeable fully (resp. leveled) homomor-
phic signature scheme for boolean circuits, then there exists a strong adaptive
unforgeable homomorphic signature scheme ̂Σ that supports the same class of
functions. Furthermore, if Σ satisfies context-hiding (resp. efficient verification,
composability) so does ̂Σ.

The core of our result is a general transformation which shows how to combine
a semi-adaptive secure scheme Σ together with a semi-adaptive secure scheme
ΣOR that supports only OR operations over Z2. This combination yields a homo-
morphic signature scheme that is strong adaptive secure and supports the same
class of functions supported by Σ.

Clearly, if Σ supports the evaluation of boolean circuits, then ΣOR can be
instantiated using Σ. In this case, our result provides a way to bootstrap the
security of Σ from semi-adaptive to strong adaptive. This yields our main result
above.

In the case where ΣOR cannot be instantiated using Σ (e.g., Σ is not expres-
sive enough), our transformation still provides a recipe to obtain strong adaptive
security using a separate OR-homomorphic scheme. However, motivated by the
lack of many candidates of OR-homomorphic signature schemes (concretely, [25]
is the only available one), we investigated how to obtain a similar transforma-
tion by using schemes that have been studied more widely. Our second result is
6 Any other function where the third input cancels out would work. Furthermore,

although in the given example it is trivial to recognize that P is well-defined, this
may not be the case for general functions.



On the Security Notions for Homomorphic Signatures 197

a transformation which can combine a semi-adaptive secure scheme Σ together
with a semi-adaptive secure linearly-homomophic signature ΣLH that works for
scalar messages7 over a large ring, say Zp. This combination yields a homo-
morphic signature scheme that is strong adaptive secure and supports the same
class of functions supported by Σ. A limitation of this second transformation
is that it applies only to schemes that are leveled homomorphic (i.e., for cir-
cuits of bounded depth) as it requires to set p > 2d where d = poly(λ) is the
bound on circuits depth. On the other hand, the advantage is that strong adap-
tive security can be obtained by using linearly-homomorphic schemes, a class
of constructions that has received significant attention, of which we know many
constructions from several assumptions [3–5,11,13,15,16,21], most of which are
way more efficient in practice than [25]. As for the efficiency of the scheme result-
ing from our transformations, it basically depends on the efficiency of the scheme
one starts from. In the worst case, however, the efficiency loss is comparable to
executing the original algorithms twice.

3.1 Strong Adaptive Security from OR-Homomorphic Signatures

Here we present our first transformation. The tools we start from are a homo-
morphic signature scheme Σ := (Σ.KeyGen, Σ.Sign, Σ.Ver, Σ.Eval) for a class
C of (boolean or arithmetic) circuits, and a homomorphic signature ΣOR :=
(ΣOR.KeyGen, ΣOR.Sign, ΣOR.Ver, ΣOR.Eval) that works over message space Z2

and supports homomorphic OR operations. More precisely, ΣOR must support
circuits that are composed only of OR gates and have the same depth as those
in C.

Using Σ and ΣOR in a black box way, we build a scheme ̂Σ which supports
evaluation of circuits in C. Moreover, assuming only semi-adaptive security of
both Σ and ΣOR, we show that ̂Σ is strong adaptive secure.

̂Σ.KeyGen(1λ,L). Run the key generation algorithms (vk, sk) ← KeyGen(1λ,L)
and (vkOR, skOR) ← ΣOR.KeyGen(1λ,L), and output (v̂k, ŝk) := ((vk, vkOR),
(sk, skOR)).

̂Σ.Sign(ŝk,Δ, τ,m). The signing algorithm uses the secret key to compute σ ←
Sign(sk,Δ, τ,m) and σOR ← ΣOR.Sign(skOR,Δ, τ, 0), and outputs σ̂ := (σ,
σOR).
Note that the OR-homomorphic component σOR of the signature signs the
bit 0. Although the usefulness of this component will become more clear in
the security proof, the intuition is that this component keeps track of those
labels that are used throughout the computation.

̂Σ.Eval(v̂k, f, σ̂1, . . . , σ̂n). We describe the homomorphic evaluation of f in a
gate-by-gate fashion, distinguishing the cases of unary and binary gates. One
can easily see that the construction generalizes to n-ary gates. Describing the
evaluation gate-by-gate is also useful to clearly see that our transformation

7 Namely, we do not need to work with vectors as most linearly-homomorphic signa-
tures do.



198 D. Catalano et al.

allows for arbitrary composition of signatures (i.e., running ̂Σ.Eval on outputs
of ̂Σ.Eval). At every gate g, one proceeds as follows.
Unary Gates. Let g be an unary gate and let σ̂1 := (σ1, σOR,1) be the input.

We compute the output signature σ̂out := (σout, σOR,out) by computing
σout ← Σ.Eval(vk, g, σ1) and σOR,out←σOR,1. Basically, we evaluate g over
the Σ component, while for the OR-homomorphic component we simply
evaluate an identity function.

Binary Gates. Let g be a binary gate and let σ̂1 := (σ1, σOR,1) and
σ̂2 := (σ2, σOR,2) be its two inputs. We compute the output signature
σ̂out := (σout, σOR,out) by first evaluating σout ← Σ.Eval(vk, g, σ1, σ2)
and then evaluating σOR,out ← ΣOR.Eval(vkOR,OR, σOR,1, σOR,2). Basi-
cally, we evaluate the binary g over the Σ components, while for the
OR-homomorphic components we perform their homomorphic OR.

By proceeding over f in a gate-by-gate fashion, eventually we obtain a signa-
ture σ̂ := (σ, σOR), and ̂Σ.Eval returns σ̂.
At this point, it is worth mentioning that the evaluation algorithm of our
transformation generates (σ, σOR) such that σ = Σ.Eval(vk, f, σ1, . . . , σn) and
σOR = ΣOR.Eval(vkOR, fOR, σOR,1, . . . , σOR,n), where fOR is an “OR version”
of the circuit f obtained by changing any unary gate with an identity gate
and any binary gate with an OR gate.

̂Σ.Ver(vk,P,Δ,m, σ̂). Parse P = (f, τ1, . . . , τn) and σ̂ := (σ, σOR). Next, define
POR := (fOR, τ1, . . . , τn), where fOR is the circuit composed only of OR
(and identity) gates, obtained from f as described above. Then check if
Σ.Ver(vk,P,Δ,m, σ) = 1 and ΣOR.Ver(vkOR,POR,Δ, 0, σOR) = 1. If both the
verification runs output 1, then output 1, otherwise output 0.

In the following theorem we show that our generic scheme ̂Σ satisfies strong
adaptive security, as long as the schemes Σ and ΣOR are only semi-adaptive
secure (proof is given in the full version of the paper [12].

Theorem 2. Assume that Σ is a semi-adaptive secure homomorphic signature
scheme for a class of circuits C, and that ΣOR is a semi-adaptive secure homo-
morphic signature with message space Z2 and supporting OR circuits. Then the
scheme ̂Σ described above is a strong-adaptive secure homomorphic signature
for C. Furthermore, if both Σ and ΣOR satisfy context-hiding (resp. efficient
verification, composability), then so does ̂Σ.

3.2 Strong Adaptive Security from Linearly-Homomorphic
Signatures

Here we present our second transformation. This transformation is similar to
the one of Sect. 3.1: it incorporates signatures from a second homomorphic sig-
nature scheme in order to handle Type 3 forgeries. However, instead of a OR-
homomorphic scheme, here we use a linearly-homomorphic one. More in detail,
our constructions takes in a homomorphic signature scheme Σ := (Σ.KeyGen,
Σ.Sign, Σ.Ver, Σ.Eval) that supports circuits of polynomial depth at most d



On the Security Notions for Homomorphic Signatures 199

and fan-in 2,8 and an additive-homomorphic signature ΣLH := (ΣLH.KeyGen,
ΣLH.Sign, ΣLH.Ver, ΣLH.Eval) that works over message space Zp, where p > 2d.
Using Σ and ΣLH in a black box way, we build a scheme Σ′ which supports the
same circuits as Σ, and assuming only semi-adaptive security of Σ and ΣLH, we
show that Σ′ is strong adaptive secure. The scheme Σ′ is defined as follows:

Σ′.KeyGen(1λ,L). Run both (vk, sk) ← Σ.KeyGen(1λ,L) and (vkLH, skLH) ←
ΣLH.KeyGen(1λ,L), and output (vk′, sk′) := ((vk, vkLH), (sk, skLH)).

Σ′.Sign(sk′,Δ, τ,m). The signing algorithm uses sk′ to compute σ ← Sign(sk,
Δ, τ,m) and σLH ← ΣLH.Sign(skLH,Δ, τ, 0), and outputs σ′ := (σ, σLH).

Σ′.Eval(vk′, f, σ′
1, . . . , σ

′
n). As in the previous section, we describe the homo-

morphic evaluation of f in a gate-by-gate fashion, distinguishing the cases of
unary and binary gates. At every gate g, one proceeds as follows.
Unary Gates. Let g be an unary gate and let σ′

1 := (σ1, σLH,1) be the input.
We compute the output signature σ′

out := (σout, σLH,out) by computing
σout ← Σ.Eval(vk, g, σ1) and σLH,out←σLH,1.

Binary Gates. Let g be a binary gate and let σ′
1 := (σ1, σLH,1) and σ′

2 :=
(σ2, σLH,2) be its two inputs. We compute the output signature σ′

out :=
(σout, σLH,out) by first evaluating σout ← Σ.Eval(vk, g, σ1, σ2) and then
evaluating σLH,out ← ΣLH.Eval(vkLH,+, σLH,1, σLH,2).

By proceeding over f in a gate-by-gate fashion, eventually we obtain
a signature σ′ := (σ, σLH), and Σ′.Eval returns σ′. We note that the
evaluation algorithm of our transformation generates (σ, σLH) such that
σ = Σ.Eval(vk, f, σ1, . . . , σn) and σLH = ΣLH.Eval(vkLH, f+, σLH,1, . . . , σLH,n),
where f+ is an “additive version” of the circuit f obtained by changing any
unary gate with an identity gate and any binary gate with an additive gate.

Σ′.Ver(vk,P,Δ,m, σ′). Parse P = (f, τ1, . . . , τn) and σ′ := (σ, σLH). Next, define
P+ := (f+, τ1, . . . , τn), where f+ is the additive circuit obtained from f as
described above. Then check if Σ.Ver(vk,P,Δ,m, σ) = 1 and ΣLH.Ver(vkLH,
P+,Δ, 0, σLH) = 1. If both the verification runs output 1, then output 1,
otherwise output 0.

In the following theorem we show that our generic scheme Σ′ satisfies strong
adaptive security, as long as the schemes Σ and ΣLH are only semi-adaptive
secure (proof is given in the full version of the paper [12]).

Theorem 3. Assume that Σ is a semi-adaptive secure homomorphic signature
scheme for circuits of polynomial depth at least d and fan-in 2, and that ΣLH is
a semi-adaptive secure linearly-homomorphic signature scheme whose message
space is Zp, with p > 2d. Then the scheme Σ′ described above is a strong-adaptive
secure homomorphic signature. Furthermore, if both Σ and ΣLH satisfy context-
hiding (resp. efficient verification), then so does Σ′.

8 We describe the transformation for fan-in 2 only for ease of exposition. It is easy to
see that the same technique would work for constant fan-in c setting up p > cd.



200 D. Catalano et al.

Acknowledgements. The work of Dario Fiore and Luca Nizzardo was partially sup-
ported by the Spanish Ministry of Economy under project references TIN2015-70713-R
(DEDETIS), RTC-2016-4930-7 (DataMantium), and under a Juan de la Cierva fellow-
ship to Dario Fiore, and by the Madrid Regional Government under project N-Greens
(ref. S2013/ICE-2731).

References

1. Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network
coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 292–305. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-01957-9 18

2. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 1–20. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28914-9 1

3. Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the stan-
dard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011.
LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19379-8 2

4. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT
2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34961-4 23

5. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 24

6. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00468-1 5

7. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 10

8. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 1

9. Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic circuits. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 336–
352. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9 21

10. Catalano, D., Fiore, D., Gennaro, R., Nizzardo, L.: Generalizing homomorphic
MACs for arithmetic circuits. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 538–555. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54631-0 31

11. Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trapdoor) one-
way functions and their applications. In: Sahai, A. (ed.) TCC 2013. LNCS, vol.
7785, pp. 680–699. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36594-2 38

https://doi.org/10.1007/978-3-642-01957-9_18
https://doi.org/10.1007/978-3-642-01957-9_18
https://doi.org/10.1007/978-3-642-28914-9_1
https://doi.org/10.1007/978-3-642-28914-9_1
https://doi.org/10.1007/978-3-642-19379-8_2
https://doi.org/10.1007/978-3-642-19379-8_2
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-642-36362-7_24
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-20465-4_10
https://doi.org/10.1007/978-3-642-19379-8_1
https://doi.org/10.1007/978-3-642-38348-9_21
https://doi.org/10.1007/978-3-642-54631-0_31
https://doi.org/10.1007/978-3-642-54631-0_31
https://doi.org/10.1007/978-3-642-36594-2_38
https://doi.org/10.1007/978-3-642-36594-2_38


On the Security Notions for Homomorphic Signatures 201

12. Catalano, D., Fiore, D., Nizzardo, L.: On the security notions for homomorphic
signatures. Full Version: Cryptology ePrint Archive. https://eprint.iacr.org/2016/
1175.pdf

13. Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private:
constructions and applications to (homomorphic) signatures with shorter public
keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
254–274. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7 13

14. Catalano, D., Fiore, D., Nizzardo, L.: Homomorphic signatures with sublinear
public keys via asymmetric programmable hash functions. Des. Codes Cryptogr.
(2017). https://doi.org/10.1007/s10623-017-0444-3

15. Catalano, D., Fiore, D., Warinschi, B.: Adaptive pseudo-free groups and applica-
tions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 207–223.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4 13

16. Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the
standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 680–696. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30057-8 40

17. Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient ver-
ification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44371-2 21

18. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures:
new definitions and delegatable anonymous credentials. In: 2014 IEEE 27th Com-
puter Security Foundations Symposium, pp. 199–213. IEEE (2014)

19. Desmedt, Y.: Computer security by redefining what a computer is. In: NSPW
(1993)

20. Elkhiyaoui, K., Önen, M., Molva, R.: Online-offline homomorphic signatures for
polynomial functions. Cryptology ePrint Archive, Report 2015/954 (2015). http://
eprint.iacr.org/

21. Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic
framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697–714. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8 41

22. Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the
integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
142–160. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-
7 9

23. Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 301–320. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0 16

24. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

25. Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: 47th ACM STOC. ACM Press (2015)

26. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45760-7 17

https://eprint.iacr.org/2016/1175.pdf
https://eprint.iacr.org/2016/1175.pdf
https://doi.org/10.1007/978-3-662-48000-7_13
https://doi.org/10.1007/978-3-662-48000-7_13
https://doi.org/10.1007/s10623-017-0444-3
https://doi.org/10.1007/978-3-642-20465-4_13
https://doi.org/10.1007/978-3-642-30057-8_40
https://doi.org/10.1007/978-3-642-30057-8_40
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-44371-2_21
http://eprint.iacr.org/
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-642-30057-8_41
https://doi.org/10.1007/978-3-642-30057-8_41
https://doi.org/10.1007/978-3-642-13013-7_9
https://doi.org/10.1007/978-3-642-13013-7_9
https://doi.org/10.1007/978-3-642-42045-0_16
https://doi.org/10.1007/3-540-45760-7_17


Invisible Sanitizable Signatures and
Public-Key Encryption are Equivalent

Marc Fischlin and Patrick Harasser(B)

Cryptoplexity, Technische Universität Darmstadt, Darmstadt, Germany
{marc.fischlin,patrick.harasser}@cryptoplexity.de

http://www.cryptoplexity.de

Abstract. Sanitizable signature schemes are signature schemes which
support the delegation of modification rights. The signer can allow a
sanitizer to perform a set of admissible operations on the original mes-
sage and then to update the signature, in such a way that basic security
properties like unforgeability or accountability are preserved. Recently,
Camenisch et al. (PKC 2017) devised new schemes with the previously
unattained invisibility property. This property says that the set of admis-
sible operations for the sanitizer remains hidden from outsiders. Sub-
sequently, Beck et al. (ACISP 2017) gave an even stronger version of
this notion and constructions achieving it. Here we characterize the
invisibility property in both forms by showing that invisible sanitizable
signatures are equivalent to IND−CPA-secure encryption schemes, and
strongly invisible signatures are equivalent to IND−CCA2-secure encryp-
tion schemes. The equivalence is established by proving that invisible
(resp. strongly invisible) sanitizable signature schemes yield IND−CPA-
secure (resp. IND−CCA2-secure) public-key encryption schemes and that,
vice versa, we can build (strongly) invisible sanitizable signatures given
a corresponding public-key encryption scheme.

Keywords: Sanitizable signatures · Digital signatures · Invisibility
Public-key encryption · One-way functions

1 Introduction

Sanitizable signature schemes enable the signer of a document to declare certain
sections of the message as admissible for modification, so that another designated
party (the sanitizer) can modify them and update the signature without affecting
the authenticity and integrity of the immutable parts. The main motivation is
to balance out the verifier’s wish to check authenticity of parts of the original
document and the signer’s desire for privacy of the sanitized data. The idea of
sanitizable signature schemes dates back to a work by Ateniese et al. [2].

In [2], the authors introduced several security properties for sanitizable sig-
nature schemes. Besides unforgeability against outsiders, a desirable property
is immutability, which demands that even a malicious sanitizer can only alter
c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 202–220, 2018.
https://doi.org/10.1007/978-3-319-93387-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_11&domain=pdf


Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 203

admissible parts. Privacy asks that one cannot reconstruct the original docu-
ment given only the sanitized version and signature, and its strengthening called
unlinkability [7] says that one cannot determine the origin to a sanitized doc-
ument among several known possibilities. Signer and sanitizer accountability
ensure that in case of a dispute the parties can give a convincing proof of who
created a signature, the signer or the sanitizer. A less common property is trans-
parency, which should hide who created a signature, in case neither of the parties
helps to determine the originator—this stands in contrast to public accountabil-
ity, where no additional help is required to determine who signed the document.

1.1 Invisible Sanitizable Signatures

Recently, Camenisch et al. [10] formalized the notion of invisibility of sanitiz-
able signatures. This property, formerly called strong transparency in [2], should
hide which modifications a sanitizer is allowed to perform. In previous construc-
tions the description of admissible operations, denoted ADM, had usually been
attached in clear to the signature. Gong et al. [25] were the first to argue that
this information can be of value, and later Camenisch et al. showed that hid-
ing it may be a desirable goal. They also revised the theoretical framework of
sanitizable signatures in order to capture the invisibility property, and gave con-
structions achieving it based on a new type of chameleon hash functions with
ephemeral trapdoors. Soon after, Beck et al. [3] further strengthened the notion
of invisibility.

In its basic form, invisibility protects against leakage of ADM if the sanitizer
public key is only used in connection with a single signer. In applications this
means that the sanitizer must create a fresh key pair for each user. Strong
invisibility, on the other hand, allows to use the same sanitizer key pair with
multiple signers. Beck et al. use unique signatures, IND−CCA2-secure encryption,
and collision-resistant chameleon hash functions to achieve strong invisibility.

Technically, the difference between the two invisibility notions lies in the
capabilities of an adversary trying to establish which of two potential operation
sets, ADM0 or ADM1, has been encoded as admissible into the signature. Given
a challenge signature, the adversary may query a sanitizing oracle on it as long
as the requested modification does not allow to distinguish the two cases trivially
(this happens e.g. if the modification is admissible for one of the two sets but
not for the other). For the basic invisibility notion the adversary can ask for
sanitizations only in connection with the public key pkSig of the genuine signer.
In the stronger notion, the adversary can also request sanitizations of messages
signed with other, possibly maliciously chosen signer keys pk′

Sig.

1.2 Our Contributions

In this work we show that invisible sanitizable signature schemes and public-key
encryption schemes are equivalent. Our equivalence proof consists of four parts.



204 M. Fischlin and P. Harasser

Invisibility Implies IND−CPA-Secure Encryption. Our first result is to show that
an invisible sanitizable signature scheme yields an IND−CPA-secure bit-encryp-
tion scheme. An invisible scheme hides the actual admissible operations for a
signature; we can use this property to securely embed a message bit b by using
one of two fixed and distinct admissible operation descriptions (ADM0 or ADM1)
to build a signature σ under a fresh signer key pair. The ciphertext consists of
the signature σ and the signer public key pkSig. Invisibility now guarantees that
no outsider is able to distinguish the two cases.

The trapdoor information for decryption is the sanitizer secret key; his public
key acts as the public key of the encryption scheme. With his secret key, the sani-
tizer can run the sanitization process and check via a distinguishing modification
which operation ADMb has been embedded: Only the admissible one (ADMb)
will result in a valid new signature. For the other operation (ADM1−b), the
modification should fail by the immutability property of the sanitizable scheme.
Note that we obviously need some other security property besides invisibility,
because it is easy to devise invisible signature schemes without any other security
property, e.g. with constant signatures.

Strong Invisibility Implies IND−CCA2-Secure Encryption. While the construc-
tion of an IND−CPA-secure scheme via the embedding of the hidden ADM may
be expected, we argue next that the same construction yields an IND−CCA2-
secure encryption scheme if the underlying sanitizable signature scheme is
strongly invisible. This result is less conventional, since it links the sanitization
for different signer keys with the ability to securely decrypt different ciphertexts.

The proof idea is to note that ciphertexts in our encryption system are of the
form (σ, pkSig). Given a challenge ciphertext (σ, pkSig), recall that for IND−CCA2-
security we must allow for oracle decryptions of ciphertexts (σ′, pk′

Sig) �=
(σ, pkSig). Since decryption is performed via sanitization, and strong invisibil-
ity allows us to call the sanitizer for different keys pk′

Sig, we can easily decrypt
ciphertexts of the form (σ′, pk′

Sig) with pk′
Sig �= pkSig. To handle ciphertexts

(σ′, pkSig) under the original signer key we rely on the strong unforgeability
property of the signature scheme: it says that one cannot create fresh signa-
tures σ′ under pkSig, and therefore an IND−CCA2-adversary cannot submit valid
oracle queries of this form.

In a sense, this result warrants the deployment of an IND−CCA2-secure
encryption scheme in the strongly invisible construction of Beck et al. [3]: Any
strongly invisible sanitizable signature scheme already implies IND−CCA2-secure
encryption systems. Note that we construct an IND−CCA2-secure bit encryption
scheme, but this is sufficient to derive an IND−CCA2-secure string encryption
scheme [14,26,31,32].

IND−CPA-Secure Encryption Implies Invisibility. Next we establish the converse
implication, i.e. from IND−CPA-secure public-key encryption schemes to invisible
sanitizable signatures. Note that the existence of the former primitive also implies
the existence of one-way functions (the argument is identical to the one in [35,
Lemma 1]), and thus of secure digital signature schemes [33,35], so that we can



Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 205

use this building block in our construction as well. Besides invisibility, the derived
sanitizable signature scheme has all the common properties, like unforgeablility,
immutability, privacy, and accountability.

The construction idea is to have the signer sign every message block of the
message with a different, ephemeral key, and then to protect this tuple of signa-
tures with an additional signature under his secret key. This “message” part of
the signature ensures unforgeability, privacy, and accountability. To enable the
sanitizer to modify the admissible blocks, the signer appends another “adminis-
trative” signature over the description ADM and the tuple of secret keys used to
sign the admissible blocks, both encrypted under the sanitizer public encryption
key to allow for invisibility. If some admissible block has to be modified, the
sanitizer can retrieve the corresponding ephemeral key via decryption, change
the message block and then update the relevant signatures in the “message”
part. Immutability (i.e., protection against inadmissible modifications from a
malicious sanitizer) then follows from the unforgeability of the underlying dig-
ital signature scheme: It is ensured by the fact that the sanitizer only receives
the signing keys for the blocks he is allowed to modify.

We stress here that our construction does not achieve some less common
properties, in particular transparency and unlinkability, and that our security
reduction is non-tight. On the other hand, we regard our work as being above
all a feasibility result, so that tightness—even though desirable—should not be
viewed as essential, and we believe that invisible, non-transparent sanitizable
signatures can have interesting applications: One can envision scenarios where it
should be impossible to learn which (if any) message blocks have the potential
to be altered, but on the other hand it should be clear who signed the document
(e.g., for legal and accountability reasons).

IND−CCA2-Secure Encryption Implies Strong Invisibility. The noteworthy prop-
erty of the above construction is that IND−CPA-security suffices to achieve (ordi-
nary) invisibility. With a slight technical twist, we interestingly achieve strong
invisibility if we now have an IND−CCA2-secure encryption scheme: Namely,
we include the signer public key in the encryption of ADM and the trapdoor
information for the sanitizer. Hence, together with our converse construction of
IND−CCA2-secure encryption from strong invisibility, we also characterize this
form of invisibility through public-key encryption.

In light of the strongly invisible construction of Beck et al. [3], which besides
an IND−CCA2-secure encryption scheme also relies on signature schemes and
collision-resistant chameleon hash functions, our solution shows that the former
(together with a regular signature scheme) suffices. Of course, the solution by
Beck et al. is significantly more efficient.

1.3 Related Work

As mentioned above, sanitizable signature schemes were introduced by Ateniese
et al. in their foundational work [2]. The first, and to this date widely adopted
security model describing this primitive is due to Brzuska et al. [5], where the



206 M. Fischlin and P. Harasser

authors formalized the unforgeability, immutability, privacy, transparency, and
accountability properties of a sanitizable signature scheme with game-based secu-
rity definitions. Later on, Brzuska et al. added the important unlinkability prop-
erty [7,9], as well as non-interactive public accountability [8,9], to the picture of
security notions—see Appendix C in the full version [21] for all the definitions.

Subsequently, the formal framework introduced in [5] came under scrutiny by
Gong et al. [25], who pointed out that sanitizable signatures formalized as above
were vulnerable to so-called rights-forge attacks. Their solution was to intro-
duce stronger versions of unforgeability, immutability and accountability, which
also consider the admissible blocks in the security experiments. Even stronger
variants of unforgeability, privacy, transparency, and accountability were later
provided by Krenn et al. [30], who decided to also track the signatures in the def-
initions (in much the same way as for regular signature schemes, when upgrading
from “ordinary” to strong unforgeability). Finally, the invisibility property was
formalized by Camenisch et al. [10], following ideas already discussed in [2], and
recently further strengthened by Beck et al. [3].

The above literature deals with sanitizable signature schemes as they are
intended here. On the other hand, we point out that there are many other
primitives and extensions that are closely related to, but slightly different from
sanitizable signature schemes as treated in this work. Among these there are
redactable signatures [4,16,18,28], sanitizable signatures where sanitizer modifi-
cations are limited to certain values [11,19,29,34] or where the signer is allowed
to add sanitizers after having signed the message [13,36], sanitizable signatures
supporting a multi-signer, multi-sanitizer paradigm [6,9,12], or allowing for san-
itization of signed, encrypted data [15,20]. More generally, we note that this
whole body of literature falls under the broad category of computing on authen-
ticated data [4,23,24]. We refer to the extensive overviews of Ahn et al. [1] and
Demirel et al. [17] for further information.

We conclude the related work overview by mentioning that our work also
continues a line of research started in [6], where the authors showed that it
is possible to construct a sanitizable signature scheme achieving unforgeability,
immutability, privacy, and accountability only assuming that arbitrary secure
signature schemes exist, i.e. only assuming that one-way functions exist. In this
regard, and in light of known separation results of public-key cryptography and
one-wayness [27], our work proves that the same does most likely not hold for
(strongly) invisible sanitizable signature schemes.

1.4 Organization

In Sect. 2 we outline the syntax of sanitizable signature schemes (and the cor-
responding specific notation), give an overview of the correctness and security
notions, and discuss the invisibility property. In Sect. 3 we show how to con-
struct a public-key bit-encryption scheme from an invisible sanitizable signa-
ture scheme, and we prove the corresponding security results, whereas Sect. 4 is
devoted to the converse implication. Finally, we draw some conclusions in Sect. 5.



Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 207

2 Definition of Sanitizable Signatures

2.1 Notation

The starting point of our theoretical discussion on sanitizable signatures is the
security model introduced by Brzuska et al. in [5]. However, since invisibility will
play a crucial role in our work, their framework has to be slightly adapted. Their
approach often relies on the fact that the description ADM of admissible parts
is recoverable from signatures, in direct contrast to the invisibility property
which aims to hide this information. Thus, before we can actually start with
the definition of sanitizable signatures, we need to introduce some preliminary
notation. In doing so we mainly follow the work of Camenisch et al. [10].

Messages m ∈ M are assumed to consist of a finite number of blocks, each
block being an element from a set B (usually B ⊆ {0, 1}∗). The message space
M is thus a subset of B∗. We use the notation m[i] to refer to the i-th block and
write m = (m[1], . . . ,m[�]) to stress that the message m consists of � blocks.

Admissible blocks in a message m = (m[1], . . . ,m[�]) ∈ M are identified by
means of the parameter ADM = (A, l) ∈ P(N)×N (also called sanitizing rights),
where l ∈ N denotes the total number of blocks a message must have, while
A := {a1, . . . , aj} is the set containing the indices of the blocks the sanitizer
is allowed to modify. Of course, here we need 1 ≤ a1, . . . , aj ≤ l, a condition
that we will always assume to be satisfied. We then say that ADM matches m
if � = l, in which case we write ADM(m) = � (otherwise ADM(m) = ⊥). If
ADM0 = (A0, l) and ADM1 = (A1, l) are two sanitizing rights matching m, we
define ADM0 ∩ ADM1 := (A0 ∩ A1, l). Similarly, to identify admissible block
indices, we write a ∈ ADM = (A, l) if 1 ≤ a ≤ l and a ∈ A.

If m = (m[1], . . . ,m[�]) ∈ M is a message, the actual modifications to cer-
tain blocks made by the sanitizer (i.e., the sanitizing instructions) are identi-
fied by means of the parameter MOD = (M, l) ∈ P(N × B) × N, where l ∈ N

denotes the total number of blocks in a message and M := {(i1, m̄1), . . . ,
(ik, m̄k)} denotes the set of changes made by the sanitizer. Here (i, m̄) ∈ M
is intended to mean that the sanitizer will replace block m[i] with m̄. Again,
here we need 1 ≤ i1, . . . , ik ≤ l, which we will assume throughout. We then
say that MOD matches m if � = l, in which case we write MOD(m) for the
message m′ obtained by modifying m according to MOD, i.e. m′ = MOD(m) if
and only if m′ = (m′[1], . . . m′[�]) ∈ M and, for every 1 ≤ i ≤ �, m′[i] = m̄i if
i ∈ {i1, . . . , ik}, and m′[i] = m[i] otherwise. We write MOD(m) = ⊥ if MOD
does not match m.

Finally, recall that the sanitizer is supposed to modify only message blocks
declared as admissible by the signer. In this regard, the following notation will
be useful: If ADM = (A, lADM) and MOD = (M, lMOD) are as above, we say
that MOD matches (or is valid w.r.t.) ADM if lADM = lMOD and ˜M ⊆ A, where
˜M := {i1, . . . , ik} is the set of indices of the blocks which the sanitizer intends to
modify (as specified by M). In this case we write MOD(ADM) = �, otherwise
MOD(ADM) = ⊥.



208 M. Fischlin and P. Harasser

2.2 Definition of Sanitizable Signature Schemes

With the notation introduced above we are now ready to define sanitizable sig-
nature schemes. The definition is based on the one given by Brzuska et al. in [5]
but takes into account that the sanitizing rights are no longer publicly recover-
able from a valid message-signature pair. We remark here that, nonetheless, the
sanitizer is always able to learn which message blocks he can modify by trying
to sanitize them singularly and checking if the resulting signature is valid, an
operation linear in the number of blocks of the message. This is the reason why
we do not include ADM as an additional input to the Sanit algorithm: Either it
is implicitly in the signatures or it must be communicated out-of-band.

Since our definition is similar to the one in [10], we give here only a schematic
overview of the algorithms comprising a sanitizable signature scheme and their
syntax. The complete definition can be found in the full version [21].

Definition 1. A sanitizable signature scheme SSS is a tuple of eight proba-
bilistic polynomial-time algorithms SSS := (PGen,KGenSig,KGenSan,Sign,Sanit,
Verify,Proof, Judge), whose syntax is as follows:

– pp←$ PGen(1λ), to generate public parameters;
– (pkSig, skSig)←$ KGenSig(pp), to generate signing keys;
– (pkSan, skSan)←$ KGenSan(pp), to generate sanitization keys;
– σ ←$ Sign(pp,m, skSig, pkSig, pkSan,ADM), for signatures;
– σ′ ←$ Sanit(pp,m, σ, skSan, pkSig, pkSan,MOD), for sanitized signatures;
– d ← Verify(pp,m, σ, pkSig, pkSan), for verification;
– π ←$ Proof(pp,m, σ, {(mi, σi)}k

i=1, skSig, pkSig, pkSan), to generate proofs;
– d ← Judge(pp,m, σ, pkSig, pkSan, π), to determine who signed the document.

2.3 Correctness and Security Properties of Sanitizable Signature
Schemes

We now turn to the definition of correctness and the statement of security prop-
erties of a sanitizable signature scheme SSS. As for correctness, we follow Brzuska
et al. [5] and subsequent work and require that the following three properties
hold. We give only an informal description here and refer to Appendix B in the
full version [21] for complete definitions, as adapted to our framework.

– Signing Correctness: Every time an honest signer signs a message m ∈ M
with sanitizing rights matching m, he produces a valid signature σ �= ⊥ such
that (m,σ) verifies under the corresponding public keys;

– Sanitizing Correctness: Every time the intended sanitizer honestly sanitizes
a valid message-signature pair (m,σ) ∈ M × S with sanitizing instructions
MOD matching the sanitizing rights given to him by the signer, he produces
a valid signature σ′ �= ⊥ such that (MOD(m), σ′) verifies under the corre-
sponding public keys;

– Proof Correctness: Every time an honest signer generates a proof regarding a
valid message-signature pair, Judge identifies the correct accountable party.



Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 209

Next we discuss the relevant security properties of a sanitizable signature
scheme SSS. Most of these properties were introduced in their basic form by
Brzuska et al. in [5] and later in [7,8]. We will be mainly concerned with their
“strong” counterparts as formalized by Krenn et al. in [30] and later adopted
by Camenisch et al. [10] and Beck et al. [3]. The definitions we adopt take into
account that the sanitizing rights ADM (which are no longer assumed to be
publicly recoverable from a valid message-signature pair) are an information
which needs protection, as work by Gong et al. [25] has shown. In particular, by
requiring a sanitizable signature scheme to satisfy the “strong” versions of the
unforgeability, signer- and sanitizer-accountability properties, we mostly avoid
so-called rights forge attacks as discussed in [25] (for immutability the matter is
more delicate—see Appendix C in the full version [21] for further discussions).

We again give only a brief and intuitive description of the security proper-
ties here and refer the interested reader to Appendix C in the full version [21]
for complete definitions and the corresponding security experiments. Only the
notion of invisibility, central to our work, will be discussed here in detail.

– Unforgeability : No adversary should be able to produce a valid message-
signature pair never seen before;

– Immutability : The sanitizer should be able to modify only message blocks
previously declared as admissible by the signer;

– Privacy : Given a valid, sanitized message-signature pair, no adversary should
be able to recover any information about the original content of the sanitized
blocks;

– Transparency : Given a valid message-signature pair, no adversary should be
able to determine whether it was the signer or the sanitizer who produced
the signature;

– Signer-Accountability : A malicious signer should not be able to produce a
valid message-signature pair (m,σ) ∈ M × S and a proof which induces
Judge into erroneously blaming the sanitizer for (m,σ);

– Sanitizer-Accountability : A malicious sanitizer should not be able to produce
a valid message-signature pair (m′, σ′) ∈ M × S such that legitimate proofs
generated by the signer induce Judge into blaming the signer for (m′, σ′);

– Unlinkability : Given a valid message-signature pair (m′, σ′) ∈ M × S that
has been sanitized, no adversary should be able to decide from which known
pair (m,σ) ∈ M × S it originated from;

– Non-Interactive Public Accountability : The party accountable for a valid
message-signature pair can be determined publicly, without the need of any
further information. In particular, the Proof algorithm is trivial.

2.4 (Strong) Invisibility

Loosely speaking, a sanitizable signature scheme is invisible if, given a valid
message-signature pair (m,σ) ∈ M × S, no adversary is able to decide if any
specific message block is admissible (i.e., can be modified by the sanitizer) or
immutable. This property was first introduced by Ateniese et al. in their founda-
tional work [2] under the name “strong transparency” (an expression later fallen



210 M. Fischlin and P. Harasser

into disuse, not to be confused with the notion of transparency defined in the
literature). However, they did not provide any formal definition or construction
achieving it. It was later abandoned by Brzuska et al. [5] on the grounds that it
appeared to be too strong. Indeed, since they worked under the assumption that
ADM is always publicly recoverable from a valid signature σ �= ⊥ (in obvious
conflict with the invisibility notion), it was in fact unachievable. Later on, the
invisibility property was considered by Camenisch et al. [10], who defined it for-
mally and gave the first provably secure construction of an invisible sanitizable
signature scheme. A stronger version of invisibility was later defined by Beck et
al. in [3], where the sanitizer may use his public key with multiple signers.

In the invisibility security experiment, a signer and a sanitizer key pair are
generated and a bit b←${0, 1} is chosen uniformly at random and kept secret.
An adversary A is given access to an oracle OLoR which, on input a message and
two sanitizing rights ADM0, ADM1, produces a signature σ (under the signer
secret key and the sanitizer public key) making ADMb admissible. In addition,
A has adaptive access to restricted signing, sanitizing, and proof oracles.

We remark that, in the above experiment, a restricted signing oracle (with
fixed sanitizer public key pkSan) can be simulated by querying OLoR and putting
ADM0 = ADM1. Furthermore, for sanitization requests of any message-signature
pair (m,σ) ∈ M × S with σ ←$ OLoR(m,ADM0,ADM1), A must be limited to
modifications matching ADM0∩ADM1 in order to avoid trivial attacks exposing
b. This is why all queries to and answers from OLoR, together with the allowed
sanitizing rights ADM0 ∩ ADM1, are recorded in a “whitelist” W : Whenever A
queries OSanit, the oracle goes through the list W of previously signed messages,
to see which blocks the adversary is indeed allowed to modify. If the query is
accepted, the whitelist has to be updated to also include the new (sanitized)
message-signature pair, with the same sanitizing rights as the original pair (this
has to be done because a sanitized message could be sanitized again). In the
basic invisibility property the answers are only computed for the given key pkSig.

The adversary’s goal is to guess b, i.e., to decide which set of blocks the oracle
OLoR has made admissible. The scheme SSS is invisible if no efficient adversary
as above succeeds in doing so with probability significantly greater than 1/2.

We observe that the definition of invisibility already has the flavor of the
“strong” variant of the definitions given in [10,30], in that we always keep track
of the signatures in the whitelist W . On the other hand, the main drawback of
this definition is that it is not possible to query the sanitization oracle for keys
different from the challenge ones. As remarked by Beck et al. [3], this may have
undesirable consequences: A could pose as another signer and, as soon as he gets
access to a sanitization oracle, could potentially learn the bit b.

To address these concerns (and to give a definition of invisibility that also pro-
tects against dishonest signers), one can allow queries to the sanitization oracle
with public keys chosen by the adversary A. This approach leads to the definition
of strong invisibility. The main difference between the invisibility and the strong
invisibility experiments is that the adversary is allowed oracle queries to ÕLoR

and ÕSanit with adversarially chosen public keys. A sanitizable signature scheme



Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 211

secure in this stronger sense does not suffer from the flaw mentioned above. As
a side effect, the signing oracle derived from ÕLoR is no longer restricted. The
formal definition of (strong) invisibility is given in the full version [21].

3 Invisible Sanitizable Signatures Imply Public-Key
Encryption Schemes

In this section we show how to construct a public-key bit-encryption scheme
from an invisible sanitizable signature scheme.

3.1 Construction

Suppose that Alice wants to send a secret bit b ∈ {0, 1} to Bob, without an
adversary A being able to learn it. To do so, Bob publicly chooses a sanitizable
signature scheme SSS and a security parameter λ ∈ N, and generates a tuple
of public parameters pp←$ PGen(1λ). Observe that the block set B defined by
pp clearly must contain at least two elements—we will assume that {0, 1} ⊆ B,
but for other block sets the adjustment is straightforward. Moreover, we assume
that the two-block-messages (0, 0), (1, 0), (0, 1) belong to the message space M,
but again our construction can be easily modified should this not be the case.

Bob then generates a sanitizer key pair (pkSan, skSan)←$ KGenSan(pp), and
chooses a message m ∈ M consisting of two blocks, e.g. m = (0, 0). He sends
(pp,m, pkSan) to Alice over an unprotected channel, while skSan is kept secret.

Upon receiving (pp,m, pkSan), Alice runs (pkSig, skSig)←$ KGenSig(pp) to gen-
erate a signer key pair. Now, depending on whether she wants to encrypt b = 0
or b = 1, she signs the message m declaring as admissible the first or the second
block, respectively. She then sends the signature σ and her public key pkSig to
Bob, while skSig is kept secret.

Upon receiving (σ, pkSig), Bob tries to separately modify the first and the
second message block by replacing it with ‘1’. He thus sets MOD0 ← ({(1, 1)}, 2)
and MOD1 ← ({(2, 1)}, 2) and then computes σ′

0 ←$ Sanit(pp,m, σ, skSan, pkSig,
pkSan,MOD0) and σ′

1 ←$ Sanit(pp,m, σ, skSan, pkSig, pkSan,MOD1).
Now, assuming that SSS is sanitizing correct and immutable, exactly one of

the two signatures computed by Bob will be valid. If Alice has encrypted b = 0,
then σ′

0 will be valid with overwhelming probability (because of the sanitizing
correctness property), while σ′

1 will be either invalid or equal to ⊥ with very high
probability (because SSS is immutable). On the other hand, if Alice has chosen
b = 1, then σ′

1 will be valid and σ′
0 not by the same argument. In the unlikely

event that both signatures are valid or both are invalid, Bob cannot decrypt the
message sent by Alice.

We thus conclude that Bob is able to correctly decrypt the bit encrypted
by Alice with very high probability by sanitizing m twice and checking the
signatures (or error messages). Moreover, if we also assume SSS to be invisible,
then any adversary A will be able to learn b only with negligible probability.
In fact, from an outsider’s perspective learning b is equivalent to establishing



212 M. Fischlin and P. Harasser

which message block is admissible, which is highly unlikely by the invisibility
assumption.

We now turn to a more rigorous definition of our public-key bit-encryption
scheme, as well as to the statement of the correctness and security properties.

Construction 1. Let SSS := (PGen,KGenSig,KGenSan,Sign,Sanit,Verify,Proof,
Judge) be a sanitizable signature scheme. We define a public-key bit-encryption
scheme Π as in Fig. 1.

Fig. 1. Public-key bit-encryption scheme from an invisible sanitizable signature scheme

3.2 IND−CPA-Security

We now formally state our security results about the public-key bit encryption
scheme in Construction 1.

Theorem 2. Let SSS := (PGen,KGenSig,KGenSan,Sign,Sanit,Verify,Proof,
Judge) be a sanitizable signature scheme, and let Π := (PGen,KGen,Enc,Dec)
be the public-key bit-encryption scheme defined in Construction 1. If SSS is san-
itizing correct, immutable and invisible, then Π is correct and IND−CPA-secure.



Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 213

The proof gives a tight reduction in terms of the advantages: For any adver-
sary A playing the IND−CPA-game we construct an adversary B against the
invisibility game with roughly the same running time as A, such that

AdvIND−CPA
A,Π (λ) = AdvInv

B,SSS(λ).

Note that we need the immutability property only to bound the correctness error
by 2 ·AdvImm

C,SSS(λ) for some efficient adversary C against the immutability game.
The proof of Theorem 2 can be found in the full version [21].

3.3 IND−CCA2-Security

We next argue that the scheme above achieves IND−CCA2-security if SSS is
assumed to be strongly invisible. Recall that the difference to regular invisibility
is that now the adversary against strong invisibility can also make left-or-right
signature requests for (m, pk′

San,ADM0,ADM1) with different sanitizer public
keys pk′

San �= pkSan, and sanitization requests for (m,σ, pk′
Sig,MOD) with different

signer public keys pk′
Sig �= pkSig. Interestingly, for our construction and proof we

only rely on the latter property.
For the security proof we also need strong unforgeability of the sanitizable

signature scheme. The reason is that ciphertexts are of the form (σ, pkSig), and
the IND−CCA2-adversary may ask for decryptions of the form (σ′, pkSig) where
it alters the signature component for the same message. This would allow to
break the security of the encryption scheme easily.

Theorem 3. Let SSS := (PGen,KGenSig,KGenSan,Sign,Sanit,Verify,Proof,
Judge) be a sanitizable signature scheme, and let Π := (PGen,KGen,Enc,Dec)
be the public-key bit-encryption scheme defined in Construction 1. If SSS is san-
itizing correct, strongly unforgeable, immutable and strongly invisible, then Π is
correct and IND−CCA2-secure.

The proof also gives a tight reduction in terms of the advantages: For any
adversary A playing the IND−CCA2-game we construct adversaries B and C with
roughly the same running time as A, such that

AdvIND−CCA2
A,Π (λ) ≤ AdvSInv

B,SSS(λ) + 2 · AdvSUnf
C,SSS(λ).

In fact, for IND−CCA1-security regular unforgeability is sufficient. Once more, we
need immutability only to bound the correctness error. The proof of Theorem3
can be found in the full version [21].

4 Public-Key Encryption Implies Invisible Sanitizable
Signatures

In this section we present our construction of an invisible sanitizable signature
scheme, starting from a secure public-key encryption scheme.



214 M. Fischlin and P. Harasser

4.1 Construction

Our construction based on public-key encryption follows the established encode-
and-sign paradigm and exploits the idea of using chameleon hash functions and
signing the hash values with a regular signature scheme Σ (see, e.g., [2,5]). The
sanitizer can then find collisions for the hashes with the help of his trapdoor key,
allowing him to modify the message. Here, instead of chameleon hashes we use
the signature scheme Σ itself.

In our scheme, signatures consist of two parts: the “message” part ensures
the basic unforgeability and accountability properties, and can be created by
either of the two parties. In contrast, the “administrative” part contains the
information needed by the sanitizer to perform modifications, and can be created
only by the signer. Parts of the administrative information are encrypted under
an encryption scheme Π under the sanitizer’s public key, to ensure invisibility.

To begin with, the signer generates a key pair (pkΣ , skΣ) for Σ, while the san-
itizer creates keys (pk′

Σ , sk′
Σ) and (pkΠ , skΠ) for Σ and Π, respectively. To sign

a message m = (m[1], . . . ,m[�]), the signer generates a new key pair (pki
Σ , ski

Σ)
(1 ≤ i ≤ �) for each block of m, signs every block with the corresponding key,
and creates a tuple of signatures S := (σ1, . . . , σ�). He then generates a signature
σMSG of the message (0,m, S, pkSig, pkSan) under skΣ . Here, m and S are signed so
that they are protected from modification by outsiders, whereas pkSig, pkSan and
the initial bit ‘0’ are included for technical reasons (namely, domain separation).
The “message” part of the final signature σ then consists of (S, σMSG).

The first part of the signature must now be complemented with the informa-
tion required to sanitize the admissible parts of the message, and to verify the
signature. To this end, the signer generates the tuple KADM = (ski1

Σ , ski2
Σ , . . . )

containing the secret keys of the admissible blocks ij ∈ ADM (properly padded
to ensure a length-invariant encoding), and encloses it for the sanitizing party
via encryption under pkΠ . In addition, we also hide the parameter ADM (to
ensure invisibility) and the signer public key (in foresight of the strongly invis-
ible version of our result) in this encryption. In summary, the signer creates an
encryption C of (pkSan,KADM,ADM) under pkΠ and then, in order to prevent
changes in these administrative data, creates a (regular) signature σADM of the
message (1, pkSan, V, C). Here, V := (pk1Σ , . . . , pkl

Σ) contains the verification keys
for the single blocks, and again the initial bit ‘1’ is included for domain sepa-
ration reasons. The “administrative” part of the signature is then (V,C, σADM),
and the final signature is σ := (S, σMSG, V, C, σADM).

If the sanitizer receives a signature σ for a message m, he first checks the
validity of the signatures S, σMSG and σADM, and recovers ADM and the cor-
responding signing keys KADM by decrypting C. Then, given valid sanitizing
instructions m′ = MOD(m), he can update the “message” part of σ, leaving
the “administrative” part unchanged. He obtains S′ by substituting the relevant
entries in S with new signatures of the modified blocks under the corresponding
keys KADM, and updates σ′

MSG by re-signing (0,m′, S′, pkSig, pkSan) under sk′
Σ .

Finally, the sanitized signature for m′ is given by σ′ = (S′, σ′
MSG, V, C, σADM).



Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 215

Immutability of the scheme is achieved by the fact that the sanitizer does
not know the secret keys for the blocks he is not supposed to modify, and there-
fore cannot obtain suitable replacements for signatures in S. Observe that the
signature σMSG immediately ensures public accountability, since it serves as a
proof of who put the overall signature. This also implies that our scheme does
not achieve transparency. For technical reasons it neither supports unlinkability.

Remark 1. The above discussion presumes that some mild assumptions on Σ
and Π are satisfied, which we will henceforth assume to be in place. In par-
ticular, all signature keys must be of fixed length L (this can be achieved via
padding of the keys), and the message blocks, as well as the tuples of the form
(0,m, S, pkSig, pkSan) and (1, pkSan, V, C), must lie in the message space of Σ
(this is no restriction, because the signatures constructed in [33,35] support
messages of arbitrary polynomial length). Also, ADM must be encoded in a
length-invariant manner, and tuples of the form (pkSan,KADM,ADM) must lie
in the message space of Π (which can be achieved through hybrid encryption).

We now turn to a more rigorous definition of our sanitizable signature scheme,
as well as to the statement of the correctness and security results.

Fig. 2. Invisible sanitizable signature scheme from a public-key encryption scheme:
parameter generation, signer and sanitizer key generation, and signing algorithms.



216 M. Fischlin and P. Harasser

Fig. 3. Invisible sanitizable signature scheme from a public-key encryption scheme:
verification, sanitization, judge and proof algorithms.

Construction 4. Let Σ := (PGen,KGen,Sign,Verify) be a signature scheme and
Π := (PGen,KGen,Enc,Dec) a public-key encryption scheme. We define a sani-
tizable signature scheme SSS as in Figs. 2 and 3 above.

4.2 Security

The formal security statement for our construction is given in Theorem 5. Its
proof can be found in the full version [21].



Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 217

Theorem 5. If the signature scheme Σ is correct and unforgeable, and the
encryption scheme Π is correct, then the sanitizable signature scheme SSS in
Construction 4 is correct. If Σ is unforgeable and Π is IND−CPA-secure, then
SSS is unforgeable, immutable, private, publicly accountable, and invisible.

4.3 Achieving Strong Invisibility

In the previous sections we have shown that invisibility is equivalent to
IND−CPA-secure encryption, and that strong invisibility implies IND−CCA2-
secure encryption. Here we show that the latter implication also holds in the
other direction: If we use an IND−CCA2-secure encryption scheme in our con-
struction, then we get a strongly invisible sanitizable signature scheme.

Theorem 6. If the signature scheme Σ is correct and unforgeable, and the
encryption scheme Π is correct, then the sanitizable signature scheme SSS
in Construction 4 is correct. If Σ is unforgeable and Π is IND−CCA2-secure,
then SSS is unforgeable, immutable, private, publicly accountable, and strongly
invisible.

The proof of Theorem6 can be found in the full version [21].

5 Conclusions

Our results show that building invisible sanitizable signature schemes from one-
way functions alone is presumably hard, since deriving public-key encryption
from one-wayness in a black-box way is infeasible [27]. This is in contrast to
sanitizable schemes without the invisibility and transparency properties. Namely,
Brzuska et al. [6] gave a simple construction of a non-invisible, non-transparent
scheme based on regular signature schemes only.

An interesting open question concerns the minimal assumptions required
to achieve transparency for sanitizable signatures, independently of the question
regarding invisibility. It is possible to achieve all the common security properties,
except for transparency (and except for invisibility, of course), using one-way
functions alone [6,9]. Current constructions achieving transparency are based on
assumptions seemingly stronger than one-way functions, such as group signature
schemes [7], zero-knowledge proofs [22], or (chameleon) hash functions [3,10].
Finally, for a sanitizable signature scheme to be both transparent and invisible,
public-key encryption is at least necessary, as discussed here.

Acknowledgments. We thank the anonymous reviewers for their valuable comments
and suggestions. This work has been co-funded by the DFG as part of project P2 within
the CRC 1119 CROSSING.



218 M. Fischlin and P. Harasser

References

1. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 1–20. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28914-9 1

2. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In:
De Capitani di Vimercati, S., Syverson, P., Gollmann, D. (eds.) ESORICS 2005.
LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005). https://doi.org/10.
1007/11555827 10

3. Beck, M.T., Camenisch, J., Derler, D., Krenn, S., Pöhls, H.C., Samelin, K., Sla-
manig, D.: Practical strongly invisible and strongly accountable sanitizable sig-
natures. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10342, pp.
437–452. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60055-0 23

4. Brzuska, C., et al.: Redactable signatures for tree-structured data: definitions and
constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–
104. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-2 6

5. Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J.,
Schröder, D., Volk, F.: Security of sanitizable signatures revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00468-1 18

6. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Santizable signatures: how
to partially delegate control for authenticated data. In: BIOSIG 2009, pp. 117–128
(2009)

7. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of sanitizable
signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
444–461. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-
7 26

8. Brzuska, C., Pöhls, H.C., Samelin, K.: Non-interactive public accountability for
sanitizable signatures. In: De Capitani di Vimercati, S., Mitchell, C. (eds.) EuroPKI
2012. LNCS, vol. 7868, pp. 178–193. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40012-4 12

9. Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and perfectly unlinkable sanitizable
signatures without group signatures. In: Katsikas, S., Agudo, I. (eds.) EuroPKI
2013. LNCS, vol. 8341, pp. 12–30. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-53997-8 2

10. Camenisch, J., Derler, D., Krenn, S., Pöhls, H.C., Samelin, K., Slamanig, D.:
Chameleon-hashes with ephemeral trapdoors. In: Fehr, S. (ed.) PKC 2017. LNCS,
vol. 10175, pp. 152–182. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54388-7 6

11. Canard, S., Jambert, A.: On extended sanitizable signature schemes. In: Pieprzyk,
J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11925-5 13

12. Canard, S., Jambert, A., Lescuyer, R.: Sanitizable signatures with several sign-
ers and sanitizers. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012.
LNCS, vol. 7374, pp. 35–52. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31410-0 3

13. Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor sanitizable signatures and their
application to content protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A.,
Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-68914-0 16

https://doi.org/10.1007/978-3-642-28914-9_1
https://doi.org/10.1007/978-3-642-28914-9_1
https://doi.org/10.1007/11555827_10
https://doi.org/10.1007/11555827_10
https://doi.org/10.1007/978-3-319-60055-0_23
https://doi.org/10.1007/978-3-642-13708-2_6
https://doi.org/10.1007/978-3-642-00468-1_18
https://doi.org/10.1007/978-3-642-13013-7_26
https://doi.org/10.1007/978-3-642-13013-7_26
https://doi.org/10.1007/978-3-642-40012-4_12
https://doi.org/10.1007/978-3-642-40012-4_12
https://doi.org/10.1007/978-3-642-53997-8_2
https://doi.org/10.1007/978-3-642-53997-8_2
https://doi.org/10.1007/978-3-662-54388-7_6
https://doi.org/10.1007/978-3-662-54388-7_6
https://doi.org/10.1007/978-3-642-11925-5_13
https://doi.org/10.1007/978-3-642-31410-0_3
https://doi.org/10.1007/978-3-642-31410-0_3
https://doi.org/10.1007/978-3-540-68914-0_16


Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 219

14. Coretti, S., Maurer, U., Tackmann, B., Venturi, D.: From single-bit to multi-bit
public-key encryption via non-malleable codes. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 532–560. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6 22

15. Damg̊ard, I., Haagh, H., Orlandi, C.: Access control encryption: enforcing infor-
mation flow with cryptography. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS,
vol. 9986, pp. 547–576. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53644-5 21

16. de Meer, H., Pöhls, H.C., Posegga, J., Samelin, K.: On the relation between
redactable and sanitizable signature schemes. In: Jürjens, J., Piessens, F., Bielova,
N. (eds.) ESSoS 2014. LNCS, vol. 8364, pp. 113–130. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-04897-0 8

17. Demirel, D., Derler, D., Hanser, C., Pöhls, H.C., Slamanig, D., Traverso, G.:
Overview of functional and malleable signature schemes (PRISMACLOUD deliv-
erable d4.4). Technical report (2015)

18. Derler, D., Pöhls, H.C., Samelin, K., Slamanig, D.: A general framework for
redactable signatures and new constructions. In: Kwon, S., Yun, A. (eds.) ICISC
2015. LNCS, vol. 9558, pp. 3–19. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-30840-1 1

19. Derler, D., Slamanig, D.: Rethinking privacy for extended sanitizable signatures
and a black-box construction of strongly private schemes. In: Au, M.-H., Miyaji,
A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 455–474. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26059-4 25

20. Fehr, V., Fischlin, M.: Sanitizable signcryption: sanitization over encrypted data
(full version). Cryptology ePrint Archive, Report 2015/765 (2015). http://eprint.
iacr.org/2015/765

21. Fischlin, M., Harasser, P.: Invisible sanitizable signatures and public-key encryp-
tion are equivalent. Cryptology ePrint Archive, Report 2018/337 (2018). https://
eprint.iacr.org/2018/337

22. Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schröder, D.,
Simkin, M.: Efficient unlinkable sanitizable signatures from signatures with re-
randomizable keys. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y.
(eds.) PKC 2016. LNCS, vol. 9614, pp. 301–330. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49384-7 12

23. Ghosh, E., Goodrich, M.T., Ohrimenko, O., Tamassia, R.: Fully-dynamic verifiable
zero-knowledge order queries for network data. Cryptology ePrint Archive, Report
2015/283 (2015). http://eprint.iacr.org/2015/283

24. Ghosh, E., Ohrimenko, O., Tamassia, R.: Zero-knowledge authenticated order
queries and order statistics on a list. In: Malkin, T., Kolesnikov, V., Lewko, A.B.,
Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 149–171. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 8

25. Gong, J., Qian, H., Zhou, Y.: Fully-secure and practical sanitizable signatures. In:
Lai, X., Yung, M., Lin, D. (eds.) Inscrypt 2010. LNCS, vol. 6584, pp. 300–317.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21518-6 21

26. Hohenberger, S., Lewko, A., Waters, B.: Detecting dangerous queries: a new app-
roach for chosen ciphertext security. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 663–681. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-29011-4 39

27. Impagliazzo, R., Rudich, S.: Limits on the provable consequences of one-way per-
mutations. In: 21st ACM STOC, pp. 44–61 (1989)

https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-662-46494-6_22
https://doi.org/10.1007/978-3-662-53644-5_21
https://doi.org/10.1007/978-3-662-53644-5_21
https://doi.org/10.1007/978-3-319-04897-0_8
https://doi.org/10.1007/978-3-319-30840-1_1
https://doi.org/10.1007/978-3-319-30840-1_1
https://doi.org/10.1007/978-3-319-26059-4_25
http://eprint.iacr.org/2015/765
http://eprint.iacr.org/2015/765
https://eprint.iacr.org/2018/337
https://eprint.iacr.org/2018/337
https://doi.org/10.1007/978-3-662-49384-7_12
http://eprint.iacr.org/2015/283
https://doi.org/10.1007/978-3-319-28166-7_8
https://doi.org/10.1007/978-3-642-21518-6_21
https://doi.org/10.1007/978-3-642-29011-4_39


220 M. Fischlin and P. Harasser

28. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45760-7 17

29. Klonowski, M., Lauks, A.: Extended sanitizable signatures. In: Rhee, M.S., Lee,
B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006).
https://doi.org/10.1007/11927587 28

30. Krenn, S., Samelin, K., Sommer, D.: Stronger security for sanitizable signatures.
In: Garcia-Alfaro, J., Navarro-Arribas, G., Aldini, A., Martinelli, F., Suri, N. (eds.)
DPM/QASA -2015. LNCS, vol. 9481, pp. 100–117. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29883-2 7

31. Matsuda, T., Hanaoka, G.: An asymptotically optimal method for converting bit
encryption to multi-bit encryption. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 415–442. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48797-6 18

32. Myers, S., Shelat, A.: Bit encryption is complete. In: 50th FOCS, pp. 607–616
(2009)

33. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: 21st ACM STOC, pp. 33–43 (1989)

34. Pöhls, H.C., Samelin, K., Posegga, J.: Sanitizable signatures in XML signature —
performance, mixing properties, and revisiting the property of transparency. In:
Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 166–182. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21554-4 10

35. Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: 22nd ACM STOC, pp. 387–394 (1990)

36. Yum, D.H., Seo, J.W., Lee, P.J.: Trapdoor sanitizable signatures made easy. In:
Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 53–68. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-13708-2 4

https://doi.org/10.1007/3-540-45760-7_17
https://doi.org/10.1007/11927587_28
https://doi.org/10.1007/978-3-319-29883-2_7
https://doi.org/10.1007/978-3-319-29883-2_7
https://doi.org/10.1007/978-3-662-48797-6_18
https://doi.org/10.1007/978-3-662-48797-6_18
https://doi.org/10.1007/978-3-642-21554-4_10
https://doi.org/10.1007/978-3-642-13708-2_4


Delegatable Attribute-Based Anonymous
Credentials from Dynamically Malleable

Signatures

Johannes Blömer and Jan Bobolz(B)

Paderborn University, Paderborn, Germany
jan.bobolz@uni-paderborn.de

Abstract. We introduce the notion of delegatable attribute-based anony-
mous credentials (DAAC). Such systems offer fine-grained anonymous
access control and they give the credential holder the ability to issue
more restricted credentials to other users. In our model, credentials are
parameterized with attributes that (1) express what the credential holder
himself has been certified and (2) define which attributes he may issue
to others. Furthermore, we present a practical construction of DAAC.
For this construction, we deviate from the usual approach of embedding
a certificate chain in the credential. Instead, we introduce a novel app-
roach for which we identify a new primitive we call dynamically malleable
signatures (DMS) as the main ingredient. This primitive may be of inde-
pendent interest. We also give a first instantiation of DMS with efficient
protocols.

Keywords: Delegatable credentials · Anonymous credentials
Malleable signatures · Attribute-based credentials · Authentication

1 Introduction

In this paper, we construct delegatable attribute-based anonymous credentials
(DAAC) that offer fine-grained anonymous access control for many typical sce-
narios. For example, consider a company with the usual hierarchical organization
structure. We want the company owner to be able to grant appropriate access
rights to department managers. For this, he issues each of them a credential
with certain attributes encoding what rights the department manager has. The
department managers, in turn, should be able to grant appropriate subsets of
their rights to their staff by delegating a (weaker) version of their credential to
them. Then a staff member may want to grant access rights to her interns, etc.

This scenario could be trivially realized using certificate chains (similar to
the ones used in TLS): the company owner signs the public key of a department
manager alongside some string that encodes which attributes the manager has

This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Center “On-The-Fly Computing”(SFB 901).

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 221–239, 2018.
https://doi.org/10.1007/978-3-319-93387-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_12&domain=pdf


222 J. Blömer and J. Bobolz

and which ones he may delegate to his staff. Then the department manager can
extend the chain by signing a staff member’s public key, and so on.

However, our goal is to enable anonymity for authentication: An authorized
user requesting access to a resource should be indistinguishable from all other
users who have access to it. Still, the verifier, who is executing the authentication
checks, should be assured that only authorized users can pass them. Overall, we
have the following requirements:

R1. The verifier must not learn the sequence of delegations a user’s credential
went through.

R2. The verifier must only learn as much as necessary about the attributes of
the authenticating user or of any users involved in the delegation.

R3. A user must not be able to grant other users more rights/attributes than he
is allowed to.

R4. A user should not be able to pass the authentication checks without being
given an appropriate credential.

R5. Users shall remain anonymous while delegating and receiving a credential.

Most previous constructions of delegatable credentials [1,4,14] fulfill R1, R3,
R4 and R5. However, in those constructions the attributes of all users in the chain
are presented in plain to the verifier. This violates R2. A more recent scheme [6]
supports R1, R3, R4 and R2. However, in their construction, credential holders
see all attributes of the users in the delegation chain. This violates R5. In this
paper, we introduce the first construction of practical delegatable attribute-based
anonymous credentials that supports all five requirements.

Our Model of Delegatable Attribute-Based Anonymous Credentials. In DAAC,
users have a single secret key and can derive an arbitrary number of unlink-
able public keys (usually called pseudonyms). Users can issue credentials to
other users (also anonymously, if desired). A credential is parameterized with
a delegation flag d ∈ {0, 1}, which determines whether or not the credential is
delegatable, and an attribute vector (A1, . . . , An) ∈ (A ∪ {�})n for some set A

(e.g., A = Zp). Each Ai in the attribute vector either takes on a concrete value
from A, or the special value �, which can be interpreted as a placeholder that
can be replaced with an arbitrary A-value.

We define the covers relation on attribute vectors that will determine what
attributes the user can delegate and show. A vector (A1, . . . , An) covers another
vector (A′

1, . . . , A
′
n) (we write �A � �A′) if and only if (Ai �= �) ⇒ (A′

i = Ai) for
all i. This means that the placeholder � can be replaced with any concrete A

value (or � again), whereas concrete values from A cannot be changed.
Given a credential with delegation flag d = 1 and attribute-vector �A, a user is

able to issue a credential with any delegation flag d∗ ∈ {0, 1} and any attributes
�A∗ as long as �A � �A∗. A credential with delegation flag d = 0 cannot be
delegated any further. When showing a credential for an access policy φ (e.g.,
a Boolean formula over statements like “A2 = 13”), the user proves that his
attributes cover some concrete �A′ ∈ A

n for which φ( �A′) = 1. Note that it is
natural that whatever users can delegate, they can also show.



Delegatable Attribute-Based Anonymous Credentials 223

In the simplest case, each attribute Ai may just encode a Boolean access right
and users can delegate subsets of their access rights. In the concrete instanti-
ation based on Construction 11 in our paper, you can encode arbitrary ele-
ments of A = Zp (e.g., short strings) into credentials, hence our scheme can
realize more elaborate authentication scenarios. As a small example for this,
the state of California may issue San Francisco a delegatable credential like
�A = (�, �, San Francisco). This allows the city to delegate credentials with
attributes �A∗ = (John, Doe, San Francisco) to its citizens, but prohibits issu-
ing credentials encoding other cities.

When authenticating with a credential, the only information revealed to the
verifier is the root of the delegation chain (e.g., the company owner or the
state), a pseudonym of the authenticating user, and the fact that the credential’s
attributes fulfill some predicate.

Idea of Our Construction. We deviate from the usual way of constructing del-
egatable credentials and instead follow a novel approach. We identify a new
primitive we call dynamically malleable signatures (DMS) as the main ingre-
dient. DMS are similar to usual malleable signatures, but the set of allowed
transformations is specific to each signature and can be incrementally restricted
over time (“dynamic” refers to the fact that the set of allowed transformations is
not static but can be changed “at runtime” for each signature). More specifically,
the Sign algorithm takes some vector of messages (m1, . . . ,mn) and an index set
I ⊆ {1, . . . , n} as input and produces a signature σ and a malleability key mk .
The index set I determines which of the positions in the vector are malleable, i.e.
given σ and mk , anyone can derive a signature σ′ on any message (m′

1, . . . ,m
′
n)

as long as m′
i = mi for all i /∈ I. This process also yields a malleability key mk ′

for σ′, which can be restricted to allow further modification of σ′ only on some
(smaller) index set I ′ ⊆ I. In Sect. 5, we give an efficient construction of DMS
with supporting protocols. Our construction is based on the Pointcheval-Sanders
signature scheme [17] and it can be proven secure in the generic group model.

Using any secure DMS scheme with an efficient protocol to derive a signa-
ture on a committed value, we generically implement a DAAC as follows: With
some details omitted, a credential for a user with secret usk and attributes
�A = (15, 7, �, �) is a dynamically malleable signature on usk and �A. For each
� in �A, we instead sign 0. More formally, in this example we would sign
(m1, . . . ,m5) := (usk , 15, 7, 0, 0) and allow the receiver to use malleability on the
first index (to change usk when delegating) and the last two indices (to model
the �), i.e. I = {1, 4, 5}. Unforgeability of the signature scheme then guarantees
that this user cannot produce a credential whose first two attributes are not 15
and 7 (cf. requirement R3). If he wants to delegate attributes �A′ = (15, 7, 13, �)
to another user with secret key usk ′, the two parties engage in a protocol to
derive a signature on (usk ′, 15, 7, 13, 0) such that only the first and the last mes-
sage can be changed further, i.e. I ′ = {1, 5} ⊂ I. Note that the issuer’s usk or
his exact attributes are not part of the derived credential, immediately implying
R1. Our delegation protocol will also ensure R5. To mark the credential non-
delegatable (d = 0), the delegator can remove the first index from the index set,



224 J. Blömer and J. Bobolz

which precludes the receiver from changing the signature to any other secret key
usk ′′ �= usk ′. Showing the credential to a verifier follows standard procedure [15],
i.e. the user runs a zero-knowledge protocol to prove knowledge of a signature
on his user secret and on attributes fulfilling some policy (and that his user
secret is consistent with his pseudonym). The zero-knowledge property ensures
requirement R2 while the proof of knowledge property and the unforgeability of
the signature scheme ensures R4.

Related Work on Delegatable Credentials. Chase and Lysyanskaya introduced
the first anonymous delegatable credential system [8], which extended the idea
of anonymous credentials [9] to enable delegation. Later, Belenkiy et al. pub-
lished an elegant construction of delegatable credentials [4] and introduced for-
mal security requirements. In their paper, delegatable credentials are defined
through levels. Any user can publish a pseudonym pk root and issue a level L = 1
credential to another user. Then, a level L credential can be used to derive a
level L + 1 credential for another user. When showing a credential, the verifier
learns the root pseudonym pk root of the credential, the prover’s pseudonym pkL,
and the credential’s level L.

The construction of [4] allows users to attach public attributes to a creden-
tial when delegating, meaning that a level L credential is parameterized with
L attribute descriptions (A1, . . . , AL) ∈ ({0, 1}∗)L, where the issuer of the level
� ≤ L credential chooses A�. However, they do not describe a way to hide the
attributes of any user in the delegation chain, which weakens anonymity consid-
erably (cf. our requirement R2). Furthermore, there are no restrictions on the
attribute strings a delegator can add when delegating a credential (cf. require-
ment R3). Hence the burden of verifying plausibility of delegated attributes lies
with the verifier.

If we instantiate our generic construction of DAAC with our concrete DMS
scheme (Sect. 5), a credential with n attributes consists of at most n + 3 group
elements. In particular, the credential size is independent of the delegation chain
length. Using standard variants of Schnorr’s protocol, showing the credential
can be done very efficiently compared to [4], whose credentials are Groth-Sahai
proofs with size linear in the chain length. As a trade-off, we reach this level
of efficiency mainly by (1) not encoding the delegation chain into credentials
(which also precludes the feature of tracing the sequence of credential owners
using a trapdoor), and (2) leveraging a new ad-hoc algebraic assumption for the
construction of our concrete DMS scheme (there are delegatable credentials that
are secure under standard assumptions, e.g., DLIN [7]).

Most other constructions [1,7,14] also follow roughly the same techniques
as [4], i.e. using malleable proof systems (like Groth-Sahai) as a building block,
improving upon and generalizing the original idea. However, there do not seem
to be any constructions that improve upon their handling of (public) attributes.

More recently, Camenisch et al. published a delegatable credential system [6].
Their construction is very efficient and practical. They achieve this by allowing
credential holders to see all attributes on all levels in plain, i.e. not offering
anonymity for delegators. In many contexts, this is not a problem. However,



Delegatable Attribute-Based Anonymous Credentials 225

consider the example of a distributed car sharing scenario where the car owner
is issued a credential for his car. In a car-sharing fashion, he can delegate his
access rights to any other person. In this scenario, the car owner has no reason
to reveal his identity. Our construction shows that one does not have to sacrifice
support for such scenarios to achieve practicality: Namely, our scheme’s efficiency
is comparable to [6] while offering anonymity for delegators (R5).

Related Work on Malleable Signatures. Malleable signature schemes allow anyone
to transform a signature on a message m to be valid for a different message m′

for a well-defined set T of allowed transformations on m (e.g., [7]).
In contrast, our notion of DMS allows signers to choose transformation sets

Tσ on a per-signature basis, which can be further restricted to some subset Tσ′

when transforming σ to σ′.
The general idea for DMS is similar to homomorphic signatures like

[2,3,5,13]. In these constructions (mostly designed for network coding), a signer
effectively signs a vector space by signing its base vectors with a homomorphic
signature scheme. This allows computing signatures on any vector in the vector
space. Like DMS, homomorphic signature schemes allow to derive signatures
on related messages. However, the main feature of DMS is that one can derive
signatures that are more restricted than the original. Furthermore, one cannot
combine two restricted signatures to produce a signature on a message not cov-
ered by either of them.

2 Basics and Notation

For a random variable X, [X] := {x | Pr[X = x] > 0} is the support of X. With
X ← S, we denote that X is chosen uniformly at random from the set S. If
X and Y are identically distributed random variables, we write X ≈ Y . With
X ← A(y) we denote that X is generated by running the probabilistic algorithm
A on input y. The notation Pr[X1 ← S,X2 ← A(y,X1);φ(X1,X2)] denotes the
probability that the predicate φ(X1,X2) holds in the probability space described
by X1,X2. For a prime number p, Zp is the field of order p and Z

∗
p = Zp\{0}.

Definition 1. Let A,B be probabilistic interactive algorithms that halt on
every input. We write yA ← A(xA) ↔ B(xB) → yB to denote that A on input
xA interacts with B on input xB ; then A outputs yA and B outputs yB . Fur-
thermore, we define outputA[A(xA) ↔ B(xB)] to be the random variable taking
on yA, i.e. the output of A after interacting with B. �
Definition 2 (Protocols and signatures of knowledge). The expression
ZKAK [(w); (x,w) ∈ Ψ ] denotes a zero-knowledge argument of knowledge for
the relation Ψ . NIZK [(w); (x,w) ∈ Ψ ](m) denotes a signature of knowledge on
message m for the relation Ψ . �

Zero-knowledge arguments of knowledge can be implemented, for example,
using Damg̊ard’s technique [12] on Schnorr-like Σ protocols. Signatures of knowl-
edge can be implemented, for example, using the Fiat-Shamir heuristic.



226 J. Blömer and J. Bobolz

3 Delegatable Attribute-Based Anonymous Credentials

In this section, we define DAAC. Each credential is parameterized with a vector
�A = (A1, . . . , An) ∈ (A ∪ {�})n, a delegation flag d, and the root authority’s
pseudonym pk root.

To define what a user may do with his credential, we need the relation
“covers”. An attribute vector �A = (A1, . . . , An) ∈ (A ∪ {�})n covers another
attribute vector �A′ = (A′

1, . . . , A
′
n) ∈ (A ∪ {�})n if (Ai �= �) ⇒ (A′

i = Ai) for all
1 ≤ i ≤ n. In this case we write �A � �A′. Furthermore, we say that an attribute
vector �A ∈ (A∪{�})n covers a predicate φ : An → {0, 1} if it covers some vector
without � fulfilling φ, i.e. ∃ �A′ ∈ A

n : �A � �A′ ∧ φ( �A′) = 1. We write �A � φ.
Let cred be a credential with attributes �A, delegation flag d, and root author-

ity’s pseudonym pk root (we say that cred is rooted at pk root). With cred , the user
can do the following: (1) Prove possession of a pk root-rooted credential that cov-
ers some predicate φ, and (2) if d = 1, he can issue a derived credential still
rooted at pk root with attributes �A′ ∈ (A ∪ {�})n iff �A � �A′.

3.1 Formal Definition

Definition 3. A DAAC system consists of the following ppt algorithms:

Setup(1λ) → (pp, osk) generates public parameters pp and an opening key osk .
We assume an attribute universe A be to be encoded in pp.

KeyGen(pp) → (usk , id) generates a user secret usk and an identity id .
FormNym(pp, usk , 1n) → (pk , sk) generates a pseudonym pk and a pseudonym

secret sk such that credentials rooted at pk support n attributes.
Open(pp, osk , pk) = id is a deterministic algorithm that extracts an identity id

from the pseudonym pk .
CreateCred(pp, pk , sk) → cred creates a root credential, i.e. a delegatable cre-

dential with attributes (�, . . . , �) and delegation flag d = 1, rooted at pk .
DelegIssue(pp, pk root, usk , cred , �A∗, d∗, pk∗)

↔ DelegRcv(pp, pk root, �A∗, d∗, pk∗, sk∗, usk∗) → cred∗ is an interactive pro-
tocol with common input the root’s pseudonym pk root, the receiver’s pseudo-
nym pk∗, the attributes to be issued �A∗, and the delegation flag d∗ ∈ {0, 1}.
Additionally, the issuer gets his user secret usk as private input, as well as his
credential cred . Finally, the receiver gets his pseudonym secret sk∗ and user
secret usk∗ as private input. After the protocol, the receiver side outputs a
credential cred∗ or the failure symbol ⊥.

ShowProve(pp, pk root, pk , φ, sk , usk , cred) ↔ ShowVrfy(pp, pk root, pk , φ) → b is
an interactive protocol with common input the root’s pseudonym pk root, the
prover’s pseudonym pk , and a statement over attributes φ : An → {0, 1}. The
prover gets his pseudonym secret sk , his user secret usk , and his credential
cred as private input. The verifier outputs a bit b.



Delegatable Attribute-Based Anonymous Credentials 227

Furthermore, we require three helper predicates that enable simpler
correctness and security definitions: CheckPseud(pp, pk , sk , usk), CheckShow
(pp, pk root, pk , φ, sk , usk , cred), and CheckDeleg(pp, pk root, usk , cred , �A∗).

For correctness, we require that

– All pseudonyms (pk , sk) generated by FormNym(pp, usk , 1n) pass the check
CheckPseud. We call (pk , sk) that pass CheckPseud valid.

– For all (usk , id) ∈ [KeyGen(pp)] and valid (pk , sk): Open(pp, osk , pk) = id .
– ShowVrfy ↔ ShowProve succeeds if its input passes CheckShow and also

CheckPseud.
– In DelegIssue ↔ DelegRcv, if the protocols’ inputs pass CheckDeleg for

the issuer’s credential and CheckPseud for the receiver’s pseudonym, then
DelegRcv does not output the error symbol ⊥.

– Any output of DelegRcv(pp, pk root, �A∗, d∗, pk∗, sk∗, usk∗) is either ⊥ or a cre-
dential cred∗ that passes CheckShow(pp, pk root, pk

′, φ, sk ′, usk∗, cred∗) for all
�A∗ � φ. If d∗ = 1, it also passes CheckDeleg(pp, pk root, usk

∗, cred∗, �A′) for all
�A∗ � �A′.

– Root credentials cred ∈ [CreateCred(pp, pk root, sk root)] are universal, i.e. if
(pk , sk) are valid, then CheckShow(pp, pk root, pk , φ, sk , usk , cred) = 1 for all
satisfiable φ. Furthermore, CheckDeleg(pp, pk root, usk , cred , �A∗) = 1 for all
�A∗ ∈ (A ∪ {�})n. �

A more formal version of correctness can be found in the full version of this
paper.

The system is set up using Setup, and the special opener secret osk is given
to a trusted authority. Any user can join the system by simply calling KeyGen
to generate their own user secret usk and identity id . With the user secret, one
can generate any number of pseudonyms pk using FormNym. A user can declare
himself a credential-issuing authority by publishing one of his pseudonyms pk root

and creating a root credential with CreateCred which allows him to delegate
arbitrary credentials rooted at pk root. To delegate a credential, the delegator runs
DelegIssue while the receiver runs DelegRcv. To show a credential, a user runs
ShowProve while the verifier runs ShowVrfy. In case of abuse, the opener secret
osk can be used to extract the identity of a user from one of his pseudonyms.

Note the omission of a registration mechanism that prevents users from
repeatedly generating ephemeral identities to circumvent persecution by the
opener. A registration mechanism can be generically constructed from the cre-
dential system itself. We explain this in Sect. 3.2.

For security, we expect anonymity (users cannot be traced when showing,
delegating, or receiving credentials) and soundness (users cannot impersonate
other users or show credentials they have not been issued).

Definition 4 (Anonymity). A DAAC system Π has anonymity if there is
an ppt algorithm (pp, osk , td) ← Spp(1λ) whose output is such that (pp, osk)
is distributed exactly like Setup(1λ). Furthermore, there are ppt simulators
SShowProve,SDelegIssue,SDelegRcv such that no (unrestricted) A can distinguish
between interacting



228 J. Blömer and J. Bobolz

– with ShowProve(pp, pk root, pk , φ, sk , usk , cred) or with SShowProve(td , pk root,
pk , φ)

– with DelegIssue(pp, pk root, usk , cred , �A∗, d∗, pk∗) or SDelegIssue(td , pk root,
�A∗, d∗, pk∗, uskalt, credalt) for any uskalt, credalt that pass the CheckDeleg
(pp, pk root, uskalt, credalt, �A∗) check.

– with DelegRcv(pp, pk root, �A∗, d∗, pk∗, sk∗, usk∗) or SDelegRcv(td , pk root,
�A∗, d∗, pk∗).

Furthermore, for all ppt A there is a negligible function negl s.t. for all λ ∈ N,

Pr[(pp, osk , td) ← Spp(1λ), (usk0, id0), (usk1, id1) ← KeyGen(pp), b ← {0, 1},

b′ ← AOFormNym(·),OOpen(·)(1λ, pp, td , usk0, id0, usk1, id1); b = b′] ≤ 1/2 + negl(λ)

where OFormNym(1n) returns pseudonyms of usk b, it runs (pk , sk) ←
FormNym(pp, usk b, 1n) and returns pk . OOpen(pk) returns ⊥ if pk was previ-
ously output by OFormNym(·), otherwise returns Open(pp, osk , pk). �

A more formally rigorous definition can be found in the full version of this
paper. Our simulators get as input the simulation trapdoor td and the com-
mon public input of the simulated protocol. In addition, SDelegIssue gets any
uskalt, credalt (which can be completely uncorrelated to the actual delegator’s
usk , cred) as input to help with the simulation. The experiment in the last part
of the definition models a situation where the ppt algorithm A knows all secrets
except the opener’s osk . He interacts with one of two possible honest users (who
generated their usk honestly) and may request additional pseudonyms from that
unknown user. Additionally, A may use usk0, usk1 to create any situation it
wants for the two users. We allow A to query FormNym and Open oracles (with
the usual constraints) to try to learn information about the unknown user from
his pseudonyms. All other actions that A may want to make the unknown user
do (issue credentials, etc.), can be perfectly simulated by A without knowledge
of b. For this, we supply A with the simulation trapdoor td .

Definition 5 (Soundness). In the soundness experiment Expsoundness
Π,A (λ), the

challenger plays the role of an arbitrary number of honest users. The adversary
may internally set up any number of corrupted users.

The experiment begins with handing pp, osk to the adversary A. We allow
A to make honest users run FormNym and CreateCred, and to interact with
honest users running DelegIssue, DelegRcv, or ShowProve. Furthermore, A can
make honest users delegate credentials among themselves.

Eventually, A outputs a challenge (pk root, pk , φ). The experiment runs the
protocol ShowVrfy(pp, pk root, pk , φ) interacting with A. The experiment outputs
1 if ShowVrfy accepts and one of the following is true:

– The user or root issuer’s identity cannot be traced : Open(pp, osk , pk) =⊥ or
Open(pp, osk , pk root) =⊥.

– A was able to impersonate some honest user : Open(pp, osk , pk) = id ′ for
some honest user’s identity id ′.



Delegatable Attribute-Based Anonymous Credentials 229

– A was able to show a credential he did not receive: Open(pp, osk , pk root) = id ′

for some honest user’s id ′ and A never queried to receive a credential cred∗

on a pseudonym pk∗ such that: (1) cred∗ is rooted at pk root, (2) cred∗ has
attributes �A∗ � φ, and (3) cred∗ is marked delegatable or Open(pp, osk , pk) =
Open(pp, osk , pk∗).

A DAAC system Π is sound if for all ppt adversaries A there exists a negli-
gible function negl with Pr[Expsoundness

Π,A (λ) = 1] ≤ negl(λ) for all λ ∈ N. �
The complete experiment can be found in the full version of this paper.

The adversary’s win conditions imply that a credential with delegation flag
d = 0 can only be shown with a pseudonym that opens to the same identity as
the pseudonym used when receiving the credential. Note that even if d = 0, it
is always possible for a credential holder A to reveal his credential and his user
secret uskA to another user B (who can then show the credential somewhere
and gain access). However, users are discouraged from doing this because after
revealing uskA to B, B can perform (malicious) activities, which the opener
will then trace back to A. Hence A bears the risk of being made responsible for
B’s actions. For more details of how we propose applications use the security
guarantees of Definition 5 to enforce accountability, we refer to Sect. 3.2.

3.2 How to Deploy Delegatable Attribute-Based Anonymous
Credential Systems in Practice

In the following, we describe an example how an application would utilize DAAC
in practice. The system should be set up by a trusted authority (TA). The TA
runs (pp, osk) ← Setup(1λ), (uskTA, idTA) ← KeyGen(pp), (pkTA, skTA) ←
FormNym(pp, uskTA, 10). He then publishes pp and pkTA.

In order to join the system, a user generates (usk , id) ← KeyGen(pp). He
then approaches the TA to register in the system. For this, he sends one of
his pseudonyms pk to the TA and uses some mechanism to authenticate with
his real identity (e.g., physically showing a passport). The TA computes the
user’s id using Open(pp, osk , pk) and stores id alongside the user’s real identity
information. Then the TA uses the user’s pk to issue a non-delegatable (d = 0)
“master” credential credmaster.

Whenever the user introduces a new pseudonym pk ′ to some verifier, he
first shows the master credential by running ShowProve(pp, pkTA, pk ′, φ, sk ′, usk ,
credmaster) with the verifier. This ensures that the user indeed registered with
the TA and hence the TA will be able to trace his pseudonyms to his real
identity. If at some point the user breaks some rule within the application, the
verifier can approach the TA with pk ′, which the TA can trace to the user’s iden-
tity by computing Open(pp, osk , pk ′). This is because the soundness property
(Definition 5) ensures that the non-delegatable credential credmaster, which was
issued to pk , can be successfully shown only for pk ′ where Open(pp, osk , pk ′) =
Open(pp, osk , pk).

Of course, you may also want to ensure that users cannot be falsely accused
by verifiers for (malicious) actions they never committed. The application can



230 J. Blömer and J. Bobolz

enforce this by logging relevant actions and making a user certify each log entry
by issuing a credential to the verifier whose attributes encode the log entry.
This credential (rooted at the user’s pseudonym pk ′) can be used by the verifier
to prove to the TA that pk ′ indeed executed the logged action. Honest users
cannot be falsely accused anymore because the soundness property (Definition 5)
prohibits forging/showing a credential rooted at a pseudonym that traces to
an honest user. The user’s privacy when issuing the credential to the verifier
is still guaranteed because the anonymity property (Definition 4) guarantees
anonymity not only for the receiver of a credential, but also for the issuer. Note
that the TA may still lie about the identity that Open(pp, osk , pk ′) outputs.
This can be prevented with standard techniques, e.g., by making the TA prove
non-interactively that the claimed identity is indeed output by Open.

4 Dynamically Malleable Signatures with Efficient
Protocols

For our construction of DAAC, we introduce dynamically malleable signatures
(DMS) as a building block. As explained in the introduction, a DMS is a mal-
leable signature where the set of allowed transformations on the signed message
can be incrementally restricted. We first define DMS, then define related proto-
cols that are used in our DAAC construction.

4.1 Definition

A DMS is accompanied by a malleability key mk and parameterized with an
index set I. We describe malleability through a relation ≡I , which depends on
I. Namely, using mk , a message �m can be changed into a message �m′ iff �m ≡I �m′.
We remark that our definitions (syntax and security) for DMS apply to arbitrary
equivalence relations ≡I and arbitrary index sets I satisfying I ′ ⊆ I ⇒≡I′⊆≡I ,
i.e. restricting I restricts the malleability relation. However, in this paper, we
are going to use the following concrete relation ≡I .

Definition 6. Let I ⊆ {1, . . . , n} be an index set. We define ≡I by

(m1, . . . ,mn) ≡I (m′
1, . . . ,m

′
n) ⇔ ∀i /∈ I : mi = m′

i .

�
This means that malleability of DMS is restricted so that exactly the messages
at indices present in I can be modified. A DMS is called dynamically malleable
because given any signature σ and malleability key mk with index set I, one can
efficiently compute σ′,mk ′ with index set I ′ ⊆ I. We now formally define DMS.

Definition 7 (Dynamically malleable signatures). A DMS scheme consists
of the following (probabilistic) polynomial-time algorithms:



Delegatable Attribute-Based Anonymous Credentials 231

Setup(1λ) → pp for security parameter λ outputs public parameters pp. We
assume that the message space M can be inferred from pp and that |pp| ≥ λ.

KeyGen(pp, 1n) → (pk , sk) for n ∈ N outputs a key pair (pk , sk).
Sign(pp, sk , �m, I) → (σ,mk) for a message vector �m ∈ Mn and an index set I

outputs a signature σ and a malleability key mk .
Transform(pp, �m, �m′, σ,mk , I ′) → (σ′,mk ′) on input a signature σ on �m outputs

a signature σ′ and a malleability key mk ′ for �m′, I ′.
Vrfy(pp, pk , �m, σ) = b is a deterministic algorithm that outputs a bit.
VrfyMk(pp, pk , �m, σ,mk , I) = b is a deterministic algorithm that outputs a bit.

A DMS scheme is correct if for all λ, n ∈ N, all pp ∈ [Setup(1λ)], all (pk , sk) ∈
[KeyGen(pp, 1n)], all �m ∈ Mn and index sets I ⊆ {1, . . . , n}:

– Pr[(σ,mk) ← Sign(pp, sk , �m, I); Vrfy(pp, pk , �m, σ) = VrfyMk(pp, pk , �m, σ,
mk , I) = 1] = 1 (signatures and malleability keys from Sign are accepted
by the verification algorithms)

– Pr[(σ′,mk ′) ← Transform(�m, �m′, σ,mk , I ′); Vrfy(pp, pk , �m′, σ′) = VrfyMk
(pp, pk , �m′, σ′,mk ′, I ′) = 1] = 1 for all �m′ ≡I �m, I ′ ⊆ I, and all (σ,mk) with
VrfyMk(pp, pk , �m, σ,mk , I) = 1. (signatures and malleability keys derived
from Transform are accepted by the verification algorithms). �
Note that our definition implies that any signature/malleability key created

with Transform can again be input to Transform to further change the message
or weaken the malleability key. Also note that we model both Vrfy and VrfyMk
as the former may be more efficient.

We now define security for DMS. We expect (1) derivation privacy: signatures
derived with mk are indistinguishable from signatures freshly created with sk
and (2) unforgeability: an adversary cannot produce a signature that cannot be
legally derived from oracle-queried signatures. For derivation privacy, we demand
perfect derivation privacy for simplicity.

Definition 8 (Perfect derivation privacy). A DMS scheme S is perfectly
derivation private if for all λ, n ∈ N, all pp ∈ [Setup(1λ)], all pk , σ,mk ,
all �m, �m′ ∈ Mn, and all index sets I, I ′ with �m′ ≡I �m, I ′ ⊆ I, and
VrfyMk(pp, pk , �m, σ,mk , I) = 1, it holds that (1) ∃sk with (pk , sk) ∈
[KeyGen(pp, 1n)], and (2) for all sk such that (pk , sk) ∈ [KeyGen(pp, 1n)],
Transform(�m, �m′, σ,mk , I ′) ≈ Sign(pp, sk , �m′, I ′) �

The first item (that for each pk accepted by VrfyMk, there exists a corre-
sponding sk) is a somewhat technical requirement. Without this requirement, it
may happen that someone receives valid σ,mk from an untrusted source for a
public key pk for which there exists no corresponding sk . In this case the premise
(pk , sk) ∈ [KeyGen(pp, 1n)] of the second item does not apply and hence any
signatures σ′ derived from σ,mk would be allowed to be easily traced back to σ.

For the second property, unforgeability, we simply weaken the standard EUF-
CMA definition for digital signatures such that signatures that can be legally
derived using Transform are not considered forgeries anymore. Note that for
simplicity, we only define unforgeability for perfectly derivation private schemes.



232 J. Blömer and J. Bobolz

Definition 9 (Unforgeability). Consider the experiment SigForgeΠ,A(λ, n)
for a DMS scheme Π and an adversary A:

– pp ← Setup(1λ), (pk , sk) ← KeyGen(pp, 1n). A is given pp, pk and oracle
access to Sign(pp, sk , ·, ·).

– Eventually A outputs �m∗, σ∗. The experiment outputs 1 iff Vrfy(pp, pk ,
�m∗, σ∗) = 1 and A never made a query Sign(pp, sk , �m′, I ′) where �m∗ ≡I′ �m′.

A perfectly derivation private DMS scheme Π is unforgeable if for all poly-
nomials p and all ppt A there is a negligible function negl such that for all λ ∈ N

and n ≤ p(λ), Pr[SigForgeΠ,A(1λ, 1n) = 1] ≤ negl(λ). �
For perfectly derivation private schemes, the output of Transform is dis-

tributed the same as the output of Sign. Hence there is no need to give A
explicit access to a Transform oracle. Furthermore, note that the definition can
be fulfilled by schemes where a signature σ can be modified even without a cor-
responding malleability key mk . Consequently, the distinction between σ and
mk is somewhat arbitrary – one may just as well merge mk into σ. However,
note that mk is not required as input to Vrfy; hence we keep the distinction for
the sake of intuition and potential efficiency gains.

4.2 Deriving a Signature on a Committed Message

For our construction of DAAC, we will require a protocol for deriving a sig-
nature on a hidden committed message. The setting for the protocol is the
following: The issuer holds a signature σ on a message �m = (m1, . . . ,mn)
and corresponding malleability key mk for index set I. For i ∈ I and
I∗ ⊆ I and a message m∗, the receiver wants to obtain the output of
Transform(pp, �m, (m1, . . . ,mi−1,m

∗,mi+1, . . . ,mn), σ,mk , I∗) without reveal-
ing his m∗. For this, the receiver commits to m∗, then both parties engage
in a protocol to jointly compute Transform.

Definition 10 (Deriving a signature on a committed value). A scheme
for deriving a signature on a committed value consists of two ppt algorithms and
two interacting algorithms:

BlindInit(σ,mk , �m, i) → (K, k) on input a signature σ on �m, an index i, and
a corresponding malleability key mk , outputs a key K for the commitment
scheme and some secret information k.

Commit(K,m∗, r) → C takes as input a key K, a message m∗ and some ran-
domness r, and outputs a commitment C.

BlindIssue(σ,mk , �m, i, I∗, k, C) on input a signature σ on �m, an index set I∗, a
malleability key mk , a commitment C, an index i, and the secret k, interacts
with BlindRcv.

BlindRcv(m∗, i, I∗,K,C, r) → (σ∗,mk∗) on input a message m∗, an index i, an
index set I∗, a commitment C for key K and its randomness r, interacts with
BlindIssue and outputs a signature σ∗ and a malleability key mk∗.



Delegatable Attribute-Based Anonymous Credentials 233

The public parameters pp and the public key under which the issuer’s signature
is valid are considered implicit input to all the algorithms above.

Such a protocol is correct if for all m∗ ∈ M , all σ,mk valid on �m with index set
I, all i ∈ I, and all I∗ ⊆ I, the result (σ∗,mk∗) of BlindRcv(m∗, i, I∗,K,C, r) ↔
BlindIssue(σ,mk , �m, i, I∗, k), where C = Commit(K,m∗, r), is a valid signature
(and malleability key) on (m1, . . . ,mi−1,m

∗,mi+1, . . . ,mn). �
In this scenario, the issuer would use BlindInit to create a commitment key K.
He then sends K to the receiver, who uses it to commit to his message m∗. Then
both parties engage in the BlindIssue ↔ BlindRcv protocol, which yields the
signature and malleability key for the receiver.

In our credential system construction, we are going to make the receiver
prove something about the message m∗ that he committed to. For this reason,
the commitment process is made explicit in this definition as opposed to hiding
it in the implementation details of the BlindRcv ↔ BlindIssue protocol.

For the security of such a protocol, we require security for the receiver and for
the issuer. Security for the receiver requires that (1) the commitment scheme is
perfectly hiding, and (2) runs of BlindRcv for two distinct committed messages
are perfectly indistinguishable for the issuer. Security for the issuer requires
that (1) the distribution of the commitment key K is independent of the issuer’s
concrete σ,mk and �m, and (2) the receiver only learns a single signature. We
detail these requirements formally in the full version of this paper.

5 Construction of Dynamically Malleable Signatures
Based on Pointcheval-Sanders Signatures

Our construction is an extension of Pointcheval-Sanders signatures [17].
The Setup,KeyGen,Vrfy algorithms below are exactly the same as in the

original Pointcheval-Sanders signature scheme, as are the signatures produced by
Sign. We extend the Sign algorithm to output a malleability key and we add the
VrfyMk and Transform algorithms. The main observation for our construction
is that a signature (h, hx+

∑
yimi) on (m1, . . . ,mn) can be made malleable at

position i by adding hyi to the malleability key.

Construction 11 (DMS scheme).

Setup(1λ) generates a bilinear group G = (G1,G2,GT, e, p) of prime order p ≥
2λ. It outputs pp = G. The message space is M = Zp.

KeyGen(pp, 1n) chooses random generator g̃ ← G2. It then chooses random
x, y1, . . . , yn ← Zp. The secret key is sk = (x, y1, . . . , yn) and the public key
is pk = (g̃, g̃x, g̃y1 , . . . , g̃yn). It outputs (pk , sk).

Sign(pp, sk ,m1, . . . ,mn, I) chooses h ← G1\{1}. It then computes σ =
(h, hx+

∑
i yimi) and mk = (hyi)i∈I . It outputs (σ,mk).

Vrfy(pp, pk , �m, σ) parses σ as (h, σ2), pk as (g̃, g̃x, g̃y1 , . . . , g̃yn), and returns 1
iff h �= 1 and e(h, g̃x · ∏n

i=1(g̃
yi)mi) = e(σ2, g̃).



234 J. Blömer and J. Bobolz

VrfyMk(pp, pk , �m, σ,mk , I) checks Vrfy(pp, pk , �m, σ) != 1 and outputs 0 if the
check does not pass. It parses σ as (h, σ2) and mk as (hi)i∈I . Then it returns
1 iff e(hi, g̃) = e(h, g̃yi) for all i ∈ I.

Transform(�m, �m′, σ,mk , I ′) parses σ as (h, hx+
∑

i yimi) and mk as (hyi)i∈I
1. It

aborts if VrfyMk(pp, pk , �m, σ,mk , I) �= 1 or I ′ �⊆ I or �m �≡I �m′. Otherwise it
chooses r ← Z

∗
p and computes

σ′ = (hr, (hx+
∑

i yimi ·
∏

i∈I

(hyi)m′
i−mi)r) and mk ′ = ((hyi)r)i∈I′ .

It outputs (σ′,mk ′). �
One can easily check that our scheme fulfills the correctness requirements (Def-
inition 7). Furthermore, Transform clearly produces signatures with the same
distribution as Sign since hr is uniformly distributed over G1\{1} and the second
signature component as well as mk are uniquely determined by that choice. Con-
sequently, the scheme is perfectly derivation private (Definition 8). The scheme
can be proven unforgeable in the generic group model.

Theorem 12 (Unforgeability). Construction 11 is unforgeable in the generic
group model for type-3 bilinear groups.

The proof is straight-forward and very similar to other generic group model
proofs (e.g., [17]). It can be found in the full version of this paper.

As noted above, for our construction of DAAC, we need an efficient protocol
for deriving a signature on a committed value (cf. Definition 10). A protocol
for signing a committed value for the original signature scheme was given in
[17]. Our protocol is similar, with some changes to account for transforming an
existing signature instead of creating new one, and to account for privacy of the
issuer (which was not a requirement before). The commitment scheme we use is
essentially Pedersen’s commitment [16], but we derive the commitment key from
the issuer’s signature.

Construction 13 (Deriving a signature on a committed value).

BlindInit(σ,mk , �m, i) parses σ as (h, σ2) ∈ (G1\{1}) × G1 and mk = (hyj )j∈I .
It chooses k ← Z

∗
p. It sets K = ((hyi)k, hk) and outputs (K, k).

Commit(K,m, r) parses K as (hyik, hk) ∈ G1 × (G1\{1}) and interprets r as an
element of Zp. It outputs the commitment C = (hyik)m · (hk)r.

BlindRcv(m∗, i, I∗,K,C, r) ↔ BlindIssue(σ,mk , �m, i, I∗, k, C) works as follows:
BlindIssue parses σ as (h, σ2) and mk as (hyi)i∈I , chooses a random u ← Z

∗
p

and computes (σ′
1, σ

′
2) = (hku, (σk

2 ·(hyi)−kmi ·C)u). It sends (σ′
1, σ

′
2) together

with mk ′ = ((hyj )ku)j∈I∗ to the receiver. BlindRcv then unblinds (σ′
1, σ

′
2) as

σ∗ = (σ∗
1 , σ

∗
2) = (σ′

1, σ
′
2 · (σ′

1)
−r). BlindRcv outputs (σ∗,mk ′). �

The proof of security for this construction is straight-forward and can be found
in the full version of this paper.
1 VrfyMk guarantees that the signature and the malleability key have this specific

form.



Delegatable Attribute-Based Anonymous Credentials 235

6 Constructing Delegatable Attribute-Based Anonymous
Credentials from Dynamically Malleable Signatures
with Efficient Protocols

We now construct DAAC from a DMS scheme with efficient protocols. The
general construction idea is similar to the generic construction of (attribute-
based) credential systems without delegation [15], but using DMS instead of
standard signatures essentially allows adding the delegation feature. We define
the following notation:

Definition 14. Let H be a hash function. For �A ∈ (A ∪ {�})n, d ∈ {0, 1}, usk ,
and pk root, we define

– �m( �A,usk ,pkroot) := (m1, . . . ,mn, usk ,H(pk root)), where mi = Ai if mi ∈ A, and
mi = 0 if Ai = � (where 0 ∈ M denotes some constant).

– I(d, �A) := {i | Ai = � ∨ (i = n + 1 ∧ d = 1)} ⊆ {1, . . . , n + 2} �

We will also use the special case �m( �A,0,pkroot), which is the same as above but with
the user secret set to the constant 0 ∈ M . In our construction, the predicates
CheckPseud, CheckShow, and CheckDeleg from Definition 3 can be evaluated
in polynomial time and we are going to use them in the algorithm descriptions.

With some details omitted, our construction is going to work as follows: A
credential for user usk rooted at pk root with attribute vector �A and delegation
flag d will be a dynamically malleable signature on �m( �A,usk ,pkroot) with index
set I(d, �A). To delegate a credential, the issuer needs to derive a signature on the
receiver’s usk without being given usk itself. For this, we use a protocol for deriv-
ing a signature on a committed value (cf. Definition 10). Showing the credential
consists of the user proving possession of usk and a signature with attributes
fulfilling some predicate φ, such that usk is both within his pseudonym and the
signature. The identity of a user with key usk will be id = f(usk) for some
one-way function f . Then, following standard techniques, a user’s pseudonym is
an encryption c of id . For issuing credentials, each pseudonym also contains a
signature scheme key pkS and a signature of knowledge binding the encryption
c and pkS together.

Construction 15 (Generic construction of delegatable attribute-based
anonymous credentials). Let S = (SetupS ,KeyGenS ,SignS ,TransformS ,
VrfyS) be a DMS scheme with (BlindInitS ,BlindIssueS ,BlindRcvS ,CommitS)
for deriving a signature on a committed value. Let E = (SetupE ,KeyGenE ,
EncryptE ,DecryptE) be a public-key encryption scheme. Let OW = (SetupOW ,
GenFnctOW) be a one-way function scheme. Let H be a (collision-resistant) hash
function (usage hidden within the �m(... ) notation, cf. Definition 14).

We require that SetupS = SetupE = SetupOW =: Setup. We denote the
(finite) message spaces of S and E as MS and ME , respectively (they may
depend on the output of Setup) and require that functions f ∈ [GenFnctOW(pp)]
bijectively map between the message spaces for the signature and encryption



236 J. Blömer and J. Bobolz

scheme, i.e. f : MS → ME . Furthermore, the hash function must hash to MS ,
i.e. H : {0, 1}∗ → MS . The scheme consists of the following algorithms:

Setup(1λ) runs ppS,E,OW ← Setup(1λ), (pkE , skE) ← KeyGenE(ppS,E,OW), and
f ← GenFnctOW(ppS,E,OW). It outputs pp = (ppS,E,OW , pkE , f) and the
opening key osk = skE . The attribute universe A is MS .

KeyGen(pp) chooses usk ← MS and sets id = f(usk). It returns (usk , id).
FormNym(pp, usk , 1n) generates keys (pkS , skS) ← KeyGenS(ppS,E,OW , 1n+2).

It encrypts usk as c = EncryptE(pkE , f(usk); r′) using fresh randomness r′. It
then creates a signature of knowledge on pkS and c proving that it can open c:
γ = NIZK [(usk , r′); c = EncryptE(pkE , f(usk); r′)](pkS , c). The pseudonym
is pk = (pkS , c, γ) and the secret is sk = (skS , r′, usk). It outputs (pk , sk).

Open(pp, osk , pk) parses pk as (pkS , c, γ), checks γ (outputs ⊥ and aborts if the
check fails), then it runs and outputs DecryptE(skE , c).

CreateCred(pp, pk , sk) runs (σ,mk) ← SignS(skS , �m((�,...,�),usk ,pk), I(1,(�,...,�))).
It outputs cred = (σ,mk , (�, . . . , �), d = 1)

DelegIssue(pp, pk root, usk , cred , �A∗, d∗, pk∗) ↔ DelegRcv(pp, pk root, �A∗, d∗, pk∗,
sk∗, usk∗) works as follows:
1. The issuer checks CheckDeleg(pp, pk root, usk , cred , �A∗) != 1 and parses

cred as (σ,mk , �A, d).
2. The receiver checks CheckPseud(pp, pk∗, sk∗, usk∗) != 1.
3. The issuer prepares an anonymized delegatable credential by running

(σ′,mk ′) ← Transform(pp, �m( �A,usk ,pkroot), �m( �A∗,0,pkroot), σ,mk , I(1, �A∗)).
4. If d∗ = 1, the issuer simply hands (σ′,mk ′) to the receiver. Then the

receiver changes the signature to his user secret by running (σ∗,mk∗) ←
Transform(pp, �m( �A∗,0,pkroot), �m( �A∗,usk∗,pkroot), σ′,mk ′, I(d

∗, �A∗))
5. If d∗ = 0, we write pk root = (pkS,root, croot, γroot). Then

(a) the issuer runs (K, k) ← BlindInitS(σ′,mk ′, �m( �A∗,0,pkroot), n + 1),
sends K to the receiver.

(b) the receiver computes C ← CommitS(K, usk∗, r) for some random r,
sends C to the issuer, and then runs a zero knowledge argument of
knowledge with the issuer, proving he can open the commitment and
his pseudonym pk∗ = (pk∗

S , c∗, γ∗) to his user secret (using r′ and
usk∗ from sk∗ = (sk∗

S , r′, usk∗)):

ZKAK [(usk∗, r, r′);C = CommitS(K, usk∗, r)
∧ c∗ = EncryptE(pkE , f(usk∗); r′)]

(c) if the ZKAK protocol accepts, then the issuer runs the proto-
col BlindIssueS(σ′,mk ′, �m( �A∗,0,pkroot), n + 1, I(d

∗, �A∗), k, C), while the
receiver runs (σ∗,mk∗) ← BlindRcvS(usk∗, n + 1, I(d

∗, �A∗),K,C, r)).
6. The receiver checks VrfyMkS(pkS,root, �m( �A∗,usk∗,pkroot), σ∗,mk∗, I(d

∗, �A∗))
!= 1. If the check fails, it outputs ⊥, otherwise it outputs cred∗ :=
(σ∗,mk∗, �A∗, d∗).



Delegatable Attribute-Based Anonymous Credentials 237

ShowVrfy(pp, pk root, pk , φ) ↔ ShowProve(pp, pk root, pk , φ, sk , usk , cred) : Parse
pk root = (pkS,root, ·, ·), pk = (·, c, ·) and sk = (skS , r′, usk).

1. The prover checks CheckShow(pp, pk root, pk , φ, sk , usk , cred) != 1.
2. The prover parses cred = (σ,mk , �A, d) and computes some �A′ ∈ A

n with
�A′ � �A and φ( �A′) = 1.2

3. Prover runs (σ′,mk ′) ← Transform(pp, �m( �A,usk ,pkroot), �m( �A′,usk ,pkroot),
σ,mk , I) with I = ∅.

4. The prover runs the following black-box zero-knowledge argument of
knowledge protocol with the verifier:

ZKAK [(usk , r′, σ′, �A′);VrfyS(pkS,root, �m( �A′,usk ,pkS,root), σ′) = 1

∧ φ( �A′) = 1 ∧ c = EncryptE(pkE , f(usk); r′)]

The checker predicates required by Definition 3 are as follows. We denote
them as algorithms because in our case the predicates are polynomial-time com-
putable.

CheckPseud(pp, pk , sk , usk) outputs 1 if and only if pk = (pkS , c, γ) and sk =
(skS , r′, usk) such that c = EncryptE(pkE , f(usk); r′) and γ is valid signature
of knowledge for NIZK [(usk , r′); c = EncryptE(pkE , f(usk); r′)](pkS , c).

CheckShow(pp, pk root, pk , φ, sk , usk , cred) outputs 1 iff CheckPseud(pp, pk , sk ,

usk) = 1, and pk root = (pkS,root, croot, γroot), cred = (σ,mk , �A, d) such

that �A � φ, VrfyMkS(pkS,root, �m( �A,usk ,pkroot), σ,mk , I(d, �A)) = 1, and γroot
is a valid signature of knowledge NIZK [(usk root, rroot); croot = EncryptE
(pkE , f(usk root); rroot)](pkS,root, croot)

CheckDeleg(pp, pk root, usk , cred , �A∗) outputs 1 if and only if pk root =
(pkS,root, croot, γroot), and cred = (σ,mk , �A, d) such that γroot is a
valid signature of knowledge with respect to NIZK [(usk root, rroot); croot =
EncryptE(pkE , f(usk root); rroot)](pkS,root, croot), and d = 1, �A � �A∗, and
VrfyMkS(pkS,root, �m( �A,usk ,pkroot), σ,mk , I(d, �A)) = 1 �

Note that parameters for the argument of knowledge, signature of knowledge,
and the hash function H also need to be part of the public parameters pp, but
we abstract from the details here.

One can instantiate this construction in a type-3 bilinear group setting, i.e.
Setup generates a bilinear group G = (G1,G2,GT, e, p) of prime order p. You
can use the DMS scheme and its protocol from Sect. 5 for S, and Cramer-Shoup
encryption [11] in G1 for E . Then MS = Zp and ME = G1, so the bijective one-
way function OW can simply be x �→ gx. In this setting, the statements in the
zero-knowledge arguments of knowledge fall into the prove knowledge of expo-
nents category. Hence they can be easily constructed from Schnorr-like Σ pro-
tocols together with Damg̊ard’s technique [12] (using Pedersen’s commitment)

2 We assume that the set of valid φ allows an efficient computation of such an �A′, e.g,.
φ is given in disjunctive normal form, or n is upper-bounded by some constant nmax.



238 J. Blömer and J. Bobolz

to make it concurrent black-box zero-knowledge. To enable arbitrary Boolean
formulas for policies φ, one can combine the Σ protocol with proofs of partial
knowledge [10]. For the signatures of knowledge, you can use Schnorr-like pro-
tocols with the Fiat-Shamir heuristic.

Theorem 16 (Security of the generic construction). If E is correct and
CCA-secure, S is correct (Definition 7), unforgeable (Definition 9) and perfectly
derivation private (Definition 8) with secure protocol for deriving a signature
on a committed value, OW is a secure one-way function scheme, and H is a
collision-resistant hash function, then Construction 15 is correct (Definition 3),
anonymous (Definition 4), and sound (Definition 5).

A sketch of the proof can be found in the full version of this paper.

References

1. Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. In: Cata-
lano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp.
423–440. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-
8 26

2. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on authenticated data. J. Cryptol. 28(2), 351–395 (2015)

3. Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the stan-
dard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011.
LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19379-8 2

4. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 7

5. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68–87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00468-1 5

6. Camenisch, J., Drijvers, M., Dubovitskaya, M.: Practical UC-secure delegatable
credentials with attributes and their application to blockchain. In: CCS, pp. 683–
699. ACM (2017)

7. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures:
new definitions and delegatable anonymous credentials. In: CSF 2014, pp. 199–213.
IEEE (2014)

8. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5

9. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030–1044 (1985)

10. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

https://doi.org/10.1007/978-3-642-19379-8_26
https://doi.org/10.1007/978-3-642-19379-8_26
https://doi.org/10.1007/978-3-642-19379-8_2
https://doi.org/10.1007/978-3-642-19379-8_2
https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19


Delegatable Attribute-Based Anonymous Credentials 239

11. Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0055717

12. Damg̊ard, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6 30

13. Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic
framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697–714. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8 41

14. Fuchsbauer, G.: Commuting signatures and verifiable encryption and an applica-
tion to non-interactively delegatable credentials. IACR Cryptology ePrint Archive
2010/233 (2010). http://eprint.iacr.org/2010/233

15. Lysyanskaya, A.: Signature schemes and applications to cryptographic protocol
design. Ph.D. thesis, Massachusetts Institute of Technology (2002). http://groups.
csail.mit.edu/cis/theses/anna-phd.pdf

16. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

17. Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K. (ed.)
CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-29485-8 7

https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-45539-6_30
https://doi.org/10.1007/978-3-642-30057-8_41
https://doi.org/10.1007/978-3-642-30057-8_41
http://eprint.iacr.org/2010/233
http://groups.csail.mit.edu/cis/theses/anna-phd.pdf
http://groups.csail.mit.edu/cis/theses/anna-phd.pdf
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-29485-8_7


Privacy Preserving Computation



Privacy-Preserving Ridge Regression with
only Linearly-Homomorphic Encryption

Irene Giacomelli1(B), Somesh Jha1, Marc Joye2, C. David Page1,
and Kyonghwan Yoon1

1 University of Wisconsin-Madison, Madison, WI, USA
irene.giacomelli29@gmail.com

2 NXP Semiconductors, San Jose, CA, USA

Abstract. Linear regression with 2-norm regularization (i.e., ridge
regression) is an important statistical technique that models the rela-
tionship between some explanatory values and an outcome value using a
linear function. In many applications (e.g., predictive modeling in person-
alized health-care), these values represent sensitive data owned by several
different parties who are unwilling to share them. In this setting, training
a linear regression model becomes challenging and needs specific crypto-
graphic solutions. This problem was elegantly addressed by Nikolaenko
et al. in S&P (Oakland) 2013. They suggested a two-server system that
uses linearly-homomorphic encryption (LHE) and Yao’s two-party proto-
col (garbled circuits). In this work, we propose a novel system that can
train a ridge linear regression model using only LHE (i.e., without using
Yao’s protocol). This greatly improves the overall performance (both in
computation and communication) as Yao’s protocol was the main bot-
tleneck in the previous solution. The efficiency of the proposed system is
validated both on synthetically-generated and real-world datasets.

Keywords: Ridge regression · Linear regression · Privacy
Homomorphic encryption

1 Introduction

Linear regression is an important statistical tool that models the relationship
between some explanatory values (features) and an outcome value using a linear
function. Despite its simple definition, a linear regression model is very useful.
Indeed, it can be used to quantitatively relate the features and the outcome
(e.g., identify which features influence more directly the outcome) and for future
prediction (e.g., if a new vector of features with no known outcome is given, the
model can be used to make a prediction about it). Ridge regression is one of the
most widely-used forms of regression; see the survey in [21]. It lessens the over-
fitting of ordinary least squares regression without adding computational cost.
In practice, this is achieved giving preference to models with small Euclidean
norm. To enhance the efficacy of the learned model, prior experience in model
c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 243–261, 2018.
https://doi.org/10.1007/978-3-319-93387-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_13&domain=pdf


244 I. Giacomelli et al.

training suggests using training data from a large and diverse set. Indeed, it is
known that having more data (more relevant features and/or more data points)
typically improves the ability to learn a reliable model. A simple way to obtain
such training dataset is to merge data contained in “data silos” collected by dif-
ferent entities. However, in many applications (e.g., personalized medicine [28])
the data points encode sensitive information and are collected by possibly mutu-
ally distrustful entities. Often, these entities will not (or cannot) share the pri-
vate data contained in their silos, making collaborative analysis on joint data
impossible.

Consider the following example: We would like to use a given linear regression
method in order to predict the weight of a baby at birth on the basis of some
ultrasound measurements made during the last month of pregnancy (e.g., head
circumference, femur length,. . . ). On one hand, in order to avoid computing a
biased model, we would like to run the selected learning algorithm on data points
collected in different hospitals in various locations. On the other hand, each hospi-
tal legally cannot share (in the clear) patients’ sensitive data (the measurements)
with other hospitals or with a third party (e.g., a cloud-computing server). This
real-life case exemplifies the challenge on which we focus on: training a linear
regression model on joint data that must be kept confidential and/or are owned
by multiple parties. Moreover, we want to run such collaborative analysis with-
out exposing an entity’s sensitive data to any other party in the system (i.e., no
entity in the system is trusted to handle the data in the clear).

Our paper takes up the above challenge and proposes an efficient solution
in the two-server model [16], commonly used by previous works on privacy-
preserving machine learning (e.g., see [12,22,23]), where no party needs to be
trusted to handle the data in the clear. In this setting, the computation of
the model from the merged data is outsourced to two non-colluding (but not
necessarily trusted) third-parties. After a first phase of collecting private data
in encrypted form from possibly many data-owners, the two third parties then
engage in a second phase for the computation of the model itself. The system is
designed in such a way that no extra information (beside that released by the
model itself) is revealed to these two parties if they do not collude (condition
that can, for example, be enforced by law). Our solution is based only on a sim-
ple cryptographic primitive that can be implemented via efficient constructions.
Indeed, our system is designed using just a linearly-homomorphic encryption
(LHE) scheme, that is, an encryption scheme that enables computing the sum of
encrypted messages. Previous solutions to the problem considered here are based
on multi-party computation protocols (e.g., secret-sharing based protocols like
BGW [6] or the 2-party protocol by Yao [29]) or on somewhat-homomorphic
encryption (i.e., encryption schemes that support a limited number of arith-
metic operations on encrypted messages). A hybrid approach that uses both
homomorphic encryption and Yao’s scheme was presented in [23]. In this work,
we present the first approach to privacy-preserving ridge regression that uses
only linearly-homomorphic encryption. We believe that this result is interesting
both from the theoretical and the practical points of view. Indeed our system



Privacy-Preserving Ridge Regression with only LHE 245

can be seen as a new black-box application of LHE and shows that this basic
crypto-primitive can be used alone to handle involved tasks (i.e., ridge regression
over distributed data). Furthermore, our system achieves practical performances
when implemented using a standard encryption scheme like Paillier’s cipher [24].
We show this via an evaluation of our system that uses synthetically-generated
and real-world data. Overall, our experiments demonstrate that, for many real
scenarios, LHE is all you need to privately yet efficiently train a ridge regression
model on distributed data. As an illustrative example, consider the following
existing medical scenario: the Warfarin dosing model. Warfarin is a popular
anticoagulant for which the International Warfarin Pharmacogenetics Consor-
tium proposed an accurate dosing model trained using linear regression on a
medical database that was the merge of the data silos collected by 21 research
groups. Using a commodity machine, our system can compute the same model
in less than 3 min with the guarantee of confidentiality for the data silos of each
research group involved.

Related Work. The question of privacy-preserving machine learning was intro-
duced in 2000 by two pioneering works [1,20]. Later on, privacy-preserving linear
regression was considered in a number of different works (e.g., [2,8,10,15,17–
19,25]). In 2013, Nikolaenko et al. [23] introduced the scenario we consider in this
paper: privacy-preserving linear regression protocol in the two-server model. The
solution in [23] considers ridge regression on a horizontally-partitioned dataset
in which each party has some of the data points that form the training set (e.g.,
two or more hospitals, each of which collects the same medical data on differ-
ent sets of patients). Their solution is based on LHE and Yao’s protocol. The
latter is a two-party protocol that allows the evaluation of a circuit C on a pair
of inputs (a, b) such that one party knows only a and the other party knows
only b. At the end of the protocol, the value C(a, b) is revealed but no party
learns extra information beyond what is revealed by this value. In [23], the ridge
regression model is computed using Yao’s protocol to compute the solution of a
linear system of the form Aw = b where the entries of matrix A and vector b
are encrypted (and must be kept private). The solution w∗ is the model. The
circuit C is the one that solves a linear system computing the Cholesky decompo-
sition of the coefficient matrix. Recently, in [12], the system presented in [23] was
extended to vertically-partitioned datasets in which the features in the training
dataset are distributed among different parties (e.g., two or more hospitals, each
of which collects different medical data on the same set of patients). Gascón et
al. [12] achieve this result using multiparty-computation techniques to allow the
data-owners to distribute shares of the merged datasets to the two parties active
in the second phase. Moreover, Gascón et al. also improve the running time of
the second phase of the protocol presented in [23] by designing a new conjugate
gradient descent algorithm that is used as circuit C in the place of Cholesky
decomposition. This approach was subsequently further improved by Mohassel
and Zhang [22] using mini-batch stochastic gradient descent, and extended to
logistic regression and neural networks on arbitrarily partitioned datasets.



246 I. Giacomelli et al.

Our Contribution. Our paper follows this line of work and presents a novel sys-
tem for ridge regression in the two-server model. For the first phase, we extend
the approach used by Nikolaenko et al. to datasets that are arbitrarily parti-
tioned using the techniques of labeled-homomorphic encryption [4] to support
multiplications among pairs of ciphertexts encrypted via an LHE scheme. In this
way we show that a solution based only on LHE can handle scenarios more com-
plicated than the horizontally-partitioned case. For the second phase, we avoid
Yao’s protocol by designing an ad-hoc two-party protocol that solves Aw = b
using only the linear homomorphic property of the underlying encryption scheme.
This allows to boost the overall performance and, in particular, to considerably
reduce the communication overhead.1 As a highlight, if we horizontally partition
(into ten equal-sized parts) a dataset of 10 millions instances and 20 features, our
privacy-preserving regression method runs in under 2 min2 and produces a com-
munication overhead of 1.3 MB. The system presented in [23] needs more than
50 min and 270 MB exchanged data to perform a similar computation.3 Finally,
we notice that gradient descent based solutions (e.g., [12,22]) use iterative algo-
rithms and present the problem of estimating the number of iterations t. Either t
is fixed to a high value that ensures finding a good approximation of the model,
which incurs higher complexity for the protocol; either t is chosen adaptively
based on the dataset, which can be infeasible in the privacy-preserving setting.
Our solution for solving Aw = b does not present this problem.

2 Background

Linear Regression. A linear regression learning algorithm is a procedure that
on input n points {(x 1, y1), . . . , (xn, yn)} (where x i ∈ R

d and yi ∈ R) outputs
a vector w∗ ∈ R

d such that w∗ᵀ
x i ≈ yi for all i = 1, . . . , n. One common

way to compute such a model w∗ is to use the squared-loss function and the
associated empirical error function (mean squared error): fX,y (w) = ‖Xw−y‖22.
Here X ∈ R

n×d is the matrix with the vector x
ᵀ
i as ith row and y ∈ R

n is
the vector with the value yi as ith component. We assume that X is always
full-rank (i.e., rk(X) = d). Specifically, w∗ is computed by minimizing a linear
combination of the aforementioned error function and a regularization term, that
is, w∗ ∈ argminw∈Rd fX,y (w) + λR(w) where λ ≥ 0 is fixed. The regularization
term is added to avoid over-fitting the training dataset and to bias toward simpler
models. In practice, one of the most common regularization terms is the 2-norm
(R(w) = ‖w‖22), which generates a model with overall smaller components. In
this case (called ridge regression), the model w∗ is computed by minimizing the
function Fridge(w) = ‖Xw −y‖22 +λ‖w‖22. Since, ∇Fridge(w) = 2X

ᵀ(Xw −y)+
2λw , we have that w∗ is computed solving the linear system

Aw = b (1)

1 Size of the messages exchanged among the parties running the system.
2 Timing on a 2.6 GHz 8GB RAM machine running Linux 16.04; 80-bit security.
3 Timing on a 1.9 GHz 64GB RAM machine running Linux 12.04; 80-bit security.



Privacy-Preserving Ridge Regression with only LHE 247

where A = X
ᵀ
X + λI (symmetric d × d matrix) and b = X

ᵀ
y (vector of d com-

ponents). Notice that since X is full-rank, A is positive definite and therefore
det(A) > 0 (in particular A is invertible).

Cryptographic Tools. To design our privacy-preserving system, we utilize
homomorphic encryption. Let (M,+) be a finite group. A linearly-homomorphic
encryption (LHE) scheme for messages in M is defined by three algorithms:

1. The key-generation algorithm Gen takes as input the security parameter κ
and outputs a matching pair of secret and public keys, (sk , pk) ← Gen(κ).

2. The encryption algorithm Enc is a randomized algorithm that uses the public
key pk to transform a message m from M (plaintext space) into a ciphertext,
c ← Encpk (m).

3. The decryption algorithm Dec is a deterministic function that uses the secret
key sk to recover the original plaintext from a ciphertext c.

The standard security property (semantic security) says that it is infeasible
for any computationally bounded algorithm to gain extra information about
a plaintext when given only its ciphertext and the public key pk . Moreover, we
have the homomorphic property: Let C be the set of all possible ciphertexts,
then there exists an operation � on C such that for any a-tuple of cipher-
texts c1 ← Encpk (m1), . . . , ca ← Encpk (ma) (a positive integer), it holds that
Pr[Decsk (c1 �· · ·� ca) = m1 + · · ·+ma] = 1. This implies that, if c = Encpk (m),
Decsk (cMult(a, c)) = am, where cMult(a, c) = c � · · · � c (a times).

In some cases being able to perform only linear operations on encrypted
messages is not sufficient. For example, when considering arbitrarily partitioned
datasets, we will need to be able to compute the encryption of the product
of two messages given the encryptions of the individual messages. An LHE
scheme cannot directly handle such an operation. On the other hand, a gen-
eral solution to the problem of computing on encrypted data can be obtained
via the use of fully-homomorphic encryption [13]. Since full fledged construc-
tions of fully-homomorphic encryption are still inefficient, more efficient solutions
have been designed for evaluating low-degree polynomials over encrypted data
functionalities (somewhat-homomorphic encryption). In a recent work, Barbosa
et al. [4] introduce the concept of labeled-homomorphic encryption (labHE); this
new primitive significantly accelerates homomorphic computation over encrypted
data when the function that is being computed is known to the party that
decrypts the result. Since in this paper we consider that the machine-learning
algorithm and the data distribution among the participants is publicly known,
the previous assumption is satisfied and we can make use of labHE. In particu-
lar, Barbosa et al. show how to design an homomorphic encryption scheme that
supports the evaluation of degree-two polynomials using only an LHE and a
pseudo-random function. The new scheme is public-key and works in the multi-
user setting: two or more users encrypt different messages, an encryption of the
evaluation of a degree-two polynomial on these messages can be constructed by
any party having access to the public key and the ciphertexts. Then the party



248 I. Giacomelli et al.

holding the secret key can decrypt and reveal the result of the evaluation (the
polynomial is public, the correspondence user-ciphertext is known). We briefly
recall here their construction [4, Sect. 5] in the case that the polynomial is eval-
uated on messages encrypted only by two different users.

Let (Gen,Enc,Dec) be an LHE scheme with security parameter κ and message
space M. Assume that a multiplication operation is given in M; i.e., (M,+, ·)
is a finite ring. Let also F : {0, 1}s × L → M be a pseudo-random function with
seed space {0, 1}s (s = poly(κ)) and label space L. Define:

– labGen(κ): On input κ, it runs Gen(κ) and outputs (sk , pk).
– localGen(pk): For each user i and with the public key as input, it samples

a random seed σi in {0, 1}s and computes pk i = Encpk
(
σi

)
where σi is an

encoding of σi as an element of M. It outputs (σi, pk i).
– labEncpk (σi,m, τ): On input a message m ∈ M with label τ ∈ L from the user

i, it computes b = F (σi, τ) and outputs the labeled ciphertext c = (a, c) ∈
M × C with a = m − b in M and c = Encpk (b).

– labMult(c, c′): On input two labeled ciphertexts, c = (a, c) and c′ = (a′, c′),
it computes a “multiplication” ciphertext d = labMult(c, c′) as d = Encpk (a ·
a′) � cMult(a, c′) � cMult(a′, c).
Observe that Decsk (d) = m · m′ − b · b′. Moreover, notice that given two or
more multiplication ciphertexts d1, . . . , dn, they can be “added” using the
operation of the underlying LHE scheme: d1 � · · · � dn. Assume that user i
and user j have both encrypted n messages, m1, . . . , mn and m′

1, . . . , m
′
n,

respectively. Let c̃ ∈ C be the ciphertext obtained as

n⊙

t=1

labMult
(
labEncpk (σi,mt, τt), labEncpk (σj ,m

′
t, τ

′
t)

)
.

– labDecsk (pk i, pk j , c̃): On input c̃, it first recovers σi and σj from Decsk (pk i)
and Decsk (pk j). Next, it computes bt = F (σi, τt) and b′

t = F (σj , τ
′
t) for all

t = 1, . . . , n. Finally, it computes b̃ =
∑n

t=1 bt · b′
t and m̃ = Decsk (c̃) − b̃. It is

easy to verify that m̃ =
∑n

t=1 mt · m′
t.

Data Representation. In order to use the cryptographic tools described in the
former section, we need to represent the real values that form the input datasets
as elements in the finite set M (the message space). Without loss of generality,
we assume that M = ZN for some big integer N and that the entries of X and y
are numbers from the real interval [−δ, δ] (with δ > 0)4 with at most � digits in
their fractional part. In this case, the conversion from real values to elements in
M can be easily done by rescaling all the entries of X and y and then mapping
the integers in ZN using the modular operation. For this reason, from now on we
consider that the entries of X and y are integers from 0 to N − 1. This implies
that we consider the matrix A and the vector b having positive integer entries5

4 In other words, δ = max{‖X‖∞, ‖y‖∞} for the original X and y .
5 We assume that λ ∈ R has at most 2� digits in the fractional part.



Privacy-Preserving Ridge Regression with only LHE 249

and, finally, that we assume that the model w∗ is a vector in Q
d. Notice that for

the integer representation of A and b it holds that ‖A‖∞, ‖b‖∞ ≤ 102�(nδ2 +λ).
Therefore, if 102�(nδ2 + λ) ≤ N−1

2 , then A and b are embedded in ZN without
overflow for their entries. However, if the linear system (1) is now solved over ZN ,
then clearly the entries of the solution are given as modular residues of ZN and
may be different from the entries of the desired model w∗ in Q

d. In order to solve
this problem and recover the model in Q

d from the model computed over ZN , we
can apply the rational reconstruction technique component-wise. With rational
reconstruction [11,27] we mean the application of the Lagrange-Gauss algorithm
to recover a rational t = r/s from its representation in ZN as t′ = r s−1 mod N ,
for N big enough (see (4) in Sect. 4).

3 Threat Model and System Overview

We consider the setting where the training dataset is not available in the clear
to the entity that wants to train the ridge regression model. Instead, the latter
can access encrypted copies of the data and, for this reason, needs the help of
the party handling the cryptographic keys in order to learn the desired model.
More precisely, protocols in this paper are designed for the following parties:

– The Data-Owners: There are m data-owners DO1, . . . ,DOm; each data-owner
DOi has a private dataset Di and is willing to share it only if encrypted.

– The Machine-Learning Engine (MLE): This is the party that wants to run a
linear regression algorithm on the dataset D obtained by merging the local
datasets D1, . . . ,Dm, but has access only to the encrypted copies of them. For
this reason, MLE needs the help of the Crypto Service Provider.

– The Crypto Service Provider (CSP) takes care of initializing the encryption
scheme used in the system and interacts with MLE to help it in achieving its
task (computing the linear regression model). CSP manages the cryptographic
keys and is the only entity capable of decrypting.

We assume that MLE and CSP do not collude and that all the parties involved
are honest-but-curious. That is, they always follow the instructions of the pro-
tocol but try to learn extra information about the dataset from the messages
received during the execution of the protocol (i.e., passive security). Moreover,
we assume that for each pair of parties involved in the protocol there exists a
private and authenticated peer-to-peer channel. In particular, communications
between any two players cannot be eavesdropped.

The goal is to ensure that MLE obtains the model while both MLE and
CSP do not learn any other information about the private datasets Di beyond
what is revealed by the model itself. Even in the case that one of the two servers
(MLE or CSP) colludes with some of the data-owners, they should learn no extra
information about the data held by the honest data-owners. In order to achieve
this goal we design a system that can be seen as multi-party protocol run by
the m + 2 parties mentioned before and specified by a sequence of steps. This
system (described in Sect. 4) has the following two-phase architecture:



250 I. Giacomelli et al.

Phase 1 (merging the local datasets): CSP generates the key pair (sk , pk),
stores sk and makes pk public; each DOi sends to MLE specific ciphertexts
computed using pk and the values in Di. MLE uses the ciphertexts received
and the homomorphic property of the underling encryption scheme in order
to obtain encryptions of A and b (coefficient matrix and vector in (1)).

Phase 2 (computing the model): MLE uses the ciphertexts Encpk (A) and
Encpk (b) and private random values in order to obtain encryptions of new
values that we call “masked data”; these encryptions are sent to the CSP; the
latter decrypts and runs a given algorithm on the masked data. The output
of this computation (“masked model”) is a vector w̃ that is sent back from
the CSP to the MLE. The latter computes the output w∗ from w̃ .

Informally, we say that the system is correct if the model computed by the MLE
is equal to the model computed by the learning algorithm in the clear using D
as training data. And we say that the system is private if the distribution of
the masked data sent by the MLE to the CSP is independent of the distribution
of the local inputs. Thus, no information about D1, . . . ,Dm is revealed by the
messages exchanged during Phase 2.

As we will see in Sect. 4, the specific design of the protocol realizing Phase
1 depends on the distributed setting: horizontally- or arbitrarily-partitioned
datasets. However, in both cases, the data-owners input encryptions of local
values and the MLE gets the encryptions of A and b. The CSP simply takes
care of initializing the cryptographic primitive and generates the relative keys.
Phase 2 is realized by an interactive protocol between the MLE and the CSP.
CSP takes on input the encryptions of A and b from the MLE and returns the
solution of the system Aw = b following this pattern (we refer to this as the

“masking trick”):

– The MLE samples a random invertible matrix6 R ∈ GL(d,M) and a random
vector r ∈ M and it uses the linear homomorphic property of the underlying
encryption scheme to compute C ′ = Encpk (AR) and d ′ = Encpk (b + Ar).
The values C = AR and d = b + Ar are the “masked data.” We slightly
abuse notation here; Encpk (·) is applied component-wise in the computation
of C and of d ′.

– The CSP decrypts C ′ and d ′ and computes w̃ = C−1d . The vector w̃ is the
“masked model” sent back to the MLE.

– The MLE computes the desired model as w∗ = Rw̃ − r . Indeed, it is easy to
verify that Rw̃ − r = R(AR)−1(b + Ar) − r = A−1b.

Informally, the security of the encryption scheme assures privacy against an
honest-but-curious MLE. On the other hand, if R and r are sampled uniformly
at random, then the distribution of the masked data is independent of A and
b. This guarantees privacy against an honest-but-curious CSP. Similar masking
tricks have been previously used in different settings. In [3], a similar method is

6 GL(d, M) denotes the general linear group of degree d over the ring M; namely, the
group of d × d invertible matrices with entries from M.



Privacy-Preserving Ridge Regression with only LHE 251

used to design a secret-shared based MPC protocol for the evaluation of general
functions. In this work, we tailor the masking trick for the goal of solving the
linear system Aw = b gaining in efficiency. In [26], masking with random values
is used to outsource a large-scale linear system to an untrusted “cloud server”.
They assume that the coefficient matrix A and vector b of the linear system
are known to a “cloud customer” seeking the solution w . In this work, A and
b are encrypted and the masking is applied “inside the encryption”; to make
the masking trick, which works in Q, compatible with the encryption and the
modular arithmetic used for it, we make use of rational reconstruction.7

Notice that the two-server model allows for different implementations in prac-
tice. If we consider applications in which the majority of data-owners are willing
to help to run collaborative analysis but don’t want to (or cannot) spend to much
resources to execute it, then the role of MLE and CSP can be taken by two semi-
trusted8 third-parties (e.g., two independent research institutions). This setting
offers the practical advantage that the involvement of all data-owners is minimal.
Otherwise, since CSP and MLE are only required to be non-colluding, their role
can be taken by two disjoint subsets of data-owners (e.g., for m ≥ 2, we can
have DO1 and DO2 playing the role of MLE and CSP, respectively). In this case,
no third-parties are required to implement the system.

4 Protocols Description

In this section we describe how to implement Phase 1 and Phase 2. Let (Gen,Enc,
Dec) be an LHE scheme with security parameter κ and message space M = ZN .

4.1 Phase 1: Merging the Dataset

Horizontally-Partitioned Setting. Assume that the dataset represented by the
matrix X and the vector y is horizontally-partitioned in m datasets. That is,
the data-owner DOk holds

Dk =
{
(xnk−1+1, ynk−1+1), . . . , (xnk

, ynk
)
}

, (2)

for k = 1, . . . , m (0 = n0 < n1 < · · · < nm = n). In this case, as already noticed
in [23], defining Ak =

∑nk

i=nk−1+1 x ix
ᵀ
i and bk =

∑nk

i=nk−1+1 yix i, we have that
A =

∑m
k=1 Ak + λI and b =

∑m
k=1 bi. In Protocol Π1,hor, each data-owner DOk

computes and sends to MLE encryptions of the entries of Ak and bk; then MLE
computes encryptions of the entries of A and b using the above formulas and
the operation � (details in Protocol 1).

7 Notice that the system presented in [26] fails because no techniques are used to make
the arithmetic over Q compatible with the modular arithmetic used by the underling
LHE (i.e., Paillier’s scheme). See [7] for more details on this.

8 That is, trusted to be non-colluding.



252 I. Giacomelli et al.

Protocol 1. Π1,hor: Phase 1 in the horizontally-partitioned setting.

– Parties: CSP, MLE, and DOk with input Dk (as defined in (2)) for all k = 1, . . . , m.
– Output : MLE gets A′ and b ′ (i.e., encryptions of A and b, respectively).

Step 1 : (key-generation) CSP runs (sk , pk) ← Gen(κ) and makes pk public, while it
keeps sk secret.

Step 2 : (local computation) For all k = 1, . . . , m, DOk computes Ak =
∑

i x ix
ᵀ
i and

bk =
∑

i yix i with nk−1 + 1 ≤ i ≤ nk; next, DOk encrypts them, A′
k[i, j] =

Encpk (Ak[i, j]), b ′
k[i] = Encpk (bk[i]) for all i, j = 1, . . . , d and j ≥ i; finally,

DOk sends all A′
k and b ′

k to MLE.
Step 3 : (datasets merge) For all i, j = 1, . . . , d and j ≥ i, MLE computes

A′[i, j] =

{(⊙m
k=1 A′

k[i, i]
) � Encpk (λ) if j = i

⊙m
k=1 A′

k[i, j] if j > i
, b ′[i] =

m⊙

k=1

b ′
k[i].

Arbitrarily-Partitioned Setting. Assume that each DOk holds some elements of
X and y . That is, DOk holds

Dk =
{
X[i, j] = x i[j] | (i, j) ∈ Dk

} ∪ {
y [i] = yi | (i, 0) ∈ Dk

}
, (3)

where Dk ⊆ {1, . . . , n} × {0, 1, . . . , d}. Assume that each data-owner sends
encryptions of the elements it knows to MLE. Then, in order to compute encryp-
tions of the entries of A and b, MLE needs to multiply two ciphertexts. Indeed,
we have b[i] =

∑n
t=1 x t[i]y [t] and A[i, j] =

∑n
t=1 x t[i]x t[j] if j = i, otherwise

A[i, i] =
∑n

t=1 x t[i]x t[i] + λ. To allow this, we use labeled-homomorphic encryp-
tion. As we recalled in Sect. 2, the latter can be constructed on top of any LHE
scheme and it enhances the underlying scheme with the multiplication command
labMult. In particular, after having received labeled-encryptions of the input from
the data-owners,9 MLE can compute the encryptions of the entries of A and b
using formulas of the form

⊙n
t=1 labMult

(
labEnc(x t[i]), labEnc(x t[j])

)
. Remem-

ber that the output of the command labMult used to compute the encryption of
the product of two messages, m1 and m2, is in fact an encryption of m1m2−b1b2
where b1, b2 are two random values used to compute the labeled-encryptions of
the values m1 and m2. For this reason, at the end of the procedure described
before, MLE obtains encryptions of A−B and b −c, instead of encryption of A
and b, where B and c depend on the random values used to encrypt the entries
of the local datasets using the labeled-homomorphic scheme. The matrix B and
the vector c can be reconstructed by the party handling the decryption key (i.e.,
CSP). The decryption procedure of the labeled-homomorphic scheme, labDec,
accounts for this. However, in the application we consider here (training a ridge

9 If x t[i] and x t[j] are both held by one DOk, then the former can send Encpk (x t[i]x t[j])
to MLE, who updates the formulas in Step 3 of Π1,arb accordingly.



Privacy-Preserving Ridge Regression with only LHE 253

Protocol 2. Π1,arb: Phase 1 in the arbitrarily-partitioned setting.

– Parties: CSP, MLE, and DOk with input Dk (as defined in (3)) for all k = 1, . . . , m.
– Output : MLE gets A′ and b ′ (i.e., encryptions of A and b, respectively).

Step 1 : (key-generation) CSP runs (sk , pk) ← labGen(κ) and makes pk public, while
it keeps sk secret. For k = 1, . . . , m, DOk runs (σk, pkk) ← localGen(pk) and
makes pkk public, while it keeps σk secret.

(setup) For k = 1, . . . , m, CSP recovers σk from Decsk (pkk) and computes
bij = F (σk, (i, j)) with (i, j) ∈ Dk. For i, j = 1, . . . , d and j ≥ i, CSP computes
B′[i, j] = Encpk (

∑n
t=1 btibtj) and c′[i] = Encpk (

∑n
t=1 btibt0). These are sent to

MLE.
Step 2 : (local computation) For k = 1, . . . , m, DOk computes labeled-encryptions of

the known entries of X and y . That is, for all (i, j) ∈ Dk, DOk computes
cij = (aij , cij) = labEncpk (σk, x i[j], (i, j)) when j > 0 and ci0 = (ai0, ci0) =
labEncpk (σk, y [i], (i, 0)).
For all k = 1, . . . , m, DOk sends all labeled-ciphertexts cij to MLE.

Step 3 : (datasets merge) For all i, j = 1, . . . , d and j ≥ i, MLE computes

A′[i, j] =

{(⊙n
t=1 labMult(cti, cti)

) � B′[i, i] � Encpk (λ) if j = i
(⊙n

t=1 labMult(cti, ctj)
) � B′[i, j] if j > i

,

b ′[i] =

(
n⊙

t=1

labMult(cti, ct0)

)

� c′[i].

regression model) it is necessary that at the end of Phase 1 the MLE has proper
encryptions for A and b. Indeed, only in this case we can proceed to Phase 2 and
use the masking trick (using the masking trick with labeled-encryptions of A and
b doesn’t work). For this reason, we need to add one round of communication
where CSP sends to MLE encryptions of the entries of B and c. This can be
done before the beginning of the actual computation (Step 1 of Phase 1) since
B and c do not depend on the actual data used to train the regression model.
In this way, the MLE can finally gets encryptions of A and b. Protocol Π1,arb

in Protocol 2 describes this in detail.

4.2 Phase 2: Computing the Model

At the end of Phase 1, MLE knows component-wise encryption of the matrix A
and the vector b (both with entries represented in ZN , the message space of the
LHE scheme used in Phase 1). Recall that the final goal of our system is comput-
ing w∗ ∈ Q

d solution of (1). In order to do this in a privacy-preserving manner,
in Phase 2 we implement the masking trick described in Sect. 3 and compute w̃∗

that solves (1) in ZN . Then we use rational reconstruction to find w∗. All the
details of this are reported in Protocol Π2 (Protocol 3). The correctness is easy to



254 I. Giacomelli et al.

Protocol 3. Π2: Phase 2.

– Parties: CSP knows sk , MLE knows A′ = Encpk (A) and b ′ = Encpk (b).
– Output : MLE gets w∗.

Step 1 : (data masking) MLE samples R ← GL(d,ZN ) and r ← Z
d
N and computes

C′[i, j] =
⊙d

k=1 cMult(R[k, j], A′[i, k])

d ′[i] = b ′[i] � (⊙d
k=1 cMult(r [k], A′[i, k])

)

for all i, j = 1, . . . , d; next, MLE sends C′ and d ′ to CSP.
Step 2 : (masked model computation) CSP first decrypts C′ and d ′ obtaining C and

d (C[i, j] = Decsk (C
′[i, j]), d [i] = Decsk (d

′[i]) for all i, j = 1, . . . , d); then it
computes w̃ ≡ C−1d mod N and sends it w̃ to MLE.

Step 3 : (model reconstruction) MLE computes w̃∗ ≡ Rw̃ − r mod N and uses ratio-
nal reconstruction on each component of w̃∗ to compute w∗ ∈ Q

d.

verify, indeed we have Rw̃ −r ≡ R(AR)−1(b+Ar)−r ≡ A−1b (mod N). Secu-
rity is also straightforward: Protocol Π2 is secure against a honest-but-curious
CSP because the values seen by it (the masked data AR mod N and b + Ar
mod N) have a distribution that is unrelated with the input datasets. Moreover,
Protocol Π2 is secure against a honest-but-curious MLE because of the security
of the underlying encryption scheme. Indeed, the MLE sees only an encrypted
version of A and b. See [14, Appendix A.6] for the formal security proof.

In some applications, a desirable property is that the model is delivered only
to the data-owners. If the role of MLE and CSP is taken by third-parties, this
can be achieved using a standard tool like threshold encryption [9]. In this case,
the key generation step of Phase 1 is enhanced with the sharing of sk (i.e., CSP
knows sk and each DOi knows a share for sk). Then, Step 2 of Protocol Π2 is
modified in such a way that CSP sends to MLE the value Encpk (w̃), instead of
the vector w̃ in the clear. MLE computes Encpk (w̃∗) and broadcasts it to all
data-owners. Finally, the DOi collaborates to jointly decrypt and compute w∗.

Choice of Parameters. In the last step of Π2 we use rational reconstruction
to recover the components of w∗ ∈ Q

d from the solution of Aw = b computed
in ZN . According to [11,27] if a rational t = r/s with −R ≤ r ≤ R, 0 < s ≤ S
and gcd(s,N) = 1 is represented as t′ = rs−1 mod N in ZN , then the Lagrange-
Gauss algorithm uniquely recovers r and s provided that 2RS < N . Since w∗ =
A−1 b = 1

det(A) adj(A)b ∈ Q
d, in order to choose N that satisfies the condition

stated before, we need to bound the det(A) and the entries of the vector adj(A)b.
Let α = max{‖A‖∞, ‖b‖∞}, using the Hadamard’s inequality, we have that 0 <

det(A) ≤ αd (A is a positive definite matrix) and ‖ adj(A)b‖∞ ≤ d(d − 1)
d−1
2 αd.



Privacy-Preserving Ridge Regression with only LHE 255

Using the same assumptions of Sect. 2 on the entries of X and y (that is, the
entries of X and y are real number in [−δ, δ] with at most � digits in the fractional
part), we have that α ≤ 102�(nδ2 + λ). It follows that the condition 2RS < N is
fulfilled when

2d(d − 1)
d−1
2 104�d (nδ2 + λ)2d < N. (4)

50 100 150 200 250

100

300

500

700

d

n = 105

n = 107

n = 109

Fig. 1. Communication overhead in
MB of Π2 (δ = 1, 80-bit security, � = 3,
Paillier’s scheme, λ = 0).

Communication Complexity. The
messages sent during Protocol Π1,hor and
Protocol Π2 contain Θ(d2) elements from
ZN , while the ones in Protocol Π1,arb

contain Θ(dn) elements. This implies a
communication cost of O(d3 log(nd)) bits
for Π1,hor and Π2, and of O((nd2 +
d3) log(nd)) bits for Π1,arb (details in [14,
Appendix A.3]). In particular, our app-
roach significantly improves the commu-
nication complexity compared to the pre-
vious solutions that use Yao’s scheme [12,
23]. Indeed, the latter requires CSP send-
ing the garbled representation of a boolean circuit of millions of gates (see [23,
Fig. 5] and [12, Fig. 7]) to MLE. In [23] the authors show that the garbled repre-
sentation of one gate is a lookup table of around 30 bytes (80-bit security). This
means that a privacy-preserving system based on Yao’s scheme, only for send-
ing the garbled circuit and without considering the other steps needs at least
hundreds of megabytes. On the other hand, even for large values of n and d,
the communication complexity of Π2 is much smaller than 100 MB (see Fig. 1).
For example, in the horizontally-partitioned setting [23] uses same techniques we
deploy in Π1,hor and Yao’s protocol. In particular, [23] reports that the garbled
representation of the circuit that solves (1) with d = 20 using Cholesky decom-
position (24-bit integer representation) has size 270 MB. On the other hand,
for a dataset with 10 millions instances and d = 20, the overall overhead10 of
Π1,hor+Π2 is less than 1.3 MB. In the arbitrarily-partitioned setting, the commu-
nication overheard of our system is dominated by the cost of Phase 1 (Protocol
Π1,arb) because of its linear dependency on the number of instances n. However,
this seems to be the case also in other approaches. For example, in [12], a secure
inner-product protocol based on additive secret-sharing and Beaver’s triples [5]
is used to compute the inner product of the columns of the matrix X vertically-
partitioned among two or more users. The complexity of this approach for Phase
1 is Θ(nd2 log(n)) bits (comparable with the complexity of Π1,arb). In Phase 2,
[12] use Yao’s protocol and conjugate gradient descent (CGD) algorithm to solve
(1). They do not report the concrete size of the circuit, but they show the num-
ber of gates. For d = 100 and 5 iterations of the CGD, more than 108 gates
are used: this gives an overhead of at least 3 GB only for sending the garbled
10 In this section, for our system we assume � = 3 and Paillier’s scheme with 80-bit

security as underlying LHE.



256 I. Giacomelli et al.

circuit during Phase 2 (assuming a garbled gate is 30 bytes). On the other hand,
the overall overhead of Π1,arb + Π2 when d = 100 for a dataset of 5 thousands
instances is less than 1.3 GB.

The SecureML paper [22] uses only additive secret-sharing and Beaver’s
triples to design a system that assumes an arbitrary partitioning of the dataset.
When the pre-processing needed for the triples is implemented via LHE, the lin-
ear regression training system proposed in [22] has complexity Θ(nd + n). Thus,
in terms of communication complexity, [22] performs better than our solution in
the arbitrarily-partitioned case. Our system, however, is preferable if the training
dataset is horizontally-partitioned and n � d (e.g., n = Θ(d2.5)). For example,
if d = 100 and n = 105 the system in [22] has an overheard of 200 MB for the
pre-processing phase only (see [22, Table II]), while the total cost of Π1,hor + Π2

is less than 120 MB.

5 Implementation

In this section we describe our implementation case study of the system described
in Sect. 4. Our goal is to evaluate the effect of the public parameters on the sys-
tem’s accuracy and efficiency, and to test our system on real-world datasets. In
particular, the experiments we run are designed to answer the following ques-
tions:

1. Evaluating accuracy : How does the system parameter � (number of digits
in the fractional part of the input data) influence the accuracy of the out-
put model w∗? Recall that we assume that the values in X and y are real
number with at most � digits in the fractional part. In practice, this means
that each user must truncate all the entries in the local dataset after the
�th digit in the fractional part. This is done before inputting the values in
the privacy-preserving system. On the other hand, in the standard machine
learning-setting this requirement is not necessary, and the model is computed
using floating point arithmetic on values with more than � digits in the frac-
tional part. For this reason, the model w∗, which is trained using our privacy-
preserving system, can differ from the model w̄∗ learned in the clear (same
regularization parameter λ is used). To evaluate this difference we use

RMSE =
∣
∣
∣
∣
MSE(w∗) − MSE(w̄∗)

MSE(w̄∗)

∣
∣
∣
∣

where MSE is the mean squared error of the model computed on a test dataset
(this is a common measure of model accuracy in the machine learning setting).
The value RMSE tells the loss in accuracy caused by using the vector w∗

instead of w̄∗ as model.
2. Evaluating running-time: How do the data parameters n and d influence in

practice the running time of each step in our privacy-preserving system? In [14,
Appendix A.3], we report the number of different elementary operations (e.g.,
encryptions, modular additions, etc.) for each step in the system, while in
this section we report the total running time of each step.



Privacy-Preserving Ridge Regression with only LHE 257

3. Evaluating efficiency in practice: How does our system behave when is run
on real-world data? In particular, we run our system on datasets down-
loaded from the UCI repository,11 which is commonly used for evaluating
new machine-learning algorithms in the standard setting (i.e., with no pri-
vacy guarantees).

1 3 5 7
10−8

10−5

10−2

�

HP
VP

Fig. 2. Error rate RMSE (log scale)
in function of � (n = 103, d = 10).

Setup. We implemented our system using
Paillier’s scheme with message space M =
ZN . In order to assure a security level of at
least 100 bits,12 decrease the running time
and the communication overhead, and sat-
isfy (4), we choose N such that log2(N) =
max{2048, �β� + 1} where β is the logarithm
in base 2 of the left-hand side of (4). We
wrote our software in Python 3 5.2 using
the phe 1.3 library13 to for Paillier encryp-
tion/decryption and operations on cipher-
texts, and the gmpy2 library14 for arithmetic operations with large integers.
Gaussian elimination was used to compute determinants and linear systems.

To test the system composed by Π1,hor + Π2, we run experiments in the
horizontally-partitioned (HP) setting, splitting n data points evenly among 10
data-owners. To test the system Π1,arb+Π2, we run experiments in the vertically-
partitioned (VP) setting, where we assume that d features are evenly split among
3 data-owners and DO3 also has y .

Numerical Results. All experiments were run on a machine with the following
specifics. OS: Scientific Linux 7.4, CPU: 40 core (Intel(R) Xeon(R) CPU E5-2660
v2 2.20 GHz), Memory: 500 GB. All the timings are reported in seconds, all the
values are averaged on 5 repetitions of the same experiment.

To answer Question 1, we measure the RMSE for different values of � for
synthetically-generated data in both the HP and VP settings (see Fig. 2). With
the increasing of �, regardless of the values of n and d, the value of RMSE decreases
very rapidly, while the efficiency degrades. Indeed, because of (4), the value of �
has effect on the bit-length of the plaintexts and ciphertexts. For this reason, we
recommend to choose � equal to a small integer (e.g., � = 3). This choice allows
to have a negligible error rate (e.g., RMSE of order 10−4) without degrading the
system efficiency.

To answer Question 2 and assess the effect of parameters n and d on our
system’s performance, we report in Table 1 the running time of each step of
the system when it is run on synthetic data. The advantage of this approach is

11 https://archive.ics.uci.edu/ml/datasets.html.
12 According to NIST standard, an RSA modulus of 2048 bits gives 112-bit security.
13 http://python-paillier.readthedocs.io.
14 https://pypi.python.org/pypi/gmpy2.

https://archive.ics.uci.edu/ml/datasets.html
http://python-paillier.readthedocs.io
https://pypi.python.org/pypi/gmpy2


258 I. Giacomelli et al.

Table 1. Running times (secs) for synthetic data in the HP and VP settings (� = 3).

n d log2(N) RMSE Phase 1 Phase 2

Step 1 Step 2 Step 3 Step 1 Step 2 Step 3

HP setting 1000 10 2048 7.21E−05 0.21 1.10 0.03 1.21 0.56 0.04

20 2048 1.54E−04 0.32 3.88 0.12 7.96 2.15 0.14

30 2048 1.58E−04 0.18 8.34 0.26 24.76 4.80 0.29

40 2504 2.01E−04 0.38 26.13 0.62 100.94 14.72 0.67

10000 10 2048 5.45E−05 0.16 1.11 0.03 1.21 0.57 0.04

20 2048 1.29E−04 0.09 3.93 0.12 7.99 2.14 0.15

30 2072 1.90E−04 0.36 8.83 0.26 25.96 5.17 0.32

40 2768 1.84E−04 0.39 29.81 0.72 120.43 19.34 0.86

100000 10 2048 1.05E−04 0.13 1.17 0.03 1.22 0.57 0.05

20 2048 1.08E−04 0.20 4.13 0.12 7.99 2.15 0.16

30 2270 1.38E−04 0.23 11.65 0.31 33.19 6.26 0.40

40 3034 1.76E−04 0.61 38.38 0.86 151.37 24.82 1.08

VP setting 1000 10 2048 1.50E−04 1.41 62.06 135.09 1.22 0.56 0.04

15 2048 8.90E−05 2.52 90.36 220.32 3.51 1.22 0.08

20 2048 1.78E−04 4.08 118.73 327.48 8.10 2.16 0.14

2000 10 2048 1.08E−04 1.92 124.35 276.13 1.23 0.59 0.04

15 2048 6.64E−05 3.54 181.09 443.78 3.56 1.31 0.09

20 2048 1.67E−04 5.62 236.54 653.06 8.03 2.17 0.14

3000 10 2048 6.46E−05 2.31 185.89 402.53 1.21 0.57 0.04

15 2048 1.06E−04 4.38 270.12 659.67 3.52 1.22 0.08

20 2048 1.36E−04 7.00 355.12 979.89 8.12 2.14 0.14

that we can run experiments for a wide range of parameters values. For Step
2 in Phase 1 (Protocol Π1,hor in the HP setting, Protocol Π1,arb in the VP
setting) we report the average running time for one data-owner. In Protocol
Π1,hor, Step 2 is the most expensive one. Here, the data-owner DOk computes
the d×d matrix Ak and encrypts its entries. In our setting (n data points evenly
split among the ten data-owners), this costs Θ(nd2) arithmetic operations on
plaintext values and Θ(d2) encryptions for one data-owner. We verified that the
costs of the encryptions is dominant for all values of n considered here.15 In Step 3
of Π1,hor, the MLE computes the encryption of A and b using approximately
Θ(d2) ciphertexts additions (i.e., multiplications modulo N), which turns out
to be fast. In Π1,arb, Step 3 is the most expensive step, here the MLE performs
Θ(nd2) ciphertexts operation to compute Encpk (A) and Encpk (b). In particular,
the running time of Π1,arb is more influenced by the value of n than that of Π1,hor

and Π2. Finally, for Π2 the results in Table 1 show that Step 1 requires longer
time compared to the other two steps because of the Θ(d3) operations done on
ciphertexts. Step 2 and 3 require Θ(d2) decryptions and Θ(d2) operations on
plaintexts and therefore are faster (e.g., less then 27 s for both the steps for a
dataset of one hundred thousands instances with 40 features).

15 For larger values of n and d, using Damg̊ard and Jurik’s scheme instead of
Paillier’s scheme reduces the running time of operations on ciphertexts. See [14,
Appendix A.5].



Privacy-Preserving Ridge Regression with only LHE 259

Table 2. Running times (secs) for UCI datasets in the HP and VP settings.

Dataset n d � log2(N) RMSE Phase 1 Phase 2

Time kB Time kB

HP Air 6252 13 1 2048 4.15E−09 1.99 53.24 3.65 96.51

Beijing 37582 14 2 2048 5.29E−07 2.37 60.93 4.26 110.10

Boston 456 13 4 2048 2.34E−06 2.00 53.24 3.76 96.51

Energy 17762 25 3 2724 5.63E−07 12.99 238.26 37.73 451

Forest 466 12 3 2048 3.57E−09 1.66 46.08 2.81 82.94

Student 356 30 1 2048 4.63E−07 9.36 253.44 30.40 483.84

Wine 4409 11 4 2048 2.62E−05 1.71 39.42 2.38 70.40

VP Boston 456 13 4 2048 2.34E−06 123.76 1.5 103 3.73 96.51

Forest 466 12 3 2048 3.57E−09 115.04 1.4 103 2.92 82.94

Student 356 30 1 2048 4.63E−07 297.52 2.7 103 30.54 483.84

To answer Question 3 and show the practicality of our system we report in
Table 2 the total running time and communication overhead for seven different
UCI datasets (references in [14, Appendix A.4]). Some of these datasets were
used also in [12,23]. For example, [23] reports a running time of 45 s and a
communication overhead of 83 MB (69 MB, resp.) for the Phase 2 of their system
run on the dataset “forest” (“wine”, resp.) ([23, Table I]). Our protocol Π2 for
the same datasets takes about 3 s with less then 83 kB sent. Phase 2 of the
system presented in [12] runs on the dataset “student” in 19 s ([12, Table 3]) and
we estimate an overhead of 3 GB (20 CGD iterations). Protocol Π2 on the same
dataset runs in about 40 s with 484 kB of overhead.

Acknowledgments. This work was partially supported by the Clinical and Trans-
lational Science Award (CTSA) program, through the NIH National Center for
Advancing Translational Sciences (NCATS) grant UL1TR002373, and by the NIH
BD2K Initiative grant U54 AI117924.

References

1. Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: 2000 ACM SIGMOD
International Conference on Management of Data, pp. 439–450. ACM Press (2000)

2. Aono, Y., Hayashi, T., Phong, L.T., Wang, L.: Fast and secure linear regression and
biometric authentication with security update. Cryptology ePrint Archive, Report
2015/692 (2015)

3. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: Eighth Annual ACM Symposium on Principles
of Distributed Computing, pp. 201–209. ACM Press (1989)

4. Barbosa, M., Catalano, D., Fiore, D.: Labeled homomorphic encryption: scalable
and privacy-preserving processing of outsourced data. In: Foley, S.N., Gollmann, D.,
Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 146–166. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66402-6 10

https://doi.org/10.1007/978-3-319-66402-6_10


260 I. Giacomelli et al.

5. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: 20th Annual ACM Sym-
posium on Theory of Computing, STOC, pp. 1–10. ACM Press (1988)

7. Cao, Z., Liu, L.: Comment on “harnessing the cloud for securely outsourcing large-
scale systems of linear equations”. IEEE Trans. Parallel Distrib. Syst. 27(5), 1551–
1552 (2016)

8. Cock, M.D., Dowsley, R., Nascimento, A.C.A., Newman, S.C.: Fast, privacy pre-
serving linear regression over distributed datasets based on pre-distributed data.
In: 8th ACM Workshop on Artificial Intelligence and Security, pp. 3–14. ACM
Press (2015)

9. Damg̊ard, I., Jurik, M.: A generalisation, a simplification and some applications
of Paillier’s probabilistic public-key system. In: Kim, K. (ed.) PKC 2001. LNCS,
vol. 1992, pp. 119–136. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44586-2 9

10. Du, W., Han, Y.S., Chen, S.: Privacy-preserving multivariate statistical analysis:
linear regression and classification. In: Fourth SIAM International Conference on
Data Mining, pp. 222–233. SIAM (2004)

11. Fouque, P.-A., Stern, J., Wackers, G.-J.: CryptoComputing with rationals. In:
Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 136–146. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36504-4 10

12. Gascón, A., Schoppmann, P., Balle, B., Raykova, M., Doerner, J., Zahur, S.,
Evans, D.: Privacy-preserving distributed linear regression on high-dimensional
data. PoPETS 2017(4), 248–267 (2017)

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: 41st Annual
ACM Symposium on Theory of Computing, STOC, pp. 169–178. ACM Press (2009)

14. Giacomelli, I., Jha, S., Joye, M., Page, C.D., Yoon, K.: Privacy-preserving ridge
regression with only linearly-homomorphic encryption. Cryptology ePrint Archive,
Report 2017/979 (2017)

15. Hall, R., Fienberg, S.E., Nardi, Y.: Secure multiple linear regression based on
homomorphic encryption. J. Off. Stat. 27(4), 669–691 (2011)

16. Kamara, S., Mohassel, P., Raykova, M.: Outsourcing multi-party computation.
Cryptology ePrint Archive, Report 2011/272 (2011)

17. Karr, A.F., Lin, X., Sanil, A.P., Reiter, J.P.: Regression on distributed databases
via secure multi-party computation. In: 2004 Annual National Conference on Dig-
ital Government Research, pp. 108:1–108:2 (2004)

18. Karr, A.F., Lin, X., Sanil, A.P., Reiter, J.P.: Secure regression on distributed
databases. J. Comput. Graph. Stat. 14(2), 263–279 (2005)

19. Karr, A.F., Lin, X., Sanil, A.P., Reiter, J.P.: Privacy-preserving analysis of verti-
cally partitioned data using secure matrix products. J. Off. Stat. 25(1), 125–138
(2009)

20. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 36–54. Springer, Heidelberg (2000). https://
doi.org/10.1007/3-540-44598-6 3

21. McDonald, G.C.: Ridge regression. Wiley Interdiscip. Rev.: Comput. Stat. 1(1),
93–100 (2009)

22. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: 2017 IEEE Symposium on Security and Privacy, pp. 19–38.
IEEE Computer Society (2017)

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-44586-2_9
https://doi.org/10.1007/3-540-36504-4_10
https://doi.org/10.1007/3-540-44598-6_3
https://doi.org/10.1007/3-540-44598-6_3


Privacy-Preserving Ridge Regression with only LHE 261

23. Nikolaenko, V., Weinsberg, U., Ioannidis, S., Joye, M., Boneh, D., Taft, N.: Privacy-
preserving ridge regression on hundreds of millions of records. In: 2013 IEEE Sym-
posium on Security and Privacy, pp. 334–348. IEEE Computer Society (2013)

24. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

25. Sanil, A.P., Karr, A.F., Lin, X., Reiter, J.P.: Privacy preserving regression mod-
elling via distributed computation. In: Tenth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 677–682. ACM Press (2004)

26. Wang, C., Ren, K., Wang, J., Wang, Q.: Harnessing the cloud for securely out-
sourcing large-scale systems of linear equations. IEEE Trans. Parallel Distrib. Syst.
24(6), 1172–1181 (2013)

27. Wang, P.S., Guy, M.J.T., Davenport, J.H.: P -adic reconstruction of rational num-
bers. ACM SIGSAM Bull. 16(2), 2–3 (1982)

28. The International Warfarin Pharmacogenetics Consortium: Estimation of the War-
farin dose with clinical and pharmacogenetic data. N. Engl. J. Med. 360(8), 753–
764 (2009)

29. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Annual Symposium
on Foundations of Computer Science, FOCS, pp. 162–167. IEEE Computer Society
(1986)

https://doi.org/10.1007/3-540-48910-X_16


Privacy-Preserving Plaintext-Equality
of Low-Entropy Inputs

Sébastien Canard1, David Pointcheval2,3, Quentin Santos1,2,3(B),
and Jacques Traoré1

1 Orange Labs, Applied Crypto Group, Caen, France
quentin.santos@orange.com

2 DIENS, CNRS École normale supérieure, PSL University, Paris, France
3 INRIA, Paris, France

Abstract. Confidentiality requires to keep information away from the
eyes of non-legitimate users, while practicality necessitates to make infor-
mation usable for authorized users. The former issue is addressed with
cryptography, and encryption schemes. The combination of both has
been shown to be possible with advanced techniques that permit to per-
form computations on encrypted data. Searchable encryption concen-
trates on the problem of extracting specific information from a cipher-
text.

In this paper, we focus on a concrete use-case where sensitive tokens
(medical records) allow third parties to find matching properties (com-
patible organ donor) without revealing more information than necessary
(contact information).

We reduce such case to the plaintext-equality problem. But in our par-
ticular application, the message-space is of limited size or, equivalently,
the entropy of the plaintexts is small: public-key existing solutions are
not fully satisfactory. We then propose a suitable security model, and
give an instantiation with an appropriate security analysis.

1 Introduction

With the advance of computing and networking, cryptography has evolved
from providing straightforward guarantees such as confidentiality, integrity and
authenticity to providing many complex features. In particular, much research
has been done on the task of performing various kinds of operations on encrypted
data. The most well-known topics include fully homomorphic encryption and
garbled circuits, whose practical realization would bring into the realm of possi-
bility many applications that would have deemed as magical and unlikely a few
decades ago.

A simpler but still useful problem is that of extracting information from
a ciphertext. This can include allowing the testing of a single bit of a cipher-
text, testing whether a ciphertext contains a particular value or not, whether it
includes this value as a substring or not. Searchable encryption already allows

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 262–279, 2018.
https://doi.org/10.1007/978-3-319-93387-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_14&domain=pdf


Privacy-Preserving Plaintext-Equality of Low-Entropy Inputs 263

many practical uses, such as spam filtering or threat detection in encrypted traf-
fic, but has the advantage over more generic cryptocomputing techniques to have
much more efficient instantiations.

1.1 Motivation: Organ Donation

In this paper, we take the specific use case of organ donation as a motivation and
derive our constraints from issues related to the actual realization of a solution.
With this approach, we devise a method to solve the problem using a new kind
of cryptographic primitive. This work is connected to the Kidner Project1 which
aims at providing a solution for kidney donation matching using a blockchain.

Organ Donation. Organ transplant requires the donor and the recipient to
be compatible, so as to reduce the risks of a graft rejection. In practice, this
means that they must be of similar age, have compatible antigens (blood type
and human leukocyte antigen (HLA) system), etc. This also means that a list of
donors and a list of recipients must be maintained: when a new donor (respec-
tively recipient) enters the system, the new entry should be checked against
existing recipients (respectively donors).

Donors are usually willing to give an organ only to a close relative; this means
that the pool for potential matches is very restricted. To lift this constraint,
the common approach is to pair a willing donor with a recipient, disregarding
medical incompatibility. Then, the problem consists in finding two pairs that are
mutually compatible (the donor of a pair is compatible with the recipient of the
other pair), so that each donor accepts to give their organ to the other recipient.

To enlarge the pool of potential matches further, we can consider the directed
graph over donor-recipient pairs, and draw an edge from a donor to a compatible
recipient. The general problem is that of finding simple cycles in this graph; the
simplest version is a cycle of length 2, involving two donor-recipient pairs, but
longer cycles allow more compatibility solutions.

Confidential information on donors and recipients is usually managed by non-
profit entities (e.g., Organ Procurement Organizations) who exchange informa-
tion in order to find matching pairs. Optimizing the number of matches requires
merging information from as many sources as possible, but threatens the confi-
dentiality of patient records.

In this paper, we explore a method to encrypt such records in order to obtain
both data confidentiality and the ability to test for compatibility.

Compatibility Matching by Equality Check. We show how to reduce this
problem to that of testing for equality.

Blood Type. First, consider compatibility on blood type alone. Donor and recip-
ient can each be O, A, B or AB. The compatibilities are shown on Fig. 1. The
recipient will generate a record for each of the compatible donors: for instance,
1 https://www.kidner-project.com.

https://www.kidner-project.com


264 S. Canard et al.

a recipient of blood type A will generate a record whose field Blood Type is set
to O, and another where this field is set to A.

�
� �
� �
� � � �

Fig. 1. Blood compatibility

Remark 1. Records should not be linkable one to another; however, if they are,
the number of compatible blood types can be hidden by padding with filler
values. This can be done by constant incompatible values between donors and
receivers.

Age Group. Second, consider compatibility on age alone. This criterion is soft:
individuals of similar ages should match, but we do not want to discriminate
them into separate age groups. Instead, we use overlapping age groups by letting
the recipient list acceptable age groups for the donor. For instance, a 19-year-old
recipient would list age groups [12 − 19] and [20 − 39].

Human Leukocyte Antigens (HLA). Each individual is associated with six vari-
ables HLA-{A,B,C,E,F,G}. Two individuals are considered to be HLA-wise com-
patible when at least three of these variables match. This time, the recipient and
the donor each generate a record for each of the 20 combinations of three HLAs
(binomial of 3 out of 6).

All Together. By combining these brute-force-inspired solutions, we expect an
individual to generate on average less than 200 records. The overhead is non-
negligible but overcomes complex matching procedures.

We now consider an encrypted version of an individual’s record, called a
“fingerprint”, and we want to test whether two fingerprints are equal or not.

1.2 Related Work

Testing whether two ciphertexts hold the same value can be easily done in some
contexts. For instance, when all the relevant ciphertexts are encrypted under the
same key, and when a deterministic encryption scheme is used, it is sufficient to
compare the two outputs [BBO06]. It is also possible to allow testing a ciphertext
against a plaintext value by simply using deterministic public key encryption or
a one-way function (optionally along with a classical encryption of the message,
if decryption is needed).



Privacy-Preserving Plaintext-Equality of Low-Entropy Inputs 265

Public Key Encryption with Equality Test (PKEET) allows testing plaintext-
equality between two ciphertexts [YTHW10], while encryption can be done by
anyone. One may think of deterministic public key encryption schemes as a
subset of PKEET schemes.

In other contexts, more elaborate schemes are needed. In searchable encryp-
tion [SWP00,BDOP04], each word w from the input message m is encrypted
separately as s = PEKS(w). The PEKS scheme then allows other participants to
search for a keyword w′ in m simply by testing whether w = w′ given s, as well as
a trapdoor value Tw′ . Another variant allows testing between a ciphertext and a
plaintext, without a trapdoor [CFGL12]. In different settings, it is possible to use
interactive protocols, such as for private matching and set intersection [FNP04].

1.3 Our Contribution

Fingerprinting and Testing Keys. It is important to note that PKEETs
rely on the high min-entropy of the message distribution [LZL13]. Indeed, an
attacker may test a target ciphertext against arbitrary messages to conduct a
brute-force search over the message space, since encryption is public. We thus
have to exclude this approach.

We introduce the notion of fingerprint, a kind of probabilistic ciphertext
that allows plaintext-equality testing. Private fingerprinting (generation of fin-
gerprint) allows us to provide semantic security [GM84] (a.k.a. indistinguisha-
bility or polynomial security). Alternatively (or additionally), it is possible to
make the testing private. We consider all scenarios in our generic model but,
since legitimate users need to run many more plaintext-equality testings than
fingerprintings (contrary to an adversary), we are interested in a mechanism
where testing is public and fingerprinting is private.

Finally, we would prefer non-interactive matching protocols: in our motiva-
tion, searching for a cycle requires many compatibility tests; using an interactive
protocol would incur an important communication cost and make the system less
robust to network hazards.

Blind and Threshold Fingerprinting. We could entrust the fingerprinting
key to a trusted third party (TTP) to control the number of queries but we
want the fingerprints to be generated without seeing the input messages. Thus,
we will use blind fingerprinting, which is similar to blind signing [Cha82], but
we do not require unlinkability.

This is not enough for privacy: the fingerprinter can still generate and test
for plaintext-equality as many fingerprints as they want (assuming public-key
testing). To actually achieve a decent level of privacy, we therefore split them into
several fingerprinters: without collusions above some threshold, no information is
leaked about the input message (blindness) and no brute-force attack is possible.



266 S. Canard et al.

1.4 Organization

In Sect. 2, we first draw a generic model for fingerprinting under the constraints
listed above; in particular, we take into consideration both public and private
fingerprinting and both public and private testing. Then, in Sect. 3, we introduce
the two assumptions which our construction relies on, one of which is new to
this paper, and holds in the generic bilinear group model. Finally, we propose
a construction for our new scheme in Sect. 4, show its security, and present the
blind and threshold variants which extend the privacy of the user.

The proof for the new assumption in the generic bilinear group model is
postponed to AppendixA, and the proofs of security of our construction can be
found in Subsect. 4.3.

2 Fingerprinting Scheme

In this section, we first define a more general fingerprinting mechanism, where
the generation of fingerprints and the testing algorithm require keys that can
be either private or public. We will later focus on our concrete scenario, with
private fingerprint generation and public testing.

2.1 Description

We consider three kinds of players:

– the fingerprinter who generates the fingerprints of messages using the finger-
printing key. We consider this operation in the honest-but-curious framework,
since we eventually split the fingerprinter into several parties, each holding a
share of the fingerprinting key;

– the tester who checks whether two fingerprints correspond to the same mes-
sage or not, using the testing key;

– the users who have access to the list of fingerprints, and who may query
for new fingerprints (through the fingerprinter) and compare fingerprints
(through the tester).

We stress however that the fingerprinting and testing keys may be either public
or private. When a key is secret, the users have to interact with the owner of the
key to benefit from the corresponding functionality; when it is public, the users
can act on behalf of the fingerprinter or the tester. The choice of publishing a
key or keeping it private will depend on the scenario under consideration.

Finally, we eventually choose to take advantage of the asymmetric nature
of our use case: bipartite matching, between people from two different groups
(donors and receivers). So, we will manipulate two kinds of fingerprints: “left”
and “right” fingerprints in this generic specification.

We thus define four protocols:

– KeyGen(1k) creates the global parameters and the left and right fingerprinting
keys lk and rk as well as the testing key tk, for security parameter k;



Privacy-Preserving Plaintext-Equality of Low-Entropy Inputs 267

– LFingerprint(lk,m), given a left-fingerprinting key lk and a message m, outputs
a left-fingerprint fL;

– RFingerprint(rk,m), given a right-fingerprinting key rk and a message m, out-
puts a right-fingerprint fR;

– Test(tk, fL, fR), given a testing key tk, a left-fingerprint fL and a right-
fingerprint fR, reveals whether they correspond to the same message or not.

As already noted above, these procedures can be either private or public, and
they can be algorithms to be run offline, or interactive protocols. Various situa-
tions can be envisioned according to the secrecy of the fingerprinting and testing
keys.

– Testing and fingerprinting keys public: security solely rely on the high entropy
of the inputs (message-locked encryption, as in PKEETs);

– Fingerprinting keys private only: our use case, where we want to limit the
generation of fingerprints, but allow anyone to test freely for compatibility;

– Testing key private only: this can be relevant if the message space is very
constrained, when even a few tests could leak too much information;

– Testing and fingerprinting keys private: this has the highest security guaran-
tee, but is usually impractical unless performing very few queries is enough.

Remark 2. We can choose to have one of the fingerprinting keys private, and the
other public. This setup can give some flexibility for specific use cases.

2.2 Security Model

Let us now make more precise the security notions we want to achieve. Since
secret information can include the fingerprinting keys lk and rk, the testing key
tk, and the users’ input messages, we consider the following security properties:

1. unforgeability of fingerprinting (even against the tester2);
2. one-more indistinguishability of testing (even against the fingerprinter3);
3. privacy of the user w.r.t. the tester;
4. privacy of the user w.r.t. the fingerprinter.

Authentication of the Fingerprinter. The raison d’être of the fingerprinter is
to generate fingerprints, so unforgeability guarantees that no one else can do
so: even a collusion between the tester (access to the testing key) and users
(queries to the fingerprinter) should be unable to generate a valid fingerprint
that was not provided by the fingerprinter. This implies that the fingerprinting
key is not leaked during this game. We formally define Fingerprint-Unforgeability
(FP−UF).

2 Even the testing key should give no advantage to anybody in generating fingerprints.
3 Even the fingerprinting key should give no advantage to anybody in making tests.



268 S. Canard et al.

Definition 1 (FP–UF). Let Π = (KeyGen, LFingerprint,RFingerprint,Test) be
the scheme presented above, and let A be a polynomial-time adversary. Let

AdvFP−UF
Π,L (A) = Pr

(
(lk, rk, tk) $← KeyGen(1k), (m�, f�

L) ← AL(rk, tk),
fR ← RFingerprint(rk,m�) : Test(tk, f�

L, fR) = 1

)

where L refers to the left-fingerprinting oracle, which answers to queries on
message mi with fL,i = LFingerprint(lk,mi). We insist that m� is distinct from
any queried mi.

We similarly define AdvFP−UF
Π,R , with the left-fingerprinting key but access to

the right-fingerprinting oracle. We say that Π is (t, ε) − FP−UF-secure when
both AdvFP−UF

Π,L (A) ≤ ε and AdvFP−UF
Π,R (A) ≤ ε for any A running within time t.

Authentication of the Tester. The purpose of the tester is to help the user to
test plaintext equality between fingerprints. But even a collision between the
fingerprinter (access to the fingerprinting key) and users (queries to the tester),
should be unable to guess the result of another test. This implies that the testing
key is not leaked. We formally define Testing-Indistinguishability (T−IND).

Definition 2 (T–IND). Let Π = (KeyGen, LFingerprint,RFingerprint,Test) be
the scheme presented above, and A = (A1,A2) a polynomial-time adversary. Let

AdvT−IND
Π,L (A)=

∣∣∣∣∣∣∣∣∣∣
Pr

⎛
⎜⎜⎜⎜⎝

(lk, rk, tk) $← KeyGen(1k),

(m0,m1, s) ← AT
1 (lk, rk), fL ← LFingerprint(lk,m0),

b
$← {0, 1}, fR ← RFingerprint(rk,mb),

b′ ← AT
2 (s, fL, fR) : b′ = b

⎞
⎟⎟⎟⎟⎠ − 1

2

∣∣∣∣∣∣∣∣∣∣
where T refers to the testing oracle, who answers to queries on fingerprints
fL, fR with T (fL, fR) = Test(tk, fL, fR). We require that the attacker does not
submit the challenge fingerprint fR to the testing-oracle.

We define AdvT−IND
Π,R (A) in a similar fashion. We say that Π is (t, ε)−T−IND-

secure if both AdvT−IND
Π,L (A) ≤ ε and AdvT−IND

Π,R (A) ≤ ε for any adversary A
running within time t.

One can note that for such a strong notion of indistinguishability, which only
excludes the challenge fingerprints from being queried to the testing-oracle, the
fingerprints must be non-malleable.

Privacy of the User. This security notion adapts semantic security to our scheme:
given access to the even a collusion between the tester (access to the testing
key) and users (queries to the fingerprinter) should not be able to distinguish
a fingerprint of a message m0 from a fingerprint of a message m1 (unless they
know a fingerprint of m0 or of m1). Furthermore, the collusion could include
one of the two fingerprinting keys (but not both): give the left-fingerprinting
key when proving the semantic security of left-fingerprinting, and the right-
fingerprinting key when proving the semantic security of right-fingerprinting.
We formally define Fingerprint-Indistinguishability (FP−IND).



Privacy-Preserving Plaintext-Equality of Low-Entropy Inputs 269

Definition 3 (FP–IND). Let Π = (KeyGen, LFingerprint,RFingerprint,Test) be
the scheme presented above, and let A = (A1,A2) be a polynomial-time adver-
sary. Let

AdvFP−IND
Π,L (A)=

∣∣∣∣∣∣∣∣
Pr

⎛
⎜⎜⎝

(lk, rk, tk) $← KeyGen(1k), (m0,m1, s) ← AR
1 (lk, tk),

b
$← {0, 1}, fL ← LFingerprint(lk,mb),

b′ ← AR
2 (s, fL) : b′ = b

⎞
⎟⎟⎠− 1

2

∣∣∣∣∣∣∣∣
where R refers to the right-fingerprinting oracle, which answers to queries on
message m′

i with R(m′
i) = RFingerprint(rk,m′

i). We insist that m′
i /∈ {m0,m1}

for any queries to R.
We define AdvFP−IND

Π,R (A) similarly. We say that Π is (t, ε) −FP−IND-secure
if both AdvFP−IND

Π,L (A) ≤ ε and AdvFP−IND
Π,R (A) ≤ ε for any adversary A running

within time t.

Note that fingerprinting generation itself should not reveal anything about
the message that is being fingerprinted: the view of the fingerprinter should be
the same regardless of the message. Like in blind signatures [Cha82], no adver-
sary playing the role of fingerprinter should be able to distinguish a fingerprinting
of m0 from a fingerprinting of m1. However, if the fingerprinter sees the resulting
fingerprint and locally generates a fingerprint for m0, they could easily distin-
guish between the two cases. To avoid this, the fingerprinter should be split
into several parties that need to cooperate to create a new fingerprint. This last
security notion thus suggest the use of a blind protocol and a threshold scheme.

Remark 3. Contrary to blind signatures, user anonymity is not required; in our
use-case, contact information must be joined with the final published fingerprint.

3 Assumptions

Our construction adapts the randomizable signature proposed by Pointcheval
and Sanders [PS16], which relies on q-MSDH-1 [PS18]. Our scheme addition-
ally requires indistinguishability, which implies another assumption; for this, we
introduce q-DMSDH-1, which is decisional variant of q-MSDH-1, and prove it to
hold in the generic bilinear group model.

Definition 4 (q-MSDH-1). Let (p, G1, G2, GT , e) be a bilinear group setting
of type 3, with g (respectively g̃) a generator of G1 (respectively G2). Given
(gxi

, g̃xi

)0≤i≤q along with (ga, g̃a, g̃a·x) for a, x
$← Z

∗
p, no adversary can output

a tuple (w,P, h
1

x+w , h
a

P (x) ) for some h ∈ G
∗
1 where P is a polynomial of degree

at most q and w is a scalar such that (X + w) and P (X) are relatively prime.

Definition 5 (q-DMSDH-1). Let (p, G1, G2, GT , e) be a bilinear group setting
of type 3, with g (respectively g̃) a generator of G1 (respectively G2). Given
(gxi

, g̃xi

)0≤i<q along with (ga, ga·x, g̃a) for a, x
$← Z

∗
p, and for any (w,P ) where



270 S. Canard et al.

P is a polynomial of degree at most q and w is a scalar such that (X + w) and
P (X) are relatively prime, no adversary can distinguish (h

1
x+w , h

a
P (x) ) for some

h ∈ G
∗
1 from a random pair of elements of G1.

Theorem 1. q-DMSDH-1 holds in the generic bilinear group model.

Proof. The computational assumption q-MSDH-1 from [PS18] gives g̃a·x ∈ G2

and expects the forged pair in G1, whereas the decisional version q-DMSDH-1
gives ga·x ∈ G1 and the challenge pair in G1. So, the group the pair belongs
to determines what security guarantee we obtain (either unforgeability from
q-MSDH-1 or indistinguishability from q-DMSDH-1). Thus, the reasoning for q-
DMSDH-1 is very similar to that for q-MSDH-1. The full proof can be found in
AppendixA.

4 Fingerprinting from Pointcheval-Sanders Signatures

In the following, we focus on our initial scenario with secret fingerprinting and
public testing of plaintext-equality, for low-entropy messages. Our construction
is heavily influenced by the assumption that it is possible to efficiently enumerate
all the valid messages.

4.1 The Pointcheval-Sanders Signature Scheme

Our construction derives from Pointcheval-Sanders signatures [PS16,PS18]. We
reproduce here the definition for the single-message version. Let e : G1 × G2 →
GT be a type-3 pairing with G1, G2, GT of prime order p, and G

∗
1 = G1\{1G1}.

Then, we define the following procedures.

– KeyGen(1k): (g̃, x, y) $← G2 × Z
2
p, sk = (x, y) and pk = (g̃, X̃ = g̃x, Ỹ = g̃y).

– Sign(sk,m): draw h
$← G

∗
1 and return σ = (h, hx+ym).

– Verify(pk,m, σ): return 1 if σ1 �= 1G1 and e(σ1, X̃Ỹ m) = e(σ2, g̃), else 0.

This signature scheme has been shown unforgeable in the sense of EUF–CMA
under the interactive PS assumption [PS16], and in the sense of EUF–wCMA
(non-adaptative) under the q-MSDH-1 assumption (where q is the bound on
signing requests asked before the setup) [PS18]. The same levels of security are
achieved when elements g ∈ G1 and Y = gy are included in the public key pk,
as long as X = gx is kept private.

4.2 Fingerprinting Scheme with Public Plaintext-Equality Testing

Let H be a random oracle. We now propose a fingerprinting scheme where the
fingerprinting procedure requires a secret key lk or rk, while testing is a public
process (there is no testing key tk, or alternatively it is public).

– KeyGen(1k): randomly draw (g, g̃, x, y) $← G1 × G2 × Z
2
p, set (X, X̃, Y, Ỹ ) ←

(gx, g̃x, gy, g̃y), return lk = X, rk = X̃, and pk = (g, Y, g̃, Ỹ ).



Privacy-Preserving Plaintext-Equality of Low-Entropy Inputs 271

– LFingerprint(lk,m): draw u
$← Z

∗
p, return fL = (gu, (XY H(m))

u
).

– RFingerprint(rk,m): draw u
$← Z

∗
p, return fR = (g̃u, (X̃Ỹ H(m))

u
).

– Test(fL, fR): return 1 if fL,1, fR,1 �= 1G1 and e(fL,1, fR,2) = e(fL,2, fR,1),
else 0.

4.3 Security of the Basic Scheme

Theorem 2. Our fingerprinting scheme is FP−UF under q-MSDH-1 in the ran-
dom oracle model, where q corresponds to the number of queries to the random
oracle or to the fingerprinting oracles.

Proof. We define the extended Pointcheval-Sanders signature scheme (EPS) as a
variant of the PS signature scheme where pk includes Y , i.e. pk = (Y, g̃, X̃, Ỹ ). We
argue that EPS is EUF–wCMA secure under q-MSDH-1 in Lemma 1, and reduce
the FP−UF security of our fingerprinting scheme to the EUF–wCMA security of
EPS in Lemma 2.

Lemma 1. If q-MSDH-1 holds, then EPS is EUF–wCMA where q is the number
of queries to the signing oracle.

Proof. We refer to the proof of theorem 10 from [PS18, Sect. 5.1, p. 330] where
the challenger is given (gxi

)i, (g̃xi

)i and (ga, g̃a, g̃a·x) and feeds the challenger
with Ỹ1 ← g̃a and Ỹi ← Ỹ ui

1 . To prove the EUF–wCMA security of the signature
scheme when pk includes (Yi)i, it suffices to have the challenger also offer Y1 ← ga

and Yi ← Y ui
1 .

Lemma 2. If EPS is EUF–wCMA, then our fingerprinting scheme is FP−UF.
The number of queries to the signing oracle in EPS maps to the number of
queries to the random oracle or to the fingerprinting oracles in our scheme.

Proof. Let A be an adversary that breaks the FP−UF security of our scheme.
Then, we create an adversary B that breaks the EUF–wCMA security of EPS.
By symmetry of the left and right games, we assume that AdvFP−IND

Π,L (A) is non-
negligible without loss of generality.

We will use H to “redirect” the queries from A towards predetermined values:
B first draws (mi)i

$← Z
q
p, submits the list of messages (mi)i to the signing

challenger, and will answer to the i-th original query to H (for some message
Mi) with mi.

In return, our adversary B is given pk = (Y, g̃, X̃, Ỹ ) as well as signatures
(σi)i for (mi)i, i.e. values such that e(σi,1, X̃Ỹ mi) = e(σi,2, g̃) We need to output
(m�, σ�) such that e(σ�

1 , X̃Ỹ m�

) = e(σ�
2 , g̃) where m� is distinct from any queried

mi.
For this, we simulate the FP−UF game for A with pk′ ← (g, Y, g̃, Ỹ ), rk ← X̃

as well as access to an oracle L which answer to queries Mi with σi. Then,
A should output (M�, f�

L) where M� is distinct from any queried Mi. We also



272 S. Canard et al.

require that Test(tk, f�
L, fR) for some fR ← RFingerprint(rk,m�) = 1, i.e. such

that fL,1 �= 1G1 and:

e
(
fL,1,

(
X̃Ỹ H(M�)

)u)
= e (fL,2, g̃

u)

for some u. Thus, σ� = f�
L is a valid PS signature for m� = H(M�) with m�

distinct from any queried mi.

Theorem 3. Our fingerprinting scheme is FP−IND under q-DMSDH-1 in the
random oracle model, where q corresponds to the number of queries to the random
oracle or to the fingerprinting oracles.

Proof. Let A be an adversary against FP−IND, then we provide an adver-
sary B against q-DMSDH-1. We assume that AdvFP−IND

Π,L (A) is non-negligible.
Since the roles of G1 and G2 are symmetric, the same reasoning applies when
AdvFP−IND

Π,R (A).
First, B is given (gxi

)0≤i≤q, (ga, ga·x, g̃a). Then, it draws (mi)i
$← Z

q
p, m

$←
Zp, sets P =

∏
i(X + mi), and submits (m,P ) to the challenger, which answers

with a pair σ which is either random or of the form (h
1

x+m , h
a

P (x) ) for some
h ∈ G1.

Now, B should be able to distinguish between these two cases. For this, B
will run A while simulating the game for FP−IND by setting g′ ← g

∏
i(x+mi)

and g̃′ ← g̃
∏

i(x+mi), using (gxi

)i and (g̃xi

)i, as well as X ← ga·x, Y ← ga, and
Ỹ ← g̃a to define the public key pk = (g′, Y, g̃′, Ỹ ) and the left-fingerprinting
key lk = X. This implicitly sets x′ = a·x∏

i(x+mi)
and y′ = a∏

i(x+mi)
.

To generate fingerprints for the q queried fingerprints, B sets the random
oracle H to map the j-th original query Mj to mj , and the right-fingerprinting

oracle R to return ((g̃′
∏

i�=j(x+mi))
uj

, (g̃′a)
uj

). One may verify that this is a valid
right-fingerprint for Mj .

Finally, A outputs (M ′
0,M

′
1), and B draws b ← {0, 1}. We would now like

to set H(M ′
b) to m, but A may have queried the random oracle on this value

before. Thus, on any query Mj , H will additionally guess with probability 1
q that

Mj = M ′
b and accordingly set H(Mj) to m instead of mj . B can then check

its guess when A outputs (M ′
0,M

′
1), and abort if it was incorrect; this implies a

penalty of a factor q to the probability that B wins the q-DMSDH-1 game.
Now, since H(M ′

b) = m, if σ is of the form (h
1

x+m , h
a

P (x) ), then it is a valid
left-fingerprint for Mb. Otherwise, it provides no information about b to the
adversary. Thus, B answers the final request of A with σ, and, if A guesses b

correctly, then B guesses that σ is of the form (h
1

x+m , h
a

P (x) ); otherwise, that it
is a random pair.

4.4 Improving the Privacy of the User

Since the left and right fingerprintings work in similar ways, we will only present
the protocols for left fingerprinting.



Privacy-Preserving Plaintext-Equality of Low-Entropy Inputs 273

Against the Fingerprinter Without the Final Fingerprint. In the naive
construction above, the user sends the message in the clear to get back the
fingerprint. In order to extend user privacy to the fingerprinters, we propose a
blinded version, as in [PS16]:

1. the user draws r
$← Zp and sends C ← Y mgr;

2. the user runs a Zero-Knowledge Proof of Knowledge (ZKPoK) of m, r such
that C = Y mgr;

3. the fingerprinter draws u
$← Zp and sends back α ← (gu, (XC)u);

4. the user sets f1 ← α1, f2 ← α2 · α−r
1 .

This protocol is perfectly blind to the fingerprinter, since his view is just the
perfectly hiding Pedersen commitment [Ped92] and a ZK protocol, which do not
leak any information about m. Hence the privacy of the user. With an extractable
ZKPoK, it is possible to prove the security of this blinded version, as in [PS16].

Against the Fingerprinter with the Final Fingerprint. With the protocol
presented above, if the fingerprinter gains access to the final fingerprint f , their
ability to create fingerprints for arbitrary messages and the publicness of the
testing key let them retrieve the message. In order to block exhaustive searches,
we amend the protocol by splitting the fingerprinter into n parties, using secret
sharing of the fingerprinting key. For some threshold k, no collusion of less than
k parties can generate fingerprints; equivalently, having access to up to k − 1
shares of the fingerprinting key does not reveal more than being a common user.

The threshold version makes use of Shamir’s secret sharing [Sha79] to split
the secret scalar x into n shares xi (for each sub-fingerprinter Fi), and we note
Xi = gxi . This way, for any qualified subset of Fi (with at least k shares), there
are public coefficients λi (Lagrange coefficients) such that x =

∑
λixi, and then∏

Xλi
i = X. A group of k sub-fingerprinters interacts as follows with the user:

1. the user draws r
$← Zp and broadcasts C ← Y mgr;

2. the user sends a NIZKPoK of m, r such that C = Y mgr;
3. each Fi draws ui

$← Zp and broadcasts αi,1 ← gui ;
4. each Fi computes G ←

∏
α

λj

j,1, and sends back αi,2 ← GxiCui ;
5. the user sets

f1 ← G = gu f2 ← G−r
∏

αλi
i,2 = (XY m)u

which implicitly defines u =
∑

λiui.
First, one can easily see that this still preserves the privacy of the user, since,

as before, C does not contain any information about m; neither does the NIZK.
The final fingerprint f traces back to the user but the anonymity is not required:
in our use case, it must be possible to contact the appropriate hospital when a
match is found. The important property is the privacy of m: no subset of less
than k sub-fingerprinters can guess the conduct an exhaustive search.

Of course, we have to prove this still preserves fingerprinter privacy, or more
precisely this does not leak private information of honest sub-fingerprinters to



274 S. Canard et al.

corrupted ones. To this aim, we show that the view of any (static) subset of
corrupted sub-fingerprinters can be simulated from the same information α =
(α1, α2) as the one output by the fingerprinter in the centralized protocol.

Let us assume that the corrupted sub-fingerprinters are F1, . . . ,Fc, and the
honest ones are Fc+1, . . . ,Fk (where c < k), and the simulator has drawn vi

$← Zp

for i = c + 1, . . . , k: the corrupted players send αi,1 for i = 1, . . . , c, and the
simulator draws ui

$← Zp and generates αi,1 ← gui for i = c+ 1, . . . , k − 1, while

αk,1 ← (α1/
∏k−1

i=1 αλi
i,1)

1/λk

. The simulator also sets G ← α1, and computes

αi,2 ← GviCui for i = c + 1, . . . , k − 1, while αk,2 ← (α2/
∏k−1

i=1 αλi
i,2)

1/λk

.
Since no information is known about the actual secret values xi, and the val-

ues vi are indistinguishable from the real secret, all the simulated elements are
perfectly indistinguishable from a real execution, under the condition that the
corrupted sub-fingerprinters are honest-but-curious (and the subset of honest
players remains the same: static corruptions). Indeed, in this protocol, no ver-
ifiability is required about the sub-fingerprinters: they are trusted to compute
correctly, even if they try to learn more information.

4.5 Verifiability

If one wants to consider malicious sub-fingerprinters, verifiability is required
for the user (private verifiability). An additional improvement can be reached:
one could avoid fake or copies of fingerprints posted by malicious users in the
database, by using a proof of knowledge of the fingerprinted message (public ver-
ifiability). To achieve this, sub-fingerprinters first need to publish a commitment
Ci = gxiY ti of their secret shares xi during key generation. This is a perfectly
hiding commitment, and the binding property relies on secrecy of the discrete
logarithm of Y in basis g.

Private Verifiability. For the former case, verifiability can be enforced during
the original process of creating the fingerprint, with the additional verification
of a NIZK Proof of Existence of ui and a NIZK Proof of Knowledge of xi and ti
such that αi,1 = gui and αi,2 = GxiCui . The proofs can be efficiently done with
Schnorr-like proofs.

Public Verifiability. In order to avoid fake fingerprints or copies, the user
should prove their validity (to avoid fake ones) and freshness (to avoid copies).
A non-malleable NIZK could solve this challenge: in addition to f = (f1, f2),
and the NIZKs provided by the sub-fingerprinters, the user sends a NIZK Proof
of Knowledge of m and r such that α2/f2 = αr

1 and C = Y mgr. In order to
guarantee non-malleability or replay attacks, the user includes his own identity
in the challenge computation (signature of knowledge).



Privacy-Preserving Plaintext-Equality of Low-Entropy Inputs 275

4.6 Full Protocol

Let us now fully describe the resulting protocol, with an optimized NIZK for
the public verifiability: the fingerprinters Fi, for i = 1, . . . , n, jointly generate a
Shamir’s secret sharing of a random scalar secret x. They each own a share xi,
and publish a commitment Ci = gxiY ti , for a random scalar ti. In order to get
a fingerprint on a message m, the user (with identity Id) contacts a subset of k
sub-fingerprinters:

1. the user draws r
$← Zp and broadcasts C ← Y mgr;

2. the user sends an (extractable) NIZKPoK of m, r such that C = Y mgr;
3. each Fi draws ui

$← Zp and sends back αi,1 ← gui ;
4. each Fi computes G ←

∏
α

λj

j,1, and sends back αi,2 ← GxiCui ;
5. each Fi starts a NIZK for ui, xi and ti such that

αi,1 = gui αi,2 = GxiCui .

More precisely, it draws u′
i, x

′
i, t

′
i

$← Zp and sends

Ai,1 = gu′
i Ai,2 = Gx′

iCu′
i ;

6. the user generates

α1 ← G =
∏

αλi
i,1 = gu α2 ←

∏
αλi

i,2 = (XC)u

A1 ←
∏

Aλi
i,1 = gu′

A2 ←
∏

Aλi
i,2 = (XC)u′

,

where u =
∑

λiui and u′ =
∑

λiu
′
i, as well as

f1 ← α1 f2 ← G−rα2

and starts the NIZK for m and r such that α2/f2 = αr
1 and C = Y mgr, with

random r′ and m′:

B1 ← αr′
1 B2 ← Y m′

gr′

and publishes the challenge e = H(Id, C, f1, f2, A1, A2, B1, B2);
7. each Fi completes the NIZK with

u′′
i ← u′

i − eui x′′
i ← x′

i − exi

8. the user sets

u′′ ←
∑

λiu
′′
i x′′ ←

∑
λix

′′
i

which satisfy

gu′′
= A1α

−e
1 Gx′′

Cu′′
= A2α

−e
2

and completes his NIZK with

m′′ ← m′ − em r′′ ← r′ − er

which satisfy

αr′′
1 = B1(α2/f2)−e Y m′′

gr′′
= B2C

−e.



276 S. Canard et al.

The final fingerprint f = (f1, f2) is published along with the intermediate values
(α2, C), the challenge e and the exponents (u′′, x′′,m′′, r′′), which constitute a
proof that can be verified by checking that e = H(Id, C, f1, f2, A1, A2, B1, B2),
where the missing elements can be recomputed as

A1 ← gu′′
fe
1 A2 ← fx′′

1 Cu′′
αe
2

B1 ← fr′′
1 (α2/f2)e B2 ← Y m′′

gr′′
Ce

This is just an optimization of the Fiat-Shamir heuristic of Schnorr-like proofs.

5 Conclusion

With this construction, we are able to propose a new kind of scheme that let
us derive testable, privacy-preserving, fingerprints from arbitrary messages. This
allows us to propose a solution to the initial motivation of organ donation, where
the requirement of encrypting low-entropy messages in such a way that they
could be publicly tested against each other seemed to imply highly-interactive
protocols. In contrast, our construction allows plaintext-equality tests between
fingerprints to be performed fully offline, while only their generation requires
an interactive process, to guarantee some level of confidentiality despite the low
min-entropy.

We hope that this solution will prove useful in practical applications and
allow cryptography to be used in more numerous situations. It might also be
feasible to design systems which requires fewer interactions, or rely on more
mainstream assumptions.

Acknowledgments. This work was supported in part by the European Research
Council under the European Community’s Seventh Framework Programme (FP7/2007-
2013 Grant Agreement no. 339563 – CryptoCloud).

A Proof of Theorem1

Proof. We prove q-DMSDH-1 in the generic bilinear group model. The generic
group model (not bilinear) was used by Victor Shoup in [Sho97] to assess more
tightly the difficulty of computing the discrete logarithm and related problems. A
vastly clarified introduction to this technique can be found in [Jag12]. The generic
bilinear group model is presented in appendix A of [BBG05]. It is essentially a
formal way to enumerate the values that an adversary can compute from a
restricted number of inputs, using only the group laws.

We use the classical approach of simulating group operations by an oracle G,
which operates on arbitrary representations (ξi,1)i, (ξi,2)i, (ξT,i)i of the elements
of G1, G2 and G3 (respectively). The oracle is built such that all interactions are
done without relation to the secret values, hence reducing the attack to a guess.



Privacy-Preserving Plaintext-Equality of Low-Entropy Inputs 277

For instance, G(×, ξi,1, ξ1,j) returns a representation of the product of the
underlying values in G1. The oracle G similarly allows the adversary A to com-
pute products in G2 and GT , evaluate the pairing e, and test two representations
for the equality of the underlying values.

To simulate the operations, the oracle G stores the values known to the
adversary A (at beginning, and following a request) into lists L1, L2 and LT

(for each group). To track how the adversary A obtained these values, we save
with each representation ξ�,i a polynomial p�,i corresponding to the operations
used to compute the value. The representations used are not important, and the
reader must simply remember that a new random representation is generated
for each new computed value; testing whether the value is fresh or not is done
by searching the polynomial in the relevant list L1, L2 or LT .

The values initially provided to the adversary A are:

– in G1: (gxi

)0≤i≤q, ga, ga·x, h
1

x+w , h
a

P (x)

– in G2: (g̃xi

)0≤i≤q, g̃a

To simulate operations over these elements, we set r such that h = gr

and introduce the indeterminate values x̄, ā, r̄. Then, we initialize L1 =
{x̄i}i ∪ {ā, āx̄, r̄

x̄+w , ā·r̄
P (x̄)}, L2 = {x̄i}i ∪ {ā} and LT = ∅ (along with arbitrary

representations), and set:

– G(×, ξ�,i, ξ�,j): append p�,i + p�,j to L�
– G(=, ξ�,i, ξ�,j): return whether p�,i = p�,j

– G(e, ξ1,i, ξ2,j): append p1,i × p2,j to LT

Remark 4. Comparing the representations directly is equivalent to calling the
group oracle for testing, because the representations are generated so as to be
equal when the corresponding polynomials are equal

We now have to show two things: the simulation does not allow the adversary
to distinguish between (h

1
x+w , h

a
P (x) ) and a pair of random elements from G1;

the simulation is indistinguishable from the initial game.

Indistinguishability in Simulation. Since representations are opaque, the
adversary can only obtain information from testing two values for equality (either
of representations or through the group oracle G).

Comparing elements of G1. Consider a comparison of ξ1,i to ξ1,j ; the differ-
ence of their polynomials, p1,i − p1,j , is of the form:

∑
i

(
C(i)

x x̄i + Caā + Caxāx̄ + C1
r̄

x̄ + w
+ C2

ā · r̄

P (x̄)

)

as a polynomial in r̄, the linear term implies that, if this polynomial were equal
to zero, then:

C1P (x̄) + C2ā(x̄ + w) = 0



278 S. Canard et al.

as a polynomial in ā, this implies C1 = C2 = 0. Thus, the polynomial does not
depend on the challenge pair.

Comparing elements of G2. Elements in G2 do not depend on the challenge
pair.

Comparing elements of GT . Since LT starts out empty, a comparison of ξT,i

to ξT, j will correspond to polynomials whose difference pT,i − pT,j is the sum
of products of one element from G1 and one element from G2, thus of the form:

∑
i

(
Q(x̄) + Ci,aā + Ci,axāx̄ + Ci,1

r̄

x̄ + w
+ Ci,2

ā · r̄
P (x̄)

)
×

(
R(x̄) + C̃i,aā

)

where Q and R are polynomials of degrees at most q. As a polynomial in r̄, if
this were the zero polynomial, then the linear term would imply that:

∑
i

(
Ci,1P (x̄) + Ci,2ā(x̄ + w)

)
×

(
R(x̄) + C̃i,aā

)
= 0

as a polynomial in ā, then the linear term would imply that:

∑
i

(
Ci,1P (x̄)C̃i,a + Ci,2(x̄ + w)R(x̄)

)
= 0

that is, CP (x̄) + S(x̄)(x̄ + w) = 0 for C a constant and S a polynomial. Since
P (x̄) and (x̄ + w) are relatively prime, this means that C = 0 and S = 0 and
thus that the original equation does not depend on the challenge pair.

Undistinguishability of Simulation. Let qG be the number of queries to the
group oracle G. The simulation is undistinguishable from the original game unless
the adversary assembles two distinct polynomials (p, q) with (p − q)(x, a, r) = 0.

The adversary can adaptively test whether (x, a, r) is a root of one of the at
most q′ = (5 + 2q + qG)2/2 differences of polynomials of degrees at most d = 2q.
Per the Schwartz-Zippel lemma, which states that a multivariate polynomial
of degree d has at most d roots, this is equivalent to testing whether (x, a, r)
pertains to one of q′ subsets of Z

3
p of sizes at most d. Finally, the probability of

adaptively finding such subsets is bounded above by q′·d
p3 , which is negligible.

References

[BBG05] Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption
with constant size ciphertext. Cryptology ePrint Archive, Report 2005/015
(2005). http://eprint.iacr.org/2005/015

[BBO06] Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently search-
able encryption. Cryptology ePrint Archive, Report 2006/186 (2006).
http://eprint.iacr.org/2006/186

http://eprint.iacr.org/2005/015
http://eprint.iacr.org/2006/186


Privacy-Preserving Plaintext-Equality of Low-Entropy Inputs 279

[BDOP04] Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key
encryption with keyword search. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24676-3 30

[CFGL12] Canard, S., Fuchsbauer, G., Gouget, A., Laguillaumie, F.: Plaintext-
checkable encryption. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol.
7178, pp. 332–348. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-27954-6 21

[Cha82] Chaum, D.: Blind signatures for untraceable payments. In: Chaum, D.,
Rivest, R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 199–203. Plenum
Press, New York (1982)

[FNP04] Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set
intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24676-3 1

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.
28(2), 270–299 (1984)

[Jag12] Jager, T.: Black-Box Models of Computation. Vieweg+Teubner Verlag,
Wiesbaden (2012)

[LZL13] Lu, Y., Zhang, R., Lin, D.: Stronger security model for public-key encryp-
tion with equality test. In: Abdalla, M., Lange, T. (eds.) Pairing 2012.
LNCS, vol. 7708, pp. 65–82. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-36334-4 5

[Ped92] Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable
secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576,
pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-
46766-1 9

[PS16] Pointcheval, D., Sanders, O.: Short randomizable signatures. In: Sako, K.
(ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 111–126. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-29485-8 7

[PS18] Pointcheval, D., Sanders, O.: Reassessing security of randomizable signa-
tures. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 319–338.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0 17

[Sha79] Shamir, A.: How to share a secret. Commun. Assoc. Comput. Mach.
22(11), 612–613 (1979)

[Sho97] Shoup, V.: Lower bounds for discrete logarithms and related problems.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 18

[SWP00] Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on
encrypted data. In: 2000 IEEE Symposium on Security and Privacy, pp.
44–55. IEEE Computer Society Press, May 2000

[YTHW10] Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic public key
encryption with equality test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS,
vol. 5985, pp. 119–131. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-11925-5 9

https://doi.org/10.1007/978-3-540-24676-3_30
https://doi.org/10.1007/978-3-642-27954-6_21
https://doi.org/10.1007/978-3-642-27954-6_21
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-642-36334-4_5
https://doi.org/10.1007/978-3-642-36334-4_5
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/978-3-319-29485-8_7
https://doi.org/10.1007/978-3-319-76953-0_17
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/978-3-642-11925-5_9
https://doi.org/10.1007/978-3-642-11925-5_9


Nothing Refreshes Like a RePSI:
Reactive Private Set Intersection

Andrea Cerulli1, Emiliano De Cristofaro1(B), and Claudio Soriente2

1 University College London, London, UK
e.decristofaro@ucl.ac.uk

2 NEC Laboratories Europe, Heidelberg, Germany

Abstract. Private Set Intersection (PSI) is a popular cryptographic
primitive that allows two parties, a client and a server, to compute the
intersection of their private sets, so that the client only receives the out-
put of the computation, while the server learns nothing besides the size
of the client’s set. A common limitation of PSI is that a dishonest client
can progressively learn the server’s set by enumerating it over different
executions. Although these “oracle attacks” do not formally violate secu-
rity according to traditional secure computation definitions, in practice,
they often hamper real-life deployment of PSI instantiations, especially
if the server’s set does not change much over multiple interactions.

In a first step to address this problem, this paper presents and stud-
ies the concept of Reactive PSI (RePSI). We model PSI as a reactive
functionality, whereby the output depends on previous instances, and
use it to limit the effectiveness of oracle attacks. We introduce a general
security model for RePSI in the (augmented) semi-honest model and a
construction which enables the server to control how many inputs have
been used by the client across several executions. In the process, we also
present the first practical construction of a Size-Hiding PSI (SHI-PSI)
protocol in the standard model, which may be of independent interest.

1 Introduction

Private Set Intersection (PSI) lets two parties compute the intersection of their
private sets, drawn from a common universe, without disclosing items outside the
intersection. In its most common formulation, only one party, usually referred
to as the client, obtains the intersection, while the other, aka server, only learns
the size of the client’s set. Over the past few years, PSI has been used in numer-
ous privacy-friendly applications, including ridesharing [HOS17], collaborative
threat mitigation [FDCB15], genomic testing [BBD+11], and online advertis-
ing [IKN+17].

Nonetheless, there are some challenging issues limiting the adoption of PSI
in practice. In particular, if two parties run the protocol several times, the server

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP/2007-2013)/ERC Grant Agreement no. 307937.

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 280–300, 2018.
https://doi.org/10.1007/978-3-319-93387-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_15&domain=pdf


Nothing Refreshes Like a RePSI: Reactive Private Set Intersection 281

is vulnerable to oracle attacks. In such an attack, a dishonest client progressively
learns the server’s set by enumerating it over different executions. Although this
does not formally violate security definitions of two-party computation [Gol04],
it may hamper real-life deployment of PSI, especially if the server’s set is mostly
static. Moreover, in the Size-Hiding variant of PSI [ADT11], where the server
does not learn the size of client’s set, the problem is further compounded as the
server cannot limit the size of client’s input.

Aiming to mitigate oracle attacks in PSI protocols, we start reasoning about
the security of this cryptographic primitive across multiple runs. To this end,
we introduce the notion of Reactive PSI (RePSI), along with a general security
model in the augmented semi-honest model [Gol04], and set to propose provably
secure instantiations.

Let us first consider a näıve solution. In the non size-hiding setting, using
certain PSI protocols, e.g., [DT10], one could in theory let the client re-use the
randomness for the elements in its input set that do not change across runs.
This way, the server learns how many of the client’s elements are “fresh” in
the current run and imposes an upper-bound. However, this approach at the
very least makes two protocol executions linkable as it reveals the patterns of
the client’s inputs. Moreover, if the distribution of client’s elements is somewhat
predictable, this might actually reveal too much information. By contrast, our
goal is to provide stronger definitions whereby the client does not reveal its input
patterns, but only proves that number of unique elements input from the first
run up to the current one is below a given threshold.

1.1 Roadmap

In this paper, we tackle the issue of oracle attacks in Private Set Intersection
(PSI) by extending security definitions to account for reactive functionalities,
whereby the output of the current execution can depend on previous executions.

First, we introduce the notion of Reactive PSI (RePSI), along with a general
security model in the augmented semi-honest model [Gol04]. In this model, the
adversary is assumed to follow the specifications of the protocol (as in the stan-
dard semi-honest model) but it is allowed to adaptively modify the inputs used
by the controlled party at each protocol run. We argue that the augmented semi-
honest model can effectively model oracle attacks in PSI, whereas, the standard
semi-honest model cannot, since it prevents the adversary to change the input
of the corrupted party between protocol executions. That is, the adversary can
only leverage honestly generated transcripts. Also, although we do not yet pro-
vide security in the fully malicious setting, we believe that ours is an important
first step towards the development of efficient protocols. In fact, there exist gen-
eral transformations [GMW87,Gol04] allowing to compile a semi-honest secure
protocol into one secure against malicious adversaries, and efficient PSI-like pro-
tocols are also traditionally in semi-honest settings (see Sect. 1.2). Moreover, our
definitions are general enough to capture various types of reactive functionali-
ties and they cover the sequential composition of standard (i.e., stateless) PSI
protocols.



282 A. Cerulli et al.

Then, we provide two constructions, one static and one reactive. We focus
on the size-hiding setting since, as mentioned above, the fact that the server
cannot even check and limit the number of client’s inputs in a single execu-
tion, makes oracle attacks significantly worse. Our static construction, named
Bounded-Input PSI limits the size of the client’s input set at every proto-
col run. We achieve this by adapting the Bounded Size-Hiding PSI recently
presented by Bradley et al. [BFT16], which provided security in the Random
Oracle Model (ROM). As an additional contribution, we instantiate Bounded
Size-Hiding PSI in the standard model, thus also presenting the first practical
Size-Hiding PSI protocol not in ROM. Our reactive construction, called Input
Controlling RePSI , enables the server to control how many inputs have been
used by the other party across several executions. Specifically, it limits the size of
the unions set stemming from the union of client’s input sets across all protocol
runs. Input Controlling RePSI, therefore, addresses oracle attacks in practical
scenarios where a client and a server engage in multiple PSI executions.

By modeling PSI as a reactive functionality, we require that client and server
keep state across protocol executions. Nevertheless, the amount of state infor-
mation kept by the two parties in our constructions is small and independent of
the number of runs.

1.2 Related Work

To the best of our knowledge, the problem of Reactive PSI has not been stud-
ied in literature. Standard security definitions for semi-honest and malicious
two-party and multiparty computation can be extended to model security of
generic protocols computing reactive functionalities. The augmented semi-honest
model was introduced by Goldreich [Gol04] to bridge the semi-honest model and
the malicious model and used it as an intermediate step in the compilation of
secure protocols from the semi-honest to the malicious settings. Hazay and Lin-
dell [HL10a] observed that security in the malicious settings sometime does not
imply security in the semi-honest settings, while this anomaly does not happen
in the augmented semi-honest model.

Overall, prior work on PSI can be grouped in protocols using special-purpose
constructions [FNP04,DT10], oblivious transfer and its extensions [PSZ14,
PSSZ15], and/or generic garbled circuits [PSSZ15]. Most protocols are secure
against semi-honest adversaries [FNP04,DT10,PSZ14,PSSZ15], with fewer, less
efficient ones, against malicious ones [DKT10,JL10,RR17]. Also, protocols by
Hazay and Lindell [HL08] operate in the covert model (i.e., a malicious adversary
may be able to cheat but it can get caught with at least a certain probability).

There are also a few variants to the standard PSI functionality. Besides the
size-hiding one discussed above [ADT11,BFT16], Authorized PSI [CZ09,DT10]
partially mitigates malicious behavior by introducing a trusted party that autho-
rizes (i.e., signs) the elements that a client can use as input. However, finding a
common trusted party may be hard in most practical use cases.



Nothing Refreshes Like a RePSI: Reactive Private Set Intersection 283

More closely related to our work are the protocols proposed in [BFT16]
and [DMV13]. Bradley et al. [BFT16] introduce the concept of Bounded Size-
Hiding PSI, which allows the client to hide the size of its input, and the server
to impose an upper-bound on the size of the client’s set for the current run. We
start from the protocol of [BFT16] and cast it within the framework of RePSI to
counter oracle attacks across multiple runs. Furthermore, while [BFT16] works
in the random oracle model, we instantiate it in the standard model. Dagdelen
et al. [DMV13] introduce the concept of rate-limited Secure Function Evalua-
tion (SFE), whereby protocol participants can monitor and limit the number of
distinct inputs (i.e., rate) used by their counterparts in multiple executions of
an SFE. They present compilers by which any SFE scheme can be turned into
a rate-limited one. In particular, the “rate-hiding” compiler [DMV13] may be
applied to a PSI protocol to achieve the same provisions of our Input Control-
ling RePSI. We take a less general approach and focus on PSI, by incorporating
reactiveness in the functionality and achieving a more efficient construction (see
Sect. 5.3). A theoretical construction based on fully-homomorphic encryption for
size-hiding PSI in the standard model was recently presented in [COV15].

1.3 Paper Organization

Next section introduces some preliminaries, then, Sect. 3 provides security defini-
tions for the Reactive PSI primitive in the augmented semi-honest model. Next,
in Sects. 4 and 5, we present our constructions of Bounded Input RePSI and
Input Controlling RePSI, respectively. Finally, the paper concludes in Sect. 6.

2 Preliminaries

In this section, we introduce notation, cryptographic assumptions and building
blocks used later on in the paper.

We write y ← A(x) for a probabilistic algorithm returning output y given as
input x. In case we want to specify the randomness r used, we write y = A(x; r).
We implicitly assume all the algorithms considered in this paper to receive as
input the security parameter λ. For functions f, g : N → [0, 1] we write f(λ) ≈
g(λ) if |f(λ) − g(λ)| = λω(1). We say a function f is overwhelming if f(λ) ≈ 1
and negligible if f(λ) ≈ 0.

2.1 Bilinear Groups

A bilinear group is a tuple (p,G,GT , e, g) s.t. G and GT are groups of prime order
p and g ∈ G generates the group G. The function e is an efficiently computable
bilinear map e : G×G → GT such that e(g, g) is a generator of GT . We assume
there are probabilistic polynomial time generators G and BG that, given as input
the security parameter, return the description of a group (p,G, g) ← G(λ) and
bilinear group (p,G,GT , e, g) ← BG(λ), respectively. In the constructions of
Sects. 4 and 5, we rely on the exponent Strong Diffie-Hellman (Exponent q-SDH)
and the Decisional Bilinear Diffie-Hellmann Inversion problem (q-DBDHI).



284 A. Cerulli et al.

2.2 Bilinear Accumulators

A cryptographic accumulator is a primitive that allows to give a compact repre-
sentation of a set and that enables to efficiently prove membership of an element
into the accumulated set. Accumulators were firstly introduced by Benaloh and
de Mare [BDM94] and were later extended and provided with additional prop-
erties [BP97,CL02,Ngu05,DHS15,GOP+16,CKS09].

A (static) accumulator consists of four algorithms (KeyGen,Eval,
WitGen,Verify). The key generation algorithm KeyGen takes as input the secu-
rity parameter and generates a secret and an evaluation key pair (sk, ek) for the
accumulator. The evaluation algorithm Eval gets as input the evaluation key ek
and a set A of values and returns an accumulator accA. The WitGen and Verify
are deterministic algorithms for, respectively, producing and verifying a witness
wit for the membership of an element a ∈ A in a given accumulator accA. We fol-
low [DHS15] on modelling Eval and WitGen to optionally get as input the secret
key sk, since this makes the algorithms more efficient. We denote the optional
input by writing sk .

The main security properties required from accumulators are: correctness,
i.e. honestly generated witnesses should verify; collision-freeness, i.e. that it is
unfeasible to compute a witness for elements not included in the accumulated
set; and indistinguishability, i.e. the accumulator does not reveal any information
on the accumulated set.

In our constructions of PSI we will later use the accumulator introduced
by Nguyen in [Ngu05] based on bilinear pairings. Since we will not require the
possibility of removing elements from an accumulator, we restrict Nguyen’s con-
struction [Ngu05] to a static accumulator, description of which can be found in
Fig. 1.

KeyGen(λ) → (sk, ek):
� (p,G,GT , e, g) ← BG(λ)
� x ← Z

∗
p

� sk := x

� ek := (g, gx, gx2
, . . . , gxq

)

WitGen( sk , ek, accA, r, A, a) → wit:

� Parse A = (a1, . . . , an) for ai ∈ Zp

� ChA\{a}(X) =
∑n

i=0 diX
i

� wit := acc
1

a+x

A = grChA\{a}(x) =
(∏n

i=0(g
xi

)di

)r

Eval( sk , ek, A) → accA:

� Parse A = (a1, . . . , an) for ai ∈ Zp

� ChA(X) =
∑n

i=0 ciX
i

� r ← Z
∗
p

� accA := grChA(x) =
(∏n

i=0(g
xi

)ci
)r

Verify(ek, accA, a,wit) → 0/1:
� If e(accA, g) = e(wit, gx · ga) : Return 1
� Else: Return 0

Fig. 1. Bilinear accumulators.

Let A = {a1, . . . an} be a set of elements ai ∈ Zp that we wish to include
into an accumulator. We first start by computing the characteristic polynomial



Nothing Refreshes Like a RePSI: Reactive Private Set Intersection 285

representation of set A. This is the monic polynomial ChA(X) ∈ Zp[X] which has
roots in the elements contained in the set A, namely ChA(X) =

∏n
i=1(X + ai).

In order to efficiently evaluate the accumulator, it will be convenient to express
such polynomial using its coefficient representation, i.e. computing cj such that
ChA(X) =

∏n
i=1(X + ai) =

∑n
j=0 cjX

j . We stress that given A it is always
possible to efficiently compute the coefficient cj of ChA(X).

The evaluation key of [Ngu05] bilinear accumulator consists of ek =
(g, gx, gx2

, . . . , gxq

) ∈ G
q+1, where g is a generator of the group G and x ∈ Zp is

a secret value.
Given the evaluation key and polynomial ChA(X) of degree at most q, it

is possible to compute gChA(x). This is done by first expanding ChA(X) into
its coefficient representation, i.e ChA(X) =

∑q
i=0 ciX

i, and then computing
gChA(x) =

∏q
i=0(g

xi

)ci . An accumulator accA to a set A is computed by picking
a random r ← Zp and setting accA = (gChA(x))r.

We recall the following result from [Ngu05,DHS15].

Lemma 1. Under the q-SDH assumption, the accumulator described in Fig. 1
is collision-free and indistinguishable.

Subset Queries. The WitGen algorithm described in Fig. 1 is used to com-
pute witnesses for the membership of single elements in accA. We now extend
it to compute witnesses for multiple elements, namely to show that a set
B ⊆ A is included in accA. We write WitGen∗( sk , ek,A, accA, r, B) for the

computation of the witness wit = acc
1

ChB(x)

A = grChA\B(x). Similarly, we let
Verify∗(ek, accA, B,wit) to return 1 in case e(accA, g) = e(wit, gChB(x)) holds,
and 0 otherwise.

Furthermore, we can extend WitGen to compute witnesses for an accumulator
accB to accumulate a subset of the set accumulated into accA. Let r and r′ be
the randomness used to generate accA and accB , respectively. We define the
following

– WitGen∗( sk , ek, (accA, r, A), (r′, B)) : it computes the witness wit∗ =

acc
1

r′ChB(x)

A = g
r
r′ ChA\B(x)

– Verify∗(ek, accA, accB,wit∗) : it returns 1 if e(accA, g) = e(accB ,wit∗) holds,
and 0 otherwise.

2.3 Hard Relations

Let p be a polynomial and Rpp ⊆ {0, 1}p(λ) × {0, 1}p(λ) be a binary relation
indexed by some public parameters pp. We call (u,w) ∈ R instance and wit-
ness, respectively. We assume the public parameters pp ← G(λ) to be effi-
ciently computable given as input the security parameter. Also, let Lpp := {u :
∃w s.t. (u,w) ∈ R} to be the NP language corresponding to Rpp. We require the
language L to be efficiently sampleable and denote with u ← D(L) the process



286 A. Cerulli et al.

of picking a random element from L. A relation (G,R,D) is said to be hard if
for any probabilistic polynomial time adversary A the following probability is
negligible

Pr
[
pp ← G(λ);u ← D(Lpp);w ← A(pp, u) : (u,w) ∈ Rpp

]
≈ 0

More concretely, we are interested in relations corresponding to hard search
problems associated with cryptographic accumulators. For example the relation
corresponding to the following language

Lek(a) := {(accA, a) ∈ G × Zp : ∃ wit ∈ G s.t. Verify(ek, accA, a,wit) = 1}
The above language consists of all accumulators accA for which there exists a
witness for the accumulation of a ∈ Zp. We note that the above language is
efficiently sampleable by letting accA ← Eval(ek, a). We now state the following
straightforward Lemma and refer to the full version of the paper [CDS18] for
the proof.

Lemma 2. Assuming the accumulator is collision-free and indistinguishable,
then the above the binary relation corresponding to Lek(a) is hard for any a ∈ Zp.

2.4 Smooth Projective Hash Function

Smooth Projective Hash Functions (SPHF) were introduced by Cramer and
Shoup [CS02] (with the name of hash proof system) as a kind of designated-
verifier proof systems for certain classes of algebraic languages. These found
great applications towards the development of several primitives such as CCA2
secure public key encryption [CS02] and password authenticated key exchange
[GL03,KV09]. Here we define a simpler hash proof system for the language of
elements accumulated using the above bilinear accumulator.

An SPHF consists of three algorithms (HGen,Hash,PHash). The key gen-
eration algorithm HGen takes as input the security parameter and returns a
relation1, and a pair of secret and public keys (hsk, hpk); we sometimes refer to
hpk as the projection key. The keys specify an hash function from the relation
R to an abelian group G. The hash function can be privately evaluated using
hsk on any instance in LR, namely Hashhsk : LR → G. The hash function allows
also for public evaluation given hpk but only on instances for which a witness
is known, namely PHashhpk : R → G. An SPHF satisfies two main properties:
correctness and smoothness.

– Correctness: for any (u,w) ∈ R, the private and public evaluation algorithms
Hash,PHash of the SPHF return the same result, i.e.

Hashhsk(u) = PHashhpk(u,w)

1 The original definition of SPHF was introduced for languages related with hard
subset membership problems, while here we define SPHF for languages related with
a hard search problem.



Nothing Refreshes Like a RePSI: Reactive Private Set Intersection 287

– (Computational) Smoothness: for any instance for which a witness is not
known, the evaluation of the hash function is (computationally) indistinguish-
able from random. Namely, we say that an SPHF on a relation (G,R,D) is
smooth if for any probabilistic polynomial time adversary A, the following
advantage is negligible

∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎣
(Lpp, hsk, hpk) ← HGen(λ);

u ← D(Lpp);
H ← Hashhsk(u);

: A(hpk, u,H) = 1

⎤

⎦ − Pr

⎡

⎢
⎢
⎣

(Lpp, hsk, hpk) ← HGen(Lpp);
u ← D(Lpp);

H ← G;

: A(hpk, u,H) = 1

⎤

⎥
⎥
⎦

∣
∣
∣
∣
∣
∣
∣
∣

≈ 0

We now show the construction for an SPHF defined on the relation specified
by Lek(a), for any a ∈ Zp, to the target group GT of a bilinear group. The
construction of the SPHF is described in Fig. 2 and is a simple combination of
the bilinear accumulators of [Ngu05] and the verifiable random function (VRF)
constructed by Dodis and Yampolskiy [DY05]. A VRF is a pseudorandom func-
tion which admits proofs of correct evaluation that can be publicly verified. In
our SPHF we apply the VRF to an accumulator and an element accumulated
in it. The proof of evaluation for the function corresponds to the accumulation
witness, and the secret key of the SPHF is the secret key of the accumulator.
Since the secret key of the accumulator allows to compute witnesses for every
element in Zp it also allows to evaluate the SPHF in every pair (acc, a) ∈ G×Zp.

HGen(λ) → (Lek, hsk, hpk):
� (sk, ek) ← KeyGen(λ)
� Lek := ∪a∈ZpLek(a)
� z ← Z

∗
p

� hsk := (sk, z)
� hpk := (ek, gz)

Hashhsk(acc, a) → H:

� H := e(acc, gz)
1

sk+a

PHashhpk((acc, a),wit) → H:
� If ((acc, a),wit) ∈ RLek :

� H := e(wit, gz)
� Else: Return H := ⊥.

Fig. 2. SPHF for accumulators.

The security of the SPHF constructed in Fig. 2 follows from the security of
the verifiable random function of [DY05], based on the q-DHDBI assumption.
We refer to the full version of the paper [CDS18] for a proof of the following
Lemma.

Lemma 3. Under the q-DBDHI assumption over a bilinear group (p,G,
GT , e, g), the construction in Fig. 2 is a smooth projective hash function.

3 Reactive PSI in the Augmented Semi-honest Model

Aiming to prevent oracle attacks in scenarios where two parties engage in several
PSI executions, we consider stateful PSI protocols computing reactive function-
alities, whereby their outputs can depend on previous instances of the protocol.



288 A. Cerulli et al.

We set our security definitions in the augmented semi-honest model of
[Gol04]. In this model, the adversary is restricted to follow the specifications
of the protocol as in the standard semi-honest settings. In addition, the adver-
sary is allowed to adaptively modify the inputs used by the controlled party
before each instance of the protocol. Apart from being more natural [HL10b] to
give semi-honest adversaries this capability, we argue that the augmented model
is more appropriate than the standard one to study composition of protocols.

Let t = t(λ) be a polynomial. We define the reactive functionality ReF =
(F1,F2, . . . ,Ft) as a sequence of stateful functionalities2 Fi each taking as input
a client set Ci and a server set Si and returning a pair ReFi(Ci,Si) = (Ii, bi).
These correspond to the outputs of the client and server should have at the at
the end of each execution, respectively.

Next, we state our security definitions in terms of a generic reactive func-
tionality and refer to the end of the section for specific instantiations of ReF for
private set intersection protocols.

Definition 1 (RePSI). A private set intersection protocol is a tuple
(Setup,Π) s.t.

– Setup(λ) → (paramC ; paramS): it takes as input the security parameter and
returns a pair of initial parameters for the client and the server. These can
include public parameters and secret keys for the client and the server. If a
specific protocol does not require a setup algorithm, this can be simply regarded
as copying the security parameter into the initial parameters.

– Π〈C(C;StC);S(S;StS)〉 → ((outC ;StC); (outS ;StS)): this is a stateful proba-
bilistic polynomial time interactive protocol between a client C and a server
S. Each party takes as input a set and a state information (initialised to
StC := paramC , StS := paramS in the first instance of the protocol) and
returns an output and an updated the state.

We say that private set intersection protocol (Setup,Π) is a RePSI if it
securely realizes a reactive functionality ReF in the augmented semi-honest
model, i.e. if it satisfies correctness, server privacy and client privacy as defined
below.

Correctness is defined by the security game ExpCorr
A (λ) described in Fig. 3.

Informally, a protocol is correct if at the end of each instance both parties return
their prescribed outputs.

Definition 2 (Correctness). Let t = t(λ) a polynomial in the security param-
eter λ, and ReF defined as above. A protocol (Setup,Π) is correct if for any
probabilistic polynomial time adversary A

Pr
[
ExpCorr

A (λ) = 1
]

≈ 1

2 In this paper we restrict our attention to the case of deterministic functionalities.



Nothing Refreshes Like a RePSI: Reactive Private Set Intersection 289

ExpCorr
A (λ):

� (paramC ; paramS) ← Setup(λ)
� (C1, S1, . . . ,Ct, St) ← A(paramC ; paramS)
� StC := paramC , StS := paramS
� For i = 1 to t:

◦ ((outC,i;StC); (outS,i;StS)) ← Π〈C(Ci;StC);S(Si;StS)〉
◦ (Ii, bi) = ReFi(Ci, Si)

� If (outC,i, outS,i) = (Ii, bi) for all i ∈ [1, . . . , t]: Return 1
� Else: Return 0

Fig. 3. Correctness game

OΠ(S∗, St∗
S):

� If i = 0: StC := paramC

� i = i + 1
� ((outC,i;StC); (outS,i;StS)) ← Π〈C(Ci;StC);S(S∗;St∗

S)〉
� Return viewi,S((Ci;StC); (S∗;St∗

S))

OSim(S∗, St∗
S):

� i = i + 1
� (Ii; bi) = ReFi(Ci, S

∗)
� viewi,S,Sim ← Sim((S∗, St∗

S), bi, paramS , |Ci|)
� Return viewi,S,Sim

Fig. 4. Oracles used in the client privacy game.

Client privacy is specified by two oracles OΠ , OSim described in Fig. 4. The
oracle OΠ allows the adversary to run the next interaction between client and
server on server’s inputs of her choice. The oracle then returns the server’s view
in the protocol viewi,S((Ci;StC); (S∗;St∗S)), which contains the server’s input,
random coins and messages received from the client in the execution of the
protocol. Oracle OSim returns instead a simulated view, based only on the input
and output of the server. Informally, we say that the protocol achieves client
privacy if an adversary is not able to distinguish which oracle she is interacting
with.

Definition 3 (Client Privacy). Let t = t(λ) and ReF defined as above.
A protocol (Setup,Π) has client privacy if for any probabilistic polynomial time
adversary A there exists a probabilistic polynomial time simulator Sim, such that
for every sequence S1, . . . ,St the following advantage is negligible

AdvCPriv
A (λ) =

∣
∣
∣ Pr

[
(paramC ; paramS) ← Setup(λ) : AOΠ (paramS) = 1

]

− Pr
[
(paramC ; paramS) ← Setup(λ) : AOSim (paramS) = 1

]∣
∣
∣



290 A. Cerulli et al.

OΠ(C∗, St∗
C):

� If i = 0: StS := paramS
� i = i + 1
� ((outC,i;StC); (outS,i;StS)) ← Π〈C(C∗;St∗

C);S(Si;StS)〉
� Return viewi,C((C∗;St∗

C); (Si;StS))

OSim(C∗, St∗
C):

� i = i + 1
� (Ii; bi) = ReFi(C∗, Si)
� viewi,C,Sim ← Sim((C∗, St∗

C), Ii, paramC , |Si|)
� Return viewi,C,Sim

Fig. 5. Details of the oracles used in the server privacy game.

Server privacy is also specified in terms of two oracles OΠ , OSim described in
Fig. 5. The oracle OΠ allows the adversary to run the next interaction between
client and server on client’s inputs of her choice. The oracle then returns the
client’s view view

i,C in the protocol. Oracle OSim returns instead a simulated
view, based only on the input and output of the client. Informally, we say that
the protocol achieves server privacy if an adversary is not able to distinguish
which oracle she is interacting with.

Definition 4 (Server Privacy). Let t = t(λ) and ReF defined as above. A
protocol (Setup,Π) has server privacy if for any probabilistic polynomial time
adversary A there exists a probabilistic polynomial time simulator Sim, such that
for every sequence C1, . . . ,Ct the following advantage is negligible

AdvSPriv
A (λ) =

∣
∣
∣ Pr

[
(paramC ; paramS) ← Setup(λ) : AOΠ (paramC) = 1

]

− Pr
[
(paramC ; paramS) ← Setup(λ) : AOSim (paramC) = 1

]∣
∣
∣

Size-Hiding. In the previous definitions of client and server privacy we gave the
simulator the size of the honest party’s input set. This captures the security of
most protocols in which participants learn information about the size of the other
party’s input. However, in certain cases the size of the inputs represents confiden-
tial information which should not be leaked in a protocol execution. Protocols
achieving this stronger property are usually referred as size-hiding [ADT11].
To formalise size-hiding variants of client and server privacy it is sufficient to
remove the size of the honest party’s input from the input of the simulator.
Looking ahead to the next sections, our protocols achieve size-hiding only in the
case of client privacy.

The above definitions are general enough to capture various types of reactive
functionalities ReF. Moreover, they can also be used to formalise security for
the sequential composition of standard PSI stateless protocols. In this case it is
sufficient to replace ReF with t copies of the same functionality F and replace



Nothing Refreshes Like a RePSI: Reactive Private Set Intersection 291

protocol Π with a stateless protocol that does not update the states (StC , StS),
which are initialised as (paramC , paramS).

Next, we specify two functionalities, one static (PSI) and one reactive (RePSI),
which we call Bounded Input PSI and Input Controlling RePSI, respectively.

Bounded Input PSI. A Bounded Input PSI limits the maximum size of the set
the client can use in each instance of the protocol. More precisely, let R be a poly-
nomial in the security parameter λ, a Bounded Input PSI = (PSI1,PSI2, . . . ,PSIt)
is defined as

PSIi(Ci,Si) =
{

(Ci ∩ Si;⊥) If |Ci| ≤ R
(⊥;⊥) Otherwise

Input Controlling RePSI. An Input Controlling RePSI limits the number
of maximum distinct elements a client can includes in its sets across all the
executions. In this case the server’s outputs is a predicate on whether the client
has exceeded the allowed bound. More precisely, let R be a polynomial in the
security parameter λ, an Input Controlling RePSI = (RePSI1,RePSI2, . . . ,RePSIt)
is defined as

RePSIi(Ci,Si) =
{

(Ci ∩ Si; 1) If | ∪j≤i Ci| ≤ R
(⊥; 0) Otherwise

4 Bounded Input PSI

In this section we introduce our construction for a Bounded Input PSI. Bounded
Input PSI allows client and server to compute the intersection of their private
sets while imposing a bound R on the size of the client set at each execution of
the protocol. Bounded Input PSI is not a reactive RePSI but we will us it as a
stepping stone for constructing our Input Controlling RePSI in the next section.

We notice that in several PSI protocols the size of the client set is naturally
revealed during the interaction. Hence, a Bounded Input PSI variant can be
easily achieved with simple modifications. The server can check the number of
inputs used by the client and abort in case it exceeds the bound. This strategy is
not viable in size-hiding PSI protocols [ADT11] where the use of cryptographic
accumulators hides the size of the client set. We also leverage cryptographic
accumulators, thus the server cannot directly check the number of inputs used by
the client as just explained. Moreover, we will start from the Bounded Input PSI
introduced in this section to construct our Input Controlling RePSI. In the latter,
apart from hiding the size of the client set and reducing the communication, the
use of accumulators will enable to use compact states for the server whose size
does not depend on the number of protocol executions.

Our Bounded Input protocol is a modification of the bounded size-hiding pro-
tocol of Bradley et al. [BFT16], whose security is based on the q-SDH assump-
tion in the random oracle model. The idea behind the protocol of Bradley et
al. [BFT16] is to have the client to accumulate its input set using a cryptographic



292 A. Cerulli et al.

Setup(λ) → (paramC ; paramS):
� (p,G,GT , e, g) ← BG(λ)
� Set R := R(λ)
� x ← Z

∗
p

� sk := x

� ek := (g, gx, gx2
, . . . , gxR

)
� paramC := ((p,G,GT , e, g), ek)
� paramS := ((p,G,GT , e, g), sk, ek)

Fig. 6. Setup algorithm for bounded input PSI.

accumulator and send it to the server. The server would then use the accumu-
lator secret key to remove her elements from the accumulator. This amounts to
compute witnesses for elements in the server set. Then, the server hashes the
witnesses using a random oracle and sends back the hash values to the client. The
client is able to compute witnesses for each accumulated element and then hash
them on the random oracle. The intersection can be then retrieved by checking
matches between the two sets of hash values.

The protocol of [BFT16], as well as ours, relies on the boundedness of the
underlying accumulator to limit the size of the sets that can be accumulated.

Informally, the protocol of [BFT16] fulfils server privacy because the random
oracle hides all the information about the witnesses computed by the server,
apart from the ones the client can compute on its own. We modify the protocol
and remove the need of random oracles. The idea is to replace it with a function
that can be efficiently computed by the client given a witness, but for which the
evaluation looks random if a witness is not known. This is exactly the smoothness
property of the SPHF we introduced in Sect. 2.4. Thus, we are able to remove the
random oracle assumption and reduce the security to the q-DBDHI assumption,
on which the SPHF relies on. We note that our Bounded Input PSI is, to the
best of our knowledge, the first instantiation of size-hiding PSI in the standard
model.

4.1 Bounded Input PSI Without Random Oracles

The setup of the protocol of the bounded-size PSI consists of generating a pair of
secret key and evaluation key for a bilinear accumulator, as shown in Fig. 1. The
length of the evaluation key ek of the accumulator matches the input bound
R allowed to the client input size. The setup algorithm then sets the initial
parameters for the client to be the evaluation key of the accumulator, and the
initial parameters for the server to include both the secret key and evaluation
key. The complete description of the Setup algorithm of our Bounded Input PSI
is described in Fig. 6. Note that since we are in semi-honest settings, we can
allow the server to run the setup and send the initial parameters to the client in
a preliminary interaction with the client.



Nothing Refreshes Like a RePSI: Reactive Private Set Intersection 293

Client on input: λ Server on input: λ

(paramC ; paramS) ← Setup(λ)
paramC�

Client on input: Server on input:
(C = {c1, . . . , cm}; paramC) (S = {s1, . . . , sn}; paramS)

Parse paramC as ((p,G,GT , e, g), ek) Parse paramS as ((p,G,GT , e, g), x, ek)
accC := Eval(ek,C; r) = grChC(x)

accC �
accS := Eval( sk , ek,S; z) = gzChS(x)

hsk := (z, x)
hpk := (ek, accS)
For j ∈ [n] :

Sj := Hashhsk(accC, sj)

= e(accC, accS)
1

x+sj

accC, {S1, . . . , Sn}
Set hpk := (ek, accS)

�

For i ∈ [m] :
witi := WitGen(ek,C, accC, r, ci)

= grChC\{a}(x)

Ci := PHashhpk((accC, ci),witi)
= e(witi, accS)

outC := {ci ∈ C : Ci ∈ {S1, . . . , Sn}}

Return (outC ; paramC) Return (⊥; paramS)

Fig. 7. Bounded input PSI without random oracles.

In the first move of the protocol, the client starts by computing an accu-
mulator accC of its input set C and send it to the server. The evaluation of
the accumulator can be done efficiently by first computing the characteristic
polynomial of the set C, expanding its coefficients, and then performing a multi-
exponentiation of the evaluation key ek, using the coefficients of ChC(X) as
exponents.

In the second move of the protocol, the server then picks a pair of keys
(hsk, hpk) for a SPHF associated with the witness relation of the accumulator.
The secret key for the SPHF consists of the secret key x of the accumulator and
a random element z ← Z

∗
p. The projective key of the hash function corresponds

to the accumulator accS of the server set, using randomness z. Then for every si

contained in its input set S, the server evaluates the SPHF on instances (accC, si)
using the secret key x. The server ends its move by forwarding the projective
key accS to the client together with the set of SPHF evaluations. Without loss
of generality we assume the server to sort the set of evaluations in lexicographic
order before sending it to the client. Note that the server is not strictly required
to know the secret key of the accumulator. However this can be used to speed



294 A. Cerulli et al.

up computation. For example, the server can avoid to accumulate its own set
and simply set accS = gz.

In the last move of the protocol, the client computes a witnesses witi for the
accumulation of his input elements ci ∈ C in the accumulator accC. Then, the
client evaluates the SPHF using the projective key accS on each witness witi for
(accC, ci). The clients then compares the set of its evaluations of the SPHF with
the evaluations received from the server, looking for matches. Finally, the client
outputs the subset of elements in C, for which the evaluation of the SPHF gave
a match.

The full description of our Bounded Input PSI protocol is given in Fig. 7. We
discuss its security in the following Theorem and refer to the full version of the
paper [CDS18] for the proof.

Theorem 1. Under the R-SDH and n-DBDHI assumptions, the protocol
(Setup,Π) as described in Figs. 6 and 7 is a secure instantiation of a Bounded
Input PSI in the augmented semi-honest model.

5 Input Controlling RePSI

We now introduce our Input Controlling RePSI protocol. The starting point is
the Bounded Input protocol introduced in the previous section. The idea is to
turn the previous protocol into a stateful one where both parties keep track of
previous executions.

5.1 Description of the Protocol

The Setup phase of the protocol is the same as the one described in Fig. 6 for the
Bounded Input protocol. We stress that in this case the bound R is not (only) the
bound on the size of the client input of a single execution, but also a bound on
the maximum number of elements the client can use across multiple executions.
Again, since the client initial parameters only include public information we can
allow the (semi-honest) server to run the Setup and forward the client the initial
parameters paramC .

The first instance of Input Controlling RePSI is similar to an execution of
a Bounded Input RePSI described in Fig. 7. The only difference here is that
at the end of the first instance the client and the server update their output
state. The client returns state StC = (paramC ,C, r), which includes the initial
parameter paramC , its current input set C and the randomness used to create the
accumulator accC. The server returns state StS = (paramS , accC), which includes
the initial parameters paramS as well as the accumulator accC received from the
client. In the rest of the description we implicitly assume that initial parameters
paramC and paramS are always part of the states StC and StS , respectively, and
omit them from the notation to improve readability.

All the instances following the first one proceed as described in Fig. 8. In
the first move of the protocol, the client retrieves the set C′ stored in state StC



Nothing Refreshes Like a RePSI: Reactive Private Set Intersection 295

Client on input: Server on input:
(C = {c1, . . . , cm};StC) (S = {s1, . . . , sn};StS)

Parse StC as (paramC ,C′, r′) Parse StS as (paramS , accC′)
Pick r, s ← Z

∗
p

Set U := C ∪ C′

accC := Eval(ek,C; r)
accU := Eval(ek,U; s)
witC := WitGen∗(ek, (accU, s,U), (r,C))
witC′ := WitGen∗(ek, (accU, s,U), (r′,C′))

accC, accU,witC,witC′
� If

(
Verify∗(ek, accU, accC,witC) = 0 ∨

Verify∗(ek, accU, acc′
C,witC′) = 0

)
:

� Return (0;StS)

Else: Set StS := (paramS , accU)
accS := Eval( sk , ek,S; z) = gzChS(x)

hsk := (z, x)
hpk := (ek, accS)
For j ∈ [n] :

Sj := Hashhsk(accC, sj)

accS, {S1, . . . , Sn} = e(accC, accS)
1

x+sj

Set hpk := (ek, accS)
�

For i ∈ [m] :
witi := WitGen(ek,C, accC, r, ci)

= grChC\{a}(x)

Ci := PHashhpk((accC, ci),witi)
= e(witi, accS)

outC := {ci ∈ C : Ci ∈ {S1, . . . , Sn}}
StC := (paramC,U, s)

Return (outC ;StC) Return (1;StS)

Fig. 8. Input controlling RePSI.

which contains all the elements used in previous executions of the protocol and
computes the union with its current input set, i.e. U = C ∪ C′. Then, the client
computes fresh accumulators for both the current input set C and the union set
U. The client computes also witnesses for the accumulation in accU of subsets
accumulated into accC and accC′ . Here accC′ corresponds to the accumulator
of the union of all previous client input set, which was generated in the last
execution. The client ends its move by sending the accumulators accC, accU and
witnesses witC,witC′ to the server.

In the second move of the protocol, the server retrieves the accumulator accC′

from its state, which contains the union of the sets of all previous client sets.
Then, the server verifies the witnesses witC,witC′ for the accumulation of C and
C′ in U. If any of these checks fails, then the server terminates the execution of
the protocol with output (0;StS). Note that in this case both client and server
do not update their states and might later enter a new instance of the protocol
with different inputs. In case both checks pass, the server continues the execution
as in the Bounded Input protocol: he sets a public and private key for the SPHF



296 A. Cerulli et al.

Table 1. Efficiency. Computation is expressed in number of pairings P and group
exponentiations E, communication in terms of the number of group elements G, target
group elements GT and field elements Zp. The size of the client and server sets are
m and n, respectively. While the total size of the inputs used by the client up to
the current iteration is denoted with M . The client’s state does not include the total
number of elements used by the client, i.e. M .

Bounded input Input controlling

Client computation mP + O( m2

logm
)E mP + O( m2

logm
+ M

logM
)E

Server computation nP + (n + 1)E (n + 4)P + (n + 1)E

Communication nGT + 2G nGT + 5G

Client’s state n.a 1Zp

Server’s state n.a 1G

and evaluates it on instances (accC, si) for elements si ∈ S. The server ends its
move by sending the public key for the SPHF and the set of evaluations to the
client, updates its state with the accumulator accU and terminates its execution
by outputting (1, StS).

In the last move of the protocol the client continues the execution as in the
case of the Bounded Input RePSI. It computes witnesses for the accumulation of
elements in C into accC and computes evaluations of the SPHF on these. Then it
looks for matches between the sets of evaluations and includes the corresponding
elements in C in the intersection outC . The client updates its state with (U, s),
where s is the randomness used in the generation of the accumulator accU, and
terminates the instance execution with output (outC ;StC).

5.2 Security of Input Controlling RePSI

Theorem 2. Under the R-SDH and n-DBDHI assumptions, the protocol
(Setup,Π) as described in Figs. 6 and 8 is a secure instantiation of an Input
Controlling RePSI in the augmented semi-honest model.

Proof. Correctness as for the case of the Bounded Input RePSI follows from the
correctness of accumulators and of SPHF.

Client privacy follows again from indistinguishability property of the accumu-
lator. In the first instance of the protocol the only message the server receives
from the client is the accumulator accC. In this case the simulator Sim picks
r ← Zp and sets accC = gr. As in the case of Bounded Input RePSI the sim-
ulated view is distributed identically to the real view. In the following calls of
OSim the simulator picks s, t ← Zp and sets accU = gs and accC = gt and
retrieves accC′ = gr from the previous instance. The simulator then sets the
witnesses to be witC = g

s
t and witC′ = g

s
r . The distribution of the simulated

accC, accU,witC,witC′ is uniformly random, conditioned on satisfying the two
witness verification equations, as in a real distribution. Again, the simulator



Nothing Refreshes Like a RePSI: Reactive Private Set Intersection 297

does not need the size of the client’ set and thus client privacy is achieved with
respect to the Size-Hiding variant.

The proof of server privacy unfolds as in the case of the Bounded Input
RePSI (see [CDS18]) since the messages sent from the server to the client are
the same.

5.3 Efficiency

We summarize the efficiency of both our Bounded Input PSI and Input Con-
trolling RePSI in Table 1. The dominant computational cost for the client in
the Bounded Input PSI is O(m) pairings and multi-exponentiations of length at
most m, where m is the size of the client’s set. With respect to the Bounded
Input PSI, the overhead incurred by the client in our Input Controlling RePSI is
only of a single multi-exponentiation of length M , the total number of elements
used so far in the protocol.

For both the Bounded Input PSI and the Input Controlling RePSI. the com-
putational cost for the server is O(n) pairings and exponentiations, where n is
the size of the server set in that run. The overall communication is linear in the
size of the server set in that particular instance for both protocols. The commu-
nication overhead of the Input Controlling RePSI is of only 3 group elements
more than the Bounded Input PSI.

The table also shows that both server and client keep constant state in case
of Input Controlling RePSI. When computing the state size for the client, we
do not consider the elements input thus far by the client. We argue that any
instantiation of Input Controlling RePSI requires the client to include in its state
the inputs thus far. This is because the client will have to tell whether the next
input is “fresh” or not. This is also true for the instantiation of the protocol via
a trusted third party. In this case, the trusted party will have to remember all
inputs up to the current run, in order to tell whether the next input violates the
bound. If we do not consider the inputs thus far as part of the client’s state, our
instantiation of Input Controlling RePSI is optimal from the point of view of
storage overhead since it only requires constant state at both the client and the
server. In particular the state for each of them is independent of the number of
runs.

Comparison with [DMV13]. To the best of our knowledge, the only possible
alternative to instantiate an Input Controlling RePSI would be to use the “rate-
hiding” compiler of [DMV13] with a PSI protocol such as [HN10]. Since [DMV13]
only hints at how to build a rate-hiding PSI,3 we cannot compare its commu-
nication/computation complexity with the one of our Input Controlling RePSI.
However, note that the rate-hiding compiler of [DMV13] requires the client to
commit to the inputs of the current run and both parties to keep the commit-
ments to the client’s inputs across all runs. (The client must prove that the
3 In [DMV13], the authors only show that the PSI protocol of [HN10] fulfills a property

called “commit-first” and that it can be used in the rate-hiding compiler. However,
the compiled protocol is not available.



298 A. Cerulli et al.

number of unique inputs hidden by the commitments does not exceed the rate.).
As such, even if we exclude the client’s input from its state, both the client
and the server keep a state that is linear in the number of elements used by
the client across all executions. Whereas, our protocol features constant state at
both parties and communication complexity that is independent on the size of
the client’s set.

6 Conclusions

Although a large number of Private Set Intersection (PSI) protocols have been
proposed in recent years, their adoption in real-life applications is still hindered
by a few challenges. In this paper, we focused on oracle attacks, whereby the
client learns the server’s private set by enumerating it across several executions.
To address this problem, we set out to model PSI as a reactive functionality,
namely, Reactive PSI (RePSI), and provided a construction that allow the server
to set an upper bound to the number of elements the client has input up to the
current protocol run. Essentially, we made PSI a stateful protocol but provided a
construction where the state kept by the two parties is small and independent of
the number of runs thus far and, for the server only, independent on the number
of elements in either input set.

To the best of our knowledge, our work is the first to formalize and instantiate
Reactive PSI. In the process, we also presented the first size-hiding PSI protocol
in the standard model, which may be of independent interest.

References

[ADT11] Ateniese, G., De Cristofaro, E., Tsudik, G.: (If) Size matters: size-hiding
private set intersection. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 156–173. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 10

[BBD+11] Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering
GATTACA: efficient and secure testing of fully-sequenced human genomes.
In: ACM CCS, pp. 691–702 (2011)

[BDM94] Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alter-
native to digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993.
LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48285-7 24

[BFT16] Bradley, T., Faber, S., Tsudik, G.: Bounded size-hiding private set inter-
section. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841,
pp. 449–467. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
44618-9 24

[BP97] Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol.
1233, pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/
3-540-69053-0 33

[CDS18] Cerulli, A., De Cristofaro, E., Soriente, C.: Nothing Refreshes Like a RePSI:
Reactive Private Set Intersection (Full Version). eprint.iacr.org (2018)

https://doi.org/10.1007/978-3-642-19379-8_10
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/978-3-319-44618-9_24
https://doi.org/10.1007/978-3-319-44618-9_24
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33


Nothing Refreshes Like a RePSI: Reactive Private Set Intersection 299

[CKS09] Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilin-
ear maps and efficient revocation for anonymous credentials. In: Jarecki,
S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00468-1 27

[CL02] Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to
efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45708-9 5

[COV15] Chase, M., Ostrovsky, R., Visconti, I.: Executable proofs, input-size hid-
ing secure computation and a new ideal world. In: Oswald, E., Fischlin,
M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 532–560. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6 18

[CS02] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7 4

[CZ09] Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In:
Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108–127.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03549-4 7

[DHS15] Derler, D., Hanser, C., Slamanig, D.: Revisiting cryptographic accumula-
tors, additional properties and relations to other primitives. In: Nyberg, K.
(ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 127–144. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-16715-2 7

[DKT10] De Cristofaro, E., Kim, J., Tsudik, G.: Linear-complexity private set inter-
section protocols secure in malicious model. In: Abe, M. (ed.) ASIACRYPT
2010. LNCS, vol. 6477, pp. 213–231. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-17373-8 13

[DMV13] Dagdelen, Ö., Mohassel, P., Venturi, D.: Rate-limited secure function eval-
uation: definitions and constructions. In: Kurosawa, K., Hanaoka, G. (eds.)
PKC 2013. LNCS, vol. 7778, pp. 461–478. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 28

[DT10] De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols
with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp.
143–159. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14577-3 13

[DY05] Dodis, Y., Yampolskiy, A.: A verifiable random function with short
proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp.
416–431. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30580-4 28

[FDCB15] Freudiger, J., De Cristofaro, E., Brito, A.E.: Controlled data sharing for
collaborative predictive blacklisting. In: Almgren, M., Gulisano, V., Maggi,
F. (eds.) DIMVA 2015. LNCS, vol. 9148, pp. 327–349. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-20550-2 17

[FNP04] Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set
intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24676-3 1

[GL03] Gennaro, R., Lindell, Y.: A framework for password-based authenticated
key exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656,
pp. 524–543. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
39200-9 33

https://doi.org/10.1007/978-3-642-00468-1_27
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/978-3-662-46803-6_18
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-642-03549-4_7
https://doi.org/10.1007/978-3-319-16715-2_7
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-17373-8_13
https://doi.org/10.1007/978-3-642-36362-7_28
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-540-30580-4_28
https://doi.org/10.1007/978-3-319-20550-2_17
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/978-3-540-24676-3_1
https://doi.org/10.1007/3-540-39200-9_33
https://doi.org/10.1007/3-540-39200-9_33


300 A. Cerulli et al.

[GMW87] Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a
completeness theorem for protocols with honest majority. In: Proceedings
of the 19th Annual ACM Symposium on Theory of Computing, pp. 218–229
(1987)

[Gol04] Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Appli-
cations. Cambridge University Press, Cambridge (2004)

[GOP+16] Ghosh, E., Ohrimenko, O., Papadopoulos, D., Tamassia, R., Triandopoulos,
N.: Zero-knowledge accumulators and set algebra. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 67–100. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53890-6 3

[HL08] Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pat-
tern matching with security against malicious and covert adversaries. In:
Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-78524-8 10

[HL10a] Hazay, C., Lindell, Y.: Efficient Secure Two-Party Protocols - Techniques
and Constructions. Information Security and Cryptography. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14303-8

[HL10b] Hazay, C., Lindell, Y.: A note on the relation between the definitions of
security for semi-honest and malicious adversaries. ePrint (2010)

[HN10] Hazay, C., Nissim, K.: Efficient set operations in the presence of malicious
adversaries. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol.
6056, pp. 312–331. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-13013-7 19

[HOS17] Hallgren, P., Orlandi, C., Sabelfeld, A.: PrivatePool: privacy-preserving
ridesharing. In: CSF, pp. 276–291 (2017)

[IKN+17] Ion, M., Kreuter, B., Nergiz, E., Patel, S., Saxena, S., Seth, K., Shana-
han, D., Yung, M.: Private intersection-sum protocol with applications to
attributing aggregate ad conversions. ePrint 2017/738 (2017)

[JL10] Jarecki, S., Liu, X.: Fast secure computation of set intersection. In:
Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp.
418–435. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15317-4 26

[KV09] Katz, J., Vaikuntanathan, V.: Smooth projective hashing and password-
based authenticated key exchange from lattices. In: Matsui, M. (ed.) ASI-
ACRYPT 2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10366-7 37

[Ngu05] Nguyen, L.: Accumulators from bilinear pairings and applications. In:
Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 19

[PSSZ15] Pinkas, B., Schneider, T., Segev, G., Zohner, M.: Phasing: private set inter-
section using permutation-based hashing. In: USENIX Security Symposium
(2015)

[PSZ14] Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based
on OT extension. In: USENIX Security Symposium, pp. 797–812 (2014)

[RR17] Rindal, P., Rosulek, M.: Improved private set intersection against mali-
cious adversaries. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 235–259. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56620-7 9

https://doi.org/10.1007/978-3-662-53890-6_3
https://doi.org/10.1007/978-3-540-78524-8_10
https://doi.org/10.1007/978-3-642-14303-8
https://doi.org/10.1007/978-3-642-13013-7_19
https://doi.org/10.1007/978-3-642-13013-7_19
https://doi.org/10.1007/978-3-642-15317-4_26
https://doi.org/10.1007/978-3-642-15317-4_26
https://doi.org/10.1007/978-3-642-10366-7_37
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/978-3-319-56620-7_9
https://doi.org/10.1007/978-3-319-56620-7_9


Multi-party Computation



New Protocols for Secure Equality Test
and Comparison

Geoffroy Couteau(B)

Karsruhe Institute of Technology, Karlsruhe, Germany
geoffroy.couteau@kit.edu

Abstract. Protocols for securely comparing private values are among
the most fundamental building blocks of multiparty computation. intro-
duced by Yao under the name millionaire’s problem, they have found
numerous applications in a variety of privacy-preserving protocols; how-
ever, due to their inherent non-arithmetic structure, existing construction
often remain an important bottleneck in large-scale secure protocols.

In this work, we introduce new protocols for securely computing the
greater-than and the equality predicate between two parties. Our proto-
cols rely solely on the existence of oblivious transfer, and are UC-secure
against passive adversaries. Furthermore, our protocols are well suited
for use in large-scale secure computation protocols, where secure com-
parisons (SC) and equality tests (ET) are commonly used as basic rou-
tines: they perform particularly well in an amortized setting, and can be
preprocessed efficiently (they enjoy an extremely efficient, information-
theoretic online phase). We perform a detailed comparison of our pro-
tocols to the state of the art, showing that they improve over the most
practical existing solutions regarding both communication and compu-
tation, while matching the asymptotic efficiency of the best theoretical
constructions.

Keywords: Two-party computation · Equality test
Secure comparison · Oblivious transfer

1 Introduction

Multiparty Computation (MPC) addresses the challenge of performing compu-
tation over sensitive data without compromising its privacy. In the past decades,
several general-purpose solutions to this problem have been designed, starting
with the seminal works of Yao [53] and Goldreich et al. [27]. Among the large
variety of problems related to MPC that have been considered, the secure compar-
ison problem, in which the players wish to find out whether x ≥ y for given x, y
without disclosing them, is probably the one that received the most attention.
Indeed, in addition to being the first MPC problem ever considered (introduced

Part of this work was made while the author was at École Normale Supérieure de
Paris, France.

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 303–320, 2018.
https://doi.org/10.1007/978-3-319-93387-0_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_16&domain=pdf


304 G. Couteau

in [53] under the name of millionaire’s problem), it has proven to be a fundamen-
tal primitive in a considerable number of important applications of multiparty
computation. Examples include auctions, signal processing, database queries,
machine learning and statistical analysis, biometric authentication, combinato-
rial problems, or computation on rational numbers. Secure comparison is at the
heart of any task involving sorting data, finding a minimum value, solving any
optimization problem, or even in tasks as basic as evaluating the predicate of a
while loop, among countless other examples. The related task of secure equality
test, known as the socialist millionaires’ problem, in which the players wish to
find out whether x = y for given x, y without disclosing them, enjoys comparably
many applications.

Two-party and multiparty computation seem now at the edge of becoming
practical, with increasing evidence that they are no more beyond the reach of
the computational power of today’s computers. However, secure equality tests
and comparisons appear to be a major bottleneck in secure algorithms that use
them as a basic routines. Various implementations of secure algorithms unani-
mously lead to the conclusion that secure comparison is the most computation-
ally involved primitive, being up to two orders of magnitude slower than, e.g.,
secure multiplication. Hence, we believe that designing improved protocols for
these tasks is an important road toward making multiparty computation truly
practical.

In this work, we consider secure equality test and comparison on inputs
secretely shared between the parties, with output shared between the parties as
well. This is the natural setting of large-scale computation, where inputs and
outputs cannot always be disclosed to the parties. Our new two-party protocols
compare very favorably to state-of-the-art solutions. In particular, our protocols
are well suited for large scale secure computation protocols using secure compar-
ison as a basic routine. Our protocols are secure in the universal composability
framework of Canetti [11], which ensures that security is preserved under gen-
eral composition. As this is the model used in most practical applications, we
focus on the passive adversarial model, in which players are assumed to follow
the specifications of the protocol. We leave as open the interesting question of
extending our protocols to handle malicious adversaries, while preserving (as
much as possible) their efficiency.

1.1 State of the Art for Secure Equality Test and Comparison

To avoid unnecessary details in the presentation, we assume some basic knowl-
edge on classical cryptographic primitives, such as garbled circuits, oblivious
transfers and cryptosystems. Preliminaries on oblivious transfers are given in
the full version of this work [15]. In the following, we let � denote an input
length, and κ denote a security parameter. As secure protocols for equality tests
and comparisons were commonly built together in the literature, the state of the
art for both remains essentially the same, hence we unify the presentation.

– From Garbled Circuits. The first category regroups protocols following the
garbled circuit approach of Yao [53]. The protocols of [37], which were later



New Protocols for Secure Equality Test and Comparison 305

improved in [36,55], are amongst the most communication-efficient protocols
for secure equality test or comparison. The protocols of [36] proceed by letting
the first player garble a circuit containing � comparison gates (resp. � − 1
equality test gates), which amounts to � AND gates with the free-xor trick
(resp. � − 1 AND gates). In a setting where several instances of the protocols
will be invoked, oblivious transfer extensions [33] can be used for an arbitrary
number of executions, using a constant number of public key operations and
only cheap symmetric operations for each invocation of the secure protocol,
making them very efficient.

– From Homomorphic Encryption. Solutions to the millionaire problem from
homomorphic-encryption originated in [7]. The most efficient method in this
category, to our knowledge, is [20], which uses an ad hoc cryptosystem. This
protocol was corrected in [21], and improved in [51]. The protocol communi-
cates 4� ciphertexts (in the version that outputs shares of the result) and is
often regarded as one of the most computationally efficient. The more recent
construction of [25] relies on the flexibility of lattice based cryptosystems to
design a secure comparison protocol. Using a degree-8 somewhat homomor-
phic encryption scheme and ciphertext packing techniques, the (amortized)
bit complexity of their protocol is Õ(�+κ). Although asymptotically efficient,
this method is expected to remain less efficient than alternative methods using
simpler primitives for any realistic parameters.

– From the Arithmetic Black Box Model. The third category consists of pro-
tocols built on top of an arithmetic black box [17] (ABB), which is an ideal
reactive functionality for performing securely basic operations (such as addi-
tions and multiplications) over secret values loaded in the ABB. The ABB
itself can be implemented from various primitives, such as oblivious trans-
fer [23,45] or additively homomorphic encryption (most articles advocate the
Paillier scheme [44]). Protocols in this category vary greatly in structure.
Most protocols [12,19,43] involve Õ(�) private multiplications, each typically
requiring O(1) operations over a field of size O(� + κ), resulting in an overall
Õ(�(� + κ)) bit complexity. The protocols of Toft [50], and Toft and Lip-
maa [40], use only a sublinear (in �) number of invocations to the crypto-
graphic primitive; however, the total bit complexity remains superlinear in �.
For large values of � (κ2/� = o(1)), the protocol of [54] enjoys an optimal O(�)
communication complexity; however, the constants involved are quite large:
it reduces to 84λ+96 bit oblivious transfer and 6 �-bit secure multiplications
for a 1/2λ error probability, and becomes competitive with e.g. [36] only for
inputs of at least 500 bits (assuming a 1/240 error probability).

– From Generic Two-Party Computation. Generic two-party computation
(2PC) techniques can be used to securely compute functions represented as
boolean circuits. An elegant logarithmic-depth boolean circuit, computing
simultaneously the greater-than and the equality predicates, was suggested
in [24]. It uses a natural recursive formula, and has 3� − log � − 2 AND gates.
This circuit can be evaluated using 6�− 2 log �− 4 oblivious transfers on bits,
which can be precomputed and amortized using oblivious transfer extensions.
In the amortized setting, we found this approach to be (by far) the most



306 G. Couteau

efficient in terms of communication and computation; however, it is more
interactive than the garbled circuit approach, which still enjoy efficient com-
munication and computation.

In this paper, we will compare our protocols to the two most efficient alter-
natives in the amortized setting, namely, the garbled circuit approach, and the
generic 2PC approach (which is more interactive, but has lower communication
and computation). For fairness of the comparison, we will apply all optimizations
that we apply to our protocols to these alternatives, when it is relevant.

1.2 Our Contribution

In this work, we construct new protocols for secure equality tests and com-
parisons which improve over the best state-of-the-art protocols. Our protocols
are secure in the universal composability framework, assuming only an oblivi-
ous transfer. Using oblivious transfer extensions allows to confine all public-key
operations to a one-time setup phase. The online phase of our protocols enjoys
information theoretic security, and is optimal regarding both communication
and computation: O(�) bits are communicated, and O(�) binary operations are
performed, with small constants. Regarding overall complexity, our protocols
match the best existing constructions in terms of asymptotic efficiency (and
have in particular an optimal O(�) complexity for large values of �, see Table 1),
and outperform the most efficient constructions for practical parameters, by 70%
to 80% for equality test, and by 20% to 40% for secure comparison. Our pro-
tocols have non-constant round complexity: O(log∗ κ) rounds for equality test
(2 to 4 online rounds in practice), and O(log log �) rounds for comparison (2 to
10 online rounds). Our secure comparison protocol relies on a new technique to
(non-interactively) reduce comparison of values shared between the players to
comparison of values held by each players, which might be of independent inter-
est. Due to space restriction, we only focus on our new protocols for equality
tests here; our protocols for secure comparison are described in the full version
of this work [15].

Further Contributions of the Full Version. In addition to detailed security
proofs, the full version of our work [15] contains further contributions, including
a new simple method which reduces by 25% the communication of the Naor-
Pinkas oblivious transfer protocol [41] when the size of the transmitted strings
is lower than κ/2, and a variant of our equality test protocol in a batch settings
(where many equality tests are performed “by blocks”), which uses additively
homomorphic encryption to further improve the communication of our equality
test protocol by up to 50%.

1.3 Our Method

The high level intuition of our approach is an observation that was already
made in previous works [40,50]: to compare two strings, it suffices to divide



New Protocols for Secure Equality Test and Comparison 307

them in equal length blocks, and compare the first block on which they differ.
Therefore, a protocol for (obliviously) finding this block can be used to reduce
the secure comparison problem on large strings to the secure comparison problem
on smaller strings. One can then recursively apply this size-reduction protocol,
until the strings to be compared are small enough, and compute the final result
using a second protocol tailored to secure comparison on small strings. However,
this intuition was typically implemented in previous work using heavy public-
key primitives, such as homomorphic encryption. In this work, we show how
this strategy can be implemented using exclusively oblivious transfers on small
strings.

To implement the size-reduction protocol, we rely on a protocol to obliviously
determine whether two strings are equal. Therefore, a first step toward realizing
a secure comparison protocol is to design a protocol for testing equality between
two strings, which outputs shares (modulo 2) of a bit which is 1 if and only
if the strings are equal. Keeping this approach in mind, we start by designing
an equality test protocol which is based solely on oblivious transfer. Recall that
in an oblivious transfer protocol, one party (the sender) inputs a pair (s0, s1),
while the other party (the receiver) inputs a bit b; the receiver receives sb as
output and learns nothing about s1−b, while the sender learns nothing about b.
Our protocol relies on a classical observation: two strings are equal if and only
if their Hamming distance is zero. More specifically, our protocols proceed as
follows:

Equality Test. Consider two inputs (x, y), of length �. We denote (xi, yi)i≤�

their bits. The parties execute � parallel oblivious transfers over Z�+1, where
the first player input pairs (ai + xi mod � + 1, ai + 1 − xi mod � + 1) (ai is a
random mask over Z�+1), and the second party input his secret bits yi; let bi be
his output (bi = ai + xi ⊕ yi mod � + 1, where ⊕ is the exclusive or). Observe
that x′ ← ∑

i ai mod � + 1 and y′ ← ∑
i bi mod � + 1 are equal if and only if the

Hamming distance between x and y is 0, if and only if x = y. Note that (x′, y′)
are of length log(� + 1).

The players repeatedly invoke the above method, starting from (x′, y′), to
shrink the input size while preserving equality, until they end up with string of
length at most (say) 3 bits (it takes about O(log∗ �) invocations of the protocol,
where the first invocation dominates the communication cost). The players then
perform a straightforward equality test on these small strings, using oblivious
transfers to evaluate an explicit exponential-size formula for equality checking
on the small entries.

The core feature of this compression method is that it can be almost entirely
preprocessed: by executing the compression protocol on random inputs (r, s)
in a preprocessing phase (and storing the masks generated), the players can
reconstruct the output of the protocol on input (x, y) simply by exchanging
x ⊕ r and s ⊕ y in the online phase. Therefore, the communication of the entire
equality test protocol can be made as low as a few dozens to a few hundreds of
bits in the online phase. Furthermore, in the preprocessing phase, the protocol



308 G. Couteau

involves only oblivious transfers on very small entries (each entry has size at
most log � bits), for which particularly efficient constructions exist [35].

Secure Comparison. We now describe our solution to the secure comparison
problem. This protocol has a structure somewhat comparable to the previous
one, but is more involved. The parties break their inputs (x, y) in

√
� blocks of

length
√

� each. In the first part of the protocol, the parties will construct
√

�
shares of bits, which are all equal to 0 except for the ith bit, where i is the
index of the first block on which x differs from y. This step relies on parallel
invocations to the equality test functionality, and on oblivious transfers. Then,
using these bit-shares and oblivious transfers, the players compute shares of the
first block on which x differs from y.

At this point, we cannot directly repeat the above method recursively, as
this method takes inputs known to the parties, while the output values are only
shared between the parties. However, under a condition on the size of the group
on which the shares are computed, we prove a lemma which shows that the par-
ties can non-interactively reduce the problem of securely comparing shared value
to the problem of securely comparing known values, using only local computa-
tions on their shares. From that point, the parties can apply the compression
protocol again (for O(log log �) rounds), until they obtain very small values,
and use (similarly as before) a straightforward protocol based on an explicit
exponential-size formula for comparison. Alternatively, to reduce the interactiv-
ity, the compression protocol can be executed a fixed (constant) number of times,
before applying, e.g., a garbled-circuit-based protocol or a generic 2PC protocol
on the reduced-size inputs.

This protocol involves O(
√

�) equality tests and oblivious transfers on small
strings, both of which can be efficiently preprocessed. This leads to a secure
comparison protocol that communicates about a thousand bits in the online
phase, for 64-bit inputs.

1.4 Comparison with Existing Works

For Secure Comparisons. We provide Table 1 a detailed comparison between
the state of the art, our logarithmic-round protocol SC1, and its constant-round
variants SC2 and SC3. We evaluate efficiency in an amortized setting and ignore
one-time setup costs. We considered two methods based on garbled circuit, the
protocol of [36] and the same protocol enhanced with the method of [3] to opti-
mize the online communication. We also considered the solution based on the
DGK cryptosystem [20,21,51], the protocol of [40], the probabilistically correct
protocol of [54], and generic 2PC applied to the protocol of [24]. Note that [40,54]
are described with respect to an arithmetic black box, hence their cost depends
on how the ABB is implemented. For [40], which requires an ABB over large
order fields, we considered a Paillier based instantiation, as advocated by the
authors. For [54], which involves (mainly) an ABB over F2, we considered the
same optimizations than in our protocols, implementing the ABB with oblivious
transfers on bits.



New Protocols for Secure Equality Test and Comparison 309

As illustrated in Table 1, our protocols improve over existing protocols
(asymptotically) regarding both communication and computation. This comes
at the cost of a non-constant O(log log �) interactivity (or O(c · log∗ κ) in the
constant-round setting). In particular, for large values of � (and for any value of
� in the online phase), our protocols enjoy an optimal O(�) communication and
computation complexity. The hidden constants are small, making our protocols
more efficient than the state of the art for any practical parameter. For values
of � between 4 and 128, the protocols of [24,36] (which enjoy tiny constants)
outperforms all other existing protocols regarding communication and compu-
tation. We therefore focus on these protocols as a basis for comparison with our
protocols in our concrete efficiency estimations.

Equality Tests. The state of the art given Table 1 remains essentially the
same for equality tests. Indeed, all the papers listed in the table (at the excep-
tion of [20], but including the present paper) do also construct equality tests
protocols, with the same (asymptotic) complexity and from the same assump-
tions. The only difference in asymptotic complexity between our equality test
protocol and the protocol SC1 is with respect to the round complexity: while
SC1 has O(log log �) rounds, our equality test protocol has an almost-constant
number of rounds O(log∗ κ). Note that we consider only equality tests whose
output is shared between the players (as this is necessary for our secure compar-
ison protocol); if the players get to learn the output in the clear (this is known as
the socialist millionaires problem), more efficient solutions exist, but there is no
simple way of designing equality tests with shared outputs from these solutions.

1.5 Applications

Equality test protocols enjoy many applications as building blocks in various
multiparty computation protocols. Examples include, but are not limited to, pro-
tocols for switching between encryption schemes [16], secure linear algebra [18],
secure pattern matching [31], and secure evaluation of linear programs [49].
Secure comparisons have found a tremendous number of applications in cryp-
tography; we provide thereafter a non-exhaustive list of applications for which
our protocols lead to increased efficiency. We note that in applications for which
implementations have been described, the communication of secure comparisons
was generally pointed out as the main efficiency bottleneck.

– Obliviously sorting data [28,29] has proven useful in contexts such as pri-
vate auctions [42], oblivious RAM [26], or private set intersection [32], but it
remains to date quite slow (in [30], sorting over a million 32-bit words takes
between 5 and 20 min). All existing methods crucially rely on secure compar-
isons and require at least O(m log m) secure comparisons in O(log m) rounds
to sort lists of size m.

– Biometric authentication, while solving issues related to the use of passwords,
raises concerns regarding the privacy of individuals, and received a lot of
attention from the cryptographic community. Protocols for tasks such as



310 G. Couteau

Table 1. Amortized costs of state of the art secure comparison

Protocol [36] [20,21,51]a [40]a [36]+[3]a [54]

Preprocessing phase

Communication O(κ�) – O(nκ log �) O(n�) O( κ2
log κ + �)

Computation O(κ�) O(�(κ + �) · Cn) O(nκ log � · Cn) O(n� · Cn) O( κ2
log κ + �)

Rounds 1 – O(1) 1 O(1)

Assumption OT – ABB RSA ABB

Online phase

Communication O(κ�) O(n�) O(n log �) O(� + n) O(κ + �)

Computation O(κ�) O(� log � · Cn) O(n log � · Cn) O(κ� + n · Cn) O(κ + �)

Rounds 2 2 O(log �) 2 O(log κ)

Assumption OWF DGK ABB RSA None

Protocol [24] SC1 SC2, SC3 (c is some fixed constant)

Preprocessing phase

Communication O( κ�
log κ ) O( κ�

log κ ) if � = o(κ2)

O(�) else

O( κ�
log κ ) if �1−1/c = o(κ2)

O(�) else

Computation O( κ�
log κ ) O( κ�

log κ ) if � = o(κ2)

O(�) else

O( κ�
log κ ) if �1−1/c = o(κ2)

O(�) else

Rounds O(log �) O(log log �) O(c log∗ κ)

Assumption OT OT OT

Online phase

Communication O(�) O(�) O(�)

Computation O(�) O(�) O(�)

Rounds O(log �) O(log log �) O(c log∗ κ)

Assumption None None OWF (SC2) or none (SC3)
an > � + κ is the length of an RSA modulus. Cn denotes the cost of a modular multiplication

modulo n. Note that [3] can also be instantiated from the DDH or the LWE assumption.

secure face recognition [47] require finding the minimum value in a database,
which reduces to O(m) secure comparisons in O(log m) rounds.

– Secure protocols for machine learning employ secure comparisons as a basic
routine for tasks such as classification [10], generating private recommen-
dations [22], spam classification [52], multimedia analysis [14], clinical deci-
sions [46], evaluation of disease risk [5], or image feature extraction [39].

– Secure algorithms for combinatorial problems, such as finding the flow of
maximum capacity in a weighted graph, or searching for the shortest path
between two nodes, have been investigated in several works, e.g. [38], and have
applications in protocols such as private fingerprint matching [8], privacy-
preserving GPS guidance, or privacy-preserving determination of topological
features in social networks [2]. They typically involve a very large number of
secure comparisons (e.g. n2 comparisons for Dijkstra’s shortest path algorithm
on an n-node graph [2]).

– Other applications that heavily rely on comparisons include computing on
non integer values [1], various types of secure auctions [20], range queries over
encrypted databases [48], or algorithms for optimization problems [13,49].



New Protocols for Secure Equality Test and Comparison 311

1.6 Organization

In Sect. 2, we recall definitions and classical results on oblivious transfers, as well
as on oblivious transfer extensions. Section 3 introduces our new equality test
protocol, and constitutes the main body of our work. Due to space constraints,
we postpone our protocols for secure comparisons, as well as our detailed security
proofs, to the full version [15]; we note that most of the security proofs are quite
standard.

1.7 Notations

Given a finite set S, the notation x ←R S means that x is picked uniformly
at random from S. For an integer n, Zn denotes the set of integers modulo n.
Throughout this paper, + will always denote addition over the integers, and
not modular additions. We use bold letters to denote vectors. For a vector x ,
we denote by x [i] its i’th coordinate; we identify k-bit-strings to vectors of Zk

2

(but do not use bold notations for them). We denote by x ∗ y the Hadamard
product (x [i] · y [i])i between x and y . Let ⊕ denote the xor operation (when
applied on bit-strings, it denotes the bitwise xor). For integers (x, y), [x = y],
[x < y], and [x ≤ y] denote a bit which is 1 if the equality/inequality holds,
and 0 otherwise. The notation (x mod k), between parenthesis, indicates that
x mod t is seen as an integer between 0 and t−1, not as an element of Zt. For an
integer k, let 〈·〉k denote the randomized function that, on input x, returns two
uniformly random shares of x over Zk (i.e., a random pair (a, b) ∈ Zk such that
a + b = x mod k). We extend this notation to vectors in a natural way: for an
integer vector x , (a , b) ←R 〈x 〉k denote the two vectors obtained by applying
〈·〉k to the coordinates of x . Finally, for an integer x, we denote by |x| the bit-size
of x.

2 Oblivious Transfer

Oblivious transfers (OT) were introduced in [45]. An oblivious transfer is a two-
party protocol between a sender and a receiver, where the sender obliviously
transfers one of two string to the receiver, according to the selection bit of the
latter. The ideal functionality for k oblivious transfers on l-bit strings is specified
as follows:

F k,l
OT : ((s0, s1) , x) �→

(
⊥,

(
sx[i][i]

)
i≤k

)

where (s0, s1) ∈ (Fl
2)

k × (Fl
2)

k is the input of the sender, and x ∈ F
k
2 is the input

of the receiver. In a random oblivious transfer (ROT), the input of the sender is
picked at random:

F k,l
ROT : (⊥, x) �→

(
(s0, s1) ,

(
sx[i][i]

)
i≤k

)

The primitive can be extended naturally to k-out-of-n oblivious transfers; we let(
n
k

)
-OTt

� denote t invocations of a k-out-of-n OT on strings of length �. Oblivious
transfer is a fundamental primitive in MPC as it implies general multiparty
computation [34] and can be made very efficient.



312 G. Couteau

2.1 Oblivious Transfer Extension

Although oblivious transfer requires public-key cryptographic primitives, which
can be expensive, oblivious transfer extension allows to execute an arbitrary
number of oblivious transfers, using only cheap, symmetric operations, and a
small number of base OTs. OT extensions were introduced in [6]. The first truly
practical OT extension protocol was introduced in [33], assuming the random
oracle model.1 We briefly recall the intuition of the OT extension protocol of [33].
A

(
2
1

)
-OTκ

t can be directly obtained from a
(
2
1

)
-OTκ

κ: the sender associates two
κ-bit keys to each pair of messages and obliviously transfer one key of each pair
to the receiver. Then, the receiver stretches two t-bit strings from the two keys of
each pair, using a pseudo-random generator, and sends the xor of each of these
strings and the corresponding message to the receiver. The

(
2
1

)
-OTt

� itself can be
implemented with a single call to a

(
2
1

)
-OTκ

t functionality, in which the receiver
plays the role of the sender (and reciprocally). The total communication of the
reduction from

(
2
1

)
-OTt

� to
(
2
1

)
-OTκ

κ is 2t� + 2tκ bits. Regarding the computa-
tional complexity, once the base OTs have been performed, each OT essentially
consists in three evaluations of a hash function. An optimization to the protocol
of [33] was proposed in [4] (and discovered independently in [35]). It reduces the
communication of the OT extension protocol from 2t�+2tκ bits to 2t�+ tκ bits,
and allows to perform the base OTs without an a-priori bound on the number
of OTs to be performed later (the OTs can be continuously extended).

Oblivious Transfer of Short Strings. An optimized OT extension protocol
for short strings was introduced in [35], where the authors describe a reduction
of

(
2
1

)
-OTt

� to
(
2
1

)
-OTκ

κ with t(2κ/ log n + n · �) bits of communication, n being a
parameter that can be chosen arbitrarily so as to minimize this cost. Intuitively,
this is done by reducing log n invocations of

(
2
1

)
-OT to one invocation of

(
n
1

)
-OT;

the result is then obtained by combining this reduction with a new
(
n
1

)
-OT

extension protocol introduced in [35]. In our concrete efficiency estimations, we
will heavily rely on this result as our equality test protocol involves only OTs on
very short strings.

Correlated and Random Oblivious Transfers. The authors of [4] described
several OT extension protocols, tailored to OTs on inputs satisfying some partic-
ular conditions. In particular, the communication of the OT extension protocol
can be reduced from 2t� + tκ bits to t� + tκ bits when the inputs to each OT
are correlated, i.e. when each input pair is of the form (r, f(r)) for a uniformly
random r and a function f known by the sender (which can be different for
each OT). For random oblivious transfer extension, the bit-communication can
be further reduced to tκ. We note that the optimizations of [4,35] can be com-
bined: log n correlated

(
2
1

)
-OT can be reduced to one correlated

(
n
1

)
-OT (defined

1 The random oracle model can be avoided by assuming that the hash function is a
correlation-robust function, see [35], Appendix A.2.



New Protocols for Secure Equality Test and Comparison 313

by input pairs of the form (r, f1(r), · · · fn−1(r)) for a random r and functions
f1 · · · fn−1 known by the sender). This gives a correlated short-string oblivious
transfer extension protocol which transmits t(2κ/ log n + (n − 1) · �) bits.

3 Equality Test

In this section, we design an equality-test (ET) protocol to securely compute
shares over Z2 of the equality predicate.

Ideal Functionalities. The ideal functionality for our ET protocol is repre-
sented on Fig. 1. Following the common standard for multiparty computation,
we design our protocol in the preprocessing model, where the players have access
to a preprocessing functionality FET-prep. The preprocessing functionality is used
in an initialization phase to generate material for the protocol; it does not require
the inputs of the players. Our ideal preprocessing functionality is also represented
on Fig. 1.

Fig. 1. Ideal functionalities for equality test and preprocessing

Protocol. We now describe our implementation of FET in the FET-prep-hybrid
model, with respect to passive corruption. The protocol runs with two players,
Alice and Bob. It is parametrized by two integers (�, n), where n is called the
threshold of the protocol. The players recursively perform size reduction steps
using the material produced by the size reduction procedure of FET-prep. Each
step reduces inputs of size � to inputs of size |� + 1| while preserving the equal-
ity predicate. The players stop the reduction when the bitsize of their inputs
becomes smaller than the threshold n (taken equal to 3 or 4 in our concrete
estimations). The equality predicate is computed on the small inputs with the
material produced by the product sharing procedure of FET-prep. The protocol
is represented on Fig. 2.



314 G. Couteau

Fig. 2. Protocol for equality test

Theorem 1. The protocol ΠET securely implements FET in the FET-prep-hybrid
model, with respect to passive corruption.

Due to space constraints, the proof of Theorem1 is postponed to the full
version.

3.1 Implementing the Preprocessing Functionality

We now describe the implementation of the functionality FET-prep, in the FOT-
hybrid model. The protocol is represented on Fig. 3.

Theorem 2. The protocol ΠET securely implements FET when calls to FET-prep

in ΠET are replaced by executions of ΠET-prep in the FOT-hybrid model, with
respect to passive corruption.

Due to lack of space, we postpone the proof to the full version. While the
proof is rather straightforward, observe that we do not claim that ΠET-prep UC-
securely implements FET-prep with respect to passive corruption, but rather that
the entire protocol remain secure when calls to FET-prep are replaced by exe-
cutions of ΠET-prep. The reason for this distinction is that ΠET-prep does in fact



New Protocols for Secure Equality Test and Comparison 315

Fig. 3. Preprocessing protocol for equality test

not UC-securely implement FET-prep. Intuitively, this comes from the fact that
in ΠET-prep, the parties choose (part of) their outputs themselves; hence, no
simulator can possibly force the parties to set their outputs to being equal to
the outputs of FET-prep. While this can be solved by adding a resharing step at
the end of the protocol, this would add some unnecessary interaction and com-
munication to the protocol. Instead, we rely on an approach of [9], which was
developed exactly for this purpose: we prove that the protocol is input-private
(meaning that there is a simulator producing a view indistinguishable from an
execution of the protocol for any environment that ignores the output of the
protocol), which, as shown in [9], suffices to argue the security of the composed
protocol as soon as some rules on ordered composition are respected.

3.2 Communication Complexity

By a classical observation (see e.g. [40]), we can always assume that the inputs
of the players are less than κ-bit long: if this is not the case, each party can hash
its input first, preserving the correctness of the protocol with overwhelming
probability. Therefore, as the largest strings obliviously transferred during the
protocol ΠET are |� + 1| ≤ |κ + 1| bit long (for κ = 128, this corresponds to
8-bit strings), we can benefit from the short-string oblivious transfer extension
protocol of [35]. Ignoring the computation of the base OTs, which is performed a
single time for an arbitrary number of equality tests, k size reduction procedures
on �-bit inputs transmit O(k�(κ/ log x+x · |�|)) bits, where x is a parameter that
can be arbitrarily set so as to minimize this cost. This minimizes to O(k�κ/ log κ),
up to some log log term. As a consequence, when performing many equality
tests, the (amortized) cost of a single equality test is O(κ�/ log κ) bits in the
preprocessing phase (and still O(�) bits in the online phase). For inputs of size
� > κ, where the players can hash their input first, the complexity becomes
O(κ2/ log κ) in the preprocessing phase, and O(κ) in the online phase.



316 G. Couteau

3.3 Concrete Efficiency

We now analyze the efficiency of our protocol for various input-lengths. In all our
numerical applications, we set the security parameter κ to 128. We estimate the
efficiency in an amortized setting, where we can use oblivious transfer extension.

Comparison with Equality Test from Garbled Circuit and from 2PC.
We compare our protocol to the garbled-circuit-based protocol of [36], and to the
solution based on generic 2PC, using the optimized circuit of [24]. We apply all
possible optimizations to these two alternative approaches, using random OTs
in the offline phase to precompute the online OTs, as well as oblivious transfer
extensions. We use optimized OT extensions of short strings for [24], but not
for [36], as it involves OT on large keys.

Amortized Setting. We now provide a concrete efficiency analysis of the pro-
tocol in an amortized setting, using oblivious transfer extensions. We do not take
into account the cost of the base oblivious transfers for the OT extension scheme,
as this is a constant independent of the number of equality tests performed, which
is the same for both our protocol and the protocol of [36]. Adapting the con-
struction of [35] to the case of correlated short inputs, the exact cost of reducing
m oblivious transfers of t-bit strings to κ oblivious transfers of κ-bit strings
is m(2κ/ log x + (x − 1)t) (this takes into account an optimization described in

Table 2. Communication of �-bit ETs

� Our ET [36] [24]

Comm.b Rounds Comm. Rounds Comm. Rounds

Preprocessing phase

4 1106 2 1288 1 1264 3

8 2018 3 2832 1 3002 4

16 2945 4 5920 1 6636 5

32 5212 4 12096 1 14062 6

64 9863 4 24448 1 29072 7

128 20194 4 49152 1 59250 8

Online phase

4 28 1 1540 2 96 3

8 44 2 3080 2 228 4

16 54 3 6160 2 504 5

32 88 3 12320 2 1068 6

64 154 3 24640 2 2208 7

128 300 3 49280 2 4500 8
aThe one-time cost of the base OTs is ignored in the amor-
tized setting.
bComm. denotes the number of bits exchanged during a pro-
tocol run.



New Protocols for Secure Equality Test and Comparison 317

[35, Appendix A] and the optimization for correlated inputs of [4]).Therefore, the
amortized cost of a size reduction protocol on input k is k(2κ/ log x + (x − 1)k),
where x can be chosen so as to minimize this cost. Table 2 sums up the amortized
costs of our equality test protocol for various values of �; oblivious transfers for
the garbled circuit approach of [36] are performed using the OT extension proto-
col of [4] on κ-bit inputs, which transmits 3κ bits per OT. As shown in Table 2,
our protocol improves over the communication of [36] by up to 80% overall. Dur-
ing the online phase, our protocol is extremely efficient, two orders of magnitude
faster than [36]. Our protocol also improves over [24] by about 70% overall,
and by 95% in the online phase. Furthermore, it is considerably less interactive,
although it remains more interactive than the garbled-circuit-based approach.

Amortized Computational Complexity. The computational complexity
of [24,36] and our protocol are directly proportional to their communication
in the amortized setting (and it is dominated by the evaluation of hash func-
tions in both, which are required for (extended) OTs and garbled gates), hence
our constructions improve upo these protocols regarding computation by factors
similar to those listed in Table 2.

Acknowledgements. We thank David Pointcheval for insightful discussions and com-
ments, and Thomas Schneider for pointing out inaccuracies in our cost estimations for
the garbled circuit-based constructions of equality tests and secure comparison. The
author was supported by ERC grant 339563 (project CryptoCloud) and ERC grant
724307 (project PREP-CRYPTO).

References

1. Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating
point numbers. In: NDSS 2013, February 2013

2. Aly, A., Cuvelier, E., Mawet, S., Pereira, O., Van Vyve, M.: Securely solving
simple combinatorial graph problems. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS,
vol. 7859, pp. 239–257. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39884-1 21

3. Applebaum, B., Ishai, Y., Kushilevitz, E., Waters, B.: Encoding functions with con-
stant online rate or how to compress garbled circuits keys. In: Canetti, R., Garay,
J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 166–184. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40084-1 10

4. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious transfer
and extensions for faster secure computation. In: Sadeghi, A.R., Gligor, V.D., Yung,
M. (eds.) ACM CCS 2013, pp. 535–548. ACM Press, November 2013

5. Ayday, E., Raisaro, J.L., Laren, M., Jack, P., Fellay, J., Hubaux, J.P.: Privacy-
preserving computation of disease risk by using genomic, clinical, and environmen-
tal data. In: Proceedings of USENIX Security Workshop on Health Information
Technologies (HealthTech 2013), No. EPFL-CONF-187118 (2013)

6. Beaver, D.: Correlated pseudorandomness and the complexity of private computa-
tions. In: 28th ACM STOC, pp. 479–488. ACM Press, May 1996

https://doi.org/10.1007/978-3-642-39884-1_21
https://doi.org/10.1007/978-3-642-39884-1_21
https://doi.org/10.1007/978-3-642-40084-1_10


318 G. Couteau

7. Blake, I.F., Kolesnikov, V.: Strong conditional oblivious transfer and computing
on intervals. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 515–529.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30539-2 36

8. Blanton, M., Saraph, S.: Oblivious maximum bipartite matching size algorithm
with applications to secure fingerprint identification. In: Pernul, G., Ryan, P.Y.A.,
Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 384–406. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24174-6 20

9. Bogdanov, D., Laud, P., Laur, S., Pullonen, P.: From input private to universally
composable secure multiparty computation primitives. Cryptology ePrint Archive,
Report 2014/201 (2014). http://eprint.iacr.org/2014/201

10. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over
encrypted data. Cryptology ePrint Archive, Report 2014/331 (2014). http://eprint.
iacr.org/2014/331

11. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October
2001

12. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty integer compu-
tation. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 182–199.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15317-4 13

13. Catrina, O., de Hoogh, S.: Secure multiparty linear programming using fixed-point
arithmetic. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010.
LNCS, vol. 6345, pp. 134–150. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15497-3 9

14. Chu, W.T., Chang, F.C.: A privacy-preserving bipartite graph matching frame-
work for multimedia analysis and retrieval. In: Proceedings of the 5th ACM on
International Conference on Multimedia Retrieval, pp. 243–250. ACM (2015)

15. Couteau, G.: New protocols for secure equality test and comparison. Cryptology
ePrint Archive, Report 2016/544 (2016). http://eprint.iacr.org/2016/544

16. Couteau, G., Peters, T., Pointcheval, D.: Encryption switching protocols. In:
Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 308–
338. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 12.
http://eprint.iacr.org/2015/990

17. Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from threshold
homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol.
2045, pp. 280–300. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44987-6 18

18. Cramer, R., Kiltz, E., Padró, C.: A note on secure computation of the moore-
penrose pseudoinverse and its application to secure linear algebra. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 613–630. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74143-5 34

19. Damg̊ard, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure
constant-rounds multi-party computation for equality, comparison, bits and expo-
nentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304.
Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 15

20. Damg̊ard, I., Geisler, M., Krøigaard, M.: Efficient and secure comparison for on-
line auctions. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS,
vol. 4586, pp. 416–430. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-73458-1 30

21. Damgard, I., Geisler, M., Kroigard, M.: A correction to ‘efficient and secure com-
parison for on-line auctions’. Int. J. Appl. Crypt. 1(4), 323–324 (2009)

https://doi.org/10.1007/978-3-540-30539-2_36
https://doi.org/10.1007/978-3-319-24174-6_20
http://eprint.iacr.org/2014/201
http://eprint.iacr.org/2014/331
http://eprint.iacr.org/2014/331
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-642-15497-3_9
https://doi.org/10.1007/978-3-642-15497-3_9
http://eprint.iacr.org/2016/544
https://doi.org/10.1007/978-3-662-53018-4_12
http://eprint.iacr.org/2015/990
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/978-3-540-74143-5_34
https://doi.org/10.1007/11681878_15
https://doi.org/10.1007/978-3-540-73458-1_30
https://doi.org/10.1007/978-3-540-73458-1_30


New Protocols for Secure Equality Test and Comparison 319

22. Erkin, Z., Veugen, T., Toft, T., Lagendijk, R.L.: Generating private recommenda-
tions efficiently using homomorphic encryption and data packing. IEEE Trans. Inf.
Forensics Secur. 7(3), 1053–1066 (2012)

23. Even, S., Goldreich, O., Lempel, A.: A randomized protocol for signing contracts.
In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO 1982, pp. 205–210.
Plenum Press, New York (1982)

24. Garay, J., Schoenmakers, B., Villegas, J.: Practical and secure solutions for integer
comparison. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 330–
342. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8 22

25. Gentry, C., Halevi, S., Jutla, C., Raykova, M.: Private database access with HE-
over-ORAM architecture. In: Malkin, T., Kolesnikov, V., Lewko, A.B., Polychron-
akis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 172–191. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-28166-7 9

26. Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: Aho, A. (ed.) 19th ACM STOC, pp. 182–194. ACM Press, May 1987

27. Goldreich, O., Micali, S., Wigderson, A.: How to prove all NP statements in
zero-knowledge and a methodology of cryptographic protocol design (extended
abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185.
Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 11

28. Goodrich, M.T.: Randomized shellsort: a simple oblivious sorting algorithm. In:
Charika, M. (ed.) 21st SODA, pp. 1262–1277. ACM-SIAM, January 2010

29. Goodrich, M.T.: Zig-zag sort: a simple deterministic data-oblivious sorting algo-
rithm running in O(n log n) time. In: 46th ACM STOC, pp. 684–693. ACM Press
(2014)

30. Hamada, K., Ikarashi, D., Chida, K., Takahashi, K.: Oblivious radix sort: an effi-
cient sorting algorithm for practical secure multi-party computation. Cryptology
ePrint Archive, Report 2014/121 (2014). http://eprint.iacr.org/2014/121

31. Hazay, C., Toft, T.: Computationally secure pattern matching in the presence of
malicious adversaries. J. Cryptol. 27(2), 358–395 (2014)

32. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS 2012, February 2012

33. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

34. Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC, pp.
20–31. ACM Press, May 1988

35. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short
secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp.
54–70. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1 4

36. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building
blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji,
A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10433-6 1

37. Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and
applications. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 40

38. Laud, P.: A private lookup protocol with low online complexity for secure multi-
party computation. In: Hui, L.C.K., Qing, S.H., Shi, E., Yiu, S.M. (eds.) ICICS
2014. LNCS, vol. 8958, pp. 143–157. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21966-0 11

https://doi.org/10.1007/978-3-540-71677-8_22
https://doi.org/10.1007/978-3-319-28166-7_9
https://doi.org/10.1007/3-540-47721-7_11
http://eprint.iacr.org/2014/121
https://doi.org/10.1007/978-3-540-45146-4_9
https://doi.org/10.1007/978-3-642-40084-1_4
https://doi.org/10.1007/978-3-642-10433-6_1
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-319-21966-0_11
https://doi.org/10.1007/978-3-319-21966-0_11


320 G. Couteau

39. Li, P., Li, T., Yao, Z.A., Tang, C.M., Li, J.: Privacy-preserving outsourcing of
image feature extraction in cloud computing. Soft Comput. 21, 1–11 (2016)

40. Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear online
complexity. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013. LNCS, vol. 7966, pp. 645–656. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39212-2 56

41. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols. In: Kosaraju, S.R. (ed.)
12th SODA, pp. 448–457. ACM-SIAM, January 2001

42. Nishide, T., Iwamoto, M., Iwasaki, A., Ohta, K.: Secure (M + 1) st-price auction
with automatic tie-break. In: Yung, M., Zhu, L., Yang, Y. (eds.) INTRUST 2014.
LNCS, vol. 9473, pp. 422–437. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-27998-5 27

43. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and compar-
ison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC
2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-71677-8 23

44. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

45. Rabin, M.: How to exchange secrets by oblivious transfer. Technical report TR-81,
Harvard University (1981)

46. Rahulamathavan, Y., Phan, R.C.W., Veluru, S., Cumanan, K., Rajarajan, M.:
Privacy-preserving multi-class support vector machine for outsourcing the data
classification in cloud. IEEE Trans. Dependable Secure Comput. 11(5), 467–479
(2014)

47. Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: Efficient privacy-preserving face
recognition. In: Lee, D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 229–
244. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14423-3 16

48. Samanthula, B.K., Jiang, W., Bertino, E.: Lightweight and secure two-party range
queries over outsourced encrypted databases. arXiv:1401.3768 (2014)

49. Toft, T.: Solving linear programs using multiparty computation. In: Dingledine,
R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 90–107. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4 6

50. Toft, T.: Sub-linear, secure comparison with two non-colluding parties. In: Catalano,
D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 174–
191. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8 11

51. Veugen, T.: Improving the DGK comparison protocol. In: 2012 IEEE International
Workshop on Information Forensics and Security (WIFS), pp. 49–54. IEEE (2012)

52. Wu, D.J., Feng, T., Naehrig, M., Lauter, K.: Privately evaluating decision trees
and random forests. Cryptology ePrint Archive, Report 2015/386 (2015). http://
eprint.iacr.org/2015/386

53. Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th
FOCS, pp. 162–167. IEEE Computer Society Press, October 1986

54. Yu, C.-H., Yang, B.-Y.: Probabilistically correct secure arithmetic computation
for modular conversion, zero test, comparison, MOD and exponentiation. In: Vis-
conti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 426–444. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9 24

55. Zahur, S., Rosulek, M., Evans, D.: Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9057, pp. 220–250. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6 8

https://doi.org/10.1007/978-3-642-39212-2_56
https://doi.org/10.1007/978-3-642-39212-2_56
https://doi.org/10.1007/978-3-319-27998-5_27
https://doi.org/10.1007/978-3-319-27998-5_27
https://doi.org/10.1007/978-3-540-71677-8_23
https://doi.org/10.1007/978-3-540-71677-8_23
https://doi.org/10.1007/3-540-48910-X_16
https://doi.org/10.1007/978-3-642-14423-3_16
http://arxiv.org/abs/1401.3768
https://doi.org/10.1007/978-3-642-03549-4_6
https://doi.org/10.1007/978-3-642-19379-8_11
http://eprint.iacr.org/2015/386
http://eprint.iacr.org/2015/386
https://doi.org/10.1007/978-3-642-32928-9_24
https://doi.org/10.1007/978-3-662-46803-6_8


Minimising Communication
in Honest-Majority MPC by Batchwise

Multiplication Verification

Peter Sebastian Nordholt1 and Meilof Veeningen2(B)

1 Alexandra Institute, Copenhagen, Denmark
peter.s.nordholt@alexandra.dk

2 Philips Research, Eindhoven, The Netherlands
meilof@gmail.com

Abstract. In this paper, we present two new and very communication-
efficient protocols for maliciously secure multi-party computation over
fields in the honest-majority setting with abort. Our first protocol
improves a recent protocol by Lindell and Nof. Using the so far over-
looked tool of batchwise multiplication verification, we speed up their
technique for checking correctness of multiplications (with some other
improvements), reducing communication by 2× to 7×. In particular, in
the 3PC setting, each party sends only two field elements per multipli-
cation. We also show how to achieve fairness, which Lindell and Nof left
as an open problem. Our second protocol again applies batchwise mul-
tiplication verification, this time to perform 3PC by letting two parties
perform the SPDZ protocol using triples generated by a third party and
verified batchwise. In this protocol, each party sends only 4

3
field elements

during the online phase and 5
3

field elements during the preprocessing
phase.

1 Introduction

Multi-party computation (MPC) allows a number of parties to compute a func-
tion on their respective sensitive inputs without leaking anything but the com-
putation result. Recently, there has been a lot of interest in concretely efficient
actively secure MPC in the honest-majority setting with abort, in which fewer
than n/2 out of n parties may be corrupted. In this setting, very efficient solu-
tions are known and it is also possible to achieve fairness, i.e., either all parties
learn the result or none do, which is not possible without a honest majority.

A number of recent works have achieved particularly striking performance
numbers. Binary circuits can be evaluated at a cost of sending 10 bits per AND
gate for three parties due to [11], and arithmetic circuits can be evaluated at
a cost of sending 4 (for n = 3), 5(n − 1), or 42 field elements per multiplica-
tion due to [16]. However, this still leaves at least a factor four communication
increase compared to passive security. Moreover, these best known protocols
unfortunately do not satisfy fairness (unlike other honest-majority protocols).
c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 321–339, 2018.
https://doi.org/10.1007/978-3-319-93387-0_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_17&domain=pdf


322 P. S. Nordholt and M. Veeningen

In this work, we improve on the state-of-the-art of concretely efficient honest-
majority MPC by further decreasing communication complexity, while also sup-
porting fairness. Concerning communication complexity, we decrease communi-
cation in the three main variants of the protocol of Lindel and Nof by factors of
approximately 2, 5, and 7, respectively. In all cases, the gap between passive and
active security becomes only a factor 2. Moreover, in the three-party setting,
the best protocol now requires sending just two messages per party per multi-
plication. Some of this improvement comes from better use of PRNGs; a more
significant improvement comes from applying the tool of batchwise multiplica-
tion verification [2], a technique that allows to check that many multiplications
have been performed correctly by essentially checking a single multiplication.

We additional provide a novel three-party protocol, based on the SPDZ pro-
tocol [8], that reduces online communication from 2 in our protocol described
above to 4

3 messages per party per multiplication. This comes at the expense
of requiring a preprocessing phase with 5

3 messages per party per multiplica-
tion. Our SPDZ-based protocol also makes heavy use of PRNGs and batchwise
multiplication verification, but additionally incorporates the idea of taking a
two-party protocol in the preprocessing model, and replacing the distributed
preprocessing protocol by in-the-plain preprocessing by a third party. This idea
was known before but, as far as we know, has never been applied; we extend
this idea by allowing the preprocessing to be spread evenly between the three
parties. By way of comparison, in the two-party dishonest majority setting, a
recent SPDZ variant by Keller et al. [14] requires the equivalent of around 130
field elements to be sent per party, highlighting the communication gap between
the honest- and dishonest-majority settings.

In both our Lindell-Nof and our SPDZ based protocol, the decrease in com-
munication implies an increase in computation, but we show that in many prac-
tical settings, communication is still the bottleneck.

Finally, we show how to add fairness both of our constructions. We employ
general principles to achieve fairness such as using signature-based broadcast
for agreement and MACs or signatures to prevent output manipulation. Our
solutions are especially crafted to ensure that they add as little practical overhead
as possible; in particular, they do not affect the above communication complexity
results. This means that communication-efficient, actively secure MPC is possible
in practice without having to sacrifice fairness.

1.1 Outline

We discuss preliminaries in Sect. 2, before presenting our Lindell-Nof-based and
SPDZ-based constructions in Sects. 3 and 4, respectively. We give a brief perfor-
mance analysis in Sect. 5.

1.2 Related Work

Several recent works are closely related to this paper. Concerning efficient honest-
majority MPC, the most relevant work is the framework for communication-



Minimising Communication in Honest-Majority MPC 323

efficient MPC from [16] that forms the basis of our first protocol. It is also
the closest competitor in terms of overall communication complexity that we are
aware of. Another recent honest-majority MPC framework is due to [7]. Although
their construction is quite a bit less communication-efficient than ours, it does
work for arbitrary rings as opposed to just fields. They also provide a (less
efficient) construction for fairness largely based on the same principles as ours.

Concerning the technique of batchwise multiplication verification, the
groundwork was laid out in several earlier works. Ben-Sasson et al. [2] first
proposed batchwise multiplication verification. As discussed below, there it was
used to get an asymptotic result; we are not aware of works using it to improve
practical performance. Works such as the Pinocchio verifiable computation sys-
tem [19] and the Trinocchio protocol that combines it with MPC [20] were a
main inspiration to start seeing batchwise multiplication verification also as a
tool that may deliver practical efficiency. Corrigan-Gibbs and Boneh [4] first
proposed to use batchwise multiplication verification where one party provides
data and a number of other parties verify it, as in our SPDZ-based protocol; but
there it is not for performing the MPC but for checking its inputs.

2 Preliminaries

In this section, we present our notation and the security model for honest-
majority MPC with abort, and the main technique we will use to minimise
its communication: batchwise multiplication verification.

2.1 Notation and Security Model

The protocols in this paper are for n parties P = {P1,P2, . . . ,Pn}, where an
adversary may statically corrupt a minority of up to t parties, i.e., 2t < n. We
generally work in the field Zp for some prime p > 2σ, where σ is a statistical
security parameter. We use [x] to denote a Shamir secret sharing of x; [[x]] to
denote an additive sharing; and 〈x〉 = ([[x]], [[αx]]) to denote a SPDZ sharing
consisting of an additive sharing of the value and its MAC. [x]i, [[x]]i, 〈x〉i refer
to shares held by party Pi. We heavily use pseudorandom number generators
(PRNGs) to sample random data. For a pseudorandom number generator prng
we use the notation r ← prng to indicate sampling r uniformly at random (from
the relevant domain). [a, b] denotes the interval [a, a + 1, . . . , b].

We define security in the traditional standalone security model from [3] as
adapted in [16]. Security in this model is captured by demanding indistinguisha-
bility of the real-world protocol execution to an ideal-world execution with a
trusted third party. In the real-world model, the protocol is run between honest
parties in the presence of a non-uniform probabilistic polynomial time adver-
sary A that acts on behalf of the corrupted parties. We assume a synchronous
network with pairwise private channels and a rushing adversary (that receives
its messages in each round before it sends them). A party may abort, meaning
it sends a special abort message to all parties, who abort in the next round.



324 P. S. Nordholt and M. Veeningen

An execution of a protocol π in this model with inputs x1, . . . , xn, adversarial
auxiliary input z and security parameter κ is denoted Realπ,A(z),C(x1, . . . , xn, κ).
This is a tuple containing the outputs of the honest parties and an arbitrary out-
put chosen by the adversary.

The ideal-world model defines how an idealised protocol execution looks like
in which the computation is performed by an incorruptible trusted party execut-
ing a certain functionality. The functionality defines the exact security guaran-
tees; we will define variants with and without fairness. In the ideal-world model,
the trusted party executes the functionality in the presence of the honest parties
and a non-uniform probabilistic polynomial time adversary S.

The functionalities for fair and non-fair MPC both start with each party Pi

sending its input xi to the trusted party. The adversary may choose an arbitrary
input for corrupted parties and may also provide ⊥ to indicate an abort. The
trusted party computes output y as specified by f , or sets y = ⊥ if the adversary
supplied ⊥. In the fair variant, the trusted party sends the outputs to all of the
parties. In the non-fair variant, the trusted party sends y to the adversary who
returns c ∈ {�,⊥}n. For each party Pi, if ci = � the trusted party sends y
to Pi, otherwise it sends ⊥. Ideal-world executions with these functionalities
are denoted Idealf,S(z),C(x1, . . . , xn, κ) or Idealfairf,...(. . .): a tuple containing the
outputs of the honest parties and an arbitrary output chosen by the adversary.

Security is defined as indistinguishability between real-world and ideal-world
executions. Precisely, we say that a protocol π securely computes f with statis-
tical security parameter σ for honest majority if, for every adversary A, there
exists a simulator S such that, for all xi, z, C with |C| ≤ t, the distinguishing
probability between Idealf,S(z),C(x1, . . . , xn, κ) and Realπ,A(z),C(x1, . . . , xn, κ) is
at most 2−σ + μ(κ) for some μ negligible in κ. Protocol π fairly computes f
with statistical security parameter σ for honest majority if the same holds with
respect to Idealfairf,...(. . .). Security can also be defined more generally for any
functionality F. As is well-known, we can design protocols containing calls to
an ideal functionality F (in the so-called F-hybrid model) and then replace the
ideal functionality by a secure protocol implementing it [3].

The above model describes standalone executions with synchronous commu-
nication, but we believe that neither limitation is inherent to our protocol. In
asynchronous models, unlike above, there is no global round clock. In general,
synchronous protocols can be made asynchronous by having each party confirm
to all other parties that it has received all messages for round t, and only pro-
ceeding to send messages for round t+1 after receiving all confirmations [15], but
this is of course costly. We expect that such confirmations are only necessary
at a few points in our protocol. In composable models, unlike the standalone
model above, protocols are proven secure also in the presence of simultaneous
other protocols and protocol instances. Here, we note that we use only black-box
non-rewinding simulators, so adding “start synchronisation” should be enough
to achieve composability [15]. We leave details for future work.



Minimising Communication in Honest-Majority MPC 325

2.2 Batchwise Multiplication Verification

Batchwise multiplication verification was introduced in [2] to improve the asymp-
totic complexity of verifying preprocessed multiplication triples over small fields.
Standard multiplications checks, e.g. based on sacrificing, scale with the security
parameter (which is larger than the field size), but using batchwise multiplication
verification, these costs can be spread over a batch.

In particular, given secret-shared values [a1], . . ., [aN ], [b1], . . ., [bN ], [c1], . . .,
[cN ], the goal is to verify that ci = ai · bi for all i. This is done by translating
these N equalities of field elements into a single equality of polynomials, and
verifying this equality based on the Schwartz-Zippel lemma [21,22]. Fix nonzero
ω1, . . . , ω2N−1, and let A(x), B(x) be of degree ≤ N − 1 such that for i ∈ [1, N ],
A(ωi) = ai and B(ωi) = bi. If we let C(x) = A(x)B(x), then obviously C(ωi) =
ci for i ∈ [1, N ], but the converse is also true: if there exists a polynomial C(x)
of degree ≤ 2N − 1 such that C(x) = A(x)B(x) and C(ωi) = ci for i ∈ [1, N ],
this implies ci = ai · bi.

In batchwise multiplication verification, first, C(x) is constructed by com-
puting C(ωj) = A(ωj) · B(ωj), j ∈ [N + 1, 2N − 1] using passively secure MPC
and deriving its coefficients by interpolation. Then, A, B, and C are evaluated
in a random point s 	∈ {ω1, . . . , ω2N−1}. This can be done with local linear oper-
ations given shares of the ai, bi, ci, and C(ωj). Finally, a multiplication check
protocol is run to check that A(s) · B(s) = C(s). The Schwartz-Zippel lemma,
states that for a non-zero degree d polynomial, P , over field F of and a random
r ∈ S for a finite S ⊆ F the probability that P (r) = 0 is at most d/|S|. Thus if
A(s)·B(s) = C(s) then with high probability, A(x)·B(x) = C(x) as polynomials
and hence ai · bi = ci. Note that for each triple, an additional passively secure
multiplication is needed, but the multiplication check is performed only once per
batch, giving the asymptotic advantage.

In [4], the above idea is used in a different setting: some party provides
inputs to MPC, and we want to verify that inputs satisfy a certain property. This
property is phrased in terms of a number of multiplications of linear combinations
of inputs, and the multiplications are checked similarly to above. In this case,
the inputter determines and provides the “witness” values C(ωj) proving that
the multiplications are correct, and the computing parties again use a simple
protocol to check that A(s) ·B(s) = C(s). It is also shown there that the various
polynomial computations can be performed efficiently using FFTs.

3 Lindell-Nof with Fewer Messages and More Fairness

In this section, we show how to reduce the communication complexity of
the Lindell-Nof protocol for honest-majority MPC [16] and how to add fair-
ness. We outline their construction (Sect. 3.1); plug in batchwise multiplica-
tion verification (Sect. 3.2); analyse and further reduce communication complex-
ity (Sect. 3.3); finally, we show how to achieve fairness and discuss two other
improvements (Sect. 3.4).



326 P. S. Nordholt and M. Veeningen

3.1 The Lindell-Nof Construction

Lindell and Nof present a framework for efficient actively secure MPC with a
honest majority [16]. The basic observation underlying this framework is that
many passively secure MPC protocols are “actively secret”, essentially meaning
that an active attack can break correctness of the computation, but not privacy.
Hence, to perform a computation in an actively secure way, one can simply
perform the computation using a passively secure protocol and, prior to opening
the result, retrospectively check that all multiplications, as these are the only
operations that require interaction, have been performed correctly.

In slightly more detail, the Lindell-Nof construction uses of t-out-of-n secret
sharing, such as Shamir secret sharing or replicated secret sharing. The protocol
starts with all parties secret-sharing their inputs, and checking whether they
are “correct”, in the sense that the shares of all honest parties reconstruct to a
unique value. Next, a passively secure MPC is executed, with linear operations
performed locally on shares and multiplication using known protocols for Shamir
by Gennaro et al. [12], Damg̊ard and Nielsen [6] and for replicated secret sharing
by Araki et al. [1]. We will refer to these three multiplication methods as GRR,
DN and AFL+ respectively. Finally, the correctness of the performed multipli-
cations is checked using one of two possible methods, and if this check passes,
the secret shares of the output are reconstructed to obtain the output. Overall,
this gives active security without fairness with relatively little communication.

3.2 Plugging in Batchwise Multiplication Verification

We now show how batchwise multiplication verification can be used to efficiently
implement the multiplication check in the Lindell-Nof protocol. As discussed
above, the multiplication check is called at the end of the protocol to check
correctness of a number of passively secure multiplications performed before.

Our protocol performing this multiplication check is shown in Fig. 1. The
protocol uses functionalities FRand for generating sharer for random r ∈ Zp and
FCoin for generating a public field element r ∈ Zp\{0} known to all parties as
described in [16]. Moreover, it uses a passively secure multiplication protocol
that, as described by Lindell and Nof [16], needs to be “secure up to additive
attacks”, meaning that the adversary can manipulate its result only by adding
an additive offset to its result. The GRR, DN and AFL+ protocols mentioned
above all meet this requirement.

Our multiplication protocol follows the basic idea of [2], but avoids its
actively secure A(s) · B(s) = C(s) check. We add a random multiplication triple
(aN , bN , cN ) to the batch of triples and choose s uniformly at random from Zp.
Then, the values of A(s), B(s), C(s) are uniformly random and can be opened
so that the check A(s) · B(s) = C(s) can be performed in the plain. (Note that
this option was not available to the authors of [2] since they need s from an
extension field so A(s), B(s), C(s) are not uniform).

We now prove correctness of our multiplication check. In Lindell-Nof, cor-
rectness of their multiplication check is shown in [16, Lemma 3.9]. We prove



Minimising Communication in Honest-Majority MPC 327

Protocol: Batchwise multiplication check for Lindell-Nof (batch size N):

Inputs: The parties hold a list of triples ([ai], [bi], [ci])N−1
i=1 they want to verify.

1. Generate random [aN ], [bN ] with FRand and together compute [cN ] ← [aN ] · [bN ]
2. Let A(x), B(x) be of degree ≤ N − 1 such that A(ωi) = ai; B(ωi) = bi for

i ∈ [1, N ]. Using [ai] and [bi], locally compute [aj ] = [A(ωj)], [bj ] = [B(ωj)] for
j ∈ [N + 1, 2N − 1]

3. Together compute [cj ] ← [aj ] · [bj ] for j ∈ [N + 1, 2N − 1]
4. Generate random s with FCoin. Repeat until s /∈ {0, ω1, . . . , ω2N−1}.
5. Let C(x) be of degree ≤ 2N −2 such that C(ωi) = ci for i ∈ [1, 2N −1]. Locally

compute [A(s)], [B(s)] and [C(s)] as linear combinations of ([ai])Ni=1, ([bi])
N
i=1

and ([ci])2N−1
i=1 respectively

6. Exchange secret shares [A(s)], [B(s)] and [C(s)] between all parties. Output
accept if the shares are correct and A(s)B(s) = C(s).

Fig. 1. Batchwise multiplication check for Lindell-Nof

that the same result holds for our multiplication check, implying that it can be
used as a drop-in replacement in their protocol. Actually, our result is slightly
more complete since we do not just prove correctness but also privacy of the
multiplication check. In the full version, we use this result for a self-contained
proof of an optimised version of the Lindell-Nof protocol.

Proposition 1. Suppose shares ([ai], [bi])N−1
i=1 are correct and ([ci])N−1

i=1 are
valid, and that [·] ← [·] · [·] is a multiplication protocol secure up to additive
attack. There exists a simulator that, on input Δi := ci − (ai · bi) and the shares
held by the corrupted parties, simulates an execution of the protocol from Fig. 1
with respect to an active adversary corrupting a minority of parties with statisti-
cal distance at most negligibly greater than (2N −2)/(|Zp|−2N). In particular, if
any Δk 	= 0, then the honest parties output accept with at most this probability;
if all Δk = 0 then honest parties fail or succeed at the will of the adversary.

Proof. The simulator proceeds as follows. The simulator first simulates the gener-
ation of random [aN ] and [bN ] and the computation of [cN ], [aN+1], . . . , [a2N−1],
[bN+1], . . . , [b2N−1], [cN+1], . . . , [c2N−1], learning the errors ΔN , . . . , Δ2N−1 to
the ci introduced by the adversary (which is possible since the protocol is
secure up to additive attack). Simulate the generation of s and the computa-
tion of [A(s)], [B(s)], and [C(s)]. Let D(x) be of degree ≤ 2N − 2 such that
D(ω1) = Δ1, . . . , D(ω2N−1) = Δ2N−1. If (Δ1, . . . , Δ2N−1) 	= 0 but D(s) = 0,
abort. Generates random A(s) and B(s), and let C ′(s) = A(s) · B(s) and
C(s) = C ′(s) + D(s). Simulate the opening of [A(s)] to A(s), [B(s)] to B(s),
and [C(s)] to C(s). Let the honest parties output success if D(s) = 0 and the
adversary provides the correct shares of [A(s)], [B(s)], [C(s)] and fail otherwise.

We argue that this simulation is indeed indistinguishable. For this, we need
to check that the view of the adversary and the outputs of the honest parties



328 P. S. Nordholt and M. Veeningen

in the simulation are indistinguishable from a real execution. Concerning the
view of the adversary, note that the values A(s) and B(s) that are opened are
uniformly random because of the inclusion of the random [aN ], [bN ]. Given these
values A(s) and B(s), C ′(s) = A(s) · B(s) is the value that is opened for [C(s)]
if all multiplications are correct. By linearity of the computation of C(s), given
A(s) and B(s) the value the adversary expects for [C(s)] is C ′(s)+D(s). Hence,
the simulation of the multiplication check is indistinguishable to the adversary
and its success implies (Δ1, . . . , Δc1) = 0, unless (Δ1, . . . , Δ2N−1) 	= 0 and
D(s) = 0. But D(s) is the evaluation of a polynomial of degree at most 2N − 2
in a random point from Zp\{0, ω1, . . . ω2N−1}, so by the Schwartz-Zippel lemma,
if (Δ1, . . . , Δc1) 	= 0 then D(s) = 0 with probability (2N−2)/(|Zp|−2N). Hence,
except with this probability, the adversary cannot make wrong multiplications
pass the check, so also the honest parties’ outputs are indistinguishable. ��
Corollary 1 (Informal). The protocol for computing an arithmetic circuit over
a finite field from [16] with the batchwise multiplication check from Fig. 1 com-
putes any n-party functionality f with computational security in the presence of
a malicious adversary controlling up to t < n/2 corrupted parties.

In the full version of this paper, we present an optimised and slightly simpli-
fied version of the Lindell-Nof protocol and prove its security in detail.

3.3 Performance Analysis and Optimisation with PRNGs

Table 1 shows how the amount of communication in the Lindell-Nof protocol
is reduced by batchwise multiplication verification, and how it can be further
reduced with PRNGs. As mentioned above Lindel and Nof give three concrete
instantiations of their protocol based on the GRR, DN and AFL+ multiplication
protocols respectively [1,6,12]. (The exact variants of the protocols used for this
comparison are given in the full version of this paper.) They instantiate three
core operations, multiplying, opening shared values and generating a random
shared value, and use them in two multiplication checks. The first check uses
2 multiplications, 2 random values and 3 openings; the second check uses 6
multiplications and 3 random values. In GRR, the first check is used; in DN,
the second check is used; and in AFL+, a slight optimisation of the first check
is used, leading to the given performance in Table 1.

As shown, using batchwise multiplication verification, checking a multipli-
cation requires essentially one additional multiplication. As a result, using it
instead of either of the Lindell-Nof multiplication checks reduces communica-
tion by a factor 2 to 3.5. The constant cost of the check (hidden behind the
� symbol in the table) is spread over the triples in a batch but pretty small:
e.g., for ≤10 parties the batch size needed to make the overhead less than one is
always less than 50 and to make it less than 0.1 it is less than 500. As shown in
Sect. 5, this is possible without affecting computational complexity too much.

Using PRNGs, we can reduce communication in the GRR and DN construc-
tions even further. For instance, consider the re-sharing of values that takes place



Minimising Communication in Honest-Majority MPC 329

Table 1. Field elements sent per party for the Lindell-Nof protocol instantiated with
GRR, DN (both with or without PRNG optimizations) and AFL+ (with PRNG opti-
mization). The number of parties and the threshold is denoted by n and t respectively
(generally n ≈ 2t). Grey areas are our results

Operation GRR GRR-
PRNG

DN DN-
PRNG

AFL+

Random value 0 0 � 2 � 1 0
Opening n − 1 n − 1 n − 1 n − 1 1
Passive mult. n − 1 n − t − 1 � 6 � 3 1
LN mul + check 5(n − 1) 6(n − t − 1) � 42 � 18 4
Batch mul + check � 2(n − 1) � 2(n−t−1) � 12 � 6 � 2

in GRR multiplication: instead of sending shares to each party, the dealing party
can simply set the shares of t parties by pairwise PRNGs between him and the
recipients so that he only needs to send n − t − 1 shares, halving communica-
tion if n = 2t + 1. This idea is of course not new, but it is still important for
us since applying it reduces communication in the Shamir constructions by an
additional factor of at least two. In particular, using PRNGs, the Shamir-based
construction with GRR becomes as communication-efficient as the PRNG-based
construction. Details appear in the full version of this paper.

3.4 Further Improvements

Adding Fairness. To achieve fairness, we first let the parties reach agreement
on whether to produce an output. Once there is agreement, we let the parties
derive the output in such a way that the adversary cannot force a failure any-
more.

To reach agreement, we use detectable broadcast [10]. Detectable broadcast
lets a party send a message to all parties so that either all parties receive the
same message, or all parties agree that the broadcast has failed. In our case, the
adversary may cause this failure after seeing the value to be broadcast. Unlike full
broadcast, it can be achieved over private channels without set-up assumptions.
Essentially, [10] achieves detectable broadcast by letting each party once pick and
distribute a public key, and performing a pairwise check if all parties consistently
sent out their keys. After this setup, broadcasts are performed with the standard
Dolev-Strong protocol [9]. In our protocol, parties detectably broadcast their
shares of A(s), B(s), and C(s) in the last round of the multiplication check; the
parties decide to produce an output only if all parties have successfully broadcast
a value; all shares consistently reconstruct to some values A(s), B(s), and C(s);
and A(s) · B(s) = C(s).

To derive the output, we need to ensure that honest parties can detect wrong
values sent by corrupted parties. If there are only few parties, each party Pi can
input a random information-theoretic MAC key αi, βi into the MPC (with PRSS,
this requires no communication) and the parties compute MAC αi · x + βi on



330 P. S. Nordholt and M. Veeningen

output x. After the multiplication check, all parties send their shares of x and
αix + βi to Pi, who selects whichever reconstructed x has a correct MAC. For
many parties, this technique is not secure since it costs log((t + 1)

(
n−1

t

)
) ≈ n

bits security; for that case see the full version of this paper.

Efficient Inner Products. One particularly appealing property of MPC based
on secret sharing schemes like Shamir and replicated secret sharing, is that they
allow inner products [c] =

∑l
i=1[ai] · [bi] to be computed at the cost of a single

multiplication. Such multiplication protocols first locally perform the multiplica-
tion (turning t-out-of-n shared inputs into a 2t-out-of-n sharing of the product)
and then re-share the result (turning the product from a 2t-out-of-n sharing back
into a t-out-of-n sharing). To compute an inner product, several local multipli-
cations are first summed up and then the result is re-shared.

We can make such inner product computations actively secure by generalising
batchwise multiplication verification to verify many inner products of the same
length. Instead of generating two random values and computing their product,
we generate 2l random values and compute their inner product. We then define
polynomials (Ai(x))l

i=1, (Bi(x))l
i=1, C(x) in the natural way; exchange shares of

(Ai(s))l
i=1, (Bi(s))l

i=1, C(s); and check whether
∑l

i=1 Ai(s)Bi(s) = C(s). This
gives the same security guarantees as batchwise multiplication verification.

Smaller Fields. Because of the false positive rate of the Schwartz-Zippel
lemma, our construction requires a field of size at least 2N · 2σ, where σ is
the statistical security parameter. When working over a smaller field, the mul-
tiplication check can be performed repeatedly. This way, statistical security can
be boosted arbitrarily: repeating the check k times increases statistical security
from log((|Zp|−2N)/(2N−2)) to log(

(|Zp|−2N
k

)
/
(
2N−2

k

)
) bits. Note that repeated

checking can be done more efficiently than by just repeating the full check as
follows. Instead of adding one random triple to a batch of multiplications, we
add k of them; and instead of generating one random challenge s, we generate
k challenges si and evaluate A(si), B(si), and C(si) for i = 1, . . . , k. (These can
be opened because of the inclusion of the k random triples).

4 SPDZ with an Untrusted Dealer

In this section, we present a protocol for honest-majority 3PC. The main con-
tribution is a communication efficient protocol implementing the preprocessing
phase for the 2PC SPDZ protocol using batchwise multiplication verification to
check the correctness of Beaver triples generated locally by a third party dealer
P3. In the online phase two parties P1,P2 use the preprocessed values in the
regular two party SPDZ1 to compute the desired function. Using a small addi-
tion to the online SPDZ protocol, based on ideas from [13], we can allow the

1 The version by Damg̊ard et al. refered to as SPDZ-2 [5].



Minimising Communication in Honest-Majority MPC 331

dealer to provide input to and receive output from the 2PC protocol, thus giving
an actively secure 3PC protocol in the honest-majority setting. We leave these
modifications as an exercise.

We note that, the resulting 3PC protocol is highly asymmetric; in the pre-
processing phase the P3 is doing most of the work while in the online phase
P1,P2 do all the work. To better utilise resources across all three parties, we
also develop a load balanced version of the protocol. This works by letting each
of party play the role of the dealer in separate runs of the preprocessing phase.
In the online phase, we then partition the multiplications to be performed into
three sets to be evaluated by each pair of parties in a 2PC fashion. The overall
communication per multiplication required in both versions is 5 field elements
for the preprocessing phase and 4 field elements in the online phase (as per the
regular 2PC SPDZ protocol). Thus using the load balanced version of the proto-
col we get 4/3 and 5/3 fields elements an average per party in the preprocessing
and online phases respectively. We defer the load balancing version of the pro-
tocol to the full version of the paper. In this section we focus on our protocol
for the SPDZ preprocessing phase.

We note that, compared to our Lindell-Nof based protocol, the protocol pre-
sented in this section does communicate three additional field elements per mul-
tiplication. However, the online phase communicates two field elements less than
the Lindell-Nof based protocol. Thus the setting were preprocessing is available
our SPDZ-based protocol is preferable.

4.1 Data Needed for the Online Phase

Before we describe our protocol for the preprocessing phase we here first sum-
marise the data that should be generated: We use 〈a〉 = ([[a]], [[αa]]) to denote
a SPDZ sharing of a ∈ Zp, where the sharing is between the parties P1,P2.
Here α ∈ Zp is a random MAC key fixed at initialisation and unknown to both
P1,P2, but which they share additively. The shared value αa of is an information
theoretic MAC on a, which is used in the online phase to ensure active security.

The online phase of SPDZ needs preprocessed multiplication triples and input
masks. A multiplication triple is SPDZ sharings (〈a〉 , 〈b〉 , 〈c〉) where a, b ∈ Zp are
random values and c = ab. In the online phase each multiplication will consume
one triple. An input mask is a pair (r, 〈r〉) for a random value r ∈ Zp known to,
say, P1. In the online phase each input provided by P1 consumes one such mask.
For security in the online phase we require that the preprocessed data should
be correct in the sense that the shared values and their MACs should obey the
correlations described above. Furthermore, the shared values should be unknown
and random in the view of any corrupt party participating in the online phase
(i.e., either P1 or P2). We describe the ideal functionality more formally in the
full version of the paper.



332 P. S. Nordholt and M. Veeningen

4.2 Preprocessing Phase

The basic idea of our protocol is to let P3 generate the all the preprocessed
data locally, and send the appropriate shares to P1,P2. Batchwise multiplication
verification is then used to check that P3 generated the multiplication triples
correctly, and a separate check is used to check that the MACs are correct. To
save communication our protocol heavily relies on joint PRNGs prngi,j between
each pair of parties Pi,Pj in order to non-interactively share values.

Our protocol ΠDeal implementing the preprocessing phase is described in
detail in Figs. 2 and 3. In Fig. 2 we show how the protocol is initialised by using
the joint PRNGs to sample a random MAC key α in such a way that α is
unknown to all parties but is additively secret shared between each pair of parties
Pi,Pj , denoted [�α�

i,j
i , [�α�

i,j
j . Additionally, P1 and P2 use prng1,2 to sample a

challenge s1,2 used for multiplication checks.
In Fig. 2 we also describe two subprotocols which will be used through out the

ΠDeal protocol. These protocols use the PRNGs to non-interactively generate
a random additive sharing [[r]] between P1,P2, where r is known to P3 (4a of
Fig. 2), and given any such shared r an additive sharing of [[αr]] between all the
parties (4b of Fig. 2). Note, that this means that by sending P3’s share [[αr]]3
of αr to, say, P1 we can trivially compute a SPDZ sharing 〈r〉 by adding [[αr]]3
to [[αr]]1. In the protocol we slightly abuse notation in this case by saying that
P1 updates her share [[αr]]1 = [[αr]]1 + [[αr]]3. Note that this requires P3 so send
exactly one field element per SPDZ sharing.

In Fig. 3 we describe how to generate and verify the actually preprocessed
data to be used in the online phase. Multiplication triples are generated by first
using the 4a and 4b subprotocols to generate 〈a〉 and 〈b〉 as described above. P3

then computes c = ab and additively shares it among the parties, using 4b on c
we get its MAC. This requires P3 to send four field elements.

For a batch of triples (〈ai〉 , 〈bi〉 , 〈ci〉)N−1
i=1 the multiplicative property aibi =

ci is verified using batch multiplication verification similar to the Lindell-Nof case
above. In this case we let the dealer P3 compute and additively share (without
MACs) the values cN+1 = C(ωN+1), . . . , c2N−1 = C(ω2N−1), as in [4]. P1,P2

verify the multiplications by checking the polynomials evaluated in the challenge
point s generated at initialisation. Again we can open A(s), B(s), C(s) by sacri-
ficing one triple. The check requires a single field element sent per triple and an
additional element per batch of N − 1 triples. Overall, a total of 5 field elements
are sent to generate each multiplication triples and verify the multiplicative
property plus one additional field element per batch.

Input masks are simply generated by first using the 4a and 4b subprotocols
to generate 〈r〉, and then letting P3 send the value r to the party using the input
mask. This requires sending two field elements for each input mask.

Finally, P1,P2 must check that all the MACs resulting from invocations of
the 4b subprotocol are correct. We do this using protocol similar to the MAC
check subprotocol of the regular SPDZ protocol. Essentially, the parties take a
pseudorandom linear combination of all the shared values generated, and check
that the MACs a consistent with the result. This takes constant communication.



Minimising Communication in Honest-Majority MPC 333

The intuition for security of the protocol goes as follows. Consider first a
corrupt Pi for i ∈ {1, 2}, i.e., one of the parties that will run the online phase. In
this case, the dealer P3 is honest, and only deals correct random additive shares,
which does not reveal information on the shared values. Furthermore, since Pi

only sends messages in the protocols checking correctness of the dealt shares, Pi

can only influence the protocol by making it abort (which we allow anyway), but
cannot influence the values of any of the shared values. Thus the preprocessed
data will be correct and Pi will not get information on the shared values. Con-
sider then a corrupt dealer P3. By the security of the multiplication verification
and MAC check, if the protocol does not abort, then with overwhelming prob-
ability the preprocessed data will be correct. P3 will learn all values shared in
the preprocessing phase, but since these are independent of the parties’ input to
the online phase and since P3 does not directly participate in the online phase
of the protocol, this does not leak any private information.

In the full version we prove security more formally, giving this result:

Corollary 2 (Informal). Combining the ΠDeal with the 2PC online phase of
SPDZ and the outsourced MPC additions of [13] leads to an over all protocol that
computes any 3-party functionality f with computational security in the presence
of a malicious adversary controlling at most one corrupted party.

4.3 Variants and Extensions

Fairness. Fairness is easily achieved in the load-balanced variant of the protocol
described in the fullversion, similarly to the Lindell-Nof case. Essentially, each
party Pi inputs MAC key αi, βi and mask δi (for which we can use input masks).
Then, αix + βi and x + δi are opened to the other two parties. These values
are checked with the SPDZ MAC check and then provided to Pi. The SPDZ
MAC check needs to be performed such that everybody agrees on its result,
which essentially means that we need to compute a sum

∑
[[σ]]1 + [[σ]]2 + [[σ]]3

in a fair way. This can be done by letting each party secret-share its summand
in a digitally signed way and the other parties forwarding these secret shares,
similarly to Dolev-Strong broadcast. We omit the details because of space.

Preprocessing Other Material. Apart from multiplication triples, other random
data can be preprocessed in order to speed up specific computations in the SPDZ
online phase. For example, Damg̊ard et al. [5] show how to preprocess random
square pairs 〈a〉 ,

〈
a2

〉
for random a. In the online phase 〈z〉 =

〈
x2

〉
can be

computed from 〈x〉 by revealing ε = x − a and setting 〈z〉 = 2ε 〈x〉 +
〈
a2

〉 − ε2,
which requires only half the communication of regular online multiplications.
Our dealer based protocol allows such material to be generated very efficiently.

To preprocess N − 1 pairs of squares (〈ai〉 ,
〈
a2

i

〉
)N−1
i=1 , we run the protocol

for generating multiplication triples as above, except the dealer sets all bi = ai

(including bN in the triple to be sacrificed). Note that in this case B(s) = A(s)
does not need to be computed or exchanged separately.



334 P. S. Nordholt and M. Veeningen

Protocol ΠDeal

Inputs: The amount of multiplication triples M , random input masks I1, I2 and a
batch size N .

1. (PRNG setup) Each pair of parties Pi, Pj sets up joint PRNG prngi,j (one
party generates it and sends it to the other)

2. (MAC key generation) The parties generate a random secret MAC key α, ad-
ditively shared between each pair of parties:
(a) Let α1, α2 ← prng1,3; α3, α4 ← prng1,2; α5, α6 ← prng2,3
(b) Parties P1, P2 set α 1,2

1 = α1 + α2 + α3, α 1,2
2 = α4 + α5 + α6

(c) Parties P1, P3 set α 1,3
1 = α3 + α4 + α1, α 1,3

3 = α5 + α6 + α2

(d) Parties P2, P3 set α 2,3
2 = α3 + α4 + α5, α 2,3

3 = α1 + α2 + α6

3. (Sample Challenge) P1, P2 sample s1,2 ∈ Zp \ {0, ω1, . . . , ω2N−1} using prng1,2
4. (Subprotocols) Throughout the parties use two subprotocols to non-interactively

generate random value r known by P3 and secret-shared between P1, P2 and a
corresponding MAC secret shared among all three parties:
(a) (Random) Let r 1 ← prng1,3; r 2 ← prng2,3. P3 sets r = r 1 + r 2.
(b) (Additive MAC shares) Let δ1,3 ← prng1,3; δ2,3 ← prng2,3; δ1,2 ← prng1,2.

For an additively shared r as above
P1 sets αr 1 = α 1,3

1 · r 1 + δ1,2 − δ1,3.
P2 sets αr 2 = α 2,3

2 · r 2 + δ2,3 − δ1,2.
P3 sets αr 3 = α 1,3

3 · r 1 + α 2,3
3 · r 2 + δ1,3 − δ2,3.

(continued in Fig. 3)

Fig. 2. Protocol ΠDeal

Damg̊ard et al. also preprocess random bits, i.e., values 〈x〉 so that x ∈ {0, 1}.
Such preprocessed values are useful to speed up the online computation of e.g.
comparisons [17]. To preprocessed random bits 〈x1〉 , . . . , 〈xN−1〉, we run the
protocol for generating multiplication triples as above, except the dealer sets all
ai = xi and bi = 1 − xi (implying ci = 0). If we use (〈aN 〉 , (1 − 〈aN 〉), 〈aN 〉 (1 −
〈aN 〉) for random aN as the extra multiplication triple to be sacrificed, we have
B(x) = 1 − A(x) so B(s) does not need to be computed or exchanged. Thus the
preprocessing of both a square pair and a bit requires communicating one less
field element than a multiplication.

Similarly, we can compute other useful preprocessed material by having
the dealer prove the appropriate multiplicative relations using the batchwise
multiplication check. For example, random values with their negative powers
〈r〉 ,

〈
r−1

〉
, . . . ,

〈
r−k

〉
are useful to compute

〈
x2

〉
, . . . ,

〈
xk

〉
from 〈x〉 by open-

ing (rx) and taking
〈
xi

〉
= (rx)i

〈
r−i

〉
(e.g., for secure equality [17]). Correct-

ness is verified from triples 〈a1〉 = 〈r〉 , 〈b1〉 = r−1, 〈c1〉 = 1, 〈ai〉 =
〈
r−1

〉
,

〈bi〉 =
〈
r−i+1

〉
, 〈ci〉 =

〈
r−i

〉
, i = 2, . . . , k.

Secret-shared random matrix products can be used to efficiently compute
matrix products [18]: given random matrices 〈U〉, 〈V〉, and 〈W〉 = 〈U · V〉 of



Minimising Communication in Honest-Majority MPC 335

Protocol ΠDeal (continued from Fig. 2)

5. (Triple generation) Generate M multiplication triples in M/(N − 1) batches
(〈ai〉 , 〈bi〉 , 〈ci〉)N−1

i=1 of size N − 1:
(a) Generate N multiplication triples by doing the following for each i ∈

[1, . . . , N ]:
i. (Shares of ai, bi) Repeat 4a twice to get ai , bi .
ii. (Shares of ci) Let δ2,3 ← prng2,3, δ1,2 ← prng1,2. P3 sets ci ← ai·bi, and

sends ci−δ2,3 to P1. P1, P2 set ci 1 = (ci−δ2,3)+δ1,2, ci 2 = δ2,3−δ1,2
respectively.

iii. (MAC shares) Repeat 4b to get αai , αbi , αci shared between
the three parties. P3 sends αai 3 to P1, who updates his MAC share
αai 1 = αai 1 + αai 3; and similarly for αbi k, αci k sent to P2.

(b) Check correctness of (〈ai〉 , 〈bi〉 , 〈ci〉)N−1
i=1 by sacrificing (〈aN 〉 , 〈bN 〉 , 〈cN 〉):

i. P3 computes cj = C(ωj) for j ∈ [N + 1, 2N − 1] where C(x) =
A(x)B(x); A(x), B(x) of degree ≤ N − 1 s.t. A(ωi) = ai, B(ωi) = bi

ii. P3 secret-shares (cj)2N−1
j=N+1 by sampling cj 2 ← prng2,3 and sending

cj 1 = cj − cj 2 to P1

iii. P1, P2 compute A(s1,2) , B(s1,2) , C(s1,2) linearly from
( ai , bi , ci )Ni=1 and ( ci )2N−1

i=N+1

iv. P1 sends A(s1,2) 1, B(s1,2) 1, C(s1,2) 1 to P2. P2 reconstructs
A(s1,2), B(s1,2), and C(s1,2), and aborts if A(s1,2) · B(s1,2) �= C(s1,2)

6. (Input generation) To generate an input mask (r, 〈r〉) for party Pi the parties
run 4a and 4b. Without loss of generality assume i = 1. P3 sends r and αr 3

to P1 who updates his MAC share αr 1 = αr 1 + αr 3.
7. (MAC check) The parties check all the MACs on all the generated sharings

(input masks and triples). Denote these ( ai )Li=1 for L = I1 + I2 + 3M :
(a) Repeat 4a,4b to get random 〈aL+1〉 known by P3 and shared between

P1, P2. P3 sends αaL+1 3 to P1, who updates his MAC share αaL+1 1 =
αaL+1 1 + αaL+1 3

(b) P1, P2 sample PRNG seed s ← prng1,2. Both send s to P3, who aborts if
inconsistent. All three generate r1, . . . , rL+1 from the PRNG with seed s.

(c) P3 computes S =
∑L+1

i=1 riai and sends S to P1

(d) P1 computes σ 1 ← (
∑L+1

i=1 ri αai 1) − S · α 1,2
1 and sends S, σ 1 to P2

(e) P2 computes σ 2 ← (
∑L+1

i=1 ri αai 2)−S · α 1,2
2 , aborts if σ 1+ σ 2 �= 0

8. Finally, each party returns its preprocessed MAC key, masks, and triples.

Fig. 3. Protocol ΠDeal (cont’d)

the correct size, matrix product 〈Z〉 = 〈X · Y〉 is computed by opening 〈X − U〉
and 〈Y − V〉 and letting

〈Z〉 = (X − U) · (Y − V) + (X − U) · 〈V〉 + (Y − V) · 〈U〉 + 〈W〉 .

To preprocess a random matrix product, the dealer provides secret shares of all
Ui,j , Vj,k and products Ui,j · Vj,k, and proves their correctness. The elements of
W are computed as linear combinations of these products. Preprocessing in this



336 P. S. Nordholt and M. Veeningen

Fig. 4. Number of Lindell-Nof multiplications that can be checked for correctness per
second based on the given network capacity or computation effort, with batches of size
21, . . . , 29 for a 64-bit prime (left) or 128-bit prime (right)

case reduces overall communication, e.g., by a factor 1.5 for 2 × 2 matrices or
a factor 2.5 for 10 × 10 matrices. Similarly, in the common case of multiplying
value (i.e., 1-by-1 matrix) 〈x〉 with each element in vector (i.e., 1-by-n matrix)
〈y〉, online communication halves and overall communication decreases by 33%.

Smaller Fields. As in the Lindell-Nof case, we need a field of size at least 2N ·2σ,
but as there, we can enhance the statistical security of ΠDeal by repeating the
multiplication check. Of course, for an overall secure protocol for fields smaller
than 2σ, also modifications to the SPDZ online phase are needed, cf. [8].

5 Performance Evaluation

In this section we present performance estimates suggesting that, despite the
computations in our protocols, communication is often still the main bottleneck.

5.1 Implementation Details

To estimate the computation effort of our protocol, we have implemented batch-
wise multiplication verification both in the Lindell-Nof and the SPDZ setting.
In both cases, we implemented only computation (including PRNG evaluation,
secret sharing, reconstruction, and the MAC check) and not communication. For
the PRNG, we used the SPDZ-2 implementation based on AES-NI2.

We implemented the batch check in batch sizes of 2k using fields Zp that allow
efficient modular arithmetic and efficient FFTs for those batch sizes (batches
do not need to be completely filled up). Batch verification relies heavily on
performing FFTs of the size of the batch for performing interpolation; with batch
size 2k, we can use the efficient Cooley-Tukey FFT algorithm. This requires
a (2k)th root of unity in Zp, or equivalently, 2k|p − 1. To have fast modular
arithmetic, we use pseudo-Mersenne primes p = 2s−2l+1; note that if k ≤ l then
2k|2l|p − 1. (We cannot use regular Mersenne primes 2s − 1 since 2k

� 2s − 1.) In
particular, we use our own modular arithmetic/FFT implementation for primes
264 − 210 +1 and 2128 − 254 +1, allowing batches up to 29, and 253, respectively.

2 https://github.com/bristolcrypto/SPDZ-2/.

https://github.com/bristolcrypto/SPDZ-2/


Minimising Communication in Honest-Majority MPC 337

Fig. 5. Number of SPDZ multiplication triples that can be preprocessed per second
based on the given network capacity or computation effort (excluding online phase),
with batches of size 22, . . . , 29 for a 64-bit prime (left) or 128-bit prime (right).

To estimate communication complexity, we compute the number of bits that
each party needs to send to check correctness of one multiplication. For Lindell-
Nof, this is the same for each party; for SPDZ, we use load-balancing so that
communication is also evenly spread. The number of multiplications per second
is computed as the bandwidth divided by that amount of bits.

5.2 Evaluation Results

Figure 4, estimates the number of multiplications that can be checked in the
Lindell-Nof protocol using Shamir secret sharing, GRR multiplication, and our
batchwise check. (Note that this does not include the multiplication to be checked
itself.) We show, for different batch sizes 2k, how many checks are allowed by the
bandwidth of a 50 Mbps WAN, a 1 Gbps LAN, and a 2 Gbps LAN. We also show,
on a single core of a Amazon M4.large machine (a 2.3/2.4 GHz Intel Xeon E5),
how many checks can be handled by the processor. As expected, larger batches
are good for communication complexity but bad for computation complexity.
With a 1 Gbps LAN and a single core, computation quickly becomes the bot-
tleneck, but still it is possible to process check around 5 million multiplications
per second for 64-bit primes and 2 million for 128-bit primes. Note that batch-
wise verification is trivially parallelizable by checking each batch on a different
core, so the number of checks per second can easily be increased by increasing
the number of cores. With less than 1 Gbps available, communication quickly
becomes the bottleneck rather than computation. We did not run experiments
for more than three parties, but in general, the amount of computation should
stay roughly the same (since it is dominated by the FFTs) whereas the amount
of communication increases as shown in Table 1.

Figure 5 similarly estimates the number of multiplication triples per second of
our SPDZ preprocessing, load-balanced between the three parties. As above, for
different batch sizes 2k, we plot the number of triples that can be generated on a
50 Mbps WAN, a 1 Gbps LAN, and a 2 Gbps LAN; and a single Amazon M4.large
core. Note that SPDZ has less communication than Lindell-Nof for small batch
sizes; this is because the constant overhead of the SPDZ batch check is very
small (just a few field elements). However, for larger batches, Lindell-Nof has



338 P. S. Nordholt and M. Veeningen

less communication (each party sends one field element per check vs. the dealer
sends five field elements for one third of the checks). In SPDZ, on a 1Gbps
network with a single core, computation is the bottleneck, and around 5 million
triples per second are possible for a 64-bit primes or around 2 million triples for
a 128-bit prime; with two to four cores, it is possible to reach around 10 million
triples for a 64-bit prime or 5 million triples for a 128-bit prime.

Acknowledgements. We thank the anonymous reviewers for their useful suggestions.
This work has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement #731583 (SODA).

References

1. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Proceedings
of CCS 2016. ACM (2016)

2. Ben-Sasson, E., Fehr, S., Ostrovsky, R.: Near-linear unconditionally-secure mul-
tiparty computation with a dishonest minority. In: Safavi-Naini, R., Canetti, R.
(eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 663–680. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 39

3. Canetti, R.: Security and composition of multi-party cryptographic protocols. J.
Cryptol. 13(1), 143–202 (2000)

4. Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation of
aggregate statistics. In: Proceedings of NSDI (2017)

5. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

6. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

7. Damg̊ard, I., Orlandi, C., Simkin, M.: Yet another compiler for active security or:
efficient MPC over arbitrary rings. Cryptology ePrint Archive, Report 2017/908
(2017). http://eprint.iacr.org/2017/908

8. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

9. Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM
J. Comput. 12(4), 656–666 (1983)

10. Fitzi, M., Gisin, N., Maurer, U., von Rotz, O.: Unconditional Byzantine agreement
and multi-party computation secure against dishonest minorities from scratch. In:
Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 482–501. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7 32

11. Furukawa, J., Lindell, Y., Nof, A., Weinstein, O.: High-throughput secure three-
party computation for malicious adversaries and an honest majority. In: Coron,
J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 225–255.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6 8

https://doi.org/10.1007/978-3-642-32009-5_39
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-540-74143-5_32
http://eprint.iacr.org/2017/908
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/3-540-46035-7_32
https://doi.org/10.1007/978-3-319-56614-6_8


Minimising Communication in Honest-Majority MPC 339

12. Gennaro, R., Rabin, M.O., Rabin, T.: Simplified VSS and fact-track multiparty
computations with applications to threshold cryptography. In: Proceedings of
PODC (1998)

13. Jakobsen, T.P., Nielsen, J.B., Orlandi, C.: A framework for outsourcing of secure
computation. In: Proceedings of CCSW 2014 (2014)

14. Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. Cryptol-
ogy ePrint Archive, Report 2017/1230 (2017). https://eprint.iacr.org/2017/1230

15. Kushilevitz, E., Lindell, Y., Rabin, T.: Information-theoretically secure protocols
and security under composition. In: Proceedings of STOC 2006 (2006)

16. Lindell, Y., Nof, A.: A framework for constructing fast MPC over arithmetic cir-
cuits with malicious adversaries and an honest-majority. In: Proceedings of CCS
2017. ACM (2017)

17. Lipmaa, H., Toft, T.: Secure equality and greater-than tests with sublinear online
complexity. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013. LNCS, vol. 7966, pp. 645–656. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39212-2 56

18. Mohassel, P., Zhang, Y.: SecureML: a system for scalable privacy-preserving
machine learning. In: Proceedings of S&P (2017)

19. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: Proceedings of S&P (2013)

20. Schoenmakers, B., Veeningen, M., de Vreede, N.: Trinocchio: privacy-preserving
outsourcing by distributed verifiable computation. In: Manulis, M., Sadeghi, A.-
R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 346–366. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-39555-5 19

21. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27(4), 701–717 (1980)

22. Zippel, R.: Probabilistic algorithms for sparse polynomials. In: Ng, E.W. (ed.)
Symbolic and Algebraic Computation. LNCS, vol. 72, pp. 216–226. Springer, Hei-
delberg (1979). https://doi.org/10.1007/3-540-09519-5 73

https://eprint.iacr.org/2017/1230
https://doi.org/10.1007/978-3-642-39212-2_56
https://doi.org/10.1007/978-3-642-39212-2_56
https://doi.org/10.1007/978-3-319-39555-5_19
https://doi.org/10.1007/3-540-09519-5_73


Best of Both Worlds in Secure
Computation, with Low Communication

Overhead

Daniel Genkin1,3, S. Dov Gordon2(B), and Samuel Ranellucci2,3

1 University of Pennsylvania, Philadelphia, USA
danielg3@cis.upenn.edu

2 George Mason University, Arlington, USA
gordon@gmu.edu

3 University of Maryland, College Park, USA
samuel@umd.edu

Abstract. When performing a secure multiparty computation with a
few hundred parties, using the best protocols known today, bandwidth
constraints are the primary bottleneck. A long line of work demonstrates
that n parties can compute a circuit C of depth d while communicating
O(|C| log |C| + poly(d, n) field elements per party, as long as a majority
of parties are honest. However, in the malicious majority setting, a lot
less is known. The work of Nielsen and Ranellucci is the first to provide
constant-overhead in the communication complexity when a majority of
parties are malicious; their result demonstrates feasibility, but is quite
complex and impractical.

In this work, we construct a new MPC protocol in the pre-processing
model. We introduce a new middle-ground: our protocol has low commu-
nication and provides robustness when a majority of parties are honest,
and gives security with abort (possibly with higher communication cost)
when a majority of players are malicious. Robustness is impossible when
a majority of parties are malicious; viewing the increased communication
complexity as a form of denial of service, similar to an abort, we view
our result as providing the “best of both worlds”.

1 Introduction

After a decade of improvements in the computational cost of secure multiparty
computation, we have reached a point where the primary performance bottle-
neck is the communication complexity, even when computing with only a mod-
erate number of parties Most constructions require that n participants com-
municate a total of O(Cn2) field elements to compute a circuit of size C. The
n2 term stems from point-to-point communication at every multiplication gate,
which, at first glance, seems hard to avoid. Amazingly, when a majority of par-
ties are honest, there are several constructions that require communicating only
O(C) field elements.1 Very broadly, these constructions make use of two ideas to
1 Additionally, they have an additive term that is polynomial in n.

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 340–359, 2018.
https://doi.org/10.1007/978-3-319-93387-0_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_18&domain=pdf


Best of Both Worlds in Secure Computation 341

lower communication cost. First, by using a randomly chosen dealer, they can
reduce the communication channels from O(n2) to O(n). This requires care, to
ensure that a malicious dealer cannot corrupt the computation. Second, by using
“packed secret sharing”, the participants can communicate just one field element
to compute O(n) multiplication gates. In a bit more detail, multiple wire values
are simultaneously encoded using a single threshold secret sharing scheme: to
encode � wire values, w1, · · · , w�, a random polynomial p is chosen such that
p(−j) = wj . As usual, p(1), · · · , p(n) define the secret shares of the n parties,
and, for a degree t + � polynomial, all � secrets remain perfectly hidden against
t colluding parties. Since t + � < n, this provides a tradeoff between security
and efficiency; as more values are packed into the secret sharing, the number of
corruptions that can be tolerated decreases. With a small blowup in the circuit
description, these polynomials can be used to compute � multiplication gates at
a time, cutting the communication cost by a factor of � = O(n) [9].

In the malicious majority setting, a lot less is known about reducing the
communication complexity. The recent work of Nielsen and Ranellucci is the
first and only protocol with constant communication cost per circuit gate [16].
The result of their work is exciting, as it demonstrates feasibility for the first
time. However, as the authors state, their protocol “is solely of theoretical inter-
est”; it has constants that are large and difficult to compute, and, conceptually,
it requires parsing a complex composition of player emulations and subprotocols.

In this work, we propose an optimistic approach to communication complex-
ity. Our protocol has constant expected communication complexity if a majority
of players are honest. However, unlike prior work in the honest majority setting,
we stress that our protocol also remains secure when a majority of players are
malicious, albeit with higher communication complexity. At a high level, the
variation in communication complexity stems from the following feature of our
approach. We choose a random dealer and hope that they are honest. If the
dealer happens to be malicious, he can force a re-start of the protocol, and if
O(n) consecutive dealers are malicious, then they can force the communication
complexity to blow up. Taking the view that this increased communication cost
is simply a form of denial of service, we view our result as providing “the best
of both worlds” with respect to denial of service; when a majority of parties are
malicious, it is impossible to prevent a denial of service attack, as the adversary
can always force an abort. While Nielsen and Ranellucci show that, technically,
it is possible to achieve low communication when a majority of players are mali-
cious, the benefit of our relaxation is that it allows us to construct a much simpler
protocol, both in concept and in concrete complexity.

The phrase “best of both worlds” has been used before in the MPC lit-
erature, referring to the more common notion of denial of service: guaranteed
output delivery [8,13,15]. With only a few exceptions, protocols for secure mul-
tiparty computation are usually designed with a particular corruption threshold
in mind. They either provide security with guaranteed output delivery when a
majority of parties are honest, but provide no security at all when a majority
are malicious, or they provide security with abort when a majority of parties are



342 D. Genkin et al.

corrupt, but allow a denial of service even if only a single party is corrupt. Our
protocol provides the best of both worlds in this sense as well, giving security
with guaranteed output delivery when the adversary fails to corrupt a majority
of parties, and security with abort when a majority are corrupt.

Our construction relies on offline (data independent) preprocessing that, cur-
rently, we do not know how to compute with constant overhead (short of using
Nielsen and Ranellucci). While we hope this reliance can be removed in future
work, we note that there are settings where it might be very reasonable to use
such preprocessing. The obvious case is where the parties can afford to send
a lot of data prior to the arrival of their inputs, but another setting in which
preprocessing is available is where the parties have access to some trusted setup.

Formal Description of Our Result. For privacy threshold tp, and packing
parameter �, our protocol enables n players to compute any arithmetic circuit C,
guaranteeing security with abort when fewer than t < tp players are corrupt. It
achieves guaranteed output delivery (aka: robustness, full security) when t < tr,
where tr = (n− tp −2 ·�)/2. In addition, if t < tr and � ∈ Ω(n), then for a circuit
C of size |C| and depth d, our protocol has expected communication complexity
of O(|C| log |C| + poly(n, d)).

Related Work. Our work follows from two lines of work. The first line focuses
on achieving low overhead computation in the majority setting, this includes the
work of [2,14]. The paper of [3] achieved a sublinear overhead in the number of
players, but only in the computational setting and with overhead in the security
parameter that is not sublinear. The paper of [2] showed how by selecting � ∈
Ω(n), it was possible to construct a protocol for n parties with communication
overhead of O(|C| log |C| + poly(n, d)) for a circuit C of size |C| and depth d.

The second line of work, [8,13,15] focuses on finding MPC protocols with
tradeoffs between how many corruptions can be tolerated before privacy is com-
promised (tp), and how many corruptions can be tolerated before the robust-
ness guarantee is lost (tr). Ishai et al. demonstrated that this is possible when
there is some slack in the parameters: there exist n-party protocols where, for
tp + tr < n, the protocol maintains security with guaranteed output delivery
against tr malicious players and security with abort against tp malicious parties
[13]. In the same work, they demonstrated that this slackness is inherent, by
giving an example of a function that cannot be securely computed with these
same guarantees if t + s = n.

In parallel to our work, the work of [12] used the assumption that a certain
number of parties are honest to improve the efficiency of semi-honest GMW and
BMR-style MPC protocols. Other approaches that use preprocessing (such as [4,
6,7]) require each player to communicate one field element per multiplication
since they do not use packing.



Best of Both Worlds in Secure Computation 343

1.1 Technical Overview

In this section we present a high level overview of our protocol. We begin by
describing a semi-honest version of our protocol, in order to provide insight into
how we achieve low communication complexity. (Note that we never give a formal
description of this semi-honest version, and it is meant purely for intuition.)
Borrowing techniques from [2,3,5], we use a tp-private packed Shamir secret
sharing scheme with packing parameter �. These polynomials have degree tp + �,
and we will maintain this degree as we compute the circuit.

To compute multiplication gates, our protocol uses a special designated party
(called the dealer), and Beaver triples [a], [b], [c], which are secret sharings of
values a, b, c ∈ F

�, where a, b are randomly sampled and c = a · b (introduced
in [1]). These triples are shared using a tp-private Shamir packed secret sharing
scheme with packing parameter �. The packing parameter � allows players to
compute pointwise multiplication on vectors of field elements by having each
player compute and send a constant number of field elements to the dealer.

Our protocol evaluates an arithmetic circuit C in topological order from
the input to the output gates. Since packed Shamir secret sharing is linear, the
players can locally compute on their shares in order to evaluate the addition gates
of C. To compute the product [z] = [x] · [y], the players execute the following
steps, using a Beaver triple [a], [b], [c]. First, the players locally compute shares of
x − a and y − b and send them to the dealer. The dealer reshares x − a, y − b
and (x − a)·(y − b) using degree � polynomials. By resharing and packing those
values instead of sending them in the clear, we cut down the communication cost
by a factor �; the secret sharing in this step has nothing to do with privacy. The
players then compute shares of w ← y · (x − a) + x · (y − b) + r, where the
random mask r is sampled and secret shared during preprocessing, using a degree
tp + � polynomial. Since x and y are of degree tp + �, and (y − b) and (x − a)
are of degree �, it follows that w is of degree tp+2�. The players send their shares
of w to the dealer. The dealer re-shares w using a degree � polynomial, and the
players compute z = w − r. Since r is shared using a degree tp + � polynomial,
this results in shares of a degree tp + � polynomial, maintaining the invariant.

The use of a dealer allows each user to send secret shares to one party, instead
of n parties, cutting the cost per gate from O(n2) to O(n). Packed secret sharing
further reduces the complexity from O(n) to O(n/�). However, this also forces
us to increase the degree of the polynomial to tp + �, which creates a tradeoff
between privacy and efficiency: the closer tp is to n, the smaller � must be.

Attacks by Malicious Adversaries. The protocol above is only secure against
a semi-honest adversary. At a high level, an active adversary, which instructs the
players or the dealer to deviate from the protocol specification, can mount two
types of attacks.

Additive Attacks. The first class of attacks occur either when a corrupt dealer
re-shares the wrong value, or when malicious players send invalid shares to an



344 D. Genkin et al.

honest dealer, thereby causing the dealer to reconstruct and re-share the wrong
value. As we describe in our proof sketch in Sect. 4, these attacks are actually
instances of additive attacks, in which an adversary can tamper with the evalu-
ation of circuits by adding or subtracting values on individual wires, but cannot
impact the computation in any other way. See the full version of this paper for
more detail. By running the protocol on an additively secure circuit, obtained
from the compiler of Genkin et al. [10], we are able to construct a protocol for
MPC that renders such an attack ineffective. At a high level, the compiler of
Genkin et al. takes any circuit and transforms it into a new circuit that will
output ⊥ if the adversary applies an additive attack (i.e. tampers with the value
of any wire). By showing that any attack on our protocol is equivalent to an
additive attack, we can apply the protocol of [10] to make it secure. We note
that [10] has a constant overhead.

Divide and Conquer Attacks. The second class of attacks can only be per-
formed by a malicious dealer. At a high level, during the evaluation of mul-
tiplication gates, instead of re-sharing values using a degree-� polynomial, the
dealer can create two sets of shares, each consistent with a different degree-�
polynomial.

More formally, consider the following situation: let n be the number of parties,
let M be a set of corrupted parties, and let S1, S2 be distinct sets of honest parties
(not necessarily disjoint). The adversarial dealer sends shares to S1 such that
the secret recovered from those shares is x − a. He sends shares to S2 such that
the secret recovered from those shares is x − a + 1. Then, when the players try
to compute shares of (x − a) · y + r, where r is a random mask, note that both
S1 ∪ M and S2 ∪ M give the dealer enough shares to reconstruct the blinded
secret: from S1 ∪M , the dealer can recover (x− a) · y + r and from the shares of
S2 ∪M , the dealer can recover (x−a+1) ·y+r. By subtracting (x−a+1) ·y+r
from (x − a) · y + r the malicious dealer can recover y, even though the value of
(x − a) · y is supposedly hidden by a random mask.

The Degree-Test Protocol. Dealing with this second type of attack is one
of our main technical contributions. In Sect. 3 we present a novel degree-test
protocol that takes secret shares from the dealer and transmits them to the
players if only if the shares of the honest players are consistent with a polynomial
of degree-d. This degree test is also efficient, requiring each player to exchange
only a constant number of field of element with the dealer. The main idea behind
this protocol is as follows. During preprocessing, all parties learn a portion of a
secret that is encoded in a degree n−1 polynomial, w. Additionally, they receive
shares of a degree n − d − 1 polynomial, v, such that v(0) = 0. To prove that
he shared a degree d polynomial, the dealer collects n shares of z, defined as
z ← p · v + w. If p is of appropriate degree, this suffices to learn w(0), revealing
the secret value, while if the degree of p is too high, w(0) remains hidden and
the dealer fails to prove that he acted honestly.



Best of Both Worlds in Secure Computation 345

2 Best of Both Worlds Security

We prove our protocols secure under the ideal-world, real-world paradigm. We
define fC as the ideal functionality that takes an input x from the players and
outputs C(x). The functionality fA

C takes an input x from the players, and a
vector A from the adversary. It also evaluates C on x, but it allows an adversary
to tamper with the evaluation by adding values on individual wires; the variable
A specifies the values that are added to each wire.

Definition 1. Let tp ≤ n be positive integers, let SD denote the statistical dis-
tance, and let 0 ≤ ε ≤ 1. We say that an n-party protocol π (tp, ε)-securely
realizes a functionality F if for every PPT real-world adversary A which cor-
rupts at most tp players, there exists a simulator S such that

SD(Realπ,A, IdealF,S) ≤ ε.

We naturally extend this definition to protocol in the g-hybrid model by replacing
Realπ,A above with Realπ,A,g. In this case we say that π (tp, ε)-securely realizes
F in the g-hybrid model.

Definition 2. Let n ≥ tp ≥ tr be positive integers and let 0 ≤ ε ≤ 1. We
say that an n-party protocol π (tr, tp, ε)-robustly realizes (fC , fA

C ) if it meets the
following two conditions.

1. Security. If tp > t ≥ tr then π (tp, ε)-securely realizes fA
C as per Definition 1.

This property does not guarantee that players receive outputs, because the
adversary can cause the protocol to abort in the real world.

2. Robustness. If tr > t then π (tp, ε)-securely realizes fC , and it is guaranteed
that the protocol will successfully terminate, with each honest player receiving
output. More formally, if less than tr players are corrupt, the output gener-
ated in the real world is the same that is produced by the functionality fC

in the ideal world where (i) each honest player Pi provides input xi to the
functionality, and (ii) the ideal functionality selects a default input for each
corrupted player that does not provide an input xi.

3 Degree Test

Our degree test protocol is an interactive proof between a single prover (dealer)
and multiple verifiers (players). The dealer sends a field element to each player,
and proves that these elements are consistent with a polynomial p of degree at
most d. We construct a proof where the prover can only convince a given verifier
with probability 2(−4s/n−tp−�). The aim is that at least n − tp − � verifiers will
not be convinced by a cheating prover. The protocol proceeds as follows. The
preprocessing functionality randomly samples a binary string of size 4s

n−tp−� ,
encodes it as secret ∈ F, and sends a portion of secret to each player. After
sharing the polynomial p, the players will interact with the dealer in a manner



346 D. Genkin et al.

that allows the dealer to learn this secret if and only if p is of degree d or
less. The dealer then proves that he learned secret by sending to each player
the portion of the binary string that they received during the preprocessing. If
some player does not receive the correct part of the secret that was given to him
during preprocessing, the player complains about the dealer.

In more detail, the preprocessing phase will generate a random degree-(n −
d − 1) polynomial v such that v(0) = 0. Additionally, the preprocessing phase
generates a random string, encodes it in F, and shares secret ∈ F using a
random degree-(n − 1) polynomial w (that is, w(0) = secret). Finally, the
individual bits of the binary string are distributed among the n participating
players (we assume a large enough field F to facilitate this). Upon receiving p(i)
from the dealer in the online phase, the player Pi computes z(i) ← p(i)·v(i)+w(i)
and sends it to the dealer. In case (p(1), · · · , p(n)) are not consistent with any
degree-d polynomial, the dealer cannot reconstruct the value secret since the
degree of z is larger than n − 1. As a result, the dealer would only be able to
break soundness with a small number of players. The remaining players will
complain, and conclude that the dealer is a cheater. On the other hand, if the
dealer shared a low degree polynomial, the dealer can reconstruct secret by
interpolating z(1), · · · , z(n), and can then use secret as a proof that indeed
(p(1), · · · , p(n)) define a degree-d polynomial. This can be done by sending each
Pi its portion of the binary string encoded as secret.

Attack on Shares by Corrupt Players. Even if the dealer gives shares
p(1), · · · , p(n) consistent with a low degree polynomial, it may be that corrupt
players would send back bad shares to prevent the dealer from reconstructing the
correct secret, or by refusing to send shares altogether. To solve this problem,
we allow the dealer to verify shares and eliminate players that send bad shares.

We allow the dealer to verify that Pi sent a share that equals p(i) ·v(i)+w(i)
by (1) having the preprocessing phase authenticate the shares v(i), w(i) that it
sends to each player Pi, (2) using the linearly homomorphic MAC from SPDZ,
and (3) by giving the verification keys to the dealer. When a dealer complains
about a player, the player will be eliminated and will no longer take part in any
future degree tests with that dealer.2 We use E to denote the set of eliminated
players.

Properties About the Set of Eliminated Players. We need certain guar-
antees about the set of eliminated players. First, if the dealer is honestly sharing
a low degree polynomial, then no honest player will complain about the dealer.
Second, if the dealer is malicious and does not share a low degree polynomial,
then a large number of honest players will eliminate themselves. Third, we must
ensure that every player has a consistent view of the set of eliminated players.
We satisfy this last property using a secure broadcast anytime a player is elim-
inated. If a large number of players are eliminated, then the dealer is replaced
2 If the protocol re-starts because the dealer is thrown out, the party will rejoin the

computation.



Best of Both Worlds in Secure Computation 347

and protocol restarts with a new dealer. We can safely remove the dealer in this
case, because, either the dealer is corrupt, or there are enough corrupt players
that we can give up on robustness.

Recovering from Eliminated Players. The fact that the dealer can eliminate
players creates a new problem: how does the dealer reconstruct secret when a
few players have been eliminated? Recall that secret is shared using a degree-n−
1 polynomial, and that eliminated players no longer provide shares to the dealer.
In order to replace the eliminated players, we have the non-eliminated players
send additional information that will allow the dealer to recover the missing
shares of z. A natural approach for this is to have each remaining player send
the dealer a share (generated during the preprocessing phase) of the eliminated
player’s share. While this solution works, it is too costly, as it introduces a
quadratic overhead in the number of players. This overhead stems from two
facts: first, a linear number of players could be eliminated, and second, for each
execution of the degree test, for each eliminated player, each non-eliminated
player would have to send one share to the dealer.

Reducing Recovery Overhead. We employ a couple of strategies to reduce
the communication required of the honest players when they help the dealer
to reconstruct the shares of eliminated players. First, we will reuse the same v
for each execution of the degree test. Now, when a player Pi is eliminated by
the dealer, each player will only need to send a share of vi to the dealer once,
ensuring that the dealer learns vi for all further executions of the degree test
protocol. Next, we notice that the dealer recovers secret from the shares of z
by performing Lagrange interpolation, which is a linear operation. That is, the
dealer computes secret =

∑n
i=1 αizi =

∑n
i=1 αi(p(i) ·vi +wi) where α1, · · · , αn

are the Lagrange interpolation coefficients. Rewriting the above equation,

secret =
n∑

i=1

αizi =
∑

Pi /∈E

αizi +
∑

Pi∈E

αizi =
∑

Pi /∈E

αizi +
∑

Pi∈E

αi(p(i) · vi + wi)

=
∑

Pi /∈E

αizi +
∑

Pi∈E

αip(i) · vi +
∑

Pi∈E

αiwi.

Since the dealer knows p(i) for all players, knows vi for all eliminated players,
and has the shares zi for all non-eliminated players, he only needs to learn
c̄ =

∑
i∈E αiwi. Thus, each non-eliminated player can locally compute a single

share of c̄, using a share of wi for each Pi ∈ E. Sending just this single share to
the dealer, instead of one share for every eliminated player, allows us to avoid
the linear overhead that arose in the naive approach previously suggested.

3.1 Formal Description of the Degree Test Protocol

In this section we formally present and analyze our degree test protocol. Let H
be the set of honest players and let E denote a global, shared variable, indicating



348 D. Genkin et al.

the set of eliminated players. We denote the inputs to the degree test protocol by
p(1), · · · , p(n). For some honest player, Pi, we let η denote the probability that
a malicious dealer wrongly convinces Pi that p is of degree less than or equal
to d. Finally, we denote the set of parties complaining about the dealer by C.
The ideal functionality, Fdt, is formally described in Fig. 1, and the degree test
protocol realizing this functionality is described in Fig. 2. Consider the following
theorem.

Fig. 1. Degree test functionality Fdt

Theorem 1. πdt securely realizes Fdt in the preprocessing-hybrid model.

In order to prove Theorem 1, we provide two simulators, one simulator for
the case when the dealer is honest, and a second simulator for the case when
the dealer is corrupt. In each case the simulator simply follows the description
of the protocol, determines if players or the dealer needs to complain, and adds
players to the set of eliminated players E that would be eliminated. We recall
that H denotes the set of honest players. E denotes the set of eliminated parties.
The point vi ∈ F is a share of a degree n − tp − � polynomial that evaluates to
zero at zero. The point wi ∈ F is a share of a polynomial that evaluates to a
random value secret. The share vi,j is a resharing of vi that will help the dealer
to reconstruct vi if Pi is eliminated.

Degree Test Simulation Honest Case. The simulator queries the ideal func-
tionality and receives p(i) for each Pi ∈ H̄.

1. The simulator simulates the preprocessing by following its description.
2. The simulator sends p(i) to each non-eliminated corrupt player Pi ∈ Ē ∪ H̄



Best of Both Worlds in Secure Computation 349

Fig. 2. Degree test πdt



350 D. Genkin et al.

3. The simulator await that corrupted non-eliminated player Pi ∈ Ē ∪ H̄ sends
(zi,m(zi)) and ai to the dealer.

4. The simulator computes k(zi) ← p(i) ·k(vi)+k(wi), assigns to S the subset of
corrupted non-eliminated players Pi who either did not send a zi with a valid
mac tag or who did not send an ai. All players in S are added to E. If any
players were added to E, he runs the player elimination simulation (below).

5. Send secretm·(i−1)+1,··· ,m·i to each non-eliminated corrupt playerPi

6. For each player Pi who complains about the dealer, the simulator sends
(bad proof complaint, i) to the functionality and then add Pi to E. The
simulator then runs the Player elimination simulation (below).

Honest Dealer Elimination Simulation. Whenever a player is eliminated,
we require that the simulator do the following. After a set S of players are added
to E, the simulator awaits (i, j, v′

j,i) from each non-eliminated corrupt player for
each Pj ∈ S. The, for each Pj ∈ S, the simulator tries to reconstruct vj from
the v′

j,i that come from non-eliminated corrupt players, and the vj,i that were
generated in the preprocessing for the honest players. If the simulator does not
reconstruct a valid share vj , the dealer broadcasts failure, and the full set of
players is added E. The simulation then halts.

Description of the Simulator When Dealer Is Corrupt

1. The simulator simulates the preprocessing by following its description.
2. The simulator await that the dealer send p(i) to each non-eliminated honest

player Pi.
3. The simulator computes zi ← p(i) ·vi +wi, ai ← ∑

Pj∈E αj ·wj,i (local shares
of

∑
Pj∈E αjwj), m(zi) ← p(i) ·m(vi)+m(wi) and sends (zi,m(zi)) and ai to

the dealer.
4. For each non-eliminated player Pi that the dealer complains about, the sim-

ulator send (bad proof complaint, i) to the functionality. The simulator exe-
cutes the player elimination simulation.

5. The simulator await secretm·(i−1)+1,··· ,m·i from the dealer for each honest
non-eliminated player Pi.

6. For each non-eliminated honest player Pi ∈ Ē ∪ H, if the dealer did not
send the same value of secret that would have been to Pi, the simulator
sends (bad proof complaint, i) to the functionality. The simulator executes
the player elimination simulation.

Corrupt Dealer Elimination Simulation. Whenever a player is eliminated
players we require that the simulator do the following. After a set S of players
are added to E, the simulator sends (i, j, v′

j,i) for each eliminated player Pj ∈ S
and non-eliminated honest player Pi. If the corrupt dealer broadcasts failure,
then E is set to be the set of all players. The simulation then halts.



Best of Both Worlds in Secure Computation 351

3.2 Properties of the Degree-Test Protocol

We already know that the degree test protocol securely realizes the degree test
functionality. Within the context of our main protocol, we want to show that
our degree test protocol has more features than what is directly provided by the
functionality. The first is that the online cost of the degree test is low, namely
that if we use the protocol many times, the overhead of the degree test per player
will be small. The second condition that we want is that if the dealer is honest,
and less than some threshold of players are dishonest, then in each execution of
the degree test, either it succeeds, or some malicious party is eliminated.

The third condition that we are interested in is that if a corrupt dealer cheats
by sharing a high degree polynomial, and does not complain about the shares
and tags given to him by honest players, then less than half of the honest player’s
will accept the secret. (Recall, if he does complain about some of the shares and
tags that he was given, then all parties are eliminated and the protocol re-starts
with a new dealer.)

Lemma 1. The total communication cost of running m executions of the degree
test with the same dealer is O(s · n · m + poly(n)) bits.

Proof. We enumerate over each item that is communicated and compute its
associated communication overhead. A player will broadcast a complaint about
the dealer at most once (O(n2)). The dealer will broadcast a complaint about a
player at most once. (O(n2)). Each player will send a constant number of field
elements to the dealer per execution of the degree test (O(s · n · m)). The dealer
will send a constant number of field elements to each player per execution of the
degree test (O(s · n · m)).

The communication complexity of all these items is O(s · n · m + poly(n)).
This completes the proof of this lemma.

Lemma 2. If the dealer is honest, and less than (n−tp−2�)
2 players are corrupt,

then both of the following conditions will be met (except with negligible probabil-
ity).

1. No honest player will be eliminated.
2. The degree test will succeed, or at least one corrupt player will be eliminated.

Proof. First, we show that an honest player will not be eliminated by an honest
dealer except with negligible probability. Since honest players always send correct
shares, the dealer would only eliminate an honest player if he reconstructs an
incorrect value for the secret in step 3.iii. This can only occur if the adversary
is able to successfully forge a mac tag in step 2.ii. Otherwise, the dealer would
complain about a corrupt player and the degree test would terminate. Since
forging a mac tag only succeeds with negligible probability, this completes the
first part of the proof.

Next we proceed to show that either the degree test will succeed, or at least
one corrupt player will be eliminated. If the dealer reconstructs the correct secret,
the dealer will send the correct part of the secret to each honest player in step



352 D. Genkin et al.

3.iii, and each honest player will accept the secret in step 4.i. This leaves only two
strategies for the adversary to prevent the degree test from succeeding: he can
either send bad shares, or not send shares at all. In either case, the dealer will
complain about corrupt players in step 3.i and the dealer will eliminate corrupt
players. This completes the second part of the proof.

Lemma 3. If less than tp players are corrupt and the following conditions all
hold, then more than n−tp−2�

2 honest players will be eliminated.

1. The dealer is malicious and does not complain about a player in step 3.i.
2. The degree of the polynomial p is greater than �.

Proof. First, we show that if all the above conditions hold then the dealer cannot
learn any information about the secret. Since by condition 2, the dealer shares
a polynomial p of degree higher than d, then the degree p · v is greater than n.
Since w was selected at random, and less than tp players are corrupt, then the
dealer cannot recover the secret from (p · v + w)(0).

By the first condition of the lemma, the dealer did not complain in step 3.i.
This means that the dealer, to convince an honest player that he is honest must
correctly guess the part of the secret given to that player. Since the probability
of correctly guessing the secret for a given player is 2− 4s

n−tp−� , we can finally
show that more than half the honest players will abort.

By combining the following two statements with the lemma below, we have
what we want: (1) the probability of correctly guessing a player’s secret is p = 1−
2−4s/(n−tp−�) and (2) the random variables associated to the dealer successfully
guessing players’ part of the secret are independent.

Lemma 4. Given s,m ∈ N, let X1, . . . , Xm be independant Bernoulli variables
with success probability p = 1 − 2−4s/m and let X =

∑m
i=1 Xi then

Pr
[
X < m

2

] ≤ 2−θ(s)

Proof. If m ≥ s, we can directly apply Chernoff’s bound to get this result. We
have that μ = m · (1 − 2−4s/m) and let δ = 1

2(1−2−4s/m)
. We note that δ ≥ 1

2 and
that μ · δ = m

2 and thus we have that

Pr
[
X ≤ m

2

]
= Pr [X < (1 − δ) · μ] ≤ e

−δ2μ
3 ≤ e− m

12 ∈ 2−θ(s)

This leaves only the case where m < s and we show that this also holds by
using the following combinatorial argument.

Pr
[
X < m

2

]
=

m/2∑

i=0

(
m

i

)
(
1 − 2−4s/m

)i(2−4s/m
)m−i ≤

m/2∑

i=0

(
m

i

)
(
2−4s/m

)m−i

≤
m/2∑

i=0

2m
(
2−4s/m

)m/2 ≤ 2−2s+m+log m ∈ 2−θ(s)



Best of Both Worlds in Secure Computation 353

4 Additively-Secure Protocol

We now construct a protocol which is secure in the preprocessing-hybrid model,
aside from allowing additive attacks. (Recall, these are then handled using the
compiler of Genkin et al. [10].) The players will randomly elect (without repe-
tition) a dealer that will be used to run the computation. If at some point too
many players claim the dealer is cheating, the protocol will be restarted with a
new dealer. During the evaluation phases (routing, multiplication and addition),
the players will add, multiply and subtract shares locally, and they will also
send and receive shares to and from the dealer. The dealer will be responsible
for receiving, reconstructing values and resharing them. In particular, the dealer
will be responsible for reconstructing values when less than tr shares are cor-
rupted. This will be done by having the dealer apply Reed-Solomon decoding to
the shares he receives. If at any point, the dealer fails to reconstruct the secret,
the dealer will eliminate himself and the protocol will be restarted with a new
dealer. The protocol employs the degree testing protocol to ensure that when
the dealer reshares values, he cannot use a polynomial of degree greater than �.
Since degree testing involves eliminating players, the protocol will need to keep
track of who has been eliminated.

At the beginning, the players will randomly elect a dealer. While that dealer
is active, each party will keep track of a set of eliminated players denoted by the
variable E. Players can eliminate themselves if they detect malicious behavior,
or they can be eliminated, either by an honest dealer for acting maliciously, or
by a malicious dealer, arbitrarily. If the set of eliminated players grows too big,
all parties kick out the dealer and rejoin the protocol with a new dealer (cho-
sen without replacement). To simplify exposition, we assume that the set E is a
global variable, and that all honest parties agree on its members. In practice, this
can be achieved using a broadcast channel, without impacting the claimed com-
munication cost. Our main protocol consists of four phases: the preprocessing
phase, the input phase, the evaluation phase, and the output phase. The input,
evaluation, and output phase will all rely on values generated by the prepro-
cessing. We will not describe the preprocessing phase in its entirety but rather
describe which values each of the other phases need from the preprocessing.

Throughout the computation, parties hold shares of wire values, encoded
using polynomials of degree t = tp + �. This ensures that tp parties cannot learn
anything about these values. Because we need to multiply these polynomials by
degree � polynomials that encode masked wire values, the degree of the polyno-
mials becomes tp + 2� during the evaluation. This allows us to error-correct in
the presence of less than n−tp−2�

2 corruptions, maintaining robustness as claimed
in our theorem. When we do not specify the degree of a sharing, we mean that
the polynomial has degree tp + � (Figs. 3 and 4).

Input Phase. In the input phase, a sender provides his input x, and the other
parties receive shares of that input, which can then be used in the evaluation
phase. The preprocessing functionality randomly samples r ∈ F

�, gives the value



354 D. Genkin et al.

Fig. 3. Preprocessing

to the sender, and provides [r] to the other players. The sender broadcasts y =
x − r. The players then compute [x] = [r]+y. Due to a lack of space, we provide
the full description in the full version of the paper.

Output Phase. In the output phase, parties take shares [x] of the output
and reconstruct x. We have to limit the adversary to an additive attack on
the revealed output, ensuring that the adversary cannot arbitrarily choose the
output. The preprocessing functionality creates two shares of a value r ∈ F

�,
once using packed Shamir secret sharing resulting, in [r], and once using a VSS,
resulting in [[r]]. The players will use [r] and [[r]] to mask and then unmask
x. That is, they locally, homomorphically add r to the output by adding their
shares of [x] and [r], and then reveal r by opening the VSS sharing. Because
VSS is binding, the adversary can only modify the value before it is unmasked.
As such, the only attack that can be done is an additive attack. Due to a lack
of space, we provide the full description in the full version of our paper.

Multiplication. The multiplication is the most complex operation, the goal is
to take shares [x], [y] and produce shares of [x · y]. To do so, we will use beaver
triple [a], [b], [a · b], and a sharing of a random r ∈ F

�, [r]. First the players will
send [x − a], [y − b]. The dealer will reconstructs values x−a, y−b, (x−a)(y−b),
and re-shares them using degree � polynomials. The players verify that the shares
given to them by the dealer are of degree �, using the degree test protocol. The
players will then compute [u] = [x − a]� · [y] + [y − b]� · [x] + [r] and send the
shares to the dealer. The dealer re-shares u using a degree � polynomial, and
the players again test that the degree is no more than �. Finally, the players will
compute [x · y] = [u] − [a · b] − [r].



Best of Both Worlds in Secure Computation 355

Fig. 4. Main protocol



356 D. Genkin et al.

Routing. The input is [x] and the output should be [ρ(x)]. The preprocessing
functionality generates shares [r], [r′] such that ρ(r) = r′. Then when provided
[x], the players will send [x + r] to the dealer who will reshare [ρ(x + r)]. The
players will then verify that the dealer reshared x + r using a low degree poly-
nomial via the degree test. The players will then compute [x] = [ρ(x + r)]− [r′].
Due to a lack of space, we provide the full description in the full version of our
paper.

Formally, we prove that our protocol realizes two things. First, we show that
the protocol securely realizes fC with low expected communication overhead if
less than tr players are corrupt. Second, we prove that our protocol securely real-
izes fA

C (the functionality that allows the adversary to tamper with each wire
individually) if less than tp players are corrupt. Then, by running our protocol
on a circuit secure against tampering on individual wires, our protocol securely
realizes fC . The compilers of [10,11] allow us to compile any circuit into an
equivalent circuit that is secure against individual tampering with only a con-
stant blowup in circuit size. As a result, it is easy to see that by employing our
protocol with the results of [10,11], we achieve the desired security properties as
well as the desired level of efficiency (Fig. 5).

Theorem 2. For any number of players n, privacy threshold n ≥ tp ≥ n
2 , pack-

ing parameter � <
n−tp

2 , πmpc (tp, O(1/|F|))-securely realizes fA
C with abort in

the Fpre-hybrid model.

Theorem 3. For any number of players n, privacy threshold n ≥ tp ≥ n
2 ,

robustness threshold tr ≤ n−tp−2�
2 , � <

n−tp

2 . πmpc (tp, tr, O(1/|F|))-securely
realizes (fC , fA

C ) for arithmetic circuit C with depth d in the Fpre-hybrid model,
with full security, and expected communication overhead

O
(|C| log(|C|) · n

�
+ d2 · n + poly(n, s)

)
.

Due to space constraint, we only provide a short summary of how we prove
our main protocol secure. A more complete argument appears in the full version
of the paper.

Security Under Honest Dealer. Since our protocol is in a hybrid-model,
the simulator can simulate a run of the preprocessing functionality and store the
generated values. This allows the simulator to extract the adversary’s inputs. The
simulator runs the honest parties with dummy inputs and determines whether
the adversary causes the honest dealer to abort, or causes an additive attack.
We show that if the adversary sends bad shares to the dealer, then the simulator
can determine, based solely on these shares, which of these three things happen:
(1) the dealer aborts because he failed to reconstruct a secret, (2) the bad shares
can be ignored (which is the case if enough players are honest), or (3) the attack
by the adversary can be mapped to an additive attack. We prove the previous
statement by using the fact that Shamir secret sharing is a linear error correcting
code, and from the following fact about such codes.



Best of Both Worlds in Secure Computation 357

Fig. 5. Multiplication

Let (encode, decode) be a linear error-correcting, let c = encode(m) be an
encoding of m, and let be μ be an error vector. By linearity of the error-correcting
code, we have that decode(encode(m) + μ) = decode(encode(m)) + decode(μ).
In particular, this implies that decode(encode(m) + μ) = ⊥ if and only if



358 D. Genkin et al.

decode(μ) = ⊥. The error vector μ in this case represents the difference between
the shares the adversary should have sent, versus the shares it actually sent.

Security Under Malicious Dealer. At a high level, the simulation of a mali-
cious dealer is similar to that of an honest dealer. The main difference is that this
simulator must ensure that the dealer does not share a polynomial of too high
a degree. This is easily detected by inspecting the shares sent to the degree-test
functionality, and the dealer can then be replaced. If the dealer’s polynomial is
of the appropriate degree, the simulator can compute the value of an additive
attack by reconstructing the shared secret and comparing it with the secret that
the dealer should have sent.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grants No. #1564088, #1111599, #1514261, #1652259
and #1563722. Daniel Genkin was also supported by financial assistance award
70NANB15H328 from the U.S. Department of Commerce, NIST, the 2017–2018 Roth-
schild Postdoctoral Fellowship, and DARPA Contract #FA8650-16-C-7622.

References

1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

2. Damg̊ard, I., Ishai, Y., Krøigaard, M.: Perfectly secure multiparty computation and
the computational overhead of cryptography. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 445–465. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 23

3. Damg̊ard, I., Ishai, Y., Krøigaard, M., Nielsen, J.B., Smith, A.: Scalable mul-
tiparty computation with nearly optimal work and resilience. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 241–261. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85174-5 14

4. Damg̊ard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical
covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In:
Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp.
1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6 1

5. Damg̊ard, I., Nielsen, J.B.: Scalable and unconditionally secure multiparty com-
putation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 572–590.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5 32

6. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

7. Damg̊ard, I., Zakarias, S.: Constant-overhead secure computation of Boolean cir-
cuits using preprocessing. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp.
621–641. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-
2 35

https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-642-13190-5_23
https://doi.org/10.1007/978-3-540-85174-5_14
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-540-74143-5_32
https://doi.org/10.1007/978-3-642-32009-5_38
https://doi.org/10.1007/978-3-642-36594-2_35
https://doi.org/10.1007/978-3-642-36594-2_35


Best of Both Worlds in Secure Computation 359

8. Dowsley, R., Müller-Quade, J., Otsuka, A., Hanaoka, G., Imai, H., Nascimento,
A.C.A.: Universally composable and statistically secure verifiable secret sharing
scheme based on pre-distributed data. IEICE Trans. 94–A(2), 725–734 (2011)

9. Franklin, M.K., Yung, M.: Communication complexity of secure computation
(extended abstract). In: Proceedings of the 24th Annual ACM Symposium on
Theory of Computing, pp. 699–710 (1992)

10. Genkin, D., Ishai, Y., Polychroniadou, A.: Efficient multi-party computation: from
passive to active security via secure SIMD circuits. In: Gennaro, R., Robshaw, M.
(eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 721–741. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-48000-7 35

11. Genkin, D., Ishai, Y., Prabhakaran, M., Sahai, A., Tromer, E.: Circuits resilient
to additive attacks with applications to secure computation. In: Symposium on
Theory of Computing, STOC 2014, pp. 495–504 (2014)

12. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: Efficient MPC from syndrome
decoding (or: Honey, I shrunk the keys). IACR Cryptology ePrint Archive 2018:208
(2018)

13. Ishai, Y., Katz, J., Kushilevitz, E., Lindell, Y., Petrank, E.: On achieving the
“best of both worlds” in secure multiparty computation. SIAM J. Comput. 40(1),
122–141 (2011)

14. Ishai, Y., Kushilevitz, E., Prabhakaran, M., Sahai, A., Yu, C.-H.: Secure protocol
transformations. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9815, pp. 430–458. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53008-5 15

15. Katz, J.: On achieving the “best of both worlds” in secure multiparty computation.
In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing,
pp. 11–20 (2007)

16. Nielsen, J.B., Ranellucci, S.: On the computational overhead of MPC with dishon-
est majority. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 369–395. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7 13

https://doi.org/10.1007/978-3-662-48000-7_35
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-662-53008-5_15
https://doi.org/10.1007/978-3-662-54388-7_13


3PC ORAM with Low Latency,
Low Bandwidth, and Fast Batch Retrieval

Stanislaw Jarecki(B) and Boyang Wei

University of California, Irvine, USA
{sjarecki,boyanw1}@uci.edu

Abstract. Multi-Party Computation of Oblivious RAM (MPC ORAM)
implements secret-shared random access memory in a way that protects
access pattern privacy against a threshold of corruptions. MPC ORAM
enables secure computation of any RAM program on large data held by
different entities, e.g. MPC processing of database queries on a secret-
shared database. MPC ORAM can be constructed by any (client-server)
ORAM, but there is an efficiency gap between known MPC ORAM’s
and ORAM’s. Current asymptotically best MPC ORAM is implied by an
“MPC friendly” variant of Path-ORAM [26] called Circuit-ORAM, due
to Wang et al [27]. However, using garbled circuit for Circuit-ORAM’s
client implies MPC ORAM which matches Path-ORAM in rounds but
increases bandwidth by Ω(κ) factor, while using GMW or BGW proto-
cols implies MPC ORAM which matches Path-ORAM in bandwidth,
but increases round complexity by Ω(log n log log n) factor, where κ is a
security parameter and n is memory size.

In this paper we bridge the gap between MPC ORAM and client-
server ORAM by showing a specialized 3PC ORAM protocol, i.e. MPC
ORAM for 3 parties tolerating 1 fault, which uses only symmetric ciphers
and asymptotically matches client-server Path-ORAM in round complex-
ity and for large records also in bandwidth.

Our 3PC ORAM also allows for fast pipelined processing: With post-
poned clean-up it processes b = O(log n) accesses in O(b + log n) rounds
with O(D + poly(log n)) bandwidth per item, where D is record size.

1 Introduction

MPC ORAM. Multi-Party Computation Oblivious Random Access Memory
(MPC ORAM), or Secure-Computation ORAM (SC ORAM), is a protocol which
lets m parties implement access to a secret-shared memory in such a way that
both memory records and the accessed locations remain hidden, and this secu-
rity guarantee holds as long as no more than t out of m parties are corrupted.
Applications of MPC ORAM stem from the fact that it can implement random
memory access subprocedure within secure computation of any RAM program.
Classic approaches to secure computation [3,8,17,29] express computation as

The full version of this paper appears in Cryptology ePrint Archive [21].

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 360–378, 2018.
https://doi.org/10.1007/978-3-319-93387-0_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_19&domain=pdf


3PC ORAM with Low Latency, Low Bandwidth, and Fast Batch Retrieval 361

a Boolean or arithmetic circuit, thus their size, and consequently efficiency,
is inherently lower-bounded by the size of their inputs. In practice this elim-
inates the possibility of secure computation involving large data, including such
fundamental computing functionality as search and information retrieval. MPC
ORAM makes such computation feasible because it generalizes secure compu-
tation from circuits to RAM programs: All RAM program instruction can be
implemented using circuit-based MPC, since they involves only local variables,
while access to (large) memory can be implemented with MPC ORAM.

As an application of MPC of RAM program, and hence of MPC ORAM, con-
sider an MPC Database, i.e. an MPC implementation of processing of database
queries over a secret-shared database. A typical database implementation would
hash a searched keyword to determine an address of a hash table page whose
content is then matched against the queried keyword. Standard MPC techniques
can implement the hashing step, but the retrieval of the hash page is a random
access to a large memory. Implementing this RAM access via garbled circuits
requires Ω(nDκ) bandwidth, where n is the number of records, D is the record
size, and κ is the cryptographic security parameter, which makes such compu-
tation unrealistic even for 1MB databases. By contrast, using MPC ORAM can
cost O(poly(log n)Dκ) and hence, in principle, can scale to large data.

Inefficiency Gap in MPC ORAM Constructions. The general applicabil-
ity of MPC ORAM to MPC of any RAM program motivates searching for effi-
cient MPC ORAM realizations. As pointed out in [10,23], any ORAM with its
client implemented with an MPC protocol yields MPC ORAM. This motivates
searching for an ORAM with an MPC-friendly client, i.e. a client which can be
efficiently computed using MPC techniques [16,19,22,27,28]. Indeed, the recent
Circuit-ORAM proposal of Wang et al. [27] exhibits a variant of Path-ORAM
of Stefanov et al. [26] whose client has a Boolean circuit of an asymptotically
optimal size, i.e. a constant factor of the data which Path-ORAM client retrieves
from the server, and which forms an input to its computation.

Still, in spite of the circuit-size optimality of Circuit-ORAM,1 applying
generic honest-but-curious MPC protocols to it yields MPC ORAM solutions
which are two orders of magnitude more expensive than Path-ORAM:2 Using
Yao’s garbled circuit [29] on Circuit-ORAM yields a 2PC ORAM of [27] which
has (asymptotically) the same round complexity as Path-ORAM, but its band-
width, both online and in offline precomputation, is larger by Ω(κ) factor. Alter-
natively, applying GMW [17] or BGW [3] to the Boolean circuit for Circuit-
ORAM yields 2PC or MPC ORAM which asymptotic preserves Path-ORAM
bandwidth, but its round complexity is larger by Ω(log n log log n) factor (com-
pare footnote 3).

1 In this paper we call the client-server ORAM implicit in [27] “Circuit-ORAM”, and
its garbled-circuit 2PC implementation, also shown in [27], “2PC Circuit-ORAM”.

2 We use Path-ORAM as a client-server baseline for these comparisons because Path-
ORAM has the most “MPC-friendly” client, hence most MPC ORAM’s emulate
securely either Path-ORAM or its predecessor, Binary-Tree ORAM [25]. (The recent
2PC ORAM of [12] is an exception, discussed below.).



362 S. Jarecki and B. Wei

Our Contribution: 3PC ORAM with Low Latency and Bandwidth
We show that the gap between MPC ORAM and client-server ORAM can be
bridged by exhibiting a 3PC ORAM, i.e. MPC for m = 3 servers with t = 1
fault, which uses customized, i.e. non-generic, 3PC protocols and asymptotically
matches Path-ORAM in rounds, and, for records size D = Ω(κlog2n), band-
width. Specifically, our 3PC ORAM securely emulates the Circuit-ORAM client
in 3PC setting, using O(log n) rounds and O(κlog3n + Dlog n) bandwidth (see
Fig. 1). We note that the 3PC setting of (t,m) = (1, 3) gives weaker security than
2PC setting of (t,m) = (1, 2), but it was shown to enable lower-cost solutions to
many secure computation problems compared to both 2PC or general (t,m)-
MPC (e.g. [1,5]) and for that reason it’s often chosen in secure computation
implementations (e.g. [4,6]). Here we show that 3PC benefits extend to MPC
ORAM.

rounds bandwidth

Path-ORAM (client-serverbaseline ) [26] O(log n) O(log3n + Dlog n)

2PC Circuit-ORAM [27]+[29] O(log n) O(κlog3n + κDlog n)
2PC SQRT-ORAM [30] O(log n) O(κD

√
nlog3n)

2PC FLORAM [12] O(log n) O(
√

κDnlog n)

generic 3PC Circ.-ORAM [27]+[1] O(log2n log log n) O(log3n + Dlog n)
3PC ORAM of [14] O(log n) O(κλlog3n + λDlog n)

Our 3PC Circuit-ORAM O(log n) O(κlog3n + Dlog n)

Fig. 1. Round and bandwidth comparisons, for n: array size, D: record size, κ: cryp-
tographic security parameter, λ: statistical security parameter.

We show the benefits of our 3PC ORAM contrasted with previous 2PC
and 3PC ORAM approaches in Fig. 1. In the 3PC setting we include a generic
3PC Circuit-ORAM, which results from implementing Circuit-ORAM with the
generic 3PC protocol of Araki et al. [1], which is the most efficient 3PC instan-
tiation we know of either the BGW or the GMW framework.3 The second 3PC
ORAM we compare to is Faber et al. [14], which uses non-generic 3PC tech-
niques, like we do, but it emulates in 3PC with a less efficient Binary-Tree ORAM
variant than Circuit-ORAM, yielding 3PC ORAM with bandwidth worse than
ours by Ω(λ) factor. Regarding 2PC ORAM, several 2PC ORAM’s based on
Binary-Tree ORAM variants were given prior to Circuit-ORAM [16,19,22,28],
but we omit them from Fig. 1 because Circuit-ORAM outperforms them [27].
We include two recent alternative approaches, 2PC ORAM of [30] based on
Square-Root ORAM of [18], and 2PC FLORAM of [12] based on the Distributed
Point Function (DPF) of [20]. However, both of these 2PC ORAM’s use O(

√
n)

3 Using the BGW-style MPC over an arithmetic circuit for Circuit-ORAM, as was
done by Keller and Scholl for another Path-ORAM variant [22], should also yield a
bandwidth-competitive 3PC ORAM, but with round complexity at least Ω(log2n).



3PC ORAM with Low Latency, Low Bandwidth, and Fast Batch Retrieval 363

bandwidth, and [12] also uses O(n) local computation, which makes them not
scale well for large n’s.4 Restricting the comparison to poly(log n) MPC ORAM,
our 3PC ORAM offers the following trade-offs:

(1) Compared to the generic 3PC Circuit-ORAM [1] applied to Circuit-
ORAM, we increase bandwidth from O(log3n + Dlog n) to O(κlog3n +Dlog n)
but reduce round complexity from O(log2n log log n) to O(log n);
(2) Compared to the generic garbled circuit 2PC [29] applied to Circuit-ORAM,
we weaken the security model, from (t,m) = (1, 2) to (t,m) = (1, 3), but reduce
bandwidth from O(κlog3n +κDlog n) to O(κlog3n + Dlog n).

Thus for medium-sized records, D = Ω(κlog2n), our 3PC ORAM asymptot-
ically matches client-server Path-ORAM in all aspects, and beats 2PC Circuit-
ORAM by Ω(κ) factor in bandwidth, without dramatic increase in round com-
plexity incurred using generic 3PC techniques. In concrete terms, our round com-
plexity is 50x lower than the generic 3PC Circuit-ORAM,5 and, for D > 1 KB,
our bandwidth is also >50x lower than 2PC Circuit-ORAM. Our protocol is
also competitive for small record sizes, e.g. D = 4B: First, our bandwidth is
only about 2x larger than the generic 3PC Circuit-ORAM; Second, our band-
width is lower than the 2PC Circuit-ORAM by a factor between 10x and 20x
for 20≤ log n ≤ 30.

Fast System Response and Batch Retrieval. Another benefit of our 3PC
ORAM is a fast system response, i.e. the time we call a Retrieval Phase, from
an access request to the retrieval of the record. In fact, our protocol supports
fast retrieval of a batch of requests, because the expensive post-processing of
each access (i.e. the Circuit-ORAM eviction procedure) can be postponed for
a batch of requests, allowing all of them to be processed at a smaller cost.
Low-bandwidth batch retrieval with postponed eviction was recently shown for
client-server Path-ORAM variants [11,24] (see also [15]), and our protocol allows
MPC ORAM to match this property in the 3PC setting.

Specifically, our protocol processes b = O(log n) requests in 3b + 3h rounds,
using 3D +O(log2n log log n) bandwidth per record, and to the best of our
knowledge no other MPC ORAM allows batch-processing with such costs. After
retrieving b requests the protocol must perform all evictions, using 6b rounds and
O(b(κlog3n+Dlog n)) total bandwidth, but this can be postponed for any batch
size that benefits the higher-level MPC application. Concretely, for log n ≤ 30,
the per-record bandwidth for b≤ 4log n is only ≤ 3D + 10 KB.

Brief Overview of our 3PC ORAM. We sketch the main ideas
behind our 3PC protocol that emulates Circuit-ORAM ORAM. Observe that
4 2PC ORAM cost of [12] has stash linear scan O(Tκlog n) and amortized re-init

O(nD/T ). Picking T = O(
√

nD/κlog n) we get O(
√

κDnlog n). In [12] this is ren-
dered as O(

√
n) overhead, assuming D = Ω(log n) and omitting κ. [12] also show

O(1)-round 2PC ORAM, but at the price of increased bandwidth and computation.
5 We estimate that the circuit depth of the Circuit-ORAM client, and hence the round

complexity of the generic 3PC Circuit-ORAM, is > 1000 even for n = 220, compared
to ≈15 rounds in our 3PC ORAM and ≈8 in the client-server Path-ORAM.



364 S. Jarecki and B. Wei

Circuit-ORAM client, like a client in any Binary-Tree ORAM variant, performs
the following steps: (1) locate the searched record in the retrieved tree path, (2)
post-process that record (free-up its current location, update its labels, and add
the modified record to the path root), (3) determine the eviction map, i.e. the
permutation on positions in the retrieved path according to which the records
will be moved in eviction, and (4) move the records on the path according to
the eviction map. The main design principle in our 3PC emulation of Circuit-
ORAM is to implement steps (1), (2), and (4) using customized asymptotically
bandwidth-optimal and constant-round protocols (we explain some of the chal-
lenges involved in Sect. 2), and leave the eviction map computation step as in
2PC Circuit-ORAM, implemented with generic constant-round secure compu-
tation, namely garbled circuits. Circuit-ORAM computes the eviction map via
data-dependent scans, which we do not know how to implement in constant
rounds without the garbled circuit overhead. However, computation of the evic-
tion map involves only on metadata, and is independent of record payloads.
Hence even though using garbled circuits in this step takes O(κ) bandwidth per
input bit, this is upper-bounded by the cost of bandwidth-optimal realization of
the data movement step (4) already for D ≈ 140B.

Secondly, we utilize the 3PC setting in the retrieval phase, to keep its band-
width especially low, namely O(D + log2n log log n). The key ingredient is a 3-
party Secret-Shared PIR (SS-PIR) gadget, which computes a secret-sharing of
record M[N] given a secret-sharing of array M and of address N. We construct SS-
PIR from any 2-server PIR [13] whose servers’ responses form an xor-sharing of
the retrieved record, which is the case for many 2-PIR schemes [2,9,20]. Another
component is a one-round bandwidth-optimal compiler from 3PC SS-PIR to 3PC
Keyword SS-PIR, which retrieves shared value given a sharing of keyword and
of (keyword,value) list. With a careful design we use only three rounds for the
retrieval and post-processing steps, which allows pipelined processing of a batch
of accesses using only three rounds per tree.

Roadmap. We overview the technical challenges of our construction in Sect. 2.
We present our 3PC ORAM protocol in Sect. 3, argue its security in Sect. 4,
and discuss our prototype performance in Sect. 5. For lack of space, all special-
ized sub-protocols our protocol requires are deferred to [21], Appendix A. The
full security argument, the specification of garbled circuits we use, and further
prototype performance data, are all included in [21], Appendices B-E.

2 Technical Overview

Overview of Path ORAM [26]. Our 3PC Circuit-ORAM is a 3PC secure
computation of Circuit-ORAM of [27] (see footnote 1), which is a variant of
Path-ORAM of Shi et al. [26]. We thus start by recalling Path-ORAM of [26],
casting it in terms which are convenient in our context. Let M be an array of n
records of size D each. Server S keeps a binary tree of depth log n, denoted tree,
shown in Fig. 2, where each node is a bucket of a small constant size w, except



3PC ORAM with Low Latency, Low Bandwidth, and Fast Batch Retrieval 365

Fig. 2. Path ORAM (final) tree

Fig. 3. Path ORAM recursive access

the root bucket (a.k.a. a stash) which has size s= O(log n). Each tree bucket
is a list of tuples, which are records with four fields, fb, lb, adr, and data. For
each address N ∈ {0,1}log n, record M[N] is stored in a unique tuple T in tree
s.t. T.(fb, lb, adr, data) = (1,L,N,M[N]) where fb is a full/empty tuple status bit
and L is a label which defines a tree leaf assigned at random to address N.

Data-structure tree satisfies an invariant that a tuple with label L lies in
a bucket on the path from the root to leaf L, denoted tree.path(L). To access
address N, client C uses a (recursive) position map PM : N→ L (see below) to
find leaf L corresponding to N, sends L to S to retrieve path = tree.path(L),
searches path for T= (1,L,N,M[N]) with fields (fb, adr) matching (1,N), assigns
new random leaf L′ to N, adds a modified tuple T′ = (1,L′,N,M[N]) to the root
bucket in path (In case of write access C also replaces M[N] in T′ with a new
entry), and erase old T from path by flipping T.fb to 0. Finally, to avoid overflow,
C evicts tuples in path as far down as possible without breaking the invariant or
overflowing any bucket.

Position map PM : N→ L is stored using the same data-structure, with each
tuple storing labels corresponding to a batch of 2τ consecutive addresses, for
some constant τ . Since such position map has only 2log n/2τ = 2log n−τ entries,
this recursion results in h = (log n/τ)+ 1 trees tree0, , .., treeh−1 which work as
follows (see Fig. 3): Divide N into τ -bit blocks N1, ...,Nh−1. The top-level tree,
treeh−1 contains the records of M as described above, shown in Fig. 2, while for



366 S. Jarecki and B. Wei

i < h−1, treei is a binary tree of depth di = iτ which implements position map
PMi that matches address prefix N[1,...,i+1] = N1|...|Ni+1 to leaf Li+1 assigned to
this prefix in treei+1. Access algorithm ORAM.Access traverses this data-structure
by sequentially retrieving the labels assigned to each prefix of the searched-for
address, using an algorithm we denote ORAM.ML For i from 0 to h−1, algorithm
ORAM.ML retrieves Li+1 = PMi(N1|...|Ni+1) from treei using the following steps:
(1) it identifies path path = treei.path(Li) in treei using label Li, (2) it identifies
tuple T in path s.t. T.adr = N1|...|Ni, and (3) it returns Li+1 = T.data[Ni+1].

Circuit-ORAM vs. Path-ORAM. Circuit-ORAM (see footnote 1) follows the
same algorithm as Path-ORAM except (1) the eviction procedure is restricted in
that it moves only selected tuples down the path in path, as we discuss further
below; and (2) it performs the eviction on two paths in each tree per access. Our
3PC emulation of Circuit-ORAM also runs twice per each tree per access, but
since the second execution is limited to eviction, for simplicity of presentation
we omit it in all discussion below, except when we report performance data.

Top-Level Design of 3PC Circuit-ORAM. The client algorithm in all vari-
ants of Binary-Tree ORAM, which includes Path-ORAM and Circuit-ORAM,
consists of the following phases:

1. Retrieval, which given path = tree.path(L) and address prefix N, locates tuple
T = (1,L,N, data) in path and retrieves next-level label (or record) in data;

2. Post-Process, which removes T from path, injects new labels into T, and re-
inserts it in the root (=stash);

3. Eviction, which can be divided into two sub-steps:
(a) Eviction Logic: An eviction map EM is computed, by function denoted

Route, on input label L and the metadata fields (fb, lb) of tuples in path,
(b) Data Movement: Permute tuples in path according to map EM.

Our 3PC ORAM is a secure emulation of the above procedure, with the Evic-
tion Logic function Route instantiated as in Circuit-ORAM, and it performs all
the above steps on the sharings of inputs tree and N, given label L as a public
input known to all parties. With the exception of the next-level label recovered
in Retrieval, all other variables remain secret-shared. Our implementation of the
above steps resembles the 3PC ORAM emulation of Binary-Tree ORAM by [14]
in that we use garbled circuit for Eviction Logic, and specialized 3PC proto-
cols for Retrieval, Post-Process, and Data Movement. However, our implemen-
tations are different from [14]: First, to enable low-bandwidth batch processing
of retrieval we use different sharings and protocols in Retrieval and Post-Process.
Second, to securely “glue” Eviction Logic and Data Movement we need to mask
mapping EM computed by Eviction Logic and implement Data Movement given
this masked mapping. We explain both points in more detail below.

Low-Bandwidth 3PC Retrieval. The Retrieval phase realizes a Keyword
Secret-Shared PIR (Kw-SS-PIR) functionality: The parties hold a sharing of an
array of (keyword, value) pairs, and a sharing of a searched-for keyword, and
the protocol must output a sharing of the value in the (keyword, value) pair



3PC ORAM with Low Latency, Low Bandwidth, and Fast Batch Retrieval 367

that contains the matching keyword. In our case the address prefix N[1,i] is the
searched-for keyword and path is the array of the (keyword, value) pairs where
keywords are address fields adr and values are payload fields data.

The 3PC implementation of Retrieval in [14] has O(�D) bandwidth where
�= O(log n) is the number of tuples in path, and here we reduce it to
3D +O(� log �) as follows: First, we re-use the Keyword Search protocol KSearch
of [14] to create a secret-sharing of index j of a location of the keyword-matching
tuple in path. This subprotocol reduces the problem to finding an index where
a secret-shared array of length � contains an all-zero string, which has Θ(� log �)
communication complexity. Our KSearch implementation has 2�(c + log �) band-
width where 2−c is the probability of having to re-run KSearch because of colli-
sions in � pairs of (c + log �)-bit hash values. The overall bandwidth is optimal
for c≈ log log �, but we report performance numbers for c= 20.

Secondly, we use a Secret-Shared PIR (SS-PIR) protocol, which creates a
fresh sharing of the j-th record given the shared array and the shared index j.
We implement SS-PIR in two rounds from any 2-server PIR [13] whose servers’
PIR responses form an xor-sharing of the retrieved record. Many 2-PIR’s have
this property, e.g. [2,9,20], but we exemplify this generic construction with the
simplest form of 2-server PIR of Chor et al. [9] which has 3� + 3D bandwidth.
This is not optimal in �, but in our case �≤ 150+ b where b is the number
of accesses with postponed eviction, the optimized version of SS-PIR sends
only ≈�+3D bits on-line, and KSearch already sends O(� log �) bits. Our generic
2-PIR to 3PC-SS-PIR compiler is simple (a variant of it appeared in [20]) but
the 3-round 3PC Kw-SS-PIR protocol is to the best of our knowledge novel.

Fig. 4. Randomization of circuit ORAM’s bucket map

Efficient 3PC Circuit-ORAM Eviction. In Eviction we use a simple Data
Movement protocol, with 2 round and ≈ 2|path| bandwidth. With three parties
denoted as (C,D,E), our protocol creates a two-party (C,E)-sharing of path′ =
EM(path) from a (C,E)-sharing of path if party D holds eviction map EM in the



368 S. Jarecki and B. Wei

clear. Naively outputting EM = Route(path) to party D is insecure, as eviction
map is correlated with the ORAM access pattern, so the question is whether EM
can be masked by some randomizing permutation known by C and E. [14] had
an easy solution for its binary tree ORAM variant because its algorithm Route

outputs a regular EM, that buckets on every except the last level of the retrieved
path always move two tuples down to the next level, so all [14] needed to do is to
randomly permute tuples on each bucket level of path, and the resulting new EM′

on the permuted path leaks no information on EM. By contrast, Circuit-ORAM
eviction map is non-regular (see Fig. 4): Its bucket level map Φ of EM can move a
tuple by variable distance and can leave some buckets untouched, both of which
are correlated with the density of tuples in path, and thus with ORAM access
pattern.

Thus our goal is to transform the underlying Circuit-ORAM eviction map
EM = (Φ, t) into a map whose distribution does not depend on the data
(Φ describes the bucket-level movement, while t is an array containing one tuple
index from each bucket that will be moved). We do so in two steps. First, we add
an extra empty tuple to each bucket and we modify Circuit-ORAM algorithm
Route to expand function Φ : Zd→Zd ∪ {⊥} into a cyclic permutation σ on Zd

(d is the depth of path, Zd is the set {0, ..., d − 1}), by adding spurious edges to
Φ in the deterministic way illustrated in Fig. 4. Second, we apply two types of
masks to the resulting output (σ, t) of Route, namely a random permutation π
on Zd and two arrays (δ, ρ), each of which contains a random tuple index in each
bucket. Our Eviction Logic protocol will use (π, δ, ρ) to mask (σ, t) by computing
(σ◦, t◦) s.t. σ◦ = π ·σ ·π−1 (permutation composition) and t◦ = ρ⊕π(t⊕ δ). And
now we have a masked eviction map EMσ◦,t◦ that can be revealed to party D
but does not leak information on EMσ,t or EMΦ,t.

3 Our Protocol: 3PC Emulation of Circuit-ORAM

Protocol Parties. We use C,D,E to denote the three parties participating
in 3PC-ORAM. We use xP to denote that variable x is known only to party
P ∈ {C,D,E}, xP1P2 if x is known to P1 and P2, and x if known to all parties.

Shared Variables, Bitstrings, Secret-Sharing. Each pair of parties P1,P2

in our protocol is initialized with a shared seed to a Pseudorandom Generator
(PRG), which allows them to generate any number of shared (pseudo)random
objects. We write xP1P2 $←− S if P1 and P2 both sample x uniformly from set S
using the PRG on a jointly held seed. We use several forms of secret-sharing,
and here introduce four of them which are used in our high level protocols 3PC-

ORAM.Access and 3PC-ORAM.ML (Algorithms 1 and 2):

〈x〉 = (xDE
1 , xCE

2 , xCD
3 ) for x1, x2, x3

$←− {0,1}|x| where x1 ⊕ x2 ⊕ x3 = x

〈x〉P1–P2
xor = (xP1

1 , xP2
2 ) for x1, x2

$←− {0,1}|x| where x1 ⊕ x2 = x

〈x〉P1P2–P3
shift = (xP1P2

12 , xP3
3 ) for x ∈ Zm, x12, x3

$←− Zm s.t. x12 + x3 = x mod m

〈x〉shift = (〈x〉CD–E
shift , 〈x〉CE–Dshift , 〈x〉DE–C

shift )



3PC ORAM with Low Latency, Low Bandwidth, and Fast Batch Retrieval 369

Integer Ranges, Permutations. We define Zn as set {0, ..., n−1}, and permn

as the set of permutations on Zn. If π, σ ∈ permn then π−1 is an inverse permu-
tation of π, and π · σ is a composition of σ and π, i.e. (π · σ)(i) = π(σ(i)).

Arrays. We use arraym[�] to denote arrays of � bitstrings of size m, and we write
array[�] if m is implicit. We use x[i] to denote the i-th item in array x. Note that
x ∈ arraym[�] can also be viewed as a bitstring in {0,1}�m.

Permutations, Arrays, Array Operations. Permutation σ ∈ perm� can be
viewed as an array x ∈ arraylog �[�], i.e. x = [σ(0), ..., σ(�−1)]. For π ∈ perm� and
y ∈ array[�] we use π(y) to denote an array containing elements of y permuted
according to π, i.e. π(y) = [yπ−1(0), ..., yπ−1(�−1)].

Garbled Circuit Wire Keys. If variable x ∈ {0,1}m is an input/output in
circuit C, and wk ∈ arrayκ[m, 2] is the set of wire key pairs corresponding to
this variable in the garbled version of C, then {wk : x} ∈ arrayκ[m] denotes the
wire-key representation of value x on these wires, i.e. {wk : x} = {wk[x[i]]}m

i=1. If
the set of keys is implicit we will denote {wk : x} as x.

Algorithm 1. 3PC-ORAM.Access: 3PC Circuit-ORAM

Params: Address size log n, address chunk size τ , number of trees h = log n
τ + 1

Input: 〈OM,N, rec′〉, for OM = (tree0, ..., treeh−1), N = (N1, ...,Nh−1)
Output: 〈rec〉: record stored in OM at address N

1: {〈L′
i〉 $←− {0,1}i·τ}h−1

i=1 ; 〈N0,Nh,L′
0,L

′
h〉 := ⊥ ; L0 := ⊥

2: for i = 0 to h−1 do

3PC-ORAM.ML: Li,
〈
treei, (N0|...|Ni),Ni+1,L′

i,L
′
i+1, * rec

′〉

−→ Li+1 (* 〈rec〉 instead of Li+1), 〈treei〉

*: On top-level ORAM tree, i.e. i = h − 1

3PC ORAM Protocol. Our 3PC ORAM protocol, 3PC-ORAM.Access,
Algorithm 1, performs the same recursive scan through data-structure
tree0, ..., treeh−1 as the client-server Path-ORAM (and Circuit-ORAM) described
in Sect. 2, except it runs on inputs in 〈·〉 secret-sharing format. The main loop of
3PC-ORAM.Access, i.e. protocol 3PC-ORAM.ML, Algorithm 2, also follows the cor-
responding client-server algorithm ORAM.ML, except that apart of the current-
level leaf label L which is known to all parties, all its other inputs are secret-
shared as well.

Protocol 3PC-ORAM.ML calls subprotocols whose round/bandwidth specifica-
tions are stated in Fig. 5. (We omit computation costs because they are all com-
parable to link-encryption of communicated data). The low costs of these subpro-
tocols are enabled by different forms of secret-sharings, e.g. xor versus additive,
or 2-party versus 3-party, and by low-cost (or no cost) conversions between them.
For implementations of these protocols we refer to [21] Appendix A.



370 S. Jarecki and B. Wei

Algorithm 2. 3PC-ORAM.ML: Main Loop of 3PC Circuit-ORAM
Param: Tree level index i. path depth d (number of buckets). Bucket size w.
Input: Li,

〈
tree,N,ΔN,L′

i,L
′
i+1

〉
(* 〈rec′〉)

Output: (1) Li+1 = T.data[ΔN] for tuple T on tree.path(Li) s.t.
T.(fb|adr) = 1|N (* 〈rec〉 := 〈T.data〉)

(2) 〈tree.path(L)〉 modified by eviction, with T.lb := L′
i and

T.data[ΔN] := L′
i+1 (* T.data := rec′)

Offline: pick (π, δ, ρ)CE, for π $←− permd, δ, ρ $←− arraylog(w+1)[d]

## Retrieval of Next Label/Record ##

〈path〉 := 〈tree.path(Li)〉
1: KSearch: 〈path.(fb|adr), 1|N〉 → 〈j〉shift � path[j].(fb|adr) = 1|N
2: 3ShiftPIR: 〈path.data〉 , 〈j〉shift → 〈X〉 (* 〈rec〉 := 〈X〉) � X = path[j].data

3: 3ShiftXorPIR: 〈path.data,ΔN〉 , 〈j〉shift →Li+1(*skip) � Li+1=path[j].data[ΔN]

## Post-Process of Found Tuple ##

4: ULiT:
〈
X,N,ΔN,L′

i,L
′
i+1 (* rec′)

〉
,Li+1 → 〈T〉

� X[ΔN] := L′
i+1 (* X := rec′), T= (1,N,L′

i,X)

5: FlipFlag: 〈path.fb〉 , 〈j〉shift → 〈path.fb〉 � path[j].fb := 0

〈path〉 := 〈path.append-to-root(T)〉
## Eviction ##

6: GC(Route): Li, δ
CE, 〈path.(fb, lb)〉 → (σ, t′)D , wkE

� σ = {wk : σ} and t′ = t ⊕ δ for expanded Circ-ORAM eviction map (σ, t)

7: PermBuckets: σD, πCE,wkE → σ◦D � σ◦ = π · σ · π−1

8: PermTuples: t′D, (π, ρ)CE → t◦D � t◦ = ρ ⊕ π(t′)

9: XOT: 〈path〉 , (π, δ, ρ)CE, (σ◦, t◦)D → 〈
path′〉 � path′ = EMσ,t(path)

〈tree.path(Li)〉 :=
〈
path′〉

*: On top-level ORAM tree, i.e. i = h − 1. �: Comments.

Three Phases of 3PC-ORAM.ML: Protocol 3PC-ORAM.ML computes on sharing
〈path〉 for path = tree.path(L) and it contains the same three phases as the
client-server Path-ORAM, but implemented with specialized 3PC protocols:
(1) Retrieval runs protocol KSearch to compute “shift” (i.e. additive) sharing
〈j〉shift of index for tuple T= path[j] in path s.t. path[j].adr= N and path[j].fb= 1,
i.e. it is the unique (and non-empty) tuple pertaining to address prefix N; Then
it runs protocol 3ShiftPIR to extract sharing 〈X〉 of the payload X = path[j].data
of this tuple, given sharings 〈path〉 and 〈j〉shift; In parallel to 3ShiftPIR it also
runs protocol 3ShiftXorPIR to publicly reconstruct the next-level label stored at
position ΔN in this tuple’s payload, i.e. Li+1 = (path[j].data)[ΔN], given sharing



3PC ORAM with Low Latency, Low Bandwidth, and Fast Batch Retrieval 371

rounds bandwidth
KSearch 2 ≈ 2�(c + log �)

3ShiftPIR 2 3� + 3|data| for |data| = 2τ |L|
3ShiftXorPIR 2 3 · 2τ � + 6|L|

ULiT 2 ≈ 4|data| (+4|data| offline)
FlipFlag 2 4�

GC(Route) 1 2|x|κ (+4|circ| + 2|x|)κ offline)
PermBuckets 2 3d log d (+d2(κ + 2 log d) + 3d log d offline)
PermTuples 2 2d(w+1) (+d(w+1) offline)

XOT 3 4|path| + 2� log(�) (+2|path| offline)

Fig. 5. Round and bandwidth for subprotocols of Algorithm 2, for � the number of
tuples on path and x the circuit input size (≈ �(d + log n) + d log(w + 1))

〈path〉 and 〈ΔN〉. This construction of the Retrieval emulation allows for pre-
senting protocols 3ShiftPIR and 3ShiftXorPIR (see resp. Algorithm 9 and 11 in [21],
Appendix A) as generic SS-PIR constructions from a class of 2-Server PIR pro-
tocols. However, a small modification of this design achieves better round and
on-line bandwidth parameters, see an Optimizations and Efficiency Discussion
paragraph below.
(2) Post-process runs the Update-Label-in-Tuple protocol ULiT to form sharing
〈T〉 of a new tuple using sharing 〈X〉 of the retrieved tuple’s payload, sharings
〈N〉 and 〈ΔN〉 of the address prefix and the next address chunk, and sharings
〈L′

i〉 ,
〈
L′

i+1

〉
of new labels; In parallel to ULiT it also runs protocol FlipFlag to flip

the full/empty flag to 0 in the old version of this tuple in path, which executes
on inputs the sharings 〈path.fb〉 of field fb of tuples in path and on the “shift”
sharing 〈j〉shift; Once ULiT terminates the parties can insert 〈T〉 into sharing of
the root bucket in path. At this point the root bucket has size s+1 (or s+b if we
postpone eviction for a batch of b accesses).
(3) Eviction emulates Circuit-ORAM eviction on sharing 〈path〉 involved
in retrieval (or another path because 3PC-ORAM.Access, just like client-server
Circuit-ORAM, performs eviction on two paths per access). It uses the generic
garbled circuit protocol GC(Route) to compute the Circuit-ORAM eviction map
(appropriately masked), and then runs protocols PermBuckets, PermTuples, and
XOT to apply this (masked) eviction map to the secret-shared 〈path〉. We dis-
cuss the eviction steps in more details below.

Eviction Procedure. As we explain in Sect. 2, we split Eviction into Eviction
Logic, which uses garbled circuit subprotocol to compute the eviction map EM,
and Eviction Movement, which uses special-purpose protocols to apply EM to
the shared path, which in protocol 3PC-ORAM.ML will be 〈path〉. However, recall
that revealing the eviction map to any party would leak information about path
density, and consequently the access pattern. We avoid this leakage in two steps:
First, we modify the Circuit-ORAM eviction logic computation Route, so that
when it computes bucket-level map Φ and the tuple pointers array t, which define



372 S. Jarecki and B. Wei

an eviction map EMΦ,t, the algorithm scans through the buckets once more to
expand the partial map Φ into a complete cycle σ over the d buckets (see Fig. 4).
(We include the modified Circuit-ORAM algorithm Route in [21], Appendix D.)
Second, the garbled circuit computation GC(Route), see Step 6, Algorithm 2,
does not output (σ, t) to D in the clear: Instead, it outputs t′ = t⊕ δ where δ is a
random array, used here as a one-time pad, and the garbled wire encoding of the
bits of σ = [σ(1), ..., σ(d)], i.e. the output wire keys {wk : σ}=wk[i][σ[i]]}d log d

i=1 .
Recall that we want D to compute (σ◦, t◦), a masked version of (σ, t), where

σ◦ = π · σ · π−1 and t◦ = ρ ⊕ π(t⊕ δ), for π a random permutation on Zd and δ, ρ
random arrays, all picked by C and E. This is done by protocol PermBuckets, which
takes 2 on-line rounds to let D translate {wk : σ} into σ◦ =π · σ · π−1 given wk
held by E and π held by C,E, and (in parallel) PermTuples, which takes 2 rounds
to let D translate t′ = t ⊕ δ into t◦ = ρ ⊕ π(t′) given π, ρ held by C,E. Then
C,E permute 〈path〉C–Exor (implied by 〈path〉, because 〈x〉 = (xDE

1 , xCE
2 , xCD

3 ) →
(xE

1 , x
E
2 , x

C
3 ) = 〈x〉C–Exor ) by Π = ρ̃ · π̈ · δ̃ where π̈, δ̃, and ρ̃ are permutations on

� = d · (w+1) tuples in the path induced by π, δ, ρ:

– π ∈ permd defines π̈ ∈ perm� s.t. π̈(j, t) = (π(j), t), i.e. π̈ moves position t in
bucket j to position t in bucket π(j);

– δ ∈ arraylog (w+1)[d] defines δ̃ ∈ perm� s.t. δ̃(j, t) = (j, t ⊕ δ), i.e. δ̃ moves
position t in bucket j to position t ⊕ δ[j] in bucket j; same for ρ and ρ̃;

Now use protocol XOT in 2 round and ≈ 2|path| bandwidth to apply map
EMσ◦,t◦ held by D to 〈Π(path)〉C–Exor . The result is 〈path◦〉C–Exor for path◦ = (EMσ◦,t◦ ·
Π)(path), and when C,E apply Π−1 to it they get

〈
path′〉C–E

xor
for path′ = (Π−1 ·

EMσ◦,t◦ · Π)(path). Finally
〈
path′〉 can be reconstructed from

〈
path′〉C–E

xor
in 1

round and 2|path| bandwidth (see [21], Appendix A for secret-sharing conversions
and reasoning), and can then be injected into 〈tree〉.
Eviction Correctness. We claim that the eviction protocol described above
implements mapping EMσ,t applied to path, i.e. that (note that (x̃)−1 = x̃):

EMσ,t = Π−1 · EMσ◦,t◦ · Π = (δ̃ · π̈−1 · ρ̃) · (EMπσπ−1,ρ⊕π(t⊕δ)) · (ρ̃ · π̈ · δ̃) (1)

Consider the set of points S = {(j, t[j]) | j ∈ Zd} which are moved by the left
hand side (LHS) permutation EMσ,t. To argue that Eq. (1) holds we first show
that the RHS permutation maps any point (j, t[j]) of S in the same way as the
LHS permutation:

(j, t[j])
(ρ̃·π̈·δ̃)−→ (π(j), ρ[π(j)] ⊕ t[j] ⊕ δ[j]) = (π(j), t◦[π(j)])

EMπσπ−1,t◦−→ (πσπ−1(π(j)), t◦[πσπ−1(π(j))]) = (πσ(j), t◦[πσ(j)])
= (πσ(j), ρ[πσ(j)] ⊕ t[σ(j)] ⊕ δ[σ(j)])
ρ̃−→ (πσ(j), t[σ(j)] ⊕ δ[σ(j)]) π̈−1

−→ (σ(j), t[σ(j)] ⊕ δ[σ(j)])
δ̃−→ (σ(j), t[σ(j)])



3PC ORAM with Low Latency, Low Bandwidth, and Fast Batch Retrieval 373

It remains to argue that RHS is an identity on points not in S, just like LHS.
Observe that set S′ of tuples moved by EMσ◦,t◦ consists of the following tuples:

(k, t◦[k]) = (k, ρ[k] ⊕ t[π−1(k)] ⊕ δ[π−1(k)]) = (π(j), ρ[π(j)] ⊕ t[j] ⊕ δ[j])

Also note that:

(ρ̃ · π̈ · δ̃)(j, t[j]) = (ρ̃ · π̈)(j, t[j] ⊕ δ[j]) = ρ̃(π(j), t[j] ⊕ δ[j]) = (π(j), ρ[π(j)] ⊕ t[j] ⊕ δ[j])

which means that S′ =Π(S), so if (j, t) ∈ S then Π(j, t) ∈ S′, hence (EMσ◦,t◦ ·
Π)(j, t)= Π(j, t), and hence Π−1 · EMσ◦,t◦ · Π and EMσ,t are equal on (j, t) ∈ S.

Optimizations and Efficiency. As mentioned above, we can improve on both
bandwidth and rounds in the Retrieval phase of 3PC-ORAM.ML shown in Algo-
rithm2. The optimization comes from an observation that our protocol KSearch
(see Algorithm 6, Appendix A) takes just one round to compute shift-sharing
〈j〉DE–C

shift of index j, and its second round is a resharing which transforms 〈j〉DE–C
shift

into 〈j〉shift. This round of resharing can be saved, and we can re-arrange proto-
cols 3ShiftPIR and 3ShiftXorPIR so they use only 〈j〉DE–C

shift as input and effectively
piggyback creating the rest of 〈j〉shift in such a way that the modified protocols,
denoted resp. 3ShiftPIR-Mod and 3ShiftXorPIR-Mod take 2 rounds, which makes
the whole Retrieval take only 3 rounds, hence access protocol 3PC-ORAM.Access
takes 3h rounds in Retrieval, and, surprisingly, the same is true for Retrieval
with Post-Processing. For further explanations we refer to [21].

4 Security

Protocol 3PC-ORAM of Sect. 3 is a three-party secure computation of an Oblivious
RAM functionality, i.e. it can implement RAM for any 3PC protocol in the RAM
model. To state this formally we define a Universally Composable (UC) Oblivious
RAM functionality FORAM for 3-party computation (3PC) in the framework of
Canetti [7], and we argue that our 3PC ORAM realizes FORAM in the setting of
m = 3 parties with honest majority, i.e. only t = 1 party is (statically) corrupted,
assuming honest-but-curious (HbC) adversary, i.e. corrupted party follows the
protocol. We assume secure pairwise links between the three parties. Since we
have static-corruptions, HbC adversary, and non-rewinding simulators, security
holds even if communication is asynchronous.

3PC ORAM Functionality. Functionality FORAM is parametrized by address
and record sizes, resp. log n and D, and it takes command Init, which initializes
an empty array M ∈ arrayD[n], and Access(instr, 〈N, rec′〉) for (instr,N, rec′) ∈
{read,write} × {0,1}log n × {0,1}D, which returns a fresh secret-sharing 〈rec〉 of
record rec=M[N], and if instr=write it also assigns M[N] := rec′. Technically,
FORAM needs each of the three participating parties to make the call, where each
party provides their part of the sharing, and FORAM’s output 〈rec〉 is also deliv-
ered in the form of a corresponding share to each party. However, in the HbC



374 S. Jarecki and B. Wei

setting all parties are assumed to follow the instructions provided by an environ-
ment algorithm Z, which models higher-level protocol which utilizes FORAM to
implement oblivious memory access. Hence we can simply assume that Z sends
Init and Access(instr, 〈N, rec′〉) to FORAM and receives 〈M[N]〉 in return.

Security of our 3PC ORAM. Since our protocol is a three-party secure
emulation of Circuit-ORAM, we prove that it securely realizes FORAM in the
(t,m) = (1, 3) setting if Circuit-ORAM defines a secure Client-Server ORAM,
which implies security of 3PC-ORAM by the argument for Circuit-ORAM secu-
rity given in [27]. We note that protocol 3PC-ORAM.Access of Sect. 3 imple-
ments only procedure Access. Procedure Init can be implemented by running
3PC-ORAM.Access with instr=write in a loop for N from 0 to n−1 (and arbi-
trary rec′’s), but this requires some adjustments in 3PC-ORAM.Access and 3PC-

ORAM.ML to deal with initialization of random label assignments and their link-
age. We leave the specification of these (straightforward) adjustments to the full
version, and our main security claim, stated as Corollary 1 below, assumes that
Init is executed by a trusted-party.

For lack of space we defer the proof of Corollary 1 to [21], Appendix C. Very
briefly, the proof uses UC framework, arguing that each protocol securely realizes
its intended input/output functionality if each subprotocol it invokes realizes
its idealized input/output functionality. All subprotocols executed by protocol
3PC-ORAM.ML of Sect. 3 are accompanied with brief security arguments which
argue precisely this statement. As for 3PC-ORAM.ML, its security proof, given
in [21], Appendix C, is centered around two facts argued in Sect. 3, namely
that our way of implementing Circuit-ORAM eviction map, with D holding
σ◦ = π ·σ ·π−1 and t◦ = ρ⊕π(t⊕δ) and E,C holding π, ρ, δ is (1) correct, because
Π−1 · EMσ◦,t◦ · Π = EMσ,t for Π = ρ̃ · π̈ · δ̃, and (2) it leaks no information to
either party, because random π, ρ, δ induce random σ◦, t◦ in D’s view.

Corollary 1 (from [21], Appendix C). Assuming secure initialization, 3PC-

ORAM.Access is a UC-secure realization of 3PC ORAM functionality FORAM.

5 Performance Evaluation

We tested a Java prototype of our 3PC Circuit-ORAM, with garbled circuits
implemented using the ObliVM library by Wang [27], on three AWS EC2
c4.2xlarge servers, with communication links encrypted using AES-128. Each
c4.2xlarge instance is equipped with eight Intel Xeon E5-2666 v3 CPU’s (2.9
GHz), 15 GB memory, and has 1 Gbps bandwidth. (However, our tested proto-
type utilizes multi-threading only in parallel Eviction, see below.)
In the discussion below we use the following acronyms:
- cust-3PC: our 3PC Circuit-ORAM protocol;
- gen-3PC: generic 3PC Circuit-ORAM using 3PC of Araki et al. [1];
- 2PC: 2PC Circuit-ORAM [27];
- C/S: the client-server Path-ORAM [26].



3PC ORAM with Low Latency, Low Bandwidth, and Fast Batch Retrieval 375

Fig. 6. Our 3PC-ORAM online wall-
clock time (ms) vs log n for D = 4B

Fig. 7. CPU time (ms) vs log n, for
D = 4B

Fig. 8. Online bndw.(MB) vs log n for
D = 4B

Fig. 9. Comparison with 2PC-ORAM’s
in online+offline bndw.(MB) vs log n for
D = 4B

Wall Clock Time. Figure 6 shows online timing of cust-3PC for small record
sizes (D = 4B) as a function of address size log n. It includes Retrieval wall clock
time (WC), End-to-End (Retrieval+PostProcess+Eviction) WC, and End-to-
End WC with parallel Eviction for all trees, which shows 60% reduction in WC
due to better CPU utilization. Note that Retrieval takes about 8 milliseconds
for log n = 30 (i.e. 230 records), and that Eviction takes only about 4–5 times
longer. Recall that Retrieval phase has 3h rounds while Eviction has 6, which
accounts for much smaller CPU utilization in Retrieval.

CPU Time. We compare total and online CPU time of cust-3PC and 2PC in
Fig. 7 with respect to memory size n, for D = 4B.6 Since 2PC implementation
[27] does not provide online/offline separation, we approximate 2PC online CPU
time by its garbled circuit evaluation time, because 2PC costs due to OT’s can be

6 We include CPU comparisons only with 2PC Circuit-ORAM, and not SQRT-ORAM
[30] and DPF-ORAM [12], because the former uses the same Java ObliVM GC library
while the latter two use the C library Obliv-C. Still, note that for n = 30, the on-line
computation due to FSS evaluation and linear memory scans contributes over 1 sec
to wall-clock in [12], while our on-line wall-clock comes to 40 msec.



376 S. Jarecki and B. Wei

pushed to precomputation. As Fig. 7 shows, the cust-3PC CPU costs are between
6x and 10x lower than in 2PC, resp. online and total, already for log n = 25,
and the gap widens for higher n. In [21], Appendix E.2 we include CPU time
comparison with respect to D, which shows CPU ratio of 2PC over cust-3PC grows
to ≈ 25 for D ≥ 10 KB.

Bandwidth Comparison with Generic 3PC. Timing results depend on
many factors (language, network, CPU, and more), and bandwidth is a more
reliable predictor of performance for protocols using only light symmetric crypto.
In Fig. 8 we compare online bandwidth of cust-3PC, gen-3PC, and C/S, as a func-
tion of the address size log n, for D = 4B. We see for small records our cust-3PC

is only a factor of 2x worse than the optimal-bandwidth gen-3PC (which, recall,
has completely impractical round complexity). In [21], Appendix E.2 we show
that as D grows, cust-3PC beats gen-3PC in bandwidth for D≥1 KB.

Bandwidth Comparison with 2PC ORAMs. In Fig. 9 we compare total
bandwidth of cust-3PC and several 2PC ORAM schemes, including 2PC, the
DPF-based FLORAM scheme of [12], the 2PC SQRT-ORAM of [30], and a
trivial linear-scan scheme. Our cust-3PC bandwidth is competitive to FLORAM
for all n’s, but for n≥ 24 the O(

√
n) asymptotics of FLORAM takes over. Note

also that FLORAM uses O(n) local computation vs. our O(log3n), so in the
FLORAM case bandwidth comparison does not suffice. Indeed, for n = 230 and
D = 4B, [12] report > 1 s overall processing time on LAN vs. 40 msec for us.

For further discussions of bandwidth and CPU time with respect to record
size D, and cust-3PC CPU time component, refer to [21], Appendix E.2.

References

1. Araki, T., Furukawa, J., Lindell, Y., Nof, A., Ohara, K.: High-throughput semi-
honest secure three-party computation with an honest majority. In: Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
Vienna, Austria, 24–28 October 2016, pp. 805–817 (2016)

2. Beimel, A., Ishai, Y., Malkin, T.: Reducing the servers computation in private
information retrieval: PIR with preprocessing. J. Cryptol. 17, 125–151 (2004)

3. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: Proceedings of the Twen-
tieth Annual ACM Symposium on Theory of Computing, STOC 1988, pp. 1–10.
ACM, New York (1988)

4. Bogdanov, D., Kamm, L., Kubo, B.: Students and taxes: a privacy-preserving
study using secure computation. In: Proceedings on Privacy Enhancing Technolo-
gies (PET), pp. 117–135 (2016)

5. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: a framework for fast privacy-
preserving computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS,
vol. 5283, pp. 192–206. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-88313-5 13

https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13


3PC ORAM with Low Latency, Low Bandwidth, and Fast Batch Retrieval 377

6. Bogetoft, P., et al.: Secure multiparty computation goes live. In: Dingledine, R.,
Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 325–343. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03549-4 20

7. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. In: Proceedings of the 42nd IEEE Symposium on Foundations of Com-
puter Science, FOCS 2001. IEEE Computer Society, Washington, DC (2001)

8. Chaum, D., Crépeau, C., Damg̊ard, I.: Multiparty unconditionally secure protocols
(extended abstract). In: Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, 2–4 May 1988, Chicago, Illinois, USA, pp. 11–19 (1988)

9. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

10. Damg̊ard, I., Meldgaard, S., Nielsen, J.B.: Perfectly secure oblivious RAM with-
out random oracles. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 144–163.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 10

11. Devadas, S., van Dijk, M., Fletcher, C.W., Ren, L., Shi, E., Wichs, D.: Onion
ORAM: a constant bandwidth blowup oblivious RAM. In: Kushilevitz, E., Malkin,
T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 145–174. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49099-0 6

12. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, pp. 523–535. ACM, New York (2017)

13. Dvir, Z., Gopi, S.: 2 server PIR with subpolynomial communication. J. ACM 63(4),
391–3915 (2016)

14. Faber, S., Jarecki, S., Kentros, S., Wei, B.: Three-party ORAM for secure compu-
tation. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp.
360–385. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48797-
6 16

15. Fletcher, C.W., Naveed, M., Ren, L., Shi, E., Stefanov, E.: Bucket ORAM: single
online roundtrip, constant bandwidth oblivious RAM. IACR Cryptology ePrint
Archive, 2015:1065 (2015)

16. Gentry, C., Goldman, K.A., Halevi, S., Julta, C., Raykova, M., Wichs, D.: Opti-
mizing ORAM and using it efficiently for secure computation. In: De Cristofaro,
E., Wright, M. (eds.) PETS 2013. LNCS, vol. 7981, pp. 1–18. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39077-7 1

17. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC 1987, pp. 218–229. ACM, New York (1987)

18. Goldreich, O., Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. J. ACM 43(3), 431–473 (1996)

19. Gordon, S.D., Katz, J., Kolesnikov, V., Krell, F., Malkin, T., Raykova, M., Vahlis,
Y.: Secure two-party computation in sublinear (amortized) time. In: Computer and
Communications Security (CCS), CCS 2012, pp. 513–524 (2012)

20. Ishai, Y., Kushilevitz, E., Lu, S., Ostrovsky, R.: Private large-scale databases with
distributed searchable symmetric encryption. In: Sako, K. (ed.) CT-RSA 2016.
LNCS, vol. 9610, pp. 90–107. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29485-8 6

21. Jarecki, S., Wei, B.: 3PC ORAM with low latency, low bandwidth, and fast batch
retrieval. IACR Cryptology ePrint Archive, 2018:347 (2018)

22. Keller, M., Scholl, P.: Efficient, oblivious data structures for MPC. In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 506–525. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8 27

https://doi.org/10.1007/978-3-642-03549-4_20
https://doi.org/10.1007/978-3-642-19571-6_10
https://doi.org/10.1007/978-3-662-49099-0_6
https://doi.org/10.1007/978-3-662-48797-6_16
https://doi.org/10.1007/978-3-662-48797-6_16
https://doi.org/10.1007/978-3-642-39077-7_1
https://doi.org/10.1007/978-3-319-29485-8_6
https://doi.org/10.1007/978-3-319-29485-8_6
https://doi.org/10.1007/978-3-662-45608-8_27


378 S. Jarecki and B. Wei

23. Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In: Pro-
ceedings of the Twenty-Ninth Annual ACM Symposium on the Theory of Com-
puting, El Paso, Texas, USA, 4–6 May 1997, pp. 294–303 (1997)

24. Ren, L., Fletcher, C., Kwon, A., Stefanov, E., Shi, E., Van Dijk, M., Devadas,
S.: Constants count: practical improvements to oblivious RAM. In: Proceedings
of the 24th USENIX Conference on Security Symposium, SEC 2015, pp. 415–430.
USENIX Association, Berkeley (2015)

25. Shi, E., Chan, T.-H.H., Stefanov, E., Li, M.: Oblivious RAM with O((logN )3)
worst-case cost. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol.
7073, pp. 197–214. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-25385-0 11

26. Stefanov, E., van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.: Path
ORAM: an extremely simple oblivious ram protocol. In: Proceedings of the 2013
ACM SIGSAC Conference on Computer Communications Security, CCS 2013, pp.
299–310. ACM, New York (2013)

27. Wang, X., Chan, H., Shi, E.: Circuit ORAM: on tightness of the goldreich-ostrovsky
lower bound. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, CCS 2015, pp. 850–861 (2015). ACM, New York

28. Wang, X.S., Huang, Y., Chan, T.-H.H., Shelat, A., Shi, E.: SCORAM: oblivious
ram for secure computation. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2014, pp. 191–202. ACM, New
York (2014)

29. Yao, A.C.-C.: Protocols for secure computations (extended abstract). In: Proceed-
ings of the 23rd Annual Symposium on Foundations of Computer Science, FOCS
1982, pp. 160–164 (1982)

30. Zahur, S., Wang, X., Raykova, M., Gascón, A., Doerner, J., Evans, D., Katz, J.:
Revisiting square-root ORAM efficient random access in multi-party computation.
In: Proceedings of the 37th IEEE Symposium on Security and Privacy (“Oak-
land”). IEEE 2016 (2016)

https://doi.org/10.1007/978-3-642-25385-0_11
https://doi.org/10.1007/978-3-642-25385-0_11


Symmetric Key Primitives



MergeMAC: A MAC for Authentication
with Strict Time Constraints and Limited

Bandwidth

Ralph Ankele1(B), Florian Böhl2, and Simon Friedberger2

1 Royal Holloway University of London, Egham, UK
ralph.ankele.2015@rhul.ac.uk

2 NXP Semiconductors, Leuven, Belgium
{florian.boehl,simon.friedberger}@nxp.com

Abstract. This paper presents MergeMAC, a MAC that is particularly
suitable for environments with strict time requirements and extremely
limited bandwidth. MergeMAC computes the MAC by splitting the
message into two parts. We use a pseudorandom function (PRF) to map
messages to random bit strings and then merge them with a very efficient
keyless function. The advantage of this approach is that the outputs of
the PRF can be cached for frequently needed message parts. We demon-
strate the merits of MergeMAC for authenticating messages on the CAN
bus where bandwidth is extremely limited and caching can be used to
recover parts of the message counter instead of transmitting it. We rec-
ommend an instantiation of the merging function Merge and analyze
the security of our construction. Requirements for a merging function are
formally defined and the resulting EUF-CMA security of MergeMAC is
proven.

Keywords: Symmetric-key cryptography
Message Authentication Code · Lightweight · Efficient · Automotive
CAN bus

1 Introduction

In constrained environments, such as embedded devices, wireless sensor net-
works, control systems and automated devices, the Internet of Things (IoT) in
general, and more particularly to save bandwidth in highly time constrained sce-
narios it is important to reduce the latency while still ensure that the throughput
of a communication channel does not fall below a critical threshold. A common
practice is to omit parts with low entropy in the communication of transmit-
ted messages when the communication overhead is more expensive than simply

R. Ankele and S. Friedberger—This research was partially supported by the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agree-
ment No. H2020-MSCA-ITN-2014-643161 ECRYPT-NET.

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 381–399, 2018.
https://doi.org/10.1007/978-3-319-93387-0_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_20&domain=pdf


382 R. Ankele et al.

reconstructing the message by brute-force guessing the missing parts. As attacks
on IoT devices become more and more of a threat [Lan11,RSWO17], it is impor-
tant to ensure the authenticity of an entity and the integrity of transmitted mes-
sages. Message Authentication Codes (MAC) allow an receiver of a message to
verify the integrity of a received message and ensure that the sender has to be
an authenticated entity.

MergeMAC is a MAC function optimized exactly for the requirements of
communicating in extremely constrained environments and still ensuring strict
time requirements even with limited bandwidth. In our proposal, we omit parts
of the transmitted message with very little information content. The missing
information can then be reconstructed by the receiver by brute-forcing all pos-
sibilities as only the correct solution will be verified as the received MAC. Even
though the missing parts are not transmitted they are included in the MAC
computation. Our proposed construction achieves the strict timing constraints,
while still recalculating parts of the MAC, by splitting the MAC computation
into several parts, and further allowing fast recombination of intermediate values
into MACs. We will now introduce the scenario which prompted the development
of our solution.

Security Under Extreme Conditions. Modern cars rely on the Controller
Area Network (CAN) bus for car-internal communication between different com-
ponents, usually referred to in this context as electronic control units (ECUs).
The CAN bus connects everything - from critical systems like breaks or airbags
to convenience features like built-in navigation or entertainment systems. When
the bus was developed in the 1980’s, the connected world of today was still merely
science fiction. Security was not a concern. This started to change when hackers
first used the CAN bus as an entry point to steal a car, accessing it by taking
off a side mirror [KCR+10,CMK+11]. Nowadays, more and more components
with an interface to the CAN bus are also connected to the Internet. This allows
hackers to mount a powerful attack, by attacking the car from an online attack
surface. A remote attack on the complete fleet is the nightmare of every CTO in
the automotive industry. Consequentially, the call for more security grew louder
quickly. However, adding security to legacy systems is a complicated and error
prone process. The ramifications specifically for the CAN bus are summarized
as:

– High costs: The cost pressure is high. Many ECUs are simple microcon-
trollers and a security solution that adds significant costs is unlikely to be
adopted.

– Time constraints: Several components, such as breaks or airbags, are run-
ning under strict time constraints. This confines the latency a security solution
may introduce to the system.

– Limited bandwidth: The bandwidth on the CAN bus is limited. Hence a
security solution should need as little additional bandwidth as possible.

In this paper we describe an approach how to establish authenticated commu-
nication between ECUs on the CAN bus under these extreme conditions. Our



MergeMAC: A MAC for Authentication with Strict Time Constraints 383

construction allows for very efficient hardware implementations as we demon-
strate with the specific instantiation based on MergeMAC and Present or
Prince. It addresses bandwidth constraints by not transmitting low-entropy
parts of messages and recovering them at the receiver in an efficient way.

Message Authentication Codes. Message Authentication Codes (MACs) are
a popular standard technique to authenticate messages using a shared secret
key [ISO11,Dwo16]. Using a shared key and a message as input, a user can
compute a MAC tag and attach it to the message. The recipient can then verify
the authenticity of the message using the secret key. The most striking advantage
of MACs is their efficiency. MACs can be constructed directly from symmetric
block ciphers or from cryptographic hash functions and are hence much more
efficient than digital signatures, their asymmetric relatives. This also makes them
the tool of choice on constrained devices, like microcontrollers and lightweight
IoT devices. Therefore, they are the correct building blocks for our scenario.

Authentication. The CAN bus itself does not provide any message authenti-
cation mechanism. Every connected ECU can send arbitrary frames including a
forged sender identity. Our goal is to define an authentication mechanism that is
tailored towards the most common scenario: A sender (e.g. a sensor) addressing
one or more receivers. The sender includes a counter into each message to pre-
vent replay attacks and adds a MAC tag to each message sent. Receivers keep
track of the counter value. They will reject incoming messages with a counter
value not higher than the current one. Skipping messages is acceptable, i.e. the
counter value will always be updated to the last one received with a valid MAC
tag. The authentication mechanism we propose significantly reduces the attack
surface if it is used for all ECUs on the CAN bus. Moreover, the attack surface is
drastically reduced, as an attacker from the outside (e.g. by accessing the CAN
bus from the side mirrors) will not be able to impersonate an internal device.
Furthermore, an attacker from the inside (e.g. through a corrupted ECU) is
confined to the receivers that trust this ECU.

A Bandwidth Saving Technique. Bandwidth can be saved by only including
the n least significant bits of the counter in the messages, i.e. the counter is
divided into n low bits, called l and the remaining high bits called h. The sender
computes the MAC tag on the message as usual based on the complete counter
value. The receiver recovers the complete counter as follows: He takes the high
bits h from his local storage and combines them with the transmitted low bits l.
If the MAC verification is successful and the combined counter is greater than
the locally stored counter value, the message is accepted. Otherwise, the message
may still be valid if a wrap of the lower bits l has occurred on the sender side
leading to an incremented h. Consequentially, the receiver will try again with
h+1, h+2, . . . up to h+wmax for a parameter wmax of the maximum number of
wraps that are allowed to occur. We apply this idea to the counter only, but it
can be used more broadly to recover predictable information to save bandwidth.
With 8 bytes, payload sizes on the standard CAN bus are relatively short and
we will see that saving a few bytes on the counter saves us a complete additional



384 R. Ankele et al.

frame in many cases. While this mechanism allows us to save bandwidth, it has
an impact on security. If the counter is transferred fully, the probability of the
adversary to guess a MAC tag correctly is 1/2� where � is the length of the tag,
this increases to wmax/2�. For wmax we recommend a value below 4 bits. An
attacker with the ability to suppress more than wmax messages can permanently
desynchronize the sender and receiver. Since such an attacker could just suppress
all messages achieving the same effect we consider it an implementation detail
to mitigate this attack.

Worst Case Run Times. While the technique just described allows us to omit
transferring parts of the message counter and reconstruct them with the MAC,
this comes at the cost of additional MAC computations. To be specific, wmax in
the worst case. Here, time constraints become a concern: There is an upper bound
on the time the processing of a message may take, i.e. wmax MAC calculations
to recover the counter must not take longer than tmax ms. Of course, with a
sufficiently powerful receiver, a standard MAC construction could be used and
either the receiver would have a sufficiently strong CPU or MAC computation
could be parallelized. However, the high cost pressure in the automobile sector
makes powerful receivers impossible.

Pre-compute and Merge. In this paper we present MergeMAC, a dedicated
MAC constructions for these constrained environments. One of the main features
of MergeMAC is that it is particularly well suited for the recovery of predictable
information, e.g., such as the most significant bits of the counter as described
above. The idea is, basically, to split the messages in two parts, the predictable
information that is not transferred and the payload part that actually is. Then
a pre-MAC is computed for both parts independently (see Fig. 1). For the pre-
dictable information, these pre-MACs can be pre-computed and cached - e.g.
this would be the pre-MACs for the current and the wmax − 1 counter values.
Two pre-MACs can then be merged into the final MAC. As the pre-MACs are
already PRF outputs, we can significantly relax the security requirements for the
merging function. This allows to speed this step up significantly, e.g. by roughly
70% in contrast to using a lightweight cipher for merging the PRF outputs. Our
merging function Merge is a round-reduced variant of Chaskey [MMVH+14].
MergeMAC has the following features:

– Our merge function Merge is derived from Chaskey and hence inherits its
features: First and foremost, it is a dedicated design for microcontrollers and
easy to implement in hardware.

– We define a construction for the merge function based on lightweight ciphers.
Other constructions based on more secures primitives are possible but we
focus on the lightweight scenario. On top, Merge is keyless allowing for very
efficient hardware implementation. We further detail this in Sect. 2.

Contributions. Efficient Merging Function. We introduce the concept of
a merging function and present an efficient candidate based on Chaskey. We



MergeMAC: A MAC for Authentication with Strict Time Constraints 385

conduct a thorough cryptanalysis for this candidate and provide a performance
analysis using the SUPERCOP framework [Ber16].

Practical Application. We use our merging function to define the MAC scheme
MergeMAC. We analyze and compare different recommendations to instantiate
MAC with a 128-bit and a 64-bit version of our merging function. Overall, we
demonstrate the benefits of this construction for a practical proposal to secure
communication on the CAN bus.

A Security Definition for Merging Functions. We formally define security
requirements for merging functions. We show how our security definition can
be applied by proving the MergeMAC to be EUF-CMA secure based on the
assumption that Merge is a secure merging function and we have two secure
PRFs. Consequentially, we show generically that every secure merging function
can be used to instantiate MergeMAC.

Information Recovery with MACs. To the best of our knowledge this paper
is the first to introduce recovery of low-entropy information through a MAC to
save bandwidth.

Related Work. The most popular MAC schemes today are HMAC [BCK96,
Tur08] and CMAC [IK03,Dwo16]. Both cannot be parallelized and do not allow
for merging messages in the way outlined above. Bellare et al. [BGR95] first
discussed the possibility of parallelizing MAC calculations for increased effi-
ciency when introducing XMAC. Later Black and Rogaway [BR02] introduced
PMAC with the express goal of providing a parallelizable MAC construction.
Both approaches allow reusing partial results in a way that also allows merging
of pre-computed MACs for message parts. However, merging requires an addi-
tional keyed block cipher operation which is what we avoid with our lightweight
key-less merging function (see also the discussion in Sect. 5). In XMACR the
block cipher operation is needed as the randomness is fed to the block cipher. In
PMAC the final block cipher call always has to be performed, no matter if parts
of the message have been reused or not. In XMACC the counter has to be fed
to the block cipher. Considering that we will have several possible values for the
high bits of the counter and that the low bits will be included in the message
this also depends on sender input. One way to view our construction in relation
to these proposals is as a specific kind of merging function which can be made
more efficient than a generic constructions because the attacker has little control
over the inputs.

Outline. In Sect. 2 we present the construction for MergeMAC and introduce
the merging function Merge. In Sect. 3 we define the security requirements for a
merging function and prove that any merging function satisfying these require-
ments can be used to instantiate MergeMAC. Section 4 presents the results
of the cryptanalysis we conducted for our candidate of the merging function
from Sect. 2. In Sect. 5 we discuss the performance of our construction before we
conclude in Sect. 6.



386 R. Ankele et al.

2 The MergeMAC Construction

In this Section, we define the MergeMAC construction in detail and give con-
crete parameters. MergeMAC uses two independent keys K1,K2 of k-bit each,
to process a message msg of arbitrary size into a tag tag of n bits. These keys
are used to instantiate the variable input length PRFs P1,P2 using any MAC
scheme that is a secure PRF as outlined in Sect. 3, for example AES-CMAC
or Chaskey. The message msg is split into two parts, the size of both parts is
flexible since we use variable input length PRFs. These parts are then combined
into the MAC using a function Merge which has relaxed security requirements
because it only operates on random and secret inputs. We suggest three rounds
of the permutation π as defined in Sect. 2.3 and combine the PRF outputs by
XORing them together as input to the permutation π. Furthermore, we also
XOR the outputs of the PRF to the output of the permutation π. Calling the
input parts ρ, ρ̃ this is a Davies-Meyer construction for ρ ⊕ ρ̃. MergeMAC is
illustrated in Fig. 1.

m m̃

P1 P2

Merge

tag

K1 K2

ρ ρ̃

ρ ρ̃

π

tag

Fig. 1. (Left): MergeMAC construction, (Right): Merge function.

2.1 Variations

Our construction allows for several design choices. It is possible to define vari-
ations of MergeMAC with different PRF instantiations or a different merg-
ing function. Since we are targeting constrained environments we suggest using
lightweight functions, specifically Present or Prince in CMAC mode and a
slightly adapted Chaskey round function, which will be described in more detail
in Sect. 2.3. If further optimizations are needed for applications with higher secu-
rity requirements different PRFs and merging function can be chosen. The only
constraints are that any used MACs have good PRF properties and that the
merging function Merge provides enough confusion to prevent an attacker from
combining previous results into MACs for unknown messages. We discuss suffi-
cient requirements for the proof in Sect. 3.



MergeMAC: A MAC for Authentication with Strict Time Constraints 387

2.2 Caching

The main design goal when constructing MergeMAC was to provide a way to
re-use calculations performed for similar messages to speed up MAC verification.
This was achieved and MergeMAC allows caching the outputs of both PRFs. If
a message msg′ = m′||m̃ is received the evaluation of ρ̃ = P2(m) can be omitted
by using a cached version of ρ̃. This is particularly beneficial for message parts
which are constant or have low entropy for example a recipient ID. Compared to
other constructions we can combine cached intermediate results without a full
evaluation of any PRF. Common cache-able constructions require that at least
one computationally intensive part must be repeated, usually a call to a block
cipher or compression function. We improve on this by making use of the fact
that the intermediate results are outputs of a PRF and a simpler computation
is therefore sufficient.

2.3 The Merging Function F

Efficiently combining the outputs of the two PRFs in a secure manner is a chal-
lenging task. The natural building block for this situation would be a hash
function. An ideal hash function would completely hide the PRF outputs from
any adversary making them inaccessible from the top by the property of the
PRFs and inaccessible from the bottom by the property of the hash function. It
would also perfectly mix the two input parts preventing any attacks based on
recombining individual parts of previous messages. Unfortunately hash functions
or even just compression functions usually require several repetitions of a round
function and are not efficient enough.

Our proposal Merge for such a function tackles the problem with a con-
struction similar to the Lai-Massey construction [LM91] which has been used
in block ciphers like Idea [LMM91]. The purpose of our Merge-function is to
provide enough mixing of the inputs of our Merge-function so that it is com-
putationally infeasible to find a pre-image of Merge or to combine outputs for
different PRFs into new MACs.

We use a modified version of the π function of Chaskey, with a reduced word
size of 16 bits to match the 64-bit block size of Present or Prince used for
the PRF. The permutation π is based on modular additions, rotations and XOR
functions (ARX). The advantages of ARX-based designs are high performance,
compact implementations and the possibility of constant-time implementations,
preventing timing side channel attacks. The rotation constants in our permu-
tation are chosen to be optimal for microcontrollers which often only allows
efficient rotations/shifts by one or two bits, and byte-permutations by 8-bits.

3 Proof of Security

In this Section, we show that given the function Merge satisfies easily achieved
requirements and secure PRFs, our scheme is a provably secure MAC. According



388 R. Ankele et al.

v1 v0 v2 v3

≪ 15 ≪ 8

≪ 5

≪ 15 ≪ 8

≪ 5

v1 v0 v2 v3

Fig. 2. One round of the permutation π that is used within our merging function
Merge.

to Daemen and Rijmen [DR05] a MAC is considered secure if it is impossible
to recover the key faster than exhaustive enumeration and impossible to forge a
MAC with higher success probability than random guessing. We are not espe-
cially concerned about key recovery since it implies forgery and we want the
chances of forgery to be sufficiently small to make the difference irrelevant.

We use the following experiment to define a forgery, according to Bellare et
al. [BGR95]:

Definition 1 (EUF-CMA). The existential unforgability under chosen message
experiment EUF-CMA consists of three algorithms

– The Setup() algorithm randomly generates a key k. It must be called first.
– The MAC(msg) algorithm will return a valid MAC for any message msg from

the message space {0, 1}∗.
– The verification algorithm, Verify(msg, tag), will return Valid if tag is valid

for msg and Invalid otherwise.

The result of the experiment is Broken, and the adversary wins, if a pair
(msg, tag) verifies correctly and MAC(msg) has not been called, otherwise the
result is Unbroken. An adversary which makes qm distinct calls to MAC, qv dis-
tinct calls to Verify, runs in time t and wins the game with probability at least ε
is called a (t, qm, qv, ε),-adversary.

Definition 2. A MAC is considered (t, qm, qv, ε)-secure if there is no
(t, qm, qv, ε)-adversary.

3.1 Random Input Indistinguishability

We define a property, called Random Input Indistinguishability, which is easy to
achieve in practice and which allows us to prove that our construction is a secure



MergeMAC: A MAC for Authentication with Strict Time Constraints 389

MAC. For simple analysis we use an unkeyed primitive similar to a hash func-
tion for the Merge function. The usual security definitions for hash functions are
collision resistance, second preimage resistance and preimage resistance. They
are extensively discussed by Rogaway and Shrimpton [RS04]. Random Input
Indistinguishability is even weaker than preimage resistance. Intuitively the def-
inition is based on the following reasoning: Assuming that the PRFs are secure
the only way for an adversary to learn anything about the intermediate values
which are inputs to Merge is by inverting Merge. However finding any preim-
age to Merge(x, y) is not sufficient, instead an adversary would have to find the
original x and y. Finding any other preimage is not useful since the adversary
cannot find a suitable message to generate those values as long as the PRFs are
secure. The only other way to mount an attack would be to find an operation
that can be performed on known outputs to transform them into some other out-
put, effectively calculating Merge(P1(m),P2(m̃)) for known m and m̃ but in a
new combination. We formalize our requirements for Merge using the following
Random Input Indistinguishability experiment RIIF:

Definition 3 (RIIF). The experiment consists of the following five algorithms

– The Setup() algorithm picks five uniformly random values: a bit b and
X,Y,U, V ∈ {0, 1}N where N is the bit length of our output which is the
same as for the used PRFs. It must be called first.

– The Query1(a) algorithm, given any input a ∈ {0, 1}N returns Merge(a, Y ).
– The Query2(a) algorithm, given any input a ∈ {0, 1}N returns Merge(X, a).
– The adversary can request the challenge at any time during the game. For b =

0 Challenge() will return Merge(X,Y ) for b = 1 it will return Merge(U, V ).
– Eventually the adversary outputs a bit b′ by calling Guess(b′).

The adversary wins the game if b′ = b.

We parameterize an adversary A by the total amount of queries he makes q, its
running time t and its probability to win ε. Our adversary therefore becomes a
(t, q, ε)-adversary. Merge is (t, q, ε)-secure if (t, q, ε)-adversaries do not exist.

3.2 Reduction

In this Section, we prove the security of our scheme using two assumptions. First,
the used PRFs are (t, q, εP )-secure, i.e. an adversary making q queries to the PRF
and taking at most time t cannot distinguish the PRF from a random function
with probability at least ε. Second, the function Merge is (t, q, ε)-secure which
we will use to bound any adversary in the EUF-CMA experiment.
Our first game is G0 = EUF-CMA, G1 is the same construction but whenever P1

is used we replace the output with a random value. We use the notation Rnd(·)
to denominate such random oracle values and define ri = Rnd(mi) and r̃i =
Rnd(m̃i) for brevity. Let A be a (t, qm, qv, ε0)-adversary for G0 and assuming
that P1 is (t, qv + qm, εP )-secure it follows that there must be a (t, qm, qv, ε1)-
adversary for G1 where

ε0 < ε1 + εP .



390 R. Ankele et al.

Game G2 proceeds similarly for P2 giving us a (t, qm, qv, ε2)-adversary such that

ε0 < ε2 + 2εP .

We now continue with a hybrid game, successively replacing Merge(ri, r̃i) with
Merge evaluated on new random values. Eventually all the adversary gets is
Merge evaluated on independent random values and security follows. We show
an example of the initial game G2 in Fig. 3 and give the general definition of the
game Gl+2(l ∈ N>0) next.

Fig. 3. Game G2

Definition 4 (Game Gl+2). The game Gl+2 consists of three algorithms

– The Setup() algorithm randomly picks a key k. It must be called first.
– The result of the MAC algorithm call MAC(mi||m̃i), for a message msg =

mi||m̃i, depends on i:
• For i ≤ l it will return Merge(Rnd(mi||m̃i)). Here we slightly abuse

notation and let Rnd return two values.
• For i > l it will return Merge(ri, r̃i) just like G2.

– The verification algorithm, Verify(msg, tag), will compute the MAC like MAC
does and compare the result to tag.

Going from game Gl+1 to Gl+2 we remove all occurrences of Merge(rl, r̃l)
and replace them with Merge evaluated at new random inputs Merge(Rnd
(ml||m̃l)). We now define a simulator for these two games and show that a dis-
tinguisher for Gl+2 and Gl+3 wins the Random Input Indistinguishability game



MergeMAC: A MAC for Authentication with Strict Time Constraints 391

against Merge. To simplify, we assume that the messages in queries l and l +1
are different. Since queries are deterministic, if a msg is repeated we simply give
the same answer as the for the first query.

Definition 5 (Simulator). The simulator for games Gl+1 and Gl+2 consists of
three algorithms

– The Setup() algorithm simply calls Setup() for the Random Input Indistin-
guishability game.

– The result of the MAC algorithm MAC(msg), depends on i:
• For i < l it returns Merge(Rnd(mi||m̃i)).
• For i = l it returns the result of a call to Challenge() for the Random

Input Indistinguishability game.
• For i > l the result depends on the input message msgi = mi||m̃i:

* If mi = ml, m̃i �= m̃l it returns the result of a call to Query1(m̃l)
for the Random Input Indistinguishability game.
* If mi �= ml, m̃i = m̃l it returns the result of a call to Query2(ml)
for the Random Input Indistinguishability game.
* If mi �= ml, m̃i �= m̃l it returns Merge(ri, r̃i) just like G2.
* If mi = ml, m̃i = m̃l this value has been queried before and the
same result is used again.

– The verification algorithm, Verify(msg, tag), will compute the MAC like MAC
does and compare the result to tag.

This implicitly maps X = rl, Y = r̃l in the Random Input Indistinguishability
game. For i < l the simulator behaves like both Gl+1 and Gl+2. For i = l it
returns Challenge() from the Random Input Indistinguishability game. If b = 0
this will be Merge(X,Y ) which implicitly maps to Merge(rl, r̃l). For b = 1
it will be Merge(U, V ) which is just Merge evaluated at new random val-
ues just like Merge(Rnd(mi||m̃i)) in Gl+2. For i > l the simulator uses the
query algorithms for the Random Input Indistinguishability game to uphold the
implicit mapping and return Merge(X, r̃i) if ri is reused or Merge(ri, Y ) if
r̃i is reused. Given a completely different input message it will behave just like
G2 and also like both games by returning Merge(ri, r̃i). If game Gl+1 requires
qm, qv queries to the simulator then at most qm+qv queries to Merge are made.
Assuming that we have a (t, qm, qv, εl+1)-adversary for Gl+1 and that Merge is
(t, qm + qv, εMerge)-secure, we have a (t, qm, qv, εl+2)-adversary for Gl+2 with

εl+1 < εl+2 + εMerge.

If the initial game contained qm MAC queries and qv verify queries all the answers
will have been replaced after qm+qv steps. So for Gqm+qv+2 the adversary receives
no useful information anymore.
At this point the probability of an adversary to create a valid message-tag-pair
amounts to guessing the tag. We have

εqm+qv+2 < 2−N (qm + qv).



392 R. Ankele et al.

It follows that

ε0 < 2−N (qm + qv) + εMerge(qm + qv) + 2εP .

This bounds all adversaries against G0 since we started with an arbitrary one.

4 Cryptanalysis

In this Section, we give an overview of the security related cryptographic proper-
ties of our construction. First, we discuss the security of the two initial PRFs in
MergeMAC. Second, we discuss relevant attacks for the recommended merging
function Merge in detail. The goal of the second analysis is to methodogically
provide evidence that Merge satisfies Random Input Indistinguishability.

Table 1. Security claims according to the underlying primitives

Underlying BC Block size Key size Existential
forgery resistance

Present 64 80 2−64

Present 64 128 2−64

Prince 64 128 2−64

4.1 Security of the PRFs

The security of the two initial PRFs in MergeMAC depends on the underly-
ing block ciphers used in CMAC mode. Table 1 gives an overview of the secu-
rity claims related to the recommended MAC functions and their underlying
primitives.

Birthday Attacks. While standard block ciphers, like AES have a block size
of 128-bits, a majority of lightweight block ciphers have a block size of 64-
bits. Bhargavan and Leurent [BL16] showed in their Sweet32 attack, that many
lightweight block ciphers with 64-bit block size can be practically attacked when
used in a mode like CBC. Consequently, the amount of data blocks that are
processed by the initial PRFs of our construction must be limited appropriately.

Forgeries by Reordering of Messages. An adversary is capable of creating
a simple forgery attack, as the first operation in the merging function Merge is
an XOR of its two inputs. The adversary just has to reorder the output tags of
the PRFs as the XOR operation is commutative. Such a simple forgery attack
can be prevented by using independent keys for both PRFs.



MergeMAC: A MAC for Authentication with Strict Time Constraints 393

4.2 Security of the Merge Function

We chose a round-reduced and slightly adapted version of the permutation π
from Chaskey with initial and final XORs for our Merge function. We now
provide a detailed security analysis of relevant attacks on this function.

Meet-in-the-Middle Attacks. Meet-in-the-middle attacks (MITM) were
introduced by Diffie and Hellman [DH77] in 1977 and showed that the secu-
rity of double DES with two independent 56-bit keys is not as expected 112-bits,
but still 56-bits. In their simplest form, MITM attacks can be described as fol-
lows: The goal is to attack a cipher E which is composed of two subciphers
E = E′

K1
◦ E′′

K2
with keys K1,K2 and decryption function D = D′′

K2
◦ D′

K1
. The

adversary uses a plaintext/ciphertext pair (P,C) and computes E′′
K2

(P ) under
the set of all possible key values for K2 and stores the results in a table. For the
corresponding ciphertexts, the adversary computes v = D′

K1
(C) for each value

of K1. If v is in the table, the adversary has a key candidate (K1,K2) which can
be verified with further plaintext/ciphertext pairs.

This has a time complexity of 2#K1 + 2#K2 and a memory complexity of
2min{#K1,#K2} compared to exhaustive key search with a time complexity of
2#K1+#K2 and constant memory complexity.

Applying a meet-in-the-middle attack to our construction, would require
an adversary to find a pre-image of the tag by inverting the Merge func-
tion. We show that finding a pre-image of Merge is as hard as exhaustively
guessing the internal state after the initial PRFs in Sect. 4.2. Moreover, as
MergeMAC does not implement an inverse function for the merging function
Merge, we also limit more advanced meet-in-the-middle attacks such as partial
matching/sieve-in-the-middle attacks [BR11], splice and cut attacks [AS09] and
biclique attacks [KRS12].

State Recovery Attacks. The goal of state recovery attacks is to recover
internal state of a cipher or parts thereof. Those attacks are especially powerful
against stream ciphers [MK08], as they may allow an adversary to predict the
remaining key stream. Recovering the internal state in a MAC scheme could
potentially lead to forgery attacks.

In MergeMAC, recovering the internal state before the merging function
Merge would require guessing one of the PRF outputs, while keeping the other
one constant. An adversary can also try to exploit the two XOR operations in
the beginning and end of Merge. However, the π function provides full diffusion
after 3 rounds canceling any correlation between the input and output of π.

Differential Attacks. Differential Cryptanalysis [BS91] is one of the most pow-
erful cryptanalytic techniques. Leurent [Leu16] applied a partitioning technique
on Chaskey, breaking 7 out of 8 rounds. We searched for differential trails of
our π-function using the automated tool CryptoSMT [Ste15]. The tool is based



394 R. Ankele et al.

Table 2. Differential trails for 3 of the π function.

# Rounds Δin(v0, v1, v2, v3) → Δout(v0, v1, v2, v3) Probability

1 (0000, 0000, 8000, 0000) 1
(8000, 0080, 0080, 8001)

2 (1040, 1000, 2000, 2000) 2−5

(8001, 0080, 0080, 8002)
3 (4010, 0010, 0020, 0020) 2−14

(0201, 0A22, 0800, 0302)

on the constraint solver STP and the SAT solver CryptoMiniSat. Table 2 shows
the results for three rounds of the π functions.

However, one can deduce that the reduced-round π-functions are not dif-
ferential secure. Nevertheless, to successfully mount a differential attack on
MergeMAC an adversary needs access to differential pairs at the input and
output of Merge. Since the outputs of the PRFs are unknown an adversary
does not have access to such pairs.

Internal Collisions. An internal collision is defined as any input difference
Δin that maps to a zero output difference Δout = 0. An adversary could use the
information from internal collisions to set up a forgery attack by constructing
message pairs that fulfill the input difference Δin that when colliding lead to the
same tag. We experimentally verified that there are no internal collision in the
merging function Merge with our differential search tool CryptoSMT. Hence,
we defined a zero difference after a selected number of rounds and checked if we
can find any possible input differences that would lead to this all zero difference.
We tested our π-function for up to five rounds and concluded that there are no
internal collisions in our Merge-function.

Rotational Cryptanalysis. Rotational cryptanalysis [KN10] is a generic
cryptanalytic attack against ARX ciphers. Let us consider a pair (x, x ≪ r),
consisting of plaintext x and a rotated plaintext x by r positions. Then, the
pair (x, x ≪ r) forms a rotational pair. Rotational cryptanalysis exploits that a
rotational pair remains steady through binary operations like XOR and rotation.
In MergeMAC the inputs for merging function Merge are uniformly random
and unknown thereby preventing rotational attacks.

Slide Attacks. Slide attacks were introduced by Biryukov and Wagner [BW99]
in 1999 and later extended to advanced slide attacks [BW00]. Both can be used
against ciphers with identical round functions. Accordingly, the number of rounds
for a cipher is irrelevant against slide attacks. In our construction, each round
of the permutation π in our merging function Merge is identical and therefore
vulnerable to slide attacks. However, as we XOR the inputs of the merging



MergeMAC: A MAC for Authentication with Strict Time Constraints 395

function Merge before and after the permutation π, an adversary will not be
able to exploit a slide attack as she would still be required to invert the XOR
operation. Therefore, slide attacks do not pose a threat to our construction.

Rebound Attacks. Rebound attacks were introduced by Mendel et al.
[MRST09] and are an important technique for differential cryptanalysis of hash
functions. While standard rebound attacks are only applicable to AES-like com-
pression functions Khovratovich et al. [KNR10] applied rotational cryptanalysis
with rebound attacks to the SHA-3 finalist Skein with its Threefish compres-
sion function. The general idea behind the attack is to split the compression
function in three parts E = Efw ◦ Ein ◦ Ebw. In the inbound phase, Ein parts of
a differential characteristic that are difficult to satisfy probabilistically are cov-
ered with a match-in-the-middle approach. In the outbound phases, the solutions
from the inbound phases are propagated outwards in both directions, while it
is checked if the characteristic holds. Rebound attacks are no threat to Merge,
as the adversary needs to be able to verify the differentials which is impossible
because the input values are unknown. Moreover, even if an adversary uses an
outbound phase over the initial PRFs, the selection of our MAC function pre-
cludes the existence of any high probability differential trails that an adversary
could use to succeed.

Fixed Points. The permutation in Chaskey, which is structurally the same as
our permutation π, has one fixed point. Since it only contains modular additions
XOR and bit wise rotations the all zero input leads to π(0) = 0. Fixed points
can be used in a differentiability attack as shown by Maurer et al. [MRH04].

For our construction, this would mean that if an adversary can construct a
message leading to an internal all zero state 0 before the application of Merge,
then the tag would also be 0. However, constructing an all zero-state as input to
Merge, means constructing matching PRF outputs. Since each output occurs
uniformly at random an adversary will not be able to find such a plaintext with
a complexity better than 264.

Algebraic Attacks. Higher-order cryptanalysis and zero-sum distinguisher
were introduced by Lai in 1994 [Lai94] and first applied to block ciphers by Knud-
sen in 1995 [Knu95]. In 2009, Dinur and Shamir introduced Cube attacks [DS09].
All of those algebraic attacks exploit a low algebraic degree of a block cipher
to attack it. In our merging function Merge, the only non-linear operation is
a modular addition. This modular addition ensures that the algebraic degree
grows sufficiently for each output bit. Furthermore, as each input to the merging
function Merge is first processed by the underlying block cipher of the PRFs,
we can ensure that the degree of the input bits are already sufficiently large (i.e.
the degree is n − 1, where n is the block size of the block cipher of the PRFs).



396 R. Ankele et al.

5 Performance

We benchmarked both Chaskey and our function Merge using SUPER-
COP [Ber16] on an Intel i7-4600U CPU running at 2.10 GHz. While this is not a
platform requiring lightweight cryptography we are only interested in comparing
relative timings for which it is sufficient. We give the median of required cycles
for Chaskey for several input sizes in Table 3. As is to be expected, our sim-
plified version is faster than Chaskey on even the shortest messages since we
only apply the round function three times. The median of the required cycles for
Merge was 38 which, compared to the second row of Table 3, is close to 3 out
of 8 rounds. The difference becomes more pronounced for longer messages. To
consider the overhead of our construction let t1, t2 be the time required for P1

and P2 and let tMerge be the time required by the merging function. So in the
least favorable comparison, when the entire message would fit into one block,
our construction requires time t1+ t2+ tMerge where simply using P1 as a MAC
would only require t1. Using our performance values for Chaskey this would
be an overhead of 132%. However, since P1 and P2 can execute in parallel this
immediately comes down to only 32%. For a message size of over 16 bytes, so at
least two blocks, and leveraging parallel execution our construction is already as
fast as the simple MAC. In the ideal case when both message parts are known
and the PRF outputs are cached our construction is three times faster. Note
that in the case of Chaskey the overhead required by our merging function is
less than the overhead required for creating the padding for messages as shown
in the first line of Table 3.

Table 3. Required cycles for hashing with Chaskey

Input size Median cycles

0 153

16 111

32 147

64 216

128 354

256 639

512 1182

1024 2259

2048 4461

4096 8835

For the CAN bus application this means that in the case of a correct counter
our construction will at most have an overhead of 32%. In case of an incor-
rect counter trying additional values only costs one third of a normal MAC
evaluation. In the worst case, if the counter has wrapped many times, our con-
struction would require only one third of the time.



MergeMAC: A MAC for Authentication with Strict Time Constraints 397

6 Conclusions

We presented MergeMAC, a MAC construction specifically tailored to accom-
plish authenticated communication in very constrained environments with lim-
ited bandwidth and the need to satisfy strict time constraints. The construction
is based on a merging function for which we conducted a thorough cryptanal-
ysis and provided performance figures. We demonstrated the applicability of
MergeMAC for authenticating messages on the CAN bus. In case of different
security requirements it is perfectly possible to instantiate this MAC construc-
tion with different PRFs like AES-CMAC and a suitable merging function.

One of the questions left for future work is whether there are more efficient
merging functions that still meet the security requirements as defined in Sect. 3.
The merging function Merge we defined merges two pre-MACs into the final
MAC. For other use cases it is possible to canonically increase the number of
pre-MACs.

References

[AS09] Aoki, K., Sasaki, Y.: Preimage attacks on one-block MD4, 63-step MD5 and
more. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol.
5381, pp. 103–119. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-04159-4_7

[BCK96] Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message
authentication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
1–15. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-
5_1

[Ber16] Bernstein, D.J.: Supercop (2016). https://bench.cr.yp.to/supercop.html
[BGR95] Bellare, M., Guérin, R., Rogaway, P.: XOR MACs: new methods for mes-

sage authentication using finite pseudorandom functions. In: Coppersmith,
D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 15–28. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-44750-4_2

[BL16] Bhargavan, K., Leurent, G.: On the practical (in-)security of 64-bit block
ciphers: collision attacks on HTTP over TLS and OpenVPN. In: Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, CCS 2016, pp. 456–467. ACM, New York (2016)

[BR02] Black, J., Rogaway, P.: A block-cipher mode of operation for paralleliz-
able message authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002.
LNCS, vol. 2332, pp. 384–397. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-46035-7_25

[BR11] Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: crypt-
analysis of the lightweight block cipher KTANTAN. In: Biryukov, A., Gong,
G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7_16

[BS91] Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosys-
tems. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol.
537, pp. 2–21. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-
38424-3_1

https://doi.org/10.1007/978-3-642-04159-4_7
https://doi.org/10.1007/978-3-642-04159-4_7
https://doi.org/10.1007/3-540-68697-5_1
https://doi.org/10.1007/3-540-68697-5_1
https://bench.cr.yp.to/supercop.html
https://doi.org/10.1007/3-540-44750-4_2
https://doi.org/10.1007/3-540-46035-7_25
https://doi.org/10.1007/3-540-46035-7_25
https://doi.org/10.1007/978-3-642-19574-7_16
https://doi.org/10.1007/3-540-38424-3_1
https://doi.org/10.1007/3-540-38424-3_1


398 R. Ankele et al.

[BW99] Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L. (ed.) FSE 1999.
LNCS, vol. 1636, pp. 245–259. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48519-8_18

[BW00] Biryukov, A., Wagner, D.: Advanced slide attacks. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-45539-6_41

[CMK+11] Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Savage,
S., Koscher, K., Czeskis, A., Roesner, F., Kohno, T., et al.: Comprehensive
experimental analyses of automotive attack surfaces. In: USENIX Security
Symposium, San Francisco (2011)

[DH77] Diffie, W., Hellman, M.E.: Special feature exhaustive cryptanalysis of the
NBS data encryption standard. Computer 10(6), 74–84 (1977)

[DR05] Daemen, J., Rijmen, V.: A new MAC construction ALRED and a specific
instance ALPHA-MAC. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005.
LNCS, vol. 3557, pp. 1–17. Springer, Heidelberg (2005). https://doi.org/
10.1007/11502760_1

[DS09] Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials. In:
Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 278–299. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_16

[Dwo16] Dworkin, M.J.: Recommendation for block cipher modes of operation: the
CMAC mode for authentication. Special Publication (NIST SP)-800-38B
(2016)

[IK03] Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Johansson, T.
(ed.) FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-39887-5_11

[ISO11] Message Authentication Codes (MACs) - Part 1: Mechanisms Using a Block
Cipher. Standard, International Organization for Standardization, Geneva,
CH, March 2011

[KCR+10] Koscher, K., Czeskis, A., Roesner, F., Patel, S., Kohno, T., Checkoway, S.,
McCoy, D., Kantor, B., Anderson, D., Shacham, H., et al.: Experimental
security analysis of a modern automobile. In: 2010 IEEE Symposium on
Security and Privacy (SP), pp. 447–462. IEEE (2010)

[KN10] Khovratovich, D., Nikolić, I.: Rotational cryptanalysis of ARX. In: Hong,
S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 333–346. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4_19

[KNR10] Khovratovich, D., Nikolić, I., Rechberger, C.: Rotational rebound attacks
on reduced skein. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477,
pp. 1–19. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
17373-8_1

[Knu95] Knudsen, L.R.: Truncated and higher order differentials. In: Preneel, B.
(ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60590-8_16

[KRS12] Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages:
attacks on Skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) FSE
2012. LNCS, vol. 7549, pp. 244–263. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34047-5_15

[Lai94] Lai, X.: Higher order derivatives and differential cryptanalysis. In: Blahut,
R.E., Costello, D.J., Maurer, U., Mittelholzer, T. (eds.) Communications
and Cryptography, pp. 227–233. Springer, Boston (1994). https://doi.org/
10.1007/978-1-4615-2694-0_23

https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/11502760_1
https://doi.org/10.1007/11502760_1
https://doi.org/10.1007/978-3-642-01001-9_16
https://doi.org/10.1007/978-3-540-39887-5_11
https://doi.org/10.1007/978-3-642-13858-4_19
https://doi.org/10.1007/978-3-642-17373-8_1
https://doi.org/10.1007/978-3-642-17373-8_1
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/978-3-642-34047-5_15
https://doi.org/10.1007/978-3-642-34047-5_15
https://doi.org/10.1007/978-1-4615-2694-0_23
https://doi.org/10.1007/978-1-4615-2694-0_23


MergeMAC: A MAC for Authentication with Strict Time Constraints 399

[Lan11] Langner, R.: Stuxnet: dissecting a cyberwarfare weapon. IEEE Secur. Priv.
9(3), 49–51 (2011)

[Leu16] Leurent, G.: Improved differential-linear cryptanalysis of 7-round Chaskey
with partitioning. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016.
LNCS, vol. 9665, pp. 344–371. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-49890-3_14

[LM91] Lai, X., Massey, J.L.: A proposal for a new block encryption standard.
In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404.
Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46877-3_35

[LMM91] Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential crypt-
analysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp.
17–38. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-46416-
6_2

[MK08] Maximov, A., Khovratovich, D.: New state recovery attack on RC4. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 297–316. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_17

[MMVH+14] Mouha, N., Mennink, B., Van Herrewege, A., Watanabe, D., Preneel, B.,
Verbauwhede, I.: Chaskey: an efficient MAC algorithm for 32-bit micro-
controllers. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781,
pp. 306–323. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13051-4_19

[MRH04] Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility
results on reductions, and applications to the random oracle methodol-
ogy. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_2

[MRST09] Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound
attack: cryptanalysis of reduced whirlpool and Grøstl. In: Dunkelman, O.
(ed.) FSE 2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03317-9_16

[RS04] Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: defi-
nitions, implications, and separations for preimage resistance, second-
preimage resistance, and collision resistance. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 371–388. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-25937-4_24

[RSWO17] Ronen, E., Shamir, A., Weingarten, A.O., O’Flynn, C.: IoT goes nuclear:
creating a ZigBee chain reaction. In: 2017 IEEE Symposium on Security
and Privacy (SP), pp. 195–212, May 2017

[Ste15] Kölbl, S.: CryptoSMT: an easy to use tool for cryptanalysis of symmetric
primitives (2015). https://github.com/kste/cryptosmt

[Tur08] Turner, J.M.: The keyed-hash message authentication code (HMAC). Fed-
eral Information Processing Standards Publication (2008)

https://doi.org/10.1007/978-3-662-49890-3_14
https://doi.org/10.1007/978-3-662-49890-3_14
https://doi.org/10.1007/3-540-46877-3_35
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1007/3-540-46416-6_2
https://doi.org/10.1007/978-3-540-85174-5_17
https://doi.org/10.1007/978-3-319-13051-4_19
https://doi.org/10.1007/978-3-319-13051-4_19
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-642-03317-9_16
https://doi.org/10.1007/978-3-540-25937-4_24
https://github.com/kste/cryptosmt


KangarooTwelve: Fast Hashing Based
on Keccak-p

Guido Bertoni3, Joan Daemen1,2, Michaël Peeters1, Gilles Van Assche1(B),
Ronny Van Keer1, and Benoît Viguier2

1 STMicroelectronics, Diegem, Belgium
gilles.vanassche@st.com

2 Radboud University, Nijmegen, The Netherlands
3 Security Pattern, Brescia, Italy

Abstract. We present KangarooTwelve, a fast and secure arbi-
trary output-length hash function aiming at a higher speed than the
FIPS 202’s SHA-3 and SHAKE functions. While sharing many features
with SHAKE128, like the cryptographic primitive, the sponge construc-
tion, the eXtendable Output Function (XOF) and the 128-bit security
strength, KangarooTwelve offers two major improvements over its
standard counterpart. First it has a built-in parallel mode that efficiently
exploits multi-core or SIMD instruction parallelism for long messages,
without impacting the performance for short messages. Second, relying
on the cryptanalysis results on Keccak over the past ten years, we
tuned its permutation to require twice less computation effort while still
offering a comfortable safety margin. By combining these two changes
KangarooTwelve consumes less than 0.55 cycles/byte for long mes-
sages on the latest Intel�’s SkylakeX architectures. The generic security
of KangarooTwelve is guaranteed by the use of Sakura encoding
for the tree hashing and of the sponge construction for the compression
function.

Keywords: Symmetric cryptography · Hash function · Tree hashing
Keccak · Software performance

1 Introduction

Most cryptography involves careful trade-offs between performance and secu-
rity. The performance of a cryptographic function can be objectively measured,
although it can yield a wide spectrum of figures depending on the variety of
hardware and software platforms that the users may be interested in. Out of
these, performance on widespread processors is easily measurable and naturally
becomes the most visible feature. Security on the other hand cannot be mea-
sured. The best one can do is to obtain security assurance by relying on public
scrutiny by skilled cryptanalysts. This is a scarce resource and the gaining of

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 400–418, 2018.
https://doi.org/10.1007/978-3-319-93387-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_21&domain=pdf


KangarooTwelve: Fast Hashing Based on Keccak-p 401

insight requires time and reflection. With the growing emphasis on provable secu-
rity reduction of modes, the fact that the security of the underlying primitives
is still based on public scrutiny should not be overlooked.

In this paper we present the hash function KangarooTwelve, or more
exactly an eXtendable Output Function (XOF). KangarooTwelve makes use
of a tree hash mode with Sakura encoding [9,30] and the sponge construc-
tion [7], both proven secure. Its underlying permutation is a member of the
Keccak-p[1600, nr] family, differing from that of Keccak only in the num-
ber of rounds. Since its publication in 2008, the round function of Keccak
was never tweaked [6]. Moreover, as for most symmetric cryptographic primi-
tives, third-party cryptanalysis has been applied to reduced-round versions of
Keccak. Hence KangarooTwelve’s security assurance directly benefits from
nearly ten years of public scrutiny, including all cryptanalysis during and after
the SHA-3 competition [13].

KangarooTwelve gets its low computational workload per bit from using
the Keccak-f [1600] permutation reduced to 12 rounds. Clearly, 12 rounds pro-
vide less safety margin than the full 24 rounds in SHA-3 and SHAKE func-
tions. Still, the safety margin provided by 12 rounds is comfortable as, e.g., the
best published collision attacks at time of writing break Keccak only up to 6
rounds [15,16,36,37].

The other design choice that gives KangarooTwelve great speed for long
messages is the use of a tree hash mode. This mode is transparent for the user in
the sense that the message length fully determines the tree topology. Basically,
the mode calls an underlying sponge-based compression function for each 8192-
byte chunk of message and finally hashes the concatenation of the resulting
digests. We call this the final node growing approach. Clearly, the chunks can
be hashed in parallel.

The main advantage of the final node growing approach is that implementers
can decide on the degree of parallelism their programs support. A simple imple-
mentation could compute everything serially, while another would process two,
four or more branches in parallel using multiple cores, or more simply, a SIMD
instruction set such as the Intel� AVX2TM. Future processors can even con-
tain an increasing number of cores, or wider SIMD registers as exemplified by
the recent AVX-512TM instruction set, and KangarooTwelve will be readily
able to exploit them. The fixed length of the chunks and the fact that the tree
topology is fully determined by the message length improves interoperability:
The hash result is independent of the amount of parallelism exploited in the
implementation.

KangarooTwelve is not the only Keccak-based parallel hash mode. In
late 2016, NIST published the SP 800-185 standard, including a parallelized hash
mode called ParallelHash [31]. Compared to ParallelHash, KangarooTwelve
improves on the speed for short messages. ParallelHash compresses message
chunks to digests in a first stage and compresses the concatenation of the digests
in a second stage. This two-stage hashing introduces an overhead that is costly
for short messages. In KangarooTwelve we apply a technique called kangaroo



402 G. Bertoni et al.

hopping : It merges the hashing of the first chunk of the message and that of the
chaining values of the remaining chunks [9]. As a result, the two stages reduce
to one if the input fits in one chunk with no overhead whatsoever.

Finally, KangarooTwelve is a concrete application of the Sakura encod-
ing, which yields secure tree hash modes by construction [9].

After setting up some notation conventions in Sect. 2, we specify Kanga-
rooTwelve in Sect. 3. Section 4 gives a rationale and Sect. 5 introduces a closely
related variant called MarsupilamiFourteen. In Sect. 6, we discuss implemen-
tation aspects and display benchmarks for recent processors.

2 Notation

A bit is an element of Z2. A string of bits is denoted using single quotes, e.g., ‘0’
or ‘111’. The concatenation of two strings a and b is denoted a||b. The truncation
of a string s to its first n bits is denoted �s�n. The n times repetition of a bit ‘s’
is denoted ‘sn’, e.g. ‘1104’ = ‘110000’. The empty string is denoted as ∗.

A byte is a string of 8 bits. The byte b0, b1, . . . , b7 can also be represented by
the integer value

∑
i 2

ibi written in hexadecimal. E.g., the bit string 11110010
can be equivalently written as 0x4F as depicted in Fig. 1. The function enc8(x)
encodes the integer x, with 0 ≤ x ≤ 255, as a byte with value x.

The length in of a byte string s is denoted ‖s‖. (0x00)n denotes the n times
repetition of the byte 0x00.

Fig. 1. Example of byte representation

3 Specifications of KangarooTwelve

KangarooTwelve is an eXtendable Output Function (XOF). It takes as input
a message M and an optional customization string C, both byte strings of vari-
able length.

KangarooTwelve produces unrelated outputs on different couples (M,C).
The customization string C is meant to provide domain separation, namely,
for two different customization strings C1 �= C2, KangarooTwelve gives two
independent functions of M . In practice, C is typically a short string, such as a
name, an address or an identifier (e.g., URI, OID). KangarooTwelve naturally
maps to a XOF with a single input string M by setting the customization string
input C to the empty string. This allows implementing it with a classical hash
function API.

As a XOF, the output of KangarooTwelve is unlimited, and the user can
request as many output bits as desired. It can be used for traditional hashing
simply by generating outputs of the desired digest size.

We provide a reference implementation and test vectors in [11].



KangarooTwelve: Fast Hashing Based on Keccak-p 403

3.1 The Inner Compression Function F

The core of KangarooTwelve is the Keccak-p[1600, nr = 12] permutation,
i.e., a version of the permutation used in SHAKE and SHA-3 instances reduced
to nr = 12 rounds [30]. We build a sponge function F on top of this permutation
with capacity set to c = 256 bits and therefore with rate r = 1600 − c = 1344.
It makes use of multi-rate padding, indicated by pad10∗1. Following [30], this is
expressed formally as:

F = sponge[Keccak-p[1600, nr = 12],pad10∗1, r = 1344].

On top of the sponge function F , KangarooTwelve uses a Sakura-
compatible tree hash mode, which we describe shortly.

3.2 The Merged Input String S

First, we merge M and C to a single input string S in a reversible way by
concatenating:

– the input message M ;
– the customization string C;
– the length in bytes of C encoded using length_encode (‖C‖) as in

Algorithm 1.

Algorithm 1. The function length_encode(x)
Input: an integer x in the range 0 ≤ x ≤ 256255 − 1
Output: a byte string

Let l be the smallest integer in the range 0 ≤ l ≤ 255 such that x < 256l

Let x =
∑l−1

i=0 xi256
i with 0 ≤ xi ≤ 255 for all i

return enc8(xl−1)|| . . . ||enc8(x1)||enc8(x0)||enc8(l)

Examples:
length_encode(0) returns 0x00
length_encode(12) returns 0x0C||0x01
length_encode(65538) returns 0x01||0x00||0x02||0x03

Then, the input string S is cut into chunks of B = 8192 bytes, i.e.,

S = S0||S1|| . . . ||Sn−1,

with n =
⌈

‖S‖
B

⌉
and where all chunks except the last one must have exactly B

bytes. Note that there is always one block as S consists of at least one byte.



404 G. Bertoni et al.

3.3 The Tree Hash Mode

When ‖S‖ > B, we have n > 1 and KangarooTwelve builds a tree with the
following final node Node∗ and inner nodes Nodei with 1 ≤ i ≤ n − 1:

Nodei = Si||‘110’
CVi = �F (Nodei)�256
Node∗ = S0||‘11062’||CV1|| . . . ||CVn−1||length_encode(n − 1)

||0xFF||0xFF||‘01’
KangarooTwelve(M,C) = F (Node∗).

The chaining values CVi have length c = 256 bits. This is illustrated in Fig. 2.

Fig. 2. Schematic of KangarooTwelve for ‖S‖ > B, with arrows denoting calls to F .

When ‖S‖ ≤ B, we have n = 1 and the tree reduces to its single final node
Node∗ and KangarooTwelve becomes:

Node∗ = S||‘11’
KangarooTwelve(M,C) = F (Node∗).

3.4 Security Claim

We make a flat sponge claim [8] with 255 bits of claimed capacity in Claim 1.
Informally, it means that KangarooTwelve shall offer the same security
strength as a random oracle whenever that offers a strength below 128 bits
and a strength of 128 bits in all other cases. We discuss the implications of the
claim more in depth in Sect. 4.1.



KangarooTwelve: Fast Hashing Based on Keccak-p 405

Claim 1 (Flat Sponge Claim [8]). The success probability of any attack on
KangarooTwelve shall not be higher than the sum of that for a random oracle
and

1 − e− N2

2256 ,

with N the attack complexity in calls to Keccak-p[1600, nr = 12] or its inverse.
We exclude from the claim weaknesses due to the mere fact that the function can
be described compactly and can be efficiently executed, e.g., the so-called random
oracle implementation impossibility [24], as well as properties that cannot be
modeled as a single-stage game [33].

Note that 1 − e− N2

2256 < N2

2256 .

4 Rationale

In this section, we provide some more in-depth explanations on the design choices
in KangarooTwelve.

4.1 Implications of the Security Claim

The flat sponge claim covers all attacks up to a given security strength of 128
bits. Informally, saying that a cryptographic function has a security strength of
s bits means that no attacks exist with complexity N and success probability p
such that N/p < 2s [26].

The claim covers quasi all practically revelant security of Kanga-
rooTwelve including that of traditional hashing: collision, preimage and second
preimage resistance. To achieve 128-bit security strength, the output n must be
chosen long enough so that there are no generic attacks (i.e., also applicable to
a random oracle) that violate 128-bit security. So for 128-bit (second) preimage
security the output should be at least 128 bits, and for 128-bit collision security
the output should be at least 256 bits.

For many primitives the security strength that can be claimed degrades under
multi-target attacks by log2 M bits with M the number of targets. This is not
the case for the flat sponge claim. As an example, let us take the case of a
multi-target preimage attack versus a single-target preimage attack.

– In a (single-target) preimage attack, the adversary is given a n-bit challenge
y and has to find an input x such that �f(x)�n = y. A random oracle offers
n bits of security strength: After N attempts, the total success probability is
p with p ≈ N2−n. So we have that N/p ≈ 2n for N < 2n and the security
strength for a random oracle is n. For KangarooTwelve we claim security
strength min (n, 128) bits in this case.

– In an M -target preimage attack, the adversary is given M challenges, y1 to
yM , and she succeeds if she find an input x such that �f(x)�n = yi for any
of the challenges. A random oracle with N attempts has success probability
p with of p ≈ MN2−n, and hence N/p ≈ 2n/M . So the security strength
for the random oracle reduces to n − logM bits. For KangarooTwelve we
claim security strength min (n − logM, 128) bits in this case.



406 G. Bertoni et al.

Clearly, the reduction in security due to M targets is generic and independent
of the security strength. It can be compensated for by increasing the output
length n by logM bits.

4.2 Security of the Mode

The security of the mode, or the generic security, relies on both the sponge
construction and on the tree hash mode. The latter is Sakura-compatible so
that it automatically satisfies the conditions of soundness and guarantees security
against generic attacks, see [9, Theorem 1] and [10, Theorem 1]. In both cases,
the bottleneck is the ability to generate collisions in the chaining values, or
equivalently, collisions of the inner hash function.

The probability of inner collisions in the sponge construction is N2/2c+1,
with N the number of blocks [7]. Regarding the collisions in the chaining values
of the tree hash mode, the probability is at most q2/2c+1 [10, Theorem 1] with q
the number of queries to F . Since each query to F implies at least one block to be
processed by the sponge construction, we have q ≤ N and we can bound the sum
of the two probabilities as N2/2c+1 + q2/2c+1 ≤ N2/2(c−1)+1. This expression
is equivalent as if c was one bit less than with a single source of collisions, and
Claim 1 takes this into account by setting the claimed capacity to c − 1 = 255
bits.

We formalize the security of KangarooTwelve’s mode of operation in the
following theorem. We can see the combination of the tree hash mode and the
sponge construction as applied in KangarooTwelve as a mode of operation
of a permutation and call it K.

Theorem 1. The advantage of differentiating K, where the underlying permu-
tation is uniformly chosen among all the possible 1600-bit permutations, is upper
bounded by

2N2 + N

2c+1
,

with N the number of calls to the underlying permutation.

Proof. By the triangle inequality, the advantage in distinguishing K calling a
random permutation from a random oracle is upper bounded by the sum of two
advantages:
– that of distinguishing the tree hash mode calling as inner function a random

function F from a random oracle;
– that of distinguishing the sponge construction calling a random permutation

from a random function.

The former advantage is upper bounded by q2/2c+1, where q is the number
of calls to F . This follows from Theorem 1 of [10] for any sound tree hash mode,
and from Theorem 1 of [9] that says that any Sakura-compatible tree hash
mode is sound. We show that the tree hash mode is indeed Sakura-compatible
in Sect. 4.3.

Following Theorem 2 of [7], the latter advantage is upper bounded by (N2 +
N)/2c+1. Adding the two bounds and using q ≤ N proves our theorem. 	




KangarooTwelve: Fast Hashing Based on Keccak-p 407

4.3 Sakura Compatibility

To show Sakura-compatibility, we use the following terminology. The inputs
to the underlying hash function are called nodes. Each node consists of one or
more hops, and a hop is either a chunk of the message or a sequence of chaining
values.

The encoding of the nodes follows [9, Sect. 3.1]:

– When n = 1, the tree reduces to a single node. This is the final node, and it
contains a single message hop consisting of the input string S followed by the
frame bits “message hop” ‘1’ and “final node” ‘1’.

– When n > 1, there are inner nodes and the final node.
• Each inner node contains a message hop consisting of a chunk Si followed

by the frame bit “message hop” ‘1’; a simple padding bit ‘1’ and “inner
node” ‘0’.

• The final node contains two hops: a message hop followed by a chaining
hop. The message hop is the first chunk of the input string S0 followed
by the frame bit “message hop” ‘1’ and a padding string ‘1′||‘062’ to align
the chaining hop to 64-bit boundaries. The chaining hop consists of the
concatenation of the chaining values, the coded number of chaining values
(length_encode(n − 1)), the indication that there was no interleaving
(I = ∞, coded with the bytes 0xFF||0xFF) and the frame bits “chaining
hop” ‘0’ and “final node” ‘1’.

4.4 Choice of B

We fix the size of the message chunks to make KangarooTwelve a function
without parameters. This frees the user from the burden of this technical choice
and facilitates interoperability.

In particular, we chose B = 8192. First, we chose a power of two as this can
help fetching bulk data in time-critical applications. For instance, when hashing
a large file, we expect the implementation to be faster and easier if the chunks
contain a whole number of disk sectors.

As for the order of magnitude of B, we took into account following consider-
ations. For each B-byte block there is a 32-byte chaining value in the final node,
giving rise to a relative processing overhead of about 32/B. Choosing B = 213,
this is only 2−8 ≈ 0.4%.

Another concern is the number of unused bytes in the last r-bit block of the
input to F . We have r = 1344 bits or R = r/8 = 168 bytes. When cutting the
chunk Si into blocks of R bytes, it leaves W = −(B + 1) mod R unused bytes
in the last block. It turns out that W reaches a minimum for B = 27+6n with
n ≥ 0 an integer. Its relative impact, W

B , decreases as B increases. For small
values, e.g., B ∈ {128, 256, 512}, this is about 30%, while for B = 8192 it drops
below 0.5%.

There is a tension between a larger B and the exploitable parallelism. Increas-
ing B would further reduce these two overhead factors, but it would also delay
the benefits of parallelism to longer messages.



408 G. Bertoni et al.

Finally, the choice of B bounds the degree of parallelism that an implemen-
tation can fully exploit. An implementation can in principle compute the final
node and leaves in parallel, but if more than B/32 leaves are processed at once,
the final node grows faster than B bytes at a time. The chosen value of B allows
a parallelism up to degree B/32 = 256.

4.5 Choice of the Number of Rounds

Opting for the Keccak-p[1600, nr = 12] permutation is a drastic reduction in
the number of rounds compared to the nominal Keccak and to the SHA-3
standard. Still, there is ample evidence from third-party cryptanalysis that the
switch to Keccak-p[1600, nr = 12] leaves a safety margin similar to the one in
the SHA-2 functions.

Currently, the best collision attack applicable to KangarooTwelve or any
SHA-3 instance works only when the permutation is reduced to 5 rounds [36].
The attack extends to 6 rounds if more degrees of freedom are available and
requires a reduction of the capacity from 256 to 160 bits. Preimage attacks
reach an even smaller number of rounds [21]. Hence our proposal has a safety
margin of 7 out of 12 rounds w.r.t. collision and (second) preimage resistance.

Structural distinguishers is the term used for properties of a specific function
that are very unlikely to be present in a random function. Zero-sum distringuish-
ers were applied to the Keccak-p[1600, nr] family of permutations in a number
of publications [3,14,21]. They allow producing a set of input and of output
values that both sum to zero, and this in about half the time it would be needed
on a random permutation with only black-box access. These structural distin-
guishers are of nice theoretical interest, but they do not pose a threat as they do
not extend to distringuishers on sponge functions that use Keccak-p[1600, nr],
see, e.g., [35].

The structural distinguisher on the Keccak sponge function that does reach
the highest number of rounds is the keystream prediction by Dinur et al. [17].
It works when the permutation is reduced to 9 rounds, with a time and data
complexity of 2256, and allows to predict one block of output. This is above the
security claim of KangarooTwelve, but the same authors propose a variant
that works on 8 rounds with a time and data complexity of 2128, leaving a
safety margin of 4 rounds or 33% for KangarooTwelve against this rather
academic attack. Examples of structural distinguishers for the Keccak sponge
function with practical complexity and reaching the highest number of rounds
are reported by Huang et al. and work up to 7 rounds [22].

In comparison, SHA-256 has a collision attack on 31 (out of 64) steps and
its compression function on 52 steps [23,25]. SHA-512’s compression function
admits collision attacks with practical complexities for more than half of its
steps [18].



KangarooTwelve: Fast Hashing Based on Keccak-p 409

5 MarsupilamiFourteen

While KangarooTwelve claims a strong notion of 128-bit security strength,
and we believe any security beyond it is purely of theoretical interest, some users
may wish to use a XOF or hash function with higher security strength. In partic-
ular, when defining a cipher suite or protocol aiming for 256-bit security strength,
all cryptographic functions shall have at least 256-bit security. Coming forward
to such requests, in this section we present a variant of KangarooTwelve with
511-bit claimed capacity.

Addressing a claimed capacity of 511 bits requires an increase of both the
capacity in F and length of chaining values in the tree hash mode to at least
512 bits. Taking exactly c = 512 bits is sufficient for resisting generic attacks
below the claim. As for Keccak-p-specific attacks, the increase of the claimed
capacity to 511 bits increases the available budget of attackers and hence reduces
the safety margin. In many types of attack, adding a round in the primitive
(permutation or block cipher) increases the attack complexity by a large factor.
Or the other way round, if one wishes to keep the same safety margin, an increase
of the attack complexity must be compensated by adding rounds.

We did the exercise and the result is MarsupilamiFourteen. It has the
same specifications as KangarooTwelve, with the following exceptions:

– The capacity and chaining values are 64-byte long instead of 32 bytes. This
reduces the sponge rate in F to 136 bytes.

– The number of rounds of Keccak-p[1600, nr] is 14 instead of 12.
– The claimed capacity in the flat sponge claim is 511 bits instead of 255.

The computational workload per bit is roughly 45% higher than that of Kan-
garooTwelve.

Naturally, even thicker safety margins are achieved with the standard
FIPS 202 instances or ParallelHash [30,31].

6 Implementation

We implemented KangarooTwelve in C and made it available in the Keccak
code package (KCP) [12]. We now review different aspects of this implementation
and its performance.

6.1 Byte Representation

KangarooTwelve assumes that its inputs M and C are byte strings. Sakura
encoding works at the bit level and adds padding and suffixes so that the input
to the function F is a string of bits whose length is in general not a multiple of
8.

It is common practice in implementations of Keccak to represent the last
few bits of a string as a delimited suffix [12]. The delimited suffix is a byte that
contains the last |X| mod 8 bits of a string X, with |X| the length of X in bits,



410 G. Bertoni et al.

followed by the delimiter bit ‘1’, and ending with the necessary number of bits ‘0’
to reach a length of 8 bits. When absorbing the last block in the sponge function
F , the delimiter bit coincides with the first bit ‘1’ of the pad10∗1 padding rule.
An implementation can therefore process the first �|X|/8� bytes of the string S
and, in the last block, simply add the delimited suffix and the second bit of the
pad10∗1 padding rule at the last position of the outer part of the state (i.e., at
position r − 1, with r the rate).

Following the convention in Sect. 2, the delimited suffix of a string with last
bits (s0, . . . , sn−1) can be represented by the value 2n +

∑n−1
i=0 si2i in hexadec-

imal. For KangarooTwelve, this concretely means that the final node with
‖S‖ ≤ B has suffix ‘11’ and delimited suffix 0x07. With ‖S‖ > B the intermedi-
ate nodes with trailing bits ‘110’ use 0x0B (as depicted in Fig. 3), and the final
node ending with ‘01’ will have 0x06 as delimited suffix.

Fig. 3. Example of delimited suffix

On a similar note, the 64-bit string ‘11062’ in the final node is represented
by the bytes 0x03||(0x00)7, still following the convention in Sect. 2.

This approach is taken by the Internet Research Task Force RFC draft
describing KangarooTwelve [38] and in the reference source code in [11].

6.2 Structuring the Implementation

The implementation has an interface that accepts the input message M in pieces
of arbitrary sizes. This is useful if a file, larger than the memory size, must be
processed. The customization string C can be given at the end.

We have integrated the KangarooTwelve code in KCP as illustrated
on Fig. 4. In particular, we instantiate the sponge construction on top of
Keccak-p[1600, nr = 12] to implement the function F , at least to compute the
final node. The function F on the leaves is computed as much in parallel as pos-
sible, i.e., if at least 8B input bytes are given by the caller, it uses a function that
computes 8 times Keccak-p[1600, nr = 12] in parallel; if it is not available and if
at least 4B bytes are given, it computes 4×Keccak-p[1600, nr = 12] in parallel;
and so on. If no parallel implementation exists for the given platform, or if not
enough bytes are given by the caller, it falls back on a serial implementation like
for the final node.

The KCP foresees that the serial and parallel implementations of the
Keccak-p permutation can be optimized for a given platform. In contrast, the
code for the tree hash mode and the sponge construction is generic C, without
optimizations for specific platforms, and it accesses the optimized permutation-
level functions through an interface called SnP (for a single permutation) or
PlSnP (for permutations computed in parallel) [12].



KangarooTwelve: Fast Hashing Based on Keccak-p 411

Fig. 4. The structure of the code implementing KangarooTwelve in the KCP.

To input large messages M , the state to maintain between two calls internally
uses two queues: one for the final node and one for the current leaf. To save
memory, the input bytes are absorbed directly into the state of F as they arrive.
Hence, the state reduces to two times the state of F . Of course, if a message is
known to be smaller than or equal to B bytes, one could further save one queue.

6.3 256-bit SIMD

Current mainstream PC processors, in the Intel� Haswell and Skylake families,
support a 256-bit SIMD instruction set called AVX2TM. We can exploit it to
compute 4 × Keccak-p[1600, nr = 12] efficiently, even on a single core.

On an Intel� CoreTM i5-6500 (Skylake), we measured that one evaluation of
Keccak-p[1600, nr = 12] takes about 450 cycles, while 2 in parallel about 730
cycles and 4×Keccak-p[1600, nr = 12] about 770 cycles. This does not include
the time needed to add the input bytes to the state. Yet, this clearly points out
that the time per byte decreases with the degree of parallelism.

Figure 5 displays the number of cycles for input messages up to 150,000 bytes.
Microscopically, the computation time steps up for every additional R = 168
bytes, but this is not visible on the figure. The time needed to hash messages
of length smaller than 168 bytes thus represents the smallest granularity and is
reported in Table 1. Note that if many very short messages have to be processed,
they can be batched so as to use a parallel implementation. This case is also
reported in Table 1.

Macroscopically, when ‖S‖ < B, the time is a straight line with a slope of
about 2.89 cycles/byte, i.e., the speed for F implemented serially. At ‖S‖ =
B = 8192, there is a slight bump (a) as the tree gets a leaf, which causes
an extra evaluation of Keccak-p[1600, nr = 12]. When ‖S‖ = 3B = 24,576,
two leaves can be computed in parallel and the number of cycles drops. When
‖S‖ = 5B = 40, 960, four leaves can be computed in parallel and we see another
drop. From then on, the same pattern repeats and one can easily identify the
slopes of serial, ×2 and ×4 parallel implementations of Keccak-p[1600, nr = 12].

In our implementation, the final node is always processed with a serial imple-
mentation. In principle, a more advanced implementation could process the final
node in parallel with the leaves. In more details, it would process the first chunk
S0 in parallel with the first few leaves, and it would buffer about B bytes of
chaining values and so as to process them in parallel with leaves. However, at



412 G. Bertoni et al.

Table 1. The overall speed for very short messages (‖S‖ < 168) in cycles, very short
messages when batched in cycles/message, for short messages (‖S‖ ≤ 8192) and for
long (‖S‖ � 8192) messages in cycles/byte. The figures assume a single core in each
case.

Intel�CoreTM Very short m. Batched v.s.m. Short m. Long m.

Intel�CoreTM i5-4570 (Haswell) 618 c 242 c/m 3.68 c/b 1.44 c/b

Intel�CoreTM i5-6500 (Skylake) 486 c 205 c/m 2.89 c/b 1.22 c/b

Intel�CoreTM i7-7800X (SkylakeX) 395 c 92 c/m 2.35 c/b 0.55 c/b

this point, we preferred code simplicity over speed optimization. Similarly, one
could in principle remove the peaks of Fig. 5 and make it monotonous. It could
be achieved by using, e.g., the fast 4 × Keccak-p[1600, nr = 12] implementation
even if there are less than 4B bytes available, with some dummy input bytes.

cy
cl

es

input length (in bytes)

0

50000

100000

150000

200000

250000

300000

0 20000 40000 60000 80000 100000 120000 140000

×1

×2 ×4

(a)

Fig. 5. The number of cycles of KangarooTwelve on an Intel�CoreTM i5-6500 (Sky-
lake) as a function of the input message size.

Figure 6 shows the implementation cost in cycles per bytes. To determine
the speed in cycles per byte for long messages in our implementation, we need
to take into account both the time to process 4B input bytes in 4 leaves (or a
multiple thereof) and 4 chaining values in the final node. Regarding the latter,
21 chaining values fit in exactly 4 blocks of R = 168 bytes. Hence, we measure



KangarooTwelve: Fast Hashing Based on Keccak-p 413

×1

×4

cy
cl

es
/b

yt
e

input length (in bytes)

0

1

2

3

4

5

0 105 2×105 3×105 4×105 5×105 6×105

Fig. 6. The number of cycles per byte of KangarooTwelve on an Intel�CoreTM

i5-6500 (Skylake) as a function of the input message size.

the time taken to process an extra 84B = lcm(4B, 21B) bytes. These results are
reported in Table 1, together with measurements on short messages.

6.4 512-bit SIMD

Recently, Intel� started shipping processors with the AVX-512TM instruction
set. It supports 512-bit SIMD instructions, enabling efficient implementations
of 8 × Keccak-p[1600, nr = 12]. In addition to a higher degree of parallelism,
some new features of AVX-512TM benefit to the implementation of Kanga-
rooTwelve, of ParallelHash and of Keccak in general.

– Rotation instructions. With the exception of AMD’s XOPTM, earlier SIMD
instruction sets did not include a rotation instruction. This means that the
cyclic shifts in θ and ρ had to be implemented with a sequence of three
instructions (shift left, shift right, XOR). With a rotation instruction, cyclic
shifts are thus reduced from three to one instruction.

– Three-input binary functions. AVX-512TM offers an instruction that produces
an arbitrary bitwise function of three binary inputs. In θ, computing the
parity takes four XORs, which can be reduced to two applications of this new
instruction. Similarly, the non-linear function χ can benefit from it to directly
compute ax + (ax+1 + 1)ax+2.



414 G. Bertoni et al.

Table 2. Speed comparison. All figures are in cycles per byte for long messages, unless
otherwise specified.

Function SkylakeX Skylake Haswell

KangarooTwelve 0.55 1.22 1.44

KangarooTwelve (≤8KiB) 2.35 2.89 3.68

ParallelHash128 0.96 2.31 2.73

Blake2bp 1.39 1.34 1.37

Blake2sp 1.22 1.29 1.39

SHAKE128 4.28 5.56 7.09

MD5 4.33 4.54 4.93

SHA-1 3.05 3.07 4.15

SHA-256 6.65 6.91 9.27

SHA-512 4.44 4.64 6.54

Blake2b 2.98 3.04 3.08

Blake2s 4.26 4.85 5.34

Blake-256 5.95 6.76 7.52

Blake-512 4.48 5.19 5.68

Grøstl-256 7.24 8.13 9.35

Grøstl-512 9.95 11.31 13.51

JH 13.04 15.14 15.09

Skein 4.48 5.18 5.34

– 32 registers. Compared to AVX2TM, the new processors increase the num-
ber of registers from 16 to 32. As Keccak-p has 25 lanes, this significantly
decreases the need to move data between memory and registers.

We report in Table 1 the speed of our current implementation on a machine
equipped with a processor in the Intel� SkylakeX family, supporting this instruc-
tion set [12].

6.5 Comparison with Other Functions

To put the speed of KangarooTwelve in perspective, we compare it to typ-
ical hash functions, including the traditional standards MD5, SHA-1 and SHA-
2 [28,29,34], the SHA-3 finalists [2,19,20,39], the popular Blake2 functions [4]
and some SHA-3 instances [30,31]. For consistency, wherever possible we per-
formed benchmarks on three machines in our possession. Moreover, we cross-
checked with the publicly available eBASH results [5] and in case of discrepancy,
we selected the fastest. For the traditional hash functions, the fastest implemen-
tation often came from OpenSSL [32]. For Blake2, we included some specific
AVX2TM code by Samuel Neves [27]. Note that the comparison on SkylakeX



KangarooTwelve: Fast Hashing Based on Keccak-p 415

must be taken with care, as not all implementations available at the time of this
benchmarking are fully optimized for the AVX-512TM instruction set.

Table 2 shows the results. We first list hash functions that explicitly exploit
SIMD instructions with a built-in tree hash mode, such as ParallelHash and
Blake2{b, s}p, and compare them to KangarooTwelve for long messages (or
when it is used for hashing multiple messages in parallel).

It is interesting to compare the other hash functions to KangarooTwelve
when it is restricted to serial processing (as for short messages), to see its speed
gain already before the parallelism kicks in. Of course, such a restriction does
not exist when hashing a large file, and in practice the comparison should also
be made with KangarooTwelve for long messages.

7 Conclusion

KangarooTwelve can be seen as a new member of the Keccak family. It
inherits all the properties of the family such as suitability in hardware and resis-
tance against side-channel attacks, but grew up with a strong focus on software
performance and interoperability. We tuned the mode and the primitive to offer
a tremendous computational speedup in many applications while keeping a com-
fortable security margin. The latter is confirmed by the cryptanalysis results on
Keccak accumulated over the last ten years, which are directly applicable to
the new sibling. Also, all existing Keccak implementations can be reused with
minimal effort thanks to the layered approach in the design. For instance, Kan-
garooTwelve benefits immediately from the new SHA-3 hardware support
recently introduced in the ARMv8.2 instruction set [1].

The speedup benefits to both low-end and high-end processors. For the low
end, one immediately benefits from the reduction in the number of rounds, and
care was taken not to add overhead in the case of short messages.

At the high end, we observed that KangarooTwelve gets significant per-
formance improvements in recent processors, which go beyond the mere gain due
to parallelism. Part of these improvements come from the choice of low-latency
Boolean operations in the primitive that superscalar architectures can imple-
ment efficiently, as demonstrated in the latest Intel�’s SkylakeX processors with
the introduction of three-input binary functions.

On such a processor, KangarooTwelve processes long messages at
0.55 cycles/byte. At this speed, it would require only one of its cores to process,
in real-time, the output of 10 high-speed solid-state drives (SSD), i.e., accumu-
lated bandwidth of more than 7 GB/s per core (assuming a clock frequency
of 4 GHz). This simply illustrates that with KangarooTwelve the speed of
hashing is no longer a bottleneck in software applications.

Acknowledgements. Our implementation for the serial processing is based on the
AVX2TM code written by Andy Polyakov for OpenSSL. We would also like to thank
the anonymous reviewers for their constructive comments.



416 G. Bertoni et al.

References

1. ARM corporation: ARM architecture reference manual ARMv8, for ARMv8-A
architecture profile, document ARM DDI 0487C.a (ID121917). http://www.arm.
com/

2. Aumasson, J.-P., Henzen, L., Meier, W., Phan, R. C.-W., SHA-3 proposal BLAKE.
Submission to NIST (2008)

3. Aumasson, J.-P., Meier, W.: Zero-sum distinguishers for reduced Keccak-f and
for the core functions of Luffa and Hamsi (2009). http://131002.net/data/papers/
AM09.pdf

4. Aumasson, J.-P., Neves, S., Wilcox-O’Hearn, Z., Winnerlein, C.: BLAKE2: simpler,
smaller, fast as MD5. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini,
R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 119–135. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38980-1_8

5. Bernstein, D.J., Lange, T., (eds.) eBACS: ECRYPT benchmarking of crypto-
graphic systems. http://bench.cr.yp.to

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak specifications. NIST
SHA-3 Submission, October 2008

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiabil-
ity of the sponge construction. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS,
vol. 4965, pp. 181–197. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-78967-3_11

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryptographic sponge func-
tions, January 2011. https://keccak.team/files/SpongeFunctions.pdf

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sakura: a flexible coding
for tree hashing. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014.
LNCS, vol. 8479, pp. 217–234. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-07536-5_14

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sufficient conditions for
sound tree and sequential hashing modes. Int. J. Inf. Secur. 13, 335–353 (2014).
https://doi.org/10.1007/s10207-013-0220-y

11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Kanga-
rooTwelve: fast hashing based on Keccak-p. Cryptology ePrint Archive, Report
2016/770 (2016). http://eprint.iacr.org/2016/770

12. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Keccak code
package, June 2016. https://github.com/gvanas/KeccakCodePackage

13. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: Keccak
third-party cryptanalysis (2017). https://keccak.team/third_party.html

14. Boura, C., Canteaut, A., De Cannière, C.: Higher-order differential properties of
Keccak and Luffa. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 252–269.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_15

15. Dinur, I., Dunkelman, O., Shamir, A.: Collision attacks on up to 5 rounds of SHA-
3 using generalized internal differentials. In: Moriai, S. (ed.) FSE 2013. LNCS,
vol. 8424, pp. 219–240. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43933-3_12

16. Dinur, I., Dunkelman, O., Shamir, A.: Improved practical attacks on round-reduced
Keccak. J. Cryptol. 27(2), 183–209 (2014)

17. Dinur, I., Morawiecki, P., Pieprzyk, J., Srebrny, M., Straus, M.: Cube attacks and
cube-attack-like cryptanalysis on the round-reduced Keccak sponge function. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 733–761.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_28

http://www.arm.com/
http://www.arm.com/
http://131002.net/data/papers/AM09.pdf
http://131002.net/data/papers/AM09.pdf
https://doi.org/10.1007/978-3-642-38980-1_8
http://bench.cr.yp.to
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://keccak.team/files/SpongeFunctions.pdf
https://doi.org/10.1007/978-3-319-07536-5_14
https://doi.org/10.1007/978-3-319-07536-5_14
https://doi.org/10.1007/s10207-013-0220-y
http://eprint.iacr.org/2016/770
https://github.com/gvanas/KeccakCodePackage
https://keccak.team/third_party.html
https://doi.org/10.1007/978-3-642-21702-9_15
https://doi.org/10.1007/978-3-662-43933-3_12
https://doi.org/10.1007/978-3-662-43933-3_12
https://doi.org/10.1007/978-3-662-46800-5_28


KangarooTwelve: Fast Hashing Based on Keccak-p 417

18. Dobraunig, C., Eichlseder, M., Mendel, F.: Analysis of SHA-512/224 and SHA-
512/256. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp.
612–630. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-
3_25

19. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The skein hash function family. Submission to NIST (Round 2)
(2009)

20. Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C.,
Schläffer, M., Thomsen, S.S.: Grøstl - a SHA-3 candidate. Submission to NIST
(Round 3) (2011)

21. Guo, J., Liu, M., Song, L.: Linear structures: applications to cryptanalysis of round-
reduced Keccak. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10031, pp. 249–274. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53887-6_9

22. Huang, S., Wang, X., Xu, G., Wang, M., Zhao, J.: Conditional cube attack
on reduced-round Keccak sponge function. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10211, pp. 259–288. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-56614-6_9

23. Li, J., Isobe, T., Shibutani, K.: Converting meet-in-the-middle preimage attack
into pseudo collision attack: application to SHA-2. In: Canteaut, A. (ed.) FSE
2012. LNCS, vol. 7549, pp. 264–286. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34047-5_16

24. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In: Naor, M. (ed.)
TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004). https://doi.
org/10.1007/978-3-540-24638-1_2

25. Mendel, F., Nad, T., Schläffer, M.: Improving local collisions: new attacks on
reduced SHA-256. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 262–278. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38348-9_16

26. Micciancio, D., Walter, M.: On the bit security of cryptographic primitives. Euro-
crypt (2018, to appear)

27. Neves, S.: BLAKE2 AVX2 implementations. https://github.com/sneves/blake2-
avx2

28. NIST: Federal information processing standard 180–1, secure hash standard, April
1995

29. NIST: Federal information processing standard 180–2, secure hash standard,
August 2002

30. NIST: Federal information processing standard 202, SHA-3 standard: Permutation-
based hash and extendable-output functions, August 2015. http://dx.doi.org/10.
6028/NIST.FIPS.202

31. NIST: NIST special publication 800–185, SHA-3 derived functions: cSHAKE,
KMAC, TupleHash and ParallelHash, December 2016. https://doi.org/10.6028/
NIST.SP.800-185

32. OpenSSL community: OpenSSL - cryptography and SSL/TLS toolkit. https://
github.com/openssl/openssl

33. Ristenpart, T., Shacham, H., Shrimpton, T.: Careful with composition: limitations
of the indifferentiability framework. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 487–506. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20465-4_27

https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.1007/978-3-662-48800-3_25
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-662-53887-6_9
https://doi.org/10.1007/978-3-319-56614-6_9
https://doi.org/10.1007/978-3-642-34047-5_16
https://doi.org/10.1007/978-3-642-34047-5_16
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-540-24638-1_2
https://doi.org/10.1007/978-3-642-38348-9_16
https://doi.org/10.1007/978-3-642-38348-9_16
https://github.com/sneves/blake2-avx2
https://github.com/sneves/blake2-avx2
http://dx.doi.org/10.6028/NIST.FIPS.202
http://dx.doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.SP.800-185
https://github.com/openssl/openssl
https://github.com/openssl/openssl
https://doi.org/10.1007/978-3-642-20465-4_27
https://doi.org/10.1007/978-3-642-20465-4_27


418 G. Bertoni et al.

34. Rivest, R.: The MD5 message-digest algorithm. Internet Request for Comments,
RFC 1321, April 1992

35. Saha, D., Kuila, S., Chowdhury, D.R.: Symsum: symmetric-sum distinguishers
against round reduced SHA3. IACR Trans. Symmetric Cryptol. 2017(1), 240–258
(2017)

36. Song, L., Liao, G., Guo, J.: Non-full sbox linearization: applications to collision
attacks on round-reduced Keccak. In: Katz, J., Shacham, H. (eds.) CRYPTO
2017. LNCS, vol. 10402, pp. 428–451. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63715-0_15

37. Song, L., Liao, G., Guo, J.: Solution to the 6-round collision challenge (2017).
https://keccak.team/crunchy_contest.html

38. Viguier, B.: KangarooTwelve. Internet Research Task Force draft, March 2018.
https://datatracker.ietf.org/doc/draft-viguier-kangarootwelve/

39. Wu, H.: The hash function JH. Submission to NIST (Round 3) (2011)

https://doi.org/10.1007/978-3-319-63715-0_15
https://doi.org/10.1007/978-3-319-63715-0_15
https://keccak.team/crunchy_contest.html
https://datatracker.ietf.org/doc/draft-viguier-kangarootwelve/


Symmetric Key Cryptanalysis



Related-Key Boomerang Attacks on Full
ANU Lightweight Block Cipher

Yu Sasaki(B)

NTT Secure Platform Laboratories,
3-9-11, Midori-cho, Musashino-shi, Tokyo 180-8585, Japan

sasaki.yu@lab.ntt.co.jp

Abstract. This paper presents related-key attacks against lightweight
block cipher ANU that requires only 1015 gate equivalents for a 128-
bit key, which is less than all existing lightweight ciphers. The design
of ANU appears to be a mixture of other decent lightweight ciphers
such as Simon, PRESENT, Piccolo, TWINE etc., however, the security
arguments especially against related-key attacks are not theoretically
supported. In this paper, we observe that the mixture of a Simon-like
round function and a PRESENT-like key schedule function causes a very
sparse differential trail that avoids non-linear update in the key schedule
function. By exploiting it, a distinguishing attack against full-round ANU
works only with 219 queries in the related-key setting, in which the attack
is verified by our machine experiment. This also leads to a key recovery
attack for a 128-bit key with 2112 computations.

Keywords: Cryptanalysis · Symmetric-key · Block cipher
Lightweight · IoT · Boomerang attacks · Related-key
Dependent S-boxes

1 Introduction

Lightweight cryptography, which is one of the most actively discussed topics in
the current symmetric-key community, studies cryptographic technologies that
are particularly useful for extremely resource-constraint environments, e.g. sen-
sor networks and radio frequency identifier (RFID) systems. Those technologies
are important for the coming age of Internet-of-Things, in which a lot of sensitive
data is measured by sensors that are not equipped with a powerful CPU and the
data is communicated through the public space.

Block ciphers are one of the most fundamental primitives for symmetric-key
cryptographic schemes. Since the proposal of the pioneering design of ultra-
lightweight block ciphers PRESENT [11], a huge number of lightweight block
ciphers have been designed especially during the last decade. Readers may refer
to [1] for a list of existing lightweight block-cipher designs, in which the list is
well-managed by researchers at University of Luxembourg.

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 421–439, 2018.
https://doi.org/10.1007/978-3-319-93387-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_22&domain=pdf


422 Y. Sasaki

Fig. 1. ANU round function. ‘S’, ‘π’, ‘≫x’, and ‘≪x’ are an S-box layer, a bit-
permutation, x-bit right cyclic shift and x-bit left cyclic shift, respectively.

Given a lot of lightweight block ciphers, it is now necessary for the com-
munity to choose good designs. Indeed, lightweight block ciphers have recently
been discussed extensively not only in academia but also by standardization
bodies such as ISO, NIST and CRYPTREC. The primary evaluation criteria
should be security in the standard usage and implementation efficiency, whereas
additional security features, e.g. related-key security, multi-key security, post-
quantum security, misimplementation security, are also important. In particu-
lar, the recent standardization activity for lightweight cryptography by NIST
[15] explicitly mentions that additional security features are taken into account
during the standardization process.

In this paper, we investigate the security of a lightweight block cipher ANU
that was designed by Bansod et al. in 2016 [3,4]. ANU adopts a balanced Feistel-
based network, supports 64-bit block size and 128- or 80-bit key size, and consists
of 25 rounds. According to the designers, it requires only 1015 gate equivalents for
a 128-bit key, which is less than all existing lightweight ciphers. The computation
structure of ANU appears to be a mixture of other lightweight ciphers Simon
[5], PRESENT [11], Piccolo [17], TWINE [19] or LBlock [22].

Although the formal description will only be explained later, we show the
schematic diagram of the ANU round function in Fig. 1. As the designs of
Simon [5] and Simeck [23], the round function of ANU makes two rotated copies
of the left half of the state. Then, instead of applying bitwise-AND of those two
states like Simon and Simeck, ANU applies the S-box layer for both of two states
and XORs the outputs. Such a design, to the best of our knowledge, has never
been adopted in other primitives. Hence its security evaluation is of interest.

The key schedule function of ANU is a minor modification of the PRESENT
key schedule function. In short, it maintains a |K|-bit key state, and for each
round, a round key is extracted and then the key state is updated partially non-
linearly. The designers briefly mention the security against related-key attacks
[3]. The designers did not provide any specific analysis, i.e. how the difference in
the master key diffuses to the round keys or the lower bound of the number of
active S-boxes. The security arguments simply rely on the fact that no successful
related-key attack exists against PRESENT. This seems a risky design choice
because the round function and even parameters of the key schedule function
are modified from the original.



Related-Key Boomerang Attacks on Full ANU Lightweight Block Cipher 423

Table 1. Summary of attacks against ANU with 128-bit key.

Rounds Setting Goal Time Data Memory #keys

25 (full) Related-key Distinguisher 217 217 negl. 2

25 (full) Related-key Key recovery 2111 230 negl. 2

Our Contributions. In this paper, we present related-key boomerang attacks
[9,20] against full (25) rounds of ANU using a 128-bit key. The ANU cipher can
be distinguished from an ideal cipher with 217 queries. Owing to its low complex-
ity, the attack is implemented and the correctness is verified. By extending the
distinguisher, a 128-bit key can be recovered with 2112 computations. (Note that
the complexity of the generic attack using 2 related keys is 2127.) The results are
summarized in Table 1.

The core observation is that minor modifications of the PRESENT key sched-
ule function made by the designers allow very sparse differential propagation in
the key state. For example, the sizes of round keys in PRESENT and ANU are
64- and 32-bits respectively. Hence the PRESENT key schedule function extracts
64 bits from a 128-bit key state per round whereas ANU key schedule function
only extracts 32 bits from a 128-bit key state. This allows the attacker to have
only 6 active round keys in 25 round. Moreover, the differential trail in the key
schedule function skips all non-linear operations.

From a technical point of view, we provide the precise probability evaluation
of the differential propagation through the round function. Suppose that there
is a single active-bit in the left-half of the state li−1 in Fig. 1. This activates two
S-boxes in the round function: one for S(li−1 ≪ 3) and one for S(li−1 ≫ 8).
The designers evaluated the probability of those two active S-boxes under the
independent assumption. That is, because the maximum differential probability
of each S-box is 2−2, the lower bound of the probability of the differential trail is
2−4. However, two S-boxes are clearly dependent. We observe that the analysis
by Canteaut et al. [12] can be applied to ANU. After the detailed analysis, we
exploit the trails such that two active S-boxes are satisfied with probability 2−3

by avoiding the cases that dependency leads to disadvantages to the attacker,
i.e. two active S-boxes are satisfied with probability 0.

Another interesting feature of our attacks is that our attacks only require
2 related-key oracles, whereas typical related-key boomerang attacks require 4
related-key oracles. This can be achieved by using the same master-key difference
for two sub-ciphers and only chooses the state differences independently, whereas
typical related-key boomerang attacks choose both of state- and key-differences
independently for two sub-ciphers.

The results presented in this paper do not have any impact in the single-
key security of ANU. However, we believe that our results provide meaningful
intuition about the security of ANU as follows.

– The key-relation in our attacks is minimal, i.e. 2 keys with 1-bit difference.
Owing to its minimal difference, a careless key-management may face our
attacks.



424 Y. Sasaki

– When users have two choices of ciphers, one is vulnerable in the relate-key
setting and the other is not, there is no reason to choose the vulnerable
one. Indeed, many of other competitive designs such as SIMON, TWINE,
Piccolo, RECTANGLE [24], SKINNY [6], GIFT [2] etc. do not allow related-
key attacks.

– In general, simply mixing a part of designs from various ciphers may cause
undesired properties. Our attacks well-demonstrate the risk of such designs.

Paper Outline. The remaining of this paper is organized as follows. Section 2
describes the specification of ANU and briefly recalls the framework of related-
key boomerang attacks. Section 3 shows the analysis of the PRESENT-like key
schedule function in ANU. Section 4 presents the full-round distinguisher and
extension to the key recovery. We conclude this paper in Sect. 5.

2 Related Work

The specification of ANU is briefly described in Sect. 2.1. The framework of the
related-key boomerang attacks is introduced in Sect. 2.2. We note that through-
out this paper we use the notation “Δ” to denote the difference. We also use
typefont to denote hexadecimal numbers.

2.1 Specification of Block Cipher ANU

ANU [3,4] is a block cipher supporting 64-bit block size and 128- or 80-bit key
size. Overall, a 64-bit plaintext P is first loaded to the state s0. Then the state
is updated by iteratively applying a round function RF : {0, 1}64 × {0, 1}32 �→
{0, 1}64 25 times as si ← RF (si−1, ki−1) for i = 1, 2, · · · , 25, where ki are 25
round keys generated from a 128- or 80-bit master key K by a key scheduling
function KSF : {0, 1}|K| �→ ({0, 1}32)25 as (k0, k1, · · · , k24) ← KSF (K). We call
the computation for i “round i.” The last state, s25, is output as the ciphertext.

Round Function (RF). The round function of ANU adopts the 2-branch
balanced Feistel network along with the block-shuffle mechanism [18] that was
adopted in the design of TWINE [19]. The state si is represented by a concatena-
tion of two 32-bit words li and ri, namely si = li‖ri. The round function consists
of the three operations: F -function, round-key addition, and block-shuffle.

F -function: A function F : {0, 1}32 �→ {0, 1}32 is applied to the left word li−1

and F (li−1) is XORed to the right word ri−1. Inside F , two rotated copies
of li−1 are generated by li−1 ≪ 3 and li−1 ≫ 8, where “≪ 3” and “≫ 8”
are the left cycle shift by 3 bits and right cycle shifts by 8 bits, respectively.
Then an S-box layer S is applied to both words, which applies the 4-bit to
4-bit S-box S shown in Table 2 to 8 nibbles of each word in parallel. Finally,



Related-Key Boomerang Attacks on Full ANU Lightweight Block Cipher 425

Table 2. 4-bit S-box of ANU.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) 2 9 7 e 1 c a 0 4 3 8 d f 6 5 b

Table 3. Bit-permutation of ANU.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

π(x) 20 16 28 24 17 21 25 29 22 18 30 26 19 23 27 31

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

π(x) 11 15 3 7 14 10 6 2 9 13 1 5 12 8 4 0

the results of two S-layers are XORed to the right half of the branch ri−1. In
summary, the F -function part can be described as

F (li−1) = S(li−1 ≪ 3) ⊕ S(li−1 ≫ 8),
ri−1 ← ri−1 ⊕ F (li−1).

Round-key addition: A round key ki−1 is not used inside the F function but
is XORed to ri−1 directly as done in Simon [5] or Piccolo [17].

Block-shuffle: A bit-permutation π specified in Table 3 is applied to both of the
left and right words. After that the left and the right branches are swapped
as the ordinary 2-branch Feistel network.

Key Schedule Function (KSF). The KSF in ANU is a minor modification
of the KSF in PRESENT [11]. Because the target in this paper is ANU with
128-bit keys, we mainly explain the KSF for 128-bit keys.

A 128-bit master key K is loaded to a 128-bit key state denoted by w =
w127, w126, · · · , w0. The KSF, for each round, performs four operations: round-
key extract, key-state rotate, S-box update, and round-number XOR.

Round-key extract: In round i, set the round key ki−1 as the least significant
32 bits of the current key state w, namely ki−1 ← w31, w30, · · · , w0.

Key-state rotate: Apply the left cyclic shift by 13 bits to the key state w.
S-box update: Apply the 4-bit S-box S to the least significant 2 nibbles.

Namely, w3w2w1w0 ← S(w3w2w1w0) and w7w6w5w4 ← S(w7w6w5w4).
Round-number XOR: In round i, XOR the 5-bit binary representation

of i to the 5 bits of the key state w in bit-position 59–63. Namely,
w63w62w61w60w59 ← w63w62w61w60w59 ⊕ (i)2.

Remarks on KSF for 80-Bit Keys. The KSF for 80-bit keys is almost the same
as one for 128-bit keys. The size of the key state is 80 bits. The rotation number
and the positions of XORing the round number are identical.



426 Y. Sasaki

Security. The designers mention the security against related-key attacks [3,
Sect. 3.7] as follows.

Related-key attack and Slide attack are two important attacks that show
weakness related to the key scheduling algorithms

· · ·
There is no successful key-related attack that has been found on the key
scheduling algorithm of PRESENT, so a similar style of key scheduling to
the PRESENT block cipher was adopted. For designing of the key schedul-
ing algorithm, two approaches were considered which are given as follows:
(1) Use of nonlinear component, that is, S-box in the design. (2) XOR
operation of 5-bits from the key register with round constant RCi.

The designers did not provide any specific analysis, i.e. how the difference in
the master key diffuses to the round keys. Their security arguments simply rely
on the fact that no successful related-key attack exists against PRESENT. This
seems a risky design choice because the round function and even detailed param-
eters of KSF are modified from the original.

Differences from KSF in PRESENT. In PRESENT, the round key size is
64 bits that is double of ANU. Hence, in each round, 64-bits are extracted from
the 128-bit key state. Moreover, the key state is rotated by 61 bits in each round.
Those differences make the number of active round keys significantly smaller and
the speed of involving non-linear operations in KSF significantly slower in ANU
than in PRESENT. Our attacks later exploit those features.

2.2 Boomerang Attacks

Boomerang attacks [20] and their variants combine two short differential trails
with high probability. Here we briefly introduce the framework.

Boomerang attacks regard the target cipher as a composition of two sub-
ciphers E0 and E1. The first sub-cipher is supposed to have a differential α → β,
and the second one to have a differential γ → δ, with probabilities p and q,
respectively. The basic boomerang attacks require an adaptive chosen plain-
text/ciphertext scenario, and plaintext pairs result in a right quartet with prob-
ability p2q2. The amplified boomerang attacks (also called the rectangle attacks)
work in a chosen-plaintext scenario and a right quartet is obtained with proba-
bility p2q22−n [13]. Further, it was pointed out in [7,8] that any value of β and
γ is allowed as long as β �= γ. As a result, the probability of the right quartet
increases to 2−np̂2q̂2, where

p̂ =
√∑

i

Pr2(α −→ βi) and q̂ =
√∑

j

Pr2(γj −→ δ).



Related-Key Boomerang Attacks on Full ANU Lightweight Block Cipher 427

Algorithm 1. Basic Procedure of Related-Key Boomerang Distinguishers.
Input: α, δ, K1, K2, K3, K4, p̂q̂
Output: b ∈ {0, 1}
1: for i ← 1, 2, . . . , (p̂q̂)−2 do
2: Choose distinct input P1. Set P2 ← P1 ⊕ α.
3: Obtain C1 = EK1(P1) and C2 = EK2(P2) by making encryption queries.
4: Set C3 ← C1 ⊕ δ and C4 ← C2 ⊕ δ.
5: Obtain P3 = DK3(C3) and P4 = DK4(C4) by making decryption queries.
6: if P3 ⊕ P4 = α then
7: return 1
8: end if
9: end for

10: return 0

Boomerang and rectangle attacks under related-key setting were formulated
in [9]. Let ΔK and ∇K be the key differences for the first and second sub-ciphers,
respectively. The attack generally requires access to four related-key oracles with
K1 ∈ {0, 1}|K|, K2 = K1 ⊕ ΔK, K3 = K1 ⊕ ∇K and K4 = K1 ⊕ ΔK ⊕ ∇K. In
the related-key boomerang attack, paired plaintexts P1, P2 such that P1⊕P2 = α
are queried to K1 encryption oracle and K2 encryption oracle, and the attacker
receives ciphertexts C1 and C2. Then C3 and C4 are calculated by C3 = C1 ⊕ δ
and C4 = C2 ⊕ δ, and then queried to K3 decryption oracle and K4 decryption
oracle. The resulting plaintext difference P3 ⊕ P4 equals to α with probabil-
ity p̂2q̂2. The distinguishing game can be described more formally in an algo-
rithmic form as Algorithm 1. The game returns a distinguishing bit b ∈ {0, 1}
that is set to 1 if the oracle is a target algorithm and 0 if the oracle is an
ideal permutation. Algorithm1 is (p̂q̂)−2 many iterations of 2 chosen-plaintext
and 2 adaptively chosen-ciphertext queries. Hence the attack complexity is
(time, data,memory) = (4 · (p̂q̂)−2, 4 · (p̂q̂)−2, negligible).

Related-Key Boomerang Attacks Against Non-linear Key Schedule. If
the key schedule function adopts non-linear operations, related-key boomerang
attacks cannot be applied in a straightforward manner. This is because the differ-
ential for E1 (including round-key differences for E1) is usually chosen indepen-
dently of E0, but the key relation must be specified as the difference between two
master keys. For a linear key schedule function, any round key difference for E1

suggests the corresponding master-key difference deterministically, whereas for a
non-linear key schedule function, the master-key difference may probabilistically
be obtained. Hence, attacks only work for a portion of keys, and are regarded
as weak-key attacks.

One possible trick to avoid this issue is changing the way to define key rela-
tions. For example, the related-key boomerang attacks on full AES-192 and
AES-256 [10] allow the attacker to access to related-key oracles such that two
keys have a pre-specified XOR difference in a single round-key of the attacker’s



428 Y. Sasaki

choice. With this direction, the attacks are still theoretically interesting, but
practical implication becomes smaller.

However, for ANU, we will show in the next section that the attacker can
construct the differential trail for E1 so that non-linear operations are skipped
thus the master-key difference can be deterministically obtained. Moreover, the
attack requires only 2 related keys by setting ΔK = ∇K.

3 Analysis of Key Schedule Function of ANU

We observe that to borrow the KSF of PRESENT in the design of ANU causes
significantly sparse round-key differences, which will lead to full-round distin-
guishers in a practical complexity. In specific, we determine the key difference
according to the following two observations.

– Given that the state size is 128 bits, the round key size is 32 bits, and the key
state is rotated only 13 bits per round, the attacker can control the key state
difference so that round key differences are zero for up to 
96/13� + 1 = 8
rounds.

– Moreover, given that non-linear operations are applied only 8 bits of the key
state per round, the attacker can inject 1-bit difference in the key state so
that the active bit position will skip those 8 bits several times.

As a result, we identified a 128-bit master-key difference that avoids making
active bits updated by the non-linear operations for the subsequent 39 rounds.
Non-zero round-key differences appear only in 8 rounds during those 39 rounds.
The identified differences in the key state and round keys are shown in Table 4.

ANU has 25 rounds. Considering the optimization of differential trails, we
determined to set E0 and E1 in rounds 8 to 20 and 21 to 32, respectively. Hence
the key relation ΔK in our attack is as follows.

ΔK = 00004000 00000000 00000000 00000000

Number of Oracles. In boomerang attacks, round-key differences for E0 and
E1 can generally be chosen independently as specified in Algorithm1, thus we
do not have to locate them to be consecutive 25 rounds. In contrast, if the attack
works in such a setting, two key relations K1 ⊕ K2 = ΔK and K1 ⊕ K3 = ∇K
become identical, thus the attack works only with 2 related-key oracles instead
of 4 related-key oracles in the ordinary related-key boomerang attacks. Indeed,
K1,K2,K3,K4 are defined as

K1 = K, K2 = K ⊕ ΔK,

K3 = K ⊕ ΔK = K2, K4 = K ⊕ ΔK ⊕ ΔK = K1.



Related-Key Boomerang Attacks on Full ANU Lightweight Block Cipher 429

Table 4. Sparse linear differential propagation in KSF and attack configuration.

Round i Difference in the Key State Δki−1

0 00000000 00000000 00000000 00000040 00000040

1 00000000 00000000 00000000 00080000 00080000

2 00000000 00000000 00000001 00000000 00000000

3 00000000 00000000 00002000 00000000 00000000

4 00000000 00000000 04000000 00000000 00000000 Boomerang
5 00000000 00000080 00000000 00000000 00000000 distinguishers
6 00000000 00100000 00000000 00000000 00000000 Round Prob
7 00000002 00000000 00000000 00000000 00000000 End Dec
8 00004000 00000000 00000000 00000000 00000000 1 1 1
9 08000000 00000000 00000000 00000000 00000000 2 2−8 1
10 00000000 00000000 00000000 00000100 00000100 3 2−3 1
11 00000000 00000000 00000000 00200000 00200000 4 1 1
12 00000000 00000000 00000004 00000000 00000000 5 1 1
13 00000000 00000000 00008000 00000000 00000000 6 1 1
14 00000000 00000000 10000000 00000000 00000000 7 1 1 E0

15 00000000 00000200 00000000 00000000 00000000 8 1 1
16 00000000 00400000 00000000 00000000 00000000 9 1 1
17 00000008 00000000 00000000 00000000 00000000 10 1 1
18 00010000 00000000 00000000 00000000 00000000 11 1 1
19 20000000 00000000 00000000 00000000 00000000 12 1 1
20 00000000 00000000 00000000 00000400 00000400 13 1 1
21 00000000 00000000 00000000 00800000 00800000 14 1 1
22 00000000 00000000 00000010 00000000 00000000 15 1 1
23 00000000 00000000 00020000 00000000 00000000 16 1 1
24 00000000 00000000 40000000 00000000 00000000 17 1 1
25 00000000 00000800 00000000 00000000 00000000 18 1 1
26 00000000 01000000 00000000 00000000 00000000 19 1 1 E1

27 00000020 00000000 00000000 00000000 00000000 20 1 1
28 00040000 00000000 00000000 00000000 00000000 21 1 1
29 80000000 00000000 00000000 00000000 00000000 22 1 1
30 00000000 00000000 00000000 00001000 00001000 23 1 1
31 00000000 00000000 00000000 02000000 02000000 24 2−3 2−3

32 00000000 00000000 00000040 00000000 00000000 25 1 1
33 00000000 00000000 00080000 00000000 00000000

34 00000000 00000001 00000000 00000000 00000000

35 00000000 00002000 00000000 00000000 00000000

36 00000000 04000000 00000000 00000000 00000000

37 00000080 00000000 00000000 00000000 00000000

38 00100000 00000000 00000000 00000000 00000000

39 00000000 00000000 00000000 0000000* 0000000*



430 Y. Sasaki

4 Related-Key Boomerang Attacks on Full ANU

In this section, we present our related-key distinguishers on full ANU that is
composed of a 20-round deterministic differential trail (Sect. 4.1), 3-round prob-
abilistic extension (Sect. 4.2), and 2-round deterministic extension that is com-
mon to ciphers with a Simon-like round function (Sect. 4.3). Further, we explain
extension to a key-recovery attack in Sect. 4.4.

4.1 20-Round Deterministic Properties

First, we describe a simple deterministic boomerang distinguisher with 20
rounds. The attack target here is from rounds 4 to 23 (rounds 11 to 30 in Table 4).
Readers may refer to differential trails illustrated in Fig. 6 in AppendixA.

E0 covers from rounds 4 to 13. The round key difference only exists in the
very beginning (Δk3) and the very last (Δk12). By setting the plaintext difference
Δl3‖Δr3 ← 0‖Δk3, the state difference becomes 0 after the round-key addition
and the zero-difference state continues until round 12. Another difference Δk12
is injected in round 13 and this will make Δl13 = π(Δk12) with probability 1.

The very similar occurs in E1 that covers from rounds 14 to 23. The input
difference Δl13‖Δr13 = 0‖Δk13 makes the state difference 0, and Δk22 in round
23 makes the ciphertext difference Δl23‖Δr23 = π(Δk22)‖0 with probability 1.

Those will form the deterministic related-key boomerang distinguisher for 20
rounds. We implemented the attack according to the framework of Algorithm1
to check whether or not incompatibility pointed out by [16] occurs. We verified
that the right quartet is generated with probability 1.

4.2 23-Round Distinguishers with Two Dependent S-Layers

We then extend the 20-round trail in Sect. 4.1 by three rounds; by appending 2
rounds at the beginning and 1 round at the end. We begin with the last extended
round depicted in Fig. 2. In this round, we have one active S-box for S(l23 ≪
3) with input difference 4 and one active S-box for S(l23 ≫ 8) with input

Fig. 2. The last round extension in the 23-round distinguisher.



Related-Key Boomerang Attacks on Full ANU Lightweight Block Cipher 431

difference 8. According to the differential distribution table (DDT) of the ANU
S-box shown in Table 5 in AppendixB, the following differential propagations
can be satisfied with probability 2−2.

Pr[4 S→ 5] = 2−2, Pr[8 S→ a] = 2−2,

Pr[4 S→ d] = 2−2, Pr[8 S→ f] = 2−2.

Hence, there are 2×2 = 4 choices of differential trails with probability 2−4 under
the assumption that they can be independently evaluated.

However, in reality, none of the above four choices is satisfied with probability
2−4. Two are satisfied with probability 2−3 and the other two are never satisfied
(probability 0). The issue here is that the two S-box layers, S(l23 ≪ 3) and
S(l23 ≫ 8), are not independent. Therefore, the analysis under independent
assumption by the designers [3,4] cannot be applied. Instead, we can apply the
similar approach by Canteaut et al. [12] against unkeyed construction.

By following the notation by Canteaut et al. [12], let XS(Δi,Δo) denote a set
of values that map the input difference Δi to the output difference Δo through
the ANU S-box S. Namely,

XS(Δi,Δo) � {i ∈ {0, 1}4 : S(i) ⊕ S(i ⊕ Δi) = Δo}.

We then have

XS(4, 5) = {1, 5, 9, d} = {0001, 0101, 1001, 1101}, (1)
XS(4, d) = {2, 6, a, e} = {0010, 0110, 1010, 1110}, (2)
XS(8, a) = {1, 5, 9, d} = {0001, 0101, 1001, 1101}, (3)
XS(8, f) = {2, 6, a, e} = {0010, 0110, 1010, 1110}. (4)

The four input bits to the active S-box in S(l23 ≪ 3) are l23[20, 19, 18, 17],
where a[b1, b2, · · · ] denote the bit positions b1, b2, · · · of a variable a. The four
input bits to the active S-box in S(l23 ≫ 8) are l23[19, 18, 17, 16]. Hence, three
bits involved in both propagations cause dependence. In the following, we eval-
uate the exact probability for each case.

Case 4 → 5 and 8 → a: From Eq. (1), the necessary condition to satisfy the
differential propagation of 4 → 5 is l23[18] = 0 and l23[17] = 1. In contrast,
from Eq. (3), the necessary condition for 8 → a is l23[17] = 0 and l23[16] = 1.
Two conditions on l23[17] contradict each other. Hence, the probability to
satisfy those two propagations simultaneously is 0.

Case 4 → 5 and 8 → f (Fig. 2): The condition for 4 → 5 is mentioned above,
and for 8 → f is l23[17] = 1 and l23[16] = 0. Two conditions on l23[17] match.
In the end, if the propagation 4 → 5 is satisfied with 2−2 and the condition
l23[16] = 0 is satisfied with 2−1, the propagation 8 → a is satisfied. The
probability of simultaneously satisfying the two propagations is 2−3.

Other two cases: The other two cases can be analyzed similarly. To avoid
redundancy we omit the details. 4 → d and 8 → a simultaneously occur with
probability 2−3, while 4 → d and 8 → f never occur simultaneously.



432 Y. Sasaki

The choice of (4 → 5, 8 → f) and (4 → d, 8 → a) does not impact to the 25-
round attack. If one wants to attack more than 25 rounds, (4 → d, 8 → a) seems
better with respect to the smaller Hamming weight, which brings advantage for
further extension. In this paper, we pick (4 → 5, 8 → f).

Extension in the First Two Rounds. The first two extended rounds are
depicted in Fig. 3. The analysis in round 3 is very similar to the one in round 24
in Fig. 2. First, we chose output differences 9 and c because they are only choices
that can be satisfied with 2−2 under the independent assumption according to
DDT. Thus, it is unlikely to improve the entire trail by changing those choices.

Fig. 3. The first two-round extension in the 23-round distinguisher.

There exists only 1 active bit in l2 and this activates one S-box in each
of S(l2 ≪ 3) and S(l2 ≫ 8) that are dependent each other. From XS(1, 9) =
{2, 3, c, d} and XS(2, c) = {5, 7, 8, a}, we obtain that two active S-boxes in round
3 for our trail can be satisfied with probability 2−3.

Extension for another round is rather complicated. There are five active S-
boxes. The 4 input bits for each active S-box is l1[19, 18, 17, 16], l1[16, 15, 14, 13],
l1[15, 14, 13, 12], l1[12, 11, 10, 9], l1[11, 10, 9, 8]. Owing to the complicated depen-
dence, we determined to run an experiment to identify output differences that
can be satisfied with high probability. Indeed, only 12 bits are involved in these
five active S-boxes and the input differences are fully fixed. Hence, the experi-
ment is feasible, namely for all 212 input values, we compute the corresponding



Related-Key Boomerang Attacks on Full ANU Lightweight Block Cipher 433

output differences and count the number of occurrences for each output differ-
ence. As a result, we identified 32 output differences that can be satisfied with
probability 2−8, rather than 2−10 under the independent assumption. We chose
one of the 32 output differences as depicted in Fig. 3.

In the end, p = 2−11 and q = 2−3. According to the basic framework in
Algorithm 1, the complexity of the simple 23-round attack is 4 · (pq)−2 = 230.

Optimization for Distinguishers. The distinguishing attack complexity
(may not be suitable to be used in the key-recovery attack) can be further
reduced by relaxing the differential propagation for the second pair through
decryption queries. Namely in Fig. 3, we change to accept any output difference
from the active S-boxes in round 3 and from the F -function in round 2. This
will make the differences for the second pair in those two rounds as

(Δl1,Δr1) =
(
π−1(X0000X00), XXXXXXXX

)
,

(Δl2,Δr2) = (00000020, X0000X00),

where X can be any 4-bit difference. In Step 6 of the basic attack in Algorithm1,
the attacker checks the difference for all 64-bits of the state. However, checking
only a part of the state is sufficient as long as the filtering effect is strong enough
to discard all wrong quartets. In the end, the probability of the boomerang trail
becomes 2−17 (p for the second pair becomes 1) and the attacker can check if the
24 bits of l1 is zero or not. By multiplying the factor of 4, the attack complexity
is (time, data,memory) = (219, 219, negl.).

4.3 Full-Round Distinguishers

It is well-known that for the Simon-like structure that XORs round keys outside
the F -function, differential-based distinguishers can be extended by 1 round at
the beginning and the end, e.g. exploited in [14,21]. This is because the first and
the last round keys are not used in the non-linear layer of those rounds.

The differential trail for round 1 is depicted in Fig. 4. To obtain a pair of
plaintexts that has the desired difference after round 1, the attacker first chooses
any value of r1 and computes l0 ← π−1(r1) and l′0 ← π−1(r1 ⊕0802c9a5). Then
the attacker computes F (l0) ⊕ F (l′0) and chooses any value for r0 and computes
r′
0 ← r0 ⊕ F (l0) ⊕ F (l′0) ⊕ 00220002. This ensures the desired difference at the

input of round 2.
The procedure for the last round can be defined similarly. Due to the lack of

the round key, the attacker can fully control the difference before the last round.
To fit it to the boomerang attack, the attacker generates plaintext pairs

according to the above procedures to ensure the difference after the first round.
For each ciphertext received, the attacker computes the ciphertext pair so that
the desired difference at the output of round 24 is obtained. Finally, they are



434 Y. Sasaki

Fig. 4. Full-round attack (round 1). Fig. 5. Full-round attack (round 25).

passed to decryption oracles, and the attacker computes the corresponding dif-
ference after the first round to check if a right quartet is generated or not.

The same arguments are applied to the last round (Fig. 5). In the end, the
23-round distinguisher can be extended to 25 rounds with free of cost. The
attack complexity for the full rounds is the same as for 23 rounds, namely
(time, data,memory) = (217, 217, negl.).

Experimental Verification. To demonstrate the correctness and practi-
calness of our attack, we implemented the related-key boomerang distin-
guisher against full ANU. The key difference is ΔK = 00004000‖00000000‖
00000000‖00000000. The plaintext difference is a89b4010‖ΔF (l0) ⊕ 00220002
and the ciphertext differences is π(ΔF (l24) ⊕ 00000080)‖0a80005a. The proba-
bility to be a right quartet is 2−11 · 1 · (2−3)2 = 2−17. We randomly choose K1

and set K2 ← K1 ⊕ ΔK, K3 ← K2, and K4 ← K1.
We randomly picked 223 random plaintexts and ran Algorithm1 but check-

ing only 24 bits of the state at Step 6. Moreover, we iterated the experiments by
changing the value of K1 several times. As a result, 66 right quartets are gen-
erated on average thus the probability to be a right quartet is 66/223 = 2−17.0

that matches the theoretical evaluation well. We provide an example of a right
quartet in Table 6 in AppendixC.

4.4 Key Recovery on Full ANU

The full-round distinguisher allows to recover a part of 128-bit master-key, which
makes the exhaustive search on the remaining bits faster than 2128.

For the key-recovery, we used the differential trail with probability 2−30

rather than the one with 2−17. This is because the amount of the efficiently
recovered key bits increases when more key bits are involved in the non-linear
operations. Recall that the non-linear operations in round 2 involve 12 bits of
l1 (bit-position 8 to 19) and the trail is satisfied with probability 2−8. Hence,
after the attacker obtains a right quartet on the full ANU with 230 queries, the
value of 12 bits of l1 can be reduced to 24 possibilities. From each possibility,



Related-Key Boomerang Attacks on Full ANU Lightweight Block Cipher 435

the attacker can reduce the corresponding 12 bits (the bit-positions after π−1

is applied, namely bit-positions 29, 28, 25, 24, 21, 20, 17, 16, 12, 9, 4, 1) of the first
round key k0 by computing

k0 • Γ = (F (l0) ⊕ r0) • Γ ⊕ π−1(l1) • Γ,

where Γ is 33331212 that is a mask to represent the target 12 bit-positions and
‘•’ is a masking operation, i.e. V •Γ extracts the target 12 bits of V . In the end,
the space of 12 bits of k0 • Γ is reduced by 2−8 per pair. Because there are 2
pairs in the right quartet, those 12 key bits are uniquely identified.

Similarly, recall that the non-linear operations in round 24 involve 5 bits of
l23 (bit-position 16 to 20) and the trail is satisfied with probability 2−3. With
the same argument, this reduces the space of 5 bits of k24 to 1 after analyzing
2 pairs in the right quartet. Note that k24 is completely independent of k0 due
the KSF , thus there is no overlap between the recovered key bits.

Overall, 12+5 = 17 key bits out of 128 bits are identified, which reduces the
cost of the exhaustive search to 2111.

Remarks. We believe that a few more bits can be recovered cleverly by mod-
ifying the differential trail in the boomerang distinguisher. For example, by
exhaustive guessing the first round-key, constructing other boomerang trail for
24 rounds may lead to more knowledge of the master-key bits. Because our
main target is a very efficient distinguisher with rigorous analysis of dependent
S-layers, we leave the very detailed optimization work open.

5 Concluding Remarks

In this paper, we showed related-key boomerang attacks against full ANU. Our
attack exploits the property that simply using a PRESENT-like key sched-
ule function for shorter round keys (32 bits for ANU instead of 64 bits for
PRESENT) leads to a sparse differential trail in the key schedule function. The
Simon-like key insertion that XORs round keys outside the F -function further
allows the attacker to extend the attack efficiently.

Moreover, we show that applying the independent assumption for multiple
active S-boxes in the ANU round function is inappropriate. We showed how to
precisely evaluate the probability of differential propagations thorough depen-
dent S-layers of ANU. Indeed, the differential trail in our attack has higher
probability than the one evaluated under the independent assumption.

Our attack reveals the risk of mixing a part of other designs, even though
each of them is well-known to be good. We believe that our attacks give some
insight for future designers about the importance of applying extensive security
evaluation under the designers’ responsibility.



436 Y. Sasaki

A Differential Trails for 20-Round Distinguishers

Fig. 6. 10-round differential trails for E0 (left) and E1 (right).

B Differential Distribution Table of ANU S-Box

Table 5. Difference distribution table (DDT) of the ANU S-box.

Δo

0 1 2 3 4 5 6 7 8 9 a b c d e f

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 2 0 2 0 4 2 2 0 2 2 0
2 0 0 0 0 0 2 0 2 0 0 2 2 4 2 2 0
3 0 2 0 2 2 0 2 0 0 2 0 2 2 0 2 0
4 0 0 0 2 0 4 2 0 0 0 0 2 0 4 2 0
5 0 0 2 2 2 0 0 2 4 0 0 0 2 0 2 0
6 0 2 2 0 0 0 2 2 4 2 0 2 0 0 0 0

Δi 7 0 0 4 2 0 0 2 0 0 0 0 2 0 0 2 4
8 0 0 0 2 0 0 2 0 0 0 4 2 0 0 2 4
9 0 4 0 2 0 2 2 2 0 0 2 0 0 2 0 0
a 0 0 0 2 4 2 2 2 0 0 2 0 0 2 0 0
b 0 2 0 0 2 0 0 0 0 2 4 0 2 0 0 4
c 0 0 4 0 0 4 0 0 0 0 0 0 0 4 0 4
d 0 0 2 0 2 0 2 2 4 0 0 2 2 0 0 0
e 0 2 2 2 0 0 0 2 4 2 0 0 0 0 2 0
f 0 4 0 0 4 0 0 0 0 4 0 0 4 0 0 0



Related-Key Boomerang Attacks on Full ANU Lightweight Block Cipher 437

C An Example of Related-Key Boomerang Quartet

Table 6. An example of related-key boomerang quartet for full ANU. P ′
2 ⊕ P ′

3 is an
XOR of π(π(F (l0) ⊕ r0)) for P2 and for P3 that is used for the 24-bit filter.

K0 5fdcdba5 841fe8eb 7c45f3e1 2bb46b59

K1 5fdc9ba5 841fe8eb 7c45f3e1 2bb46b59

ΔK 00004000 00000000 00000000 00000000

P0 f353ed75 ef2bc597

P1 5bc8ad65 125dffb6

P2 9db0b2a6 fee4fc4e

P3 3656b0e4 a48a98f1

P0 ⊕ P1 a89b4010 fd763a21

P ′
2 ⊕ P ′

3 c0000c00

C0 683433eb 07a93b5c

C2 f34d9ef5 d93d2b3d

C1 d8894ec7 0d293b06

C3 62f3a6d9 d3bd2b67

C0 ⊕ C2 b0bd7d2c 0a80005a

C1 ⊕ C3 91be382c 0a80005a

References

1. Biryukov, A., Großschädl, J., Le Corre, Y.: CryptoLUX, Lightweight Cryptography
(2015). https://www.cryptolux.org/index.php/Lightweight Cryptography

2. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: a small
present. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp.
321–345. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 16

3. Bansod, G., Patil, A., Sutar, S., Pisharoty, N.: ANU: an ultra lightweight cipher
design for security in IoT. Secur. Commun. Netw. 9(18), 5238–5251 (2016)

4. Bansod, G., Patil, A., Sutar, S., Pisharoty, N.: An ultra lightweight encryption
design for security in pervasive computing. In: Conference article for 2016 IEEE
2nd International Conference on Big Data Security on Cloud, IEEE International
Conference on High Performance and Smart Computing, IEEE International Con-
ference on Intelligent Data and Security, pp. 79–84, April 2016. http://ieeexplore.
ieee.org/document/7502268/

5. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.:
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404 (2013)

6. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sas-
drich, P., Sim, S.M.: The SKINNY family of block ciphers and its low-latency variant
MANTIS. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 123–
153. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5 5

https://www.cryptolux.org/index.php/Lightweight_Cryptography
https://doi.org/10.1007/978-3-319-66787-4_16
http://ieeexplore.ieee.org/document/7502268/
http://ieeexplore.ieee.org/document/7502268/
https://doi.org/10.1007/978-3-662-53008-5_5


438 Y. Sasaki

7. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack—rectangling the ser-
pent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 21

8. Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle
attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9 1

9. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle
attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 30

10. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 1

11. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher.
In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

12. Canteaut, A., Lambooij, E., Neves, S., Rasoolzadeh, S., Sasaki, Y., Stevens, M.:
Refined probability of differential characteristics including dependency between
multiple rounds. IACR Trans. Symmetric Cryptol. 2017(2), 203–227 (2017)

13. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-
round MARS and serpent. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier,
B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44706-7 6

14. Kondo, K., Sasaki, Y., Todo, Y., Iwata, T.: Analyzing key schedule of Simon:
iterative key differences and application to related-key impossible differentials. In:
Obana, S., Chida, K. (eds.) IWSEC 2017. LNCS, vol. 10418, pp. 141–158. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-64200-0 9

15. McKay, K.A., Bassham, L., Turan, M.S., Mouha, N.: NISTIR 8114 report
on lightweight cryptography. Technical report, U.S. Department of Commerce,
National Institute of Standards and Technology (2017). https://doi.org/10.6028/
NIST.IR.8114

16. Murphy, S.: The return of the cryptographic boomerang. IEEE Trans. Inf. Theory
57(4), 2517–2521 (2011)

17. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23951-9 23

18. Suzaki, T., Minematsu, K.: Improving the generalized Feistel. In: Hong, S., Iwata,
T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 19–39. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13858-4 2

19. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: twine: a lightweight block
cipher for multiple platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 339–354. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35999-6 22

20. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48519-8 12

21. Wang, Q., Liu, Z., Varıcı, K., Sasaki, Y., Rijmen, V., Todo, Y.: Cryptanalysis
of reduced-round SIMON32 and SIMON48. In: Meier, W., Mukhopadhyay, D.
(eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 143–160. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13039-2 9

https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/3-540-45661-9_1
https://doi.org/10.1007/11426639_30
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/3-540-44706-7_6
https://doi.org/10.1007/978-3-319-64200-0_9
https://doi.org/10.6028/NIST.IR.8114
https://doi.org/10.6028/NIST.IR.8114
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-642-13858-4_2
https://doi.org/10.1007/978-3-642-35999-6_22
https://doi.org/10.1007/978-3-642-35999-6_22
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/978-3-319-13039-2_9


Related-Key Boomerang Attacks on Full ANU Lightweight Block Cipher 439

22. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21554-4 19

23. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck family of
lightweight block ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015.
LNCS, vol. 9293, pp. 307–329. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-48324-4 16

24. Zhang, W., Bao, Z., Lin, D., Rijmen, V., Yang, B., Verbauwhede, I.: RECTANGLE:
a bit-slice lightweight block cipher suitable for multiple platforms. Sci. China Inf.
Sci. 58(12), 1–15 (2015)

https://doi.org/10.1007/978-3-642-21554-4_19
https://doi.org/10.1007/978-3-662-48324-4_16
https://doi.org/10.1007/978-3-662-48324-4_16


Generic Round-Function-Recovery
Attacks for Feistel Networks over Small

Domains

F. Betül Durak(B) and Serge Vaudenay

Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
betul.durak@epfl.ch

Abstract. Feistel Networks (FN) are now being used massively to
encrypt credit card numbers through format-preserving encryption. In
our work, we focus on FN with two branches, entirely unknown round
functions, modular additions (or other group operations), and when
the domain size of a branch (called N) is small. We investigate round-
function-recovery attacks.

The best known attack so far is an improvement of Meet-In-The-
Middle (MITM) attack by Isobe and Shibutani from ASIACRYPT 2013

with optimal data complexity q = rN
2

and time complexity N
r−4
2 N+o(N),

where r is the round number in FN. We construct an algorithm with
a surprisingly better complexity when r is too low, based on partial
exhaustive search. When the data complexity varies from the optimal
to the one of a codebook attack q = N2, our time complexity can

reach N
O

(
N

1− 1
r−2

)
. It crosses the complexity of the improved MITM

for q ∼ N e3

r
2r−3.

We also estimate the lowest secure number of rounds depending on
N and the security goal. We show that the format-preserving-encryption
schemes FF1 and FF3 standardized by NIST and ANSI cannot offer 128-
bit security (as they are supposed to) for N � 11 and N � 17, respectively
(the NIST standard only requires N � 10), and we improve the results
by Durak and Vaudenay from CRYPTO 2017.

1 Introduction

Feistel Networks (FN) have been used in constructing many block ciphers such
as DES [1]. In the classical FN, we construct a permutation from 2n bits to 2n

bits with round functions from n bits to n bits. We call it as balanced Feistel
network. Figure 1 represents a 4-round FN with modular addition (modulo the
size of the domain for a branch). Other well known types of Feistel networks are
unbalanced FN, alternating between contracting and expanding round functions.

Although block ciphers only encrypt blocks of a fixed format (typically: a
binary string of length 128), there are many applications requiring to encrypt
data of another format (such as a decimal string of a given length) and to have
encrypted data in the same format. For example, Credit Card Numbers (CCN)
c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 440–458, 2018.
https://doi.org/10.1007/978-3-319-93387-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_23&domain=pdf


Generic Round-Function-Recovery Attacks for FN over Small Domains 441

consist of 16 decimal numbers, whose 6 digits must be kept confidential. For
this reason, these 6 digits are typically encrypted in digital transactions using
a Format-Preserving Encryption (FPE). Recently, FPE based on FN [5,6,9]
have been standardized [2,3]. As an example, the FPE solution of the terminal
manufacturer company Verifone encrypts about 30M credit card transactions
per day in the United States alone.

In this work, we are specifically interested in FN with two branches (not
necessarily balanced) with secret round functions and modular addition oper-
ation. Moreover, we are interested in small domain size over larger key space.
We investigate the security when the round function is entirely unknown instead
of a publicly known round function that mixes the input with a secret key (i.e.
round function is Fi = fi(ki, .), where ki is the round key in ith round). We do
not assume that round functions are bijective. This applies to FF1 [6] by Bellare
et al. and FF3 [9] by Brier et al. which have been standardized by The National
Institute of Standards an Technology (NIST) published in March, 2016 [2]. This
standard aims at a 128-bit security for any N � 10. FF3 was broken and repaired
by Durak and Vaudenay [15]. Herein, we denote by FF3∗ the repaired scheme.

F0

F1

F2

F3

L0 R0

R4L4

Fig. 1. 4-round Feistel network

Since their invention, Feistel networks and their security analysis have
been studied. Many cryptanalysis studies have been done to give key-recovery,
message-recovery, round-function-recovery, and differential attacks on different
types of Feistel networks [7,12,16,18,21,24]. We summarize the best function
recovery attacks in Table 1.1 The complexities are given in terms of number of
encryptions. In Appendix, we present a brief survey of existing attacks. So far,
the best generic attack was a variant of Meet-In-The-Middle (MITM) attack.

The most famous security result dates back to late 80’s given by Luby-
Rackoff [20]. In their seminal paper, Luby and Rackoff first showed that a three
round Feistel construction is a secure pseudorandom permutation from 2n bits

1 Table 1 only reports function recovery attacks. It does not include attacks applying
with round functions in a small space of N (instead of NN). It does not include
distinguishers such as the ones from Patarin [22] either.



442 F. B. Durak and S. Vaudenay

to 2n bits. Moreover, they showed that for more than three rounds FN, all
generic chosen-plaintext attacks on Feistel schemes require q = Ω(2

n
2 ) queries

where n is the input/output size to the round function. Information theoreti-
cally, the number q of queries provides 2qn bits of information. For r-round FN,
we need rn2n bits of information to recover the round functions (each round
function can be represented with a string of size n2n). Therefore, q = r

22n is
enough to reconstruct the round function, in theory. Patarin [23] further showed
that for q � 2n, four rounds are secure against known-plaintext attacks (the
advantage would be bounded by 4q

2n + q2

2·2n for q � 2n

67n ), five rounds are secure
against chosen-plaintext attacks (the advantage would be bounded by 5q

2n + q2

2·2n

for q � 2n

67n ) and six rounds are secure against chosen-plaintext and ciphertext
attacks (the advantage would be bounded by 8q

2n + q2

2·2n for q � 2n

128n ).
As we will not necessarily assume messages in binary, we use the notation

Nl ,Nr as the domain size of the round functions. We introduce some known
attacks on Feistel networks with our focused properties: two branches with
domain size Nl and Nr , with modular addition modulo Nl and Nr , secret ran-
dom round functions which are balanced (N = Nl = Nr ) or unbalanced but
with Nl ≈ Nr .

Table 1. Round-function-recovery attacks against generic balanced 2-branch r-round
FN with domain branch size N. (All β are different constants such that β < 1.)

Roundsc Method Type Requirement Time complexity T Data q Ref

3 Yo-yo Known pt O(N lnN) N lnN [15]

4 Cycle finding Known pt O
(
N3)

N
3
2 [15]

4 Guess and

determine

Chosen pt O

(
N

3
2

)
N

3
2 [7]

5 Cycle finding Chosen pt O
(
N

√
N+3

)
N

3
2 [15]

5 Integral attack Chosen pt F1 or F3
invertible

O
(
N2.81)

N2 [7]

5 Yo-yo Codebook ⊕-Feistel O
(
N2)

N2 [7]

5 Guess and

determine

Codebook O

(
NN

3
4

)
N2 [7]

5 SAT solver Codebook Not specified N2 [8]

6 Yo-yo Codebook ⊕-Feistel O

(
N

1
2 N

)
N2 [7]

7 Yo-yo Codebook ⊕-Feistel O
(
NN

)
N2 [7]

r Cycle finding Chosen pt O
(
N(r−5)N+

√
N+3

)
N

3
2 [15]

r MITM Known pt O
(
N� r

2 �N
)

r N
2 Eq. (1)

r MITM∗ Chosen pt N
r−4
2 N(1+o(1)) r N

2 Eq. (2)

r Iterated

partial exhst

search

Known pt N
(r−2)2

r−1 N
(

N
q

) 1
r−2 (β+o(1))

q � N2 Eq. (5)

r Iterated

partial exhst

search

Chosen pt N(r−3)N
1− 1

r−2 (β+o(1)) βN
2− 1

r−2 Eq. (8)

r Iterated

partial exhst

search

Chosen pt N
q
N

−1+(r−3)2
r−2 N

(
N
q

) 1
r−3 (β+o(1))

q � N2 Eq. (7)



Generic Round-Function-Recovery Attacks for FN over Small Domains 443

Our Contributions. In this work, we propose the best known generic exhaustive
search attack on Feistel networks with two branches and random functions with
arbitrary number r of rounds. We compare it with MITM. It is better for some
parameters. When the data complexity varies in between the optimal (based on
information theory) and the one of the codebook attack, our best time complexity

goes from N
r−2
2 N+o(N) (MITM-based, see Eq. (2) for r even) to NO(N1− 1

r−2 )

(based on partial exhaustive search, see Eq. (8)), where N is the domain size
of the branch. More precisely, the optimal data complexity is q = rN

2 . MITM
works with the optimal data complexity and with time complexity TMITM∗

=
N

r−2
2 N+o(N) (see Eq. (2)). Our partial exhaustive search attack can use any data

complexity from the optimal to the one of a codebook q = N2, but it is better
than MITM for q > N×e3

r 2r−3. It reaches the time complexity (called T Iter∗
)

N(r−3)N1− 1
r−2 (β+o(1)) for some constant β < 1 (see Eq. (8)) using q = βN2− 1

r−2

chosen plaintexts.
We plot in Fig. 2 the (r,N) parameters for which we have T Iter∗

= TMITM∗
.

As we can see, for any constant N and a low r (including r = 8 and r = 10 as
the NIST standards suggest), Iter∗ is the best attack. The same figure includes
two curves that correspond to the 128-bit and 256-bit security parameters (r,N).
The curves are computed with the minimum between TIter∗ and TMITM∗

. It can
be read that an intended 128-bit security level in FF3∗ with r = 8, N � 17 and
in FF1 with r = 10, N � 11 has not been satisfied.2 E.g., for 6-bit messages and
2-digit messages.3

Another application could be to reverse engineer an S-box based on FN [8].

Fig. 2. Parameters (r,N) for T Iter∗
= TMITM∗

and parameters to meet a 128-bit and
a 256-bit security level.

2 It was shown by Durak and Vaudenay [15] that 128-bit security was not reached by
FF3∗ and FF1 for 7 � N � 10 and N = 7, respectively.

3 Note that the NIST standard [2] requires N � 10.



444 F. B. Durak and S. Vaudenay

Structure of Our Paper. In Sect. 2, we review the symmetries in the set of tuples
of round functions which define the same FN and we describe the MITM attacks.
Our algorithm is described and analyzed in Sect. 3. Section 4 applies our results
to format preserving encryption standards. Finally, we conclude.4

2 Preliminaries

In this section, we present known techniques to recover the r-tuple of round
functions in FN. Note that we actually recover an equivalent tuple of round
functions. Indeed, we can see that round functions differing by constants can
define the actual same cipher [13,15]. Concretely, let (F0, . . . , Fr−1) be a tuple
defining a cipher C. For every a0, . . . ,ar−1, b0, . . . br−1 such that ai = bi−1 +
bi−3 + bi−5 + · · · and b0 + b2 + b4 + · · · = b1 + b3 + b5 + · · · = 0, we can define
(F ′

0, . . . , F
′
r−1) by F ′

i(x) = Fi(x − ai) + bi. We obtain a tuple defining the same
cipher C. Therefore, we can fix arbitrarily one point of F0, . . . , Fr−3 and we are
ensured to find an equivalent tuple of functions including those points.

2.1 Meet-In-The-Middle (MITM) Attack

The MITM attack was introduced by Diffie and Hellman [10]. It is a generic
known-plaintext attack. Briefly, consider an r round encryption E0,E1, . . . ,Er−1

and corresponding D0,D1, . . . ,Dr−1 decryption algorithms. We assume each
algorithm uses a k-bit key and we denote the keys by K0,K1, . . . ,Kr−1.
Let M1,M2, . . . ,Mq be the plaintexts and C1,C2, . . . ,Cq be the corre-
sponding ciphertexts. Let the intermediate values entering to round i be
M

(i)
1 ,M(i)

2 , . . . ,M(i)
q for 1 � i < r. The adversary enumerates each possible com-

bination of the keys K0,K1, . . . ,Ku−1 for the first u = � r
2� rounds and it computes

the intermediate values for each plaintexts as M
(u)
1 ,M(u)

2 , . . . ,M(u)
q until round

u. Then, these values along with their possible keys are stored in a table (The
memory complexity is 2uk messages). Then, the adversary partially decrypts the
ciphertext C1,C2, . . . ,Cq for each value of the keys Kr−1,Kr−2, . . . ,Ku backward.
Finally, the adversary looks for a match between the partially decrypted values
and the rows of the stored table. Each match suggests keys for K0,K1, . . . Kr−1

and the adversary recovers all the keys. The time complexity of the MITM attack
is 2(r−u)k and memory complexity is 2uk.5

We can apply the MITM attack to the Feistel networks with r rounds and q

known plaintext/ciphertext pairs. In our setting, N is quite small, thus we can
focus on a generic FN with functions specified by tables. This is equivalent to
4 The full version of our paper [14] includes appendices with: a description of the mes-

sage recovery attacks from Bellare et al. [4], the generic round-function-recovery
attack from Durak and Vaudenay [13,15], an attack exploiting the bias in the
modulo-N reduction inspired by Bleichenbacher (as described by Vaudenay [25]),
and the generic round-function-recovery attacks by Biryukov et al. [7].

5 In order to improve the memory complexity of MITM attack, a new technique called
dissection attack has been introduced by Dinur et al. in [11].



Generic Round-Function-Recovery Attacks for FN over Small Domains 445

using a key of k = N log2 N bits. Therefore, the standard MITM attack has a
time complexity of N(r−u)N with same memory complexity. We label the time
complexity as follows:

TMITM = O
(
N� r

2 �N
)

(1)

with q = rN
2 known plaintexts. The pseudocode is given in Algorithm1.

Algorithm 1. Meet-In-The-Middle Attack (MITM)
1 Collect q plaintext-ciphertext pairs (Mi,Ci), i = 1, . . . ,q.
2 foreach K0, . . . , Ku−1 do

3 Compute M
(u)
1 , . . . , M

(u)
q forward from M1, . . . , Mq.

4 Store (K0, . . . , Ku−1) in h(M
(u)
1 , . . . , M

(u)
q ).

5 end
6 foreach Ku, . . . , Kr−1 do

7 Compute M
(u)
1 , . . . , M

(u)
q backward from C1, . . . , Cq.

8 foreach K0, . . . , Ku−1 in h(Mu
1 , . . . , Mu

q) do
9 Output K0, . . . , Kr−1.

10 end

11 end

2.2 Improved MITM

In this section, we elaborate and extend the attack mentioned briefly in [11,12]
on r-round FN. The same attack appears in [17,18] with k = log2 N. We are only
adapting the algorithm to our settings. We take u = � r

2� − 1 and v = � r
2� − 1

so that r = u + v + 2 and u ≈ v. Consider the FN in Fig. 3 for r even (When r

is odd, we can set u = � r
2� − 1 so that r − u − 2 = � r

2� − 1). We can split the
(2u+ 2)- round FN in 4 parts: starting with a single round F0; a u-round Feistel
Network called G, the (u + 2)th round with function Fu+1, and finally another
v-round Feistel Network called H.

An intuitive attack works as follows. Fix a value M
(0)
R = a and consider

all possible M
(0)
L so that we obtain N plaintexts. We do it q

N times to obtain q

plaintexts. Hence, we have q
N values for a. We set the output of F0 for one value of

a arbitrarily. For all the plaintexts, we query (M
(0)
L ‖M

(0)
R ) and obtain q (CL‖CR)

values. We enumerate all the functions of H, and compute (M
(u+2)
L ‖M

(u+2)
R )

from (CL‖CR) by decrypting. We set Z = M
(u+2)
L = M

(u+1)
L if u is even and

set Z = M
(u+2)
R = M

(u+1)
R if u is odd. We store each Z in a hash table. We

then enumerate all the functions of G, and compute (M
(u+1)
L ‖M

(u+1)
R ) from

(M
(0)
L ‖M

(0)
R ). For each computed values of M

(u+1)
L (for u even) or M

(u+1)
R (for

u odd), we look for a match in the hash table storing Z values (since they have to
be equal). The time complexity of this approach consists of enumerating many
values and functions with memory complexity vN log2(N) to store the hash table.



446 F. B. Durak and S. Vaudenay

Enumerating F0, (F1, . . . , Fu) and Fu+2, . . . , Fr−1 gives N
q
N−1+(u+v)(N−1) tuples

which are filtered by N−q. We obtain N
q
N−1+(u+v)(N−1)−q tuples. Thus, for

each filtered tuple, we can deduce input/output values for Fu+1 and rule out
inconsistent tables to isolate the solutions (F0, . . . , Fr−1). This post-filtering has
a complexity N

q
N−1+(u+v)(N−1). We will see that it is lower than the complexity

of the rest of the algorithm. Thus, it disappears in the big-O. The pseudocode
is given in Algorithm 2.

Algorithm 2. Improved Meet-In-The-Middle Attack (MITM∗)
1 Take a1, . . . , a q

N
pairwise different half blocks.

2 Take M1, . . . , Mq pairwise different such that (Mi)R ∈ {a1, . . . , a q
N

}.

3 Collect the encryption C1, . . . , Cq of M1, . . . , Mq.
4 foreach v-round Feistel Network H do

5 Compute M
(u+2)
1 , . . . , M

(u+2)
q backward from C1, . . . , Cq.

6 Set Zi = M
(u+2)
L if u is even and Zi = M

(u+2)
R if u is odd, i = 1, . . . ,q.

7 Store H in h(Z1, . . . , Zq).

8 end
9 Set b1 arbitrarily.

10 foreach b2, . . . , b q
N

do

11 Set F0(ai) = b1, i = 1, . . . , q
N

.
12 foreach u-round Feistel Network G do

13 Compute M
(u+1)
1 , . . . , M

(u+1)
q forward from M1, . . . , Mq.

14 Set Zi = M
(u+1)
L if u is even and Zi = M

(u+1)
R if u is odd, i = 1, . . . ,q.

15 foreach H stored in h(Z1, . . . , Zq) do
16 Deduce input/output values for Fu+1.
17 if consistent then
18 Output (F0,G,H).
19 end

20 end

21 end

22 end

In this attack, we have to guess N
q
N−1 values for F0, Nu(N−1) values (we

have N − 1 instead of N because one value per round is free to select) for
enumerating F1, F2, . . . , Fu (we guess N

q
N−1+u(N−1) values in total). And, we

guess Nv(N−1) values for enumerating Fu+2, Fu+3, . . . , Fr−1 (we guess Nv(N−1)

in total). Therefore, the complexity is O
(
N

q
N−1+( r

2−1)(N−1)
)

for r is even and

O
(
N

q
N−1+( r−1

2 )(N−1)
)

for r is odd. We label the time complexity for described
attack as:

TMITM∗
= O

(
N( r

2−1)N
)

, for r even (2)

TMITM∗
= O

(
N

r−1
2 N− 1

2

)
, for r odd

with q = rN
2 chosen plaintexts.



Generic Round-Function-Recovery Attacks for FN over Small Domains 447

F0

G

Fu+1

H

M
(0)
L M

(0)
R

M
(1)
L M

(1)
R

M
(u+1)
L M

(u+1)
R

M
(u+2)
L M

(u+2)
R

M
(2u+2)
L M

(2u+2)
R

CRCL

Fig. 3. (2u+2)-round Feistel network (with u even on the picture)

3 Round-Function-Recovery by Partial Exhaustive
Search

We consider exhaustive search algorithms dealing with partial functions. Nor-
mally, a function Fj is defined by its set of all possible (z, Fj(z)) pairs. We call a
table as partial table if it is a subset of its table. It is a set of pairs such that

∀x,y, z (x,y) ∈ Fi and (x, z) ∈ Fi =⇒ y = z.

If (x,y) ∈ Fi, we say that Fi(x) is defined and we denote Fi(x) = y. The density
of a partial table is the ratio θ of its cardinality by N. For example, θ = 1

N
corresponds to a partial table defined on a single point z and θ = 1 corresponds
to the full table. Our aim is to enumerate possible partial tables of increasing
density by exhaustive search. So, we will “extend” partial functions. A partial
table is an extension of another partial table if the former is a superset of the
latter.

We deal with partial tables for each round function. We define r-tuples T of
partial tables in which Tj denotes the partial table of Fj in T .6 We say that T is
homogeneous with density θ if for all j, Tj has density θ. Similarly, a tuple T ′ is
an extension of T if for each j, T ′

j is an extension of Tj. An elementary tuple is a
homogeneous tuple of density 1

N . This means that each of its partial functions
are defined on a single point.

6 We denote an r-tuple with capital letter T . Each tuple T consists of r tables, i.e.
T = {T0, . . . Tr−1}. When we have multiple r-tuples, we denote different tuples indexed
with a superscript T1, T2, . . ..



448 F. B. Durak and S. Vaudenay

Again, our aim is to start with an elementary tuple and to list all extensions,
as long as they are compatible (as defined below) with the collected pairs of
plaintexts and ciphertexts (M,C). We say that a tuple T encrypts a plaintext
Mi into a ciphertext Ci (or decrypts Ci into Mi or even that T encrypts the
pair (Mi,Ci)) if we can evaluate the FN on Mi with the partial information we
have about the round functions and if it gives Ci. We say that a pair (Mi,Ci)
is computable except for r’ rounds for a tuple T if there exists a round number j

such that the partial functions are enough to encrypt Mi for up to j rounds and
to decrypt Ci for up to r − j − r ′ rounds.

We want to define what it means for a tuple to be compatible with (M,C).
Roughly, it is compatible if for each i, there exists an extension encrypting Mi

into Ci. (However, it does not mean there exists an extension encrypting each
Mi to Ci.) More precisely, we say that a tuple T of partial tables is compatible
with (M,C) if for each i, at least one of the following conditions is satisfied:

(i) T encrypts Mi into Ci

(in this case, there is no need to extend T);
(ii) (Mi,Ci) is computable except for two rounds or more

(indeed, if two rounds are undetermined, we know that we can extend T to
encrypt Mi to Ci);

(iii) (Mi,Ci) is computable except for one round (numbered s below) and their
is a match in the value skipping the missing round: more precisely, their
exists s ∈ {0, . . . , r − 1} and one (x,y) pair such that if T ′

s = Ts ∪ {(x,y)},
the tuple T ′ = (T0, . . . , Ts−1, T ′

s, Ts+1, . . . , Tr−1) encrypts Mi to Ci

(indeed, we know we can extend the missing round with Ts(x) = y).

Clearly, if no condition is satisfied for i, then no extension of T can encrypt Mi

into Ci, so we can prune an exhaustive search.

3.1 Iter: Iterative Partial Exhaustive Search

Assume that q plaintext/ciphertext pairs (Mi,Ci) are known to the adversary.
Due to the symmetries in the set of tuples which are compatible with the code-
book, we can focus on the tuples which are extensions of an arbitrarily fixed
elementary tuple T1 which encrypts the pair (M1,C1). So, we define Pooli as
the set of all extensions T of T1 encrypting the pairs (M1,C1), . . . , (Mi,Ci),
which are compatible with all other pairs, and which are minimal (in the sense
that removing any entry in the partial tables of T makes at least one (Mj,Cj)
pair not computable, for 1 � j � i).

We iteratively construct Pooli. For that, we take all possible minimal exten-
sions of tuples from Pooli−1 which encrypt the ith pair and remain compatible
with all others. We proceed as defined by Algorithm3.

With an appropriate data structure, we can avoid to retry to encrypt Mj or
decrypt Cj and directly go to the next computable round (if any) in every pair.
For each tuple T in Pooli, we maintain a hash table h in which h(u, x) is a list of
pairs of the form (j,+) or (j,−) with j > i. If (j,+) is in h(u, x), this means that



Generic Round-Function-Recovery Attacks for FN over Small Domains 449

Algorithm 3. Iterative partial exhaustive search round-function-recovery
attack
1 Collect q plaintext-ciphertext pairs (Mi,Ci), i = 1, . . . ,q.
2 Get an arbitrary elementary tuple T1 which encrypts M1 to C1.
3 Initialize Pool1 = {T1}.
4 foreach i = 2, . . . ,q do
5 Initialize Pooli to empty.
6 foreach T ∈ Pooli−1 do
7 foreach minimal extension T ′ of T encrypting Mi to Ci do
8 if all (Mi+1,Ci+1), . . . , (Mq,Cq) are compatible with T ′ then
9 Add T ′ in Pooli.

10 end

11 end

12 end

13 end
14 Output Poolq.

T encrypts Mj up to round u−1 and that the input to Fu (the output of which is
unknown) is x. If (j,−) is in h(u, x), this means that T decrypts Mj up to round
u+ 1 and that the input to Fu is x. Concretely, this means that h(u, x) lists the
indices of (Mj,Cj) pairs who need the value of Fu(x) to encrypt/decrypt one
more round. With this type algorithmic trick, we save the inner loop and the
complexity is expected to be close to the total size of the pools:

∑q
i=1 |Pooli|.

3.2 A Heuristic Complexity Analysis of Iter

We heuristically estimate |Pooli|. First, we recall that Pooli is the subset of all
minimal extensions of the elementary tuple T1 which encrypt the first i plain-
text/ciphertext pairs, restricted to the ones which are compatible with all others.

We approximate |Pooli| by NX−Y where X is the number of entries in the
partial tables (i.e. the number of defined points throughout all rounds) and Y is
the number of independent equations modulo N which a tuple must satisfy to
be compatible. So, N−Y is the probability for a tuple to satisfy the conditions
in Pooli. In other words, the NX possible tuples are decimated by a factor NY .
To treat the fact that we start with only T1 in Pool1, we decrease X by r (it
means that entries defined in T1 do not have to be enumerated as they are fixed)
and we decrease Y by 2 (i.e., we consider that the (M1,C1) pair never decimates
tuples as it is always compatible by the choice of T1).

Although it would be inefficient to proceed this way, we could see Pooli as
follows. For all sets (T2, . . . , T i) of elementary tuples in which T j encrypts the jth

pair, we check if {T1, T2, . . . , T i} are non-conflicting, and check if merging them
defines partial tables which are compatible with the q−i other pairs. We consider
that picking an elementary tuple T j encrypting the jth plaintext (irrespective of
the ciphertext) corresponds to picking one random input in each of the r round
functions. We call this a trial. An input to one round function corresponds to



450 F. B. Durak and S. Vaudenay

a ball with a number from 0 to N − 1. A round function is a bag of N balls.
So, we have r bags of balls and a trial consists of picking one ball in each bag.
Balls are replaced in their respective bags after picking them. Each T j makes
one trial. Consequently, we have i trials. The balls which are picked during these
i trials are called good balls. Then, checking compatibility with the remaining
q − i pairs corresponds to making q − i additional trials. In those additional
trials, we simply look at the number of good balls to see how many rounds can
be processed for encryption/decryption.

We estimate the random variable X as the total number of good balls (to
which we subtract the r balls corresponding to the trial of T1). Conditioned to
a density of good balls of θi,j in round j, we have E(X|θi,.) =

∑r
j=1 θi,jN− r. All

θi,j are random, independent, and with expected value θi. So, E(X) = rθiN− r.
The random variable Y is set to Y = Y1+Y2+Y3. The variable Y1 counts the

number of modulo N equations so that the encryption of the first i plaintexts
match the corresponding ciphertext. So, Y1 = 2(i − 1) (the first pair (M1,C1)
is satisfied by default, and each of the i − 1 other ones define two equations
due to the two halves of the ciphertexts). The variable Y2 counts the number of
equations coming from pairs encrypted for all but one round. So, Y2 counts the
number of trials (out of the last q−i ones) picking exactly r−1 good balls, as they
encrypt for all but one round so they define a single equation. The variable Y3

counts the number of equations coming from pairs in (Mi+1,Ci+1), . . . , (Mq,Cq)
which are fully encrypted. So, Y3 is twice the number of trials (out of the last
q− i ones) with r good balls, as they fully encrypt their corresponding pair and
thus define two equations each. Conditioned to a density of good balls of θi,j in
round j, we have

E(Y|θi,.) = 2(i − 1)
︸ ︷︷ ︸

Y1

+(q − i)

r∑

j=1

(1 − θi,j)
∏

j′ �=j

θi,j

︸ ︷︷ ︸
Y2

+ 2(q − i)
∏

j

θi,j

︸ ︷︷ ︸
Y3

.

All θi,j are random and independent, with expected value θi. Thus,

E(Y) = 2(i − 1) + rθr−1
i (1 − θi)(q − i) + 2θr

i(q − i).

We obtain |Pooli| ≈ cns × NE(X−Y) where cns is adjusted such that
|Pool1| = 1. Hence,

|Pooli| ≈ cns × NrθiN−r−2(i−1)−rθr−1
i (1−θi)(q−i)−2θr

i(q−i) (3)

with cns ≈ 1 such that |Pool1| = 1.
To estimate θi, we look at how it grows compared to θi−1. During the ith

trial, with probability θi−1 a picked ball is already good (so the density remains
the same), and with probability 1 − θi−1, picking a ball defines an additional
good one (so the density increases by 1

N ).7 Therefore, on average we have

7 It would increase with a probability a bit larger than 1− θi−1, namely
N2(1−θi−1)

N2−(i−1)
if

the messages are not independent but conditioned to being pairwise different.



Generic Round-Function-Recovery Attacks for FN over Small Domains 451

θi = θi−1 +
1
N

× (1 − θi−1).

As θ1 = 1
N , we deduce θi = 1 −

(
1 − 1

N

)i.
Assuming that the above model fits well with Iter, the expected value of

log |Pooli| should match Eq. (3). However, Eq. (3) cannot represent well the
expected value of |Pooli| as exponential with bigger exponents will have a huge
impact on the average. This motivates an abort strategy when the pool becomes
too big. The abort strategy has known and influenced many works [19]. The way
we use this strategy will be discussed in Sect. 3.5.

Finally, the heuristic complexity is computed by

T Iter =

N∑

i=1

NrθiN−2i−rθr−1
i (1−θi)(q−i)−2θr

i(q−i)−r+2. (4)

3.3 Approximation of the Complexity

For i � N, we can write θi =
i
N . By neglecting θr

i against θr−1
i , the complexity

is approximated by the maximum of NrθN−2Nθ−rθr−1q−r+2. We can easily show
that the maximum is reached by θ = θc with

θc =

(
r − 2

r(r − 1)

) 1
r−2

(
N

q

) 1
r−2

.

We obtain the complexity

T Iter ≈ N
(r−2)2

r−1 ( r−2
r(r−1))

1
r−2 N(N

q )
1

r−2 −r+2 (5)

with q known plaintexts. We will see later that (5) approximates well (4).
The best complexity is reached with the full codebook q = N2 with

T Iter ≈ N
(r−2)2

r−1 ( r−2
r(r−1) )

1
r−2 N1− 1

r−2 −r+2 (6)

which is T Iter = N
(r−2)2

r−1 (β+o(1))N1− 1
r−2 for some β < 1.

3.4 Iter∗: A Chosen Plaintext Extension to Iter

Finally, if q is not too close to N2, a chosen plaintext attack variant consists of
fixing the right half of the plaintext as much as possible, then guessing F0 on
these points and run the known-plaintext attack on r − 1 rounds to obtain

T Iter∗
= N

q
N−1T Iter

r−1 ≈ N
q
N−1+ (r−3)2

r−2 ( r−3
(r−1)(r−2))

1
r−3 N(N

q )
1

r−3 −r+3 (7)

with q chosen plaintexts such that q � N2.



452 F. B. Durak and S. Vaudenay

Discussion. For N2 > q > N r−3
(r−1)(r−2)

(
2 (r−3)2

(r−2)(r−4)

)r−3

∼ Ne3

r 2r−3, we have

T Iter∗
< N

q
N−r+2+ r−4

N and that means T Iter∗
< TMITM∗

. Therefore, our Iter∗

algorithm becomes better than MITM∗. Also, for N � (r−3)r−2

r−1 , we have
T Iter∗

< NN−r+2 so Iter∗ is faster than exhaustive search on a single
round function.

Optimization with Larger q. We easily obtain that T Iter∗
in (7) is optimal with

T Iter∗
= N

q
N−1T Iter

r−1 ≈ N(r−3)N1− 1
r−2 ( 1

r−1 )
1

r−2 −r+2 (8)

for

q =
r − 3
r − 2

N2− 1
r−2

(
1

r − 1

) 1
r−2

.

chosen plaintexts.

3.5 Variants of Iter and Iter∗

Optimized Algorithm. We can speed up the algorithm by adding more points
in the tuples as soon as we can compute them. Concretely, if one plain-
text/ciphertext pair can be “computed” except in one or two rounds, we can
deduce the values in the missing rounds and define them in the tuple. Adding x

points reduce the number of iterations to define the next pool by Nx.

Abort Strategy. Our complexity is not an average complexity but its logarithm is
an average logarithmic complexity. To avoid having a too high average complex-
ity, we may change the algorithm to make it abort if the pool exceeds a threshold
to be defined. For instance, if our theoretical formula predicts a complexity Th,
to make sure that the worst case complexity does not exceed Th × Nx, we set
this to the threshold value. This will affect the success probability, which is 100%
without the abort strategy, but may be lower for any real number x.

Other Improvements. We believe that we could improve our algorithms in many
ways. For instance, we could take the (Mi,Ci) pairs in an optimized order so
that we do not have too many new values appearing in the first and last round
functions. This would decrease the number of tuples to consider.

3.6 Experimental Results

We implemented Algorithm 3 with known plaintext, r = 5, N = 8, q = 40. Our
algorithm always ended with a pool limited to a correct set of full tables.

With these parameters, Eq. (3) estimates Pool3 to be the largest, and esti-
mates |Pool3| = N2.49. We checked over 100 executions, that logN |Pool3| has an
average of 4.37 and a standard deviation of 0.60. This is a bad news as it is quite
larger than what is predicted. More precisely, each partial function in Pool3 has



Generic Round-Function-Recovery Attacks for FN over Small Domains 453

on average 2.9 defined entries, which is slightly more than the Nθ3 ≈ 2.64 which
is predicted.8 But adjusting θ3 to 2.9

N in Eq. (3) gives N3.04, which is not enough
to explain the high |Pool3| which is observed. So, our model for the random
variable X may be correct but Y may be overestimated: Iter decimates less than
expected. Although we thought Pool3 would be the largest from our theory, the
largest observed pool during our experiment were Pool4 with logarithmic size
with average 5.28. This indicates that our model for Iter is not accurate.

All these problems find several explanations. First of all, our parameter N

is so small that a tiny variation of number of defined entries (supposed to be
θiN) in each round has a dramatic impact on the number of tuples. Second,
our approach takes the θi as uniform in all rounds and runs although there are
variations. Some rounds have more than θiN entries and some others have less.
The function we analyze is not linear in θi. It is exponential. So, any round with
more than θiN defined entries increase the complexity quite a lot.

The good news is that using our optimized variant reduced the gap substan-
tially. The largest Pool becomes maxi logN(|Pooli|) = 3.46. Using the abort
strategy with x = 1 gives a success rate of 42% and maxi logN(|Pooli|) = 3.08.
So, we believe that our anticipated complexities are achievable with a
good success probability. However, finding a good model for decimation and
for the improved algorithm remains an open question.

We summarize our experiments in the Table 2. For the max|Pool| column is
the average (logarithmically) of the largest observed pool. The logarithm is the
maximum over each iteration of the average over the runs of the logarithm of the
pool size. The computed average only includes successful runs, as unsuccessful
ones are all on the abort threshold.

4 Applications

In the standards, the supported domain size of messages in FF1 and FF3∗ is
greater than 100 (i.e. N2 � 100). For FF1 and FF3∗, the best attack is roughly
Iter∗ for very low N, then MITM∗ for larger N. More precisely, we achieve the
results shown in Table 3.9

For a better precision, we did the computation without approximations, i.e.
by using Eq. (4) instead of Eq. (5) in Eq. (7). In any case, we have checked that
the figures with approximation do not differ much. They are reported in the
Table 4.

As an example, for FF3∗ with N = 23 (i.e., messages have 6 bits), MITM∗

uses q = 25 pairs (half of the codebook) and search on three points for F0, the
entire (but one point) F1 and F2, one bit of F3 in the encryption direction, and
the entire (but one point) F7 and F6 and one bit of F5 in the decryption direction.
This is N3+2(N−1) × 2N−1 = 258. With Iter∗, we also use q = 25 and the pool
reaches its critical density for θc ≈ 4.4

N . The complexity is T Iter∗
= 242.

8 This is partially explained by the fact that plaintexts are pairwise different.
9 Note that the standard requires N � 10. Hence, the first three rows are not relevant

in practice.



454 F. B. Durak and S. Vaudenay

Table 2. Experimental results with parameters r = 5, N = 8, and q = 40 and
with parameters r = 5, N = 10, and q = 40. The max |Pool| column reports
maxi Eruns(logN |Pooli|): the average (logarithmically) of the largest observed pool. It is
compared with Th which is derived as the largest theoretical pool size by our theory.
The column opt shows whether we used the optimization trick. The abort column
indicates when we used the abort strategy, and with which bound.

r = 5, N = 8, q = 40
#runs success max |Pool| opt abort

100 100% Th×N2.79 no no
10 000 0% no Th
1 000 0% no Th×N

1 000 3% Th×N1.76 no Th×N2

100 100% Th×N0.93 yes no
10 000 1% Th×N−0.29 yes Th

100 42% Th×N0.59 yes Th×N

100 99% Th×N0.90 yes Th×N2

r = 5, N = 10, q = 40
#runs success max |Pool| opt abort
10 000 0% no Th
1 000 0% no Th×N

100 0% no Th×N2

14 100% Th×N1.40 yes no
10 000 1% Th×N−0.31 yes Th

100 19% Th×N0.60 yes Th×N

19 68% Th×N1.25 yes Th×N2

Table 3. Time complexity of the chosen-plaintext attacks MITM∗ (TMITM∗
) and Iter∗

(T Iter∗
) with query complexity q for various values of N and r = 8 or r = 10. Compu-

tations for T Iter∗
were done without using approximations.

r = 8 (FF3∗) r = 10 (FF1)
N TMITM∗

[q] (2) T Iter∗
[q] (8) N TMITM∗

[q] (2) T Iter∗
[q] (8)

21 26[ 22.0 ] 22[22.0 ] 21 28[ 22.0 ] 23[ 22.0 ]

22 224[ 24.0 ] 213[24.0 ] 22 232[ 24.0 ] 221[ 24.0 ]

23 272[ 25.0 ] 242[25.0 ] 23 296[ 25.3 ] 272[ 25.3 ]

24 2192[ 26.0 ] 2116[26.6 ] 24 2256[ 26.3 ] 2199[ 26.8 ]

25 2480[ 27.0 ] 2279[28.3 ] 25 2640[ 27.3 ] 2487[ 28.6 ]

26 21152[ 28.0 ] 2627[210.1] 26 21536[ 28.3 ] 21115[ 210.5 ]

27 22688[ 29.0 ] 21343[212.0] 27 23584[ 29.3 ] 22445[ 212.4 ]

28 26144[ 210.0 ] 22788[213.8] 28 28192[ 210.3 ] 25202[ 214.3 ]

We may wonder for which N the ciphers offer a 128-bit security. Durak and
Vaudenay [15] showed that this is not the case for FF3∗ with N � 10 and FF1
with N � 7. By doing computations for Iter∗, we extend this to show that FF3*



Generic Round-Function-Recovery Attacks for FN over Small Domains 455

Table 4. Time complexity of the chosen-plaintext attacks MITM∗ (TMITM∗
) and Iter∗

(T Iter∗
) with query complexity q for various values of N and r = 8 or r = 10. Compu-

tations for T Iter∗
were done using approximations.

r = 8 (FF3∗) r = 10 (FF1)
N TMITM∗

[q] (2) T Iter∗
[q] (8) N TMITM∗

[q] (2) T Iter∗
[q] (8)

21 26[ 22.0 ] 21[22.0 ] 21 28[ 22.0 ] 22[ 22.0 ]

22 224[ 24.0 ] 213[24.0 ] 22 232[ 24.0 ] 221[ 24.0 ]

23 272[ 25.0 ] 244[25.0 ] 23 296[ 25.3 ] 275[ 25.3 ]

24 2192[ 26.0 ] 2122[26.6 ] 24 2256[ 26.3 ] 2209[ 26.9 ]

25 2480[ 27.0 ] 2295[28.4 ] 25 2640[ 27.3 ] 2512[ 28.8 ]

26 21152[ 28.0 ] 2658[210.3] 26 21536[ 28.3 ] 21166[ 210.7 ]

27 22688[ 29.0 ] 21401[212.1] 27 23584[ 29.3 ] 22543[ 212.5 ]

28 26144[ 210.0 ] 22890[213.9] 28 28192[ 210.3 ] 25383[ 214.4 ]

does not offer a 128-bit security for N � 17, and FF1 does not offer a
128-bit security for N � 11.

Genuinely, we can compute in Table 5 the minimum ropt � 4 of the number
of rounds for which min(TMITM∗

, T Iter∗
) � 2s depending on s and N. Again,

we computed without using our approximations. For s = 128 and s = 256, we
fetch the following table.10

Table 5. Minimal number ropt of rounds for various N in order to have complexities
at least 2128 or 2256. Computations for T Iter∗

were done without using approximations.

s = 128 s = 256
N ropt TMITM∗

T Iter∗
N ropt TMITM∗

T Iter∗

21 260 2258.0 2128.5 21 516 2514.0 2256.5

22 40 2152.0 2129.3 22 77 2228.0 2257.6

23 14 2144.0 2136.5 23 24 2264.0 2272.2

24 9 2240.0 2155.8 24 12 2320.0 2289.1

25 7 2465.0 2187.9 25 8 2480.0 2279.3

26 6 2768.0 2236.2 26 7 21134.0 2415.8

27 5 21778.0 2195.4 27 6 21792.0 2485.0

28 5 24080.0 2370.4 28 5 24080.0 2370.4

Even by adding a safety margin, this shows that we do not need many rounds
to safely encrypt a byte (that is, N = 24) with respect to our best attacks.
However, with low r, we should care about other attacks as in Table 1. Indeed,
for ⊕-FN, we recommend never to take r � 7 due to the yo-yo attack [7]. For
other FN, we recommend never to take r � 5.

10 In this table, we computed the value of q suggested by our formulas but rounded in
the

[
rN
2

,N2
]

interval.



456 F. B. Durak and S. Vaudenay

In Fig. 4, we plot complexities for r = 8 or r = 10 and various ranges of N.
The regions for T Iter∗

we plot have a minimum for the optimal q and a maximum
for r = rN

2 . The region corresponds to all complexities for q ∈ [ rN
2 ,N2].

Fig. 4. Time complexity of attacks against generic 8-round and 10-round FN for Iter∗

with q minimal or q making the complexity optimal, for DV [15], and MITM∗.

5 Conclusion

Standard Feistel Networks and its variations have created an active research area
since their invention and have been used in constructions of many cryptographic
systems to a wide extent. The security of FN has been studied for many decades
resulting in many interesting results for cryptanalysis purpose. In this work, we
analyze the security of a very specific type of FN with two branches, secure ran-
dom round functions, and modular addition to analyze its security. Additionally,
we consider small domains. The best attack was believed to be MITM. However,



Generic Round-Function-Recovery Attacks for FN over Small Domains 457

we show that partial exhaustive search can be better. Concretely, we show that
the number of rounds recommended by NIST is insufficient in FF1 and FF3*
for very small N.

This specific FN with the described properties has been used to build Format-
Preserving Encryption and perhaps will inspire many other constructions. How-
ever, the security of FN with various properties is not clear (regardless of the
significant security analyses mentioned in the introduction) and has to be inves-
tigated more. Our work shows only that a caution should be taken in order to
meet the desired security level in the systems.

We proposed a new algorithm based on partial exhaustive search. We
observed a gap between our heuristic complexity and experiments and suggested
possible explanations. However, the problem to reduce this gap is left as an open
problem.

References

1. Data Encryption Standard, National Bureau of Standards, NBS FIPS PUB 46,
January 1977. National Bureau of Standards. U.S, Department of Commerce (1977)

2. Recommendation for Block Cipher Modes of Operation: Methods for Format Pre-
serving Encryption, NIST Special Publication (SP) 800-38G, 29 March 2016.
National Institute of Standards and Technology

3. Retail Financial Services - Requirements for Protection of Sensitive Payment Card
Data - Part 1: Using Encryption Method. American National Standards Institute
(2016)

4. Bellare, M., Hoang, V.T., Tessaro, S.: Message-recovery attacks on Feistel-based
format-preserving encryption. In: Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS 2016, pp. 444–455. ACM,
New York (2016)

5. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryp-
tion. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS,
vol. 5867, pp. 295–312. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-05445-7 19

6. Bellare, M., Rogaway, P., Spies, T.: The FFX Mode of Operation for Format-
Preserving Encryption. draft 1.1. Submission to NIST, February 2010. http://csrc.
nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-spec.pdf

7. Biryukov, A., Leurent, G., Perrin, L.: Cryptanalysis of feistel networks with secret
round functions. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566,
pp. 102–121. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31301-6 6

8. Biryukov, A., Perrin, L.: On reverse-engineering S-boxes with hidden design criteria
or structure. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9215, pp. 116–140. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-47989-6 6

9. Brier, E., Peyrin, T., Stern, J.: BPS: A Format-Preserving Encryption Pro-
posal. http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/
bps/bps-spec.pdf

10. Diffie, W., Hellman, M.E.: Special feature exhaustive cryptanalysis of the NBS
data encryption standard. Computer 10(6), 74–84 (1977)

https://doi.org/10.1007/978-3-642-05445-7_19
https://doi.org/10.1007/978-3-642-05445-7_19
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/ffx/ffx-spec.pdf
https://doi.org/10.1007/978-3-319-31301-6_6
https://doi.org/10.1007/978-3-662-47989-6_6
https://doi.org/10.1007/978-3-662-47989-6_6
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/bps/bps-spec.pdf


458 F. B. Durak and S. Vaudenay

11. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of compos-
ite problems, with applications to cryptanalysis, knapsacks, and combinatorial
search problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 719–740. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5 42

12. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: New attacks on feistel struc-
tures with improved memory complexities. In: Gennaro, R., Robshaw, M. (eds.)
CRYPTO 2015. LNCS, vol. 9215, pp. 433–454. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-47989-6 21

13. Durak, F.B., Vaudenay, S.: Breaking the FF3 format-preserving encryption. In:
Proceedings of ESC 2017. https://www.cryptolux.org/mediawiki-esc2017/images/
8/83/Proceedings esc2017.pdf

14. Durak, F.B., Vaudenay, S.: Generic Round-Function-Recovery attacks for Feistel
Networks over Small Domains. https://eprint.iacr.org/2018/108.pdf

15. Durak, F.B., Vaudenay, S.: Breaking the FF3 format-preserving encryption stan-
dard over small domains. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10402, pp. 679–707. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63715-0 23

16. Hoang, V.T., Rogaway, P.: On generalized Feistel networks. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 613–630. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-14623-7 33

17. Isobe, T., Shibutani, K.: All subkeys recovery attack on block ciphers: extending
meet-in-the-middle approach. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS,
vol. 7707, pp. 202–221. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-35999-6 14

18. Isobe, T., Shibutani, K.: Generic key recovery attack on Feistel scheme. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 464–485. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 24

19. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the efficiency of impossible
differential cryptanalysis of reduced Camellia and MISTY1. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-79263-5 24

20. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseu-
dorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)

21. Nachef, V., Volte, E., Patarin, J.: Differential attacks on generalized Feistel
schemes. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013. LNCS,
vol. 8257, pp. 1–19. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
02937-5 1

22. Patarin, J.: Generic attacks on Feistel schemes (2008). http://eprint.iacr.org/2008/
036

23. Patarin, J.: Security of Balanced and Unbalanced Feistel Schemes with Non-linear
Equalities (2010). http://eprint.iacr.org/2010/293

24. Patarin, J., Nachef, V., Berbain, C.: Generic attacks on unbalanced Feistel schemes
with contracting functions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 396–411. Springer, Heidelberg (2006). https://doi.org/10.1007/
11935230 26

25. Vaudenay, S.: The security of DSA and ECDSA. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 309–323. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36288-6 23

https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/978-3-642-32009-5_42
https://doi.org/10.1007/978-3-662-47989-6_21
https://www.cryptolux.org/mediawiki-esc2017/images/8/83/Proceedings_esc2017.pdf
https://www.cryptolux.org/mediawiki-esc2017/images/8/83/Proceedings_esc2017.pdf
https://eprint.iacr.org/2018/108.pdf
https://doi.org/10.1007/978-3-319-63715-0_23
https://doi.org/10.1007/978-3-319-63715-0_23
https://doi.org/10.1007/978-3-642-14623-7_33
https://doi.org/10.1007/978-3-642-35999-6_14
https://doi.org/10.1007/978-3-642-35999-6_14
https://doi.org/10.1007/978-3-642-42033-7_24
https://doi.org/10.1007/978-3-540-79263-5_24
https://doi.org/10.1007/978-3-540-79263-5_24
https://doi.org/10.1007/978-3-319-02937-5_1
https://doi.org/10.1007/978-3-319-02937-5_1
http://eprint.iacr.org/2008/036
http://eprint.iacr.org/2008/036
http://eprint.iacr.org/2010/293
https://doi.org/10.1007/11935230_26
https://doi.org/10.1007/11935230_26
https://doi.org/10.1007/3-540-36288-6_23
https://doi.org/10.1007/3-540-36288-6_23


Differential Cryptanalysis
of Round-Reduced Sparx-64/128

Ralph Ankele1(B) and Eik List2

1 Royal Holloway University of London, Egham, UK
ralph.ankele.2015@rhul.ac.uk

2 Bauhaus-Universität Weimar, Weimar, Germany
eik.list@uni-weimar.de

Abstract. Sparx is a family of ARX-based block ciphers designed
according to the long-trail strategy (LTS) that were both introduced by
Dinu et al. at ASIACRYPT’16. Similar to the wide-trail strategy, the
LTS allows provable upper bounds on the length of differential charac-
teristics and linear paths. Thus, the cipher is a highly interesting tar-
get for third-party cryptanalysis. However, the only third-party crypt-
analysis on Sparx-64/128 to date was given by Abdelkhalek et al. at
AFRICACRYPT’17 who proposed impossible-differential attacks on 15
and 16 (out of 24) rounds.

In this paper, we present chosen-ciphertext differential attacks on 16
rounds of Sparx-64/128. First, we show a truncated-differential analy-
sis that requires 232 chosen ciphertexts and approximately 293 encryp-
tions. Second, we illustrate the effectiveness of boomerangs on Sparx by
a rectangle attack that requires approximately 259.6 chosen ciphertexts
and about 2122.2 encryption equivalents. Finally, we also considered a
yoyo attack on 16 rounds that, however, requires the full codebook and
approximately 2126 encryption equivalents.

Keywords: Symmetric-key cryptography · Cryptanalysis
Boomerang · Truncated differential · Yoyo · ARX

1 Introduction

ARX Ciphers. The design and cryptanalysis of block ciphers is a heuristic com-
petition between designers and analysts. With the introduction of the wide- trail
design strategy in Rijndael, designers could finally provide provable bounds for
the expected probabilities and therefore for the maximal length of differential
characteristics and linear trails of block ciphers. Rijndael and similar designs are
substitution-permutation networks (SPNs), which left the earlier path of using

R. Ankele—This research was partially supported by the European Union’s Horizon
2020 research and innovation programme under grant agreement No. H2020-MSCA-
ITN-2014-643161 ECRYPT-NET.

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 459–475, 2018.
https://doi.org/10.1007/978-3-319-93387-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_24&domain=pdf


460 R. Ankele and E. List

only the omnipresent modular addition, XOR, rotation, and shift operations
that most processors support out-of-the-box. Thus, SPNs demand an expertised
tailoring of their implementations to the operating platform to be comparably
efficient as bit-based designs. However, in resource-constrained environments, the
most efficient software implementations are still ciphers that employ only logical
operations and/or addition, e.g., ciphers based on modular additions, rotations,
and XOR (ARX). Hence, until recently, there has been a gap between the prov-
able bounds of wide-trail designs, and the efficiency of ARX-based constructions.

Sparx. At ASIACRYPT’16, Dinu et al. introduced Sparx [7], the first ARX-
based family of block ciphers that provides provable bounds on the maximal
length of differential characteristics and linear trails. Alongside Sparx, the
authors developed the long-trail design strategy, a general approach for ARX-
based symmetric-key primitives to obtain provable bounds. Both the long-trail
strategy in general, and Sparx in particular, are interesting targets of crypt-
analysis as they try to bridge the gap between efficiency and providing security
bounds. The question arises if it is also secure against (truncated) differential
and boomerang attacks that can exploit clustering effects of many differential
characteristics.

Research Gap and Related Work. In the specification of Sparx, the
designers reported on their results of a first automated analysis that no dif-
ferential characteristic with probability higher than 2−n nor any linear charac-
teristic with bias higher than 2−n/2 exists over five or more steps. Moreover, they
described integral attacks on up to five out of eight steps of Sparx-64/128, and
six out of ten steps of Sparx-128. Though, those initial attacks are naturally lim-
ited due to time constraints when designing a new cipher, and therefore demand
a deeper analysis by the cryptographic community. At AFRICACRYPT’17,
Abdelkhalek et al. [1] proposed 12- and 13-round impossible-differential distin-
guishers on Sparx-64/128, using the four-step distinguisher for balanced Type-
1 Feistel networks. They extended their attacks by three rounds, respectively,
where they exploited dependencies between the key words from the key-schedule.
Recently, Tolba et. al. proposed multi-dimensional zero-correlation linear attacks
on up to 26 rounds of Sparx-128/128, and on up to 29 rounds of Sparx-
128/256 [13].

Contribution and Outline. This work adds two chosen-ciphertext attacks
on Sparx-64/128 in the single-key model: (1) a truncated-differential attack
on 16 rounds and (2) a rectangle attack on 16 rounds; moreover, we further
considered yoyo attacks on the same number of rounds, which, however, requires
the full codebook. Due to space constraints, that attacks will be available in
a full version alongside this work [2]. Table 1 compares their parameters with
the previous attacks on Sparx-64/128 from the literature. In the remainder, we
briefly revisit the necessary notions as well as the details of Sparx-64 in Sect. 2.
We describe our truncated-differential attack in Sect. 5. We continue with an
informal introduction to boomerang and rectangle attacks in Sect. 3. In Sect. 4,
we describe our search of differential trails before we detail our rectangle attack
on Sparx-64/128 in Sect. 6. Finally, Sect. 7 concludes this work.



Differential Cryptanalysis of Round-Reduced Sparx-64/128 461

Table 1. Previous and proposed attacks on Sparx-64/128. KP/CP/CC = known plain-
text/chosen plaintext/chosen ciphertext. ID = Impossible differential, TD = Truncated
differentials.

Rounds Attack type Time Data Memory Ref.

15/24 Integral 2101.0 237.0 CP 264.0 [7]

15/24 ID 294.1 251.0 CP 243.5 [1]

16/24 ID 294.0 261.5 KP 261.5 [1]

16/24 TD 293.0 232.0 CC 261.0 Sect. 5

16/24 Rectangle 2122.2 259.6 CC 261.6 Sect. 6

16/24 Yoyo 2126.0 264.0 CP 264.0 Full version [2]

2 Preliminaries

General Notations. We denote by F2 the finite field of two elements x ∈
{0, 1}. For positive integer n, we denote by F

n
2 the space of n-element vectors

from F2. We represent functions by upper case letters and indices by lowercase
letters. {0, 1}n is the set of all n-bit strings and {0, 1}∗ the set of bit strings of
arbitrary length. Let x, y ∈ {0, 1}n for some positive integer n in the following.
Then, we denote by x ‖ y the concatenation of x and y, by x ⊕ y their bitwise
XOR, by x ≪ r a rotation by r bit to the left and by x ≫ r rotation by r bit to
the right; moreover, we denote by x � y = (x + y) mod 2n modular addition, and
by x � y = (x − y) mod 2n modular subtraction. For all bit strings x ∈ {0, 1}n,
we index the bits x = (xn−1 . . . x1x0) where xn−1 is the most significant and x0

the least significant bit of x. Given a bit string x = (x1 ‖ . . . ‖xm) ∈ ({0, 1}mn)
consisting of m words of n bit each, we denote by

x ≪n r
def= (x1 ≪ r) ‖ . . . ‖ (xm ≪ r)

the word-wise independent rotated value. We overload the notation for tuples of
bit strings x ∈ ({0, 1}n)m: x = (x1, . . . , xm), to still mean wordwise independent
rotation x ≪n r

def= (x1 ≪ r), . . . , (xm ≪ r). We use typewriter font to
represent hexadecimal values, e.g., 0110 = 272. We use the same font but with
annotation to represent bit strings, e.g., (0110)2 = 6; moreover, we will use
the symbol * at the position of that certain bits to indicate that they can take
arbitrary values, e.g., (0 * 10)2 ∈ {2, 6}. As a shorthand notation for probabilities
p, we often write hw = − log2(p) when the meaning of p is clear from the context.

2.1 The Sparx Family of Ciphers

The Sparx-n/k family comprises three versions, Sparx-64/128, Sparx-128/128,
and Sparx-128/256, where n indicates the block size, and k the key length k.
The cipher is based on a Feistel network with two state words for Sparx-64
and four state words for Sparx-128, consisting of ns Feistel steps. Each step



462 R. Ankele and E. List

Fig. 1. High-level view of Sparx-64. Top left: The step function. Top center: The
A3 layer in Sparx-64. Top right: The linear layer L. Bottom left: The A function
Speckey. Bottom right: One iteration of the key schedule of Sparx-64/128.

consists of ra rounds of an ARX-based round function; plain- and ciphertexts
consist of w = n/32 words X0, . . . , Xw−1 of 32 bit each; the key is divided into
32-bit words (κ0, . . . , κv−1). The values for the individual versions of Sparx are
summarized in Table 2, the components of the cipher are also depicted in Fig. 1.

Sparx-64/128. The structure of Sparx-64 is reminiscent of a Feistel network
of eight steps. Each step consists of ra = 3 rounds of the ARX-box A, (i.e. three
rounds of Speckey) on each branch. The Feistel function L is a linear involutive
permutation L : F32

2 → F
32
2 inspired by [8]. Given the left 32-bit state word x ‖ y,

the input is split into 16-bit parts x, y, and is mapped to

L(x ‖ y) def= (x ⊕ ((x ⊕ y) ≪ 8)) ‖ (y ⊕ ((x ⊕ y) ≪ 8)).

We denote the 64-bit state after Round r interchangeably as (Lr, Rr) = (X0
r ‖

X1
r ,X2

r ‖ X3
r ) = (XL

r ‖ Y L
r ,XR

r ‖ Y R
r ), and the round key used in Round r

interchangeably as (KL
r , KR

r ) = (K0
r ‖K1

r , K2
r ‖K3

r ).

The Key Schedule of Sparx-64. The 128-bit secret key of Sparx-64/128
is divided into four initial 32-bit words (κ0

0, κ
1
0, κ

2
0, κ

3
0). In each step, the key

schedule transforms the leftmost 32-bit word κ0
s in one iteration of the ARX-box

A, adds the output to the right neighboring word κ1
s, adds a round constant RCi



Differential Cryptanalysis of Round-Reduced Sparx-64/128 463

Table 2. Parameters of the individual versions of Sparx.

Cipher #state-words w #key-words v #rounds/step ra #steps ns

Sparx-64/128 2 2 3 8

Sparx-128/128 4 4 4 8

Sparx-128/256 4 8 4 10

to the rightmost 16-bit half of κ3
2s to prevent slide attacks, and finally rotates

the four words by one position to the right. The ra = 3 leftmost words κ0
2s,

κ1
2s, κ2

2s are used as round keys for the first, second, and third round of the
left branch of Step s + 1; the ra = 3 left-most words κ0

2s+1, κ1
2s+1, κ2

2s+1 are
used for the first, second, and third round of the right branch of Step s + 1. For
example, (κ0

0, κ
1
0, κ

2
0) are used as round keys for the left branch in the first step,

and (κ0
1, κ

1
1, κ

2
1) are used as round keys for the right branch in the first step.

2.2 Properties

As observed by Abdelkhalek et al. [1], one can obtain the rounds keys for 2.5
consecutive rounds by guessing only 64 bit of key material. More precisely, one
obtains the round keys for Round 3r + 1 and the round key for the right 32-bit
branch in Round 3r + 2 by guessing the 64 bit of the key material of Round 3r:

Property 1. Given κ2
s+1 and κ3

s+1, one can directly derive the key words κ2
s =

κ3
s+1, κ0

s+2 = κ3
s+1, κ1

2s+3 = A(κ0
s+2), and κ0

s+3 = κ2
s+1.

We learnt Property 2 from Leurent [10].

Property 2. Assume, Δ ∈ F
n
2 is a fixed difference, and x0, . . . , xm ∈ F

n
2 represent

m values for which the goal is to find pairs (xi, xj) that result in xi ⊕ xj = Δ.
Then, one can define a linear function F : F

n
2 → F

n
2 with rank n − 1, s.t.

F (Δ) = 0n; thus, all pairs (xi, xj) with xi⊕xj = Δ will collide in F (xi) = F (xj).

It finds pairs with some difference without studying all combinations of pairs
but by comparing their outputs from F . One can reduce the rank of F to n − d
so that outputs of F collide if and only if their inputs have one of 2d differences.

3 Boomerang and Rectangle Attacks

Boomerang attacks, as proposed by Wagner [15], allow an attacker to concate-
nate two short differentials with high probability when long differentials with
sufficient probability are absent or hard to find. In the basic setting, an adver-
sary splits an encryption function E : {0, 1}k × {0, 1}n → {0, 1}n into two
subciphers E = E2 ◦ E1, s.t. E(P ) def= E2(E1(P )). Then, it considers a first dif-
ferential α → β with probability p over E1 and a second differential γ → δ with
probability q over E2. These are often called upper and lower differentials or



464 R. Ankele and E. List

trails, respectively. They can then be combined in a chosen-plaintext and adap-
tive chosen-ciphertext attack to construct a boomerang distinguisher consisting
of the following steps:

1. Choose a plaintext pair (P, P ′) with difference α = P ⊕ P ′ and encrypt it
through E to obtain its ciphertext pair (C,C ′) with difference β.

2. Derive D = C ⊕ δ and D′ = C ′ ⊕ δ (the δ-shift) and decrypt D and D′

through E−1 to obtain the corresponding plaintext pair (Q,Q′).
3. If the plaintext pair (Q,Q′) has difference α = Q ⊕ Q′, then (P, P ′, Q,Q′)

form a correct quartet.

Proposition 1. For a quartet (P, P ′, Q,Q′), there exists a differential with an
input difference α for P ′ = P ⊕ α, Q′ = Q ⊕ α, and a corresponding output
difference β for U ′ = U ⊕ β, V ′ = V ⊕ β with probability p. If we consider
a differential δ → γ with input difference D = C ⊕ δ, D′ = C ′ ⊕ δ and a
corresponding output difference γ for V = U ⊕γ, it holds with probability q that
V ′ = U ′ ⊕ γ. Then, we can connect both differentials if we consider V = U ⊕ γ,
it follows that V ′ = V ⊕ β = (U ⊕ γ) ⊕ β = (U ⊕ β) ⊕ γ = U ′ ⊕ γ.

Calculating the probabilities for a correct quartet requires to consider both
plaintext pairs (P, P ′) and (Q,Q′) and results in a probability of (pq)2. For the
differentials to exist, the resulting probability has to satisfy (pq)2 ≥ 2−n/2.

The probability of a correct quartet can be increased if one fixes input differ-
ences α and δ but allows all possible differences for β and γ, requiring only that
β �= γ. A boomerang distinguisher would then consider all trails of the form
α → β′ for the upper trail and δ → γ′ for the lower trail. This increases the
probability to (p̂q̂)2 where p̂ =

√

∑

β′ Pr2 [α → β′] and q̂ =
√

∑

γ′ Pr2 [δ → γ′]

where p̂ is evaluated over E1 and q̂ over E−1
2 , respectively.

The Rectangle Attack. In boomerang attacks, the adversary needs to query
its oracles with chosen plaintexts and adaptively chosen ciphertexts. Since our
boomerang attack will have to guess a considerable amount of key bits, which
would require an oracle query for every obtained text and key guess, we will
employ a rectangle attack instead. Rectangle attacks [3] have been derived from
the amplified boomerang [9], both of which transform the boomerang into a
purely chosen-plaintext attack (or chosen-ciphertext if the adversary starts from
the opposite direction). The core idea is to encrypt many pairs (P, P ′) with
difference P ′ ⊕ P = α in the hope that some of those will form a quartet with
the desired differences in the middle with probability 2−n. Given N plaintext
pairs, the number of correct quartets is reduced to N2 · 2−n · (p̂q̂)2. Note that
two pairs (U,U ′) and (V, V ′) can be combined in two distinct ways to a quartet
in the middle: U ⊕ V = U ′ ⊕ V ′ = β or U ⊕ U ′ = V ⊕ V ′ = β. [4] presented
further improvements to the technique. The disadvantages of rectangle compared
to boomerang attacks are the increased data complexity and the large number
of potential quartets that have to be filtered to find correct quartets.

Ladder Switch. There exist a few approaches for increasing the transitional
probability of boomerang trails in the middle. Two well-known approaches are



Differential Cryptanalysis of Round-Reduced Sparx-64/128 465

Table 3. An optimal six-
round differential trail.

Rd. ΔLi ΔRi hw

0 00000000 02110a04 – –

1 00000000 28000010 0 4

2 00000000 00400000 0 2

3 00000000 80008000 0 0

L 80008000 00000000 0 0

4 81008102 00000000 1 0

5 8000840a 00000000 2 0

6 850a9520 00000000 4 0

L af1abf30 850a9520 0 0

Table 4. Optimal differentials through up to ten rounds of
Sparx-64; t is the run time of each search.

#Rds. Δin Δout hw t

1 (00408000, 00000000) (00000002, 00000000) 0.00 0.02 s

2 (00102000, 00000000) (80008002, 00000000) 1.00 0.10 s

3 (28000010, 00000000) (83008302, 81008102) 3.00 0.46 s

4 (00000000, 28000010) (8000840a, 00000000) 4.99 2.40 s

5 (00000000, 02110a04) (8000840a, 00000000) 8.99 25.07 s

6 (00000000, 02110a04) (af1abf30, 850a9520) 12.99 0.06 h

7 (00000000, 14881008) (82048e0e, 8000840a) 23.95 47.80 h

8 (00000000, 540a0120) (8000840a, 8000840a) 28.53 15.20 d

9 (28000010, 28000010) (d2609263, d1209123) 32.87 22.30 d

10 (28000010, 28000010) (80818283, 80008002) 38.12 32.50 d

the Feistel switch and the ladder switch; recently, Sasaki et al. [6] observed a
number of more ways. Here, we concentrate on the ladder switch by [5]. It exploits
that start and end of upper and lower trails can be located at different locations
for each part of the state. For Sparx, it is intuitive to consider full steps: e.g.,
assume that the top trail has a nonzero difference in the left branch through the
step in the middle. If the right branch has a zero difference in the left branch,
one can put the switch for the left branch before the step and consider it to be
part of the bottom trail, which has probability one. Clearly, this approach can
be generalized further to probabilities smaller than one. For Sparx, an optimal
switch has one active (e.g., the left) and one inactive (e.g., the right) branch
in the top trail, and mirrored in the bottom trail (e.g., right active and left
inactive), which allows to pass the step in the middle with probability one.

4 Differential Trails and Boomerang Distinguishers

We employed a two-step approach: first, we searched for optimal differential
characteristics for up to ten rounds of Sparx-64. Those formed the base of
the wrapping rounds before and after the boomerang switches. Thereupon, we
considered three interesting types of boomerangs over five steps.

4.1 Searching Optimal Differential Trails

We implemented variants of Sparx in CryptoSMT [12], an open- source tool
based on the SAT/SMT solvers CryptoMiniSat [11] and STP [14] to search for
optimal differential characteristics1. In this case, the problem to find optimal
differential characteristics is modeled as a Boolean satisfiability problem, and
can then be solved by a SAT solver. As the differential model of a cipher can be
rather complex, we modeled the problem as a more general SMT (Satisfiability
Modular Theories) problem. The difference to SAT problems is that SMT prob-
lems can express richer languages where, e.g., sets of variables can be expressed
1 The differential models for Sparx are available at: https://github.com/TheBan

anaMan/sparx-differential-attacks.

https://github.com/TheBananaMan/sparx-differential-attacks
https://github.com/TheBananaMan/sparx-differential-attacks


466 R. Ankele and E. List

Table 5. Top (left to right): best trails found for our differentials of Type 1a, Type 1b,
Type 1c, and Type 1d. Middle: best trails found for our differentials of Type 2a,
Type 2b, Type 2d, and Type 2e. Bottom: Type 2c, Type 3a, Type 3b, and Type 3c.
Σ denotes the sum of hw over all rounds.

Rd. ΔLi ΔRi hw

0 00000000 28000010 – –

1 00000000 00400000 0 2

2 00000000 80008000 0 0

3 00000000 81008102 0 1

L 81008102 00000000 0 0

Σ 3

Rd. ΔLi ΔRi hw

0 28000010 28000010 – –

1 00400000 00400000 2 2

2 80008000 80008000 0 0

3 81008102 83008302 1 2

L 00000000 81008102 0 0

Σ 7

Rd. ΔLi ΔRi hw

0 40404000 00400000 – –

1 40804081 80008000 2 0

2 40004205 81008102 3 1

3 42854a90 8000840a 5 2

L d78ddb92 42854a90 0 0

Σ 13

Rd. ΔLi ΔRi hw

0 80008000 80008000 – –

1 81008102 81008102 1 1

2 8004840e 8004840e 3 3

3 bd1aad20 870a9730 7 8

L 00000000 bd1aad20 0 0

Σ 23

Rd. ΔLi ΔRi hw

0 02110a04 02110a04 – –

1 28000010 28000010 4 4

2 00400000 00400000 2 2

3 80008000 80008000 0 0

L 00000000 80008000 0 0

4 00000000 81008102 0 1

5 00000000 8000840a 0 2

6 00000000 850a9520 0 4

L 850a9520 00000000 0 0

Σ 19

Rd. ΔLi ΔRi hw

0 02110a04 00000000 – –

1 28000010 00000000 4 0

2 00400000 00000000 2 0

3 80008000 80008000 0 0

L 00000000 80008000 0 0

3 81008102 81008102 1 1

4 8000840a 8000840a 2 2

5 850a9520 2a102a10 4 4

L 2a102a10 850a9520 0 0

Σ 20

Rd. ΔLi ΔRi hw

0 28000010 –

1 00400000 00400000 2 –

2 80008000 80008000 0 0

L 00000000 80008000 0 0

3 00000000 81008102 0 1

4 00000000 8000840a 0 2

5 00000000 850a9520 0 4

L 850a9520 00000000 0 0

Σ 9

Rd. ΔLi ΔRi hw

0 28000010 –

1 00400000 00000000 2 –

2 80008000 00000000 0 0

L 00000000 80008000 0 0

3 81008102 81008102 1 1

4 8000840a 8000840a 2 2

5 850a9520 850a9520 4 4

L 2a102a10 850a9520 0 0

Σ 16

Rd. ΔLi ΔRi hw

0 00000000 02110a04 – –

1 00000000 28000010 0 4

2 00000000 00400000 0 2

3 00000000 80008000 0 0

L 80008000 00000000 0 0

4 81008102 00000000 1 0

5 8000840a 00000000 2 0

6 850a9520 00000000 4 0

L af1abf30 850a9520 0 0

Σ 13

Rd. ΔLi ΔRi hw

0 28000010 28000010 – –

1 00400000 00400000 2 2

2 80008000 80008000 0 0

3 83008302 81008102 2 1

L 00000000 83008302 0 0

4 00000000 80088c02 0 5

5 00000000 8502b508 0 5

6 00000000 d0020420 0 7

L d0020420 00000000 0 0

7 00801000 00000000 4 0

8 10015001 00000000 2 0

9 52211224 00000000 5 0

L 57611764 52211224 0 0

Σ 35

Rd. ΔLi ΔRi hw

0 00000000 00508402 – –

1 00000000 24023408 0 4

2 00000000 50c080e0 0 7

3 00000000 01810203 0 5

L 01810203 00000000 0 0

4 000c0800 00000000 5 0

5 20000000 00000000 3 0

6 00400040 00000000 1 0

L 00400040 00400040 0 0

7 80408140 80408140 2 2

8 00400542 00400542 3 3

9 8542904a 8542904a 4 4

L 08150815 8542904a 0 0

Σ 37

Rd. ΔLi ΔRi hw

0 00000000 –

1 00000000 0a204205 0 –

2 00000000 02110a04 0 5

L 02110a04 00000000 0 0

3 28000010 00000000 4 0

4 00400000 00000000 2 0

5 80008000 80008000 0 0

L 00000000 80008000 0 0

6 81008102 81008102 1 1

7 8000840a 8000840a 2 2

8 850a9520 850a9520 4 4

L 2a102a10 850a9520 0 0

Σ 25

as predicates or the problem can be modeled on word level. We describe the
differential behavior of Sparx using the CVC language. This allows us to define
specific constraints that can be used to limit the search space for the SAT solver.
The solver then tries to find all possible valid differential characteristics for the
given parameters with increasing probability.

Table 3 shows an optimal six-round differential trail. Note that hw denotes
hw = − log2(p), for the differential probability p through a round. One can
observe that optimal differential characteristics for Sparx-64 possess an hour-
glass structure, i.e., the number of active bits is minimal in the middle and
increases outwards. Using the probability of the best characteristic is often
assumed to be an adequate approximation of the probability of the best dif-
ferential. However, this approximation is not always sufficiently accurate for



Differential Cryptanalysis of Round-Reduced Sparx-64/128 467

ARX-based ciphers. Therefore, we tried to evaluate the probability of differ-
entials where feasible. For the best differentials for Sparx-64, we provide an
overview in Table 4.

Types of Differential Characteristics. After searching differentials
incrementality for a given interval of rounds, we searched for optimal charac-
teristics among the following types. The first category consists of single-step
characteristics:

– Type 1a. Arbitrary single-step characteristics.
– Type 1b. Single-step characteristics with two active branches that have a

single active branch after the step.
– Type 1c. Single-step characteristics with two active branches that have a

single active branch before the step.
– Type 1d. Single-step characteristics with two active branches that have a

single active branch before and afterwards.

The best characteristic for single-steps is a Type 1a characteristic with the left
branch all zeros. Type 1d is especially interesting for our truncated-differential
attack. The second category consists of two-step characteristics, that are also
used in our boomerang/rectangle distinguishers:

– Type 2a. Two-step top characteristics which collide after the XOR in the
right branch after the first step.

– Type 2b. Two-step bottom characteristics with only the left branch active
at the first step.

– Type 2c. Two-step characteristics where only the left branch is active in the
first, and therefore only the right branch is active in the second step.

– Type 2d. 4.5-round versions of Type 2a, but only two rounds before the
collision for the left and one round before for the right branch.

– Type 2e. We further investigated the versions of Type 2a where the first
step covers only one round.

We use the two-step characteristic of Type 2c for the top trail and Type 2b for
the bottom trail of our rectangle distinguisher. We further considered three-step
characteristics for boomerang/rectangle attacks in our third category:

– Type 3a. Three-step characteristics where both branches are active in the
first step, and only one branch is active in the subsequent steps, as is used in
both top and bottom trail of the single- sided bottom type of boomerang.

– Type 3b. Three-step characteristics where the first two steps are of Type 3a,
and both branches are active in the third step.

– Type 3c. 7.5-round versions of Type 3b, where only one round is considered
for the first step.

Our results for the best characteristics found are summarized in Table 5.



468 R. Ankele and E. List

Fig. 2. Types of five-step boomerangs. White A3 boxes are inactive (zero difference);
gray A3-boxes are active (non-zero difference). Hatched A3 boxes indicate active
branches that do not have to be taken into account at the switch.

4.2 Boomerangs

From the combination of the best identified characteristics, we continued to form
boomerangs. We considered three types of boomerangs over five steps.

– Free middle. This type exploits that we can obtain the middle step for free
if we choose our top and bottom trails such that one of them possesses a
zero difference in the left branch, and the other one has a zero difference in
the right branch, which is a direct application of the Ladder switch. We can
obtain a five-step boomerang in this way, but have active differences in both
branches in the first and in the fifth step of the wrapping rounds.

– Single-sided bottom. This type has both branches active at the start of
the top trail, but only one active branch at the end of the bottom trail.

– Single-sided top. This type has both branches active at the end of the
bottom trail, but only one active branch at the beginning of the top trail.

As examples, the former two types are visualized in Fig. 2.
From our experiments, it became clear soon that free-middle boomerangs pos-

sessed higher probabilities. Table 6 summarizes the best boomerang that consist
of a single characteristic that we could find for one up to five steps. Through a
single step, there exist various boomerangs with probability one:

Pr
[

(ΔL0,ΔR0)
1 step−−−−→ (ΔL3,ΔR3)

]

= 1,

for all characteristics with ΔL0 = 0 and ΔL3 = L(ΔR3); alternatively, it also
holds for all characteristics with ΔR0 = ΔR3 = 0.



Differential Cryptanalysis of Round-Reduced Sparx-64/128 469

Over two steps, there exist two-step boomerangs with

Pr
[

(ΔL0,ΔR0)
2 steps−−−−→ (ΔL6,ΔR6)

]

≥ 2−6,

namely for characteristics of the form

– ΔL0 = 0 and ΔR0 ∈ {28000010, 00400000} and ΔL6 = L(ΔR6), or
– ΔR0 = 0 and ΔR6 ∈ {81008102, 8000840a} and ΔL6 = L(ΔR6).

For three steps, the best boomerangs have probability 2−12, using the single-
step characteristic with the highest probability of Type 1a for the top trail,
and a similar characteristic mirrored vertically and starting from the bottom
difference (ΔL9,ΔR9) = (83008302, 81008102). Similarly, we obtain from the
combination of the characteristics of Type 2a (as the top trail) and Type 1a
(horizontally mirrored, as the bottom trail; this is a free-middle boomerang)
boomerangs with probability of 2−44 over four steps. Over five steps, the highest
theoretical probability of a boomerang with fixed characteristics results from
combining a characteristic of Type 2a with the highest probability at the top
with a characteristic of Type 2b with the highest probability at the bottom.

Near-optimal Differential Trails. Boomerangs that employ a single char-
acteristic are of limited expressiveness in practice as we noticed strong differen-
tial clustering effects in Sparx. For boomerangs, they are particularly strong in
the switching rounds. Our purpose was to find good boomerangs of five steps,
where we focused on the free-middle approach. We used the best characteristics
of Type 1b and Type 2a as top and Type 1a and Type 2b as bottom trails as
a base to study their probability empirically over a feasible subset of the three
steps in the middle. Moreover, our automated search for optimal differential
characteristics yielded many near-optimal differentials with probability slightly
smaller than that of the optimal ones; as one could anticipate, this small change
in the probability stemmed from the fact that bits adjacent to the active bits in
the optimal differentials were also active in the near-optimal ones, mainly in the
first or the last round. Hence, we also considered those near-optimal trails in our
investigation of potential start and end differences for boomerangs. The subset
of our results is given in Table 7. We used a variant of them for our rectangle
attack in Sect. 6.

5 Truncated-Differential Attack on Sparx-64/128

High-Level View. This section describes a truncated-differential attack on 16-
round Sparx-64/128. On a high level, the Feistel-like structure allows generic
trails that pass through almost two steps so that only one branch is active.
The core observation of our attack is the existence of differentials of Type 1d,
i.e., trails that have an inactive branch before and after a step with probabil-
ity 	2−32. One such trail is illustrated in Table 8. The trail is truncated after
Round 9; thereupon, its precise differences are irrelevant as long as it will cancel



470 R. Ankele and E. List

Table 6. Best found boomerangs on step-reduced Sparx-64/128; for up to three steps,
we verified them experimentally with 100 random keys and 220 random pairs each.
Values in parentheses are products of the empirical probabilities over the three steps in
the middle from Table 7 with the theoretical probabilities over the remaining step(s).

#Steps Input difference Output difference hw

ΔL0 ΔR0 ΔL3s ΔR3s Theor. Empiric.

1 00000000 00400000 83008302 81008102 0 0

2 00000000 28000010 8000840a 00000000 6 5.11

2 00000000 28000010 81008102 00000000 6 5.16

2 00000000 28000010 850a9520 00000000 6 5.31

3 00000000 28000010 83008302 81008102 12 10.55

3 00000000 28000010 8a048e0e 8000840a 12 11.43

4 28000010 28000010 83008302 81008102 42 (36.78)

5 28000010 28000010 2a102a10 850a9520 78 (68.54)

5 02110a04 02110a04 2a102a10 850a9520 76 (72.18)

Table 7. Relevant experimental probabilities of free-middle boomerangs over three
steps. Values represent − log2(p), where p is the average probability of correct quartets
from 100 test runs of random independent keys with 230 random text pairs each.

(ΔL9, ΔR9) (ΔL0, ΔR0)

(00000000, 80008000) (00000000, 81008102)

(80008000, 80008000) 20.18 26.54

(83008302, 81008102) 16.32 22.78

in the right branch after the linear layer, and the zero-difference branch can
propagate through two further steps (i.e. Rounds 13−18 in Table 8). Thus, an
adversary can observe that only a single branch will be active after five steps; the
final linear layer can then be easily inverted. On the downside, the probability
of truncated trails must exceed 2−32 for a useful distinguisher.

To ensure a sufficient probability of the differential, we employ Property 1 at
the plaintext side to reduce the number of steps to trace through. So, we obtain
the round keys of Round 3, 4, and that for the right branch of Round 5 from
guessing only 64 bits of key material. At the ciphertext side, we choose structures
of 232 texts, such that all texts in a structure have a constant value in the right
branch, and iterate over all values on the left branch through Rounds 16−18. In
the following, we mount a chosen-ciphertext attack on 16-round Sparx-64/128
covering Rounds 3 through 18; the used differential trail is given in Table 8.

Structures and Sets. We choose 2m structures of 232 ciphertexts each from
a base text S0

18 = (L18, R18), and 232 − 1 derived texts Si
18 = (Li

18, R18) from
iterating over all 232 values L18, and derive the 232 ciphertexts Ci ← L(Si) that
form the structure. Since we employ all 232 possible values for the right branch



Differential Cryptanalysis of Round-Reduced Sparx-64/128 471

Table 8. The truncated differential trail through 16 rounds. A * symbol marks a
truncated difference which can take any possible value.

Rd. i ΔLi ΔRi hw

2 ******** ******** – –

3 ******** ******** – –

L 00000000 ******** – –

4 00000000 ******** – –

5 00000000 0a204205 0 –

6 00000000 02110a04 0 5

L 02110a04 00000000 0 0

Rd. i ΔLi ΔRi hw

7 28000010 00000000 4 0

8 00400000 00000000 2 0

9 80008000 00000000 0 0

L 80008000 80008000 0 0

10 ******** ******** ? ?

11 ******** ******** ? ?

12 ******** ******** ? ?

L 00000000 ******** 0 0

Rd. i ΔLi ΔRi hw

13 00000000 ******** 0 ?

14 00000000 ******** 0 ?

15 00000000 ******** 0 ?

L ******** 00000000 0 0

16 ******** 00000000 ? 0

17 ******** 00000000 ? 0

18 ******** 00000000 ? 0

L ******** ******** 0 0

of Rounds 16 to 18, their 263 pairs will form all possible differences in this branch
about 231 times at any point until the end of Round 12, i.e., Δ12. From exper-
iments, we observed that the truncated differential (80008000, 80008000) leads
to (00000000, ********) with probability 2−17.36. Hence, there is a subset of
good differences Δ12 that can lead to (80008000, 80008000) with this accumu-
lated probability. Since we have 231 pairs for each such Δ12, we expect that
there are about 231−17.36 ≈ 213.64 pairs with Δ9 = (80008000, 80008000), and
213.64−6−5 = 22.64 pairs that follow our trail up to Δ5. We have approximately
263 pairs in a structure that have our desired difference with probability 2−64,
so we expect 2−1 false positive pairs from the structure.

Experimental Verification. We verified a variant of our distinguisher exper-
imentally using 100 random keys and 232 random pairs. For practicality, we
considered it in encryption direction, i.e., we chose random pairs with start dif-
ference (ΔL5, ΔR5) = (00000000, 0a204205), encrypted them to the states after
Round 18 and inverted the final linear layer. On average, we obtained 23.75 pairs
with zero difference in the right branch, which corresponds to a probability of
23.75−32 = 2−28.25, which is close to the expected 2−28.36.

Attack Steps. Using Property 2, we define a linear function F : F32
2 × F

32
2 →

F
64
2 with rank n − 1 = 63, so that F (Δ) = 064 for Δ = (00000000, 0a204205).

The attack consists of the following steps:

1. Construct 2m structures as described above. For each structure, request the
corresponding 232 plaintexts P i from a 16-round decryption oracle.

2. Initialize a list K of 264 key counters.
3. For each of the 264 guesses of K0

2 ,K1
2 ,K2

2 ,K3
2 , i.e., the key of Round 2:

3.1 Re-encrypt all plaintexts over one round until the state after the linear
layer of Round 3 and store them in a list H according to the values of their
left branches. Only consider pairs that collide in L3 after the application
of the linear layer L, and store those in a distinct list H′.



472 R. Ankele and E. List

3.2 For all texts, compute (L3, R5), apply F (Rr), and store the updated states
in H. Discard all pairs that do not collide. For each colliding pair, incre-
ment the counter for the current key candidate in K.

4. Output the keys in descending order of their corresponding counters.

Complexity. The computational complexity results from:

– Step 1 requires 2m+32 16-round decryptions. We assume that the computa-
tional costs for decryption and encryption are equal.

– Step 3.1 requires 264 · 2m+32 · 1/16 · 2 ≈ 2m+92 encryption equivalents since
we consider one out of 16 rounds. From the

(

232

2

) ≈ 263 pairs of one structure,
we expect 263−32 = 231 false positive pairs for each structure at this step.

– We approximate the costs for a call to F by those of a call to two Speckey
rounds since both branches are used. The complexity of Step 3.2 is therefore
given by 264 · 231+m · 4/32 ≈ 2m+92 encryption equivalents on average. We
expect about 263−64 = 2−1 false-positive pairs per structure and key can-
didate, whereas we have 231−28.36 ≈ 22.64 correct pairs for the correct key
candidate, again per structure.

The computational complexity sums to

2m+32 + 2m+92 + 2m+92 ≈ 2m+93 Encryptions.

The memory complexity stems from storing a byte counter for the current key
candidate, i.e., 264 · 8/64 = 261 states, plus 232 texts. The data complexity is
given by 2m+32. A single structure, i.e., m = 1, suffices to obtain at least two
correct pairs for the correct round-key candidate.

6 Rectangle Attack on 16-Round Sparx-64/128

High-Level View. This section describes a rectangle attack on 16-round
Sparx-64/128. Our attack starts after the second round of the cipher, i.e., it
starts with Round 3. Again, we guess 64 key bits to get through Rounds 3 and 4
and the right branch of Round 5. The attack covers then Rounds 3 through 18.

Differential Trails. Table 9 illustrates the employed differential trails. The
top trail covers Rounds 3 through 9 and the right part of Rounds 10 to 12 since
the right part contains a zero difference which propagates for free through the
A3 box of Rounds 10 to 12. The bottom trail covers Rounds 13 through 18, and
the left part of Rounds 10 through 12 in decryption direction. Again, the bottom
trail has a zero difference in that part, which propagates for free through the A3

box backwards through Rounds 12 through Round 10.
Again, we experimentally verified the boomerang switch in the middle. From

100 experiments with random keys and 226 independently at random chosen pairs
(P, P ′) with difference α = (80008000, 80008000), encrypted through three steps
to (C,C ′), applied the δ-shift (80008000, 80008000) to obtain (D,D′), decrypted



Differential Cryptanalysis of Round-Reduced Sparx-64/128 473

Table 9. Our used differential characteristic through the top (left) and bottom (right)
trail for our 16-round rectangle attack on Sparx-64/128.

Rd. i ΔLi ΔRi hw

4 28000010 – –
5 00400000 00400000 2 –
6 80008000 80008000 0 0
L 00000000 80008000 0 0

7 00000000 ******** 0 –
8 00000000 ******** 0 –
9 00000000 ******** 0 –
L ******** 00000000 0 –

10 ******** 00000000 – 0
11 ******** 00000000 – 0
12 ******** 00000000 – 0
L ******** ******** – 0

Rd. i ΔLi ΔRi hw

10 00000000 ******** 0 –
11 00000000 ******** 0 –
12 00000000 ******** 0 –
L 02110a04 00000000 0 0

13 ******** 00000000 – 0
14 ******** 00000000 – 0
15 ******** 00000000 – 0
L 80008000 80008000 0 0

16 81008102 81008102 1 1
17 8000840a 8000840a 2 2
18 850a9520 850a9520 4 4
L 2a102a10 850a9520 0 0

those back to (Q,Q′), and counted the number of times that Q ⊕ Q′ = α. We
observed an average probability of approximately 2−20.18. So, for the correct key,
we obtain a probability of approximately (p̂q̂)2 ≈ (

2−2
)2 · 2−20.18 · (

2−14
)2 ≈

2−52.18 for a valid quartet.

Attack Procedure. Choose a linear function F : F64
2 → F

64
2 of rank 63 s.t.

F (ΔL4 ‖ΔR5) = 064. The attack consists of the following steps:

1. Initialize a list of key counters L to zero, for all 264 possible values for the
round keys of Round 2.

2. Initialize two empty hash maps P and Q. Choose 2m ciphertext pairs (C,D)
with difference (2a102a10, 850a9520), and ask for their corresponding plain-
texts (P,Q). Store the pairs into P indexed by P .

3. For each of the 264 guesses of (K0
2 ,K1

2 ,K2
2 ,K3

2 ):
3.1 Partially re-encrypt all plaintext pairs (P,Q) to their corresponding states

(LP
4 , RP

5 ) and (LQ
4 , RQ

5 ).
3.2 Apply F ((L4, R5)) to all states and store the corresponding outputs

(̂LP
4 , ̂RP

5 ) and (̂LQ
4 , ̂RQ

5 ) into a hash table Q. Only consider pairs of pairs
p = (̂LP

4 , ̂RP
5 ), q = (̂LQ

4 , ̂RQ
5 ), p′ = (̂LP ′

4 , ̂RP ′
5 ), q′ = (̂LQ′

4 , ̂RQ′
5 ) that col-

lide in either (p, q) = (p′, q′) or (p, q) = (q′, p′) and discard all further
quartets. We expect 22m · 22·−64 ≈ 22m−128 quartets on average.

3.3 If a quartet survives, increment the counter for the current key guess.
Choose a plaintext pair with our desired difference – w.l.o.g., (p, p′) –
from the current quartet, and check for all remaining key bits if it follows
our path until Round 6. If yes, encrypt it further roundwise until Round 9.
If all roundwise checks pass, check for p if it encrypts to ciphertext C. If
yes, test again for (q, q′) and output the key candidate if it also matches.

4. If no key candidate has been returned, return ⊥.



474 R. Ankele and E. List

For m = 58.6 pairs, we can expect (2mp̂q̂)2/2n ≈ 2117.2 ·2−52.18/264 ≈ 2 valid
quartets for the correct key guess. In contrast, we can expect 2117.2−2·64 = 2−10.8

quartets for a wrong key guess.

Complexity. The computational complexity results from:

– Step 2 requires 2 · 258.6 ≈ 259.6 16-round decryptions. We assume that the
computational costs for a decryption and encryption are equal.

– Steps 3.1 and 3.2 require 264 · 2 · 2m · 6/32 ≈ 2122.2 encryption equivalents
since we consider five out of 32 Speckey rounds in the 16-round cipher for
re-encryption and approximate the costs for computing F by the costs of a
Speckey round.

– Step 3.2 will require 264 · 2 · 2m = 2m+65 memory accesses (MAs) and com-
parisons.

– Step 3.3 will require at most 264 ·22m−128 ·264 ≈ 2117.2 encryption equivalents
to identify the correct key.

Hence, the computations are upper bounded by approximately

259.6 + 2122.2 ≈ 2122.2 encryptions and 259.6 + 2123.6 ≈ 2123.6 MAs.

The data complexity is upper bounded by 259.6 chosen ciphertexts. The memory
complexity is upper bounded by storing at most 4 · 259.6 states at a time, which
is equivalent to storing approximately 261.6 states.

7 Conclusion

This work presents two standard differential attacks using truncated differen-
tials and rectangle attacks on 16-round Sparx-64/128. The former attack builds
upon a nine-round (three-step) differential trail that is extended by a six-round
(two-step) truncated trail. Adopting the observation by Abdelkhalek et al. [1], we
can turn the distinguishers into a 16-round chosen-ciphertext attack and recover
the round keys by just guessing 64-bit of the key material. Our truncated- dif-
ferential attack requires approximately 232 chosen ciphertexts, about 232 states,
and approximately 293 encryption equivalents. Our proposed rectangle attack
exploits the Feistel structure of Sparx using differential trails with inactive
branches over their middle step; similarly, the yoyo attack in the full version of
this paper [2] profits from the structure over the end. It may be interesting for
further studies to investigate yoyo cycles of more iterations of en- and decryption.

We stress that our attacks do not threaten the security of Sparx-64/128, but
provide deeper insights in its security against attacks in the single-key setting.
We can observe a strong clustering effect of many differential characteristics in
our studies and exploit them in our attacks; it remains subject to further studies
to employ them for further rounds. For public verification and future works, our
trails, tests, and implementations of Sparx-64/128 will be published into the
public domain2.
2 https://github.com/TheBananaMan/sparx-differential-attacks.

https://github.com/TheBananaMan/sparx-differential-attacks


Differential Cryptanalysis of Round-Reduced Sparx-64/128 475

References

1. Abdelkhalek, A., Tolba, M., Youssef, A.M.: Impossible differential attack on
reduced round SPARX-64/128. In: Joye, M., Nitaj, A. (eds.) AFRICACRYPT
2017. LNCS, vol. 10239, pp. 135–146. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-57339-7 8

2. Ankele, R., List, E.: Differential cryptanalysis of round-reduced Sparx-64/128.
Cryptology ePrint Archive, Report 2018/332 (2018). https://eprint.iacr.org/2018/
332

3. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack — rectangling the
serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6 21

4. Biham, E., Dunkelman, O., Keller, N.: New results on boomerang and rectangle
attacks. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 1–16.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45661-9 1

5. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192
and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 1

6. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity table
(BCT) for Boomerang attack. In: EUROCRYPT. LNCS (2018, to appear)

7. Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.:
Design strategies for ARX with provable bounds: Sparx and LAX. In: Cheon, J.H.,
Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 484–513. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 18

8. Daemen, J., Peeters, M., Van Assche, G., Rijmen, V.: Nessie Proposal: NOEKEON
(2000). http://gro.noekeon.org/Noekeon-spec.pdf

9. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-
round MARS and serpent. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier,
B. (eds.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44706-7 6

10. Leurent, G.: Improved differential-linear cryptanalysis of 7-round chaskey with
partitioning. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9665, pp. 344–371. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49890-3 14

11. Soos, M.: CryptoMiniSat SAT solver (2009). https://github.com/msoos/
cryptominisat/

12. Kölbl, S.: CryptoSMT: an easy to use tool for cryptanalysis of symmetric primitives
(2015). https://github.com/kste/cryptosmt

13. Tolba, M., Abdelkhalek, A., Youssef, A.M.: Multidimensional zero-correlation lin-
ear cryptanalysis of reduced round SPARX-128. In: Adams, C., Camenisch, J.
(eds.) SAC 2017. LNCS, vol. 10719, pp. 423–441. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-72565-9 22

14. Ganesh, V., Hansen, T., Soos, M., Liew, D., Govostes, R.: STP constraint solver
(2017). https://github.com/stp/stp

15. Wagner, D.: The boomerang attack. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol.
1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-
48519-8 12

https://doi.org/10.1007/978-3-319-57339-7_8
https://doi.org/10.1007/978-3-319-57339-7_8
https://eprint.iacr.org/2018/332
https://eprint.iacr.org/2018/332
https://doi.org/10.1007/3-540-44987-6_21
https://doi.org/10.1007/3-540-45661-9_1
https://doi.org/10.1007/978-3-642-10366-7_1
https://doi.org/10.1007/978-3-662-53887-6_18
http://gro.noekeon.org/Noekeon-spec.pdf
https://doi.org/10.1007/3-540-44706-7_6
https://doi.org/10.1007/978-3-662-49890-3_14
https://doi.org/10.1007/978-3-662-49890-3_14
https://github.com/msoos/cryptominisat/
https://github.com/msoos/cryptominisat/
https://github.com/kste/cryptosmt
https://doi.org/10.1007/978-3-319-72565-9_22
https://doi.org/10.1007/978-3-319-72565-9_22
https://github.com/stp/stp
https://doi.org/10.1007/3-540-48519-8_12
https://doi.org/10.1007/3-540-48519-8_12


Can Caesar Beat Galois?
Robustness of CAESAR Candidates Against Nonce

Reusing and High Data Complexity Attacks

Serge Vaudenay and Damian Vizár(B)

EPFL, Lausanne, Switzerland
damian.vizar@epfl.ch

Abstract. The Competition for Authenticated Encryption: Security,
Applicability and Robustness (CAESAR) has as its official goal to “iden-
tify a portfolio of authenticated ciphers that offer advantages over [the
Galois-Counter Mode with AES]” and are suitable for widespread adop-
tion.” Each of the 15 candidate schemes competing in the currently ongo-
ing 3rd round of CAESAR must clearly declare its security claims, i.e.
whether it can tolerate nonce misuse, and what is the maximal data com-
plexity for which security is guaranteed. These claims appear to be valid
for all 15 candidates. Interpreting “Robustness” in CAESAR as the abil-
ity to mitigate damage when security guarantees are void, we describe
attacks with 64-bit complexity or above, and/or with nonce reuse for
each of the 15 candidates. We then classify the candidates depending
on how powerful does an attacker need to be to mount (semi-)universal
forgeries, decryption attacks, or key recoveries. Rather than invalidating
the security claims of any of the candidates, our results provide an addi-
tional criterion for evaluating the security that candidates deliver, which
can be useful for e.g. breaking ties in the final CAESAR discussions.

Keywords: Authenticated encryption · CAESAR competition
Forgery · Decryption attack · Key recovery · Birthday bound
Nonce misuse

1 Introduction

Authenticated encryption (AE) is a symmetric key primitive that simultaneously
ensures confidentiality, integrity and authenticity of encrypted messages [4,29]
and typically also allows to authenticate a public string, the associated data,
along with the message [37]. During the two decades of its existence, AE has been
not just a frequent research object but also a frequently used tool (e.g. in IEEE
802.11i, IPsec ESP and IKEv2, NIST SP 800-38D, ANSI C12.22, and ISO/IEC
19772:2009), especially because most practical applications of symmetric key
cryptography require both confidentiality and integrity at the same time.

In 2013, the Competition for Authenticated Encryption: Security, Applica-
bility and Robustness (CAESAR) was announced. The reason for its launch was,
c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 476–494, 2018.
https://doi.org/10.1007/978-3-319-93387-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_25&domain=pdf


Can Caesar Beat Galois? 477

in part, a startling amount of recently discovered issues with the applications of
symmetric cryptography, and with the most popular AE schemes CCM [27,43]
and GCM (Galois Counter Mode) [32]. The security misses in the applications
constituted practically exploitable vulnerabilities [7] and for CCM and GCM,
concerns were expressed about their applicability [39], the security proofs [25]
or their susceptibility to serious attacks when not used correctly [16,28].

Thus CAESAR’s main goal was set to “identify a portfolio of authenticated
ciphers that offer advantages over AES-GCM and are suitable for widespread
adoption” [6]. GCM instantiated with the AES blockcipher has been used as
a reference that ought to be surpassed by the CAESAR candidates, while the
name of the competition spells out the properties the candidates are expected
to guarantee: security, applicability and robustness. Out of 57 submissions to
the first round of CAESAR, 15 candidates still compete in the 3rd round [5].
The security claims of each of them are supported by solid cryptanalysis and/or
security proofs, and are generally believed to be sound.

Table 1. An overview of 3rd round CAESAR candidates based on their claimed secu-
rity guarantees w.r.t the nonce misuse and quantitative security; 64-bit-bound refers
to about 264 processed bits. For security in presence of nonce misuse, we consider
MRAE [38], OAE [17] or RAE [21]. For each candidate, we consider an instance with
128-bit secret key. Deoxys II is listed twice due to its graceful degradation of security.

Up to 64-bit-bound Beyond 64-bit-bound

Unique nonces OCB, NORX, Jambu, CLOC& SILC Tiaoxin, Morus, Keyak,
Ketje, Deoxys I& II,
Ascon, AEGIS, ACORN

Nonce misuse Deoxys II, COLM, AEZ -

64-bit Bound and Nonce-Misuse. All of CAESAR candidates must accept
a nonce, a secret key, AD and a message as an input. The nonce is akin to an
initialization vector, and it can be assumed to have a unique value for every
encryption query. The candidates are allowed to request that the nonce must
not repeat in order for their security guarantees to apply. This is the case for 12
3rd round CAESAR candidates. AEZ and Deoxys guarantee no degradation of
authenticity, and the minimal (and unavoidable [38]) degradation of confiden-
tiality1 even if the nonces are misused, i.e. repeated. COLM guarantees a weaker
version of confidentiality protection in presence of nonce misuse, so called online
-misuse resistance [17]. Each candidate must also specify how much data can be
securely processed with a single secret key. Most CAESAR candidates guaran-
tee security up to the so called birthday-bound; for AES-based AE schemes, this
means processing no more than about 264 blocks of data per key and making no

1 As the encryption is required to be a deterministic algorithm, repeating all inputs
unavoidably means repeating the ciphertexts as well.



478 S. Vaudenay and D. Vizár

more than 264 encryption queries. In this paper, we use the 64-bit data/query
complexity as a reference threshold for comparison of candidates, denoted by
64-bit-bound.

In Table 1, we categorize the 3rd round candidates, as well as CCM and
GCM, based on their security claims w.r.t. the nonce misuse and quantitative
security. We consider a scheme to claim security against nonce reuse if it targets
MRAE [38], OAE [17] or RAE [21] security. For each candidate, we consider an
instance with a 128-bit secret key.

Robustness: (In)security Beyond Guarantees. All CAESAR candidates
clearly state what security properties do they guarantee as long as the condi-
tions on the nonces or data limits are respected. However, they give little or no
information on the actual impact of attacks that violate these usage conditions.

This is what we aim to determine in this work. We take the liberty to inter-
pret robustness of AE schemes as the ability to resist powerful attacks, possibly
beyond the limitations guaranteed by the designers, and analyze the security of
all 15 third round CAESAR candidates against attacks with very high data com-
plexity, and against nonce-misuse attacks. In order to make the result compara-
ble, we consider instances using secret keys of 128 bits, and use the 64-bit-bound
(i.e. the “birthday bound” of AES-GCM) as a point of reference.

An Overview. For each candidate we describe one or more attacks, unless
relevant attacks already exist. We sort the CAESAR candidates into six cate-
gories based on the adversarial powers necessary to break them: (A) Those for
which we have a nonce-respecting universal forgery and a decryption attack at
the 64-bit-bound. (B) Others for which we have a nonce-respecting universal
forgery and a decryption attack above the 64-bit-bound, but below exhaustive
search. (C) Those for which we have a reusable forgery and a reusable decryption
attack with small complexity, possibly with nonce-misuse. (D) Others for which
we have a forgery or a decryption attack with small complexity, possibly with
nonce-misuse. (E) Others for which we have a forgery or a decryption attack at
the 64-bit-bound, possibly with nonce-misuse. (F) Remaining ones. Our results
are summarized in Table 2. For each candidate, we indicate the type of attack,
the query complexity2, whether the attack needs nonce misuse, and whether it
is reusable. All attacks presented in Table 2 succeed with high probability.

The categories can be ordered by a decreasing level of resilience as follows:
(F) ≥ (E) ≥ (D) ≥ (C) and (F) ≥ (E) ≥ (B) ≥ (A). The categories (A) and (C)
are incomparable (same for (B) and (D)), as the impacted schemes succumb to
different kinds of misuse. However, the attacks in category (C) may be seen as a
more serious threat than those in (A), as they are much more likely in practice.

Our Contribution. Table 2 sheds more light on the actual impact of nonce-
reuse/high-data attacks, and arguably provides much more information than the
guarantees provided by the authors (summarized in Table 1). This can be very
useful to break ties at the end of 3rd round of CAESAR competition. Some of
2 The time and memory complexities of the attacks mentioned in the Table 2 are small

multiples/small powers of the query complexity.



Can Caesar Beat Galois? 479

Table 2. A summary of attacks on 3rd round CAESAR candidates and their clustering
based on the type of attack. The categories (A), (B), (C), (D), (E) and (F) are listed
from top to bottom. The column “source” lists the sections and/or bibliography refer-
ences that describe the relevant attacks. The comments “(N, A)”, “(N)” and “(A)” in
the reusability column (see Sect. 2) mean that the reusability is limited to fixed values
of the listed parameters. The values in the column “nonce-reuse” indicate maximal
number of times any nonce is used (so 1 means nonce respecting), q denotes the num-
ber of independent forgeries made in a single attack, and m is used as a parameter.
#The attack applies only if |N | > 128.

Algorithm Source(s) Type of attack Nonce-reuse # Queries Reusable

A AES-GCM [32]# 4 Univ. forgery 1 3 · 264 Yes

AEZ [22] 5, [12] Key recovery 1 3 · 264
OCB [30] 6, [15] Univ. forgery &

CCA decryp.

1 2 (one w/ 264

blocks)

Yes

AES-OTR [34] 3, 7 Univ. forgery &

CPA decryp.

1 2 (one w/ 264

blocks)

Yes

B CLOC [24] 8 Univ. forgery &

CPA decryp.

1 280 Yes

C AES-GCM [32] 3, 4, [28] Univ. forgery &

CPA decryp.

2 2 Yes

Deoxys-I [26] 3 Univ. forgery &

CCA decryp.

3 3 Yes (A)

OCB [30] 3 Univ. forgery &

CCA decryp.

2 2 Yes (A)

Tiaoxin [35] 10 Key recovery 30 30

AEGIS-128 [47] 11 Univ. forgery &

CPA decryp.

15 15 Yes (N, A)

ACORN-128 [44] 12 Univ. forgery &

CPA decryp.

586 586 Yes (N, A)

Ketje Sr [9] 13 Key recovery 50 50

MORUS 640 [45] 14 Univ. forgery &

CPA decryp.

8 8 Yes (N)

D AES-CCM [43] 3 CPA decryp. 2 1

CLOC & SILC [24] 3 CPA decryp 2 1 No

JAMBU [46] 3 CPA decryp. 1 + |C|/64 |C|/64 No

NORX32-4-1 [2] 3 CPA decryp. 1 + |C|/384 |C|/384 No

Ascon-128 [14] 3 CPA decryp. 1 + |C|/64 |C|/64 No

Lake Keyak [10] 3 CPA decryp. 1 + |C|/1344 |C|/1344 No

E COLM [1] 3 Semi-univ.

forgery

1 + q 264 Yes (N, A)

F Deoxys-II [26] 9 Semi-univ.

forgery & CCA

decryp.

2m 2128−m Yes (A)

these attacks can also be viewed as disturbingly powerful (e.g. low-complexity
key recoveries). Taking into consideration the circumstances that led to the start
of CAESAR competition, we do not think that schemes that succumb to such
attacks should be recommended as CAESAR finalists (in this sense, not every
candidate for CAESAR can beat Galois).



480 S. Vaudenay and D. Vizár

The attacks we present also shed more light on the weaknesses and strengths
of different constructions. For example, many designs in cat. (C) use aggressively
optimized state update functions which give up the key (or secret state) with the
slightest nonce reuse, which we find worrisome. The collection of generic attacks
in Sect. 3 is especially helpful to identify common security phenomena related to
certain construction principles, such as the decryption attacks for streamciphers,
or easy nonce-reusing forgeries on ciphertext-translation based schemes.

We found it interesting that the state recovery on AEGIS and Tiaoxin works
thanks to the differential properties of the AES Sbox. The “EK oracle” attack
on CLOC is nonce respecting because CLOC processes the nonce in a place that
is usual for the last associated data block. COLM, in turn, resists to nonce-
respecting collision attacks thanks to having the nonce restricted to 64 bits.
Finally, we have not seen the trade-off between the degree of nonce-reuse and
the attack complexity used for Deoxys-II in the literature before.

Disclaimer and Open Problems. We understand that none of the attacks
we present violates the security claims of any of the CAESAR candidates. That
is not the goal of our work. Our goal is to determine to what degree will the
security of respective candidates deteriorate after the guarantees become void.

We leave the investigation of security of CAESAR candidates within other
adversarial models (such as related-key security, release of unverified plaintext
or multi-user security) as open problems.

Related Work. The (in)security of GCM mode was treated by a number of
works [20,25,36,40], in particular Joux authored the “forbidden” nonce misusing
attack [28]. Collision attack similar to ours, or inspiring ours, were described for
previous versions of AEZ by Fuhr et al. [19], and Chaigneau and Gilbert [12]. Col-
lision attack on OCB were given by Ferguson [15] and Sun et al. [41]. Reusable
forgery attacks on OCB, OTR and COLM were described by Forler et al. [18].
Collision-based attacks on COPA and ELmD (the predecessors of COPA) were
described by Bay et al. [3] and Lu [31]. Bost and Sanders found a flaw in the
masking scheme of an earlier version of OTR [11], Huang and Wu described
a collision based forgery [23]. Mileva et al. describe a nonce misusing distin-
guisher attack for MORUS [33]. The collision-based forgeries on NORX, Ascon
and Keyak are matching Lemma 2 of the work on provable generic security of
full-state keyed duplex by Daemen et al. [13].

Organization of the Paper. In Sect. 2 we introduce notations, AE syntax
and the attack model. In Sect. 3 we give generic attacks that apply to several
schemes that share a particular structure. Then in Sects. 4 to 14, we address
attacks specific to GCM and several CAESAR candidates, each in a separate
section. For descriptions of CCM, GCM, and the CAESAR candidates in, we
refer the reader either to the full version of this paper [42], or to the respective
submission documents [5].



Can Caesar Beat Galois? 481

2 Preliminaries

When presenting the CAESAR candidates, we try to respect the original nota-
tions but deviate a bit to unify the notation of the common input/output values.
Hence, the secret key is denoted by K, the nonce (or IV) is denoted by N , the
associated data (AD) is denoted by A, the plaintext is denoted by M , the cipher-
text is denoted by C, and the tag (if any) is denoted by T . We further use τ to
denote the ciphertext expansion/stretch, which is in most cases the same as the
tag length.

Notations. All strings are binary strings. We let ε denote the empty string
and |X| the length of a string X in bits. For two strings X,Y with |X| =
|Y |, we let X&Y denote the bitwise AND of X and Y and X ⊕ Y the bitwise
xor. We let {0, 1}n denote the set of all strings of n bits, and let {0, 1}∗ =⋃

n∈{0,1,2,...}{0, 1}n. Each of the candidates internally partitions the inputs into
blocks of constant size. We use several symbols to denote the length of the
blocks, e.g. n, r or ν, in order to respect the notation of each candidate as much
as possible. We use subscript to index blocks in a query and superscript to index
queries, e.g. M j

i is the ith message block in jth query. We let M1, . . . ,M�
n← M

denote the partitioning of a string M into blocks of n bits, except for 1 ≤
|M�| ≤ n, such that � = �|M |/n�. We let |M |n = �|M |/n�. With a slight abuse
of notation, we let X0∗1 denote extending a string X with the smallest number
of zero bits followed by a “1” that will yield a string whose length is a multiple
of a block size, when a block size is implicit from the context. We let msba(X)
denote the a most significant bits of a string X, and similar applies to lsba. We
let encn(a) denote the n-bit canonical encoding of an integer 0 ≤ a ≤ 255. For
blockcipher-based schemes, we let E denote the underlying blockcipher.

Syntax. A scheme for authenticated encryption (AE) Π consists of a key space
K ⊂ {0, 1}∗ (for most candidates K = {0, 1}k for a positive k), and two determin-
istic algorithms E and D. The encryption algorithm maps a key, a nonce, associ-
ated data (AD) and a message (K,N,A,M) to a ciphertext C = E(K,N,A,M),
such that |C| = |M | + τ where the stretch is either a constant parameter, or user-
selectable (only for candidate AEZ). For most candidates, the ciphertext con-
sists of a core ciphertext and a tag, i.e. E(K,N,A,M) = C‖T with |T | = τ . The
decryption algorithm D that maps (K,N,A,C) (or (K,N,A,C‖T )) to a mes-
sage M or to an error symbol ⊥, if the authentication fails. It is required that for
every valid input tuple (K,N,A,M), we have M = D(K,N,A, E(K,N,A,M)).
We denote the sets of nonces, AD and messages valid for Π by N , A and M
respectively.

Attack Model. We focus on three types of attacks: decryption attacks, (semi)
universal forgeries and key recovery attacks. To make the results comparable, for
each candidate we attack an instance that uses 128-bit keys (i.e. K = {0, 1}128),
and we define our attacks models to correspond to the 128-bit security level.

In each type of attack on a scheme Π, an attacker A has blackbox oracle
access to an instance of the encryption and the decryption algorithms EK ,DK



482 S. Vaudenay and D. Vizár

of Π that use a secret key K unknown to A . We call A nonce respecting if
each encryption query it makes uses a distinct nonce. We say that A mounts a
chosen plaintext attack (CPA) if it never makes a decryption query, otherwise
we say A mounts a chosen ciphertext attack (CCA).3 A is free to make any
queries beyond the explicit restrictions.

For each attack, we keep track of the data complexity (in blocks of some con-
stant size) and/or the query complexity, the maximal number (over the values
of the nonce) of encryption queries made with the same nonce. We call a forgery
(resp. decryption) attack reusable if, after having forged (resp. decrypted) for
the first time, the query and computational complexity of the consequent forg-
eries (resp. decryptions) are significantly lower than the complexity of the initial
forgery (resp. decryption).

(Semi)-universal Forgery. A EK ,DK (N,A,M) receives an a nonce, AD and
a message and tries to produce a decryption query (N,A,C) that will correctly
decrypt to M , such that C was not an output of a previous encryption query
made with N,A. We call the forgery semi-universal if A only gets target AD
and message (i.e. A EK ,DK (A,M)) or target message only (i.e. A EK ,DK (M)) and
is allowed to use arbitrary values for the remaining inputs.

Decryption Attack. A EK ,DK (N,A,C) receives a nonce, AD and ciphertext-
tuple that is an encryption of a secret random message M of fixed length μ ≥ 128,
and tries to produce M .

Key Recovery. A EK ,DK () tries to compute K.

3 Generic Attacks

In this section, we list attacks that trivially apply to certain construction prin-
ciples, rather than being construction-specific. Nevertheless, these attacks are
relevant for the comparison of “robustness” of CAESAR candidates.

CPA Decryption: Streamciphers (Nonce Reuse, Constant Complex-
ity). AE schemes that produce a core ciphertext C and a tag T such that
C = M ⊕ f(K,N, |M |) (or C = M ⊕ f(K,N,A, |M |)), i.e. the message is
xored with a sequence of masking bits derived as a function of the nonce and
the secret key (or the nonce, secret key and AD) will necessarily succumb
to this attack. To decrypt (N,A,C‖T ), we make a single encryption query
f(K,N,A, |M |)‖T ′ = EK(N,A, 0|C|) that reveals the key stream and compute
M = C ⊕ f(K,N,A, |M |). This attack applies to CCM, GCM.

CPA Decryption: Self-synchronizing Streamciphers (Nonce Reuse,
Tiny Complexity). The previous attack can be adapted to AE schemes
that produce the core ciphertext C block by block, by xoring the cur-
rent message block with masking bits dependent on the key, the nonce,
AD and the previous message blocks. I.e. M1, . . . ,M�

n← and then Ci =

3 Note that a forgery is always a CCA, due to the final decryption query.



Can Caesar Beat Galois? 483

Mi ⊕ f(K,N,A,M1‖ . . . Mi−1, |Mi|), where the value of n depends on the
scheme. To decrypt (N,A,C‖T ), we make |C|n = �|C|/n� encryption queries
as follows:
1: Compute C1, . . . , C�

n← C.
2: for i ← 1 to � do
3: Query C′‖T ′ ← EK(N, A, M1‖ . . . ‖Mi−1‖0|Ci|).
4: Compute C′

1, . . . , C
′
i

n← C′ and then Mi ← C′
i ⊕ Ci.

5: end for

This attack applies to CLOC, SILC, AEGIS, ACORN, MORUS, Ketje,
NORX, Ascon, Keyak and JAMBU.

Semi-universal Forgery: AD Preprocessing (Nonce-Reuse, Varying
Complexity). Several candidates internally process an encryption query
(K,N,A,M) by first computing a value V = f(K,N,A) dependent on the key,
nonce and the AD, and then compute the (tagged) ciphertext as a function of the
secret key, the message and the value V as C = g(K,V,M), such that |V | = v
for constant v. If |N | ≥ 2v/2, then it is possible to find a pair (N1, A1), (N2, A2)
such that f(K,N1, A1) = f(K,N2, A2) in a nonce-respecting birthday attack,
and then use it to forge for M (hence semi-universal forgery):
1: Initialize empty table T, pick arbitrary M̂ ∈ {0, 1}v.
2: for i ← 1 to 2v/2 do
3: Pick (N ′, A′) with a fresh N ′ randomly.
4: Query C ′ ← EK(N ′, A′, M̂), then insert (C ′, (N ′, A′)) to T.
5: end for
6: Find entries (C ′, (N1, A1)), (C ′, (N2, A2)) (with collision on C ′) in T.
7: Query C ← EK(N1, A1,M) and forge with (N2, A2, C).

The attack succeeds with a probability close to 1/2, in particular choosing
M̂ ∈ {0, 1}2v ensures that a C ′ collision implies a V collision with overwhelming
probability (thanks to the ciphertext expansion). It is reusable with the same
(N1, A1), (N2, A2), and uses every nonce no more than 1 + q times, with q the
number of desired forgeries.

The attack applies with 64-bit-bound complexity (as v = 128) to, AEZ,
CLOC, SILC, COLM and with some care to CCM.4 This attack applies with
complexity above 64-bit-bound (as v = 192) to JAMBU.

Semi-universal Forgery: Sponges (Nonce Reuse, Varying Complexity).
In sponge-based modes, the processing can again be expressed with two functions
f and g but nonce reuse allows the attacker to force arbitrary values to the outer
r bits of the sponge state after processing the first message block. Using this,
the previous attack can be adapted to work with complexity 2c/2 (where c is the
capacity of the sponge-based scheme) to forge for arbitrary (A,M):
1: Initialize empty tables T, pick arbitrary M̂ ∈ {0, 1}c.
2: for i ← 1 to 2c/2 do
3: Pick a fresh N ′ randomly.

4 With τ = 128, we must use A′ of 240 bits to make sure that the encoding of the
nonce and AD for the CBC MAC is block-aligned.



484 S. Vaudenay and D. Vizár

4: Query C ′‖T ′ ← EK(N ′, A, 0r), then query C ′′‖T ′′ ← E(N
′, A,C ′‖M̂).

5: Compute C ′′
1 , . . . , C ′′

�
r← C ′′, then insert (C ′′

2 ‖ . . . ‖C ′′
� ‖T ′′, N ′) to T.

6: end for
7: Find entries (C ′′‖T ′′, N1), (C ′′‖T ′′, N2) (with collision on C ′′‖T ′′) in T.
8: Query C‖T ← EK(N1, A,M) and forge with (N2, A,C‖T ).

The success probability is close to 1/2. The second query in the attacks forces
the internal state of the sponge to become 0r‖S for some S ∈ {0, 1}c, hence the
birthday complexity in c. The attack is reusable with the same (N1, A), (N2, A),5

and uses every nonce no more than 2+q times, with q the number of desired forg-
eries. The attack applies with 64-bit-bound complexity (as c = 128) to NORX
and with above-64-bit-bound complexity (as c = 256) to Keyak and Ascon. We
note that for Keyak and Ascon, the exhaustive key search has the same time
complexity as this attack, but needs only a single query.

Universal Forgery and CCA Decryption: Ciphertext Translation
(Nonce Misuse, Tiny Complexity). Some candidates use so called cipher-
text translation [37] to incorporate the authentication of AD with a message-
only encryption core Ē . These schemes compute the tagged ciphertext as
EK(N,A,M) = ĒK(N,M)⊕ 0|M |‖HK(A) where ĒK(N,M) returns a core-
ciphertext and a τ -bit tag and H is an AXU hash with τ -bit output. To forge
for (N,A,M), we pick arbitrary N̂ �= N , M̂ �= M and A′ �= A and we do:
1: Query C1‖T 1 ← EK(N̂ , A, M̂) and C2‖T 2 ← EK(N̂ , A′, M̂).
2: Compute Δ ← T 1 ⊕ T 2.
3: Query C′‖T ′ ← EK(N, A′, M) and forge with (N, A, C′‖(T ′ ⊕ Δ)).

It is easily verified that the forgery is correct. This attack can be modified to
decrypt a ciphertext N,A,C‖T ; knowing Δ, we query N,A′, C‖(T ⊕Δ) and
learn the message M . This attack applies to OCB, AES-OTR and Deoxys-I.

4 AES-GCM

Universal Forgery (Nonce Misuse, Tiny Complexity). This attack has
been first described by Joux as the “forbidden attack” [28]. The main idea is that
recovering the derived key L makes forging very easy. We assume that τ = 128.
To forge for N,A,M , we pick random N̄ and M1 �= M2 ∈ {0, 1}128 and do:
1: Query C1‖T 1 ← EK(N, ε, M1) and C2‖T 2 ← EK(N, ε, M2).
2: Compute L as root of P (Λ) = (C1

1 ⊕ C2
1 ) · Λ2 ⊕(T 1 ⊕ T 2) over GF(2128).

3: Query C′‖T ′ ← EK(N, A′, M ′) with arbitrary A′ and M ′ s.t. |M ′| = |M |.
4: Forge with (N, A, (C′ ⊕ M ′ ⊕ M)‖(T ′ ⊕ GHASHL(A′, C′) ⊕ GHASHL(A, C))).

We note that L will be the only root of P (Λ) as squaring yields a bijection over
GF(2128). Once L is computed, forgeries become easy.

Universal Forgery (Nonce Respecting, 64-bit-Bound, |N | > 128). If
nonces longer than 128 bits are allowed, it is possible to recover L in a nonce-
respecting birthday attack. We note, however, that the use of nonce length other
5 For Keyak, the attack attack can be reused with arbitrary AD, because AD and

message are being processed simultaneously.



Can Caesar Beat Galois? 485

than 96 bits is uncommon and discouraged [25]. Assuming that τ = 128, for each
i we use distinct N i of 256 bits and M i = B‖M i

2 for a fixed B ∈ {0, 1}128 and
distinct M i

2 ∈ {0, 1}128, and do:
1: for i ← 1 to 264 do query Ci‖T i ← EK(N i, ε, M i).
2: For i �= j s.t. Ci

1 = Cj
1 find L as root of P (Λ) = (Ci

2 ⊕ Cj
2) · Λ2 ⊕(T 1 ⊕ T 2).

3: Forge using L.

Note that the collision in line 2 must imply GHASHL(ε,N i) = GHASHL(ε,N i′
),

so if it occurs, the attack succeeds. We note that a forgery allows to mount a
CCA decryption attack (by changing AD).

5 AEZ v5

We present three nonce-respecting attacks that respectively recover the subkeys
I, J and L, each at the 64-bit-bound complexity.

J -Recovery Attack. The Chaigneau-Gilbert attack [12] on AEZ v4.1 can be
applied to AEZ v5 to extract J by a nonce-respecting chosen message attack at
the birthday bound. When N and A are single blocks, then based on the AEZ v5
specification [22] H becomes

hk(τ, N, A) = E3,1
K (τ) ⊕ E4,1

K (N) ⊕ E5,1
K (A)

= E3,1
K (τ) ⊕ AES4k(N ⊕ 4J ⊕ 2I ⊕ L) ⊕ AES4k(A ⊕ 5J ⊕ 2I ⊕ L).

If we limit ourselves to queries with A = N ⊕ c for a fixed block c and
variable nonces, a ciphertext collision with the pair (N,N ′) will mean that N ′ =
N ⊕ c ⊕ J . The attack runs as follows:
1: Initialize an empty table T.
2: Pick an arbitrary block c ∈ {0, 1}128 and message M ∈ {0, 1}2·128.
3: for i ← 1 to 264 do
4: Pick a fresh N randomly, set A ← N ⊕ c.
5: Query C ← EK(N,A, τ,M), store (C,N) in T.
6: end for
7: Find (C,N), (C ′, N ′) in T with C = C ′, compute J = N ⊕ N ′ ⊕ c.

The Chaigneau-Gilbert attack requires a little effort to be adapted to AEZ v5
but it can recover I and L with nonce-misuse. A nonce respecting recovery of I
and L is possible if we can use nonces of several blocks (a feature of AEZ [22]),
to have a similar attack as the one above.

L-Recovery Attack. If |N |128 = 2 and A = ε, then following the AEZ v5
specifications H becomes

hk(τ, (N1, N2)) = E3,1
K (τ) ⊕ E4,1

K (N1) ⊕ E4,2
K (N2)

= E3,1
K (τ) ⊕ AES4k(N1 ⊕ 4J ⊕ 2I ⊕ L) ⊕ AES4k(N2 ⊕ 4J ⊕ 2I ⊕ 2L).

We modify the J-recovery attack to use 2-block nonces with N2 = N1 ⊕ c for a
fixed block c. A ciphertext collision with N and N ′ will then



486 S. Vaudenay and D. Vizár

I -Recovery Attack. Next, we see that when |N |128 = 9, the hash function H
becomes

hk(τ, (N1, . . . , N9)) = E3,1
K (τ) ⊕ E4,1

K (N1) ⊕ · · · ⊕ E4,9
K (N9)

= E3,1
K (τ) ⊕ AES4k(N1 ⊕ 4J ⊕ 2I ⊕ L) ⊕ · · · ⊕

AES4k(N7 ⊕ 4J ⊕ 2I ⊕ 7L) ⊕ AES4k(N8 ⊕ 4J ⊕ 2I) ⊕
AES4k(N9 ⊕ 4J ⊕ 4I ⊕ L).

We again modify the J-recovery attack to use 9-block nonces with N2, . . . , N8

constant and N9 = N1 ⊕ c for a fixed block c. A ciphertext collision with N and
N ′ yields 6I = N1⊕N ′

1⊕c. So, we recover I, J, L with a nonce-respecting chosen
message attack 64-bit-bound.

6 OCB3 (OCB v1.1)

L-Recovery Attack. An attack by Ferguson [15] allows to recover the derived
key L at 64-bit-bound using a single huge query. In the nonce-misuse setting, we
can make many queries with empty message and two-block AD:
1: for i ← 1 to 264 do query T i ← EK(N, Ai‖Ai, ε) with fresh Ai ∈ {0, 1}128.
2: Find i �= j with T i = T j , compute L = (Ai ⊕ Aj) · (γ1 ⊕ γ2)

−1.

If tag collision occurs, we must have Ai
1 = Aj

1 ⊕ (γ1 ⊕ γ2) · L. We need to reuse
the nonce 264 times.

Universal Forgery (Tiny Complexity, Using L). Using L, we can make a
universal forgery for (N,A,M ′). If |M ′|128 = � > 1, we do:
1: Define a permutation π : {1, . . . , �} → {1, . . . , �} as π(i) = (i + 1 mod �) + 1.
2: for i ← 1 to � do Mi ← M ′

π(i) ⊕ γi · L ⊕ γπ(i) · L.
3: Query C‖T ← EK(N, A, M).
4: for i ← 1 to � do C′

i = Cπ−1(i) ⊕ (γi ⊕ γπ−1(i)) · L.
5: Forge with (N, A, C′‖T ).

If |M ′|128 = 1, we construct M = M ′‖(γ1 ⊕ γ2) ·L, make a query with (N,A,M)
to get C‖T , and take C ′ = C1, which again gives a valid encryption C ′‖T of
(N,A,M ′).

EK Oracle (Tiny Complexity, Using L). We can also implement an EK

oracle. To compute yi = EK(xi) for arbitrary x1, . . . , xs ∈ {0, 1}128 set � = 214,
and do:
1: Pick M ∈ {0, 1}�·128 with

⊕
i>1 Mi = (2−1 ⊕ γ1 ⊕ γ�) · L randomly.

2: Query C‖T ← EK(N, ε, M), compute R ← C1 ⊕ T ⊕ γ1 · L.
3: Find i s.t. Mi ⊕ R ⊕ γi · L = 07‖1‖N ′′‖06 for N ′ ∈ {0, 1}114.
4: Set N ′ ← N ′′‖06, compute R′ = Ci ⊕ R ⊕ γi · L.
5: for i ← 1 to s do set M ′

i ← xi ⊕ R′ ⊕ γi · L.
6: Query C′‖T ′ ← EK(N ′, ε, M ′).
7: for i ← 1 to s do compute yi ← C′

i ⊕ R′ ⊕ γi · L.

The R computed on line 2 is correct as T = EK(M1⊕R⊕γ1 ·L) = C1⊕R⊕γ1 ·L.
We can also add an unused nonce to the list of xi-s to avoid making the 214 ·



Can Caesar Beat Galois? 487

128bit= 256 KB query more than once. Then the attack uses a single encryption
query per list of blocks x1, . . . , xs, of size s + 1 blocks.

CCA Decryption Attack For Messages Of Odd Length (Tiny Com-
plexity, Using L). Assume that we want to decrypt (N,A,C, T ) (let M be
its decryption). We can first compute R associated with N with the above EK

oracle, as well as some fresh N ′ and its associated R′ with tiny complexity. The
message M ′ defined by M ′

i = Mi ⊕ R ⊕ R′ encrypts into (C ′, T ′) such that
C ′

i = Ci ⊕ R ⊕ R′ and T ′ = T when � is odd. So, a CCA decryption query
with (N ′, A,C ′, T ) gives M ′ from which we deduce M .

7 AES-OTR v3.1

L-Recovery Attack. If we use the same nonce N 264 times, we can recover L:
1: for i ← 1 to 264 do query C‖T ← EK(N, ε, M i) with fresh M i ∈ {0, 1}4·128.
2: Find i �= j s.t. Ci

1 ⊕ M i
2 = Cj

3 ⊕ M j
4 , compute L = (M i

1 ⊕ M j
3 ) · (1 ⊕ 2)−1.

In a nonce respecting attack, we can encrypt a huge random message (with
|M |128 ≈ 264) with a nonce N and look for an internal collision with i �= j

C2i ⊕ M2i−1 = C2j ⊕ M2j−1 implying C2i−1 ⊕ 2i−1 · 2 · L = C2j−1 ⊕ 2j−1 · 2 · L,

revealing L for this N . We further expect to find many values of 1 ≤ i ≤
|M |128/2 for which 2i−1 · L⊕ M2i−1 (or 2i−1 · 3 · L⊕ C2i−1) will be a string of
the form ε(τ)‖1‖N ′. For any such N ′ we can use L′ = C2i−1 (or L′ = C2i) to
bootstrap the following attack.

EK Oracle (Using (N,L) Pair). Assuming that we know an (N,L) pair
EK(x1), . . . , EK(xr) for a list x1, . . . , xr as follows:
1: for i ← 1 to r do set M2i−1 ← xi ⊕ 22i−1 · L and pick Mi arbitrarily.
2: Query C‖T ← EK(N, ε, M).
3: for i ← 1 to r do compute EK(xi) = M2i ⊕ C2i−1.

In each execution of this attack, we can add one block to the list of xi-s to
prepare a fresh pair N ′, L′ for the next execution of the attack, allowing for its
nonce respecting repetition.

8 CLOC

EK Oracle in CLOC (Nonce-Respecting, Above 64-bit-Bound). In CLOC,
the processing of AD and nonce has the form V = f1(f2(K,A)⊕ozp(param‖N))
where the function f1 is easy to invert. To compute EK(x) for an x ∈ {0, 1}128,
we pick fixed AD A and do:
1: for i ← 1 to 264 do query Ci‖T i ← EK(N i, A, M i) with random M i ∈ {0, 1}2·128.
2: Find i �= j s.t. M i

1⊕Ci
1 = M j

2 ⊕Cj
2 , compute W ← f−1

1 (fix1(Cj
1)) ⊕ ozp(param‖N i).

3: if f−1
1 (x) ⊕ W of the form ozp(param‖N̄) query EK(x)‖T ← EK(N̄ , A, 0128).

4: else abort.



488 S. Vaudenay and D. Vizár

The attack works as the collision on line 2 implies that V i = fix1(Cj
1) so we

deduce the V i value for a random nonce N i with A. This allows us to recover
W = f2(K,A). If x is not of the correct form, it is bad luck. When using nonces
of 112 bits, which is the maximum, the probability to have the correct form is
2−16. But we can run this attack 216 times to get many W i = f2(K,Ai) with
complexity 280. Then at least one is W i will be such that f−1

1 (x) ⊕ Wi is of the
correct format for any x.

This attack does not work on SILC, in which W depends on both N and A.

Universal Forgery and CPA Decryption Attack in CLOC (Nonce-
Respecting, Above 64-bit-Bound). With the previous EK oracle, we can
simulate the encryption or the decryption process and thus mount universal
forgeries and CPA decryption.

9 Deoxys v1.41

Semi-universal Forgery, CCADecryptionAttack: Deoxys-II (Reusable,
Nonce-Misuse). The encryption algorithm of Deoxys-II can be expressed as
EK(N,A,M) = Ē(K,N, f2(f1(K,A),M),M) where Ē produces a (stretched)
ciphertext and f1 and f2 are keyed functions with constant-size output. The
attacks are based on finding a collision on f1. Assuming each nonce can be used
up to 2m times, to forge for (N,M) we use N1, . . . , N2128−2m �= N all distinct
and M ′ �= M of 2 blocks, and do:
1: for i ← 1 to 2128−2m do
2: for j ← 1 to 2m do query Ci,j‖T i,j ← EK(N i, Ai,j , M ′) with random Ai,j .
3: end for
4: Find i, j �= j′ s.t. Ai,j �= Ai,j′

and T i,j = T i,j′
.

5: Query C‖T ← EK(N, Ai,j , M) and forge with (N, Ai,j′
, C‖T ).

We can modify this attack to decrypt (N,Ai,j , C‖T ) by making a CCA decryp-
tion query on (N,Ai,j′

, C, T ). This can only decrypt messages using Ai,j as
associated data. The total complexity of the attack is 2128−m queries. Note that
if m = 64, the complexity becomes birthday bounded.

10 Tiaoxin-346

Nonce-Misuse Key Recovery. 6 We pick M,M̄, M̃ ∈ {0, 1}4·128 such that
Mi ⊕ M̄i = Δ and Mi ⊕ M̃i = Δ̃ for i = 0, 1, 2, 3 and Δ �= Δ̃. We pick arbitrary
N and A and recover two 128 bit words T ′[4]0 and T ′[3]0 of the internal state
right after processing of N , A and the first two blocks of M by:
1: Query C‖T ← EK(N, A, M), C̄‖T̄ ← EK(N, A, M̄) and C̃‖T̃ ← EK(N, A, M̃).
2: for i ← 2, 3 do set γi ← ShiftRows−1(MixColumns−1(C̄i ⊕ Ci)).
3: for i ← 2, 3 do set γ̃i ← ShiftRows−1(MixColumns−1(C̃i ⊕ Ci)).

6 Note that we change the meaning of subscript and square brackets compared to the
original Tiaoxin description [35].



Can Caesar Beat Galois? 489

4: for byte index j ← 0 to 15 do
5: for i ← 2, 3 do Find Xi,j = {γi,j | γi,j = SubBytes(x) ⊕ SubBytes(x ⊕ Δ)}.
6: for i ← 2, 3 do Find X̃i,j = {γ̃i,j | γ̃i,j = SubBytes(x) ⊕ SubBytes(x ⊕ Δ̃)}.
7: Set T ′[4]0,j ← X2,j ∩ X̃2,j and T ′[3]0,j ← X3,j ∩ X̃3,j .
8: end for

The above works, as we can verify that in the encryption of M we have

1. T ′[3] = R(T [3], M0),
2. T ′[4] = R(T [4], M1),
3. T ′[6] = R(T [6], M0 ⊕ M1),
4. C0 = T ′[3]0 ⊕ T ′[3]2 ⊕ T ′[4]1

⊕(T ′[6]3&T ′[4]3),

5. C1 = T ′[6]0 ⊕ T ′[4]2 ⊕ T ′[3]1
⊕(T ′[6]5&T ′[3]2),

6. T ′′[3] = R(T ′[3], M2),
7. T ′′[4] = R(T ′[4], M3),
8. T ′′[6] = R(T ′[6], M2 ⊕ M3),
9. C2 = T ′′[3]0 ⊕ T ′′[3]2 ⊕ T ′′[4]1

⊕(T ′′[6]3&T ′′[4]3),

10. C3 = T ′′[6]0 ⊕ T ′′[4]2 ⊕ T ′′[3]1
⊕(T ′′[6]5&T ′′[3]2).

In the encryption of M̄ we have the following (and similar for M̃ and Δ̃)

1. T̄ ′[3] = R(T [3], M0 ⊕ Δ),
2. T̄ ′[4] = R(T [4], M1 ⊕ Δ),
3. T ′[6] = R(T [6], M0 ⊕ M1),
4. C̄0 = T̄ ′[3]0 ⊕ T̄ ′[3]2 ⊕ T̄ ′[4]1

⊕(T ′[6]3&T̄ ′[4]3),

5. C̄1 = T ′[6]0 ⊕ T̄ ′[4]2 ⊕ T̄ ′[3]10
⊕(T ′[6]5&T̄ ′[3]2),

6. T̄ ′′[3] = R(T̄ ′[3], M2 ⊕ Δ),
7. T̄ ′′[4] = R(T̄ ′[4], M3 ⊕ Δ),
8. T ′′[6] = R(T ′[6], M2 ⊕ M3),
9. C̄2 = T̄ ′′[3]0 ⊕ T̄ ′′[3]2 ⊕ T̄ ′′[4]1

⊕(T ′′[6]3&T̄ ′′[4]3),

10. C̄3 = T ′′[6]0 ⊕ T̄ ′′[4]2 ⊕ T̄ ′′[3]1
⊕(T ′′[6]5&T̄ ′′[3]2).

We can easily see that

T̄ ′[3] ⊕ T ′[3] = (Δ, 0, 0) and T̄ ′′[3] ⊕ T ′′[3] = (0, A(T ′[3]0) ⊕ A(T ′[3]0 ⊕ Δ), 0),

T̄ ′[4] ⊕ T ′[4] = (Δ, 0, 0, 0) and T̄ ′′[4] ⊕ T ′′[4] = (0, A(T ′[4]0) ⊕ A(T ′[4]0 ⊕ Δ), 0, 0).

It follows that the differences of ciphertext blocks used in the lines 5 and 6
are a result of a differential equation for a single round of AES. This can be
reduced to a collection of 16 differential equations for AES Sbox, allowing to
recover the parts of the secret state as intersections of solutions found in the
said lines (we can check that we always have |Si,j ∩ S̃i,j | = 1).

We can then repeat this process with longer messages to obtain T [3] and
T [4] and we recover T ′[4] and T ′[3] with 12 queries (3 queries per 128-bit word
of T [4]). The state T [6] follows in a similar method using 18 queries. Once the
state (T [3], T [4], T [6]) is recovered, we invert the initialization and obtain K.

11 AEGIS v1.1

Universal Forgery, Decryption Attack (Tiny Complexity, Nonce-
Misuse). To forge for (N,A,M) or to decrypt (N,A,C, T ), we only need to



490 S. Vaudenay and D. Vizár

recover the secret state S after processing A with nonce N , the rest of encryp-
tion/decryption can then be reconstructed.

We pick three messages M ′, M̄ , M̃ ∈ {0, 1}3·128 with the same criteria as for
Tiaoxin (with Δ �= Δ̃). To recover a part S′

0 of the state A′ right after processing
M ′

1 with N and A, we:
1: Query C′‖T ′ ← EK(N, A, M ′), C̄‖T̄ ← EK(N, A, M̄) and C̃‖T̃ ← EK(N, A, M̃).
2: Set γ ← ShiftRows−1(MixColumns−1(C̄3 ⊕ M̄3 ⊕ C′

3 ⊕ M ′
3)).

3: Set γ̃ ← ShiftRows−1(MixColumns−1(C̃3 ⊕ M̃3 ⊕ C′
3 ⊕ M ′

3)).
4: Recover bytes of S′

0 using γ, γ̃, Δ, Δ̃ in differential equations as with Tiaoxin.

The attack works because the difference (C ′
3 ⊕ M ′

3)⊕(C̄3 ⊕ M̄3) (associated to
M ′

1 �= M̄1) is equal to the difference R(R(S4) ⊕ S0 ⊕ M ′
1)⊕ R(R(S4) ⊕ S0 ⊕ M̄1)

(where R(S4) ⊕ S0 = S′
0), with R just a single AES round. We can repeat

this strategy to recover the remaining four 128-bit words of S′
1, . . . , S

′
4 with 3

queries each. Then we can recover S, having done 15 nonce reusing queries.
The possibility of a low-complexity nonce reusing attack is mentioned in the
AEGIS v1.1 specifications [47].

12 ACORN v3

Universal Forgery, Decryption Attack (Tiny Complexity, Nonce-
Misuse). To forge the encryption of (N,A,M) or to decrypt (N,A,C, T ), we
only need to recover the internal state So after processing N,A, which allows to
finish the rest of encryption/decryption. We sketch the main idea of the attack.

We make two encryption queries C1‖T 1 ← EK(N,A, 0‖B) and C2‖T 2 ←
EK(N,A, 1‖B) for any B ∈ {0, 1}58. We can see that ksji+o is constant for j = 1, 2
and i = 0, . . . , 57 and that ks158+o ⊕ ks258+o = S58+o,61 ⊕ S58+o,193, which is a
linear equation in the bits of So. We recover 292 more equations by making 292
pairs of (longer) queries that differ only in a single bit, and solve the system for
So. The knowledge of So allows arbitrary forgeries and decryptions with N,A.

13 Ketje

Key Recovery (Tiny Complexity, Nonce-Misusing). The authors of Ketje
themselves point at the possibility of this attack. Because Ketje uses only a
single round of the Keccak−f function [9], the diffusion between two consecu-
tive sponge states is low. In addition, the algebraic degree of a single round of
Keccak−f is only 2. We use this to recover the internal state S after processing
of N and A, and then the secret key K by inverting the processing of N,A. We
sketch the main idea of the attack.

We make queries Ci‖T i ← EK(N,A,M i) with some fixed (N,A) and M i ∈
{0, 1}2·(r−4) s.t. M i

2 = 0r for i = 1, . . . , θ. For each i we can use M i
1 and Ci

2 to
derive degree-2 polynomial equations with the bits in the inner (capacity) part
of S as unknowns. Each bit in Ci

2 depends on 31 bits of the previous state on
average [8], so we expect an overwhelming majority of the bits of the attacked



Can Caesar Beat Galois? 491

state to be covered by the derived equations. We need the number of nonce
misusing queries θ to be a small multiple of b−r+4

r−4 = 11, 5 in order to fully
determine the system. Moreover, no more than a single unique monomial of
degree 2 per every bit of the state appears in the system, so with θ = 60, we
should be able to linearize the system and solve it for S.

14 Morus

Nonce-Misuse Universal Forgery and CPA Decryption. If we recover the
state S right after the initialization with N , we can forge ciphertexts with this
N and decrypt any ciphertext using this N . We sketch the S recovery attack.

We first recover S2 and S3 by querying Ci‖T i ← EK(N, ε,M i) with M i ∈
{0, 1}256 for i = 1, . . . , 4. Letting δi = M1

0 ⊕M i
0 with i �= 1, we have that

(C1 ⊕ M1) ⊕(Ci ⊕ M i) =(Rotl(δi, b1) <<<(w3 + 96)) ⊕ S2&Rotl(δi ⊕Rotl(δi, b1), b3)

⊕ S3&(Rotl(δi, b2) <<< w4)

⊕(Rotl(δi, b2) <<< w4)&Rotl(δi ⊕Rotl(δi, b1), b3),

where Rotl is a linear function, <<< denotes a circular rotation, and all br-s
and wt-s are constants. Each δi provides 128 linear equations in 256 binary
unknowns, so with δ1, δ2, δ3, we are able to recover the values of S2 and S3 with
high probability. Once S2 and S3 are known, C1

1 ⊕M1
1 can be expressed as a

linear function of S0 and S1 and we learn their xor-difference.
We still need to recover S0, S1, S4, i.e. 384 bits, and have 128 linear equa-

tions (so 256 unknown bits). We query C̄j‖T̄ j ← EK(N, ε, M̄ j) with M̄ j =
M1

0 ‖M̄ j
1‖0128 and M̄ j

1 ∈ {0, 1}128 for j = 1, . . . , θ. Each C̄j
2 will supply 128 poly-

nomial equations in S0, S1, S4 of degree at most 3. By examining the StateUpdate
and the keystream generation functions of Morus, we verify that there will be
no more than 19 · 128 unique monomials of degree higher than 1 present in all
equations in the worst case and only 9.25·128 on average. Thus by taking θ = 16,
we should be able to linearise the system and recover S0, S1 and S4 with high
probability, using 20 queries for the entire attack.

Acknowledgements. We would like to thank all CAESAR designers who provided
us with their feedback. We would like to thank the Ascon team for pointing out that
generic attacks with the same time but much lower data complexity than our forgery
exist, and the Deoxys team for suggesting a better way to measure adversarial resources
for nonce misuse. We would also like to thank the attendants of the Dagstuhl seminar
2018, and the anonymous reviewers for constructive comments.

References

1. Andreeva, E., Bogdanov, A., Datta, N., Luykx, A., Mennink, B., Nandi, M., Tis-
chhauser, E., Yasuda, K.: COLM v1 (2016). https://competitions.cr.yp.to/round3/
colmv1.pdf

2. Aumasson, J., Jovanovic, P., Neves, S.: NORX v3.0 (2016). https://competitions.
cr.yp.to/round3/norxv30.pdf

https://competitions.cr.yp.to/round3/colmv1.pdf
https://competitions.cr.yp.to/round3/colmv1.pdf
https://competitions.cr.yp.to/round3/norxv30.pdf
https://competitions.cr.yp.to/round3/norxv30.pdf


492 S. Vaudenay and D. Vizár

3. Bay, A., Ersoy, O., Karakoç, F.: Universal forgery and key recovery attacks on
ELmD authenticated encryption algorithm. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10031, pp. 354–368. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 13

4. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: how to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.)
ASIACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 24

5. Bernstein, D.J.: Cryptographic competitions: CAESAR submissions. http://
competitions.cr.yp.to/caesar-submissions.html

6. Bernstein, D.J.: Cryptographic competitions: CAESAR (2014). https://competitio
ns.cr.yp.to/caesar-call.html

7. Bernstein, D.J.: Cryptographic competitions: disasters (2014)
8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function

family main document. Submission NIST (Round 2) 3(30) (2009)
9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Keer, R.V.: CAESAR sub-

mission: Ketje v2 (2016). https://competitions.cr.yp.to/round3/ketjev2.pdf
10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Keer, R.V.: CAESAR sub-

mission: Keyak v2 (2016). https://competitions.cr.yp.to/round3/keyakv22.pdf
11. Bost, R., Sanders, O.: Trick or tweak: on the (in)security of OTR’s tweaks. In:

Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 333–353.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 12

12. Chaigneau, C., Gilbert, H.: Is AEZ v4.1 sufficiently resilient against key-recovery
attacks? IACR Trans. Symmetric Cryptol. 2016(1), 114–133 (2016). https://doi.
org/10.13154/tosc.v2016.i1.114-133

13. Daemen, J., Mennink, B., Van Assche, G.: Full-state keyed duplex with built-
in multi-user support. IACR Cryptology ePrint Archive 2017/498 (2017). http://
eprint.iacr.org/2017/498

14. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v1.2 (2016).
https://competitions.cr.yp.to/round3/asconv12.pdf

15. Ferguson, N.: Collision attacks on OCB. NIST CSRC website (2002)
16. Ferguson, N.: Authentication weaknesses in GCM (2005)
17. Fleischmann, E., Forler, C., Lucks, S.: McOE: a family of almost foolproof on-

line authenticated encryption schemes. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 196–215. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-34047-5 12

18. Forler, C., List, E., Lucks, S., Wenzel, J.: Reforgeability of authenticated encryption
schemes. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, vol. 10343, pp.
19–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59870-3 2

19. Fuhr, T., Leurent, G., Suder, V.: Collision attacks against CAESAR candidates.
In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 510–532.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3 21

20. Handschuh, H., Preneel, B.: Key-recovery attacks on universal hash function based
MAC algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 144–
161. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 9

21. Hoang, V.T., Krovetz, T., Rogaway, P.: Robust authenticated-encryption AEZ and
the problem that it solves. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 15–44. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 2

22. Hoang, V.T., Krovetz, T., Rogaway, P.: AEZ v5: authenticated encryption by enci-
phering (2017). https://competitions.cr.yp.to/round3/aezv5.pdf

https://doi.org/10.1007/978-3-662-53887-6_13
https://doi.org/10.1007/3-540-44448-3_24
http://competitions.cr.yp.to/caesar-submissions.html
http://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-call.html
https://competitions.cr.yp.to/caesar-call.html
https://competitions.cr.yp.to/round3/ketjev2.pdf
https://competitions.cr.yp.to/round3/keyakv22.pdf
https://doi.org/10.1007/978-3-662-53887-6_12
https://doi.org/10.13154/tosc.v2016.i1.114-133
https://doi.org/10.13154/tosc.v2016.i1.114-133
http://eprint.iacr.org/2017/498
http://eprint.iacr.org/2017/498
https://competitions.cr.yp.to/round3/asconv12.pdf
https://doi.org/10.1007/978-3-642-34047-5_12
https://doi.org/10.1007/978-3-642-34047-5_12
https://doi.org/10.1007/978-3-319-59870-3_2
https://doi.org/10.1007/978-3-662-48800-3_21
https://doi.org/10.1007/978-3-540-85174-5_9
https://doi.org/10.1007/978-3-662-46800-5_2
https://doi.org/10.1007/978-3-662-46800-5_2
https://competitions.cr.yp.to/round3/aezv5.pdf


Can Caesar Beat Galois? 493

23. Huang, T., Wu, H.: Attack on AES-OTR. https://groups.google.com/forum/#!
topic/crypto-competitions/upaRX2jdVCQ

24. Iwata, T., Minematsu, K., Guo, J., Morioka, S., Kobayashi, E.: CLOC and SILC
(2016). https://competitions.cr.yp.to/round3/clocsilcv3.pdf

25. Iwata, T., Ohashi, K., Minematsu, K.: Breaking and repairing GCM security
proofs. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 31–49. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 3

26. Jean, J., Nikolić, I., Peyrin, T.: Deoxys v1.41 (2016). https://competitions.cr.yp.
to/round3/deoxysv141.pdf

27. Jonsson, J.: On the security of CTR + CBC-MAC. In: Nyberg, K., Heys, H. (eds.)
SAC 2002. LNCS, vol. 2595, pp. 76–93. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-36492-7 7

28. Joux, A.: Authentication failures in NIST version of GCM (2006)
29. Katz, J., Yung, M.: Unforgeable encryption and chosen ciphertext secure modes of

operation. In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE
2000. LNCS, vol. 1978, pp. 284–299. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44706-7 20

30. Krovetz, T., Rogaway, P.: OCB (v1.1) (2016). https://competitions.cr.yp.to/
round3/ocbv11.pdf

31. Lu, J.: Almost universal forgery attacks on the COPA and marble authenticated
encryption algorithms. In: Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security, pp. 789–799. ACM (2017)

32. McGrew, D.A., Viega, J.: The security and performance of the galois/counter mode
(GCM) of operation. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004.
LNCS, vol. 3348, pp. 343–355. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30556-9 27

33. Mileva, A., Dimitrova, V., Velichkov, V.: Analysis of the authenticated cipher
MORUS (v1). In: Pasalic, E., Knudsen, L.R. (eds.) BalkanCryptSec 2015. LNCS,
vol. 9540, pp. 45–59. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
29172-7 4

34. Minematsu, K.: AES-OTR v3.1 (2016). https://competitions.cr.yp.to/round3/
aesotrv31.pdf

35. Nikolić, I.: Tiaoxin - 346 (2016). https://competitions.cr.yp.to/round3/tiaoxinv21.
pdf

36. Procter, G., Cid, C.: On weak keys and forgery attacks against polynomial-based
MAC schemes. J. Cryptology 28(4), 769–795 (2015). https://doi.org/10.1007/
s00145-014-9178-9

37. Rogaway, P.: Authenticated-encryption with associated-data. In: Proceedings of
the 9th ACM Conference on Computer and Communications Security, CCS 2002,
Washington, DC, USA, 18–22 November 2002, pp. 98–107 (2002)

38. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap prob-
lem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 23

39. Rogaway, P., Wagner, D.A.: A critique of CCM. IACR Cryptology ePrint Archive
2003/70 (2003)

40. Saarinen, M.-J.O.: Cycling attacks on GCM, GHASH and other polynomial MACs
and hashes. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 216–225.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5 13

https://groups.google.com/forum/#!topic/crypto-competitions/upaRX2jdVCQ
https://groups.google.com/forum/#!topic/crypto-competitions/upaRX2jdVCQ
https://competitions.cr.yp.to/round3/clocsilcv3.pdf
https://doi.org/10.1007/978-3-642-32009-5_3
https://doi.org/10.1007/978-3-642-32009-5_3
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://doi.org/10.1007/3-540-36492-7_7
https://doi.org/10.1007/3-540-36492-7_7
https://doi.org/10.1007/3-540-44706-7_20
https://doi.org/10.1007/3-540-44706-7_20
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-540-30556-9_27
https://doi.org/10.1007/978-3-319-29172-7_4
https://doi.org/10.1007/978-3-319-29172-7_4
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/tiaoxinv21.pdf
https://competitions.cr.yp.to/round3/tiaoxinv21.pdf
https://doi.org/10.1007/s00145-014-9178-9
https://doi.org/10.1007/s00145-014-9178-9
https://doi.org/10.1007/11761679_23
https://doi.org/10.1007/978-3-642-34047-5_13


494 S. Vaudenay and D. Vizár

41. Sun, Z., Wang, P., Zhang, L.: Collision attacks on variant of OCB mode and its
series. In: Kuty�lowski, M., Yung, M. (eds.) Inscrypt 2012. LNCS, vol. 7763, pp.
216–224. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38519-
3 14

42. Vaudenay, S., Vizár, D.: Under pressure: security of caesar candidates beyond their
guarantees. Cryptology ePrint Archive, Report 2017/1147 (2017). https://eprint.
iacr.org/2017/1147

43. Whiting, D., Ferguson, N., Housley, R.: Counter with CBC-MAC (CCM) (2003)
44. Wu, H.: ACORN: A lightweight authenticated cipher (v3) (2016). https://

competitions.cr.yp.to/round2/acornv2.pdf
45. Wu, H., Huang, T.: The authenticated cipher MORUS (v2) (2016). https://

competitions.cr.yp.to/round3/morusv2.pdf
46. Wu, H., Huang, T.: The JAMBU lightweight authentication encryption mode

(v2.1) (2016). https://competitions.cr.yp.to/round3/jambuv21.pdf
47. Wu, H., Preneel, B.: AEGIS: a fast authenticated encryption algorithm (v1.1)

(2016). https://competitions.cr.yp.to/round3/aegisv11.pdf

https://doi.org/10.1007/978-3-642-38519-3_14
https://doi.org/10.1007/978-3-642-38519-3_14
https://eprint.iacr.org/2017/1147
https://eprint.iacr.org/2017/1147
https://competitions.cr.yp.to/round2/acornv2.pdf
https://competitions.cr.yp.to/round2/acornv2.pdf
https://competitions.cr.yp.to/round3/morusv2.pdf
https://competitions.cr.yp.to/round3/morusv2.pdf
https://competitions.cr.yp.to/round3/jambuv21.pdf
https://competitions.cr.yp.to/round3/aegisv11.pdf


Public Key Encryption



Improved Anonymous Broadcast
Encryptions

Tight Security and Shorter Ciphertext

Jiangtao Li1 and Junqing Gong2(B)

1 East China Normal University, Shanghai, China
lijiangtao@stu.ecnu.edu.cn

2 ENS de Lyon, Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL),
Lyon, France

junqing.gong@ens-lyon.fr

Abstract. We investigate anonymous broadcast encryptions (ANOBE)
in which a ciphertext hides not only the message but also the target
recipients associated with it. Following Libert et al.’s generic construc-
tion [PKC, 2012], we propose two concrete ANOBE schemes with tight
reduction and better space efficiency.

– The IND-CCA security and anonymity of our two ANOBE schemes
can be tightly reduced to standard k-Linear assumption (and the
existence of other primitives). For a broadcast system with n users,
Libert et al.’s security analysis suffers from O(n3) loss while our
security loss is constant.

– Our first ANOBE supports fast decryption and has a shorter cipher-
text than the fast-decryption version of Libert et al.’s concrete
ANOBE. Our second ANOBE is adapted from the first one. We
sacrifice the fast decryption feature and achieve shorter ciphertexts
than Libert et al.’s concrete ANOBE with the help of bilinear groups.

Technically, we start from an instantiation of Libert et al.’s generic
ANOBE [PKC, 2012], but we work out all our proofs from scratch instead
of relying on their generic security result. This intuitively allows our opti-
mizations in the concrete setting.

Keywords: Broadcast encryption · Full anonymity
Chosen-ciphertext security · Tight reduction · Short ciphertext

1 Introduction

Broadcast Encryption. Broadcast encryption [Ber91,FN94] (BE) is a public-
key cryptosystem designed for securely sending information to multiple users via

J. Li—Shanghai Key Laboratory of Trustworthy Computing, School of Computer
Science and Software Engineering. Supported by the National Key R&D program
of China (No. 2017YFB0802000) and NSF of China (Nos. 61572198, 61632012,
61672239). Part of this work was done while the author was visiting ENS de Lyon.
J. Gong—Supported by the French ANR ALAMBIC project (ANR-16-CE39-0006).

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 497–515, 2018.
https://doi.org/10.1007/978-3-319-93387-0_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_26&domain=pdf


498 J. Li and J. Gong

a public channel. In a BE system, we may index each user by integers 1, . . . , n
and name set U := {1, . . . , n} the universe. It would be convenient to describe
BE in the framework of Functional Encryption [BSW11]. An authority publishes
a set of public parameters generated by the Setup algorithm. Each user’s secret
key is then created by the KeyGen algorithm from the master secret key which
is the output of Setup. By invoking the encryption algorithm Enc, a sender can
create a ciphertext for users specified by a target set S ⊆ U . Any user with an
index i ∈ S is able to decrypt the ciphertext using the Dec algorithm.

The basic security requirement is collusion-resistance which ensures that a
ciphertext leaks no information about the message even when multiple users
outside the target set S decide to cooperate. More formally, it is required that

{ct ←r Enc(mpk, S,m0)} ≈c {ct ←r Enc(mpk, S,m1)}
where mpk is the public parameters, (S ⊆ U,m0,m1) are chosen by the adver-
sary; and we allow the adversary to adaptively learn secret keys for all i /∈ S.

With more powerful functional encryptions such as attribute-based encryp-
tions [SW05,GPSW06,OT10,LOS+10,CGW15], we can securely broadcast
information in a structural way which is more efficient and much easier to man-
age. However the classical BE still serves as the most general tool for broad-
casting information in the systems where users are not well-organized, e.g., a
country-wide pay-TV system.

Anonymity. Since been introduced, a series of BE schemes have been pub-
lished [FN94,NNL01,YFDL04,BGW05,DPP07,GW09,Wee16], but they only
ensure the confidentiality of the message while the target set S is entirely exposed
to the public. In fact, the description of S will be directly transmitted through
the insecure channel for decryption. However in many applications, the confi-
dentiality of the target set is also crucial. For instance, in the pay-TV setting,
everyone has access to the full list of subscribers, which is not acceptable. There-
fore, it is desirable and non-trivial to build a BE system taking both the mes-
sage and the target set into account in terms of confidentiality. In this paper, we
call the latter feature anonymity and name such a BE as anonymous broadcast
encryption [LPQ12] (ANOBE). More formally, it is required that

{ct ←r Enc(mpk, S0,m0)} ≈c {ct ←r Enc(mpk, S1,m1)}
where (m0,m1, S0, S1) are chosen by the adversary and secret keys for all i /∈
(S0 \ S1) ∪ (S1 \ S0) can be revealed. The subtlety is that any secret key for
i ∈ S0∩S1 will give an adversary the power to correctly decrypt both ciphertexts
above. In this case, m0 �= m1 is disallowed in order to avoid the trivial attack.

State of the Art. Although anonymity is crucial for BE, it has not received
much attentions to construct ANOBE with the proper security guarantee.

In 2006, Barth et al. [BBW06] first identified the anonymity (i.e., recipient
privacy in their work) in the context of encrypted file system. They introduced
the notion of ANOBE in the name of private broadcast encryption. In their work,
two constructions were described. The first one is a generic construction from



Improved Anonymous Broadcast Encryptions 499

an IND-CCA secure PKE with key-privacy and a strongly unforgeable signature
scheme. They claimed that it achieves IND-CCA security and anonymity but
in the selective (or static) model which means that the adversary must commit
the challenge target sets (S0, S1) in advance. Basically, a BE ciphertext there
is a set of PKE ciphertexts intended for every recipient in S bound together
via a signature. One drawback of this construction is that the decryption time is
proportional to |S| since each receiver has to try to decrypt each PKE ciphertext
one by one. In their second construction, they introduced a method helping a
receiver to find the right PKE ciphertext and reduced the decryption cost to
constant. However, it unfortunately relies on the random oracle model.

At PKC 2012, Libert et al. [LPQ12] formally revisited Barth et al.’s results.
They described the adaptive security for ANOBE where the adversary can choose
the challenge target sets (S0, S1) at any time (i.e., the security notation we have
reviewed), and showed that it can be achieved from IND-CCA secure PKE (plus
strongly secure signatures). Note that this result is quite strong in that the under-
lying PKE is not necessarily key-private. Moreover, the receiver can decrypt in
a constant time. However, the size of ciphertext depends on n, the size of uni-
verse. They then demonstrated that Barth et al.’s first BE is actually IND-CCA
secure and anonymous in an adaptive sense and provided an alternative con-
struction from IBE [Sha84,CHK04]. This ANOBE has shorter ciphertext (of size
O(|S|)) but requires the underlying PKE to be weakly robust [ABN10,Moh10]
and key-private, and the decryption cost increases to O(|S|). They also formal-
ized the method helping to reduce the decryption cost in Barth et al.’s second
construction [BBW06] as anonymous hint system, which can be viewed as a vari-
ant of extractable hash proof systems [Wee10]. The classical randomness-reuse
technique [Kur02,BBS03] was then formally studied to reduce the ciphertext
size. Finally, a concrete ANOBE based on the Kurosawa-Desmedt PKE [KD04]
was proposed. Having their generic ANOBE, they showed that the Kurosawa-
Desmedt PKE can be adapted to be key-private and robust, and also support
randomness-reuse technique.

Also at PKC 2012, Fazio and Perera [FP12] proposed an ANOBE scheme with
sublinear-size ciphertexts but with a much weaker outsider-anonymity where
users identified by S0 ∩ S1 are not considered to be malicious. More formally,
the adversary is forbidden to get any secret key for i ∈ S0 ∩ S1. However Barth
et al.’s early work [BBW06] has actually recognized such an inside attacker as a
hazard and illustrated how serious the issue is under a chosen-ciphertext attack.
In the end, we want to note that Libert et al.’s results [LPQ12] are still the
best in the sense that they achieve (1) IND-CCA security, (2) fully anonymity
and (3) random-oracle-freeness. To our best knowledge, there is no follow-up
result with all these features simultaneously even when taking the identity-based
variant into account (see recent work [HWL+16] for more details).

1.1 Contributions

In this paper, we propose two concrete ANOBE schemes. Both of them
are obtained by optimizing an instantiation of Libert et al.’s generic



500 J. Li and J. Gong

construction [LPQ12] with Cramer-Shoup PKE [CS98,CS02]. We prove, from
scratch, that they are secure in the sense of [LPQ12] from the standard k-Linear
(k-Lin) assumption and the existence of several other cryptographic primitives
(such as strongly unforgeable signature and collision-resistant hash function).

Although our proposals do not deviate from Libert et al.’s generic frame-
work [LPQ12], our new start point and customized security proof allow us to
gain shorter ciphertexts and tighter reduction than the concrete instantiation
in [LPQ12]. (Recall that it is based on Kurosawa-Desmedt PKE [KD04] and the
security result follows the generic construction directly.) A comparison between
them is shown in Table 1 where we consider instantiations of our two ANOBE
under DDH = 1-Lin (or SXDH = 1-Lin) assumption1. We note that these two
instantiations are the most efficient ones.

Table 1. Comparison of our two proposals and the concrete ANOBE from [LPQ12] in
terms of ciphertext size and reduction tightness. Table (a) is for the schemes supporting
fast decryption while we tolerate linear decryption cost in Table (b). In our comparison,
the system has n users and � is the size of target set S. We let G be a finite group
where DDH holds while G1 denotes the first source group of a bilinear group where
SXDH holds. The column “Reduction” shows the security loss.

(a) Comparing our first ANOBE with
[LPQ12] plus anonymous hint system.

Scheme |ct| Reduction

[LPQ12] (4� + 5)|G|+ 2|Zp| O(n3)

Sect. 3 (2� + 5)|G|+ 2|Zp| O(1)

(b) Comparing our second ANOBE with
[LPQ12] without anonymous hint system.

Scheme |ct| Reduction

[LPQ12] (2� + 5)|G|+ 2|Zp| O(n3)

Sect. 4 (� + 6)|G1| O(1)

Shorter Ciphertext. Our first ANOBE scheme supports fast decryption. Com-
pared with the concrete ANOBE in [LPQ12] equipped with their DDH-based
anonymous hint system2, our ANOBE can save roughly 50% bandwidth. Our
second ANOBE is derived from the first one. We sacrifice fast decryption and
peruse shorter ciphertext. Compared with concrete ANOBE in [LPQ12], our
second ANOBE works with bilinear groups and roughly saves 50% bandwidth3.
We highlight that this construction almost touches the lower bound of cipher-
text size in an anonymous broadcast encryption [KS12]. It is quite surprising
that we start from a less efficient basic PKE scheme but finally achieves better
space efficiency. We note that the Cramer-Shoup PKE [CS98,CS02] is indeed
1 We assume that (1) the verification key and signature for strongly unforgeable one-

time signatures consist of 3 group elements and 2 integers, respectively [Gro06] (see
Sect. 4, [CCS09]); (2) the authenticated encryption with key-binding property has a
ciphertext of roughly 2 group elements (see Sect. 6, [LPQ12]).

2 The resulting ANOBE will also support fast decryption, here we share the random-
ness between ANOBE and anonymous hint system.

3 Here we implement the concrete ANOBE from [LPQ12] using elliptic curve.



Improved Anonymous Broadcast Encryptions 501

less efficient than Kurosawa-Desmedt PKE [KD04], but it permits us to use some
customized method to optimize the system.

Tighter Reduction. In [LPQ12], their security reduction suffers from O(n3)
loss where n is the size of the universe. This makes it infeasible for large-scale sys-
tems such as aforementioned pay-TV application. In particular, we need to use
a larger group to compensate the loss, which of course increases the bandwidth
and computation costs. In our work, we prove the security of two ANOBE from
basic assumption and only suffer constant security loss, which is of both theo-
retical and practical interest. We argue that the result is non-trivial: A potential
solution is to employ an IND-CCA secure PKE with tight reduction for multiple
users (like [GHKW16,Hof17]) in Libert et al.’s generic construction [LPQ12].
However, the simulator still needs to guess which public keys will be associated
with target set which is chosen adversarially and causes significant security loss.

1.2 Technical Overview

Our starting point is an instantiation of Libert et al.’s generic construction with
Cramer-Shoup PKE [CS98,CS02]. In this overview, we first give this instantia-
tion and describe how to derive our two ANOBE schemes from it.

Starting Point. Assume a prime-order group (p,G, g). We let [a] := ga ∈ G for
all a ∈ Zp and extend it to matrix over Zp. Assume S := {i1, . . . , i�}. We can
instantiate Libert et al.’s construction using Cramer-Shoup PKE under k-Lin
assumption as below:

mpk : { [A] , [A�ki], [A�xi], [A�yi] }i∈[n], (Genots,Sig,Ver), h

ski : ki,xi,yi

ctS : { [r�A�] , [r�A�kij
] · m, [r�A�(xij

+ α · yij
)] }j∈[�], pkots, σ

where A ←r Z
(k+1)×k
p , ki,xi,yi ←r Z

k+1
p for i ∈ [n] and r ←r Z

k
p. The public

parameter mpk is basically n public keys of Cramer-Shoup PKE4 sharing [A]
which is a common technique in the multi-user setting. The ciphertext for S
contains � ciphertexts of Cramer-Shoup PKE with randomness [r�A�] reused
as [LPQ12]. Following Libert et al.’s suggestion, they are then bound together
via a strongly unforgeable signature σ under fresh verification key pkots instead
of encrypting m||pkots.

The above BE is IND-CCA secure and anonymous according to Libert et al.’s
generic result. However, we can do better by showing a tighter reduction for
this concrete ANOBE. The security loss of Libert et al.’s reduction (which is
O(n3)) is mainly caused by black-box-reduction to the underlying PKE where the
simulation need to guess some information about challenge target set. We prove
our security result from scratch. In particular, we employ the proof technique for
4 Here we use a direct generalization of Cramer-Shoup PKE under the k-Lin assump-

tion. The original Cramer-Shoup PKE corresponds to the case k = 1.



502 J. Li and J. Gong

IND-CCA PKE in the multi-user setting [GHKW16,Hof17] but adapt it to our
broadcast encryption case. We found that we can now avoid guessing adversary’s
behavior and also corresponding reduction loss.

Our First ANOBE: Shorter Ciphertext for Fast Decryption. The above
instantiation has not been equipped with anonymous hint system [LPQ12], so the
decryption cost should be O(�). (Recall that, intuitively, an anonymous hint sys-
tem can help the decryptor to find the right ciphertext component intended for
him and avoid O(�) factor.) However we observe that {[r�A�(xij

+α ·yij
)]}j∈[�]

can serve as the hints for fast decryption. This benefits from the fact that tag α
is shared by all users in S. In the decryption procedure, a user with secret key
ki,xi,yi can recover v = [r�A�(xi + α · yi)] and try to find the index j∗ such
that v = [r�A�(xij∗ + α · yij∗ )], which indicates the right ciphertext.

This already saves the bandwidth since we need the DDH-based anonymous
hint system in [LPQ12] to upgrade Libert et al.’s concrete ANOBE in order to
achieve fast decryption. Even with randomness reuse technique, this will intro-
duce 2 · |S| additional group elements to the ciphertext. The perspective here is
that {[r�A�(xij

+α·yij
)] }j∈[�] act as crucial components for achieving IND-CCA

security and hints for fast decryption at the same time while they are realized
separately in Libert et al.’s concrete ANOBE.

Our Second ANOBE: Compressing Ciphertext Again. We now ask:

Can we reduce the ciphertext size if we can tolerate slower decryption?

Observe that we have � group elements (i.e., {[r�A�(xij
+α ·yij

)]}j∈[�]) for con-
sistency check (which is necessary for IND-CCA security) in our first ANOBE.
If we assume that each recipient can correctly guess which part is intended for
him/her, we can see that only one of these � elements will be used in the decryp-
tion procedure. Therefore a promising idea is to ask all recipients to share the
consistency check process. A direct way to do so is to

replace {[r�A�(xij
+ α · yij

)]}j∈[�] with [r�A�(x + α · y)]

and publish [A�x] and [A�y] in mpk. Unfortunately, there is a fatal issue. To
do the consistency check, we should give each user x and y directly and they
will be leaked to an adversary through any corrupted user. This totally breaks
the IND-CCA security. We circumvent the difficulty by making the consistency
check public using the technique by Kiltz and Wee [KW15]. In particular, we
adapt our first ANOBE to G1 of a pairing group (p,G1,G2,GT , e) and

replace [r�A�(x + α · y)]1 with [r�A�(X + α · Y)]1

where X,Y ←r Z
(k+1)×(k+1)
p . In the public parameter mpk, we publish

([A�X]1, [A�Y]1) and ([B]2, [XB]2, [YB]2)

where B ←r Z
(k+1)×k
p and the right-hand side part allow anyone to publicly

check the ciphertext consistency.



Improved Anonymous Broadcast Encryptions 503

We have successfully compressed the ciphertext but lose the correctness of
decryption since we do not have hint system now. It is easy to fix using key-
binding symmetric encryption scheme (E,D). That is we pick session key K
from the key space of (E,D) and

replace [r�A�kij
]1 · m with [r�A�kij

]1 · K,EK(m).

We note that we are not pursuing fast decryption now. We can further get rid
of σ by defining α as in Cramer-Shoup PKE [CS98,CS02]. We sketch our second
ANOBE as follows:

mpk : (E,D), h; { [A�]1 , [A�ki]1, [A�X]1, [A�Y]1 }i∈[n]; [B]2, [XB]2, [YB]2

ski : ki

ctS : { [r�A�]1 , [r�A�kij
]1 · K, EK(m) , [r�A�(X + α · Y)]1 }j∈[�]

where all terms in gray box are shared by all users/receivers. As our first
ANOBE, the reduction loss is constant.

Compared with Libert et al.’s concrete ANOBE [LPQ12], our second ANOBE
is based on weaker assumptions — we don’t require the existence of strongly
one-time signature and (E,D) is not necessarily authenticated encryption. Fur-
thermore, in the ciphertext, we share as many components as possible among
receivers in the target set, the remaining � group elements seem to be inevitable
by the lower bound [KS12].

Organization. Our paper is organized as follows. We review some basic notions
in Sect. 2. Our two ANOBE constructions along with security analysis will be
presented in Sects. 3 and 4, respectively. We finally conclude the paper in Sect. 5.

2 Preliminaries

Notations. For n ∈ N, we define [n] := {1, 2, . . . , n}. We use a ←r A to denote
the process of uniformly sampling an element from set A and assigning it to
variable a. For two sets S0, S1, define S0	S1 := (S0 \ S1) ∪ (S1 \ S0). “p.p.t.”
stands for probabilistic polynomial time.

2.1 Anonymous Broadcast Encryption

Algorithms. Let U := [n] be the universe. A broadcast encryption (BE)
scheme consists of four algorithms (Setup,KeyGen,Enc,Dec): Algorithm Setup
takes security parameter 1λ and n as input and outputs a master public key
mpk and a master secret key msk; Algorithm KeyGen takes mpk, msk and an
index i ∈ U as input and outputs a secret key ski; Algorithm Enc takes mpk, a
message m and a subset S ⊆ U as input and outputs a ciphertext ctS ; Algorithm
Dec takes mpk, ctS and ski as input and outputs m or a failure symbol ⊥.



504 J. Li and J. Gong

Correctness. For all λ, all (mpk,msk) ←r Setup(1λ, n), all m, all S ⊆ U , and
all i ∈ S, it is required that Dec(mpk,Enc(mpk,m, S),KeyGen(mpk,msk, i)) = m.

Chosen-Ciphertext Security and Anonymity. For any adversary A , define

AdvBEA (1λ) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

b = b′

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(mpk,msk) ←r Setup(1λ, n), b ←r {0, 1}
(m0,m1, S0, S1) ←r AKeyO(·),DecO(·,·)(1λ,mpk)

ct∗ ←r Enc(mpk,mb, Sb)

b′ ←r AKeyO(·),DecO(·,·)(1λ,mpk, ct∗)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

where oracles work as follows:

– KeyO: on input i, key extraction oracle KeyO outputs ski ←r

KeyGen(msk,mpk, i) and sets Qsk := Qsk ∪ {i} which is initialized to be ∅
at the beginning.

– DecO: on input (ct, i), decryption oracle DecO outputs Dec(mpk, ct, ski) when
ct∗ (a.k.a. challenge ciphertext) has not been defined or ct �= ct∗.

A broadcast encryption scheme achieves chosen-ciphertext security and
anonymity (ANO-IND-CCA) if, for all p.p.t. adversary A, AdvBEA (λ) is negli-
gible in λ under the restrictions that (1) |m0| = |m1| and |S0| = |S1|; (2)
Qsk ∩ (S0	S1) = ∅; (3) if Qsk ∩ (S0 ∩ S1) �= ∅, then m0 = m1.

2.2 Prime-Order (Bilinear) Groups

Prime-Order Group. A group generator GGen is a p.p.t. algorithm which
takes 1λ as input and outputs a description G := (p,G, g). Here G is a finite
cyclic group of prime order p and g is a random generator of G. Throughout the
paper, we will use implicit representation [EHK+13]. We let [a] := ga ∈ G for
all a ∈ Zp. For a matrix A = (aij) ∈ Z

m×n
p , we let [A] = (gaij ) ∈ G

m×n.

Prime-Order Bilinear Group. A group generator PGGen is a p.p.t. algorithm
which takes 1λ as input and outputs a description PG := (p,G1,G2,GT , e, g1, g2)
of (asymmetric) bilinear group. Here G1,G2,GT are finite cyclic groups of prime
order p and e is an admissible bilinear map. g1 ∈ G1 and g2 ∈ G2 are random
generators of G1 and G2, and gT := e(g1, g2) will be a generator of group GT .
The implicit representation is also be applied to prime-order bilinear groups: We
let [a]s := ga

s ∈ Gs for all a ∈ Zp and s ∈ {1, 2, T}. The notation can be easily
extended to matrices analogously and we let e([A]1, [B]2) := [AB]T for matrices
A and B when the multiplication is well-defined.

Cryptographic Assumption. For any k ∈ N, we call Dk a matrix distribution
if it outputs full-rank matrices in Z

(k+1)×k
p in polynomial time. We may assume

that for all A ←r Dk, the first k rows of A form an invertible matrix.



Improved Anonymous Broadcast Encryptions 505

We will use the Dk-Matrix Diffie-Hellman (Dk-MDDH) assumption in G

described as follows. The Dk-MDDH assumption in G1 and G2 are analogous.

Assumption 1 (Dk-MDDH). We say that the Dk-Matrix Diffie-Hellman
assumption holds relative to GGen, if for any p.p.t. adversary A, the following
advantage function is negligible in λ.

Advmddh
A,G (λ) := |Pr[A(G, [A], [As]) = 1] − Pr[A(G, [A], [u]) = 1]|

where G ←r GGen(1λ), A ←r Dk, s ←r Z
k
p, and u ←r Z

k+1
p .

The famous k-Linear (k-Lin) assumption is an instantiation of the Dk-MDDH
assumption. The classical decisional Diffie-Hellman (DDH) assumption (a.k.a
symmetric external Diffie-Hellman (SXDH) assumption in asymmetric bilinear
groups) is just the k-Lin assumption with k = 1. See [EHK+13] for more details.

For bilinear groups, we also use the Dk-Matrix Kernel Diffie-Hellman (Dk-
KerMDH) Assumption [MRV16], which is implied by the Dk-MDDH assumption.

Assumption 2 (Dk-KerMDH). Let s ∈ {1, 2}. We say that the Dk-Kernel
Matrix Diffie-Hellman Assumption holds relative to PGGen, if for any p.p.t.
adversary A, the following advantage function is negligible in λ.

Advkmdh
A,Gs

(λ) := Pr[A�a⊥ = 0 ∧ a⊥ �= 0 | [a⊥]3−s ←r A(PG, [A]s)]

where PG ←r PGGen(1λ),A ←r Dk.

2.3 Cryptographic Primitives

Our constructions will use the following cryptographic primitives:

– A semantically secure and key-binding symmetric encryption scheme (E,D)
with key space K. Let EK(·) and DK(·) denote the encryption and decryption
procedures under secret key K ∈ K. By key-binding [Fis99], we mean that,
for any message m and any secret key K ∈ K, there exists no K ′ ∈ K such
that K �= K ′ and DK′(EK(m)) �=⊥ (Here ⊥ indicates a decryption failure).

– A family of collision-resistant hash function H. It ensures that, given h ←r H,
it is hard to find x �= y such that h(x) = h(y) (i.e., a collision).

– A strongly unforgeable one-time signature scheme (Genots,Sign,Ver). Let
(pkots, skots) ←r Genots(1λ) be a verification key and a signing key. It is guar-
anteed that, given pkots and a signature σ ←r Sign(skots,m) for some adver-
sarially chosen message m, it is infeasible to output another message-signature
pair (m∗, σ∗) �= (m,σ) satisfying Ver(pkots,m∗, σ∗) = 1.

We will use AdvseA(λ), AdvhashA (λ) and AdvotsA (λ) to denote the advantage of adver-
sary A in violating the security of above primitives under security parameter λ.
Formal definitions can be found in the full version of the paper.



506 J. Li and J. Gong

2.4 Core Lemma

We review the core lemma in [KW15].

Lemma 1 (Core lemma, [KW15]). Let k ∈ N. For any A,B ∈ Z
(k+1)×k
p and

any (possibly unbounded) adversary A, we have

Pr

⎡

⎣
u /∈ span(A) ∧ α �= α∗ X,Y ←r Z

(k+1)×(k+1)
p

∧ π� = u�(X + α · Y) (u, α,π) ←r AO(·)(A�X,A�Y,XB,YB)

⎤

⎦ ≤ 1
p

where O(α∗) → X + α∗ · Y may only be called one time.

3 Tightly Secure ANOBE with Fast Decryption

3.1 Construction

Our first broadcast encryption scheme is described as follows.

– Setup(1λ, n): Run G := (p,G, g) ←r GGen(1λ). Sample

A ←r Dk and ki,xi,yi ←r Z
k+1
p for i ∈ [n].

Select a strongly unforgeable one-time signature scheme (Genots,Sig,Ver) and
a hash function h : {0, 1}∗ → Zp from H. The master public key is

mpk := (G, h, (Genots,Sig,Ver), [A], {[A�ki], [A�xi], [A�yi]}n
i=1)

and the master secret key is msk := ({ki,xi,yi}n
i=1).

– KeyGen(msk,mpk, i): Output the secret key ski = (ki,xi,yi).
– Enc(mpk,m, S): Let � := |S| and S = {i1, . . . , i�} ⊆ U = [n]. Sample r ←r Z

k
p

and compute [u�] := [r�A�]. Generate (skots, pkots) ←r Genots(1λ), compute
α := h(pkots) and c1 := [r�A�ki1 ] · m, v1 := [r�A�(xi1 + α · yi1)], . . . , c� :=
[r�A�ki�

] · m, v� := [r�A�(xi�
+ α · yi�

)]. Choose a random permutation τ
over [�] and compute σ := Sig(skots, ([u�], cτ(1), vτ(1), . . . , cτ(�), vτ(�))). The
ciphertext is

ct := ([u�], cτ(1), vτ(1), . . . , cτ(�), vτ(�), pkots, σ).

– Dec(mpk, ct, ski): Parse the ciphertext ct as ([u�], c̄1, v̄1, . . . , c̄�, v̄�, pkots, σ) and
the secret key ski as (ki,xi,yi). Return ⊥ if

Ver(pkots, ([u�], c̄1, v̄1, . . . , c̄�, v̄�), σ) = 0,

otherwise, compute
v := [u�(xi + α · yi)],

where α = h(pkots). If there exists j ∈ [�] such that v = v̄j , return m′ :=
c̄j/[u�ki]; otherwise, return ⊥.

It is direct to check the correctness.



Improved Anonymous Broadcast Encryptions 507

3.2 Security Result and Proof Overview

We prove the following theorem.

Theorem 1. Our broadcast encryption scheme in Sect. 3.1 is adaptively ANO-
IND-CCA secure assuming that: (1) H is collision-resistant; (2) the Dk-MDDH
assumption holds in G; (3) signature scheme (Genots,Sig,Ver) is strongly unforge-
able under one-time chosen message attack. Concretely, for any adversary A,
there exist algorithms B1,B2,B3 such that

AdvBEA (λ) ≤ Advmddh
G,B1

(λ) + AdvotsB2
(λ) + AdvhashB3

(λ) + O(1/p)

and Time(B1),Time(B2),Time(B3) ≈ Time(A).

We prove the theorem via the following game sequence. A proof sketch for
each step will be given and more details can be found in the full paper.

Game0. This game is identical to the real game described in Sect. 2.1. The
challenge ciphertext for (m0,m1, S0, S1) where S0 = {i1,0, . . . , i�,0} and
S1 = {i1,1, . . . , i�,1} is of form

ct∗ := ( ct∗1 := ([u∗�], c∗
1, v

∗
1 , . . . , c

∗
� , v

∗
� ), pk∗

ots, σ∗ := Sig(sk∗
ots, ct

∗
1) )

where u∗ ←r span(A), (sk∗
ots, pk

∗
ots) ←r Genots(1λ), and we compute

c∗
j = [u∗�kiτ(j),b

] · mb and v∗
j = [u∗�(xiτ(j),b

+ α∗ · yiτ(j),b
)], ∀j ∈ [�]

with b ←r {0, 1}, α∗ = h(pk∗
ots) and a random permutation τ over [�]. On

input (ct, i), DecO parses

ct = (ct1 = ([u�], c1, v1, . . . , c�, v�), pkots, σ),

and rejects the query if

(a) ct = ct∗ or (b) Ver(pkots, ct1, σ) = 0.

Then compute v = [u�(xi + α · yi)] with α = h(pkots). If there exists j ∈ [�]
such that v = vj , return m′ := cj/[u�ki]; otherwise, return ⊥. Let Wini

denote the event that A in Gamei guesses b correctly. Since Game0 perfectly
simulates the real game, we have AdvBEA (1λ) = |Pr[Win0] − 1/2|.

Game1. This game is identical to Game0 except that we sample u∗ ←r Z
k+1
p

when generating the challenge ciphertext ct∗. It is easy to see that this game
is indistinguishable from Game0 under the Dk-MDDH assumption. Formally,
we have the following lemma.

Lemma 2 (Game1 ≈c Game0). There exists an adversary B1 such that

|Pr[Win1] − Pr[Win0]| ≤ Advmddh
G,B1

(λ).



508 J. Li and J. Gong

Game2. This game is identical to Game1 except that DecO, on input (ct, i),
rejects the query if (a) or (b) or

(c) pkots = pk∗
ots.

This game is identical to Game1 until A submits a query with pkots = pk∗
ots

which survives under condition (a) and (b). However σ in such a query will
violate the strong unforgeability of (Genots,Sig,Ver), and this game is indis-
tinguishable from Game1. Formally, we have the following lemma.

Lemma 3 (Game2 ≈c Game1). There exists an adversary B2 such that

|Pr[Win2] − Pr[Win1]| ≤ AdvotsB2
(λ).

Game3. This game is identical to Game2 except the following substitution:

(c) pkots = pk∗
ots �−→ (c′) α = α∗

This game is identical to Game2 until A submits a query with pkots �= pk∗
ots but

α = α∗. This immediately violates the collision-resistance of H, and this game
is indistinguishable from Game2. Formally, we have the following lemma.

Lemma 4 (Game3 ≈c Game2). There exists an algorithm B3 such that

|Pr[Win3] − Pr[Win2]| ≤ AdvhashB3
(λ).

Game4. This game is identical to Game3 except that except that DecO, on input
(ct, i), rejects the query if (a) or (b) or (c′) or

(d) u /∈ span(A)

We have the following lemma stating that this game is statistically indistin-
guishable with Game3.

Lemma 5 (Game4 ≈s Game3). |Win4 − Win3| ≤ O(1/p).
Let qD be the number of decryption queries. The lemma can be proved in qD

steps. In the j-th step, assuming that the first j − 1 decryption queries have
been processed with condition (d), we demonstrate that the j-th query will
finally be rejected if it survives under condition (a), (b), (c′) with u /∈ span(A).
In other words, we can introduce condition (d) here without changing adver-
sary’s view. The proof (for the j-th step) relies on the observation that we
leak no more information than {A�xη,A�yη}η∈[n] when answering the first
j − 1 queries to DecO. With the help of condition (c′), which ensures that
α �= α∗, we can claim that u�(xi + α · yi) is independently and uniformly
distributed and thus hard to guess.

Finally, we have the following lemma which proves Theorem 1 when combin-
ing with all previous lemmas and claims.

Lemma 6. Pr[Win4] = 1/2.

This follows from the fact that (u∗ki,u∗(xi + α · yi)) are uniformly distributed
over G

2, especially unrelated to b, for all i ∈ Sb (resp. i ∈ Sb/S1−b) when
Qsk ∩ (S0 ∩ S1) = ∅ (resp. Qsk ∩ (S0 ∩ S1) �= ∅), conditioned on mpk,KeyO and
DecO. The analysis is similar to that for Lemma 5.



Improved Anonymous Broadcast Encryptions 509

Perspective. Lemmas 5 and 6 are at the core of our proof. Although our proofs
still rely on the proof technique of underlying Cramer-Shoup PKE, we get rid
of large reduction loss by carrying out the argument in the broadcast setting
directly. In particular, we employ the technique beneath the core lemma from
Kiltz and Wee [KW15] (see Lemma 1), which allows us to take all users into
account in a non-adaptive way first and then upgrade to the adaptive setting for
free. This avoids guessing adversary’s behaviour in the simulation which caused
large security loss in Libert et al.’s work [LPQ12]. Furthermore, we note that
our proof indeed involves robustness [ABN10,Moh10,LPQ12] but in an implicit
manner since we are not working with generic PKE anymore.

4 Tightly Secure ANOBE with Shorter Ciphertext

4.1 Construction

– Setup (1λ, n): Run PG := (p,G1,G2,GT , e, g1, g2) ←r PGGen(1λ). Sample

A,B ←r Dk, X,Y ←r Z
(k+1)×(k+1)
p , ki ←r Z

k+1
p for i ∈ [n].

Select a key-binding secure symmetric encryption scheme (E,D) with the key
space K := G1 and a collision-resilient hash function h ←r H mapping from
{0, 1}∗ to Zp. The master public key is

mpk :=

⎛

⎝PG, (E,D), h;
[A�]1, {[A�ki]1}n

i=1, [A�X]1, [A�Y]1

[B]2, [XB]2, [YB]2

⎞

⎠

and the master secret key is msk := {ki}n
i=1.

– KeyGen (msk,mpk, i): Output the secret key ski := ki.
– Enc (mpk,m, S): Let � := |S| and S = {i1, . . . , i�} ⊆ U . Sample r ←r Z

k
p and

compute [u�]1 := [r�A�]1. Select session key K ←r G1 and compute

c0 := EK(m), c1 := [r�A�ki1 ]1 · K, . . . , c� := [r�A�ki�
]1 · K

Choose a random permutation τ over [�] and compute

[π]1 := [r�A�(X + α · Y)]1

where α := h([u�]1, c0, cτ(1), . . . , cτ(�)). The ciphertext is

ct := ( [u�]1, c0, cτ(1), . . . , cτ(�), , [π]1 ).

– Dec(mpk, ct, ski): Parse ct as ([u�]1, c0, c̄1, . . . , c̄�, [π]1) and ski as ki. Compute
α = h([u�]1, c0, c̄1, . . . , c̄�) and check

e([π]1, [B]2)
?= e([u�]1, [(X + α · Y)B]2). (1)

If Eq. (1) does not hold, return ⊥; otherwise, do the following two steps from
j := 1.
1. Compute K ′ := c̄j/[u�ki]1 and m′ := DK′(c0). If m′ �=⊥, return m′ and

halt; otherwise, go to the second step.
2. If j = �, return ⊥ and halt; otherwise, do the first step with j := j + 1.



510 J. Li and J. Gong

Correctness. For any ciphertext ct := ([u�]1, c0, c̄1, . . . , c̄�, [π]1) for set S ⊆ U
produced by Enc, we have

e([π]1, [B]2) = e([r�A�(X + α · Y)]1, [B]2) = e([u�]1, [(X + α · Y)B]2)

where α = h([u�]1, c0, c̄1, . . . , c̄�). That is the ciphertext always satisfies Eq. (1).
Given a secret key ski = ki for i ∈ S, we know that there exists i′ ∈ [�] such
that ci′ = [r�A�ki]1 · K. The correctness of our ANOBE then follows from the
following two observations:

1. For each j < i′, we know that cj = [r�A�kj′ ]1 · K for some j′ ∈ S \ {i}, and
thus we have

cj/[u�ki]1 �= K

with overwhelming probability. From the key-binding feature of (E,D), the
decryption algorithm Dec will return nothing before the i′-th iteration.

2. It is easy to see that
ci′/[u�ki]1 = K.

By the correctness of (E,D), the decryption algorithm Dec will return m in
the i′-th iteration.

4.2 Security Result and Proof Overview

We prove the following theorem.

Theorem 2. Our broadcast encryption described in Sect. 4.1 is ANO-IND-CCA
secure assuming that: (1) H is collision-resistant; (2) the Dk-MDDH assump-
tion holds in G1; (3) the Dk-KerMDH assumptions holds in G2; (4) (E,D) is
semantically secure. Concretely, for any adversary A, there exist algorithms
B1,B2,B3,B4, such that

AdvBEA (λ) ≤ Advmddh
B1,G1

(λ) + AdvhashB2
(λ) + Advkmdh

B3,G2
(λ) + 2 · AdvseB4

(λ) + O(1/p)

and Time(B1),Time(B2),Time(B3),Time(B4) ≈ Time(A).

We prove the theorem via the following game sequence. A proof sketch for
each step will be given and more details can be found in the full paper.

Game0. This game is identical to the real game described in Sect. 2.1. The
challenge ciphertext for (m0,m1, S0, S1) where S0 = {i1,0, . . . , i�,0} and
S1 = {i1,1, . . . , i�,1} is of form

ct∗ := ( ct∗1 := ([u∗�]1, c∗
0, c

∗
1, . . . , c

∗
� ), [π∗]1 := [u∗�(X + α∗ · Y)]1 )

where u∗ ←r span(A), α∗ = h(ct∗1) and we compute

c∗
0 = EK∗(mb) and c∗

j = [u∗�kiτ(j),b
]1 · K∗, ∀j ∈ [�]



Improved Anonymous Broadcast Encryptions 511

with K∗ ←r G1 and random permutation τ over [�]. On input (ct, i), parse

ct = (ct1 = ([u�]1, c0, c1, . . . , c�), [π]1),

compute α = h(ct1) and reject the query if

(a) ct = ct∗ or (b) e([π]1, [B]2) �= e([u�]1, [(X + α · Y)B]2).

Then recover m using ki as Dec and return m. We let Wini denote the event
that A guesses b correctly in Gamei. Since Game0 perfectly simulates the real
game, we have AdvBEA (1λ) = |Pr[Win0] − 1/2|.

Game1. This game is identical to Game0 except that we sample u∗ ←r Z
k+1
p

when generating the challenge ciphertext ct∗. This game is indistinguishable
from Game0 under the Dk-MDDH assumption. Formally, we have the following
lemma and the proof is analgous to that for Lemma 2.

Lemma 7 (Game1 ≈c Game0). There exists an adversary B1 such that

|Pr[Win1] − Pr[Win0]| ≤ Advmddh
B1,G1

(λ)

Game2. This game is identical to Game1 except that DecO, on input (ct, i),
returns ⊥ if (a) or (b) or

(c) ct1 �= ct∗1 but α = α∗.

By the collision-resilience of H, this game is indistinguishable from Game1.
Formally, we have the following lemma and the proof is similar to that for
Lemma 4.

Lemma 8 (Game2 ≈c Game1). There exists an algorithm B2 such that

|Pr[Win2] − Pr[Win1]| ≤ AdvhashB2
(λ)

Game3. This game is identical to Game2 except the following substitution:

(b) e([π]1, [B]2) �= e([u�]1, [(X + α · Y)B]2) �−→ (b′) [π]1 �= [u�(X + α · Y)]1.

This game is the same as Game2 until A sends DecO a query which is rejected
by condition (b′) but survives under condition (b). One can see that such a
query immediately gives a solution to the Dk-KerMDH problem w.r.t [B]2.
Formally, we have the following lemma.

Lemma 9 (Game3 ≈c Game2). There exists an algorithm B3 such that

|Pr[Win3] − Pr[Win2]| ≤ Advkmdh
B3,G2

(λ)

Game4. This game is identical to Game3 except the following substitution

(b′) [π]1 �= [u�(X + α · Y)]1 �−→ (b′′)u /∈ span(A) ‖ [π]1 �= [u�(X + α · Y)]1.

Here “‖” denotes the OR operation which neglects the second operand if the
first one is satisfied. We have the following lemma stating that this game is
statistically close to Game3.



512 J. Li and J. Gong

Lemma 10 (Game4 ≈s Game3). |Pr[Win4] − Pr[Win3]| ≤ O(1/p).
Let qD be the number of decryption queries. The lemma will be proved in qD

steps. In the j-th step, assuming that the first j − 1 decryption queries have
been processed with condition (b′′), we demonstrate that the j-th query with
u /∈ span(A) can be rejected by condition (a), (b′), (c) with high probability.
This simply follows from Lemma 1 (the core lemma).

To complete the proof of Theorem 2, we show the following lemma.

Lemma 11. (Bounding Pr[Win4]). There exists an algorithm B4 such that

Pr[Win4] ≤ 1/2 + 2 · AdvseB4
(λ)

To prove the lemma, we consider two cases: (1) when Qsk ∩ (S0 ∩ S1) = ∅,
we can prove that [u∗�ki]1 for i ∈ Sb are independently and uniformly dis-
tributed over G1, which hide both Sb and K∗. The proof is similar to the proof
of Lemma 6. Then the semantic security of (E,D) allows us to hide mb; (2) when
Qsk∩(S0∩S1) �= ∅, we can only prove that [u∗�ki]1 for i ∈ Sb\S1−b are randomly
distributed, but it is sufficient for proving the lemma since m0 = m1.

5 Conclusion

In this paper, we described two concrete ANOBE schemes. The first one is an
instantiation of Libert et al.’s generic ANOBE. However, by working out the
proof directly, we achieved a constantly tight reduction to standard assumptions.
Furthermore, we pointed out that this scheme supports fast decryption for free
and thus enjoys shorter ciphertexts. By the second scheme, we showed how to
shorten the ciphertext again while preserving the tightness at the cost of slower
decryption.

Acknowledgment. We greatly thank Benôıt Libert for his encouragement and sup-
port. We also thank all anonymous reviewers for their constructive comments.

References

[ABN10] Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio,
D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11799-2 28

[BBS03] Bellare, M., Boldyreva, A., Staddon, J.: Randomness re-use in multi-
recipient encryption schemeas. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS,
vol. 2567, pp. 85–99. Springer, Heidelberg (2003). https://doi.org/10.1007/
3-540-36288-6 7

[BBW06] Barth, A., Boneh, D., Waters, B.: Privacy in encrypted content distribu-
tion using private broadcast encryption. In: Di Crescenzo, G., Rubin, A.
(eds.) FC 2006. LNCS, vol. 4107, pp. 52–64. Springer, Heidelberg (2006).
https://doi.org/10.1007/11889663 4

https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/3-540-36288-6_7
https://doi.org/10.1007/3-540-36288-6_7
https://doi.org/10.1007/11889663_4


Improved Anonymous Broadcast Encryptions 513

[Ber91] Berkovits, S.: How to broadcast a secret. In: Davies, D.W. (ed.) EURO-
CRYPT 1991. LNCS, vol. 547, pp. 535–541. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-46416-6 50

[BGW05] Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryp-
tion with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO
2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://
doi.org/10.1007/11535218 16

[BSW11] Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions
and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp.
253–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19571-6 16

[CCS09] Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme
secure against key dependent chosen plaintext and adaptive chosen cipher-
text attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp.
351–368. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
01001-9 20

[CGW15] Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order
groups via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EURO-
CRYPT 2015. LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46803-6 20

[CHK04] Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-
based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24676-3 13

[CS98] Cramer, R., Shoup, V.: A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055717

[CS02] Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive
chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.)
EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46035-7 4

[DPP07] Delerablée, C., Paillier, P., Pointcheval, D.: Fully collusion secure dynamic
broadcast encryption with constant-size ciphertexts or decryption keys. In:
Takagi, T., Okamoto, T., Okamoto, E., Okamoto, T. (eds.) Pairing 2007.
LNCS, vol. 4575, pp. 39–59. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73489-5 4

[EHK+13] Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic
framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40084-1 8

[Fis99] Fischlin, M.: Pseudorandom function tribe ensembles based on one-way
permutations: improvements and applications. In: Stern, J. (ed.) EURO-
CRYPT 1999. LNCS, vol. 1592, pp. 432–445. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48910-X 30

[FN94] Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-48329-2 40

https://doi.org/10.1007/3-540-46416-6_50
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-01001-9_20
https://doi.org/10.1007/978-3-642-01001-9_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/978-3-540-24676-3_13
https://doi.org/10.1007/BFb0055717
https://doi.org/10.1007/3-540-46035-7_4
https://doi.org/10.1007/978-3-540-73489-5_4
https://doi.org/10.1007/978-3-540-73489-5_4
https://doi.org/10.1007/978-3-642-40084-1_8
https://doi.org/10.1007/3-540-48910-X_30
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/3-540-48329-2_40


514 J. Li and J. Gong

[FP12] Fazio, N., Perera, I.M.: Outsider-anonymous broadcast encryption with
sublinear ciphertexts. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.)
PKC 2012. LNCS, vol. 7293, pp. 225–242. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30057-8 14

[GHKW16] Gay, R., Hofheinz, D., Kiltz, E., Wee, H.: Tightly CCA-secure encryption
without pairings. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016.
LNCS, vol. 9665, pp. 1–27. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49890-3 1

[GPSW06] Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption
for fine-grained access control of encrypted data. In: ACM CCS 2006, pp.
89–98. ACM Press (2006)

[Gro06] Groth, J.: Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT
2006. LNCS, vol. 4284, pp. 444–459. Springer, Heidelberg (2006). https://
doi.org/10.1007/11935230 29

[GW09] Gentry, C., Waters, B.: Adaptive security in broadcast encryption systems
(with short ciphertexts). In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 171–188. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-01001-9 10

[Hof17] Hofheinz, D.: Adaptive partitioning. In: Coron, J.-S., Nielsen, J.B. (eds.)
EUROCRYPT 2017. LNCS, vol. 10212, pp. 489–518. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-56617-7 17

[HWL+16] He, K., Weng, J., Liu, J., Liu, J.K., Liu, W., Deng, R.H.: Anonymous
identity-based broadcast encryption with chosen-ciphertext security. In:
ASIACCS 2016, pp. 247–255. ACM Press (2016)

[KD04] Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption
scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
426–442. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
28628-8 26

[KS12] Kiayias, A., Samari, K.: Lower bounds for private broadcast encryp-
tion. In: Kirchner, M., Ghosal, D. (eds.) IH 2012. LNCS, vol. 7692, pp.
176–190. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
36373-3 12

[Kur02] Kurosawa, K.: Multi-recipient public-key encryption with shortened
ciphertext. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol.
2274, pp. 48–63. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45664-3 4

[KW15] Kiltz, E., Wee, H.: Quasi-adaptive NIZK for linear subspaces revisited. In:
Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp.
101–128. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46803-6 4

[LOS+10] Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully
secure functional encryption: attribute-based encryption and (hierarchi-
cal) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-13190-5 4

[LPQ12] Libert, B., Paterson, K.G., Quaglia, E.A.: Anonymous broadcast encryp-
tion: adaptive security and efficient constructions in the standard model.
In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol.
7293, pp. 206–224. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-30057-8 13

https://doi.org/10.1007/978-3-642-30057-8_14
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/978-3-662-49890-3_1
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-642-01001-9_10
https://doi.org/10.1007/978-3-642-01001-9_10
https://doi.org/10.1007/978-3-319-56617-7_17
https://doi.org/10.1007/978-3-540-28628-8_26
https://doi.org/10.1007/978-3-540-28628-8_26
https://doi.org/10.1007/978-3-642-36373-3_12
https://doi.org/10.1007/978-3-642-36373-3_12
https://doi.org/10.1007/3-540-45664-3_4
https://doi.org/10.1007/3-540-45664-3_4
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-662-46803-6_4
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-30057-8_13
https://doi.org/10.1007/978-3-642-30057-8_13


Improved Anonymous Broadcast Encryptions 515

[Moh10] Mohassel, P.: A closer look at anonymity and robustness in encryption
schemes. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp.
501–518. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
17373-8 29

[MRV16] Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman
assumption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10031, pp. 729–758. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53887-6 27

[NNL01] Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for
stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp.
41–62. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-
8 3

[OT10] Okamoto, T., Takashima, K.: Fully secure functional encryption with
general relations from the decisional linear assumption. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7 11

[Sha84] Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blak-
ley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53.
Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 5

[SW05] Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11426639 27

[Wee10] Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs.
In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7 17

[Wee16] Wee, H.: Déjà Q: encore! Un petit IBE. In: Kushilevitz, E., Malkin, T.
(eds.) TCC 2016. LNCS, vol. 9563, pp. 237–258. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49099-0 9

[YFDL04] Yao, D., Fazio, N., Dodis, Y., Lysyanskaya, A.: ID-based encryption for
complex hierarchies with applications to forward security and broadcast
encryption. In: ACM CCS 2004, pp. 354–363. ACM Press (2004)

https://doi.org/10.1007/978-3-642-17373-8_29
https://doi.org/10.1007/978-3-642-17373-8_29
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/978-3-662-53887-6_27
https://doi.org/10.1007/3-540-44647-8_3
https://doi.org/10.1007/3-540-44647-8_3
https://doi.org/10.1007/978-3-642-14623-7_11
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-14623-7_17
https://doi.org/10.1007/978-3-662-49099-0_9


Time-Based Direct Revocable
Ciphertext-Policy Attribute-Based

Encryption with Short Revocation List

Joseph K. Liu1(B), Tsz Hon Yuen2, Peng Zhang3, and Kaitai Liang4

1 Faculty of Information Technology, Monash University, Melbourne, Australia
joseph.liu@monash.edu

2 Huawei, Singapore, Singapore
3 Shenzhen University, Shenzhen, China
4 University of Surrey, Guildford, UK

Abstract. In this paper, we propose an efficient revocable Ciphertext-
Policy Attribute-Based Encryption (CP-ABE) scheme. We base on the
direct revocation approach, by embedding the revocation list into cipher-
text. However, since the revocation list will grow longer as time goes
by, we further leverage this by proposing a secret key time validation
technique so that users will have their keys expired on a date and the
revocation list only needs to include those user keys revoked before their
intended expired date (e.g. those user keys which have been stolen before
expiry). These keys can be removed from the revocation list after their
expiry date in order to keep the revocation list short, as these keys can no
longer be used to decrypt ciphertext generated after their expiry time.
This technique is derived from Hierarchical Identity-based Encryption
(HIBE) mechanism and thus time periods are in hierarchical structure:
year, month, day. Users with validity of the whole year can decrypt any
ciphertext associated with time period of any month or any day within
the year. By using this technique, the size of public parameters and user
secret key can be greatly reduced. A bonus advantage of this technique
is the support of discontinuity of user validity (e.g. taking no-paid leave).

1 Introduction

Attribute-Based Encryption (ABE) is a generalization of Identity-Based Encryp-
tion (IBE) [5,6,11–13,48]. It provides flexibility of data sharing for system users
in the sense that a data encryptor is allowed to specify some descriptive values
x for an encryption and thus, the encryption can be decrypted successfully by a
secret key associated with some descriptive values y matching x. ABE has many
network applications, such as cloud computing [23,35], cloud storage systems
[20,21,34,50] and medical e-healthcare systems [7,17,22,38] etc. ABE can be
classified into two different types: one is Key-Policy ABE (KP-ABE), and the
other is Ciphertext-Policy ABE (CP-ABE). In a KP-ABE system, ciphertexts
are associated with attribute sets and secret keys are associated with access

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 516–534, 2018.
https://doi.org/10.1007/978-3-319-93387-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_27&domain=pdf


Time-Based Direct Revocable Ciphertext-Policy Attribute-Based Encryption 517

policies. On the opposite side, in a CP-ABE scheme ciphertexts are related to
access policies, and attribute sets are tagged with secret keys.

Before deploying ABE into any practical scenarios, one has to solve for the
user revocation problem. No organization will be happy to see that any of its
revoked users can still be able to decrypt the document designated for its users.

When we talk about revocability in ABE, there are different levels of revo-
cation:

1. Attribute Revocation. In this case, the user has changed his/her
attributes. For example, the original attributes for Alice are {Physics,
Student, University A}. Now she has changed to {Chemistry, Student,
University A}. Therefore, the original Physics attribute should be revoked
(but not Student or University A).

2. User Revocation. In this case, the user has left the organization. That
is, all attributes have to be revoked. In the previous example of Attribute
Revocation, Alice has left University A and therefore the user Alice should
be revoked.

3. Key Revocation. In this case, the secret key of the user is revoked. This is
the most generalized level of revocation. This can be happened in different
scenarios. For example, the user has left the organization (case (2)). Or if
the user has lost his secret key (and got a replacement key), the old one has
to be revoked. It can also cover case (1): If Alice changes her attribute from
Physics to Chemistry, her old key is revoked while she has been issued with
a new key associated with her new attribute.

Usually in this case the key is also associated with an identity or a serial
number, which is used in the revocation process by the authority. The encryp-
tor does not need to know this identity or number. In the rest of this paper,
we refer to revocation as this case (key revocation).

1.1 Different Approaches for Revocable ABE

There are several approaches to tackle the problem of revocability in ABE:

1. Key Update for Non-revoked Users. This is also called the Indirect
Approach. In this approach, every user has a secret key with a state. The
authority will execute a key update algorithm for every non-revoked users.
The keys for revoked users will not be updated. Upon the update, a new
state will be issued to the secret key. Ciphertext is generated according to
the current state. Therefore those revoked users who only have the secret keys
of previous state(s) cannot decrypt the ciphertext which is associated with
the new state.

If the ciphertext is stored on cloud, those revoked users however are still
able to decrypt the old ciphertext (generated with previous states). In order
to hinder this vulnerability, a ciphertext update algorithm can be executed
so that all old ciphertexts will be modified to associate with the current
state. In this way, revoked users (whose secret keys are associated with an



518 J. K. Liu et al.

old state) can no longer decrypt any old ciphertext from the cloud as it has
been updated to the current state which is only decryptable by a secret key
with the new state.

Nevertheless we only regard the ciphertext update as an optional feature,
as we have no way to prevent a revoked user from downloading the ciphertext
(and thus decrypting the ciphertext) before he has been revoked.

The main issue of the key update approach is the inability of instant user
revocation. Suppose Alice is revoked now and the next key update algorithm
is scheduled at the 1st of coming month. Alice is still able to decrypt any
newly generated ciphertext from now to the end of this month. (Even if the
cloud is equipped with ciphertext update, Alice cannot decrypt only those
old ciphertext but still can decrypt those newly generated one.) One may try
to argue that the authority may execute the key update algorithm once there
is any revoked user. In the point of view of security, this action can block
the loophole of inability instant user revocation. Nevertheless, it is definitely
not practical especially if there are a large number of non-revoked users. In
a large organization, there may be a new revoked user in every hour or even
every minute. It is impossible to ask every non-revoked user to update their
key every minute! If we schedule a longer key update period, the instant user
revocation problem will be worse then.

2. Embedding Revocation List into Ciphertext. This is also called the
Direct Approach. In this approach, there is a public revocation list. The
encryptor embeds the latest revocation list into the ciphertext so that only
those users not in the revocation list and satisfying the predicate (attributes-
policy matching) can decrypt the ciphertext. This approach can provide
instant user revocation (and thus solve the problem from the indirect app-
roach). No key update is required in this approach.

However, there is another practical problem with this approach. The revo-
cation list will grow longer as time goes by. If the organization is large, the
revocation list will become an efficiency bottleneck for the encryption and
decryption as it will continue to grow all the time. There is no way to reduce
or delete the revocation list, unless the revoked user re-joins the organization
in the future. This is not likely to happen in most of the scenarios though.

3. Cloud-Assisted. Another approach is to make use of the cloud assistance. In
this approach, the decryption ability is split into two halves. The first half is
owned by the user while another half is owned by the cloud. The cloud needs
to partially decrypt the ciphertext into an intermediate data first, which is
then sent to the user for the second level decryption. If the user is revoked,
the cloud refuses to execute the first level decryption. Then the revoked user
cannot decrypt the ciphertext without the assistance from the cloud.

This is the simplest way to achieve user revocation for ABE. In spite
of that, the cloud will be very busy if the number of users is large, as the
decryption of every user requires the assistance from the cloud.

More examples on each approach will be given in Sect. 2.



Time-Based Direct Revocable Ciphertext-Policy Attribute-Based Encryption 519

1.2 A Näıve Approach

One may immediately think of a näıve approach by combining the indirect and
direct approaches together in order to possess the merits from both sides. Intu-
itively the simple combination is to use a key update ABE (the indirect revoca-
ble ABE) to encrypt the plaintext first into the first-level ciphertext. Then the
resulting ciphertext is further encrypted using another ABE with revocation list
embedded into the ciphertext (the direct revocable ABE) as the second-level. If
a user is revoked before the next key update period, since his identity has been
put into the revocation list embedded into the second-level ciphertext (gener-
ated by the direct revocable ABE), he cannot decrypt it. On the other side, if
the revoked user’s key has been expired (that is, not being updated as it has
been revoked), his identity is not needed to be put into the revocation list by the
direct revocable ABE as the revoked key cannot be used to decrypt the first-level
ciphertext (generated by the indirect revocable ABE) even though it can still
decrypt the second level ciphertext. In this way, the revocation list can be kept
short while instant revocation can be achieved and thus no frequent key update
is required.

This näıve approach seems working fine, if we do not consider collusion
attack. Simply speaking, collusion attack in ABE refers to two different users
who both cannot decrypt the ciphertext individually but they can succeed to
do so if they are colluding with each other. Suppose Alice is revoked just right
now (before the next key update period) and therefore her identity Alice is in
the revocation list embedded into the second-level ciphertext. Bob is another
revoked user who was revoked in the previous time period. Thus his key has
not been updated in the current time period and his identity Bob is not in the
revocation list embedded into the second-level ciphertext. It is obviously that
both Alice and Bob cannot decrypt the combined ciphertext individually. How-
ever, if they are working together, they can successfully decrypt it: Bob can use
his secret key to decrypt the second-level ciphertext (as his identity is not in
the revocation list) and he can pass the resulting intermediate data (which has
become the first-level ciphertext) to Alice. Alice can use her secret key to decrypt
this first-level ciphertext as her key is the most updated one. As a result, Alice
and Bob can get the final plaintext if they are working together.

We definitely have to avoid this kind of collusion attack in any circumstance.

1.3 Our Contribution

In this paper, we propose an efficient and practical revocable CP-ABE scheme.
Our scheme is motivated from the (non-revocable) CP-ABE given in [36] and
incorporates the merit from all existing approaches for revocation, yet we do not
have the emerged trade-off and we are immune to the collusion attack mentioned
above in the naive approach. Namely,

• We have a revocation list, which is used by the encryptor to be embedded
into the ciphertext. On the other side, we also have a key update process for



520 J. K. Liu et al.

non-revoked users at a reasonable interval (e.g. once every two years). The
revocation list only contains those revoked users whose keys are not expired
yet. If their keys are expired (they are not allowed to update their keys as
they are revoked), they should not be able to decrypt any ciphertext generated
after their expiry date even though they are not included in the revocation
list. In other words, they can be removed from the revocation list after the
expiry date of their keys and thus the revocation list can be kept short.

• Although we still require a key update process for all non-revoked users, we
do not need to execute it frequently in order to provide instant key revoca-
tion. We argue that most organizations will require their users to renew their
contracts at a reasonable time interval (e.g. once every two years). It is prac-
tical to renew their secret keys at the time they are renewing their contracts.
This time does not need to be synchronized. Every user may have his own
time for expiry and renewal.

• We do not need the cloud in our basic system (a cloud-free system). Exten-
sion can be made to provide ciphertext update in the cloud (e.g. using the
ciphertext update technique in [31,47]) so that revoked users are no longer
able to decrypt any ciphertext generated in the past.

• We are immune to the collusion attack mentioned in the näıve approach. Sup-
pose there is a set of users. Anyone in this set cannot decrypt the ciphertext
individually. They cannot succeed to do so even if they are working together,
or by someone who has the secret keys for all users in this set.

• We use Hierarchical Identity-based Encryption (HIBE) technique to further
shorten the size of user secret key. Our time period is hierarchical. That is, we
have year, month and day. A user with secret key valid for the whole year can
derive the key with validity for the underlying months of that year. A user
with secret key valid for the whole month can derive the key with validity
for the underlying days of that month. With this technique, we can further
support discontinuity of user validity, which is believed as a common scenario
in the practical world (e.g. no-paid leave).

We provide a concrete construction for our proposed scheme. The size of the
ciphertext only depends on the embedded policy (access structure) but NOT
the revocation list, though the size of the secret key is linear with the maximum
length of the revocation list and the number of attributes of the user. In the
decryption, the number of pairing operations only depends on the access struc-
ture but NOT the number of users in the revocation list or the total number
of users in the system. The performance of our construction enjoys a significant
improvement over other similar schemes.

Table 1 gives a functional comparison between other approaches and our pro-
posed approach.



Time-Based Direct Revocable Ciphertext-Policy Attribute-Based Encryption 521

Table 1. Features comparison

Approach Examples Features

Instant
revoke

No freq. key
update

Cloud
free

Ciphertext
update

Short
revo. it.

Key update [9], [1], [47], [31], [39],

[40], [26], [29], [27]

× × � Optional �

Embedding
revocation list

[2], [1], [4], [33], [28],

[8], [49], [15], [25], [16]

� � � Optional ×

Cloud-assisted [30], [19], [43],

[32], [44], [14], [45]

� � × � ×

Our approach � � � Optional �

2 Related Works

There are several schemes in the literature addressing the problem of revocation
in ABE. We briefly describe them using the classification in Sect. 1.1

1. Key Update for Non-revoked Users (Indirect) Approach. The first
revocable ABE was proposed by Boldyreva et al. [9]. It is a KP-ABE. Revoca-
tion list is stored in the authority which executes key update algorithm with
each non-revoked users (those users not in the revocation list) during a regu-
lar time interval. Revoked users (without having their keys updated) cannot
decrypt any newly generated ciphertext. Yu et al. [47] proposed another revo-
cable ABE in the context of CP-ABE using key update approach. In addition,
they provide a mechanism to update ciphertext so that revoked users can-
not decrypt the updated ciphertext in the cloud. Nevertheless, they support
policies with logical AND only. A more promising construction was given by
Sahai et al. [31]. They provided constructions for both KP-ABE and CP-
ABE. There are key update and ciphertext update algorithms. Ciphertext is
decryptable only if the encryption time t < t′ where t′ is the key expiry time.
If the user is revoked, ciphertext will be updated so that the newly revoked
users cannot decrypt those old ciphertext (those ciphertext generated before
the user is revoked). All other users will then run the key update algorithm
except the revoked user.

Later on, Xie et al. [39] (the full version of [40]), proposed a revocable
CP-ABE. In their construction, each user has two keys. There is an individ-
ual key and also a group key. A group is defined as a set of users with the

1 We exclude the discussion for [46] as it is not an ABE scheme. They require every
user to have a private key and public key. Public key is generated by the authority
and private key is generated by the encryptor! The encryptor needs to use the private
key to encrypt the message. This is not a formal ABE that we are considering and
thus it is excluded in our discussion. We also exclude [41,42] as they are pointed out
as insecure in [18].



522 J. K. Liu et al.

same attributes. Decryption requires to have the group key and the individ-
ual user secret key. Revocation is done by updating the keys of non-revoked
users. Ciphertext update is also allowed as in [47]. Naruse et al. [26] proposed
another CP-ABE with attribute update by the cloud server. The cloud re-
encrypts the ciphertext and re-generates new secret key for users, who have
updated their attributes. Similar approach has also been suggested in [27,29].

2. Embedding Revocation List into Ciphertext (Direct) Approach.
Another approach is called direct approach, which requires the encryptor to
incorporate the revocation list in the ciphertext. In this way, users in the revo-
cation list cannot decrypt the ciphertext even though their attributes/policy
satisfy the policy/attributes associated with the ciphertext. No key update
is required using this approach. Attrapadung and Imai [2] proposed a revo-
cable ABE by incorporating the revocation information into the ciphertext.
Their approach is to use broadcast encryption. That is, the encryptor needs
to know the identities of those unrevoked users. They provide a KP-ABE con-
structions. Later, Attrapadung et al. [4] proposed another revocable KP-ABE.
Different from the previous one, this construction only requires the encryptor
to know the identities of revoked users (instead of unrevoked users). Wang
et al. [33] proposed another revocable KP-ABE using broadcast encryption
which requires the encryptor to know the list of unrevoked users. Nieto et al.
[28] generalize the revocability technique to Predicate Encryption. They
require the encryptor to embed the revocation list into the ciphertext. They
use dual pairing vector space as the primitive and thus the number of pairing
operations in the decryption is very large (linear with the number of users in
the system). Balu and Kuppusamy [8] proposed a revocable CP-ABE by incor-
porating the revocation list. Encryptor only needs to know the identities of
revoked users. However, their model is very weak. They only allow the adver-
sary to query secret key that does not satisfy the challenge access structure
AND not in the revocation list. In other words, it does not allow adversary
to query a secret key that satisfies the access structure but in the revocation
list. (This models the case for revoked users.) Zhang [49] proposed another
revocable CP-ABE scheme using similar approach. In addition, the scheme
also supports leakage resilient. But the construction only supports attribute-
level revocation (the basic level of revocation). Datta et al. [15] proposed a
KP-ABE construction using similar approach using multilinear maps. Liu and
Wong [25] proposed a CP-ABE construction. Again they deploy similar app-
roach but using matrix representation for users. Thus the size of ciphertext is
of size O(

√
N), where N is the total number of users in the system. Recently,

Datta et al. [16] proposed another KP-ABE that supports revocability with
this approach. This time they use subset difference technique to achieve the
purpose.

There is also a construction using either direct and indirect approach.
Attrapadung and Imai [1] proposed a KP-ABE which allows the encryptor to
use whether direct or indirect mode (but not both).

3. Cloud-Assisted Approach. With the assistance of cloud, revocation
becomes easier without letting the encryptor to get the revocation list, or



Time-Based Direct Revocable Ciphertext-Policy Attribute-Based Encryption 523

executing any key update for non-revoked users. Earlier stage cloud-assisted
scheme [30] only provides ciphertext-update so that revoked users cannot
decryp the ciphertext in the cloud. Later on, other cloud-assisted schemes
require all decryption must go through the cloud as a partial process. The
cloud has the control to refuse the assistance of decryption for revoked users.
Without the help from the cloud, no one can decrypt the ciphertext. Hur and
Noh [19] proposed a revocable CP-ABE scheme. The data owner first out-
sourced the data into the cloud. The cloud then re-encrypts (using a double-
encryption technique) according the set of authenticated (valid) membership.
The revocation is easy. The cloud just deletes the revoked user from the mem-
bership (which is a binary tree). Decryption requires the cloud to process first.
It then sends the partially decrypt data to the user. Yang et al. [43] and Shi
et al. [32] proposed another cloud-assisted scheme independently. In their
schemes, the decryption is split into two halves. The cloud stores the first
half and the user stores another half. A complete decryption requires both
parts. Yang et al. [44] use similar approach. They further reduce the trust
on cloud by increasing the risk of collusion with users. Recently, Cui et al.
[14] reduced the trust to the cloud server by letting the cloud server to use a
kind of proxy re-encryption key only.

3 Definition

3.1 Time Period

A time period can be a day, a month or a year.2 For example, we use “2016-
Jun-15” to represent a day; “2016-Dec” to represent a month etc. Our scheme
can also support some special case for non-continuity. For example, if the user is
going to take no-paid leave from 01 August 2016 to 29 November 2016, then we
can just assign the valid period from 15 June 2016 to 31 July 2016 and from 30
November 2016 to 31 December 2016. (Assume today is 15 June 2016 and the
user expiries at the end of 2016.)

A decryptable time period is a time period set by the encryptor such that only
users with validity completely covered the period can decrypt. (A specific setting
is to let the encrypting time to be the decryptable time period.) For example,
suppose the decryptable time period is December 2016 and the validity of user
secret key is only limited to 31 December 2016. This is not a complete cover and
thus this secret key is not able to decrypt. On the opposite, if the decryptable
time period is 01 December 2016 and the validity of user secret key is December
2016, then it is able to decrypt as it has a complete cover for the decryptable
time period (provided that other conditions are also satisfied).

2 Our scheme can further support more levels of time period, e.g. hours, minutes etc.
Yet for simplicity, we limit the description to the day level only.



524 J. K. Liu et al.

3.2 Definition of Revocable Ciphertext-Policy Attribute-Based
Encryption

A revocable ciphertext-policy attribute based encryption scheme consists of four
algorithms: Setup, KeyGen, Encrypt, Decrypt.

• Setup(1κ, U,R, T). Take as input the security parameter κ, the number of
attributes in the system U , the maximum number of revoked users in the
revocation list R and the depth of the time tree T. It outputs the public
parameters PK and a master key MK. We omit the description of κ in the
rest of this paper.

• KeyGen(MK, ID, S,T). Take as input the master key MK, a user’s identity
ID3, a set of attributes S and a range of validity time periods T. It outputs
a private key SK(ID,S,T).

• Encrypt(PK,m,Tc,R,A). Take as input the public parameters PK, a mes-
sage m, a decryptable time period Tc, a revoked set R and an access structure
A over the universe of attributes. It outputs a ciphertext CT .

• Decrypt(PK,CT,R,A,Tc, SK(ID,S,T)). Take as input the public parameters
PK, a ciphertext CT , along with a description of a revoked set R, an access
policy A and a decryptable time period Tc, and a private key SK(ID,S,T),
which is a private key for the user’s identity ID, attributes set S and the range
of validity time periods T. If the user’s identity ID is not in the revoked set R,
the set S of attributes satisfies the access structure A and the range of validity
time periods T completely covers the decryptable time period Tc, then the
algorithm will decrypt the ciphertext and return a message m. Otherwise it
outputs ⊥.

Note that we do not explicitlly define the key update algorithm as its function
can be implicitly covered by the KeyGen algorithm with the new validity time
period.

3.3 Security Model

We now describe a selective security model for the revocable ciphertext-policy
ABE scheme. The security model is described by the following game between
a challenger C and an adversary A. In the game, A needs to submit an access
structure A

∗, a revocation list R∗ and a decryptable time period T∗
c to C before

seeing the public parameter PK. At any time A can query for any private keys
that cannot be used to decrypt the challenge ciphertext.

• Init. A needs to submit the challenge access structure A
∗, the challenge revo-

cation list R∗ and the challenge decryptable time period T∗
c to the Challenger

C.
• Setup. C runs the Setup algorithm and gives the public parameters PK to

the adversary.
3 In practice, this can also be the serial number of a user key in order to achieve

key-level revocation.



Time-Based Direct Revocable Ciphertext-Policy Attribute-Based Encryption 525

• Phase 1. Adversary A makes repeated private key queries corresponding to
the identity ID, the attribute set S and the range of validity time periods T
such that for any single returned secret key SK(ID,S,T), at least one of the
following conditions must be fulfilled:

• S does not satisfy the access structure A
∗.

• ID ∈ R∗.
• T∗

c is not completely covered in T.
• Challenge. Adversary A submits two equal length messages m0 and m1.

Challenger C flips a random coin β ∈ {0, 1} and encrypts mβ under the
access structure A

∗, the revoked set R∗ and the time T∗
c . The ciphertext CT ∗

is given to adversary A.
• Phase 2. It is the same as in Phase 1.
• Guess. The adversary outputs a guess β′ for β.

The advantage of adversary A in the above game is defined as AdvA = Pr[β′ =
β] − 1/2.

Definition 3.1. A revocable ciphertext-policy attribute-based encryption scheme
is secure if all polynomial time adversaries have at most a negligible advantage
in the above game.

Other mathematical background is provided in the full version [24].

4 Our Scheme

4.1 Overview

Our scheme is motivated by the (non-revocable) CP-ABE scheme in [36]. We
first add a revocation list in the ciphertext so that users in the revocation list
cannot decrypt. We then add time validity to user secret key and a decryptable
time period in the ciphertext. Users without having a complete cover of validity
for the decryptable time period cannot decrypt. (Readers may refer to Sect. 3.1
for more details.)

Observe that the valid time always have the “AND” relation with the user
attributes. Therefore, we have to attach the time validity tightly to the secret
key in order to avoid the collusion attack. A näıve approach is to treat each time
period as an attribute. In the policy, we just need to add the “AND” relation
with all valid time periods (that is, time-attributes) together with the original
policy. It works fine, if the number of valid time periods in the system is small.
Otherwise, the size of public parameters and user secret key will be very large as
they grow linear with the number of attributes (that is, number of time periods
in this näıve approach). For example, if the system supports up to 10 years
and the smallest unit of time period is day, then there will be more than 3000
time-attributes in the system!

If the user is revoked before the normal expiry time, the user ID will be put
into the revocation list until his expiry time has passed. Anyone whose ID is in



526 J. K. Liu et al.

the revocation list will not be able to decrypt any ciphertext, regardless of his
attributes. The idea of the revocation approach is motived from [3,4].

Also note that we have the same restriction as the scheme in [36] using the
decisional BDHE assumption (the first scheme). That is, an attribute can only
be used in at most one row in the ciphertext access matrix M (the function ρ(·)
is injective). This can be thought of as an attribute appearing in at most one
node in a formula. However, this limitation can be easily mitigated by assigning
a different string for each time an attribute is associated with a row in an access
structure.

4.2 Technical Construction

We borrow the idea from the Boneh-Boyen-Goh Hierarchical Identity-based
Encryption (HIBE) scheme [10] to apply in our time validity control. We take
advantage of the fact that the validity period of a user’s key or ciphertext is usu-
ally represented as some time interval (e.g. from January to December), instead
of some discrete time segments (e.g. January and March and July and Decem-
ber). Therefore, we use a tree-based approach to further improve the efficiency
for continuous time interval. The advantage is two-fold. Firstly, the size of the
user secret key is reduced. Secondly, if the encryptor wants to encrypt the mes-
sage for some time interval, then only the user with keys valid in the complete
time interval can decrypt. At the same time, the size of the ciphertext is still
independent of the length of the time interval.

We use the set-cover approach to select the minimum number of nodes that
can represent all the valid time periods. A node (except the root node) in the tree
represents a time period. By using HIBE, the user obtains the keys corresponding
to these nodes only. Consider the following example:

Root

2015

Jan

1 ... 31

... Dec

2016

Jan ... Dec

1 ... 31
The first level represents the year. The second level represents the month. The
third level represents the day.

Suppose an employee joins the company on 29 November 2015 and his con-
tract ends on 31 December 2016. He should obtain keys for the nodes of “2015-
Nov-29”, “2015-Nov-30”, “2015-Dec” and “2016”. For the encryptor, he can
choose to encrypt a message for a specific day, for a whole month or whole year.
The employee who is authorized for the whole month can decrypt the ciphertext
for the whole month. On the other hand, if the ciphertext is specified for a single
day only, the employee can derive the decryption key from the corresponding
month or year key using the HIBE approach.

In order to simplify the description, suppose the time tree has depth T and
each node have z children. A time period (e.g. a day, a month, a year) can be



Time-Based Direct Revocable Ciphertext-Policy Attribute-Based Encryption 527

represented by a z-ary element (τ1, τ2, . . . , τk) for some k < T. Our construction
is as follows.

1. Setup(U,R, T): U is the number of attributes in the system. Time is repre-
sented as a z-ary string {1, z}T−1. The maximum number of revoked users is
R − 1. Choose a bilinear group G of prime order p with a random generator
g and U random elements h1, . . . , hU ,∈ G. Randomly choose α, α0 ∈ Zp and
α = (α1, . . . , αR)� ∈R Z

R
p , V0, V1, . . . , VT ∈R G, set

F = gα = (gα1 , · · · , gαR)� = (f1, . . . , fR)�.

Output PK =
{

g, gα0 , e(g, g)α, h1, . . . , hU , V0, V1, . . . , VT,F
}

and MK = α.

2. KeyGen(MK, ID, S,T): S is the set of attributes of a user with identity ID. T
is the range of validity time periods for the user ID. Denote T as the set-cover
representing T which consists of some time elements τ = (τ1, τ2, . . . , τkτ

) ∈
{1, z}kτ where kτ < T for any τ ∈ T.4 Randomly choose u, t, vτ ∈R Zp for all
τ ∈ T and compute

D0 = gt, D′
0 = gu,

{
D

′′
0,τ = gvτ

}
τ∈T

,

{
D1,τ = gαgα0tgα1u(V0

kτ∏
j=1

V
τj

j )vτ

}
τ∈T

, {Lj,τ = V vτ
j }j=kτ+1,...,T,τ∈T,

{Kx = ht
x}x∈S ,

{
Fi = (f−IDi−1

1 · fi)u
}

i=2,··· ,R
.

Output

SK(ID,S,T) =
{

D0, D
′
0, {D

′′
0,τ , D1,τ , Lkτ+1,τ , . . . , LT,τ}τ∈T, {Kx}x∈S , {Fi}i=2,··· ,R

}

as the user secret key for the user with identity ID, attribute set S and time
validity period T.

3. Encrypt(PK,m,Tc,R,A = (M,ρ)): R = (ID1, . . . , IDr) is the revocation list
with r revoked users and r < R. m ∈ GT is the plaintext message and Tc is the
decryptable time period of this ciphertext. Let τc = (τ1, . . . , τk) ∈ {1, z}k be
the z-ary representation of Tc, where k < T.5 Take as input an LSSS access
structure A = (M,ρ). The function ρ associates rows of M to attributes.
Let M be an � × n matrix. The algorithm first chooses a random vector
v = (s, y2, . . . , yn) ∈ Z

n
p . These values will be used to share the encryption

4 For example, if the user is valid from 2015-Nov-29 to 2016-Dec-31, T =
{(2015, Nov, 29), (2015, Nov, 30), (2015, Dec), (2016)}.

5 Note that if k < T, it means that only the users valid throughout a period of time
(τ1, . . . , τk, 1, 1, . . . , 1) and (τ1, . . . , τk, z, z, . . . , z) can decrypt. For example, if the
decryptable time period of this ciphertext is “2015-Dec” (and thus τ = (2015, Dec)),
only user with secret key valid for the whole December can decrypt this ciphertext.



528 J. K. Liu et al.

exponent s. For i = 1 to �, it calculates λi = 〈v,Mi〉, where Mi is the vector
corresponding to the ith row of M . Also let

FR(Z) = (Z − ID1) · · · (Z − IDr) = y1 + y2Z + · · · + yrZ
r−1 + yr+1Z

r. (1)

If r + 1 < R, the coefficients yr+2, · · · , yR are set to 0. Compute

C0 = m · e(g, g)αs, C
′
0 = gs, C

′′
0 = (fy1

1 · · · fyR

R )s, C
′′′
0 = (V0

k∏
j=1

V
τj

j )s,

C1 = gα0λ1h−s
ρ(1), . . . , C� = gα0λ�h−s

ρ(�).

Output a ciphertext CT = {C0, C
′
0, C

′′
0 , C

′′′
0 , C1, . . ., C�} along with a

description of Tc, (M,ρ) and the revoked set R.
4. Decrypt(CT,R, SK(ID,S,T)): First define X = (1, ID, · · · , IDR−1) from the

identity ID and Y = (y1, · · · , yR) from the revoked set R (where yi, i =
1, . . . , R are defined as in equation (1)). Note that

〈X,Y〉 = y1 + y2ID + . . . + yrIDr−1 + yr+1IDr = FR(ID),

and if r+1 < R, the coefficients yr+2, · · · , yR are 0. If any one of the following
conditions occurs, output ⊥:

• S does not satisfy the access structure (M,ρ).
• ID ∈ R. That is, 〈X,Y〉 = FR(ID) = 0.
• Tc is not completely covered in T. That is, τc and all its prefixes are not

in T, where τc is the z-ary representation for Tc and T is the set-cover for
T.

Otherwise, now we have ID /∈ R (that is, 〈X,Y〉 �= 0). First compute

F =
R∏

i=2

F yi

i =
(
f

−〈X,Y〉
1 ·

R∏
i=1

fyi

i

)u

and ς1 =
( e(F,C ′

0)
e(D′

0, C
′′
0 )

) −1
〈X,Y〉

= e(g, g)α1su.

Further let I ⊂ {1, 2, . . . , �} be defined as I = {i : ρ(i) ∈ S}. Then, let
{ωi ∈ Zp}i∈I be a set of constants such that if {λi} are valid shares of any
secret s according to M , then

∑
i∈I ωiλi = s. Compute

ς2 =
∏
i∈I

(e(Ci,D0) · e(C
′
0,Kρ(i)))ωi = e(g, g)α0st.

If τc = (τ1, . . . , τk) ∈ T, D1,τc
should be one of the components in the

secret key. Otherwise, let its prefix τ ′
c = (τ1, . . . , τk′), where k′ < k, such

that τ ′
c ∈ T. Then derive the key from the secret key with respect to τ ′

c

as follows: D1,τc
= D1,τ ′

c

∏k
j=k′+1 L

τj

j,τ ′
c
, and set τc = τ ′

c. Finally, compute

m =
C0·ς1·ς2·e(D′′

0,τc
,C

′′′
0 )

e(D1,τc ,C′
0)

.

We provide the correctness and security analysis in the full version [24].



Time-Based Direct Revocable Ciphertext-Policy Attribute-Based Encryption 529

4.3 Future Enhancements

There are some future enhancements that we can further improve upon the
current construction:

• To lift the restriction for repeated attributes while keeping simple or standard
assumption. We note that [37] provided a construction for non-revocable CP-
ABE that has removed this restriction. Yet they use a non-standard assump-
tion (decisional parallel BDHE assumption). Theoretically speaking, we can
build up a system based on this scheme. However, the resulting system will
also rely on the decisional parallel BDHE assumption.

• To add ciphertext update for revoked users (so that they cannot decrypt
those ciphertext generated in the past). We can use the technique of proxy
re-encryption to achieve this. But we believe this is not the most essential
feature of a revocable ABE since revoked users can anyway decrypt the past
ciphertext before they are revoked. If they have done so, it has no use to
re-encrypt the ciphertext unless the system is fully cloud-based (e.g. cloud-
assisted approach).

5 Performance Analysis

We first compare the efficiency of our scheme with other revocable ABE schemes.
We present our comparison in Table 2. We use the following symbols in our
comparison table:

Table 2. Efficiency comparison

• R: max number of revoked users; U : max number of attributes in the system
• T: number of time period level (depth of time tree)
• N : max number of users in the system; S: number of attributes of the user
• r: number of revoked users in the revocation list
• �: number of rows of the access structure matrix
• I: number of attributes used in the decryption
• L: max number of length of input wires (exclusive for [15] only)
• Q: max number of gates (exclusive for [15] only)
• GT : number GT elements; G: number G elements



530 J. K. Liu et al.

Note that we exclude the following for the comparison as they are of different
features or security level with our scheme:

• Using indirect approach and cloud-assisted approach (such as those listed in
Sect. 2), as they cannot support instant revocation or require a cloud server
to assist decryption.

• Using broadcast encryption technique (such as [2,33]) as they require the
encryptor to know the identity of all possible decryptors, which is not exactly
an ABE but more or less similar to a broadcast encryption in nature.

• Weak security model [8]. Their model is very week. They only allow the adver-
sary to query secret key that does not satisfy the challenge access structure
AND not in the revocation list. Under this model, the collusion attack we
mentioned in Sect. 1.2 is NOT considered as a valid attack. That means their
model cannot capture such a low-level attack.

• Attribute-level revocation only [49]. They only support attribute-level revo-
cation, instead of the more generalized user-level or key-level revocation.

From the comparison, we can see that our scheme is the most efficient CP-
ABE using direct approach for revocation. In practice, T can be very small.
For example, if we only consider year, month and day, T = 3. Our space and
computation complexity do not depend on N , the total number of users in the
system, which is supposed to be a very large number.

6 Conclusion

In this paper, we proposed a revocable CP-ABE scheme based on the direct
revoke approach. That is, the revocation list is embedded into the ciphertext
so that instant revocation can be achieved. In order to shorten the revocation
list, we further propose a time validity technique so that expired users cannot
decrypt ciphertext associated with a decryptable time period not completely
covered under their validity period. We deploy a tree-based structure and HIBE
technique to construct the time validity part. The efficiency analysis also shows
that our scheme is practical enough to be deployed.

Acknowledgement. This work was supported by Australian Research Council
(ARC) Grant DP180102199, the National Natural Science Foundation of China
(61702342), the Science and Technology Innovation Projects of Shenzhen (JCYJ20160
307150216309, JCYJ20170302151321095) and Tencent “Rhinoceros Birds” -Scientific
Research Foundation for Young Teachers of Shenzhen University.

References

1. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect
revocation modes. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 278–
300. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10868-6 17

https://doi.org/10.1007/978-3-642-10868-6_17


Time-Based Direct Revocable Ciphertext-Policy Attribute-Based Encryption 531

2. Attrapadung, N., Imai, H.: Conjunctive broadcast and attribute-based encryption.
In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 248–265.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03298-1 16

3. Attrapadung, N., Libert, B.: Functional encryption for inner product: achiev-
ing constant-size ciphertexts with adaptive security or support for negation. In:
Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 384–402.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7 23

4. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 6

5. Au, M.H., Huang, Q., Liu, J.K., Susilo, W., Wong, D.S., Yang, G.: Traceable and
retrievable identity-based encryption. In: Bellovin, S.M., Gennaro, R., Keromytis,
A., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 94–110. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-68914-0 6

6. Au, M.H., Liu, J.K., Yuen, T.H., Wong, D.S.: Practical hierarchical identity based
encryption and signature schemes without random oracles. IACR Cryptology
ePrint Archive 2006/368 (2006)

7. Au, M.H., Yuen, T.H., Liu, J.K., Susilo, W., Huang, X., Xiang, Y., Jiang, Z.L.: A
general framework for secure sharing of personal health records in cloud system.
J. Comput. Syst. Sci. 90, 46–62 (2017)

8. Balu, A., Kuppusamy, K.: Ciphertext-policy attribute-based encryption with user
revocation support. In: Singh, K., Awasthi, A.K. (eds.) QShine 2013. LNICST,
vol. 115, pp. 696–705. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37949-9 61

9. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revo-
cation. In: CCS, pp. 417–426. ACM (2008)

10. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

11. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

12. Chow, S.S.M., Liu, J.K., Zhou, J.: Identity-based online/offline key encapsulation
and encryption. In: ASIACCS, pp. 52–60. ACM (2011)

13. Chu, C., Liu, J.K., Zhou, J., Bao, F., Deng, R.H.: Practical id-based encryption
for wireless sensor network. In: ASIACCS, pp. 337–340. ACM (2010)

14. Cui, H., Deng, R.H., Li, Y., Qin, B.: Server-aided revocable attribute-based encryp-
tion. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS
2016. LNCS, vol. 9879, pp. 570–587. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-45741-3 29

15. Datta, P., Dutta, R., Mukhopadhyay, S.: General circuit realizing compact revoca-
ble attribute-based encryption from multilinear maps. In: Lopez, J., Mitchell, C.J.
(eds.) ISC 2015. LNCS, vol. 9290, pp. 336–354. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23318-5 19

16. Datta, P., Dutta, R., Mukhopadhyay, S.: Adaptively secure unrestricted attribute-
based encryption with subset difference revocation in bilinear groups of prime
order. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016.
LNCS, vol. 9646, pp. 325–345. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-31517-1 17

https://doi.org/10.1007/978-3-642-03298-1_16
https://doi.org/10.1007/978-3-642-13013-7_23
https://doi.org/10.1007/978-3-642-19379-8_6
https://doi.org/10.1007/978-3-540-68914-0_6
https://doi.org/10.1007/978-3-642-37949-9_61
https://doi.org/10.1007/978-3-642-37949-9_61
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-319-45741-3_29
https://doi.org/10.1007/978-3-319-45741-3_29
https://doi.org/10.1007/978-3-319-23318-5_19
https://doi.org/10.1007/978-3-319-23318-5_19
https://doi.org/10.1007/978-3-319-31517-1_17
https://doi.org/10.1007/978-3-319-31517-1_17


532 J. K. Liu et al.

17. He, K., Weng, J., Liu, J.K., Zhou, W., Liu, J.-N.: Efficient fine-grained access
control for secure personal health records in cloud computing. In: Chen, J., Piuri,
V., Su, C., Yung, M. (eds.) NSS 2016. LNCS, vol. 9955, pp. 65–79. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46298-1 5

18. Hong, J., Xue, K., Li, W.: Comments on “DAC-MACS: effective data access control
for multiauthority cloud storage systems”/security analysis of attribute revocation
in multiauthority data access control for cloud storage systems. IEEE Trans. Inf.
Forensics Secur. 10(6), 1315–1317 (2015)

19. Hur, J., Noh, D.K.: Attribute-based access control with efficient revocation in data
outsourcing systems. IEEE Trans. Parallel Distrib. Syst. 22(7), 1214–1221 (2011)

20. Liang, K., Au, M.H., Liu, J.K., Susilo, W., Wong, D.S., Yang, G., Phuong, T.V.X.,
Xie, Q.: A dfa-based functional proxy re-encryption scheme for secure public cloud
data sharing. IEEE Trans. Inf. Forensics Secur. 9(10), 1667–1680 (2014)

21. Liang, K., Au, M.H., Liu, J.K., Susilo, W., Wong, D.S., Yang, G., Yu, Y., Yang,
A.: A secure and efficient ciphertext-policy attribute-based proxy re-encryption for
cloud data sharing. Future Gener. Comput. Syst. 52, 95–108 (2015)

22. Liu, J., Huang, X., Liu, J.K.: Secure sharing of personal health records in cloud
computing: ciphertext-policy attribute-based signcryption. Future Gener. Comput.
Syst. 52, 67–76 (2015)

23. Liu, J.K., Au, M.H., Huang, X., Lu, R., Li, J.: Fine-grained two-factor access
control for web-based cloud computing services. IEEE Trans. Inf. Forensics Secur.
11(3), 484–497 (2016)

24. Liu, J.K., Yuen, T.H., Zhang, P., Liang, K.: Time-based direct revocable
ciphertext-policy attribute-based encryption with short revocation list. IACR
Cryptology ePrint Archive (2018)

25. Liu, Z., Wong, D.S.: Practical ciphertext-policy attribute-based encryption: traitor
tracing, revocation, and large universe. In: Malkin, T., Kolesnikov, V., Lewko, A.B.,
Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 127–146. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 7

26. Naruse, T., Mohri, M., Shiraishi, Y.: Attribute-based encryption with attribute
revocation and grant function using proxy re-encryption and attribute key for
updating. In: Park, J., Stojmenovic, I., Choi, M., Xhafa, F. (eds.) Future Infor-
mation Technology. LNEE, vol. 276, pp. 119–125. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-40861-8 18

27. Naruse, T., Mohri, M., Shiraishi, Y.: Provably secure attribute-based encryp-
tion with attribute revocation and grant function using proxy re-encryption and
attribute key for updating. Hum.-Centric Comput. Inf. Sci. 5(1), 1–13 (2015)

28. González-Nieto, J.M., Manulis, M., Sun, D.: Fully private revocable predicate
encryption. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol.
7372, pp. 350–363. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-31448-3 26

29. Qian, H., Li, J., Zhang, Y., Han, J.: Privacy-preserving personal health record
using multi-authority attribute-based encryption with revocation. Int. J. Inf. Sec.
14(6), 487–497 (2015)

30. Ruj, S., Nayak, A., Stojmenovic, I.: DACC: distributed access control in clouds.
In: TrustCom 2011, pp. 91–98. IEEE Computer Society (2011)

31. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 13

https://doi.org/10.1007/978-3-319-46298-1_5
https://doi.org/10.1007/978-3-319-28166-7_7
https://doi.org/10.1007/978-3-642-40861-8_18
https://doi.org/10.1007/978-3-642-31448-3_26
https://doi.org/10.1007/978-3-642-31448-3_26
https://doi.org/10.1007/978-3-642-32009-5_13


Time-Based Direct Revocable Ciphertext-Policy Attribute-Based Encryption 533

32. Shi, J., Huang, C., Wang, J., He, K., Wang, J.: An access control scheme with
direct cloud-aided attribute revocation using version key. In: Sun, X., Qu, W.,
Stojmenovic, I., Zhou, W., Li, Z., Guo, H., Min, G., Yang, T., Wu, Y., Liu, L. (eds.)
ICA3PP 2014. LNCS, vol. 8630, pp. 429–442. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11197-1 33

33. Wang, P., Feng, D., Zhang, L.: Towards attribute revocation in key-policy attribute
based encryption. In: Lin, D., Tsudik, G., Wang, X. (eds.) CANS 2011. LNCS,
vol. 7092, pp. 272–291. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25513-7 19

34. Wang, S., Liang, K., Liu, J.K., Chen, J., Yu, J., Xie, W.: Attribute-based data
sharing scheme revisited in cloud computing. IEEE Trans. Inf. Forensics Secur.
11(8), 1661–1673 (2016)

35. Wang, S., Zhou, J., Liu, J.K., Yu, J., Chen, J., Xie, W.: An efficient file hierarchy
attribute-based encryption scheme in cloud computing. IEEE Trans. Inf. Forensics
Secur. 11(6), 1265–1277 (2016)

36. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. Cryptology ePrint Archive, Report 2008/290
(2008). http://eprint.iacr.org/

37. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

38. Xhafa, F., Wang, J., Chen, X., Liu, J.K., Li, J., Krause, P.: An efficient PHR
service system supporting fuzzy keyword search and fine-grained access control.
Soft Comput. 18(9), 1795–1802 (2014)

39. Xie, X., Ma, H., Li, J., Chen, X.: An efficient ciphertext-policy attribute-based
access control towards revocation in cloud computing. J. UCS 19(16), 2349–2367
(2013)

40. Xie, X., Ma, H., Li, J., Chen, X.: New ciphertext-policy attribute-based access con-
trol with efficient revocation. In: Mustofa, K., Neuhold, E.J., Tjoa, A.M., Weippl,
E., You, I. (eds.) ICT-EurAsia 2013. LNCS, vol. 7804, pp. 373–382. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-36818-9 41

41. Yang, K., Jia, X., Ren, K., Zhang, B.: DAC-MACS: effective data access control
for multi-authority cloud storage systems. In: INFOCOM, pp. 2895–2903. IEEE
(2013)

42. Yang, K., Jia, X., Ren, K., Zhang, B., Xie, R.: DAC-MACS: effective data access
control for multiauthority cloud storage systems. IEEE Trans. Inf. Forensics Secur.
8(11), 1790–1801 (2013)

43. Yang, Y., Ding, X., Lu, H., Wan, Z., Zhou, J.: Achieving revocable fine-grained
cryptographic access control over cloud data. In: Desmedt, Y. (ed.) ISC 2013.
LNCS, vol. 7807, pp. 293–308. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-27659-5 21

44. Yang, Y., Liu, J.K., Liang, K., Choo, K.-K.R., Zhou, J.: Extended proxy-assisted
approach: achieving revocable fine-grained encryption of cloud data. In: Pernul,
G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9327, pp. 146–
166. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24177-7 8

45. Yang, Y., Liu, J., Wei, Z., Huang, X.: Towards revocable fine-grained encryption
of cloud data: reducing trust upon cloud. In: Pieprzyk, J., Suriadi, S. (eds.) ACISP
2017. LNCS, vol. 10342, pp. 127–144. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-60055-0 7

https://doi.org/10.1007/978-3-319-11197-1_33
https://doi.org/10.1007/978-3-319-11197-1_33
https://doi.org/10.1007/978-3-642-25513-7_19
https://doi.org/10.1007/978-3-642-25513-7_19
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-36818-9_41
https://doi.org/10.1007/978-3-319-27659-5_21
https://doi.org/10.1007/978-3-319-27659-5_21
https://doi.org/10.1007/978-3-319-24177-7_8
https://doi.org/10.1007/978-3-319-60055-0_7
https://doi.org/10.1007/978-3-319-60055-0_7


534 J. K. Liu et al.

46. Ye, J., Zhang, W., Wu, S., Gao, Y., Qiu, J.: Attribute-based fine-grained access con-
trol with user revocation. In: Linawati, L., Mahendra, M.S., Neuhold, E.J., Tjoa,
A.M., You, I. (eds.) ICT-EurAsia 2014. LNCS, vol. 8407, pp. 586–595. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-55032-4 60

47. Yu, S., Wang, C., Ren, K., Lou, W.: Attribute based data sharing with attribute
revocation. In: ASIACCS, pp. 261–270. ACM (2010)

48. Yuen, T.H., Zhang, Y., Yiu, S.M., Liu, J.K.: Identity-based encryption with post-
challenge auxiliary inputs for secure cloud applications and sensor networks. In:
Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp. 130–147.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9 8

49. Zhang, M.: New model and construction of ABE: achieving key resilient-leakage
and attribute direct-revocation. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS,
vol. 8544, pp. 192–208. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08344-5 13

50. Zuo, C., Shao, J., Liu, J.K., Wei, G., Ling, Y.: Fine-grained two-factor protection
mechanism for data sharing in cloud storage. IEEE Trans. Inf. Forensics Secur.
13(1), 186–196 (2018)

https://doi.org/10.1007/978-3-642-55032-4_60
https://doi.org/10.1007/978-3-319-11203-9_8
https://doi.org/10.1007/978-3-319-08344-5_13
https://doi.org/10.1007/978-3-319-08344-5_13


Almost Tight Multi-Instance
Multi-Ciphertext Identity-Based

Encryption on Lattices

Xavier Boyen and Qinyi Li(B)

Queensland University of Technology, Brisbane, Australia
qinyi.li@hdr.qut.eud.au

Abstract. Boyen and Li [AsiaCrypt, 2016] proposed the first almost
tightly secure lattice identity-based encryption scheme in the standard
model. The security of such scheme is proved under learning with errors
assumption in the single-instance, single-challenge setting. In this work,
we show how to extend the Boyen-Li scheme to obtain an almost tight
security reduction in the multi-instance, multi-ciphertext setting, in
which the security loss incurred is poly(κ) in the security parameter κ
and independent of the number of adversarial queries.

1 Introduction

To prove that the security of a cryptosystem is based on some computational
problem, we provide a reductionist proof (in a properly defined security model)
that states: If there exists an efficient adversary with runtime t that breaks the
cryptosystem with non-negligible probability ε, then an efficient algorithm can
be constructed to solve the computational problem with non-negligible proba-
bility ε′ = ε/L in time t′ ≈ t, which contradicts the assumed hardness of such
computational problem. The parameter L ≥ 1 measures the tightness of such a
reduction proof. L usually can be affected by several factors, including the reduc-
tionist proof itself, the security parameter, the number of deployed instance of a
cryptosystem, the number of adversarial queries and so on. We say a reductionist
proof is tight if L is a small constant, and almost tight if L is a polynomial of the
security parameter and independent of other factors. An (almost) tight reduction
usually has smaller and fixed L, which allows us to implement the cryptosystem
with shorter parameters in a more accurate way. In contrast, the parameter L
in loose reductions is often large and depends on some uncontrollable quanti-
ties, e.g., the number of adversarial queries and the number of system instances.
These quantities are difficult to determine accurately when the cryptosystem is
deployed. Once these quantities are increased by adversaries, L could go beyond

X. Boyen—Research supported in part by ARC Discovery Project grant num-
ber DP140103885 and ARC Future Fellowship FT140101145 from the Australian
Research Council.

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 535–553, 2018.
https://doi.org/10.1007/978-3-319-93387-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_28&domain=pdf


536 X. Boyen and Q. Li

some bound fixed by the implementation, obscuring the cryptosystem’s security.
Therefore, (almost) tight reduction is a desirable feature for cryptosystems.

In [11] the authors propose an almost tightly secure identity-based encryption
(IBE) scheme from lattice. Its security is based on the hardness of learning-with-
errors (LWE) problem and the security of an instantiated pseudorandom function
(PRF). The reduction is tight in the sense that the security loss during the
reduction is independent of the number of key generation queries, say Qkey, made
by the adversary. To make the whole reduction tight, a PRF with tight reduction
is required. However, the security reduction given by Boyen and Li [11] is within
the “single instance, single challenge” (SISC) setting where the adversary is only
given one instance of the IBE scheme and one challenge ciphertext to attack. In
a more realistic scenario, many instances of an IBE scheme would be deployed
and there would be many ciphertexts targeted by an adversary. To model this
“multi-instance, multi-ciphertext” setting, the adversary is allowed to see any
polynomial number of scheme instances, say N , adaptively make any polynomial
number of identity key generation queries, say Qkey, and receive any polynomial
number of challenge ciphertexts, say Qenc. Generically, via a hybrid argument, if
an IBE scheme Π is ε secure (meaning that adversary breaks Π with probability
ε in a defined model) in the SISC setting, then Π is ε′ = ε · N · Qenc secure in
the MIMC setting. This security loss (i.e., N · Qenc) could be significant since N
and Qenc are controlled by the adversary and, therefore, could be large. So it is
preferable to have IBE schemes whose security does not depend on Qkey, Qenc

and N in the MIMC setting.
The first construction of IBE schemes from bilinear pairings with tight reduc-

tions in the MIMC setting was given by Hofheinz et al. [24]. Several subsequent
works, e.g., [4,17,19,20], show various improvements in weakening underlying
assumptions, computational efficiency and size of parameters. On the other hand,
there is no tightly secure IBE scheme in the MIMC setting from lattices.

In this work, we propose the first lattice-based IBE scheme that has almost
tight security reduction in the MIMC setting. We start from the almost tightly
secure lattice IBE scheme by Boyen and Li [11] (the only known such scheme,
albeit in the SISC setting), and extend it to have a tight security reduction in
the MIMC setting under the LWE assumption.

1.1 Our Techniques

We first briefly review the proof idea of Boyen-Li IBE scheme. Let CPRF be a
Boolean circuit of a secure one-bit output pseudorandom function PRF. In the
security reduction, given any identity, a simulator devises two publicly com-
putable matrices Fb = [A|ARid] and F1−b = [A|AR̃id + (1 − 2CPRF(k, id))G]
in which b = PRF(k, id) ∈ {0, 1}, G is the gadget matrix, and the low-norm
matrices Rid, R̃id are only known to the simulator. For a key generation query
on identity id, the simulator uses the G trapdoor of the matrix F1−b to sample
a decryption key. For the encryption (challenge) query, using its LWE samples,
the simulator constructs a challenge ciphertext c�

b = s�[A|ARid] + e� where
e is correlated with the secret matrix Rid. Since b is pseudorandom (if PRF is



Almost Tight Multi-Instance Multi-Ciphertext Identity-Based Encryption 537

secure), the adversary would attack c�
b with probability ≈1/2, providing non-

trivial information for solving the LWE problem.
While this idea works well in the single instance and single ciphertext set-

ting, it runs into issues in the MIMC setting, particularly when we aim for an
(almost) tight reduction. Firstly, for, say, N instances of such IBE scheme, we
will have to provide N instances of PRF (specified by the key ki). In order to
make the reduction independent of N , we need to, at some point, switch all
instances of PRF to random function in a single step (or with poly(κ) steps that
only depends on the security parameter κ). It is not known how to achieve this
with existing normal PRFs (a straightforward hybrid argument introduces a fac-
tor N in the security loss). Secondly, in the Boyen-Li IBE scheme, the noise e
of the challenge ciphertext is setup by using Rid. By adding a small “smooth-
ing” noise to e, Boyen and Li showed that Rid remains hidden under polynomial
LWE modulus (assuming the PRF circuit is in NC1). If adversary is able to
make multiple challenge queries with the same identity or correlated identities,
such an information-theoretic argument would not work any more. Because the
adversary can gradually learn the information about Rid from multiple chal-
lenge ciphertexts on identities that are the same as/correlated to id, and fail the
reduction.

We deal with the two issues as follows. Firstly, recall one-bit output PRFs are
sufficient for Boyen-Li IBE scheme. We notice that the single-instance security of
a PRF with certain key-homomorphism could be tightly extend to the security
in multi-instance setting, as long as different PRF instances do not evaluate the
same input. A PRF PRF : K × X → Y is key homomorphic if (K,�) and (Y,+)
are groups, and given PRF(k,x),PRF(k′,x), then PRF(k� k′,x) = PRF(k,x) +
PRF(k′,x). Given an oracle access to PRF(k∗, ·) one can simulate a PRF with a
uniformly random key ki by freshly choosing a key k̃i and setting its output as
PRF(k∗, ·) + PRF(k̃i, ·). On the other hand, given an oracle access to a random
function F (·), one can simulate a random function as F ′(·) = F (·) + PRF(k̃i, ·)
if all queries are different. However, only approximate key-homomorphic PRFs
from lattices are known which satisfy PRF(k�k′) = PRF(k,x)+PRF(k′,x)+ε for
a small error term ε. We can set parameters such that ε barely affects the most
significant bits of outputs: with overwhelming probability, MSB (PRF(k � k′)) =
MSB (PRF(k,x) + PRF(k′,x)). This idea was used in a very different context,
i.e., building distributed PRFs from approximate key-homomorphic PRFs [10].

For the issue of constructing multiple challenge ciphertexts (or answering
multiple encryption queries), we use the lossy mode of LWE: embedding an
instance of LWE problem into the matrix A make s�[A|ARid]+e� statistically
lose the information of s. While s and e now are independent of the LWE problem
that we embedded, we can pick fresh s, e for each challenge ciphertext and, thus,
eliminate the problem that we have in Boyen-Li IBE scheme. Moreover, while
one instance of LWE problem is embedded (trough multiple samples) to all
scheme instances (i.e., different matrix A), we can switch half of the challenge
ciphertexts (the ones indexed by the bit b

(j)
id = PRF(k(j), id) for the scheme



538 X. Boyen and Q. Li

instance j.) to random in a single step. Such an idea stems from the notion of
lossy trapdoor function [6,27] and has recently been used in [12,25].

2 Preliminaries

We use PPT to denote “probabilistic polynomial-time”. We denote by x||y the
concatenation of bit x and y. For a positive integer n, we denote by [n] the
set of positive integers no greater than n. We use bold lowercase letters (e.g.
a) to denote vectors and bold capital letters (e.g. A) to denote matrices. For a
positive integer q ≥ 2, let Zq be the ring of integers modulo q. We denote the
group of n × m matrices in Zq by Z

n×m
q . Vectors are treated as column vectors.

The transpose of a vector a (resp. a matrix A) is denoted by a� (resp. A�). For
A ∈ Z

n×m
q and B ∈ Z

n×m′
q , let [A|B] ∈ Z

n×(m+m′)
q be the concatenation of A

and B. We write ‖x‖∞ for the infinity norm of a vector x. The Euclidean norm
of a matrix R = {r1, . . . , rm} is denoted by ‖R‖ = maxi ‖ri‖. We denote ‖R‖GS
by the Euclidean norm of the Gram-Schmidt orthogonalization of the column
vector of R. The spectral norm of R is denoted by s1(R) = supx∈Rm+1 ‖R · x‖.
For a security parameter κ, a function negl(κ) is negligible in κ if it is smaller
than all polynomial fractions for a sufficiently large κ.

2.1 Randomness Extractor

Let X and Y be two random variables over some finite set S. The statisti-
cal distance between X and Y , denoted as Δ(X,Y ), is defined as Δ(X,Y ) =
1
2

∑
s∈S |Pr[X = s] − Pr[Y = s]| . Let Xλ and Yλ be ensembles of random vari-

ables indexed by the security parameter λ. X and Y are statistically close if
Δ(Xλ, Yλ) = negl(λ). The min-entropy of a random variable X over a set S
is defined as H∞(X) = − log(maxs∈S Pr[X = s]). A random variable X has
ε-smooth min-entropy at least k, denoted by Hε

∞(X) ≥ k, if there exists some
variable X ′ such that Δ(X,X ′) ≤ ε and H∞(X ′) ≥ k. We write Hsmooth

∞ (·) for
some (unspecified) negligible ε.

Definition 1 (Universal Hash Functions). H = {H : X → Y} is called a
family of universal hash functions if for all x, x′ ∈ X , with x �= x′, we have
Pr[H(x) = H(x′)] ≤ 1

|Y| over the random choice of H ← H.

Lemma 1 ([27], Lemma 2.2). Let X, Y be random variables such that X ∈
{0, 1}n and H̃∞(X|Y ) ≥ k. Let H : {0, 1}n → {0, 1}� be a family of universal

hash functions where k ≥ � + 2λ. It holds that for H
$←− H and r

$←− {0, 1}�,
Δ ((H,H(X), Y ), (H, r, Y )) ≤ 2−λ.

Lemma 2 ([1], Lemma 4). Suppose that m > (n+1) log q+ω(log n) and that
q > 2 is prime. Let R be an m×k matrix chosen uniformly in {1,−1}m×k mod q
where k = k(n) is polynomial in n. Let A and B be matrices chosen uniformly
in Z

n×m
q and Z

n×k
q respectively. Then, for all vectors w ∈ Z

m
q , the distribution

(A,AR,R�w) is statistically close to the distribution (A,B,R�w).



Almost Tight Multi-Instance Multi-Ciphertext Identity-Based Encryption 539

2.2 Lattice Background

Definition 2. Let a basis B = [b1 | . . . |bm] ∈ (Rm)m of linearly indepen-
dent vectors. The lattice generated by B is defined as Λ = {y ∈ R

m : ∃si ∈ Z,
y =

∑m
i=1 sibi} . For q prime, A ∈ Z

n×m
q , we define the m-dimensional (full-

rank) random integer lattice Λ⊥
q (A) = {e ∈ Z

m : Ae = 0 (mod q)}.
We denote the discrete Gaussian distribution over a lattice Λ with Gaussian
parameter s > 0, center 0 by DΛ,s. We refer to [18] for the definition of discrete
Gaussian distribution. We recall the following facts of “gadget matrix” [26].

Lemma 3 ([26], Theorem 1). Let q be a prime, and n, m be integers with
m = n log q. There is a fixed full-rank matrix G ∈ Z

n×m
q such that the lattice

Λ⊥
q (G) has a publicly known trapdoor matrix TG ∈ Z

n×m with ‖TG‖GS ≤ √
5.

Lemma 4 ([9], Lemma 2.1). There is a deterministic algorithm, denoted
G−1(·) : Z

n×m
q → Z

m×m, that takes any matrix A ∈ Z
n×m
q as input, and

outputs the preimage G−1(A) of A such that G · G−1(A) = A (mod q) and
‖G−1(A)‖ ≤ √

m.

Lattice Trapdoors. It is shown in [2] how to sample a “nearly” uniform random
matrix A ∈ Z

n×m along with a trapdoor matrix TA ∈ Z
m×m which is a short

or low-norm basis of the induced lattice Λ⊥
q (A).

Lemma 5. There is a PPT algorithm TrapGen that takes as input integers n ≥
1, q ≥ 2 and a sufficiently large m = O(n log q), outputs a matrix A ∈ Z

n×m
q and

a trapdoor matrix TA ∈ Z
m×m, such that A · TA = 0 (mod q), the distribution

of A is statistically close to the uniform distribution over Z
n×m
q and ‖TA‖GS =

O(
√

n log q).

Lemma 6. Let n, q,m be integers with m = O(n log q). Let s ∈ Z
n
q , A ∈ Z

n×m
q ,

e ∈ Z
m. Given y� = s�A + e� mod q and a basis T of Λ⊥

q (A) such that∥
∥e�T

∥
∥

∞ ≤ q/4, there is an algorithm Invert(y,A,T) that outputs s with over-
whelming probability.

We use the following lattice basis sampling algorithms due to [1,16,26].

Lemma 7. There is an efficient algorithm SampleLeft which takes as input a
full-rank matrix A ∈ Z

n×m
q , a matrix B ∈ Z

n×m
q , a short basis TA ∈ Z

m×m,
a Gaussian parameter s where s > ‖TA‖GS · ω(

√
log 2m), and for F = [A|B],

outputs a full-rank basis TF of Λ⊥
q (F) where the distribution of TF is statistically

close to DΛ⊥
q (F),s and ‖TF‖∞ ≤ s

√
2m.

Lemma 8. There is an efficient algorithm SampleRight which takes as input
A ∈ Z

n×m
q , low-norm matrix R ∈ Z

m×m, non-zero scalar h ∈ Zq, gadget matrix
G ∈ Z

n×m
q , a Gaussian parameter s where s >

√
5 · s1(R) · ω(

√
log m), and for

F = [A|AR+hG], outputs a full-rank basis TF of Λ⊥
q (F) where the distribution

of TF is statistically close to DΛ⊥
q (F),s and ‖TF‖∞ ≤ s

√
2m.



540 X. Boyen and Q. Li

Homomorphic Evaluation Algorithm. We adopt the following lemma.

Lemma 9 ([11]). Let C : {0, 1}� → {0, 1} be a NAND Boolean circuit. Let
{Ai = ARi +xiG ∈ Z

n×m
q }i∈[�] be � different matrices correspond to each input

wire of C where A $←− Z
n×m
q , Ri

$←− {1,−1}m×m, xi ∈ {0, 1} and G ∈ Z
n×m
q is

the gadget matrix. There is an efficient deterministic algorithm EvalBV that takes
as input C and {Ai}i∈[�] and outputs a matrix AC = ARC + C(x1, . . . , x�)G =
EvalBV(C,A1, . . . ,A�) where RC ∈ Z

m×m and C(x1, . . . , x�) is the output of
C on the arguments x1, . . . , x�, s1(RC) ≤ O(4d · m3/2). EvalBV runs in time
poly(4d, �, n, log q). Particularly, if C has depth d = c log � for some constant c,
i.e. C is in NC1, we have s1(RC) ≤ O(�2c · m3/2).

Computational Assumptions. We recall the following variant of decision learning
with errors assumption.

Definition 3 (Decision LWE). Let n and q be positive integers. Let χ be a

distribution over Zq. Let s $←− Z
n
q be a secret vector. Define oracles :

– Os: samples a $←− Z
n
q , column vector e ← χ; returns (a, s�a + e mod q).

– O$: samples a $←− Z
n
q , b

$←− Zq; returns (a, b).

The decision LWE problem, denote LWEn,q,χ, asks to distinguish between OS

and O$. The (decision) LWE assumption says that for an efficient algorithm A,
there is a negligible functuon negl(κ) such that

Adv
LWEn,q,χ

A (κ) =
∣
∣Pr[AOs(1κ) = 1] − Pr[AO$(1κ) = 1]

∣
∣ ≤ negl(κ)

Notice that the decision LWE problem does not restrict the number of oracle
calls (or the number of samples available to A). In the security proof of our
IBE scheme, we use this fact to obtain enough samples from a single instance
of LWE problem to simulate multiple challenge ciphertexts. Usually, the noise
distribution χ is a discrete Gaussian distribution DZ,αq where α ∈ (0, 1) and
αq > 3

√
n. For fix dimension n, the modulus-to-noise ratio q/α measures the

hardness of LWE problem. The larger the ratio, the easier the LWE problem.
In our construction, we use a variant of LWE problem where the secret is a

random matrix S ∈ Z
n×h
q (we choose the noise as vectors where coordinates are

independently sampled according to χ). Via a hybrid argument, such a variant
is polynomially equivalent to the LWE problem we define above up to a factor
of h in the reduction.

2.3 Lossy Mode for LWE

A series of works [3,6,25] show that LWE/LWR problem (with a-priori polyno-
mially bounded number of samples) has a lossy mode in which the samples only
reveal partial information of its secret. More precisely, given m LWE samples
y� = s�A+ e� (mod q) where A ∈ Z

n×m
q , if A is generated in the lossy mode,

then s still has some entropy given y, A. The following lemma states this fact.



Almost Tight Multi-Instance Multi-Ciphertext Identity-Based Encryption 541

Lemma 10 ([3], Lemma B.4). Let κ be a security parameter. Let n, n′, m∗,
q, β∗, γ, σ and λ be integers and χ be the LWE error distribution over Zq where
Prx←χ[|x| ≥ β∗] ≤ negl(κ) and σ ≥ β∗γnm∗. For random variables s ∈ [−γ, γ]n,

e $←− [σ, σ]m
∗

and A = CB + F (mod q) where C $←− Z
n×n′
q , B $←− Z

n′×m∗
q and

F ← χn×m∗
, we have

Hsmooth
∞ (s|A, s�A + e�) ≥ H∞(s) − (n′ + 2κ) log q

The following theorem, which is a direct consequence of Lemma 10, is essen-
tial for the security proof of our IBE scheme.

Theorem 1. Let κ be a security parameter. Let n, n′,m, q, γ, σ, λ be integers,
q prime, β real, such that n ≥ κ, m ≥ O(n log q). Let χ be the LWE error
distribution over Zq where Prx←χ[|x| ≥ β] ≤ negl(κ). Let R ∈ Z

m×m be a low-
norm matrix with ‖R‖∞ ≤ B. Assume n ≥ (n′ + 2κ + λ

log q ) log q
log 2γ + 2κ

log q and

σ ≥ 2Bβγnm. For random variables s ∈ [−γ, γ]n, e $←− [σ, σ]2m and A = CB+F

(mod q) where C $←− Z
n×n′
q , B $←− Z

n′×m
q and F ← χn×m such that given FR,

BR is statistically close to the uniform distribution over Z
n′×m
q , we have

Hsmooth
∞ (s|A, s�[A|AR] + e�) ≥ H∞(s) − (n′ + 2κ) log q

≥ 2κ + λ

Proof. The proof follows from the proof of Theorem 7.3, [3]. We can write
[A|AR] = CB∗+F∗ where B∗ = [B|BR] and F∗ = [F|FR]. First of all, the sta-
tistical distance between the distribution of B∗ and the uniform distribution over
Z

n′×2m
q is negl(κ). Secondly, we can bound each entry of F∗ by mBβ. Therefore,

invoking Lemma 10 with m∗ = 2m, β∗ = Bβ, n ≥ (n′ + 2κ + λ
log q ) log q

log 2γ + 2κ
log q ,

σ ≥ 2Bβγnm2 and concealing negl(κ) by the term smooth, we have

Hsmooth
∞ (s|A, s�[A|AR] + e�) ≥ H∞(s) − (n′ + 2κ) log q

≥ n log(2γ) − (n′ + 2κ) log q

≥ 2κ + λ

2.4 Identity-Based Encryption

An identity-based encryption (IBE) scheme with identity space ID and message
space M consists of the following five PPT algorithms:

– Para(1κ) → pub. The public parameter generation algorithm Para takes as
input a security parameter κ, and outputs a set of global parameters pub.

– Setup(pub) → (mpk,msk). The setup algorithm Setup takes as input pub, and
outputs a master public key mpk and a master secret key msk.

– KeyGen(mpk,msk, id) → ctid. The key generation algorithm KeyGen takes as
input the master public key mpk, the master private key msk, and an identity
id, and outputs a user private key skid.



542 X. Boyen and Q. Li

– Encrypt(mpk, id,m) → ctid. The encryption algorithm Encrypt takes as input
the master public key mpk, an identity id, and a message m, outputs a cipher-
text ctid.

– Decrypt(mpk, skid, ctid) → m or ⊥. The decryption algorithm Decrypt takes
as input the master public key mpk, a private key skid and a ciphertext ctid,
outputs message m or ⊥.

For correctness, we require that for all κ, all pub ← Para(1κ), all
(mpk,msk) ← Setup(pub), all id ∈ ID, all ctid ← KeyGen(mpk,msk, id), all
m ∈ M and for all ctid ← Encrypt(mpk, id,m), Decrypt(mpk, skid, ctid) outputs
m except negligible probability.

Security Definition. The multi-instance, multi-ciphertext security for an IBE
scheme Π = (Para,Setup,KeyGen,Encrypt,Decrypt) is defined through the fol-
lowing security game between a challenger B and an adversary A.

Initial. B runs pub ← Para(1κ) and randomly picks coin ← {0, 1}, and gives
pub to A. A selects N = poly(κ). Then B runs (mpk(j),msk(j)) ← Setup(pub) for
j ∈ [N ], and gives {mpk(j)}j∈[N ] to A.
Query. A adaptively issues the following two types of queries:

– Key Generation Query. The adversary A submits (j ∈ [N ], id ∈ ID) to
the challenger B. B runs sk(j)

id ← KeyGen(mpk(j),msk(j), id) and gives sk(j)
id

to A.
– Encryption Query. The adversary submits the k-th encryption query

(k ∈ [Qenc], j ∈ [N ], id ∈ ID,m0,m1 ∈ M) to B. B runs ct
(j)
id,k ←

Encrypt(mpk(j), id,mcoin) and returns ct(j)id,k to A. In addition, A is allowed
to submit two encryption queries with same instance index j (but the
index k will be different)1.

Guess. A outputs coin′ ∈ {0, 1} and it wins if coin′ = coin.

The advantage of A in wining the game is defined as AdvIND-ID-CPA
A,Π,(N,Qkey,Qenc)(κ) =

|Pr[coin′ = coin] − 1/2|, where Qkey and Qenc are the number of key generation
queries and encryption queries, respectively. We say that an IBE scheme Π is
secure if for all PPT adversary A, there is a negligible function negl(κ) such that
AdvIND-ID-CPA

A,Π,(N,Qkey,Qenc)(κ) ≤ negl(κ).

2.5 Almost Key-Homomorphic Pseudorandom Functions

Definition 4 (Pseudorandom Functions). Let κ be the security parameter.
A pseudorandom function PRF : K × X → Y is an efficiently computable, deter-
ministic function. Let Ω be the set of all functions from X to Y. We define the
advantage of an adversary A in attacking the PRF as

AdvPRF,A(κ) =
∣
∣
∣Pr[APRF(K,·)(1κ) = 1] − Pr[AF (·)(1κ) = 1]

∣
∣
∣

1 This refers to the strong/full adaptive MIMC security [17,24].



Almost Tight Multi-Instance Multi-Ciphertext Identity-Based Encryption 543

where the probability is taken over a uniform choice of key K
$←− K and F

$←− Ω,
and the randomness of A. We say that PRF is secure if for all PPT adversaries
A, AdvPRF,A(κ) ≤ negl(κ) for some negligible function negl(κ).

Definition 5. A PRF PRF : K×X → Zq is ε-almost key-homomorphic if (K,�)
is a group, and for k1,k2 ∈ K, x ∈ X , we have

PRF(k1 � k2,x) = PRF(k1,x) + PRF(k2,x) + e

where e ∈ [0, ε].

Let Prefix:Zp → {0, 1}� where � ≤ log p be a deterministic function that takes
as input an element in Zq and outputs its binary prefix of length �.

Definition 6. We say a ε-almost key-homomorphic PRF has prefix correction
with respect to the function Prefix if

Prefix (PRF(k1 � k2,x)) = Prefix (PRF(k1,x) + PRF(k2,x))

holds with overwhelming probability. Particularly, we say ε-almost key-
homomorphic PRF PRF has most-significant-bit correction:

MSB (PRF(k1 � k2,x)) = MSB (PRF(k1,x) + PRF(k2,x))

with all but negligible probability where MSB : Zp → {0, 1} be a deterministic
function that takes as input an Zp-element and outputs its most significant bit.

To base our IBE scheme on lattice assumptions with a (almost) tight reduc-
tion, we can instantiate the PRF in our construction with the lattice-based
almost key-homomorphic PRF by Boneh et al. [10] (BLMR-PRF). Here we recall
the construction of BLMR-PRF. Let n,m, p, q be integers where m = nlog q�
and p|q. Let Zq-invertible matrices B0,B1 ∈ {0, 1}m×m be public parameter.
For an input x = x[1]x[2]...x[�] ∈ {0, 1}�, a secret key k ← Z

m
q , the BLMR-PRF

PRFBLMR : Zm
q × {0, 1}� → Z

m
p is defined as

PRFBLMR(k,x) =
⌊∏�

i=1
Bx[i] · k

⌋

p

(1)

where for any x ∈ Zq, the function x�p = (p/q) · x� mod p, and it naturally
extends to vectors by applying the function to each coordinate of the vector
individually. While the output space (of the original description) of BLMR-PRF
is Z

m
p , we can always output the first Zp coordinate as an input to the function

Prefix (and MSB). Assume 2|p, for x ∈ Zp, we define

MSB(x) = x�2 = (2/p) · x� mod 2

The 1-almost key-homomorphism of BLMR-PRF was proved in [10] (The-
orem 5.5). To make the BMLR-PRF have the most-significant-bit correction
property, we can set the parameter p slightly super-polynomial, e.g., p = nω(1)



544 X. Boyen and Q. Li

(and set up q accordingly), to make sure the noise always properly being
rounded off. This fact has already been mentioned in [10] in applying almost
key-homomorphic PRFs to obtain distributed PRFs.

Very recently, Libert et al. ([25], Theorem 7) showed that BLMR-PRF has
a (almost) tight reduction from non-uniform LWE (NLWE) problem (in the
sense that the security loss during the security reduction is independent of the
number of PRF queries being made) which in turn has a tight security reduction
to LWE problem with certain parameters ([10], Theorem 4.3). These results
together demonstrate that for input length �, BLMR-PRF is (almost) tightly
secure under the LWE assumption where the modulus-to-noise ratio is nΩ(�).

Similar to the Boyen-Li IBE scheme, using shallow depth almost key-
homomorphic PRFs (e.g., the ones can be implemented by NC1 circuits) will
allow us to use polynomial modulus for the IBE scheme (not the PRF itself).
BLMR-PRF satisfies this requirement. As it is mentioned in [25], the computa-
tion of BLMR-PRF can be divided into two phases, a matrices product followed
by rounding an inner-product. The matrices product

∏�
i=1 Bx[i] can be com-

puted publicly without knowing the secret key. So the actual circuit needed to
be evaluated is the “inner-product-then-rounding” circuit which is in NC1.

3 The Scheme

In our scheme, we require that the same identity is never used for requesting pri-
vate identity keys from different scheme instances. Such a requirement is natural
and essential for the security proof. It is done by appending a unique instance
identifier to users’ actual identities. A user with identity id′ uses the actual iden-
tity id = ID||id′ for the scheme instance whose identifier is ID.

Para(1κ). The public parameter generation algorithm does the following.

1. Choose a LWE hardness parameter n′, integer n ≥ n′, integer m = 2n log q +
ω(log n), LWE modulo q and integers γ, σ. Set message space M = {0, 1}λ

for some integer λ.
2. Select an almost key-homomorphic PRF PRF : {0, 1}t × {0, 1}� → {0, 1}r,

where r = ω(log κ), which has the most-significant-bit correction (as per
Definition 6). Set a depth d, NAND Boolean circuit CPRF{0, 1}t × {0, 1}� →
{0, 1} which outputs the most significant bits of the output stings of PRF.
That is CPRF computes MSB(PRF(·, ·)).

3. Let B = O(4d · m3/2) (as the bound given in Lemma 9), we choose s ≥√
5 · B · ω(

√
log 2m).

4. Randomly sample a universal hash function H : [−γ, γ]n → {0, 1}λ from a
family of universal hash functions H.

5. Output the global public parameters

pub = (n,m, q, γ, δ, λ,PRF, CPRF,H, s)

Setup(pub). On input pub, the setup algorithm does the following.



Almost Tight Multi-Instance Multi-Ciphertext Identity-Based Encryption 545

1. Select a random key k ← {0, 1}t for PRF.
2. Run TrapGen(n,m, q) to generate a matrix A ∈ Z

n×m
q along with a trapdoor

TA ∈ Z
m×m.

3. Choose random matrices A0,A1,C1, ...,Ct ← Z
n×m
q .

4. Choose a unique system identifier ID, and output the master public key

mpk =
(
ID,A,A0,A1, {Ci}i∈[t]

)

and master secret key msk = (TA,k).

Encrypt(mpk, id,m). Let ID||id = id[1]...id[�] ∈ {0, 1}�, the algorithm encrypts
m ∈ {0, 1}λ as follows.

1. Compute ACPRF,id = Eval(CPRF, {Ci}i∈[t], id[1]G, ..., id[�]G) ∈ Z
n×m
q .

2. Set Fid,μ = [A|Aμ − ACPRF,id] for μ = 0, 1.
3. Select x0,x1 ← [−γ, γ]n, e0, e1 ← [−σ, σ]2m. Output the ciphertext ctid =

(c0, c′
0, c1, c′

1) where
{
c0 = m ⊕ H(x0)
c′
0
� = x�

0 · Fid,0 + e�
0 mod q

;

{
c1 = m ⊕ H(x1)
c′
1
� = x�

1 · Fid,1 + e�
1 mod q

KeyGen(mpk,msk, id). On input mpk,msk and an identity id, the algorithm does
the following to generate a private key.

1. Compute μ = MSB(PRF(k, ID||id)) ∈ {0, 1}.
2. Compute ACPRF,id = Eval(CPRF, {Ci}i∈[t], id[1]G, ..., id[�]G) ∈ Z

n×m
q .

3. Set Fid,1−μ = [A|A1−μ − ACPRF,id] ∈ Z
n×2m
q .

4. Run SampleLeft([A|A1−μ − ACPRF,id],TA, s) to get trapdoor Tid ∈ Z
2m×2m

for Fid,1−μ.
5. Return skid = (1 − μ,Tid).

Decrypt(mpk, skid, ctid). On input ciphertext (c0, c′
0), (c1, c′

1), and private key
(1 − μ,Tid), the decryption algorithm does:

1. Compute Fid,1−μ = [A|A1−μ − ACPRF,id].
2. Compute m = c1−μ ⊕ H

(
Invert(Fid,1−μ,Tid, c′

1−μ)
)
.

Parameters. With s ≥ √
5 · B · ω(

√
log 2m), we ensure that the algorithm

SampleLeftcan be simulated by SampleRight in the security proof. We set
n ≥ (n′ + 2κ + λ

log q ) log q
log 2γ + 2κ

log q , σ ≥ 2Bβγnm for invoking Theorem 1. For
decryption correctness, we need

∥
∥e�

1−μ · Tid

∥
∥

∞ ≤ q/4. So we set q large enough
such that sσm ≤ q/4.

If the we instantiate PRF by BMLR-PRF (Eq. 1), we can set the circuit CPRF

compute the function MSB(·, ·�) where the first argument of the function is,
say, the first row of the identity-dependent matrix

∏�
i=1 Bid[i] and the second

argument is the secret key k. By doing that, the PRF computation is separated
into a publicly computable “heavy” part (matrix product) and a “light” part
(inner-product-then-rounding). With this change, for an identity id, KeyGen and



546 X. Boyen and Q. Li

Encrypt will first compute the bit string of the first row of
∏�

i=1 Bid[i], and run
Eval according to such string2. This makes CPRF in NC1 and we can set d =
c log(t + �), for some constant c > 0, such that q = poly(κ).

4 Security

Theorem 2. For any PPT adversary A against the IND-ID-CPA security of
above scheme Π with advantage AdvIND-ID-CPA

A,Π,(N,Qkey,Qenc)(κ), there exists PPT adver-
saries A1,A2 such that

AdvIND-ID-CPA
Π,A,(N,Qkey,Qenc)(κ) ≤ 3n · AdvLWEn′,q,χ

A1
(κ) + 2 · AdvPRFA2

(κ) + negl(κ) (2)

for some negligible error negl(κ).

We prove the above theorem through game-sequence technique. Let Si denote
the event that the IBE adversary A outputs coin′ = coin in Gamei. We first
define two simulation algorithms Sim.Setup and Sim.KeyGen. which are used only
for security proof. Without loss of generality, assume the adversary asks for N
instances of the IBE scheme.

Sim.Setup(pub, j). For generating parameters for j-th instance, the algorithm
does the following.

1. Choose a unique system identifier ID(j).
2. Select k(j) = k(j)[1]...k(j)[t] ← {0, 1}t for PRF.
3. Select a random matrix A(j) ∈ Z

n×m
q .

4. Select R(j)
A0

,R(j)
A1

,R(j)
C1

, ...,R(j)
Ct

← {−1, 1}m×m.

5. Set A(j)
0 = A(j)R(j)

A0
, A(j)

1 = A(j)R(j)
A1

+ G, and C(j)
i = A(j)R(j)

Ci
+ k(j)[i]G

for i ∈ [t].
6. Output mpk(j) =

(
ID(j),A(j),A(j)

0 ,A(j)
1 , {C(j)

i }i∈[t]

)
and msk(j) =

(
R(j)

A0
,R(j)

A1
, {R(j)

Ci
}i∈[t]

)
.

Sim.KeyGen(mpk(j),msk(j), id) On input id ∈ {0, 1}�, the algorithm does:

1. For ID(j)||id = id[1], ..., id[�], compute the Z
n×m
q -matrix

A(j)
CPRF,id

= Eval(CPRF, {C(j)
i }i∈[t], id[1]G, ..., id[�]G)

= A(j)R(j)
CPRF,id

+ MSB(PRF(k(j), id))G

= A(j)R(j)
CPRF,id

+ μG

2 In this case we need to set parameter t to be the length of such string.



Almost Tight Multi-Instance Multi-Ciphertext Identity-Based Encryption 547

2. Set the Z
n×2m
q -matrix

F(j)
id,1−μ =

[
A(j)|A(j)

1−μ − A(j)
CPRF,id

]

=
[
A(j)|A(j)(R(j)

A1−μ
− R(j)

CPRF,id
) + (1 − 2μ)G)

]

=
[
A(j)|A(j)R(j)

1−μ + (1 − 2μ)G
]

3. Run SampleRight(A(j),R(j)
1−μ, 1−2μ,G, s) to get a trapdoor T(j)

id for F(j)
id,1−μ.

4. Return sk
(j)
id = (1 − μ,Tid).

The first game Game 0 is the same as the real IND-ID-CPA security game.
Game 1 is the same as Game 1 except it runs Sim.Setup and Sim.KeyGen instead
of Setup and KeyGen.

Lemma 11. Game 0 and Game 1 are statistically indistinguishable, i.e., there
exist a negligible function negl(λ) such that |Pr[S0] − Pr[S1]| ≤ negl(λ).

Proof. For j-th instance, the differences between Game 0 and Game 1 are:

1. In Game 0, A(j) is generated by TrapGen. By Lemma 5 it has a distribution
that is statistically close to uniform distribution on Z

n×m
q . On the other hand,

A(j) is sampled uniformly at random in Game 1.
2. By Lemma 2, matrices A0,A0, {Ci}i∈[t] in Game 1 are statistically close

to uniform distribution on Z
n×m
q . In Game 0 those matrices are sampled

uniformly from Z
n×m
q .

3. In Game 0, the decryption key T(j)
id is sampled by SampleLeft with the trap-

door of A(j). In Game 1, T(j)
id is sampled by SampleRight with the gadget

matrix G and knowledge of the low-norm matrix R(j)
1−μ. By Lemmas 7 and 8,

for sufficiently large s (e.g., s ≥ √
5s1(R

(j)
1−μ) · ω(

√
log 2m)), T(j)

id generated
in Game 0 and Game 1 are statistically close.

We therefore conclude that Game 0 and Game 1 are statistically close up to
some error negl(λ).

Game 2 is the same as Game 1 except that the public matrices {A(j)}j∈[N ]

for N scheme instances are generated as LWE samples. More specifically, one
firstly samples C ← Z

n′×n
q . For constructing A(j), it samples B(j) ← Z

n′×m
q , and

F(j) ← χm×n and sets A(j) = C ·B(j) +F(j) mod q. Here C serves as the secret
of LWE instances for all A(j). It is easy to see that under the LWE assumption,
Game 2 and Game 3 are computationally indistinguishable. So we have the
following lemma in which the factor n accounts for a n-step hybrid argument
for reducing the LWE problem with matrix secret C to the LWE problem with
single vector secret defined in Definition 33.
3 Recall that the LWE problem is hard for arbitrary number of samples.



548 X. Boyen and Q. Li

Lemma 12. |Pr[S2] − Pr[S1]| ≤ n · AdvLWEn′,q,χ

A1
(λ) for some adversary A1.

Game 3 is the same as Game 2 except that it answers the encryption
query in a slightly different way. Concretely, for encryption query (k, j, id,m0,m1)
where k ∈ [Qenc], j ∈ [N ], id ∈ ID and m0,m1 ∈ M, encryption (of
message mcoin) is done by normal encryption algorithm except the cipher-
text component c

(j)
μ is chosen uniformly at random from {0, 1}λ, where μ =

MSB(PRF(k(j), ID(j)||id)). We have the following lemma.

Lemma 13. Game 2 and Game 3 are statistically indistinguishable, i.e., there
exists a negligible error negl(κ) such that |Pr[S3] − Pr[S2]| ≤ negl(κ).

Proof. First of all, we have μ = MSB(PRF(k(j), ID(j)||id)) ∈ {0, 1}. By the con-
struction of encryption algorithm, we have

F(j)
id,μ = [A(j)|A(j)

μ − A(j)
CPRF,id

]

= [A(j)|(A(j)R(j)
Aμ

+ μG) − (A(j)R(j)
CPRF,id

+ MSB(PRF(k(j), ID(j)||id))G)]

= [A(j)|A(j)(R(j)
Aμ

− R(j)
CPRF,id

)]

= [A(j)|A(j)Rμ
(j)]

So for the ciphertext components (c′(j)
μ , cμ

(j)), we have

c′(j)
μ,k

�
= x(j)

μ,k

� · F(j)
id,μ + e(j)

μ,k

�
; c(j)

μ,k = mcoin ⊕ H(x(j)
μ,k)

where x(j)
μ,k, e

(j)
μ,k are chosen randomly and freshly for each ciphertext query with

index k.4 Recall A(j) = C · B(j) + F(j) where B(j) ∈ Z
n′×m
q is randomly chosen

and m = 2n log q + ω(log q). By Lemma 2, B(j)R(j)
μ is statistically close to

uniform (given F(j)R(j)
μ ) by itself, as required by Theorem 1. Since here we

consider the left entropy of randomly and independently chosen x(j)
μ,k, we can

still apply Theorem 1 even though B(j)R(j)
μ is not statistically uniform given

F(j)
id′,μ from another encryption query with id′ �= id. By Theorem 1 we get

H∞
(
xμ,k

(j)|c′(j)
μ,k

)
≥ H∞

(
x(j)

μ,k

)
− (n′ + 2κ) log q

≥ n log(2γ) − (n′ + 2κ) log q

≥ λ + 2κ

By Lemma 1, we have

Δ
(
(H,H(x(j)

μ,k)), (H, ρ
(j)
k )

)
≤ 2−κ = negl(κ)

for uniformly random string ρ
(j)
k ← {0, 1}λ. This makes c(j)

μ,k uniformly random
and independent of mcoin.
4 This is why our scheme achieves strong/full adaptive MIMC security.



Almost Tight Multi-Instance Multi-Ciphertext Identity-Based Encryption 549

Game 4 is the same as Game 3 except that it uses Sim.Setup to generate
the public parameters. In particular, A(j) is sampled uniform at random. Look-
ing ahead, this step allows us to run Setup (instead of Sim.Setup) in the next
game where we are able to have trapdoor for the matrix A(j). A straightforward
reduction gives us the following lemma.

Lemma 14. |Pr[S4] − Pr[S3]| ≤ n · AdvLWEn′,q,χ

A1
(κ) for some adversary A1.

Game 5 is the same as Game 4 except that it runs algorithms Setup and
KeyGen instead of the simulation algorithms. Similar to Lemma 11, we have

Lemma 15. Game 4 and Game 5 are statistically indistinguishable, i.e.
|Pr[S5] − Pr[S4]| ≤ negl(κ) for some negligible function negl(κ).

Game 6 is the same as Game 5 except that the simulator samples the bit
value μ uniformly instead of computing it by PRF as in Game 5. The simulator
also keeps the record of tuples (j, id, μ). For a private key generation query or
encryption query on instance j and identity id that has been made before, the
simulator simply finds the recorded μ and uses it for further operations. We
prove the following lemma.

Lemma 16. |Pr[S6] − Pr[S5]| ≤ AdvPRFA2
(κ) for some adversary A2 against PRF.

Proof. We build a simulator A2 who uses a PRF challenger to simulate Game 5
or Game 6. A2 flips a fair coin coin ∈ {0, 1} and follows Para(1κ) to generate all
the parameters of pub except the almost key-homomorphic PRF PRF. Instead,
A2 receives PRF from its challenger.

A2 chooses N random PRF keys {k̃(j)}j∈[N ]. Then it runs Setup to generate
{mpk(j),msk(j)}j∈[N ] except the PRF keys. Notice that mpk(j) has exactly the
same distribution as in the real scheme. A2 answers the following two types of
query.

1. For a key generation query (j, id), A2 first sends ID(j)||id to its challenger and
receives back y. It sets μ = MSB

(
y + PRF(k̃(j), ID(j)||id)

)
and runs steps 2

to step 5 of KeyGen to generates the private identity key.
2. For an encryption query (k, j, id,m0,m1), A2 first sends ID(j)||id to its chal-

lenger, receives back y, and sets μ = MSB(y + PRF(k̃(j), ID(j)||id)). It then
runs Encrypt to generate ciphertext on message mcoin based on the bit value
μ, except it samples the component c

(j)
μ,k randomly.

If y = PRF(k∗, ID(j)||id) for some key k∗, i.e., A2 interacts with PRF, we have

μ = MSB(y + PRF(k̃(j), ID(j)||id))
= MSB(PRF(k∗, ID(j)||id) + PRF(k̃(j), ID(j)||id))
= MSB(PRF(k∗ � k̃(j), ID(j)||id))



550 X. Boyen and Q. Li

This shows that A2 simulates Game 5 with random PRF key k(j) = k∗ + k̃(j).
On the other hand, if y = F (ID(j)||id) for some random function F : {0, 1}� →
{0, 1}r, as F (·) is never takes the same input, μ is uniformly random from the
adversary’s view. In this case, A2 simulates Game 6. Therefore we have Pr[S6]−
Pr[S5] ≤ AdvPRFA2

(κ).

Let (c(j)
0,k, c′(j)

0,k, c(j)
1,k, c′(j)

1,k) be the challenge ciphertext generated for answering
the k-th encryption query (k, j, id,m0,m1). Recall that in Game 6, depending
on the bit value μ = MSB(PRF(k(j), id)), cμ

(j) is chosen randomly. Game 7 is
the same as Game 6 except that it chooses c1−μ,k

(j) randomly and computes
other components honestly. Since μ is random, we have the following lemma.

Lemma 17. Game 6 and Game 7 are identical, i.e., Pr[S6] = Pr[S7].

Game 8 is the same as Game 7 except that for encryption and key gen-
eration queries on j-th instance and identity id, the bit value μ is computed
as μ = MSB(PRF(k(j), ID(j)||id)). Similar to Lemma 16, we have the following
lemma for which we omit the proof as it is identical to the proof of Lemma 16.

Lemma 18. |Pr[S7] − Pr[S8]| ≤ AdvPRFA2
(κ) for some adversary A2 against PRF.

Game 9 is the same as Game 8 except that the simulation algorithms
Sim,Setup and Sim.KeyGen are invoked instead of Setup and KeyGen. Notice
that this difference is exactly the difference between Game 0 and Game 1. So
we have the following lemma which can be proved using the proof of Lemma 11.

Lemma 19. Game 8 and Game 9 are statistically indistinguishable, i.e., there
exist a negligible function negl(κ) such that |Pr[S9] − Pr[S8]| ≤ negl(κ).

In the next game Game 10, instead of sampling the public matrices
{A(j)}j∈[N ] for N instances randomly, we again generate them by LWE samples
as in Game 2, i.e., A(j) = C · B(j) + F(j) mod q. This change is not noticeable
for efficient adversary under LWE assumption which can be stated by the lemma
below.

Lemma 20. |Pr[S10] − Pr[S9]| ≤ n · AdvLWEn′,q,χ

A1
(κ) for some adversary A1.

Game 11 is the same as Game 10 except that for any encryption query
(k, j, id,m0,m1), the ciphertext component c(j)

μ,k are chosen randomly, where
μ = PRF(k(j), ID(j)||id). Notice that we have already switched the ciphertext
component c(j)

1−μ,k to random since Game 7. So in Game 11, both c0,k
(j) and

c1,k
(j) (which were used to mask the message mcoin) are random, meaning that

the challenge ciphertexts replied to encryption queries are random and indepen-
dent of the messages chosen by the adversary. So the adversary has no advantage
in wining Game 11. The proof of the following lemma is omitted as it is the
same as the proof of Lemma 13.



Almost Tight Multi-Instance Multi-Ciphertext Identity-Based Encryption 551

Lemma 21. Game 10 is statistically close to Game 11, and in Game 11, no
adversary has any advantage in guessing the bit coin, i.e., |Pr[S11] − Pr[S10]| ≤
negl(κ) for some statistically error negl(κ) and Pr[S11] = 1/2.

To sum up, we have:

AdvIND-ID-CPA
Π,A,(N,Qkey,Qenc)(κ) = |Pr[S1] − 1/2|

= |Pr[S1] − Pr[S11]|
≤

∑10

i=0
|Pr[Si] − Pr[Si+1]|

= 3n · AdvLWEn′,q,χ

A1
+ 2 · AdvPRFA2

(κ) + negl(κ)

for some function negl(κ) which stands for the negligible statistical error in the
reduction. The security loss is independent of the number of instances N , the
number of encryption queries Qenc and the number of key generation queries
Qkey.

5 Discussion and Conclusion

For generality, we reduce the security of the IBE scheme to the LWE problem
LWEn′,q,χ and the security of the PRF as shown by Theorem 2. To make the
whole IBE scheme (almost) tightly secure, we need (almost) tightly secure PRFs.
The instantiation of PRF also affects the LWE problem LWEn′,q,χ quantitatively
by the depth d of the circuit CPRF. For example, employing an almost tightly
secure (based on the LWE problem) BLMR-PRF [10] allows us to use a poly-
nomial modulo q. Meanwhile, the computational assumption we make for the
PRF affects the final assumption that we need to make for the IBE scheme. The
(almost) tight security proof of the BLMR-PRF requires an LWE assumption
with modulus-to-noise ratio nΩ(�) (� is the PRF input length) which is quan-
titatively stronger than the LWE problem LWEn′,q,χ we use for the LWE lossy
mode. This means the IBE scheme needs a strong LWE assumption on which
the BLMR-PRF is based. However any future improvement in (lattice-based)
key-homomorphic PRFs will directly improve the efficiency and security of our
scheme without weakening the underlying assumption.

Under a suitable BLMR-PRF instantiation, our IBE scheme, based on
a strong LWE assumption (sub-exponential modulus-to-noise ratio), achieves
almost tight security in the strong MIMC setting. Under the same assump-
tion, the Boyen-Li IBE scheme from [11] (using almost tightly secure PRFs
from [5,10]) only had an almost tight security reduction in the SISC set-
ting. The (strong) LWE assumption that we use is believed to be hard and
has been widely used in other contexts, including fully-homomorphic encryp-
tion [14], attribute-based/predicate encryption [9,21,22] and lattice-based con-
strained PRFs [13,15]. How to obtain an (almost) tightly secure IBE scheme in
the MIMC setting was not known before, even with such a strong LWE assump-
tion. By applying the standard BCHK transformation [8] with tightly secure



552 X. Boyen and Q. Li

one-time signature schemes (e.g., [7]), our IBE scheme leads to the first almost
tightly CCA2 secure public-key encryption scheme from lattices in the multi-
instance and multi-ciphertext setting [23].

Our work motivates two future directions: to improve efficiency and key sizes;
and to design tightly secure key-homomorphic PRFs from weaker assumptions.

References

1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model.
In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 28

2. Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In:
STOC, pp. 99–108 (1996)

3. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 57–74.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 4

4. Attrapadung, N., Hanaoka, G., Yamada, S.: A framework for identity-based encryp-
tion with almost tight security. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT
2015. LNCS, vol. 9452, pp. 521–549. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48797-6 22

5. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 42

6. Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (lossy) trapdoor func-
tions and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 228–245. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4 15

7. Blazy, O., Kakvi, S.A., Kiltz, E., Pan, J.: Tightly-secure signatures from chameleon
hash functions. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 256–279.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 12

8. Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2006)

9. Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikun-
tanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic
circuit ABE and compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.)
EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-55220-5 30

10. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs
and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 23

11. Boyen, X., Li, Q.: Towards tightly secure lattice short signature and id-based
encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10032, pp. 404–434. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53890-6 14

12. Boyen, X., Li, Q.: All-but-many lossy trapdoor functions from lattices and appli-
cations. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp.
298–331. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9 11

https://doi.org/10.1007/978-3-642-13190-5_28
https://doi.org/10.1007/978-3-642-40041-4_4
https://doi.org/10.1007/978-3-662-48797-6_22
https://doi.org/10.1007/978-3-662-48797-6_22
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_15
https://doi.org/10.1007/978-3-642-29011-4_15
https://doi.org/10.1007/978-3-662-46447-2_12
https://doi.org/10.1007/978-3-642-55220-5_30
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-642-40041-4_23
https://doi.org/10.1007/978-3-662-53890-6_14
https://doi.org/10.1007/978-3-662-53890-6_14
https://doi.org/10.1007/978-3-319-63697-9_11


Almost Tight Multi-Instance Multi-Ciphertext Identity-Based Encryption 553

13. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs
(and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 264–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70500-2 10

14. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from
(standard) LWE. In: FOCS, pp. 97–106 (2011)

15. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from stan-
dard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol.
9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46497-7 1

16. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a
lattice basis. J. Cryptol. 25(4), 601–639 (2012)

17. Chen, J., Gong, J., Weng, J.: Tightly secure IBE under constant-size master pub-
lic key. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 207–231. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8 9

18. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: STOC, pp. 197–206 (2008)

19. Gong, J., Chen, J., Dong, X., Cao, Z., Tang, S.: Extended nested dual system
groups, revisited. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.)
PKC 2016. LNCS, vol. 9614, pp. 133–163. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49384-7 6

20. Gong, J., Dong, X., Chen, J., Cao, Z.: Efficient IBE with tight reduction to stan-
dard assumption in the multi-challenge setting. In: Cheon, J.H., Takagi, T. (eds.)
ASIACRYPT 2016. LNCS, vol. 10032, pp. 624–654. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53890-6 21

21. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Attribute-based encryption for cir-
cuits. In: STOC, pp. 545–554 (2013)

22. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Predicate encryption for circuits from
LWE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
503–523. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7 25

23. Hofheinz, D., Jager, T.: Tightly secure signatures and public-key encryption. In:
Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 590–607.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5 35

24. Hofheinz, D., Koch, J., Striecks, C.: Identity-based encryption with (almost) tight
security in the multi-instance, multi-ciphertext setting. In: Katz, J. (ed.) PKC
2015. LNCS, vol. 9020, pp. 799–822. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46447-2 36

25. Libert, B., Sakzad, A., Stehlé, D., Steinfeld, R.: All-but-many lossy trapdoor func-
tions and selective opening chosen-ciphertext security from LWE. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 332–364. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63697-9 12

26. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

27. Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. SIAM J.
Comput. 40(6), 1803–1844 (2011)

28. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84–93 (2005)

https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-319-70500-2_10
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-662-46497-7_1
https://doi.org/10.1007/978-3-662-54365-8_9
https://doi.org/10.1007/978-3-662-49384-7_6
https://doi.org/10.1007/978-3-662-49384-7_6
https://doi.org/10.1007/978-3-662-53890-6_21
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-662-48000-7_25
https://doi.org/10.1007/978-3-642-32009-5_35
https://doi.org/10.1007/978-3-662-46447-2_36
https://doi.org/10.1007/978-3-662-46447-2_36
https://doi.org/10.1007/978-3-319-63697-9_12
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41


Authentication and Biometrics



In-Region Authentication

Mamunur Rashid Akand(B) and Reihaneh Safavi-Naini

University of Calgary, Calgary, AB, Canada
{mdmamunurrashid.akan,rei}@ucalgary.ca

Abstract. Location information has wide applications in customiza-
tion and personalization of services, as well as secure authentication and
access control. We introduce in-Region Authentication (inRA), a novel
type of authentication, that allows a prover to prove to a set of cooper-
ating verifiers that they are in possession of the correct secret key, and
are inside a specified (policy) region of arbitrary shape. These require-
ments naturally arise when a privileged service is offered to registered
users within an area. Locating a prover without assuming GPS (Global
Positioning System) signal however, incurs error. We discuss the chal-
lenge of designing secure protocols that have quantifiable error in this
setting, define and formalize correctness and security properties of the
protocols, and propose a systematic approach to designing a family of
protocols with provable security where error can be flexibly defined and
efficiently minimized. We give an instance of this family that requires
only two verifiers, prove its security and evaluate its performance in four
typical policy regions. Our results show that in all cases false acceptance
and false rejection of below 6% can be achieved. We compare our results
with related works, and propose directions for future research.

Keywords: In-region · Distance bounding · Authentication

1 Introduction

Location-based services (LBS) have provided exciting opportunities to use posi-
tion related information such as location, proximity or distance in improving
system security, control access, and personalized service delivery [14,16,29]. One
of the earliest applications of user location is for securing authentication systems
[9] against man-in-the-middle (MiM) attack. Secure authentication protocols are
challenge-response protocols between a prover and a verifier. In an MiM attack
against these protocols, an attacker runs two simultaneous sessions of the pro-
tocol, one with an honest prover and one with the (honest) verifier, and by
passing the responses of the prover to the verifier, succeeds in making the pro-
tocol accept their claim. Desmedt et al. [9] showed that protection against this
attack, that does not have any cryptographic solution, can be provided if the
verifier uses an estimate of the location of the prover (e.g. distance to the ver-
ifier) as a second factor in authentication. Distance (Upper) Bounding (DUB)

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 557–578, 2018.
https://doi.org/10.1007/978-3-319-93387-0_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_29&domain=pdf


558 M. R. Akand and R. Safavi-Naini

protocols [5] are challenge-response authentication protocols that provide cryp-
tographic authentication security with the extra guarantee that the user is within
a distance bound to the verifier. These protocols have been widely studied, their
security has been formalized, and protocols with provable properties have been
proposed [4,5,10,22]. Successful authentication allows the user to perform priv-
ileged actions, e.g., open the car door [12], or access a special system resource.

In this paper we consider the problem of controlling access with respect to a
region R, that is called policy region. The user has to “prove” to the verifier(s)
that, (i) they have the secret key ku, and (ii) they are within the region R.
This setting naturally arises when a privileged service is offered in a region
R. For example a project team in a software development company can access
proprietary project information when they are within their work area. In this
setting authentication protocol must prove the conjunction,

User has the shared secret ku ∧ (User is in R). (1)

We propose a new authentication system that is called in-Region Authentication
(inRA), that proves that the above conjunction holds.

A simplistic solution to prove the conjunction (1) is to use a secure cryp-
tographic authentication to allow the user to prove that they know the secret
ku, and then use a secure location verification protocol to prove their location.
This solution however will be insecure because, firstly, proving the two clauses
separately allows new attacks, for example the prover changing the location in
between the two steps, and secondly, secure location verification protocols [8,19]
start with the prover claiming a location, which needs them to access GPS sig-
nal. This not only limits the application of the protocol to locations where GPS
signal is available, but also opens the possibility of GPS spoofing attacks [24].

One can combine the two steps when R is a circular region by employing
a secure DUB protocol: the verifier of the DUB protocol will be placed at the
center of the region and the distance bound will be chosen as the radius of
R (Fig. 1a). The approach works perfectly because R is perfectly covered with
the circle associated with the boundary of the DUB protocol. For arbitrary R,
one can use an approximate cover by using one or more verifiers (See Fig. 1b and
c): the prover must prove its distance to the corresponding verifier of each part
of the region. This is the approach in [17] to solve the closely related problem of
in-region location verification where the goal is to verify that the prover is within
the region, without requiring secured authentication of the user or quantifying
error.

Using multiple verifiers to cover R requires one to determine the verifier
configuration, which is specified by (i) the number of verifiers, (ii) their locations,
and (iii) their associated distance bounds. Note that the error associated to a
configuration does not have an algebraic form and one cannot use traditional
optimization methods to find the optimal configuration, and this is true even if
the number and location of verifiers are known.



In-Region Authentication 559

Fig. 1. Location verification for (a) circular region R that is perfectly covered by a
single verifier placed at the center of R, (b) arbitrary shaped region R, a single verifier
does not give perfect coverage, and (c) arbitrary shaped region R, multiple verifiers
are placed inside R ([17]’s approach), also does not give perfect coverage.

Our Work
Model. Our goal is to design provably secure authentication protocols that allow
the prover to prove the conjunction (1), while minimizing protocol error. In
Sect. 3 we formally define an inRA system for a set of registered (provers) and a
set of unregistered users, a set of collaborating verifiers, and an inRA protocol
whose correctness is defined using FA (False acceptance) and FR (False rejection)
with respect to the policy region R. Our security definition formalizes attacks
that involve a malicious prover outside R, an unregistered user inside R, and a
collusion of a malicious prover and a helper who is inside R. A significant chal-
lenge in modelling and achieving security is the possibility of the prover moving
between their interactions with different verifiers. Our security model uses ITMs
(Interactive Turing Machines) to model the prover and verifiers and does not
formalize time (movement of the prover). We assume prover movement will be
detected through other mechanisms, and our protocol introduces a mechanism
that does that, allowing us to use our security model.

Construction. Armed with this model and definition, we propose a systematic
approach to designing inRA protocols for the proof of the conjunction (1) and
with quantifiable correctness error, and give an efficient algorithm to minimizing
the error (see below). The approach in its basic form uses two verifiers V0 and
V1, and covers the region R with a pseudo-rectangle (P-rect) R′(V0, V1) that is
formed by two rings centered at the two verifiers (See Fig. 2 and Sect. 3). A ring
is formed by a verifier running a DUB protocol followed by a Distance Lower
Bounding (DLB) protocol [28] (that guarantees a lower bound on the distance
of the prover to the verifier- See Sect. 2), with the prover. The two verifiers
work in tandem, with the second immediately following the first. Verifiers use
omnidirectional antennas during the protocol initialization, and use directional
antennas for the challenge-response phase.

This basic inRA protocol approximates R with a P-rect and results in FA
and FR. We define the total error as the sum of FA and FR errors and aim at
minimizing it. Our approach however can be easily extended to the case that
the two types of errors have different significance – see Sect. 6.



560 M. R. Akand and R. Safavi-Naini

Minimizing Error. For fixed locations of V0 and V1, the total error is a function
of the distance bounds of the two verifiers. To minimize error one can use brute
force method and for every possible values of distance bounds, find the error
and select the minimal value. This is an infeasible task in practice. We give an
innovative approach that uses maximum subarray problem [13] algorithm to solve
the optimization problem of finding a P-rect that is proved to minimize the total
error in approximate coverage of R with a P-rect. The algorithm has complexity
O(n3) where n is the size of R represented as a point set. This basic algorithm
can be employed multiple times using more verifiers, to increase accuracy. In
Sect. 6 we show that using two P-rects to cover the region reduces the total error
by up to 15%. We leave the problem of optimizing the number and the locations
of the verifiers as an interesting direction for future work.

Security Proof. In our basic protocol (Sect. 4) we will use a novel approach to
detecting movement of the prover during protocol execution, by using each ver-
ifier to play the role of an observer for the other verifier’s interaction with the
prover. We will then use our security model to prove security against attacks.
We discuss how protection against a new attack called key splitting attack that
is the result of using a pair of DUB and DLB protocols with two verifiers, can
be avoided by using keys shared with V0 and V1 both, to generate the fast phase
responses to each verifier.

Implementation and Experimental Results. We implemented the optimization
algorithm for two verifiers and applied it to four policy regions corresponding to
buildings in our University (Sect. 6). We started with a 640 × 640 Google Map
image of the policy region, and converted it into a binary image for point-set
representation of the policy regions. To achieve higher accuracy, we used two
P-rects to cover the policy region. Table 1 summarizes our results. The highest
accuracy is obtained for the most regularly shaped rectangular region. In all cases
FA and FR range between 0.81% to 5.16%, and 3.89% to 5.58%, respectively.

We compared our approach with the scheme in Sastry et al. [17]. This is
the only system with comparable security goals and assumptions. Comparison
(Sect. 6) clearly shows superior performance of our approach: [17] uses 5 verifiers
to achieve 93% accuracy and uses informal security analysis, while we use 2
verifiers, achieve 96.4% accuracy, and provide formal security proof.

Extensions. One can define weights for each type of FA and FR error depend-
ing on the application, and use optimization approach on the weighted error
function. The approach raises numerous interesting open questions such as opti-
mizing the total error when there are more than two verifiers, and one needs to
select their locations and distance bounds. We leave these for future work.

Organization. Section 2 is preliminaries. Section 3 describes our inRA model.
Section 4 details the inRA protocol Πrect, and the security analysis. Section 5
provides our approach to minimize error. Section 6 includes our experimental
results. Section 7 presents related works and Sect. 8 concludes the paper.



In-Region Authentication 561

2 Preliminaries

Distance Bounding. Secure distance bounding protocols have three phases: (i)
initialization phase, (ii) Challenge-response phase, and (iii) Verification phase.
The round-trip time of a challenge and response is used to estimate distance.
The goal of a distance Upper bounding (DUB) protocol is to ensure that a prover
P located at distance dPV satisfies dPV ≤ BU where BU is a fixed upperbound.

The main attacks on distance bounding protocols are, (i) Distance fraud
attack: a far away dishonest prover tries to claim a shorter dPV and be accepted
by V ; (ii) Mafia fraud attack: an external attacker uses the communication of
an honest prover to get accepted by the verifier, and (iii) Terrorist attack (also
known as collusion attack): a dishonest prover gets help from a helper that is
close to the verifier, to get accepted by the verifier. A number of formal secu-
rity models that capture above attacks, and protocols with provable security
have been proposed [10,22]. Secure DUB protocols are vulnerable to distance
enlargement attack but not to distance reduction attack [6].

The goal of distance lower bounding (DLB) protocols [28] is the converse: a
prover wants to prove that their distance to the verifier is larger than a given
bound. Zheng et al. [28] showed that one cannot simply use DUB protocols to
guarantee a lower bound on the distance of the prover. They proposed a security
model for DLB that is inline with the DUB security model, and constructed a
DLB protocol with provable security in their model. Our construction of inRA
protocol ΠPrect uses DLB protocol together with a DUB protocol.

Maximum Subarray Problem. Optimizing P-rect uses maximum subarray
problem (MSP), first proposed in [13]. The problem is to select a contiguous
segment of an array that has the largest sum over all possible array segments.
Efficient algorithms for MSP problem have applications in computer vision, data
mining and genomic sequence analysis [11,21,25]. For a 2D array a[1. . .m][1. . .n],
the maximum sub-array M is given by [3],

M = max
j,h∑

x=i,y=g

a[x][y]|1 ≤ i ≤ j ≤ m, 1 ≤ g ≤ h ≤ n (2)

Solutions have complexity cubic or sub-cubic [20]. To find the P-rect with
the lowest total error, or equivalently maximum accuracy, we will use FindOp-
timalBounds algorithm (Sect. 4) that uses the extended Kadane’s algorithm [3].

3 In-Region Authentication Systems

Consider a two-dimensional planar connected (path connected) geographic area
represented by an array of points, each point representing a geolocation1. Let U
1 A point set corresponding to a geographic area can be constructed using a bitmap

image of the area, at the required resolution level. Thus each point corresponds to a
geographic square of size u where u is determined by the resolution of the mapping.



562 M. R. Akand and R. Safavi-Naini

Fig. 2. (a) The policy region R is the yellow arbitrary shaped region. The blue (almost)
rectangular area is P-rect RΠ for the inRA protocol in Sect. 4. The dark blue area of
R is correctly covered. The remaining yellow and blue areas are FRΠ,R and FAΠ,R,
respectively. (b) The upper intersection forms Rrect to cover R (blue). The lower inter-
section forms R′

rect (red), an ambiguous region. (Color figure online)

denote the universe of all points of interest, and R ⊂ U , be the policy region.
There are multiple parties, each represented by a polynomially bounded Inter-
active Turing Machine (ITM), and associated with a location loc.

A protocol instance between two honest parties P and V is modelled by
a probabilistic experiment where each party uses its algorithm on its input
and random coin. This is shown by P (x; rP ) ↔ V (y; rV ), x and y are the
inputs, rP and rV are the random coins of the two participants, respectively.
We can “enlarge” the experiment to include an adversary’s algorithm, shown as:
P (x; rP ) ↔ A(rA) ↔ V (y; rV ). This means that an adversary A is interfering
with the communication between the honest participants.

inRA Protocols. Let R be a connected policy region (Fig. 2). The verifying
system consists of a set of verifiers V = {V0 · · · Vm−1}, with publicly known loca-
tions. Verifiers are trusted to follow the protocol and can communicate among
themselves through secure channels to exchange information and coordinate their
actions. Verifiers are equipped with directional antennas whose signals can be
received in a conic region of space that covers R. A prover P with location locP ,
has shared keys with the verifier set V. The prover is not trusted.

An in-region authentication protocol is a protocol Π between P and V, at
the end of which V outputs OutV = 0 or 1, denoting reject and accept of the
prover’s claim, respectively. Prover does not have an output and so OutV is the
protocol output. The prover’s claim is stated as the conjunction in (1).

DUB protocols can be seen as inRA protocols where the second proposition
is, P is within a distance bound from the verifier.

Error and Accuracy in inRa Protocols. Consider an instance of a protocol
Π between an honest prover P and the verifier set, in the absence of an adversary.
Let RΠ ⊂ U denote the set of points u ∈ U that Π will have OutV = 1. We
define two types of errors for the protocol Π with respect to the region R:
FAΠ,R and FRΠ,R, denoting false acceptance and false rejection of the protocol
Π, respectively, where, (i) FAΠ,R is the set of locations that are in RΠ \ R,2

2 A \ B denotes the set of points that are in A and not in B.



In-Region Authentication 563

and FRΠ,R is the set of locations that are in R \ RΠ . Accuracy ratio can be
defined as follows [15]:

Accuracy ratio =
TAΠ,R + TRΠ,R

TAΠ,R + TRΠ,R + FAΠ,R + FRΠ,R
(3)

where TAΠ,R and TRΠ,R denote the true acceptance and true rejection sets,
TAΠ,R is the set of points in R ∩ RΠ and are accepted by the algorithm, and
TRΠ,R is the set of points in U \ {R ∪ RΠ} and are rejected by the algorithm.
Now, Error ratio = 1 − Accuracy ratio, and can be expressed as,

Error ratio =
FAΠ,R + FRΠ,R

TAΠ,R + TRΠ,R + FAΠ,R + FRΠ,R
(4)

Since U = (TAΠ,R + TRΠ,R + FAΠ,R + FRΠ,R) is constant, to minimize error
one needs to minimize (FAΠ,R +FRΠ,R). In our work we use error EΠ,R given
by,

Error: EΠ,R = FAΠ,R + FRΠ,R (5)

Note that one can attach weights to points in FAΠ,R or FRΠ,R to reflect their
importance in a particular application. In this paper we assume the same signif-
icance for the two types of errors. For R = TAΠ,R+ FRΠ,R, we can write,

FAΠ,R + FRΠ,R = FAΠ,R + (R − TAΠ,R)
= R − (TAΠ,R − FAΠ,R).

R is fixed and so minimizing (FAΠ,R + FRΠ,R) is equivalent to maximizing
(TAΠ,R − FAΠ,R). We say that in our R coverage problem, error is minimized
by minimizing (FAΠ,R + FRΠ,R), or equivalently, accuracy is maximized by
maximizing (TAΠ,R − FAΠ,R). Therefore, we define Accuracy AΠ,R as:

Accuracy: AΠ,R = TAΠ,R- FAΠ,R (6)

Definition 1 (in-Region Authentication). An in-region authentication
(inRA) protocol Π is a tuple Π = (Gen, P,V = {V0 · · · Vm−1},R) where:

1. X ← Gen(1s, rk) is a randomized key generation algorithm that generates a
vector X = {x0, . . . , xm−1} of n secret keys, where xi is the prover’s shared
secret key with Vi, and rk denoting the random coins of Gen. s is the security
parameter.

2. P (X ; rP ), is a ppt. (probabilistic polynomial time) ITM (Interactive Turing
Machine) running the prover algorithm with random input rP and the secret
key vector X = {x0, . . . , xm − 1}.

3. V = (V0, . . . , Vm−1) is a set of verifiers, each verifier Vi(xi; rVi
) ∈ V is a ppt.

ITM running algorithm with random input rVi
and shared secret xi. We write

V(X , rV) to denote the set of the verifiers’ algorithms.
4. R is a set of points corresponding to a contiguous region. This is the policy

region.



564 M. R. Akand and R. Safavi-Naini

The protocol satisfies the following properties:

– Termination: (∀s) (∀Z) (∀(rk, rV)) (∀locV) if X ← Gen(1s, rk) and
(Z ←→ V(X ; rV)) is the execution where Z is any set of prover algorithms,
then V halts in polynomial number of computational steps (Poly(s));

– p-Completeness: (∀s) (∀(locV , locP )) such that locP ∈ R we have

Pr
rk,rP ,rV

[
OutV = 1 :

X ← Gen(1s, rk)
P (X ; rP ) ↔ V(X ; rV)

]
≥ p. (7)

Similar definition of termination and completeness is used for DB prortocols
[1,22,28].

3.1 inRA Security

We consider a prover, possibly malicious, who may receive help from a helper
who is in R but does not have a secret key.

The adversary attempts to prove that their location is inside R (while they
are actually outside) and their success chance must be negligible even if they
know the shared key. We use a game-based approach in defining security, and
define security in terms of the success chance of an adversary in the following
security games against a challenger. Each game starts with a setup phase where
the challenger sets the keys and locations of participants. This is followed by
the adversary corrupting some of the participants (depending on the game),
engaging them in a learning phase and finally the attack phase. We omit the
details because of space and outline the steps of each game in the definition of
each attack. In the following, a dishonest prover is denoted by P ∗.

in-Region Fraud (inF). In this attack, a corrupted prover P ∗ who has the
secret key and is in U \ R wants to prove that they are inside R.

Definition 2 (inF-resistance). An inRA protocol Π is α-resistant to in-region
fraud if (∀s)(∀P ∗)(∀locV) such that locP /∈ {R ∪ FAΠ,R}, and (∀rk) we have,

Pr
rV

[
OutV = 1 :

X ← Gen(1s, rk)
P ∗(X ) ↔ V(X ; rV)

]
≤ α. (8)

The above definition also captures a special type of attack - in-region hijacking
(follows from a similar type of attack in DB protocols - distance hijacking). A
dishonest prover P ∗ located outside R uses the inRA communications of unaware
honest provers (inside R) to get authenticated as an honest prover.

in-Region Man-in-the-Middle (inMiM). A corrupted participant who does
not have a key but is inside R, interacts with multiple provers P ’s and the verifier
set V, and uses transcripts of these protocols to succeed in the inRA protocol.



In-Region Authentication 565

Definition 3 (inMiM-resistance). An inRA protocol Π is β-resistant to
inMiM attack if, (∀s)(∀m, l, z) that are polynomially bounded, (∀A1,A2) that
are polynomially bounded, for all locations s.t. locPj

/∈ {R ∪ FAΠ,R}, where
j ∈ {q + 1, . . . , t}, we have

Pr

⎡

⎣OutV = 1 :
X ←− Gen(1s, rk)
P1(X ), . . . , Pq(X ) ←→ A1 ←→ V1(X ), . . . ,Vz(X )
Pq+1(X ), . . . , Pt(X ) ←→ A2(V iewA1) ←→ V(X )

⎤

⎦ ≤ β. (9)

The attacker is a pair of algorithms (A1,A2), where A1 denotes the learning
phase during which the attacker interacts with the protocol-runs of q provers
that can be anywhere, and provides this view to A2 in the second stage of the
attack. Definition 3 is general and captures other attack settings that are tradi-
tionally referred to as mafia fraud and impersonation attack, in DB protocols.
Mafia fraud is an MiM attack as defined above but without a learning phase. In
impersonation attack the attacker uses multiple possibly concurrent interactions
with the verifiers to make the verifier output 1.

in-Region Collusion Fraud (inCF). Arguably the strongest attack and
involves the collusion of a corrupted prover who is in U \ R, and a helper who
is inside R. In collusion fraud the assumption is that the corrupted prover does
not want their long-term secret key to be learnt by the helper as otherwise the
helper would have a better chance to succeed in other attacks individually. The
prover however attempts to use the helper’s location to succeed in the attack.
In the following definition of rCF-resistance, success of the attacker in inCF
implies that - the attacker in a MiM attacker as defined above (and realized by
the helper), will also succeed. P (∗)(X ) denotes honest or dishonest prover.

Definition 4 (inCF-resistance). An inRA protocol Π is (γ, η)-resistant to
collusion fraud if (∀s) (∀P ∗) (∀locV0 s.t. locP ∗ /∈ {R ∪ FAΠ,R} (∀ACF ppt.) s.t.

Pr

[
OutV0 = 1 :

X ←− Gen(1s)
P (∗)(x) ←→ ACF ←→ V0(X )

]
≥ γ, (10)

over all random coins, there is a two stage attacker (A1,A2) as defined in MiM
with the additional relaxation that in the learning phase, the attacker can interact
with the malicious prover also, such that,

Pr

⎡

⎣OutV = 1 :
X ← Gen(1s)
P

(∗)
1 (X ), . . . , P (∗)

q (X ) ←→ A1 ←→ V1(X ), . . . ,Vz(X )
Pq+1(X ), . . . , Pr(X ) ←→ A2(V iewA1) ←→ V(X )

⎤

⎦ ≥ η.

(11)

The above definition of inCF captures a widely used attack model for DB
protocols, which we call in-Region Terrorist fraud (inTF) in which P ∗, with



566 M. R. Akand and R. Safavi-Naini

locP ∗ /∈ {R ∪ FAΠ,R}, uses a helper who does not have the secret key, to suc-
ceed in an instance of the protocol.

We do not consider jamming attacks blocking all communication. A secure
inRA protocol provides security against inF, inMiM and inCF.

4 Pseudo-rectangle (P-rect) Cover Approach to inRA

We assume the setting of Sect. 3 and describe our approach using basic inRA
protocol that uses two verifiers V0, V1 with (publicly known) location locV0 and
locV1 . The prover P shares the secret keys x0 and x1 with V0, V1, respectively.

4.1 Basic (Two-Verifier) P-rect Approach

Protocol Communication. We assume radio signal travel at the speed of light
and the round trip time of a challenge and response can provide a reliable esti-
mate of distance. There are two collaborating verifiers who interact with the
prover using, slow communication that is used for time-insensitive messages over
reliable channels, and fast communication that are time sensitive messages that
are used for estimating distance and are sent over the physical channel that is
noisy. For simplicity, we do not consider noise. Our results however can be easily
extended to noisy channels by modifying the protocol parameters (thresholds).
Verifiers are equipped with omnidirectional and directional antennas, although
in each run of the protocol we require only one of them to use their directional
antenna for communication with the prover. Communication between the veri-
fiers takes place over a secure and reliable channel and is not time sensitive.

P-rectangle. For a fixed pair of verifiers, V0 and V1, with lower and upper
bound pairs, {�V0 , uV0}, {�V1 , uV1}, respectively, a P-rect is defined as the set of
points x ∈ U that satisfy the following inequalities:

d(x, locV0) ≤ uV0 , d(x, locV0) ≥ �V0 , d(x, locV1) ≤ uV1 , d(x, locV1) ≥ �V1

where d(., .) is the Euclidean distance. Consider the two pairs of concentric cir-
cles, centered at locV0 with radii {�V0 , uV0} and at locV1 with radii {�V1 , uV1},
respectively. The intersection of the four circles defines two P-rects (Fig. 2b).

We denote the two mirrored rectangles by Rrect(locV0 , locV1 , �V0 , uV0 , �V1 , uV1)
and R′

rect(locV0 , locV1 , �V0 , uV0 , �V1 , uV1). We use Rrect and R′
rect when parame-

ters are known from the context. These P-rects are formed when V0 and V1 each
executes a pair of DUB and DLB protocols with corresponding upper and lower
bounds. To distinguish between the two, one of the verifiers can use a directional
challenge towards the target region R. The inRA protocol Πrect below uses a
P-rect to cover R. We quantify the error and prove security of this protocol.

Protocol Πrect. For given values of locV0 , locV1 , �V0 , uV0 , �V1 , uV1 , the protocol
bounds the prover within- Rrect(locV0 , locV1 , �V0 , uV0 , �V1 , uV1) (see Fig. 3).



In-Region Authentication 567

Fig. 3. inRA protocol Πrect between a prover and 2 verifiers. In initialization phase
prover and verifiers generate and exchange nonces N l

vi
, Nu

vi
. Fast Exchange phase is 2n

rounds of challenge (cu
iτ

, cl
iω

) and responses (ru
iτ

, rl
iω

) for DUB and DLB. The responses
are calculated using a pseudo-random function with special properties. In verification
phase, verifiers check round-trip time and correctness of responses.

Initialization Phase. Prover P and verifiers V0, V1 have shared secret xi, i = 0, 1
and security parameter k at the start of the protocol. Prover picks four indepen-
dently generated nonces N l

pi
, Nu

pi
, i = {0, 1}, each of length k, and sends a pair of

nonces to each verifier Vi, i = {0, 1}. Each verifier Vi picks two independently gen-
erated nonces of the same length, N l

vi
, Nu

vi
, and two random strings Au

i , Al
i, each

of length 2n (2n corresponds to number of rounds in fast-exchange phase) and
calculates, Mu

i = Au
i ⊕ fx(N l

pi
, N l

vi
) and M l

i = Al
i ⊕ fx(Nu

pi
, Nu

vi
). f is a Pseudo

Random Function (PRF). Nu
pi

, Nu
vi

,Mu
i ,M l

i are sent to the prover who decrypts
and stores Au

i , Al
i. These are the response tables of the distance upper and lower

bound challenges for the respective verifiers, in the fast-exchange phase. All com-
munications between the prover and the verifiers use omnidirectional antenna in
the initialization phase.

Fast-Exchange (FE) Phase. WLOG assume V0 starts the FE phase and notifies
V1 to start its FE phase right after sending its last challenge3.

V0 will use an omnidirectional antenna to send its challenges, while V1 will
use a directional antenna with the direction and the angle of the beam chosen
to cover only one of the two mirrored P-rects Rrect and R′

rect (See Fig. 2b). This
means that only the points in Rrect will receive the challenge from V1.

3 We assume verifiers have agreed on the order.



568 M. R. Akand and R. Safavi-Naini

(a) Prover movement (b) Key splitting

Fig. 4. (a) Prover movement attack: Prover responds to DUB and DLB challenges of
verifier V0 while in Region 1 (R1), and DUB and DLB challenges of verifier V1 while in
Region 2 (R2). (b) Key splitting attack: Prover responds to DUB and DLB challenges
of V1, and also DUB challenges of V0 while asking the helper to respond to the DLB
challenges of V0.

The FE phase of each verifier consists of 2n consecutive rounds of challenge-
response (n ∈ Ω(k)), where the first n rounds are used for distance upper
bounding, and the last n rounds for distance lower bounding. In each distance
upper bounding round τ, τ = {1, . . . , n}, verifier Vi picks a challenge value
cu
iτ

∈ {1, 2, 3, 4}, and sends it to the prover, who must respond immediately
with ru

iτ
, as shown in Fig. 3.

Note that the prover’s response, when the challenge value is in the set {1, 2},
depends on the nonces of the verifier that has sent the challenge, but when the
challenge value is in the set {3, 4}, their response value depends on both verifiers’
nonces. This is to prevent key-splitting attack in which a malicious prover who is
located in specific parts of the plane (outside R), can combine parts of the secret
keys of the two verifiers to succeed in their attack (more in Sect. 4.2). Verifiers
will verify the responses at the end of the protocol and after sharing their nonces.
To estimate the distance, each verifier measures the round-trip-time RTTu

iτ
, from

sending cu
iτ

to receiving ru
iτ

, of a round.
Rounds ω, ω = {n+1, . . . , 2n}, are for DLB protocol. In each such round the

verifier Vi picks a random challenge cl
iω

∈ {1, 2, 3, 4}, together with an erasure
sequence RSiω

of length ziω
4, that is used to prevent prover from delaying the

response and claiming a farther distance. Prover has to send a response as shown
in Fig. 3, as well as the proof of receiving the erasure sequence. Verifier also
measures and stores the round-trip-time RTT l

iω
, from sending cl

iω
to receiving

rl
iω

, in each round.

Verification Phase. Firstly, verifiers check correctness of the responses (ru
iτ

, rl
iω

),
as well as the proof of erasures, hiω

. Then each verifier checks if the round-
trip-time of the FE challenge-responses in each of the first n rounds satisfies:

4 An erasure sequence is a pseudo-random sequence of defined length that is used in
secure DLB protocols to prevent the prover from storing malicious codes in device
memory to delay their responses. We follow the construction of erasure sequence of
[28], which is also explained in the full version of this paper [2].



In-Region Authentication 569

RTT u
iτ

2 ≤ uVi
, and each of the last n rounds satisfies

RTT l
iω

2 ≥ �Vi
+ T (ziω

− 1).
T (ziω

− 1) is the maximum processing time required by the prover to store the
erasure and compute the proof of erasure. If the above checks succeed, then
verifier Vi outputs OutVi

= 1. If both verifiers output 1, then P is accepted,
otherwise P is rejected.

4.2 Security Analysis

Πrect uses a pair of DUB and DLB protocols with two verifiers. To prove security
of the protocol we first eliminate attacks that are because of the ability of the
prover to change its location between its interaction with the two verifiers, or
leaking part of its key to the helper such that it succeeds in lying about its
location without enabling the helper to succeed in its individual attack.

Prover Movement. Location verification protocols that consider prover’s com-
munication with multiple verifiers are vulnerable to attacks that involve move-
ment of the prover. Figure 4a shows such a scenario. A malicious prover located
outside the P-rect attempts to get accepted by moving from one place to another.
Consider two regions: Region 1 (R1) contains all the points that are within the
ring centered at V0 and inside the lower bound of V1, and Region 2 (R2) contains
all the points that are within the ring centered at V1 and inside the lower bound
of V0. Now the prover changes its location, and can succeed by responding to
DUB and DLB challenges of verifier V0 while in Region 1, and DUB and DLB
challenges of verifier V1 while in Region 2. Similar attack can take place by the
prover moving between Region 2,3, or Region 3,4, or Region 4,1.

Chiang et al. proposed a solution to prover movement [8] that uses simulta-
neous challenge from the verifiers. However, this requires the prover to claim a
location first and this needs GPS signal (or other location determination infras-
tructure) and so not directly applicable to indoor area. We propose a novel
approach to detecting the prover movement in which each verifier acts as an
observer for the other verifier. More details below.

Let V0 be an observer who passively records the timing of the signals for the
communication between the prover and verifier V1, and V1 play a similar role
for V0. Let us revisit the prover movement scenario in Fig. 4a. First, we consider
the prover movement between Region 1,2. In this case, we only consider the
communication in the fast exchange phase of the DLB protocols. Notice that P ∗

must be in Region 1 (R1) while responding to the DLB challenge from V0, and
in Region 2 (R2) while responding to the DLB challenge from V1. Consider the
following time-stamps (all challenges are DLB challenges): t0: V0 sends challenge
to P ∗ in Region 1 ; t1: V1 sends challenge to P ∗ in Region 2 ; T0: V0 receives
response from P ∗ sent from Region 1 ; T1: V1 receives response from P ∗ sent
from Region 2 ; T ′

0: V0 listens to the response of P ∗ sent from Region 2 ; T ′
1: V1

listens to the response of P ∗ sent from Region 1.
We assume the prover’s processing time is known and is public. V0, from

DLB communication, will compute the distance between itself and P ∗ using
their challenge and response round trip time as: dV0P ∗ = (T0−t0)×C

2 , where C is



570 M. R. Akand and R. Safavi-Naini

the speed of radio wave. Similarly, V1 will compute its distance to P ∗ as: dV1P ∗ =
(T1−t1)×C

2 . By listening to the other DLB communication, V0 will compute the
distance between itself and P ∗ based on the response times of P ∗ as: d′

V0P ∗ =(
T ′
0 − T1−t1

2

) × C. This is because the response from P ∗ at Region 2 leaves
P ∗ at time (T1 − t1)/2, and reaches V0 at time T ′

0. Similarly, V1 will compute
the distance between itself and P ∗ at Region 1, using its listening time of the
response of P ∗, as: d′

V1P ∗ =
(
T ′
1 − T0−t0

2

)×C. This is because the response from
P ∗ at Region 1 leaves P ∗ at time (T0 − t0)/2, and reaches V1 at time T ′

1. The
system detects movement of the prover if any of the following checks do not hold:

dV0P ∗ = d′
V0P ∗ , dV1P ∗ = d′

V1P ∗ . (12)

The protocol immediately rejects and aborts when multiple provers are detected.
A similar approach for each type of communication, e.g., DLB or DUB, can

detect the prover movement between Region 2,3, or Region 3,4, or Region 4,1.

Key Splitting Attack. This attack is a result of using a pair of DUB and DLB
protocols with two verifiers. In a key splitting attack, the prover leaks part of
their key information to a helper to allow them to succeed in its attack, without
allowing the helper to have a better chance to succeed on its own. Figure 4b
shows a scenario for such an attack. Here, a malicious prover P ∗ is located
within the ring centered at V1 and inside the lower bound of verifier V0. P ∗

shares key x0, x1 with V0, V1 respectively. A helper H is located inside the P-
rect. P ∗ gives x0 to H. Now the prover will succeed by correctly responding to
DUB and DLB challenges of V1, and also DUB challenges of V0 while asking
the helper to respond to the DLB challenges of V0. Note that the attack is
successful because this key leakage will not directly result in a successful inMiM
(H requires both keys (x0, x1) to succeed in inMiM) and so according to inCF
Definition (Definition 4), the protocol is not secure.

We thwart this attack by including both keys (x0, x1) in generating the
response to the challenges of each verifier. As shown in Fig. 3, upon receiving
a challenge cu

iτ
= 3 from verifier Vi (i = {0, 1}), generating the response ru

iτ

requires key and response table shared with verifier Vi. If cu
iτ

= 4, it requires key
and response table shared with verifier Vi+1.

Revisiting the above key splitting scenario, to get accepted in Πrect, P
∗ must

share both keys x0, x1 with the helper, otherwise helper would not be able to
generate the responses to the DLB challenges cl

i = 4 from V0. This will lead to a
successful inMiM by H - which guarantees security (Definition 4) of our protocol.

Security Against inF, inMiM and inCF. By removing the threats described
above, we are ready to analyze the security of Πrect against the three attacks
defined in Sect. 3.1: inF, inMiM and inCF.

Let, ΠDUB
rect and ΠDLB

rect denote DUB and DLB protocols used in Πrect. The
detailed inRA protocol is presented in Fig. 3. We use the constructions of [22]
and [28] for DUB and DLB protocols, respectively. These protocols are provably
secure against the main three attacks (distance fraud, man-in-the-middle and
collusion fraud) of distance bounding protocols that have been defined consistent



In-Region Authentication 571

with the corresponding attacks of inRA in Sect. 3. Security of these component
protocols does not directly lead to the security of inRA with respect to the P-rect
formed by these protocols,i.e., we need to consider attack scenarios that yield
from a single verifier running two different protocols (DUB and DLB).

For each verifier Vi ∈ V, the response table au of the DUB protocol ΠDUB
rect

and al of the DLB protocol ΠDLB
rect are independently generated from each other

and for each verifier. This holds because verifiers are honest and a response tables
is constructed using the randomness of the prover and corresponding verifier.

Because of space limitation, we put security models for ΠDUB
rect and ΠDLB

rect

(including Definitions 5–10) as well as the proof of following theorem in the full
version of this paper [2].

Theorem 1. For a region R, the protocol Πrect satisfies the following:

1. If ΠDUB
rect and ΠDLB

rect are secure against distance fraud attack with prob-
ability αu, α� in Definition 5 and Definition 8, respectively, then Πrect is
secure against in-region fraud attack with probability α ≥ max(αu, α�) in
Definition 2.

2. If ΠDUB
rect and ΠDLB

rect are secure against man-in-the-middle attack with proba-
bility βu, β� in Definition 6 and Definition 9 respectively, then Πrect is secure
against in-region man-in-the-middle with probability β ≥ max(βu, β�) in
Definition 3.

3. If ΠDUB
rect and ΠDLB

rect are secure against collusion fraud with probability
(γu, ηu) in Definition 7 and (γ�, η�) in 10 respectively, then Πrect is secure
against in-region collusion fraud with probability (γ, η) where γ ≥ max(γu, γ�)
and η ≥ max(ηu, η�) in Definition 4.

5 Optimizing Error

The basic Πrect protocol covers R with a P-rect. For given locations of verifiers
locV0 , locV1 , and and distance bounds {�V0 , uV0}, {�V1 , uV1}), the error in the
coverage can be computed. In this paper we consider the total error which is
FA+FR. To minimize this error, one can use a two step algorithm: (i) for fixed
locV0 , locV1 , find {�V0 , uV0}, {�V1 , uV1}) that minimizes the error, Denote it by
Emin(locV0 , locV1). (ii) find locV0 , locV1 that minimizes Emin(locV0 , locV1). Both
these minimizations can be solved by exhaustive search, which for an n × n size
universe U will have the cost of O(n4) each.

In the following we provide an efficient algorithm FindOptimalBounds, or
FOB for short (Algorithm 1) to solve (i). Let the size of a P-rectangle be the
number of points in the rectangle. The algorithm works as follows.

(i) Selects an initial Rrect (Line 1). This rectangle R ⊂ Rrect is constructed
by choosing the radii to touch the region R;



572 M. R. Akand and R. Safavi-Naini

Algorithm 1. FindOptimalBounds algorithm to find P-rectangle with maxi-
mum accuracy for Δ

Input:
Policy region R, Verifiers’ location locV1 , locV2 , P-square size Δ

Output:
P-rect with maximum accuracy for Δ

1: Rrect ← initRrect(R, locV0 , locV1) � Initial P-rectangle, covering R completely
2: RΔ

rect ← makeGrid(Rrect, Δ) � Rrect is subdivided into P-squares of size Δ
3: for each P-square ps ∈ RΔ

rect do
4: ps.TA ← 0; ps.FA ← 0
5: for each point p ∈ ps do � Each point contributes to either TA or FA value of

the P-square
6: if p ∈ R then
7: ps.TA = ps.TA + 1
8: else
9: ps.FA = ps.FA + 1

10: end if
11: end for
12: ps.accuracy = ps.TA − ps.FA � See Expression 6 for accuracy.
13: end for
14: OptRrect ← MaxSubArray(RΔ

rect) � RΔ
rect, which is a 2D

array with each element representing a ps.accuracy value, is input to a Maximum
Subarray Algorithm.

15: return OptRrect

(ii) Rrect is subdivided into P-squares (equal size sides) of size Δ (Line 2). P-
squares are used as measuring units, and is used to quantify the accuracy
(given by expression 6 in Sect. 3) of Rrect in covering R;

(iii) The P-rect that maximizes the accuracy (therefore minimizes total error -
see Sect. 3) for this Δ, is found by formulating the accuracy as the objective
function of a maximum sum sub-array problem and using an algorithm
(presented in Algorithm 7, page 18 of [3]) to efficiently solve the problem
(Lines 3–14).

The output of FOB is OptRrect, a contiguous 2D sub-array (P-rect) with
maximum sum (Line 15), that is the optimal P-rect for P-squares of size Δ.

Lemma 1. For fixed values of locV0 , locV1 , the initial P-rect in FindOptimal-
Bounds algorithm achieves higher accuracy compared to any larger P-rect.

Proof. Let, the initial P-rectangle be denoted by initRrect. This rectangle is
chosen to be the smallest P-rectangle that contains all points in R. That is,
initRrect has maximum TA. Let the false acceptance associated with this P-
rectangle be FAinitRrect

. The accuracy of initRrect is given by, AinitRrect
=

TAmax − FAinitRrect
. Let Rrect be a P-rectangle that is larger than initRrect

and fully covers R. The accuracy of Rrect is expressed as - ARrect
= TARrect

−



In-Region Authentication 573

FARrect
. Because initRrect is the “smallest” P-rectangle that covers R, Rrect

must have larger false acceptance. That is, FARrect
> FAinitRrect

.
Because TAmax ≥ TARrect

, we conclude that, AinitRrect
> ARrect

.

Theorem 2 (Optimality). Let the maximum sub-array algorithm return a
contiguous 2D sub-array with the largest sum. Then the FindOptimalBounds
algorithm returns the P-rectangle with maximum accuracy, for locV0 , locV1 and
P-square size Δ.

Proof. A P-rectangle can be expressed as a 2D array with each point being an
element of that array. FOB algorithm is initialized with a 2D array initRrect

of size m × n (unit Δ). For maximum accuracy, using Lemma 1 we need not
consider larger P-rectangles that contain R. The accuracy is given by the size
of the set AinitRrect

= TAmax − FAinitRrect
= R ∩ initRrect − initRrect \ R.

Thus the contribution of a point initRrect[x][y] to the accuracy is 1, if it is in
R ∩ initRrect and −1, if it is in initRrect \ R.5

Let OptRrect denote the 2D sub-array with maximum sum that is returned by
MaxSubArray(). Using Expression 2 for maximum sum sub-array (see Sect. 2),
the 2D array OptRrect can be written as:

OptRrect = max

⎧
⎨

⎩

j,h∑

x=i,y=g

Rrect[x][y]|1 ≤ i ≤ j ≤ m, 1 ≤ g ≤ h ≤ n

⎫
⎬

⎭

= max

⎧
⎨

⎩

j,h∑

x=i,y=g

(
TARrect[x][y] − FARrect[x][y]

)
⎫
⎬

⎭

The right hand side of this equation is the 2D sub-array of maximum accu-
racy, and this concludes the proof.

Location of the Verifiers. The Algorithm 1 assumes that the verifiers’ location
are outside R, and satisfy the following restriction: the initial rings centered at
the verifiers V0 and V1 must intersect pairwise. This is to ensure a well-formed
P-rectangle is constructed. The restriction discards many candidate locations
for the verifiers. We leave the problem of efficiently finding the location of the
verifiers that results in the smallest error for future work. One can remove the
restriction on the location of verifiers, including being outside region R, by sub-
dividing the region into smaller regions. See Sect. 6.

Higher Accuracy. One can increase the accuracy of the algorithm by subdi-
viding R into sub-regions, and for each, choose verifiers’ location and find upper
and lower bounds (using FOB). We show this in Sect. 6.

5 Here we consider equal weights for FA, FR. Section 6 shows a flexible way to define
these errors.



574 M. R. Akand and R. Safavi-Naini

6 Experimental Evaluation

The error in covering R with a P-rect depends on the shape of R, the number
of subregions and the distance bounds. We consider the following cases for four
policy regions shown in Fig. 5.

– Direct approach: R is completely covered by the P-rect formed by rings cen-
tered at V0 and V1 and being the narrowest rings that contain all locations
of R. The resulting P-rect is the smallest P-rectangle covering R completely
(Fig. 6a).

– Basic FindOptimalBounds algorithm (FOB): Fig. 6b shows the implementa-
tion of basic error optimization algorithm presented in Sect. 5.

– FindOptimalBounds with adjusted verifiers’ location (FOBloc): We have
adjusted the verifiers’ locations heuristically to observe the impact on
accuracy.

– FindOptimalBounds algorithm with partitioned regions (FOBpart): We parti-
tioned each policy region into two smaller regions, and applied FindOptimal-
Bounds algorithm on each independently. Figure 6c, d show this settings.

Experimental Setup. We take images from Google Map for point-set represen-
tation of the policy region, where the pixels represent points. We use “road-map”
images with zoom level of 17, and of dimension 640 × 640 containing the policy
region R. Each pixel represents 0.7503 m, which is obtained using the formula
for “ground resolution” [18]. Ground resolution is the distance on the ground
that can be represented by a single pixel in the map. We convert it into binary
image containing only the policy region and store values for all the pixels in a
binary matrix. Measurements, including locations, distance, area and errors are
all in pixels.

Fig. 5. Policy regions (from left to right): Building B1, B2, B3, B4 in binary image.
We considered both regular shaped (B1) and relatively irregularly shaped regions (B2,
B3, B4) to provide diversity to the experiment

Error and Coverage Comparison. Table 1 compares four approaches when
applied to B1, B2, B3, B4. Notice that comparatively “regular” shaped policy
regions (e.g., B1 in Fig. 5a,) can be covered more accurately than other regions;
if we compare the best found errors, B1 has (FA, FR) error only (0.81, 3.89)%
against (4.16, 5.58)% (B2), (3.34, 4.53)% (B3) and (5.16, 4.4)% (B4). FOBpart

algorithm reduces this irregularity to some extent reduces the total error of FOB



In-Region Authentication 575

Fig. 6. (a) B4 is covered using direct approach, each ring touches two sides of the
region (b) FOB approach: to reduce total error, a small amount of false rejection area
is introduced (c, d) partitioning B4 into two separate regions and applying FOB on
each.

by 7.82 (B2), 15.48 (B3) and 12.78% (B4). Our algorithm trades much better
than naively covering a region (the direct approach), FOB reduces total error
from direct approaches by 10.84 (B1), 12.68 (B2), 10.78 (B3) and 4.31%(B4).

Comparison to Existing Approaches. Computing optimal bounds for ver-
ifiers so that the two types of errors are optimized - is only attempted once in
existing literature on in-region verification and localization methods, by Sastry
et al. [17]. They have placed 5 verifiers inside a 100 m by 100 m room. They were
able to achieve a coverage (True Acceptance) of 93% with 7% total error. We
compare by considering a policy region of 100×100 resolution in the universe of
640 × 640 pixels. Each pixel represents 1 m, so we replicate the scenario of cov-
ering a 100 m by 100 m room. Using two verifiers, we achieved a 96.4% coverage
(TA) and 4.1% total error. An illustration of the two approaches is given in the
full version of this paper [2].
FA, FR Weight Analysis. In some applications FA is more tolerable, while
in others FR. A notable advantage of our error formulation (Eq. 5) is that it
can be adjusted to capture requirements of different applications. We give the
concept of weighted error metric: EΠ,Rw = WFA × FAΠ,R + WFR × FRΠ,R.
The increased weight for FA reduces FA error. For this analysis, we considered
policy region B2 (Fig. 5b) and FOBLoc approach, and found that for FA weights
{1, 2, 3, 4, 5}, the resulting FA errors are {7.09, 3.14, 1.43, 0.95, 0.75}% (Fig. 7).

7 Related Work

There are hundreds of papers on location aware security and services. Because
of space we only consider those that are directly relevant and consider location
verification with respect to a region. As noted earlier, our goal, that is to pro-
vide provably secure authentication for users inside R together with quantifiable
error, for arbitrary region, is novel and not shared by any existing work. The
system in [23] provides location verification for a region without using a secret
key and without requiring user authentication.



576 M. R. Akand and R. Safavi-Naini

Table 1. Four coverage
approaches are applied to B1,
B2, B3, B4. E= FA + FR is
total error. Best found FA,
FR and E range from 0.81 to
5.16%, 3.89 to 5.58% and 4.71
to 9.74%. Best found total
coverage ranges from 94.41 to
96.1%

Direct FOB FOBLoc FOBpart

B1 TA 100 94.2 94.1 96.1
FA 20.94 4.31 2.32 0.81
FR 0 5.79 5.89 3.89
E 20.94 10.1 8.22 4.71

B2 TA 100 90.77 95.3 94.41
FA 30.24 8.33 7.09 4.16
FR 0 9.22 4.69 5.58
E 30.24 17.56 11.78 9.74

B3 TA 100 77.63 90.61 95.47
FA 34.13 9.5 9.69 3.34
FR 0 13.84 9.38 4.53
E 34.13 23.35 19.08 7.87

B4 TA 100 93.35 94.7 95.6
FA 26.65 15.7 12.21 5.16
FR 0 6.64 5.3 4.4
E 26.65 22.34 21.07 9.56

Fig. 7. FA, FR Error Comparison among
different approaches when applied to B1,
B2, B3, B4. The regularly shaped region B1
has the lowest FA and FR errors compared
to other relatively irregular shaped regions,
in all four approaches.

Secure positioning in multiple verifier settings is considered in [7], who proved
that security against multiple adversaries (adversaries at multiple locations) is
only achievable in the bounded retrieval model. [27] use bounded retrieval model,
and like us, they also take advantage of directional antennas to provide in-region
security. However, they cannot provide security against adversaries that reside
inside the region.

[26] proposed an in-region location verification that uses the inconsistencies
between claimed location of the sensor (prover) and observations of their neigh-
bor sensors to detect a false location claim. However, their security is dependent
on other sensors’ trust, which is often not desirable.

Numerous distance upper bounding protocols have been proposed to date
[4,5,10,22]. However the only distance lower bounding protocol with provable
security against three main kind of attacks is [28]. inRA uses the formal model
and protocol constructions of [22] and [28] for its DUB and DLB components.



In-Region Authentication 577

8 Concluding Remarks

We motivated and defined the problem of in-region authentication, and defined
correctness and security of inRA protocols for a region R. We proposed an app-
roach to constructing secure inRA protocols that uses distance bounding proto-
cols to cover R with a P-rect, and gave an efficient algorithm to optimize the
P-rect by minimizing the total error. We also proposed a basic two-verifier pro-
tocol with provable properties. Our approach provides flexibility to define error
functions that are suitable for particular applications, and increase accuracy by
choosing more verifiers.

We showed error performance of our optimization algorithm on different
shaped policy region and verified improved accuracy when the region is sub-
divided into two. Optimizing error under real life constraints on the location of
verifiers, the number of verifiers, particular error function, and optimization in
three dimensional spaces are challenging directions for future research.

References

1. Ahmadi, A., Safavi-Naini, R.: Distance-bounding identifiaction. In: 3rd Interna-
tional Conference on Information Systems Security and Privacy (2017)

2. Akand, M.R., Safavi-Naini, R.: In-region authentication. Cryptology ePrint
Archive, Report 2018/345 (2018). https://eprint.iacr.org/2018/345

3. Bae, S.E.: Sequential and parallel algorithms for the generalized maximum subar-
ray problem. Ph.D. thesis, University of Canterbury (2007)

4. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Secure and lightweight distance-
bounding. In: Avoine, G., Kara, O. (eds.) LightSec 2013. LNCS, vol. 8162, pp.
97–113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40392-7 8

5. Brands, S., Chaum, D.: Distance-bounding protocols. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-48285-7 30

6. Čapkun, S., Hubaux, J.P.: Secure positioning of wireless devices with application to
sensor networks. In: Proceedings of the 24th Annual Joint Conference of the IEEE
Computer and Communications Societies, vol. 3, pp. 1917–1928. IEEE (2005)

7. Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position based cryptogra-
phy. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 391–407. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 23

8. Chiang, J.T., Haas, J.J., Hu, Y.: Secure and precise location verification using
distance bounding and simultaneous multilateration. In: Proceedings of the 2nd
ACM Conference on Wireless Network Security (WiSec 2009). pp. 181–192. ACM,
New York (2009)

9. Desmedt, Y.: Major security problems with the ‘unforgeable’(Feige)-Fiat-Shamir
proofs of identity and how to overcome them. In: Proceedings of SECURICOM,
vol. 88, pp. 15–17 (1988)

10. Dürholz, U., Fischlin, M., Kasper, M., Onete, C.: A formal approach to distance-
bounding RFID protocols. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS, vol.
7001, pp. 47–62. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
24861-0 4

https://eprint.iacr.org/2018/345
https://doi.org/10.1007/978-3-642-40392-7_8
https://doi.org/10.1007/3-540-48285-7_30
https://doi.org/10.1007/3-540-48285-7_30
https://doi.org/10.1007/978-3-642-03356-8_23
https://doi.org/10.1007/978-3-642-24861-0_4
https://doi.org/10.1007/978-3-642-24861-0_4


578 M. R. Akand and R. Safavi-Naini

11. Fan, T.-H., Lee, S., Lu, H.-I., Tsou, T.-S., Wang, T.-C., Yao, A.: An optimal
algorithm for maximum-sum segment and its application in bioinformatics. In:
Ibarra, O.H., Dang, Z. (eds.) CIAA 2003. LNCS, vol. 2759, pp. 251–257. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-45089-0 23

12. Francillon, A., Danev, B., Čapkun, S.: Relay attacks on passive keyless entry and
start systems in modern cars. In: NDSS (2011)

13. Grenander, U.: Pattern Analysis. Applied Mathematical Sciences, vol. 24. Springer,
New York (1978). https://doi.org/10.1007/978-1-4684-9354-2

14. Hammad, A., Faith, P.: Location based authentication, US Patent 9,721,250, 1
August 2017

15. Metz, C.E.: Basic principles of ROC analysis. In: Seminars in Nuclear Medicine,
vol. 8, pp. 283–298. Elsevier (1978)

16. Rasmussen, K.B., Castelluccia, C., Heydt-Benjamin, T.S., Čapkun, S.: Proximity-
based access control for implantable medical devices. In: Proceedings of the
16th ACM Conference on Computer and Communications Security (CCS 2009),
Chicago, Illinois, USA, pp. 410–419, November 2009

17. Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In:
Proceedings of the 2nd ACM Workshop on Wireless Security, pp. 1–10. ACM,
New York (2003)

18. Schwartz, J.: Bing maps tile system. https://msdn.microsoft.com/en-us/library/
bb259689.aspx. Accessed 13 Apr 2016

19. Singelee, D., Preneel, B.: Location verification using secure distance bounding pro-
tocols. In: IEEE International Conference on Mobile Adhoc and Sensor Systems
Conference, pp. 7-pp. IEEE (2005)

20. Takaoka, T.: Efficient algorithms for the maximum subarray problem by distance
matrix multiplication. Electron. Notes Theor. Comput. Sci. 61, 191–200 (2002)

21. Takaoka, T., Pope, N.K., Voges, K.E.: Algorithms for data mining. In: Business
Applications and Computational Intelligence, pp. 291–315. IGI Global (2006)

22. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Practical and provably secure distance-
bounding. In: Desmedt, Y. (ed.) ISC 2013. LNCS, vol. 7807, pp. 248–258. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-27659-5 18

23. Vora, A., Nesterenko, M.: Secure location verification using radio broadcast. IEEE
Trans. Dependable Secur. Comput. 3(4), 377–385 (2006)

24. Warner, J.S., Johnston, R.G.: A simple demonstration that the global positioning
system (GPS) is vulnerable to spoofing. J. Secur. Adm. 25(2), 19–27 (2002)

25. Weddell, S., Langford, B.: Hardware implementation of the maximum subarray
algorithm for centroid estimation. In: Proceedings of the Twenty-First Image and
Vision Computing Conference New Zealand (IVCNZ 2006), pp. 511–515 (2006)

26. Wei, Y., Guan, Y.: Lightweight location verification algorithms for wireless sensor
networks. IEEE Trans. Parallel Distrib. Syst. 24(5), 938–950 (2013)

27. Yang, R., Xu, Q., Au, M.H., Yu, Z., Wang, H., Zhou, L.: Position based cryptogra-
phy with location privacy: a step for Fog computing. Future Gener. Comput. Syst.
78, 799–806 (2017)

28. Zheng, X., Safavi-Naini, R., Ahmadi, H.: Distance lower bounding. In: Hui, L.C.K.,
Qing, S.H., Shi, E., Yiu, S.M. (eds.) ICICS 2014. LNCS, vol. 8958, pp. 89–104.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21966-0 7

29. Zickuhr, K.: Location-Based Services, pp. 679–695. Pew Research (2013)

https://doi.org/10.1007/3-540-45089-0_23
https://doi.org/10.1007/978-1-4684-9354-2
https://msdn.microsoft.com/en-us/library/bb259689.aspx
https://msdn.microsoft.com/en-us/library/bb259689.aspx
https://doi.org/10.1007/978-3-319-27659-5_18
https://doi.org/10.1007/978-3-319-21966-0_7


Formal Analysis of Distance Bounding
with Secure Hardware

Handan Kılınç(B) and Serge Vaudenay

EPFL, Lausanne, Switzerland
handan.kilinc@epfl.ch

Abstract. A distance bounding (DB) protocol is a two-party authen-
tication protocol between a prover and a verifier which is based on the
distance between the prover and the verifier. It aims to defeat threats by
malicious provers who try to convince that they are closer to the verifier
or adversaries which seek to impersonate a far-away prover. All these
threats are covered in several security definitions and it is not possible
to have a single definition covering all. In this paper, we describe a new
DB model with three parties where the new party is named hardware. In
this model, called secure hardware model (SHM), the hardware is held
by the prover without being able to tamper with. We define an all-in-one
security model which covers all the threats of DB and an appropriate
privacy notion for SHM. In the end, we construct the most efficient (in
terms of computation by the prover-hardware and number of rounds)
and secure DB protocols achieving the optimal security bounds as well
as privacy.

Keywords: Distance bounding · RFID · NFC · Relay attack
Tamper resistance · Terrorist fraud

1 Introduction

Distance bounding (DB) protocols are two-party (a prover and a verifier) authen-
tication protocols. A prover authenticates itself and proves that the distance
between its location and the verifier’s location is less than a predetermined
bound. The verifier estimates the distance of the prover by computing the round
trip time of sending a challenge to the prover and receiving a response from the
prover. Brands and Chaum [6] first defined this notion as a solution to relay
attacks. However, it may also provide a solution for the following threats:

Mafia Fraud (MiM) [12]: A man-in-the-middle (MiM) adversary between a ver-
ifier and a far-away honest prover makes the verifier accept the access of the
prover. Malicious and far-away provers who want to convince that they are close
to a verifier appear in the followings:

Distance Fraud (DF): A malicious far-away prover tries to prove that he is close
enough to the verifier to make the verifier accept.
c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 579–597, 2018.
https://doi.org/10.1007/978-3-319-93387-0_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_30&domain=pdf


580 H. Kılınç and S. Vaudenay

Distance Hijacking (DH) [11]: A far-away malicious prover takes advantage of
some honest and active provers who are close to the verifier to make the verifier
grant privileges to the far-away prover.

Terrorist Fraud (TF) [12]: A far-away malicious prover, with the help of an
adversary, tries to make the verifier accept the access of the prover.

Clearly, the strongest security notion is the resistance to TF. So, if we can
construct a DB protocol that is secure against TF, then the DB protocol will
be secure against MiM, DF and DH. However, it is not possible to achieve the
TF-security because of a trivial attack: the malicious prover gives his secret
(key) to a close adversary, and the adversary authenticates on behalf of the
malicious prover by running the protocol. To achieve the TF-security, the trivial
attack is artificially excluded from the TF model in the literature by assuming
that malicious provers would never share their keys (in this paper, we call this
weaker version “TF’-security”). However, we cannot adapt TF’-security as an
all-in-one security notion because no connection between TF’-security and MiM,
DF or DH security can be established. Because of this disconnection, all DB
protocols require separate security analysis for each of them. The only public-
key DB protocols that are secure against all of them (MiM, DF, DH, TF’) are
ProProx [27], its variant eProProx [25] and TREAD [2]. Some important distance
bounding protocols [6,8,10,15,19,21,23] are all vulnerable to TF’. The protocol
by Bultel et al. [7] is TF’-secure thanks to a ‘cheat option’ (as explained below)
but it is not DH-secure since it aims for anonymity against verifier.

Moreover, the formal definition of TF’-security is controversial. The TF’-
security definition of Dürholz et al. [13] allows treatment of the partial disclosure
of the secret key. Essentially, the TF’ security in this definition implies that any
information forwarded to a close-by adversary would allow another adversary to
later pass, without a help of the prover, with the same probability, but through
a “cheat option” in the protocol. Fischlin and Onete [14] adapted the Swiss-
Knife protocol [20] to have this definition. However, it was proven that this
technique weakens Swiss-Knife for MiM-security [24]. Clearly, it is not reasonable
to weaken the most relevant security to protect it against the least relevant one.
There are also extractor based TF’-security definitions [5,24,27] stronger than
the definition of Dürholz et al. model [13]. However, all TF’-security definitions
are constructed with the assumption that the malicious prover do not reveal any
secret key related information. This assumption is considered weak and not
realistic [1]. In short, none of the models in the literature fully covers TF.

Apparently, there is no way of achieving TF-security without hiding the
secret key from the prover. This intuitive idea has been noticed [9,22], but never
formally defined. A natural question to ask here is whether this idea really pre-
vents TF. The answer is “yes and no” because hiding the key is necessary but
not sufficient.

In a nutshell, state of the art DB results says that TF-security is not possible
in the existing models of DB and it could be possible by hiding the key but this
is not enough. However, it is still not formally noted how it can be achievable.



Formal Analysis of Distance Bounding with Secure Hardware 581

Therefore, in this paper, we define a new formal model where constructing TF-
secure protocols are possible.

Our formal model for DB, which we call secure hardware model (SHM),
provides a solution to all DB related problems that we mention. We denote the
two-algorithm (Prover and Verifier) DB corresponding to the classical DB in
the literature as “plain model” (PM) [4–6,13,26]. In the SHM, we have another
entity called “Hardware” that is always honest and only communicate with their
holder (the prover). Mainly, this hardware runs some part of the prover algorithm
honestly and neither a malicious prover nor an adversary can corrupt it. In the
real world, we can realize our new entity as e.g. tamper-resistant modules in
smart-cards. In more detail, our contribution in this paper is the following:

– We define a new type of DB with three algorithms (V, P,H): verifier, prover,
hardware. Then, we design a communication and adversarial model for three-
algorithm DB which we call secure hardware model (SHM). In SHM, it is
possible to have TF-secure DB protocols without excluding trivial attacks.
We give a new security definition in SHM for a three-algorithm DB. In this
security definition, achieving TF-security means achieving MiM, DF and DH-
security. So, we obtain an all-in-one definition.

– We obtain a convincing model for TF based on SHM. We show that the TF-
security of (V, P,H) in SHM is equivalent to the MiM-security of (V,H) in
PM where H in PM corresponds to the prover algorithm. This result implies
that P plays no role in security but only in the correctness of the
protocol to have TF-security.

– We establish security relations between PM and SHM. We show that the
MiM-security in SHM and the MiM-security in PM are equivalent where the
prover algorithm in PM is the union PH of the prover P and the hardware
H in SHM. Additionally, we show that a MiM-secure DB protocol in PM can
be converted into a fully-secure DB protocol in SHM. This result shows that
if we have only a MiM-secure DB protocol in PM, we can easily construct
an efficient DB protocol secure against all threats in SHM.

– We define a strong privacy notion of DB in SHM. Strong privacy in DB
requires that the adversary cannot identify a prover even after getting his
secret (e.g. by a corruption).

– We construct a symmetric DB protocol MiM-symDB which is the most
efficient optimally secure MiM-secure protocol in PM (in terms
of computation and number of rounds) among the protocols with
binary challenges and responses. Then, we convert it into a DB protocol
in SHM (Full-symDBH) and obtain the most efficient symmetric DB protocol
secure against all threats and achieving optimal security bounds.

– We also consider a secure and private public-key DB protocol in SHM. Instead
of designing a new one we take advantage from existing public-key DB’s Eff-
pkDB and Simp-pkDB [19] to convert them into SHM. We slightly modify
Eff-pkDB to increase its efficiency in SHM, and we modify Simp-pkDB such
that its new version in SHM is secure and private.



582 H. Kılınç and S. Vaudenay

We underline that the only assumption on the secure hardware is that it
is honest which means that it runs the specified algorithm only. By doing so,
we give a model here where the TF-security is achievable.

One may argue that our assumption on secure hardware is too strong for the
real world applications. For example, in the real world, if the secure hardware
is implemented using a tamper-resistant hardware, it is always possible that a
side-channel attack will break our assumption. However, we believe that relying
on our assumption is more reasonable than relying on some adversarial intention
(e.g., that the adversary never shares his secret). We can never prevent a TF-
adversary to share his secret-key, but we can construct a strong tamper-resistant
hardware which requires very expensive devices to be tampered. Besides, MiM-
security would be preserved even if the tamper resistance assumption is broken.

2 Definitions and Security in SHM

We first give the formal definitions of SHM and security in this model. Then, we
provide some security relations related to PM and SHM.

2.1 Definitions

Parties of a DB protocol are a prover and a verifier [6]. However, we define a
new version of it called three-algorithm (symmetric or public-key) DB where the
algorithms are prover, verifier, and hardware.

Definition 1 (Three-Algorithm Symmetric DB). Three-algorithm sym-
metric DB is a probabilistic polynomial-time (PPT) protocol. It consists of a
tuple (K, V, P,B,H) where K is the key generation algorithm, P is the proving
algorithm, H is the hardware algorithm, V is the verifying algorithm and B is
the distance bound. The input of V and H is K generated by K. P interacts
with H(K) and V (K). At the end of the protocol, V (K) outputs a final message
OutV ∈ {0, 1}. If OutV = 1, then V accepts. If OutV = 0, then V rejects.

In symmetric DB, V knows that it needs to use K (possibly resulting from
a prior identification protocol).

Definition 2 (Three-Algorithm Public Key DB). Three-algorithm pub-
lic key distance bounding is a PPT protocol. It consists of a tuple
(KP ,KV , V, P,B,H) where (KP ,KV ) are the key generation algorithms of P
and V , respectively. The output of KP is a secret/public key pair (skP , pkP )
and the output of KV is a secret/public key pair (skV , pkV ). V is the verifying
algorithm with the input (skV , pkV ), P is the proving algorithm with the input
(pkP , pkV ) and H is the hardware algorithm with the input (skP , pkP ). B is the
distance bound. P interacts with H(skP , pkP ) and V (skV , pkV ). At the end of
the protocol, V (skV , pkV ) outputs a final message OutV ∈ {0, 1} and has pkP as
a private output. If OutV = 1, then V accepts. If OutV = 0, then V rejects.

This definition assumes a priori identification of pkV for P .



Formal Analysis of Distance Bounding with Secure Hardware 583

Definition 3 (Correctness of DB). A public-key (resp. symmetric) DB pro-
tocol is correct if and only if under an honest execution, whenever the distance
between P and V is at most B, V always outputs OutV = 1 and pkP (resp. ∅).

In all definitions below, verifiers, provers, and hardware are parties running
V , P and H, respectively. The parties can move and run their algorithms multiple
times. Each new execution of a party’s algorithm is an instance of this party.

Classical DB in the literature is very similar to three-algorithm DB with the
following differences: no H algorithm exists and the input of P in public-key
and symmetric DB is (skP , pkP , pkV ) and K, respectively. The plain model is
the model corresponding to the classical DB.

Plain Model (PM): Parties of PM are provers, verifiers and other actors.

– Honest parties run their assigned algorithms only.
– Verifiers are always honest. Provers are either malicious or honest.
– Each instance of a party has a location.
– A malicious party may run its instances concurrently, while an honest party

runs its instances only sequentially.
– Communication between instances has a latency proportional to the distance

(e.g., it travels at the speed of light).

The secure hardware model is the model corresponding to three-algorithm
DB: P , V and H.

Secure Hardware Model (SHM): Parties of SHM are provers, hardware,
verifiers and other actors. SHM includes all the characteristics of PM and the
additional ones:

– Secure hardware are honest parties.
– Each prover possesses its own secure hardware.
– The secure hardware of an honest prover can only communicate with its

prover and they are both at the same location.

In the rest of the paper, whenever we say “a distance bounding protocol in
SHM”, it refers to the three-algorithm DB.

Remark that since secure hardware are honest parties, they always run their
assigned algorithms even if malicious provers hold them. They should be taken
as a subroutine of a prover algorithm running on a secure enclave where the
prover can never change or interfere it.

SHM and PM follow the communication model from [5,18]: instances can
only communicate by sending messages which are delivered with a delay propor-
tional to the distance, and malicious instances can prevent delivery or change
the destination of messages [27].

Now, we give our security definition for a DB protocol in SHM. The definition
covers distance fraud, mafia fraud (MiM), distance hijacking and terrorist fraud
which are the threat models in PM.



584 H. Kılınç and S. Vaudenay

Definition 4 (Security in SHM). Consider a public-key DB. The game con-
sists of a verifier and provers P1, P2, . . . , Pt with their corresponding hardware
H1,H2, . . . , Ht. It begins by running the key setup algorithm KV outputting
(skV , pkV ) for V and KP outputting (skPi

, pkPi
) for Hi. The game consists

of instances of the verifier, provers, hardware and actors. V is a distinguished
instance of the verifier. One prover (let’s denote P ) is the target prover. The
winning condition of the game is V outputs OutV = 1 and privately pkP (public
key of P ) if no close instance of P ’s hardware exists during the execution of V.
– The DB protocol is MiM-secure if the winning probability is always negligible

whenever P is honest1.
– The DB protocol is DF-secure if the winning probability is always negligible

whenever there is no instance of any party close to V.
– The DB protocol is DH-secure if the winning probability is always negligi-

ble whenever all close instances are honest provers other than P and their
hardware.

– The DB protocol is TF-secure if the winning probability is always negligible.

The same security definition holds for a symmetric DB where we replace KV

and KP with K and skPi
/pkPi

with Ki.

Without loss of generality, we can consider all other actors as adversaries.
It is clear that TF-security implies DF-security, MiM-security, and DH-

security. So, we have an all-in-one security notion in SHM. Hence, we say
“secure” instead of “TF-secure” in SHM.

Security in PM: The security in PM is almost the same as Definition 4 except
that in PM, we do not have hardware. In PM, there is always a trivial TF-attack
in which a malicious prover can give his secret key to another malicious party so
that the party authenticates the prover while it is far-away. So, TF-security is
not possible in PM. Clearly, this trivial attack is preventable in SHM if we can
assure that H never leaks K.

Note that we do not consider the weaker version of TF-security [13,20,24]
(TF’-security) which artificially excludes trivial attack. So, when we refer to
TF-security in PM, we indeed refer to an impossible-to-achieve notion.

Notations
Pdum is a dummy prover algorithm in SHM which only relays the messages

between the outside world and H without even using any of its input. Remark
that if the prover who should run Pdum is malicious, then it can still play with
its hardware or other parties maliciously.

PH is the algorithm which is constructed from joining P and H in SHM.
More precisely, PH runs P and instead of interacting with H, it executes the
same computation that H would do if P had interacted. Therefore, PH

dum is the
hardware algorithm H.

1 Recall that it implies that H communicates with only P and that they are at the
same location.



Formal Analysis of Distance Bounding with Secure Hardware 585

“Challenge phase” is informally defined as the phase where V comprehends
the proximity of P . In the challenge phase, V sends challenges and receives
responses from P . If all the responses are correct and arrive on time, then V
decides that the distance between V and P is less than the bound B.

2.2 Security Results

We give some security relations between a DB protocol in PM and SHM.

Theorem 1 (MiM in SHM ⇒ MiM in PM). Let DB =(K, V, P,B,H)
be a symmetric-key DB protocol in SHM. We define a DB protocol DB′ =
(K, V, PH , B) in PM. If DB is MiM-secure then DB′ is MiM-secure.

The same holds with public-key DB.

The proof is trivial by adding a hardware to every honest prover at the same
location: A MiM-game against DB′ becomes a MiM-game against DB.

Theorem 2 (MiM-security in PM with PH
dum ⇔ Security in SHM). Let

DB = (K, V, P,B,H) be a symmetric DB in SHM and DB′ = (K, V, PH
dum, B)

be a symmetric-key DB in PM where H in DB′ corresponds H of DB. DB′ is
MiM secure in PM if and only if DB is TF-secure in SHM.

Here, the prover algorithm of DB′ is just H because PH
dum ≡ H.

Note that DB′ in Theorem 2 is not a correct DB protocol in general if P �=
Pdum as the algorithm P disappeared. However, we can still consider MiM-
security for DB′ without correctness.

Proof. (⇒) Consider a TF-game in SHM. We run this game in PM by simulating
the secure hardware H of DB with the prover PH

dum of DB′ and simulating the
prover P in SHM with an actor in PM (it is possible because P in SHM does
not have any secret key as an input). Then, we obtain MiM-game of DB′.

(⇐) If A wins the MiM-game of DB′, then a TF adversary runs A and wins
the TF-game for DB. 	


Remark that it is not possible to prove “MiM-security of DB′ =
(K, V, PH , B) ⇔ security of DB = (K, V, P,B,H)” where P in DB′ is not
necessarily Pdum because we could not simulate H and P in “⇒” case of the
proof in Theorem2.

Theorem 2 clearly shows that hiding the key is necessary to have security
in DB. Because if H in DB does not hide the key, then the prover algorithm
of DB′ which is H does not hide as well. So, DB′ would not be MiM-secure.
However, hiding may not be enough as explained below:

We consider the algorithm P of DB which does the computations C =
{C1, C2, . . . , Ck} and where P does learn any key related information. So, all
computations in C are executed independently from the key. Assume that the
success probability of an adversary to break the TF-security of DB is at most
p. Then, thanks to Theorem2, the success probability of a MiM-adversary A in



586 H. Kılınç and S. Vaudenay

DB′ is at most p. In addition, assume that there exists Ci ∈ C and the success
probability of a TF-adversary in DB is p′ > p without Ci. If such Ci exists, we
can have another MiM-adversary A′ which runs P without Ci

2 and wins MiM-
game with p′ > p. So, this contradicts with our assumption which says that the
success probability of a MiM-adversary can be at most p. As a result, Theorem 2
actually shows that the TF-security is not possible in SHM if the computations
of P has an effect on p.

We agree that having a secure hardware running whole algorithm without its
prover’s effect on the security is a trivial solution to have TF-security. However,
here, we show that the other way around is not possible. We underline that
it does not mean that prover cannot do any computation to have TF-security.
For example, in our TF-secure protocols in Sect. 4, the prover algorithm in SHM
still executes some part of the algorithm PH in PM but it does not have any
effect on the security of the protocol (as it can be seen in their security proofs
Theorems 8 and 10).

Some more results of Theorem 2:

– We can conclude if DB′ = (K, V, PH
dum, B) is MiM-secure and correct DB

protocol, then we can construct a secure DB protocol DB = (K, V, P,B,H)
in SHM for any algorithm P . DB is further correct when P = Pdum.

– In order to prove security of DB = (K, V, P,B,H) in SHM, it is enough to
prove MiM-security of DB′ = (K, V, PH

dum, B) in PM.
– MiM security and security of a DB protocol DB = (K, V,P,B,H)

in SHM are equivalent if P = Pdum due to Theorems 1 and 2. Note that
this result may not hold without Pdum.

In Fig. 1, we give the security (non)-implications in SHM and PM. The proof
of these (non)-implications are in the full version of the paper. In Fig. 2, we give
the same for SHM when the prover is Pdum. In this case, the full security is
equivalent to MiM-security. The rest of the (non)-implications in Fig. 2 can
be proven the same as in the non-implications in Fig. 1.

Fig. 1. Security implications of DB
protocols in PM and SHM. TF-security
implies all of them, DH-security implies
DF security and no relation exists
between MiM and DH (also DF).

Fig. 2. Security implications in SHM
with the prover Pdum. TF-security and
MiM security are equivalent in SHM
with Pdum. The relations between DF,
DH and MiM are the same as in Fig. 1.

2 Remark that any adversary can compute the computations in C because they do not
require any secret.



Formal Analysis of Distance Bounding with Secure Hardware 587

2.3 Privacy

In strong-privacy definition of PM, the adversary can corrupt the provers and
learn the secrets. However, the hardware in SHM is honest by nature. So, it
cannot be corrupted. Hence, we define semi-strong privacy with no such corrup-
tion. Achieving semi-strong privacy in a DB protocol is good enough assuming
that the hardware is tamper-resistant. Nevertheless, we also allow corruption of
hardware in order to define the strong privacy notion.

Definition 5 (Privacy in SHM). The privacy game consists of a verifier,
provers P1, P2, . . . , Pt and their corresponding hardware {H1,H2, . . . , Ht}. We
generate the secret/public key pairs of them with KV and KP for the verifier and
the hardware of provers. We pick b ∈ {0, 1} and start the game:
The adversary can create instances of the verifier and any prover. It can
send/receive messages to/from instances of the verifier. It can corrupt any prover
and hardware which let it learn the current state of their memory. At some
moment, it picks two provers Pi, Pj as a challenge of the game. If b = 0, we
create a virtual prover of Pi with its hardware and if b = 1, we create a virtual
prover of Pj with its hardware. The adversary can communicate with the virtual
prover and its virtual hardware. It can also release a virtual prover, if it exists.
In this case, we remove the virtual prover from the game, anonymously. The
game has to have at most one virtual prover. In the end, the adversary outputs
b′. If b′ = b, the adversary wins. Otherwise, it loses.

We say a DB protocol in SHM is strong private if the advantage of the
adversary in this game is bounded by a negligible probability. We say a DB pro-
tocol in SHM is semi-strong private if the advantage of the adversary in a
version of this game, where the corruption only lets the adversary communicate
with the hardware non-anonymously, is bounded by a negligible probability.

In semi-strong privacy, even though we do not allow corruption of hardware,
we let semi-strong corruption occur by allowing interaction with the secure hard-
ware. In SHM, we stress that when P interacts with its secure hardware, this
interaction remains private.

Hermans et al. [16] defined a similar game for the strong privacy of DB in
PM. In that game, no hardware exists, so the definition of semi-strong privacy
is not considered. Instead, the weak privacy notion exists where no corruption
on provers are allowed.

Note that we obtain a notion of strong privacy of DB = (K,V, P,B,H) in
SHM which is equivalent to the strong privacy of DB′ = (K,V, PH , B) in PM.

3 Optimal Symmetric DB Protocol in SHM

In this section, we show our new protocol MiM-symDB in PM which is only
MiM-secure (not DF, DH or TF-secure). We construct a DB at this level of
security because having MiM-security in PM is enough to achieve (full) security
in SHM as a result of Theorem2. The security bounds of MiM-symDB is very



588 H. Kılınç and S. Vaudenay

close to optimal security bounds [5]3. Its conversion into SHM reaches the same
bound as well. It is proved [5] that an optimal security bound in PM for a MiM-
adversary is (12 )n given that challenges and responses are bits and the challenge
phase consists of n rounds. The same bound applies in SHM as well.

We note that using other optimally MiM-secure DB protocols such as DB1,
DB2, DB3 [5] is reasonable as well to have fully secure DB protocols in SHM.
However, these protocols are also secure against DF or TF’ in PM which is an
overkill since we need only MiM-security. By constructing an optimal MiM-only
secure DB in PM, we can save some computations and rounds.

Notation: When we use H as a superscript in the name of a protocol, it shows
that it is in SHM.

Fig. 3. MiM-OTDB

MiM-OTDB: First, we describe our MiM-OTDB protocol which is MiM-secure
when it is executed only once. The prover P and the verifier V share a secret
key K = C||R. Here, the bits of C correspond to the challenges and the bits
of R correspond to the responses. In the challenge phase, in each round i, V
sends the challenge ci = C[i] to P and P sends the response ri = R[i] to V . If P
receives a challenge which is different from C[i], then P does not continue the
protocol. In the verification phase, V checks if the responses are correct and on
time. (See Fig. 3.)

MiM-symDB: The prover P and the verifier V share a secret key K. They
use a pseudo random function (PRF) f returning strings of 2n bits. P and
V exchange the nonces NP , NV ∈ {0, 1}s, respectively, where s is a security
parameter. Then, P and V compute f(K,NP , NV ) which outputs C||R. Finally,
V and P run MiM-OTDB with using C||R as a key. (See Fig. 4.)

We prove the following theorem by using a lemma in [18]. The lemma shows
that any message m sent by a party is independent from the messages seen by
another party at the time which is less than arrival time of m. This lemma is
correct in SHM as well.

3 A security bound of a DB means an upper bound of the success probability of an
adversary.



Formal Analysis of Distance Bounding with Secure Hardware 589

Fig. 4. MiM-symDB

Theorem 3 (MiM-security of MiM-symDB). If f is a secure PRF, then
the winning probability of a probabilistic polynomial time (PPT) adversary in a
MiM-game of MiM-symDB in PM is at most 3

2n+1 + q2

2s+1 + q′2

2s+1 + AdvPRF (q +
q′, t). For a PPT game, this is negligible.

Here, q is the number of prover instances, q′ is the number of verifier
instances, t is the total complexity of the game and AdvPRF is the advantage
for distinguishing the output of f from the output of a random function with
q + q′ queries and complexity t.

Proof. Γ0: It is a MiM-game where P ’s instances and V ’s instances with the
distinguished instance V play in PM. The winning probability in Γ0 is p.

Γ1: We reduce Γ0 to Γ1 where the nonces of the prover instances and the
nonces of the verifier instances do not repeat. The probability that a prover (resp.
verifier) instance selects the same nonce with the one of the other prover (resp.
verifier) instances is bounded by q2

2
1
2s (resp. q′2

2
1
2s ). So, the winning probability

of Γ1 is at least p − q2

2s+1 − q′2

2s+1 .
Γ2: We reduce Γ1 to Γ2 where V and the prover’s instances replace f(K, ., .)

by a random function. Clearly, the winning probability in Γ2 is at least p− q2

2s+1 −
q′2

2s+1 − AdvPRF (q + q′, t).
In Γ2, we have a game where at most one prover instance P seeing (NP , NV )

pair with V and C||R is completely random meaning that it is independent from
NP and NV . If P exists, it has to be far from V because of the winning condition
of MiM-game. Assuming that V and P see the same (NP , NV ), we look each
round i for the case where ri arrived on time. If ri arrived on time, thanks to the
lemma in [18], the response sent by P is independent from ri or the challenge
that P received is independent from ci sent by V. In any case, the adversary’s
probability to pass each round is 1

2 because the response ri has to be correct and
on time: the adversary guesses either ri or ci (post-ask or pre-ask attack). There
may also be one round where the pre-ask strategy is done for a constant number
of rounds until it makes P abort. After abort, there is an additional opportunity
(in the last of these rounds) for the adversary to pass the round by guessing the
response. Therefore,

p =
3

2n+1
+

q2

2s+1
+

q′2

2s+1
+ AdvPRF (q + q′, t).

	




590 H. Kılınç and S. Vaudenay

Assuming that q2

2s+1 + q′2

2s+1 +AdvPRF (q +q′, t) is negligible, the success prob-
ability of a MiM-adversary is 3

2n +1 very close to the optimal security 1
2n .

MiM-symDB is More Efficient than the Existing Optimally MiM-
secure Protocols DB1, DB2, DB3 [5]. P in DB1, DB2, DB3 compute a
PRF function two times and some other mappings too. So, with parameter
nc = nr = 2 in common structure, for a given target security, we construct
a nearly optimal protocol, both in terms of number of round and computation
complexity.

Theorem 4 (OT-MiM security of MiM-OTDB). Any MiM-game against
MiM-OTDB with only one instance of V (K) and one instance of P (K) has a
winning probability bounded by 3

2n+1 . In short, MiM-OTDB is OT-MiM-secure
(one time MiM-secure) [26].

Proof. Using the last game in the proof of Theorem 3, we can show that MiM-
OTDB is OT-MiM-secure. 	


MiM-OTDB is the most efficient one-time MiM-secure protocol [26] since it
does not need any computation.

Adaptation of MiM-symDB to SHM (Full-symDBH). We define Full-
symDBH with the tuple (K, V, Pdum, B,H) where B, V and K are as in MiM-
symDB, H is the same with P in MiM-symDB.

Theorem 5 (Security of Full-symDBH). If f is a secure PRF, Full-
symDBH is secure in SHM.

Proof. The conversion of Full-symDBH in PM is (K, V, PH
dum, B) which is

equal to MiM-symDB. We know that MiM-symDB is MiM-secure since f is
a secure PRF. Hence, Full-symDBH with (K, V, Pdum, B.H) is secure thanks to
Theorem 2. The security bound of Full-symDBH is the same as MiM-symDB’s.

	

Full-symDBH is the first protocol that reaches the optimal secure bounds for

MiM, DH, DF and TF secure.

4 Optimal Public-Key DB Protocols in SHM

In this section, we give two public key DB protocols in SHM: Full-pkDB1H

and Full-pkDB2H4 which is correct, private and secure. The first one is derived
from Simp-pkDB [19] in PM. We modify Simp-pkDB to make it private in SHM
because Simp-pkDB is not private in PM. The second one is derived from Eff-
pkDBp [19] in PM which is a variant of Eff-pkDB [19] with privacy protection.
We slightly modify Eff-pkDBp as well as Eff-pkDB to increase its efficiency. We
use these protocols because of their efficiency in PM.

4 Full refers full security (MiM, DF, DH, TF) and privacy.



Formal Analysis of Distance Bounding with Secure Hardware 591

Full-pkDB1H : This protocol is derived from Simp-pkDB [19]. However, Simp-
pkDB is not private. Therefore, we add an extra encryption process on the prover
side to achieve privacy. The details of Full-pkDB1H is as follows:

The input of the verifier V is its secret/public key pair (skV , pkV ) which
is generated from the key generation algorithm of an encryption scheme
(Enc′,Dec′). The input of H is the prover’s secret/public key pair (skP , pkP )
which is generated by the key generation algorithm of the encryption scheme
(Enc,Dec). The input of P is (pkP , pkV ). H picks a nonce N from {0, 1}s and
sends it to P along with pkP . Then, P encrypts pkP , N with pkV and sends
the encryption eP to V . V learns pkP and N by decrypting eP with skV . Then,
it picks C||R from {0, 1}2n and encrypts C||R||N with pkP . Next, it sends the
encryption eV to P and P relays it to H. H decrypts eV and learns C||R||N .
If N is the same nonce that it picked, it runs MiM-OTDB(C||R) with V . The
protocol is depicted in Fig. 5.

The conversion of Full-pkDB1H into PM is called as “Simp-pkDBp”. Its
prover algorithm is PH(skP ,pkP ) where P and H is from Full-pkDB1H . Simp-
pkDBp is the same as Simp-pkDB except that the prover encrypts its public key
and the nonce, and the verifier learns the public key and the nonce via decryption.
Clearly, Simp-pkDBp is MiM secure since Simp-pkDB is MiM-secure [19].

Fig. 5. Full-pkDB1H . The double arrow shows the communication between P and H

Theorem 6 (Security of Full-pkDB1H). If the encryption scheme
(Enc,Dec) is IND-CCA secure and MiM-OTDB is OT-MiM-secure, Full-
pkDB1H is secure in SHM.

Proof. Consider DB = (KV ,KP , V, PH
dum, B) with V and H from Full-pkDB1H .

Actually, DB = Simp-pkDB. Using Theorem 2, Full-pkDB1H is secure because
DB = Simp-pkDB is MiM-secure [19] assuming that (Enc,Dec) is IND-CCA
secure and MiM-OTDB is OT-MiM-secure. 	


Full-pkDB1H achieves almost optimal security bounds because MiM-security
of Simp-pkDB is reduced to MiM-security of MiM-OTDB [19].

We see that Full-pkDB1H is secure without encryption. Actually, the encryp-
tion is only used for achieving privacy. So, if privacy is not a concern, we can use



592 H. Kılınç and S. Vaudenay

Full-pkDB1H without the encryption and decryption. In this case, the verifier
has no secret/public key pair. This can be useful in practical applications.

We first prove that Simp-pkDBp achieves weak privacy. This helps us to prove
Full-pkDB1H is semi-strong private in SHM.

Theorem 7 (Weak privacy of Simp-pkDBp). Assuming the encryption
scheme with (Enc′,Dec′) is IND-CCA secure and the encryption scheme with
(Enc,Dec) is IND-CCA and IK-CPA [3] secure, then Simp-pkDBp is weak pri-
vate in PM.

Proof. Γi is a game where pi is the probability that the adversary in Γi succeeds.
Γ0: The adversary A plays the weak-privacy game in PM. The success prob-

ability of A is p0.
Γ1: We reduce Γ0 to Γ1 where the verifiers do not decrypt (with Dec′) any

encryptions sent by the provers and the provers do not decrypt (with Dec) the
encryptions generated by the verifiers. Instead, they directly use the values inside
the encryption. Because of the correctness of both encryption schemes p1 = p0.

Γ2: We reduce Γ1 to Γ2 where all provers encrypt (with Enc′) a random value
instead of pkP , N and all verifiers encrypt (with Enc) a random value instead
of (C||R||N). Note that the change on eV is indistinguishable by an adversary
since it does not know skP because we prove here weak privacy. Thanks to the
IND-CCA security of the encryption schemes p1 − p2 is negligible.

Γ3: We reduce Γ2 to Γ3 where the prover does not decrypt (with Dec) the
encryptions eV generated by the adversaries and it aborts. Since N has never
been used, the probability that A sends a valid encryption of N is negligible.
Therefore, p3 − p2 is negligible. Remark that in Γ3, DecskP has never used.

Γ4: We reduce Γ3 to Γ4 where the prover replaces pkP by a freshly generated
public-key (that V uses if eP is correctly forwarded). The only visible change from
Γ3 is that now eV is encrypted using a new key. Because of IK-CPA security of
the encryption scheme (with Enc,Dec), p4 − p3 is negligible.

Now, in Γ4, no identity is used by the verifiers and the provers, so adversary
succeeds Γ4 with 1

2 probability. Therefore, p0 − 1
2 is negligible. 	


Simp-pkDBp is not strong private due to the following attack: Assume that an
adversary corrupts a prover P and learns skP . Later, he can decrypt all eV sent
by the verifier with skP . If eV is sent to P , then it means the adversary learns the
challenges and responses. When these challenges and responses become known
during MiM-OTDB, the adversary can identify P .

Theorem 8 (Semi-strong privacy of Full-pkDB1H). Assuming that the
encryption scheme with (Enc′,Dec′) is IND-CCA secure and the encryption
scheme with (Enc,Dec) is IND-CCA and IK-CCA [3] secure, then Full-pkDB1H

is semi-strong private in SHM.

Proof. The proof works like in Theorem7. We only let non-anonymous hardware
decrypt eV from the adversary with the right key through a CCA query in the
IK-CCA game. 	




Formal Analysis of Distance Bounding with Secure Hardware 593

Full-pkDB2H : Eff-pkDBp [19] is the most efficient public-key DB protocol
which is secure against MiM, DF, DH and strong private. Briefly, in Eff-pkDBp,
after the prover transmits its public key via encryption, V and P run a key agree-
ment protocol with the algorithms (GenV ,GenP , ANV

, BNV
,D). In the end, with

the agreed key, they run a symmetric DB protocol.
One of the assumptions in MiM-security of Eff-pkDBp is that the symmetric

DB is “one-time multi-verifier MiM-secure”5 [19]. It is not possible to use MiM-
OTDB on current Eff-pkDBp as a symmetric DB because MiM-OTDB does
not fulfill the assumption. Hence, we modify Eff-pkDBp so that one time MiM-
security is enough. In this way, we are able to use MiM-OTDB as a symmetric
DB which does not require any computation.

Fig. 6. Full-pkDB2H . Double arrow shows the communication with H.

We slightly change the verifier algorithm of Eff-pkDBp and convert Eff-
pkDBp into SHM. We call this new version in SHM as Full-pkDB2H (in Fig. 6).
The description of Full-pkDB2H is as follows: The verifier V has the secret/public
key pair (skV , pkV ) = ((skV1 , skV2), (pkV1

, pkV2
)) which has two parts where the

first part is generated from the key generation algorithm of an encryption scheme
and the second part is generated by GenV . H has the input (skP , pkP ) gener-
ated by GenP . The input of P is (pkP , pkV ). First, V picks a nonce NV from
{0, 1}s and sends it to P . Then, P relays it to H. Similarly, H picks NP from the
distribution D(1s) and gives it P . P encrypts NP and pkP with pkV1

. Then, P
sends the encryption e to V . V decrypts it with skV and learns NP , pkP . H and
V run the algorithms BNV

(skP , pkP , pkV2
, NP ) and ANV

(skV2 , pkV2
, pkP , NP )

which output C||R, respectively. In the end, they run MiM-OTDB using C||R
as a secret key.

The conversion of Full-pkDB2H into PM is called as “our variant of Eff-
pkDBp”. In this variant, the prover algorithm is PH(skP ,pkP ) where P and H
are from Full-pkDB2H . The difference between the verifier algorithms of Eff-
pkDBp [19] and our variant of Eff-pkDBp is the following: In Eff-pkDBp, V does
not select any nonce (equivalently, we can say that NV is a constant) and the

5 It is equivalent to MiM-security with one prover instance and multiple verifier’s
instances.



594 H. Kılınç and S. Vaudenay

algorithms ANV
and BNV

generate a one-time secret key to run a symmetric
DB protocol. Remember that we do this change in the verifier algorithm of Eff-
pkDBp to increase its efficiency in SHM since we can use MiM-OTDB with this
version.

Theorem 9 (Security of Full-pkDB2H). If the key agreement protocol
(GenV ,GenP , ANV

, BNV
,D) is D-AKA secure [19] for all fixed NV ∈ {0, 1}s and

MiM-OTDB is one time MiM-secure then Full-pkDB2H is secure in SHM.

Proof. We prove it by using Theorem 2. Consider that DB = (KV ,KP , V,
PH
dum, B) with V and H from Full-pkDB2H is MiM-secure in PM. Actually, DB

is our variant of Eff-pkDB. Using Theorem2, Full-pkDB2H is secure because
our variant of EffpkDB is MiM-secure assuming that the key agreement proto-
col (GenV ,GenP , ANV

, BNV
,D) is D-AKA secure for all fixed NV ∈ {0, 1}s and

MiM-OTDB is one time MiM-secure. The MiM security proof of our variant
of Eff-pkDB is in the full version of the paper. 	


Full-pkDB2H achieves almost optimal security bounds because MiM-security
of our variant of Eff-pkDB is reduced to MiM-security of MiM-OTDB.

We see that Full-pkDB2H is secure without encryption. Actually, the encryp-
tion is used for achieving privacy. So, if privacy is not a concern, we can use
Full-pkDB2H without the encryption and decryption.

Theorem 10 (Strong privacy of Full-pkDB2H). Assuming that the key-
agreement protocol (GenV ,GenP , ANV

, BNV
,D) is D-AKAp secure [19] for all

fixed NV ∈ {0, 1}n and the crypto system is IND-CCA secure, Full-pkDB2H is
strong private in SHM.

Proof. We first show that our variant of Eff-pkDBp is strong private in PM.
Actually, the strong privacy proof of our variant of Eff-pkDBp is the same with
the proof of Eff-pkDBp (Theorem 7 of [19]) where first it reduces the privacy
game to the game where all the encryptions are random (the reduction showed
by using IND-CCA security) and then reduces to the game where the provers
use a random secret and public key pair with BNV

(the reduction showed by
using D-AKAp). Because of the equivalence of strong privacy of a DB in SHM
and its conversion in PM, we can conclude that Full-pkDB2H is strong private.

	

The prover algorithms of Full-pkDB1H and Full-pkDB2H are not Pdum, but

it can be easily seen from the proofs of Theorems 6 and 9 that the computations
in these algorithms do not have any effect on the security (i.e., the security of
Full-pkDB1H and Full-pkDB1H do not need any security assumptions on the
encryption scheme with (Enc′,Dec′) which is used by P .)

5 Conclusion

In this paper, we defined a new DB with three algorithms and designed its
adversarial and communication model of SHM. According to our new model,



Formal Analysis of Distance Bounding with Secure Hardware 595

we define a new security definition. We showed that the trivial attack of TF is
preventable in our definition. By showing implications between different threat
models, we deduced that if a DB protocol achieves TF-security in SHM, then
it is secure against all other security notions. This result cannot be applied in
PM because TF-security is not possible. We also gave some security relations
between PM and SHM. One of the relations shows that we can construct a DB
protocol that is secure against all the threat models including TF in SHM, if
its conversion into PM is MiM-secure. This result is significant because it shows
that many MiM-secure DB protocols in the literature [4–6,17,19,24,26] can be
used to achieve higher security level in our model.

We constructed a new only MiM-secure symmetric key DB in PM called
MiM-symDB. It achieves optimal security bounds and it is the most efficient
DB achieving this. We did not need to achieve other security models with MiM-
symDB because MiM-security is enough to have a secure DB protocol in SHM by
using Pdum. In addition, we constructed another symmetric DB protocol MiM-
OTDB. It is MiM-secure when it is run at most one time. It does not require
any computation, so it is the most efficient one.

We also considered public key DB protocols in SHM. For this, we derived
protocols Full-pkDB1H and Full-pkDB2H from Eff-pkDBp and Simp-pkDB [19],
respectively. Full-pkDB1H was constructed through some modifications on Eff-
pkDBp to be able to use computation free sub-protocol MiM-OTDB. We formally
proved that Full-pkDB1H is strong private and secure in SHM. By adding one
extra encryption, we added privacy to Simp-pkDB and constructed Full-pkDB2H

from its private version. We proved Full-pkDB2H is semi-strong private and
secure in SHM.

Compared to the previous models [1,5,13] which do not have any practical
and secure solution against all the threats, SHM lets us construct more efficient
protocols while achieving the highest security.

References

1. Avoine, G., Bingöl, M.A., Kardaş, S., Lauradoux, C., Martin, B.: A framework for
analyzing RFID distance bounding protocols. J. Comput. Secur. Spec. Issue RFID
Syst. Secur. 19, 289–317 (2010)

2. Avoine, G., Bultel, X., Gambs, S., Gérault, D., Lafourcade, P., Onete, C., Robert,
J.-M.: A terrorist-fraud resistant and extractor-free anonymous distance-bounding
protocol. In: Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security, pp. 800–814. ACM (2017)

3. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 33

4. Boureanu, I., Mitrokotsa, A., Vaudenay, S.: Secure and lightweightdistance-
bounding. In: Avoine, G., Kara, O. (eds.) LightSec 2013. LNCS, vol. 8162, pp.
97–113. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40392-7 8

https://doi.org/10.1007/3-540-45682-1_33
https://doi.org/10.1007/978-3-642-40392-7_8


596 H. Kılınç and S. Vaudenay

5. Boureanu, I., Vaudenay, S.: Optimal proximity proofs. In: Lin, D., Yung, M., Zhou,
J. (eds.) Inscrypt 2014. LNCS, vol. 8957, pp. 170–190. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-16745-9 10

6. Brands, S., Chaum, D.: Distance-bounding protocols. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-48285-7 30

7. Bultel, X., Gambs, S., Gérault, D., Lafourcade, P., Onete, C., Robert, J.-M.: A
prover-anonymous and terrorist-fraud resistant distance-bounding protocol. In:
Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and
Mobile Networks, pp. 121–133. ACM (2016)

8. Bussard, L., Bagga, W.: Distance-bounding proof of knowledge to avoid real-time
attacks. In: Sasaki, R., Qing, S., Okamoto, E., Yoshiura, H. (eds.) SEC 2005.
IAICT, vol. 181, pp. 223–238. Springer, Boston, MA (2005). https://doi.org/10.
1007/0-387-25660-1 15

9. Bussard, L., Roudier, Y.: Embedding distance-bounding protocols within intuitive
interactions. In: Hutter, D., Müller, G., Stephan, W., Ullmann, M. (eds.) Secu-
rity in Pervasive Computing. LNCS, vol. 2802, pp. 143–156. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-39881-3 14

10. Capkun, S., Buttyan, L., Hubaux, J.-P.: SECTOR: secure tracking of node encoun-
ters in multi-hop wireless networks. In: ACM Workshop on Security of Ad Hoc and
Sensor Networks (SASN), pp. 21–32 (2003)

11. Cremers, C., Rasmussen, K.B., Schmidt, B., Capkun, S.: Distance hijacking attacks
on distance bounding protocols. In: 2012 IEEE Symposium on Security and Privacy
(SP), pp. 113–127. IEEE (2012)

12. Desmedt, Y.: Major security problems with the “unforgeable” (Feige-) Fiat-Shamir
proofs of identity and how to overcome them. In: Congress on Computer and Com-
munication Security and Protection, SECURICOM, pp. 147–159. SEDEP, Paris
(1988)

13. Dürholz, U., Fischlin, M., Kasper, M., Onete, C.: A Formal Approach to Distance-
Bounding RFID Protocols. In: Lai, X., Zhou, J., Li, H. (eds.) ISC 2011. LNCS,
vol. 7001, pp. 47–62. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-24861-0 4

14. Fischlin, M., Onete, C.: Terrorism in distance bounding: modeling terrorist-fraud
resistance. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.)
ACNS 2013. LNCS, vol. 7954, pp. 414–431. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38980-1 26

15. Hancke, G.P.: A practical relay attack on ISO 14443 proximity cards. Technical
report, University of Cambridge Computer Laboratory, vol. 59, pp. 382–385 (2005)

16. Hermans, J., Pashalidis, A., Vercauteren, F., Preneel, B.: A new RFID privacy
model. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 568–
587. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23822-2 31

17. Hermans, J., Peeters, R., Onete, C.: Efficient, secure, private distance bounding
without key updates. In: WiSec Proceedings of the Sixth ACM Conference on
Security and Privacy in Wireless and Mobile Networks, pp. 207–218 (2013)

18. Kılınç, H., Vaudenay, S.: Optimal proximity proofs revisited. In: Malkin, T.,
Kolesnikov, V., Lewko, A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol.
9092, pp. 478–494. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
28166-7 23

19. Kılınç, H., Vaudenay, S.: Efficient public-key distance bounding protocol. In:
Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 873–901.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 29

https://doi.org/10.1007/978-3-319-16745-9_10
https://doi.org/10.1007/3-540-48285-7_30
https://doi.org/10.1007/3-540-48285-7_30
https://doi.org/10.1007/0-387-25660-1_15
https://doi.org/10.1007/0-387-25660-1_15
https://doi.org/10.1007/978-3-540-39881-3_14
https://doi.org/10.1007/978-3-642-24861-0_4
https://doi.org/10.1007/978-3-642-24861-0_4
https://doi.org/10.1007/978-3-642-38980-1_26
https://doi.org/10.1007/978-3-642-38980-1_26
https://doi.org/10.1007/978-3-642-23822-2_31
https://doi.org/10.1007/978-3-319-28166-7_23
https://doi.org/10.1007/978-3-319-28166-7_23
https://doi.org/10.1007/978-3-662-53890-6_29


Formal Analysis of Distance Bounding with Secure Hardware 597

20. Kim, C.H., Avoine, G., Koeune, F., Standaert, F.-X., Pereira, O.: The swiss-knife
RFID distance bounding protocol. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008.
LNCS, vol. 5461, pp. 98–115. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-00730-9 7

21. Reid, J., Nieto, J.M.G., Tang, T., Senadji, B.: Detecting relay attacks with timing-
based protocols. In: Proceedings of the 2nd ACM Symposium on Information,
Computer and Communications Security, pp. 204–213. ACM (2007)

22. Singelee, D., Preneel, B.: Location verification using secure distance bounding pro-
tocols. In: 2005 IEEE International Conference on Mobile Adhoc and Sensor Sys-
tems Conference, 7 p. IEEE (2005)

23. Singelée, D., Preneel, B.: Distance bounding in noisy environments. In: Stajano,
F., Meadows, C., Capkun, S., Moore, T. (eds.) ESAS 2007. LNCS, vol. 4572, pp.
101–115. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73275-
4 8

24. Vaudenay, S.: On modeling terrorist frauds. In: Susilo, W., Reyhanitabar, R. (eds.)
ProvSec 2013. LNCS, vol. 8209, pp. 1–20. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-41227-1 1

25. Vaudenay, S.: On privacy for RFID. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015.
LNCS, vol. 9451, pp. 3–20. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-26059-4 1

26. Vaudenay, S.: Private and secure public-key distance bounding. In: Böhme, R.,
Okamoto, T. (eds.) FC 2015. LNCS, vol. 8975, pp. 207–216. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-47854-7 12

27. Vaudenay, S.: Sound proof of proximity of knowledge. In: Au, M.-H., Miyaji,
A. (eds.) ProvSec 2015. LNCS, vol. 9451, pp. 105–126. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26059-4 6

https://doi.org/10.1007/978-3-642-00730-9_7
https://doi.org/10.1007/978-3-642-00730-9_7
https://doi.org/10.1007/978-3-540-73275-4_8
https://doi.org/10.1007/978-3-540-73275-4_8
https://doi.org/10.1007/978-3-642-41227-1_1
https://doi.org/10.1007/978-3-642-41227-1_1
https://doi.org/10.1007/978-3-319-26059-4_1
https://doi.org/10.1007/978-3-319-26059-4_1
https://doi.org/10.1007/978-3-662-47854-7_12
https://doi.org/10.1007/978-3-319-26059-4_6


KRB-CCN: Lightweight Authentication
and Access Control for Private

Content-Centric Networks

Ivan O. Nunes(B) and Gene Tsudik

University of California Irvine, Irvine, USA
{ivanoliv,g.tsudik}@uci.edu

Abstract. Content-Centric Networking (CCN) is an internetworking
paradigm that offers an alternative to today’s IP-based Internet Archi-
tecture. Instead of focusing on hosts and their locations, CCN empha-
sizes addressable named content. By decoupling content from its location,
CCN allows opportunistic in-network content caching, thus enabling bet-
ter network utilization, at least for scalable content distribution. How-
ever, in order to be considered seriously, CCN must support basic security
services, including content authenticity, integrity, confidentiality, autho-
rization and access control. Current approaches rely on content producers
to perform authorization and access control, which is typically attained
via public key encryption. This general approach has several disadvan-
tages. First, consumer privacy vis-a-vis producers is not preserved. Sec-
ond, identity management and access control impose high computational
overhead on producers. Also, unnecessary repeated authentication and
access control decisions must be made for each content request. (This
burden is particularly relevant for resource-limited producers, e.g., ane-
mic IoT devices.)

These issues motivate our design of KRB-CCN – a complete authoriza-
tion and access control system for private CCN networks. Inspired by
Kerberos in IP-based networks, KRB-CCN involves distinct authentication
and authorization authorities. By doing so, KRB-CCN obviates the need for
producers to make consumer authentication and access control decisions.
KRB-CCN preserves consumer privacy since producers are unaware of con-
sumer identities. Producers are also not required to keep any hard state
and only need to perform two symmetric key operations to guarantee
that sensitive content is confidentially delivered only to authenticated
and authorized consumers. Furthermore, KRB-CCN works transparently
on the consumer side. Most importantly, unlike prior designs, KRB-CCN
leaves the network (i.e., CCN routers) out of any authorization, access
control or confidentiality issues. We describe KRB-CCN design and imple-
mentation, analyze its security, and report on its performance.

1 Introduction

Content-Centric Networking (CCN) is an emerging internetworking paradigm
that emphasizes transfer of named data (aka content) instead of host-to-host
c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 598–615, 2018.
https://doi.org/10.1007/978-3-319-93387-0_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_31&domain=pdf


KRB-CCN: Lightweight Authentication and Access Control for Private CCNs 599

communication [1,2]. All CCN content is uniquely named. Content producers
are entities that publish content under namespaces. Entities that wish to obtain
content, called consumers, do so by issuing an interest message specifying desired
content by its unique name. The network is responsible for forwarding the inter-
est, based on the content name, to the nearest copy of requested content. Inter-
ests do not carry source or destination addresses. Each interest leaves state in
every router it traverses. This state is later used to forward, along the reverse
path, requested content back to the consumers. As content is forwarded to the
consumer, each router can choose to cache it. If a popular content is cached, sub-
sequent interests for it can be satisfied by the caching router and not forwarded
further. This can lead to lower delays, better throughput and improved network
utilization.

Due to CCN’s unique characteristics, security focus shifts from securing host-
to-host tunnels to securing the content itself. CCN mandates that each content
must be signed by its producer. This is the extent of CCN network-layer security.
In particular, CCN does not make any provisions for confidentiality, authoriza-
tion or access control, leaving these issues to individual applications. We believe
that this approach makes sense, since involving the network (i.e., routers) in
such issues is generally problematic for both performance and security reasons.

Access control (AC) in CCN has been explored in recent years. Most
approaches [3–9]1 rely on using public key encryption. Specifically, producers
encrypt content with a public key of an authorized consumer or a group thereof.
The latter use their corresponding private keys to decrypt. Although it seems to
work, this approach exhibits several problems:

– First, producers are responsible for handling consumer authentication and
content AC on their own. Thus, they must deal with (1) consumer identity
management and authentication, (2) AC policy representation and storage,
(3) updates of access rights, and (4) content encryption. In some cases, pro-
ducers might not want (or be able) to deal with this burden, e.g., resource-
constrained IoT devices. On the consumer side, this means keeping track of
producer-specific authentication contexts and keys.

– Second, AC enforced by producers implies sacrificing consumer privacy, which
is an important and appealing CCN feature. Since CCN interests do not carry
source addresses, a content producer (or a router) normally does not learn
the identity of the consumer. However, if the producer enforces AC, it needs
to learn consumers identities.

– Third, if multiple producers are in the same administrative domain and each
enforces its AC policy, it is difficult to react to policy changes, e.g., access
revocation for a given consumer or a consumer’s credential. Implementing
such changes requires notifying each producer individually.

– Finally, since public keys are associated with identities, if AC is based on pub-
lic keys, authentication of consumers is attained via consumer-owned private
keys. However, if a consumer is authenticated by other means, e.g., passwords

1 We overview them in Sect. 6.



600 I. O. Nunes and G. Tsudik

and biometrics, each producer would have to store and manage potentially
sensitive state information (password files or biometric templates) for each
consumer.

Since mid-1980s, Kerberos [10] has been successfully and widely used to address
these exact issues in private IP-based networks or so-called stub Autonomous
Systems. Kerberos de-couples authentication and authorization services via
short-term tickets. It also allows services (e.g., storage, compute or web servers)
to be accessed by clients over a secure ephemeral session. By checking a client’s
ticket for freshness of authentication information, a service limits the period of
vulnerability due to revocation.

In this paper, we present KRB-CCN, a system inspired by Kerberos for authen-
tication and access control (AC) enforcement in CCN, that aims at addressing
the aforementioned issues2. KRB-CCN treats consumer authentication and autho-
rization as separate services. It uses tickets to allow consumers to convey autho-
rization permissions to servers, e.g., content producers or repositories. Servers
use tickets to determine whether requested content should be provided. KRB-CCN
also introduces a novel namespace based AC policy, which allows a consumer to
securely retrieve content without revealing its identity to the content producer,
thus preserving consumer privacy. In addition, KRB-CCN is transparent to the
users; they need not be aware of KRB-CCN or perform any additional tasks. It
is also completely invisible to the network, i.e., CCN routers are unaware of
KRB-CCN.

Organization: Section 2 overviews CCN and Sect. 3 overviews Kerberos. Next,
Sect. 4 introduces KRB-CCN, including its system architecture, namespace based
AC scheme, and the protocol for authentication, authorization, and secure con-
tent retrieval. Then, performance of KRB-CCN is evaluated in Sect. 5. Finally,
Sect. 6 discusses related work and Sect. 7 concludes this paper. Security analysis
of KRB-CCN is available in the extended version of this paper3.

2 CCN Overview

We now overview key features of CCN. Given basic familiarity with CCN, this
section can be skipped with no loss of continuity.

In contrast to today’s IP-based Internet architecture which focuses on end-
points of communication (i.e., interfaces/hosts and their addresses) CCN [1,11]
centers on content by making it named, addressable, and routable within the
network. Moreover, a content must be signed by its producer. A content name is
a URI-like string composed of one or more variable-length name segments, sepa-
rated by the character. To obtain content, a user (consumer) issues an explicit
request message, called an interest containing the name of desired content. This

2 KRB-CCN source-code is available at: https://github.com/ivanolive/krb-ccn.
3 See: http://arxiv.org/abs/1804.03820.

https://github.com/ivanolive/krb-ccn
http://arxiv.org/abs/1804.03820


KRB-CCN: Lightweight Authentication and Access Control for Private CCNs 601

interest can be satisfied by either: (1) a router cache, or (2) the content producer.
A content object message is returned to the consumer upon satisfaction of the
interest. Name matching is exact, e.g., an interest for /edu/uni-X/ics/cs/fileA
can only be satisfied by a content object named /edu/uni-X/ics/cs/fileA.

In addition to a payload, a content object includes several other fields. In
this paper, we are only interested in the following three: Name, Validation, and
ExpiryTime. Validation is a composite of validation algorithm information
(e.g., the signature algorithm, its parameters, and the name of the public verifi-
cation key), and validation payload, i.e., the content signature. We use the term
“signature” to refer to the entire Validation field. ExpiryTime is an optional,
producer-recommended duration for caching a content object. Interest messages
carry a name, optional payload, and other fields that restrict the content object
response. We refer to [11] for a complete description of all CCN message types,
fields and their semantics.

Packets are moved within the network by routers. Each CCN router has two
mandatory (and one optional) components:

– Forwarding Interest Base (FIB) – a table of name prefixes and corresponding
outgoing interfaces. The FIB is used to route interests based on longest-prefix-
matching (LPM) of their names.

– Pending Interest Table (PIT) – a table of outstanding (pending) interests and
a set of corresponding incoming interfaces.

– An optional Content Store (CS) used for content caching. The timeout for
cached content is specified in the ExpiryTime field of the content header.
From here on, we use the terms CS and cache interchangeably.

A router uses its FIB to forward interests toward the producer of requested
content. Whereas, a router uses its PIT to forward content along the reverse
path towards consumers. Specifically, upon receiving an interest, a router R first
checks its cache (if present) to see if it can satisfy this interest locally. In case of
a cache miss, R checks its PIT for an outstanding version of the same interest. If
there is a PIT match, the new interest’s incoming interface is added to the PIT
entry. Otherwise, R creates a new PIT entry and forwards the interest to the
next hop according to its FIB (if possible). For each forwarded interest, R stores
some state information in the PIT entry, including the name in the interest and
the interface from which it arrived, such that content may be returned to the
consumer. When content is returned, R forwards it to all interfaces listed in the
matching PIT entry and then removes the entry. A content that does not match
any PIT entry is discarded.

3 Kerberos Overview

We now summarize Kerberos. We refer to [12] for a more extensive descrip-
tion. Kerberos includes four types of entities: clients, services, an Authentication
Server (AS), and a Ticket-Granting Server (TGS). The AS/TGS pair (which are



602 I. O. Nunes and G. Tsudik

often collocated within the same host) is also known as a Key Distribution Cen-
ter (KDC). Should a new client/user or a new service be added to the network,
it must first be properly registered into KDC’s (AS and TGS) databases.

In Kerberos’ terminology, a realm corresponds to a single administrative
domain, e.g., a private network or a stub Autonomous System. Each realm has
one KDC and any authorization or AC decision by a KDC is only valid within its
realm. Thus, identities, tickets, and encryption keys (see below) are also realm-
specific.

Principal is the term used to refer to names of entries in the KDC database.
Each user/client and service has an associated principal. User principals are gen-
erally their usernames in the system. Service principals are used to specify vari-
ous applications. A service principal has the format: service/hostname@realm.
A service specification is needed in addition to a hostname, since a single host
often runs multiple services. With Kerberos operation in IP Networks, principals
are resolved to host IP addresses via DNS look-ups [13]. As can be expected,
CCN obviates the need for DNS look-ups, since all content objects are uniquely
named by design. Moreover, routing is done based on content names. As dis-
cussed below, KRB-CCN enforces AC based on content namespaces, instead of
service principals.

Each client/user principal (i.e., username) stored in the AS database is asso-
ciated with a key, which can be either a public-key or a symmetric key derived
from the user’s password. Also, the same client/user principal also exists in the
TGS database. However, it is associated with a list principals for services that
such user has permission to access.

Before attempting to access any content, a client must first authenticate to
its local AS. This is done by either typing a password, or proving possession
of a secret key associated with the client’s identity in the AS database. If the
client proves its identity, AS issues a Ticket-Granting Ticket (TGT) – a
temporary proof of identity required for the authorization. This TGT might be
cached and used multiple times until its expires.

The client uses a valid TGT to request, from TGS, authorization for a ser-
vice. The TGS is responsible for access control decisions – verifying whether the
requested service is within the set of permitted services for the identity ascer-
tained in the provided TGT. If the result is positive, TGS issues a Service
Ticket (ST) to be used for requesting the actual service.

4 KRB-CCN Design

There are three fundamental requirements for any authentication and autho-
rization system. First, AC policies must effectively bind identities to their access
rights. Second, once AC policies are established, there must be a way to enforce
them, thus preventing unauthorized access. Third, authentication mechanisms
must ensure that identities can not be spoofed; this includes both producers
and consumers. The system must also not involve the network elements (i.e.,
routers) where authentication and authorization burden is both misplaced and
simply unnecessary.



KRB-CCN: Lightweight Authentication and Access Control for Private CCNs 603

In the rest of this section, we describe how KRB-CCN achieves each of these
requirements. We start by introducing KRB-CCN system architecture and its
namespace-based AC policy, which takes advantage of CCN hierarchical con-
tent name structure to provide AC based on content prefixes. Next, we describe
KRB-CCN communication protocol, which enforces AC policies while providing a
single sign-on mechanism for user authentication. Though KRB-CCN is inspired
by Kerberos for IP-based networks, it also takes advantage of unique CCN fea-
tures to effectively satisfy basic authentication and authorization requirements.
Throughout the protocol description we discuss the intuition behind the security
of KRB-CCN.

As it is the case for IP-based Kerberos, KRB-CCN targets private (content-
centric) networks, such as intra-corporation/intra-Autonomous Systems settings.

Fig. 1. KRB-CCN system architecture

4.1 System Architecture

Recall that Kerberos has 4 types of entities: AS, TGS, client, and server. A
Kerberos realm (domain) typically has one AS/TGS pair, usually collocated in
the same host, as well as multiple clients and servers. KRB-CCN also includes four
types of entities that map to Kerberos entities as follows:

– Consumer: corresponds to Kerberos client. It issues interests for content and
services according to KRB-CCN protocol. Each consumer has an identity and
a set of associated permissions registered in the system.

– Producer: subsumes one or more Kerberos servers. A producer is required
to register its namespace(s) in the system, by registering with a TGS (see
below). A single namespace, i.e., a name prefix, can correspond to a single
Kerberos server. Alternatively, a group of namespaces of the same producer
can be treated as a single server. A producer does not perform any direct
consumer authentication or authorization. A producer only checks whether a
content-requesting consumer possesses a valid TGS-issued ticket.

– As in Kerberos, authentication and authorization are handled by two logically
separated entities which can be collocated:



604 I. O. Nunes and G. Tsudik

Authentication Server (AS) (aka TGT-Prod): treated as a special type of
producer that generates so-called Ticket-Granting Tickets (TGT-s) for con-
sumers once their identities are verified. These tickets can then be used as
temporary proofs of identity. We refer to the AS as TGT-Prod.
Ticket − Granting Server (TGS) (aka CGT-Prod): performs authorization
and is also treated as a special type of producer. Based on a valid con-
sumer TGT and a request to access to a given namespace (server), TGS
checks whether this consumer is allowed access to the requested namespace.
If so, TGS issues a Content-Granting Ticket (CGT), which proves to the pro-
ducer that this consumer is granted access to any content under the requested
namespace. We refer to TGS as CGT-Prod.

Figure 1 illustrates KRB-CCN system architecture. As part of the log-in proce-
dure (aka single sign-on or SSO), a consumer authenticates to TGT-Prod (round
1) and obtains a TGT, which it caches. Whenever a consumer wants to ini-
tially access content from a particular producer, it requests authorization from
CGT-Prod using its cached TGT (round 2) and obtains a CGT, which it also
caches. A CGT authorizes access to one or more namespaces belonging to the
same producer. Finally, a consumer requests content from the producer using
the corresponding CGT (round 3). TGT and CGT-s remain valid and re-usable
until their expiration time runs out. Note that each round (1, 2 and 3) is realized
as a single interest-content exchange.

Subsequent requests from the namespace(s) specified in the CGT require
no involvement of either TGT-Prod or CGT-Prod. A consumer retrieves another
content by directly issuing an interest containing the cached CGT. To access
content under a different namespace, a consumer uses its cached TGT to contact
CGT-Prod and request a new CGT.

For authentication and authorization, KRB-CCN must ensure that TGT-s and
CGT-s issued to a specific consumer Cr are unforgeable, and not usable by clients
other than Cr. Moreover, it must make sure that content authorized for Cr can
only be decrypted by Cr. In the rest of this section we go into the details of how
KRB-CCN achieves these requirements and functionalities.

4.2 Namespace-Based AC Policies

Instead of traditional service principals in Kerberos, KRB-CCN AC policies refer
to namespaces, i.e, prefixes of content names that correspond to a producer.
Recall that a content name is a URI-like string composed of arbitrary number
of elastic name segments, separated by a character. For example, consider a
content named:

/edu/uni-X/ics/cs/students/alice/images/img1.png

The leftmost part, /edu/uni-X/ics/cs, defines this content’s original pro-
ducer’s location. Subsequent name segments get increasingly specific, defining,
e.g., location of the content in a directory structure on the producer.

KRB-CCN leverages this hierarchical name structure to implement AC policies
based on content prefixes. For example, to grant Alice permission to retrieve



KRB-CCN: Lightweight Authentication and Access Control for Private CCNs 605

contents under the prefix /edu/uni-X/ics/cs/students/alice, namespace
/edu/uni-X/ics/cs/students/alice/* must be included under Alice’s ID in
the AC Policy Store, as shown in Fig. 1. This entry would allow Alice to retrieve
/edu/uni-X/ics/cs/students/alice/images/img1.png, as well as any con-
tent with that same prefix.

Suppose that Bob is a faculty member of the faculty in the same institution
and has privileges to retrieve contents under own (Bob’s) private directory and
any content of students’ directories. Bob’s entry in the AC Policy store would
include two namespaces:

/edu/uni-X/ics/cs/faculty/bob/* and /edu/uni-X/ics/cs/students/*

The former allows Bob to access its own private directory under the faculty
directory, but no other faculty’s private directories. The latter allows Bob to
access contents of any student directory under /edu/uni-X/ics/cs/students/*.
Finally, suppose that Carl is a system administrator. As such, he has access
to all content. Carl’s entry in the AC Policy Store would be the namespace
/edu/uni-X/ics/*, allowing access to any content with a name starting with this
prefix; this includes all faculty and students’ content.

If Alice (who is not yet “logged in”, i.e., has no current TGT) wants to issue
an interest for /edu/uni-X/ics/cs/students/alice/images/img1.png she
first authenticates to TGT-Prod to get a TGT. Alice then uses the TGT to request
a CGT from CGT-Prod for namespace /edu/uni-X/ics/cs/students/alice/*.
Notice that Alice does not need to specify the actual content name –
only the namespace. Therefore, CGT-Prod does not learn which content
Alice wants to retrieve, only the producer’s name. Since CGT is associated
with /edu/uni-X/ics/cs/students/alice/*, it can be used for future inter-
ests within the same namespace, e.g., /edu/uni-X/ics/cs/students/alice/
docs/paper.pdf.

4.3 Protocol

To retrieve protected content, Cr must go through all of KRB-CCN’s three phases,
in sequence: authentication, authorization, and content retrieval. As discuss
below, transition between phases is automated on the consumer side, i.e., it
requires no extra actions. Table 1 summarizes our notation.

Authentication
The first phase on KRB-CCN verifies consumer identity via authentication. The
authentication protocol in Fig. 2 is executed between Cr and TGT-Prod. If it
succeeds, Cr receives a TGT, used in the authorization phase, as proof that Cr’s
identity has been recently verified.

Cr starts by issuing an interest with TGT suffix in the content name (e.g.,
/uni-X/ics/TGT). This interest carries as payload consumer’s UID, i.e, Cr’s
username. Hence, the actual interest name also contains a hash of the payload as
its suffix4. The interest is routed by CCN towards TGT-Prod. Upon the interest,
4 In CCN design, an interest carrying a payload must have the hash of the payload

appended to its name.



606 I. O. Nunes and G. Tsudik

Table 1. Notation summary

Notation Description

N A namespace prefix (e.g., edu/uni-X/ics/alice/)

Cr Consumer

TGT Name Ticket-granting ticket name (e.g., edu/uni-X/ics/TGT) that will
be routed towards TGT-Prod

CGT Name Content-granting ticket name (e.g., edu/uni-X/ics/CGT) that
will be routed towards CGT-Prod

skC Consumer secret key

pkC Consumer public key, including public UID and certificate

kA Long-term symmetric key shared between TGT-Prod and
CGT-Prod

kP Long-term symmetric key shared between CGT-Prod and a given
content producer

s ←$ {0, 1}λ Random λ-bits number generation

ct ← Enck(pt) Authenticated encryption of pt using symmetric key k

pt ← Deck(ct) Decryption of ct using symmetric key k

ct ← Encpk(pt) Authenticated encryption of pt using public key pk

pt ← Decsk(ct) Decryption of ct using secret key sk

TGT-Prod looks up UID in its user database and retrieves the corresponding
public key. The protocol assumes that, when a user enrolls in the system, a
public/private key-pair is generated. Alternatively, a password can be used for
the same purpose, as discussed later. Once TGT-Prod successfully locates the
user and retrieves the public-key, it proceeds with TGT generation. Otherwise,
it replies with a special error content message indicating unknown user.

TGT is an encrypted structure with three fields: UID, kCGT , and expiration
date t1. It is encrypted using kA – a long-term symmetric key shared between
TGT-Prod and CGT-Prod. Only CGT-Prod can decrypt and access cleartext fields
of a TGT. Since Cr needs to present the TGT to CGT-Prod during the authoriza-
tion phase, UID binds the TGT to Cr. This same UID is used later for names-
pace access rights verification. CGT-Prod uses t1 to verify whether a TGT is still
valid. TGT expiration time is a realm-specific (and usually realm-wide) parame-
ter reflecting the duration of a typical user authenticated session, e.g., 8 h. After
TGT expires, Cr needs to repeat the authentication protocol with TGT-Prod. A
TGT also contains a short-term symmetric key kCGT , encrypted separately for
CGT-Prod and Cr. The purpose of kCGT is to allow Cr and CGT-Prod to commu-
nicate securely in the subsequent authorization protocol phase. In addition to
the TGT, TGT-Prod generates tokenC

CGT , which contains the same t1 and kCGT

encrypted with the pkC associated with UID.
To transmit the TGT to Cr, TGT-Prod responds with a content message

containing the TGT and tokenC
CGT , which is routed by CCN back to Cr. Cr



KRB-CCN: Lightweight Authentication and Access Control for Private CCNs 607

Consumer TGT-Prod

I.name = TGT Name
payload=UID

pkC fetch(UID)

t1 setTGTExpiration()

kCGT $ {0, 1}λ

tokenC
CGT EncpkC (kCGT ||t1)

TGT EnckA(UID||t1||kCGT )
payload=TGT,tokenCCGT

kCGT ||t1 DecskC (tokenC
CGT )

store(TGT, t1, kCGT)

Fig. 2. Consumer authentication protocol

Consumer CGT-Prod

I.name = CGT Name
payload=N,TGT

UID||t1||kCGT DeckA(TGT )

Verify: t1 not expired

kP verifyPolicyAndFetchKey(N,UID)

kN $ {0, 1}λ

t2 setCGTExpiration()

CGT EnckP (N ||kN ||t2)
tokenC

N EnckCGT (kN ||t2)
payload=CGT,tokenCN

kN ||t2 DeckCGT (tokenC
N )

store(N,CGT, t2, kN)

Fig. 3. Consumer-data authorization protocol

cannot decrypt, access, or modify the TGT due to the use of authenticated
encryption. Cr decrypts tokenC

CGT and caches the TGT for the duration of t1,
along with kCGT . The TGT is presented to CGT-Prod every time Cr needs to
request authorization for a new namespace.

Authorization
The authorization phase (Fig. 3) is executed between Cr and CGT-Prod. It
requires Cr to have a valid TGT, acquired from the authentication phase
described above. Upon successful completion of the authorization protocol, Cr

obtains a namespace-specific CGT, which demonstrates Cr’s authorization to
access a particular restricted content namespace. However, the CGT does not
reveal Cr’s identity to the content producer; Cr’s authorization is ascertained
based on possession of a correct session key.

Cr starts the protocol by sending an interest with name set
to CGT Name. The payload includes the namespace prefix N (e.g.,
/edu/uni-X/ics/cs/students/alice/*) for which authorization is being
requested and a non-expired TGT. Optionally, if confidentiality for namespace



608 I. O. Nunes and G. Tsudik

N is an issue, Cr can compute EnckCGT
(N). instead of sending N in clear. When

CGT-Prod receives this interest, it uses kA (long-term symmetric key shared by
TGT-Prod and CGT-Prod) to decrypt the TGT and obtains UID, t1 and kCGT .
Next, CGT-Prod checks TGT for expiration. It then optionally (if encryption was
used in the interest) computes N ← DeckCGT

(EnckCGT
(N)).

If the TGT is successfully verified, CGT-Prod invokes verifyPolicyAnd-
FetchKey procedure, which (1) fetches AC rules for user UID; (2) verifies if
N is an authorized prefix for UID; and (3) returns kP – symmetric key associ-
ated with the producer for N . kP is later used to encrypt the CGT such that
only the appropriate producer can decrypt it.

Similar to a TGT, a CGT carries an expiration t2 and a fresh key kN . The
latter is used between Cr and the content producer for confidentiality and mutual
authentication, as discussed later. However, instead of UID, a CGT includes
N , i.e., a CGT proves to the content producer that whoever possesses kN is
authorized to access content under N . Also, a tokenC

N ← EnckCGT
(kN ||t2) is

sent to Cr, such that Cr can obtain kN and t2.
In response to a CGT interest, Cr receives a content packet containing the

CGT and tokenC
N . Cr decrypts tokenC

N using KCGT and creates a cache entry
containing: N , the CGT, kN , and t2. This cached information is used (until time
t2) in all future requests for content under N .

Authorized Content Request
On the consumer (client) side, a KRB-CCN content request is similar to a
regular CCN interest, except that Cr needs to include a valid CGT in
the payload. An authorized interest name has the format: N ||suffix (e.g.,
/edu/uni-X/ics/cs/students/alice/images/img1.png), where N is autho-
rized by the CGT, and suffix specifies which content is being requested under
namespace N . Note that, as long as Cr has proper access rights, a single CGT
allows accessing any content with prefix N .

The secure content retrieval phase is in Fig. 4. When the producer receives an
interest for a restricted content, it first decrypts the CGT and verifies its expira-
tion. Note that kP used to decrypt the CGT is shared between the producer and
CGT-Prod. Thus, successful decryption (recall that we use authenticated encryp-
tion) implies that CGT was indeed generated by CGT-Prod and has not been
modified. The producer obtains kN , which is also known to Cr. The producer
encrypts requested content using kN , i.e., D′ ← EnckN

(D). D′ is returned to
Cr, which decrypts it to obtain D.

Note that, by replaying the interest issued by Cr, anyone can retrieve D′.
This might not appear problematic since only the authorized consumer (who
has kN ) can decrypt D′. However, in some application scenarios this might be
troublesome, e.g.:

– Production of content requires a lot of computation, e.g., expensive encryp-
tion. In this case, an adversary can replay legitimate interests previously
issued by authorized consumers. The adversary’s goal might be to mount a
DoS attack on the producer.



KRB-CCN: Lightweight Authentication and Access Control for Private CCNs 609

– The producer might be a peripheral device, e.g., a printer. In this setting,
the interest might be a request to print a (perhaps very large) document and
returned content D might be a mere confirmation of it having been printed. In
this case, the replay attack allows the adversary to print the same document
multiple times, resulting in DoS.

This issue occurs since the producer does not authenticate Cr for each interest.
A modified version of the protocol, shown in Fig. 5, addresses the problem. It
uses a challenge-response protocol that allows the producer to confirm that Cr

possesses kN before producing the content or providing service. As a down-side,
this incurs an additional round of communication for the challenge-response
protocol.

Consumer Content Producer

I.name = N||suffix
payload=CGT

N ′||kN ||t2 DeckP (CGT )

Verify N ′ is prefix of I.name

Verify t2 expiration

D ProduceData(I.name)

D′ EnckN (D)
payload=D′

D DecKN (D′)

Fig. 4. Content retrieval without
optional challenge-response based
consumer authentication

Consumer Content Producer

I.name = N||suffix
payload=c1,CGT

N ′||kN ||t2 DeckP (CGT )

Verify N ′ is prefix of I.name

Verify t2 expiration

n1 $ {0, 1}λ

chall EnckN (n1)
payload=chall

n1 DecKN (chall)

reply EnckN (n1 + 1)
payload=reply

n′
1 DecKN (reply)

Verify: (n′
1 − 1) = n1

D ProduceData(I.name)

D′ EnckN (D)
payload=D′

D DecKN (D′)

Fig. 5. Content retrieval including
optional challenge-response based con-
sumer authentication

Transparent Execution and Ticket Caching
Recall that Cr must issue three types of interests, for: authentication, autho-
rization, and the actual content request. This process is transparent to the user
since KRB-CCN consumer-/client-side code handles these steps by following the
work-flow in Fig. 6.

Whenever Cr issues an interest, KRB-CCN client intervenes and checks whether
the name is part of any restricted namespace. If so, it looks up the local cache
of CGT-s to find a CGT for prefix N . If a valid CGT is found, it is added to
the interest payload and the interest is issued. A cached and valid CGT can be
used to skip the first two phases, allowing authenticated and authorized content
retrieval in one round.



610 I. O. Nunes and G. Tsudik

If no valid cached CGT is found, KRB-CCN client looks up a cached TGT. If
a valid TGT is found, the authentication phase is skipped. The client requests a
CGT and uses it to request the actual content. This process takes two rounds.

In the worst case all three phases are executed, which results in three rounds
of communication. Since consumers only request TGT and/or CGT-s when these
tickets expire, ticket caching also reduces the number of requests (and overall
traffic volume) flowing to TGT-Prod and CGT-Prod. In practice, we expect CGT-s
and TGT-s to be long-lived, i.e., on the order of hours or days, similar to current
single sign-on systems. This means that the bulk of authorized content retrieval
can be performed in one round. If mutual authentication (per protocol in Fig. 5)
is demanded by the producer, one extra round is required.

Fig. 6. KRB-CCN work-flow for transparent execution on consumers

5 Implementation and Performance Evaluation

This section discusses our KRB-CCN prototype implementation and its
performance.

5.1 Methodology

KRB-CCN is implemented as an application service running as specific purpose
producers that produce tickets. Also, consumer-side code is modified to imple-
ment the work-flow for authenticated and authorized content request in Fig. 6.
Our implementation uses the CCNx software stack [14] and the cryptographic
library Sodium [15]. Both publicly available and written in C. For authenticated
PKE operations, we use Sodium Sealed-Boxes [16], implemented over X25519
elliptic curves. AES256-GCM [17] is used to encrypt-then-MAC, i.e., for authen-
ticated symmetric-key encryption.

Experiments presented in this section were ran on an Intel Core i7-3770 octa-
core CPU @3.40 GHz, with 16 GB of RAM, running Linux (Ubuntu 14.04LTS).
Content payload sizes for interests were set to 10 kilobytes. Payload sizes of TGT
and CGT contents are 228 bytes and 165 bytes, respectively. Each carries the
respective ticket/token pair, as described in Sect. 4. In every experiment, each



KRB-CCN: Lightweight Authentication and Access Control for Private CCNs 611

participating entity’s process was assigned as a high priority, and each ran in
a single processor core. Unless stated otherwise, results are an average of 10
executions, presented with 95% confidence intervals.

Figure 7 presents our network testbed. The goal is to evaluate KRB-CCN’s
overhead. To avoid topology-specific delays, we used a minimal setup containing
a single producer P , TGT-Prod, and CGT-Prod. These entities are interconnected
by an unmodified CCNx Athena router.

5.2 Experiments

We start by measuring per-request processing times at each producer: TGT-Prod,
CGT-Prod, and P . Each of these processes was executed 1, 000 times. Figure 8
presents the distribution, as box-plots, of processing time for verifying an incom-
ing interest and replying with the content (either ticket, or authorized encrypted
content) at each producer type. Figure 8 shows that the most computationally
expensive part is TGT issuance (about 500µs per request). Higher computa-
tional overhead for TGT issuance makes sense because the authentication token
(tokenC

CGT in Fig. 2) is encrypted with Cr’s public key. In case of password-based
authentication, public key encryption is replaced by much faster symmetric key
encryption using a password-derived key. This incurs much lower computational
overhead on TGT-Prod.

Fig. 7. Experimental testbed

TGT−Prod CGT−Prod Content Producer

2
0

0
3
0

0
4

0
0

5
0

0

Algorithms of KRB−CCN Design

P
ro

c
e

s
s
in

g
 t

im
e

 [
u

s
]

Fig. 8. Statistical distribution of the
per-interest processing time (in µs) at
each of KRB-CCN producers

Times for CGT issuance and content production are around 200µs and
300µs, respectively. Time is naturally higher for the latter, since encrypted data
is larger. In case of content production, the whole content (10 kB) is encrypted.
In a CGT request, only the CGT and the token need to be encrypted, resulting
in a faster processing time.

To investigate how KRB-CCN entities cope under increasing congestion, we
flood them with a massive number of simultaneous interests: from 300 to 3000.
We then measure average Round-Trip Time (RTT) per type of issued interest.



612 I. O. Nunes and G. Tsudik

300 600 900 1200 1500 1800 2100 2400 2700 3000

Avg. per request RTT

Simultaneous Requests

Av
g.

 R
TT

 (u
s)

0e
+0

0
2e

+0
5

4e
+0

5
6e

+0
5

8e
+0

5
1e

+0
6

TGT−Prod
CGT−Prod
KRB−CCN content req.
Regular CCN content req.

Fig. 9. Average RTT/request with
massive simultaneous requests to same
producer

200 400 600 800 1000 1200 1400 1600 1800 2000

Client perceived content throughput

Interests per second

Th
ro

ug
hp

ut
 (M

bp
s)

0
20

40
60

80
10

0
12

0
14

0 No caching
TGT caching only
TGT+CGT caching

Fig. 10. Consumer perceived through-
put under different ticket caching poli-
cies

Figure 9 shows the RTTs for each response type. We also include the RTT for
regular CCN content retrieval. Since it incurs no extra processing overhead, the
regular content RTT is the lower bound for RTTs in CCNx implementation.

The average RTT for interests for TGT, CGT, and authorized encrypted
content are similar. The latter is slightly higher as more data (10 kB per interest)
must traverse the reverse path back to the consumer. KRB-CCN requests incur
in average ∼60% higher RTT than unmodified content retrieval. In the largest
scale test case, with 3000 simultaneous interests issued for each producer, content
replies are received in less than 800 ms.

Finally, we also measure the overall throughput perceived by the consumer
in three possible scenarios:

– Cached TGT and CGT: in this case the consumer requests contents under
the same namespace. Therefore, the same (non-expired) cached CGT can be
used for authorized content retrieval, allowing the client to skip the authen-
tication and authorization phases.

– Cached TGT only: this is the case in which no AC ticket caching hap-
pens. It happens when the consumer always requests contents under different
namespaces or because the realm owner demands consumers to request a
fresh CGT for each content. In this case only the authentication part of the
protocol is skipped at each request.

– No caching: This is the case in which the realm owner does not allow
single sign-on through TGT caching nor authorization reuse through CGT
caching. Three requests (authentication, authorization, and content retrieval)
are required for each content packet.

Recall that issuance of appropriate interests in each of the cases is automatically
handled by KRB-CCN client software running on the consumer.



KRB-CCN: Lightweight Authentication and Access Control for Private CCNs 613

For each of the above cases, we gradually increase the rate of interests
requested per second until throughput reaches its asymptotic limit. By analyz-
ing throughput results, presented in Fig. 10, we can observe the benefit of ticket
caching. When both TGT and CGT caching are enabled, the client perceived
throughput is higher than in the other cases, as actual content can be retrieved
with a single interest. Conversely, caching only TGT-s is still better than not
caching any type of ticket, because in this case the authentication phase can be
skipped.

6 Related Work

Previous related efforts provide other types of security services currently avail-
able in IP-based networks. ANDaNA [18] is an anonymity service analogous to
Tor [19] that uses CCN application-layer onion routing. Mosko et al. [20] pro-
posed a TLS-like key exchange protocol for building secure sessions for ephemeral
end-to-end security in CCN. Similar to IPSec-based VPNs [21], CCVPN [22] is a
network-layer approach for providing content confidentiality and interest name
privacy via secure tunnels between physically separated private networks.

There are several CCN-based techniques that implement so-called Content-
Based Access Control (CBAC). They tend to rely on content encryption under
appropriate consumer keys to enforce AC. A group-based AC scheme for early
versions of CCN was proposed in [3]. Policies tie groups of consumers to con-
tent, ensuring that only consumers belonging to authorized groups can decrypt
restricted content. Similarly, Misra et al. [4] proposed an AC scheme based on
broadcast encryption [23,24]. Wood and Uzun [5] proposed several AC schemes
based on proxy re-encryption [25,26] to enable consumer personalized con-
tent caching. An attribute-based AC system, using attribute-based cryptogra-
phy [27,28] was proposed in [6]. CCN-AC [7] is a framework that unifies CBAC-
type methods by providing a flexible encryption-based AC framework. It relies
on manifest-based content retrieval specification (defined in CCNx 1.0 [29]) to
enable flexible and extensible AC policy specification and enforcement. A similar
approach is proposed in NDN-NBAC [8] framework. In these frameworks, data
owners generate and distribute private keys to consumers via out-of-band chan-
nels. Producers receive corresponding public keys also via out-of-band channels.
These public keys are used to encrypt one-time (per-content) symmetric keys.

In a different vein, Ghali et al. [9] proposed an Interest-Based Access Control
(IBAC) scheme, wherein access to protected content is enforced by making names
secret and unpredictable – based on encryption with keys known only to autho-
rized consumers. Compared with CBAC, IBAC has the advantage of preserving
interest name privacy and allowing content caching. However, IBAC must be
used in conjunction with CBAC to preclude unauthorized content retrieval via
replay of previously issued obfuscated interest names.

In all schemes discussed above, authentication, authorization/AC, and con-
fidentiality are often convoluted. In particular, producers are assumed to be
implicitly responsible for authentication and authorization. This implies deal-
ing with identity management and thus violating consumer privacy. Moreover,



614 I. O. Nunes and G. Tsudik

authentication and AC are enforced on a per-content basis which is unscalable
and expensive. To the best of our knowledge KRB-CCN is the first comprehensive
approach to address these issues by (1) separating authentication, authoriza-
tion and content production among distinct entities; and (2) issuing re-usable
authentication and authorization tickets for restricted namespaces.

7 Conclusions

We presented KRB-CCN – a comprehensive design for handling authentication,
authorization, and access control in private CCN networks, while preserving
consumer privacy. KRB-CCN is transparent to consumers and incurs fairly low
overhead. We analyzed KRB-CCN security and assessed its performance based
on a prototype implementation. Experimental results show that KRB-CCN is a
practical and efficient means of providing multiple security services in private
(stub AS) CCNs.

Acknowledgments. The authors would like to thank Christopher Wood for fruitful
discussions and feedback. This work was supported by CISCO University Research
Award (2017).

References

1. Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard,
R.L.: Networking named content. In: Proceedings of the 5th International Con-
ference on Emerging Networking Experiments and Technologies, pp. 1–12. ACM
(2009)

2. Zhang, L., Estrin, D., Burke, J., Jacobson, V., Thornton, J.D., Smetters, D.K.,
Zhang, B., Tsudik, G., Massey, D., Papadopoulos, C., et al.: Named data net-
working (NDN) project. Relatório Técnico NDN-0001, Xerox Palo Alto Research
Center-PARC (2010)

3. Smetters, D.K., Golle, P., Thornton, J.: CCNx access control specifications. Tech-
nical report, PARC (2010)

4. Misra, S., Tourani, R., Majd, N.E.: Secure content delivery in information-centric
networks: design, implementation, and analyses. In: Proceedings of the 3rd ACM
SIGCOMM Workshop on Information-Centric Networking, pp. 73–78. ACM (2013)

5. Wood, C.A., Uzun, E.: Flexible end-to-end content security in CCN. In: 2014 IEEE
11th Consumer Communications and Networking Conference (CCNC), pp. 858–
865. IEEE (2014)

6. Ion, M., Zhang, J., Schooler, E.M.: Toward content-centric privacy in ICN:
attribute-based encryption and routing. In: Proceedings of the 3rd ACM SIG-
COMM Workshop on Information-Centric Networking, pp. 39–40. ACM (2013)

7. Kuriharay, J., Uzun, E., Wood, C.A.: An encryption-based access control frame-
work for content-centric networking. In: 2015 IFIP Networking Conference (IFIP
Networking), pp. 1–9. IEEE (2015)

8. Yu, Y., Afanasyev, A., Zhang, L.: Name-based access control, Named Data Net-
working Project, Technical Report NDN-0034 (2015)



KRB-CCN: Lightweight Authentication and Access Control for Private CCNs 615

9. Ghali, C., Schlosberg, M.A., Tsudik, G., Wood, C.A.: Interest-based access control
for content centric networks. In: Proceedings of the 2nd International Conference
on Information-Centric Networking, pp. 147–156. ACM (2015)

10. Neuman, B.C., Ts’o, T.: Kerberos: an authentication service for computer net-
works. IEEE Commun. Mag. 32(9), 33–38 (1994)

11. Mosko, M., Solis, I., Wood, C.: CCNx semantics, IRTF Draft, Palo Alto Research
Center, Inc. (2016)

12. Ricciardi, F.: Kerberos protocol tutorial. The National Institute of Nuclear Physics
Computing and Network Services, LECCE, Italy (2007)

13. Mockapetris, P.V.: Domain names-concepts and facilities (1987)
14. PARC: CCNx distillery (2016). https://github.com/parc/CCNx Distillery
15. Sodium: The sodium crypto library (libsodium) (2017). https://github.com/

jedisct1/libsodium
16. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,

Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853 14

17. Dworkin, M.: Recommendation for block cipher modes of operation:
Galois/Counter Mode (GCM) and GMAC. US Department of Commerce,
National Institute of Standards and Technology (2007)

18. DiBenedetto, S., Gasti, P., Tsudik, G., Uzun, E.: ANDaNA: anonymous named
data networking application, arXiv preprint arXiv:1112.2205 (2011)

19. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The second-generation onion
router. Technical report, Naval Research Lab Washington DC (2004)

20. Mosko, M., Uzun, E., Wood, C.A.: Mobile sessions in content-centric networks. In:
IFIP Networking (2017)

21. Doraswamy, N., Harkins, D.: IPSec: The New Security Standard for the Internet,
Intranets, and Virtual Private Networks. Prentice Hall Professional, Upper Saddle
River (2003)

22. Nunes, I.O., Tsudik, G., Wood, C.A.: Namespace tunnels in content-centric net-
works. In: 2017 IEEE 42nd Conference on Local Computer Networks (LCN), pp.
35–42. IEEE (2017)

23. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48329-2 40

24. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535218 16

25. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. (TISSEC) 9(1), 1–30 (2006)

26. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of the 14th ACM Conference on Computer and Communications Secu-
rity, pp. 185–194. ACM (2007)

27. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98. ACM (2006)

28. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy, SP 2007, pp. 321–334.
IEEE (2007)

29. Solis, I., Scott, G.: CCN 1.0 (tutorial). In: ACM ICN (2014)

https://github.com/parc/CCNx_Distillery
https://github.com/jedisct1/libsodium
https://github.com/jedisct1/libsodium
https://doi.org/10.1007/11745853_14
http://arxiv.org/abs/1112.2205
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/3-540-48329-2_40
https://doi.org/10.1007/11535218_16
https://doi.org/10.1007/11535218_16


Assentication: User De-authentication
and Lunchtime Attack Mitigation
with Seated Posture Biometric

Tyler Kaczmarek(B), Ercan Ozturk, and Gene Tsudik

UC Irvine, Irvine, USA
{tkaczmar,ercano,gtsudik}@uci.edu

Abstract. Biometric techniques are often used as an extra security fac-
tor in authenticating human users. Numerous biometrics have been pro-
posed and evaluated, each with its own set of benefits and pitfalls. Static
biometrics (such as fingerprints) are geared for discrete operation, to
identify users, which typically involves some user burden. Meanwhile,
behavioral biometrics (such as keystroke dynamics) are well-suited for
continuous and more unobtrusive operation. One important application
domain for biometrics is de-authentication: a means of quickly detecting
absence of a previously-authenticated user and immediately terminating
that user’s secure sessions. De-authentication is crucial for mitigating
so-called Lunchtime Attacks, whereby an insider adversary takes over an
authenticated state of a careless user who leaves her computer.

Motivated primarily by the need for an unobtrusive and continuous
biometric to support effective de-authentication, we introduce Assenti-
cation – a new hybrid biometric based on a human user’s seated posture
pattern. Assentication captures a unique combination of physiological
and behavioral traits. We describe a low-cost fully functioning prototype
that involves an office chair instrumented with 16 tiny pressure sensors.
We also explore (via user experiments) how Assentication can be used
in a typical workplace to provide continuous authentication (and de-
authentication) of users. We experimentally assess viability of Assentica-
tion in terms of uniqueness by collecting and evaluating posture patterns
of a cohort of 30 users. Results show that Assentication yields very low
false accept and false reject rates. In particular, users can be identified
with 94.2% and 91.2% accuracy using 16 and 10 sensors, respectively.

1 Introduction and Motivation

Secure, correct and efficient user authentication is an integral component of
any meaningful security system. Authentication schemes implemented in a typ-
ical modern workplace typically include two factors: (1) a user demonstrates
knowledge of a secret password or PIN, and (2) a user proves possession of a
secure device or token. However, it is becoming more popular to augment this
approach with a third factor – biometrics that reflect inherent human traits or
behaviors. Biometric techniques are considered as the best means of evaluating
c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 616–633, 2018.
https://doi.org/10.1007/978-3-319-93387-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_32&domain=pdf


Assentication: User De-authentication and Lunchtime Attack Mitigation 617

human inherence and they range widely: from a very simple (e.g., fingerprints)
to rather complex, such as iris scans.

After initial authentication, users often spend long stretches of time con-
tinuously using computing devices and services. During that time, continuous
presence of the originally authenticated user must be periodically re-affirmed,
especially, in a shared workplace setting. Failure to do so can result in so-called
Lunchtime Attacks. Such an attack occurs when a previously authenticated user
walks away from her workplace, thus allowing the adversary to take over her login
session and engage in potentially nefarious activity. This prompts the need for
periodic re-authentication and/or continuous authentication. Unfortunately, the
former can be quite annoying, as is the case with too-short inactivity time-outs
requiring frequent password re-entry.

Meanwhile, continuous authentication (or presence verification) is challenging
in its own right. For example, camera-based methods that use face recognition
[1] or gaze tracking [2] might be viewed as intrusive in terms of personal privacy,
since cameras can be abused (e.g., by malware) to surreptitiously record users.
Furthermore, face recognition is prone to attacks, while gaze tracking requires
the user to maintain line-of-sight with the camera, which can result in unneces-
sary de-authentication when the user turns away while remaining at the work-
place. Whereas, keyboard or mouse activity profiling and monitoring, though
effective in some settings, are poorly suited for cases when a user temporarily
halts input activity, e.g., in order to chat with co-workers or answer the phone.
Other techniques continuously measure physical distance between the user and
her workplace, by requiring each user to wear an extra device, e.g., a wristband
or smart badge. Such methods are: (1) potentially burdensome due to imposing
an extra device, and (2) ultimately authenticate only the presence of the device
and not of its owner.

Based on the above discussion, we believe that the “design space” for con-
tinuous authentication (or, equivalently, de-authentication) techniques needs to
be explored further. From the outset, we acknowledge that a perfect continu-
ous authentication method is unlikely to materialize; in fact, one might not even
exist. In other words, since each previous method has a distinct set of advantages
and limitations/flaws, the same will certainly hold for our current efforts.

In this paper, we propose and evaluate a new biometric called Assentication.
It is based on a user’s seated posture patterns in an average office chair over the
course of a typical workday. We examine the applicability of Assentication for
continuous user authentication, i.e., ensuring that – after the initial successful
login – the person currently using a particular computer is the same as the one
who initially logged in. One of Assentication’s key advantages over many other
de-authentication methods is its ability to operate in an unobtrusive manner,
with no effort on the part of the user.1 To evaluate its viability and effectiveness,
we built a low-cost Assentication prototype by instrumenting a commodity office

1 This is in contrast with, for example, fingerprint-based continuous authentication,
which would prompt the user to periodically swipe her finger(s) on the fingerprint
reader; which is obtrusive and disrupts the typical workflow.



618 T. Kaczmarek et al.

chair with ultra-thin flexible sensors that gather user posture data. Its purpose
was to assess whether users are correctly authenticated, based on their own train-
ing data. The same platform was used to test the uniqueness of Assentication
within a sample population of measured users. Our results demonstrate that the
prototype unobtrusively captures the necessary data for continuous authentica-
tion and identification while the user engages in a typical use of a desktop or
laptop computer.

The rest of this paper is organized as follows: Sect. 2 overviews related work.
Next, Sect. 3 provides the background on continuous authentication and de-
authentication. Section 4 describes the Assentication biometric. Then, Sect. 5
outlines the adversarial model. Section 6 describes the Assentication prototype
and methodology used for data collection, followed by results in Sect. 7, a detailed
discussion of Assentication is provided in Sect. 8. The paper concludes with direc-
tions for future work in Sect. 9 and a summary in Sect. 10.

2 Related Work

Biometric traits have been extensively explored in the context of authentication.
Jain et al. [3] provides an authoritative overview of many well-known techniques,
including: fingerprint, face, iris, palm-print and keystroke dynamics. However,
since our focus is on biometric-based continuous authentication which can be
used to achieve effective de-authentication, we do not discuss methods that are
not amenable for the intended application.

Eberz et al. [4] provide an overview of the state of the art of the evaluation of
biometric techniques for authentication. Additionally they provide recommenda-
tions for the evaluation of future methods. Our evaluation strategy is informed
by this framework.

Rasmussen et al. [5] use human body’s response to electric signals as a bio-
metric. In the proposed system, a weak pulse signal is applied to the palm of one
hand and measured on the palm of the other hand. Pulse-response biometric can
be used as a second or third factor in user authentication and/or as a continuous
authentication mechanism. The system achieves 100% accuracy over a static set,
and 88% accuracy on permanence tests performed over several weeks.

Eberz et al. [2] investigate eye movement patterns as a biometric. Based on
gazing data gathered from 30 participants, pupil, temporal and spatial features
are defined. Reported equal error rate is 3.98% in a single session and 92.2% of
attacks are detected within 40 s. Measurements done two weeks apart show that
this biometric is stable over time.

Mare et al. [6] propose wearing a bracelet that has a gyroscope and an
accelerometer for continuous authentication. When the user interacts with the
computer (e.g., typing or scrolling), the bracelet transfers collected sensor data
to the computer, which evaluates whether user actions match the sensor data.
The proposed system, ZEBRA, achieves continuous authentication with 85%
accuracy and detects attacks within 11 s. However, a recent study by Huhta et
al. [7] presents a set of credible attacks on ZEBRA.



Assentication: User De-authentication and Lunchtime Attack Mitigation 619

Keystroke dynamics are another means of continuous authentication. Ahmed
and Traore use 1, 500 digraphs from each user as a base profile and applies neural
networks to guess missing digraphs [8]. In a 53-user experiment, a false reject
rate of 0.0152%, a false accept rate of 4.82% and an equal error rate of 2.46%
are achieved.

Finally, Conti et al. [9] describe FADEWICH, a continuous authentication
system that uses attenuation of wireless signals when a human body is on the
signal’s path. FADEWICH is not based on any biometrics. It tracks the user
by placing 9 sensors in a 6m-by-3m office environment. Once detected as hav-
ing left the environment, the user is logged out. FADEWICH successfully de-
authenticates users with 90% accuracy within 4 s, and 100% accuracy within 6 s.

There have been prior attempts to use posture and seated pressure for both
identification and continuous authentication. Gia et al. [10] use data gathered
from: (1) four pressure sensors placed on the seat bottom, (2) an accelerometer,
and (3) light sensors placed on the seat-back, to identify the user. Pressure
sensors are used to differentiate among users, while weight and accelerometer
readings determine chair movements when someone sits down. Light sensors
help determine how much space is covered by the sitting user. In an experiment
involving only 10 people, a rather low accuracy of 72% is achieved.

Furthermore, Yamada et al. [11] describe a hip-print authentication method
which uses pressure data from 32 sensors placed along the seat bottom. However,
in experiments that use only first 1.5 s of measurement, quite low accuracies of
74.3% and 59.9% are reported for 10 and 25 subjects, respectively.

Among prior work, the one closest to this paper is [12]. It proposes a continu-
ous driver identification system for automobiles that uses pressure data from two
mats, each containing 32 × 32 sensors, placed on the seat cushion and backrest
of the driver seat. Features used for classification are based on one’s pelvic bone
signature, mid- to high-pressure distribution and weight. In a study involving
34 participants, a fairly low uniqueness rate is reported. The authors assert that
this is because a car setting is not appropriate for detecting pressure distribu-
tion changes. Most drivers adopt a single, constant posture adjusted to their
preferred driving position.

Finally, Mutlu et al. [13] investigate how to use fewer sensors to detect pos-
ture. To determine optimal sensor placement, a classifier is constructed that
learns the probabilistic model between the chosen subset of sensor values and
feature vectors used for posture classification. With 19 sensors, classification
accuracy of 87% is reported. As discussed later, this study guides our sensor
placement strategy.

3 Background

This section sets the stage for the rest of the paper by overviewing user
authentication, de-authentication, attack scenarios and continuous authentica-
tion requirements.



620 T. Kaczmarek et al.

3.1 User Authentication

User authentication can involve one or more of the following factors:

F1: What one knows, or what one recognizes.
The former corresponds to knowledge of: passwords, PINs, drawing pat-
terns and free-text answers to security questions. The latter corresponds
to recognition of: correct answers to multiple-choice questions, faces or
other types of images.

F2: What one has in their possession.
This generally means some form of a personal (even passive) device, such
as a badge, bracelet, key-fob, token or smartphone.

F3: What one is, or how one behaves.
The former type is referred to as a static and includes biometrics based on:
fingerprints, irises, palms, wrists, faces, ears and pulse-response. The latter
type is called behavioral and includes biometrics based on: gait, keystroke
dynamics, head movements, hand gestures and gaze tracking.

Though widely used, F1-type authentication alone is widely considered to be
insufficient, mainly due to the low entropy of secrets involved. By itself, F2 is also
inadequate, since a personal device is not guaranteed to always be in possession
of its intended owner. Finally, F3 can be subverted, at least for some static
methods, e.g., via cloned fingerprint moulds [14], fake irises using contact lenses
[15], and face masks2. It also usually requires a non-trivial training or enrollment
phase. Meanwhile, some behavioral biometrics are unstable or fragile, e.g., gait,
breathing patterns, blinking and head movements. Consequently, multi-factor
user authentication is usually recommended in order to achieve better security.

3.2 De-authentication and Lunchtime Attacks

As part of everyday office or workplace activity, an average user might engage
in one or more of the following activities (not an exhaustive list):

[A1]: Work by continuously utilizing one or more traditional input devices, such
as a keyboard, touchscreen or mouse.

[A2]: Take a quick seated nap or meditation break.
[A3]: Read some printed matter, e.g., a paper or book.
[A4]: Use another personal device, e.g., a smartphone.
[A5]: Turn away from one’s desk to talk to other people directly, or on the phone.
[A6]: Watch videos and/or listen to music without using any input devices.
[A7]: Take part in an audio or video conference.
[A8]: Get up momentarily to fetch something from the immediate vicinity (or

simply to stretch) and return.

2 “Biometric Update”, “spoofing iris recognition technology with pictures”, http://
www.biometricupdate.com/201503/spoofing-iris-recognition-technology-with-
pictures, 2015, accessed: 2017-05-19.

http://www.biometricupdate.com/201503/spoofing-iris-recognition-technology-with-pictures
http://www.biometricupdate.com/201503/spoofing-iris-recognition-technology-with-pictures
http://www.biometricupdate.com/201503/spoofing-iris-recognition-technology-with-pictures


Assentication: User De-authentication and Lunchtime Attack Mitigation 621

[A9]: Walk away from the workplace for a short (e.g., bathroom), longer (e.g.,
lunch), or long (e.g., done for the day) time, before returning.

In a security-conscious setting, these activities might require periodic reassurance
that the same user (who initially authenticated and/or logged in) is still present.
Ideally, when the original user remains present [A1–A7], no reassurance should
be needed. However, [A9] results in leaving the workplace unattended, while
[A8] might. (Also, [A2] could be viewed as the user not really being there.) An
important challenge is to distinguish among these types of activities. The term
de-authentication denotes the process of deciding whether the original user is no
longer present and, if so, terminating active secure sessions.

In a perfect world, each user would always log out or otherwise terminate all
active sessions before stepping away. Unfortunately, this is far from reality, which
triggers the threat of Lunchtime Attacks. As the name suggests, attack of this
type occurs when the adversary takes over the secure session(s) of a legitimate
user who has left, even for a short time. Such attacks are quite common, as noted
in the recent work of Marques et al. [16].

3.3 Default Approach: Inactivity Timeouts

The most common current means of dealing with Lunchtime Attacks and reas-
suring original user presence is inactivity timeouts. Most users of personal and
workplace computing devices are familiar with them: whenever keyboard and/or
mouse inactivity exceeds a certain threshold, de-authentication takes place, i.e.,
log-in and other (previously authenticated) sessions are terminated. Various
operating systems, apps and websites set their own timeout rules and policies.
In some cases (e.g., macOS or Windows) users can select their own timeouts. At
a typical workplace, mandatory timeouts are often imposed.

Inactivity timeouts are almost universally disliked. As noted in [6], most
users find too-short timeouts annoying, while too-long timeouts are insecure,
since they defeat the purpose of Lunchtime Attack mitigation (by extending
the attack time window). Even more importantly, timeouts achieve their desired
effect only in case [A1] and fail in several other ways:

– They operate under the assumption that keyboard/mouse inactivity (i.e.,
“NOT [A1]”) indicates user absence. This is often not true, e.g., in cases [A2]–
[A5] and [A8]. De-authenticating the user in these cases is both unnecessary
and annoying.

– Conversely, timeouts näıvely suppose that resumption of activity (within the
timeout threshold) indicates presence of the same user. This is clearly wrong
in situations where the original walks away [A9] and the adversary quickly
starts typing.

– In case [A6], if timeouts are activated, the user is also unnecessarily burdened.
Otherwise, if timeouts are automatically disabled while music and/or videos
are playing, the user can walk away for a potentially long time, thus leaving
the computing device(s) open to Lunchtime Attacks.



622 T. Kaczmarek et al.

– The same holds for case [A7], except that user’s voice and/or camera move-
ments might be used to infer continuous presence. However, this would require
additional voice or visual authentication.

– In case [A9], timeouts only work correctly (by de-authenticating the original
user) if no attack occurs. Knowing the timeout threshold, which is usually
not secret, allows the adversary to easily succeed in a Lunchtime Attack.

3.4 Continuous Authentication

Given the inadequacy of inactivity timeouts, one appealing alternative is con-
tinuous authentication. Methods of this variety are generally unobtrusive, i.e.,
require none or very little user burden. As discussed in Sect. 2, these include:
keystroke dynamics [8], wrist movement [6], pulse response [5], gaze tracking [2],
and wireless signal monitoring [9]. (Note that only the first four are biometric-
based methods, while the last is purely a de-authentication technique.)

3.5 Design Goals

Since our main goal is the design of a biometric-based de-authentication method,
we first consider general design goals for biometrics. A popular survey of bio-
metric techniques by Jain et al. [3] provides a comprehensive overview of many
popular methods, and discusses design criteria, which include the following:

Universality: The biometric must be (ideally) universally applicable. For exam-
ple, an iris scanner is not useful for users who are missing an eye or have cataracts,
while fingerprint readers are similarly useless for people with severe eczema.

Uniqueness: The biometric must be unique within the target population. It must
be possible to distinguish users using the biometric.

Unobtrusiveness: The biometric should be maximally transparent. Ideally, it
should be used in a passive manner, without any extra requirements or interfer-
ence with users’ normal behavior.

Circumvention Difficulty: To be meaningful in any security context, the bio-
metric must be difficult to circumvent. That is, false accept (fraud) rate (FAR)
should be minimal, i.e., it should be hard to impersonate a genuine user.

Low Error Rate: The biometric must have a low false reject (insult) rate (FRR),
i.e., should very rarely fail to recognize an enrolled user.

Collectability: The biometric should be measurable in a fast, easy and meaningful
quantitative way.

Cost Effectiveness: The biometric’s distinguishing power as related to the cost
of deployment and maintenance. In our design, this is a key goal.

Easy enrollment: The biometric’s initial (training) phase should be as short and
burden-free as possible.



Assentication: User De-authentication and Lunchtime Attack Mitigation 623

Acceptability: The ideal biometric is one which (most) users are comfortable to
use.

We now present design goals for an ideal de-authentication method, not nec-
essarily based on biometrics.3

– Minimal extra components (particularly, physical or hardware) and monetary
cost

– Quick and correct detection of activities requiring de-authentication, i.e., [A9]
or a circumvention attempt, e.g., another user sits down

– Minimal False Reject Rate (FRR), i.e., probability of mistaking [A1]–[A8] for
[A9]

– Minimal False Accept Rate (FAR), i.e., probability of mistaking [A9] for [A1]–
[A8]

– Maximal user transparency, i.e., unobtrusiveness

We recognize that the last goal might be ethically dubious. De-authentication
methods with user transparency can be abused, e.g., by unscrupulous employers,
to surreptitiously spy on unsuspecting users. We acknowledge that it is very
difficult to reconcile positive and negative connotations.

4 Assentication Biometric

Assentication works by monitoring, over time, changing pressure patterns
exerted by a person seated in a typical office chair. This pattern is influenced by
both behavioral and physical characteristics. The former stem from one’s seating
preferences. For example, some people cross their legs, which leads to an asym-
metric pressure distribution, while others keep both feet firmly on the ground
which results in nearly symmetric pressure distribution. Other contributing fac-
tors include height, hip width and weight.

4.1 Strengths and Weaknesses

Since exact distribution of seated pressure depends on the user’s physical dimen-
sions as well as on adopted postures, Assentication is a hybrid biometric blending
physiological and behavioral factors. This allows it to benefit from some strengths
of both. In particular, one’s posture pattern can be captured in a strictly pas-
sive manner. Even though this property is shared by other biometrics, such as
facial recognition or pulse response, posture pattern is not easily circumventable
(unlike, e.g., facial recognition), and does not alter normal user behavior, unlike,
e.g., pulse-response. We believe that this combination of unobtrusiveness, diffi-
culty of circumvention, and behavior agnosticism make Assentication an attrac-
tive biometric.

Additionally, Assentication requires very little in terms of specialized hard-
ware to capture the physiological biometric it uses. As discussed later in Sect. 6,
we constructed a Assentication prototype of an instrumented office chair.
3 We do this while keeping in mind that all of them are unlikely to be achievable.



624 T. Kaczmarek et al.

4.2 Liveness and Replay

In any biometric system used for continuous authentication, liveness detection
is a serious concern. For example, a face recognition system needs to detect
blinking, breathing, and/or some other artifact of a user being alive and present.
Otherwise, as has been demonstrated in the past, it can be subverted by a
photo or a mask (face-cast). Traditionally, liveness is attained via some form of a
challenge by the system that requires the user to act. In case of facial recognition,
the system might prompt the user to turn her head or look in a particular
direction. While this helps achieve liveness and protect against subversion, it
also sacrifices transparency and increases user burden.

Some modern de-authentication systems, such as gaze tracking or keystroke
patterns, can passively check for liveness by relying on dynamic user behavior
instead of constant physical characteristics. However, they require the user to
act in a particular (not necessarily free or natural) manner. For example, gaze
tracking requires the user to face in the general direction of the gaze tracking
apparatus, which may not always be in the user’s typical workflow. Furthermore,
gaze tracking requires the user’s eyes to be open. In the same vein, keystroke anal-
ysis requires the user to type on the keyboard. For its part, the pulse-response
biometric needs the user to complete an electrical circuit by touching conductive
implements with both hands. With all these systems, if the user fails to behave
in the required manner, the likely outcome is a false accept.

In contrast, Assentication is more forgiving in such cases. It does not rely
on specific user actions. Instead, Assentication is based merely on user’s physi-
cal presence. It monitors seated pressure distribution regardless of whether the
user faces the workstation, touches the keyboard with both hands, is currently
typing, or keeps their eyes open. The only requirement for collection of pos-
ture pattern data is that the user must be seated in the chair. We believe that
this makes our system a good candidate for both continuous authentication and
de-authentication.

5 Adversarial Model and Attacks

The Assentication biometric focuses on protecting against insider threats. We
are particularly concerned with aforementioned Lunchtime Attacks whereby the
adversary steps in to access a co-worker’s computer after the latter walks away.
Insider threats are not limited to such attacks, and might include scenarios
ranging from a disgruntled employee staying after hours to sabotage a colleague,
to the trivial case of a user deliberately giving access to a co-worker. In all
scenarios, the adversary “wins” by gaining access to secure log-in or application
sessions.

We assume that the original user provides authentic log-in credentials at ses-
sion initiation time. However, the same user neglects to log-out before physically
leaving the workplace. Once the original user leaves, the adversary approaches
the computer, accesses secure log-in sessions and performs some actions, e.g.,



Assentication: User De-authentication and Lunchtime Attack Mitigation 625

copy or erase sensitive files, read or send private email. Such attacks are particu-
larly dangerous since they originate from valid and logged-in user accounts. Also,
it might be very difficult for the victim to repudiate the adversary’s actions.

Insider attacks are unfortunately quite commonplace. In fact, they account
for about 28% of all electronic crimes in industry [17]. This includes some high-
publicity attacks, such as the infamous 2014 Sony hack [18].

We consider two types of insider adversaries: casual and determined. In both
cases, the adversary is aware of Assentication’s use and presence. The adversary
is considered successful if it manages to circumvent the system, either by phys-
ically imitating the victim’s pressure patterns, or by constructing an accurate
model (replica) that does the same. We assume that the adversary cannot dis-
able the system, or interfere with its correct operation through physical sabotage,
since such manipulation would leave traces.

The casual adversary aims to subvert Assentication through behavioral imi-
tation of the victim’s posture patterns. We assume that this adversary is familiar
with the habits and schedule of the victim, and has physical access to the victim’s
workplace. Success of the casual adversary relies on the discriminating power of
the system. In our prototype design (discussed later), posture pattern data is
aggregated and evaluated against the previously constructed profile every 10 s.
Even in the unrealistically ideal scenario where the casual adversary instantly
appears in the victim’s chair immediately after the victim walks away, only 10 s
would remain to perform any attack. However, in our experimental office setting,
this attack time window is substantially shorter, ≈2-to-4 s, since it takes 3–4 s
for the victim to leave and about as long for the adversary to enter and sit down.
After that, posture data is flagged as incorrect, the victim is de-authenticated
and all active secure sessions are terminated.

The determined adversary seeks to defeat the system by fabricating a phys-
ical model of the victim user. We assume that this adversary has access to the
exact sensor data of the victim, as well as precise measurements of the victim’s
posterior and lower back. This data might be obtained if the adversary manages
to previously trick the victim to sit (for a sufficiently long period) in a staged
chair instrumented the same way as the victim’s.

A perfect mold or cast of the victim with the correct pressure distribution
would circumvent Assentication. However, creation and deployment of such a
mold is not trivial. The determined adversary would have to create a bulky and
heavy object that accurately replicates the victim’s posterior as well as lower
back and weighs enough to exert the necessary pressure upon the instrumented
chair, in the right places. Physically and logistically, deploying the mold onto
the victim’s chair is burdensome and likely to be detected by extraneous means.

However, we recognize that a mold is not the only way to subvert Assentica-
tion. We conjecture that a more effective and discrete approach is to use a set
of strategically placed hydraulic or pneumatic contraptions, each calibrated to
exert an accurate amount of pressure on each sensor on the victim’s chair. This
kind of precision is difficult to achieve and, unlike a monolithic mold, placing
the entire set of contraptions onto the chair at the same time is also quite hard.



626 T. Kaczmarek et al.

Fig. 1. Assentication prototype chair: (a) as seen by the user, and (b) uncovered seat-
bottom sensor placements.

All in all, we consider this attack to be quite improbable and close to the realm
of “Mission: Impossible”.

6 Methodology

This section describes our Assentication prototype design, experimental setup,
procedures, subject parameters as well as classifiers used for data analysis.

6.1 Prototype Design

To demonstrate viability and facilitate ease of experimentation, we built the
Assentication prototype by modifying a standard inexpensive office chair with
commodity (off-the-shelf) sensor components. Figure 1(a) shows the prototype
chair, and Fig. 1(b) focuses on the placement of sensors across the seat and back
of the chair. Our sensor placement was guided by the experience in Mutlu et al.
[13].

The prototype consists of three components:

1. One 2003/2004 Hon Mid-Back Task Chair.4

2. Sixteen (16) Tekscan Flexiforce A401 Large Force Sensing Resistors.
3. Two Arduino 101 modules5, one of which is connected to 6 A401 resistors.

The other module is connected to the remaining 10 sensors in a similar con-
figuration, augmented with an analog multiplexer in its 6-th analog port, in
order to support the use of 10 sensor inputs.

Acquired measurements are sent from the Arduino to a commodity desktop PC
for collection and evaluation. Arduinos are connected to the desktop via USB
cables. Obviously, in a real office setting, having wires running between the chair

4 See https://www.hon.com.
5 See https://www.arduino.cc/en/Main/ArduinoBoard101.

https://www.hon.com
https://www.arduino.cc/en/Main/ArduinoBoard101


Assentication: User De-authentication and Lunchtime Attack Mitigation 627

and the computer would be highly undesirable. We expect that either Bluetooth
or WiFi would be used instead.

Total instrumentation cost of $275 was incurred for the initial single-chair
prototype, for feasibility and testing purposes. For a medium-size office with 50
chairs, the per-chair cost can be cut significantly, to approximately $150 due to
volume pricing of Tekscan A401.

6.2 Data Collection Procedure

To collect data in a realistic setting, rather than bringing subjects to an unfamil-
iar office and encountering complications cited by Yamada et al. [11] in collecting
posture data in a lab setting, we brought the prototype instrumented chair to the
subjects’ workplace. Each subject was briefed on the nature of the experiment,
and was asked to sit naturally. Subjects allowed us to swap out their office chair
with the prototype, and continued their normal work activities while sitting on
the latter. We collected posture data in rounds of 10 min per subject. 17 sub-
jects participated in two collection sessions over the course of several days and
13 subjects participated in a single session only. We sampled subjects in order
to accommodate typical day-to-day fluctuations in mood and posture, e.g., one
session in the morning, and the other – shortly after lunch, on a different day.

A total of 30 subjects were recruited primarily from the student population
of a large public university. Because of this, overwhelming majority (27 out of
30) were between the ages of 22 and 30, while the remaining 3 were somewhat
older faculty and staff. The gender break-down was: 10 female and 20 male.

Finally, despite its somewhat ungainly appearance (as shown in Fig. 1),
the prototype chair is rather comfortable for sitting and none of the subjects
expressed any unease or discomfort during the data collection phase.

6.3 Features

We collected data in the form of 1, 200 sample time-series reflecting the force
exerted on each of the 16 pressure sensors captured each 0.5 s over a 10-min
session, for a total of 19, 200 samples per subject, per session.

For continuous authentication, we treat the first 5 min of each session as a
training phase, and evaluate the subject on the next 3 frames of sensor data,
representing 1.5 s of measurement. If this data is consistent with the training set,
it is accepted as valid and included in the training set for future evaluations. If
the data is deemed inconsistent with the training set, it is marked as adversarial
and de-authentication takes place.

6.4 Feature Selection and Quality

Riener and Ferscha [12] use the highest pressure points on a car seat instru-
mented with a uniform array of 1, 024 pressure sensors to determine a subject’s
gender. Based on these results, we constructed a Random Forest (RF) classifier



628 T. Kaczmarek et al.

Table 1. RF-based gender classification
results.

Gender TPR FPR

Female 96.5% 1.4%

Male 98.6% 3.5%

Table 2. Pressure sensors ranked
according to information gain.

Sensor Inf. gain Sensor Inf. gain

15 2.4054 1 1.3519

4 1.9285 5 1.2846

12 1.8822 0 1.063

3 1.7893 8 1.034

13 1.7332 14 1.021

2 1.6246 6 0.5634

7 1.4498 10 0.3578

11 1.4407 9 0.0128

to identify subjects’ gender in order to assess the quality of gender information of
our features. We obtained a 97.9% True Positive Rate (TPR), and a 2.7% False
Positive Rate (FPR), as shown in Table 1. This demonstrates that our strat-
egy of utilizing 16 well-placed sensors preserves gender information reflected by
pressure data. However, preliminary stratification of subjects by gender before
classification did not yield a higher true acceptance rate, and we do not utilize
such an approach.

Table 2 shows the ranking of our extracted features based on their information
gain for all 16 sensors. The Information gain is measured with respect to the class
as follows:

InformationGain(Class, Feature) = H(Class) − H(Class|Feature)

where H is entropy function and H(A|B) is entropy of B conditioned on A.

6.5 Classification Algorithm

Since we are dealing with a fairly commonplace time series clustering problem,
there are many well-known candidate techniques. We compared three popular
classification algorithms to determine the one that yields the best results.

Random Forest (RF): we found that it consistently yields the best results. It
produces precise, accurate results, closely clustered for all subjects. Both FNR
and FPR are acceptably low in cross-validation of user data, as discussed in
more detail below.

K-Nearest Neighbors (KNN): we tested the KNN classifier for k = 1, 3 and 5
using Euclidean Distance. KNN is a simple lazy classifier that is quite effective
in many settings. However, for our classification needs, it did not perform as well
as RF.

Support Vector Machine (SVM): For each subject, we trained a single binary
classifier in a one-against-one case. The final prediction was determined by vot-
ing. While SVM provided extremely consistent and highly accurate results for



Assentication: User De-authentication and Lunchtime Attack Mitigation 629

some users, it did not perform as well as RF, on average. It also had a few out-
liers with unacceptably high FPRs. We tried different kernel functions, degrees,
cost and γ values.

7 Results

We present results for two classifiers: one for identification and the other – for
continuous authentication. The former is based on RF and provides verification
of a one-to-n match of a sample of a known user against every sample in a
database. The continuous authentication classifier is based on anomaly detection
in training data’s inter-quartile range and provides verification of a one-to-one
match of a sample of unknown origin against that of a single known user.

7.1 Identification

Identification is a classification problem across many classes. Our RF-based clas-
sifier is ideal for this – it achieves, on average, 94.2% TAR, as shown in Fig. 2.
We also achieve an average FAR of 0.2%, as shown in Fig. 3 using 16 sensors.
Moreover, Assentication with only 10 sensors achieves a TAR of 91.2% and FAR
of 0.3%, as shown in Figs. 4 and 5, respectively.

The low FAR indicates that the casual adversary (as described in Sect. 5)
can not successfully impersonate another enrolled user in a Lunchtime Attack
with a reasonably high probability. Furthermore, the insult rate of 0.2% suggests
that users experience minimal annoyance through mis-identification.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F1
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

M
16

M
17

M
18

M
19

M
20

Participant

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P
os

it
iv
e
R
at

e

Fig. 2. Identification classifier (16 sen-
sors)

F1 F2 F3 F4 F5 F6 F7 F8 F9 F1
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

M
16

M
17

M
18

M
19

M
20

Participant

0.00

0.01

0.02

Fa
ls
e
P
os

it
iv
e
R
at

e

Fig. 3. FPR for RF cross-validation on all
subject data (16 sensors).

7.2 Continuous Authentication

Our classifier for continuous authentication is focused on identifying outliers and
extreme values in fresh incoming data. After a 5-min training window, subject
training data is compared to the next 3 data slices collected by the sensors.



630 T. Kaczmarek et al.

F1 F2 F3 F4 F5 F6 F7 F8 F9 F1
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

M
16

M
17

M
18

M
19

M
20

Participant

0.0

0.2

0.4

0.6

0.8

1.0

T
ru

e
P
os

it
iv
e
R
at

e

Fig. 4. RF identification TPR by sub-
ject (10 sensors).

F1 F2 F3 F4 F5 F6 F7 F8 F9 F1
0

M
1

M
2

M
3

M
4

M
5

M
6

M
7

M
8

M
9

M
10

M
11

M
12

M
13

M
14

M
15

M
16

M
17

M
18

M
19

M
20

Participant

0.00

0.01

0.02

Fa
ls
e
P
os

it
iv
e
R
at

e

Fig. 5. RF identification FPRs by subject
(10 sensors).

Each data slice is then classified as an “extreme” value (i.e. an outlier) or not.
If all three measurement sets are “extreme”, data is considered invalid, and de-
authentication results. Otherwise, data slices are added to the training set. This
comparison occurs every 1.5 s as new data is collected.

This approach results in no (0% rate) false de-authentications. Hence, a valid
user who sits down on an instrumented chair will not – with very high probability
– be erroneously de-authenticated while remaining seated. Additionally we find
that 91% of imposters are de-authenticated in the first measurement frame (after
1.5 s) and all imposters are de-authenticated by the end of the first 45 s (30
measurement cycles). This demonstrates further resistance to casual adversary
attacks in the continuous authentication case.

8 Discussion

We now assess Assentication in the context of design goals for an ideal de-
authentication system outlined in Sect. 3.

Assentication was designed with the emphasis on minimal extra components
and monetary cost. The use of an instrumented chair does require specialized
hardware. However, it does not impose any behavioral requirements on the user.
Furthermore, the per-unit cost of $150 (at scale of about 50) is reasonable in
the context of other posture-based techniques, which can easily cost thousands
of dollars, as noted by Mutlu et al. [13].

We claim that maximal user transparency is achieved by Assentication
because of the ubiquitous nature of sitting in office or workplace settings. In
fact, over 70% of the workforce in a traditional office setting spend upwards of 6
hours a day seated [19]. Enrollment, authentication and de-authentication phases
of Assentication all occur transparently while the user is seated and engaged in
normal workflow activities. Because of this, there are no behavioral modifications
required from the user to participate in Assentication and no need for modifying
everyday activities.

Quick detection of activities requiring de-authentication is trivial in Assenti-
cation. A user who engages in any activity covered by [A9] is de-authenticated



Assentication: User De-authentication and Lunchtime Attack Mitigation 631

as soon as a single collection window passes. Though in the initial prototype
implementation this window was set to 1.5 s, it can be adjusted up or down.

As evidenced by the average 94.2% accuracy of user identification and 100%
accuracy for continuous authentication, false rejections would only occur in
exceptional circumstances, which satisfies the minimal insult rate design goal.
This holds during most typical office activities [A1–A7] that are typically per-
formed while the users is seated. However, if a user leaves the chair to grab
something nearby [A8] and spends over 10 s away, potentially erroneous de-
authentication can occur.

8.1 Deployment Scenario

The physical and behavioral features measured as part of Assentication are some-
what ephemeral in nature. An individual’s weight can fluctuate over a kilogram
(2.2 pounds) day-to-day [20]. Also, one’s posture is influenced by the emotive
state [21]. This makes permanence of user posture rather doubtful. Therefore, we
believe that an Assentication-like de-authentication system should be operated
as follows:

– At the start of a session, a user sits down in an instrumented chair, and
authenticates to the system normally, e.g., via username and password.

– Upon successful authentication, Assentication system collects posture data
and forms a temporary profile.

– After enrollment period of 10 min, the system evaluates new posture data
against the profile throughout the day.

– Once the user leaves at the end of the session (e.g., for the day), the profile
is deleted.

This provides several benefits. First, no additional configuration is needed to
deploy Assentication in an enviroment where several users are authorized to use
the same physical terminal or workstation under different authorized accounts.
Second, unlike more permanent biometrics, there is no costly institution-wide
enrollment or re-enrollment required to initialize the system. Finally, the use
of temporary profiles avoids the need for permanent secure storage of sensitive
biometric data, which is currently an open problem for long-lived biometrics.

8.2 Ethical Considerations

All experiments described in this paper were duly authorized by the Institutional
Review Board (IRB) of the authors’ employer, well ahead of the commencement
of the study. The level of review was: Exempt, Category II. No sensitive data
was collected during the experiments and minimal identifying information was
retained. In particular, no subject names, phone numbers or other personally
identifying information (PII) was collected. All data was stored pseudonymously.



632 T. Kaczmarek et al.

9 Future Work

There are several directions for future work:
First, we plan to conduct a larger-scale, longer-term (longitudinal) study,

obtaining multiple measurement sessions from each subject over the course of
several weeks. This would lead to a better understanding of the posture pattern
biometric as a whole.

Second, we intend to evaluate accuracy of Assentication in its typical deploy-
ment scenario, as described in Sect. 8.1. For this, we intend to have the subjects
replace their office chair with our prototype for an entire workday. We would
use this data to obtain the rate of both false rejects and accepts, throughout the
day, as well as measure associated user burden.

Next, we plan to evaluate attack vectors outlined in Sect. 5, starting with a
casual adversary. This will entail recruiting pairs of subjects with similar physical
characteristics, and training them to impersonate each other’s posture patterns.
Finally, we explore the attacks by a determined adversary. For this, we need to
construct a contraption that imitates the victim’s posture pattern.

10 Conclusions

In summary, this paper proposed and described a new Assentication biometric
based on seated posture patterns. We built and experimented with a prototype
implementation of Assentication. Furthermore, experimental results show that
posture pattern biometric captures a unique combination of physiological and
behavioral traits. We found that users can be identified with, on average, 94.2%
accuracy from a population of 30. We also believe that it is infeasible for a casual
adversary to circumvent Assentication by impersonation of the victim’s posture
patterns. We also argue that physical and logistical burdens of fabricating and
deploying an accurate mold (replica) of the victim’s relevant body parts make
circumvention very challenging even for the determined adversary. Finally, we
provided a thorough comparison of several prominent modern biometric-based
techniques for continuous authentication.

References

1. Chang, K., Bowyer, K.W., Sarkar, S., Victor, B.: Comparison and combination of
ear and face images in appearance-based biometrics. IEEE Trans. Pattern Anal.
Mach. Intell. 25(9), 1160–1165 (2003)

2. Eberz, S., Rasmussen, K.B., Lenders, V., Martinovic, I.: Preventing lunchtime
attacks: fighting insider threats with eye movement biometrics. In: NDSS (2015)

3. Jain, A.K., Ross, A., Pankanti, S.: Biometrics: a tool for information security. IEEE
Trans. Inf. Forensics Secur. 1(2), 125–143 (2006)

4. Eberz, S., Rasmussen, K.B., Lenders, V., Martinovic, I.: Evaluating behavioral
biometrics for continuous authentication: challenges and metrics. In: Proceedings
of the 2017 ACM on Asia Conference on Computer and Communications Security,
pp. 386–399. ACM (2017)



Assentication: User De-authentication and Lunchtime Attack Mitigation 633

5. Rasmussen, K.B., Roeschlin, M., Martinovic, I., Tsudik, G.: Authentication using
pulse-response biometrics. In: NDSS (2014)

6. Mare, S., Markham, A.M., Cornelius, C., Peterson, R., Kotz, D.: Zebra: zero-
effort bilateral recurring authentication. In: 2014 IEEE Symposium on Security
and Privacy (SP), pp. 705–720. IEEE (2014)

7. Huhta, O., Shrestha, P., Udar, S., Juuti, M., Saxena, N., Asokan, N.: Pitfalls in
designing zero-effort deauthentication: opportunistic human observation attacks.
arXiv preprint arXiv:1505.05779 (2015)

8. Ahmed, A.A., Traore, I.: Biometric recognition based onfree-text keystroke dynam-
ics. IEEE Trans. Cybern. 44(4), 458–472 (2014)

9. Conti, M., Lovisotto, G., Martinovic, I., Tsudik, G.: Fadewich: fast deauthentica-
tion over the wireless channel. In: 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), pp. 2294–2301. IEEE (2017)

10. Gia, N., Takimoto, T., Giang, N.D.M., Nakazawa, J., Takashio, K., Tokuda, H.:
People identification based on sitting patterns. In: Workshop on Ubiquitous Data
Mining, p. 33 (2012)

11. Yamada, M., Kamiya, K., Kudo, M., Nonaka, H., Toyama, J.: Soft authentication
and behavior analysis using a chair with sensors attached: hipprint authentication.
Pattern Anal. Appl. 12(3), 251–260 (2009)

12. Riener, A., Ferscha, A.: Supporting implicit human-to-vehicle interaction: driver
identification from sitting postures. In: The First Annual International Symposium
on Vehicular Computing Systems (ISVCS 2008), p. 10 (2008)

13. Mutlu, B., Krause, A., Forlizzi, J., Guestrin, C., Hodgins, J.: Robust, low-cost,
non-intrusive sensing and recognition of seated postures. In: Proceedings of the
20th Annual ACM Symposium on User Interface Software and Technology, pp.
149–158. ACM (2007)

14. Uludag, U., Jain, A.K.: Attacks on biometric systems: a case study in fingerprints.
Proc. SPIE 5306, 622–633 (2004)

15. Bowyer, K.W., Doyle, J.S.: Cosmetic contact lenses and iris recognition spoofing.
Computer 47(5), 96–98 (2014)

16. Marques, D., Muslukhov, I., Guerreiro, T.J., Carriço, L., Beznosov, K.: Snooping on
mobile phones: prevalence and trends. In: Twelfth Symposium on Usable Privacy
and Security, SOUPS 2016, Denver, CO, USA, 22–24 June 2016, pp. 159–174.
USENIX (2016)

17. Mickelberg, K., Pollard, N., Schive, L.: US cybercrime: rising risks, reduced readi-
ness key findings from the 2014 US state of cybercrime survey. US Secret Service.
National Threat Assessment Center, Pricewaterhousecoopers (2014)

18. Robb, D.: Sony hack: a timeline (2014). http://deadline.com/2014/12/sony-hack-
timeline-any-pascal-the-interview-north-korea-1201325501/

19. Ryan, C.G., Dall, P.M., Granat, M.H., Grant, P.M.: Sitting patterns at work: objec-
tive measurement of adherence to current recommendations. Ergonomics 54(6),
531–538 (2011)

20. Jéquier, E., Tappy, L.: Regulation of body weight in humans. Physiol. Rev. 79(2),
451–480 (1999)

21. Jaimes, A.: Sit straight (and tell me what i did today): a human posture alarm
and activity summarization system. In: Proceedings of the 2nd ACM Workshop
on Continuous Archival and Retrieval of Personal Experiences, pp. 23–34. ACM
(2005)

http://arxiv.org/abs/1505.05779
http://deadline.com/2014/12/sony-hack-timeline-any-pascal-the-interview-north-korea-1201325501/
http://deadline.com/2014/12/sony-hack-timeline-any-pascal-the-interview-north-korea-1201325501/


Cloud and Peer-to-Peer Security



Stateful Multi-client Verifiable
Computation

Christian Cachin1, Esha Ghosh2, Dimitrios Papadopoulos3,
and Björn Tackmann1(B)

1 IBM Research – Zurich, Rüschlikon, Switzerland
{cca,bta}@zurich.ibm.com

2 Microsoft Research, Redmond, USA
esha.ghosh@microsoft.com

3 Hong Kong University of Science and Technology, Kowloon, Hong Kong
dipapado@cse.ust.hk

Abstract. This paper develops an asynchronous cryptographic protocol
for outsourcing arbitrary stateful computation among multiple clients to
an untrusted server, while guaranteeing integrity of the data. The clients
communicate only with the server and merely store a short authenticator
to ensure that the server does not cheat. Our contribution is two-fold.
First, we extend the recent hash&prove scheme of Fiore et al. (CCS
2016) to stateful computations that support arbitrary updates by the
untrusted server, in a way that can be verified by the clients. We use
this scheme to generically instantiate authenticated data types. Second,
we describe a protocol for multi-client verifiable computation based on
an authenticated data type, and prove that it achieves a computational
version of fork linearizability. This is the strongest guarantee that can
be achieved in the setting where clients do not communicate directly; it
ensures correctness and consistency of outputs seen by the clients indi-
vidually.

Keywords: Cloud computing · Authenticated data types
Verifiable computation · Byzantine emulation · Fork linearizability

1 Introduction

Cloud services are nowadays widely used for outsourcing data and computation
because of their competitive pricing and immediate availability. They also allow
for online collaboration by having multiple clients operate on the same data; such
online services exist for, e.g., shared file storage, standard office applications,
or software solutions for specific domains. For authenticity, confidentiality, and
integrity of the data, however, the clients have to fully trust the cloud providers,
which can access and modify the raw data without the clients’ consent or notice.

The scenario we are concerned with in this paper involves multiple clients
that mutually trust each other and collaborate through an untrusted server. A

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 637–656, 2018.
https://doi.org/10.1007/978-3-319-93387-0_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_33&domain=pdf


638 C. Cachin et al.

practical example is a group of co-workers using a shared calendar or editing
a text document hosted on a cloud server. The protocol emulates multi-client
access to an abstract data type F . Given an operation o and a current state s,
the protocol computes (s ′, r) ← F (s, o) to generate an updated state s ′ and an
output r . The role of a client Cv is to invoke operation o and obtain response r ;
the purpose of the server is to store the state of F and to perform the computa-
tion. As an example, let F be defined for a set of elements where o can be adding
or deleting an element to the set. The state of the functionality will consist of
the entire set. The protocol requires that all clients have public keys for digital
signatures. Clients communicate only with the server; no direct communication
between the clients occurs. Our protocol guarantees the integrity of responses
and ensures fork linearizability, in the scenario where the server is untrusted and
may be acting maliciously.

Related Work. The described problem has received considerable attention
from the viewpoint of distributed systems, starting with protocols for securing
untrusted storage [33]. Without communication among clients, the server may
always perform a forking attack and omit the effects of operations by some clients
in the communication with other clients. Clients cannot detect this attack unless
they exchange information about the protocol progress or rely on synchronized
clocks; the best achievable consistency guarantee has been called fork lineariz-
ability by Mazières and Shasha [33] and has been investigated before [11,13,30]
and applied to actual systems [8,12,13,28,44]. Early works [13,28] focused on
simple read/write accesses to a storage service. More recent protocols such as
BST [44] and COP [12] allow for emulating arbitrary data types, but require
that the entire state be stored and the operations be computed on the client.
ACOP [12] and VICOS [8] describe at a high level how to outsource both the
state and the computation in a generic way, but neither work provides a cryp-
tographic security proof.

The purpose of an authenticated data type (ADT; often also referred to as
authenticated data structure) is to outsource storage of data, and the computa-
tion on it, to a server, while guaranteeing the integrity of the data. In a nutshell,
while the server stores the data, the client holds a small authenticator (some-
times called digest) that relates to it. Operations on the data are performed by
the server, and for each operation the server computes an integrity proof relative
to the authenticator. ADTs originated as a generalization of Merkle trees [34],
but instantiations of ADTs for various data types have been developed. There
exist schemes for such diverse types as sets [14,40], dictionaries [2,24,36], range
trees [31], graphs [25], skip lists [23,24], B-trees [35], or hash tables [39].

Non-interactive verifiable computation has been introduced as a concept to
outsource computational tasks to untrusted workers [20]; schemes that achieve
this for arbitrary functionalities exist [16,20,21,41] and are closely related to
SNARKs (e.g., [6]). These works have the disadvantage, however, that the client
verifying the proof needs to process the complete input to the computation
as well. This can be avoided by having the client first hash its input and then
outsource it storing only the hash locally. The subsequent verifiable computation



Stateful Multi-client Verifiable Computation 639

protocol must then ensure not only the correctness of the computation but also
that the input used matches the pre-image of the stored hash (which increases the
concrete overhead), an approach that has been adopted in several works [9,16,
17,43]. In this work, we build on the latest in this line of works, the hash&prove
scheme of Fiore et al. [17], by a mechanism that allows for stateful computation
in which an untrusted party can update the state in a verifiable manner, and that
can handle multiple clients. An alternative approach for verifiable computation
focuses on specific computation tasks (restricted in generality, but often more
efficient), such as polynomial evaluation [4,7], database queries [37,45], or matrix
multiplication [18].

All these works target a setting where a single client interacts with the server,
they do not support multiple clients collaborating on outsourced data. The only
existing approaches that capture multi-client verifiable computation are by Choi
et al. [15] and Gordon et al. [26]; yet, they only support stateless computations
where all clients send their inputs to the server once, the latter evaluates a
function on the joint data and returns the output. Another recent related work
provides multi-key homomorphic authenticators for circuits of (bounded) poly-
nomial depth [19]. Our work differs in that it allows stateful computation on data
that is permanently outsourced to the server and updated through computations
initiated by the clients. López-Alt et al. [29] address a complementary goal: they
achieve privacy, but do not target consistency in terms of linearizability of a
stateful multi-client computation. Also, their protocol requires a round of direct
communication between the clients, which we rule out.

Contributions. Our first contribution is a new and general definition of a two-
party ADT, where the server manages the state of the computation, performs
updates and queries; the client invokes operations and receives results from the
server. This significantly deviates from standard three-party ADTs (e.g. [40,42])
that differentiate between a data owner, the untrusted server, and client(s).
The owner needs to store the entire data to perform updates and publish the
new authenticator in a trusted manner, while the client(s) may only issue read-
only queries to the server. Our definition allows the untrusted server to perform
updates such that the resulting authenticator can be verified for its correctness,
eliminating the need to have a trusted party store the entire data. The definition
also generalizes existing two-party ADTs [22,38], as we discuss in Sect. 3.

We then provide a general-purpose instantiation of an ADT, based on verifi-
able computation from the work of Fiore et al. [17]. Our instantiation captures
arbitrary stateful deterministic computation, and the client stores only a short
authenticator which consists of two elements in a bilinear group.

We also devise computational security definitions that model the distributed-
systems concepts of linearizability and fork linearizability [33] via cryptographic
games. This allows us to prove the security of our protocol in a computational
model by reducing from the security of digital signatures and ADTs—all previous
work on fork linearizability idealized the cryptographic schemes.

Finally, we describe a “lock-step” protocol to satisfy the computational
fork linearizability notion, adapted from previous work [13,33]. The protocol



640 C. Cachin et al.

guarantees fork-linearizable multi-client access to a data type. It is based on our
definition of ADTs; if instantiated with our ADT construction, it is an asyn-
chronous protocol for outsourcing any stateful (deterministic) computation with
shared access in a multi-client setting.

2 Preliminaries

We use the standard notation for the sets of natural numbers N, integers Z, and
integers Zp modulo a number p ∈ N. We let ε denote the empty string. If Z is
a string then |Z| denotes its length, and ◦ is an operation to concatenate two
strings. We consider lists of items, where [ ] denotes the empty list, L[i] means
accessing the i-th element of the list L, and L ← L ◦ x means storing a new
element x in L by appending it to the end of the list. If X is a finite set, we
let x ←$ X denote picking an element of X uniformly at random and assigning
it to x. Algorithms may be randomized unless otherwise indicated. If A is an
algorithm, we let y ← A(x1, . . . ; r) denote running A with uniform random
coins r on inputs x1, . . . and assigning the output to y. We use y ←$A(x1, . . .) as
shorthand for y ← A(x1, . . . ; r). For an algorithm that returns pairs of values,
(y, ) ← A(x) means that the second parameter of the output is ignored; this
generalizes to arbitrary-length tuples. The security parameter of cryptographic
schemes is denoted by λ.

We formalize cryptographic security properties via games, following in partic-
ular the syntax of Bellare and Rogaway [5]. By Pr[G] we denote the probability
that the execution of game G returns True. We target concrete-security defini-
tions, specifying the security of a primitive or protocol directly in terms of the
adversary advantage of winning a game. Asymptotic security follows immediately
from our statements. In games, integer variables, set, list and string variables,
and boolean variables are assumed initialized, respectively, to 0, ∅, [] and ε, and
False.

System Model. The security definition for our protocol is based on well-
established notions from the distributed-systems literature. In order to make
cryptographic security statements and not resort to modeling all cryptography
as ideal, we provide a computational definition that captures the same intuition.

Recall that our goal is to enable multiple clients C1, . . . , Cu , with u ∈ N, to
evaluate an abstract deterministic data type F : (s, o) �→ (s ′, r), where s, s ′ ∈ S
describe the global state of F, o ∈ O is an input of a client, and r ∈ A is the
corresponding output or response. Each client may exchange messages with a
server over an asynchronous network channel. The clients can provide inputs to
F in an arbitrary order. Each execution defines a history σ, which is a sequence
of input events (Cv , o) and output events (Cv , r); for simplicity, we assume
O∩A = ∅. An operation directly corresponds to an input/output event pair and
vice versa, and an operation is complete in a history σ if σ contains an output
event matching the input event.

In a sequential history, the output event of each operation directly follows
the corresponding input event. Moreover, an operation o precedes an operation



Stateful Multi-client Verifiable Computation 641

o′ in a history σ if the output event of o occurs before the input event of o′ in σ.
Another history σ′ preserves the (real-time) order of σ if all operations of σ′

occur in σ as well and their precedence relation in σ is also satisfied in σ′. The
goal of a protocol is to emulate F . The clients only observe their own input and
output events. The security of a protocol is defined in terms of how close the
histories it produces are to histories produced through invocations of an ideal
shared F .

Linearizability. A history σ is linearizable with respect to a type F [27] if and
only if there exists a sequential permutation π(σ) of σ such that

– π(σ) preserves the (real-time) order of σ; and
– the operations of π(σ) satisfy the sequential specification of F .

Satisfying the sequential specification of F means that if F starts in a specified
initial state s0, and all operations are performed sequentially as determined by
π(σ) = o1, o2, . . . , then with (sj , rj ) ← F (sj−1, oj ), the output event correspond-
ing to oj contains output rj .

Linearizability is a strong guarantee as it specifies that the history σ could
have been observed by interacting with the ideal F , by only (possibly) exchang-
ing the order of operations which were active concurrently. Unfortunately, as
described in the introduction, linearizability cannot be achieved in the setting
we are interested in.

Fork Linearizability. A history σ is called fork-linearizable with respect to a type
F [13,33] if and only if, for each client Cv , there exists a subsequence σv of σ
consisting only of complete operations and a sequential permutation πv (σv ) of
σv such that:

– All complete operations in σ occurring at client Cv are in σv , and
– πv (σv ) preserves the real-time order of σv , and
– the operations of πv (σv ) satisfy the sequential specification of F , and
– for every o ∈ πv (σv ) ∩ πv ′(σv ′), the sequence of events preceding o in πv (σv )

is the same as the sequence of events that precede o in πv ′(σv ′).

Fork linearizability is weaker than linearizability in that it requires consistency
with F only with respect to permutations of sub-sequences of the history. This
models the weaker guarantee that is achieved relative to a dishonest server that
partitions the set of clients and creates independent forks of the computation in
each partition. Intuitively, fork linearizability formalizes that this partitioning
attack is the only possible attack; the partitions will remain split forever, and
the executions within the partitions are linearizable. Fork linearizability is the
strongest achievable guarantee in the setting we consider [33].

Abortable Services. When operations of F cannot be served immediately, a pro-
tocol may decide to either block or abort. Aborting and giving the client a chance
to retry the operation at his own rate often has advantages compared to block-
ing, which might delay an application in unexpected ways. As in previous work



642 C. Cachin et al.

that permitted aborts [1,8,12,30], we allow operations to abort and augment F
to an abortable type F ′ accordingly. F ′ is defined over the same set of states S
and operations O as F , but returns a tuple defined over S and A ∪ {busy}. F ′

may return the same output as F , but F ′ may also return busy and leave the
state unchanged, denoting that a client is not able to execute F . Hence, F ′ is a
non-deterministic relation and satisfies F ′(s, o) = {(s,busy), F (s, o)} .

Verifiable Computation. A verifiable computation scheme VC specifies the
following. A key-generation algorithm VC.keygen that takes as input
security parameter λ and relation R ⊂ U × W and produces a pair
(ek , vk) ←$ VC.keygen(λ,R) of evaluation key ek and verification key vk . An
algorithm VC.prove that takes as input evaluation key ek , u ∈ U , and witness
w ∈ W such that (u,w) ∈ R, and returns a proof ξ ←$ VC.prove(ek , u, w). As
a concrete example, in the case of a circuit-based SNARK [16,41] the witness
w consists of the assignments of the internal wires of the circuit. An algorithm
VC.verify that takes as input the verification key vk , input u, and proof ξ, and
returns a Boolean True/False ← VC.verify(vk , u, ξ) that signifies whether ξ
is valid.

The correctness error of VC is the probability that the verification of an
honestly computed proof for a correct statement returns False. The soundness
error is the advantage of a malicious prover to produce an accepting proof of a
false statement. Both quantities must be small for a scheme to be useful.

The verifiable computation schemes we use in this work have a special prop-
erty referred to as offline-online verification, and which is defined when the set
U can be written as U = X × V . In particular, for those schemes there exist
algorithms VC.offline and VC.online such that

VC.verify(vk , (x, v), ξ) = VC.online(vk ,VC.offline(vk , x), v, ξ).

Hash&prove Schemes. We again consider the relation R ⊆ U ×W . A hash&prove
scheme HP then allows to prove statements of the type ∃w ∈ W : R(u,w) for a
given u ∈ U ; one crucial property of hash&prove schemes is that one can produce
a short proof of the statement (using the witness w), such that the verification
does not require the element u ∈ U but only a short representation of it.

In more detail, a multi-relation hash&prove scheme as defined by Fiore
et al. [17] consists of five algorithms:

– HP.setup takes as input security parameter λ and produces public parame-
ters pp ←$ HP.setup(λ).

– HP.hash takes as input public parameters pp and a value x ∈ X and produces
a hash hx ← HP.hash(pp, x).

– HP.keygen takes as input public parameters pp and a relation R and outputs
a key pair (ekR, vkR)←$HP.keygen(pp, R) of evaluation key and verification
key.

– HP.prove takes as input evaluation key ekR, values (x, v) ∈ X × V
and witness w ∈ W such that ((x, v), w) ∈ R, and produces a proof
π ←$ HP.prove(ekR, (x, v), w).



Stateful Multi-client Verifiable Computation 643

– Finally, HP.verify takes as input verification key vkR, hash hx, value v, and
proof π and outputs a Boolean denoting whether it accepts the proof, written
True/False ← HP.verify(vkR, hx, v, π).

An extractable hash&prove scheme has an additional (deterministic) algo-
rithm HP.check that takes as input pp and a hash h and outputs
True/False ← HP.check(pp, h), a Boolean that signifies whether the hash
is well-formed (i.e., there is a pre-image).

Correctness of HP is defined by requiring that the honest evaluation of the
above algorithms leads to HP.verify accepting. A hash&prove scheme has
two soundness properties, soundness and hash-soundness. At a high level, both
soundness games require an adversary to produce a proof for a false statement
that will be accepted by HP.verify. Adversary A is given public parameters
pp, evaluation key ek , and verification key vk . To break soundness, A has to
produce a proof for a statement (x, v) that is wrong according to relation R,
but the proof is accepted by HP.verify for hx ← HP.hash(pp, x) computed
honestly.

The purpose of hash soundness is to capture the scenario where HP supports
arguments on untrusted, opaque hashes provided by the adversary. For this, the
HP.hash algorithm must be extractable. The hash-soundness game operates
almost as the soundness game, but instead of x, the adversary provides a hash
h. The adversary wins if the hash h cannot be opened consistently (by the
extractor E) to satisfy the relation; for further explanation, we point the readers
to [17, Appendix A.1], but we stress that the extraction is needed in our context.

Finally, we define the collision advantage of adversary A as

Advcr
HP (A) := Pr

[
pp ←$ HP.setup; (x, y) ←$ A(pp);
HP.hash(pp, x) ?= HP.hash(pp, y)

]

Hash&Prove for Multi-exponentiation. We recall the hash&prove scheme for
multi-exponentiation introduced as XPE in [17], but keep the details light since
we do not use properties other than those already used there. The scheme,
which we call MXP here, uses asymmetric bilinear prime-order groups Gλ =
(e,G1,G2,GT , p, g1, g2), with an admissible bilinear map e : G1 × G2 → GT ,
generators g1 ∈ G1 and g2 ∈ G2, and group order p. The main aspect we need to
know about MXP is that, it works for inputs of the form x = (x1, . . . , xn) ∈ Z

n
p

and admissible relations of MXP are described by a vector (G1, . . . , Gn) ∈ G
n
1 .

The proved relation is the following:
∏n

i=1 Gxi
i = cx for a given cx. MXP uses

a hash of the input x = (x1, . . . , xn) ∈ Z
n
p to prove correctness across different

admissible relations. The hash function is described by a vector (H1, . . . , Hn) ∈
G

n
1 . For an input x = (x1, . . . , xn) ∈ Z

n
p , the hash is computed as hx =

∏n
i=1 Hxi

i .
In a nutshell, this will be used for proving that hx and cx encode the same vector
x, with respect to a different basis.

Fiore et al. [17] prove MXP adaptively hash-sound under the Strong Exter-
nal DDH and the Bilinear n-Knowledge of Exponent assumptions. They then
combine MXP with schemes for online-offline verifiable computation that use



644 C. Cachin et al.

an encoding of the form
∏n

i=1 Gxi
i = cx as its intermediate representation, to

obtain a hash&prove scheme that works for arbitrary (stateless) computations.
We describe their construction in more detail in Sect. 4, before explaining our
scheme that follows the same idea but extends to stateful computations.

3 Authenticated Data Types

Authenticated data types, which originated as an abstraction and generalization
of Merkle trees [34], associate with a (potentially large) state of the data type
a short authenticator (or digest) that is useful for verification of the integrity of
operations on the state. In more detail, an abstract data type is described by a
state space S with a function F : S × O → S × A as before. F takes as input a
state s ∈ S of the data type and an operation o ∈ O and returns a new state s ′

and the response r ∈ A. The data type also specifies the initial state s0 ∈ S.
Here, we present a definition for what is known in the literature as a “two-

party” authenticated data type (ADT) [38]. The interaction is between a client,
i.e., a party that owns F and wants to outsource it, and an untrusted server
that undertakes storing the state of this outsourced data type and responding
to subsequent operations issued. The client, having access only to a succinct
authenticator and the secret key of the scheme, wishes to be able to efficiently test
that requested operations have been performed honestly by the server (see [38]
for a more detailed comparison of variants of ADT modes of operation). An
authenticated data type ADT for F consists of the following algorithms:

(sk , ad , a)←$ADT.init(λ): This algorithm sets up the secret key and the public
key for the ADT scheme, for security parameter λ. It also outputs an initial
amended state ad and a succinct authenticator a. We implicitly assume from
now on that the public key pk is part of the secret key sk as well as the server
state ad . We also assume that the actual initial state s0 and authenticator a
are part of ad .

π ←$ ADT.exec(ad , o): This algorithm takes an operation o, applies it on
the current version of ad , and provides a correctness proof π, from which
a response r can be extracted.

(True/False, r , a ′, t)←$ADT.verify(sk , a, o, π): The algorithm takes the cur-
rent authenticator a, an operation o, and a proof π, verifies the proof with
respect to the authenticator and the operation, outputting local output r ,
the updated authenticator a ′, and an additional authentication token t.

ad ′ ←$ADT.refresh(ad , o, t): The algorithm updates the amended state from
ad to ad ′, using operation o and authentication token t provided by the client.

An ADT has to satisfy two conditions, correctness and soundness. Correct-
ness formalizes that if the ADT is used faithfully, then the outputs received by
the client are according to the abstract data type F .

Definition 1 (Correctness). Let s0 be the initial state of data type F and
o1, . . . , om be a sequence of operations. The ADT scheme ADT is correct if in
the following computation, the assertions are always satisfied.



Stateful Multi-client Verifiable Computation 645

(sk , ad , a) ←$ ADT.init(λ) ; s ← s0
For j = 1, . . . ,m do

π ←$ ADT.exec(ad , oj )
(b, r , a ′, t) ← ADT.verify(sk , a, oj , π)
(s ′, r ′) ← F (s, oj )
assert b and r = r ′

ad ′ ←$ ADT.refresh(ad , oj , t)
(ad , a, s) ← (ad ′, a ′, s ′)

The second requirement for the ADT, soundness, states that a dishonest
server cannot cheat. The game Gsound

ADT described in Fig. 1 formalizes that it
must be infeasible for the adversary (a misbehaving server) to produce a proof
that makes a client accept a wrong response of an operation. The variable forged
tracks whether the adversary has been successful. The list L[ ] is used to store
valid pairs of state and authenticator of the ADT, and is consequently initialized
with (s0, a) of a newly initialized ADT in position 0. The adversary A is initial-
ized with (ad , a) and can repeatedly query the verify oracle in the game by
specifying an operation o, the index pos ∈ N of a state on which o shall be exe-
cuted, and a proof π. The challenger obtains state s and authenticator a of the
pos-th state from the list L[ ]. The challenger (a) checks whether ADT.verify
accepts the proof π, and (b) computes the new state s ′ and the output r ′ using
the correct F and state s, and sets forged if the proof verified but the output r
generated by ADT.verify does not match the “ideal” output r ′.

This game formulation ensures the outputs provided to the clients are always
correct according to F and the sequence of operations performed, but also allows
the adversary to “fork” and compute different operations based on the same
state. This is necessary for proving the security of the protocol described in
Sect. 6. Unlike for the output r , the game does not formalize an explicit correct-
ness condition for ad ′ to properly represent the state s ′ of F as updated by o′;
this is only modeled through the outputs generated during subsequent opera-
tions. Indeed, in the two-party model, the internal state of the server cannot be
observed, and only the correctness of the responses provided to clients matters.

Definition 2 (Soundness). Let F be an abstract data type and ADT an ADT
for F . Let A be an adversary. The soundness advantage of A against ADT is
defined as Advsound

ADT (A) := Pr
[
Gsound

ADT

]
.

To exclude trivial schemes in which the server always sends the complete
state to the clients, we explicitly require that the authenticator of the clients
must be succinct. More concretely, we require that the size of the authenticator
is independent of the size of the state.

Definition 3 (Succinctness). Let F be an abstract data type and ADT an
ADT with security parameter λ for F . Then ADT is succinct if the bit-length
of the authenticator a is always in O(λ).

Very few existing works seek to define a two-party authenticated data struc-
ture [22,38], since most of the literature focuses on a three-party model where



646 C. Cachin et al.

Game Gsound
ADT (A)

forged False
(sk , ad , a) $ ADT.init(λ)
L[0] (s0, a)
Averify(ad , a)
Return forged

verify(o, pos, π)

If pos > |L| then return ⊥
(s, a) L[pos]
(b, r , a ′, t) $ ADT.verify(sk , a, o, π)
If b then

(s ′, r ′) F (s, o)
If r ′ �= r then forged True
L L ◦ (s ′, a ′)
Return (True, a ′, t, r)

Else return (False, ⊥, ⊥, ⊥)

Fig. 1. The security game formalizing soundness of an ADT.

the third party is a trusted data manager that permanently stores the data and
is the sole entity capable of issuing updates.

The definition of [38] differs from ours as it only supports a limited class of
functionalities. It requires the update issuer to appropriately modify ad himself
and provide the new version to the server and, as such, this definition can only
work for structures where the part of the ad that is modified after an update
is “small” (e.g., for a binary hash tree, only a logarithmic number of nodes
are modified). The definition of [22] supports general functionalities however,
unlike ours, it cannot naturally support randomized ADT schemes as it requires
the client to be able to check the validity of the new authenticator a ′ after an
update; in case a scheme is randomized, it is not clear whether this check can
be performed. In our soundness game from Fig. 1, the adversary can only win
by providing a bad local output r (which, by default, is empty in the case of
updates) and not with a bad authenticator, which makes it possible to handle
randomized constructions. We note that our construction from Sect. 4 does not
exploit this, as it is deterministic.

4 A General-Purpose Instantiation of ADT

This section contains one main technical contribution of this work, namely a
general-purpose instantiation of ADTs defined in Sect. 3. Our scheme builds on
the work of Fiore et al. [17], which defined hash&prove schemes in which a
server proves the correctness of a computation (relative to a state) to a client
that only knows a hash value of the state. The main aspect missing from [17]
is the capability for an untrusted server to update the state and produce a new
(verifiable) hash. The hash of an updated state can be computed incrementally
as described in [17, Sect. 4.4].

Before we start describing our scheme, we recall some details of the
hash&prove scheme of Fiore et al. [17]. Their scheme allows to verifiably com-
pute a function f : Z → V on an untrusted server, where the verification by



Stateful Multi-client Verifiable Computation 647

the client does not require z ∈ Z but only a hash hz of it. In accordance with
the verifiable computation schemes for proving correctness of the computation,
they set U = Z × V and consider a relation Rf ⊆ U × W such that for a pair
(z, v) ∈ U there is a witness w ∈ W with ((z, v), w) ∈ Rf if and only if f(z) = v.
In other words, proving ∃w : ((z, v), w) ∈ Rf implies that f(z) = v. The format
of the witness w depends on the specific verifiable computation scheme in use,
e.g., it may be the assignments to the wires of the circuit computing f(z).

Fiore et al. proceed via an offline-online verifiable computation scheme VC
and a hash-extractable hash&prove scheme for multi-exponentiations MXP.
Recall that MXP uses a hash function that is described by a vector pp =
(H1, . . . , Hn) ∈ G

n
1 and computed as hz ← MXP.hash(pp, z) =

∏n
i=1 Hzi

i for
z = (z1, . . . , zn) ∈ Z

n
p . The hash hz, which is known to the client, is computed

via MXP.hash(pp, ·). The offline-online property of the scheme VC states that

VC.verify(vk , (z, v), ξ) = VC.online(vk ,VC.offline(vk , z), v, ξ).

Fiore et al. further assume that VC uses an intermediate representation of the
form VC.offline(vk , z) = cz =

∏n
i=1 Gzi

i , where the group elements G1, . . . , Gn

are included in the verification key vk . This means, in a nutshell, that MXP can
be used to prove that, for a given z, the hashes cz and hz encode the same z.

In the complete scheme, the server computes ξ←$VC.prove(ek , z, w), using
the scheme-dependent witness w referred to above, and the evaluation key ek
for the function f . It also computes cz = VC.offline(vk , z) and sends ξ and cz

to the client. The server proves to the client via MXP that cz contains the same
value z as the hash hz known to the client. The client concludes by verifying the
proof via VC.online with input cz.

Building the New Hash&Prove Scheme. Our goal is to model stateful com-
putations of the type F (s, o) = (s′, r), using the syntax of the hash&prove
scheme. Recall that the syntax of [17] does not handle stateful computations
with state updates explicitly. On a high-level, our approach can be seen as
computing a stateful F verifiably by first computing (s′, ) ← F (s, o) with-
out verification (where means that the second component of the output
is ignored) and then verifiably computing F̃ ((s, s′), o) �→ (d , r) defined via
(s̄, r) ← F (s, o); d ← s̄

?= s′. In this approach, the client has to check the
proof of the verifiable computation and that d = True. Putting the output
state s′ into the input of the verifiable computation of F̃ has the advantage that
we already know how to handle hashes there: via a hash&proof scheme similar
to the one of [17]. In the following, we describe our scheme more technically. It
can be seen as a variant of [17] with two hashed inputs x and y.

In [17], the output of VC.offline(vk , z) is a single value cz that is then
related to the hash hz known to the client via MXP. As we have two individual
hashes hx and hy for the components x and y, respectively, we modify the con-
struction of [17]. For z ∈ X×Y with X = Y = Z

n
p , we modify VC.offline(vk , z)

to compute cx ← ∏n
i=1 Gxi

i and cy ← ∏n
i=1 Gyi

n+i for elements G1, . . . , G2n that
are specified in vk , and prove consistency of cx with hx and of cy with hy, again



648 C. Cachin et al.

SHP.setup(λ)
pp $ MXP.setup(λ)
Return pp

SHP.hash(pp, (x, y))
hx MXP.hash(pp, x) ; hy MXP.hash(pp, y)
Return (hx, hy)

SHP.keygen(pp, R)
(ek , vk) $ VC.keygen(λ, R)
Let G1, . . . , G2n be the “offline” elements in vk , see discussion in text.
(ek i, vk i) $ MXP.keygen(pp, (G1, . . . , Gn))
(ek o, vk o) $ MXP.keygen(pp, (Gn+1, . . . , G2n))
Return (ekR, vkR) = ((ek , vk , ek i, ek o), (vk , vk i, vk o))

SHP.prove(ekR, (x, y), v, w)
(cx, cy) VC.offline(vk , (x, y))
ξ $ VC.prove(ek , ((x, y), v), w)
πx $ MXP.prove(ek i, x, cx) ; πy $ MXP.prove(ek o, y, cy)
Return πR = (cx, cy, ξ, πx, πy)

SHP.check(pp, (hx, hy))
Return MXP.check(pp, hx) ∧ MXP.check(pp, hy)

SHP.verify(vkR, (hx, hy), v, πR)
Return VC.online(vk , (cx, cy), v, ξ) ∧ SHP.check(pp, (hx, hy))

∧MXP.verify(vk i, hx, cx, πx) ∧ MXP.verify(vk o, hy, cy, πy)

Fig. 2. The hash&prove scheme SHP for updates by untrusted servers.

using MXP. (Note that this is cz = cxcy.) As argued by [17], many existing
VC/SNARK constructions can be written in this way.

Summarizing the above, the main modifications over [17] are (i) that we
transform a stateful F into a stateless F̃ , (ii) that VC.online obtains two ele-
ments cx and cy from VC.offline, and (iii) that the output bit d has to be
checked. Our stateful hash&prove system SHP for F̃ is specified formally in
Fig. 2. We formally prove that SHP is hash sound (analogously to [17, Corol-
lary 4.1]) in the full version [10].

Building a General-Purpose ADT Using Our HP. The scheme SHP constructed
above lends itself well to building a general-purpose ADT. Note that verifiable
computation schemes explicitly construct the witness w required for the correct-
ness proof; in fact, the computation of F can also be used to produce a witness
w for the correctness according to F̃ , which is immediate for VC schemes that
actually model F as a circuit [21,41].

The general-purpose ADT GA, which is more formally described in Fig. 3,
works as follows. Algorithm GA.init generates public parameters pp and a



Stateful Multi-client Verifiable Computation 649

GA.initF (λ)

pp $ SHP.setup(λ)
(ek , vk) $ SHP.keygen(pp, RF̃ )
(a, ) SHP.hash(pp, (s0, ε))
Return (vk , (s0, a, ek , vk), a)

GA.execF (ad , o)

(s, a, ek , vk) ad

(s ′, r) F (s, o) � Get witness w

ξ $ SHP.prove(ek , (s, s ′), (o, r), w)
(a ′, ) SHP.hash(pp, (s ′, ε))
Return π = (ξ, a ′, r)

GA.verify(sk , a, o, π)

(ξ, a ′, r ′) π ; (d , r) r ′

b d ∧SHP.verify(sk , (a, a ′), (o, r ′), ξ)
Return (b, r , a ′, ε)

GA.refreshF (ad , o, t)

(s, a, ek , vk) ad

(s ′, r) F (s, o)
(a ′, ) SHP.hash(pp, (s ′, ε))
Return (s ′, a ′, ek , vk)

Fig. 3. The general-purpose ADT scheme GA that can be instantiated for any data
type F . While GA.refresh does not use the value t, it is included in the definition of
ADT as it could be useful in other schemes.

key pair (ek , vk) for SHP, and then computes the authenticator (a, ) ←
SHP.hash(pp, (s0, ε)) for the initial state s0 of F . Algorithm GA.exec com-
putes the new state s ′ via F and authenticator (a ′, ) ← SHP.hash(pp, (s ′, ε)),
and generates a correctness proof ξ for the computation of F̃ via SHP.prove.
We note that we explicitly write out the empty string ε, and ignore the second
output component, in algorithm (a, ) ← SHP.hash(pp, (s0, ε)) to be consistent
with the hash&prove scheme syntax. We can safely ignore this argument at the
implementation level. Algorithm GA.verify checks the proof ξ via SHP.verify
and also checks the bit d output by F̃ to ensure that the authenticator a ′ is cor-
rect. Algorithm GA.refresh simply updates the server state—recomputing s ′

and a ′ can be spared by caching the values from GA.exec. Instantiating GA
with the schemes of [17] leads to a succinct ADT. We defer the soundness proof
to the full version [10].

5 Computational Fork-Linearizable Byzantine Emulation

The application we target in this paper is verifiable multiple-client computation
of an ADT F with an untrusted server for coordination. As the clients may not be
online simultaneously, we do not assume any direct communication among them.
The goal of the protocol is to emulate an abstract data type F : (s, o) �→ (s ′, r).
As the server may be malicious, this setting is referred to as Byzantine emulation
in the literature [13].

A Byzantine emulation protocol BEP specifies the following: A setup algo-
rithm BEP.setup takes as parameter the number u ∈ N of clients and outputs,
for each client v ∈ N, key information clkv , server key information svk , and
public key information pks. (The variable pks models information that is consid-
ered public, such as the clients’ public keys.) A client algorithm BEP.invoke



650 C. Cachin et al.

takes as input an operation o ∈ {0, 1}∗, secret information clk ∈ {0, 1}∗, public
keys pks ∈ {0, 1}∗ and state S ∈ {0, 1}∗, and outputs a message m ∈ {0, 1}∗

and a new state S′ ∈ {0, 1}∗. A client algorithm BEP.receive takes as input
a message m ∈ {0, 1}∗, and clk , pks , and S as above, and outputs a value
r ∈ {0, 1}∗ ∪ {abort,busy}, a message m′ ∈ {0, 1}∗ ∪ {⊥}, and a new state
S′ ∈ {0, 1}∗. The return value abort means that the operation has been aborted
because of an error or inconsistency of the system, whereas busy means that
the server is busy executing a different operation and the client shall repeat the
invocation later. A server algorithm BEP.process takes as input a message
m ∈ {0, 1}∗, purported sender v ∈ N, secret information svk ∈ {0, 1}∗, public
keys pks ∈ {0, 1}∗and state Ss ∈ {0, 1}∗, and outputs a message m′ ∈ {0, 1}∗,
intended receiver v ′ ∈ N, and updated state S′

s ∈ {0, 1}∗.
We then define the security game Gemu

BEP,u,P described in Fig. 4. Initially,
the game calls BEP.setup to generate the necessary keys; the setup phase
modeled here allows the clients to generate and distribute keys among them.
This allows for modeling, for instance, a public-key infrastructure, or just a
MAC key that is shared among all clients. (Note that we consider all clients as
honest.) The adversary A, which models the network as well as the malicious
server, is executed with input pks—the public keys of the scheme—and has
access to four oracles. Oracle invoke(v , o) models the invocation of operation
o at client Cv , updates the state Sv , and appends the input event (Cv , o) to
the history σ. The oracle returns a message m directed at the server. Oracle
receive(v ,m) delivers the message m to Cv , updates the state Sv , and outputs
a response r and a message m′. If r �= ⊥, the most recently invoked operation of
Cv completes and the output event (Cv , r) is appended to σ. If m′ �= ⊥, then m′

is a further message directed at the server. Oracle corrupt returns the server
state Ss, and oracle process(v ,m) corresponds to delivering message m to the
server as being sent by Cv . This updates the server state Ss, and may return a
message m′ to be given to Cv . The game returns the result of predicate P on
the history σ, which is initially empty and extended through calls of the types
invoke(v , o) and receive(v ,m). We define two classes of adversaries: full and
benign, that we use in the security definition.

Full Adversaries: A full adversary Afull invokes oracles in an arbitrary order.
The only restriction is that, for each v ∈ [1, u], after Afull has invoked an opera-
tion of Cv (with invoke(v , ·)), then Afull must not invoke another operation of
Cv until after the operation completes (when receive(v , ·) returns r �= ⊥). This
condition means that a single client does not run concurrent operations and is
often called well-formedness.

Benign Adversaries: A benign adversary Aben is restricted like Afull. Addition-
ally, it makes no query to the corrupt oracle and delivers exactly the messages
generated by the protocol; the order of messages belonging to different client
operations can be modified as long as the server is allowed to finish each opera-
tion before starting the next one.

The protocol must satisfy two conditions, which are made formal in Defini-
tion 4. The first condition models the security against malicious servers, and uses



Stateful Multi-client Verifiable Computation 651

Game Gemu
BEP,u,P (A)

(clk1, . . . , clku , svk , pks)
$ BEP.setup(u)

Ainvoke,receive,process,corrupt(pks)
Return ¬P(σ)

invoke(v , o)
(m, Sv ) $BEP.invoke(o, clkv , pks, Sv )
σ σ ◦ (Cv , o)
Return m

receive(v , m)
(r , m′, Sv ) $BEP.receive(m, clkv , pks, Sv )
σ σ ◦ (Cv , r)
Return (r , m′)

corrupt
Return Ss

process(v , m)
(m′, v ′, Ss)

$ BEP.process(m, v , svk , pks, Ss)
Return (v ′, m′)

Fig. 4. The emulation game parametrized by a predicate P.

the concept of fork linearizability as defined in Sect. 2. In more detail, we use a
predicate forkF ′ that determines whether the history σ is fork linearizable with
respect to the abortable type F ′, and the advantage of adversary Afull is defined
as the probability of producing a history that is not fork-linearizable. The second
condition formalizes linearizability with respect to benign adversaries Aben and
is defined using a predicate linF ′ ∧ liveF ′ that formalizes both linearizability and
liveness.

Definition 4. Let BEP be a protocol and F an abstract data type. The FLBE-
advantage of Afull w.r.t. BEP and F is defined as the probability of winning
the game Gemu

BEP,u,forkF ′ , where forkF ′ denotes the predicate that formalizes fork
linearizability with respect to F ′. The linearizability advantage of Aben is defined
as the probability of winning the game Gemu

BEP,u,linF ∧liveF
, using the predicate linF

that formalizes linearizability with respect to F , and liveF that formalizes that
no operations abort.

The predicates forkF ′ and linF are easily made formal following the descriptions
in Sect. 2. The predicate liveF simply formalizes that for every operation o ∈ σ
there is a corresponding output event.

6 A Lock-Step Protocol for Emulating Shared Data
Types

We describe a lock-step protocol that uses an ADT to give multiple clients access
to a data type F , and achieves fork linearizability via vector clocks [13,32,33] in
a setting where the server may be malicious. By lock-step we mean that while
the server processes the request of one client, all other clients will be blocked. We
prove the security of the scheme based on the unforgeability of the underlying
signature scheme and the soundness of the underlying ADT.

The lock-step protocol LS, which is specified formally in Fig. 5, has a setup
phase in which the keys of the ADT and one signature key pair per client are



652 C. Cachin et al.

LS.setup(u, λ)
(sk , ad , a) $ ADT.init(λ)
For v = 1 to u do (sskv , spkv ) $ DS.keygen(λ)
Return ((ssk1, sk , 1), . . . , (ssku , sk , u), ad , (spk1, . . . , spku , a))

LS.invoke(ov , clkv , pks, T )
If s = ε then T (0, . . . , 0) � Obtain number of users from pks
Return (〈submit, ov 〉 , T )

LS.receive(m, (sskv , sk , v), (spk1, . . . , spku , a0), T )
If m = 〈busy〉 then return (busy, ⊥, T )
〈reply, V, �, a, ϕ′, ξ m (or abort if not possible)
(b, r, a ′, t) ADT.verify(sk , a, ov , ξ)
b b ∧ ((V = (0, . . . , 0) ∧ a = a0) ∨ DS.verify(spk �, ϕ

′,commit ◦ a ◦ V ))
If ¬ ((T ≤ V ) ∧ (T [v ] = V [v ]) ∧ b) then return (abort, ⊥, T )
T V + 1v

ϕ DS.sign(sskv ,commit ◦ a ′ ◦ T )
Return (r, 〈commit, T, a ′, ϕ, t〉 , T )

LS.process(m, v , ad0, pks, s)
If s = ε then s (ad , a, 0, ε, (0, . . . , 0), 0) � Initialize server state
(ad , a, �, ω, V, i) s
If i = 0 and m = 〈submit, o〉 then � Expect a submit message

π ADT.exec(ad , o)
Return (v , 〈reply, V, �, a, ω, π〉 , (ad , a, �, ω, V, v))

Else if i = v and m = 〈commit, T, a ′, ϕ, t〉 then � Expected commit
ad ′ ADT.refresh(ad , a, o, t)
Return (0, ⊥, (ad ′, a ′, i, ϕ, T, 0))

Else return (v , 〈busy〉 , s)

〉

Fig. 5. The lock-step protocol LS.

generated and distributed. Each client has access to the verification keys of
all other clients; this is in practice achieved by means of a PKI. The processing
then works as follows. A client Cv initiates an operation o by calling LS.invoke,
which generates a submit message with o for the server. When this message is
delivered to the server, then it generates a reply message for the client. The
client performs local computation, generates a commit message for the server,
finally completes the operation by returning the output r .

Authenticated data types ensure the validity of each individual operation
invoked by a client. After the client submits operation o, the server executes o via
ADT.exec and returns the proof π together with the previous authenticator in
reply. The client verifies the server’s computation against the previous authen-
ticator, computes the output and the new authenticator via ADT.verify, and
sends them to the server in commit. Finally, the new authenticator and the
authentication token of the ADT are sent to the server, which updates the state
via ADT.refresh.



Stateful Multi-client Verifiable Computation 653

Digital signatures are used to authenticate the information that synchronizes
the protocol state among the clients. After computing a new authenticator a ′

via ADT.verify, a client signs a ′ and sends it back to the server in commit.
When the next client initiates an operation o, the reply message from the server
contains the authenticator a ′ together with the signature. Checking the validity
of this signature ensures that all operations are performed on a valid (though
possibly outdated) state.

Vector clocks represent causal dependencies among events occurring in dif-
ferent parts of a network [3]. For clients C1, . . . , Cu , a logical clock is described
by a vector V ∈ N

u , where the v -th component V [v ] contains the logical time of
Cv . In our protocol, clients increase their local logical with each operation they
perform; the vector clock therefore ensures a partial order on the operations.
Each client ensures that all operations it observes are totally ordered by updat-
ing its vector clock accordingly, and signing and communicating it together with
the authenticator. Together with the above mechanism, this ensures that the
only attack that is feasible for a server is partitioning the client set and forking
the execution.

We prove in the full version [10] that the protocol achieves fork linearizability
if the signature scheme and the ADT are secure. On a high level, we first perform
game hops in which we idealize the guarantees of the signature scheme and the
ADT used by protocol LS. We then show that the history σ produced with
idealized cryptography is fork-linearizable.

Theorem 1. The protocol described above emulates the abortable type F ′ on a
Byzantine server with fork linearizability. Furthermore, if the server is correct,
then all histories of the protocol are linearizable w.r.t. F .

Acknowledgments. This work has been supported in part by the European Com-
mission through the Horizon 2020 Framework Programme (H2020-ICT-2014-1) under
grant agreements 644371 WITDOM and 644579 ESCUDO-CLOUD and in part by the
Swiss State Secretariat for Education, Research and Innovation (SERI) under contracts
15.0098 and 15.0087. The work by Esha Ghosh was supported in part by NSF grant
CNS-1525044.

References

1. Aguilera, M.K., Frölund, S., Hadzilacos, V., Horn, S.L., Toueg, S.: Abortable and
query-abortable objects and their efficient implementation. In: ACM PODC, pp.
23–32 (2007)

2. Anagnostopoulos, A., Goodrich, M.T., Tamassia, R.: Persistent authenticated dic-
tionaries and their applications. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001.
LNCS, vol. 2200, pp. 379–393. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45439-X 26

3. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and
Advanced Topics, 2nd edn. Wiley, Hoboken (2004)

https://doi.org/10.1007/3-540-45439-X_26
https://doi.org/10.1007/3-540-45439-X_26


654 C. Cachin et al.

4. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: ACM CCS, pp. 863–874 (2013)

5. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

6. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C:
verifying program executions succinctly and in zero knowledge. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-40084-1 6

7. Benabbas, S., Gennaro, R., Vahlis, Y.: Verifiable delegation of computation over
large datasets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 111–131.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 7

8. Brandenburger, M., Cachin, C., Knežević, N.: Don’t trust the cloud, verify:
integrity and consistency for cloud object stores. ACM TOPS 20(3), 8:1–8:30
(2017)

9. Braun, B., Feldman, A.J., Ren, Z., Setty, S.T.V., Blumberg, A.J., Walfish, M.:
Verifying computations with state. In: SOSP, pp. 341–357. ACM (2013)

10. Cachin, C., Ghosh, E., Papadopoulos, D., Tackmann, B.: Stateful multi-client ver-
ifiable computation. Cryptology ePrint Archive, Report 2017/901 (2017)

11. Cachin, C., Keidar, I., Shraer, A.: Fork sequential consistency is blocking. Inf.
Process. Lett. 109(7), 360–364 (2009)

12. Cachin, C., Ohrimenko, O.: Verifying the consistency of remote untrusted services
with commutative operations. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.)
OPODIS 2014. LNCS, vol. 8878, pp. 1–16. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-14472-6 1

13. Cachin, C., Shelat, A., Shraer, A.: Efficient fork-linearizable access to untrusted
shared memory. In: ACM PODC, pp. 129–138. ACM (2007)

14. Canetti, R., Paneth, O., Papadopoulos, D., Triandopoulos, N.: Verifiable set oper-
ations over outsourced databases. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 113–130. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54631-0 7

15. Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifi-
able computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2 28

16. Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M.,
Parno, B., Zahur, S.: Geppetto: versatile verifiable computation. In: IEEE S&P.
IEEE (2015)

17. Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno, B.: Hash
first, argue later: adaptive verifiable computations on outsourced data. In: ACM
CCS, pp. 1304–1316. ACM (2016)

18. Fiore, D., Gennaro, R.: Publicly verifiable delegation of large polynomials and
matrix computations, with applications. In: ACM CCS, pp. 501–512 (2012)

19. Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key homomorphic
authenticators. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol.
10032, pp. 499–530. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53890-6 17

20. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-642-40084-1_6
https://doi.org/10.1007/978-3-642-22792-9_7
https://doi.org/10.1007/978-3-319-14472-6_1
https://doi.org/10.1007/978-3-319-14472-6_1
https://doi.org/10.1007/978-3-642-54631-0_7
https://doi.org/10.1007/978-3-642-54631-0_7
https://doi.org/10.1007/978-3-642-36594-2_28
https://doi.org/10.1007/978-3-662-53890-6_17
https://doi.org/10.1007/978-3-662-53890-6_17
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25


Stateful Multi-client Verifiable Computation 655

21. Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and
succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 37

22. Ghosh, E., Goodrich, M.T., Ohrimenko, O., Tamassia, R.: Verifiable zero-
knowledge order queries and updates for fully dynamic lists and trees. In: Zikas,
V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 216–236. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-44618-9 12

23. Goodrich, M.T., Papamanthou, C., Tamassia, R.: On the cost of persistence and
authentication in skip lists. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol.
4525, pp. 94–107. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
72845-0 8

24. Goodrich, M.T., Tamassia, R., Schwerin, A.: Implementation of an authenticated
dictionary with skip lists and commutative hashing. In: DISCEX (2001)

25. Goodrich, M.T., Tamassia, R., Triandopoulos, N.: Efficient authenticated data
structures for graph connectivity and geometric search problems. Algorithmica
60(3), 505–552 (2011)

26. Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-client verifiable
computation with stronger security guarantees. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9015, pp. 144–168. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46497-7 6

27. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

28. Li, J., Krohn, M., Mazières, D., Shasha, D.: Secure untrusted data repository
(SUNDR). In: USENIX, p. 9. USENIX Association (2004)

29. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: STOC (2012)

30. Majuntke, M., Dobre, D., Serafini, M., Suri, N.: Abortable fork-linearizable storage.
In: Abdelzaher, T., Raynal, M., Santoro, N. (eds.) OPODIS 2009. LNCS, vol.
5923, pp. 255–269. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-10877-8 21

31. Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A., Stubblebine, S.G.:
A general model for authenticated data structures. Algorithmica 39, 21–41 (2004)

32. Mattern, F.: Virtual time and global states of distributed systems. In: Cosnard,
M. (ed.) Proceedings of the Workshop on Parallel and Distributed Algorithms, pp.
215–226 (1988)

33. Mazières, D., Shasha, D.: Building secure file systems out of Byzantine storage. In:
ACM PODC, pp. 108–117. ACM (2002)

34. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/
0-387-34805-0 21

35. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. TOS 2(2), 107–138 (2006)

36. Naor, M., Nissim, K.: Certificate revocation and certificate update. IEEE J. Sel.
Areas Commun. 18(4), 561–570 (2000)

37. Papadopoulos, D., Papadopoulos, S., Triandopoulos, N.: Taking authenticated
range queries to arbitrary dimensions. In: ACM CCS, pp. 819–830 (2014)

38. Papamanthou, C.: Cryptography for efficiency: new directions in authenticated
data structures. Ph.D. thesis, Brown University (2011)

39. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Authenticated hash tables. In:
ACM CCS. pp. 437–448. ACM (2008)

https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-319-44618-9_12
https://doi.org/10.1007/978-3-540-72845-0_8
https://doi.org/10.1007/978-3-540-72845-0_8
https://doi.org/10.1007/978-3-662-46497-7_6
https://doi.org/10.1007/978-3-662-46497-7_6
https://doi.org/10.1007/978-3-642-10877-8_21
https://doi.org/10.1007/978-3-642-10877-8_21
https://doi.org/10.1007/0-387-34805-0_21
https://doi.org/10.1007/0-387-34805-0_21


656 C. Cachin et al.

40. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of opera-
tions on dynamic sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp.
91–110. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 6

41. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: 2013 IEEE Symposium on Security and Privacy (SP) (2013)

42. Tamassia, R.: Authenticated data structures. In: Di Battista, G., Zwick, U. (eds.)
ESA 2003. LNCS, vol. 2832, pp. 2–5. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-39658-1 2

43. Wahby, R.S., Setty, S.T.V., Ren, Z., Blumberg, A.J., Walfish, M.: Efficient RAM
and control flow in verifiable outsourced computation. In: NDSS (2015)

44. Williams, P., Sion, R., Shasha, D.: The blind stone tablet: outsourcing durability
to untrusted parties. In: NDSS (2009)

45. Zhang, Y., Katz, J., Papamanthou, C.: IntegriDB: verifiable SQL for outsourced
databases. In: ACM CCS, pp. 1480–1491 (2015)

https://doi.org/10.1007/978-3-642-22792-9_6
https://doi.org/10.1007/978-3-540-39658-1_2
https://doi.org/10.1007/978-3-540-39658-1_2


VERICOUNT: Verifiable Resource
Accounting Using Hardware and Software

Isolation

Shruti Tople1(B), Soyeon Park2, Min Suk Kang1, and Prateek Saxena1

1 National University of Singapore, Singapore, Singapore
{shruti90,kangms,prateeks}@comp.nus.edu.sg

2 Georgia Tech, Atlanta, Georgia
spark720@gatech.edu

Abstract. In cloud computing, where clients are billed based on the
consumed resources for outsourced tasks, both the cloud providers and
the clients have the incentive to manipulate claims about resource usage.
Both desire an accurate and verifiable resource accounting system, which
is neutral and can be trusted to refute any disputes. In this work,
we present VeriCount—a verifiable resource accounting system cou-
pled with refutable billing support for Linux container-based applica-
tions. To protect VeriCount logic, we propose a novel approach called
self-accounting that combines hardware-based isolation guarantees from
trusted computing mechanisms and software fault isolation techniques.
The self-accounting engine in VeriCount leverages security features
present in trusted computing solutions, such as Intel SGX, to measure
user CPU time, memory, I/O bytes and network bandwidth while simul-
taneously detecting resource usage inflation attacks. We claim three main
results. First, VeriCount incurs an average performance overhead of
3.62% and 16.03% over non-accounting but SGX-compatible applications
in hardware and simulation mode respectively. Next, it contributes only
an additional 542 lines of code to the trusted computing base. Lastly, it
generates highly accurate, fine-grained resource accounting, with no dis-
cernible difference to the resource measuring tool available with the OS.

1 Introduction

Verifiable resource accounting is a security primitive that checks whether the
measured resource accounting (e.g., CPU cycles, memory, network bandwidth,
or I/O resources) of cloud computing infrastructure is accurate for an out-
sourced computing task. In today’s “pay-as-you-use” model of cloud computing,
where clients are billed based on the usage of the computing resources, verifiable
resource accounting is increasingly desirable [12]. As the accounting result deter-
mines the final bill, both a cloud provider and a client have strong motivation to
manipulate the results in favor of their economic interests; e.g., cloud providers

S. Park—Research done when visiting National University of Singapore.

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 657–677, 2018.
https://doi.org/10.1007/978-3-319-93387-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_34&domain=pdf


658 S. Tople et al.

overcharge clients or clients try to be undercharged. This demands for a refutable
billing system where denying charges is possible based on a decision from a neu-
tral backdrop. In the last decade, serious concerns have been raised about the
billing problem in an untrusted cloud model [12,15,26,34]. Several attacks such
as mis-attribution of resources, false accounting, tampering execution to increase
resource utilization have been demonstrated in presence of a malicious operat-
ing system (OS) [22,31,32,38]. This is particularly hazardous for widely accepted
container-based virtualization techniques, such as Docker [3] where resources are
shared at finer granularity than virtual machines and thus accurate accounting
is more challenging. Worse yet, even cloud providers seem to be struggling to
implement accurate fine grained accounting and safe billing systems. Research
has shown bugs in EC2 that lead to free CPU time and over-charging for storage
in Rackspace [18]. Given the indisputable necessity of fairness in billing, we ask
whether it is to build a refutable billing system for cloud computing that allows
significant security assurance?

Currently, many OSes offer resource accounting features (e.g., cgroups); yet,
such OS-based resource accounting mechanisms in commercial clouds (e.g., Ama-
zon EC2 [2]) are not ideal due to their large TCB and attack surface. We dis-
cuss a class of attacks called resource usage inflation that a malicious OS can
perpetrate to overcharge clients in Sect. 3.1. Research has demonstrated isolat-
ing resource accounting from the untrusted OS [13,28]. In particular, Alibi [13]
utilizes nested virtualization and Trusted Platform Modules (TPMs) to imple-
ment an observer placed at the hypervisor layer. However, Alibi includes a
huge TCB (entire Linux kernel and KVM) for accounting. In this paper, we
present VeriCount, a verifiable resource accounting system that accounts for
four major computing resources used for executing outsourced computing tasks
within secure containers (e.g., [10,17,30]). These containers ensure secure execu-
tion of applications assuming trusted computing solutions. VeriCount guaran-
tees untampered resource accounting operations while allowing the clients and
the cloud providers to explicitly establish a pre-agreed policy (e.g., maximum
recoveries from crashes) for the execution and reports any violation of the pol-
icy. This eventually enables a refutable billing model which is a desirable feature
in today’s cloud computing.

At its core, VeriCount aims to implement strong isolation of the resource
accounting logic from both the underlying OS and the client-submitted applica-
tions. However, it is challenging because the accounting logic is easily dependent
either on the OS or the client applications based on where it is placed in the
system. In VeriCount, we address this system dependency problem by com-
bining both hardware and software isolation techniques. We isolate the OS and
other privilege code using hardware isolation supported by trusted computing
mechanisms (such as Intel SGX [1]), and implement sandboxing mechanisms
for untrusted client applications. First, we show that a novel system architec-
ture, which we call self-accounting, coupled with an execution policy enforcement
provides strong independence of VeriCount’s accounting logic from the under-
lying OS. Self-accounting lets the client application perform its own resource



VeriCount: Verifiable Resource Accounting 659

accounting efficiently within the same isolated memory region during its execu-
tion and thereby identify false accounting. Second, to ensure that the accounting
logic is independent of untrusted client applications, VeriCount sandboxes the
client-code using software fault isolation [14,19,24,33]. A second challenge is to
design an efficient yet accurate self-accounting approach. Basic approach of gen-
erating huge execution logs at runtime and verifying them later are expensive
in terms of performance and verification effort [16]. To address this, we inves-
tigate an alternate way to effectively detect attacks that manipulate resource
usage. We explore several trusted features that recent SGX-enabled CPUs sup-
port and leverage them to design accurate resource accounting system. Our
solution exhibits desirable properties such as low performance overhead, low
verification effort and a small trusted computing base (TCB).

System and Results. We build a proof-of-concept implementation for our
design and evaluate it on SPEC CPUINT 2006 Benchmarks and H2O web server.
Our prototype adds 542 source lines of code (SLoC) to the TCB and is sim-
ple enough to be formally verified later. We observe that VeriCount-enabled
applications incur an average performance overhead of 3.62% and 16.03% as
compared to non-accounting SGX applications in hardware and simulation mode
respectively.

Contributions. We outline our main contribution below:

– Self-Accounting - Our novel approach of self-accounting lets each application
account for its own resources, while employing hardware and software isola-
tion.

– VeriCount System - VeriCount system consists of a compiler, a static
verifier and a post-execution analyzer to guarantee verifiable accounting and
refutable billing.

– Evaluation - We evaluate our prototype of VeriCount for performance over-
head and accuracy of SPEC CPUINT 2006 Benchmarks and H2O web-server.

2 Problem Definition

Hosting containerized (docker-based) applications on the cloud is gaining popu-
larity. Securing such applications is shown to be possible using trusted computing
mechanism [10]. In this work, we support an additional primitive of verifiable
resource accounting.

2.1 Threat Model

Our is the first work to consider two different adversary models simultaneously:
a malicious cloud provider and a malicious client. Both adversaries have strong
motivation to manipulate the resource accounting information in favor of their
economic interests. A malicious provider receives a task of executing an appli-
cation A from a client and aims to manipulate the resource usage summary RA,



660 S. Tople et al.

to increase the final bill BA of the task; i.e., overcharging the client. We con-
sider that the malicious provider has full control over the operating system (OS),
which allows the attacker to access any system resource that the OS controls and
break any security mechanism that rely on it (e.g., process isolation, access con-
trol in reference monitor, shown in Sect. 3.1). At the same time, a malicious client
aims to manipulate the resource usage summary RA to decrease the bill BA; i.e.,
being undercharged. We consider that the malicious client has full control over
the application code that are submitted for the outsourced computation. Both
the provider and the client must trust VeriCount components and SGX.

Scope. We consider that the two adversaries would not collude, as they have
contradictory goals. Moreover, the execution of A is strictly constrained to the
input provided by the client. This restriction is necessary for verifiable accounting
since it is in general impossible to define the notion of correct resource accounting
between a client and a provider when applications expect to run with arbitrary
inputs due to the undecidable problem. We do not consider denial-of-service
attacks caused by arbitrary inputs to the application A; i.e., VeriCount does
not detect resource usage manipulation if the cloud provider can generate valid
inputs to the application.

2.2 Problem Statement

Verifiable resource accounting has three protocol steps between a client and a
provider. First, a client and a provider agree on an execution policy φ = (p, c, t),
where φ is a tuple of three parameters: a per-resource pricing scheme (p), a crash
recovery limit (c), and the maximum OS response time (t). The per-resource
pricing scheme p includes the unit price for CPU, memory, I/O operations and
network bandwidth usage. The crash recovery limit c is an integer number that
permits the cloud provider to recover a crashed instance without informing the
client. The maximum OS response time t is the time that an OS requires to
respond to a service request from the application. Second, the client sends an
application A along with an authenticated input I for the execution.

After the provider executes A, the accounting logic generates the resource
usage summary RA and the final bill BA and sends them to the client for verifi-
cation. BA is calculated with the knowledge of RA and φ. We seek the following
security properties.

(a) Isolation from compromised OS. A compromised OS cannot interfere
with the resource accounting operation for any client-submitted application.

(b) Isolation from malicious client application. A maliciously generated
client application cannot tamper with the resource accounting information.

(c) Verifiable execution policy. At the end of outsourced computation, a
client and a provider can efficiently check any violation of the pre-agreed
execution policy; i.e., confirm whether BA ← (φ,RA).



VeriCount: Verifiable Resource Accounting 661

Fig. 1. Three isolation approaches: (a) cur-
rent approach, (b) baseline approach, and (c)
VeriCount approach. The shaded region is
untrusted components and non-shaded is iso-
lated container.

Fig. 2. Workflow of VeriCount sys-
tem. The verifier and the analyzer
(hatched) are trusted whereas the com-
piler (shaded) is untrusted.

Moreover, our verifiable resource accounting offers three desirable properties:

(1) Low performance overhead. A VeriCount-enabled application should incur
low performance overhead. The advantage of verifiable resource utilization
should not unacceptably slow down as compared to the original application.

(2) Low verification overhead. Verifying resource utilization should not require
a client or a cloud provider to spend large resources for either repeating the
outsourced execution or accessing huge logs of execution process [16]. This
is critical for clients who outsource their computations to a remote cloud
due to their insufficient local resources.

(3) Small TCB. The solution should have small trusted software base, beyond
that is implied by use of SGX, to avoid bugs that are present in large soft-
ware.

Assumptions. We assume cloud providers support SGX-enabled CPUs and
SGX guarantees are preserved throughout the execution lifetime. We assume
that all hardware chip-sets are not malicious and do not contain backdoor that
would violate the isolation properties of our verifiable resource accounting [37].
We assume no side-channels in the hardware architecture of the cloud provider.
Attacks exploiting side-channels are outside the scope of the present work [20,
27,29,35].

3 Baseline Approaches and Attacks

Previous solutions have proposed using an external observer for resource account-
ing [13]. We discuss a baseline with a similar approach and discuss attacks on
it.
Baseline Solution. A straightforward approach for verifiable resource account-
ing is to isolate the resource accounting engine from the underlying OS.
Figure 1(b) shows the design of such a baseline approach. One can use any trusted



662 S. Tople et al.

computing mechanism such as TPM or Intel SGX and port the resource account-
ing engine to a secure container using an existing system [10,30]. Compared to
the existing resource accounting architecture in Fig. 1(a), where the accounting
engine resides in the underlying OS, the accounting engine in Fig. 1(b) is iso-
lated and acts as an external observer and accounts the resource utilization for
each secure containerized application. Compromising the OS and gaining privi-
lege access does not enable the attacker to directly tamper with the accounting
information. This baseline solution ensures accurate attribution of resource uti-
lization as it eliminates any direct method of attacking the accounting system.
However, we show that there still exists indirect dependency, which we call the
execution dependency, on the underlying OS. The adversary can easily influence
the execution operations to inflate the resource consumption.

3.1 Resource Usage Inflation Attacks

Although the baseline places the accounting engine within a secure container,
the adversary can increase the resource usage of containers in the absence of
support for refuting spurious charges. We discuss these resource usage inflation
(RUI) attacks below.

Invoking Multiple Container Instances. The underlying OS is responsi-
ble for launching the container with the application on request from a client.
Although the client requests to launch a single instance of the application, the
OS can execute multiple instances of the same container. This results in inflated
resource consumption corresponding to client’s container. The accounting sys-
tem incorrectly attributes the resources utilized by the unrequested instances
to the client. In the absence of verifiable accounting, the client and the cloud
provider have no way to refute disputed claims.

Replaying Inputs. The OS can replay the given input and increase the uti-
lization of resources for the particular container. Note that the adversary cannot
generate new set of valid inputs and hence is limited to replaying existing inputs
arbitrary number of times. This inflates the resource consumption causing over-
charging.

Arbitrary Halts. The application may experience unexpected crashes during
its execution and the client is supposed to be informed about it so that she
can request for starting a new execution. The malicious OS can exploit this
property to silently crash an instance and restart it arbitrary number of times.
The OS can forcefully halt the execution of the container before completion.
The accounting engine being unaware of the malicious OS intention accounts
the resources utilized for all the crashed instances and bills the client for the
inflated resource usage.

Slowing Down OS Service. The application depends on the OS for several
services like system calls, interrupts and others. If the user is charged based on
the total time that the container is up and running then the OS may maliciously
delay to execute the requested service. Thus, increasing the amount of time
utilized by the particular container [22].



VeriCount: Verifiable Resource Accounting 663

3.2 Towards Self-accounting

All these RUI attacks demonstrate that the malicious OS has several ways to
increase resource consumption even when the accounting engine is isolated as
shown in Fig. 1(b). Note that the baseline approach places the accounting engine
outside every application and thus cannot detect such malicious execution strate-
gies by the OS. One can consider establishing inter-container communication chan-
nels between applications and the isolated accounting engine to address the RUI
attacks; e.g., every I/O operation, user-kernel context switch or network usage is
performed via the isolated resource accounting engine. Such an approach would
incur prohibitively large overhead due to continuous IPC involved. Thus, we pro-
pose a novel self-accounting approach where each accounting engine runs along-
side the client application within the container as shown in Fig. 1(c). That is,
the accounting engine is tied with the atomic execution unit, which is the appli-
cation itself, removing the execution dependency on the OS. The operation of
the accounting engine is always executed with its application and thus the mali-
cious execution strategies presented above cannot be effective. Thus, shifting the
accounting engine from Ring O to Ring 3 removes the execution dependency from
the OS and provides protection against an adversary perpetrating RUI attacks.

Client-Code Dependency Attacks. The self accounting design choice, how-
ever, creates another system dependency, which we call the client-code depen-
dency. It makes the trusted accounting logic susceptible to attacks from a mali-
cious client trying to undercharge itself. First, the client may not use the pre-
scribed procedure for enabling verifiable resource accounting and hence result in
undercharging. Second, the client can embed subtle vulnerabilities to exploit dur-
ing runtime and tamper the accounting engine data. Since the accounting engine
and client-code share the same memory space (see Fig. 1(c)), the malicious appli-
cation can tamper the accounting data to decrease its resource consumption.
This demands isolating the accounting engine from client’s application as well.
To protect against dynamic attacks during runtime, we sandbox the untrusted
application (explained in detail in Sect. 5.2). To address the compile-time threat,
we statically verify the correctness of the client application.

3.3 Basic Self-accounting Approach

One way to realize the self-accounting approach is to let the accounting engine log
sufficient information related to each run of the application. First, to prevent exe-
cution replays or invocation of multiple instances, the accounting engine calculates
and records a measurement or hash of the executing application before initiat-
ing its execution. Note that same application generates same measurement every
time. Thus observing the frequency with which the same measurement appears
in the resource consumption logs lets us detect execution replays. Next, to detect
spurious executions due to input replay, the accounting engine records the hash of
all the inputs of the application. Observing all the records of hashed inputs along
with the application measurement helps in detecting executions with replayed
inputs. Further, to detect arbitrary crashes, the logs are generated on the fly



664 S. Tople et al.

throughout the execution. Any arbitrary crash results in partial records of the
hashed inputs. Presence of such partial records in resource logs lets us detect
whether the same application is halted more than the pre-agreed crash recovery
limit. A simple post-execution analyzer running in trusted environment either at
the client or cloud provider side can perform analysis of these logs and detect the
occurrence of RUI attacks [16]. The post-execution analyzer can further generate
valid bill based on legitimate resource utilization and pre-agreed policy.

Inefficiency. Although the above basic solution detects RUI attacks, it demands
continuous hashing and logging operations, thus making it highly inefficient. The
accounting engine computes a hash of every input and invokes a system call to
write it to the resource consumption logs. The accounting engine easily becomes a
bottleneck for the executing application and incurs a non-negligible performance
overhead. Our experimental evaluation confirm that performance overhead of an
application is directly proportional to the number of system calls performed
during its execution (see Sect. 6.1). Moreover, it generates huge logs that need
to be processed at either the client or the cloud provider. This violates our
desirable property of low verification overhead. In this work, we investigate the
problem of designing a significantly more efficient verifiable accounting system
than the basic approach. To this end, we advocate the novel use of SGX features
to design an efficient solution thwarting RUI attacks.

4 Our Design

VeriCount comprises of three components: a compiler, a static verifier, and
a post-execution analyzer. Figure 2 shows the workflow of our VeriCount sys-
tem. The hatched components (verifier and analyzer) run in an untampered
environment.

4.1 Overview

Compiler. VeriCount provides its own compiler that transforms client’s appli-
cation to support resource accounting based on our accounting library that
executes with the application. The compiler inserts APIs in the application
to invoke the accounting engine. This VeriCount-enabled application gener-
ates encrypted and integrity-protected resource consumption logs at the end of
the execution. To eliminate client-code dependency and isolate the accounting
engine from the client’s application, VeriCount compiler sandboxes the appli-
cation and protects the accounting engine data. Further, to remove trust from
the underlying OS, the transformed application executes in a trusted execu-
tion environment in the cloud. Note that the compiler itself is executed in a
potentially-malicious (thus untrusted) client platform.

Static Verifier. Clients may not use prescribed compiler with the intention
to reduce charges. To detect against such static compile-time misbehavior, the
verifier runs in a trusted environment and lets the cloud provider validate the



VeriCount: Verifiable Resource Accounting 665

correctness of the client-submitted, transformed application. On successful verifi-
cation, the provider launches the application; otherwise, the execution is aborted.
It verifies these properties:

(a) Correctness - The VeriCount-enabled application has all the API calls to
the accounting engine at appropriate interfaces in the application.

(b) Safety - The application code does not access the memory region of the
accounting engine; i.e., it verifies the sandboxing of the application code.

(c) Integrity - It verifies the accounting engine integrity embedded in the appli-
cation.

Post-Execution Analyzer. The trusted post-execution analyzer takes the
resource consumption logs, pre-agreed execution policy φ = (p, c, t), and the
cloud provider generated bill BA as inputs and verifies whether the bill BA

adheres to the execution policy φ. The analyzer outputs a yes if the bill cor-
rectly reflects the resource consumption as per φ. Otherwise, it outputs no along
with a discrepancy report in the bill.

4.2 Background on SGX

Intel SGX supports creating hardware isolated execution environment called
enclaves that execute at Ring 3. Such execution is termed as enclaved-execution.
Enclave code and data pages reside in a hardware protected memory region
during execution called Enclaved Page Cache (EPC). The hardware protects a
compromised OS or any other process from tampering pages in EPC. For more
details, readers can refer to Intel SGX Manual [1]. SGX introduces OCALLs to
call functions that reside outside the enclave from within an enclave and ECALLs
for vice versa. Hence, to invoke OS services, existing system perform OCALLs
to access filesystem, network and I/O services [30]. We describe the important
primitives supported in the SGX platform.

(1) Remote attestation - SGX allows to attest enclave code such that any remote
entity can verify the integrity of the code and authenticity of the executing
hardware.

(2) True random number - In SGX, the use of rand and srand functions in the
C/C++ library within an enclave is disabled as these are susceptible to bias.
Instead, SGX supports sgx read rand API that generates a true random
number using the RDRAND instruction directly from the hardware and returns
it to the enclave.

(3) Monotonic counter - SGX supports creating a limited number of mono-
tonic counters (MC) for each enclave. Monotonic counters are shared among
enclaves that have the same code. On creating a MC, it gets written to the
non-volatile memory in the platform. The sgx create monotonic counter
returns a UUID and a value.

(4) Trusted elapsed time - The function call to sgx get trusted time returns
the current time from a reference point. The difference between the returned
time of two calls gives the trusted elapsed time between two events from the
same reference point.



666 S. Tople et al.

4.3 Protection Against Malicious Provider

Self-Accounting. VeriCount places the resource accounting engine along-
side a secure enclaved application that guarantees tamper-resistant accounting
of resources used within the enclave against a compromised OS. Self-accounting
enables fine-grained accounting of resources utilized during the application exe-
cution. Moreover, it offers transparent method to report to clients about exact
operations and executions invoked by the underlying OS. Along with enclaved
execution, remote attestation allows client to verify correct execution of their
application on the cloud provider’s platform. Enclaved execution combined with
remote-attestation enables VeriCount to move the accounting engine from
Ring 0 to Ring 3.

Preventing Replay Attacks. After remote attestation of enclaved application,
the client establishes a secure channel with the enclave to provision encrypted
and integrity protected inputs [1,10]. To prevent replays, instead of hashing
and logging every input to the application, we utilize the support for creating
monotonic counters and true random number in SGX. In VeriCount system,
the accounting engine registers a UUID corresponding to a monotonic counter
using sgx create monotonic counter API for the application. This UUID is
sent to the client over the secure channel and acts as a hardware identity of the
enclave. If the client legitimately wants to create multiple instances of the same
enclaved application, she requests for multiple UUIDs. VeriCount appends
these UUIDs and there value in the final bill, thereby allowing the client to
validate the resource consumption details. Since the UUID is accessible only
from within the enclave and is securely transferred to the client, an adversary
cannot learn this value. Moreover, since all enclaves with the same measurement
share common set of monotonic counters on same machine, different instances of
the same application cannot have the same UUID. Therefore, invocation of an
unrequested application instance results in a new UUID which is unknown to the
client. Thus, the client can match the registered UUID of its application enclave
with the UUID present in the final bill to detect execution replay attacks. As
monotonic counters are written to non-volatile memory, they provide rollback
protection from platform reboots as well. VeriCount can benefit from any
additional security from recent solutions (e.g., ROTE [23]), however, we do not
encapsulate them in our current design. Along with the UUID, the enclaved
container uses the trusted randomness primitive to generate a random nonce
corresponding to this enclave. This random nonce is sent to the client along with
the UUID. To ensure the freshness of data, the client is enforced to append this
random nonce to every authenticated-and-encrypted input data. To legitimately
send multiple copies of the same input, the client increments the random nonce
each time and appends with the input. Since this random value is generated
from hardware and kept secret, the adversary cannot learn it. This prevents the
attacker from generating copies of the input to inflate resource usage.



VeriCount: Verifiable Resource Accounting 667

Preventing Arbitrary-Halt Attacks. Every time the enclave halts or exits,
the accounting engine seals the monotonic counter UUID and value using
sgx seal data [1]. On invoking the enclave instance again, it unseals the mono-
tonic counter UUID and value using sgx unseal data and verifies the value
using sgx read monotonic counter. On successful verification, it increments
the value using sgx increment monotonic counter. Thus, if the adversary tries
to arbitrarily halt and restart the execution to inflate resource usage, the counter
corresponding to the UUID value increases and the final value is reported in the
bill. Based on the monotonic counter value, the client can detect whether the
application is invoked for more than the requested number of executions. The
c value in φ specifies an upper bound for recovery of crashed instances allowed
to the provider. This also applies to crashes that occur due to bugs in client’s
application and are required to be restarted legitimately. The policy agreement
between the client and cloud provider captures both these cases. Thus, the use of
monotonic counters helps in designing a simple solution and brings transparency
with respect to the enclave invocations. Note that a forced system shutdown that
does not allow a clean enclave exit results in an incomplete resource log. Such
incomplete logs allows us to detect if an enclave process is killed arbitrarily.

Detecting Slow-OS Attacks. A malicious OS can slowdown the kernel mode
of operation to overcharge clients. VeriCount enables fine grained accounting
by measuring the CPU time spent in an enclave and outside the enclave sep-
arately. The sgx get trusted time API is invoked just before switching from
enclave to non-enclave mode and when it switches back. Hence, we support spec-
ifying an upper bound for time spent outside the enclave necessary for replying
to any system level request from the user. If the OS exceeds this time, then it
indicates that the adversary intentionally delays the response to increase the
total time and thereby overcharging client. In VeriCount, we use t value in
φ as the upper bound for delay in OS response for all system calls. Ideally, the
billing model should charge the container for only CPU time within an enclave
and provide a fixed charge for OS services. VeriCount supports both these
models and can be decided in the execution policy between a client and a cloud
provider.

4.4 Protection Against Malicious Client

Self-accounting allows a client-submitted application to run in the same enclave
and thus the client application may overwrite the accounting engine’s data at
runtime. To remove this client-code runtime dependency, VeriCount compiler
sandboxes the application from the trusted accounting engine. Worse yet, a
client may not use the prescribed protection mechanism or modify the compiler
to ignore the sandboxing and API insertion logic entirely. The client’s code may
exclude executing APIs which invoke the resource accounting engine. There are
three possible approaches to address this: (1) To enforce the clients to submit
their source codes and compile them in a trusted environment; (2) To assume
all the clients are equipped with a hardware-based trusted execution environ-
ment (e.g., SGX) to compile their applications in their local machine; and (3) To



668 S. Tople et al.

statically verify the client-compiled, sandboxed applications in a trusted envi-
ronment at the cloud provider. Although all these approaches are technically
feasible, we choose the third approach as the former two approaches impose too
strong requirements for the clients in practice. VeriCount’s trusted static ver-
ifier checks that the client-application satisfies a set of rules correctly to perform
accurate resource accounting. The static verifier is responsible for ensuring cor-
rect sandboxing of unsafe instructions, appropriate API insertion and integrity
of accounting engine. The cloud provider rejects the execution of the application
if the verifier fails.

4.5 Measuring Resources

CPU Elapsed Time. The billing metric for CPU differ for every cloud provider.
While Amazon EC2 charges in hours, Google Compute Engine is moving towards
a more granular accounting and charges per minute. VeriCount measures the
time at the fine granularity of per second [2,4]. To perform fine-grained account-
ing at Ring 3, we use the trusted elapsed time feature of SGX hardware that sup-
ports calculating time with a precision of seconds. The accounting engine invokes
sgx get trusted time function on a switch from enclave mode to non-enclave
mode and vice versa. Finally, before exiting the enclave, the engine records final
value at the end of the execution. As per VeriCount design, the user time
corresponds to the time spent for execution within the enclaved region. The exe-
cution time spend in untrusted region outside enclave at the user level and in the
OS are accounted towards service time. We consider this as a valid design since
a compromised OS can always tamper the execution of non-isolated application
code executing outside the enclaved environment to delay the execution.

Memory. For SGX CPUs, BIOS allocates a certain region called processor
reserved memory (PRM) of sizes of 32, 64 or 128 MB [1]. The underlying
CPU reserves a part of this PRM as EPC memory. Enclave pages are loaded
in EPC which is a hardware protected memory region. Thus, the billing of
memory resource is restricted to the allowed physical memory region by SGX.
VeriCount currently does not calculate the allocated memory from within
the enclave. However, SGX2 instructions support reporting page faults to the
enclave [25]. VeriCount can utilize this feature to correctly report the number
of page faults during the execution of an application.

Network Bandwidth. Cloud providers charge bandwidth usage based on the
amount of bytes transferred over the network. To calculate network bandwidth,
VeriCount records the inputs and outputs from the enclave via network sys-
tem calls. All the data that is sent over the network is accounted towards the
bandwidth utilization for the application. As the accounting is performed within
the enclave, it ensures that the bandwidth accounting is correctly attributed to
the application and avoids mis-accounting.

I/O Resources. VeriCount records the I/O bytes that are read/written
using system calls. Due to the restriction of SGX on direct invocation of system



VeriCount: Verifiable Resource Accounting 669

calls, applications use OCALLs to request I/O service from the underlying OS. A
VeriCount-enabled application invokes the accounting engine to account the
I/O bytes after every such OCALL. The engine considers only the actual data
passed as arguments to these system calls. Hence, if the OS responds with fewer
or more bytes than requested, VeriCount fairly charges for the actual I/O
bytes read / written. This design guarantees that only the I/O operations made
from within the enclave are accounted to the particular enclave.

5 Implementation

VeriCount consists of library, a compiler, a static verifier and a post-
execution analyzer. It relies on existing proposals to port legacy applications
to enclaves [10,30].

5.1 VERICOUNT Library

VeriCount library contains functions to compute resources utilized during
application execution. It accounts for user and service time, I/O bytes, total I/O
calls and network bandwidth. We implement the VeriCount accounting engine
as a statically linkable C library libvericount.a. The application, accounting
library and SGX libraries are linked together to create the trusted enclave file.
The accounting library invokes the sgx create pse session function to start
the trusted platform service at the start of enclave execution. Once a session is
started, the library invokes appropriate calls to the trusted runtime functions to
get elapsed time and monotonic counter.

API Insertion. We implement our VeriCount compiler as a pass in LLVM
v3.8.1. The compiler inserts APIs to invoke resource accounting logic in Veri-
Count library. At the entry of an Ecall function inside an enclave, it
inserts vericount init user time() which starts the counter for account-
ing user time. The compiler inserts vericount init service time() before
every Ocall from within the enclave which essentially stops the user time
counter and starts the counter for service time. After return of every
Ocall, vericount end service time() API is inserted which stops the ser-
vice time counter and starts the user time counter again. Finally, before
end of every Ecall function in the enclaved application, the compiler inserts
vericount end user time() which calculates the final user time. All these
APIs invoke the trusted time function to account for elapsed time and add
them to corresponding counter value. For accounting I/O bytes and net-
work bandwidth, the VeriCount compiler inserts vericount io bytes() and
vericount net bytes() APIs after the return of every Ocall to libc function
related to I/O such as fread, fwrite, fgets, fputs, and others and net-
work, such as send, recv. The library accounts the total usage based on their
arguments and return values.

Output Logs. A simple way to log resource consumption is to ensure every API
invocation logs the usage to the output. However, this incurs overhead since a



670 S. Tople et al.

write operation requires an Ocall that performs context switch from trusted to
untrusted region. Thus, in our implementation, we choose to begin accounting
on enclave entry and write resource consumption logs only before the enclave
executes the EEXIT instruction. The vericount init user time() API logs the
enclave UUID to the output file and marks the start of the accounting procedure
and the vericount end user time() API logs the accounted usage to the out-
put. The total enclave memory required to hold the accounting information is as
small as storing 4 counters (user time, service time, io bytes and net bytes). We
enable a provision for cloud provider’s to send a user signal to fetch the resource
consumption logs on demand or at a timer expiration.

5.2 Sandboxing Within Enclaves

While sandboxing is not a new idea, implementing it in enclaves involves a num-
ber of non-trivial challenges. For e.g., enclaved applications have specific limita-
tions about execution, such as no system calls making use of existing sandboxing
tools impossible for enclaved applications [36]. Hence, we implement our sandbox
logic compatible with Linux SGX SDK based on standard SFI techniques [19,33].

Fault Domain Isolation. We divide the enclave virtual address space into
two regions: application memory and VeriCount memory. The VeriCount
memory is the region that contains the code and data of the accounting library
and SDK trusted libraries. The application memory is a shadow memory or SFI
section that is created to confine the application’s code and data. We use portable
SFI techniques to implement the application memory [19]. We add our own
malloc function alongside the malloc function in SDK to create a separate heap
in SFI section for application variables. The VeriCount compiler instruments
all malloc calls in the application to invoke our added malloc function. The
library code continues to use the SDK malloc that allocates memory in the
default section. We add sandboxing instructions to all unsafe instructions in the
application memory as per standard SFI sandboxing rules [33].

Static Verifier. The VeriCountstatic verifier checks a set of rules in a dis-
assembled executable of a VeriCount-enabled application to ensure its cor-
rectness, safety, and integrity before executing it. We include all standard SFI
checks to ensure instruction safety, control flow and trusted memory protec-
tion against attacks that exploit indirect jumps, code-reuse attacks and oth-
ers [14,24]. In addition, all call instructions to sgx ocall are immediately fol-
lowed by VeriCount APIs and there are no jump instructions between them.
This ensures that the client-code cannot bypass the accounting logic when
invoking an Ocall. Moreover, the call to vericount init user time() and
vericount init end time() are the first and last instructions of every Ecall
function in the enclave.

Post-Execution Analyzer. The post-execution analyzer executes within an
enclave and takes the execution policy φ, resource consumption logs, and the
bill from the cloud provider. The post-execution analyzer first checks that every



VeriCount: Verifiable Resource Accounting 671

UUID entry and its value is followed by resource consumption details in the
output log. Next, the analyzer computes charges based on resource consumed and
φ = (p, c, t) and compares it with the cloud provider’s bill. The analyzer outputs
the difference, if any, between VeriCount computed and cloud provider’s bill.
The enclaved post-execution analyzer cryptographically signs this final bill to
be verified by the client. The client can refute provider’s charges based on the
output of VeriCount.

TCB Size. We measure the size of our TCB that includes the accounting engine,
the verifier, the analyzer and trusted libraries from Intel SGX SDK using CLOC
tool. The application code along with glibc libraries are not a part of our TCB.
Our VeriCount compiler consists of 872 SLoC, which is outside of our TCB
well. The accounting engine library consists of 230 lines of C code. The verifier
and the analyzer contribute 180 and 132 SLoC respectively. Thus, VeriCount
contributes only 542 SLoC to the total TCB beyond the trusted SDK libraries
of 80 K SLoC. The total TCB is orders of magnitude smaller than any privileged
software which consists of millions of LoC.

6 Evaluation

We evaluate our system on a Lenovo Thinkpad T460s with Ubuntu Desktop-
14.04-LTS 64bits and Intel Core i7-6600U CPU running at 2.60 GHz × 4 with
4 MB cache and 12 GB of RAM. We use open source version of Intel SGX
SDKv1.8 available for Linux systems [6]. We perform our evaluation with two
goals (a) To evaluate the performance overhead of VeriCount application as
compared to non-accounting secure (enclaved) applications (b) To evaluate the
accuracy of VeriCount accounting engine.

Selection of Benchmark. To evaluate the effectiveness of VeriCount, we
select standard SPEC CPUINT 2006 v1.2 benchmarks [9] and H2O web server
which is an optimized HTTP server [5]. We do not claim contribution in port-
ing our benchmarks to execute on SGX CPUs, which by itself is a hard prob-
lem [10,11,30]. At present, support for creating secure enclaved containers and
the corresponding libraries is not available for public use. Hence, we use a recently
proposed and open source Panoply system that supports executing legacy appli-
cations on SGX-enabled CPUs [8]. Yet, VeriCount system is general and com-
patible with any other enclaved execution system.

Evaluation Methodology. VeriCount system extends the guarantees of
enclaved applications to support verifiable accounting. We use enclaved appli-
cation executed using Panoply libraries as our base for comparison throughout
our evaluation. We calculate the overall execution time of our benchmarks using
time command in Linux. Each measurement is averaged over 5 runs. All bench-
marks are compiled using Clang v3.8.1. We do not include time for compiling
and verifying our applications as these are offline operations and do not incur
any overhead. We divide our experiments into three sets.



672 S. Tople et al.

Table 1. Table reporting OS and VeriCount accounted user and service time, Veri-
Count accounted I/O bytes, no. of I/O Ocalls and total no. of Ocalls for our bench-
marks.

Benchmarks User time (s) Service time (s) VeriCount I/O operations VeriCount total Ocalls

OS VeriCount OS VeriCount I/O Bytes I/O Ocalls

mcf 20.05 20 1.01 0 2360827 192458 192462

bzip2 31.83 31 1.00 0 653190 32 34

astar 77.99 78 0.99 0 3146654 68 92

hmmer 127.31 127 1.02 0 16633 766 1265

h264ref 11.96 11 1.02 1 969975 360 1646052

libquantum 5.15 5 1.03 0 261 7 8

sjeng 229.40 229 1.00 0 17211 1601 4587

gobmk 0.91 0 1.10 0 11876 10024 10412

gcc 18.21 17 1.04 1 1744658 827474 827494

H2O (10000 req.)

file size= 10KB

16.12 5 0.81 13 102400000 10000 122073

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1KB 10KB 100KB

D
at

a 
T

ra
ns

fe
rr

ed
 in

 L
og

 S
ca

le
 (

in
 M

B
)

Request Static Page Size (request number = 10000)

H2o Benchmark Network Bandwidth

NetHogs
VeriCount

10.98

100.81

999.71

10.76

100.60

998.28

Fig. 3. Comparison of data bytes
transferred using VeriCount and
NetHogs. VeriCount accounting dif-
fers by 0.66% as compared to NetHogs.

 0

 50

 100

 150

 200

 250

gcc
gobm

k

sjeng
libquantum

h264ref

hm
m

er

astar
bzip2

m
cf

E
xe

cu
tio

n 
T

im
e 

(in
 s

ec
on

ds
)

SPEC CPU Benchmarks (in SGX SM Mode)

Enclaved Only
VeriCount without Sandbox

VeriCount with Sandbox

Fig. 4. Execution time of (a) Enclaved
only (b) VeriCount without sandbox
and (c) VeriCount with sandbox in
simulation mode.

(1) Simulation Mode. We first evaluate all benchmarks in simulation mode to
observe the performance overhead due to VeriCount design and implementa-
tion. To understand the overhead breakdown, we measure the overall execution
time for enclaved only, VeriCount without sandbox, and VeriCount with
sandbox applications.
(2) Hardware Mode. Further, to understand the overhead of using SGX,
we perform experiments in hardware mode. We compare the execution time of
VeriCount and non-VeriCount enclaved applications in hardware mode.
(3) Resource Measurements. To evaluate the accuracy of our accounting
engine, we measure the user time, service time, I/O bytes, and network band-
width using VeriCount and compare them to resource accounting tools from
the OS.



VeriCount: Verifiable Resource Accounting 673

 0

 5

 10

 15

 20

 25

 30

 35

 40

gcc
gobm

k

sjeng
libquantum

h264ref

hm
m

er

astar
bzip2

m
cf

P
er

fo
rm

an
ce

 O
ve

rh
ea

d 
(in

 %
)

SPEC CPU Benchmarks (in SGX SM Mode)

VeriCount without Sandbox
VeriCount with Sandbox

8.2x105

10412 4587 8

1.6x106

1265 92 34
1.9x105

Fig. 5. Performance overhead of Veri-
Count with and without sandbox
application over enclaved only applica-
tions in simulation mode.

 0

 200

 400

 600

 800

 1000

 1200

gcc
gobm

k

sjeng
libquantum

h264ref

hm
m

er

astar
bzip2

m
cf

E
xe

cu
tio

n 
T

im
e 

(in
 s

ec
on

ds
)

SPEC CPU Benchmarks (in SGX HW Mode)

Enclaved Only
VeriCount

Fig. 6. Execution time of VeriCount
applications and enclaved only applica-
tions in hardware mode.

6.1 Performance Overhead

Simulation Mode Overhead. Figure 4 shows the execution time of Veri-
Count without and with sandbox for our benchmarks as compared to enclaved
benchmarks in simulation mode. We observe that VeriCount without sand-
box benchmarks incur an average overhead of only 2.28% as compared to non-
accountable enclaved applications. Thus, the accounting engine contributes a
small overhead to perform resource accounting. This relatively small overhead
of VeriCount’s resource accounting engine (without sandbox) suggests that
a trusted application (which does not tamper with the accounting engine) can
exclude the sandbox logic and enjoy the low performance overhead. The maxi-
mum overhead in VeriCount applications without sandbox is for applications
with large number of Ocalls, thereby causing higher number of invocations
to accounting engine. Figure 5 shows the performance overhead where h264ref
benchmark invokes 1.6 × 105 Ocalls and hence incurs maximum overhead of
12.3%. We observe that VeriCount with sandbox benchmarks incur an aver-
age overhead of 16.03%. This shows that the sandboxing logic in VeriCount
contributes to major portion of the overall overhead. The overhead is directly
proportional to the number of sandboxing instructions added to the application.
Applications with higher number of sandboxing instructions (e.g., sjeng) show
a higher overhead.

Hardware Mode Overhead. To get the estimate of VeriCount overhead in
hardware mode, we compare the execution time of VeriCount and enclaved
only applications (shown in Fig. 6). VeriCount-enabled applications incur an
average overhead of 3.62% as compared to enclaved only applications in hard-
ware mode. 3.62% approximately captures the overall overhead (i.e., sandbox-
ing and accounting engine) of VeriCount design in hardware mode. Thus,
we observe that the performance overhead due to VeriCount is less in hard-
ware mode than in simulation mode. Figures 4 and 6 show that porting enclaved
applications from simulation to hardware mode increases the execution time by
a large margin which essentially hides the overhead due to VeriCount. Since



674 S. Tople et al.

enclaved application in HW mode take longer to finish than in simulation mode
(the denominator increases), it reduces the overall overhead.

6.2 Resource Utilization Measurement

User-Service Time. The time command provides user and kernel time along
with the overall execution time. We compare the user time measured by Veri-
Count with that of the OS service. Column 2 in Table 1 shows that the Veri-
Count calculated user time differs from the OS user time within a fraction
of second for the SPEC CPUINT 2006 benchmarks. One exception is the H2O
web server, where the VeriCount user time does not match the OS time. This
is because the web server spends most of its time waiting for requests in the
untrusted library outside the enclave while VeriCount guarantees are scoped
only within the enclaved applications. Column 3 in Table 1 shows the difference
between VeriCount service time and OS accounted kernel time. VeriCount’s
service time includes the kernel time and waiting time of untrusted library resid-
ing outside the enclave. This results in a difference between OS kernel time and
VeriCount’s service time. Arguably, service time should not be considered
when accounting the user resources. Or, if client and cloud provider agree, they
can decide an upper bound of t in policy φ or use fixed pricing for service time.

I/O Operations. VeriCount calculates the I/O bytes, I/O calls and total
number of Ocalls invoked by the application (shown in Column 4, 5, and 6 in
Table 1). As there is no precise OS supported tool to measure I/O operations
executed within the enclave, we confirm the correctness of our accounting engine
using the strace and ltrace commands. We use ltrace command to verify the
number of I/O Ocalls and total number of Ocalls which invoke the glibc library
functions in the untrusted region. We use the strace command to calculate
total bytes read & written after open(app.signed.so) call i.e., once the control
switches to the enclave. We observe that VeriCount accurately accounts the
I/O bytes for all our benchmarks. For eg., the I/O bytes and Ocalls for H2O
web server is exactly 102400000 Bytes and 10000 for 10000 requests of 10 KB
file size. As all the values match, we do not report the OS generated values in
Table 1.

Network Bandwidth. We calculate the data transferred over the network by
VeriCount-enabled H2O web server and compare it to NetHogs tool available
in most Linux distributions [7]. We observe that VeriCount accounted network
bytes differ from NetHogs results on an average by 0.66% (shown in Fig. 3).
We were unable to determine the cause for the extra data traffic accounted
by NetHogs but speculate it to be due to TLS handshakes before the actual
response is sent over the network. We use h2load performance measurement
tool to generate workload of 10000 requests for static web pages of size of 1 KB,
10 KB and 100 KB.



VeriCount: Verifiable Resource Accounting 675

7 Related Work

Issues in Cloud Accounting and Billing. Previous work like Bouchenak
et al. [12], Fernandes et al. [15], Xiao and Xiao [34] have discussed the importance
of verifying resource consumption, accountability and billing. The key message is
that users benefit from the ability to reason about the operations at the server.
VeriCount realizes this idea and provides a refutable billing model for both
users and cloud providers. Jellinek et al. [18] perform a study of billing systems in
current cloud systems such as Amazon EC2, Google Compute Engine, Rackspace
and others. Their results show that cloud billing systems have bugs that cause
over-charging or free CPU time for users. VeriCount solve this issue with a
verifiable accounting engine and a refutable billing primitive.

Solutions for Verifiable Resource Accounting. Sekar and Maniatis pro-
posed the first practical design for resource accounting based on nested virtual-
ization and TPMs [28]. They propose the idea of an observer placed at the hyper-
visor layer which accounts for the resources utilized by guest virtual machines.
Alibi is a system based on this solution extending Turtles nested virtualization
framework [13]. In contrast to this, VeriCount uses a self-accounting approach
ensuring effective protection from resource usage inflation attacks. Moreover,
their implementation based on Linux kernel and KVM incurs a huge TCB which
we avoid in our solution. A second line of research uses execution logs but suf-
fers from similar inefficiency problems as in our baseline approach. Haerberlen
et. al propose accountable virtual machines that generate logs during execution
that are sent to user [16]. A user can replay a “good” known execution and
identify discrepancies in the server logs to detect maliciousness. This solution is
hard to use where resource-constrained clients do not have enough bandwidth
to download huge logs.

Combining Trusted Computing and Sandboxing. Previous work has pro-
posed the idea of two-way protection using trusted computing and sandboxing
approaches for different reasons. MiniBox [21] provides the first sandbox mecha-
nism for native code in platform-as-a-service cloud computing. Though MiniBox
uses TrustVisor and NaCl, the core idea applies to SGX as well. Ryoan uses a
similar idea to create distributed sandbox for computing on secret data [17]. In
VeriCount we use this idea to protect the execution of accounting engine from
both the client-code and the underlying OS.

8 Conclusion

VeriCount achieves a verifiable resource accounting with a refutable billing
mechanism for Linux containerized applications with Intel SGX support with
low overhead.



676 S. Tople et al.

Acknowledgements. We thank the anonymous reviewers of this paper for their help-
ful feedback. We also thank Zhenkai Liang, Shweta Shinde, and Loi Luu for useful feed-
back on an early version of the paper. This research was partially supported by a grant
from Singapore Ministry of Education Academic Research Fund Tier 1 (R-252-000-624-
133), and the National Research Foundation, Prime Ministers Office, Singapore under
its National Cybersecurity R&D Program (TSUNAMi project, No. NRF2014NCR-
NCR001-21) and administered by the National Cybersecurity R&D Directorate.

References

1. Software Guard Extensions Programming Reference, September 2013. https://
software.intel.com/sites/default/files/329298-001.pdf

2. Amazon EC2 container service (2017). https://aws.amazon.com/ecs/
3. Docker (2017). https://www.docker.com/
4. Google container engine (GKE) (2017). https://cloud.google.com/
5. H2O web server (2017). https://github.com/h2o/h2o
6. Intel SGX linux SDK (2017). https://github.com/01org/linux-sgx
7. NetHogs (2017). https://github.com/raboof/nethogs
8. Panoply source code (2017). https://shwetasshinde24.github.io/Panoply/
9. SPEC CPU2006 benchmarks (2017). https://www.spec.org/cpu2006/

10. Arnautov, S., Trach, B., Gregor, F., Knauth, T., Martin, A., Priebe, C., Lind, J.,
Muthukumaran, D., OKeeffe, D., Stillwell, M.L., et al.: Scone: secure Linux con-
tainers with intel SGX. In: 12th USENIX Symposium Operating Systems Design
and Implementation (2016)

11. Baumann, A., Peinado, M., Hunt, G.: Shielding applications from an untrusted
cloud with haven. ACM Trans. Comput. Syst. (TOCS) 33(3), 8 (2015)

12. Bouchenak, S., Chockler, G., Chockler, H., Gheorghe, G., Santos, N., Shraer, A.:
Verifying cloud services: present and future. ACM SIGOPS Oper. Syst. Rev. 47,
6–19 (2013)

13. Chen, C., Maniatis, P., Perrig, A., Vasudevan, A., Sekar, V.: Towards verifiable
resource accounting for outsourced computation. In: VEE (2013)

14. Erlingsson, Ú., Abadi, M., Vrable, M., Budiu, M., Necula, G.C.: XFI: software
guards for system address spaces. In: OSDI (2006)

15. Fernandes, D.A., Soares, L.F., Gomes, J.V., Freire, M.M., Inácio, P.R.: Security
issues in cloud environments: a survey. International J. Inf. Secur. 13, 113–170
(2014)

16. Haeberlen, A., Aditya, P., Rodrigues, R., Druschel, P.: Accountable virtual
machines. In: OSDI, pp. 119–134 (2010)

17. Hunt, T., Zhu, Z., Xu, Y., Peter, S., Witchel, E.: Ryoan: a distributed sandbox for
untrusted computation on secret data. In: OSDI (2016)

18. Jellinek, R., Zhai, Y., Ristenpart, T., Swift, M.: A day late and a dollar short: the
case for research on cloud billing systems. In: HotCloud (2014)

19. Kroll, J.A., Stewart, G., Appel, A.W.: Portable software fault isolation. In: 27th
2014 IEEE Computer Security Foundations Symposium (CSF), pp. 18–32. IEEE
(2014)

20. Lee, S., Shih, M.W., Gera, P., Kim, T., Kim, H., Peinado, M.: Inferring fine-
grained control flow inside SGX enclaves with branch shadowing. arXiv preprint
arXiv:1611.06952 (2016)

https://software.intel.com/sites/default/files/329298-001.pdf
https://software.intel.com/sites/default/files/329298-001.pdf
https://aws.amazon.com/ecs/
https://www.docker.com/
https://cloud.google.com/
https://github.com/h2o/h2o
https://github.com/01org/linux-sgx
https://github.com/raboof/nethogs
https://shwetasshinde24.github.io/Panoply/
https://www.spec.org/cpu2006/
http://arxiv.org/abs/1611.06952


VeriCount: Verifiable Resource Accounting 677

21. Li, Y., McCune, J.M., Newsome, J., Perrig, A., Baker, B., Drewry, W.: Minibox: A
two-way sandbox for x86 native code. In: USENIX Annual Technical Conference
(2014)

22. Liu, M., Ding, X.: On trustworthiness of CPU usage metering and accounting.
In: IEEE 30th International Conference on Distributed Computing Systems Work-
shops (2010)

23. Matetic, S., Kostiainen, K., Dhar, A., Sommer, D., Ahmed, M., Gervais, A., Juels,
A., Capkun, S.: ROTE: rollback protection for trusted execution. In: Usenix Secu-
rity (2017)

24. McCamant, S., Morrisett, G.: Evaluating SFI for a CISC architecture. In: Usenix
Security (2006)

25. McKeen, F., Alexandrovich, I., Anati, I., Caspi, D., Johnson, S., Leslie-Hurd, R.,
Rozas, C.: Intel R© software guard extensions (Intel R© SGX) support for dynamic
memory management inside an enclave. In: HASP 2016

26. Mihoob, A., Molina-Jimenez, C., Shrivastava, S.: A case for consumer-centric
resource accounting models. In: IEEE 3rd International Conference on Cloud Com-
puting (2010)

27. Shih, M.-W., Lee, S., Kim, T., Peinado, M.: T-SGX: eradicating controlled-channel
attacks against enclave programs. In: NDSS (2017)

28. Sekar, V., Maniatis, P.: Verifiable resource accounting for cloud computing services.
In: ACM Workshop on Cloud Computing Security Workshop (2011)

29. Shinde, S., Chua, Z.L., Narayanan, V., Saxena, P.: Preventing page faults from
telling your secrets. In: ASIACCS (2016)

30. Shinde, S., Le Tien, D., Tople, S., Saxena, P.: Panoply: low-TCB Linux applications
with SGX enclaves. In: NDSS (2017)

31. Tsafrir, D., Etsion, Y., Feitelson, D.G.: Secretly monopolizing the CPU without
superuser privileges. In: USENIX Security, vol. 7, pp. 1–18 (2007)

32. Varadarajan, V., Kooburat, T., Farley, B., Ristenpart, T., Swift, M.M.: Resource-
freeing attacks: improve your cloud performance (at your neighbor’s expense). In:
CCS (2012)

33. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault
isolation. In: ACM SIGOPS Operating Systems Review, pp. 203–216. ACM (1994)

34. Xiao, Z., Xiao, Y.: Security and privacy in cloud computing. IEEE Commun. Surv.
Tutor. 15(2), 843–859 (2013)

35. Xu, Y., Cui, W., Peinado, M.: Controlled-channel attacks: deterministic side chan-
nels for untrusted operating systems. In: IEEE Symposium on Security and Privacy
(SP) (2015)

36. Yee, B., Sehr, D., Dardyk, G., Chen, J.B., Muth, R., Ormandy, T., Okasaka, S.,
Narula, N., Fullagar, N.: Native client: a sandbox for portable, untrusted x86 native
code. In: 2009 30th IEEE Symposium on Security and Privacy, pp. 79–93. IEEE
(2009)

37. Zhang, F., Zhang, H.: SoK: a study of using hardware-assisted isolated execution
environments for security. In: Proceedings of the Hardware and Architectural Sup-
port for Security and Privacy 2016, HASP 2016 (2016)

38. Zhou, F., Goel, M., Desnoyers, P., Sundaram, R.: Scheduler vulnerabilities and
coordinated attacks in cloud computing. J. Comput. Secur. 21(4), 533–559 (2013)



Message-Locked Encryption with File
Update

Suyash Kandele(B) and Souradyuti Paul

Indian Institute of Technology Bhilai, Raipur, Chhattisgarh, India
{suyashk,souradyuti}@iitbhilai.ac.in

Abstract. Message-locked encryption (MLE) (formalized by Bellare
et al. [5]) is an important cryptographic primitive that supports dedu-
plication in the cloud. Updatable block-level message-locked encryption
(UMLE) (formalized by Zhao and Chow [13]) adds the update function-
ality to the MLE . In this paper, we formalize and extensively study
a new cryptographic primitive file-updatable message-locked encryption
(FMLE). FMLE can be viewed as a generalization of the UMLE, in the
sense that unlike the latter, the former does not require the existence
of BL-MLE (block-level message-locked encryption). FMLE allows more
flexibility and efficient methods for updating the ciphertext and tag.

Our second contribution is the design of two efficient FMLE construc-
tions, namely, RevD-1 and RevD-2, whose design principles are inspired
from the very unique reverse decryption functionality of the FP hash
function (designed by Paul et al. [11]) and the APE authenticated
encryption (designed by Andreeva et al. [2]). With respect to UMLE
– which provides so far the most efficient update function – RevD-1 and
RevD-2 reduce the total update time by at least 50%, on average. Addi-
tionally, our constructions are storage efficient. We also give extensive
comparison between our and the existing constructions.

1 Introduction

MLE. Message-locked encryption (MLE) is a special type of encryption, where
the decryption key is derived from the message itself. The main application of
MLE is in the secure deduplication of data in the cloud, where MLE removes the
need for storing multiple copies of identical data, without compromising their
privacy and, thereby, helps to reduce the storage costs. Given the cloud services
being on the rise, this primitive is gaining importance.

The first attempt to solve the problem of deduplication was made in 2002 by
Douceur et al. [8], who came up with the idea of Convergent Encryption (CE).
Bellare et al. [5] studied this subject in a formal way and named it message-locked
encryption (MLE). They also gave efficient constructions of MLE.

UMLE. As seen before, MLE does not inherently support the file-update and
the proof of ownership functionalities in its definition. UMLE solves this issue by
adding three functionalities – file-update, PoW algorithms for prover and verifier
c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 678–695, 2018.
https://doi.org/10.1007/978-3-319-93387-0_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_35&domain=pdf
http://orcid.org/0000-0002-5887-2907
http://orcid.org/0000-0001-5404-9975


Message-Locked Encryption with File Update 679

– to the existing definition of MLE. The main drawback of UMLE is that the
functionalities are constructed from another cryptographic primitive, namely,
BL-MLE, which is nothing but MLE executed on a fixed-sized block. Such a
BL-MLE -based UMLE entails degradation of performance for encryption and
decryption [13]. Another drawback of UMLE is that the update of file-tag is an
expensive operation.

Motivation for studying FMLE. From the high level, both UMLE and
FMLE have identical functionalities; the main difference, however, is that the
former is necessarily based on BL-MLE, but the latter may or may not be. There-
fore, the definition of FMLE can be viewed as a generalisation of UMLE, where
we remove the constraint of using BL-MLE. The motivation for studying FMLE
is clear from the drawbacks of UMLE mentioned above. These motivations are:

Does there exist an FMLE scheme which is not based on BL-MLE? If such
a construction exists, is it more efficient than UMLE?

Studying FMLE is a futile exercise, if both the answers are in the negative. A
moment’s reflection suggests that the answer to the first question is actually
‘Yes’. A trivial FMLE construction – not based on BL-MLE – always exists,
where the file-update function is designed the following way: apply decryption
to the ciphertext to recover the original plaintext; edit/modify the original mes-
sage; and finally encrypt the updated message. Note that this trivial file-update
function does not need any BL-MLE, therefore, it is an FMLE, but certainly
not a UMLE scheme. The main drawback of this FMLE scheme is that this is
several orders of magnitude slower than a UMLE scheme. Therefore, the main
challenge is:

Does there exists an FMLE scheme more efficient than UMLE?

Searching for such a construction is the main motivation of this paper.

Our Contribution. Our first contribution is formalizing the new crypto-
graphic notion file-updatable message-locked encryption (FMLE). We also pro-
pose two efficient FMLE constructions RevD-1 and RevD-2: their update func-
tions are at least 50% faster (on average).1 Also, our constructions are more
space efficient than the so-far best MLE variants; in particular, the ciphertext
expansion and tag storage in RevD-1 and RevD-2 are constant, while they are
logarithmic and linear (or may be worse) for other similar time-efficient cases. In
order to obtain this improvement in the performance, our constructions critically
exploit a very unique feature – what we call reverse decryption – of the hash
function FP and the authenticated encryption APE. We also present proofs of
security of our constructions. Extensive comparison of our constructions with the
others – in terms of time complexity, storage requirements and security proper-
ties – have also been provided (see Table 1). Being randomized, our constructions

1 The term RevD is a shorthand for Reverse Decryption.



680 S. Kandele and S. Paul

are secure against the dictionary attacks, however, they lack STC security, like
all other randomized MLE s.

Related Work. We now describe various pieces of work done by several
researchers that are related to FMLE. Douceur et al. are the first to come up
with the idea of Convergent Encryption (CE) in 2002, where the key was calcu-
lated as a hash of the message, and then this key was used for encryption [8].
Bellare, Keelveedhi and Ristenpart formalized CE in the form of message-locked
encryption (MLE) [5]. They also provided a systematic discussion of various
MLE schemes. In a separate paper, these authors also designed a new system
DupLESS that supports deduplication even if the message entropy is low [4].

Beelare and Keelveedhi extended message-locked encryption to interactive
message-locked encryption, and have addressed the cases when the messages
are correlated as well as dependent on the public parameters, leading to weak-
ened privacy [3]. Abadi et al. gave two new constructions for the i-MLE ; these
fully randomized schemes also supported equality-testing algorithm for finding
ciphertexts derived from identical messages [1]. Jiang et al. gave an efficient
logarithmic-time deduplication scheme that substantially reduces the equality-
testing in the i-MLE schemes [10].

Canard, Laguillaumie and Paindavoine introduced deduplication consistency
– a new security property – that prevents the clients from bypassing the dedu-
plication protocol. This is accomplished by introducing a new feature named
verifiability (of the well-formation) of ciphertext at the server [6]. They also pro-
posed a new ElGamal-based construction satisfying this property. Wang et al.
proposed a stronger security notion PRV-CDA3 and showed that their new con-
struction ME is secure in this model [12].

Chen et al. proposed the block-level message-locked encryption (BL-MLE),
which is nothing but breaking a big message into smaller chunks – called blocks
– and then applying MLE on the individual blocks [7]. Huang, Zhang and Wang
showed how to integrate the functionality proof of storage (PoS) with MLE
by using a new data structure Quadruple Tags [9]. Zhao and Chow proposed
the use of BL-MLE to design Efficiently Updatable Block-Level Message-Locked
Encryption (UMLE) scheme which has an additional functionality of updating
the ciphertext that costs sub-linear time [13].

Organization of the paper. In Sect. 2, we discuss the preliminaries including
the notation and basic definitions. Section 3 describes the deduplication protocol.
In Sect. 4, we give the formal definition of FMLE. In Sect. 5, we construct the
FMLE schemes by tweaking the existing MLE and UMLE schemes. In Sect. 6,
we describe the two new efficient FMLE schemes and we compare them with
the various FMLE schemes and conclude our paper in Sect. 7.

2 Preliminaries

2.1 Notation

The expression M := x denotes that the value of x is assigned to M , and
M := D(x) denotes that the value returned by function D(·), on input x, is



Message-Locked Encryption with File Update 681

assigned to M . M = x denotes the equality comparison of the two variables M
and x, and M = D(x) denotes the equality comparison of the variable M with
the output of D(·), on input x. The XOR or ⊕ denotes the bit-by-bit exclusive-
or operation on two binary strings of same length. The concatenation operation
of p ≥ 1 strings s1, s2, · · · , sp and assignment to the variable s is denoted by
s := s1||s2|| · · · ||sp. The parsing of string s into p ≥ 1 strings s1, s2, · · · , sp is
denoted by s1||s2|| · · · ||sp := s. The length of string M is denoted by |M |. The
set of all binary strings of length � is denoted by {0, 1}�. The set of all binary
strings of any length is denoted by {0, 1}∗. A vector of strings is denoted by
M and i-th string in M is denoted by M (i). The number of strings in M is
denoted by ‖M‖. The infinite set of all binary strings of any length is denoted
by {0, 1}∗∗. The set of all Natural numbers is denoted by N. We denote that
M is assigned a binary string of length k chosen randomly and uniformly by
M

$← {0, 1}k. To mark any invalid string (may be input string or output string),

the symbol ⊥ is used. (M , Z) $← S(1λ) denotes the assignment of outputs given
randomly and uniformly by S to M and Z.

2.2 Dictionary Attack

A dictionary attack is defined to be a brute-force attack, where the adversary
first builds a dictionary off-line, and then processes every element of the dictio-
nary to determine the correct solution against an online challenge. For example,
suppose that the hash of a message is given as a challenge to the adversary for
her to determine the correct message. If the entropy of the message is low, then
the adversary generates the dictionary of all possible messages and their cor-
responding hash values off-line; and given the online challenge, she selects the
message whose hash value matches the challenge. Any deterministic MLE with
low message entropy is broken by dictionary attack.

2.3 Proof of Ownership

Proof-of-ownership (PoW) is an interactive protocol where the owner of file
proves the ownership of a file to the cloud storage. This protocol assumes that
the adversary does not have access to the entire ciphertext which was uploaded
onto the cloud by some previous (or first) owner, but he may know the tag,
which is a small fraction of the entire information. In this protocol, the cloud
storage provider generates a challenge Q and sends it to the client, along with
some other information. The client computes the proof P corresponding to the
given challenge Q and sends it back to the cloud. The cloud verifies it and if the
verification is successful, then the client is granted access, otherwise the access
is denied.

2.4 Ideal Permutation

Let π/π−1 : {0, 1}n �→ {0, 1}n be a pair of oracles. The pair π/π−1 is called an
ideal permutation if the following three properties are satisfied.



682 S. Kandele and S. Paul

1. π−1(π(x)) = x and π(π−1(x)) = x, for all x ∈ {0, 1}n.
2. Suppose, xk is the k-th query (k ≥ 1), submitted to the oracle π, and y ∈

{0, 1}n. Then, for the current query xi:

Pr
[
π(xi) = y

∣∣∣π(x1) = y1, π(x2) = y2, · · · , π(xi−1) = yi−1

]

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, if xi = xj , y = yj , j < i.

0, if xi = xj , y 
= yj , j < i,

0, if xi 
= xj , y = yj , j < i,
1

2n−i+1 , if xi 
= xj , y 
= yj , j < i.

3. Suppose, yk is the k-th query (k ≥ 1), submitted to the oracle π−1, and
x ∈ {0, 1}n. Then, for the current query yi:

Pr
[
π−1(yi) = x

∣∣∣π−1(y1) = x1, π
−1(y2) = x2, · · · , π−1(yi−1) = xi−1

]

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1, if yi = yj , x = xj , j < i.
0, if yi = yj , x 
= xj , j < i,
0, if yi 
= yj , x = xj , j < i,

1
2n−i+1 , if yi 
= yj , x 
= xj , j < i.

2.5 Other Definitions

Due to space constraints, the definitions of unpredictable sources, message-locked
encryption (MLE), updatable block-level message-locked encryption (UMLE),
hash function and one-time symmetric encryption will appear in the full ver-
sion of the paper.

3 Deduplication: An Application of FMLE

Deduplication is a mechanism by which a protocol removes the requirement for
storing multiple copies of an identical file in memory. This is highly beneficial
for the better utilization of space in the cloud, where multiple users often store
identical files. Loosely speaking, it does so, by identifying the identical files,
removing all the copies except one, and then attaching a special file called the
list of owners to it. In Fig. 1, we give the details of the deduplication protocol
supporting file-update and proof of ownership (PoW) functionalities. Although,
intuitively clear, we would like to point out that the authentication of users is
not a part of this protocol; the system, otherwise, takes care of that through
various well-known means such as password-based/bio-metric authentications,
etc.

The deduplication protocol with file-update and PoW functionalities, has
three functions: client uploading data to the server, as shown in Fig. 1(a); client
downloading data from the server, as shown in Fig. 1(b); and client updating
data to the server, as shown in Fig. 1(c). Due to space constraints, the textual
description has been omitted and will appear in the full version of the paper.



Message-Locked Encryption with File Update 683

Fig. 1. Upload, download and update protocols in the deduplication protocol.



684 S. Kandele and S. Paul

4 FMLE : A New Cryptographic Primitive

The File updatable Message-Locked Encryption (FMLE) is a generalisation of
Efficiently Updatable Block-Level Message-Locked Encryption (UMLE) as given
by Zhao and Chow [13]. The difference between the definitions of UMLE and
FMLE is that the former requires the existence of a BL-MLE scheme, while
the latter does not.2 Therefore, any UMLE scheme can be viewed as an FMLE
scheme too, not the other way round.

Below we elaborately discuss the syntax, correctness and security definition
of the new notion FMLE.

4.1 Syntax

Suppose λ ∈ N is the security parameter. An FMLE scheme Π = (Π. E ,Π.D,
Π.U ,Π.P,Π.V) is five-tuple of algorithms over a PPT setup Π.Setup. Π sat-
isfies the following conditions.

1. The PPT setup algorithm Π.Setup(1λ) outputs the parameter params and
the sets K, M, C and T , denoting the key, message, ciphertext and tag spaces
respectively.

2. The PPT encryption algorithm Π. E takes as inputs params and M ∈ M,
and returns a 3-tuple (K,C, T ) := Π. E(params,M), where K ∈ K, C ∈ C
and T ∈ T .

3. The decryption algorithm Π.D is a deterministic algorithm that takes
as inputs params, K ∈ K, C ∈ C and T ∈ T , and returns
Π.D(params,K,C, T ) ∈ M ∪ {⊥}. The decryption algorithm D returns ⊥ if
the key K, ciphertext C and tag T are not generated from a valid message.

4. The PPT update algorithm Π.U takes as inputs params, the index of starting
and ending bits ist and iend, new message bits Mnew ∈ M, the decryption key
K ∈ K, the ciphertext to be updated C ∈ C, the tag to be updated T ∈ T
and the bit app ∈ {0, 1} indicating change in length of new message, and
returns a 3-tuple (K ′, C ′, T ′) := Π.U(params, ist, iend,Mnew,K,C, T, app),
where K ′ ∈ K, C ′ ∈ C and T ′ ∈ T .

5. The PPT proof-of-ownership (PoW) algorithm for prover Π.P takes as
inputs parameter params, challenge Q, a file M ∈ M, the decryption key
K ∈ K, the ciphertext C ∈ C, the tag T ∈ T , and returns the proof
P := Π.P(params,Q,M,K,C, T ).

6. The PPT proof-of-ownership (PoW) algorithm for verifier Π.V takes as
inputs parameter params, challenge Q, ciphertext C ∈ C, tag T ∈ T
and proof P , and returns the value val := Π.V(params,Q,C, T, P ), where
val ∈ {TRUE,FALSE}.

7. We restrict |C| to be a linear function of |M |.

2 A block-level message-locked encryption (BL-MLE) is an MLE that works on the
fixed-sized messages, called blocks.



Message-Locked Encryption with File Update 685

4.2 Correctness

Key Correctness. Suppose (K,C, T ) := Π. E(params,M), and (K ′, C ′, T ′)
:= Π. E(params,M ′). Then key correctness of Π requires that if M = M ′, then
K = K ′, for all λ ∈ N and all M,M ′ ∈ M.

Decryption Correctness. Suppose (K,C, T ) := Π. E(params,M). Then
decryption correctness of Π requires that Π.D(params,K,C, T ) = M , for all
λ ∈ N and all M ∈ M.

Tag Correctness. Suppose (K,C, T ) := Π. E(params,M), and (K ′, C ′, T ′)
:= Π. E(params,M ′). Then tag correctness of Π requires that if M = M ′, then
T = T ′, for all λ ∈ N and all M,M ′ ∈ M.

Update Correctness. Suppose � = |M |, (K,C, T ) := Π. E(params,M), and
(K ′, C ′, T ′) := Π.U(params, ist, iend,Mnew,K,C, T, app). Then update correct-
ness of Π requires that, for all λ ∈ N, all M ∈ M, 1 ≤ ist ≤ � and ist < iend:

• for app = 1, Π.D(params,K ′, C ′, T ′) = M [1] ||M [2] || · · · || M [ist−1] ||Mnew,
and

• for app = 0, Π.D(params,K ′, C ′, T ′) = M [1] ||M [2] || · · · || M [ist −1] ||Mnew

||M [iend + 1]||M [iend + 2]|| · · · ||M [�].

PoW Correctness. Suppose (K,C, T ) := Π. E(params,M), Q is any chal-
lenge and P := Π.P(params,Q,M,K,C, T ). Then PoW correctness of Π
requires that Pr[Π.V(params,Q,C, T, P ) = TRUE] = 1, for all λ ∈ N and
all M ∈ M.

4.3 Security Definitions

Security definitions of FMLE are naturally adapted from those of UMLE. For
the sake of completeness, we describe them below in full detail. As usual, all the
games are written in the form of challenger-adversary framework.

Privacy. Let Π = (Π. E ,Π.D,Π.U ,Π.P,Π.V) be an FMLE scheme. Since, no
MLE scheme can provide security for predictable messages, we are modelling the
security based on the unpredictable message source S(·). According to the PRV$-
CDA game, as in Fig. 2, the challenger gets a vector of messages, M and the
auxiliary information Z, from the source S(·). The challenger does the following
operations: computes the decryption key K

(i)
1 , ciphertext C

(i)
1 and tag T

(i)
1 for

each message string M (i) using Π. E , where i ∈ {1, 2, · · · ,m(1λ)}; computes the
random strings K(i)

0 , C(i)
0 and T

(i)
0 of length |K(i)

1 |, |C(i)
1 | and |T (i)

1 | respectively;
and returns (Cb,T b, Z) to the adversary. The adversary has to return a bit b′

indicating whether the ciphertext Cb and tag T b corresponds to message M or
is it a collection of random strings. If the values of b and b′ coincide, then the
adversary wins the game.



686 S. Kandele and S. Paul

Fig. 2. Games defining PRV$-CDA, STC, TC, CXH and UNC-CDA security of FMLE
scheme Π = (Π. E , Π.D, Π.U , Π.P, Π.V). In CXH and UNC-CDA games, adversary
A = (A1,A2)

We define the advantage of an PRV$-CDA adversary A against Π for the
message source S(·) as:

AdvPRV$-CDA
Π,S,A (1λ)

def
=

∣∣∣ Pr[PRV$-CDAA
Π,S(1λ, b = 1) = 1]

−Pr[PRV$-CDAA
Π,S(1λ, b = 0) = 1]

∣∣∣.

An FMLE scheme Π is said to be PRV$-CDA secure over a set of valid PT
sources for FMLE scheme Π, S = {S1,S2, · · · }, for all PT adversaries A and
for all Si ∈ S, if AdvPRV$-CDA

Π,Si,A (·) is negligible. An FMLE scheme Π is said to be
PRV$-CDA secure, for all PT adversaries A, if AdvPRV$-CDA

Π,S,A (·) is negligible, for
all valid PT source S for Π.

Tag Consistency. Let Π = (Π. E ,Π.D,Π.U ,Π.P,Π.V) be an FMLE
scheme. For an FMLE scheme, we have designed the STC and TC security
games in Fig. 2, which aim to provide security against duplicate faking attacks.
In addition, STC provides safeguards against erasure attack. In a duplicate fak-
ing attack, two unidentical messages – one fake message produced by an adver-
sary and a legitimate one produced by an honest client – produce the same tag,
thereby cause loss of message and hamper the integrity. In an erasure attack, the
adversary replaces the ciphertext with a fake message that decrypts successfully.

The adversary returns a message M , a ciphertext C ′ and a tag T ′. If the
message or ciphertext is invalid, the adversary loses the game. Otherwise, the



Message-Locked Encryption with File Update 687

challenger computes decryption key KD, ciphertext C and tag T corresponding
to message M , and computes the message M ′ corresponding to ciphertext C ′

and tag T ′ using key KD. If the two tags are equal, i.e. T = T ′, the message M ′

is valid, i.e. M ′ 
=⊥, and the two messages are unequal, i.e. M 
= M ′, then the
adversary wins.

Now, we define the advantage of a TC adversary A against Π as:

AdvTC
Π,A(1λ)

def
= Pr[TCA

Π(1λ) = 1].

Now, we define the advantage of an STC adversary A against Π as:

AdvSTC
Π,A(1λ)

def
= Pr[STCA

Π(1λ) = 1].

An FMLE scheme Π is said to be TC (or STC) secure, for all PT adversaries A,
if AdvTC

Π,A(·) (or AdvSTC
Π,A(·)) is negligible.

Context Hiding. Let Π = (Π. E ,Π.D,Π.U ,Π.P,Π.V) be an FMLE scheme.
For an FMLE, we have designed the CXH game in Fig. 2, which aims to provide
security against distinguishing between an updated ciphertext and a ciphertext
encrypted from scratch, to ensure that the level of privacy is not compromised
during update process.

According to the CXH game, as in Fig. 2, the adversary returns two messages
M0 and M1 such that M0 and M1 are identical for all bits except σ bits. The
challenger calculates the bit-positions i1, i2, · · · , iρ where M0 and M1 differ, and
the adversary loses if ρ > σ. The challenger encrypts the two messages M0 and
M1 to generate (K0, C0, T0) and (K1, C1, T1) and updates the C1 with M0[i1, i1+
1, · · · , iρ] to obtain (K ′

1, C
′
1, T

′
1). The challenger then sends either C0 or C ′

1,
depending on the value of b, to the adversary. The adversary has to return a
bit b′ indicating whether the ciphertext is built from scratch or is an updated
ciphertext. If the values of b and b′ are equal, then the adversary wins the game.

Now, we define the advantage of a CXH adversary A for σ-bit update in
message, against Π as:

AdvCXH
Π,A(1λ, σ)

def
=

∣∣∣ Pr[CXHA
Π(1λ, σ, b = 1) = 1] − Pr[CXHA

Π(1λ, σ, b = 0) = 1]
∣∣∣.

An FMLE scheme Π is said to be CXH secure, for σ-bit update in message,
for all PT adversaries A, if AdvCXH

Π,A(·, ·) is negligible.

Proof of ownership. Let Π = (Π. E ,Π.D,Π.U ,Π.P,Π.V) be an FMLE
scheme. For an FMLE, we have designed the UNC-CDA game in Fig. 2, which
aims to provide security against the adversary in proving that they possess the
entire file when they actually have only a partial information about the file. This
is to block the unauthorised ownership of the file.

According to the UNC-CDA game, as in Fig. 2, the adversary returns an
unpredictable message source S(· ). The challenger gets a message M and the
auxiliary information Z, from this source. The challenger then send the challenge
Q and the auxiliary information Z to the adversary and the adversary returns a



688 S. Kandele and S. Paul

proof P ∗. The challenger generates the proof P for the same challenge. If P ∗ is
successfully verified by the PoW verifier algorithm Π.V and P is different from
P ∗, then the adversary wins the game.

Now, we define the advantage of a UNC-CDA adversary A against an uncheat-
able chosen distribution attack against Π for a message source source S(·) as:

AdvUNC-CDA
Π,A (1λ)

def
= Pr[UNC-CDAA

Π(1λ) = 1].

An FMLE scheme Π is said to be UNC-CDA secure, for all PT adversaries
A, if AdvUNC-CDA

Π,A (·) is negligible.

5 Practical FMLE Constructions from Existing MLE
and UMLE Schemes

The description and security properties of F-CE, F-HCE2 & F-RCE and F-UMLE
schemes will appear in the full version of the paper.

6 New Efficient FMLE Schemes

In this section we present the two new efficient constructions for FMLE – namely
RevD-1 and RevD-2 – which are based on a 2λ-bit easy-to-invert permutation
π. We assume that the length of message is a multiple of λ; λ is the security
parameter.

6.1 The RevD-1 Scheme

We describe our first FMLE scheme, namely, RevD-1. This construction is moti-
vated by the design of the hash function mode of operation FP [11].

Description of RevD-1. The pictorial and algorithmic descriptions are given in
Figs. 3 and 4; all wires are λ-bit long. Let M denote the message to be encrypted,
M [i] denote the i-th block of message, and M [i][j] denote the j-th bit of i-
th block of message. It is worth noting that the decryption is executed in the
reverse direction of encryption. The detailed textual description of the 5-tuple
of algorithms will appear in the full version of the paper.

Security of RevD-1. The details of the proofs for the PRV$-CDA, TC, CXH
and UNC-CDA security of RevD-1 will appear in the full version.

6.2 The RevD-2 Scheme

We describe our second FMLE scheme, namely, RevD-2. This construction is
motivated by the design of the authenticated encryption APE [2].

Description of RevD-2. The pictorial and algorithmic descriptions are given in
Figs. 5 and 6; all wires are λ-bit long. Let M denote the message to be encrypted,



Message-Locked Encryption with File Update 689

Fig. 3. Diagrammatic description of RevD-1.



690 S. Kandele and S. Paul

Fig. 4. Algorithmic description of the FMLE scheme RevD-1 for message M i.

M [i] denote the i-th block of message, and M [i][j] denote the j-th bit of i-
th block of message. It is worth noting that the decryption is executed in the
reverse direction of encryption. The detailed textual description of the 5-tuple
of algorithms will appear in the full version of the paper.

Security of RevD-2. The details of the proofs for the PRV$-CDA, TC, CXH
and UNC-CDA security of RevD-2 will appear in the full version.



Message-Locked Encryption with File Update 691

Fig. 5. Diagrammatic description of RevD-2.



692 S. Kandele and S. Paul

Table 1. RevD-1 and RevD-2 are compared with the other FMLE schemes. Here, λ is
the security parameter; F is the file to be encrypted; |F | denotes the bit-length of F ;
B is the block-size used in the UMLE scheme; F ′ is the shortest suffix of F containing
all modified bits; k is the index of the first bit in the challenge in the PoW protocol;
cH|F | , cHB and cHλ are the costs of computing hashes on inputs of lengths |F |, B and
λ respectively; cSE|F | and cSEB are the costs of encryption (in a one-time symmetric
encryption) of the messages of lengths |F | and B respectively; cSD|F | and cSDB are the
costs of decryption of the messages of lengths |F | and B respectively; cπ2λ and c

π−1
2λ

are the costs of computing the 2λ-bit permutation and its inverse respectively.

Resistance of RevD-1 and RevD-2 Against Dictionary Attack. Since,
RevD-1 and RevD-2 have randomized encryption algorithms, they are not vul-
nerable to dictionary attacks (see Sect. 2.2 for a definition of dictionary attack).



Message-Locked Encryption with File Update 693

Fig. 6. Algorithmic description of the FMLE scheme RevD-2.

6.3 Comparing RevD-1 and RevD-2 with the Other FMLE Schemes

In Table 1, we compare the RevD-1 and RevD-2 with the other FMLE construc-
tions described in Sect. 5, on the basis of time and space complexities, and the
security properties.

In summary, the FMLE schemes RevD-1 and RevD-2 possess the randomiza-
tion property of MLE construction RCE, and the efficient update property of
UMLE. It is also noted that it outperforms all the constructions in terms of the
number of passes.



694 S. Kandele and S. Paul

7 Conclusion

In this paper, we present a new cryptographic primitive FMLE and two new con-
structions of it: RevD-1 and RevD-2. We showed that these constructions perform
better – both with respect to time and memory – than the existing constructions.
The high performance is attributed to a unique property named reverse decryp-
tion of the FP hash function and the APE authenticated encryption, on which
these new constructions are based. The only disadvantage is, perhaps, that these
constructions are not STC secure. We leave as an open problem construction of
an STC secure efficient FMLE.

References

1. Abadi, M., Boneh, D., Mironov, I., Raghunathan, A., Segev, G.: Message-locked
encryption for lock-dependent messages. In: Canetti, R., Garay, J.A. (eds.)
CRYPTO 2013. LNCS, vol. 8042, pp. 374–391. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40041-4 21

2. Andreeva, E., Bilgin, B., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N.,
Yasuda, K.: APE: authenticated permutation-based encryption for lightweight
cryptography. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp.
168–186. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-
0 9

3. Bellare, M., Keelveedhi, S.: Interactive message-locked encryption and secure dedu-
plication. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 516–538. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 23

4. Bellare, M., Keelveedhi, S., Ristenpart, T.: DupLESS: server-aided encryption for
deduplicated storage. In: King, S. (ed.) USENIX 2013, pp. 179–194 (2013)

5. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked encryption and secure
deduplication. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS,
vol. 7881, pp. 296–312. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38348-9 18

6. Canard, S., Laguillaumie, F., Paindavoine, M.: Verifiable message-locked encryp-
tion. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 299–315.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0 18

7. Chen, R., Mu, Y., Yang, G., Guo, F.: BL-MLE: block-level message-locked encryp-
tion for secure large file deduplication. IEEE Trans. Inf. Forensics Secur. 10(12),
2643–2652 (2015). https://doi.org/10.1109/TIFS.2015.2470221

8. Douceur, J.R., Adya, A., Bolosky, W.J., Simon, D., Theimer, M.: Reclaiming space
from duplicate files in a serverless distributed file system. In: ICDCS 2002, pp. 617–
624 (2002). https://doi.org/10.1109/ICDCS.2002.1022312

9. Huang, K., Zhang, X., Wang, X.: Block-level message-locked encryption with
polynomial commitment for IoT data. J. Inf. Sci. Eng. (JISE), 33(4), 891–
905 (2017). http://jise.iis.sinica.edu.tw/JISESearch/pages/View/PaperView.jsf?
keyId=157 2047

10. Jiang, T., Chen, X., Wu, Q., Ma, J., Susilo, W., Lou, W.: Towards efficient fully
randomized message-locked encryption. In: Liu, J.K.K., Steinfeld, R. (eds.) ACISP
2016. LNCS, vol. 9722, pp. 361–375. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-40253-6 22

https://doi.org/10.1007/978-3-642-40041-4_21
https://doi.org/10.1007/978-3-662-46706-0_9
https://doi.org/10.1007/978-3-662-46706-0_9
https://doi.org/10.1007/978-3-662-46447-2_23
https://doi.org/10.1007/978-3-642-38348-9_18
https://doi.org/10.1007/978-3-642-38348-9_18
https://doi.org/10.1007/978-3-319-48965-0_18
https://doi.org/10.1109/TIFS.2015.2470221
https://doi.org/10.1109/ICDCS.2002.1022312
http://jise.iis.sinica.edu.tw/JISESearch/pages/View/PaperView.jsf?keyId=157_2047
http://jise.iis.sinica.edu.tw/JISESearch/pages/View/PaperView.jsf?keyId=157_2047
https://doi.org/10.1007/978-3-319-40253-6_22
https://doi.org/10.1007/978-3-319-40253-6_22


Message-Locked Encryption with File Update 695

11. Paul, S., Homsirikamol, E., Gaj, K.: A novel permutation-based hash mode of
operation FP and the hash function SAMOSA. In: Galbraith, S., Nandi, M. (eds.)
INDOCRYPT 2012. LNCS, vol. 7668, pp. 509–527. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34931-7 29

12. Wang, H., Chen, K., Qin, B., Lai, X., Wen, Y.: A new construction on randomized
message-locked encryption in the standard model via UCEs. Sci. China Inf. Sci.
60(5), 052101 (2017). https://doi.org/10.1007/s11432-015-1037-2

13. Zhao, Y., Chow, S.S.M.: Updatable block-level message-locked encryption. In:
Karri, R., Sinanoglu, O., Sadeghi, A., Yi, X. (eds.) Proceedings of the 2017 ACM
on Asia Conference on Computer and Communications Security, AsiaCCS 2017,
Abu Dhabi, United Arab Emirates, 2–6 April 2017, pp. 449–460. ACM (2017).
https://doi.org/10.1145/3052973.3053012

https://doi.org/10.1007/978-3-642-34931-7_29
https://doi.org/10.1007/s11432-015-1037-2
https://doi.org/10.1145/3052973.3053012


DogFish: Decentralized Optimistic
Game-theoretic FIle SHaring

Seny Kamara1 and Alptekin Küpçü2(B)

1 Brown University, Providence, RI, USA
2 Koç University, İstanbul, Turkey

akupcu@ku.edu.tr

Abstract. Peer-to-peer (p2p) file sharing accounts for the most uplink
bandwidth use in the Internet. Therefore, in the past few decades, many
solutions tried to come up with better proposals to increase the social
welfare of the participants. Social welfare in such systems are categorized
generally as average download time or uplink bandwidth utilization. One
of the most influential proposals was the BitTorrent. Yet, soonafter stud-
ies showed that BitTorrent has several problems that incentivize selfish
users to game the system and hence decrease social welfare.

Previous work, unfortunately, did not develop a system that maxi-
mizes social welfare in a decentralized manner (without a trusted party
getting involved in every exchange), while the proposed strategy and
honest piece revelation being the only equilibrium for the rational play-
ers. This is what we achieve, by modeling a general class of p2p file
sharing systems theoretically, then showing honest piece revelation will
help achieve social welfare, and then introducing a new cryptographic
primitive, called randomized fair exchange, to instantiate our solution.

Keywords: Peer-to-peer file sharing · Optimistic fair exchange
Proof of storage · Cryptographic protocol · Game theory

1 Introduction

The interaction between parties in peer-to-peer (p2p) file sharing networks is
strategic and therefore the study of the incentives behind such networks have
become an active area of research. The best known and most successful file
sharing network BitTorrent, introduced by Cohen [18], accounts for the most
uplink bandwidth use in the Internet [50]. File sharing in BitTorrent can be
defined as a two-party game where the peers must decide whether or not to
trade a block of the file they are trying to download. It was originally believed
that the best strategy for the BitTorrent game was to play tit-for-tat, that is, if a
peer provides another peer with a block then the second peer should reciprocate

S. Kamara—Work done while at Microsoft Research.
A. Küpçü—Work partly done while at Microsoft Research.

c© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 696–714, 2018.
https://doi.org/10.1007/978-3-319-93387-0_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_36&domain=pdf


DogFish: Decentralized Optimistic Game-theoretic FIle SHaring 697

and provide the first peer with another block. However, the appearance of clients
like BitThief [40] and BitTyrant [46], which do not play tit-for-tat, has called
this assumption into question. In particular, Levin et al. [37] argued that the
BitTorrent game is more properly modeled as an auction.

During a BitTorrent round (roughly 10 s), to whom a peer connects is decided
based on others’ uploads to the peer at hand and the pieces they advertise to
have. The BitTorrent protocol specifies that the peers should report the pieces
they own honestly. Yet, they can over- or under-report the pieces they own, to
gain strategical advantage, decreasing social welfare [37,49].

Consider an over-reporting peer. He may be attractive to many other peers
since he seems to have something that they do not have; many peers would want
to connect to him. But then, during their exchange, they may not be able to
obtain anything useful from him, whereas he may obtain many useful blocks. As
for an under-reporting peer, as observed before, the peer may gain some strategic
advantage against BitTorrent’s rarest piece first heuristic [37]. Moreover, if many
peers are under-reporting, the system would face starvation [49].

In this paper we address this issue for the first time, as we present a
BitTorrent-like p2p file sharing mechanism that incentivizes honest piece rev-
elation, hence increasing social welfare, while working in a decentralized manner
without any trusted party involvement per block exchange, and is an equilib-
rium for rational players. We achieve this goal in a simplified theoretical setting,
through the use of novel cryptographic techniques, and a game-theoretic app-
roach to p2p file sharing systems that encompasses different aspects of a protocol
such as peer matching and block exchange. We do not claim that our protocol
would replace BitTorrent in practice; rather we trust that our theoretical solu-
tion insight would help prominent researchers develop both theoretically-sound
and practically-applicable protocols for this goal. Our contributions are:

– We propose the first theoretical decentralized file sharing protocol (with no
trusted party involvement per exchange) that is an equilibrium with respect
to realistic utility functions (i.e., the number of pieces downloaded).

– To achieve this we introduce and construct a new cryptographic functionality
which we refer to as randomized fair exchange (RFE). We provide a security
definition for RFE and a construction.

– While the use of RFE is enough to disincentivize under-reporting, it does
not prevent over-reporting. We then combine RFE with proofs of storage to
ensure over-reporting is also discouraged.

– Finally, we show that under a simple theoretical model, our solution achieves
an equilibrium with the best possible social welfare (defined as upload band-
width utilization) among a large class of protocols that first match peers
based on their reported pieces, and then perform pair-wise exchanges.



698 S. Kamara and A. Küpçü

2 Preliminaries

File Sharing Protocols. In the BitTorrent protocol files are divided into pieces,
and pieces are divided into blocks (see [18] and1 for details). Exchange takes
place in terms of blocks. Only blocks of finished pieces are exchanged. A torrent
file contains hashes of the pieces so that they can be verified to be the correct
ones. There are two types of peers in the system: those who already have all
the pieces of the torrent at hand (the seeders), and those who do not have the
complete set of pieces and are still downloading (the leechers).

When a new peer joins the system, she obtains a peerset (a list of seeders and
leechers) from the Tracker (which is a central entity, but does not get involved
in exchanges) for the torrent she wants to download, and starts forming peer-
to-peer connections with those peers. They announce her the pieces they have.
Based on those announcements, she picks a subset of those peers to actually
perform block exchanges with. In BitTorrent, usually a peer would pick 4 peers
who have given her the most blocks in the previous round (e.g., past 10 s), and
1 more random peer (totaling 5 peers) to give a block to. Those exchanges are
not necessarily fair [40,46]. Each time she obtains a new piece, she reports it to
her peerset, which may not be done honestly either [37,49].

Throughout the paper, we simplify our discussion by using piece and block
interchangeably, since we are describing a BitTorrent-like protocol and not nec-
essarily BitTorrent itself. In our case, we only consider blocks in a torrent, where
the hash of each one of them is known from the torrent, and the blocks can be
exchanged as soon as they are downloaded.

Basic Game Theory. In an n-player game, we have players P1, . . . , Pn, where
player Pi has m possible actions A1

i , . . . , A
m
i and a real-valued utility function

ui. The utility ui of player Pi is a function of an action profile A such that A

specifies one action A
�j
j for every player Pj . The goal of the players is to obtain

the highest possible utility.
Strategy si of player Pi is a probability distribution over the possible actions

of player Pi. Let si(a) denote the probability the strategy si assigns to the action
a. Let s = {s1, . . . , sn} denote a strategy profile encompassing the strategies of
every player. Further denote by s−i = s − {si} the strategy profile of all players
except the player Pi. Given the strategies of each player, we can define expected
utility Ui for player Pi as Ui(s) = ΣA∈s

(
ui(A) ∗ Πn

j=1Pr[sj(Aj)]
)
.

A strategy profile s = {s1, . . . , sn} is a Nash equilibrium if ∀Pi ∀s′
i �=

si Ui(si∪s−i) ≥ Ui(s′
i∪s−i). A strategy profile s is a strict Nash equilibrium

if the inequality is strict.
In a computational setting, s is considered a computational Nash equi-

librium if there is a negligible function neg(k) in the security parameter k such
that ∀Pi ∀s′

i �= si Ui(si ∪ s−i) ≥ Ui(s′
i ∪ s−i) − neg(k). This allows the strat-

egy s to be negligibly worse than the other alternatives. Note that strictness is
not important here, since there would be another negligible function that makes

1 http://bittorrent.com.

http://bittorrent.com


DogFish: Decentralized Optimistic Game-theoretic FIle SHaring 699

the inequality strict. Furthermore, we require that the actions of players can
be implemented in polynomial time using probabilistic Turing machines (PPT
actions, in short). ε-Nash equilibrium is a generalization where the negligible
function is replaced with some other ε.

Proofs of Storage. Efficient proofs of storage (PoS) were introduced in 2007,
independently by Ateniese et al. [4] and Juels and Kaliski [28]. Later on, Ateniese
et al. [5] and Dodis et al. [19] generalized these constructions, and Erway et al.
[21] and Cash et al. [15] made them work with dynamic data for the first time.

In these constructions, the general idea is that a file is divided into blocks,
then cryptographic tags are created for each block. In a regular PoS scenario,
the client creates those tags, and outsources the file and the tags to the server
for storage. Later, the client or some third party auditor can challenge the server
to prove that her file is kept intact. The server sends back a short proof, which
is verified using the associated PoS (public) key.

When Applied to a p2p File Sharing System, We Consider PoS as
Follows: The creator of the torrent creates those tags, and hence each block is
associated with a tag in the torrent file. Then, when peers advertise blocks, they
can prove to each other that they indeed have the actual blocks they claim to
have. Thus, the client role belongs to the torrent creator, and the auditor and
the server roles are played by all the peers. Moreover, since the torrent contents
are static once created, static proofs of storage with public verifiability (meaning
anyone can verify integrity using public information) are enough (e.g., [4,51]).

Fair Exchange. In a fair exchange scenario, there are two parties Alice and Bob,
where each has an item eA and eB , respectively, that they want to exchange.
At the end of the protocol, it must be the case that either Alice obtains eB

and Bob obtains eA, or neither of them obtains anything useful about the other
party’s item. It is known that fair exchange requires a trusted third party called
the Arbiter [45], but optimistic protocols employ this Arbiter only when a prob-
lem occurs [3]. Previously, two-party fair exchange protocols were used in the
BitTorrent setting [10,36], but assuming honest piece revelation.

Multi-party fair exchange protocols achieve similar fairness guarantees for
not only two but possibly more parties [31]. When there are multiple parties, we
talk about exchange topologies. For example, if we have players P1, . . . , Pn in a
ring topology, this means each Pi will send one item to P(i+1) mod n. We combine
two-party fair exchange protocols with coin tossing to obtain a new primitive
called randomized fair exchange.

Notation. Each player Pi has a set Si of blocks she already holds, and a set Ri of
blocks that she reports to have. Note that dishonest reporting means Si �= Ri.
The notation e

$←Si means that an element e is picked randomly from the set
Si. Sets are bold fonted.

We denote by (outA;outB) ← ΠA,B(X;Y ) the execution of a two-party
protocol Π between parties A and B, where X and Y are the inputs provided
by and outA and outB are the outputs returned to A and B, respectively. This
notation can be extended to multi-party protocols as well.



700 S. Kamara and A. Küpçü

3 Related Work

Prisoners’ Dilemma. Prisoners’ Dilemma is considered by many as the underly-
ing game of the BitTorrent protocol. Interestingly, even though tit-for-tat (TFT)
is not a game-theoretic solution to the finitely-repeated Prisoners’ Dilemma,
Axelrod’s experiments [6,7] show that it achieves the best results in overall
utility gained. Later on, Fader and Hauser [22] published experiments on multi-
player version of the Generalized Prisoners’ Dilemma, and argued that coalitions
of mutually-cooperating players will emerge implicitly, and win the tournaments.

Radner [48] allows ε-departures from strict rationality, and shows that as
the number of repetitions increase in the finitely-repeated Prisoners’ Dilemma,
the ε-Nash equilibria allow for longer periods of collaboration in the Prisoners’
Dilemma. Later, Neyman [43] shows that if the players are limited to polynomial-
sized finite state automata, then cooperation in the Prisoners’ Dilemma will
give a Nash equilibrium. Unfortunately, this result does not hold in the Turing
machine model and hence we cannot conclude a computational equilibrium using
probabilistic polynomial time players. Halpern [27] argues that if memory has
a positive cost, then it acts as a discount factor and rationalizes TFT strategy
even for finitely-repeated Prisoners’ Dilemma.

If one thinks of BitTorrent as an unboundedly-repeated (or incomplete-
information) Prisoners’ Dilemma, then TFT can be seen as an equilibrium.
Ellison [20] shows this is the case in anonymous random-matching scenarios.
Feldman et al. [25] use Generalized Prisoners’ Dilemma to model p2p networks.

Honest Piece Reporting. Levin et al. [37] were the first to describe BitTorrent
as an auction rather than a TFT game. They show that under-reporting of
pieces constitute a problem and it leads to a tragedy of commons scenario if
all peers under-report. Unfortunately, BitTorrent does not enforce honest piece
reporting. prTorrent [49] also presents, via simulations, that this under-reporting
may cause starvation in BitTorrent. They also show that piece rarity, which may
be manipulated via under-reporting, can indeed be modeled game-theoretically
as a discount parameter in a repeated game such as BitTorrent.

Arteconi et al. [2] consider evolutionary p2p protocols where peers randomly
compare their utilities and replicate better actions. They consider honest report-
ing as the main issue, and analyze effects of dishonest reporting.

Luo et al. [41] define a multi-player game for sharing one piece, rather than
a two-player game, to model BitTorrent-like file sharing systems, and propose
a utility-based piece selection strategy. They define the concept of the marginal
utility of a piece; a concept directly related to the under-reporting strategy
described in the papers above. They also argue that as the number of peers
increase, each peer is more likely to not report the piece that he owns.

Since under-reporting may change the attractiveness of a peer (and rareness
of blocks), Guo et al. [26] and Okumuşoğlu et al. [44] argue that not all blocks
should be equally valuable, and propose value-based variants of BitTorrent.

Game-Theoretic File Sharing. In light of the game-theoretic limitations of Bit-
Torrent, alternative p2p file sharing protocols were proposed, including BAR-B



DogFish: Decentralized Optimistic Game-theoretic FIle SHaring 701

[1], Equicast [30], FOX [38], and Ratfish [8]. Unfortunately, all these works have
limitations. For example, BAR-B and FOX only handle static sets of users. The
Equicast protocol is only an equilibrium under strong assumptions (e.g., the rate
of leechers that join has to equal the rate of leechers that leave) and for restricted
utility functions which do not appear to model the real utilities of users. The
Ratfish protocol, while being an equilibrium with respect to realistic player utili-
ties, is a partly centralized solution where the trusted Tracker is involved in every
exchange, which is undesirable in p2p settings. Similarly, Vilaça and Rodrigues
[53] assume a trusted mediator. See [17] for a survey.

Another limitation of all these previous works is that none of these works
show their solution’s performance against a social choice function for p2p file
sharing. As such, it is not clear how to evaluate these mechanisms or how to
compare them. We also do not compare ourselves against solutions that employ
monetary compensation, such as [10,52,54], or social network based reputation
solutions [16], whose incentives for honest piece revelation are not clearly ana-
lyzed. See [29] for a survey of monetary incentives.

Theoretical Optimum. Fan et al. [24] define a performance metric (using the aver-
age download time) and a fairness metric (using upload vs. download bandwidth)
and compare the original BitTorrent with some parameter-modified versions of
it. They prove in their technical report [23] that when fairness is enforced, the
average download time increases, slowing down the system.

Meng et al. [42] define a theoretical lower-bound for the distribution time of a
file using BitTorrent-like systems. They use the fluid model, which allows each bit
to be shared as soon as it is received, unlike BitTorrent that shares blocks once
pieces are received. Yet, interestingly, Kumar and Ross [33] show experimentally
that the error between the piece-based model’s minimum download time and
the fluid model’s is less than 1%. Indeed, they claim that the difference between
the two models can be safely ignored as long as the number of pieces in the file
is much larger than the logarithm of the number of leechers, which is true for
medium-sized or large files that we generally encounter in such systems.

4 Model

Our goal is to create a system maximizing social welfare in the equilibrium. We
assume a homogeneous network, and analyze the protocol in rounds, where at
each round each peer can download at most one piece and upload at
most one piece. This makes our theoretical analysis easier. It also means that
there is no bandwidth-based auction as in PropShare [37]. Instead, the matching
between pairs will be done based on the mutual attractiveness in terms of the
pieces a peer is missing. This allows us to focus on piece revelation strategies
rather than bandwidth allocation issues.

Also note that seeders are irrational and altruistic entities, and there is
no piece-revelation strategy for them. In our game-theoretic analysis, therefore,
we keep them outside the discussion, since they are irrational. But, we allow
seeders to help the system perform better by still distributing blocks.



702 S. Kamara and A. Küpçü

Table 1. Matrix representation of number of pieces received by players at each round.
Rows are leechers. Columns are rounds.

1 2 3 ... m
P1 1 1 1 1 1
P2 1 1 1 1 1
P3 1 1 1 1 1
... 1 1 1 1 1
Pn 1 1 1 1 1

1 2 3 ... m m+1 m+2 m+3 ... m+n-1
P1 1 1 1 1 1 0 0 0 0 0
P2 0 1 1 1 1 1 0 0 0 0
P3 0 0 1 1 1 1 1 0 0 0
... 0 0 0 1 1 1 1 1 1 0
Pn 0 0 0 1 1 1 1 1 1 1

A more realistic analysis would model a heterogeneous network, where there
are several types of players with different upload/download capabilities (but the
protocol may still proceed in rounds). Moreover, our analysis only partly covers
malicious irrational entities: while the cryptographic protocols employed prevent
malicious actions, our incentive mechanism only works against rational entities.
Thus, malicious entities may still over- or under-report the pieces they own.

5 Social Welfare for P2P File Sharing

In this section, we first define social welfare, then relate it to honest piece reve-
lation for a general class of p2p file sharing protocols. This general class of pro-
tocols we consider incorporates two subprotocols: a peer matching protocol that
pairs the peers, and a pair-wise block exchange protocol. This accurately models
BitTorrent-like p2p file sharing systems restricted to a round-based exchange
model. At each round, first peers are matched in pairs (remember our restric-
tion that within one round only one block can be uploaded or downloaded), and
then the exchange takes place. In the upcoming sections, we instantiate those
subprotocols and show that they achieve the desired social welfare.

Social Welfare. When one considers the social welfare for a p2p file sharing
system, there can be several metrics. One of the commonly used metrics in the
literature is the average download time. Another good measure of an efficient
system is indicated as the utilization of the upload bandwidth [11], since it ensures
the system performs at its best in terms of distributing the file.

Let us denote a protocol as a matrix where rows denote the parties and the
columns denote the rounds. Each cell i, t denotes the probability that peer Pi

obtains some new block at round t (alternatively, it can denote the expected
number of blocks downloaded). The socially optimal protocol would be the one
where the cells are all 1 until the round m for every peer, where m is the number
of blocks in the file. The average download time would then be m ∗ n/n = m,
which is optimal in our model. Moreover, the upload/download bandwidths will
be fully utilized. This corresponds to the left side matrix in Table 1.

Realize that such a protocol may not always be achievable. Consider, for
example, a single seeder flash crowd scenario. In round 1, only one peer can
obtain some piece from the seeder, and all other peers will obtain 0 blocks. One



DogFish: Decentralized Optimistic Game-theoretic FIle SHaring 703

socially optimal (and deterministic) protocol here would be the following: The
seeder, at round t, sends piece number t to peer P1. At the same round, each Pi

sends piece t − i to Pi+1, if she already has that piece, and stays idle otherwise.
Thus, peer Pi finishes downloading at round m + i − 1.2 This corresponds to
the right side matrix in Table 1. Note that the upload bandwidths are again
optimized to the best possible (except Pn).

Therefore, when we talk about socially optimal protocols, we cannot just
talk about making every entry in the associated matrix 1. Instead, we need the
following two properties to optimize the upload bandwidth in our model:

(1) For every peer Pi, Pi needs to be matched with some interesting Pj (if such
Pj exists). Here, interesting means Pj has some piece Pi does not have.

(2) For every Pi, Pi needs to be able to download a new piece (assuming she is
matched with some interesting Pj above).

Note that we want protocols that incentivize the behavior above. Observe
that (1) needs to hold for all peers, and (2) requires Pj to have an incentive
to send a new piece to Pi. One can create a global incentive mechanism for
that, but it would not be very practical. Consider the single seeder flash crowd
scenario above. In that deterministic protocol, no peer Pi has an incentive to
send a piece to peer Pi+1. To enforce the protocol, one may employ a ring-
topology fair exchange protocol that ensures either the whole ring completes,
or no peer can receive a new piece from the previous one (including from the
seeder). Unfortunately, this necessitates per round communication complexity
that is quadratic in the number of peers [31].

Pairwise Protocols. Hence, we concentrate on local incentive mechanisms, and in
particular, pair-wise ones. If we match mutually interesting peers and perform
a fair exchange between them, then we incentivize the desired behavior using
only simple, constant complexity two-party fair exchanges instead of a global
multi-party fair exchange mechanism that is costly. Thus, we consider protocols
of the following type, where FMATCH denotes the functionality to match the
peers, and FEXCH denotes the exchange functionality: First peers are matched
pair-wise according to their piece revelations, and then pair-wise exchanges take
place within the same round. This is depicted in Algorithm1.

Such protocols assume that the exchanges occur between pairs of peers. Due
to our simplification that one piece can be exchanged per round, such a simplified
version of BitTorrent would also fit the framework above. As observed before,
it may be impossible to reach the social optimum with such a protocol, but on
the other hand, global matching and exchange protocols would be impractically
inefficient. Therefore, we choose to restrict ourselves to pairwise matching and
pairwise exchange protocols. As discussed, we know that to obtain the best pos-
sible social welfare (upload bandwidth utilization) in this restricted setting, we
2 For simplicity, representing common behavior, assume each Pi leaves the system the

moment she finishes downloading (at the end of round m + i − 1). Afterward, at
round m + i, the seeder sends the last block to peer Pi+1 (thus every peer receives
the last block from the seeder).



704 S. Kamara and A. Küpçü

Algorithm 1. Pairwise P2P File Sharing Protocol
while some peer is still downloading do

(Pj1 ;Pj2 ; ...;Pjn) ← FMATCH
P1,P2,...,Pn

(R1;R2; ...;Rn)
// pair-wise such that if the output to Pi is Pji then the output to Pji is Pi

for i = 1 to n do
(eki ; ekji

) ← FEXCH
Pi,Pji

(Si;Sji)

// actually, n/2 exchanges take place because of pair-wise matching and our
round-based model

end for
end while

need to incentivize honest piece revelation and maximize the exchanges between
the peers to obtain as many 1 values in the corresponding exchange matrix as
possible. In the following sections, we first assume that every peer is matched
with some interesting peer according to their piece revelations and show how to
perform the FEXCH phase by instantiating it via randomized fair exchange and
proofs of storage. This is where our main contribution lies. Then, we finalize our
DogFish protocol description by also instantiating the FMATCH protocol via
existing known solutions and finalizing our game-theoretic analysis.

6 FEXCH Instantiation

We instantiate our FEXCH functionality using randomized fair exchange (a
primitive that we introduce and construct) together with proofs of storage.
We first define these individual building blocks, and then provide our instan-
tiation and its analysis. Throughout this section, we assume that FMATCH is
already completed matching mutually-interesting peers, and we concentrate on
performing pair-wise exchanges during FEXCH . In practice, leechers may also
get matched with seeders, but remember that seeder interactions are outside our
game-theoretical scope, and hence in our protocols, we only deal with exchanges
between two leechers.

6.1 Randomized Fair Exchange (RFE)

In regular fair exchange protocols, two parties exchange items such that at the
end of the protocol, either both parties obtain each other’s item, or neither
party obtains anything useful [3]. RFE allows two parties to exchange elements
from their sets of items in such a way that each party receives a new element at
random. The RFE functionality is formally described in Fig. 1 and a construction
is provided later.

RFE is a crucial building block of the DogFish protocol, and is used to instan-
tiate the FEXCH functionality. Intuitively, we want to prevent an adversarial
user to strategically pick the pieces to download, hence breaking fairness and
deviating the system away from social welfare for the sake of his selfish utility.
When blocks to be exchanged are picked randomly by the functionality, as we will



DogFish: Decentralized Optimistic Game-theoretic FIle SHaring 705

The RFE Functionality

– Upon receiving set X1 from P1 and set X2 from P2:
1. if X2 \ X1 = ∅ or X1 \ X2 = ∅, sent ⊥ to both parties.

2. else, pick random e2
$ X2 \ X1 and e1

$ X1 \ X2 and send e2 to
P1 and e1 to P2.

Fig. 1. The randomized fair exchange functionality.

show later, the adversary loses any advantage gained by under-reporting. Con-
sider a player who under-reported the pieces he owns. During RFE, it is possible
that he will receive a piece that he already owns, hence gaining no utility from
the exchange, and in general, decreasing his expected utility. On the contrary,
honestly-reporting players, who were matched with mutually-interesting peers,
are expected to gain positive utility in RFE (more details later). We instantiate
FRFE using fair exchange and coin tossing protocols in Sect. 7.

6.2 Proofs of Storage (PoS)

Another building block for our FEXCH functionality is a proof of storage proto-
col. We present the protocol as adapted to the p2p file sharing setting. Remember
that the creator of the torrent file constructed the tags and put them in the tor-
rent, together with the public key that will be used for verification purposes
(thus, we only consider PoS schemes without secret keys used during challenge
verification [34]). Also, we just need static PoS solutions, since torrent contents
never change. Thus, such a protocol may be instantiated via, for example, [51]
or [4] with only constant communication cost.

The PoS Functionality

– Upon receiving the actual blocks S1 and their tags from P1, and the
claimed blocks R1 and the verification key from P2:
1. if S1 does not contain all the claimed blocks in R1, return reject

to P2;
2. else, if all the blocks in R1 match their corresponding tags and the

tags verify using the verification key, send accept to P2.
3. else, send reject to P2.

Fig. 2. The proof of storage functionality in the p2p file sharing setting.

Realize that if P1 over-reported during the matching phase, meaning that
he does not have all the blocks he claimed in R1, then P2 will obtain a rejec-
tion signal. Similarly, if P1 tries to use fake blocks, P2 will reject. PoS, on the
other hand, does not prevent under-reporting, since if one can prove storage of



706 S. Kamara and A. Küpçü

more blocks, he could also prove storage of fewer blocks. Remember though the
RFE functionality discouraged under-reporting. PoS functionality discourages
over-reporting. In the next section, we combine them to achieve our pair-wise
exchange functionality. It is worth noting that FPoS discourages over-reporting
for P1 only. But for our system to be an equilibrium, this must apply to all par-
ties. Hence, we will employ two executions of FPoS to discourage both parties.

6.3 FEXCH and its Analysis

We first instantiate our pair-wise exchange protocol using the RFE and PoS
functionalities described. The FEXCH functionality instantiation is shown in
Fig. 3. The idea is that, to be able to exchange blocks, peers must also prove to
each other that they possess the blocks that they claim to own.

The EXCH Functionality Instantiation

– P1 provides his blocks S1 and their PoS tags, the block identifiers R2

that P2 claimed to know, and the PoS verification key.
– P2 provides her blocks S2 and their PoS tags, the block identifiers R1

that P1 claimed to know, and the PoS verification key.
1. Run PoS . If P2 receives reject at the end, send ⊥ to both parties

and abort.
2. Run PoS again, but with the roles of P1 and P2 reversed. If P1

receives reject at the end, send ⊥ to both parties and abort.
3. If still not aborted, run RFE .

Fig. 3. The pair-wise exchange functionality instantiation.

Game-Theoretic Analysis. Since our simplified model only considers exchanging
one block per round between peers, the best utility each pair of matched partic-
ipants can obtain in one round in our analysis is (1, 1) (both peers can obtain
1 block at the end of the exchange). Assuming the matching was done among
mutually-interesting peers, the utilities of the matched peers using FEXCH are
described in Table 2. It is impossible assign a number for the “<1” parts, since
it depends on the runtime values of the sets, and the sheer number of possibili-
ties make the analysis impractical; but it is also unnecessary. In the exchange
game, there is only one strict Nash equilibrium, and that is when both
matched peers honestly reported the pieces they own.3

3 More precisely, the zeros in the game should be replaced with negligible utilities
(of managing to break PoS security), <1 values should be <1 − 1/m (one minus
non-negligible, where the file has m blocks), and ones should be one minus negligible
(due to the negligible probability of the fair exchange failing). Overall, we chose not
to complicate the presentation with these details, but indeed our equilibrium is a
computational Nash equilibrium.



DogFish: Decentralized Optimistic Game-theoretic FIle SHaring 707

Table 2. Two-player game during FEXCH assuming peers are matched based on
mutual interest. <1 denotes some utility strictly less than one.

Peer i/j Honest reporting Under reporting Over reporting

Honest reporting 1, 1 1, <1 0, 0

Under reporting <1, 1 <1, <1 0, 0

Over reporting 0, 0 0, 0 0, 0

The COIN Functionality

– Upon receiving integer v from P1 and integer v′ from P2:
1. if v �= v′ or v = v′ = 0, return ⊥ to both parties.
2. else, pick random integer r $ [1, v] and send it to both parties.

Fig. 4. The coin tossing functionality.

The intuition is that the PoS makes it irrational for any rational party
to over-report, because if she does, then it will be detected during the PoS stage
and the exchange will be aborted, resulting in zero utility for the over-reporter
as well. PoS, however, does not deter under-reporting because it cannot detect
that a party has more blocks than it claims to have. But under-reporting is
handled by the RFE protocol, because if a player under-reports, then she
has a non-zero probability of receiving a block she already has, whereas if she
reports honestly she will receive a block she does not have with certainty.

7 RFE Instantiation

To realize randomized fair exchange, we employ unfair coin tossing protocols
together with regular two-party fair exchange protocols.4

7.1 Coin Tossing

Figure 4 shows the coin tossing (COIN) functionality, where the coin is picked
from an agreed-upon range. For our purposes, even though we model the func-
tionality fairly, it is enough to instantiate via an unfair protocol where only one
party learns the result, and is supposed to send that to the other party [9,12].

4 RFE is also related to oblivious transfer [47]. Indeed, at first, we were imagining a
randomized oblivious fair exchange would be necessary, but it turns out we do not
need obliviousness for the game theoretic analysis to go through.



708 S. Kamara and A. Küpçü

The FEX Functionality

– Upon receiving item i1 and hash h2 from P1 and item i2 and hash h1

from P2:
1. if hash(i1) �= h1 or hash(i2) �= h2, return ⊥ to both parties.
2. else, send i2 to P1 and i1 to P2.

Fig. 5. The fair exchange functionality.

The RFE Functionality Instantiation

– P1 calculates the set F1 = S1 −R2 of blocks that he has but P2 claims
not to have. Note that if P1 honestly reported, S1 = R1 and hence
F1 = R1 − R2. Then, P1 sets v1 = |F1|.

– P1 also calculates the set F2 = R2 − S1 of blocks that he does not
have but P2 claims to have. Again if P1 honestly reported, we have
F2 = R2 − R1. Then, P1 sets v2 = |F2|.

– P2 computes the sets F′
1 = R1 − S2 and F′

2 = S2 − R1 (similarly, for
honest P2 we have F′

1 = R1 − R2 and F′
2 = R2 − R1). Then, P2 sets

v′
1 = |F′

1| and v′
2 = |F′

2|.
1. Run COIN where P1 inputs v1 and P2 inputs v′

1, and they both
obtain r1. If any party obtains ⊥ instead, abort.

2. Run COIN again where P1 inputs v2 and P2 inputs v′
2, and they

both obtain r2. If any party obtains ⊥ instead, abort.
3. Run FEX where the input of P1 is the rth1 element of F1 together

with the hash/tag in the torrent file for the rth2 element of F2.
Similarly, the input of P2 is the rth2 element of F′

2 together with
the hash/tag in the torrent file for the rth1 element of F′

1.

Fig. 6. The randomized fair exchange functionality instantiation.

Note that, coin tossing protocols generally employ commitments, and hence one
cannot cheat at the resulting r, but can only prevent the other party from learn-
ing r (and hence outputting ⊥).

7.2 (Non-randomized) Fair Exchange

As explained before, fair exchange is a simple functionality which requires the
existence of a trusted third party [45]. But, in optimistic fair exchange scenar-
ios, this trusted Arbiter does not get involved in every exchange [3,35]. This
is the main disadvantage of the RatFish protocol, where the trusted Tracker
must get involved in every exchange [8]. Figure 5 shows the fair exchange (FEX)
functionality.

We focus on fair exchange of blocks, where the hash found in the torrent
file enables checking that the block is authentic. In our case PoS tags serve the



DogFish: Decentralized Optimistic Game-theoretic FIle SHaring 709

same purpose as hash values, and hence they can also be employed to check for
correctness of the blocks exchanged, using existing instantiations [3,36].

7.3 Randomized Fair Exchange Protocol

The idea is similar to our FEXCH functionality in the sense that we repeat
unidirectional protocols both ways. Hence, in FRFE we execute coin tossing
twice, and then perform fair exchange on those random items. Remember that
the items’ correctness are guaranteed via PoS tags during FFEX . The protocol
is depicted in Fig. 6.

Observe that while this functionality checks that the number of different
blocks claimed by both parties are the same, this does not immediately prevent
under- or over-reporting. For example, a party may under-report one piece and
over-report another piece, such that the size of the difference remains the same.
In general, we do not even need to ensure the sizes of set differences match,
since PoS protocols within FEXCH ensure that over-reporting is prevented, and
randomization in FRFE ensures that under-reporting is disincentivized. Finally,
observe that FRFE has constant communication and round complexity. (Further
note that a parallel coin tossing protocol can be employed as well [39].)

8 The DogFish Protocol

Initialization. As DogFish is a variant of a BitTorrent-like p2p file-sharing proto-
col, we assume the existence of an external mechanism that enables the parties
to find the swarm for a given file f . In BitTorrent, this duty is handled by track-
ers and hence we assume the same. Moreover, to be able to use the PoS, we
assume that the owner of the file encodes it with a PoS which yields a set of
tags. We assume that the torrent file contains those tags, as well as any public
information necessary to verify those tags (i.e., PoS verification key). Finally, we
start our description assuming the users already downloaded the torrent file and
contacted the tracker, thereby obtaining the list of other peers and the PoS tags
and verification key.

Matching Phase. DogFish is a peer-to-peer file sharing protocol that is pairwise
as in Algorithm 1. At the first phase of the protocol, for the FMATCH peer
matching phase, we need to employ some existing mutual matching protocol.
The only requirement in the FMATCH phase is that it matches peers if and
only if they both reported some block that the other does not possess. Thus,
if Pi and Pj are matched, both Ri − Rj and Rj − Ri should be non-empty.
Remember that we treat irrational seeders separately, and they can get matched
even though they are not interested in the other peer. Moreover, as many pairs
as possible should be matched for getting closer to the social optimum.

For achieving this, we are faced with two alternatives: Existing BitTorrent
papers assume that the FMATCH protocol of BitTorrent matches mutually inter-
esting peers (both parties have a piece that the other does not possess) through
the rarest-first heuristic [11]. Therefore, we can simply employ the BitTorrent



710 S. Kamara and A. Küpçü

FMATCH protocol. Alternatively, we can we use a distributed stable matching
protocol [13,14,32] where parties share their reported blocks Ri and jointly com-
pute a mutual matching in a distributed manner. As long as the same Ri values
are used during FMATCH and FEXCH phases by rational peers, any cheating
attempt during FMATCH will be penalized during FEXCH . Thus, via one of
these alternative methods, we assume DogFish obtains a matching of mutually
interesting peers at the end of FMATCH . Observe furthermore that priotization
(e.g., via rarest-first heuristic) does not affect our game theoretic analysis, as
long as FMATCH matches as many mutually interested peers as possible.

Exchange Phase. Once the matching is done, the round proceeds with the
FEXCH phase where we use the RFE and PoS protocols. Consider the two
types of dishonest reporting: over-reporting and under-reporting.

1. If a peer Pi under-reports, her probability of getting a useful block (a block
that she does not already possess) goes down (compared to honest reporting)
because:

– While the effect of under-reporting in the matching phase is unclear, she
is potentially less likely to be matched. This is because while Rj − Ri is
now potentially larger due to under-reporting, Ri −Rj is getting smaller,
and hence Pi is potentially less interesting for other peers. But, this does
not affect our analysis, as we show below.

– Even when Pi gets matched with some Pj , because random blocks are
picked from Ri − Rj and Rj − Ri during RFE, it is possible that she
gets some block that she under-reported (meaning that she already had
the block but reported it as missing). Note that if she honestly reported
instead, she was guaranteed to get a useful block after the exchange phase
(assuming Pj was honest).

2. If a peer Pi over-reports, her probability of getting a useful block again goes
down because:

– Note that the effect of over-reporting during the matching phase is
unclear. While over-reporting may create a larger Ri − Rj and hence
makes Pi more interesting for Pj , the set Rj − Ri is potentially getting
smaller, decreasing the chance of a mutual matching. A history-based
peer selection may help here, by penalizing previous cheating attempts
of a peer, but again with random matchings, the effect is unclear. Fortu-
nately, as before, this does not affect our analysis.

– Regardless of how matching is affected, when Pi gets matched with some
Pj , over-reporting will be caught during the PoS part of the exchange
phase (except with negligible probability), and hence she will not obtain
any useful block. Note that if she honestly reported instead, she was
guaranteed to get a useful block after FEXCH (assuming Pj was honest).

The discussion above makes one thing clear: Even when FMATCH can be
gamed, our FEXCH instantiation ensures honest piece revelation as its equilib-
rium, as long as FMATCH always matches all mutually-interesting peers. When
peers are matched based on mutual interest, our exchange protocol provides



DogFish: Decentralized Optimistic Game-theoretic FIle SHaring 711

enough incentive to act honestly, even during the matching phase. Realize that,
as long as all mutually interesting peers are matched, for example via distributed
stable matching, we do not need a multi-round analysis. This is because under-
or over-reporting in one round does not provide any particular advantage in the
matching phase afterward: The main constraint in the matching phase is that
each matched peer has at least one block the other peer does not have.

After each exchange, when the new round begins, the peers again advertise
their blocks during matching. Since honest piece revelation is the rational thing
to do, all rational peers will advertise honestly, including the new piece they
obtained in the last round. The protocol proceeds this way for every round, as
long as there are at least two leechers. Peers may join or leave the system freely.

In summary, by matching mutually-interesting pairs during FMATCH (e.g.,
via the BitTorrent rarest-first mutual matching protocol [11] or via some dis-
tributed mutual matching protocol such as stable matching) and making sure
both parties obtain the best possible utility during FEXCH (via RFE and PoS),
we maximize the utilization of the upload bandwidth, and hence obtain social
welfare. Essentially, we maximized the entries in the matrix representation of
the piece exchanges (among pairwise p2p file sharing protocols). Moreover, the
DogFish mechanism, and hence honest piece revelation, is the equilibrium in a
game where utilities of players are defined as the number of pieces they download
in a round. Note that in contrast to RatFish [8], we only need trackers at the
beginning, and the rest of the protocol is purely peer-to-peer and decentralized
(the Arbiter in our RFE instantiation gets involved only if there is a dispute
during the fair exchange). This makes DogFish the only known decentralized
equilibrium protocol for p2p file sharing achieving social welfare among a large
class of protocols under realistic utility functions.

We constructed and analyzed DogFish as a theoretical proposal, hoping that
prominent researchers will improve it to be practical. At the current stage, while
the cryptographic protocols employed in DogFish are efficient computationally,
the round complexity makes the proposal theoretical. For FMATCH , practical
solution would be the existing BitTorrent rarest-first mutual matching proto-
col, since distributed stable matching is costly. For FEXCH , all sub-protocols
(coin tossing, fair exchange, and proof of storage) are known to have O(1) com-
putational and communication costs for both parties (usually measured with
milliseconds and kilobytes), with O(1) rounds of interaction. But, while O(1),
each message passing round increases the total latency, which is another met-
ric to optimize against in practice, and is not considered within our theoretical
model. As future work, better FMATCH protocols should be developed, num-
ber of rounds in FEXCH should be optimized (potentially employing protocols
that can be securely parallelized), and an analysis under a heterogeneous model
should be conducted.

Acknowledgements. The authors acknowledge the support of TÜBİTAK, the Sci-
entific and Technological Research Council of Turkey, under project number 111E019,
as well as European Union COST Action IC1306.



712 S. Kamara and A. Küpçü

References

1. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.-P., Porth, C.: Bar fault
tolerance for cooperative services. ACM SIGOPS Oper. Syst. Rev. 39(5), 45–58
(2005)

2. Arteconi, S., Hales, D., Babaoglu, O.: Greedy cheating liars and the fools who
believe them. In: Brueckner, S.A., Hassas, S., Jelasity, M., Yamins, D. (eds.) ESOA
2006. LNCS (LNAI), vol. 4335, pp. 161–175. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-69868-5 11

3. Asokan, N., Shoup, V., Waidner, M.: Optimistic fair exchange of digital signatures.
IEEE Sel. Areas Commun. 18, 591–610 (2000)

4. Ateniese, G., Burns, R., Curtmola, R., Herring, J., Khan, O., Kissner, L., Peterson,
Z., Song, D.: Remote data checking using provable data possession. ACM Trans.
Inf. Syst. Secur. 14(1), 12:1–12:34 (2011)

5. Ateniese, G., Kamara, S., Katz, J.: Proofs of storage from homomorphic identi-
fication protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
319–333. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 19

6. Axelrod, R.: Effective choice in the Prisoner’s Dilemma. J. Conflict Resolut. 24(1),
3–25 (1980)

7. Axelrod, R.: More effective choice in the Prisoner’s Dilemma. J. Conflict Resolut.
24(3), 379–403 (1980)

8. Backes, M., Ciobotaru, O., Krohmer, A.: RatFish: a file sharing protocol prov-
ably secure against rational users. In: Gritzalis, D., Preneel, B., Theoharidou, M.
(eds.) ESORICS 2010. LNCS, vol. 6345, pp. 607–625. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15497-3 37

9. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the
shared random string model. In: IEEE FOCS (2002)

10. Belenkiy, M., Chase, M., Erway, C., Jannotti, J., Küpçü, A., Lysyanskaya, A.,
Rachlin, E.: Making P2P accountable without losing privacy. In: ACM WPES
(2007)

11. Berciu, R.M.: Designing incentives in P2P systems. Master’s thesis, Baylor Uni-
versity (2013)

12. Blum, M.: Coin flipping by telephone a protocol for solving impossible problems.
SIGACT News 15(1), 23–27 (1983). https://doi.org/10.1145/1008908.1008911

13. Brito, I., Meseguer, P.: Distributed stable matching problems. In: van Beek, P. (ed.)
CP 2005. LNCS, vol. 3709, pp. 152–166. Springer, Heidelberg (2005). https://doi.
org/10.1007/11564751 14

14. Brito, I., Meseguer, P.: Distributed stable matching problems with ties and incom-
plete lists. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 675–679. Springer,
Heidelberg (2006). https://doi.org/10.1007/11889205 49

15. Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious
RAM. J. Cryptol. 30(1), 22–57 (2017)

16. Chen, K., Shen, H., Sapra, K., Liu, G.: A social network based reputation system
for cooperative P2P file sharing. IEEE Trans. Parallel Distrib. Syst. 26(8), 2140–
2153 (2015)

17. Ciccarelli, G., Cigno, R.L.: Collusion in peer-to-peer systems. Comput. Netw.
55(15), 3517–3532 (2011)

18. Cohen, B.: Incentives build robustness in BitTorrent. In: WEPS (2003)

https://doi.org/10.1007/978-3-540-69868-5_11
https://doi.org/10.1007/978-3-540-69868-5_11
https://doi.org/10.1007/978-3-642-10366-7_19
https://doi.org/10.1007/978-3-642-10366-7_19
https://doi.org/10.1007/978-3-642-15497-3_37
https://doi.org/10.1145/1008908.1008911
https://doi.org/10.1007/11564751_14
https://doi.org/10.1007/11564751_14
https://doi.org/10.1007/11889205_49


DogFish: Decentralized Optimistic Game-theoretic FIle SHaring 713

19. Dodis, Y., Vadhan, S., Wichs, D.: Proofs of retrievability via hardness amplifica-
tion. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 109–127. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5 8

20. Ellison, G.: Cooperation in the Prisoner’s Dilemma with anonymous random
matching. Rev. Econ. Stud. 61(3), 567–588 (1994)

21. Erway, C.C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. ACM Trans. Inf. Syst. Secur. 17(4), 15:1–15:29 (2015). https://doi.
org/10.1145/2699909. Article no. 15

22. Fader, P.S., Hauser, J.R.: Implicit coalitions in a generalized Prisoner’s Dilemma.
J. Conflict Resolut. 32(3), 553–582 (1988)

23. Fan, B., Chiu, D., Lui, J.: The delicate tradeoffs in BitTorrent-like file sharing
protocol design. Technical report, The Chinese University of Hong Kong (2006)

24. Fan, B., Chiu, D., Lui, J.C.: The delicate tradeoffs in BitTorrent-like file sharing
protocol design. In: IEEE ICNP (2006)

25. Feldman, M., Lai, K., Stoica, I., Chuang, J.: Robust incentive techniques for peer-
to-peer networks. In: ACM EC (2004)

26. Guo, D., Kwok, Y.-K., Jin, X.: Valuation of information and the associated over-
payment problem in peer-to-peer systems. Comput. Commun. 80, 59–71 (2016)

27. Halpern, J.Y.: Beyond Nash equilibrium: solution concepts for the 21st century.
In: ACM PODC (2008)

28. Juels, A., Kaliski, B.S.: PORs: proofs of retrievability for large files. In: ACM CCS
(2007)

29. Kash, I.A., Friedman, E.J., Halpern, J.Y.: An equilibrium analysis of scrip systems.
ACM Trans. Econ. Comput. 3(3), 13:1–13:32 (2015)

30. Keidar, I., Melamed, R., Orda, A.: Equicast: scalable multicast with selfish users.
Comput. Netw. 53(13), 2373–2386 (2009)

31. Kılınç, H., Küpçü, A.: Optimally efficient multi-party fair exchange and fair secure
multi-party computation. In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp.
330–349. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2 18

32. Kipnis, A., Patt-Shamir, B.: A note on distributed stable matching. In: IEEE
ICDCS (2009)

33. Kumar, R., Ross, K.W.: Peer-assisted file distribution: the minimum distribution
time. In: IEEE HOTWEB (2006)

34. Küpçü, A.: Official arbitration with secure cloud storage application. Comput. J.
58(4), 831–852 (2015)

35. Küpçü, A., Lysyanskaya, A.: Optimistic fair exchange with multiple arbiters. In:
Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol.
6345, pp. 488–507. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-15497-3 30

36. Küpçü, A., Lysyanskaya, A.: Usable optimistic fair exchange. Comput. Netw. 56,
50–63 (2012)

37. Levin, D., LaCurts, K., Spring, N., Bhattacharjee, B.: BitTorrent is an auction:
analyzing and improving BitTorrent’s incentives. ACM SIGCOMM Comput. Com-
mun. Rev. 38(4), 243–254 (2008)

38. Levin, D., Sherwood, R., Bhattacharjee, B.: Fair file swarming with fox. In: IPTPS
(2006)

39. Lindell, Y.: Parallel coin-tossing and constant-round secure two-party computation.
J. Cryptol. 16(3), 143–184 (2003)

40. Locher, T., Moor, P., Schmid, S., Wattenhofer, R.: Free riding in BitTorrent is
cheap. In: HotNets (2006)

https://doi.org/10.1007/978-3-642-00457-5_8
https://doi.org/10.1145/2699909
https://doi.org/10.1145/2699909
https://doi.org/10.1007/978-3-319-16715-2_18
https://doi.org/10.1007/978-3-642-15497-3_30
https://doi.org/10.1007/978-3-642-15497-3_30


714 S. Kamara and A. Küpçü

41. Luo, J., Xiao, B., Bu, K., Zhou, S.: Understanding and improving piece-related
algorithms in the BitTorrent protocol. IEEE Trans. Parallel Distrib. Syst. 24(12),
2526–2537 (2013)

42. Meng, X., Tsang, P.-S., Lui, K.-S.: Analysis of distribution time of multiple files
in a P2P network. Comput. Netw. 57(15), 2900–2915 (2013)

43. Neyman, A.: Bounded complexity justifies cooperation in the finitely repeated
Prisoners’ Dilemma. Econ. Lett. 19(3), 227–229 (1985)

44. Okumuşoğlu, O., Bayraktar, M.F., Küpçü, A.: JustTorrent: value based-fairer and
faster protocols for P2P file sharing. Int. J. Eng. Sci. Appl. 1(1), 1–10 (2017)

45. Pagnia, H., Gartner, F.C.: On the impossibility of fair exchange without a trusted
third party. Technical report, Darmstadt University of Technology TUD-BS-1999-
02 (1999)

46. Piatek, M., Isdal, T., Anderson, T., Krishnamurthy, A., Venkataramani, A.: Do
incentives build robustness in BitTorrent. In: NSDI (2007)

47. Rabin, M.O.: How to exchange secrets by oblivious transfer. Technical report,
Harvard Aiken Computation Laboratory Technical report TR-81 (1981)

48. Radner, R.: Can bounded rationality resolve the Prisoner’s Dilemma? In: Essays
in Honor of Gerard Debreu, pp. 387–399 (1986)

49. Roy, S.D., Zeng, W.: prTorrent: on establishment of piece rarity in the BitTorrent
unchoking algorithm. In: IEEE P2P (2009)

50. Sandvine. Global Internet Phenemona, December 2015
51. Shacham, H., Waters, B.: Compact proofs of retrievability. J. Cryptol. 26(3), 442–

483 (2013)
52. Sirivianos, M., Yang, X., Jarecki, S.: Robust and efficient incentives for cooperative

content distribution. IEEE/ACM Trans. Netw. 17(6), 1766–1779 (2009)
53. Vilaça, X., Rodrigues, L.: On the range of equilibria utilities of a repeated epidemic

dissemination game with a mediator. In: ACM ICDCN (2015)
54. Vishnumurthy, V., Chandrakumar, S., Sirer, E.G.: Karma: a secure economic

framework for peer-to-peer resource sharing. In: P2PECON (2003)



Author Index

Abidin, Aysajan 143
Abraham, Ittai 22
Akand, Mamunur Rashid 557
Alpirez Bock, Estuardo 103
Amiri, Ryan 143
Andersson, Erika 143
Ankele, Ralph 381, 459

Bertoni, Guido 400
Blömer, Johannes 221
Bobolz, Jan 221
Böhl, Florian 381
Boschini, Cecilia 163
Boyen, Xavier 535
Brzuska, Chris 103

Cachin, Christian 637
Camenisch, Jan 163
Canard, Sébastien 262
Catalano, Dario 183
Cerulli, Andrea 280
Coron, Jean-Sébastien 65
Couteau, Geoffroy 303

Daemen, Joan 400
De Cristofaro, Emiliano 280
Dowling, Benjamin 3
Durak, F. Betül 440

Faonio, Antonio 121
Fiore, Dario 183
Fischlin, Marc 202
Friedberger, Simon 381
Fuchsbauer, Georg 44

Genkin, Daniel 83, 340
Ghosh, Esha 637
Giacomelli, Irene 243
Gong, Junqing 497
Gordon, S. Dov 340

Harasser, Patrick 202
Harchol, Yotam 22

Jarecki, Stanislaw 360
Jha, Somesh 243
Joye, Marc 243

Kaczmarek, Tyler 616
Kamara, Seny 696
Kandele, Suyash 678
Kang, Min Suk 657
Kılınç, Handan 579
Küpçü, Alptekin 696

Li, Jiangtao 497
Li, Qinyi 535
Liang, Kaitai 516
List, Eik 459
Liu, Joseph K. 516

Michiels, Wil 103

Neven, Gregory 163
Nielsen, Jesper Buus 121
Nizzardo, Luca 183
Nordholt, Peter Sebastian 321
Nunes, Ivan O. 598

Orrù, Michele 44
Ozturk, Ercan 616

Pachmanov, Lev 83
Page, C. David 243
Papadopoulos, Dimitrios 637
Park, Soyeon 657
Paterson, Kenneth G. 3
Paul, Souradyuti 678
Peeters, Michaël 400
Pinkas, Benny 22
Pointcheval, David 262

Ranellucci, Samuel 340

Safavi-Naini, Reihaneh 557
Santos, Quentin 262
Sasaki, Yu 421



Saxena, Prateek 657
Simkin, Mark 121
Soriente, Claudio 280

Tackmann, Björn 637
Tople, Shruti 657
Traoré, Jacques 262
Treff, Alexander 103
Tromer, Eran 83
Tsudik, Gene 598, 616

Van Assche, Gilles 400
Van Keer, Ronny 400
Vaudenay, Serge 440, 476, 579

Veeningen, Meilof 321
Venturi, Daniele 121
Viguier, Benoît 400
Vizár, Damian 476

Wallden, Petros 143
Wei, Boyang 360

Yarom, Yuval 83
Yoon, Kyonghwan 243
Yuen, Tsz Hon 516

Zhang, Peng 516

716 Author Index


	Preface
	ACNS 2018 Applied Cryptography and Network Security 2018 
	Contents
	Cryptographic Protocols
	A Cryptographic Analysis of the WireGuard Protocol
	1 Introduction
	2 Preliminaries
	3 The WireGuard Protocol
	3.1 Remarks on the Protocol

	4 Security Model
	4.1 Execution Environment
	4.2 Adversarial Interaction
	4.3 Partnering Definitions
	4.4 Cleanness Predicates

	5 Security Analysis
	5.1 Attack on Forward-Secrecy Notions
	5.2 The Modified WireGuard Handshake
	5.3 Security of the Modified WireGuard Handshake

	6 Conclusions and Future Work
	References

	Distributed SSH Key Management with Proactive RSA Threshold Signatures
	1 Introduction
	1.1 Current SSH Situation
	1.2 ESKM

	2 Background
	2.1 SSH Cryptography
	2.2 Cryptographic Background

	3 ESKM Cryptography
	3.1 Security Model
	3.2 Proactive Threshold Signatures
	3.3 Recovery and Provisioning of CC Nodes
	3.4 Threshold-Based Client Authentication

	4 ESKM System Design
	4.1 ESKM Control Plane
	4.2 ESKM Data Plane

	5 Experimental Results
	6 Related Work
	7 Conclusion
	References

	Non-interactive Zaps of Knowledge
	1 Introduction
	2 Preliminaries
	3 An Extractable Commitment Scheme from DLin
	4 Non-interactive Zaps
	5 ZAK: A Non-interactive Zap of Knowledge
	References

	Side Channel Attacks and Tamper Resistance
	Formal Verification of Side-Channel Countermeasures via Elementary Circuit Transformations
	1 Introduction
	2 Security Properties
	3 Formal Verification of Generic Circuits for Small Order
	3.1 The RefreshMasks Algorithm
	3.2 Formal Verification of Circuits
	3.3 Security Properties of RefreshMasks
	3.4 Formal Verification of t-SNI Properties: The FullRefresh and SecMult Algorithms

	4 Formal Verification of Boolean to Arithmetic Conversion
	5 Formal Verification in Polynomial Time
	6 Towards Automatic Generation of Security Proofs
	References

	Drive-By Key-Extraction Cache Attacks from Portable Code
	1 Introduction
	1.1 Our Results
	1.2 Targeted Hardware and Software
	1.3 Related Work

	2 Preliminaries
	2.1 Portable Code Execution

	3 Constructing Eviction Sets
	3.1 Methodology
	3.2 Implementation

	4 Attacking Elliptic
	4.1 Deployment
	4.2 Key Extraction

	5 Attacking ElGamal
	5.1 Attacking End-to-End
	5.2 Attacking OpenPGP.js

	6 Conclusion
	References

	On the Ineffectiveness of Internal Encodings - Revisiting the DCA Attack on White-Box Cryptography
	1 Introduction
	2 White-Box Cryptography Implementations
	3 Differential Computational Analysis
	4 Effect of the Encodings
	4.1 Linear Encodings
	4.2 Non-linear Encodings
	4.3 Combination of Linear and Non-linear Encodings

	5 Conclusions
	References

	Continuously Non-malleable Codes with Split-State Refresh
	1 Introduction
	2 Preliminaries and Building Blocks
	3 Non-malleability with Refresh
	3.1 The Definition

	4 Code Construction
	5 Applications
	References

	Digital Signatures
	Efficient Unconditionally Secure Signatures Using Universal Hashing
	1 Introduction
	1.1 Related Works
	1.2 Contributions

	2 Preliminaries
	3 The Protocol
	3.1 Distribution Stage
	3.2 Messaging Stage

	4 Security
	5 Comparisons
	5.1 Classical USS Schemes
	5.2 Quantum USS Schemes

	A  Security Definitions
	B  Security Proofs
	B.1  Proof of Theorem 2
	B.2  Proof of Theorem 3

	References

	Floppy-Sized Group Signatures from Lattices
	1 Introduction
	2 Prerequisites
	2.1 Polynomial Rings
	2.2 Lattices
	2.3 Lattices over Rings
	2.4 Hardness Assumptions
	2.5 Group Signature
	2.6 One-Time Signature
	2.7 Relaxed ZK Proofs
	2.8 Relaxed Signatures

	3 Relaxed Partial Verifiable Encryption
	3.1 Definition of Relaxed Partial Verifiable Encryption
	3.2 Relaxed Partial Verifiable Encryption over Lattices

	4 Group Signature Scheme
	4.1 A Lattice-Based Group Signature
	4.2 Practical Parameters and Storage Requirement

	References

	On the Security Notions for Homomorphic Signatures
	1 Introduction
	1.1 Our Contribution
	1.2 An Overview of Our Compiler

	2 Homomorphic Signatures
	2.1 Security

	3 A Generic Transformation from Semi-adaptive to Strong Adaptive Security
	3.1 Strong Adaptive Security from OR-Homomorphic Signatures
	3.2 Strong Adaptive Security from Linearly-Homomorphic Signatures

	References

	Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent
	1 Introduction
	1.1 Invisible Sanitizable Signatures
	1.2 Our Contributions
	1.3 Related Work
	1.4 Organization

	2 Definition of Sanitizable Signatures
	2.1 Notation
	2.2 Definition of Sanitizable Signature Schemes
	2.3 Correctness and Security Properties of Sanitizable Signature Schemes
	2.4 (Strong) Invisibility

	3 Invisible Sanitizable Signatures Imply Public-Key Encryption Schemes
	3.1 Construction
	3.2 IND-CPA-Security
	3.3 IND-CCA2-Security

	4 Public-Key Encryption Implies Invisible Sanitizable Signatures
	4.1 Construction
	4.2 Security
	4.3 Achieving Strong Invisibility

	5 Conclusions
	References

	Delegatable Attribute-Based Anonymous Credentials from Dynamically Malleable Signatures
	1 Introduction
	2 Basics and Notation
	3 Delegatable Attribute-Based Anonymous Credentials
	3.1 Formal Definition
	3.2 How to Deploy Delegatable Attribute-Based Anonymous Credential Systems in Practice

	4 Dynamically Malleable Signatures with Efficient Protocols
	4.1 Definition
	4.2 Deriving a Signature on a Committed Message

	5 Construction of Dynamically Malleable Signatures Based on Pointcheval-Sanders Signatures
	6 Constructing Delegatable Attribute-Based Anonymous Credentials from Dynamically Malleable Signatures with Efficient Protocols
	References

	Privacy Preserving Computation
	Privacy-Preserving Ridge Regression with only Linearly-Homomorphic Encryption
	1 Introduction
	2 Background
	3 Threat Model and System Overview
	4 Protocols Description
	4.1 Phase 1: Merging the Dataset
	4.2 Phase 2: Computing the Model

	5 Implementation
	References

	Privacy-Preserving Plaintext-Equality of Low-Entropy Inputs
	1 Introduction
	1.1 Motivation: Organ Donation
	1.2 Related Work
	1.3 Our Contribution
	1.4 Organization

	2 Fingerprinting Scheme
	2.1 Description
	2.2 Security Model

	3 Assumptions
	4 Fingerprinting from Pointcheval-Sanders Signatures
	4.1 The Pointcheval-Sanders Signature Scheme
	4.2 Fingerprinting Scheme with Public Plaintext-Equality Testing
	4.3 Security of the Basic Scheme
	4.4 Improving the Privacy of the User
	4.5 Verifiability
	4.6 Full Protocol

	5 Conclusion
	A Proof of Theorem1
	References

	Nothing Refreshes Like a RePSI: Reactive Private Set Intersection
	1 Introduction
	1.1 Roadmap
	1.2 Related Work
	1.3 Paper Organization

	2 Preliminaries
	2.1 Bilinear Groups
	2.2 Bilinear Accumulators
	2.3 Hard Relations
	2.4 Smooth Projective Hash Function

	3 Reactive PSI in the Augmented Semi-honest Model
	4 Bounded Input PSI
	4.1 Bounded Input PSI Without Random Oracles

	5 Input Controlling RePSI
	5.1 Description of the Protocol
	5.2 Security of Input Controlling RePSI
	5.3 Efficiency

	6 Conclusions
	References

	Multi-party Computation
	New Protocols for Secure Equality Test and Comparison
	1 Introduction
	1.1 State of the Art for Secure Equality Test and Comparison
	1.2 Our Contribution
	1.3 Our Method
	1.4 Comparison with Existing Works
	1.5 Applications
	1.6 Organization
	1.7 Notations

	2 Oblivious Transfer
	2.1 Oblivious Transfer Extension

	3 Equality Test
	3.1 Implementing the Preprocessing Functionality
	3.2 Communication Complexity
	3.3 Concrete Efficiency

	References

	Minimising Communication in Honest-Majority MPC by Batchwise Multiplication Verification
	1 Introduction
	1.1 Outline
	1.2 Related Work

	2 Preliminaries
	2.1 Notation and Security Model
	2.2 Batchwise Multiplication Verification

	3 Lindell-Nof with Fewer Messages and More Fairness
	3.1 The Lindell-Nof Construction
	3.2 Plugging in Batchwise Multiplication Verification
	3.3 Performance Analysis and Optimisation with PRNGs
	3.4 Further Improvements

	4 SPDZ with an Untrusted Dealer
	4.1 Data Needed for the Online Phase
	4.2 Preprocessing Phase
	4.3 Variants and Extensions

	5 Performance Evaluation
	5.1 Implementation Details
	5.2 Evaluation Results

	References

	Best of Both Worlds in Secure Computation, with Low Communication Overhead
	1 Introduction
	1.1 Technical Overview

	2 Best of Both Worlds Security
	3 Degree Test
	3.1 Formal Description of the Degree Test Protocol
	3.2 Properties of the Degree-Test Protocol

	4 Additively-Secure Protocol
	References

	3PC ORAM with Low Latency, Low Bandwidth, and Fast Batch Retrieval
	1 Introduction
	2 Technical Overview
	3 Our Protocol: 3PC Emulation of Circuit-ORAM
	4 Security
	5 Performance Evaluation
	References

	Symmetric Key Primitives
	MergeMAC: A MAC for Authentication with Strict Time Constraints and Limited Bandwidth
	1 Introduction
	2 The MergeMAC Construction
	2.1 Variations
	2.2 Caching
	2.3 The Merging Function F

	3 Proof of Security
	3.1 Random Input Indistinguishability
	3.2 Reduction

	4 Cryptanalysis
	4.1 Security of the PRFs
	4.2 Security of the Merge Function

	5 Performance
	6 Conclusions
	References

	KangarooTwelve: Fast Hashing Based on Keccak-p
	1 Introduction
	2 Notation
	3 Specifications of KangarooTwelve
	3.1 The Inner Compression Function F
	3.2 The Merged Input String S
	3.3 The Tree Hash Mode
	3.4 Security Claim

	4 Rationale
	4.1 Implications of the Security Claim
	4.2 Security of the Mode
	4.3 Sakura Compatibility
	4.4 Choice of B
	4.5 Choice of the Number of Rounds

	5 MarsupilamiFourteen
	6 Implementation
	6.1 Byte Representation
	6.2 Structuring the Implementation
	6.3 256-bit SIMD
	6.4 512-bit SIMD
	6.5 Comparison with Other Functions

	7 Conclusion
	References

	Symmetric Key Cryptanalysis
	Related-Key Boomerang Attacks on Full ANU Lightweight Block Cipher
	1 Introduction
	2 Related Work
	2.1 Specification of Block Cipher ANU
	2.2 Boomerang Attacks

	3 Analysis of Key Schedule Function of ANU
	4 Related-Key Boomerang Attacks on Full ANU
	4.1 20-Round Deterministic Properties
	4.2 23-Round Distinguishers with Two Dependent S-Layers
	4.3 Full-Round Distinguishers
	4.4 Key Recovery on Full ANU

	5 Concluding Remarks
	A  Differential Trails for 20-Round Distinguishers
	B  Differential Distribution Table of ANU S-Box
	C  An Example of Related-Key Boomerang Quartet
	References

	Generic Round-Function-Recovery Attacks for Feistel Networks over Small Domains
	1 Introduction
	2 Preliminaries
	2.1 Meet-In-The-Middle (MITM) Attack
	2.2 Improved MITM

	3 Round-Function-Recovery by Partial Exhaustive Search
	3.1 Iter: Iterative Partial Exhaustive Search
	3.2 A Heuristic Complexity Analysis of Iter
	3.3 Approximation of the Complexity
	3.4 Iter*: A Chosen Plaintext Extension to Iter
	3.5 Variants of Iter and Iter*
	3.6 Experimental Results

	4 Applications
	5 Conclusion
	References

	Differential Cryptanalysis of Round-Reduced Sparx-64/128
	1 Introduction
	2 Preliminaries
	2.1 The Sparx Family of Ciphers
	2.2 Properties

	3 Boomerang and Rectangle Attacks
	4 Differential Trails and Boomerang Distinguishers
	4.1 Searching Optimal Differential Trails
	4.2 Boomerangs

	5 Truncated-Differential Attack on Sparx-64/128
	6 Rectangle Attack on 16-Round Sparx-64/128
	7 Conclusion
	References

	Can Caesar Beat Galois?
	1 Introduction
	2 Preliminaries
	3 Generic Attacks
	4 AES-GCM
	5 AEZ v5
	6 OCB3 (OCB v1.1)
	7 AES-OTR v3.1
	8 CLOC
	9 Deoxys v1.41
	10 Tiaoxin-346
	11 AEGIS v1.1
	12 ACORN v3
	13 Ketje
	14 Morus
	References

	Public Key Encryption
	Improved Anonymous Broadcast Encryptions
	1 Introduction
	1.1 Contributions
	1.2 Technical Overview

	2 Preliminaries
	2.1 Anonymous Broadcast Encryption
	2.2 Prime-Order (Bilinear) Groups
	2.3 Cryptographic Primitives
	2.4 Core Lemma

	3 Tightly Secure ANOBE with Fast Decryption
	3.1 Construction
	3.2 Security Result and Proof Overview

	4 Tightly Secure ANOBE with Shorter Ciphertext
	4.1 Construction
	4.2 Security Result and Proof Overview

	5 Conclusion
	References

	Time-Based Direct Revocable Ciphertext-Policy Attribute-Based Encryption with Short Revocation List
	1 Introduction
	1.1 Different Approaches for Revocable ABE
	1.2 A Naïve Approach
	1.3 Our Contribution

	2 Related Works
	3 Definition
	3.1 Time Period
	3.2 Definition of Revocable Ciphertext-Policy Attribute-Based Encryption
	3.3 Security Model

	4 Our Scheme
	4.1 Overview
	4.2 Technical Construction
	4.3 Future Enhancements

	5 Performance Analysis
	6 Conclusion
	References

	Almost Tight Multi-Instance Multi-Ciphertext Identity-Based Encryption on Lattices
	1 Introduction
	1.1 Our Techniques

	2 Preliminaries
	2.1 Randomness Extractor
	2.2 Lattice Background
	2.3 Lossy Mode for LWE
	2.4 Identity-Based Encryption
	2.5 Almost Key-Homomorphic Pseudorandom Functions

	3 The Scheme
	4 Security
	5 Discussion and Conclusion
	References

	Authentication and Biometrics
	In-Region Authentication
	1 Introduction
	2 Preliminaries
	3 In-Region Authentication Systems
	3.1 inRA Security

	4 Pseudo-rectangle (P-rect) Cover Approach to inRA
	4.1 Basic (Two-Verifier) P-rect Approach
	4.2 Security Analysis

	5 Optimizing Error
	6 Experimental Evaluation
	7 Related Work
	8 Concluding Remarks
	References

	Formal Analysis of Distance Bounding with Secure Hardware
	1 Introduction
	2 Definitions and Security in SHM
	2.1 Definitions
	2.2 Security Results
	2.3 Privacy

	3 Optimal Symmetric DB Protocol in SHM
	4 Optimal Public-Key DB Protocols in SHM
	5 Conclusion
	References

	KRB-CCN: Lightweight Authentication and Access Control for Private Content-Centric Networks
	1 Introduction
	Organization:

	2 CCN Overview
	3 Kerberos Overview
	4 KRB-CCN Design
	4.1 System Architecture
	4.2 Namespace-Based AC Policies
	4.3 Protocol

	5 Implementation and Performance Evaluation
	5.1 Methodology
	5.2 Experiments

	6 Related Work
	7 Conclusions
	References

	Assentication: User De-authentication and Lunchtime Attack Mitigation with Seated Posture Biometric
	1 Introduction and Motivation
	2 Related Work
	3 Background
	3.1 User Authentication
	3.2 De-authentication and Lunchtime Attacks
	3.3 Default Approach: Inactivity Timeouts
	3.4 Continuous Authentication
	3.5 Design Goals

	4 Assentication Biometric
	4.1 Strengths and Weaknesses
	4.2 Liveness and Replay

	5 Adversarial Model and Attacks
	6 Methodology
	6.1 Prototype Design
	6.2 Data Collection Procedure
	6.3 Features
	6.4 Feature Selection and Quality
	6.5 Classification Algorithm

	7 Results
	7.1 Identification
	7.2 Continuous Authentication

	8 Discussion
	8.1 Deployment Scenario
	8.2 Ethical Considerations

	9 Future Work
	10 Conclusions
	References

	Cloud and Peer-to-Peer Security
	Stateful Multi-client Verifiable Computation
	1 Introduction
	2 Preliminaries
	3 Authenticated Data Types
	4 A General-Purpose Instantiation of ADT
	5 Computational Fork-Linearizable Byzantine Emulation
	6 A Lock-Step Protocol for Emulating Shared Data Types
	References

	VERICOUNT: Verifiable Resource Accounting Using Hardware and Software Isolation
	1 Introduction
	2 Problem Definition
	2.1 Threat Model
	2.2 Problem Statement

	3 Baseline Approaches and Attacks
	3.1 Resource Usage Inflation Attacks
	3.2 Towards Self-accounting
	3.3 Basic Self-accounting Approach

	4 Our Design
	4.1 Overview
	4.2 Background on SGX
	4.3 Protection Against Malicious Provider
	4.4 Protection Against Malicious Client
	4.5 Measuring Resources

	5 Implementation
	5.1 VERICOUNT Library
	5.2 Sandboxing Within Enclaves

	6 Evaluation
	6.1 Performance Overhead
	6.2 Resource Utilization Measurement

	7 Related Work
	8 Conclusion
	References

	Message-Locked Encryption with File Update
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Dictionary Attack
	2.3 Proof of Ownership
	2.4 Ideal Permutation
	2.5 Other Definitions

	3 Deduplication: An Application of FMLE
	4 FMLE: A New Cryptographic Primitive
	4.1 Syntax
	4.2 Correctness
	4.3 Security Definitions

	5 Practical FMLE Constructions from Existing MLE and UMLE Schemes
	6 New Efficient FMLE Schemes
	6.1 The RevD-1 Scheme
	6.2 The RevD-2 Scheme
	6.3 Comparing RevD-1 and RevD-2 with the Other FMLE Schemes

	7 Conclusion
	References

	DogFish: Decentralized Optimistic Game-theoretic FIle SHaring
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Model
	5 Social Welfare for P2P File Sharing
	6 FEXCH Instantiation
	6.1 Randomized Fair Exchange (RFE)
	6.2 Proofs of Storage (PoS)
	6.3 FEXCH and its Analysis

	7 RFE Instantiation
	7.1 Coin Tossing
	7.2 (Non-randomized) Fair Exchange
	7.3 Randomized Fair Exchange Protocol

	8 The DogFish Protocol
	References

	Author Index



