Bart Preneel
Frederik Vercauteren (Eds.)

Applied Cryptography
and Network Security

16th International Conference, ACNS 2018
Leuven, Belgium, July 2-4, 2018
Proceedings

LNCS 10892

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology Madras, Chennai, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

10892

More information about this series at http://www.springer.com/series/7410

Bart Preneel - Frederik Vercauteren (Eds.)

Applied Cryptography
and Network Security

16th International Conference, ACNS 2018
Leuven, Belgium, July 24, 2018
Proceedings

@ Springer

Editors

Bart Preneel Frederik Vercauteren
imec-COSIC imec-COSIC

KU Leuven KU Leuven

Heverlee Heverlee

Belgium Belgium

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-319-93386-3 ISBN 978-3-319-93387-0 (eBook)

https://doi.org/10.1007/978-3-319-93387-0
Library of Congress Control Number: 2018944429
LNCS Sublibrary: SL4 — Security and Cryptology

© Springer International Publishing AG, part of Springer Nature 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer International Publishing AG

part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0003-2005-9651
http://orcid.org/0000-0002-7208-9599

Preface

ACNS 2018, the 16th International Conference on Applied Cryptography and Network
Security, was held during July 2-4, 2018, at KU Leuven, Belgium. The local orga-
nization was in the capable hands of the COSIC team at KU Leuven and we are deeply
indebted to them for their support and smooth collaboration.

We received 173 paper submissions, out of which 36 were accepted, resulting in an
acceptance rate of 20%. These proceedings contain revised versions of all the papers.
The invited keynotes were delivered by Gilles Barthe, who spoke on formal verification
of side-channel resistance and Haya Shulman who shared with the audience her per-
spective on RPKI’s Deployment and Security of BGP.

The Program Committee consisted of 52 members with diverse backgrounds and
broad research interests. The review process was double-blind. Each paper received at
least three reviews; for submissions by Program Committee members, this was
increased to five. During the discussion phase, additional reviews were solicited when
necessary. An intensive discussion was held to clarify issues and to converge toward
decisions. The selection of the program was challenging; in the end some high-quality
papers had to be rejected owing to lack of space. The committee decided to give the
Best Student Paper Award to the paper “Non-interactive zaps of knowledge” by Georg
Fuchsbauer and Michele Orru.

We would like to sincerely thank the authors of all submissions for contributing
high-quality submissions and giving us the opportunity to compile a strong and diverse
program. We know that the Program Committee’s decisions can be very disappointing,
especially rejections of good papers that did not find a slot in the sparse number of
accepted papers.

Special thanks go to the Program Committee members; we value their hard work
and dedication to write careful and detailed reviews and to engage in interesting
discussions. A few Program Committee members, whom we asked to serve as shep-
herds, spent additional time in order to help the authors improve their works. More than
160 external reviewers contributed to the review process; we would like to thank them
for their efforts.

Finally, we thank everyone else — speakers and session chairs — for their con-
tribution to the program of ACNS 2018. We would also like to thank the sponsors for
their generous support.

We hope that the papers in this volume prove valuable for your research and
professional activities and that ACNS will continue to play its unique role in bringing
together researchers and practitioners in the area of cryptography and network security.

April 2018 Bart Preneel
Frederik Vercauteren

ACNS 2018

Applied Cryptography and Network Security 2018

General Chair

Bart Preneel

Program Chairs

Bart Preneel

Frederik Vercauteren

Program Committee

Michel Abdalla
Masayuki Abe
Elli Androulaki
Alex Biryukov
Marina Blanton

Jan Camenisch
Liqun Chen
Chen-Mou Cheng
Naccache David
Dieter Gollmann
Peter Gutmann
Shai Halevi
Goichiro Hanaoka
Amir Herzberg
Tibor Jager

Marc Joye
Aniket Kate

Stefan Katzenbeisser
Florian Kerschbaum

Aggelos Kiayias
Kwangjo Kim
Kaoru Kurosawa
Ralf Kusters

KU Leuven, Belgium
July 24, 2018

KU Leuven, Belgium

KU Leuven, Belgium
KU Leuven, Belgium

ENS and CNRS, France

NTT, Japan

IBM Research, Switzerland

University of Luxembourg, Luxembourg

University at Buffalo, The State University of New York,
USA

IBM Research, Switzerland

University of Surrey, UK

National Taiwan University, Taiwan

ENS, France

Hamburg University of Technology, Germany

University of Auckland, New Zealand

IBM Research, USA

AIST, Japan

University of Connecticut, USA

Paderborn University, Germany

NXP Semiconductors, USA

Purdue University, USA

TU Darmstadt, Germany

University of Waterloo, Canada

University of Edinburgh, UK

KAIST, Korea

Ibaraki University, Japan

University of Stuttgart, Germany

VIII ACNS 2018

Xuejia Lai

Benoit Libert
Dongdai Lin
Michael Locasto
Javier Lopez

Mark Manulis
Atefeh Mashatan
Bart Mennink
Atsuko Miyaji

Refik Molva
Michael Naehrig
Miyako Ohkubo
Panos Papadimitratos
Thomas Peyrin
Josef Pieprzyk
Benny Pinkas

Bart Preneel
Christian Rechberger
Matt Robshaw
Ahmad Sadeghi

Yu Sasaki

Willy Susilo

Mehdi Tibouchi
Damien Vergnaud
Ivan Visconti
Frederik Vercauteren
Avishai Wool

Moti Yung

Jianying Zhou

Additional Reviewers

Aydin Abadi

Mai Ben Adar-Bessos
Megha Agrawal
Hyeongcheol Ahn

Muhamad Erza Aminanto

Hassan Asghar

Nuttapong Attrapadung

Joonsang Baek
Anubhab Baksi
Josep Balasch
Harry Barlett

Shanghai Jiaotong University, China

CNRS and ENS de Lyon, France

SKLOIS, Chinese Academy of Sciences, China

SRI International, USA

University of Malaga, Spain

University of Surrey, UK

Ryerson University, Canada

Radboud University, The Netherlands

JAIST, Japan

Eurecom, France

Microsoft Research, USA

NICT, Japan

KTH Royal Institute of Technology, Sweden

Nanyang Technological University, Singapore

QUT, Australia

Bar-Tlan University, Israel

KU Leuven, Belgium

TU Graz, Austria

Impinj, USA

TU Darmstadt, Germany

NTT Secure Platform Laboratories, Japan

University of Wollongong, Australia

NTT Secure Platform Laboratories, Japan

ENS, France

University of Salerno, Italy

KU Leuven, Belgium

Tel Aviv University, Israel

Colombia University, USA

Singapore University of Technology and Design,
Singapore

Pascal Bemmann
Fabrice Benhamouda
Cecilia Boschini
Florian Bourse
Ferdinand Brasser
Niklas Biischer
Seyit Camtepe
Luigi Catuogno
Avik Chakraborti
Jagmohan Chauhan
Hao Chen

Jiageng Chen
Rongmao Chen
Yu Chen

Céline Chevalier
Rakyong Choi
Tung Chou

Peter Chvojka
Michele Ciampi
Craig Costello
Angelo De Caro

Sherman S. M. Chow

Yi Deng

David Derler
Christoph Dobraunig
Manu Drijvers

Li Duan

Maria Eichlseder
Kaoutar Elkhiyaoui
Keita Emura
Oguzhan Ersoy
Thomas Espitau
Gerardo Fenandez
Carmen Fernandez
Daniel Fett

Dario Fiore

Steven Galbraith
Adria Gascon
Romain Gay

Kai Gellert
Junqging Gong
Zheng Gong
Alonso Gonzalez
Lorenzo Grassi
Clémentine Gritti
Jian Guo

Jinguang Han
Yoshikazu Hanatani
Lin Hou

Guifang Huang
Jialin Huang

Ilia Iliashenko
Vincenzo Iovino
Ai Ishida
Dirmanto Jap
Saqib Kakvi
Daniel Kales
Jean-Gabriel Kammerer
Julien Keuffer
Jongkil Kim
Markulf Kohlweiss
Florian Kohnh&user
Takeshi Koshiba
Hugo Krawczyk
Po-Chun Kuo
Rafael Kurek
Jianchang Lai

Qiqi Lai

Ben Lapid

Jeeun Lee

Qi Li

Christopher Liebchen
Tingting Lin

Helger Lipmaa
Patrick Longa

Xiapu Luo

Yiyuan Luo
Xuecheng Ma
Takahiro Matsuda
Matthew McKague
Siang Meng Sim Meng
Weizhi Meng
Markus Miettinen
Takaaki Mizuki
Kirill Morozov
Fabrice Mouhartem
Johannes Mueller
Zakaria Najm

Toru Nakanishi
Surya Nepal

Khoa Nguyen

David Niehues

Ana Nieto

Ariel Nof

David Nufiez
Kazuma Ohara
Shinya Okumura
Kazumasa Omote
Melek Onen

Leo Perrin

Thomas Peters

Le Trieu Phong
Tran Viet Xuan Phuong
Thomas Pdppelmann
Jeyavijayan Rajendran
Sebastian Ramacher
Somindu Ramanna
Daniel Rausch

Joost Renes

Sietse Ringers
Ruben Rios

Rodrigo Roman

ACNS 2018 IX

Yusuke Sakai
Katerina Samari
John Schanck
Guido Schmitz
Jacob Schuldt
Hwajeong Seo
Mike Simon
Luisa Siniscalchi
Chunhua Su
Koutarou Suzuki
Akira Takahashi
Katsuyuki Takashima
Harry Chandra
Tanuwidjaja
Tadanori Teruya
Yosuke Todo
Junichi Tomida
Patrick Towa
Yiannis Tselekounis
Ida Tucker
Aleksei Udovenko
Cédric Van Rompay
Dimitrios Vasilopoulos
Vesselin Velichkov
Nikita Veshchikov
Haoyang Wang
Qingju Wang
Yohei Watanabe
Keita Xagawa
Weijia Xue
Shota Yamada
Takashi Yamakawa
Hailun Yan
Guomin Yang
Kazuki Yoneyama
Hirotaka Yoshida
Hongbo Yu
Zheng Yuan
Thomas Zacharias
Rina Zeitoun
Bingsheng Zhang
Lei Zhang
Tao Zhang
Vincent Zucca

Contents

Cryptographic Protocols

A Cryptographic Analysis of the WireGuard Protocol 3
Benjamin Dowling and Kenneth G. Paterson

Distributed SSH Key Management with Proactive RSA
Threshold Signatures. 22
Yotam Harchol, Ittai Abraham, and Benny Pinkas

Non-interactive Zaps of Knowledge. 44
Georg Fuchsbauer and Michele Orru

Side Channel Attacks and Tamper Resistance

Formal Verification of Side-Channel Countermeasures
via Elementary Circuit Transformations 65
Jean-Sébastien Coron

Drive-By Key-Extraction Cache Attacks from Portable Code 83
Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom

On the Ineffectiveness of Internal Encodings - Revisiting the DCA

Attack on White-Box Cryptography. 103
Estuardo Alpirez Bock, Chris Brzuska, Wil Michiels,
and Alexander Treff

Continuously Non-malleable Codes with Split-State Refresh. 121
Antonio Faonio, Jesper Buus Nielsen, Mark Simkin, and Daniele Venturi

Digital Signatures

Efficient Unconditionally Secure Signatures Using Universal Hashing 143
Ryan Amiri, Aysajan Abidin, Petros Wallden, and Erika Andersson

Floppy-Sized Group Signatures from Lattices. 163
Cecilia Boschini, Jan Camenisch, and Gregory Neven

On the Security Notions for Homomorphic Signatures. 183
Dario Catalano, Dario Fiore, and Luca Nizzardo

Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent. . . 202
Marc Fischlin and Patrick Harasser

XII Contents

Delegatable Attribute-Based Anonymous Credentials from Dynamically

Malleable Signatures

Johannes Blomer and Jan Bobolz

Privacy Preserving Computation

Privacy-Preserving Ridge Regression with

only Linearly-Homomorphic Encryption.

Irene Giacomelli, Somesh Jha, Marc Joye, C. David Page,
and Kyonghwan Yoon

Privacy-Preserving Plaintext-Equality of Low-Entropy Inputs

Séebastien Canard, David Pointcheval, Quentin Santos,
and Jacques Traoré

Nothing Refreshes Like a RePSI: Reactive Private Set Intersection

Andrea Cerulli, Emiliano De Cristofaro, and Claudio Soriente

Multi-party Computation

New Protocols for Secure Equality Test and Comparison.

Geoffroy Couteau

Minimising Communication in Honest-Majority MPC by Batchwise

Multiplication Verification i

Peter Sebastian Nordholt and Meilof Veeningen

Best of Both Worlds in Secure Computation, with Low

Communication Overhead

Daniel Genkin, S. Dov Gordon, and Samuel Ranellucci

3PC ORAM with Low Latency, Low Bandwidth, and Fast Batch Retrieval . . .

Stanislaw Jarecki and Boyang Wei

Symmetric Key Primitives

MEeRGEMAC: A MAC for Authentication with Strict Time Constraints

and Limited Bandwidth

Ralph Ankele, Florian Bohl, and Simon Friedberger

KaNGarooTWELVE: Fast Hashing Based on Keccak-p.

Guido Bertoni, Joan Daemen, Michaél Peeters, Gilles Van Assche,
Ronny Van Keer, and Benoit Viguier

Contents

Symmetric Key Cryptanalysis

Related-Key Boomerang Attacks on Full ANU Lightweight Block Cipher . . .

Yu Sasaki

Generic Round-Function-Recovery Attacks for Feistel Networks

over Small Domains

F. Betiil Durak and Serge Vaudenay

Differential Cryptanalysis of Round-Reduced Sparx-64/128

Ralph Ankele and FEik List

Can Caesar Beat Galois? Robustness of CAESAR Candidates Against

Nonce Reusing and High Data Complexity Attacks.

Serge Vaudenay and Damian Vizar

Public Key Encryption

Improved Anonymous Broadcast Encryptions: Tight Security

and Shorter Ciphertext.

Jiangtao Li and Junging Gong

Time-Based Direct Revocable Ciphertext-Policy Attribute-Based

Encryption with Short Revocation List.

Joseph K. Liu, Tsz Hon Yuen, Peng Zhang, and Kaitai Liang

Almost Tight Multi-Instance Multi-Ciphertext Identity-Based

Encryption on Lattices.

Xavier Boyen and Qinyi Li

Authentication and Biometrics

In-Region Authentication

Mamunur Rashid Akand and Reihaneh Safavi-Naini

Formal Analysis of Distance Bounding with Secure Hardware

Handan Kiling and Serge Vaudenay

KRB-CCN: Lightweight Authentication and Access Control for Private

Content-Centric Networks i i

Ivan O. Nunes and Gene Tsudik

Assentication: User De-authentication and Lunchtime Attack Mitigation

with Seated Posture Biometric

Tyler Kaczmarek, Ercan Ozturk, and Gene Tsudik

XIII

421

X1V Contents

Cloud and Peer-to-Peer Security

Stateful Multi-client Verifiable Computation. 637
Christian Cachin, Esha Ghosh, Dimitrios Papadopoulos,
and Bjorn Tackmann

VEerICounT: Verifiable Resource Accounting Using Hardware
and Software Isolation. 657
Shruti Tople, Soyeon Park, Min Suk Kang, and Prateek Saxena

Message-Locked Encryption with File Update 678
Suyash Kandele and Souradyuti Paul

DogFish: Decentralized Optimistic Game-theoretic Flle SHaring. 696
Seny Kamara and Alptekin Kiipgii

Author Index 715

Cryptographic Protocols

®

Check for
updates

A Cryptographic Analysis of the
WireGuard Protocol

Benjamin Dowling®™) and Kenneth G. Paterson

Information Security Group, Royal Holloway, University of London, Egham, UK
{benjamin.dowling,kenny.paterson}@rhul.ac.uk

Abstract. WireGuard (Donenfeld, NDSS 2017) is a recently proposed
secure network tunnel operating at layer 3. WireGuard aims to replace
existing tunnelling solutions like IPsec and OpenVPN, while requiring
less code, being more secure, more performant, and easier to use. The
cryptographic design of WireGuard is based on the Noise framework. It
makes use of a key exchange component which combines long-term and
ephemeral Diffie-Hellman values (along with optional preshared keys).
This is followed by the use of the established keys in an AEAD con-
struction to encapsulate IP packets in UDP. To date, WireGuard has
received no rigorous security analysis. In this paper, we, rectify this.
We first observe that, in order to prevent Key Compromise Imperson-
ation (KCI) attacks, any analysis of WireGuard’s key exchange compo-
nent must take into account the first AEAD ciphertext from initiator
to responder. This message effectively acts as a key confirmation and
makes the key exchange component of WireGuard a 1.5 RTT protocol.
However, the fact that this ciphertext is computed using the established
session key rules out a proof of session key indistinguishability for Wire-
Guard’s key exchange component, limiting the degree of modularity that
is achievable when analysing the protocol’s security. To overcome this
proof barrier, and as an alternative to performing a monolithic analysis
of the entire WireGuard protocol, we add an extra message to the proto-
col. This is done in a minimally invasive way that does not increase the
number of round trips needed by the overall WireGuard protocol. This
change enables us to prove strong authentication and key indistinguisha-
bility properties for the key exchange component of WireGuard under
standard cryptographic assumptions.

Keywords: Authenticated key exchange + Cryptographic protocols
Formal analysis + WireGuard

1 Introduction

WireGuard: WireGuard [11] was recently proposed by Donenfeld as a replace-
ment for existing secure communications protocols like IPsec and OpenVPN. It
has numerous benefits, not least its simplicity and ease of configuration, high per-
formance in software, and small codebase. Indeed, the protocol is implemented

© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 3-21, 2018.
https://doi.org/10.1007/978-3-319-93387-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_1&domain=pdf

4 B. Dowling and K. G. Paterson

in less than 4,000 lines of code, making it relatively easy to audit compared
to large, complex and buggy code-bases typically encountered with IPsec and
SSL/TLS (on which OpenVPN is based).

From a networking perspective, WireGuard encapsulates IP packets in UDP
packets, which are then further encapsulated in IP packets. This is done care-
fully so as to avoid too much packet overhead. WireGuard also offers a highly
simplified version of IPsec’s approach to managing which security transforms get
applied to which packets: essentially, WireGuard matches on IP address ranges
and associates IP addresses with static Diffie-Hellman keys. This avoids much
of the complexity associated with IPsec’s Security Associations/Security Policy
Database mechanisms.

From a cryptographic perspective, WireGuard presents an interesting design.
It is highly modular, with a key exchange phase, called the handshake, that is
presented as being clearly separated from the subsequent use of the keys in a
data transport protocol. A key feature is the one-round (or 1-RTT) nature of
the key exchange phase. The key exchange phase runs between an initiator and
a responder. It combines long-term and ephemeral Diffie-Hellman values, exclu-
sively using Curve25519 [3], and is built from the Noise protocol framework [23].
In fact, every possible pairwise combination of long-term and ephemeral val-
ues is involved in the key computations, presumably in an effort to strengthen
security in the face of various combinations of long-term and ephemeral pri-
vate key compromise. The long-term keys are not supported by a PKI, but are
instead assumed to be pre-configured and known to the communicating parties
(or trusted on first use, as per SSH). The protocol specification includes an option
for using preshared keys between pairs of parties, to augment the DH-based
exchange and as a hedge against quantum adversaries. The key exchange phase
relies on the BLAKE2s hash function [2] for hashing parts of the transcript, to
build HMAC (a hash-based MAC algorithm), and for HKDF (an HMAC-based
key derivation function). The data transport protocol uses solely ChaCha20-
Poly1305 as specified in RFC 7539 [22] as an AEAD scheme in a lightweight
packet format. The AEAD processing incorporates explicit sequence numbers
and the receiver uses a standard sliding window technique to deal with packet
delays and reorderings.

Security of WireGuard: To the best of our knowledge, with the exception of
an initial and high-level symbolic analysis,! WireGuard has received no rigorous
security analysis. In particular, it has not benefitted from any computational (as
opposed to symbolic) proofs. In this paper, we provide such an analysis.

We cannot prove the handshake protocol (as presented in [11]) secure because
of an unfortunate reliance on the first message sent in the subsequent data trans-
port protocol to provide entity authentication of the initiator to the responder.
Without this extra message, there is a simple Key Compromise Impersonation
(KCI) attack, violating a desirable authentication goal of the protocol. This
attack was already pointed out by Donenfeld in [11]. Strictly speaking, it means
that the key exchange phase is not 1-RTT (as the responder cannot safely send

! https://www.wireguard.com /papers/wireguard-formal-verification.pdf.

https://www.wireguard.com/papers/wireguard-formal-verification.pdf

A Cryptographic Analysis of the WireGuard Protocol 5

data to the initiator until it has received a verified data transport message from
the initiator). We show that there is also an attack on the forward secrecy of
the protocol in the same KCI setting, similar to observations made by Krawczyk
in [18]. Such an attack recovers session keys rather than breaking authentication
properties, and is arguably more serious. However, the attack requires a partic-
ular set of compromise capabilities on the part of the attacker, so we regard it
more as a barrier to obtaining strong security proofs than as a practical attack.

On the other hand, if we take the extra message required to prevent the KCI
attack of [11] and our new attack into account, it becomes impossible to prove the
usual key indistinguishability (KI) property desired of a key exchange protocol
(and which, broadly speaking, guarantees that it can be securely composed with
subsequent use of the keys [9]). This is because the data transport protocol uses
the very keys that we would desire to prove indistinguishable from random to
AEAD-protect potentially known plaintexts. Such issues are well-known in the
analysis of real-world secure communications protocols — they are endemic, for
example, in the analysis of SSL/TLS prior to version 1.3 [16,19,21].

There are two basic approaches to solving this problem: analyse the entire
protocol (handshake and data transport) as a monolithic entity, or modify the
protocol to provide a proper key separation between keys used in the handshake
to provide authentication and keys used in the data transport layer. The former
approach has been successfully applied (see for example the ACCE framework
of [16]) but is complex, requires models highly tuned to the protocol, and results
in quite unwieldy proofs. The latter approach makes for easier analysis and high-
lights better what needs to be considered to be part of the key exchange protocol
in order to establish its security, but necessitates changes to the protocol.

Our Contributions: In this paper, we adopt the latter approach, making min-
imally invasive changes to WireGuard to enable us to prove its security. In more
detail, we work with a security model for key exchange based on that of Cre-
mers and Feltz [10] but extended to take into account WireGuard’s preshared
key option. The model allows us to handle a full range of security properties
in one clean sweep, including authentication, regular key indistinguishability,
forward security, and KCI attacks (including advanced forms in which key secu-
rity is considered). The model considers a powerful adversary who is permitted
to make every combination of ephemeral and honestly-generated long-term key
compromise bar those allowing trivial attacks, and who is able to interact with
multiple parties in arbitrary numbers of protocol runs.

We build a description of WireGuard’s key exchange phase that takes into
account all of its main cryptographic features, including the fine details of its
many key derivation and (partial) transcript hashing steps. However, in-line
with our choice of how to handle the KI/modularity problem, we make a small
modification to the handshake protocol, adding an extra flow from initiator to
responder which explicitly authenticates one party to the other. This job is cur-
rently fulfilled by the first packet from initiator to responder in the data transport
protocol. With this modification in place, we are then able to prove the secu-
rity of WireGuard’s key exchange protocol under fairly standard cryptographic

6 B. Dowling and K. G. Paterson

assumptions, in the standard model. Specifically, our proof relies on a PRFODH
assumption [8,16] (alternatively, we could have chosen to work with gap-DH and
the Random Oracle Model).

Roadmap: Section 2 provides preliminary definitions, mostly focussed on secu-
rity notions for the base primitives used in WireGuard. Section 3 describes the
WireGuard handshake protocol. Section4 presents the security model for key
exchange that we use in Sect. 5, where our main security result, Theorem 1, can
be found. We wrap up with conclusion and future work in Sect. 6.

2 Preliminaries

Here we formalise the security assumptions that we will be using in our analysis
of WireGuard, specifically the security assumptions for pseudo-random function
(PRF) security, for Authenticated-Encryption with Associated Data (AEAD)
schemes (due to space constraints, these can be found in the full version [14]).
We use an asymptotic approach, relying on primitives that are parameterised
with a security parameter A; all our definitions and results can be made concrete
at the expense of using extended notation. In later sections, we will suppress all
dependence on A in our naming of primitives to ease the notation.

We let G = (g) denote a finite cyclic group of prime order ¢ that is generated
by g. We utilise different typefaces to represent distinct objects: algorithms (such
as an adversary A and a challenger C in a security game), adversarial Queries
(such as Test or Reveal), protocol and per-session variables (such as a public-
key /secret-key pair (pk, sk), definitions for security notions (such as coll or aead),
and constant protocol values (such as InitiatorHello and ResponderHello).

We now introduce the PRFODH assumption that will be needed for our
analysis of WireGuard. The first version of this assumption was introduced by
[16] in order to prove the TLS-DHE handshake secure in the standard model.
This was subsequently modified in later works analysing real-world protocols,
such as TLS-RSA [19], the in-development TLS 1.3 [12,13], and the Extended
Access Control Protocol [7]. This assumption was generalised in [8] in order to
capture the different variants of PRFODH in a parameterised way. We give the
formulation from [8] verbatim in the full version [14].

We extend the definition from [8] similarly to [12]: compared to [8] we allow
the adversary access to ODH,, and ODH,, oracles before the adversary issues the
challenge query x*. This generalisation is necessary in our analysis of WireGuard,
because public ephemeral DH values are used to compute a salt value that is used
as an input to a PRF during the key computations. We refer to our extension
as the symmetric generic PRFODH assumption.

Definition 1 (Symmetric Generic PRFODH Assumption). Let G be a
cyclic group of order q with generator g (where G, q and g all implicitly depend
on \). Let PRFy : G x M — K be a function from a pseudo-random function
family that takes a group element k € G and a salt value m € M as input, and
outputs a value y € K. We define a security notion, sym-Ir-PRFODH security,

A Cryptographic Analysis of the WireGuard Protocol 7

which is parameterised by: 1,r € {n,s,m} indicating how often the adversary is
allowed to query “left” and “right” oracles (ODH, and ODH,), where n indicates
that no query is allowed, s that a single query is allowed, and m that multiple
(polynomially many) queries are allowed to the respective oracle. Consider the
following security game Df,yé"F_jZPRFODH between a challenger C and a PPT adver-

sary A, both running on input \.

1. The challenger C samples u,v & Zq and provides G, g, g%, g* to A.

2. Ifl =m, A can issue arbitrarily many queries to oracle ODH,,, and if r = m
and sym =Y to the oracle ODH,. These are implemented as follows:

— ODH,,: on a query of the form (S, x), the challenger first checks if S ¢ G
and returns L if this is the case. Otherwise, it computes y «— PRF (S, x)
and returns y.

— ODH,: on a query of the form (T, x), the challenger first checks if T ¢ G
and returns L if this is the case. Otherwise, it computes y «— PRF\(T", x)
and returns y.

3. Eventually, A issues a challenge query x*. It is required that, for all queries
(S,x) to ODH,, made previously, if S = g%, then © # x*. Likewise, it is
required that, for all queries (T,xz) to ODH, made previously, if T = g“,
then © # x*. This is to prevent trivial wins by A. C samples a bit b &

{0,1} uniformly at random, computes yo = PRF (g™, z*), and samples y1 &
{0,1}* uniformly at random. The challenger returns yy, to A.
4. Next, A may issue (arbitrarily interleaved) queries to oracles ODH, and
ODH,. These are handled as follows:
— ODHy,: on a query of the form (S, z), the challenger first checks if S ¢ G
orif (S,x) = (¢, z*) and returns L if either holds. Otherwise, it returns
y «— PRF,(SY,z).
— ODH,: on a query of the form (T, z), the challenger first checks if T ¢ G
or if (T,xz) = (g*,x*) and returns L if either holds. Otherwise, it returns
y — PRF,\(T",z).
5. At some point, A outputs a guess bit b’ € {0,1}.

We say that the adversary wins the sym-I-PRFODH game if b’ = b and define
the advantage function

AdERE R () = 12 Pr(t = b) — 1]

We say that the sym-Ir-PRFODH assumption holds if the advantage
Advf;yg’F"IEZﬁODH()\) of any PPT adversary A is negligible.

3 The WireGuard Protocol
The WireGuard protocol is, as presented in [11]2, cleanly separated into two
distinct phases:

2 And in the updated version at https://www.wireguard.com/papers/wireguard.pdf
that we rely on hereafter.

https://www.wireguard.com/papers/wireguard.pdf

8 B. Dowling and K. G. Paterson

— A key exchange or handshake phase, where users exchange ephemeral elliptic-
curve Diffie-Hellman values, as well as encrypted long-term Diffie-Hellman
values and compute AEAD keys; and

— A data transport phase, where users may send authenticated and confidential
transport data under the previously computed AEAD keys.

The handshake phase is a 1-RTT protocol in which users maintain the following
set of variables:

— A randomly-sampled session identifier 1D, for each user in the session (i.e we
use ID; to refer to the session identifier of the initiator and for the responder
we refer to 1D,.).

— An updating seed value Cj, is used to seed the key-derivation function at
various points during the key-exchange.

— An updating hash value Hy, is used to hash subsets of the transcript together,
to bind the computed AEAD keys to the initial key-exchange.

— A tuple of AEAD keys that are used for confidentiality of the long-term key
of the initiator, and to authenticate hash values.

— Long-term elliptic-curve Diffie-Hellman keys g“, g* of initiator and responder,
respectively.

— Ephemeral elliptic-curve Diffie-Hellman keys g, g¥ of initiator and responder,
respectively.

— Optional long-term preshared key psk.

In Fig. 1 we describe the computations required to construct the key exchange
messages, which we refer to as InitiatorHello and ResponderHello. For con-
ciseness, we do not include the chaining steps required to compute the various
C and Hy, values throughout the protocol (we instead list them in Table 1). Nor
do we make explicit the verification of the mac1, mac2 MAC values nor the time,
zero AEAD values, but assume that they are correctly verified before deriving
the session keys tk; and tk,..

3.1 Remarks on the Protocol

As noted in the introduction (and noted by Donenfeld [11]), it is clear that Wire-
Guard’s 1-RTT handshake taken in isolation is not secure in the KCI setting.
This is because an attacker in possession of the responder’s long-term private
DH value v can construct the first protocol message and thence impersonate
the initiator to the responder. Our attack in Sect.5.1 extends this authentica-
tion attack to a session key recovery attack. WireGuard protects against this
kind of KCI attack by requiring the first data transport message to be sent by
the initiator and the responder to check the integrity of this message. Strictly
speaking, then, the first data transport message should be regarded as part of
the handshake, making it no longer 1-RTT.

An attractive aspect of WireGuard (from a provable security standpoint)
is that it is “cryptographically opinionated”, meaning that the protocol has no
algorithm negotiation functionality—all WireGuard sessions will use Curve25519

A Cryptographic Analysis of the WireGuard Protocol 9

(z,9%) & DHGen, epk, < ¢°, sid; = ID; & {0,1}*

1tk = AEAD(ks, 0, g", H3)

now <— Timestamp()

time <~ AEAD.Enc(k4,0, Ha, now)

macl + MAC(H(1abels||g"), type||0®|sid; |epk, || 1tk| time)
mac2 + MAC(cookie, type||0®||sid;| epk,|/1tk| time|macl)
InitiatorHello < typel|/0®||sid;| epk,||1tk| time|macl|mac2

InitiatorHello

(y,g¥) & DHGen, epk, + ¢¥, sid, = ID, & {0,1}32

zero <+ AEAD.Enc(kg, 0, Ho, ()

macl ¢ MAC(H(1abels||g"), type||0®||sid,||sid;|epk, ||zero)

mac2 + MAC(cookie, type||0®||sid,||sid;| epk, ||zero|maci)

ResponderHello « type|0®|sid,|/sid;||epk, ||zero|mact |mac2
ResponderHello

th: < KDF(Cy,0,1)
thy < KDF(Cy, 0,2)

Fig. 1. A brief overview of the WireGuard Key-Exchange Protocol. For more details
on the computation of the chaining seed (C%), hash (Hj) and intermediate key (ki)
values, refer to Table 1. Note that all verifications of MAC and AEAD values are left
implicit, but are obviously crucial to security.

for ECDH key exchange, BLAKE2 as the underlying hash function that builds
both HMAC and HKDF, and ChaCha20-Poly1305 as the AEAD encryption
scheme. As is known from the analysis of SSL/TLS, [1,4,5,15] and more gener-
ally [17], such negotiation mechanisms can lead to downgrade attacks that can
fatally undermine security especially if a protocol supports both weak and strong
cryptographic options. This decision to avoid ciphersuite negotiation simplifies
the analysis of WireGuard.

Surprisingly, the full key exchange transcript is not authenticated by either
party—the mac1 and mac2 values are keyed with public values H(1labels||g¥) and
cookie and thus can be computed by an adversary. While the hash values Hs, Hy
and Hg are headers in AEAD ciphertexts, these H values do not contain all of
the transcript information—the session identifiers sid; and sid, are not involved
in either the seed or hash chains. This then limits the options for analysing
WireGuard, as we cannot hope to show full transcript authentication properties.
It would be a straightforward modification to include the session identifiers in the
derivation of the session keys and thus bind the session identifiers to the session
keys themselves. One could argue that the lack of binding between transcripts
and output session keys has facilitated attacks on SSL/TLS, such as the Triple

10 B. Dowling and K. G. Paterson

Table 1. A detailed look at the computation of the chaining seed (C%) and hash
(Hy) values, as well as the intermediate AEAD keys (k) used in the WireGuard Key-
Exchange protocol. Note that unless otherwise specified, the triples (X,Y,Z) in the
table are used in that order as the inputs to a key-derivation function KDF(X,Y, Z)
(so X is used as the keying material, Y is the salt value and Z the index of the output
key) to compute the relevant values. Finally, we denote with () values that are not used
during protocol execution.

k | Seed value Ci | Key kg Hash value Hy
H(label) 0 H(C1]||1abels)
(C1,9%,1) 0 H(H1]lg")
(C2,9™,1) | (C2,9"",2) H(Hz||g")
(Cs,9"",1) | (Cs,9"",2) H(Hs||1tk)
(
(

O |00 || |U x| W N~
—~ =

] H(H4||time)
Ci,9%,1) 0 H(Hs]lg")
(Cs,97%,1) 0 0
(Cr,9", 1) 0 0
(Cs, psk, 1) (Cs, psk,3) | H(Hg||KDF(Cs, psk, 2))
10| 0 0 H(Hy||zero)

Handshake attack [6], and so a small modification to the inputs of the chaining
values C' and hash values H would strengthen the security of the protocol.

4 Security Model

We propose a modification to the eCK-PFS security model introduced by Cremers
and Feltz [10] that incorporates preshared keys and strengthens the security def-
initions accordingly. We explain the framework and give an algorithmic descrip-
tion of the security model in Sect. 4.1, and describe the corruption abilities of the
adversary in Sect.4.2. We then describe the modifications necessary to capture
the exact security guarantees that WireGuard attempts to achieve by explaining
the differences between our partnering definitions and traditional notions of part-
nering in Sect. 4.3. We then give our modified cleanness definitions in Sect. 4.4.
Given that WireGuard uses a mix of long-term identity keys, ephemeral keys
and preshared secrets in its key exchange protocol, it is appropriate to use an
extended-Canetti-Krawcyzk model (as introduced in [20]), wherein the adversary
is allowed to reveal subsets of these secrets. It is claimed in [11] that WireGuard
“achieves the requirements of authenticated key exchange (AKE) security, avoids
key-compromise impersonation, avoids replay attacks, provides perfect forward
secrecy,” [11]. These are all notions captured by our extended eCK-PFS model,
so our subsequent security proof will formally establish that WireGuard meets
its goals.

A Cryptographic Analysis of the WireGuard Protocol 11

4.1 Execution Environment

Consider an experiment ExpeKcElf;IZF’i';ﬂ(()\) played between a challenger C and
an adversary A. C maintains a set of np parties Pi,..., P,, (representing users

interacting with each other via the protocol), each capable of running up to ng
sessions of a probabilistic key-exchange protocol KE, represented as a tuple of
algorithms KE = (f, ASKeyGen, PSKeyGen, EPKeyGen). We use 7} to refer to
both the identifier of the s-th instance of the KE being run by party P; and the
collection of per-session variables maintained for the s-th instance of KE run by
P;. We describe the algorithms below:

KE.f(\, pki, ski, ™, m) 3 (m/,7') is a (potentially) probabilistic algorithm
that takes a security parameter A, the long-term asymmetric key pair pk;, sk; of
the party P;, a collection of per-session variables m and an arbitrary bit string
m € {0,1}*U{0}, and outputs a response m’ € {0,1}*U{0} and an updated per-
session state 7/, acting in accordance with an honest protocol implementation.

KE.ASKeyGen(\) LA (pk, sk) is a probabilistic asymmetric-key generation
algorithm taking as input a security parameter A and outputting a public-
key/secret-key pair (pk, sk).

KE.PSKeyGen(\) LA (psk, pskid) is a probabilistic symmetric-key generation
algorithm that also takes as input a security parameter A and outputs a symmet-
ric preshared secret key psk and (potentially) a preshared secret key identifier
pskid.

KE.EPKeyGen(\) 5 (ek,epk) is a probabilistic ephemeral-key generation
algorithm that also takes as input a security parameter A and outputs an asym-
metric public-key /secret-key pair (ek, epk).

C runs KE.ASKeyGen(\) np times to generate a public-key/secret-key pair
(pki, sk;) for each party P; € {Py,...,P,,} and delivers all public-keys pk; for

i€{l,...,np} to A. The challenger C then randomly samples a bit b S {0,1}
and interacts with the adversary via the queries listed in Sect. 4.2. Eventually, A
terminates and outputs a guess b’ of the challenger bit b. The adversary wins the
eCK-PFS-PSK key-indistinguishability experiment if ¥’ = b, and additionally if
the session 7§ such that Test(7, s) was issued satisfies a cleanness predicate clean,
which we discuss in more detail in Sect. 4.4. We give an algorithmic description
of this experiment in Fig. 2.
Each session maintains the following set of per-session variables:

— p € {init,resp} — the role of the party in the current session. Note that
parties can be directed to act as init or resp in concurrent or subsequent
sessions.

— pid € {1,...,np,x} — the intended communication partner, represented with
* if unspecified. Note that the identity of the partner session may be set
during the protocol execution, in which case pid can be updated once.

- ms € {0,1}* U {L} — the concatenation of messages sent by the session,
initialised by L.

— m, € {0,1}* U{L} — the concatenation of messages received by the session,
initialised by L.

12

Exp

B. Dowling and K. G. Paterson

eCK-PFS-PSK-ind ()\)
KE,clean,np,ng,A .

15:
16:
17:

. b/ gACreate*,Send,...(pkl
: Yo
: if clean(r}) then

b {01}

tested +— false

for i =1 to np do
(pki, ski) & ASKeyGen())
ASKflag, < clean

PSK,[L e ,np} — L1
PSKflag,[1,...,np] + L
EPKflag;[1,...,ns] + L
RSKflag;[1,...,ns] + L
ctr; < 0

: end for

’pk”P)

return (b’ =b)
else

return b & {0,1}
end if

Create(i, j, role):

ctr; < ctr; + 1

s < ctr;

i .pid < j

wi.p < role

m;.ek < KE.EPKeyGen())
m; .psk < PSK;[j]
return (i, s)

Send(i, s, m):

1:
2:

if 77 = 1 then
return |

else
T My < 5 .me||m

(71-?7 m,) — KEf(/\vpkh Skiu 7va m)

w5 ms < w5 .ms||m’
w5 T« . T||m|m’
return m’

end if

CreatePSK(4, j):

—

9:
10:
11:
12:

if (i« = j) Vv (PSKflag,[j] # 1)
then

return L
end if

(psk, pskid) + KE.PSKeyGen(\)
PSK;[j] <+ (psk, pskid)
PSK;[i] < (psk, pskid)
PSKflag,[;], PSKflag,[i] +- clean
if pskid # () then

return pskid
else

return T
end if

CorruptPSK(i, j):

1
2
3
4
5
6:
7
8
9
10

: if PSK;[j] = L then

return L

: end if
. if PSKflag;[j] # clean then

return L

else
PSKflag;[j] < corrupt
PSKflag;[i] < corrupt
return PSK;[j]

: end if

CorruptEPK(%, s):

1:
2:

EKflag;[s] < corrupt
return 7;.ek

CorruptASK(7):

1:
2:

ASKflag, < corrupt
return sk;

Reveal(i, s):

1:

if (7].cc # accept) then
return L

else
RSKflag;[s] < corrupt
return .k

end if

Test(i, s):
1:

if (tested = true) V (mj.a #
accept) V (7] = L) then
return L

2
3: end if

4: tested < true
5: if b =0 then
6:
7
8
9

return .k

: else

return k &K

: end if

Fig. 2. eCK-PFS-PSK experiment for adversary A against the key-indistinguishability

security of protocol KE.

A Cryptographic Analysis of the WireGuard Protocol 13

— kid € {0,1}* U {L} — the concatenation of public keyshare information
received by the session, initialised by L.

— «a € {active,accept,reject, L} — the current status of the session, ini-
tialised with L.

— k€ {0,1}* U{L} — the computed session key, or L if no session key has yet
been computed.

— ek € {0,1}* x {0,1}* U {L} — the ephemeral key pair used by the session
during protocol execution, initialised as L.

— psk € {0,1}* x{0,1}* U{L} — the preshared secret and identifier used by the
session during protocol execution, initialised as L.

— st € {0,1}* — any additional state used by the session during protocol
execution.

Finally, the challenger manages the following set of corruption registers,
which hold the leakage of secrets that A has revealed.

— preshared keys {PSKflag,, PSKflag,,..., PSKflag, } where for each ele-
ment PSKflag,[j] € PSKflag,, PSKflag,[j] € {corrupt,clean, L} V i,j €
[np] and PSKflag;[j] = L for i = j.

— long-term keys {ASKflag,,...,ASKflag, ,}, where ASKflag, € {corrupt,
clean, 1} Vi€ [np].

— ephemeral keys {EPKflag,, ..., EPKflag,, .}, where EPKflag;[s] € {corrupt,
clean, 1} Vi € [np] and s € [ng].

— session keys {RSKflag,,... RSKflag, }, where RSKflag;[s| € {corrupt,
clean, 1} Vi € [np] and s € [ng].

We formalise the advantage of a PPT algorithm A in winning the
eCK-PFS-PSK key indistinguishability experiment in the following way:

Definition 2 (eCK-PFS-PSK Key Indistinguishability). Let KE be a key-
exchange protocol, and np, ng € N. For a particular given predicate clean, and
a PPT algorithm A, we define the advantage of A in the eCK-PFS-PSK key-
indistinguishability game to be:

1
CK-PFS-PSK | CK-PFS-PSK
AdVig o et T (A) = | Pr[Expe s o o0 (A) = 1] — §|

We say that KE is eCK-PFS-PSK-secure if, for all A, Advi%ﬁiﬁi’;%’dea"()\) is
negligible in the security parameter .

4.2 Adversarial Interaction

Our security model is intended to be as generic as possible, in order to capture
eCK-like security notions, but to also include long-term preshared keys. This
would allow our model to be used in analysing (for example) the Signal protocol,
where users exchange both long-term Diffie-Hellman keyshares used in many
protocol executions, but also many ephemeral Diffie-Hellman keyshares that are
only used within a single session. Another example would be TLS 1.3, where users

14 B. Dowling and K. G. Paterson

may have established preshared keys to reduce the protocol’s computational
overheads, or to enable 0-RTT confidential data transmission.

Our attacker is a standard key-exchange model adversary, in complete control
of the communication network, able to modify, inject, delete or delay messages.
They can also compromise several layers of secrets:

— long-term private keys, modelling the misuse or corruption of long-term
secrets in other sessions, and additionally allowing our model to capture
forward-secrecy notions.

— ephemeral private keys, modelling the use of bad randomness generators.

— preshared symmetric keys, modelling the leakage of shared secrets, potentially
due to the misuse of the preshared secret by the partner, or the forced later
revelation of these keys.

— session keys, modelling the leakage of keys by their use in bad cryptographic
algorithms.

The adversary interacts with the challenger via the queries below. An algo-
rithmic description of how the challenger responds is in Fig. 2.

— Create(i, j,role) — {(i,s), L}: allows the adversary to begin new sessions.

— CreatePSK(i,j) — {pskid, T, L}: allows the adversary to direct parties to
generate a preshared key for use in future protocol executions.

— Reveal(i, s): allows the adversary access to the secret session key computed
by a session during protocol execution.

— CorruptPSK(i) — {psk, L}: allows the adversary access to the secret pre-
shared key jointly shared by parties prior to protocol execution.

— CorruptASK(i) — {sk;, L}: allows the adversary access to the secret long-term
key generated by a party prior to protocol execution.

— CorruptEPK(i,s) — {ek, L}: allows the adversary access to the secret
ephemeral key generated by a session during protocol execution.

— Send(i,s,m) — {m’, L}: allows the adversary to send messages to sessions
for protocol execution and receive their output.

— Test(i,s) — {k, L}: sends the adversary a real-or-random session key used in
determining the success of A in the key-indistinguishability game.

4.3 Partnering Definitions

In order to evaluate which secrets the adversary is able to reveal without triv-
ially breaking the security of the protocol, key-exchange models must define
how sessions are partnered. Otherwise, an adversary would simply run a proto-
col between two sessions, faithfully delivering all messages, Test the first session
to receive the real-or-random key, and Reveal the session partner’s key. If the
keys are equal, then the Test key is real, and otherwise the session key has
been sampled randomly. BR-style key-exchange models traditionally use match-
ing conversations in order to do this. When introducing the eCK-PFS model,
Cremers and Feltz [10] used the relaxed notion of origin sessions.

A Cryptographic Analysis of the WireGuard Protocol 15

However, both of these are still too restrictive for analysing WireGuard,
because this protocol does not explicitly authenticate the full transcript. Instead,
for WireGuard, we are concerned matching only on a subset of the transcript
information — the honest contributions of the keyshare and key-derivation mate-
rials. We introduce the notion of contributive keyshares to capture this intuition.

Definition 3 (Contributive Keyshares). Recall that 7{.kid is the concate-
nation of all keyshare material sent by the session w; during protocol execution.
We say that 71'; is a contributive keyshare session for 7} if F;.kid 18 a substring
of mf.m,.

This definition is protocol specific because 7} .kid is: in WireGuard 7;.kid
consists only of the long-term public Diffie-Hellman value and the ephemeral
public Diffie-Hellman value provided by the initiator and responder; in TLS 1.3
(for example) it would consist of the long-term public keys, the ephemeral public
Diffie-Hellman values and any preshared key identifiers provided by the client
and selected by the server.

4.4 Cleanness Predicates

We now define the exact combinations of secrets that an adversary is allowed to
leak without trivially breaking the protocol. The original cleanness predicate of
Cremers and Feltz [10] allows the reveal of long-term secrets for the test session’s
party P; at any time, which places us firmly in the setting where the adversary
has key-compromise-impersonation abilities, but only allowed the reveal of long-
term secrets of the intended peer after the test session has established a secure
session, which captures perfect forward secrecy.

We now turn to modifying the cleanness predicate cleaneck-prs.psk for the
preshared secret setting.

Definition 4 (cleaneck-prs-psk). A session m$ such that 7f.cc = accept in the
security experiment defined in Fig. 2 is cleaneck-prs-psk if all of the following
conditions hold:

1. The query Reveal(i, s) has not been issued.

2. For all (j,t) € np x ng such that 7 is a contributive keyshare session for 7T§»,
the query Reveal(j,t) has not been issued.

3. If PSKflag;[n{.pid] = corrupt or wi.psk = L, the queries CorruptASK(7)
and CorruptEPK(7, 8) have not both been issued.

4. If PSKflag;[n}.pid] = corrupt or wi.psk = L, and for all (j,t) € np X ng
such that 7r§- is a contributive keyshare session for ¥, then CorruptASK(j, t)
and CorruptEPK(j,t) have not both been issued.

5. If there exists no (j,t) € np X ng such that 7t is a contributive keyshare

j
session for m, CorruptASK(j) has not been issued before m§.cv < accept.

We specifically forbid the adversary from revealing the long-term and ephemeral
secrets if the preshared secret between the test session and its intended part-

ner has already been revealed. Since preshared keys are optional in our frame-
work, we also must consider the scenario where a preshared secret does not exist

16 B. Dowling and K. G. Paterson

between the test session 7] and its intended partner. Similarly, we forbid the
adversary from revealing the long-term and ephemeral secrets if there exists no
preshared secret between the two parties. Finally, since WireGuard does not
authenticate the full transcript, but relies instead on implicit authentication of
derived session keys based on secret information, we must use our contributive
keyshare partnering definition instead of the origin sessions of [10]. Like eCK-PFS,
we capture perfect forward secrecy under key-compromise-impersonation attack
in condition 5, where the long-term secret of the test session’s intended partner
is allowed to be revealed only after the test session has accepted. Additionally,
we allow for the optional incorporation of preshared secrets in conditions 3 and
4, where the adversary falls back to eCK-PFS leakage paradigm if the preshared
secret between the test session and its peer either does not already exist, or has
been already revealed.

5 Security Analysis

In this section we examine the security implications of modelling the WireGuard
handshake as a 1-RT'T key exchange protocol. We have already noted that this
results in a KCI attack on the protocol, also observed in [11]. However, we note
an arguably more serious attack on session key security in our eCK-PFS-PSK
security model that results from this modelling. We discuss the implications of
this attack in Sect.5.1. Making minor modifications to the WireGuard hand-
shake protocol will allow us to prove key-indistinguishability security in the
strong eCK-PFS-PSK model. Specifically, we will add a key-confirmation mes-
sage generated by the initiator. We describe the modified WireGuard handshake
protocol in Sect. 5.2 and prove it secure in Sect. 5.3.

5.1 Attack on Forward-Secrecy Notions

We briefly describe an attack on WireGuard as a 1-RTT protocol that is allow-
able within the eCK-PFS-PSK security model. It uses the ability of the adversary
to target perfect forward secrecy combined with key-compromise-impersonation
and results in full session key recovery. Specifically, it allows the adversary to
corrupt the long-term key of a responder session, and thus impersonate any
party initiating a session to the corrupted party. Since we model WireGuard
as a 1-RTT key exchange protocol, we do not include the data transport mes-
sage that would otherwise authenticate the initiator to a responder session, and
thus the responder has to accept the session as soon as the responder has sent
the ResponderHello message (this being the last message in the 1-RTT version
of the protocol). Afterwards, the adversary is permitted to corrupt the long-
term key of the party that it is impersonating. This enables it to compute the
session key, and thus distinguish real session keys from random ones, breaking
eCK-PFS-PSK key indistinguishability. The exact details of this attack within
the eCK-PFS-PSK security model can be found in the full version [14].

A Cryptographic Analysis of the WireGuard Protocol 17

Readers may argue that this attack is implausible in a real-world setting, and
is entirely artificial, allowable only because of the severe key compromises per-
mitted in the security model. We tend to agree, and present the attack here only
as a means of illustrating that the WireGuard handshake protocol, as originally
presented in its 1-RTT form, is not only vulnerable to standard KCI attacks,
but also to key recovery attacks, and therefore not directly amenable to strong
security proofs without incorporating additional messages as part of the hand-
shake.

5.2 The Modified WireGuard Handshake

We note that in [11], the protection for a responder against KCI attacks is
to wait for authenticated data transport messages to arrive from the initiator.
Incorporating this into the WireGuard handshake would make it impossible to
prove it secure with respect to a key indistinguishability security notion, however,
because the session keys, being used in the data transport protocol, would no
longer remain indistinguishable from random when the subject of a Test query.

As explained in the introduction, there are two basic ways of surmounting
this obstacle: consider the protocol (handshake and data transport) as a mono-
lithic whole, or modify the protocol. We adopt the latter approach, and present
a modification to the WireGuard handshake protocol that allows us to prove
notions of perfect forward secrecy and defence against key-compromise imper-
sonation attacks. Figure 3 shows the modified protocol, denoted mWG. It adds
a key-confirmation message sent from the initiator to the responder, computed
using an extra derived key k1o used solely for this purpose.

Our modifications are minor (involving at most 5 extra symmetric key oper-
ations) and do not require an additional round trip before either party can
begin sending transport data, as the responder was already required to wait for
initiator-sent data before it was able to begin safely sending its own.

5.3 Security of the Modified WireGuard Handshake
This section is dedicated to proving our main result:

Theorem 1. The modified WireGuard handshake protocol mWG s
eCK-PFS-PSK-secure with cleanness predicate cleaneck-prs-psk (capturing per-
fect forward secrecy and resilience to KCI attacks). That is, for any PPT
algorithm A against the eCK-PFS-PSK key-indistinguishability game (defined
in Fig. 2) AdveSSFS-PSK (M) is negligible under the prf, auth-aead,

mWG,cleaneck-prs-psk, P ,n5,A

sym-ms-PRFODH, sym-mm-PRFODH and ddh assumptions.

Due to space constraints, we point readers to the full version of this work
[14] for a more detailed security statement, as well as full details of the proof.

18 B. Dowling and K. G. Paterson

(z,9%) & DHGen, epk, < ¢°, sid; = ID; & {0,1}*
1tk = AEAD(ks3,0, g%, Hs)

now <— Timestamp()

time <~ AEAD.Enc(k4,0, Hs, now)

InitiatorHello: type|0%||sid;||epk,||1tk|[time[macl|mac2

InitiatorHello

(y,g%) & DHGen, epk, < ¢¥, sid, = ID, & {0,1}*

zero < AEAD.Enc(ky, 0, Hy, ()

ResponderHello < type||0®||sid,||sid;||epk, ||zero|jmacl|lmac2
ResponderHello

Cho, k10 + KDF(Cy, 0)

conf < AEAD.Enc(k10,0, Hio, 0)

macl < MAC(H(1abels||g"), type||0®||sid;||sid,||conf)
mac2 < MAC(cookie, type||0°||sid;||sid, | conf|mact)
SenderConf < typel||0®||sid;||sid,||conf||maci|mac2

SenderConf

tkl < KDF(CH],@, 1)
thy < KDF(C’lo7 @, 2)

Fig. 3. The modification to the WireGuard handshake that allows eCK-PFS-PSK secu-
rity. The change is limited to an additional SenderConf message that contains the value
conf « AEAD(k10,0, Hio,0). Except for the computation of the new Cio, k10 values,
all values are computed as in the original WireGuard handshake protocol, and can be
found in Table 1.

6 Conclusions and Future Work

We gave a description of the WireGuard protocol, and demonstrated that it
has an implicit entanglement of its data transport phase and its key exchange
(or handshake) phase. This is needed to ensure protection against KCI attacks.
In turn this means that WireGuard either cannot be proven secure as a key
exchange protocol using standard key-indistinguishability notions, or it is vul-
nerable to key-recovery attacks in the KCI setting. Despite this issue, we believe
that the design of WireGuard protocol is an interesting one, and our attack is
intended more to make a subtle point about the need to cleanly separate a key
exchange protocol and the usage of its session keys in subsequent protocols.
We presented the eCK-PFS-PSK security model. This amends the previous
eCK-PFS model of [10] to cover key exchange protocols such as WireGuard that
combine preshared keys with long-term and ephemeral keys. We then made a

A Cryptographic Analysis of the WireGuard Protocol 19

minimal set of modifications to the WireGuard handshake protocol, and proved
that the modified WireGuard protocol achieves key-indistinguishability security
in our new (and strong) eCK-PFS-PSK model.

Other approaches to analysing WireGuard may also be rewarding. Instead of
separately establishing the security of the handshake and assuming it securely
composes with the data transport phase, one could imagine making a monolithic
analysis similar to the ACCE approach introduced in [16]. However, this would
require a different “record layer” modelling from that used for TLS in [16] to
allow for packet loss and packet reordering. One could also implement our modi-
fication and measure its effect on the performance of WireGuard, but we expect
it to be very small.

Finally, we made certain simplifications to simplify our analysis of Wire-
Guard. For instance we did not model the Cookie Reply messages that are
designed to protect peers that are under load, nor did we analyse WireGuard’s
key rotation mechanisms. Given its several attractive properties, WireGuard is
certainly deserving of further formal security analysis.

Acknowledgements. Dowling was supported by EPSRC grant EP/L018543/1.
Paterson was supported in part by a research programme funded by Huawei Tech-
nologies and delivered through the Institute for Cyber Security Innovation at Royal
Holloway, University of London, and in part by EPSRC grants EP/M013472/1 and
EP/L018543/1. We are grateful to Hakon Jacobsen and Benjamin Lipp as well as the
anonymous reviewers for feedback on our work.

References

1. Adrian, D., Bhargavan, K., Durumeric, Z., Gaudry, P., Green, M., Halderman,
J.A., Heninger, N., Springall, D., Thomé, E., Valenta, L., VanderSloot, B., Wus-
trow, E., Béguelin, S.Z., Zimmermann, P.: Imperfect forward secrecy: how Diffie-
Hellman fails in practice. In: 22nd ACM SIGSAC Conference on Computer and
Communications Security, CCS 2015 Denver, Colorado, USA, pp. 5-17 (2015)

2. Aumasson, J.-P.;, Meier, W., Phan, R.C.-W., Henzen, L.: The Hash Function
BLAKE. ISC. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44757-4

3. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207—
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_14

4. Beurdouche, B., Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Kohlweiss, M.,
Pironti, A., Strub, P.-Y., Zinzindohoue, J.K.: A messy state of the union: taming
the composite state machines of TLS. In: 2015 IEEE Symposium on Security and
Privacy, pp. 535-552. IEEE Computer Society Press, May 2015

5. Bhargavan, K., Brzuska, C., Fournet, C., Green, M., Kohlweiss, M., Béguelin,
S.Z.: Downgrade resilience in key-exchange protocols. In: 2016 IEEE Symposium
on Security and Privacy, pp. 506-525. IEEE Computer Society Press, May 2016

6. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti, A., Strub, P.-Y.: Triple
handshakes and cookie cutters: breaking and fixing authentication over TLS. In:
2014 IEEE Symposium on Security and Privacy, pp. 98-113. IEEE Computer Soci-
ety Press, May 2014

https://doi.org/10.1007/978-3-662-44757-4
https://doi.org/10.1007/978-3-662-44757-4
https://doi.org/10.1007/11745853_14

20

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

B. Dowling and K. G. Paterson

Brendel, J., Fischlin, M.: Zero round-trip time for the extended access control pro-
tocol. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS,
vol. 10492, pp. 297-314. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66402-6_18

Brendel, J., Fischlin, M., Giinther, F.; Janson, C.: PRF-ODH: relations, instanti-
ations, and impossibility results. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 651-681. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63697-9_22

Brzuska, C., Fischlin, M., Warinschi, B., Williams, S.C.: Composability of Bellare-
Rogaway key exchange protocols. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.)
ACM CCS 11, pp. 51-62. ACM Press, October 2011

Cremers, C., Feltz, M.: Beyond eCK: perfect forward secrecy under actor com-
promise and ephemeral-key reveal. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 734-751. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33167-1_42

Donenfeld, J., WireGuard: next generation kernel network tunnel. In: 24th Annual
Network and Distributed System Security Symposium, NDSS 2017, San Diego,
California, USA (2017)

Dowling, B., Fischlin, M., Giinther, F., Stebila, D.: A cryptographic analysis of
the TLS 1.3 handshake protocol candidates. In: Ray, I., Li, N., Kruegel, C. (eds.)
ACM CCS 2015, pp. 1197-1210. ACM Press, October 2015

Dowling, B., Fischlin, M., Giinther, F., Stebila, D.: A cryptographic analysis of the
TLS 1.3 draft-10 full and pre-shared key handshake protocol. Cryptology ePrint
Archive, Report 2016/081 (2016). http://eprint.iacr.org/2016,/081

Dowling, B., Paterson, K.G.: A Cryptographic Analysis of the WireGuard Protocol.
Cryptology ePrint Archive, Report 2018/080, January 2018. https://eprint.iacr.
org/2018/080

Dowling, B., Stebila, D.: Modelling ciphersuite and version negotiation in the TLS
protocol. In: Foo, E., Stebila, D. (eds.) ACISP 2015. LNCS, vol. 9144, pp. 270-288.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19962-7_16

Jager, T., Kohlar, F., Schége, S., Schwenk, J.: On the security of TLS-DHE in the
standard model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 273-293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32009-5_17

Jager, T., Paterson, K.G., Somorovsky, J.: One bad apple: backwards compatibility
attacks on state-of-the-art cryptography. In: NDSS 2013. The Internet Society,
February 2013

Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546-566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218_33

Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the TLS protocol: a
systematic analysis. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS,
vol. 8042, pp. 429-448. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4_24

LaMacchia, B.A., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1-16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5.1

https://doi.org/10.1007/978-3-319-66402-6_18
https://doi.org/10.1007/978-3-319-66402-6_18
https://doi.org/10.1007/978-3-319-63697-9_22
https://doi.org/10.1007/978-3-319-63697-9_22
https://doi.org/10.1007/978-3-642-33167-1_42
http://eprint.iacr.org/2016/081
https://eprint.iacr.org/2018/080
https://eprint.iacr.org/2018/080
https://doi.org/10.1007/978-3-319-19962-7_16
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/978-3-642-32009-5_17
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-642-40041-4_24
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1

21.

22.

23.

A Cryptographic Analysis of the WireGuard Protocol 21

Morrissey, P., Smart, N.P., Warinschi, B.: A modular security analysis of the TLS
handshake protocol. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350,
pp. 55—73. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-
75

Nir, Y., Langley, A.: ChaCha20 and Poly1305 for IETF Protocols. RFC 7539 (Infor-
mational), May 2015

Perrin, T.: The Noise Protocol Framework, October 2017. http://noiseprotocol.
org/noise.html

https://doi.org/10.1007/978-3-540-89255-7_5
https://doi.org/10.1007/978-3-540-89255-7_5
http://noiseprotocol.org/noise.html
http://noiseprotocol.org/noise.html

l‘)

Check for
updates

Distributed SSH Key Management with
Proactive RSA Threshold Signatures

Yotam Harchol'®) | Tttai Abraham?, and Benny Pinkas??3

1 UC Berkeley, Berkeley, USA
yotamhc@berkeley.edu
2 VMware Research, Palo Alto, USA
3 Bar-Ilan University, Ramat Gan, Israel

Abstract. SSH is a security network protocol that uses public key cryp-
tography for client authentication. SSH connections are designed to be
run between a client and a server and therefore in enterprise networks
there is no centralized monitoring of all SSH connections. An attractive
method for enforcing such centralized control, audit or even revocation
is to require all clients to access a centralized service in order to obtain
their SSH keys. The benefits of centralized control come with new chal-
lenges in security and availability.

In this paper we present ESKM - a distributed enterprise SSH key
manager. ESKM is a secure and fault-tolerant logically-centralized SSH
key manager. ESKM leverages k-out-of-n threshold security to provide
a high level of security. SSH private keys are never stored at any sin-
gle node, not even when they are used for signing. On a technical level,
the system uses k-out-of-n threshold RSA signatures, which are enforced
with new methods that refresh the shares in order to achieve proactive
security and prevent many side-channel attacks. In addition, we support
password-based user authentication with security against offline dictio-
nary attacks, that is achieved using threshold oblivious pseudo-random
evaluation.

ESKM does not require modification in the server side or of the SSH
protocol. We implemented the ESKM system, and a patch for OpenSSL
liberypto for client side services. We show that the system is scalable and
that the overhead in the client connection setup time is marginal.

1 Introduction

SSH (Secure Shell) is a cryptographic network protocol for establishing a secure
and authenticated channel between a client and a server. SSH is extensively
used for connecting to virtual machines, managing routers and virtualization
infrastructure in data centers, providing remote support and maintenance, and

also for automated machine-to-machine interactions.

This work describes a key manager for SSH. Client authentication in SSH
is typically based on RSA signatures. We designed and implemented a system
called ESKM — a distributed Enterprise SSH Key Manager, which implements
and manages client authentication using threshold proactive RSA signatures.

© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 22-43, 2018.
https://doi.org/10.1007/978-3-319-93387-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_2&domain=pdf

Distributed SSH Key Management 23

Our work focuses on SSH but has implications beyond SSH key management.
Enterprise-level management of SSH connections is a known to be a critical prob-
lem which is hard to solve (see Sect. 1.1). The solution that we describe is based
on threshold cryptography, and must be compliant with the SSH protocol. As
such, it needs to compute RSA signatures. Unfortunately, existing constructions
for threshold computation of RSA signatures with proactive security, such as
[20-22], do not tolerate temporary unavailability of key servers (which is a com-
mon feature). We therefore designed a new threshold RSA signature protocol
with proactive security, and implemented it in our system. This protocol should
be of independent interest.

Technical Contributions. In addition to designing and implementing a solution
for SSH key management, this work introduces the following novel techniques:

— Threshold proactive RSA signatures with graceful handling of non-
cooperating servers: Threshold cryptography divides a secret key between
several servers, such that a threshold number of servers is required to com-
pute cryptographic operations, and a smaller number of servers learns noth-
ing about the key. Threshold RSA signatures are well known [27]. There are
also known constructions of RSA threshold signatures with proactive security
[20-22]. However, these constructions require all key servers to participate in
each signature. If a key server does not participate in computing a signa-
ture then its key-share is reconstructed and exposed to all other servers. This
constraint is a major liveness problem and is unacceptable in any large scale
system.

This feature of previous protocols is due to the fact that the shares of thresh-
old RSA signatures must be refreshed modulo ¢(N) (for a public modulus
N), but individual key servers cannot know ¢(NN) since knowledge of this
value is equivalent to learning the private signature key.

ESKM solves this problem by refreshing the shares over the integers, rather
than modulo ¢(N). We show that, although secret sharing over the integers
is generally insecure, it is secure for proactive share refresh of RSA keys.

— Dynamic addition of servers: ESKM can also securely add key servers or
recover failed servers, without exposing to any key server any share except
its own. (This was known for secret sharing, but not for threshold RSA sig-
natures.)

— Client authentication: Clients identify themselves to the ESKM system
using low-entropy secrets such as passwords. We enable authentication based
on threshold oblivious pseudo-random function protocols [19] (as far as we
know, we are the first to implement that construction). The authentication
method is secure against offline dictionary attacks even if the attacker has
access to the memory of the clients and of less than k of the key servers.

1.1 Current SSH Situation

SSH as a Security Risk. Multiple security auditing companies report that many
large scale enterprises have challenges in managing the complexity of SSH keys.

24 Y. Harchol et al.

SSH communication security [5] “analyzed 500 business applications, 15,000
servers, and found three million SSH keys that granted access to live produc-
tion servers. Of those, 90% were no longer used. Root access was granted by
10% of the keys”. Ponemon Institute study [4] in 2014 “of more than 2,100 sys-
tems administrators at Global 2000 companies found that three out of the four
enterprises were vulnerable to root-level attacks against their systems because
of failure to secure SSH keys, and more than half admitted to SSH-key-related
compromises.” It has even been suggested by security analysts at Venafi [6] that
one of the ways Edward Snowden was able to access NSA files is by creating and
manipulating SSH keys. Recent analysis [33] by Tatu Ylonen, one of the authors
of the SSH protocol, based on Wikileaks reports, shows how the CIA used the
BothanSpy and Gyrfalcon hacking tools to steal SSH private keys from client
machines.

The risk of not having an enterprise level solution for managing SSH keys
is staggering. In a typical kill chain the attacker begins by compromising one
machine, from there she can start a devastating lateral movement attack. SSH
private keys are either stored in the clear or protected by a pass-phrase that is
typically no match for an offline dictionary attack. This allows an attacker to
gain new SSH keys that enable elevating the breach and reaching more machines.
Moreover, since many SSH keys provide root access, this allows the attacker to
launch other attacks and to hide its tracks by deleting auditing controls. Finally,
since SSH uses state-of-of-the-art cryptography it prevents the defender from
having visibility to the attackers actions.

Motivation. A centralized system for storing and managing SSH secret keys has
major advantages:

— A centralized security manager can observe, approve and log all SSH con-
nections. This is in contrast to the peer-to-peer nature of plain SSH, which
enables clients to connect to arbitrary servers without any control by a cen-
tralized authority. A centralized security manager can enforce policies and
identify suspicious SSH connections that are typical of intrusions.

— Clients do not need to store keys, which otherwise can be compromised if
a client is breached. Rather, in a centralized system clients store no secrets
and instead only need to authenticate themselves to the system (in ESKM
this is done using passwords and an authentication mechanism that is secure
against offline dictionary attacks).

In contrast to the advantages of a central key server, it is also a single point
of failure, in terms of both availability and security. In particular, it is obviously
insecure to store all secret keys of an organization on a single server. We therefore
deploy n servers (also known as “control cluster nodes” — CC nodes) and use
k-out-of-n threshold security techniques to ensure that a client can obtain from
any k CC nodes the information needed for computing signatures, while any
subset of fewer than £ CC nodes cannot learn anything useful about the keys.
Even though computing signatures is possible with the cooperation of k& CC
nodes, the private key itself is never reconstructed. Security is enhanced by
proactive refresh of the CC nodes: every few seconds the keys stored on the

Distributed SSH Key Management 25

S
_______ .ﬁ

Server
(Core machine)

Client

(Edge machine)

Cloud / Enterprise

Fig. 1. General system architecture

nodes are changed, while the signature keys remain the same. An attacker who
wishes to learn a signature key needs to compromise at least & CC nodes in the
short period before a key refresh is performed.

Secret Key Leakage. There are many side-channel attack vectors that can be used
to steal keys from servers (e.g., [2,23,30]). Typically, side-channel attacks steal a
key by repeatedly leaking little parts of the secret information. Such attacks are
one of the main reasons for using HSMs (Hardware Secure Modules). Proactive
security reduces the vulnerability to side-channel attacks by replacing the secret
key used in each server after a very small number of invocations, or after a
short timeout. It cab therefore be used as an alternative to HSMs. We discuss
proactive security and our solutions is Sects. 2.2 and 3.2. (It is also possible to
use both threshold security and HSMs, by having some CC nodes use HSMs for
their secret storage.)

Securing SSH. The focus of this work is on securing client keys that are used
in SSH connections. Section 2.1 describes the basics of the handshake protocol
used by SSH. We use Shamir’s secret sharing to secure the storage of keys. The
secret sharing scheme of Shamir is described in Sect. 2.2. We also ensure security
in the face of actively corrupt servers which send incorrect secret shares to other
servers. This is done using verifiable secret sharing which is described in Sect. 2.2.
The main technical difficulty is in computing signatures using shared keys, so
that no server has access to a key neither in computation nor in storage. This is
achieved by using Shoup’s threshold RSA signatures (Sect.2.2). We also achieve
proactive security, meaning that an attacker needs to break into a large subset
of the servers in a single time frame. This is enabled by a new cryptographic
construction that is described in Sect. 3.

1.2 ESKM

ESKM (Enterprise SSH Key Manager) is a system for secure and fault-tolerant
management of SSH private keys. ESKM provides a separation between the

26 Y. Harchol et al.

security control plane, and the data plane. The logically-centralized control plane
is in charge of managing and storing private keys in a secure and fault-tolerant
manner, so that keys are never stored in any single node at any given time. The
control plane also provides centralized management services, such as auditing
and logging for network-wide usage of secrets, and key revocation.

The general architecture of ESKM is presented in Fig. 1. The control plane
is composed of a security manager (SM) and a control cluster (CC). The ESKM
CC is a set of servers that provide the actual cryptographic services to data
plane clients. These servers can be located in the same physical site (e.g., a
datacenter), in multiple sites, or even in multiple public clouds. These servers
can be run in a separate hardened machine or as VMs or a container. They
do not require any specialized hardware but can be configured to utilize secure
hardware as a secondary security layer.

Threshold Cryptography. The ESKM control plane leverages k-out-of-n threshold
security techniques to provide guarantees for both a high level of security and
for strong liveliness. Secrets are split into n shares, where each share is stored on
a different control plane node. In order to retrieve a secret or to use it, at least
k shares are required (k < n). Specifically, in order to sign using a private key,
k out of n shares of the private key are used, but the private key itself is never
reconstructed, not even in memory, in cache, or in the CPU of any machine.
Instead, we use a threshold signature scheme where each node uses its share of
the private key to provide a signature fragment to the client. Any k of these
fragments are then transformed by the client to a standard RSA signature. Any
smaller number of these fragments is useless for an attacker, and in any case,
the shares, or the private key, cannot be derived from these fragments.

Proactive Security. ESKM also provides a novel proactive security protocol that
refreshes the shares stored on each CC node, such that the shares are randomly
changed, but the secret they hide remains the same. This protects against a
mobile adversary and side-channel attacks, since keys are refreshed very fre-
quently while on the other hand any successful attack must compromise at least
k servers before the key is refreshed. Known constructions of proactive refreshing
of threshold RSA signatures are inadequate for our application:

— In principle, proactive refreshing can be computed using generic secure multi-
party computation (MPC) protocols. However, this requires quite heavy
machinery (since operations over a secret modulus need to be computed in
the MPC by a circuit).

— There are known constructions of RSA threshold signatures with proactive
security [20-22], but these constructions require all key servers to participate
in each signature. If a key server does not participate in computing a signa-
ture then its key-share is reconstructed by the other servers and is exposed,
and therefore this key server is essentially removed from the system. This
constraint is a major liveness problem and is unacceptable in any large scale
system.

Distributed SSH Key Management 27

Given these constraints of the existing solutions for proactively secure thresh-
old RSA, we use a novel, simple and lightweight multi-party computation pro-
tocol for share refresh, which is based on secret sharing over the integers.

While secret sharing over the integers is generally insecure, we show that
under certain conditions, when the secret is a random integer in the range
[0...R) and the number n of servers is small (n” < R), then such a scheme is
statistically hiding in the sense that it leaks very little information about the
secret key. In our application |R| is the length of an RSA key, and the number n
of servers is at most a double-digit number. (The full version of this paper [16]
contains a proof of security for the case where the threshold is 2, and a conjec-
ture and a proof sketch for the general case.) Our implementation of proactive
secret sharing between all or part of the CC nodes, takes less than a second, and
can be performed every few seconds.

Provisioning New Servers. Using a similar mechanism, ESKM also allows dis-
tributed provisioning of new CC nodes, and recovery of failed CC nodes, without
ever reconstructing or revealing the key share of one node.

Minimal Modifications to the SSH Infrastructure. As with many new solutions,
there is always the tension between clean-slate and evolution. With so much
legacy systems running SSH servers, it is quite clear that a clean-slate solution
is problematic. In our solution there is no modification to the server or to the
SSH protocol. The only change is in a very small and restricted part of the client
implementation. The ESKM system can be viewed as a virtual security layer on
top of client machines (whether these are workstations, laptops, or servers). This
security layer manages secret keys on behalf of the client and releases the client
from the liability of holding, storing, and using multiple unmanaged secret keys.
In fact, even if an attacker takes full control over a client machine, it will not be
able to obtain the secret keys that are associated with this client.

Abstractly, our solution implements the concept of algorithmic virtualization:
The server believes that a common legacy single-client is signing the authenti-
cation message while in fact the RSA signature is generated via a threshold
mechanism involving the client and multiple servers.

Implementation and Ezperiments. We fully implemented the ESKM system: a
security manager and a CC node, and a patch for the OpenSSL libcrypto for
client side services. Applying this patch makes the OpenSSH client, as well as
other software that uses it such as scp, rsync, and git, use our service where
the private key is not supplied directly but is rather shared between CC nodes.
We also implemented a sample phone application for two-factor human authen-
tication, as discussed in Sect. 4.2.

We deployed our implementation of the ESKM system in a private cloud and
on Amazon AWS. We show by experiments that the system is scalable and that
the overhead in the client connection setup time is up to 100 ms. We show that
the control cluster is able to perform proactive share refresh in less than 500 ms,
between the 12 nodes we tested.

28 Y. Harchol et al.

Summary of Contributions:

1. A system for secure and fault-tolerant management of secrets and private keys
of an organization. ESKM provides a distributed, yet logically-centralized
control plane that is in charge of managing and storing the secrets in a secure
and fault-tolerant manner using k-out-of-n threshold signatures.

2. Our main technical contribution is a lightweight proactive secret sharing pro-
tocol for threshold RSA signatures. Our solution is based on a novel utilization
of secret sharing over the integers.

3. The system also supports password-based user authentication with security
against offline dictionary attacks, which is achieved by using threshold obliv-
ious pseudo-random evaluation (as is described in Sect. 3.4).

4. We implemented the ESKM system to manage SSH client authentication
using the standard OpenSSH client, with no modification to the SSH protocol
or the SSH server.

5. Our experiments show that ESKM has good performance and that the system
is scalable. A single ESKM CC node running on a small AWS VM instance
can handle up to 10K requests per second, and the latency overhead for the
SSH connection time is marginal.

2 Background

2.1 SSH Cryptography

The SSH key exchange protocol is run at the beginning of a new SSH connec-
tion, and lets the parties agree on the keys that are used in the later stages of
the SSH protocol. The key exchange protocol is specified in [32] and analyzed
in [7,28]. The session key is decided by having the two parties run a Diffie-
Hellman key exchange. Since a plain Diffie-Hellman key exchange is insecure
against active man-in-the-middle attacks the parties must authenticate them-
selves to each other. The server confirms its identity to the client by sending
its public key, verified by a certificate authority, and using the corresponding
private key to sign and send a signature of a hash computed over all messages
sent in the key exchange, as well as over the exchanged key. This hash value is
denoted as the “session identifier”.!

Client authentication to the server is described in [31]. The methods that
are supported are password based authentication, host based authentication,
and authentication based on a public key signature. We focus on public key
authentication since it is the most secure authentication method. In this method
the client uses its private key to sign the session identifier (the same hash value
signed by the server). If the client private key is compromised, then an adversary
with knowledge of that key is able to connect to the server while impersonating

! Security cannot be proved under the sole assumption that the hash function is
collision-resistant, since the input to the function contains the exchanged key. In [28]
the security of SSH is analyzed under the assumption that the hash function is a ran-
dom oracle. In [7] it was analyzed under the assumption that the function essentially
implements a PRF.

Distributed SSH Key Management 29

as the client. Since the client key is the only long-lived secret that the client
must keep, we focus on securing this key.

2.2 Cryptographic Background

Shamir’s Secret Sharing. The basic service provided by ESKM is a secure
storage service. This is done by applying Shamir’s polynomial secret sharing [26]
on secrets and storing each share on a different nodes. Specifically, given a secret
d in some finite field, the system chooses a random polynomial s of degree k — 1
in that field, such that s(0) = d. Each node 1 < i < n stores the share s(i). k
shares are sufficient and necessary in order to reconstruct the secret d.

Proactive Secret Sharing. One disadvantage of secret sharing is that the
secret values stored at each node are fixed. This creates two vulnerabilities: (1)
an attacker may, over a long period of time, compromise more than k — 1 nodes,
(2) since the same shares are used over and over, an attacker might be able to
retrieve them by exploiting even a side channel that leaks very little information
by using de-noising and signal amplification techniques.

The first vulnerability is captured by the mobile adversary model, in this
model the adversary is allowed to move from one node to another as long as
at most k — 1 nodes are compromised at any given two-round period [24]. For
example, for k = 2, the adversary can compromise any single node and in order
to move from this node to another node the adversary must have one round in
between were no node is compromised.

Secret sharing solutions that are resilient to mobile adversaries are called
proactive secret sharing schemes [18,34]. The core idea is to constantly replace
the polynomial that is used for sharing a secret with a new polynomial which
shared the same secret. This way, knowing k — 1 values from each of two different
polynomials does not give the mobile attacker any advantage in learning the
secret that is shared by these polynomials.

Proactive secret sharing is particularly effective against side-channel attacks:
Many side-channel attacks are based on observing multiple instances in which
the same secret key is used in order to de-noise the data from the side channel.
By employing proactive secret sharing one can limit the number of times each
single key is used, as well as limit the duration of time in which the key is used
(for example, our system is configured to refresh each key every 5s or after the
key is used 10 times).

Feldman’s Verifiable Secret Sharing. Shamir’s secret sharing is not resilient
to a misbehaving dealer. Feldman [11] provides a non-interactive way for the
dealer to prove that the shares that are delivered are induced by a degree k
polynomial. In this scheme, all arithmetic is done in a group in which the discrete
logarithm problem is hard, for example in Z; where p is a large prime.

To share a random secret d the dealer creates a random degree k polynomial
s(z) = > g<;ep @i’ where ag = d is the secret. In addition, a public generator g

30 Y. Harchol et al.

is provided. The dealer broadcasts the values g%, ..., g% and in addition sends
to each node i the share s(i). Upon receiving s(i), g*°, ..., g%, node i can verify
that g = [Ty, <4 (9%)" . If this does not hold then node i publicly complains
and the dealer announces s(7). If more than k& nodes complain, or if the public

shares are not verified, the dealer is disqualified.

Shoup’s Threshold RSA Signatures. The core idea of threshold RSA sig-
nature schemes is to spread the private RSA key among multiple servers [8,12].
The private key is never revealed, and instead the servers collectively sign the
requested messages, essentially implementing a secure multi-party computation
of RSA signatures.

Recall that an RSA signature scheme has a public key (IV,e) and a private
key d, such that e-d =1 mod ¢(N). A signature of a message m is computed
as (H(m))? mod N, where H() is an appropriate hash function.

An n-out-of-n threshold RSA scheme can be easily implemented by giving
each server a key-share, such that the sum of all shares (over the integers) is
equal to d [8,12]. Such schemes, however, require all parties to participate in
each signature. This issue can be handled using interactive protocols [13], some
with potentially exponential worst case costs [25,34]. These protocols essentially
recover the shares of non-cooperating servers and reveal them to all other servers,
and are therefore not suitable for a system that needs to operate even if some
servers might be periodically offline.

To overcome these availability drawbacks, Shoup [27] suggested a threshold
RSA signing protocol based on secret sharing, which provides k-out-of-n recon-
struction (and can therefore handle n — k servers being offline). Shoup’s scheme
is highly practical, does not have any exponential costs, is non-interactive, and
provides a public signature verification. (However, it does not provide proactive
security.)

We elaborate more on the details of the threshold RSA signature scheme
suggested by Shoup: The main technical difficulty in computing threshold RSA is
that polynomial interpolation is essentially done in the exponent, namely modulo
¢(N). Polynomial interpolation requires multiplying points of the polynomial by
Lagrange coefficients: given the pairs {(z;, s(x;))}i=1,....x for a polynomial s() of
degree k — 1, there are known Lagrange coefficients Ay, ..., Ax such that s(0) =
Zi:l,...,k Ais(z;). The problem is that computing these Lagrange coefficients
requires the computation of an inverse modulo ¢(N). However, the value ¢(N)
must be kept hidden (since knowledge of ¢(N) discloses the secret key d). Shoup
overcomes this difficulty by observing that all inverses used in the computation
of the Lagrange coefficients are of integers in the range [1,n], where n is the
range from which the indexes z; are taken. Therefore, replacing each Lagrange
coefficient \; with A - \;, where A = n!, converts each coefficient to an integer
number, and thus no division is required.

We follow Shoup’s scheme [27] to provide a distributed non-interactive veri-
fiable RSA threshold signature scheme. Each private key d is split by the system
manager into n shares using a random polynomial s of degree k — 1, such that
s(0) = d. Each node 7 of the system receives s(i).

Distributed SSH Key Management 31

Given some client message m to be signed (e.g., a SSH authentication string),
node ¢ returns to the client the value

z; = H(m)***® mod N,

where H is a hash function, A = n!, and N is the public key modulus.
The client waits for responses from a set S of at least k servers, and performs
a Lagrange interpolation on the exponents as defined in [27], computing

2:27
w=[+
i

where A7 is defined as the Lagrange interpolation coefficient applied to index i
in the set S in order to compute the free coefficient of s(), multiplied by A to
keep the value an integer. Namely,

HjeS\{i}j

A=A I
[Lies\giy (G —19)

3

ez

The multiplication by A is performed in order to cancel out all items in the
denominator, so that the computation of A\Y involves only multiplications and
no divisions.

The result of the interpolation is w = (H (m))*2™4. Then, since e is relatively
prime to A, the client uses the extended Euclidean algorithm to find integers
a,b such that 4A%a + eb = 1. The final signature (H(m))? is computed as
y = H(m)" = (H(m)")*8s - (H(m)®)" = (H(m)*)¥" 5+ = (H(m))". The
client then verifies the signature by verifying that H(m) = y¢ (where e is the
public key).

Share Verification: Shoup’s scheme also includes an elegant non-interactive
verification algorithm for each share. This means that the client can quickly
detect invalid shares that might be sent by a malicious adversary which controls
a minority of the nodes, and use the remaining honest majority of shares to inter-
polate the required signature. We only describe the highlights of the verification
procedure. Recall that an honest server must return z; = H(m)>#*() where
only s(i) is unknown to the client. The protocol requires the server to initially
publish a value v; = v where v is a publicly known value. The verification is
based on well known techniques for proving the equality of discrete logarithms:
The server proves that the discrete log of (z;)? to the base (H(m))*2, is equal
to the discrete log of v; to the base v. (The discrete log of (;)? is used due to
technicalities of the group Z%.) The proof is done using a known protocol of of
Chaum and Pedersen [9], see Shoup’s paper [27] for details. The important issue
for our system is that whenever the shares s(i) are changed by the proactive
refresh procedure, the servers’ verification values, v*(, must be updated as well.

Using polynomial secret sharing for RSA threshold signatures gives very good
liveliness and performance guarantees that are often not obtainable using com-
parable n-out-of-n RSA threshold signatures. The main drawback of Shoup’s

32 Y. Harchol et al.

scheme, as well as of all other known polynomial secret sharing schemes for
RSA, is that they do not provide an obvious way to implement proactive secu-
rity, which will redistribute the servers shares such that (1) the new shares still
reconstruct the original signature (2) the old shares of the servers contain no
information that can help in recovering the secret key from the new shares.
Proactive security gives guarantees against a mobile adversary and against side
channel attacks as discussed in the introduction. We address this drawback and
provide a novel proactive scheme for Shoup’s threshold signatures in Sect. 3.

3 ESKM Cryptography

In this section we describe the cryptographic novelties behind the ESKM system,
for cryptographic signing and for storage services for secret keys. We focus on
RSA private keys as secrets, as they are the most interesting use case of ESKM.
However, the same techniques can be applied to other secrets as well. ESKM
uses Shamir’s secret sharing in order to securely split secrets, such that each
share is stored on a different CC node. Given a secret d, the ESKM manager
creates a random polynomial s over ¢(IN) such that s(0) = d. It then provides
each node i with the value of s(i).

Threshold signatures are computed according to Shoup’s protocol. We focus
in this section on the new cryptographic components of our construction, which
support three new features:

1. Proactive refresh of the shares of the secret key.

2. Recovery and provisioning of new servers (this is done by the existing servers,
without the help of any trusted manager).

3. Support for password-based user authentication (with security against offline
dictionary attacks).

3.1 Security Model

The only entity in the ESKM system that is assumed to be fully trusted is
the system manager, which is the root of trust for the system. However, this
manager has no active role in the system other than initializing secrets and
providing centralized administrative features. In particular, the manager does
not store any secrets.

For the ESKM control cluster nodes (CC) we consider both the semi-honest
and malicious models and we provide algorithms for both. In the semi-honest
model, up to f = k — 1 CC nodes can be subject to offline attacks, side-channel
attacks, or to simply fail, and the system will continue to operate securely. In
the malicious model we also consider the case of malicious CC nodes that inten-
tionally lie or do not follow the protocol. Note that our semi-honest model is
also malicious-abortable. That is, a node which deviates from the protocol (i.e.,
behaves maliciously) will be detected and the refresh and recovery processes
will be aborted, so the system can continue to operate, although without share
refreshing and node recovery.

Distributed SSH Key Management 33

Clients are considered trusted to access the ESKM service, based on the
policy associated with their identity. Clients have to authenticate with the ESKM
CC nodes. Each authenticated client has a policy associated with its identity.
This policy defines what keys this client can use and what secrets it may access.
We discuss the client authentication issue in Sect. 3.4.

3.2 Proactive Threshold Signatures

In order to protect CC nodes against side-channel and offline attacks, we use a
proactive security approach to refresh the shares stored on each CC node. The
basic common approach to proactive security is to add, at each refresh round, a
set of random zero-polynomials. A zero-polynomial is a polynomial z of degree
k — 1 such that z(0) = 0 and all other coefficients are random. Ideally, each
CC node chooses a uniformly random zero-polynomial, and sends the shares of
this polynomial to all other participating nodes. If only a subset of the nodes
participate in the refresh protocol, the value that the zero-polynomial assigns
for the indexes of non-participating nodes must be zero. All participating nodes
verify the shares they receive and add them, along with the share they produce
for themselves, to their original shares. The secret is therefore now shared by
a new polynomial which is the sum of the original polynomial s() and the z()
polynomials that were sent by the servers. The value of this new polynomial at
0 is equal to s(0) + z(0) = s(0) + 0 = d, which is the original secret. This way,
while the shares change randomly, the secret does not change as we always add
zero to it.

As is common in the threshold cryptography literature, a mobile adversary
which controls k£ — 1 nodes at a specific round and then moves to controlling
£ > 0 new nodes (as well kK — ¢ — 1 of nodes that it previously controlled), must
have a transition round, between leaving the current nodes and controlling the
new nodes, where she compromises at most kK — ¢ — 1 nodes. Even for ¢ = 1
this means that the adversary has at most & — 2 linear equations of the k — 1
non-zero coefficients of z. This observation is used to prove security against a
mobile adversary.

The Difficulty in Proactive Refresh for RSA: The proactive refresh algo-
rithm is typically used with polynomials that are defined over a finite field. The
challenge in our setting is that the obvious way of defining the polynomial z
is over the secret modulus ¢(N) = (p — 1)(¢ — 1). On the other hand, security
demands that ¢(N) must not be known to the CC nodes, and therefore they
cannot create a z polynomial modulo ¢(N). In order not to expose ¢(N) we
take an alternative approach: Each server chooses a zero polynomial z over the
integers with very large random positive coefficients (specifically, the coefficients
are chosen in the range [0, N — 1]). We show that the result is correct, and that
the usage of polynomials over the integers does not reduce security.

With respect to correctness, recall that for all integers x, s, j it holds that
x5 = x5t ¢(N) mod N. The secret polynomial s() satisfies s(0) = d mod ¢(N).
In other words, interpolation of this polynomial over the integers results in a

34 Y. Harchol et al.

value s(0) = d 4 j¢(N) for some integer j. The polynomial z() is interpolated
over the integers to z(0) = 0. Therefore, 250 +2(0) = zd+i-¢(N)+0 — zd mod N.

With regards to security, while polynomial secret sharing over a finite field
is perfectly hiding, this is not the case over the integers. For example, if a poly-
nomial p() is defined over the positive integers then we know that p(0) < p(1),
and therefore if p(1) happens to be very small (smaller than N) than we gain
information about the secret p(0). Nevertheless, since the coefficients of the poly-
nomial are chosen at random, we show in [16, Appendix B] that with all but
negligible probability, the secret will have very high entropy. To the best of our
knowledge, this is the first such analysis for polynomial secret sharing over the
integers.

The Refresh Protocol for Proactive Security. Algorithm 1 presents our
share refresh algorithm for the malicious model. This is a synchronous distributed
algorithm for n nodes, with up to f = k — 1 malicious or faulty nodes, where
n = 2f + 1. The dealer provides the initial input parameters to all nodes. Note
that verification is done over some random prime field v, and not over the RSA
modulus N (v, > N).

For the semi-honest-malicious-abortable CC nodes model, Round 3 of the
algorithm is not necessary anymore, as well as signature validation for verifica-
tion values (lines 4, 9) and the completion of missing information in line 21.

Proactive Refresh of Verification Information: Secret sharing over the
integers allows to refresh the secret shares, but this is not enough. To obtain
verifiable RSA threshold signatures we also need to refresh the verification infor-
mation to work with the new shares, as is done in line 19 of the protocol.

Security: The security analysis of the proactive share refresh appears in the full
version of our paper [16]. Unlike secret sharing over a finite field, secret sharing
over the integers does not provide perfect security. Yet, since in our application
the shares are used to hide long keys (e.g., 4096 bits long), then revealing a small
number of bits about a key should be harmless: in the worst case, leaking o bits
of information about the secret key can only speed up attacks on the system
by a factor of 2° (any algorithm A that breaks the system in time T given o
bits about the secret key can be replaced by an algorithm A’ that breaks the
system in time 297 given only public information, by going over all options for
the leaked bits and running A for each option).

The degradation of security that is caused by leaking o bits can therefore be
mitigated by replacing the key length |N| that was used in the original system
(with no leakage), by a slightly longer key length which is sufficiently long to
ensure that the best known attacks against the new key length are at least 27
times slower than the attacks against the original shorter key length.

In the full version of the paper [16] we prove an upper bound on the amount
of information that is leaked about the secret key in 2-out-of-n proactive secret
sharing, and state a conjecture about the case of k-out-of-n proactive secret
sharing, for k > 2. (The exact analysis of the latter case seems rather technical,

Distributed SSH Key Management 35

Algorithm 1. Malicious Model Share Refresh Algorithm for Node 4

15:
16:

17:
18:

19:

20:
21:
22:
23:
24:

Input parameters:

s; - current share of node i; N - public key modulus;

p - an upper bound on the coeflicients of the zero polynomial(typically, p = N);
n - number of nodes; f - maximal number of faulty nodes (f =k — 1)

v - used as the base for verification of exponents; v®', ..., v°" - verification values;
vp - verification field; H - hash function for message signing

(Note: computations mod N, unless noted otherwise)

Round 1:

Choose af,...,ak_; ~ U([0,p)) to create a zero-polynomial z*(z) = Z’;;ll al - xd
over the integers.

Compute shares 2} = 2°(1),..., 25 = 2'(n)

Compute v™1,...,v%k~1 over v,

Compute Sig; — 7—[(1)6“/i yen ,UO‘L*I)
for each node ¢ # i Send z}, (UO‘Ii e vo‘ifl), Sig; to node ¢
Round 2:
for each received share z! from node ¢ do
Verify that ’H(vo‘{, R vo‘ﬁ—l) = Sige

14
Verify that v = H’;;ll (vo‘g) mod vy

If verification failed then Report node £

: end for
: if verified at least f 4 1 shares then

Let sj = s; + (Zveriﬁed shares ¢ 2t) (Summation is over the integers)

For each j, compute v/ = v% I, H’;;ll vt =y I, v mod Up.
Send OK messages to everyone with Sig, of each verified sender /,

(vST e, vsfb), and with a report of missing or invalid shares.

else Abort

end if

Round 3:

Compare signatures in all received OKs

Publicly announce everything known by node ¢ on disputed and missing shares to

everyone (there are up to f such shares)

Round 4:
Complete missing information using information sent in Round 3: Update sj,
Update v°1,...,v° Ignore OKs and shares of identified malicious nodes.

if received at least f + 1 valid OKs then
Commit new share: s; < s
Commit v*1 ey v

else Abort

end if

and we leave it as an open question.) For the case of n = 16 servers and k = 2,
the upper bound implies that, except with probability 274°, an adversary learns
at most 22 bits of knowledge about the secret key.

36 Y. Harchol et al.

3.3 Recovery and Provisioning of CC Nodes

Using a slight variation of the refresh protocol, ESKM is also able to securely
recover CC nodes that have failed, or to provision new CC nodes that are added
to the system (and by that increase reliability). The process is done without
exposing existing shares to the new or recovered nodes, and without any existing
node knowing the share of the newly provisioned node.

The basic idea behind this mechanism is as follows: A new node r starts
without any shares in its memory. It contacts at least k existing CC nodes.
Each one of these existing nodes creates a random polynomial z() such that
z(r) = 0 and sends to each node i the value z(i) (we highlight again that these
polynomials evaluate to 0 for an input). If all nodes are honest, each node
should simply add its original share s(7) to the sum of all z(¢) shares it received,
and compute s*(i) = s(i) + >_ z(i). The result of this computation, s*(), is a
polynomial which is random except for the constraint s*(r) = s(r). Node i then
sends s*(7) to the new node r, which then interpolates the values it received and
finds s*(r) = s(r). Since we assume that nodes may be malicious, the algorithm
uses verifiable secret sharing to verify the behavior of each node.

The pseudo-code for the recovery process is presented in [16]. Algorithm 2
in [16] presents the pseudo-code for each existing CC node participating in the
recovery process. Algorithm 3 in [16] presents the logic of the recovered node.

We note that if this mechanism is used to provision an additional node (as
opposed to recovery of a failed node), it changes the threshold to k-out-of-n + 1.
The security implication of this should be taken into account when doing so.

3.4 Threshold-Based Client Authentication

ESKM CC nodes need to verify their clients’ identity in order to securely serve
them and associate their corresponding policies and keys. However, in order to
be authenticated clients must hold some secret that represents their identity, and
hence we have a chicken-and-egg problem: Where would this secret be stored?

The adversary model assumes that an adversary might control some CC
nodes (but less than k& CC nodes), and might have access to the client machine.
The adversary must also be prevented from launching an offline dictionary attack
against the password.

Human Authentication: A straightforward authentication solution could be to
encrypt the private key using a password and store it at the client or in the CC
nodes, but since the password might have low entropy this approach is insecure
against offline dictionary attacks on the encrypted file. In addition, passwords
or hashes of passwords must not be recoverable by small server coalitions.

A much preferable option for password-based authentication is to use a
threshold oblivious pseudo-random function protocol (T-OPRF), as suggested
n [19]. A T-OPRF is a threshold modification to the concept of an OPRF. An
OPREF is a two-party protocol for obliviously computing a pseudo-random func-
tion Fi(x), where one party knows the key K and the second party knows z.

Distributed SSH Key Management 37

At the end the protocol the second party learns Fi(z) and the first party
learns nothing. (At an intuitive level, one can think of the pseudo-random func-
tion as the equivalent of AES encryption. The protocol enables to compute the
encryption using a key known to one party and a plaintext known to the other
party.) A T-OPRF is an OPRF where the key is distributed between multiple
servers. Namely K is shared between these servers using a polynomial p such
that p(0) = K. The client runs a secure protocol with each of the members of a
threshold subset of the servers, where it learns F),;)(x) from each participating
server i. The protocol enables the client to use this data to compute Fi(x).
The details of the T-OPRF protocol, as well as its security proof and its usage
for password-based threshold authentication, are detailed in [19]. (In terms of
availability, the protocol enables the client to authenticate itself after success-
fully communicating with any subset of the servers whose size is equal to the
threshold.)

The T-OPRF protocol is used for secure human authentication as follows:
The T-OPRF protocol is run with the client providing a password pwd and the
CC nodes holding shares of a master key K. The client uses the protocol to
compute Fi (pwd). Note that the password is not disclosed to any node, and the
client must run an online protocol, rather than an offline process, to compute
Fg (pwd). The value of Fi (pwd) can then be used as the private key of the client
(or for generating a private key), and support strong authentication in a standard
way. For example, the client can derive a public key from this private key and
provide it to the ESKM system (this process can be done automatically upon
initialization or password reset). Thus, using this scheme, the client does not
store any private information, and solely relies on the password, as memorized
by the human user. Any attempt to guess the password requires running an
online protocol with the CC nodes. This approach can be further combined with
a private key that is stored locally on the client machine or on a different device
such as a USB drive, in order to reduce the risk from password theft.

Machine Authentication: For automated systems (e.g., scripts running on
servers), a client machine must locally store a single private key which authen-
ticates it to the ESKM system. This key can be stored either in main memory
or on secure hardware (e.g., Amazon KMS). In terms of costs, this is of course
better than storing a massive number of client-server keys in such costly services.
In addition, any usage of this single private key is fully and securely audited by
the ESKM CC nodes. In an unfortunate case of theft, the key can be immedi-
ately revoked without having to log into multiple destination server machines
and revoke the key separately on each one of them.

4 ESKM System Design

In this section we describe the design details of the ESKM system, which is pre-
sented in Fig. 1. The system includes a logically-centralized control plane, which
provides security services, and a data plane, which consumes these services.

38 Y. Harchol et al.

4.1 ESKM Control Plane

The ESKM control plane provides security services for network users, whether
these are humans or machines. It manages identities, access policies, private keys
and secret storage. It also provides centralized auditing and logging capabilities.
The control plane is divided into two key parts: the security manager (SM) and
the control cluster (CC).

ESKM Security Manager. The ESKM security manager (SM) is a single
(possibly replicated) node that serves as the entry point for all administrative
and configuration requests from the system. It manages CC nodes with regards
to policy enforcement, storage of secrets, revocation of keys and policies, etc. It
is also a central access point for administrators for the purpose of auditing and
logging. The SM gives privileged admins the right to read audit logs, but not to
delete or prune them (this can be done at each CC node separately).

The SM provides a service for key generation.? Upon request, given some key
specification, the SM can generate a private key for an identity, and immediately
share it with the CC nodes. It then returns the public key to the user who
requested the generation of the key, but the private key and its shares are deleted
from the SM memory. The private key is never revealed or stored on disk.

ESKM Control Cluster. The ESKM control cluster (CC) is a set of servers,
referred to as “CC nodes”. These servers are not replicas. Each CC node imple-
ments the CC node specification with regards to the communication protocol.
However, each CC node stores different shares of the secrets they protect. In
order to add robustness, each CC node can be implemented by a different ven-
dor, run on a different operating system, or a different cryptography library.

A CC node provides two main services: signing, and secret storage and
retrieval. The signing service is based on the threshold signatures discussed in
Sects. 2 and 3. The storage and retrieval service is based on secret sharing as
discussed in Sect. 2.

Proactive Share Refresh. The CC nodes have a module that is responsible for
executing the share refresh algorithm presented in Sect. 3.2. A refresh policy has
a future start date, duration of a single refresh round, and an interval between
each two successive rounds. A refresh policy also specifies what to do in case of
a failure on a refresh round. A failure can be caused by a malicious or faulty
node, or by some misconfiguration such as unsynchronized clocks. The available
options are to ignore the failure as possible, report the failure and try to continue,
report and abort the ongoing round, report and abort all future refresh rounds
of this policy, or report and abort the CC node completely.

2 The only way to prevent key generation by a single entity is by running a secure
multi-party protocol for RSA key generation. However, such protocols, e.g., [17], are
too slow to be practical, especially when run between more than two servers, and
therefore we did not implement them.

Distributed SSH Key Management 39

Secure Recovery and Provisioning. The CC nodes also have a module that
is responsible for receiving and responding to recovery requests. Upon receiv-
ing such a request, the CC node executes the recovery algorithm described in
Sect. 3.3. In addition, each CC node web server can initialize a recovery request
and send it to the active CC nodes.

Auditing. One important feature of ESKM is the ability to provide fault-tolerant
network-wide auditing of private key usage. Each CC node keeps track of the
requests it handles and the signatures it produces, in a local log system.

In order to provide fault-tolerance of up to f = k — 1 failures, the SM is
allowed to query CC nodes for log entries in order to compose audit reports.
Deletion or pruning of CC node logs can only be done by the administrator of a
CC node. Thus, even if f nodes are compromised, an attacker cannot wipe their
traces by deleting the logs.

This centralized and robust auditing service provides two powerful features.
The first feature is the ability to have a system wide view of all SSH sessions,
and thus a centralized control and option of activating immediate system-wide
user revocation. The second feature is fault-tolerance and threshold security that
are provided by implementing the distributed auditing over the CC nodes.

4.2 ESKM Data Plane

The only modification in the data plane that is required in order to incorporate
ESKM is in the SSH client. In particular, we implemented ESKM in the client
by adding a patch to the libcrypto library of OpenSSL.

Authentication to ESKM CC Nodes. A client connects to a CC node
over a secure channel. The CC node authenticates itself using a certificate.
Client authentication depends on the type of the client: a human or an auto-
mated machine: Client edge machines are operated by humans, while client core
machines are automated. When using ESKM, a human infiltrator must authen-
ticate to ESKM from an edge machine in order to log into a core machine, and
by that to perform a lateral movement to other machines. Thus, by hardening
the authentication for edge machines we protect the entire network.

Machine-to-Machine Authentication. Automated clients (core machines) use
SSH client private key authentication in order to authenticate with CC nodes.

Human Authentication. We employ two-factor authentication for human clients
to authenticate with CC nodes. We use password authentication as something-
you-know, and a private key as something-you-have.

Our preferred password authentication method is using threshold OPRF,
as discussed in Sect.3.4. However, we also support two weaker methods:
SSH/HTTPS password-based authentication, and authentication using a pri-
vate key that is stored encrypted by the user’s password. We give users the
ability to configure their installation of ESKM with their preferred method.

40 Y. Harchol et al.

For the “something you have” authentication, we use RSA private keys that
can be installed on the client machine, a secure USB device, or on the user’s
smartphone. In the latter case, when the phone is notified when an authentication
request arrives, and the user is asked to enter a password or use her thumbprint
in order to authorize the smartphone to perform the RSA signing. The signature
is tunneled through a special CC node back to the client machine to complete
the authentication.

5 Experimental Results

The implementation of the ESKM system is described in [16, Appendix A].

We evaluated our implementation of the ESKM system by deploying it in
VMs in a private cloud. Our setup includes 14 VMs: One VM runs the ESKM
security manager, twelve VMs serve as ESKM CC nodes, and one VM serves as
a local client. Each VM on the private cloud is allocated a single CPU core of
type Intel Xeon E5-2680, with clock speed of 2.70 GHz. Most VMs do not share
their physical host. We also deploy one CC node on an AWS t2.micro VM.

The client agent performance experiment tests the latency overhead intro-
duced by our client agent, for the execution of the RSA_sign function in libcrypto,
compared to a standard execution of this function using a locally stored private
key. Another measurement we provide is the throughput of the client agent.

ESKM Client Performance in a Private Cloud. We first use the twelve
CC nodes that are deployed in our private cloud. We measure client agent per-
formance as a function of k£ - the minimal number of CC nodes replies required
to construct the signed authentication message. The figure in [16, Fig. 3] shows
the results of this experiment. Even when k is high, the latency overhead does
not exceed 100 ms, and the throughput of the client agent does not drop below
19 requests per second. We note that the throughput can be greatly improved
using batching techniques, when request frequency is high.

Client Performance with a Public Cloud CC Node. As mentioned in
Sect. 4.1, for enhanced security, CC nodes may also be placed in a public cloud,
and one share from these remote CC nodes must be used in order to make a
progress. We repeated the previous experiments with a CC node deployed in
AWS (t2.micro instance). The additional latency was 103 ms on average.

Client Performance with Failing CC Nodes. The figure in [16, Fig. 4] shows
the throughput and latency of the client agent every second over time, when
during this time more and more CC nodes fail. After each failure there is a
slight degradation in performance. However, these changes are insignificant and
the performance remains similar even when most CC nodes fail.

ESKM CC Node Performance. We evaluated the performance of an AWS
CC node by measuring the CPU utilization and memory usage of the process, as
a function of the number of sign requests it processed per second. The figure in
[16, Fig. 5] presents the results of these measurements: our CC node is deployed

Distributed SSH Key Management 41

on a single-core low-end VM, and is able to handle thousands of sign requests
per second without saturating the CPU.

Proactive Share Refresh. We tested our proactive share refresh algorithm
implementation to find how fast all 12 CC nodes can be refreshed. Usually, the
algorithm requires less than 500 ms to complete successfully. However, in some
rare cases this is not enough due to message delays. We set the refresh to be
done at least every two seconds, and to limit the length of a single refresh round
to at least one second.

CC Node Recovery. We also tested our node recovery algorithm implementa-
tion and found that it provides similar performance as the refresh algorithm. In
all our tests, the recovery process required less than 500 ms in order to complete
successfully. As for the refresh algorithm, we recommend to use a duration of at
least one second to avoid failures that may occur due to message delays.

6 Related Work

Polynomial secret sharing was first suggested by Shamir [26]. Linear k-out-of-k
sharing of RSA signatures was suggested by Boyd [8], Frankel [12]. Desmedt and
Frankel [10] observed that RSA k-out-of-n threshold signatures is challenging
because the interpolation of the shares is over ¢(n). Frankel et al. [13] provided
methods to move from polynomial to linear sharing and back. This technique is
interactive and not practical.

Rabin [25] provided a simpler proactive RSA signature scheme, using a two
layer approach (top is linear, bottom uses secret sharing). This protocol is used
in Zhou et al. [34] use in COCA. The scheme leaks information publicly when
there is a failure and hence does not seem suitable against a mobile adversary.
It also can incur exponential costs in the worst case.

Wu et al. [29] proposed a library for threshold security that provides encryp-
tion, decryption, signing, and key generation services. Their scheme is based on
additive RSA signatures, and in order to provide threshold properties they use
exponential number of shares as in previous additive schemes.

Shoup [27] suggested a scheme that overcomes the interpolation problem, and
provides non-interactive verification, that is resilient to an adversary controlling a
minority. Gennaro et al. [14] improve Shoup’s scheme to deal with large dynamic
groups. Gennaro et al. [15] provide constructions for verifiable RSA signatures
that are secure in standard models, but require interaction.

Centralized management of SSH keys has recently been the focus of several
open source projects: BLESS by Netflix [3], and Vault by Hashicorp [1]. They
do not provide threshold signature functionality, but instead resort to the more
traditional single node approach.

7 Conclusion

We presented ESKM: an Enterprise SSH Key Manager. ESKM advocates a
logically-centralized and software-defined security plane that is decoupled from

42 Y. Harchol et al.

the data plane. By separating the security functionality we can incorporate
cutting-edge cryptography in a software defined manner.

Our implementation shows that with minimal changes to the OpenSSL
library in the client, one can significantly increase the security of enterprise
SSH key management without making any changes to the server SSH deploy-
ment. In this sense, ESKM provides a virtual layer of security on top of any
existing legacy SSH server implementation. Our experiments show that ESKM
incurs a modest performance overhead on the client side. Our implementation of
the ESKM control plane is scalable and fault-tolerant, and is able to proactively
refresh the shares of CC nodes in a distributed way every few seconds.

References

Hashicorp Vault. https://github.com/hashicorp/vault

Heartbleed bug. http://heartbleed.com

Netflix Bless. https://github.com/Netflix/bless

Ponemon report. https://www.venafi.com/assets/pdf/Ponemon_2014_SSH_Securi

ty-Vulnerability _Report.pdf

SSH report. https://www.ssh.com/iam/ssh-key-management/

6. Venafi report. https://www.venafi.com/blog/deciphering-how-edward-snowden-
breached-the-nsa

7. Bergsma, F., Dowling, B., Kohlar, F., Schwenk, J., Stebila, D.: Multi-ciphersuite
security of the secure shell (SSH) protocol. In: Proceedings of the 2014 ACM Con-
ference on Computer and Communications Security, pp. 369-381 (2014)

8. Boyd, C.: Digital multisignatures. In: Cryptography and Coding (1986)

9. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89-105. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-48071-4_7

10. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307-315. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0-28

11. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In:
FOCS 1987, pp. 427-438 (1987)

12. Frankel, Y.: A practical protocol for large group oriented networks. In: Quisquater,
J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 56-61.
Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4_8

13. Frankel, Y., Gemmell, P., MacKenzie, P.D., Yung, M.: Optimal resilience proactive
public-key cryptosystems. In: FOCS 1997, pp. 384-393 (1997)

14. Gennaro, R., Halevi, S., Krawczyk, H., Rabin, T.: Threshold RSA for dynamic
and Ad-Hoc groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
88-107. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_6

15. Gennaro, R., Rabin, T., Jarecki, S., Krawczyk, H.: Robust and efficient sharing of
RSA functions. J. Cryptol. 20(3), 393 (2007)

16. Harchol, Y., Abraham, I., Pinkas, B.: Distributed SSH key management with proac-
tive RSA threshold signature. Cryptology ePrint Archive (2018)

17. Hazay, C., Mikkelsen, G.L., Rabin, T., Toft, T.: Efficient RSA key generation and

threshold paillier in the two-party setting. In: Dunkelman, O. (ed.) CT-RSA 2012.

LNCS, vol. 7178, pp. 313-331. Springer, Heidelberg (2012). https://doi.org/10.

1007/978-3-642-27954-6_20

L

o

https://github.com/hashicorp/vault
http://heartbleed.com
https://github.com/Netflix/bless
https://www.venafi.com/assets/pdf/Ponemon_2014_SSH_Security_Vulnerability_Report.pdf
https://www.venafi.com/assets/pdf/Ponemon_2014_SSH_Security_Vulnerability_Report.pdf
https://www.ssh.com/iam/ssh-key-management/
https://www.venafi.com/blog/deciphering-how-edward-snowden-breached-the-nsa
https://www.venafi.com/blog/deciphering-how-edward-snowden-breached-the-nsa
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/3-540-46885-4_8
https://doi.org/10.1007/978-3-540-78967-3_6
https://doi.org/10.1007/978-3-642-27954-6_20
https://doi.org/10.1007/978-3-642-27954-6_20

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

Distributed SSH Key Management 43

Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339-352. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
44750-4_27

Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: TOPPSS: cost-minimal password-
protected secret sharing based on threshold OPRF. Cryptology ePrint Archive,
Report 2017/363 (2017). http://eprint.iacr.org/2017/363

Jarecki, S., Saxena, N.: Further simplifications in proactive RSA signatures. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 510-528. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7_28

Jarecki, S., Saxena, N., Yi, J.H.: An attack on the proactive RSA signature scheme
in the URSA ad hoc network access control protocol. In: Proceedings of the 2nd
ACM Workshop on Security of ad hoc and Sensor Networks, SASN, pp. 1-9 (2004)
Kong, J., Zerfos, P., Luo, H., Lu, S., Zhang, L.: Providing robust and ubiquitous
security support for MANET. In: ICNP (2001)

Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: 2015 IEEE Symposium on Security and Privacy, SP 2015,
pp. 605-622. IEEE Computer Society (2015)

Ostrovsky, R., Yung, M.: How to withstand mobile virus attacks (extended
abstract). In: PODC 1991, pp. 51-59. ACM, New York (1991)

Rabin, T.: A simplified approach to threshold and proactive RSA. In: Krawczyk,
H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 89-104. Springer, Heidelberg (1998).
https://doi.org/10.1007 /BFb0055722

Shamir, A.: How to share a secret. Commun. ACM 22(11), 612-613 (1979)
Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 207—220. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6-15

Williams, S.C.: Analysis of the SSH key exchange protocol. In: Chen, L. (ed.)
IMACC 2011. LNCS, vol. 7089, pp. 356-374. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-25516-8_22

Wu, T.D., Malkin, M., Boneh, D.: Building intrusion-tolerant applications. In:
USENIX Security (1999)

Yarom, Y., Falkner, K.: FLUSH4+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: 23rd USENIX Conference on Security Symposium, SEC
2014, pp. 719-732. USENIX Association, Berkeley (2014)

Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Authentication Protocol. Internet
Requests for Comments, RFC 4252 (2004)

Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Transport Layer Protocol. Internet
Requests for Comments, RFC 4253 (2004)

Ylonen, T.: Bothanspy & Gyrfalcon - analysis of CIA hacking tools for SSH, August
2017. https://www.ssh.com/ssh/cia-bothanspy-gyrfalcon

Zhou, L., Schneider, F.B., Van Renesse, R.: COCA: a secure distributed online
certification authority. ACM Trans. Comput. Syst. 20(4), 329-368 (2002)

https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/3-540-44750-4_27
http://eprint.iacr.org/2017/363
https://doi.org/10.1007/978-3-540-30576-7_28
https://doi.org/10.1007/BFb0055722
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/978-3-642-25516-8_22
https://doi.org/10.1007/978-3-642-25516-8_22
https://www.ssh.com/ssh/cia-bothanspy-gyrfalcon

q

Check for
updates

Non-interactive Zaps of Knowledge

Georg Fuchsbauer'2(®) and Michele Orru!-2®)

! Inria, Paris, France
2 Ecole normale supérieure, CNRS, PSL University, Paris, France
{georg.fuchsbauer ,michele.orru}@ens.fr

Abstract. While non-interactive zero-knowledge (NIZK) proofs require
trusted parameters, Groth, Ostrovsky and Sahai constructed non-
interactive witness-indistinguishable (NIWI) proofs without any setup;
they called their scheme a non-interactive zap. More recently, Bellare,
Fuchsbauer and Scafuro investigated the security of NIZK in the face
of parameter subversion and observe that NI zaps provide subversion-
resistant soundness and WI.

Arguments of knowledge prove that not only the statement is true,
but also that the prover knows a witness for it, which is essential for
anonymous identification. We present the first NIWI argument of knowl-
edge without parameters, i.e., a NI zap of knowledge. Consequently, our
scheme is also the first subversion-resistant knowledge-sound proof sys-
tem, a notion recently proposed by Fuchsbauer.

Keywords: Non-interactive proofs + Argument of knowledge
Subversion resistance

1 Introduction

The concept of zero-knowledge proof systems, first proposed by Goldwasser et al.
[GMRA9], is a central tool in modern cryptography. Consider an NP relation R
which defines the language of all statements x for which there exists a witness
w so that R(z,w) = true. In a zero-knowledge proof for R a prover, knowing a
witness, wants to convince a verifier that x is in the language. The protocol must
be complete, that is, if the prover knows a witness for x then it can convince the
verifier; it should be sound, in that no malicious prover can convince the verifier
of a false statement, and zero-knowledge: the execution of the protocol reveals
no information to the verifier (beyond the fact that x is in the language).

Feige and Shamir [FS90] proposed a relaxation of zero-knowledge called wit-
ness indistinguishability, which only requires that it is indistinguishable which
witness was used to compute a proof. This notion turns out to be sufficient in
many contexts. Non-interactive zero-knowledge proofs (NIZK) [BFMS88] allow
the prover to convince the verifier by only sending a single message. However,
they rely on the existence of a common-reference string (CRS) to which prover
and verifier have access. The CRS is assumed to have been set up by some
© Springer International Publishing AG, part of Springer Nature 2018

B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 44-62, 2018.
https://doi.org/10.1007/978-3-319-93387-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_3&domain=pdf

Non-interactive Zaps of Knowledge 45

trusted party, which represents a serious limitation for all applications of NIZK
in scenarios where parties mutually distrust each other.

Dwork and Naor [DN00] constructed a two-round witness-indistinguishable
proof system for NP in the plain model, that is, where no trusted CRS is assumed.
In their protocol the first message (sent from the verifier to the prover) can
be fixed once and for all, and the second one provides the actual proof. They
called such protocols zaps. Barak et al. [BOV03] introduced the concept of non-
interactive zaps, where the prover sends a single message to deliver the proof.
Non-interactive zaps are thus non-interactive proof systems without a CRS.
Since in this scenario it is impossible to achieve zero-knowledge [GO94], wit-
ness indistinguishability (WT) is the best one can hope for. Groth, Ostrovsky,
and Sahai constructed the first non-interactive zaps from standard assumptions
[GOS06a]. Subsequently [GOS06a], there have been many works extending this
line of research [BW06,BW07, Gro06].

All aforementioned schemes guarantee that proofs can only be computed
for valid statements. Arguments of knowledge are proof systems that satisfy a
stronger notion of soundness. They require the prover to know a witness for the
proved statement. This is formalized via the notion of knowledge soundness that
demands that for each prover there exists an efficient extractor which can extract
a witness from the prover whenever the latter outputs a valid proof. (When this
holds for computationally bounded provers only, we speak of arguments rather
than proofs.) Since, by definition, false statements have no witnesses, knowledge
soundness implies the standard notion of (computational) soundness.

Succinct non-interactive arguments of knowledge (SNARKS) are non-
interactive proof systems with short (that is, independent of the size of the
statement or the witness) efficiently verifiable proofs that satisfy knowledge
soundness. SNARKSs were initially introduced for verifiable computation and are
now the most widely deployed proof systems in the real world. They are used
in cryptocurrencies such as Zcash [BCG+14], which guarantees anonymity via
zero-knowledge SNARKSs. As for all NIZK systems, a drawback of SNARKs is
that they require a CRS, that is, they require a one-time trusted setup of public
parameters. Since for SNARKSs every CRS has a simulation trapdoor, subversion
of these parameters leads to full compromise of soundness.

Subversion Resistance. Motivated by the subversion of trusted public param-
eters in standardized cryptographic protocols led by mass-surveillance activities,
Bellare et al. [BFS16] investigate what security properties can be maintained for
NIZK when its trusted parameters are subverted. CRS’s for NIZK are espe-
cially easy to subvert, since they must be subvertible by design: zero knowledge
requires that an honest CRS must be indistinguishable from a backdoored one,
where the backdoor is the trapdoor used to simulate proofs.

Bellare et al. defined multiple security properties that protect against param-
eter subversion: subversion soundness (S-SND) means that no adversary can
generate a malicious CRS together with a valid proof for a false statement;
subversion zero knowledge (S-ZK) requires that even if the adversary sets up
the CRS, there exists a simulator able to produce its full view; and subversion

46 G. Fuchsbauer and M. Orru

witness indistinguishability (S-WI) formalizes that even for proofs that were
made under a subverted CRS, it is still infeasible to tell which of two witnesses
was used.

Following Goldreich and Oren [GO94], Bellare et al. [BFS16] also showed that
it is impossible to achieve subversion soundness and (standard) zero-knowledge
simultaneously. For subversion-sound proof systems, subversion witness indistin-
guishability is thus the best one can hope for. The authors [BFS16] observe that
since proof systems that do not rely on a CRS cannot succumb to CRS-subversion
attacks, non-interactive zaps [GOS06a] achieve both S-SND and S-WI.

Bellare et al. did not consider the stronger notion of knowledge soundness,
which is the notion achieved by SNARKSs, and which in many applications is
the required notion for the used proof systems. For example, for all kinds of
anonymous authentication, users prove knowledge of signatures (often called
certificates or credentials, depending on the context); in this case soundness is
not sufficient, as signatures always exist, but in the security proof they must
actually be extracted in order to rely on their unforgeability. Fuchsbauer [Fucl§]
has recently defined a subversion-resistant notion of knowledge soundness but
left it open to give a scheme that achieves it. Such a scheme would protect
against possible parameter subversion in any context where proving knowledge
of a witness is required.

Our Contribution. Our result can be summarized as follows:

(i) We provide the first non-interactive zap with knowledge soundness; that is,
a witness-indistinguishable proof system without parameters for which there
exists an extractor that recovers a witness from every valid proof.

(ii) Our zap is also the first fully subversion-resistant WI argument-of-knowledge
system. In particular, it satisfies the recently defined notion of subversion
knowledge soundness [Fucl8], as well as subversion witness indistinguisha~
bility [BFS16] (the strongest notion compatible with S-SND).

Bellare et al. [BFS16] introduce a new type of knowledge-of-exponent assump-
tion, which they call DH-KE. They prove (standard) soundness and subversion
zero knowledge of their main construction under DH-KE and the decision lin-
ear assumption (DLin) [BBS04]. Our construction builds on the DLin-based
non-interactive zap from [GOS06a], whose soundness we upgrade to knowledge
soundness, assuming DH-KE. As for this zap, the language of our proof system
is circuit satisfiability and thus universal. Groth et al. [GOS06a] starting point is
a “dual-mode” [GOS06b, PVWO08] non-interactive proof system, for which there
are two indistinguishable types of CRS: one leading to proofs that are perfectly
sound and the other leading to proofs that are perfectly WI. To construct a
non-interactive zap, they let the prover choose the CRS. As the prover could
choose a CRS that leads to “unsound” proofs, the prover must actually choose
two CRS’s that are related in a way that guarantees that at least one of them
is of the “sound” type. It must then provide a proof of the statement under
both of them. The authors [GOS06a] then show that this protocol still achieves
computational WI.

Non-interactive Zaps of Knowledge 47

We turn their construction into a proof of knowledge by again doubling
the proof, thereby forcing the prover to prove knowledge of a trapdoor which
allows to extract the witness from one of the sound proofs. We prove our non-
interactive zap of knowledge secure under the same assumptions as Bellare et al.’s
S-ZK+SND scheme. Our result is summarized in the following theorem.

Theorem 1. Assuming DLin and DH-KE, there exists a non-interactive zap for
circuit satisfiability that satisfies knowledge soundness. The proof size is O(A\k),
where X is the security parameter and k is the size of the circuit.

Let us finally note that our system also implies a proof system which achieves
(standard) knowledge soundness, (standard) zero knowledge and subversion wit-
ness indistinguishability. This is obtained by plugging our zap of knowledge into
the construction by Bellare et al. [BFS16] that achieves SND, ZK and S-WI.

Their scheme uses a length-doubling pseudorandom generator (PRG) and
a CRS contains a random bit string o of length 2\ (where X is the security
parameter). A proof for statement x is a zap for the following statement: either
x is a valid statement or ¢ is in the range of the PRG. Using a zap of knowledge
(ZaK), knowledge soundness follows from knowledge soundness of the ZaK since
with overwhelming probability o is not in the range of the PRG. (The extractor
must thus extract a witness for x.) Zero knowledge follows from WI of the zap,
as after replacing ¢ with an element in the range of the PRG, proofs can be
simulated using a preimage of o. Finally, S-WT follows from S-WI of the zap.

Related Work. Since the introduction of non-interactive zaps [BOVO03,
GOS06a], a number of papers have studied and provided different (and more
efficient) implementations of zaps. Groth and Sahai [GS08] provided a more gen-
eral framework for NIWI and NIZK proofs, which leads to more efficient proofs
for concrete languages (instead of circuit satisfiability). Furthermore, their proof
system can also be based on other assumptions apart from DLin, such as SXDH,
allowing for shorter proofs.

Bitanski and Paneth [BP15] presented a different approach to constructing
zaps and WI proofs based on indistinguishability obfuscation (i0), but construc-
tions using 1O are only of theoretical interest. Rafols [Raf15] showed how to base
non-interactive zaps on Groth-Sahai proofs, thereby achieving an improvement
in efficiency (by a constant factor) over the original construction [GOS06a]. Her
construction can be implemented in asymmetric (“Type-17) pairing groups.

Her scheme can also serve as the starting point for a scheme achieving knowl-
edge soundness and we explore this in the full version [FO18]. (See Table 1 for an
overview.) Although this scheme is more efficient, we decided to concentrate on
building a scheme from [GOS06a], as we can prove it secure under the assump-
tions that underlie Bellare et al.’s [BFS16] SND+S-ZK scheme; in contrast, a
scheme built on asymmetric bilinear groups would require an analogue of the
DH-KE assumption in such groups (we refer to it as ADH-KE in [FO18]). This
is a qualitatively different assumption, as without a symmetric pairing it cannot
be checked whether the triple returned by the adversary is of the right form
(see Fig.3); it would thus not be efficiently decidable if an adversary has won

48 G. Fuchsbauer and M. Orru

Table 1. Efficiency and security of the original zaps and our constructions of zaps of
knowledge, where w is the number of wires, g the number of gates and |G| is the size
of an element of a group G.

Protocol Efficiency Assumptions

Zap [GOS06a] (18w + 129 + 5) |G| DLin

Zap of knwlg, Sect. 5 (36w + 249 + 14) |G| DLin, DH-KE
Zap [Raf15] (of knwlg; [FO18]) | (12w + 8¢ + 3) (|G1|+|Gz|) | SXDH (ADH-KE)

the game. Finally, our main scheme achieves tight security, whereas our proof
of knowledge soundness with asymmetric pairings (which we present in the full
version [FO18]) has a security loss that is linear in the circuit size.

2 Preliminaries

Notation. Let A be the security parameter. We let M.rl(A) be a length function
in A defining the length of the randomness for a probabilistic machine M. When
sampling the value a uniformly at random from the set S, we write a < S. When
sampling the value a from the probabilistic algorithm M, we write a «— M.
We use := to denote assignment. Elements of Z, are denoted in lower case,
group elements are denoted with capital letters. We employ additive notation
for groups. Let R be a relation between statements denoted by ¢ and witnesses
denoted by w. By R(¢) we denote the set of possible witnesses for the statement
¢ in R. We let L(R) :={¢: R(¢) # 0} be the language associated to R.

We consider the language of circuit satisfiability, which is NP-complete. For
a binary circuit C, the set R(C) is the set of inputs w that satisfy C(w) = 1.
Without loss of generality, we assume that circuits consist solely of NAND gates.
Unless otherwise specified, all following algorithms are assumed to be randomized
and to run in time poly (A). As Bellare et al. [BFS16], who follow [Gol93], we
only consider uniform machines to model the adversary A and the extractor
Ext. (See [BFS16,Fucl8] for discussions on how this choice affects the hardness
assumptions and security guarantees.)

Bilinear Groups. Throughout this work, we make use of prime-order abelian
groups equipped with a (symmetric) bilinear map. Concretely, we assume the
existence of groups G, Gr of odd prime order p of length A and an efficiently
computable non-degenerate bilinear map e: G x G — Gp. That is, the map e is
such that for all U,V € G and a,b € Z,, : e(aU,bV) = ab-e(U,V), and if U is a
generator of G, then e(U,U) is a generator of Gr. We say that a bilinear group
is verifiable if there exists an efficient verification algorithm that outputs true if
and only if I' = (p, G, Gr, e) is the description of a bilinear group. For instance,
the elliptic-curve group of [BBS04] equipped with the Weil pairing is publicly
verifiable. In most practical scenarios, the group description is embedded as a

Non-interactive Zaps of Knowledge 49

part of the protocol specification and agreed upon in advance; in these cases
there is no need for verification.

Throughout this paper, we assume the existence of a deterministic algorithm
G that, given as input the security parameter in unary 1%, outputs a bilinear
group description I'. The same assumption was already employed by Bellare et al.
[BFS16]. The main advantage in choosing G to be deterministic is that every
entity in the scheme can (re)compute the group from the security parameter,
and no party must be trusted with generating the group. Moreover, real-world
pairing schemes are defined for groups that are fixed for some A. For the sake
of simplicity, we define all our schemes w.r.t. a group description I" and assume
that the security parameter (A € N such that I" := G(1%)) can be derived from I".

Extractable Commitment Schemes. A commitment scheme Com consists of
the following three algorithms:

— (o,7) < Com.K(I'), the key generation algorithm, outputs a CRS o together
with the trapdoor information 7.

— (C,r) < Com.C(o,v), the commitment algorithm, outputs a commitment C
to the given value v together with the opening information r.

— bool — Com.O(o, C,v,r), the opening algorithm, outputs true if C is a com-
mitment to v witnessed by r, and false otherwise.

In our case, Com.C returns the used randomness and Com.O simply recom-
putes the commitment and checks that C' = Com.C(V; 7). Consequently, correct-
ness of the scheme is trivial. To ease notation for commitments and openings,
we will always assume that the group description I" can be deduced from o, and
omit the opening information from the returned value.

Generally, we require commitment schemes to be hiding and binding. Loosely
speaking, a scheme is hiding if the commitment C' reveals no information about v.
A scheme is binding if a cheating committer cannot change its mind about the
value it committed to. Formally, it is hard to find C,v,r,v" and 7’ such that
v # v and Com.O(c, C,v,r) = true = Com.O(o, C, v, 1’).

We also require a perfectly binding commitment scheme to be extractable,
that is, Com is equipped with an efficient extraction algorithm Com.E that, given
as input the trapdoor information 7, recovers the value v to which C' is bound.

Proof Systems. A non-interactive proof system [1 for a relation R consists of
the following three algorithms:

— (0,7) < MN.K(I"), the CRS generation algorithm that outputs a CRS o (and
possibly some trapdoor information 7). Since we are dealing with publicly
verifiable protocols, the trapdoor information 7 will be omitted in most cases
and used solely in the proofs or when combining protocols.

— 7« MN.P(0, ¢, w), a prover which takes as input some (¢, w) € R and a CRS
o, and outputs a proof 7.

— bool — M.V(o, ¢, 7) a verifier that, given as input a statement ¢ together with
a proof 7 outputs true or false, indicating acceptance of the proof.

50 G. Fuchsbauer and M. Orru

Game WIn g a(A) Oracle PROVE(¢, wo, w1)

bs{0,1}; I':=G(1") if R(¢,wo) = false V R(¢,w1) = false
(o,7) « N.K(I) return L

b AT (o) ™+ N.P(o, ¢, ws)

return (b =10") return 7

Fig. 1. Witness indistinguishability (WI) game.

A proof is complete if every correctly generated proof verifies. If the CRS is
clear from the context, we omit o from the arguments of IN.P or .V.

Zaps. A zap is a two-round, witness-indistinguishable proof system where the
first-round message is fixed “once and for all” [DNO00] for all future instances of
the protocol. The notion of witness-indistinguishability [FLS90] informally states
that no PPT adversary can tell which of two possible witnesses has been used
to construct a proof.

Definition 2. A proof system I is witness-indistinguishable (WI) for relation R
if Adviy'r a(A) is negligible in X for any PPT adversary A, where Advi'g o(A) ==
Pr[WIn g a(A)] —1/2 and Wl g A(N) is depicted in Fig. 1.

A zap is non-interactive if there is no first-round message from the verifier
to the prover: the prover simply sends a single message. The proof system thus
reduces to a pair (P,V) or can be considered as defined above, but with a CRS
generation algorithm that always outputs L. We next define the soundness notion
for non-interactive arguments of knowledge.

Knowledge soundness [BG93] means that for any prover able to produce a
valid proof there exists an efficient algorithm, which has access to the prover’s
random coins, capable of extracting a witness for the given statement.

Definition 3. A proof system I is knowledge-sound for R if for any PPT adver-
sary A there exists a PPT extractor Ext such that Adv}f\s’gft’R’n()\) 1s negligible
in X, where AdvR A ge(A) == Pr[KSNDpgage(A)] and KSNDy g g n(N) is

defined in Fig. 2. An argument of knowledge is a knowledge-sound proof system.

Variations of this argument are often found in the literature. Most of them
allow the extractor to rewind the adversary for interactive proof systems in

Game KSNDp g a gx(A)

= G(1Y); (o, 7) + MK

r <s {0, 1}A"|(>‘); (¢,) == A(o;7)

w <+ Ext(o,r)

return (M.V(0, ¢, 7) and R(¢p, w) = false)

Fig. 2. Game for knowledge soundness.

Non-interactive Zaps of Knowledge 51

Game DLing a(}) Game DH-KEg a g, ()

bs{0,1}; I := (p,G,Gr,e,G) = G(1%) I'=(p,G,Gr,e,G) = G(1%)

U, v, 7,8 s Zyp r +s{0, 1}A'rm)

if b=1then H = (r + s)G (X,Y,Z) =A(L;r)

else H «+sG s < Ext(I,r)

b Al uG,vG,urG,vsG, H) if sG =XV sG =Y then return 0
return (b =1b') return (e(X,Y) = e(Z,G))

Fig. 3. Games for Assumptions1 (DLin) and 2 (DH-KE).

addition to black-box access, most notably for X-protocols. In case of non-
interactive provers the extractor is provided with the adversary’s random coins.

Assumptions. Our protocol is based on the DH-KE assumption and the exis-
tence of a homomorphic extractable commitment scheme. Such schemes have
been widely studied and there are constructions from standard assumptions such
as the subgroup decision assumption or the decisional linear (DLin) assumption
[BBS04]. For this work, we rely on the latter, which is also used in [GOS06a).

The DLin assumption [BBS04] for an abelian group G = (G) of order p states
that it is computationally difficult to distinguish (uG,vG,urG,vsG, (r + s)QG)
with u,v,r, s +sZ, from a uniformly random 5-tuple in G.

Assumption 1 (DLin). We say that the Decisional Linear assumption holds
for the group generator G if for all PPT adversaries A we have:

AdvR' () = Pr [DLing A(A)] — 1/2 = negl(}\),
where the game DLing 5(A) is defined in Fig. 3.

The intuition behind DH-KE [BFS16] is that it is difficult for some machine
to produce a (Diffie-Hellman) DH triple (zG,yG, zyG) in G without knowing
at least x or y. The assumption is in the spirit of earlier knowledge-of-exponent
assumptions [Grol0,BCI+10], whose simplest form states that given (G, zG) €
G? it is hard to return (yG,zyG) without knowing .

Assumption 2 (DH-KE). The Diffie-Hellman Knowledge of Exponent ass-
umption holds for the bilinear group generator G if for any PPT adversary A
there exists a PPT extractor Ext such that:

AdVCGH,lK,eExt(A) = Pr [DH_KEG,A,Ext()\)] = negI(A) ’
where the game DH-KEg g, (\) is defined in Fig. 5.

In other variants of knowledge of exponent assumptions the adversary is pro-
vided with some auxiliary information, which amounts to a stronger assumption.
This is typically required as in the security proofs the reduction obtains a chal-
lenge which it needs to embed in the input to the adversary. In our specific case,

52 G. Fuchsbauer and M. Orru

all the proof material is generated by the prover itself, including the CRS. Con-
sequently, the game DH-KE considers an adversary that simply takes as input
a group description, without any auxiliary information. Compared to [BFS16],
where the adversary is provided with additional information, our variant is thus
weaker.

3 An Extractable Commitment Scheme from DLin

We recall the homomorphic commitment scheme based on linear encryption
[BBS04] by Groth et al. [GOS06a]. It defines two types of key generation:
a perfectly hiding and perfectly binding one. Given a bilinear group I’ =
(p,G,Gr,e,G), it defines two key-generation algorithms Com.K(®) and Com.K®™
producing binding and hiding keys, respectively:

Com.K® Com.K®)

7= (russ) <5 ()% (w,y) < (Z)° 7= (2,9, 2) —s (Z3)%; (ru, s50) <5 (Z})*
F:=2xG, H:=yG F:=2zG, H:=yG

(U, V,W) = (ruF, su H, (ru + 50)G) (U, V,W) := (ruF, su H, (T4 + v + 2)G)
o= (FHUV,W) o= (F,H,UV,W)

return (o, 7) return (o, 7)

In order to commit to a value m € Z,, one samples r, s «+—s Z,, and returns:
C = Com.C(m;r,s) = (mU +rF,mV + sH,mW + (r + s)G).

Since Com.C(my;ro, s0) + Com.C(mq;71,s1) = Com.C(mg + mq;ro+71, S0+ 51),
commitments are additively homomorphic. A committed value is opened by
providing the randomness (r, s). Under a perfectly hiding key, a commitment
to m can be opened to any value m/’, given trapdoor information 7 = (7, $,):

Com.C(m;r,s) = ((mry 4+ r)F, (ms, + s)V, (mry + 1+ ms, + s)G))

= Com.C(m/;7 — (m/ — m)ry, s — (M —m)sy,)). M)
Under the DLin assumption, keys output by the perfectly hiding setup are com-
putationally indistinguishable from ones output by the perfectly binding setup.
For this reason, the perfectly hiding setup leads to computationally binding
commitments and vice versa.

We say that a triple of group elements is linear w.r.t. (F, H, Q) if it is of the
form (rF,sH, (r + s)G) for some r,s € Z,. Commitments to 0 are linear triples
and every commitment under a hiding key is also a linear. Under a binding key
we have:

Com.C(m;r,s) = ((mry 4+ r)F, (ms, + s)H, mzG + (mry 4+ r + ms, + 5)G).

A commitment to m is thus a linear encryption [BBS04] of mzG € Gy under
randomness (mry, + 17, ms, + s). Given a commitment C and the trapdoor infor-
mation 7 = (z,y, z), one can extract the committed message. The extraction
algorithm Com.E is defined as:

Non-interactive Zaps of Knowledge 53

Com.E(T, (Co, Cl, 02)) = dLOg(Z_l(CQ — ac_lCo — y‘lCl)), (2)

where dLog can be efficiently computed if the message space is of logarithmic
size; for instance, assuming m € {0,1}, we define Com.E to return 0 if (Cy —
27 1Cy — y~1(Cy) is the identity element, and 1 otherwise.

Theorem 4 ([GOS06a]). Assuming DLin, Com, as defined above, is an
extractable homomorphic commitment scheme that is:

— perfectly binding, computationally hiding when instantiated with Com.K(®)
h)

— computationally binding, perfectly hiding when instantiated with Com.K®)

)

The “parameter switching” technique, which defines different types of keys
that are computationally indistinguishable, has proved very useful and also
applies to encryption schemes. The idea has been defined (and named) several
times. “Parameter switching” [GOS06a] is also called “meaningful/meaningless
encryption” [KNO08], “dual-mode encryption” [PVWO08] and “lossy encryption”
[BHY09].

Proofs of Binarity. As a building block for their zaps Groth et al. [GOS06a]
first construct a witness-indistinguishable non-interactive proof system Bin.
Given a commitment key o = (F, H,U,V,W) and a commitment C € G3, it
allows to prove that C' commits to a value in {0,1} under o. The proof is per-

fectly sound and perfectly witness-indistinguishable. (We recall their scheme in
the full version [FO18].)

4 Non-interactive Zaps

To construct a non-interactive zap (i.e., a WI proof system without a CRS),
Groth et al. [GOS06a] first construct a proof system for circuit satisfiability with
a CRS, based on the commitment scheme from Sect. 3 and their proof of binarity.
Then, in order to make their scheme CRS-less, they define the prover to pick two
CRS’s that are correlated in a way that makes it impossible for the adversary
to cheat under both of them.

As the commitment scheme described in Sect. 3 is homomorphic, it is possible
to perform linear operations on commitments, and in particular prove logical
relations between them.

First, proving that either C or C' := C' — (U, V, W) is linear proves that C' is a
commitment to a bit. In order to prove that committed values satisfy wire assign-
ments of a NAND gate, Groth et al. [GOS06b] observe that if a,b € {0,1} then
¢ :=-(anb) iff t .= a+b+2c—2 € {0, 1}. Reasoning with homomorphic commit-
ments, we have that three commitments A := (Ag, A1, As), B := (By, B, Ba),
and C = (Cy,Cq,Cs) are bound respectively to the values a,b, ¢, such that
c¢=-(a A b),if and only if

T:=A+B+2-C—2-(UV,W) (3)

54 G. Fuchsbauer and M. Orru

ZAP.P(1*, ¢, w) ZAP.V(&, (00,70, 71))
I':=G(1Y); (00, 7) « Circ.K(I") o1 =00+ (0,0,0,0,G)
o1 =09+ (0,0,0,0,G) return (A, 1y Cire.V(oi, ¢, 7))

mo < Circ.P(00, ¢, w); m < Circ.P(o1, ¢, w)

return (oo, 7o, 71)

Fig. 4. The (non-interactive) ZAP protocol of [GOS06a].

is a commitment to either 0 or 1. Thus, to prove that A, B, C are commitments
to values in {0,1} and that C' is a commitment to the NAND of the values in
A and B, it is sufficient to prove that A, B, C and T are all bit commitments.
With these observations, GOS construct a perfectly witness-indistinguishable
proof system Circ for circuit satisfiability as follows:

The key generation algorithm Circ.K simply emulates Com.K(® | that is, it
generates a hiding commitment key. The prover Circ.P(c,C,w) takes as input a
circuit C and a witness w satisfying C(w) = 1, and does the following: represent
the circuit evaluation C(w) in such a way that wy is the value running in the k-th
wire. For each wy, produce a commitment C, < Com.C(o, wy) to wy and prove
it is to a bit under ¢ using proof system Bin. For each gate, construct T' from
the commitments corresponding to the ingoing and outgoing wires as above and
prove that it too is a commitment to 0 or 1. For the output commitment, create a
commitment Cyyy to 1 that can be easily reproduced and checked by the verifier:
Cout = Com.C(c,1;(0,0)). Let IT be the collection of all other commitments
together with the respective proofs of binarity generated. Return I1.

The verifier Circ.V(o,C,II), computes Coyy = Com.C(c,1;(0,0)) and for
every gate the value T as in Eq.(3); using Bin.V, it checks that all the wire
commitments are to values in {0, 1} and respect the gates (by checking the val-
ues T'); if all verifications succeed, return true. Otherwise, return false.

Theorem 5 ([GOS06a]). Assuming DLin, Circ is a non-interactive, perfectly
sound computationally witness-indistinguishable proof system.

The reason why we cannot let the prover choose the CRS in Circ is that it
could chose it as a perfectly hiding CRS and then simulate proofs. However, if
the prover must construct two proofs under two different CRS’s which are related
in such a way that at least one of them is not linear (and thus binding), then
the prover cannot cheat. In particular, note that given a 5-tuple oy € G®, and
defining o1 == 0o+ (0,0,0, 0, G) then at most one of g, o1 is linear. At the same
time, both of them are valid CRS’s. With this last trick, it is straightforward to
construct the zap scheme ZAP, as illustrated in Fig. 4.

Theorem 6 ([GOS06al). Assuming DLin, ZAP is a non-interactive zap with
perfect soundness and computational witness indistinguishability.

Remark 7. We note that soundness of ZAP relies only on the fact that I" is a
bilinear group. In [GOS064a] the prover is allowed to generate I" and it is required

Non-interactive Zaps of Knowledge 55

ZAK.P(1*, ¢, w) ZAK.V (¢, (X, A, IT))
I=G(1%) // Check if A is consistent with
for i = 0,1 do if not DH(A, X) return false
(04,0, 7) + Circ.K(I") for i in {0,1} do
i1 =00+ (0,0,0,0,G) 0i1 =00+ (0,0,0,0,G)
mi,0 < Circ.P(04,0, ¢, w) return (A, ;ci04; CireV(oi, ¢, i))

i1 < Cil’C.P(O’i,l, d),’w)
Compute A from 79,71 as in Eq. (4).
L= [oiolietony, I = [migligeony
return (X, A, IT)

Fig. 5. The ZAK protocol.

that I' is verifiable. We presented a zap for deterministically generated groups, as
considered by Bellare et al. [BFS16], which is also required for our construction
of non-interactive zaps of knowledge in the next section.

5 ZAK: A Non-interactive Zap of Knowledge

We now present our NIWI argument of knowledge for circuit satisfiability. The
high-level idea of our protocol is to double the ZAP proof of [GOS06a] and link
the two CRS’s so the prover must know the extraction trapdoor for one of them.
Whereas the protocol ZAP used two Circ proofs to construct a zap from a proof
that requires a CRS, we will use two zap proofs to not only prove circuit sat-
isfiability, but to prove knowledge of a satisfying assignment. More specifically,
knowledge soundness is obtained by generating two independent zap proofs, and
then linking the respective trapdoor information with multiple DH in a matrix
of group elements A. This additional matrix A, that we call linking element, is
constructed in such a way that (under DH-KE) it is possible to recover the trap-
door from one of the two zap proofs, and use it to extract the witness from the
commitments contained in a valid zap proof. Witness indistinguishability of the
single proofs follows immediately from [GOS06a], but our proofs also contain the
linking element A, which depend on the randomness of the CRS’s. We thus have
to argue that these additional elements do not harm witness indistinguishability.

Bellare et al. [BFS16] also used an extractor to recover the trapdoor hidden
in an adversarially generated CRS to construct a scheme satisfying subversion-
zero knowledge. Our protocol is detailed in Fig.5, where by DH we denote the
algorithm that checks that d; ; is the CDH of (09,0); and (01,0); (see below).

The trapdoor information 79 = (xo,y0) and 71 = (z1,y1) is correlated in A
to form the following products:

mole w0y1G

A =6 5]ijero1y =)

Yor1G Yoy G

56 G. Fuchsbauer and M. Orru

Correctness of A can be checked by the verification algorithm using the
bilinear map. For i = 0,1, let the CRS be o; = (F;, H;, U;, V;, W;), and let x;, y;
be such that:

Fi = J)iG, Hz = in,

in which case A is constructed as in Eq. (4). The verifier checks that the following
holds:
6(60’0,(;) :e(Fo,Fl), 6((50’1,G) :e(Fo,Hl), (5)
6(5170,G) :e(Ho,Fl), 6(51,1,G) :e(Ho,Hl).

Let us denote by DH the algorithm that, given as input X' and A returns true if
all equalities of Eq. (5) are satisfied, and false otherwise. This procedure is used
by the verification equation, as detailed in Fig. 5.

We now proceed with the proof of our main result, Theorem 1, which we
rephrase here for completeness:

Theorem 1. Assume that DLin and DH-KFE hold for G. Then ZAK as defined
in Fig. 5 is a non-interactive zap that satisfies knowledge soundness and witness
indistinguishability. In particular, we have

AdvERI(N) < 4 AdvP*(A) and Adviic(\) < 8- Adviim()N).

Completeness of the protocol is trivial: the prover (respectively, the verifier)
simply performs 4 iterations of Circ proofs (respectively, verifications), and there-
fore correctness is implied by Theorem 5 and the fact that A as in Eq. 4 satisfies
Eq. 5. We now prove knowledge soundness and witness indistinguishability.

Proof (of computational knowledge soundness). We show that for any adversary
able to produce a valid proof we can construct a PPT extractor that can extract
a witness from such a proof with overwhelming probability.

Let A be an adversarial prover in game KSND (\) (Fig. 2, with M.K void). On
input 1%, A returns a proof consisting of o; o = (F;, H;, U;, Vi, W;) for i € {0, 1},
of A= [614)‘7]1-’]-6{0’1} and I1 = [m)j}i’je{o’l}. From A we construct four adversaries
A;; (for i,j € {0,1}) that execute A and output some components of the proof
produced by A, namely

(Fo, F1, 60,0) = (20G, 211G, 2021 G),
(Fo, Hi, 60,1) = (oG, 121G, 2oy1 G),
(Ho, F1, 01,0) = (Y90G, 21G, yoz1G),
(Ho, Hu, 60,1) = (yoG, 11G, yoy1 G),
where x;,y; are such that F; = ;G, H; = y;G, and these four equations hold if

ZAK.\V(C, (X, A, IT)) returns true. By the DH-KE assumption there exist extrac-
tors Ext; ; for each of the adversaries A; ; that given its coins outputs:

for A()’o
for AO,l
for Al,O

(
(
(
(for Aq 1

)
)
)
)

To Or Xq, o Or Yi, (fOI‘ EXt070, EXt071)

Yo OT X1, Yo OT U1 (for Exty o, Extq,1)

Non-interactive Zaps of Knowledge 57

if the above equations hold. The statement (xoVax1)A(yoVa1)A(zoVy1r)A(yoVy1)
is logically equivalent to (xg A yo) V (21 A y1). This means that together, these
four extractors allow to recover either (zo,yo) or (z1,y1), that is, the extraction
trapdoor for one of the CRS’s. Let ¢* be such that (z;+,y;+) is the extracted pair.

For j € {0,1}, let Fj«, H;»,U;», Vi», Wi« € G be such that o« ; = (Fj=, Hy-,
Ui, Vix,Wix + jG). Let j* € {0,1} be the smallest integer satisfying:

232 Uie + 972" Vie = (Wie + 5°G) # 0G.

The above implies that o;« ;- is not a linear tuple, which means that it is a
binding CRS. Let C(« j«) denote the commitment to the k-th wire contained
in m;« j«. Using the extraction algorithm described in Eq. (2) we can recover this
witness:

wy, = Com.E((z4-, i), Cliv jo)k)-

It remains to prove that the extracted witness is indeed correct. Upon
receiving a valid proof from adversary A, we know from the verification equa-
tion (the subroutine DH) that each A;; will output a DH triple. Therefore,
extractors Ext; ; together recover 7+ = (x;-,y,+) with probability at least
1—>iefony Advg]fl,l;jj’Exti,j (M), that is, by DH-KE, with overwhelming prob-
ability. Since the commitment scheme Com is perfectly binding if the CRS is
not a linear tuple (Theorem4), a message wy is always successfully extracted.
Correctness of wy follows from the underlying proof system: by perfect sound-
ness of Bin we are guaranteed that wy € {0,1}; by perfect soundness of Circ
(Theorem 5) that each gate evaluation is correct. The bound in the construction
of the extractor is tight: we have Adv¥"¥(\) < 4 - Adv®™ (). O

Proof (of computational witness indistinguishability). Consider an adversary in
the WI game (Fig.1, where MN.K is void) that makes ¢ = ¢(\) queries to the
PROVE oracle, each of the form (C*), w(” w{*), for 0 < k < ¢. Consider the fol-
lowing sequence of hybrid games where Ho corresponds to Wlzak circ.sar.a())
with b = 0 and Hy, corresponds to Wizak crreosat a(A) with b = 1. The games
differ in how the PROVE oracle is implemented, which is specified in Fig.6 for
the first half of the hybrids (the second half is analogous). We give an overview
of all hybrids in Table 2 below.

Ho The challenger simulates an honest PROVE oracle, using (for every k < ¢q)
the first witness w{" supplied by the adversary. It outputs (Z(k), A, H(’“)),
where in particular we recall:

k ¢ c : : ¢ k k
Z(k) _ U((),O) = (F(gk), H(()k)> U(gk)7 ‘/O(k)7 Wék))] and H(k) _ [Wé,g ﬂé,f]

(k) _ (k) (k) (k) (k) (k) (k) (k)
‘71,0—(F1 , Y Uy Vi W) 10 71,1

Recall that the two rows of [X(®)|IT(®)] are independent zaps and that 760
and ai’fg) are chosen to be hiding. The PROVE oracle computes U;’kj) which

58

G. Fuchsbauer and M. Orru

Oracle PROVE in Hjy, , and Oracle PROVE in Hs and

I=G(1%) I=G(1%)

(00,0, 7i) + Circ.K(I") (00,1, i) « Circ.K(I')

(000,7) < Com.K"(1)] 00,0 = 00,1 = (0,0,0,0,G)
00,1 == 00,0 + (0,0,0,0,G) (00,1, 7)) + Com.K®) (I")

(00,1, 7) + Circ.K(I") 70,0 < Circ.P(00,0,C,w1)

00,0 = 00,1 — (0,0,0,0,G) mo,1 + Circ.P(d0,1,C, w1)
70,0 + Circ.P(c0.0,C,w1) /| The second zap is as in ZAK.P using wo.
mo,1 < Circ.P(00,1,C, wo) (01.0,7m1,0,m1.1) < ZAP.P(1*,C, wo)
/| The second zap is as in ZAK.P using wo. Compute A as in Eq. (4).

(01,0, m1.0,1.1) « ZAP.P(1*,C, wo) return (X, A, I7)

Compute A as in Eq. (4).
return (X, A, IT)

Fig. 6. Overview of the simulations of the prove oracle in the first hybrid games for
the proof of WI. Hybrids H; and Hs are defined by ignoring all boxes (the light gray

highlights the differences with respect to the previous hybrids), whereas and
include the light boxes but not the gray one and includes all boxes.

Hi

Ho

is of the form az(k; = (F", HP, U", v®», W* + jG), for i,j € {0,1}.
Furthermore, wé)kj) is a Circ proof using w§” under the CRS UZ('Z‘)-

For every PROVE query, the simulator uses witness w{"’ (instead of w{") to
produce Wé’%. As the respective CRS agf()) was generated using the perfectly
hiding commitment setup Circ.K, the two hybrids are distributed equivalently
(any commitment under a hiding key is a random linear triple; cf. Eq. (1)).
For every PROVE query, the simulator now generates CRS aé’fé as a binding
key via Com.K(®); afﬁ is generated as before (adding (0,0, 0,0, G)), and so are
all proofs. Note that the linking elements A%*) can be constructed knowing

only the trapdoor (z{*,y{"") of the CRS 1", which remained unchanged:

k k k k
WOHE O

k k k k

. (6)

H; and H, are computationally indistinguishable under the DLin assumption:
given a DLin challenge (F, H,U,V,W), the reduction can exploit the ran-
dom self-reducibility property of DLin to construct g instances of the DLin
challenge: Vk < ¢ select z(F), g(k) 7(k) 5(k) z(k) Z, and compute aé’fg as
(j(k)F’ g®H, FRzRE 4 z0z0y, sE gk g4 2R gk (7R 4 5) G
+zMW).

Each Ué’j()) is a random linear tuple if and only if the DLin challenge is, and
it is a uniformly random tuple if the DLin challenge is, as shown in [BFS16].

Non-interactive Zaps of Knowledge 59

Table 2. Overview of changes throughout the hybrids: (h) denotes hiding setup;
(b) denotes binding setup; ws identifies the witness used to produce the proof.

Hy

Hs

- k k k k 2 k k k
Hybrid | 090 | @ | 06 o0 | O | Tho | 1 | Th0

Ho (h) |wo | (b) |wo ||[(h) |wo |(b) lwo
Hq w1
Hy (b)
Hs ()
Hy w1
Hs (b)
He (h)

Hr7 wy

H12 (h) w1 (b) w1 (h) w1 (b) w1

Computing Ui'% as in Hy (hiding) and defining A as in Eq. 6, the simulator
generates the rest of the game as defined. It returns the adversary’s guess
and thus breaks DLin whenever the adversary distinguishes H; and Ha.
The simulator replaces each CRS aé’f} for all k < ¢ with a hiding commitment
and defines o) := o("] — (0,0,0,0,G), which is therefore (once again) bind-
ing. More specifically, the simulator creates a linear tuple invoking Circ.K:

ol = (2" G, vV G, 2 rMG, ysWaG, (r* 4 s0)E)

where 27, y$", r® s*) 7,

The two distributions are proven computationally indistinguishable under
DLin by an argument analogous to the one for H; — Hj. This time the
challenger constructs all the instances of the DLin challenge for 0'0 1, while

J(()k()) is derived. From there, the proof proceeds 1dent1cally

The simulator replaces each proof 71'6’3 by using w{"* instead of w{” (Vk < q).
This hybrid is equivalently distributed as the previous one; this is proved via
the same argument as for Hg — Hj.

The simulator switches cr0 "} from a hiding to a binding key. This game hop is
analogous to the hop H; — Hj (which switched cr““) from hiding to binding).

The simulator switches O'(k) from binding to hldmg Indistinguishability from

the previous hybrid is Shown analogously to the hop H, — Hs. Note that

in this hybrid the first zap (o¢), 7', 761) is distributed according to the

protocol specification, but using witness w(’”

60 G. Fuchsbauer and M. Orru

Hybrids H7 to Hiz are now defined analogously to hybrids H; to Hg, except for
applying all changes to ¢1” and 7"y and 7{*]. In hybrid Hi, the adversary is
then given arguments of knowledge for witness wy.

As the difference between hybrids H; and Hi; is bounded by 8 times the
advantage of a DLin distinguisher, the adversary has total advantage

AdvZak c.a(A) < 8- Advzai ¢ a(A) = negl(A).
The bound is thus tight. O

Acknowledgements. The authors would like to thank the anonymous reviewers of
PKC 2018 and ACNS 2018 for their helpful comments. The first author is supported
by the French ANR EfTrEC project (ANR-16-CE39-0002). The second author is sup-
ported by ERC grant 639554 (project aSCEND).

References

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41-55. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-28628-8_3
[BCG+14] Ben-Sasson, E., Chiesa, A., Garman, C., Green, M., Miers, 1., Tromer,
E., Virza, M.: Zerocash: decentralized anonymous payments from bitcoin.
In: 2014 IEEE Symposium on Security and Privacy, pp. 459-474. IEEE
Computer Society Press, May 2014
[BCI+10] Brier, E., Coron, J.-S., Icart, T., Madore, D., Randriam, H., Tibouchi, M.:
Efficient indifferentiable hashing into ordinary elliptic curves. In: Rabin, T.
(ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 237-254. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14623-7_13
[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: 20th ACM STOC, pp. 103-112. ACM
Press, May 1988
[BFS16] Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS:
security in the face of parameter subversion. In: Cheon, J.H., Takagi, T.
(eds.) ASTACRYPT 2016. LNCS, vol. 10032, pp. 777-804. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53890-6_26
[BG93] Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390-420. Springer, Heidel-
berg (1993). https://doi.org/10.1007/3-540-48071-4_28
[BHY09] Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for
encryption and commitment secure under selective opening. In: Joux, A.
(ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1-35. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01001-9_1
[BOVO03] Barak, B., Ong, S.J., Vadhan, S.: Derandomization in cryptography. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 299-315. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_18
[BP15] Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguisha-
bility from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B.
(eds.) TCC 2015. LNCS, vol. 9015, pp. 401-427. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46497-7_16

https://doi.org/10.1007/978-3-540-28628-8_3
https://doi.org/10.1007/978-3-642-14623-7_13
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/978-3-642-01001-9_1
https://doi.org/10.1007/978-3-540-45146-4_18
https://doi.org/10.1007/978-3-662-46497-7_16

[BWO06]

[BWO07]

[DN00]

[FLS90]

[FO18]
[FS90]

[Fucl8]

[GMRS9)
(G094

[GOS06a]

[GOSO06b]

[GS08]

[Gol93]

[Gro06]

[Gro10]

[KNO8]

Non-interactive Zaps of Knowledge 61

Boyen, X., Waters, B.: Compact group signatures without random oracles.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427-444.
Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_26

Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size
group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS,
vol. 4450, pp. 1-15. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-71677-8_1

Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS, pp. 283—
293. IEEE Computer Society Press, November 2000

Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In: 31st FOCS,
pp- 308-317. IEEE Computer Society Press, October 1990

Fuchsbauer, G., Orrd, M.: Non-interactive zaps of knowledge. Cryptology
ePrint Archive, Report 2018/228 (2018)

Feige, U., Shamir, A.: Witness indistinguishable and witness hiding proto-
cols. In: 22nd ACM STOC, pp. 416-426. ACM Press, May 1990
Fuchsbauer, G.: Subversion-zero-knowledge SNARKSs. In: Abdalla, M.,
Dahab, R. (eds.) PKC 2018. LNCS, vol. 10769, pp. 315-347. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-76578-5_11

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. STAM J. Comput. 18(1), 186-208 (1989)

Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof
systems. J. Cryptol. 7(1), 1-32 (1994)

Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new tech-
niques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
97-111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175-6
Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowl-
edge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol.
4004, pp. 339-358. Springer, Heidelberg (2006). https://doi.org/10.1007/
1176167921

Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
415-432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78967-3_24

Goldreich, O.: A uniform-complexity treatment of encryption and zero-
knowledge. J. Cryptol. 6(1), 21-53 (1993)

Groth, J.: Simulation-sound NIZK proofs for a practical language and con-
stant size group signatures. In: Lai, X., Chen, K. (eds.) ASTACRYPT 2006.
LNCS, vol. 4284, pp. 444-459. Springer, Heidelberg (2006). https://doi.
org/10.1007/11935230-29

Groth, J.: Short pairing-based non-interactive zero-knowledge arguments.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 321-340.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-
819

Kol, G., Naor, M.: Cryptography and game theory: designing protocols for
exchanging information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948,
pp. 320-339. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78524-8_18

https://doi.org/10.1007/11761679_26
https://doi.org/10.1007/978-3-540-71677-8_1
https://doi.org/10.1007/978-3-540-71677-8_1
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/11935230_29
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-540-78524-8_18
https://doi.org/10.1007/978-3-540-78524-8_18

62 G.

[PVWO08]

[Raf15]

Fuchsbauer and M. Orru

Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and
composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 554-571. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85174-5_31

Rafols, C.: Stretching groth-sahai: NIZK proofs of partial satisfiability.
In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp.

247-276. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46497-7_10

https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-662-46497-7_10
https://doi.org/10.1007/978-3-662-46497-7_10

Side Channel Attacks and Tamper
Resistance

®

Check for
updates

Formal Verification of Side-Channel
Countermeasures via Elementary Circuit
Transformations

Jean-Sébastien Coron ™

University of Luxembourg, Luxembourg City, Luxembourg
jean-sebastien.coron@uni.lu

Abstract. We describe a technique to formally verify the security of
masked implementations against side-channel attacks, based on elemen-
tary circuit transforms. We describe two complementary approaches: a
generic approach for the formal verification of any circuit, but for small
attack orders only, and a specialized approach for the verification of spe-
cific circuits, but at any order. We also show how to generate security
proofs automatically, for simple circuits. We describe the implementation
of CheckMasks, a formal verification tool for side-channel countermea-
sures. Using this tool, we formally verify the security of the Rivain-Prouff
countermeasure for AES, and also the recent Boolean to arithmetic con-
version algorithms from CHES 2017.

Keywords: Side-channel attacks and countermeasures
High-order masking - Security proof - Automated security analysis

1 Introduction

The Masking Countermeasure. Masking is the most widely used counter-
measure against side-channel attacks for block-ciphers and symmetric-key algo-
rithms. In a first-order countermeasure, all intermediate variables x are masked
into '’ = x @ r where r is a randomly generated value. For such countermea-
sure, it is usually straightforward to verify its security against first-order attacks;
namely it suffices to check that all intermediate variables have the uniform distri-
bution, or at least that their distribution is independent from the key; therefore
an attacker processing the side-channel leakage of intermediate variables sepa-
rately (as in a first-order attack) does not get useful information.

However second-order attacks combining the leakage on z’ and r can be
mounted in practice, so it makes sense to design masking algorithms resisting
higher-order attacks. This is done by extending Boolean masking to n shares
with z = 1 & --- & z,; in that case an implementation should be resistant
against t-th order attacks, in which the adversary combines leakage information
from at most ¢ < n intermediate variables.

© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 65-82, 2018.
https://doi.org/10.1007/978-3-319-93387-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_4&domain=pdf

66 J.-S. Coron

Security Proofs. In principle any countermeasure against high-order attacks
should have a security proof, but such proof can be either missing, incomplete, or
incorrect. In this paper we describe the construction of a tool, called CheckMasks,
to automatically verify the security of high-order masking schemes.

The first step is to specify what it means for a masking countermeasure to be
secure, i.e. what is the security model. Such formalization was initiated by Ishai
et al. in [ISWO03]. In this model, the adversary can probe at most ¢ wires in the
circuit, but he should not learn anything about the secret key. The approach for
proving security is based on simulation: one must show that any set of ¢ wires
probed by the adversary can be perfectly simulated without the knowledge of
the secret-key. This shows that the ¢ probes do not bring any useful information
to the attacker, since he could run this simulation by himself.

More precisely, the simulation technique consists in showing that any set of
t probes can be perfectly simulated by the knowledge of only a proper subset of
the input shares x;. At the beginning of the algorithm an original variable x is
shared into n shares x;. When z is part of the secret-key, this pre-sharing cannot
be probed by the adversary. Since any subset of at most n — 1 input shares x; are
uniformly and independently distributed, the simulation of the probed variables
can be performed without knowing the secret-key.

The main result in [ISWO03] is to show that any circuit C' can be transformed
into a new circuit C’ of size O(t? - |C|) that is resistant against an adversary
probing at most ¢ wires in the circuit. The construction is based on secret-sharing
every variable x into n shares with © =z, @ - - - @ x,,, and processing the shares
in a way that prevents a ¢t-limited adversary from leaning any information about
the initial variable x, using n > 2t + 1 shares.

Formal Verification of Masking. The formal verification of the masking
countermeasure was initiated by Barthe et al. in [BBD+15]. The authors describe
an automated method to prove the security of masked implementation against
t-th order attacks, for small values of ¢ (in practice, ¢ < 5). The method only
works for small values of ¢ because the number of possible ¢-tuples of intermediate
variables grows exponentially with ¢. To formally prove the security of a masking
algorithm, the authors describe an algorithm to construct a bijection between
the observations of the adversary (corresponding to a t-tuple of intermediate
variables) and a distribution that is syntactically independent from the secret
inputs; this implies that the adversary learns nothing from this particular ¢-tuple
of intermediate variables. All possible t-tuples of intermediates variables are then
examined by exhaustive search.

The authors obtain a formal verification of various masked implementations,
up to second order masked implementation of AES, and up to 5-th order for the
masked Rivain-Prouff multiplication [RP10]. In particular, the authors were able
to rediscover some known attacks and discover new ways of attacking already
broken schemes. Their approach is implemented in the framework of EasyCrypt
[BDG+14], and relies on its internal representations of programs and expressions.

Formal Verification of Side-Channel Countermeasures 67

The main drawback of the previous approach is that it can only work for
small orders ¢, since the running time is exponential in ¢. To overcome this
problem, in a follow-up work [BBD+16], Barthe et al. studied the composition
property of masked algorithms. In particular, the authors introduce the notion
of strong simulatability, a stronger property which requires that the number
of input shares necessary to simulate the observations of the adversary in a
given gadget is independent from the number of observations made on output
wires. This ensures some separation between the input and the output wires: no
matter how many output wires must be simulated (to ensure the composition
of gadgets), the number of input wires that must be known to perform the
simulation only depends on the number of internal probes within the gadget.

The paper [BBD+16] has a number of important contributions that we sum-
marize below. Firstly, the authors introduce the ¢-NI and ¢-SNI definitions. The
t-NI security notion corresponds to the original security definition in the ISW
probing model [ISW03]; it requires that any t. < ¢ probes of the gadget circuit
can be simulated from at most t. of its input shares. The stronger ¢-SNI notion
corresponds to the strong simulatability property mentioned above, in which
the number of input shares required for the simulation is upper bounded by the
number of probes t. in the circuit, and is independent from the number of output
variables |O| that must be simulated (as long as the condition t.+|O| < t is satis-
fied). We recall these definitions in Sect. 2, as they are fundamental in our paper.

The authors show that the ¢-SNI definition allows for securely composing
masked algorithms; i.e. for a construction involving many gadgets, one can prove
that the full construction is ¢-SNI secure, based on the ¢-SNI security of its
components. The advantages are twofold: firstly the proof becomes modular and
much easier to describe. Secondly as opposed to [[SW03] the masking order does
not need to be doubled throughout the circuit, as one can work with n > ¢+ 1
shares, instead of n > 2t + 1 shares. Since most gadgets have complexity O(n?),
this usually gives a factor 4 improvement in efficiency. In [BBD+16], the authors
prove the t-SNI property of several useful gadgets: the multiplication of Rivain-
Prouff [RP10], the mask refreshing based on the same multiplication algorithm,
and the multiplication between linearly dependent inputs from [CPRR13].

Moreover, in [BBD+16] the authors also machine-checked the multiplication
of Rivain-Prouff and the multiplication-based mask refreshing in the EasyCrypt
framework [BDG+14]. The main point is that their machine verification works
for any order, whereas in [BBD+15] the formal verification could only be per-
formed at small orders t. However, the approach seems difficult to understand
(at least for a non-expert in formal methods), and when reading [BBD+16] it is
far from obvious how the automated verification of the countermeasure can be
implemented concretely; this seems to require a deep knowledge of the EasyCrypt
framework.

Finally, the authors built an automated approach for verifying that an algo-
rithm constructed by composing provably secure gadgets is itself secure. They
also implemented an algorithm for transforming an input program P into a pro-
gram P’ secure at order ¢; their algorithm automatically inserts mask refreshing
gadgets whenever required.

68 J.-S. Coron

Our Contributions. Our main goal in this paper is to simplify and extend the
formal verification results from [BBD+15,BBD+16]. We describe two comple-
mentary approaches: a generic approach for the formal verification of any circuit,
but for small attack orders only (as in [BBD+15]), and a specialized approach
for the verification of specific circuits, but at any order (as in [BBD+16]).

For the generic verification of countermeasures at small orders, we use a dif-
ferent formal language from [BBD+15]. In particular we represent the underly-
ing circuit as nested lists, which leads to a simple and concise implementation in
Common Lisp, a programming language well suited to formal manipulations. We
are then able to formally verify the security of the Rivain-Prouff countermeasure
with very few lines of code. Our running times for formal verification are similar
to those in [BBD+15]. Thanks to this simpler approach, we could also extend
[BBD+15] to handle a combination of arithmetic and Boolean operations, and
we have formally verified the security of the recent Boolean to arithmetic conver-
sion algorithm from [Cor17c]. To perform these formal verifications we describe
the implementation of CheckMasks, our formal verification tool for side-channel
countermeasures.

For the verification of specific gadgets at any order (instead of small orders
only with the generic approach), our technique is quite different from [BBD+16]
and consists in applying elementary transforms to the circuit, until the ¢-NI or
t-SNI properties become straightforward to verify. We show that for a set of well-
chosen elementary transforms, the formal verification time becomes polynomial
in ¢t (instead of exponential with the generic approach); this implies that the
formal verification can be performed at any order. Using our CheckMasks tool,
we provide a formally verified proof of the ¢-SNI property of the multiplication
algorithm in the Rivain-Prouff countermeasure, and of the mask refreshing based
on the same multiplication algorithm; in both cases the running time of the
formal verification is polynomial in the number of shares n.

Finally, we show how to get the best of both worlds, at least for simple
circuits: we show how to automatically apply the circuit transforms that lead to
a polynomial time verification, based on a limited set of generic rules. Namely
we identify a set of three simple rules that enable to automatically prove the ¢-
SNT property of the multiplication based mask refreshing, and also two security
properties of mask refreshing considered in [Corl7c]|.

Source Code. The source code of our CheckMasks verification tool is publicly
available at [Corl7a], under the GPL v2.0 license.

2 Security Properties

In this section we recall the ¢-NI and ¢-SNI security definitions from [BBD+16].
For simplicity we only provide the definitions for a simple gadget taking as
input a single variable = (given by n shares x;) and outputting a single variable
y (given by n shares y;). Given a vector of n shares (z;)1<i<n, we denote by
x| = (x:)icr the sub-vector of shares x; with ¢ € I. In general we wish to

Formal Verification of Side-Channel Countermeasures 69

simulate any subset of intermediate variables of a gadget from the knowledge of
as few x;’s as possible.

Definition 1 (¢-NI security). Let G be a gadget taking as input (x;)i<i<n
and outputting the vector (y;)i1<i<n. The gadget G is said t-NI secure if for any
set of to < t intermediate variables, there exists a subset I of input indices with
|| < tc, such that the t. intermediate variables can be perfectly simulated from
Jf|1.

Definition 2 (t-SNI security). Let G be a gadget taking as input (x;)1<i<n
and outputting (yi)1<i<n. The gadget G is said t-SNI secure if for any set of t.
intermediate variables and any subset O of output indices such that t.+|0O| < t,
there exists a subset I of input indices with |I| < t., such that the t. intermediate
variables and the output variables yjo can be perfectly simulated from x;.

The ¢-NI security notion corresponds to the original security definition in
the ISW probing model, in which n > 2t + 1 shares are required. The stronger
t-SNI notion allows for securely composing masked algorithms, and allows to
prove the security with n > ¢+ 1 shares only [BBD+16]. The difference between
the two notions is as follows: in the stronger ¢t-SNI notion, the size of the input
shares subset I can only depend on the number of internal probes t. and is
independent of the number of output variables |O| that must be simulated (as
long as the condition ¢. + |O| < t is satisfied). The ¢-SNI security notion is very
convenient for proving the security of complex constructions, as one can prove
that the ¢-SNI security of a full construction based on the ¢-SNI security of its
components.

3 Formal Verification of Generic Circuits for Small Order

In this section, we show that the ¢-NI and ¢-SNI properties can be easily verified
formally for any Boolean circuit, using a generic approach. As in [BBD+15] the
complexity of the formal verification is exponential in the number of shares n,
so this can only work for small n.

3.1 The RefreshMasks Algorithm

To illustrate our approach we first consider the RefreshMasks algorithm below
from [RP10]; see Fig.1 for an illustration.

We first recall a straightforward property of the RefreshMasks algorithm:
when the intermediate variables of the algorithm are not probed, any subset
of n — 1 output shares y; of RefreshMasks is uniformly and independently dis-
tributed. In the next section, we show how to formally verify this property.

Lemma 1. Let (y;)1<i<n be the output of RefreshMasks. Any subset of n — 1
output shares y; is uniformly and independently distributed.

70 J.-S. Coron

Algorithm 1. RefreshMasks

Input: zi,...,,, where z; € {0,1}*

Output: y1,...,yn suchthat y1 & Qyn =21 D -+ D T

1 yn — xpn

2: fori=1ton—1do

3 m-<—{0,1}’C

4 Yi < T DTy ,

> ¥o < Yn O > Yni =Tn DD 75
6

7

: end for
: return yi,...,Yn

T cee Zj s Tn—1 Tn
ST
D—Ti
D—Tn-1—6
Y1 e Yi s Yn-1 Yn

Fig.1. The RefreshMasks algorithm, with the randoms r; accumulated on the last
column.

3.2 Formal Verification of Circuits

Circuit Representation. We represent a circuit with nested lists, using the
prefix notation. Consider for example the circuit taking as input x and y and
outputting = @ y; we represent it as (+ X Y). Similarly the circuit computing
x -y is represented as (x X Y). To represent more complex circuits the lists are
recursively nested. For example, to represent the circuit x - (y ® z), we write
(* X (+Y Z)). If a circuit has many outputs, we represent the list of outputs
without any prefix operator; for example, the circuit outputting (z @y, x-y) can
be represented as ((+ X Y) (x X Y)).

It is easy to write a program in Common Lisp that generates the circuit
corresponding to RefreshMasks; we refer to [Corl7a] for the source code. For
example, we obtain for n = 3 input shares:

> (RefreshMasks ’(X1 X2 X3))
((+ R1 X1) (+ R2 X2) (+ R2 (+ Rl X3)))

which corresponds to y; = r1 ®x1, y2 = 1o @2 and y3 = ro®(r; Bx3). Note that
the above RefreshMasks function in Common Lisp takes as input a list of n shares
(here n = 3) and outputs a list of n shares; therefore it can be easily composed
with other such Common Lisp functions to create more complex circuits.

Formal Verification of Side-Channel Countermeasures 71

List Substitutions. We now explain how to formally verify Lemma1l. Con-
sider for example the two output variables (+ R1 X1) and (+ R2 (+ R1 X3)) from
above. We would like to show that these two variables are uniformly and inde-
pendently distributed. Since the random R2 is used only once in those two out-
puts, it can play the role of a one-time pad, and we can perform the following
substitution in the second output:

(+ R2 (+ R1 X3)) — R2

Namely, since R2 is used only once, the distribution of (+ R2 (+ R1 X3)) is the
same as the distribution of R2. Starting with the above list of two output vari-
ables, we can perform the following sequence of elementary substitutions:

((+ R1 X1) (+ R2 (+ R1 X3))) — ((+ R1 X1) R2) — (R1 R2)

The first substitution is possible because R2 is used only once, and the second
substitution is possible because R1 is used only once after the first substitution.
Since we have obtained two distinct randoms (R1 R2) at the end, the two output
variables are uniformly and independently distributed, as required.

Formal Verification. To formally verify Lemma 1, it suffices to consider all
possible subsets of n — 1 output shares y; among n, and check that for every
subset, we obtain after a series of elementary substitutions a list of n—1 distinct
randoms. These substitutions are easy to implement in Common Lisp. Namely it
suffices to perform a tree search to count the number of times a given random R is
used, and if a random R is used only once, we can then perform the substitution:

(+RX) —R (1)

In the particular case of Lemma 1, there are only n subsets to consider, so
the formal verification is performed in polynomial time. We obtain for example
for n = 3:

> (Check—RefreshMasks—Uni 3)

Input: (X0 X1 X2)

Output: ((+ R1 X0) (+ R2 X1) (+ R2

Case 0: ((+ R2 X1) (+ R2 (+ R1 X2))
=> ((+ R2 X1) R1) => (R2 Rl

Case 1: ((+ R1 X0) (+ R2 (+ Rl X2))
=> (R1 R2)

Case 2: ((+ R1 X0) (+ R2 X1)) = ((+ R1 X0) R2) = (R1 R2)

+ RI X2)))
=

(
) ((+ R2 X1) (+ R2 R1))
)
)

= ((+ R1 X0) R2)

The above transcript shows that Lemma 1 is formally verified for n = 3; namely
in all 3 possible cases, after a sequence of elementary substitutions, we obtain a
list of 2 distinct randoms, showing that the two output variables are uniformly
and independently distributed; see [Corl7a] for the source code.

72 J.-S. Coron

3.3 Security Properties of RefreshMasks

In this section we show how to formally verify some existing properties of Refresh-
Masks. We first consider the straightforward ¢-NI property, for t =n — 1.

Lemma 2 (¢-NI of RefreshMasks). Let (z;)1<i<n be the input of Refresh-
Masks and let (y;)1<i<n be the output. For any set of t. < n — 1 intermediate
variables, there exists a subset I of input indices such that the t. intermediate
variables can be perfectly simulated from x|r, with |I| < t..

Formal Verification of the t-NI Property of RefreshMasks. The ¢-NI prop-
erty of RefreshMasks is straightforward because in the definition of RefreshMasks,
any intermediate variable depends on at most one input z;; therefore any subset
of t. probes can be perfectly simulated from the knowledge of at most . inputs
x;. Consider for example RefreshMasks with n = 3 as previously:

> (RefreshMasks ’(X1 X2 X3))
((+ R1 X1) (+ R2 X2) (+ R2 (+ Rl X3)))

If we probe the two intermediate variables (+ R1 X1) and (+ R1 X3), then the
knowledge of the two inputs X1 and X2 is sufficient for the simulation; moreover
we cannot perform any substitution because the random R1 is used twice. On
the other hand if we probe the two variables (+ R2 X2) and (+ R1 X3), we can
perform the substitution:

((+ R2 X2) (+ R1 X3)) — (R2 (+ R1 X3)) — (R2 R1)

showing that the knowledge of the input variables X2 and X3 is not required for
that simulation.

More generally, to verify the ¢-NI property of any circuit, it suffices to exhaus-
tively consider all possible t.-tuples of intermediate variables for all t. < ¢, and
verify that after a set of elementary substitutions the knowledge of at most ¢,
input variables is needed for the simulation of the ¢.-tuple.

Other Security Properties of RefreshMasks. We perform a formal verification
of several non-trivial properties of RefreshMasks that were used to prove the
security of the Boolean to arithmetic conversion algorithm from [Corl7c¢]; the full
version of this paper [Cor17b]. The first property is the following: if the output yy,
is among the t. probed variables, then we can simulate those t. probed variables
with ¢, — 1 input shares x; only, instead of ¢. as in Lemma2. This property
was crucial for obtaining a provably secure Boolean to arithmetic conversion
algorithm in [Corl7c].

Lemma 3 (RefreshMasks [Corl7c]). Let x1,...,2, be the input of a Refresh-
Masks where the randoms are accumulated on x,, and let yy,...,y, be the out-
put. Let t. be the number of probed variables, with t. < n. If y, is among the
probed variables, then there exists a subset I such that all probed variables can
be perfectly simulated from x|;, with |I| <t.—1.

Formal Verification of Side-Channel Countermeasures 73

As previously, to perform a formal verification of Lemma 3, it suffices to
consider all possible ¢.-tuples of intermediate variables (where y,, is part of the ¢.-
tuple) and show that after a sequence of elementary substitutions, there remains
at most t. — 1 input variables. In the full version of this paper [Corl7b], we
argue that it is actually sufficient to perform such verification for t. = n—1 only,
instead of all 1 < t. <n — 1. The timings of formal verification are summarized
in Table1. Although we are only able to verify Lemma3 for small values of
n, this still provides some confidence in the correctness of Lemma 3 for any n.
We refer to the full version of this paper [Corl17b] for some other properties of
RefreshMasks and their formal verification for small values of n.

Table 1. Formal verification of Lemma 3, for small values of n.

n | #variables | #tuples Security | Time
319 36 |V €
4113 286 |V €
5|17 2,380 |V €
6|21 20,349 | v 0.2s
7125 177,100 | v 1.5s
8129 1,560,780 | v 17s
9133 13,884,156 | v/ 195s

3.4 Formal Verification of t-SNI Properties: The FullRefresh and
SecMult Algorithms

It is easy to see that that the RefreshMasks algorithm from the previous section
does not achieve the stronger ¢-SNI property, as already observed in [BBD+16].
Namely one can probe the output y; = 1 @ z; and the internal variable y,, 1 =
r1 @ op. This gives y1 @ yn1 = 21 ® v, and therefore the knowledge of both
inputs 7 and z, is required for the simulation, whereas only t. = 1 internal
variable has been probed.

The FullRefresh Algorithm. We recall below an improved mask refreshing algo-
rithm that does satisfy the ¢-SNI property for t = n — 1, as shown in [BBD+16].
The algorithm FullRefresh is based on the masked multiplication from [ISW03]
and was already used in [[SW03,DDF14]. Note that the algorithm has complex-
ity O(n?) instead of O(n) for RefreshMasks.

Lemma 4 (¢-SNI of FullRefresh [BBD+16]). Let (;)1<i<n be the input shares
of the FullRefresh operation, and let (y;)i<i<n be the output shares. For any
set of t. intermediate variables and any subset O of output shares such that
te + |O| < n, there exists a subset I of indices with |I| < t., such that the t.
intermediate variables as well as the output shares yjo can be perfectly simulated
Jrom x 1.

74 J.-S. Coron

Algorithm 2. FullRefresh

Input: z1,...,z,

Output: y1,...,yn such that P, yi = P, xs
1: fori=1tondoy;, — z;

2: for i =1ton do

3: for j =i+ 1tondo

4 r— {0,1}" > Referred by 7; ;
5 Vi — Y BT > Referred by v ;
6: Y — 1y O > Referred by y;,:
7 end for

8: end for

9: return y1,...,Yn

Formal Verification of FullRefresh. In the following, we describe the formal
verification of Lemma 4 using our CheckMasks tool. As previously we first imple-
ment the FullRefresh algorithm in Common Lisp; for example, we get the follow-
ing output for n = 3 shares:

> (FullRefresh (X1 X2 X3))
((+ R2 (+ R1 X1)) (+ R3 (+ R1 X2)) (+ R3 (+ R2 X3)))

Using our CheckMasks tool, the (n — 1)-SNI property in Lemma4 can be
easily verified for small values of n. Namely it suffices to compute the list of all
(n—1)-tuples of intermediate variables (including the outputs y;) and check that
every such (n — 1)-tuple can be perfectly simulated from the knowledge of at
most t. inputs x;, where ¢, is the number of non-output variables in the (n — 1)-
tuple. Consider for example the two variables (+ R2 (+ R1 X1)) and (+ R1 X2)
in the circuit above for n = 3; since (+ R2 (+ R1 X1)) is an output variable, the
simulation must be performed using at most a single input z;. We obtain using
elementary substitutions:

((+ R2 (+ R1 X1)) (+ R1 X2)) — (R2 (+ R1 X2)) — (R2 R1)

and therefore no input z; is actually needed to simulate those two variables.
However if we probe the two variables (+ R2 (+ R1 X1)) and X2, we can perform
the substitutions:

((+ R2 (+ R1 X1)) X2) — (R2 X2)

and therefore the knowledge of X2 is required for the simulation.! Note that
the running time to consider all possible (n — 1)-tuples of intermediate variables
is exponential in n. We summarize in Table2 the running time of the formal
verification of FullRefresh, up to n = 6. In Sect. 5 we will show how to formally
verify Lemma4 in time polynomial in n, so that the formal verification can be
performed for any number of shares n used in practice.

! This is still according to the t-SNT property, because (+ R2 (+ R1 X1)) is an output
variable and therefore t. = 1.

Formal Verification of Side-Channel Countermeasures 75

Table 2. Formal verification of the ¢-SNI property of FullRefresh for t = n — 1, for
small values of n.

n | #variables | #tuples | Security | Time
3112 66 v €
4122 1,540 v 0.02s
535 52,360 v 0.6s
6 51 2,349,060 | v/ 465

The Rivain-Prouff Countermeasure. The Rivain-Prouff countermeasure for
AES is based on an extension over For of the masked AND gate from [ISWO03]. It
enables to securely compute a n-sharing of the product ¢ = a-b over Fyx, from an
n-sharing of @ and b. The algorithm was proven ¢-SNI in [BBD+16]. In the full
version of this paper [Corl7b], we recall the corresponding SecMult algorithm,
and we show how to formally verify its ¢-SNI property for small values of n, for
t=mn—1.

4 Formal Verification of Boolean to Arithmetic
Conversion

In this section we show how to extend [BBD-+15] to handle a combination of
arithmetic and Boolean operations. This enables to formally verify the security
of the high-order Boolean to arithmetic conversion algorithm recently described
at CHES 2017 [Corl7c], with a ¢-SNI security proof for n > t+ 1. The algorithm
can be seen as a generalization of Goubin’s algorithm [Gou01] to any order, still
with a complexity independent of the register size k. Although the algorithm
has complexity O(2"), instead of O(n? - k) in [CGV14], for small values of n it
is an order of magnitude more efficient. The algorithm takes as input n Boolean
shares x; such that
r=x1D - Dx,

and using a recursive algorithm computes n arithmetic shares D; such that

t=D;+---+ D, (mod 2%)

Boolean to Arithmetic Conversion. The algorithm from [Corl7c¢] is based
on the affine property of the function ¥(x,r) := (x @ r) —r (mod 2¥). As illus-
trated in Fig.2 the algorithm is recursive and makes two recursive calls to the
same algorithm C' with n — 1 inputs. For n = 2 one uses a ¢-SNI variant of
Goubin’s algorithm:

D1 = ((1‘1 D 1"1) D J/(xl @Tl,T2 D (IEQ D 7’1))) D W(Il D T17T‘2) (2)
Dy =x5P 1 (3)

76 J.-S. Coron

r — R K - R s F - C » + — D

> R > F > C

Fig. 2. Sequence of operations in the Boolean to arithmetic conversion algorithm from
[Corl7c].

For n > 3 the algorithm works as follows. One first performs a mask refreshing
R, while expanding the z;’s to n + 1 shares. One obtains, from the definition of
the ¥ function:

x:xl@xQ@...@$n+1
=(@X1D B Tpp1 — 2D DTpy1) 2D B Tpt1
=V(2,22@ - DTpg1) + 22D D Tppy

From the affine property of the ¥ function, the left term can be decomposed
into the xor of n shares ¥(z1,z;) for 2 < i < n + 1, where the first share is
(nA1) - z1 ®¥(x1,29):

r=MnA1) -z, @¥(21,22) OV (21,23) D DY (21, Tpt1) + 22D D Ty

We obtain that x is the arithmetic sum of two terms, each with n Boolean
shares; this corresponds to the two branches in Fig. 2. One then performs a mask
refreshing R on both branches, and then a compression function F that simply
xors the last two shares, so there remains only n — 1 shares on both branches.
One can then apply the Boolean to arithmetic conversion C' recursively on both
branches, taking as input n — 1 Boolean shares (instead of n), and outputting
n — 1 arithmetic shares; we obtain:

v=(A1++ A1)+ (Bi++Bp_1) (mod 2"

Eventually it suffices to do some additive grouping to obtain n arithmetic shares
as output, as required:

t=D;+---+ D, (mod 2%

We refer to [Corl7c] for the details of the algorithm. The algorithm is proven
t-SNI secure with n > ¢ + 1 shares in [Corl7c].

Algorithm Representation. In Sect. 3.3 we have described a formal verifica-
tion of the security properties of RefreshMasks that are required for the secu-
rity proof of the above Boolean to arithmetic conversion algorithm in [Corl7c].
However this provides only a partial verification of the algorithm, since in that
case the adversary is restricted to only probing the Boolean operations per-
formed within the RefreshMasks. To obtain a full verification, we must consider

Formal Verification of Side-Channel Countermeasures 77

an adversary who can probe any variable in the Boolean to arithmetic algorithm.
In that case the formal verification becomes more complex as we must handle
both Boolean and arithmetic operations.

Since in our nested list representation we have already using the + operator
for the xor, we use the ADD keyword to denote the arithmetic sum. For example,
the final additive grouping can be represented as:

> (additive—grouping ’(Al A2) ’(Bl1 B2))
((ADD Al B1l) A2 B2)

which corresponds to the three arithmetic shares D; = A; + By (mod 2’“), Dy =
A; and D3 = Bs. We also use the PSI operator to denote the application of
the ¥ function. For example, the Boolean to arithmetic conversion algorithm for
n = 2 gives from (2) and (3):

> (convba (X1 X2))

((+ (+ (+ X1 R1) (PSI (+ X1 Rl1) (+ R2 (+ X2 R1))))
(PSI (+ X1 R1) R2))

(+ X2 R1))

Simplification Rules. Given a list of intermediate variables that must be sim-
ulated, as previously we must use a set of simplification rules to determine how
many inputs z; are required for the simulation. For the verification of Boolean
circuits in the previous section, this was relatively straightforward as we had
essentially a single simplification rule, namely replacing = @ r by r when the
random r appears only once in the intermediate variables. However when com-
bining arithmetic and Boolean operations the formal verification becomes more
complex and we used the following simplification rules. We illustrate every rule
by an example that can be run from the source code [Corl7al.

e Rule 1: when w = 21 + z2 mod 2¥ must be simulated, simulate both z; and
Za.

> (prop—add ’((ADD X1 X2)))
(X1 X2)

e Rule 2: from the affine property of the function ¥, replace ¥(z,y) ® ¥(z, 2)
by ® ¥ (z,y ® 2).

> (replace—psi (+ (PSI A B) (PSI A C)))
(+ A (PST A (+ BQ)))

e Rule 3: from the definition of ¥, replace ¥(z,y) by (z @ y) — y mod 2*; we
denote by SUB the arithmetic subtraction.

> (replace—psi—sub ’(PSI A B)
(SUB (+ A B) B)

78 J.-S. Coron

e Rule 4: when a random r is used only once, replace x @ r by r, and similarly
for 4+ r mod 2¥ and — r mod 2%. This is an extension of the rule given by
(1).

> (iter—simplify ’((+ X1 R1) (ADD X2 R2) (SUB X3 R3)))
(R1 R2 R3)

e Rule 5: when a random r is not used in two intermediate variables e; and e,
replace the simulation of (ey @1, ea 1) by the simulation of (r, (e; ®r) @ eq);
this corresponds to the change of variable ' = e; @ r.

> (simplify—x ’((+ R1 X1) (+ Rl X2)))
(Rl (+ (+ R1 X1) X2))

e Rule 6: when ¥(x1,z2) must be simulated, simulate both z; and x5.

> (prop—psi ’((PSI A B)))
(A B)

We note that the order in which the rules are applied matters. For example,
once Rule 3 has been applied, Rule 2 cannot be applied to the same expression,
because the PSI operator has been replaced by SUB. One must therefore use the
right strategy for the application of the rules; an overview is provided in Fig. 3.
In particular, we only apply Rule 3 if subsequently applying Rule 4 enables to
eliminate the SUB operator, and Rule 6 is only applied as a last resort, when
other rules have failed.

ﬁ_y‘es yes yes yes
Ile |R2| R4 no IR3+R4I no |R5| no lRGIno

[l [l I | I

Fig. 3. The rule application strategy for the formal verification of Boolean to arithmetic
conversion.

Formal Verification. In order to verify the ¢-SNI property of the Boolean to
arithmetic algorithm, as previously we must check that for all possible (n — 1)-
tuples of intermediate variables (including the outputs D;), the number of input
variables x;’s that remain after the application of the above rules is always < t.,
where t. is the number of non-output variables in the (n — 1)-tuple.

We summarize in Table 3 the timings of formal verification for the algorithm
in [Corl7c]. Note that the Boolean to arithmetic conversion algorithm has com-
plexity O(2"), and therefore the number of possible (n—1)-tuples of intermediate
variables is (’)(2”2); that is why we could only perform the formal verification
up ton = 5.

Formal Verification of Side-Channel Countermeasures 79

Table 3. Formal verification of the ¢t-SNI property of the Boolean to arithmetic con-
version algorithm from [Corl7c].

n | #variables | #tuples Security | Time
2] 11 1 | v €

3| 48 1,128 | v 0.08s
41133 383,306 | v/ 85s
51312 387,278,970 | v 88h

5 Formal Verification in Polynomial Time

The main drawback of the previous approach is that it has exponential complex-
ity in the number of shares n, because the number of ¢-tuples to consider grows
exponentially with n. In this section we describe a new approach for proving
the security of a side-channel countermeasure. Instead of performing a simula-
tion of the probed variables as in [ISW03], our approach consists in applying a
sequence of elementary circuit transforms, until the transformed circuit becomes
so simple that the security property becomes straightforward to verify. The main
advantage is that in the context of formal verification, our new approach seems
much easier to verify formally than the classical simulation-based approach from
[ISW03]. For Boolean circuits our technique is based on the following two ele-
mentary transforms:

e The Random-zero transform: we set to 0 a subset of the randoms r; used in
the circuit.

e The One-time-pad transform: if a random r appears only once in a circuit,
and moreover r is not probed, we can replace any variable x @& r by r.

The Random-Zero Transform. Our first circuit transformation consists in
setting to 0 a subset of the randoms r; used in the circuit. The transform only
applies to additively masked circuits.

Definition 3 (Additive masking). Let C be a circuit taking as input x1, . ..,
Tn. We say that C is additively masked if every intermediate variable y in the
circuit can be written as y = f(x1,...,x,) + g(r1,...,7rn), where g is a linear
function.

For example, the circuit computing y = x1 - x2 + 71 + 2 is additively masked,
while the circuit computing y = z; - 71 is not. Most side-channel countermea-
sures for block-ciphers are additively masked. In particular, this holds for the
RefreshMasks, FullRefresh and SecMult algorithms considered in the previous sec-
tions. The following lemma shows that it is sufficient to consider the security
of a simpler circuit Cy where a subset of the randoms are fixed to 0. Namely if
there is an attack against the original circuit C', then the same attack applies
against Cp; see the full version of this paper [Corl7b] for the proof.

80 J.-S. Coron

Lemma 5 (Random-zero transform). Let C be an additively masked circuit
and let Cy be the same circuit as C but with a subset of the randoms fized to 0.
Anything an adversary can compute from a set of probes in C, he can compute
from the same set of probes in the circuit Cy.

Remark 1. Lemma5 does not hold for general circuits; consider for example the
circuit taking as input sk and outputting (sk-r,r); when considering the output
only, the circuit would be secure when r is fixed to 0, but the output leaks the
secret sk whenever r # 0.

Application: t-NI of RefreshMasks. The ¢-NI property of RefreshMasks, as
stated in Lemma 2, is easily verified formally using the Random-zero transform.
Namely, if we fix all randoms of RefreshMasks to 0, we obtain the identity func-
tion, which is trivially ¢-NI. For example, we obtain for n = 4:

> (check—refreshmasks—tni—poly 4)

Input: (X1 X2 X3 X4)

Output: ((+ R1 X1) (+ R2 X2) (+ R3 X3) (+ R3 (+ R2 (+ Rl X4))))
Random zero => (X1 X2 X3 X4)

Identity function: T

Note that the verification is performed in polynomial time in n, while in the
generic approach the complexity would be exponential in n when examining all
possible t-tuples.

The One-Time Pad Transform. The One-time Pad transform is defined as
follows: if a random 7 is used only once in a circuit, and moreover 7 is not probed,
then we can replace the variable = & r by r. Note that in principle the variable
x can still be probed, so it must not be removed from the circuit.

We can assume that a certain random r has not been probed when we have
an upper bound on the number of probes in the circuit, as it is the case for
the ¢-NI and ¢-SNI properties. For example, if a circuit contains n randoms r;
but the adversary has only access to ¢t = n — 1 probes, then we are guaranteed
that at least one of the random r; has not been probed, and we can apply the
One-time Pad transform on this random. The proof technique then consists in
considering all possible n cases separately (corresponding to the non-probed r;,
for 1 <4 < n), and then applying the admissible One-time Pad transform in
each case.

Formal Verification in Polynomial-Time. More generally, the proof strat-
egy is to perform a sequence of elementary circuit transforms until we obtain
a simple circuit C' for which the ¢-NI or ¢-SNI properties is straightforward to
verify. In the full version of this paper [Corl7b] we illustrate this approach by
providing a formal verification of the same security properties of the Refresh-
Masks, FullRefresh and SecMult algorithms as considered in Sect. 3, but this time
with complexity polynomial in n, instead of exponential. This implies that the

Formal Verification of Side-Channel Countermeasures 81

security of these algorithms can be formally verified for any value of n for which
the countermeasure would be used in practice. We refer to [Cor17a] for the source
code of the formal verification.

6 Towards Automatic Generation of Security Proofs

The drawback of the previous approach is that for the security verification to
happen in polynomial time, we must select ourselves the right sequence of circuit
transforms. Instead we would like to have the circuit transforms being selected
automatically by our verification tool, based on a limited set of elementary rules,
and still in polynomial-time.

In the following, we show that this can be achieved for simple circuits based
on the three following rules. We denote by P the property that must be checked;
for example, for ¢-NI security, the property P would require that any t-tuple
of intermediate variables is simulatable from a subset of the inputs z|;, with
|I| < t. Below we denote by Cyy the circuit y; = x; @ 1 for 1 < i < n (see the
full version of this paper [Corl17b]). We assume that the property P is already
verified by Coyp, so that P does not need to be verified explicitly for Cpyy.

(R1) Perform a loop to select and remove the subset of the circuit that is
unprobed.

(R2) Apply the random-zero transform, except on randoms used only once in
the circuit.

(R3) Check whether the resulting circuit is equal to Cyyp. Otherwise check the
property P for all possible ¢-tuple of probes.

We show in the full version of this paper [Corl7b] that from the three above
rules, we can formally verify in polynomial time the main properties of Refresh-
Masks and FullRefresh considered in this paper.

References

[BBD+15] Barthe, G., Belaid, S., Dupressoir, F., Fouque, P.-A., Grégoire, B.,
Strub, P.-Y.: Verified proofs of higher-order masking. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 457-485.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-
5_18. https://eprint.iacr.org/2015/060

[BBD+16] Barthe, G., Belaid, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub,
P.-Y., Zucchini, R.: Strong non-interference and type-directed higher-
order masking. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, 24-28 Octo-
ber 2016, pp. 116-129 (2016). Publicly available at https://eprint.iacr.org/
2015/506.pdf. See also a preliminary version, under the title “Composi-
tional Verification of Higher-Order Masking: Application to a Verifying
Masking Compiler”, publicly available at https://eprint.iacr.org/2015/506/
20150527:192221

https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1007/978-3-662-46800-5_18
https://eprint.iacr.org/2015/060
https://eprint.iacr.org/2015/506.pdf
https://eprint.iacr.org/2015/506.pdf
https://eprint.iacr.org/2015/506/20150527:192221
https://eprint.iacr.org/2015/506/20150527:192221

82 J.-S. Coron

[BDG+14]

[CGV14]

[Corl7a]

[Corl7b]

[CorlT7c]

[CPRR13]

[DDF14]

[GouO1]

[ISWO03]

[RP10]

Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub,
P.-Y.: EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.)
FOSAD 2012-2013. LNCS, vol. 8604, pp. 146-166. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10082-1_6

Coron, J.-S., Grofischddl, J., Vadnala, P.K.: Secure conversion between
boolean and arithmetic masking of any order. In: Batina, L., Robshaw,
M. (eds.) CHES 2014. LNCS, vol. 8731, pp. 188-205. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-44709-3_11

Coron, J.-S.: CheckMasks: formal verification of side-channel countermea-
sures (2017). Publicly available at https://github.com/coron/checkmasks
Coron, J.-S.: Formal verification of side-channel countermeasures via
elementary circuit transformations. Cryptology ePrint Archive, Report
2017/879 (2017). https://eprint.iacr.org/2017/879

Coron, J.-S.: High-order conversion from Boolean to arithmetic masking.
In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 93—
114. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4_5
Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel
security and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol.
8424, pp. 410-424. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-43933-3_21

Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing
attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 423-440. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-55220-5_24

Goubin, L.: A sound method for switching between boolean and arithmetic
masking. In: Kog, C.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS,
vol. 2162, pp. 3-15. Springer, Heidelberg (2001). https://doi.org/10.1007/
3-540-44709-1_2

Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against
probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
463-481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4.27

Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In:
Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
413-427. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
15031-9_28

https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-662-44709-3_11
https://github.com/coron/checkmasks
https://eprint.iacr.org/2017/879
https://doi.org/10.1007/978-3-319-66787-4_5
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/978-3-642-55220-5_24
https://doi.org/10.1007/3-540-44709-1_2
https://doi.org/10.1007/3-540-44709-1_2
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-642-15031-9_28

®

Check for
updates

Drive-By Key-Extraction Cache Attacks
from Portable Code

Daniel Genkin'2, Lev Pachmanov®, Eran Tromer>*®™) and Yuval Yarom®®
! University of Pennsylvania, Philadelphia, PA, USA
danielg3@cis.upenn.edu
2 University of Maryland, College Park, MD, USA
3 Tel Aviv University, Tel Aviv, Israel
{levp,tromer}@tau.ac.il
4 Columbia University, New York, NY, USA
5 University of Adelaide, Adelaide, Australia
yval@cs.adelaide.edu.au
6 Data61, Sydney, Australia

Abstract. We show how malicious web content can extract crypto-
graphic secret keys from the user’s computer. The attack uses portable
scripting languages supported by modern browsers to induce contention
for CPU cache resources, and thereby gleans information about the mem-
ory accesses of other programs running on the user’s computer. We show
how this side-channel attack can be realized in WebAssembly and PNaCl;
how to attain fine-grained measurements; and how to extract ElGamal,
ECDH and RSA decryption keys from various cryptographic libraries.

The attack does not rely on bugs in the browser’s nominal sandbox-
ing mechanisms, or on fooling users. It applies even to locked-down plat-
forms with strong confinement mechanisms and browser-only function-
ality, such as Chromebook devices.

Moreover, on browser-based platforms the attacked software too may
be written in portable JavaScript; and we show that in this case even
implementations of supposedly-secure constant-time algorithms, such as
Curve25519’s, are vulnerable to our attack.

1 Introduction

Since their introduction [5,29,30,36], microarchitectural side channel attacks
have become a serious security concern. Contrary to physical side channels,
which require physical proximity for exploitation, microarchitectural attacks only
require the attacker to execute code on the target machine. Even without spe-
cial privileges, such code can contend with concurrently-executing target code
for the use of low-level microarchitectural resources; and by measuring the thus-
induced timing variability, an attacker can glean information from the target
code. Many such resources have been analyzed and exploited, including branch
predictors and arithmetic units, but contention for cache resources has been

© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 83-102, 2018.
https://doi.org/10.1007/978-3-319-93387-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_5&domain=pdf

84 D. Genkin et al.

proven to be particularly devastating. Cache attacks allow fine grained moni-
toring of memory access patterns, and can extract cryptographic keys [5,29,30],
website fingerprints [28], and keystrokes [15]; see [11] for a survey.

Less is known, however, about realistic attack vectors by which cache attacks
(and other microarchitectural attacks) be deployed in practice. Most research
has assumed that the attacker has the ability to run native code on the tar-
get machine. This makes sense for scenarios such as attacks across virtual
machines [17,31,37], especially in public compute clouds, or attacks between
different users sharing the same PC. But in the typical end-user setting, hard-
ware devices are not shared by multiple mistrusting users. Moreover, native code,
run locally by a user, usually executes in a security context that allows access
to that user’s data, making security-savvy users reluctant to run such untrusted
code.

Recent works [13,28] made progress towards effective cache attacks on end-
user devices, using JavaScript code running in the target’s browser and without
requiring native code execution. However, since JavaScript is far-removed from
the native platform, the information obtained by a JavaScript attacker is severely
degraded. Indeed compared to attacks which are based on native-code execu-
tion, those works were only able to detected coarse-scale events (distinguishing
between websites loaded in another browser tab or ASLR de-randomization),
leaving open the feasibility of monitoring and exploiting fine-grained events.

Thus, in this work we focus on the following question: (a) Are there prac-
tical deployment vectors for microarchitectural attacks on single-user
devices, that are capable of extracting fine-grained information (such
as cryptographic keys), and do not require privileged user operations
(such as software installation or native code execution)? In particular,
do such attacks apply to locked-down platforms, such as Chromebook running
Chrome OS, where functionality is restricted to sandboxed web browsing?

Even when microarchitectural information leakage occurs, its exploitability
depends on the implementation of the attacked software. Modern cryptographic
software is often designed with side channels in mind, employing mitigation tech-
niques that require low-level details of the executed code—first and foremost,
to make it constant-time. This picture changes when cryptographic software is
deployed as portable high-level code, where the final code and memory layout are
left to the whims of a just-in-time compiler. On the one hand, defensively exercis-
ing the requisite control becomes more difficult. On the other hand, the attacker
too has to cope with increased variability and uncertainty, so it is not obvious
that leakage (if any) is at all exploitable. We thus ask: (b) Do portable pro-
gram representations compromise the side-channel resilience of (sup-
posedly) constant-time algorithms?

1.1 Our Results

We answer both questions in the affirmative. (a) We present cache side-channel
attacks which can be executed from a web page loaded in a sandboxed browser

Drive-By Key-Extraction Cache Attacks from Portable Code 85

©)) ®

M Encrypted email - test@ . X Watch free Movies Onlir X ' i@ Advertisement . - 0o x
<« C | @ Secure | https//mail.google.com 0/#inbox/15d4bc329fa77f w B i
Go gle 1:1 Read a protected message ’

Gmail - | Thanks for decrypting my super-secret email.
I hope you're reading this on an a very secure platform, like Chromebook, which
oW Ency iselates the decryption process from other user programs and browser tabs.
I inbox |
Starred 9

Important
Sent Mail
Drats

More~ m

W
dtDzqETIVIXBWaS
kBGdeRQKC2QD2BXFnsPsfTIKfUAICGBhs CQ3yRwhhEyUgluhltca

Fig. 1. Attack scenario screenshot. The targeted user opens an online streaming web-
site in Tab 2. Clicking within this tab (e.g., to start a movie) causes a pop-under to
open up as Tab 3. The malicious advertisement in Tab 3 then monitors the cache
activity on the target machine. When an encrypted email is received and decrypted
using Google’s encrypted email extension (in Tab 1), the malicious advertisement in
Tab 3 learns information about the user’s secret key.

environment, and are capable of extracting keys from ElGamal and RSA imple-
mentations. (b) We demonstrate key extraction even from an implementation
of Curve25519 ECDH, which was explicitly designed to minimize side channel
leakage, but becomes susceptible due to use of high-level JavaScript.

Our attacks do not require installing any software on the target machine,
and do not rely on vulnerabilities in the browser’s nominal isolation mechanisms
(e.g., they work even if Same Origin Policy and Strict Site Isolation are perfectly
enforced). Rather, they glean information from outside the browser’s sandbox
purely by inducing and measuring timing variability related to memory accesses
outside its sandbox. All the target user has to do in order to trigger the attack
is to have its browser execute malicious code embedded in a comprised website.

Drive-By Attack. The main attack scenario we investigate is a “drive-by” web
attack, where the attacker’s code is embedded in a web page and is automatically
activated when it is rendered by the user’s browser. This can happen when the
user explicitly visits the attacker’s web page (e.g., enticed by phishing), or a page
into which the attacker can inject HTML code (e.g., by a cross-site scripting
attack). Most deviously, the attack may be automatically triggered when the
user visits unrelated third-party web sites, if those sites display ads from web ad
services that support non-static ads (JavaScript, pop-under or IFRAME ads).
Concretely, we embedded the attack code in an advertisement, which we
submitted to a commercial web ad service. Whenever a user navigated to a site
that uses that service, and our ad was selected for display, the attack code was
triggered (see Fig.1). This code measured the memory access patterns on the
user’s machine, and sent it to our server for analysis. When the targeted crypto-
graphic software happens to be repeatedly invoked using some secret key during

86 D. Genkin et al.

the time when the ad was shown in some browser tab (even in the background),
our code extracted the secret key in as little as 3 min. This works even across
processes and browsers (e.g., JavaScript ad in Firefox attacking cryptographic
code running in Chrome).

Attacking Curve25519. One of our attacks targets a JavaScript implementa-
tion of Curve25519 Elliptic Curve Diffie-Hellman (ECDH) [6]. The implementa-
tion attempts to mitigate side-channel leakage by using a nearly constant-time
Montgomery-ladder scalar-by-point multiplication, but the in-browser compila-
tion from JavaScript introduces key-dependent control flow, which we can detect
and exploit by a portable code-cache side-channel attack.

Measurement Technique. We implement the cache measurement procedure
using portable code running within the browser. To achieve the measurement
resolution required to mount an attack on ElGamal and ECDH, we used PNaCl
or WebAssembly. These are architecture-independent code representations which
browsers execute in a sandbox—analogously to JavaScript, but lower-level and
more efficient. PNaCl is supported by desktop versions of the Chrome and
Chromium browsers since 2013, and automatically executed by the browser with-
out user involvement. WebAssembly is the standardization of the idea behind
PNaCl. It is supported by all major browsers and enabled by default since 2017.

Like JavaScript, PNaCl and WebAssembly are sandboxed, subject to Same
Origin Policy, and isolated from host resources such as the filesystem and other
processes. However, the portable code (inevitably) uses the underlying microar-
chitectural resources of the CPU it is executing on, and in particular the data
cache. Thus, it can induce the memory-contention effects required for cache side-
channel attacks. Using this, and additional techniques, the portable code can
execute a variant of the Prime+Probe attack of [29], to detect which memory
addresses are accessed by other processes.

Compared to the two prior works on portable-code cache attacks (see
Sect. 1.3), our use of a portable but low-level program representation, as opposed
to JavaScript in [28], reduces measurement overheads and provides better tim-
ing sources on modern browsers; and by using a precise eviction set construction
algorithm (adapting the approach of [23] to the portable setting) we moreover
reduce the eviction sets’ size by x64 compared to [13]. Taken together, these
attain the requisite temporal resolution for several cryptanalytic attacks.

Challenges. Launching cache attacks involves numerous challenges, such as
recovering the mapping between the memory and the cache, and identifying
cache sets corresponding to security-critical accesses (see [23] for a detailed list).
Mounting the attack from portable code introduces several additional challenges:

1. Emulated environment: Both PNaCl and WebAssembly modules run inside
an emulated 32-bit environment, preventing access to useful host platform
services such as huge pages, mlock() and posix memalign().

Drive-By Key-Extraction Cache Attacks from Portable Code 87

2. Slower memory access: memory accesses using (current implementations of)
portable architectures incur an overhead compared to native execution, reduc-
ing the measurements’ temporal resolution.

3. Inability to flush the CPU pipeline and cache: PNaCl and WebAssembly do
not support instructions for flushing the CPU pipeline, the cache or avoiding
out-of-order execution, as needed by many native-code attacks.

4. Inaccurate time source: Architecture independence forces PNaCl applications
to only use generic interfaces or indirect measurements to measure time.
WebAssembly modules can interact with external APIs only using JavaScript,
hence they are limited to the time sources available to JavaScript code.
Moreover, the cryptographic software we attack is implemented in JavaScript,
which introduces yet more challenges:

5. Unpredictable memory layout: The target’s JavaScript code is compiled anew
at every page load, and moreover, its memory allocations are done in an
unpredictable way at every invocation.

6. No shared memory: Many prior cache attacks relied on the attacker code and
target code having some shared memory (e.g., AES S-tables or code), due to
shared libraries or memory deduplication, not unavailable here.

1.2 Targeted Hardware and Software

Chromebook. We demonstrate the attacks on a Chromebook device (Samsung
XE550C22) which is tailored for running Chrome OS 58.0.3029.112 (a locked-
down version of Linux running the Chrome web browser), including all of its
security measures. It is equipped with an Intel Celeron 867 Sandy-bridge 1.3 GHz
CPU featuring a 2048 KB L3 cache divided into 4096 sets and 8 ways.

HP Laptop. The attacks are mostly independent of the operating system, and
of the precise CPU model (within a CPU family). To demonstrate this, we also
execute the attacks on an HP EliteBook 8760w laptop, running Kubuntu 14.04
with Linux kernel 3.19.0-80, with an Intel i7-2820QM Sandy Bridge 2.3 GHz
CPU featuring a 8192KB L3 cache divided into 8192 sets and 16 ways.

Elliptic. Elliptic [18] is an open-source JavaScript cryptographic library, pro-
viding efficient implementations of elliptic-curve cryptographic primitives such
as Elliptic Curve Diffie-Hellman (ECDH). Elliptic is widely used (over 20M
downloads), and underlies more than a hundred dependent projects including
crypto-currency wallets. Elliptic supports state-of-the-art elliptic curve construc-
tions such as Curve25519 [6], which was designed to offer increased resistance to
side channel attacks. We show that while Elliptic’s implementation does use the
Montgomery-ladder method with apparently constant execution time, memory
access leakage induced by the JavaScript routines does allow for key extraction.

88 D. Genkin et al.

Google’s End-to-End Library. End-to-End is an open-source JavaScript
cryptographic library developed by Google for use by websites and browser plug-
ins. To facilitate email encryption and signing directly inside the user’s browser,
End-to-End supports the OpenPGP standard, as documented in RFC 4880. End-
to-End is the cryptographic engine for many browser plugins such as E2EMail,
Google encrypted email extension, and Yahoo’s fork of EndToEnd.

OpenPGP.js. OpenPGP.js is a popular open-source library for browser-based
cryptographic operations, and in particular encrypted email. Similarly to End-to-
End, OpenPGP.js implements the OpenPGP standard and is widely deployed
in web applications and browser plug-ins. These include password managers,
encrypted mail clients and other applications. To create seamless user experience,
some of those plug-ins (e.g., ProtonMail and CryptUp) automatically decrypt
received content upon opening the received email.

1.3 Related Work

Cache Attacks. Cache attacks were introduced over a decade ago [5,29,30,
36). Initial attacks exploited the L1 and L2 data caches [29,35], however later
attacks targeted other caches, such as the L1 instruction cache [1,4] the shared
last level cache [16,23] and specialized caches including the branch prediction
unit [2,3,10] and the return stack buffer [7]. Recent works [13,34] were able to
extract information without using huge pages. See [11] for a survey.

Cache Attacks from Portable Code. The first published browser-based
cache attack was shown by [28]. Using JavaScript, they detected coarse cache
access patterns and used them to classify web sites rendered in other tabs. They
did not demonstrate attacks that use fine-grain cache monitoring (such as key
extraction attacks). Moreover, following [28] web browsers nowadays provide
reduced timer precision, making the techniques of [28] inapplicable.

Recently, [13] achieved higher cache-line accuracy, and used it to derandomize
the target’s ASLR from within it’s browser. They relied on constructing very
large eviction sets, resulting in low temporal resolution of the memory access
detection, well below what is required for key extraction attacks (see Sect. 3).

The Rowhammer attack [20] was also implemented in JavaScript by [14].

Speculative Execution Attacks. Going beyond cryptographic keys, cache
attacks can be also leveraged to read memory contents across security domains.
The Meltdown [22] and Spectre [21] attacks exploit the CPU’s speculative exe-
cution to let a process glean memory content to which it does not have access
permissions, by accessing that memory directly (Meltdown) or by inducing the
valid owner of that memory to access it within a mispredicted branch (Spectre).
In both attacks, the read is invalid and the architectural state will eventually be
rewound, but the carefully-crafted side effects on the cache can be observed.

Drive-By Key-Extraction Cache Attacks from Portable Code 89

These attacks rely on cache covert channels, for which very coarse cache mea-
surements suffice, as opposed to our side-channel setting, which necessitates fine-
grained cache measurements. Meltdown further requires the attacker to access a
protected memory that is mapped into its own address space; this is inapplicable
to portable code. Web-based Spectre does not work across browser processes (of
different browsers or tabs).

Side-Channel Attacks on ElGamal Encryption. Several works show side-
channel attacks on implementations of ElGamal encryption. [39] show a cross-
VM attack on ElGamal that exploits the L1 data cache and the hypervi-
sor’s scheduler. Our attack is loosely modeled after [23], who implemented a
Prime+Probe attack [29] targeting an implementation of ElGamal. Recently,
[12] show a physical (electromagnetic) side-channel attack on ElGamal running
on PCs.

2 Preliminaries

2.1 Portable Code Execution

JavaScript is the oldest and most common portable programing language
that can be executed inside the web browser. For intensive computational
tasks, JavaScript is much slower than native applications; NaCl, PNaCl and
WebAssembly are alternative, more efficient solutions.

PNaCl. Modern Chrome browser support Google Native Client (NaCl) [38].
This is a sandboxing technology which enables secure execution of native code
as part of untrusted web applications, which can run compiled code at near-
native speeds and fine-grained control over the memory usage. While NaCl
deploys architecture-dependent (through OS-independent) code, the subsequent
Portable Native Client (PNaCl) achieves full cross-platform portability by split-
ting the compilation process into two parts. First, the developer compiles the
source code into an intermediate representation, called a bitcode executable. Next,
as part of loading the code to the host browser, the bitcode executable is auto-
matically translated to the host-specific machine language. PNaCl is enabled by
default on Chrome browsers and does not require user interaction.

WebAssembly. WebAssembly is the standardized successor of PNaCl, stan-
dardized by the World Wide Web Consortium (W3C), and supported by all
major web browsers on all operating systems, including mobile platforms. Sim-
ilarly to PNaCl, WebAssembly defines a binary format which can be executed
in a sandboxed environment inside the browser. Code is represented in simple
stack machine, with a limited set of operations (mostly arithmetical and memory
accesses). This is translated, by the browser, to the host’s native instruction set,
allowing it to be executed in near-native speed.

90 D. Genkin et al.

The simple abstract machine severely limits the environment observable
to WebAssembly code. As oppose to PNaCl, the limited instruction set of
WebAssembly does not directly expose any of the system’s APIs; function-
ality beyond simple computation is exposed only via call-outs to interpreted
JavaScript code, which are relatively slow.

Web Workers and JavaScript’s SharedArrayBuffer. Web Workers is an
APIT designed to allow JavaScript code to run heavy computational tasks in
a separate context, without interfering with the user interface, using multiple
threads. The communication between the main JavaScript context and Web
Workers threads can be done using an asynchronous messaging system, or via
the SharedArrayBuffer API which can allocate a shared memory buffer and
coordinate access to it using synchronization primitives.

3 Constructing Eviction Sets

The Prime+Probe attack relies on having an eviction set for every targeted cache
set. The main obstacle to constructing these sets is the requirement of finding
the mapping between the internal addresses used in the attacker’s program and
the cache sets they map to In the case of both PNaCl and WebAssembly, the
mapping from memory addresses to cache sets consists of multiple abstraction
layers, as follows. The portable runtime emulates a 32-bit execution environment,
which is mapped (by the browser) into the hosting process’s virtual address
space, which is in turn mapped (by the operating system) into physical memory.
Neither mapping is made available to the portable code. Lastly, physical memory
addresses are mapped (by the CPU) to cache sets; Intel does not disclose this
mapping, but it has been reverse-engineered. Despite two levels of indirections
with unknown mapping, and complications introduced by the third one, we can
find the mapping of memory blocks to sets.

Past Approaches. Several prior works [14,23,24] describe techniques for cre-
ating the eviction sets using huge pages: a CPU feature that allows pages in
the page table to have a very large size (typically 2 MB instead of 4 KB), for
improved address translation efficiency (e.g., reduced TLB thrashing).

Because both the physical and the virtual starting addresses of a huge page
must be a multiple of a huge page size, the virtual address and its corresponding
physical address share the least significant 21 bits. In particular, that means
that given a virtual address in a huge page, we know bits 0—20 of the physical
address and consequently we know the index within a slice of the cache set that
the virtual address maps to.

Avoiding Huge Pages. Recent attacks [13,34] were able to avoid huge pages,
at the cost of imposing other limitations. The attack of [34] assumes consecutive
physical memory allocation and deterministic heap behavior. Those assumptions

Drive-By Key-Extraction Cache Attacks from Portable Code 91

allows the attacker to find the cache set index up to a fixed offset, providing as
much information as using huge pages. Unfortunately, they are generally inap-
plicable, and for JavaScript code running in a browser environment, due to its
complex garbage collection pattern, we empirically did not observe any alloca-
tion pattern between different execution of the decryption operations.

Next, the work of [13] avoided huge pages by only using the 6 bits shared
between the virtual address and physical address to construct the eviction-sets.
In this approach, all cache-sets sharing the 6 least significant bits are mapped
to a single large eviction set. However, using such large eviction sets increases
probing time by a factor of x64 (compared to smaller eviction sets which are
designed to only evict a single cache set) thus reducing the channel’s bandwidth.
Large eviction sets also induce higher measurement noise due to unrelated mem-
ory accesses. While that method suffices to derandomize ASLR, key extraction
attacks requires fine-grained, low-noise measurements of the target’s memory
access, with temporal resolution on the order of a big-integer multiplication.

3.1 Methodology

We now describe our methodology of constructing eviction sets by recovering the
mapping from memory blocks to cache sets. As described above, the mapping
consists of several layers. The work of [23] introduced an algorithm for uncov-
ering the mapping between the physical address and cache slices, without the
knowledge of the CPU’s internals. However, the algorithm assumed knowledge
of the cache set index, acquired by using huge pages. This assumption does not
hold for PNaCl and WebAssembly since they do not provide access to huge
pages. Instead we generalize this algorithm to the portable environment.

Constructing Eviction Sets from Portable Environment. Portable code
only has access to the 12 least significant bits of the physical address, due to the
fact that “page offset” goes through the mapping between portable environment
and physical address space. Thus, the portable code knows the 6 least significant
bits of the cache set index, but is missing the 4 or 5 most significant bits.

To overcome this, we first find eviction sets for all of the cache sets that have
indices with 6 least significant bits being zero. To that end, we create a large
pool of memory address whose least significant 12 bits are zero. Applying the
algorithm of [23] on the pool results in initial eviction set for each cache set
index with 6 least significant bits equal to 0. Then, by enumerating each of the
possible values for the 6 least significant bits, we extend each initial eviction set
to 64 eviction sets, each corresponding to a single cache set.

However, for the algorithm to work, we need to modify the eviction testing
procedure. This is since when running on a system configured with regular-size
memory pages, performing eviction testing as described accesses a large num-
ber of memory pages. This stresses the address translation mechanism, and in
particular causes evictions from the Translation Lookaside Buffer (TLB), which
is a specialized cache used for storing the results of recent address translations.

92 D. Genkin et al.

These TLB evictions causes delays in memory accesses even when the accessed
memory block is cached. In particular, this introduces noise when checking if the
witness block is successfully evicted.

Handling TLB Noise. Ewviction testing finds whether accessing a list of mem-
ory blocks forces a cache eviction of a specific, witness, memory block. To address
the TLB noise, we modify the eviction testing approach, ensuring that the TLB
entry for the witness block is updated before we measure the access time. We
achieve this by accessing another memory block in the same page as the witness.
Thus the eviction testing algorithm becomes: access the witness to ensure it is
in the cache; access each memory block in the list of memory blocks; access a
memory block in the same page as the witness (to ensure the TLB entry for the
page is updated); and finally measure the access time to the witness (which will
be short if the witness is in the cache or long if accessing the list of memory
blocks evicts the witness from the cache).

Handling Additional Noise. Even after handling the noise from the TLB,
the increased footprint of our methodology and the overhead of the portable
environment causes high measurement noise. We handle this noise by repeating
the contracting stage, randomizing the order of the tested elements each time,
and calculating the intersection between the constructed eviction sets.

3.2 Implementation

PNaCl Implementation. The above approach requires several capabilities.
In order to distinguish between slow memory accesses (corresponding to cache
misses) and fast memory accesses (corresponding to cache hits) the attack code
must gain accesses to a timing source of sufficient resolution. Conveniently,
PNaCl provides a clock_gettime() function which provides time at nanosec-
ond accuracy (when called with clock_realtime parameter). Next, in order to
construct the eviction sets in PNaCl’s execution environment we allocate a suf-
ficiently large contiguous buffer (approximately 4 times larger than the size of
the LLC). Using this buffer and the aforementioned timing source, we performed
the phases outlined above for the construction of the eviction sets.

WebAssembly Implementation. As discussed in Sect. 2.1, PNaCl has been
available for a few years, but only on Chrome browser. Using the newer
WebAssembly standard, along with Web Workers and SharedArrayBuffers
allowed us to reimplement the approach without using browser-specific features.
Similarly to PNaCl, in order to construct eviction sets we obtain a high-precision
timer, and a contiguous allocated memory buffer.

The work of [28] prompted the web browser developers to reduce the precision
of the time source available to JavaScript code. Unlike PNaCl, WebAssembly
does not have access to system’s APIs like clock _gettime(). Thus, we use

Drive-By Key-Extraction Cache Attacks from Portable Code 93

an alternative technique, based on an intentional inter-thread race condition
(see [33] for a recent survey of JavaScript timing sources, including this one).

In this approach, we allocate a SharedArrayBuffer array within the main
JavaScript context, and pass it to a “Timer” Web Worker which iteratively incre-
ments the value in the first cell of the array in a tight loop. To learn the current
time, the main context reads that cell. The naive implementation, accessing
the array directly, did not work due to runtime optimization of supposedly-
redundant reads. To overcome this, we used the Atomics API to force reading
from the array (with sufficiently small performance penalty).

Next, we construct our eviction sets using WebAssembly.Memory contiguous
buffer accessible both for JavaScript and WebAssembly. Accessing to this buffer
from WebAssembly, and using the time source described above, allows us to
identify cache misses using the above techniques.

Exprimental Results. On the Chromebook machine described in Sect. 1.2 we
used the PNaCl implementation. Out of the 4096 sets, withing less then a minute
we were able to construct 4032-4160 eviction sets (some duplicate eviction set
was not removed during the collect phase). For the HP EliteBook 8760w laptop
equipped with 8192 cache set, constructing the eviction sets took 11 min using
the PNaCl and resulted in 7680-8320 eviction sets (with some duplicates as well).
Using the WebAssembly implementation we were able to construct eviction sets
on Chrome and Firefox as well. Constructing the eviction sets took 60-70 min
and yield 7040-7680 eviction sets.

4 Attacking Elliptic

This section shows that even highly regular algorithms, which do not perform
key-dependent operations or memory accesses, can produce exploitable side
channel leakage when implemented in high-level programming languages such
as JavaScript. We empirically demonstrate this on Elliptic’s Curve25519-based
ECDH implementation, which uses the Montgomery ladder method.

4.1 Deployment

Our attack scenario is based on running cache-monitoring portable code, using
either of PNaCl or WebAssembly, inside the target’s browser. We now describe
a specific attack scenario which does not require the user to install any malicious
application or even actively browse to the attacker’s website.

Pop-Under Advertisement. Pop-Under advertisement is a common tech-
nique to circumvent pop-up protection used in modern web browsers. Once the
user clicks anywhere inside the web page, a new browser tab containing the
requested web page is shown with while the previous tab (which is now hidden)
is redirected to an advertisement loaded from the attacker’s website.

94 D. Genkin et al.

Attack Scenario. We created an advertisement leading to a web page contain-
ing our portable attack code and submitted it to a web ad service. The targeted
user opened a web browser (either Chrome or Firefox, and on either the Chrome-
book or HP laptops described in Sect. 1.2), accessed a third party web page which
uses the ad service, and clicked anywhere within the page. Consequentially (cour-
tesy of the ad service), our advertisement was opened in a background tab and
started monitoring the cache access patterns on the target machine. Concur-
rently, the user opened a third tab, in the Chrome browser, which performed
ECDH key-exchange operations using Ellipstic’s Curve25519. Neither the web-
site used to trigger the attack, nor the ad service, were controlled by the attacker;
and the user never typed or followed a link to an attacker-controlled website.

4.2 Key Extraction

ECDH. Elliptic curve Diffie Hellman (ECDH) is a variant of the Diffie-Hellman
key exchange protocol [8] performed over suitable elliptic curves. Given a curve
over a finite field F and a generator point G € (F x F), in order to generate a
key Alice chooses a random scalar k as a private key and computed the public
key by [k]G (here and onward, we use additive group notation with and [k]G
denoting scalar-by-point multiplication of k and G). In order to compute the
shared secret, Bob sends his public key G’ = [k']G to Alice (where £’ is Bob’s
secret key). Alice and Bob then recover the shared secret by computing [k]G’
and [k']G, respectively. Notice that [k]G' = [k]([K'|G) = [K']([k]G) = [K']G.

Curve25519. Curve25519 is an elliptic curve introduced by [6] and standard-
ized by RFC 7748. Curve25519 was specifically designed to increase resistance
to side channel attacks and other common implementation issues.

Scalar-By-Point Multiplication. In order to increase side channel resistance,
implementations of Curve25519-based ECDH often use the Montgomery lad-
der [26] to perform the scalar-by-point multiplication operation. See Algorithm 1.
Notice that the algorithm performs the same number and order of addition and
double operations, regardless of the value of k;, making it more side channel
resistant compared to other multiplication algorithms [19,27].

Inapplicability of Data Cache Leakage. The Montgomery ladder scalar-
by-point multiplication routine attempts to achieve side channel resistance by
being highly regular. Each iteration of the main loop of Algorithm 1 accesses
both of the internal variables (a and b) and performs a single elliptic curve
add operation followed by a single elliptic curve double operation. In particular,
both operations are performed, in the same order, irrespective of the value of
the current secret key bit (k;). Thus, the Montgomery powering ladder does not
leak the secret key via key-dependent sequences of double and add operations,
or key-dependent memory accesses to a table of precomputed values. As we

Drive-By Key-Extraction Cache Attacks from Portable Code 95

Algorithm 1. Elliptic’s Point Multiplication (simplified).
Input: A scalar k and a point P where the k = Z?:_OI ;20
Output: b= [k]P.

1: procedure SCALAR_BY_POINT_MULTIPLICATION(k, P)

2: a+— P b—0O > O is the point of infinity
3: fori<—ntol do

4: if k; = 0 then

5: a < a.ADD(b) >a+b
6: b < b.DOUBLE() > [2]b
7 else

8: b < a.ADD(b) >a+b
9: a < a.DOUBLE() > [2]a
10: return b

have empirically validated, Elliptic’s implementation of Algorithm 1, running on
Chrome, is almost constant time, without key-dependent timing deviations.

While Algorithm 1 does leak the secret key via memory accesses performed
to the operand of the elliptic curve double operation (Lines 6 and 9) as well as
the memory accesses to the result of the elliptic curve add operation (Lines 5
and 8), this leakage is hard to exploit due to JavaScript’s memory allocation
mechanism. Concretely, since each iteration of the main loop always updates
both variables, Elliptic’s implementation always allocates new objects for the
updated values, at different and changing memory addresses. As we empirically
verified, the addresses of a and b change with each iteration of the main loop,
without any obvious patterns. This makes monitoring memory accesses to a and
b difficult, since the attacker has to predict and monitor a different cache set at
every iteration of the main loop.

While the memory re-allocation countermeasure was probably unintentional,
this countermeasure combined with the inherent regularity of the Montgomery
ladder scalar by point multiplication routine prevent the use of the data cache
as a source of side channel leakage.

Finding a Leakage Source. We choose, instead, to conduct a code-cache
side-channel attack. In this approach we identify a key-dependent change in the
target’s control flow. During the ECDH operation, we monitor the code cache
accesses via PNaCl or WebAssembly, deduce control flow changes, and from
these, recover the key.

An immediate candidate for such key-dependent control flow would be the
if-else statement in Line 4 of Algorithm 1. However, distinguishing between dif-
ferent cases of the if-else statement in Line 4 appears to be difficult, since both
case are very similar, call the same functions in the same order, have the same
length and are relatively small (each consisting of only two code lines).

While a high-level examination of Algorithm 1 does not reveal any additional
key-dependent control flow, we do observe that Algorithm 1 invokes the double
operation in Line 6 on variable b, while in Line 9 it is invoked on object a. While

96 D. Genkin et al.

Trace number
of cache-misses

O =W

000000000 000000 0/.0/100" /0000
L n L n n n n L

\
0 0.1 02 03 04 05 06 07 08 o 0 0.1 02 03 04 05 06 07 08
Time (ms) Time (ms)

Fig. 2. Cache accesses as detected by the attacker during ECDH key exchange over
Curve25519 by Elliptic. Trace 3 (left) contains cache misses observed by the attacker
during the scalar-by-point multiplication. On the right, which only shows Trace 3, it
can clearly be noticed that the cache-misses corresponds to key bits of 1, while sequence
without cache-misses of 20 us corresponds to bits of 0.

in a low-level programing language the execution of different code paths is usu-
ally explicit, in a high-level language such as JavaScript, the compiler/interpreter
is at liberty to select different execution paths for performing identical opera-
tions on different data. Empirically, this indeed occurs here. We were able to
empirically distinguish, using code cache leakage, between the double operation
performed in Line 6 (on variable b) from the double operation in Line 9 (per-
formed on a)—thus attaining key extraction.

Monitoring Elliptic’s Side Channel Leakage with WebAssembly. We
demonstrated our WebAssembly attack in a cross-browser, cross-process sce-
nario. We used the HP laptop to launch two separate web browser instances:
Chrome, running a page that uses Elliptic’s implementation of Curve25519-based
ECDH, and Firefox, running a third-party web site presenting advertisements
from our advertisement provider. After clicking inside the third-party web site,
our WebAssembly attack code was loaded as a pop-under ad, and automatically
started the eviction-set construction procedure described in Sect. 3. The CPU of
this HP laptop has 8192 cache sets, and each Curve25519 ECDH key exchange
lasts 2.5 ms. Hence, after the construction procedure, our code sampled each of
the 8192 eviction sets, performing Prime+Probe cycle every 380 s for a duration
of 22 ms, for a total sampling time of about 3 min.

Monitoring Elliptic’s Side Channel Leakage with PNaCl. Alternatively,
we opened two tabs in the Chromebook’s browser: one tab running our PNaCl
attack code, and the other running Elliptic’s implementation of Curve25519-
based ECDH, with each key exchange lasting 4.5 ms. Next, we sampled each of
the 4096 eviction sets, performing Prime+Probe cycle every 3 us for a duration
of 35 ms, totally sampling for less than 3 min.

Leakage Analysis. Out of the acquired traces, for each of the sampling meth-
ods we identified 5 as containing the side channel leakage described above.
Figure 2 shows some out of the acquired traces using PNaCl on the Chrome-
book machine, Trace 3 (left) contains the information regarding the secret key.

Drive-By Key-Extraction Cache Attacks from Portable Code 97

As can be seen from the right part of Fig. 2, showing only Trace 3, a sequence of
10 ws of cache-misses cache-misses followed by 5 s of cache-hits in the monitored
set corresponds to a bit of 1, while 20 us of cache-hits corresponds to 0 bit.
Using this, we automated the extraction of keys from traces, yielding correct
extraction of up to 236 (out of 252) bits of the secret key from individual traces.
Combining 4 traces of key-exchange operations we were able to extract all the
252 bits of the secret key. For the WebAssembly attacks, the acquired traces and
automated algorithm are very similar, and likewise result in full key extraction.

5 Attacking ElGamal

5.1 Attacking End-to-End

ElGamal [9] is a public-key crptosystem based on hardness of computing discrete
logarithms. In a nutshell, to decrypt a ciphertext (c1, ¢2), one has to compute the
shared secret s = ¢ mod p and then recovers the message by computing m’ =
¢2-57! mod p. To compute the modular exponentiation during decryption, End-
to-End uses a variant of the fixed-window (m-ary) exponentiation algorithm [25,
Algorithm 14.109]. The algorithm divides the secret exponent into equal-sized
groups of bits called windows, performing a single multiplication for each window
using a precomputed value for every possible windows value.

Our attack largely follows the technique of [23] and consists of two phases.
In the online phase we collect many memory access traces, with the aim of cap-
turing enough samples of accesses to memory locations that store the table of
pre-computed multipliers. In the offiine phase we analyse the collected traces to
identify the traces that correspond to memory locations that store pre-computed
multipliers. From these, we recover information on the operands of the multipli-
cations, from which we deduce bits of the exponent and then recover the key.

Monitoring End-to-End’s Side Channel Leakage. Following Sect.4 we
opened two tabs in the Chromebook’s browser: one running our PNaCl attack
code, and the other running End-to-End’s ElGamal, where each decryption oper-
ation lasts 1.58s on the Chromebook device. Next, we selected 8 random cache
sets and monitored them in parallel, performing a Prime+Probe cycle on each of
the cache sets once every 31.5 us for a duration of 5s. We repeated this process
sequentially for about 74 min, acquiring 7100 traces.

Leakage Analysis. Figure 3 shows the side channel leakage from an End-to-
End ElGamal decryption. Traces 3 and 19 contains cache misses observed during
the multiplication operations used by the exponentiation algorithm. To extract
the key, we applied offline processing: denoising, clustering, merging, conflict
resolution and key recovery. This took 90 min (cost: under $6 on Amazon EC2).
We ran our attack on several random ElGamal keys with 3072-bit public primes,
both on the Chromebook and the HP laptop, successfully extracting the entire
secret exponent in every trial.

98 D. Genkin et al.
20
2 215 bl LS 4
E E
E] F=H 1) — ’
@ © 3
= s :
= : o FEFLT SAETR T AR K S EETTEY T AT I
= 0
0 20 40 60 80 100 120
Time (ms) Time (mns)

Fig. 3. Cache accesses as detected by the attacker during ElGamal decryption by End-
to-End (left) and OpenPGP.js (right). Intensity represents the number of cache misses.
Traces 3 and 19 on the left, and trace 11 and 19 on the right, contain cache misses
observed by the attacker during the multiplication operations used by the exponentia-
tion algorithm. Trace 2 (right) shows code-cache misses in the execution of the modular
multiplication code during an OpenPGP.js decryption operation; the different intervals
between the multiplications leak the location of sequences of zero bits.

End-to-End’s implementation of RSA [32] decryption operations uses the
same fixed-window routine to perform modular exponentiation. Thus, our attack
is applicable for extracting RSA keys, even tough End-to-End implemented
ciphertext blinding countermeasure against side-channel attacks.

5.2 Attacking OpenPGP.js

OpenPGP.js implements ElGamal decryption using sliding-window exponentia-
tion [25, Algorithm 14.85]. Similarly to fixed-window exponentiation, the sliding
window algorithm also use indexes a table of precomputed multipliers, on every
multiplication operation. However, for speed, sequences of 0-bits are handled by
simply performing corresponding squaring operations. Thus, the sliding-window
algorithm leaks the location and length of zero sequences, and has been proven
less resistant to side-channel attacks [23].

To measure the leakage we used an analogous setup to the one used in
Sect.5.1. Using the Chromebook, we opened two browser tabs with one tab
running our PNaCl attack code while the other tab was performing ElGamal
decryption operations using the OpenPGP.js. We monitored random cache sets,
performing a Prime+Probe cycle on each set every 20 pus for a period of 0.62s.
The cache access patterns observed by the attacker reveal when a specific win-
dow value is used during the multiplication operations, Fig. 3 (right) shows the
side channel leakage from one ElGamal decryption operation. Finally, the squar-
ing operations performed by the sliding-window algorithm reveal long sequences
of zero exponent bits This additional source leakage in Trace 2 of Fig. 3 (right)
by monitoring the executions of the modular multiplication code.

6 Conclusion

In this paper we present a method for implementing an LLC-based Prime+Probe
attack on an multiple cryptographic libraries ranging from ElGamal to state-of-
the-art Curve25519-based ECDH using portable code executing inside a sand-
boxed web browser. We successfully deployed the attack using a commercial ad

Drive-By Key-Extraction Cache Attacks from Portable Code 99

service that triggers the attack code from third-party websites, and automati-
cally starts monitoring the memory access patterns when users navigate to the
ad. To our knowledge, this is the first demonstration of a drive-by cache attack,
and the first portable cryptographic side channel attack.

Unlike prior works, our attack target is implemented using a portable code.
Yet, even without the knowledge of the target’s memory layout, the attack suc-
cessfully extracts the target’s ElGamal and ECDH keys. Finally, we show that in
spite of their secure design, Chromebooks are vulnerable to cache based attacks.

Countermeasures. Side-channel resistant code requires constant-time imple-
mentation and avoiding secret dependent branches and memory accesses. These
approaches are very delicate, and may fail when on different hardware or with
different compilers. Using these techniques in JIT-compiled environments is an
unexplored area that we leave for future work. Meanwhile, cryptographic opera-
tions in JavaScript should to delegated to suitable native implementations, such
as (extensions of) WebCrypto APIL

Limitations. Constructing eviction sets as described in Sect. 3 depends on the
cache structure and eviction policy: in particular, an inclusive LLC, and an
LRU (or similar) eviction policy. While both assumptions hold for modern Intel
CPUs, other vendors may differ. Some of our attacks (Sect. 4) requires only a few
minutes of sampling time (corresponding to about a thousand decryptions), and
suggest a realistic threat to affected systems that conduct frequent decryptions.
Others (Sect.5) requires over an hour of sampling time, but should none the
less indicate that observable leakage is prevalent across diverse cryptographic
algorithms and implementations, and is expoitable by portable code.

Thus, the threat of cache timing side-channel attacks from sandboxed
portable code must be considered, and mitigated, in the design of modern sys-
tems where such code is trivially controlled by attackers.

Acknowledgments. This work was partially inspired by unpublished work on
portable cache attacks done jointly with Ethan Heilman, Perry Hung, Taesoo Kim
and Andrew Meyer.

Daniel Genkin, Lev Pachmanov and Eran Tromer are members of the Check Point
Institute for Information Security. Yuval Yarom performed part of this work as a vis-
iting scholar at the University of Pennsylvania.

This work was supported by the Australian Department of Education and Training
through an Endeavour Research Fellowship; by the Blavatnik Interdisciplinary Cyber
Research Center (ICRC); by the Check Point Institute for Information Security; by
the Defense Advanced Research Project Agency (DARPA) and Army Research Office
(ARO) under Contract #W911NF-15-C-0236; by the Israeli Ministry of Science and
Technology; by the Israeli Centers of Research Excellence I-CORE program (center
4/11); by the Leona M. & Harry B. Helmsley Charitable Trust; by NSF awards #CNS-
1445424 and #CCF-1423306; by the 2017-2018 Rothschild Postdoctoral Fellowship;
by the Warren Center for Network and Data Sciences; by the financial assistance
award TONANB15H328 from the U.S. Department of Commerce, National Institute

100

D. Genkin et al.

of Standards and Technology; and by the Defense Advanced Research Project Agency
(DARPA) under Contract #FA8650-16-C-7622. Any opinions, findings, and conclu-
sions or recommendations expressed are those of the authors and do not necessarily
reflect the views of ARO, DARPA, NSF, the U.S. Government or other sponsors.

References

10.

11.

12.

13.

14.

15.

. Aciigmez, O., Brumley, B.B., Grabher, P.: New results on instruction cache attacks.

In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 110-124.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9_8
Aciigmez, O., Gueron, S., Seifert, J.-P.: New branch prediction vulnerabilities in
OpenSSL and necessary software countermeasures. In: Galbraith, S.D. (ed.) Cryp-
tography and Coding 2007. LNCS, vol. 4887, pp. 185-203. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77272-9_12

Aciigmez, O., Kog, C.K., Seifert, J.-P.: Predicting secret keys via branch predic-
tion. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 225-242. Springer,
Heidelberg (2006). https://doi.org/10.1007/11967668-15

Aciigmez, O., Schindler, W.: A vulnerability in RSA implementations due to
instruction cache analysis and its demonstration on OpenSSL. In: Malkin, T. (ed.)
CT-RSA 2008. LNCS, vol. 4964, pp. 256-273. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-79263-5_16

Bernstein, D.J.: Cache-timing attacks on AES (2005). http://cr.yp.to/papers.
html#cachetiming

Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207—
228. Springer, Heidelberg (2006). https://doi.org/10.1007/11745853_14

Bulygin, Y.: CPU side-channels vs. virtualization malware: the good, the bad or
the ugly. In: ToorCon (2008)

Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. Inf. The-
ory 22(6), 644-654 (1976)

ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469-472 (1985)

Evtyushkin, D., Ponomarev, D., Abu-Ghazaleh, N.B.: Understanding and mitigat-
ing covert channels through branch predictors. TACO 13(1), 10:1-10:23 (2016)
Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. J. Cryptograph. Eng.
8(1), 1-27 (2018)

Genkin, D., Pachmanov, L., Pipman, I., Tromer, E.: Stealing keys from PCs using
a radio: cheap electromagnetic attacks on windowed exponentiation. In: Giineysu,
T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 207-228. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_11

Gras, B., Razavi, K., Bosman, E., Bos, H., Giuffrida, C.: ASLR on the line: practical
cache attacks on the MMU. In: NDSS (2017)

Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: a remote software-induced
fault attack in JavaScript. In: Caballero, J., Zurutuza, U., Rodriguez, R.J. (eds.)
DIMVA 2016. LNCS, vol. 9721, pp. 300-321. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40667-1_15

Gruss, D., Spreitzer, R., Mangard, S.: Cache template attacks: automating attacks
on inclusive last-level caches. In: USENIX, pp. 897-912 (2015)

https://doi.org/10.1007/978-3-642-15031-9_8
https://doi.org/10.1007/978-3-540-77272-9_12
https://doi.org/10.1007/11967668_15
https://doi.org/10.1007/978-3-540-79263-5_16
https://doi.org/10.1007/978-3-540-79263-5_16
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
https://doi.org/10.1007/11745853_14
https://doi.org/10.1007/978-3-662-48324-4_11
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Drive-By Key-Extraction Cache Attacks from Portable Code 101

Inci, M.S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., Sunar, B.: Cache attacks
enable bulk key recovery on the cloud. In: Gierlichs, B., Poschmann, A.Y. (eds.)
CHES 2016. LNCS, vol. 9813, pp. 368-388. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-53140-2_18

Inci, M.S., Giilmezoglu, B., Apecechea, G.I., Eisenbarth, T., Sunar, B.: Seriously,
get off my cloud! cross-VM RSA key recovery in a public cloud. IACR Cryptology
ePrint Archive, p. 898 (2015)

Indutny, F.: Fast elliptic curve cryptography in plain JavaScript (2017). https://
github.com/indutny /elliptic

Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski, B.S., Kog, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291-302. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5_22

Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J., Lee, D., Wilkerson, C., Lai, K.,
Mutlu, O.: Flipping bits in memory without accessing them: an experimental study
of DRAM disturbance errors. In: ISCA, pp. 361-372 (2014)

Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard,
S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: exploiting speculative
execution. ArXiv e-prints (2018)

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S., Kocher,
P., Genkin, D., Yarom, Y., Hamburg, M.: Meltdown. ArXiv e-prints (2018)

Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: Symposium on Security and Privacy, pp. 605-622 (2015)
Maurice, C., Weber, M., Schwartz, M., Giner, L., Gruss, D., Boano, C.A., Romer,
K., Mangard, S.: Hello from the other side: SSH over robust cache covert channels
in the cloud. In: NDSS (2017)

Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-
raphy, 1st edn. CRC Press, Boca Raton (1996)

Montgomery, P.L.: Speeding the Pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243 (1987)

Okeya, K., Kurumatani, H., Sakurai, K.: Elliptic curves with the montgomery-
form and their cryptographic applications. In: Imai, H., Zheng, Y. (eds.) PKC
2000. LNCS, vol. 1751, pp. 238-257. Springer, Heidelberg (2000). https://doi.org/
10.1007/978-3-540-46588-1_17

Oren, Y., Kemerlis, V.P.; Sethumadhavan, S., Keromytis, A.D.: The spy in the
sandbox: practical cache attacks in JavaScript and their implications. In: ACM
SIGSAC, pp. 1406-1418 (2015)

Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1-20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805_1

Percival, C.: Cache missing for fun and profit. In: Presented at BSDCan (2005).
http://www.daemonology.net /hyperthreading-considered-harmful

Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud!
Exploring information leakage in third-party compute clouds. In: CCS, pp. 199-212
(2009)

Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120-126 (1978)

Schwarz, M., Maurice, C., Gruss, D., Mangard, S.: Fantastic timers and where to
find them: high-resolution microarchitectural attacks in JavaScript. In: Kiayias, A.
(ed.) FC 2017. LNCS, vol. 10322, pp. 247-267. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-70972-7_13

https://doi.org/10.1007/978-3-662-53140-2_18
https://doi.org/10.1007/978-3-662-53140-2_18
https://github.com/indutny/elliptic
https://github.com/indutny/elliptic
https://doi.org/10.1007/3-540-36400-5_22
https://doi.org/10.1007/978-3-540-46588-1_17
https://doi.org/10.1007/978-3-540-46588-1_17
https://doi.org/10.1007/11605805_1
http://www.daemonology.net/hyperthreading-considered-harmful
https://doi.org/10.1007/978-3-319-70972-7_13
https://doi.org/10.1007/978-3-319-70972-7_13

102

34.

35.

36.

37.

38.

39.

D. Genkin et al.

Schwarz, M., Weiser, S., Gruss, D., Maurice, C., Mangard, S.: Malware guard
extension: using SGX to conceal cache attacks. In: Polychronakis, M., Meier, M.
(eds.) DIMVA 2017. LNCS, vol. 10327, pp. 3-24. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-60876-1_1

Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. J. Cryptol. 23(1), 37-71 (2010)

Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES
implemented on computers with cache. In: Walter, C.D., Kog, C.K., Paar, C. (eds.)
CHES 2003. LNCS, vol. 2779, pp. 62-76. Springer, Heidelberg (2003). https://doi.
org/10.1007/978-3-540-45238-6_6

Yarom, Y., Falkner, K.: FLUSH4+RELOAD: a high resolution, low noise, L.3 cache
side-channel attack. In: USENIX, pp. 719-732 (2014)

Yee, B., Sehr, D., Dardyk, G., Chen, J.B., Muth, R., Ormandy, T., Okasaka, S.,
Narula, N., Fullagar, N.: Native client: a sandbox for portable, untrusted x86 native
code. In: IEEE Symposium on Security and Privacy, pp. 79-93 (2009)

Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-VM side channels and
their use to extract private keys. In: CCS, pp. 305-316 (2012)

https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-319-60876-1_1
https://doi.org/10.1007/978-3-540-45238-6_6
https://doi.org/10.1007/978-3-540-45238-6_6

On the Ineffectiveness of Internal
Encodings - Revisiting the DCA Attack
on White-Box Cryptography

Estuardo Alpirez Bock!2(®) Chris Brzuska!?, Wil Michiels®*,
and Alexander Treff!

! Hamburg University of Technology, Hamburg, Germany
{estuardo .alpirezbock,brzuska,alexander. treff}@tuhh .de
2 Aalto University, Espoo, Finland
3 NXP Semiconductors, Eindhoven, The Netherlands
wil.michiels@nxp.com
4 Technische Universiteit Eindhoven, Eindhoven, The Netherlands

Abstract. The goal of white-box cryptography is to implement crypto-
graphic algorithms securely in software in the presence of an adversary
that has complete access to the software’s program code and execution
environment. In particular, white-box cryptography needs to protect the
embedded secret key from being extracted. Bos et al. (CHES 2016) intro-
duced differential computational analysis (DCA), the first automated
attack on white-box cryptography. The DCA attack performs a statisti-
cal analysis on execution traces. These traces contain information such as
memory addresses or register values, that is collected via binary instru-
mentation tooling during the encryption process. The white-box imple-
mentations that were attacked by Bos et al., as well as white-box imple-
mentations that have been described in the literature, protect the embed-
ded key by using internal encodings techniques introduced by Chow et
al. (SAC 2002). Thereby, a combination of linear and non-liner nibble
encodings is used to protect the secret key. In this paper we analyse the
use of such internal encodings and prove rigorously that they are too
weak to protect against DCA. We prove that the use of non-linear nibble
encodings does not hide key dependent correlations, such that a DCA
attack succeeds with high probability.

Keywords: White-box cryptography
Differential computational analysis - Software execution traces
Mixing bijections

1 Introduction

®

Check for
updates

When an application for mobile payment runs in software on Android or other
open platforms, it needs to protect itself as it cannot rely on platform security.
In particular, the cryptographic algorithms used within an application need to

© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 103-120, 2018.
https://doi.org/10.1007/978-3-319-93387-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_6&domain=pdf

104 E. Alpirez Bock et al.

be secured against adversaries who have a high degree of control over the envi-
ronment. In 2002, Chow et al. [9,10] introduced white-box cryptography, which
aims at remaining secure even when the adversary has full control over the exe-
cution environment. As mobile payment became widely used and as its security
nowadays often relies on software security only, Visa and Mastercard made the
use of white-box cryptography for mobile payment applications mandatory [15].

A necessary requirement for secure white-box cryptography is that an adver-
sary cannot extract the embedded secret key from the implementation. However,
hiding the secret key is not always enough to achieve security in the white-box
attack scenario. For example, if a mobile payment application uses a secret key
for authentication by encrypting a challenge, then an adversary may simply try
to copy the white-box program performing the encryption and run it on another
device. The adversary could successfully use the functionality of the white-box
program without knowing the value of its embedded secret key.

While it seems clear that a white-box program needs to achieve more than
just security against key extraction, hiding the secret key remains a difficult task
to achieve for real-life applications. Chow et al. [9,10] suggest to implement a
symmetric cipher with a fixed key as a network of look-up tables (LUT). The key
is compiled into a table instead of being stored in plain in the implementation. To
achieve robustness against reverse-engineering, Chow et al. propose to obfuscate
the lookup tables and the intermediate results via a combination of linear and
non-linear encodings. The idea of implementing symmetric ciphers as such an
obfuscated network of LUTs has caught on in the white-box community since
then, see, e.g., [7,11]. While the LUT-based white-box designs only store the
keys obfuscated in lookup tables, all aforementioned LUT-based designs turn
out to be susceptible to key extraction attacks performed via differential and
algebraic cryptanalysis (see [4,14,16,17]). Specifically, these attacks invert the
obfuscation process by deriving the applied encoding functions after which the
key can easily be recovered.

In real-life applications, mounting cryptanalysis and reverse engineering
attacks requires abundant skills and time from an adversary. Thus, Bos et al. [6]
and Sanfelix et al. [20] introduced automated key extraction attacks that are
substantially simpler and faster to carry out. The authors call their method
differential computational analysis (DCA) and describe it as the software coun-
terpart of the differential power analysis (DPA), a method for attacking cryp-
tographic hardware implementations [13]. Bos et al. [6] monitor the memory
addresses accessed by a program during the encryption process and display them
in the form of software execution traces. These software execution traces can also
include other information that can be monitored using binary instrumentation,
such as stack reads or register values. These traces serve the following three
goals. (1) They can help to determine which cryptographic algorithms was imple-
mented. (2) The traces provide hints to determine where roughly the crypto-
graphic algorithm is located in the software implementation. (3) Finally and most
importantly, the traces can be statistically analyzed to extract the secret key.
The automated DCA attack turned out to be successful against a large number

On the Ineffectiveness of Internal Encodings 105

of publicly available white-box implementations. It has since then become a pop-
ular method for the evaluation of newly proposed white-box implementations [5]
and software countermeasures for white-box cryptography [2].

In this paper, we analyze why step (3) of the attack by Bos et al. [6] actually
works and show which types of encodings are susceptible to the DCA attack.
The work of Sasdrich et al. [21] takes a first step towards this understanding.
They use the Walsh transform to show that the encodings used by their white-
box AES design are not balanced correlation immune and thus are susceptible
to the DCA attack. In this paper, we aim at giving a structured exposition to
improve our understanding of the power of the DCA attack.

Our Contribution. In this paper we provide an annotated step-by-step graphical
presentation of the key-extraction step of the DCA attack, which relies on a
difference of means distinguisher, and explain how to interpret the results. Our
presentation follows the style that Kocher [12] and Messerges [18] used for the
(analogous) differential power analysis on hardware implementations.

Further, we analyse how the presence of internal encodings on white-box
implementations affects the effectiveness of the DCA attack. Here, we focus on
the encodings suggested by Chow et al. [9,10], which are a combination of linear
and non-linear transformations. We start by studying the effects of a single
linear transformation. We show that the DCA attack can successfully extract
the key from a look-up table when it only uses linear or affine encodings. Next,
we consider the effect of non-linear nibble encodings and prove that the use of
nibble encodings provides conditions so that the DCA attack succeeds. Namely,
when we attack a key-dependent look-up table encoded via non-linear nibble
encodings, we always obtain a difference of means curve with values equal to
either 0, 0.25, 0.5, 0.75 or 1 for the correct key guess. The results obtained from
these analyses help us determine why the DCA attack also works in the presence
of both linear and non-linear nibble encodings as we discuss shortly in the end of
the paper and in more detail in the extended version [1]. Throughout the paper,
we also present experimental results of the DCA attack when performed on single
key-dependent look-up tables and on complete white-box implementations. In
all cases, the experimental results align with the theoretical observations.

2 White-Box Cryptography Implementations

White-box cryptography can be seen as special-purpose obfuscation, but is usu-
ally not discussed in this way. In particular, general-purpose obfuscation with
perfect security is known to be impossible [3] and the hope is that achieving
perfect security or at least a good level of security for a specific algorithm is still
feasible. The most popular approach in academic literature (and perhaps also
beyond) for white-box implementations of symmetric encryption is to encode the
underlying symmetric cipher with a fixed key as a networks of look-up tables
(LUT). In particular, the LUTs depend on the secret key used in the cipher. An
additional protection technique is to apply linear and non-liner internal encod-
ings which are used to encode the intermediate state between LUTs. Another

106 E. Alpirez Bock et al.

popular technique are external encodings which are applied on the outside of
the cipher and help to bind the white-box to an application. In this paper, we
focus solely on internal encodings, because, as Bos et al. point out in [6], applying
external input and output encodings yields an implementation of a function that
is not functionally equivalent to AES anymore and thus, some of its security can
be shifted to other programs. Moreover, this paper focusses on using internal
encodings for LUT-based white-box constructions of AES. We will focus on the
encodings and refer to the LUT-based construction as an abstract design. The
interested reader may find the work by Muir [19] a useful read for a more detailed
description on how to construct an LUT-based white-box AES implementation.
In the following, we introduce the concept of internal encodings.

Consider an LUT-based white-box implementation of AES, where the LUTs
depend on the secret key. Internal encodings can now help to re-randomize those
LUTs to make it harder to recover secret-key information based on the LUTs.
Such internal encodings were first suggested by Chow et al. [9,10]. We now
discuss two types of encodings.

Non-linear Encodings. Recall that the secret key is hard-coded in the LUTs.
When non-linear encodings are applied, each LUT in the construction becomes
statistically independent from the key and thus, attacks need to exploit key
dependency across several LUTs. A table T' can be transformed into a table T”
by using the input bijections I and output bijections O as follows:

T'=0o0Tol ',

As a result, we obtain a new table T’ which maps encoded inputs to encoded
outputs. Note that no information is lost as the encodings are bijective. If table
T’ is followed by another table R’, their corresponding output and input encod-
ings can be chosen such that they cancel out each other. Considering a complex
network of LUTSs of an AES implementation, we have input- and output encod-
ings on almost all look-up tables. The only exceptions are the very first and
the very last tables of the AES implementation, which take the input of the
algorithm and correspondingly return the output data. The first tables omit the
input encodings and the last tables omit the output encodings. As the internal
encodings cancel each other out, the encodings do not affect the input-output
behaviour of the AES implementation.

Size Requirements. Descriptions of uniformly random bijections (which are non-
linear with overwhelming probability) are exponential in the input size of the
bijection. Therefore, a uniformly random encoding of the 8-bit S-box requires a
storage of 2% bytes. Although this may still be acceptable, the problem arises
when two values with a byte encoding need to be XORed. An encoded XOR has
a storage requirement of 2'¢ nibbles. As we need many of them, this becomes
an issue. Therefore, one usually splits longer values in nibbles of 4 bits. When
XORing those, we only need a lookup table of 28 nibbles. However, by moving
to a split non-linear encoding we introduce a vulnerability since a bit in one

On the Ineffectiveness of Internal Encodings 107

nibble does no longer influence the encoded value of another nibble in the same
encoded word. To (partly) compensate for this, Chow et al. propose to apply
linear encodings whose size is merely quadratic in the input size and thus, they
can be implemented on larger words.

Linear Encodings. Chow et al. suggest toapply linear encodings to words that are
input or output of an XOR~network. These linear encodings have as width the com-
plete word and are applied before the non-linear encodings discussed above. While
the non-linear encodings need to be removed before performing an XOR-operation,
one can perform the XOR on linearly encoded values (due to commutativity). There-
fore, one usually refers to linear encodings as mizing bijections.

The linear encodings are invertible and selected uniformly at random. For
example, we can select L and A as a mixing bijections for inputs and outputs of
table T respectively:

AoTo LN

As stated above, it is not necessary to cancel the effect of the linear encodings
before an XOR-operation. However, after the XOR-operation we obtain an out-
put which is still dependent on the linear function A and the effect of A needs to
be eventually removed, e.g. at the end of an AES round. In this case, dedicated
tables in the form of L, o A~! are introduced, where L,, is the corresponding
linear encoding needed for the next LUT. In the white-box designs of Chow et
al. we have 8-bit and 32-bit mixing bijections. The former encode the 8-bit S-box
inputs, while the latter obfuscate the MixColumns outputs.

3 Differential Computational Analysis

We now revisit the DCA attack on white-box implementations, which aims
at finding key dependent correlations by analysing memory access informa-
tion recorded during the encryption process. To display the tracked memory-
information in so called software execution traces, one proceeds as follows: one
fixes one bit of information of the bit string that describes the memory address
and displays whether the bit was 0 or 1 at each memory access performed during
the execution. For more details on the acquisition of software traces, see the orig-
inal DCA paper by Bos et al. [6]. In this section we provide a detailed description
of one statistical method to analyse such software execution traces, namely the
difference of means method. Note that this method corresponds 1-to-1 to the
difference of means method as presented by Kocher using power traces [12]. Nev-
ertheless we now show the results obtained from a difference of means analysis
when performed using a group of software traces. The two attack capabilities
required to perform the DCA attack are as follows:

— execute the white-box program under attack several times in a controlled
environment with different input messages.
— knowledge of the plaintext! values given to the program as input.

! The attack works analogously when having access to the ciphertexts. The attacker
needs access to either plaintexts or ciphertexts.

108 E. Alpirez Bock et al.

The goal of the attack is to determine the first-round key of AES as it allows to
recover the entire key. The first-round key of AES is 128 bits long and the attack
aims to recover it byte-by-byte. For the remainder of this section, we focus on
recovering the first byte of the first-round key, as the recovery attack for the
other bytes of the first round key proceeds analogously. For the first key byte,
the attacker tries out all possible 256 key byte hypotheses k", with 1 < h < 256,
uses the traces to test how good a key byte hypothesis is, and eventually returns
the key hypothesis that performs best according to a metric that we specify
shortly. For sake of exposition, we focus on one particular key-byte hypothesis
k. The analysis steps on a DCA attack are performed as follows.

1. Collecting Traces: We first execute the white-box program n times, each
time using a different plaintext p., 1 < e < n as input. For each execution, one
software trace s. is recorded during the first round of AES. Figurel shows a
single software trace consisting of 300 samples. Each sample corresponds to one
bit of the memory addresses accessed during execution.

trace values

samples

Fig. 1. Single software trace consisting of 300 samples

2. Selection Function: We define a selection function for calculating an
intermediate state-byte z of the calculation process of AES. More precisely, we
calculate a state-byte which depends on the key-byte we are analysing in the
actual iteration of the attack. The selection function returns only one bit of z,
which we refer to as our target bit. The value of our target bit will be used
as a distinguisher in the following steps. In this work, our selection function
Sel(pe, k", j) calculates the state z after the SBox substitution in the first round.
The index j indicates which bit of z is returned, with 1 < 5 < 8.

Sel(pe, k",) := SBox(p. @ k")[j] = b € {0,1}. (1)

Depending on the white-box implementation being analysed, it may be the
case that strong correlations between b and the software traces are only observ-
able for some bits of z, i.e. depending on which j we choose to focus on. Thereby,
we perform the following Steps 3, 4 and 5 for each bit j of z.

3. Sorting of Traces: We sort each trace s, into one of the two sets Ay or
Ay according to the value of Sel(p,, k",7) = b:

For b € {0,1} Ay := {s.]1 < e <n, Sel(pe, k", j) = b}. (2)

On the Ineffectiveness of Internal Encodings 109

4. Mean Trace: We now take the two sets of traces obtained in the previous
step and calculate a mean trace for each set. We add all traces of one set sample
wise and divide them by the total number of traces in the set. For b € {0, 1}, we

define >
o Dsea, S
Ay = 7|Ab| . (3)

5. Difference of Means: We now calculate the difference between the two
previously obtained mean traces sample wise. Figure 2 shows the resulting dif-

ference of means trace:
A=Ay — A4 (4)

difference of means

samples

Fig. 2. Difference of means trace for correct key guess

6. Best Target Bit: We now compare the difference of means traces
obtained for all target bits j for a given key hypothesis k. Let A7 be the differ-
ence of means trace obtained for target bit j, and let H(A7) be the highest peak
in the trace A7. Then, we select A7 as the best difference of means trace for k",
such that H (A7) is maximal amongst the highest peaks of all other difference of
means traces, i.e. V1< j/ <8, H(A') < H(AT).

In other words, we look for the highest peak obtained from any difference
of means trace. The difference of means trace with the highest peak H (A7) is
assigned as the difference of means obtained for the key hypothesis " analysed in
the actual iteration of the attack, such that A" := AJ. We explain this reasoning
in the analysis provided after Step 7.

7. Best Key Byte Hypothesis: Let A" be the difference of means trace
for key hypothesis h, and let H(A") be the highest peak in the trace A”. Then,
we select k" such that H(A") is maximal amongst all other difference of means
traces A", ie. V1 <K <256, H(AM) < H(AM).

Analysis. The higher H(A"), the more likely it is that this key-hypothesis is the
correct one, which can be explained as follows. The attack partitions the traces
in sets Ag and A; based on whether a bit in z is set to 0 or 1. First, suppose that
the key hypothesis is correct and consider a region R in the traces where (an
encoded version of) z is processed. Then, we expect that the memory accesses in
R for Aj are slightly different than for A;. After all, if they would be the same,
the computations would be the same too. We know that the computations are

110 E. Alpirez Bock et al.

different because the value of the target bit is different. Hence, it may be expected
that this difference is reflected in the mean traces for Ag and Ay, which results in
a peak in the difference of means trace. Next, suppose that the key hypothesis is
not correct. Then, the sets Ay and A; can rather be seen as a random partition
of the traces, which implies that z can take any arbitrary value in both Ay and
A;. Hence, we do not expect big differences between the executions traces from
Ag and A; in region R, which results in a rather flat difference of means trace.

To illustrate this, consider the difference of means trace depicted in Fig. 2.
This difference of means trace corresponds to the analysis performed on a white-
box implementation obtained from the hack.lu challenge [8]. This is a public
table-based implementation of AES-128, which does not make any use of internal
encodings. For analysing it, a total of 100 traces were recorded. The trace in Fig. 2
shows four spikes which reach the maximum value of 1 (note that the sample
points have a value of either 0 or 1). Let £ be one of the four sample points in
which we have a spike. Then, having a maximum value of 1 means that for all
traces in Ag, the bit of the memory address considered in ¢ is 0 and that this
bit is 1 for all traces in A; (or vice versa). In other words, the target bit z[j]
is either directly or in its negated form present in the memory address accessed
in the implementation. This can happen if z is used in non-encoded form as
input to a lookup table or if it is only XORed with a constant mask. For sake of
completeness, Fig. 3 shows a difference of means trace obtained for an incorrect
key-hypothesis. No sample has a value higher than 0.3.

difference of means

b tdbbmebatbmbbnh s

samples

Fig. 3. Difference of means trace for incorrect key guess

The results of the DCA attack shown in this section correspond to the attack
performed using software traces which consist of the memory addresses accessed
during the encryption process. The attack can also be performed using software
traces which consist of other type of information, e.g., the stack writes and/or
reads performed during encryption. In all cases, the analysis is performed in an
analogous way as explained in this section.

Successful Attack. Throughout this paper, considering the implementation of
a cipher, we refer to the DCA attack as being successful for a given key k, if
this key is ranked number 1 among all possible keys for a large enough number
of traces. It may be the case that multiple keys have this same rank. If DCA

On the Ineffectiveness of Internal Encodings 111

is not successful for k, then it is called unsuccessful for key k. Remark that in
practice, an attack is usually considered successful as long as the correct key
guess is ranked as one of the best key candidates. We use a stronger definition
as we require the correct key guess to be ranked as the best key candidate.

Alternatively when attacking a single n-bit to n-bit key dependent look-up
table, we consider the DCA attack as being successful for a given key k, if this
key is ranked number 1 among all possible keys for exactly 2™ traces. Thereby,
each trace is generated by giving exactly 2™ different inputs to the look-up table,
i.e. all possible inputs that the look-up table can obtain. To get the correlation
between a look-up table output and our selection function, the correlation we
obtain by evaluating all 2" possible inputs is exactly equal to the correlation we
obtain by generating a large enough number of traces for inputs chosen uniformly
at random. We use this property for the experiments we perform in the following
section.

4 Effect of the Encodings

Chow et al. [9] recommend a combination of linear and non-linear encodings
as means to protect key dependent look-up tables in a white-box implementa-
tion. These types of encodings are the methods usually applied in the literature
and in several publicly available white-box implementations. In this section we
analyse how these types of encodings affect the effectiveness of the DCA attack.
Namely, if intermediate values in an implementation are encoded, it becomes
more difficult to re-calculate such values using a selection function as defined in
Step 2 of the DCA, as this selection function does not consider any encodings
(see Sect. 3). For our analyses in this section, we first build single look-up tables
which map an 8-bit long input to an 8-bit long output. More precisely, these
look-up tables correspond to the key addition operation merged with the S-box
substitution step performed on AES. As common in the literature, we refer to
such look-up tables as T-bozes. We apply the different encoding methods to the
outputs of the look-up tables and obtain encoded T-boxes. Note that Chow et
al. merge the T-box and the MixColumns operation into one 8-to-32 bit look-up
table and encode the look-up table output via a 32-bit linear transformation.
However, an 8-to-32 bit look-up table can be split into four 8-to-8 bit lookup
tables, which correspond to the look-up tables used for our analyses.?
Following our definition for a successful DCA attack on an n-to-n look-up
table given in Sect. 3, we generate exactly 256 different software traces for attack-
ing a T-box. Our selection function is defined the same way as in Step 2 of Sect. 3
and calculates the output of the T-boxes before it is encoded. The output of the
T-box is a typical vulnerable spot for performing the DCA on white-box imple-
mentations as this output can be calculated based on a known plaintext and
a key guess. As we will see in this section, internal encodings as suggested by

2 Tt can be the case that the four lookup tables are, in isolation, not bijective. In that
case, our results do not apply directly. It is left as an exercise to adapt them to this
setting.

112 E. Alpirez Bock et al.

Chow et al. cannot effectively add a masking countermeasure to the outputs of
the S-box.

4.1 Linear Encodings

The outputs of a T-box can be linearly encoded by applying linear transforma-
tions. To do this, we randomly generate an 8-to-8 invertible matrix A. For each
output y of a T-box T', we perform a matrix multiplication A -y and obtain an
encoded output m. We obtain a new look-up table {T', which maps each input x
to a linearly encoded output m. Figure4 displays this behaviour.

T-Box A EEEE—

Fig. 4. An 1T-box maps each input z to a linearly encoded output m.

We now compute the DCA on the outputs of an [T, constructed with a ran-
domly generated invertible matrix A. Figure5 shows the results of the analysis
when using the correct key guess. Since we are attacking only an 8 x 8 look-up
table, the generated software traces consist only of 24 samples. No high peaks
can be seen in the difference of means trace, i.e., no correlations can be identi-
fied and thus, the analysis is not successful if the output of the original T-box
is encoded using the matrix A.

difference of means

samples

Fig. 5. Difference of means trace for the 1T-box

The results shown in Fig. 5 correspond to the DCA performed on a look-up
table constructed using one particular linear transformation to encode the output
of one look-up table. We observe that the DCA as described in Sect. 3 is not
effective in the presence of this particular transformation. The theorem below

On the Ineffectiveness of Internal Encodings 113

gives a necessary and sufficient condition under which linear transformations
provide protection against the DCA attack.

Theorem 1. Given a T-box encoded via an invertible matrix A. The difference
of means curve obtained for the correct key hypothesis returns a peak value equal
to 1 if and only if the matriz A has at least one row i with Hamming weight
(HW) = 1. Otherwise, the difference of means curve obtained for the correct key
hypothesis returns peak values equal to 0.

Proof. For all 1 < j < 8 let y[j] be the jth bit of the output y of a T-box. Let
a;j € GF(2) be the entries of an 8 x 8 matrix A, where 7 denotes the row and j
denotes the column of the entry. We obtain each encoded bit m[i] of the 1T-box

via
mli] = Zaij ylj] = Z yli]- (5)

j:aijzl

Suppose that row ¢ of A has HW (i) = 1. Let j be such that a;; = 1. It follows
from Eq. (5) that m[i] = y[j]. Let k" be the correct key hypothesis and let bit
y[j] be our target bit. With our selection function Sel(p., k", j) we calculate the
value for y[j] and sort the corresponding trace in the set Ag or A;. We refer
to these sets as sets consisting of encoded values m, since a software trace is a
representation of the encoded values. Recall now that y[j] = m]i]. It follows that
m[i] = 0 for all m € Ag and m[i] = 1 for all m € A;. Thus, when calculating the
averages of both sets, for A[i], we obtain Ag[i] = 0 and A, [i] = 1. Subsequently,
we obtain a difference of means curve with A[i] = 1, which leads us to a successful
DCA attack.

What’s left to prove is that if row ¢ has HW (i) > 1, then the value of bit
y[j] is masked via the linear transformation such that the difference of means
curve obtained for A[i] has a value equal to zero. Suppose that row i of A has
HW (i) =1> 1. Let j be such that a;; = 1 and let y[j'] denote one bit of y, such
that a;;» = 1. It follows from Eq. (5) that the value of m[i] is equal to the sum of
at least two bits y[j] and y[j]. Let k" be the correct key hypothesis and let y[;’]
be our target bit. Let ¥ be a vector consisting of the bits of y, for which a;; = 1,
excluding bit y[j’]. Since row ¢ has HW (i) = [, vector ¥ consists of I — 1 bits.
This means that ¥ can have up to 2/~! possible values. Recall that each non-
encoded T-box output value y occurs with an equal probability of 1/256 over
the inputs of the T-box. Thus, all 2= possible values of T occur with the same
probability over the inputs of the T-box. The sum of the [—1 bits in ¥ is equal to
0 or 1 with a probability of 50%, independently of the value of y[j’]. Therefore,
our target bit y[j'] is masked via Zj;a”_:L 5+ yli] and our calculations obtained
with Sel(pe, k", ;') only match 50% of the time with the value of m[i]. Each set
Ap consists thus of an equal number of values m[i] = 0 and m[i] = 1 and the
difference between the averages of both sets is equal to zero. O

One could be tempted to believe that using a matrix which does not have
any identity row serves as a good countermeasure against the DCA. However, we
could easily adapt the DCA attack such that it is also successful in the presence

114 E. Alpirez Bock et al.

of a matrix without any identity row. In Step 2, we just need to define our
selection function such that, after calculating an 8-bit long output state z, we
calculate all possible linear combinations LC' of the bits in z. Thereby, in Step 3
we sort according to the result obtained for an LC'. This means that we perform
Steps 3 to 5 for each possible LC' (2% = 256 times per key guess). For at least
one of those cases, we will obtain a difference of means curve with peak values
equal to 1 for the correct key guess as our LC' will be equal to the LC defined
by row i of matrix A. Our selection function calculates thus a value equal to the
encoded value m[i] and we obtain perfect correlations.

Note that Theorem 1 also applies in the presence of affine encodings. In case
we add a 0 to a target bit, traces Ag and A; do not change and in case we add a
1 the entries in Ag and A; that relate to the target bit change to 1 minus their
value. In both cases, the difference of means value does not change.

To illustrate how the effect of linear encodings is shown on complete white-
box implementations, we now perform the DCA attack on our white-box imple-
mentation of AES which only makes use of linear encodings. This is a table
based implementation which follows the design strategy proposed by Chow et
al., but only uses linear encodings. We collect 200 software traces, which consist
of the memory addresses accessed during the encryption process. We use our
selection function Sel(p.,k",j) = z[j]. Figure6 shows the difference of means
trace obtained for the correct key guess.

difference of means

samples

Fig. 6. DCA results for our white-box implementation with linear encodings

Figure 6 shows one peak reaching a value of 1 (see sample 3001). Since the
peak reaches the value of 1, we can again say that our selection function is
perfectly correlated with the targeted bit z[j], even though the output z was
encoded using a linear transformation. Since our partition was done with our
selection function calculating the output of the T-box, our results tell us that
the matrix used to encode the T-box outputs contains at least one identity row.

4.2 Non-linear Encodings

Next, we consider the effect that non-linear encodings have on the outputs of
a T-box. For this purpose, we randomly generate bijections, which map each
output value y of the T-box to a different value f and thus obtain a non-linearly

On the Ineffectiveness of Internal Encodings 115

encoded T-box, which we call OT-box. Recall that a T-box is a bijective func-
tion. If we encode each possible output of a T-box 7" with a randomly generated
byte function O and obtain the OT-box OT, then OT does not leak any infor-
mation about T'. Namely, given OT, any other T-box T” could be a candidate
for constructing the same OT-box OT, since there always exists a corresponding
function O’ which could give us OT” such that OT' = OT. Chow et al. refer to
this property as local security [10]. Based on this property, we could expect resis-
tance against the DCA attack for a non-linearly encoded T-box. For practical
implementations, unfortunately, using an 8-to-8 bit encoding for each key depen-
dent look-up table is not realistic in terms of code size (see Sect. 4.1 of [19] for
more details). Therefore, non-linear nibble encodings are typically used to encode
the outputs of a T-box. The output of a T-box is 8-bits long and each half of the
output is encoded by a different 4-to-4 bit transformation and both results are
concatenated. Figure 7 displays the behaviour of an OT-box constructed using
two nibble encodings.

o, fl1..4]
x T-Box
0, f[5...8]

Fig. 7. Non-linear encodings of the T-Box outputs

Encoding the outputs of a T-box via non-linear nibble encodings does not
hide correlations between the secret key of the T-box and its output bits as
proved in the theorem below. When collecting the traces of an OT-box to perform
a DCA using the correct key hypothesis, each (encoded) nibble value is returned
a total of 16 times. Thereby, all encoded nibbles that have the same value are
always grouped under the same set A in Step 3. Therefore, we always obtain a
difference of means curve which consists of only 5 possible correlation values.

Theorem 2. Given an OT-box which makes use of nibble encodings, the differ-
ence of means curve obtained for the correct key hypothesis k" consists only of
values equal to 0, 0.25, 0.5, 0.75 or 1.

Proof. We first prove that the mean value of the set Ag is always a fraction of 8
when we sort the sets according to the correct key hypothesis. The same applies
for the set A; and the proof is analogous. For all 1 < 5 < 8 let y4[j] be the jth
bit of the output y of a T-box, where d € {1, 2} refers to the nibble of y where bit
j is located. Let k" be the correct key hypothesis. With our selection function
Sel(pe, k", j) we calculate a total of 128 nibble values yg4, for which y,[j] = 0.

116 E. Alpirez Bock et al.

As there exist only 8 possible nibble values y4 for which y4[j] = 0 holds, we obtain
each value y4 a total of 16 times. Each time we obtain a value y,4, we group its
corresponding encoded value f; under the set Ag. Recall that an OT-box uses
one bijective function to encode each nibble y,;. Thus, when we calculate the
mean trace Ay and focus on its region corresponding to f4, we do the following:

16 f4 16f; fa fi
Aolfa] = T8 T T s T8 Tt

with fq # f). We now prove that the difference between the means of sets Ag
and A; is always equal to the values 0, 0.25, 0.5, 0.75 or 1. Let f;[j] be one bit
of an encoded nibble fy.

— If f4[j] = 0 is true for all nibbles in set A, then this implies that fy[j] =11s
true for all nibbles in set Ay, that is Ag[j] = 2 and Al[] = &. The difference
between the means of both sets is thus A[j] =3 — §| =0 — 1| =1.

— If fq[j] = 1is true for 1 nibble in set Ay, then fd[)] = 11is true for 7 nibbles in

set Aq, that is, the difference between both means is A[j] = |% — Z| = \Q\ =
0.75.

— If f4[j] = 1 is true for 2 nibbles in set Ao, then fy[j] =1 is true for 6 nibbles
in set Ap, that is, the difference between both means is A[j] = |£ — f| = \4\ =
0.5.

— If fq[y] = 1 is true for 3 nibbles in set Ag, then fy[j] =1 is true for 5 nibbles
in set Ay, that is, the difference between both means is A[j] = |2 — 7| = \8\ =
0.25.

— If fa[j] = 1is true for 4 nibbles in set Ao, then f4[j] = 1 is true for 4 nibbles in
set Ay, that is, the difference between both means is A[j] = |§ — §| = |%| =0.

The remaining 4 cases follow analogously and thus, all difference of means traces
consist of only the values 0, 0.25, 0.5, 0.75 or 1. O

A peak value of 0.5, 0.75 or 1 is high enough to ensure that its corresponding
key candidate will be ranked as the correct one. We now argue that, when we use
an incorrect key guess, nibbles with the same value may be grouped in different
sets. If we partition according to an incorrect key hypothesis k", the value we
calculate for yq[j] does not always match with what is calculated by the T-box
and afterwards encoded by the non-linear function. It is not the case that for
each nibble value y4 for which y4[j] = 0, we group its corresponding encoded
value fy in the same set. Therefore, our sets A, consist of up to 16 different
encoded nibbles, whereby each nibble value is repeated a different number of
times. This applies for both sets Ay and A; and therefore, both sets have similar
mean values, such that the difference between both means is a value closer to
Z€ro.

To get practical results corresponding to Theorem 2, we now construct 10 000
different OT-boxes. Thereby, each OT-box is based on a different T-box, i.e. each

On the Ineffectiveness of Internal Encodings 117

one depends on a different key, and is encoded with a different pair of functions
01 and Os. We now perform the DCA attack on each OT-box. The DCA attack
is successful on almost all of the 10000 OT-boxes with the exception of three.
In all cases, the difference of means curves obtained when using the correct key
hypotheses return a highest peak value of 0.25, 0.5, 0.75 or 1. The three OT-
boxes which cannot be successfully attacked return peak values of 0.25 for the
correct key guess. For each of the three cases, the correct key guess is not ranked
as the best key candidate because there exists at least one other key candidate
with a peak value slightly higher or with the same value of 0.25. The table
below summarizes how many OT-boxes return each peak value for the correct
key hypotheses.

Peak value for correct key | Nr. of OT-boxes
1 55
0.75 2804
0.5 7107
0.25 34

We now perform the DCA attack on our table-based white-box implemen-
tation of AES which only makes use of non-linear nibble encodings. We collect
2000 software traces, which consist of the memory addresses accessed during the
encryption process. Figure 8 shows the difference of means trace obtained when
using the correct key byte with our selection function.

st ldatingd dinbiike d '..| 4 TR TR PRP PR Ll Lk alosidad Al ablibedbd ik ded hdan

difference of means

samples

Fig. 8. DCA results for our white-box implementation with non-linear encodings

Figure 8 is flat with one peak with a value very close to 0.75 (see sample 1640),
another peak with a value very close to 0.5 (see sample 1750). Additionally, the
value of two peaks is very close to 0.25. This result corresponds to the difference
of means results obtained with our OT-box examples and to Theorem 2. Based on
the results shown in this section we can conclude that randomly generated nibble
encodings do not effectively work as a countermeasure for hiding key dependent
correlations when performing the difference of means test. Additionally, we learn
one way to increase our success probabilities when performing the DCA: when

118 E. Alpirez Bock et al.

ranking the key hypotheses, if no key candidate returns a peak value which really
stands out (0.5 or higher), we could rank our key candidates according to the
convergence of their peaks to the values 0.25 or 0. In the extended version of
this paper, we describe this generalization of the DCA attack in more detail [1].

4.3 Combination of Linear and Non-linear Encodings

We now discuss shortly the effectiveness of the DCA when performed on white-
box implementations that make use of both linear and non-linear encodings to
protect their key-dependent look-up tables. For a more detailed description of
the effect of this type of encodings, we refer the reader to the extended version
of this paper [1]. The combination of both encodings is the approach proposed
by Chow et al. in order to protect the content of the look-up tables from reverse
engineering attempts. The output of each key-dependent look-up table, such
as a T-box, is first encoded by a linear transformation and afterwards by the
combination of two non-linear functions.

We now perform the DCA attack on the OpenWhiteBox challenge by Chow.?
This AES implementation was designed based on the work described in [9,19].
We collect 2000 software traces which consist of values read and written to the
stack during the first round. We define our selection function the same way as
in Sect.3, Sel(pe, k", j) = z[j]. For the correct key byte 0x69 we obtain the
difference of means trace shown in Fig. 9.

difference of means

MMM»J‘&“&MNA“H st A s ralsb ab W sl 41 Ak bl

samples

Fig. 9. Difference of means results for the OpenWhiteBox Challenge when using the
correct key guess and targeting bit z[2]

Figure 9 shows a flat trace with 7 peaks reaching a value of almost 0.5 (see
e.g. sample 327). Due to this trace, the key byte 0x69 is ranked as the best key
candidate and the DCA attack is successful. The peak values shown in Fig. 9 cor-
respond to those described in Theorem 2. We discuss these results shortly based
on Theorems 1 and 2. From Theorem 1 we can conclude that, when considering
an output bit of a T-box, it is important that all bits can still be transformed in
all possible values (i.e., 0 and 1) for achieving resistance against the DCA. When
a white-box uses the combination of linear and non-linear encodings and we tar-
get an output bit, we need to consider the output of a T-box as two individual

3 https://github.com/OpenWhiteBox/AES /tree/master/constructions/chow.

https://github.com/OpenWhiteBox/AES/tree/master/constructions/chow

On the Ineffectiveness of Internal Encodings 119

nibbles. Thereby, it is important that each nibble can be transformed into each
possible value in GF(2%). If that is the case, we can avoid correlation values
such as those mentioned in Theorem 2 caused by the use of non-linear nibble
encodings.

5 Conclusions

As automated attacks on white-box implementations become more popular, it is
important to understand the experimental success of the original DCA attack in
order to aim for resistance against such attacks. Internal encodings as suggested
by Chow et al. do not effectively hide information regarding the outputs of a key
dependent look-up table. Therefore, the use of such encodings makes a white-
box implementation very vulnerable against DCA. In this work we focused on
analysing these types of encodings due to their popularity amongst the white-box
community and hope that our results motivate the further research on efficient
alternatives for internal encodings in white-box cryptographic designs.

Acknowledgments. The authors would like to thank the anonymous referee for
his/her helpful comments. The authors would like to acknowledge the contribution
of the COST Action IC1306. Chris Brzuska is grateful to NXP for supporting his chair
for IT Security Analysis.

References

1. Alpirez Bock, E., Brzuska, C., Michiels, W., Treff, A.: On the ineffectiveness of
internal encodings - revisiting the DCA attack on white-box cryptography (2018).
https://eprint.iacr.org/2018 /301

2. Banik, S., Bogdanov, A., Isobe, T., Jepsen, M.: Analysis of software countermea-
sures for whitebox encryption. IACR Trans. Symmetric Cryptol. 2017(1), 307-328
(2017)

3. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang,
K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1-18. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44647-8_1

4. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227-240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-
4.16

5. Bogdanov, A., Isobe, T., Tischhauser, E.: Towards practical whitebox cryptogra-
phy: optimizing efficiency and space hardness. In: Cheon, J.H., Takagi, T. (eds.)
ASTACRYPT 2016. LNCS, vol. 10031, pp. 126-158. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6_5

6. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 215-236. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2_11

https://eprint.iacr.org/2018/301
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/3-540-44647-8_1
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-662-53887-6_5
https://doi.org/10.1007/978-3-662-53140-2_11

120

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

E. Alpirez Bock et al.

Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: another attempt.
Cryptology ePrint Archive, Report 2006/468 (2006). http://eprint.iacr.org/2006/
468

Bédrune, J.-B.: Hack.lu 2009 reverse challenge 1 (2009). https://2017.hack.lu/
Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250-270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7_17

Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol.
2696, pp. 1-15. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
44993-5_1

Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-H.,
Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278-291. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-24209-0-19

Kocher, P.; Jaffe, J., Jun, B., Rohatgi, P.: Introduction to differential power anal-
ysis. J. Cryptogr. Eng. 1, 5-27 (2011)

Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388-397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1_25

Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a
white-box AES implementation. In: Lange, T., Lauter, K., Lisonék, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 265-285. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7_14

Mastercard Mobile Payment SDK: Security guide for MP SDK v1.0.6.
White paper (2017). https://developer.mastercard.com/media/32/b3/
b6a8b4134e50bfe53590c128085¢/mastercard-mobile- payment-sdk-security-guide-
v2.0.pdf

De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao — Lai white-box
AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol.
7707, pp. 34-49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
35999-6_3

De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated white-box
AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS,
vol. 6498, pp. 292-310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17401-8_21

Messerges, T.S., Dabbish, E.A., Sloan, R.H.: Investigations of power analysis
attacks on smartcards. In: Proceedings of the USENIX Workshop on Smartcard
Technology, WOST 1999, Berkeley, CA, USA, p. 17. USENIX Association (1999)
Muir, J.A.: A tutorial on white-box AES (2013). https://eprint.iacr.org/2013/104.
pdf

Sanfelix, E., de Haas, J., Mune, C.: Unboxing the white-box: practical attacks
against obfuscated ciphers. In: Presentation at BlackHat Europe 2015 (2015).
https://www.blackhat.com/eu-15/briefings.html

Sasdrich, P., Moradi, A., Glineysu, T.: White-box cryptography in the gray box.
In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 185-203. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-52993-5_10

http://eprint.iacr.org/2006/468
http://eprint.iacr.org/2006/468
https://2017.hack.lu/
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-642-24209-0_19
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-43414-7_14
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://developer.mastercard.com/media/32/b3/b6a8b4134e50bfe53590c128085e/mastercard-mobile-payment-sdk-security-guide-v2.0.pdf
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-642-17401-8_21
https://eprint.iacr.org/2013/104.pdf
https://eprint.iacr.org/2013/104.pdf
https://www.blackhat.com/eu-15/briefings.html
https://doi.org/10.1007/978-3-662-52993-5_10

Continuously Non-malleable Codes
with Split-State Refresh

Antonio Faonio!(®)

and Daniele Venturi®

L IMDEA Software Institute, Madrid, Spain
antonio.faonio@imdea.org
2 Aarhus University, Aarhus, Denmark
3 Sapienza University of Rome, Rome, Italy

Abstract. Non-malleable codes for the split-state model allow to encode
a message into two parts, such that arbitrary independent tampering on
each part, and subsequent decoding of the corresponding modified code-
word, yields either the same as the original message, or a completely
unrelated value. Continuously non-malleable codes further allow to tol-
erate an unbounded (polynomial) number of tampering attempts, until
a decoding error happens. The drawback is that, after an error hap-
pens, the system must self-destruct and stop working, otherwise generic

attacks become possible.

In this paper we propose a solution to this limitation, by leveraging a
split-state refreshing procedure. Namely, whenever a decoding error hap-
pens, the two parts of an encoding can be locally refreshed (i.e., without
any interaction), which allows to avoid the self-destruct mechanism. An
additional feature of our security model is that it captures directly secu-
rity against continual leakage attacks. We give an abstract framework for
building such codes in the common reference string model, and provide a
concrete instantiation based on the external Diffie-Hellman assumption.

Finally, we explore applications in which our notion turns out to
be essential. The first application is a signature scheme tolerating an
arbitrary polynomial number of split-state tampering attempts, with-
out requiring a self-destruct capability, and in a model where refresh-
ing of the memory happens only after an invalid output is produced.
This circumvents an impossibility result from a recent work by Fuijisaki
and Xagawa (Asiacrypt 2016). The second application is a compiler for
tamper-resilient RAM programs. In comparison to other tamper-resilient
compilers, ours has several advantages, among which the fact that, for

the first time, it does not rely on the self-destruct feature.

Keywords: Non-malleable codes + Tamper-resilient cryptography

1 Introduction

, Jesper Buus Nielsen?, Mark Simkin?,

®

Check for
updates

Tampering attacks are subtle attacks that undermine the security of crypto-
graphic implementations by exploiting physical phenomena that allow to mod-
ify the underlying secrets. Indeed, a long line of works (see, e.g., [3,4,16,18])

© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 121-139, 2018.
https://doi.org/10.1007/978-3-319-93387-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_7&domain=pdf

122 A. Faonio et al.

has established that black-box interaction with a tampered implementation can
potentially expose the entire content of the secret memory. Given this state of
affairs, protecting cryptographic schemes against tampering attacks has become
an important goal for modern cryptographers.

An elegant solution to the threat of tampering attacks against the mem-
ory comes from the notion of non-malleable codes (NMCs), put forward by
Dziembowski et al. [10]. Intuitively, a non-malleable encoding (Encode, Decode)
allows to encode a value M into a codeword C' «s Encode(M), with the guaran-
tee that a modified codeword C' = f(C) w.r.t. a tampering function f € F, when
decoded, yields either M itself, or a completely unrelated value. An important
parameter for characterizing the security guarantee offered by NMCs is the class
of modifications F that are supported by the scheme. Since non-malleability
is impossible to obtain for arbitrary (albeit efficient) modifications,! research
on NMCs has focused on constructing such schemes in somewhat restricted, yet
interesting, models. One such model that has been the focus of intensive research
(see, e.g., [1,2,12,17]) is the split-state model, where the codeword C' consists
of two parts (Cy, C1) that can be modified independently (yet arbitrarily). This
setting is also the focus of this paper.

Unfortunately, standard NMCs protect only against a single tampering
attack,? To overcome this limitation, Faust et al. [12] introduced continuously
non-malleable codes (CNMCs for short), where the attacker can tamper for an
unbounded (polynomial) number of times with the codeword, until a decoding
error happens which triggers the self-destruction of the device. As argued in [12],
the self-destruct capability is necessary, as each decoding error might be used to
signal one bit of information about the target codeword.

Another desirable feature of non-malleable codes is their ability to addition-
ally tolerate leakage attacks, by which the adversary can obtain partial infor-
mation on the codeword while performing a tampering attack. Note that in the
split-state model this means that the adversary can leak independently from
the two parts Cy and C;. All previous constructions of leakage-resilient NMCs
either achieve security in the so-called bounded-leakage model [1,12,17], where
the total amount of leakage (from each part) is upper-bounded by a value ¢ that is
a parameter of the scheme, or only satisfy non-continuous non-malleability [11].

Our Contributions. We introduce a new form of CNMCs (dubbed R-CNMCs)
that include a split-state algorithm for refreshing a valid codeword. The refresh
procedure is invoked either after a decoding error happens, or in order to amplify
resilience to leakage, and takes place directly on the memory and without the

! As it can be seen by considering the tampering function that first decodes the code-
word, flips one bit of the message, and then encodes the result.

2 When using NMCs to obtain security against memory tampering, one can still obtain
security against continuous attacks by enforcing a re-encoding of the secret key after
each invocation; however, this comes with several disadvantages [11], among which
the fact that the encoding process is considerably more complex than the decoding
process.

Continuously Non-malleable Codes with Split-State Refresh 123

need of a central unit. Our new model has a number of attractive features, which
we emphasize below.

— It captures security in the so-called noisy-leakage model, where between each
refresh the adversary can leak an arbitrary (yet independent) amount of
information on the two parts Cy,C1, as long as the leakage does not reveal
(information-theoretically) more than ¢ bits of information. Importantly, this
restriction is well-known to better capture realistic leakage attacks.

— It avoids the need for the self-destruct capability in some applications. Besides
mitigating simple denial-of-service attacks, this feature is useful in situations
where a device (storing an encoding of the secret state) is not in the hands
of the adversary (e.g., because it has been infected by a malware), as it still
allows to (non-interactively) refresh the secret state and continue to safely
use the device in the wild.

Our first contribution is an abstract framework for constructing R-CNMCs,
which we are able to instantiate under the external Diffie-Hellman assumption.
This constitutes the first NMC that achieves at the same time continuous non-
malleability and security under continual noisy leakage, in the split-state model
(assuming an untamperable common reference string).

Next, we explore applications of R-CNMCs. As second contribution, we show
how to construct a split-state® signature scheme resilient to continuous (non-
persistent) tampering and leakage attacks, without relying on the self-destruct
capability, and where the memory content is refreshed in case a decoding error
is triggered. Interestingly, Fujisaki and Xagawa [13] recently showed that such
a notion is impossible to achieve for standard (i.e., non split-state) signature
schemes, even if the self-destruct capability is available; hence, our approach can
be interpreted as a possible way to circumvent the impossibility result in [13].

Our third contribution consists of two generic compilers for protecting ran-
dom access machine (RAM) computations against tampering attacks. Here, we
build on the important work of Dachman-Soled et al. [7], who showed how to
compile any RAM to be resilient to continual tampering and leakage attacks, by
relying both on an update and a self-destruct mechanism. We refer the reader to
Sect. 5 for further details on our RAM compilers. Below, we highlight the main
technical ideas behind our code construction.

Code Construction. The starting point of our code construction is the recent
work of Faonio and Nielsen [11]. The scheme built in [11] follows a template
that originates in the work of Liu and Lysyanskaya [17], in which the left side
of the encoding stores the secret key sk of a PKE scheme, whereas the right
side of the encoding stores a ciphertext ¢, encrypting the encoded message M,
plus a non-interactive zero-knowledge (NIZK) argument that proves knowledge
of the secret key under the label ¢; the PKE scheme is chosen to be a continual-
leakage resilient storage friendly PKE (CLRS friendly PKE for short) scheme

3 This means that the signing key is made of two shares that are stored in two separate
parts of the memory, and need to be combined upon signing.

124 A. Faonio et al.

(see Dodis et al. [9]), whereas the NIZK is chosen to be a malleable NIZK argu-
ment of knowledge (see Chase et al. [5]). Such a code was shown to admit a
split-state refresh procedure, and, at the same time, to achieve bounded-time
non-malleability.

The NM code of [11] does not satisfy security against continuous attacks. In
fact, an attacker can create two valid codewords (Cy, Cy) and (Cp, Cf) such that
Decode(Cy, C1) # Decode(Cy, C7). Given this, the adversary can tamper the left
side to Cy and the right side to either C or C according to the bits of the right
side of the target encoding. In a non-persistent model, the adversary can leak all
the bits of C7 without activating the self-destruct mechanism. More in general,
for any R-CNMC it should be hard to find two valid codewords (Cp,Cy) and
(Co, CY) such that Decode(Cy, Cy) # Decode(Cy, C1). This property, which we
call “message uniqueness”, was originally defined in [12].*

Going back to the described code construction, an attacker can sample a
secret key sk and create two ciphertexts, ¢y for M and ¢’ for M', where M # M’,
together with the corresponding honestly computed NIZKs, and thus break mes-
sage uniqueness. We fix this issue by further binding the right and the left side
of an encoding. To do so, while still be able to refresh the two parts indepen-
dently, we keep untouched the structure of the right side of the codeword, but
we change the message that it carries. Specifically, the ciphertext ¢ in our code
encrypts the message M concatenated with the randomness r for a commitment
~ that is stored in the left side of the codeword together with the secret key
for the PKE scheme. Observe that “message uniqueness” is now guaranteed by
the binding property of the commitment scheme. Our construction additionally
includes another NIZK for proving knowledge of the committed value under
the label sk, in order to further link together the left and the right side of the
codeword.

Proof Strategy. Although our construction shares similarities with previous work,
our proof techniques diverge significantly from the ones in [11,12]. The main
trick of [12] is to show that given one half of the codeword it is possible to
fully simulate the view of the adversary in the tampering experiment, until a
decoding error happens. To catch when a decoding error happens, [12] carries on
two independent simulators in an interleaved fashion; as they prove, a decoding
error happens exactly when the outputs of the two simulations diverge. The
main obstacle they faced is how to succinctly compute the index where the two
simulations diverge so that they can reduce to the security of the inner leakage-
resilient scheme storage (see Davi et al. [8]) they rely on. To solve this, [12]
employs an elegant dichotomic search-by-hash strategy over the partial views
produced by the two simulators. At this point the experiment can terminate,

4 Faust et al. also consider “codeword uniqueness”, where the fact that
Decode(Cy, C1) # Decode(Co, C1) is not required. However, this flavor of uniquness
only allows to rule-out so-called super continuous non-malleability, where one asks
that not only the decoded value, but the entire modified codeword, be independent
of the message. It is easy to see that no R-CNMC can satisfy “codeword uniqueness”,
as for instance C] could be obtained as a valid refresh of C.

Continuously Non-malleable Codes with Split-State Refresh 125

and thanks to a specific property of the leakage-resilient storage scheme, the
simulator can “extract” the view.

Unfortunately, we cannot generalize the above proof strategy to multiple
rounds. In fact, the specific property of the leakage-resilient storage scheme they
make use of is inherently one shot. Specifically, the property allows the adversary
to get an half of the leakage-resilient codeword. However, to allow this the adver-
sary must lose leakage oracle access to the other half of the codeword. In our
case, we would need to repeat the above trick again and again, after a decoding
error and a subsequent refresh of the target encoding happens; however, once
we ask for an entire half of the codeword, even if we refreshed the codeword, we
cannot regain access to the leakage oracles®. We give a solution to this problem
by relying on a simple information-theoretic observation.

Let (Xo,X1) be two random variables, and consider a process that inter-
leaves the computation of a sequence of leakage functions ¢!, ¢2, ¢%,... from X,
and from X;. The process continues until, for some index ¢ € N; we have that
g'(Xo) # ¢*(X1). We claim that g*(Xo) := ¢'(Xo),9*(Xo), - , g 1(Xo) do not
reveal more information about X than what X; and the index ¢ already reveal.
To see this, consider Ho. (X | §°(X0)) to be the average conditional min-entropy
of Xo, which is, roughly speaking, the amount (in average) of the uncertainty of
Xy given §*(Xo) as side information. Now, since g*(Xo) and g(X;) are exactly
the same random variables we can derive®:

Heoo(Xo | §°(X0)) = Hoo(Xo | §°(X1)) > Hoo(Xo | X1, 9).

The above observation implies that the size of the view of the adversary, although
much larger than the leakage bound, does reveal only little information.

We can already give a different proof of security for the scheme in [12] where
the reduction to the inner-product leakage-resilient storage loses only a factor
O(k) in the leakage bound (instead of O(klogk)). Briefly, the idea is to carries
on two independent simulators in an interleaved fashion (as in [12]) and, at each
invocation, outputting first the hashes” of the simulated tampered codeword,
then, if the hashes match, leak the full simulated tampered codeword avoiding,
in this way, the dichotomic search-by-hash strategy. The information-theoretic
observation above guarantees that only the last hashes (which will be different)
reveals information. The latter implies that the amount of leakage is bounded

by O(k).

2 Preliminaries and Building Blocks

We introduce the cryptographic primitives on which we build. For space reasons,
standard notation and formal definitions are deferred to the full version of the

paper.

5 In particular, this property does not hold for a CLRS friendly PKE scheme.

5 In the last equation, we also use that the output of a function is at most as infor-
mative as the input.

7 By collision resistance of the hash function, if the two hashes match then the simu-
lated tampered codewords are the same for both the simulators.

126 A. Faonio et al.

Oracle Machines. Given a pair of strings X = (X, X1) € ({0,1}*)? define the
oracle O (X) to be the split-state leakage oracle that takes as input tuples of
the form (3, g), where 8 € {0,1} is an index and ¢ is a function described as
a circuit, and outputs g(Xg). An adversary A with oracle access to Ooo(X) is
called ¢-valid, for some ¢ € N, if for all 3 € {0,1} the concatenation of the
leakage functions sent by A is an ¢-leaky function of Xg (i.e., the total amount
of leakage does not reduce the entropy of Xg by too much).

Given two PPT interactive algorithms A and B we write (ya;yg) < (A(za) S
B(zg)) to denote the execution of algorithm A (with input za) and algorithm
B (with input zg). The string ya (resp. yg) is the output of A (resp. B) at the
end of such interaction. In particular, we write A S Oy (X) to denote A having
oracle access to the leakage oracle with input X. Moreover, we write A < B, C
to denote A interacting in an interleaved fashion both with B and with C.

Non-interactive Zero-Knowledge. Let R C {0,1}* x {0,1}* be an NP-relation;
the language associated with R is L := {z : Jw s.t. (z,w) € R}. We typically
assume that given a pair (z, w) it is possible to efficiently verify whether (z,w) €
R or not. Roughly, a non-interactive argument (NIA) for an NP-relation R
allows to create non-interactive proofs for statements x € £, when additionally
given a valid witness w corresponding to z. More formally, a NIA NZA =
(CRSGen, Prove, Ver) for R, with label space A, is a tuple of PPT algorithms
specified as follows (1) The (randomized) initialization algorithm CRSGen takes
as input the security parameter 1%, and creates a common reference string (CRS)
w € {0,1}*; (2) The (randomized) prover algorithm Prove takes as input the
CRS w, a label A € A, and a pair (z,w) such that (z,w) € R, and produces a
proof 7 «s Prove®(w, z, w); (3) The (deterministic) verifier algorithm Ver takes
as input the CRS w, a label A € A, and a pair (x,7), and outputs a decision bit
Ver*(w, z,).

Completeness means that for all CRSs w output by CRSGen(1%), for all labels
A € A, and for all pairs (z,w) € R, we have that Ver*(w, z, Prove’ (w, z, w)) = 1
with all but a negligible probability. As for security, we require the following
properties.

— Adaptive multi-theorem zero-knowledge: Honestly computed proofs do
not reveal anything beyond the validity of the statement, and, as such, can
be simulated given only the statement itself.

— @-Malleable label simulation extractability: Our construction will be
based on a so-called label-malleable NIA, parametrized by a set of label trans-
formations @, where for any ¢ € @, the co-domain of ¢ is a subset of A. For
such NIAs, given a proof 7 under some label A € A, one can efficiently gen-
erate new proofs 7’ for the same statement under a different label ¢()), for
any ¢ € @ (without knowing a witness); this is formalized via an additional
(randomized) label-derivation algorithm LEval, which takes as input the CRS
w, a transformation ¢ € @, alabel A € A, and a pair (z,7), and outputs a new
proof ©’. The property we need intuitively says that a NIA satisfies knowl-
edge soundness, except that labels are malleable w.r.t. ¢. More in details,

Continuously Non-malleable Codes with Split-State Refresh 127

there exists a knowledge extractor K that for any adversary which can query
polynomially many simulated proofs of false statements and then it produces
a tuple (z, A\, m) where 7 is a valid NIZK proof for (z,A) can extract either
(1) the witness for = or (2) a transformation ¢ € A which maps ¢(X) = A
and (x,\') was precedently queried by the adversary.

— Label derivation privacy: It is hard to distinguish a fresh proof for some
statement z (with witness w) under label A, from a proof re-randomized using
algorithm LEval w.r.t. some function ¢ € &; moreover, the latter should hold
even if (x,w, A\, ¢) are chosen adversarially (possibly depending on the CRS).

Public-Key Encryption. A public-key encryption (PKE) scheme is a tuple of
algorithms PKE = (Setup, KGen, Enc, Dec) with the usual syntax. We will require
two additional algorithms,; the first one to re-randomize a given ciphertext, and
the second one for re-randomizing the secret key (without changing the cor-
responding public key). More formally: The (randomized) algorithm UpdateC
takes as input a ciphertext ¢, and outputs a new ciphertext ¢’; The (random-
ized) algorithm UpdateS takes as input a secret key sk, and outputs a new secret
key sk’
As for security, we require the following properties.

— CLRS friendly PKE security: This property is essentially a strengthen-
ing of semantic security, where the adversary can additionally observe noisy
independent leakages from Sy = sk and S; = ¢ (c is the challenge ciphertext).

— Ciphertext-update privacy: The distributions of fresh and updated
ciphertexts are the same.

— Secret-key-update privacy: The distributions of fresh and updated keys
are the same.

Additionally, we make use of a (non-interactive) commitment scheme
COM = (CRSGen, Commit) with statistical hiding and computationally bind-
ing and of an authenticated encryption scheme SKE := (KGen, Enc, Dec). This
notions are standard therefore we defer the definitions to the full version of the

paper.

3 Non-malleability with Refresh

A coding scheme in the CRS model is a tuple of polynomial-time algorithms
CS = (Init,Encode, Decode) with the following syntax: (1) The (randomized)
initialization algorithm Init takes as input the security parameter 17, and outputs
a CRS w € {0,1}*; (2) The (randomized) encoding algorithm Encode takes as
input the CRS w and a message M € M, and outputs a codeword C € C; (3)
The (deterministic) decoding algorithm Decode takes as input the CRS w and a
codeword C' € C, and outputs a value M € MU{L} (where L denotes an invalid
codeword). A coding scheme is correct if for all w output by Init(1%), and any
M € M, we have P[Decode(w, Encode(w, M)) = M| = 1, where the probability
is taken over the randomness of the encoding algorithm.

128 A. Faonio et al.

We consider coding schemes with an efficient refreshing algorithm. Specifi-
cally, for a coding scheme CS we assume there exists a randomized algorithm
Rfrsh that, upon input the CRS w and a codeword C' € C, outputs a codeword
C’ € C. For correctness we require that for all w output by Init(1%), we have
P[Decode(w, Rfrsh(w, C)) = Decode(w, C')] = 1, where the probability is over the
randomness used by the encoding and refreshing algorithms.

Split-State Model. In this paper we are interested in coding schemes in the
split-state model, where a codeword consists of two parts that can be refreshed
independently and without the need of any interaction. More precisely, given a
codeword C := (Cp, C1), the refresh procedure Rfrsh(w, (8, C3)), for g € {0, 1},
takes as input either the left or the right part of the codeword, and updates
it. Sometimes we also write Rfrsh(w,C') as a shorthand for the algorithm that
independently executes Rfrsh(w, (0, Cy)) and Rfrsh(w, (1,C4)).

Correctness here means that for all w output by Init(1%), for all C' € C, and
for any 8 € {0,1}, if we let C" = (C, C7) be such that Cj s Rfrsh(w, (8, Cp))
and C]_5 = C1_g, then P[Decode(w, C") = Decode(w, C)] = 1.

3.1 The Definition

We give the security definition for continuously non-malleable codes with split-
state refresh (R-CNMCs for short). Our notion compares two experiments, which
we denote by Tamper and SimTamper (cf. Fig. 1). Intuitively, in the experi-
ment Tamper we consider an adversary continuously tampering with, and leak-
ing from, a target encoding C = (Cp, C;) of a message M € M (the message
can be chosen adaptively, depending on the CRS). For each tampering attempt
(fo, f1), the adversary gets to see the output M of the decoding corresponding
to the modified codeword C' = (fo(Cp), f1(C1)). Tampering is non-persistent,
meaning that each tampering function is applied to the original codeword C,
until, eventually, a decoding error happens; at this point the adversary is allowed
to make one extra tampering query (g, f1), and, if the corresponding tampered
codeword C* _is valid and is not an encoding of the original message M, it receives
a refresh of C* (otherwise the adversary receives M or L). After that, the tar-
get encoding C' is refreshed, and the adversary can start tampering with, and
leaking from, the refreshed codeword. (Below we explain why this extra feature
is useful.)

In the experiment SimTamper, we consider a simulator S = (Sg, S1), where
So outputs a simulated CRS, while S;’s goal is to simulate the view of the
adversary in the real experiment; the simulator Sy, in faking a tampering query
(fo, f1), is allowed to output a special value o, signaling that (it believes) the
adversary did not change the encoded message, in which case the experiment
replaces ¢ with M; We stress that the simulator S is stateful; in particular
algorithms Sg, S; implicitly share a state.

Continuously Non-malleable Codes with Split-State Refresh

TampercSYA(n, 4,q):

2« 0; err,stop < 0

w « Init(17)

(M, s0) < Ao(w)

Co := (CF,CY) «s Encode(w, M)

For all ¢ € [0, ¢]:
Si41 (Al(sl) = 000(07)7 Otamp(ci))
Cit1 <3 Rfrsh(w, Cl)
i« 1+ 1; err,stop <+ 0

Return Ax(sq).

SimTamper, s(k, ¢, q):

1 —0

w s Sp(17)
(]W, So) — Ao(w)
For all 7 € [0, q]:

Oracle Orwamp(Ci, (fo, f1)):

Upon (Tamp, fo, f1):
M = Decode(w, fo(C§), f1(C1))
It (]T] = 1) then err «— 1
If ((exr = 1) V (stop = 1))
Me— 1
Return M
Upon (Final, f§, f1):
stop «— 1
G = (f5(Ci). £ (C1)
M* = Decode(w, C*)
If (M* € {1, M}) then C" — M*
Else, C" —s Rfrsh(w, C*)
Return C”.

Oracle 05!

sim,tamp('):
Upog(Ta.mp7 fo, f1):

M «—s Sl(Tamp, fo7 f1)

If (M = o) then M — M

129

sit1 — (Ai(si) S Si(Leak,), O5L oo ()
i—i+1
Return Ax(sq).

Return M
Upon (Final, fg, f1):
C' —sS,(Final, f§, f7)
If ((C" = o) V (Decode(w, C") = M))
C'—M
Return C’

Fig. 1. Experiments defining continuously non-malleable codes with split-state refresh.

Definition 1 (Continuous non-malleability with split-state refresh).
For k € N, let £ = £(k) be a parameter. We say that a coding scheme CS is
an £-leakage-resilient and continuously non-malleable code with split-state refresh
(R-CNMC for short) if for all adversaries A := (Ag, A1, Az), where Ag and Ay are
PPT algorithms and Ay is an L-valid deterministic polynomial-time algorithm,
there exists a PPT simulator S = (So,S1) and a negligible function v : N — [0, 1]
such that, for any polynomial q(k), the following holds:

|P [Tampercg a(k, 4, q) = 1] — P [SimTamper, (.4, q) = 1]| < v(k),

where the experiments Tampercg a(k,¢,q) and SimTampery (k,¢,q) are
defined in Fig. 1.

We give some intuitions on why the extra tampering query is meaningful. First,
observe that for (standard) continuously non-malleable codes, the notion of non-
persistent tampering is strictly stronger than the notion of persistent tamper-
ing. This is because the effect of any sequence of persistent tampering functions

130 A. Faonio et al.

Y f2, f3,--- can be simulated in the non-persistent setting by the sequence of
tampering functions f!, f2o f1, f30 fa0 f1,---. For R-CNMCs, instead, we can-
not simulate persistent tampering, as in such a setting the refreshing procedure
can be invoked on invalid codewords. The extra tampering query in our defini-
tion allows for some flavor of persistent tampering, in that the adversary gets
to see a refresh of the tampered codeword, as long as the codeword is valid®.
Unfortunately, it is impossible to further generalize our definition to handle the
refreshing of invalid codewords.’

As additional remark, we notice that in the Tamper security game the adver-
sary does not have a “direct” access to a refresh oracle (namely, an oracle that,
under request of the adversary, would refresh the codeword). We skim this extra
detail to not overload the (already heavy) notation. However, the choice comes
without loss of any generality. In fact, we can simulate an adversary that makes
explicit call to a refreshing oracle by an adversary stop, and return its state (this
would indeed trigger a refresh in the experiment), and restart again in the next
iteration of the Tamper experiment.

4 Code Construction

Let PKE = (Setup,KGen, Enc,Dec, UpdateC, UpdateS) be a CLRS friendly
PKE scheme, with secret-key space SK. We assume there exists an efficient
polynomial-time function PK that maps a secret key to the corresponding pub-
lic key. Let COM = (CRSGen, Commit) be a commitment scheme in the CRS
model. Consider the following NP-relations, parametrized by the PKE and the
commitment scheme, respectively:

Ro = {(pk, sk) : pk = PK(sk), sk € SK},
R1:={((w,7),(M,r)): v= Commit(w, M;r)}.

Let &g and &1 be two sets of label transformations defined below:

Dy :={¢: Ipk, sk s.t. (Vm,r) Dec(sk, p(Enc(pk, m;r))) = m, pk = PK(sk)}
&y :={¢p: (Vsk) PK(sk) = PK(p(sk))}.

8 A sequence of persistent tampering functions f!, f%,---, f¢ followed by a refresh-
ing (on tampered codeword) can be simulated in the non-persistent setting by the
sequence of concatenation of tampering functions (as described above) and then
invoking a final tampering query with tampering function set to f o fZo...0 f9.
This can be seen by the following attack. Consider an attacker that computes offline
a valid codeword (Cp,C1), and then makes two extra tampering queries (in two
subsequent rounds, say, ¢ and i + 1) such that the first query overwrites (Cé,Cf)
with (C3,C1), and the second query overwrites (C{T, CiT1) with (Co, CiT); by
combining the refreshed codewords obtained as output, the adversary gets a refresh
of the original codeword, which cannot be simulated in the ideal experiment (recall
that the refresh algorithm updates the two shares independently).

©

Continuously Non-malleable Codes with Split-State Refresh 131

Notice that Rg, R1,Pg and @ are implicitly parametrized by the public param-
eters p € {0,1}* of the PKE scheme. Finally, let 4% and U; be the following sets
of label transformations:

u() = {UpdateC(‘ 7Tu) : Tu 6 {0’ 1}*}
Z/{l = {UpdateS(: ;Tu) DTy € {071}*}'

It is easy to verify that Ug C &g, for § € {0,1}. In fact, for g =
0, by the correctness of the PKE scheme, there exists sk such that
P[Dec(sk, UpdateC(Enc(pk,m))) = m] = 1 and pk = PK(sk); similarly, for 5 = 1,
again by correctness of the PKE scheme, for any sk’ «<—s UpdateS(pk, sk) we have
that PK(sk) = PK(sk').

Scheme Description. Let NZAy = (CRSGeng, Provey, Vrfy,, LEvaly) and
NZIA; = (CRSGeny, Provey, Vrfy,, LEval;) be NIAs for the above defined rela-
tions Ro and R;. Our code CS = (Init, Encode, Decode) works as follows.

— Init(1%): For 8 € {0,1}, sample wg <s CRSGeng(1%), w «— CRSGen(1%), and
p — Setup(17). Return @ = (wp, w1, w, p).

— Encode(w, M): Parse W := (wo,ws,w,p), sample (pk,sk) s KGen(p), and
r —s {0,1}*. Compute c «s Enc(pk, M||r), v = Commit(w, M;r), and 7y «s
ProveS (wo, pk, sk), and 7y «s Proves* (w1, (w,7), (M,r)). Set Cq := (pk, ¢, mo)
and Cp := (sk,7,m1), and return C := (Cp, Cy).

— Decode(w, C): Parse @ = (wg,wi,w,p) and C := (Cp,C1), where Cy :=
(sk,~,m) and Cy = (pk,c,mp). Compute M||r := Dec(sk, ¢), and if the fol-
lowing conditions hold return M else return L:

I. Left check: Verg(wo, pk, 7o) = 1.
I1. Right check: Vers* (wy, (w,7),m) = 1.
ITI. Cross check: Commit(w, M;r) = .

- Rfrsh(w, (8,Cp)): Parse @ := (wo,wr,w,p),Co = (pk,c,m), and C; =
(sk,~,m). Hence:

e For 3 = 0, pick rgpd —s{0,1}*, let ¢ := UpdateC(c; rgpd) and 7 «s
LEvalg(wo, UpdateC(+;79,4), (pk, ¢, m)), and return Cf := (pk, ¢, mp).

e For 8 =1, pick ripd —s{0,1}*, let sk’ := UpdateS(sk;ripd), and 7} «s
LEvaly (w1, UpdateS(-;

lllpd)7 ((y,w), sk,m1)), and return C] := (v, sk’, 7}).
We show the following result. In the full version we provide a concrete instanti-
ation of our code, based on fairly standard computational assumptions.

Theorem 1. Let PKE be a PKE scheme with message space Mpke and public-
key space PK, let COM be a commitment scheme with message space M, and
let NI Ao (resp. NTA1) be a NIA w.r.t. the relations Ry (resp. R1). Define
(k) = log |[M|, tipke (k) = log |Mpie|, and §(r) := log|PK]|.

For any ¢ € N, assuming that PKE is an (¢ + 3p + 2k + max{d, ppke })-
noisy CLRS-friendly PKE scheme, that COM is a non-interactive statistically
binding commitment scheme, and that NT Ay (resp. NI A1) satisfies adaptive
multi-theorem zero-knowledge, ®g-malleable (resp. ®1-malleable) label simulation

132 A. Faonio et al.

extractability, and label derivation privacy, then the coding scheme CS described
above is an f-leakage-resilient continuously non-malleable code with split-state
refresh.

Proof Intuition. The proof of the above theorem is quite involved. We provide
some highlights here. We defer the formal proof to the full version of the paper.
Consider a simulator (Sg,S1), where Sg simulates a fake CRS W = (wq,w1,w, p)
by additionally sampling the corresponding zero-knowledge and extraction trap-
doors for the NIAs (which are then passed to Sy). At the core of our simulation
strategy are two algorithms T® and T, whose goal is essentially to emulate the
outcome of the real tampering experiment, with the important difference that T°
is only given the left part of a (simulated) codeword Cy and the left tampering
function fq, whereas T1 is given (C1, f1).

The simulator S; then works as follows. Initially, it samples a fresh encoding
(Co,C1) of 0*. More in details, the fresh encoding comes from the (computa-
tionally close) distribution where the proofs mg and 7; are simulated proofs. At
the beginning of each round, it runs a simulated refresh procedure in which the
ciphertext ¢ is updated via UpdateC (and the simulated proof 7q is re-computed
using fresh randomness), and similarly the secret key sk is updated via UpdateS
(and the simulated proof m; is re-computed using fresh randomness). Hence, for

each tampering query (fo, f1), the simulator S; runs My = T%(Cy, fo), My =
TY(C4, f1), and it returns My as long as L # My = M; # L (and L otherwise).
The extra tampering query (fg, fr) is simulated similarly, based on the out-
come of the tampering simulators (T°, T!). We briefly describe the tampering
simulators TY and T':

— Algorithm T lets fo(Cp) := (;l;,E, To). If the proof 7y does not verify, it

returns L. Else, if (pk,¢, 7o) = (pk,c,mp), it returns o. Else, it extracts the

proof 7, this leads to two possible outq)mesw:

(a) The extractor outputs a secret key sk which is used to decrypt ¢, and the
tampering simulator returns the corresponding plaintext M.

(b) The extractor outputs a transformation ¢ which maps the label of the
simulated proof my, namely the encryption of 0*, to ¢. In this case the
tampering function fy has modified the original ciphertext ¢ to the mauled
ciphertext ¢ which is an encryption of the same message, so we can safely
output ©. _

— Algorithm T! lets f1(C1) := (7, sk,71). If the proof 7; does not verify, it
returns L. Else, if (7, g]/{},%l) = (v, sk, 1), it returns o. Else, it extracts the
proof 7y, again, this leads to two possible outcomes:

(a) the extractor outputs the committed message M (along with the random-
ness of the commitment), so the tampering simulator can simply return

M.

10 The above description is simplified, in that extraction could potentially fail, however,
this happens only with negligible probability when the proof verifies correctly.

Continuously Non-malleable Codes with Split-State Refresh 133

(b) The extractor outputs a transformation ¢ which maps the label of the
simulated proof 7, namely the original secret key sk, to the mauled secret
key sk. In this case, the mauled proof 7! must be a valid proof which
instance is the original commitment, so, again, we can safely output <.

To show that the above simulator indeed works, we use a hybrid argument where
we incrementally change the distribution of the ideal tampering experiment until
we reach the distribution of the real tampering experiment. Each step introduces
a negligible error, thanks to the security properties of the underlying building
blocks. Perhaps, the most interesting step is the one where we switch the cipher-
text ¢ from an encryption of zero to an encryption of the real message (to which
we always have to append the randomness of the commitment); in order to show
that this change is unnoticeable, we rely on the CLRS storage friendly security
of the PKE scheme. In particular, this step of the proof is based on the following
observations:

— The reduction can perfectly emulate the distribution of the CRS @, and of
all the elements (pk,mq,~,71), except for (¢, sk). However, by outputting
(0#||r, M||r) as challenge plaintexts—where r € {0,1}* is the randomness
for the commitment—the reduction can obtain independent leakages from Cj
and C7 with the right distribution.

— Refresh of codewords can also be emulated by exploiting the fact that the
reduction is allowed to update the challenge secret key and ciphertext.

— The reduction can answer tampering queries from the adversary by using T°
and T as leakage functions. The main obstacle is to ensure that T? and T*
are (-leaky, where ¢ € N is the leakage bound tolerated by the PKE scheme.
Luckily, by using carefully the information-theoretic argument explained in
the Introduction, we can show that this is indeed the case, which allows
simulation to go through. In particular, between each refresh the reduc-
tion needs to interleave the executions of T® and T!' until their outputs
diverge. So let ¢ be the number of tampering queries that the simulator per-
forms until triggering a decoding error. The leakage that the reduction needs
to perform during this stage (namely, between two consecutive refresh) is
TO(O()vfg)le(Clvflo)v' - 7TO(COafg)7T1(Clvff) where (f87f10)a RS (f(??f{l)
is the list of tampering functions applied. By the information-theoretic argu-
ment:

Hoo(Co | TO(Co, £9), -, T*(Co, £3))
- ﬁoo(o() | T1<017 flo)? sy TO(Cla {1_1)7 TO(CCH fg))

In fact, the outputs of the T?(Cy, fi) and T(Cy, fi) is exactly the same when
i < q. Moreover:

ﬁoo(CO | Tl(Ch f{))a cee 7TO(Cla f{lil)a TO(COa fg))
2]ﬁIOO(CO | ClvanO(OOafg))'

134 A. Faonio et al.

Because the output of a function cannot be more informative than the inputs
of the function itself. Lastly, we can notice that C; gives little information
about Cy and that ¢ and T°(Cy, f{) can decrease the min-entropy of Cj of at
most their size which is O(k). The reduction, therefore, is a valid adversary
against for the CLRS storage-friendly security experiment of the PKE.

Remark 1 (On the refresh procedures). The notion of split-state refresh does not
imply that a refreshed codeword is indistinguishable from a freshly sampled one.
And indeed the codeword of our CNMC-R is not, as the public key pk (resp.
the commitment) do not change after the refresh algorithms are executed.
However, the latter is not required for our proof, as the only thing that matters
is that the information about the target codeword that the adversary gathers
before a refresh takes place will not be useful after the refresh. Put differently, the
adversary could potentially leak the entire values pk and -y, but this information
would not be useful for breaking the security of the scheme.

5 Applications

Tamper-Resilient Signatures Without Self-destruct. Consider a signa-
ture scheme SS. We would like to protect SS against tampering attacks with the
memory, storing the signing key sk. As observed originally by Gennaro et al. [14],
however, without further assumptions, this goal is too ambitious. Their attack
can be circumvented by either assuming the self-destruct capability, or a key-
update mechanism.

Interestingly, Fujisaki and Xagawa [13] observed that, whenever the key-
update mechanism is invoked only after an invalid output is generated, the goal
of constructing tamper-resilient signature is impossible, even assuming the self-
destruct capability. The idea behind the attack is to generate two valid pairs of
independent signing/verification keys, and thus to overwrite the original secret
key with either of the two sampled signing keys in order to signal one bit of the
original key. Note that such an attack never generates invalid signatures, thus
rendering both the self-destruct capability and a key-update mechanism useless.

In the full version of the paper we show that it is possible to avoid self-
destruct and obtain tamper-resilient signatures against arbitrary attacks in the
split-state model.

RAM Compilers. Consider a RAM machine, where both the data and the
program to be executed are stored in the random access memory. Such a RAM
program is modeled as a tuple consisting of a CPU and its memory. At each clock
cycle the CPU fetches a memory location and performs some computation. We
focus on read-only RAM programs that do not change the content of the memory
after the computation is performed. More in details, a read-only RAM program
A = (N, D) consists of a next instruction function I, a state state stored in
a non-tamperable but non-persistent register, and some database D. The next

Continuously Non-malleable Codes with Split-State Refresh 135

instruction function I takes as input the current state state and input inp, and
outputs an instruction | and a new state state’. The initial state is set to (start, %).

A RAM compiler is a tuple of algorithms X' = (Setup, CompMem, CompNext).
Algorithm Setup takes as input the security parameter 1%, and outputs an untam-
perable CRS w. The memory compiler CompMem takes as input the CRS w, and
a database D, and outputs a database D along with an initial internal state
state. The next instruction function I is compiled to N using CompNext and
the CRS. To define security, we compare two experiments (cf. Fig.2). The real
experiment features an adversary A that is allowed, via the interface doNext,
to execute RAM programs on chosen inputs step-by-step; upon input x, oracle
doNext(z) outputs the result of a single step of the computation, as well as the
memory location that is accessed during that step. Additionally, adversary A can
also apply tampering attacks that are parametrized by two families of functions
Fmem and Fpys, where: (1) Each function f € Frem is applied to the compiled
memory. (2) Each function f € Fpys is applied to the data in transit on the bus.

The ideal experiment features a simulator S that is allowed, via the interface
Execute, to execute RAM programs on chosen inputs in one g;. Upon input z,
oracle Execute(z) outputs the result of the entire computation and the list of
all the memory locations that were accessed during that computation. Briefly,
a RAM compiler is tamper-resilient if for all possible logics I, and all efficient
adversaries A, there exists a simulator S such that the real and ideal experiment
are computationally indistinguishable. A formal definition follows.

Definition 2 (Tamper simulatability). A compiler ¥ = (Setup, CompMem,
CompNext) is tamper simulatable w.r.t. (Fous, Fmem) of for every next instruction
function N, and for every PPT adversary A, there exists a PPT simulator S and
a negligible function v : N — [0, 1] such that, for all PPT distinguishers D and
any database D, we have that:

‘IP [D(TamperExec/ibg:imem (k) = 1} -]P’[D(IdealExecs,A(/i)) = 1] ’ < negl(k)
fbusyj:mem

with A = (M,D), and where the ezperiments TamperExec), A and
IdealExecs 4 (k) are defined in Fig. 2.

We propose two compilers for protecting arbitrary RAM computations
against tampering attacks.

First Compiler. The first compiler achieves security in a model where only
non-persistent tampering on the buses is allowed. The compiler encodes a ran-
dom secret key k for an authenticated encryption scheme using a R-CNMC; let
(Ko, K1) be the corresponding codeword. Then, the compiler encrypts each data
block in the original memory D, along with its index, under the key k; let £ be
the encrypted memory. The encoded memory is made of two parts Dy := (Ko, £)
and Dy := (K7,E&). When fetching the location j, the compiled RAM program
first reads and decodes (K, K1), and stores k in the untamperable register; then,
it loads £[j] from both Dy and D; and checks that, indeed, they are the same

136 A. Faonio et al.

Oracle Oramp:
Experiment TamperExecibS,’fmem (k): Up(}? JETGam;Mem {g;n set D «— f(D)
w « Setup(17); Upon (TampBus, f):

Parse A as (D,N); Q « 0; B /
W D). D € Fius, then set D D).
D « CompMem(w, D), D’ « D; / bus, then se — f(D)

M «— CompNext(w, M); , Oracle doNext((D,), z):
b — (A(w) S doNext((D', M),), Otamp(*)); If state = (start, %)
Return (b, Q). inp — 2 Q — QU {z}
(1, state’) < MM(state, inp)
. If | = (read,
Experiment IdealExecs 4(k): inp(<— D[l;)] state — state’
Q0 If | = (stop, 2z), then state < (start, x)

b — (S(1%) S Execute(4,), Add("));

Else, state := state’
Return (b, Q).

Output .

Oracle Execute((D,), z):

Oracle Add(x): state « (start, x), Z « 0;

Q — Qu{zk repeat |' < doNext((D, M), z); Z « Z||I';
until I’ = (stop, v);
Output 7

Fig. 2. Experiments defining security of a RAM compiler.

ciphertext, which is then decrypted.!! If an error happens, the compiled RAM
invokes the refresh mechanism.

The reason behind the redundant encoding of £ can be explained using the
information-theoretic observation described in the introduction of the paper.
In fact, the mauled ciphertexts from Dy (resp. D) can be arbitrary functions
of the non-malleable encoding Ky (resp. K;). However, as long as the mauled
ciphertexts from Dy are equal to the mauled ciphertexts from D;, the amount of
information they carry about K is bounded by the amount of information that
K reveals about Kj. If the two ciphertexts are not equal, some information
about Ky may be leaked, but in this case the codeword is refreshed and the
leaked information becomes useless.

In the full version of the paper we prove the following theorem and give the
details of the construction.

Theorem 2 (Informal). Let n,x € N be parameters. Assume there exists a
coding scheme that is poly(k,logn)-leakage-resilient R-CNMC and assume there
exists an authenticated encryption scheme with ciphertext space of length at least
poly(logn). Then there exists a tamper-resilient RAM compiler w.r.t. (Fpus, D)
for RAM programs with database of length n, where Fyys is the family of split-
state tampering functions.

1 The compiled RAM program additionally needs to check that the encrypted index
is equal to j, in order to avoid shuffling attacks.

Continuously Non-malleable Codes with Split-State Refresh 137

Tamper-Resilient for Persistent Tampering. The above compiler is not secure
against adversaries that can tamper persistently with the memory. In fact, such
attackers can “copy-paste” the value Ky (resp. K;) in a part of the memory
Dy (resp. Dq) that is not refreshed, and restore these values at a later point,
bypassing the refreshing procedure.

To partially overcome this problem we assume that, once a decoding error
is triggered, the system can switch in a safe mode where the communication
between CPU and memory is tamper free. While in safe mode, the system will
perform a consistency check. To minimize the dependency on the assumption
we constraint the consistency check to be succinct, meaning that its complexity
depends only on the security parameter and not on the size of the RAM program.
Finally, if the consistency check passes, the refresh procedure will be executed
otherwise the self-destruct is triggered. In the full version of the paper we prove
the following theorem and give the details of the construction.

Theorem 3 (Informal). Let n,x € N be parameters. Assume there exists a
coding scheme that is poly (k,logn)-leakage-resilient R-CNMC and assume there
exists an authenticated encryption scheme with ciphertext space of length at least
poly(logn). Moreover, assume the system can switch in safe mode for poly(k)
number of operations and self destruct, then there exists a tamper-resilient RAM
compiler w.r.t. (Fous, Fmem) for RAM programs with database of length n, where
both Fpus and Fmem are the family of split-state tampering functions.

The Compiler of [7]. In order to better compare our RAM compilers with pre-
vious work, we first describe the compiler of Dachman-Soled et al. [7] in some
details. The starting point is a RAM program A = (I,D) that is previously
compiled using an Oblivious RAM [15], and later encoded using a (split-state)
locally-updatable and locally-decodable non-malleable code (LULD-NMC)!2. In
particular, one first samples a random key k for an authenticated encryption
scheme, encrypts all the locations D[i] block by block, and finally computes a
Merkle tree of the encrypted blocks. A non-malleable encoding (Ko, K7) of k
together with the root of the Merkle tree is computed and the resulting code-
word is composed of (Ky, K1), the encrypted memory D', and the merkle tree T'.
Since the encoded memory D’ is encrypted block-by-block, it is possible to locally
decode it and update it using £2(logn) operations,'® where n is the number of
blocks in D.

The security model in [7] is a flavour of the standard 2-split-state model tam-
pering model, where the adversary can choose tampering functions f = (fi, f2).
Tampering function f; is any tampering function supported by the underlying
2-split-state NMC that was used to compute (Kj, K;) and the function can
depend on the encrypted memory blocks D', and the merkle tree T'. Tampering
function fo enables the adversary to tamper with the memory and the merkle
tree, but the function does not depend on the codeword (Ko, K7).

12 The compiler, more generally, can be instantiated with any kind of (standard) NMC,
for concreteness we consider only the instantiation based on split-state NMC.

13 Tn a subsequent work, Dachman-Soled et al. [6] showed that, in order to have security
against “reset attacks”, the overhead of 2(logn) is necessary.

138 A. Faonio et al.

Comparison. Finally, let us review the main differences between our RAM com-
pilers and the one by Dachman-Soled et al. [7]. First, the compiler of [7] can
handle very general RAM programs that can also write on the memory. Our
compilers, instead, are specifically tuned for RAMs that make only read oper-
ations (recall that we want to avoid write-back operations); this feature allows
us to exploit the non-interactive refresh procedure of the underlying R-CNMC.
The read-only model is strictly weaker than the model that is considered in [7]
and reset attacks cannot exist in our model. This enables us to avoid the use
of a Merkle tree and obtain a construction similar to the one given in [7], thus
reducing the overhead from 2(logn) to O(1).

Second, the compiler of [7] only achieves security in a variant of the regular
split-state model (as described above), whereas both our compilers are secure in
the standard split-state model. On the downside, we require an untamperable
CRS, which is not needed in [7].

Third, we do not aim to hide the access pattern of the RAM machine. Notice
that the latter can be avoided using ORAMs (as done in [7]). However, we think
of this as an orthogonal problem. In fact, in some cases, ORAMSs could be, more
efficiently, replaced by constant-time implementations, or by fixed-pattern ones
(for example when hardening cryptographic primitives).

Lastly, our first compiler is the first RAM compiler that achieves security
against continuous attacks without relying on the self-destruct capability. This
feature allows us also to tolerate non-malicious hardware faults that may affect
the data of the bus accidentally, while at the same time maintaining security
against malicious tampering attacks. We notice that a similar property could be
achieved in the scheme of [7] by applying a layer of error-correcting code over the
non-malleable encoding. This allows to transparently correct the hardware faults
as long as these faults are supported by the capability of the error correcting code
and otherwise self destruct. On the other hand, our compiler cannot correct such
hardware faults, but it can detect them (without any bound on their nature)
and trigger a refresh before safely continuing the computations.

References

1. Aggarwal, D., Dodis, Y., Kazana, T., Obremski, M.: Non-malleable reductions and
applications. In: STOC, pp. 459468 (2015)

2. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combina-
torics. In: STOC, pp. 774-783 (2014)

3. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513-525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

4. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37-51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0-4

https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4

10.

11.

12.

13.

14.

15.

16.

17.

18.

Continuously Non-malleable Codes with Split-State Refresh 139

Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable proof sys-
tems and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT
2012. LNCS, vol. 7237, pp. 281-300. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29011-4_18

Dachman-Soled, D., Kulkarni, M., Shahverdi, A.: Tight upper and lower bounds for
leakage-resilient, locally decodable and updatable non-malleable codes. In: Fehr,
S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 310-332. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54365-8_13

Dachman-Soled, D., Liu, F.-H., Shi, E., Zhou, H.-S.: Locally decodable and updat-
able non-malleable codes and their applications. In: Dodis, Y., Nielsen, J.B. (eds.)
TCC 2015. LNCS, vol. 9014, pp. 427-450. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46494-6_18

Davi, F., Dziembowski, S., Venturi, D.: Leakage-resilient storage. In: Garay, J.A.,
De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 121-137. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15317-4_9

Dodis, Y., Lewko, A.B., Waters, B., Wichs, D.: Storing secrets on continually leaky
devices. In: FOCS, pp. 688-697 (2011)

Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. In: Innovations in
Computer Science, pp. 434-452 (2010)

Faonio, A., Nielsen, J.B.: Non-malleable codes with split-state refresh. In: Fehr,
S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 279-309. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54365-8_12

Faust, S., Mukherjee, P., Nielsen, J.B., Venturi, D.: Continuous non-malleable
codes. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 465-488. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 20

Fujisaki, E., Xagawa, K.: Public-key cryptosystems resilient to continuous tam-
pering and leakage of arbitrary functions. In: Cheon, J.H., Takagi, T. (eds.)
ASTACRYPT 2016. LNCS, vol. 10031, pp. 908-938. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6_33

Gennaro, R., Lysyanskaya, A., Malkin, T., Micali, S., Rabin, T.: Algorithmic
tamper-proof (ATP) security: theoretical foundations for security against hard-
ware tampering. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 258-277.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_15
Goldreich, O.: Towards a theory of software protection and simulation by oblivious
RAMs. In: STOC (1987)

Govindavajhala, S., Appel, A.W.: Using memory errors to attack a virtual machine.
In: IEEE Symposium on Security and Privacy, pp. 154-165 (2003)

Liu, F.-H., Lysyanskaya, A.: Tamper and leakage resilience in the split-state model.
In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 517—
532. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_30
Otto, M.: Fault attacks and countermeasures. Ph.D. thesis, University of Pader-
born, Germany (2006)

https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-642-29011-4_18
https://doi.org/10.1007/978-3-662-54365-8_13
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-662-46494-6_18
https://doi.org/10.1007/978-3-642-15317-4_9
https://doi.org/10.1007/978-3-662-54365-8_12
https://doi.org/10.1007/978-3-642-54242-8_20
https://doi.org/10.1007/978-3-662-53887-6_33
https://doi.org/10.1007/978-3-540-24638-1_15
https://doi.org/10.1007/978-3-642-32009-5_30

Digital Signatures

®

Check for
updates

Efficient Unconditionally Secure
Signatures Using Universal Hashing

Ryan Amiri!, Aysajan Abidin?(®™), Petros Wallden?®, and Erika Andersson’

! SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University,
Edinburgh EH14 4AS, UK
{ra2,e.andersson}@hw.ac.uk
2 imec-COSIC, KU Leuven, Leuven, Belgium
aysajan.abidin@esat.kuleuven.be
3 LFCS, School of Informatics, University of Edinburgh, 10 Crichton Street,
Edinburgh EH8 9AB, UK
petros.wallden@ed.ac.uk

Abstract. Digital signatures are one of the most important crypto-
graphic primitives. In this work we construct an information-theoretically
secure signature scheme which, unlike prior schemes, enjoys a number of
advantageous properties such as short signature length and high genera-
tion efficiency, to name two. In particular, we extend symmetric-key mes-
sage authentication codes (MACs) based on universal hashing to make
them transferable, a property absent from traditional MAC schemes. Our
main results are summarised as follows.

— We construct an unconditionally secure signature scheme which,
unlike prior schemes, does not rely on a trusted third party or anony-
mous channels.

— We prove information-theoretic security of our scheme against forg-
ing, repudiation, and non-transferability.

— We compare our scheme with existing both “classical” (not employ-
ing quantum mechanics) and quantum unconditionally secure signa-
ture schemes. The comparison shows that our new scheme, despite
requiring fewer resources, is much more efficient than all previous
schemes.

— Finally, although our scheme does not rely on trusted third parties,
we discuss this, showing that having a trusted third party makes our
scheme even more attractive.

Keywords: Digital signatures - Information-theoretic security
Transferable MAC - Universal hashing

1 Introduction

Digital signatures are one of the most widely used cryptographic primitives and
are indispensable for information and communications security. Secure digital

© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 143-162, 2018.
https://doi.org/10.1007/978-3-319-93387-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_8&domain=pdf

144 R. Amiri et al.

signature schemes offer authenticity and integrity, non-repudiation, and transfer-
ability of digital content. However, the public-key digital signature schemes that
are currently in use, such as RSA [1], ElGamal DSA [2] and ECDSA [3], provide
only computational security, and rely on unproven hardness assumptions in num-
ber theory. This implies that algorithmic breakthrough and/or the advancement
in computing technologies may one day render such digital signature schemes
totally insecure. Another emerging threat to the security of these schemes is
from quantum computers, which can use Shor’s algorithm [4] to efficiently solve
the underlying “hard” problems and break all pre-quantum public-key cryp-
tosystems. In response to this threat, the field of post-quantum cryptography is
being developed. One can argue and ask whether quantum computers will ever
be built. Large companies such as Google, Microsoft and IBM certainly seem
to think it’s possible, and are allocating significant resources to research in this
area. Furthermore, the National Security Agency (NSA) in the USA is also tak-
ing the threat from quantum computers very seriously, and in August 2015, the
NSA recommended a transition to post-quantum secure algorithms [5].

In post-quantum cryptography, there exist “quantum-safe” public-key cryp-
tosystems which are not yet known to be vulnerable to quantum attacks. Such
schemes range from the historical McEliece cryptosystem [6], which is based
on error-correcting codes, to more recent ones based on hash functions, lat-
tices and multivariate polynomials. The security of these “quantum-safe” alter-
natives is based upon (again unproven) hard problems, some of which have
not yet stood the test of time!. We stress again that even if the underlying
problems were proven to be hard to solve, the security of such schemes is still
only computational, and relies on the adversary having bounded computational
resources. If we want signature schemes with “everlasting” security or are unsure
of the resources available to our adversary, computational security may not be
sufficient.

An alternative to “quantum-safe” public key signature schemes are uncon-
ditionally secure signature (USS) schemes, where security does not rely on any
unproven assumptions, nor on bounds placed on the adversary’s computational
resources. Instead, these schemes provide information-theoretic security. Such a
high level of security, however, comes at a cost. So far, all USS schemes have
been significantly less efficient than their quantum-safe competitors in terms
of signature length, re-usability and key sizes. A more restrictive disadvantage
however, is that all USS schemes use secret keys, rather than public keys.

USS schemes require a setup phase in which secret keys are distributed among
participants before messages can be signed or verified. Therefore, they do not
have the universal verifiability property inherent to standard public-key digital
signature schemes. Due to this restriction, it is clear that USS schemes are not
a suitable replacement for many core applications where digital signatures are
used. Nevertheless, there may still be applications where USS schemes are useful
for particularly important communications, for example in high-value banking

! In lattice-based cryptography [7] for example, it is not quite clear anymore whether
all such protocols are truly quantum resistant [8,9].

Efficient Unconditionally Secure Signatures Using Universal Hashing 145

transactions, when signing important legal documents, or securing sensitive gov-
ernment communications. Due to the requirement of distributing secret shared
keys between participants, USS schemes should not be viewed as a standalone
product. Instead, it should be viewed as a complement to existing QKD systems
in fixed networks environments.

In this work, we propose a new USS scheme based on universal hashing.
Compared to the previous USS schemes in the literature, our scheme enjoys a
number of favourable properties such as short secret key lengths, short signature
length, and high efficiency. Before we proceed, we first briefly survey the USS
schemes which are already proposed in the literature. For a detailed overview,
we refer the interested reader to [10] and the references therein.

1.1 Related Works

There are two lines of work on USS schemes: one on “classical” schemes (not
employing quantum mechanics), and the other taking advantage of quantum-
mechanical features. Although our scheme is entirely classical, it is similar to
the quantum USS scheme proposed in Ref. [11].

Classical USS Schemes. The first attempt to construct an USS scheme was
suggested by Chaum and Roijakkers [12], using authenticated broadcast chan-
nels, secret authenticated channels and also using untraceable sending protocols.
Their scheme, however, only allows users to sign single-bit messages, and is there-
fore impractical. Moreover, the Chaum-Roijakkers scheme does not offer ade-
quate transferability, which is crucial for a signature scheme, because the secu-
rity is weakened as the message-signature pair is transferred among recipients.
Pfitzmann and Waidner [13] also considered USS schemes (which they called
pseudo-signatures) and constructed a scheme, somewhat related to ours, which
could be used to generate information-theoretically secure Byzantine agreement.
Their scheme built upon the protocol by Chaum and Roijakkers, but allowed
longer messages to be signed and verified, though the scheme still required
authenticated broadcast channels and untraceable sending protocols for imple-
mentation. Our scheme removes the requirement of authenticated broadcast
channels by employing a method similar to secret sharing techniques [14].

Later, Hanaoka et al. [15] proposed an USS scheme relying on a trusted
authority for key distribution, the existence of which allowed improvements both
in efficiency and security over the scheme by Chaum and Roijakkers, at the cost
of introducing this additional trust assumption. This scheme further improved
all existing USS protocols by making the signature scheme re-usable. Neverthe-
less, the lengths of both the signature and the secret keys needed to generate
signing/verification algorithms were still rather long, severely limiting its use in
practice. A later variation of this scheme was proposed by Hanaoka et al. in
[16]. This scheme sacrificed the re-usability of the previous scheme to achieve a
reduction in the size of the secret keys needed to generate signing/verification
algorithms by approximately a factor of 10.

146 R. Amiri et al.

Security notions of classical USS schemes are proposed and analysed in
Shikata et al. [17] as well as Swanson and Stinson [18].

Quantum USS Schemes. There are also quantum USS schemes, first pro-
posed by Gottesman and Chuang [19], in which security is derived from the
laws of quantum physics. Lu and Feng [20] proposed a quantum USS scheme
using quantum one-way functions, though it required a trusted authority (which
they called an arbiter) to resolve disputes. Quantum USS schemes were first
experimentally demonstrated by Clarke et al. [21]. While these early quantum
schemes require long-term quantum memories (which are highly impractical to
realise, effectively rendering these schemes unusable), the more recently proposed
schemes do not [11,22,23]. Quantum USS schemes without quantum memories
have also been experimentally demonstrated [24,25]. Furthermore, these recent
schemes and their experimental demonstrations use the already ripe technologies
required for quantum key distribution [26].

1.2 Contributions

In this work, we propose an USS scheme which naturally extends uncondition-
ally secure message authentication schemes. The main difference between an
unconditionally secure message authentication code and an USS scheme is that
signature schemes ensure the transferability of signed content, while authen-
tication codes do not. We propose a simple method, similar to secret sharing
[14], allowing unconditionally secure authentication codes to be transformed into
USS schemes. Our method requires only minimal trust assumptions and fewer
resources than previous USS schemes. We do not assume a trusted authority, nor
the existence anonymous channels or authenticated broadcast channels. Instead,
we only require participants to share short secret keys pairwise, and that the
majority of participants are honest. Our contributions can be summarised as
follows.

1. We construct an USS scheme that, unlike prior schemes, does not rely on a
trusted authority, anonymous channels or broadcast channels (Sect. 3).

2. We prove information-theoretic security of our scheme against forging, repu-
diation, and non-transferability (Sect.4).

3. We compare our scheme with existing both classical and quantum USS
schemes. The comparison shows that our new scheme has a number of unpar-
alleled advantages over the previous schemes (Sect. 5).

The distribution stage of our scheme derives from the Generalised P2 proto-
col described in Ref. [27]. However, instead of participants distributing bits, in
our scheme a sender shares with each of the remaining protocol participants
(or recipients) a set of keys (hash functions) from a family of universal hash
functions. This conceptual difference leads to vast efficiency improvements (see
Sect. 5) as it allows the distribution stage to be performed only once for all pos-
sible future messages, as opposed to Generalised P2 in which the distribution

Efficient Unconditionally Secure Signatures Using Universal Hashing 147

stage is performed independently for each future message. This is because, in
our scheme, a signature for a message is a vector of tags generated by applying
the hash functions to the message. Our scheme can be viewed as an extension
of MAC schemes, and therefore its practical implementation is straightforward
and efficient.

2 Preliminaries

We begin by formally defining an USS scheme.

Definition 1 ([27]). An USS scheme Q is an ordered set {P, M, X, L, Gen,
Sign, Ver} where

— The set P = {Py, P1,...,Pn}, is the set containing the signer, Py, and the
N potential receivers.

— M is the set of possible messages.

— X is the set of possible signatures.

— Gen is the generation algorithm that gives rise to the functions Sign and Ver,
used respectively to generate a signature and wverify its validity. More pre-
cisely, the generation algorithm specifies the instructions for the communica-
tion that takes place in the distribution stage of the protocol. Based on the data
obtained during the distribution stage, the generation algorithm instructs how
to construct the functions Sign and Ver. The generation algorithm includes
the option of outputting an instruction to abort the protocol.

— Sign: M — X is a deterministic function that takes a message m € M and
outputs a signature o € X.

- L ={-1,0,1,..., L} is the set of possible verification levels of a signed
message. A verification level I corresponds to the minimum number of times
that a signed message can be transferred sequentially to other recipients. For
a given protocol, the mazximum number of sequential transfers that can be
guaranteed is denoted by lya: < N.

- Verr M x X x P x L — {True, False} is a deterministic function that takes a
message m, a signature o, a participant P; and o level I, and gives a boolean
value depending on whether participant P; accepts the signature as valid at
the verification level [.

Definition 2. For a fized participant, P;, at a fized verification level, 1, we
denote the verification function as Ver; ;(m, o) := Ver(m,o,1,1).

Definition 3. A signature o on a message m is i-acceptable if Ver; o(m, o) =
True.

The meaning of this definition is that participant P; will accept (m, o) as a valid
message-signature pair at the lowest verification level, | = 0.

Definition 4. An USS protocol Q is correct if Ver; (m,Sign(m)) = True for
almeM,ie{l,...,N}, andl € L.

148 R. Amiri et al.

The signature protocol presented in this paper uses almost strongly universal
hash function families.

Definition 5 ([28]). Let F = {f: M — T} be a set of functions such that

1. Foranyme M, te T, |{f € F: f(m) =t} =|F|/|T|.
2. For any my,mo € M, t1,ta € T, such that my # ma, [{f € F : f(m1) =
t1 and f(ma) = ta}] < 6%-

Then we say F is e-ASUs. The domain of each function in F is the message
set, M, and the range is the set of tags, T .

The efficiency of our protocol relies on the ability to find an e-ASUs set which
is “small”.

Proposition 1 ([29]). Let a := log |M| and b :=log|T|, be the size (in bits) of
the message and tag respectively®. Let F be an e-ASUs set with e = 2/|T|. It is
possible to specify an element of F using y bits of data, where y = 3b + 2s and
s is such that a = (b+ s)(1 + 29).

3 The Protocol

The protocol contains N + 1 participants: a sender Py and N receivers,
Py, ..., Py. Before the protocol, all participants agree on an e-ASUs family of
functions, F, where ¢ = 2/|7T|. The basic idea is for the sender to give each
recipient a number of keys (hash functions) which will be used in future to
authenticate a message by appending tags (hash values) to the message being
sent. To check the signature, participants will apply their hash functions to the
message, and check that the outcome matches the tags appended to the message
by the sender. They will count the number of mismatches between their hash
values and the appended tags, and only accept the message if they find less than
a threshold amount of mismatches. However, if the sender were to know which
hash functions are held by which participant, she could choose to append appro-
priate tags such that one recipient accepts the message while another does not,
thereby breaking transferability of the scheme. To ensure transferability then,
each recipient will group the hash functions received from the sender into NV
equally sized sets (of size k), and send one set (using secret channels) to each
other recipient, keeping one for himself. The recipients test each of the N sets
independently.

Transferability Levels. The situation is further complicated if the sender
is in collusion with some of the recipients. In that case, the sender can have
partial knowledge on who holds which keys, which forces us to define levels of
transferability. Levels of transferability are perhaps confusing, so here we will try
to highlight the need for such levels. Imagine that a sender is in collusion with

2 In this paper all logarithms are taken to base 2.

Efficient Unconditionally Secure Signatures Using Universal Hashing 149

a single recipient. In this case, the sender knows k of the keys held by honest
recipient Hy, and k of the keys held by honest recipient Hs - namely he knows
the keys that were forwarded by his dishonest partner. For these known keys,
the sender can attach tags that are correct for Hi, and are incorrect for Hs.
Therefore, based on the number of colluding adversaries, the sender is able to
bias the number of mismatches and the number of incorrect sets found between
each honest party. To ensure transferability then, we require that the second
verifier accepts a message as authentic even if each set contains a higher number
of mismatches, and there are more invalid sets than found by the first verifier.
Of course, to ensure security against forging, we cannot allow message-signature
pairs containing too many errors to be accepted, and so there must be a cap
on the highest level of mismatches acceptable by anyone. This leads to levels
of verification, and a limit on the number of times a message is guaranteed
to be transferable in sequence. For clarity, suppose then there are three levels
of verification, ly, {1 and l5. Accepting a message at any of these levels means
the message is guaranteed to have originated with the claimed sender. If H;
accepts a message at level lo (the highest verification level, i.e. the level with
the fewest errors in the signature), then he can forward it to Hs, who will first
try to accept the message at level l5. If he finds too many mismatches for the
message to be accepted at level I, he will instead try to verify at level I;. The
protocol ensures that if H; found the message to be valid at level I, then Hs
will find the message to be valid at level [; with high probability. Therefore, with
three verification levels, accepting the message at level lo guarantees that the
message can be transferred at least twice more. In practice, the message may be
transferred many more times, since with honest participants it is highly likely
that Hs will also find the message valid at level Iy and they will not need to
move to the next verification level.

With this in mind, to begin the protocol we must first decide the maximum
number of dishonest participants we want our protocol to be able to tolerate
(which, as per the proceeding paragraph, will impact our verification levels). We
set this to be w such that w < (N + 1)/2, since the protocol cannot be made
secure using the majority vote dispute resolution process if more than half of
the participants are dishonest. We also define the notation dg := (w — 1)/N,
where dp is the maximum fraction of dishonest recipients possible when the
sender is part of the coalition. As in previous protocols, there are two stages —
the distribution stage and the messaging stage.

3.1 Distribution Stage

1. The sender independently and uniformly at random selects (with replace-
ment) N2k functions from the set F, where k is a security parameter. We
denote these by (f1,..., fnzi) and refer to them as the signature functions.

2. To each recipient, P;, the sender uses secret classical channels to transmit
the functions (fi—1)Nk+1,- -, fink). This requires the sender to share Nky
secret bits with each recipient.

150 R. Amiri et al.

3. Each recipient P; randomly splits the set {(i — 1)Nk + 1,...,iNk} into N
disjoint subsets of size k, which we denote R;_.1,...,R;—n. He then uses
the secret classical channels to send R,_.; and F;_,; := {f, : r € R;—;} to
recipient P;. To securely transmit the signature functions and their positions
requires each pair of participants to share ky+k log(Nk) secret bits. Following
this symmetrisation, participant P; holds the Nk functions given by F; :=
Ui.vzl F;_,; and their positions given by R; := Ujvzl R;_;. We refer to these as
the key functions and function positions of participant P;. The participants
will use these to check a future signature declaration.

3.2 Messaging Stage

1. To send message m € M to P;, the sender sends (m, Sig,,,), where

Sig,, = (fi(m), fa(m), ..., fnze(m)) = (t1, ..., tn2k).

Since the tags have size b, the signature is N2kb bits in size.
2. For message m and the signature elements ¢, such that r € R;_;, participant
P; defines the following test

- _{1 it 3 e, ., 9t fr(m)) < sik

#1710 otherwise M)
where s; is a fraction defined by the protocol, such that 1/2 > s_1 > so >
.. > 81, and g(.,.) is a function of two inputs which returns 0 if the inputs
are equal, and 1 if the inputs are different. For each fixed [, if the outcome of
the test is 1, we say that that test is passed at level [. Essentially, this test
checks whether the signature matches what the recipient expects to receive,
but allows for a certain number, s;k, of errors. For any verification level, the
recipient will perform N such tests, one for each j = 1,..., N. Note that
participant P; knows all of the signature functions f;; with ¢/ € R; and so can
perform all tests without interaction with any other participant.

3. Participant P; will accept (m, Sig,,,) as valid at level [if

N
> T > NG (2)
j=1

That is, participant P; accepts the signature at level [if more than a fraction of
0, of the tests are passed, where §; is a threshold given by 6, = 1/2+ (I+1)dR.
Therefore, we see that each participant can accept/reject a message without
interacting with any other recipient in the messaging stage.

4. To forward a message, P; simply forwards (m, Sig,,) to the desired recipient.

Note that the number of dishonest participants the protocol is able to tolerate is
directly related to the number of allowed transferability levels, according to the
parameter 6; = 1/2 + (I + 1)dg. Specifically, the maximum transferability level
for a given number of dishonest participants is set by (Ilmax + 1)dr < 1/2.

Efficient Unconditionally Secure Signatures Using Universal Hashing 151

4 Security

Informally, USS schemes must provide the following security guarantees [18]:

1. Unforgeability: Except with negligible probability, it should not be possible
for an adversary to create a valid signature.

2. Transferability: If a verifier accepts a signature, he should be confident that
any other verifier would also accept the signature.

3. Non-repudiation: Except with negligible probability, a signer should be unable
to repudiate a legitimate signature that he has created.

Formal security definitions covering both quantum and classical USS schemes
were first provided in Ref. [27]. For completeness, the definitions are reproduced
in Appendix A. Below we prove that the scheme presented in Sect. 3 is secure
against each type of dishonest behaviour. The security analysis for transferability
and non-repudiation is similar to the one provided in Ref. [27], and as such it is
presented in Appendix B.

Theorem 1. The protocol defined in Sect. 3 is secure against forging attempts.
Letting Hs denote the binary entropy, we find

P(Forge) < (N — w)? 27 k(—Hza(s0)), (3)

Proof. In order to forge, a coalition, C' (which does not include the signer),
with access to a single message-signature pair (m, Sig,,,), must output a distinct
message-signature pair (m/, Sig,,,) that will be accepted (at any level [> 0) by
a participant P; ¢ C. We consider forging to be successful if the coalition can
deceive any (i.e. at least one) honest participant.

It is easiest for the coalition to forge a message at the lowest verification level
[= 0, so we consider this case in what follows. We assume that the coalition
hold a valid message-signature pair (m, Sig,,,). We first restrict our attention to
the coalition trying to deceive a fixed participant, and we will prove that this
probability decays exponentially fast with the parameter k. We then use this to
bound the general case where the target is not a fixed participant. Therefore,
for now, we fix the recipient that the coalition wants to deceive to be P; ¢ C.

To successfully forge, the coalition should output a message-signature pair,
(m/,Sig,,), that passes at least Ndg + 1 of the N tests that P; performs in
step 2 of the messaging stage, where m’ # m and 6y = 1/2 + dg, meaning
Néo+ 1= N/2+ w. By the definition of the protocol, the number of members
in a coalition is at most w. The coalition knows F;_,; and R;_; for all P; € C,
so they can use this knowledge to trivially ensure that P; passes w of the IV
tests performed at level [= 0. To pass the required Ndy + 1 tests, the coalition
must pass a further N /2 tests out of the N —w remaining tests. The first step in
computing this probability is to calculate the probability of the coalition being
able to create a signature such that, for a single P; ¢ C, T[Z:O = 1, i.e. the
probability that the coalition can guess the tags forwarded from a single honest
recipient P; to F;.

152 R. Amiri et al.

Let p: denote the probability that the coalition can force 17" 0 = 1, when
they have no access to (Fj_;, Rj_;), i.e. p; is the probability that the coahtlon
can create a message-signature pair that will pass the test performed by P; for
the functions received from P; ¢ C. As per the protocol, P; sent (F;_;, Rj_;)
to P; using secure channels and therefore F;_,; and R;_; are unknown to the
coalition. However, we assume the coalition possess a valid message-signature
pair (m, Sig,,), from which they can gain partial information on (Fj_;, R;j—;).
Let us denote the £ unknown functions in F;_,; by u1,...,us, and consider how
the coalition might try to guess the value of ¢} := uy(m/), given t; := uy(m),
where m’ # m.

Since F is e-ASUs,, using Definition 5 the coalition immediately knows u; is
in a set F; C F which has size |F|/|T|. Upon receiving message m’, P; will be
expecting to find tag ¢} in the signature. The coalition does not know ¢} though,
so the best they can do is to pick a random function in Fi, and hope that this
function also maps m’ to the unknown #;. Again by Definition 5, the fraction of
functions in F; that map m’ to ¢} is at most 2/|7|. Therefore, the probability
that the coalition chooses a function that gives the correct tag for message m’
is 2/|7. This is independently true for each of the k& unknown functions.

Let X be the random variable that counts how many incorrect tags the
coalition declares. Then X follows a binomial distribution and we have

T S (4 [N D

v=0
This decays exponentially fast with the parameter k. For example, it may be

desirable to choose a small tag length in order to minimise the length of the
signature. For |7| = 4 the signature is 2N2k bits in size and we have

kso—1 kj 1 k
_ - ~ 9—k(1—H2(s0))
n=> (1) (3) ~2), (5)

v=0
Of course, choosing a larger tag size will increase security against forging. We
will now give an upper bound for the probability of forging against a fixed
participant. We start by computing the probability of passing at least one of the
unknown N — w tests, which is given by

P(FixedForge) <1 — (1 —p,)VN ™% =~ (N — w)p, (6)

where we have used the fact that p, < 1 in the approximation.

The total number of honest recipients is N —w and for successful forging we
only require that any one of them is deceived. Using the probability of forging
against a fixed participant, we can bound the probability of deceiving any honest
participant as

P(Forge) = 1 — (1 — P(FixedForge))N ™ ~ (N — w)?p;, (7)

where we have used the fact that P(FixedForge) < 1 in the approximation. We
again note that this probability decays exponentially fast with parameter k£, and
thus the protocol is secure against forging attempts.

Efficient Unconditionally Secure Signatures Using Universal Hashing 153

Theorem 2. The protocol defined in Sect. 3 is secure against non-transferability
attempts. Defining N, := [(N(1 — dg)][N(1 — dg) — 1]/2, we find

)2
P(Non- Transferability) < Np(N(6; — dg) + 1) exp ((81128l)k> . (8

Proof. See Appendix B.

Theorem 3. The protocol defined in Sect.3 is secure against repudiation
attempts. We find

P(Rep) < N,(N(6; — dr) + 1) exp <—(81;SO>2/€> . (9)

Proof. See Appendix B.

We note here that Egs. (3), (8) and (9) are independent of the message size,
meaning the signature size will be constant with respect to the size of the message
being sent.

5 Comparisons

5.1 Classical USS Schemes

In this section we compare the performance of our protocol to the one proposed
in [15] constructed using polynomials over a finite field. We will refer to this
protocol as the HSZI scheme. Since the HSZI scheme allows all participants to
send multiple messages, we extend our protocol to facilitate a comparison.

Consider the protocol described in Sect. 3, except that now each participant
performs the distribution stage v times in the role of the sender. Trivially, this
extended distribution stage allows all participants in the scheme to send up to
1 messages securely in the role of sender. We call this the extended protocol and
all comparisons are made with reference to this scheme.

This extended scheme still enjoys a number of advantages when compared to
the HSZI scheme. Namely,

1. We require fewer trust assumptions — our scheme does not require any trusted
authority.

2. Security in our scheme can be tuned independently of message size, resulting
in shorter signature lengths.

3. Our scheme scales more efficiently (with respect to message size) in terms of
the number of secret shared bits required by participants.

We will look at the second and third advantages in more detail. According to
Theorem 3 of [15] (translated to our notation) the HSZI scheme has

2] = @t |S| = gtV y) = gt (VEDEED, (10)

where Y is the set containing all possible signatures, S is the set containing
all possible signing algorithms,) is the set containing all possible verification
algorithms, ¢ is the number of elements in the chosen finite field and 9 is the
number of times the keys can be reused.

154 R. Amiri et al.

Signature Length. Let us first consider the size of the signature. Since the
signature must be transmitted with the message, it is desirable to have as small
a signature as possible. In the HSZI scheme the message m is an element of the
finite field, meaning the size of the finite field must be at least as big as the size
of the message set, i.e. ¢ > |M|. Accordingly, in what follows we set ¢ = |M|.
Equation (10) implies that (w + 1)log(]M|) is the bit-length of the signature.
The authors also show that the HSZI scheme provides security proportional to

Immediately we see that both the size of the signature and the security level
depend on the size of the message to be sent. On the other hand, in our scheme
the signature length is 2N 2k bits, regardless of the message length. The security
level of our scheme depends on the parameter k, but is independent of the length
of the message being signed. This allows our scheme to bypass the optimality
results presented in Ref. [15]. Specifically, the authors show that the signature
generated by the HSZI scheme is optimally small for a given security level. By
decoupling the security level from the size of the message being sent, we are able
to generate smaller signatures while maintaining security.

Secret Key Requirements. We now consider the number of secret shared
bits required to securely distribute the signing/verification keys. In the HSZI
scheme, to secretly send the signing and verification keys to all participants, the
trusted authority must hold

[(w+ D@ +1) +w+ N+ 1)@+ D] log(IM]) = O(Nvlog|M]) (11)

secret shared bits with each participant (as implied by Eq. (10)).

For the hash scheme, each recipient must share Nky secret bits with the
sender (to receive the signature functions), and ky + klog(Nk) with every other
recipient (to forward on a selection of the key functions and their positions).
For the extended protocol, where the distribution stage is performed 1 times for
each participant acting as sender, each participant must share: (i) Nky secret
bits with each of the N recipients for the ¢ rounds in which he is the sender; and
(ii) Nky bits with the sender and ky + klog(Nk)) secret bits with each of the
(N — 1) other recipients for each of the Ny rounds when he is not the sender.
This is a total of

N2kipy + N[Nky + k(N — 1)(y + log(Nk))]
= Nky)(3N — 1)y + N(N — 1)kt log(Nk)
= Nkyp(3N —1)(6 + 2s) + N(N — 1)ktplog(Nk)
= O(N?ky(loglog | M| + log Nk))

(12)

secret shared bits per recipient. The second equality follows using Proposition 1
with b = 2. The last equality follows using the Lambert W function to find a lead-
ing order approximation for s when s is large [30]. The results are summarised
in Table 1 below.

Efficient Unconditionally Secure Signatures Using Universal Hashing 155

The table shows that the signature length in our scheme is constant with
respect to the size of the message to be signed. On the other hand, the signature
length in the HSZI scheme increases linearly with the bit-length of the message
to be signed. Similarly, the secret shared key required by our scheme increases
logarithmically with the bit-length of the message, whereas the increase in the
HSZI scheme is linear in the bit-length of the message.

The fact that our scheme scales unfavourably with respect to the number of
participants is due to the lack of a trusted authority, meaning participants must
perform the pairwise exchange process. As discussed below, this N? scaling can
be removed from the hash scheme by introducing a trusted authority.

Table 1. Comparison of the signature length and secret shared keys required for various
signature protocols. Our scheme scales favourably with respect to the message length,
a = log |M|, both in terms of signature length and required secret shared key. The
“Quantum” column refers to the two most efficient quantum USS schemes at present,
described in [23,27].

Hash scheme HSZI Quantum
Signature | 2N?k (w+1a | O(N?a)
Secret key | O(N?¥(loga +log N)) | O(Nva) | O(N*i(a+ log N))

Disadvantages. Due to the inclusion of a trusted authority, the HSZI scheme
enjoys a number of advantages over our scheme. These are:

1. Pairwise secret shared keys between all participants are not required by the
HSZI scheme. Instead, each participant only needs a shared secret key with
the trusted authority. This means that the HSZI scheme scales favourably
with respect to the number of protocol participants.

2. Participants in the HSZI scheme are able to enter the protocol even after the
distribution stage. The new participant only needs to communicate with the
trusted authority to join.

3. The HSZI protocol has unlimited transferability, whereas our scheme can only
guarantee transferability a finite number of times.

While these advantages are significant, they are only possible due to the existence
of a trusted authority — an additional trust assumption not present in our scheme.
Our scheme could easily be modified to include a trusted authority, in which case
it would achieve the same three benefits above, as well as being significantly more
efficient.

A trusted authority could be included into our scheme as follows. In the
distribution stage, the signer would send Nk functions to the trusted authority,
where N is an arbitrarily large number chosen to be the maximum number
of participants able to verify the senders signature. When the sender wants
to send a signed message, the trusted authority randomly (and secretly) sends
k of the Nk functions to the recipient. Recipients could either obtain their &

156 R. Amiri et al.

functions at the start of the protocol (i.e. have a distribution stage), or simply
request the functions from the trusted authority as and when needed. Security
against forging would follow as before from the properties of e-ASU, sets, while
security against repudiation would come from the fact that the trusted authority
distributes the functions out at random, so each honest participant would have
the same expected number of mismatches with any signature declaration.

5.2 Quantum USS Schemes

A central motivating factor in the study of quantum USS schemes was that they
seemed to require fewer resources than classical USS schemes. This benefit came
at a cost, and all quantum USS schemes proposed have been much less efficient
than classical USS schemes?.

Until now, this decrease in efficiency had been justified by the fact that
quantum protocols do not require broadcast channels, anonymous channels, or
a trusted authority. Instead, the only assumption is that a limited number of
the participants are dishonest, and that the participants all share a number of
secret bits, which could be expanded via QKD.

However, the classical scheme presented in this paper makes the same trust
assumptions as quantum USS schemes, and still achieves two key advantages.
Namely, our scheme generates much shorter signatures and requires significantly
fewer secret shared bits. One of the reasons for the increase in efficiency is that,
so far, all quantum USS schemes have been of the Lamport-type, in which the
distribution stage must be performed for every possible future message. On the
other hand, our scheme does not follow this blueprint, and instead requires users
to share hash functions in the distribution stage, which can be used to sign any
future message (up to some chosen size).

Efficiency. Here we consider the signature length and secret shared bit require-
ments of our scheme, and compare it to Generalised P2, the most efficient realis-
able quantum USS scheme. We assume that a group of N 4+ 1 = 51 participants
are trying to sign a 1Mb message to a security level of 1071°. For comparing
to quantum USS schemes, rather than considering the extended protocol, we
assume the participants perform the regular distribution stage as specified in
Sect. 3, i.e. there is a designated sender and only one message to be sent. In
order to have l,,x = 1, we assume that at most w = 13 participants are dishon-
est meaning dr = 0.24. We also choose s_; = 0.41, s = 0.21 and s; = 0.01 so
as to have even gaps between the verification levels?.

3 Although it may appear from Table 1 that quantum USS schemes scale comparably
to the HSZI scheme, in fact the constant of proportionality for the quantum schemes
is very large, meaning that for all practical purposes the HSZI scheme is far more
efficient.

4 This choice is somewhat arbitrary, but is chosen to minimise the required signature
lengths.

Efficient Unconditionally Secure Signatures Using Universal Hashing 157

With these parameters, Egs. (3), (8) and (9) show that k& = 1700 is necessary
for the message to be secure to a level of 107!°. Given this value of k, the
signature length is 8.50 x 10° bits and each recipient must hold a total of 7.69 x
10° secret shared bits (shared over the different participants).

When considering Generalised P2, we assume the sender signs the 1 Mb mes-
sage bit-by-bit, each to a level of 10710, Overall this gives a lower security level
than signing the message as a whole, but makes the protocol significantly more
efficient®. Equations (24), (29) and (31) of Ref. [27] can be used to show that
the resulting signature length is 4.25 x 10'2, and that each recipient must hold
a total of 5.96 x 1012 secret shared bits (shared over the different participants).

This example shows just how powerful our new scheme is when compared to
existing quantum schemes — even for a relatively small message, our scheme is
6 orders of magnitude more efficient both in terms of signature size and secret
shared bit requirements. Our results show that quantum USS schemes must
either be drastically improved, or find a new source of motivation if they are to
remain competitive.

A Security Definitions

In this section we formally define security in USS protocols. We begin by defining
the notion of a dispute resolution process.

In the messaging stage of the protocol all participants are able to check the
validity of a message-signature pair without communicating with any other par-
ticipant. Nevertheless, there may still be scenarios in which disagreements arise
regarding whether a message is valid or not. For example, the sender may deny
having ever sent a message, even though a recipient who (allegedly) followed the
correct procedure found the message to be valid. In these cases, the participants
need a method of deciding who is telling the truth. This is done via the dispute
resolution process.

Definition 6. When the validity of a message-signature pair (m,o) is in dis-
pute, we invoke a majority vote dispute resolution method MV (m, o), defined by
the following rule:

1. MV(m, o) = Valid if Ver(; _1)(m, o) = True for more than half of the users.
2. MV(m, o) = Invalid otherwise

where Ver(; _1y(m, o) is the verification function at level | = —1.

Essentially, all participants check the message-signature pair at level —1 and
the majority decision prevails. The [= —1 verification level is only used in dis-
pute resolution, and not in normal runs of the protocol. The dispute resolution
process is expensive, as it requires all participants to communicate to decide

5 Signing the message as a whole would require participants to share secret keys of
6
size O(2M) = 0(2'°"), which is clearly impossible.

158 R. Amiri et al.

whether the message is valid or not. It is expected that even dishonest partic-
ipants would not try to force dispute resolution, since losing would come with
consequences and the procedure ensures that honest participants prevail as long
as they are in the majority. Dispute resolution should be thought of as akin to
taking legal action; in the vast majority of cases it does not happen, but its
existence is necessary to prevent dishonesty.

Signature schemes must be secure against three types of security threat —
forging, repudiation and non-transferability.

Definition 7 (Forging). Let Q be an USS protocol and let C C P be a coalition
of malevolent parties, not including the signer Py. Suppose that the coalition holds
any valid message-signature pair (m,o) and can use this to output a message-
signature pair (m’,o’) with m’ # m. We define Forging to be the function:

1 if (m/,0’) is i-acceptable for some P; ¢ C

Forg(Q,m’,o") = { (13)

0 otherwise.

Definition 8 (Non-Transferability). Let Q be an USS protocol and C C P a
coalition of malevolent participants including the signer Py. Suppose that C out-
puts a message-signature pair (m, o) and a verification level |. We define Non-
Transferability to be the function:

1 if Ver(; ;y(m, o) = True for some P; ¢ C' and
Ver(; 1y (m, o) = False for some 0 <1' <
and some j #1i,P; ¢ C
0 otherwise.

NonTransc(Q,m,o,l) =

(14)

Definition 9 (Repudiation). Let Q be an USS protocol and C C P a coalition
of malevolent participants including the signer Py. Suppose that C' outputs a
message-signature pair (m, o) and a verification level |. We define Repudiation
to be the function:

1 if (m, o) is i-acceptable for some P; ¢ C and
Repe(Q, MV, m, o) = MV (m, o) = Invalid
0 otherwise.
(15)

We say that the protocol is secure against forging/non-transferability/
repudiation if the probability of a dishonest coalition being successful decays
exponentially fast with respect to some security parameter.

B Security Proofs

In this section we prove Theorems 2 and 3 stated in Sect. 4.

Efficient Unconditionally Secure Signatures Using Universal Hashing 159

B.1 Proof of Theorem 2

In order to break the transferability of the protocol, a coalition C' (which includes
the signer Pj) must generate a signature that is accepted by recipient P; ¢ C at
level [, while also being rejected by another recipient P; ¢ C at a level I < [.

The task of the coalition is easiest if I’ = [— 1 and so we consider this case
in what follows. To provide an upper bound, we allow for the biggest coalition
C' that includes Ndg recipients and the sender, i.e. all the dishonest partici-
pants. For simplicity, again we will fix the participants whom the coalition is
trying to deceive to be the honest participants P; and P;, while all other hon-
est participants are labelled with the index h. In general, transferability fails if
the coalition forms a signature that is not transferable for at least one pair of
honest participants (P;, P;). Therefore, we should take into account all possible
pairs of honest participants. We begin by focusing on the case of a fixed pair of
participants, and at the end we give the more general expressions.

The first step is to compute pp,,,_,, which is the probability that: (i) test
T [’;” is passed (i.e. the tags sent from honest participant P} to recipient P;
are accepted at level [); and (ii), the test 777, ; fails (i.e. the tags sent from
honest participant P, to recipient P; are rejected at level I —1). Since the sender
P, is dishonest, it can be assumed that the coalition know all the signature
functions. However, they are unaware of the sets Rj_.; and Rj— ;. Therefore,
the coalition can control the number of mismatches the signature will make with
the signature functions originally sent to Py, but they cannot separately bias the
number of mismatches the signature will make with the functions in F}j_,; and
F},_.;. Therefore, when participants P; and P; test the functions sent to them
by an honest participant P, they will both have the same expected fraction of
mismatches; we call this fraction pe.

It is helpful to use the following bound

Py, = P(P; passes test at level | AND P; fails test at level [— 1)

, : (16)

< min{P(P; passes test at level [), P(P; fails test at level { — 1)}.
The probability of passing the test at level [when p. > s; can be bounded using
Hoeffding’s inequalities to be below exp(—2(p. —s;)?k). The probability of failing
the test at level [— 1 when p. < s;_1 can similarly be bounded to be smaller
than exp(—2(s;_1 —pe)?k). Note that s;_1 > s; and so the above two cases cover
all possible values for p.. Since we are taking the minimum over both cases, the
optimal choice for the coalition is to have these probabilities equal to each other.
This is achieved by choosing p. = (s;+s;—1)/2. In this case we obtain the bound
Py, < €xXp (—Mk) , which decays exponentially with k.

For a test that involves a member of C' it is trivial for the coalition to make
two recipients disagree in any way they wish, i.e. they can make 77", ; and 71
take any values they wish. However, the number of those tests is at most Ndg,
which is the maximum number of recipients in the coalition. For the participant
P; to accept a message at level [, he needs strictly greater than NJ; of the
tests to pass at this level. On the other hand, for the participant P; to reject

160 R. Amiri et al.

the message at level [— 1, less than or equal to N§;_; of tests must pass at this
level. Therefore, since it holds that 6; = §;_1 +dg, in order for the coalition to be
successful, the honest participants P; and P; need to disagree on at least Ndrp+1
tests. As we saw, the coalition can easily make them disagree on the Ndp tests
originating from coalition members, but they still have to disagree on at least
one more test originating from an honest recipient. There are N(6; — dgr) + 1
such tests (tests originating from an honest recipient that were passed by P;),
and the P; need only reject one of them for the coalition to succeed. Therefore,
we have

P(Fixed Non-Transferability) <1 — (1 — pml,lfl)N(‘Sl_dR)'H

(17)
~ (N((Sl - dR) + 1)pmz,l—1'

Lastly, we consider the general case, where the participants P; and P; are not

fixed. We find

P(Non-Transferability) < 1 — (1 — P(Fixed Non-Transferability))™»

(18)
~ NP(N(él - dR) + 1)pmu,1,

where N, := [(N(1 — dg)|[N(1 — dr) — 1]/2. Again, this decays exponentially

with k, and thus the protocol is secure against non-transferability.

B.2 Proof of Theorem 3

The proof is a special case of non-transferability, see Sect.5 A of [27]. We find
P(Rep) < Np(N(dg — dr) + 1)pmy,._, - (19)

As for non-transferability, this goes to zero exponentially fast with k, and thus
the protocol is secure against repudiation.

References

1. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120-126 (1978)

2. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp- 10-18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7_2

3. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36-63 (2001)

4. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Goldwasser, S., (ed.) Proceedings 35th Annual Symposium on Foundations
of Computer Science. SFCS 1994, vol. 35, pp. 124-134. IEEE Computer Society
(1994)

5. National Security Agency: Cryptography Today, August 2015. https://www.nsa.
gov/ia/programs/suiteb_cryptography/

6. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory (1978)

https://doi.org/10.1007/3-540-39568-7_2
https://www.nsa.gov/ia/programs/suiteb_cryptography/
https://www.nsa.gov/ia/programs/suiteb_cryptography/

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Efficient Unconditionally Secure Signatures Using Universal Hashing 161

Micciancio, D.: Lattice-based cryptography. In: van Tilborg, H.C.A., Jajodia,
S. (eds.) Encyclopedia of Cryptography and Security. Springer, Boston (2011).
https://doi.org/10.1007/978-1-4419-5906-5_417

Song, F.: A note on quantum security for post-quantum cryptography. In: Mosca,
M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 246-265. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-11659-4_15

Biasse, J.F., Song, F.: On the quantum attacks against schemes relying on the
hardness of finding a short generator of an ideal in Q(¢pn) (2015)

Amiri, R., Andersson, E.: Unconditionally secure quantum signatures. Entropy
17(8), 5635-5659 (2015)

Wallden, P., Dunjko, V., Kent, A., Andersson, E.: Quantum digital signatures with
quantum-key-distribution components. Phys. Rev. A 91(4), 042304 (2015)
Chaum, D., Roijakkers, S.: Unconditionally-secure digital signatures. In: Menezes,
A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 206-214. Springer,
Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_15

Pfitzmann, B., Waidner, M.: Information-theoretic pseudosignatures and byzantine
agreement for ¢ > n/3. IBM (1996)

Shamir, A.: How to share a secret. Commun. ACM 22(11), 612-613 (1979)
Hanaoka, G., Shikata, J., Zheng, Y., Imai, H.: Unconditionally secure digital signa-
ture schemes admitting transferability. In: Okamoto, T. (ed.) ASTACRYPT 2000.
LNCS, vol. 1976, pp. 130-142. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44448-3_11

Hanaoka, G., Shikata, J., Zheng, Y.: Efficient unconditionally secure digital sig-
natures. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 87(1), 120-130
(2004)

Shikata, J., Hanaoka, G., Zheng, Y., Imai, H.: Security notions for unconditionally
secure signature schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS,
vol. 2332, pp. 434-449. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-46035-7-29

Swanson, C.M., Stinson, D.R.: Unconditionally secure signature schemes revisited.
In: Fehr, S. (ed.) ICITS 2011. LNCS, vol. 6673, pp. 100-116. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20728-0-10

Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv preprint
quant-ph /0105032 (2001)

Lu, X., Feng, D.: Quantum digital signature based on quantum one-way functions.
In: ICACT 2005, vol. 1, pp. 514-517. IEEE (2005)

Clarke, P.J.; Collins, R.J., Dunjko, V., Andersson, E., Jeffers, J., Buller, G.S.:
Experimental demonstration of quantum digital signatures using phase-encoded
coherent states of light. Nat. Commun. 3, 1174 (2012)

Dunjko, V., Wallden, P., Andersson, E.: Quantum digital signatures without quan-
tum memory. Phys. Rev. Lett. 112(4), 040502 (2014)

Amiri, R., Wallden, P., Kent, A., Andersson, E.: Secure quantum signatures using
insecure quantum channels. Phys. Rev. A 93(3), 032325 (2016). https://doi.org/
10.1103/PhysRevA.93.032325

Collins, R.J., Donaldson, R.J., Dunjko, V., Wallden, P., Clarke, P.J., Andersson,
E., Jeffers, J., Buller, G.S.: Realization of quantum digital signatures without the
requirement of quantum memory. Phys. Rev. Lett. 113(4), 040502 (2014)
Donaldson, R.J., Collins, R.J., Kleczkowska, K., Amiri, R., Wallden, P., Dunjko, V.,
Jeffers, J., Andersson, E., Buller, G.S.: Experimental demonstration of kilometer-
range quantum digital signatures. Phys. Rev. A 93(1), 012329 (2016)

https://doi.org/10.1007/978-1-4419-5906-5_417
https://doi.org/10.1007/978-3-319-11659-4_15
https://doi.org/10.1007/3-540-38424-3_15
https://doi.org/10.1007/3-540-44448-3_11
https://doi.org/10.1007/3-540-44448-3_11
https://doi.org/10.1007/3-540-46035-7_29
https://doi.org/10.1007/3-540-46035-7_29
https://doi.org/10.1007/978-3-642-20728-0_10
https://arxiv.org/abs/quant-ph/0105032
https://doi.org/10.1103/PhysRevA.93.032325
https://doi.org/10.1103/PhysRevA.93.032325

162 R. Amiri et al.

26. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dusek, M., Liitkenhaus, N.,
Peev, M.: The security of practical quantum key distribution. Rev. Mod. Phys.
81(3), 1301 (2009)

27. Arrazola, J.M., Wallden, P., Andersson, E.: Multiparty quantum signature
schemes. Quantum Inf. Comput. 16, 435-464 (2016)

28. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18, 143-154 (1979)

29. Bierbrauer, J., Johansson, T., Kabatianskii, G., Smeets, B.: On families of hash
functions via geometric codes and concatenation. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 331-342. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48329-2_28

30. Abidin, A., Larsson, J.A.: New universal hash functions. In: Armknecht, F., Lucks,
S. (eds.) WEWoRC 2011. LNCS, vol. 7242, pp. 99-108. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-34159-5_7

https://doi.org/10.1007/3-540-48329-2_28
https://doi.org/10.1007/3-540-48329-2_28
https://doi.org/10.1007/978-3-642-34159-5_7

®

Check for
updates

Floppy-Sized Group Signatures
from Lattices

Cecilia Boschini2(®¥) Jan Camenisch', and Gregory Neven'
1 IBM Research, Zurich, Switzerland
{bos, jca,nev}@zurich. ibm.com
2 Universita della Svizzera Italiana, Lugano, Switzerland

Abstract. We present the first lattice-based group signature scheme
whose cryptographic artifacts are of size small enough to be usable in
practice: for a group of 2%° users, signatures take 910kB and public keys
are 501 kB. Our scheme builds upon two recently proposed lattice-based
primitives: the verifiable encryption scheme by Lyubashevsky and Neven
(Eurocrypt 2017) and the signature scheme by Boschini, Camenisch, and
Neven (IACR ePrint 2017). To achieve such short signatures and keys,
we first re-define verifiable encryption to allow one to encrypt a func-
tion of the witness, rather than the full witness. This definition enables
more efficient realizations of verifiable encryption and is of independent
interest. Second, to minimize the size of the signatures and public keys
of our group signature scheme, we revisit the proof of knowledge of a
signature and the proofs in the verifiable encryption scheme provided in
the respective papers.

Keywords: Lattices + Group signature - Verifiable encryption

1 Introduction

Lattice-based cryptography has made substantial advances and now includes
public-key encryption schemes [30,31] and digital signature schemes [14,15,27]
that are essentially as practical as those based on traditional number-theoretic
assumptions: all keys and outputs are less than 1kB for 128 bits of security.
Somewhat more complex primitives such as identity-based encryption [15,19]
can be implemented with keys and ciphertexts being around 4 kB, and the best
blind signature scheme [35] has artifacts of around 100kB. For group signa-
tures [13], however, the lattice-based schemes known are much less efficient than
their traditional counterparts, despite the attention they have recently received.

In a group signature scheme, the group manager provides distinct secret keys
to each user, who is then able to sign messages anonymously on behalf of the
group. While anyone can check that a message was signed by a group member,
only the opener is able to recover the identity of the originator of a signature.
Group signatures are particularly useful in scenarios where remote devices need
to be authenticated as valid devices, but privacy imposes that individual devices

© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 163-182, 2018.
https://doi.org/10.1007/978-3-319-93387-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_9&domain=pdf

164 C. Boschini et al.

can only be identified by a designated authority. Examples include government-
issued electronic identity (eID) cards, where each issued smart card creates iden-
tity claims as signed statements about its attributes, without needing to fully
identify its owner [6], or remote anonymous attestation of computing platforms,
where devices prove which software they execute [9)].

A typical approach to construct a group signature scheme is to use a signature
scheme, an encryption scheme, and a non-interactive zero-knowledge proof of
knowledge (NIZK PoK) [1,5,12] as follows. The group public key consists of the
group manager’s signature public key and the opener’s encryption public key. A
user’s secret key is a signature by the group manager on the identity of the user.
To sign a message, the user encrypts her identity under the opener’s public key
and creates a NIZK PoK of a signature on the encrypted value.

The main obstacle in achieving an efficient scheme with this approach is the
efficiency of the NIZK PoK and the choice of signature and encryption schemes
that allow for an efficient NIZK PoK. In this paper, we build a dynamic group
signature scheme by combining the recent signature scheme with protocols by
Boschini et al. [8] and the recent (verifiable) encryption scheme by Lyubashevsky
and Neven [29]. Both these schemes already come with NIZK proofs of knowledge
of a signature and of a plaintext, but their straightforward combination results
in a group signature scheme that is not practical due to its large signature size.

Our Techniques and Results. Boschini et al. [8] presented a (relaxed) signature
scheme allowing for efficient zero-knowledge proofs of knowledge of a signature
on a hidden message, where a signature on a polynomial with small coefficients
m is a vector S of small-coefficient polynomials (or “short” vector) such that
[A|B|C + mG]|1]S = u, where the public key contains row vectors A, B,C, G
and a polynomial u. To prove knowledge of a signature on a hidden message, the
prover first generates a commitment F = b~*(C + mG + E) to m, where b is a
random small-coefficient polynomial and E is an error vector. The commitment
F can be plugged into the verification equation by computing a short vector
S’ such that [A|B|F|1]S’ = u. The prover can then use Lyubashevsky’s Fiat-
Shamir with aborts technique [27] to prove knowledge of

b
() [ABIF[S=cu (I) [FT|GT|1] |m| = €'C.

The relaxed verifiable encryption scheme of Lyubashevsky and Neven [29]
can encrypt a witness x to a relation Mx =y so that decryption is guaranteed
to yield (%, ¢) such that Mx = Cy. The most straightforward way to build a
group signature scheme would be to combine it with the above building blocks,
letting a user’s signing key be given by a signature S by the group manager on
the user’s identity m, and letting a group signature be a non-interactive proof of
relations (I) and (II), combined with a verifiable encryption to allow the opener
to recover the user’s identity m.

Floppy-Sized Group Signatures from Lattices 165

The problem with this approach is that the Lyubashevsky-Neven verifiable
encryption scheme encrypts the full witness [S ; b ; m ; ET, rather than just
the witness m, resulting in a very long signature size. In this paper, we define
a variant of relaxed verifiable encryption that encrypts only part of the witness,
resulting in a much shorter signature size. In this way, given F as before, it is
possible to encrypt the message m and still prove that it was used to construct
F, without having to also encrypt S, b, and E. Moreover, we prove relations (I)
and (II) in two separate proofs, resulting in better parameters.

Our group signature scheme satisfies anonymity and traceability as defined
by Bellare et al. [4] in the random-oracle model. Analogously to the non-lattice-
based world, where schemes under weak assumptions do exist [3,4] but truly
practical schemes typically require stronger assumptions [1,7], we also prove our
scheme secure under relatively strong assumptions. Namely, we follow the app-
roach by Boschini et al. [8] and use two interactive assumptions that can be
interpreted in two different ways. One can either believe the interactive assump-
tions as stated, in which case we obtain a tight security reduction and the most
efficient parameters for our scheme, resulting in signatures of 910 kB for a group
of 225 users and 80 bits of security. Alternatively, one can see our assumptions
as being implied by the standard Ring-SIS and Ring-LWE assumptions through
a complexity leveraging argument. To compensate for the loose reduction, the
parameters increase, resulting in signatures of 1.72 MB.

Related Work. The early lattice-based group signature schemes [10,20] have
signature sizes that are linear in the number of group members and are there-
fore mainly proofs of concepts, unsuitable for any practical application. Later
schemes [21,25,34] are asymptotically more efficient with signature sizes being
logarithmic in the number of users.

Making use of the advances in lattice-based signature schemes, a num-
ber of group signature schemes were proposed following the general construc-
tion approach we have outlined earlier [21,23-26,37]. These schemes use as
proof of knowledge protocols either an adaptation of Stern’s protocol [36] or
the “single-bit-challenge” version of the lattice-based Fiat-Shamir protocol by
Lyubashevsky [27]. As these proofs have soundness error 2/3 and 1/2, respec-
tively, they need to be repeated sufficiently many times in parallel, resulting
in group signature schemes that can hardly be considered practical. None of
these scheme give concrete parameters, providing asymptotic efficiency analyses
instead. The only exception is the scheme by Libert et al. [23] which is the most
efficient scheme prior to ours, with signatures over 60 MB and public keys of
4.9 MB for a group size of only 2! users for 80 bits of security — still much less
efficient than ours.

2 Prerequisites

We denote vectors and matrices with upper-case letters. Column vectors are
denoted as V = [vl - vn] and row vectors as V = [’Ul - vn]. Sampling and

element x from a distribution D will be denoted as x & D. If z is sampled from

166 C. Boschini et al.

a uniform over a set A, we will abuse the notation and write z & A. With z « a
we will denote that = is assigned the value a. When necessary, we will denote
the uniform distribution over a set S as U(S).

2.1 Polynomial Rings

Consider the polynomial ring R, = Z,/(x™ + 1) for a prime ¢ = 5 mod 8.
Elements in the ring are polynomials of degree at most n — 1 with coefficients in
[-(¢g—1)/2,(q — 1)/2] and operations between ring elements are done modulo
q. Let deg(a) be the degree of the polynomial a. For an element a = /" 01 a;X

in Ry, the standard norms are computed as |jal|1 =), |ail, [|la]| = / ia?

and ||aljc = max|a;|. For any K|n, we can construct a subring R,(JK) of Ry as

the subset of elements a € R, such that a = ZZKZBI a;x™/ K For integer p, R,

(resp., Rj(gK)) is the subset of R, (resp., R((IK)) that contains polynomials with
coefficients in [—(p — 1)/2, (p — 1)/2]. Lemmal shows that the ring R, has a
large set of invertible elements that are easy to identify.

Lemma 1 ([29, Lemma 2.2]). Let Ry = Z4[x]/(x" +1) where n > 1 is a power
of 2 and q is a prime congruent to 5 mod 8. This ring has exactly 2¢™/? — 1
elements without an inverse. Moreover, every non-zero polynomial a in R, with

llallco < \/q/2 has an inverse.

There are some easy bounds on the norm of the product of polynomials.

Lemma 2. Fora,b € R, it holds: ||ab||e < min {||al|« /b1, (¢ — 1)/2}. More-
over, let a, b € R, be such that n||al|« - ||blle < (¢ — 1)/2. Then we have that
lab]| < [lafl|[b]lv/n and abl|s < [la]lsc[[blloon < 45

2.2 Lattices

An integer lattice is an additive subgroup of Z". Every lattice A is generated by
a basis B = {by,...,bg} € Z"*™ where m is called dimension of the lattice.
Such lattice is denoted by A = £(B). If ¥ = n and the vectors in the basis
are linearly independent the lattice is a full-rank lattice. The Gram-Schmidt
orthogonalization of a full-rank basis B is denoted by B = {bl,.. Nn} Let
)\(ﬁ(B)) = Ming/st.£(B)=£(B) HB |. For a matrix A € Z"*™_ AL is the lattice:

L =L+A) = {x € Z"|Ax = 0mod ¢} C Z™ . We define the discrete
Gaussian distribution centered in ¢ with standard deviation o on a full-rank

7rIIv CH mllu— CH

lattice A as D, . ,(v) =e” /ZueA e o2 forallve and 0 on all

the other points in the space. Let Dx Ao be the distribution of the vectors s
such that s ~ Dy, ¢ , conditioned on As =u mod g.

Lemma 3 (cf. 2, Lemma 1.5], [27, Lemma 4.4]). Let A € Z™*™ with 21 < m
and u € Z. For o > X(L*(A)) it holds:
Pr (|Is|| > 1.050y/m)<275 and Pr (|Is]loo >80) < m27146.

$ $
s<—Dju‘g S<—Diud

In particular, the inequalities hold also when S‘iDZm/,u,g'

Floppy-Sized Group Signatures from Lattices 167

2.3 Lattices over Rings

Lattices over the polynomial ring R, can be defined similarly to lattices over
Zg. Indeed, given A € R1*™ we can construct m-dimensional lattice £(A)
as A+ = LH(A) = {V € (Z[x]/(x" +1))" | AV = 0 mod ¢} C R}". Consider
the obvious embedding that maps a polynomial to the vector of its coefficients.
Then A+ can be also seen as a nm-dimensional integer lattice over Z. With
a slight abuse of notation, we will write yﬁDRmuJ to indicate that y was
sampled from Dyn o, and then mapped to Rg. Similarly, we omit the 0 and

write [y1 yk] ﬁD%qu to mean that a vector y is generated according to
Zkn 0.0 and then gets interpreted as k polynomials y;.
We recall some results about sampling an element from a Gaussian distribu-
tion over a lattice given some trapdoor.

Theorem 1 (adapted from [32]). Let A be a vector in Ry** and X be a
matriz in RY*™. Also define the gadget matrix G = [1 [¢¥/™] ... [¢(m~1/m]].
Then for any invertible m € R, there is an algorithm that can sample from the
distribution ka AX + mG]u0 for any o ~ g s (X) > MAH([A AX + mG]))
for anyu € R,.

Lemma 4. Suppose U € RéXk and V € Réxm are polynomial vectors, and
Bu,B,v) are bases of A+(U) and A*+([U V]) respectively such that By,
HB(U’V) | < ov/m/In(2n+ 4). Then, there exists an algorithm SampleD(U,V, B,
u,0), where B is either By or By,vy, that can efficiently sample from the

distribution D[lU V]uo for anyu € R,.

2.4 Hardness Assumptions
We recall two well-studied lattice problems over rings: Ring-SIS and Ring-LWE.

Definition 1 (Ring-SIS,, 4,3 problem). The Ring-SISy, 43 problem is given a

vector A € R;X(m_l) to find a vector S € Ry such that [A1]S = 0 and
IS]I < 8.

Definition 2. The Ring-LWEp distribution outputs pairs (a,b) € Ry X R,
such that b = as + e for a uniformly random a from R, and s, e sampled from
distribution D. The Ring-LWE}, p decisional problem on ring R, with distribu-
tion D is to distinguish whether k pairs (a1, b1), ..., (ax, by) were sampled from
the Ring-LWEp distribution or from the uniform distribution over Rﬁ

There is a polynomial-time reduction from solving the shortest vector prob-
lem over rings to Ring-SIS [28, Theorem 5.1] and a polynomial-time quantum
reduction from solving the shortest vector problem over rings to Ring-LWE with
Gaussian error distribution (cf. [30]). The root Hermite factor § introduced by
Gama and Nguyen [18] is used to estimate the hardness of the lattice problems
for given parameters in the security reductions.

168 C. Boschini et al.

Boschini et al. [8] introduce new hardness assumptions to be able to prove
their schemes secure with or without complexity leveraging. The idea is to state
the assumptions in two forms, selective and adaptive. The schemes are proved
secure assuming the adaptive variants of the assumptions. Then, a reduction
from adaptive to selective is proved using complexity leveraging, and Ring-SIS
and Ring-LWE are reduced to the selective version. Hence, allowing the use of
complexity leveraging it is possible to base the security of the schemes on Ring-
SIS and Ring-LWE, otherwise security is guaranteed under the adaptive version
of the new hardness assumptions (cf. Assumptions1 and 3).

Assumption 1. Consider the following game between an adversary A and a
challenger for fired m € N and distribution D:

1. The challenger outputs a uniformly random C & ’Réxm to A.

2. A sends back m € U.

3. The challenger picks a uniformly random bit b {0,1}. If b = 1, it samples
an error vector E& D™ and s & D, and sends F = (C+mG —E)s™! to A.
Otherwise, it sends a uniform F &R}]X’” to A.

4. A sends a bit ' to the challenger.

The advantage of A in winning the game is |Pr(b =V)—3|. The assumption

states that no PPT A can win the previous game with non-negligible advantage.
Assumption 2 (Selective variant of Assumption 1). Consider the game
of Assumption 1, but with steps 1 and 2 switched, meaning, A outputs m € U
before being given C. The assumption states that no PPT adversary can win this
previous game with non-negligible advantage.

Boschini et al. proved that Assumption?2 is at least as hard as Ring-LWE
with m samples and distribution D. It is possible to reduce Assumption2 to 1
with a complexity leveraging argument by guessing the value of m € U.

Assumption 3. Let ¥ = {(c1,S,¢3) € Cx REPZ™ xRy : S| <N A ez <
C'} for some fizved parameters. Consider the following game between an adver-
sary A and a challenger for fited m € N and distribution D:

1. The challenger chooses a<~R,, CERI*™, and Xi’l)%xqtzt. It sets A =
[al]1] and B = AX + G, where G = [1 [¢¥/™] ... [¢(m=D/m]].

2. The challenger runs A on input [A BC 1] , giing it access to a ran-
dom oracle H : {0,1}* — R, and an oracle Og that on input m €
U and a string o € {0,1}* outputs a small vector [S ; 0] in the coset
L([A B C+mG 1)) + H(w) such that ||S|| < Ng.

3. Algorithm A outputs m € U, & € {0,1}*, ¢; € C, a ring element €3 and a
vector S. Algorithm A wins the game if (¢1,S,¢2) € X, m € U, such that S is
a short vector of the coset L+([A B C 1]) +caH(@)) where C =¢;C —mG,
and (me; !, @) was not queried to the Og oracle.

The assumption states that no PPT algorithm A can win the game with non-
negligible probability.

Floppy-Sized Group Signatures from Lattices 169

Assumption 4 (Selective variant of Assumption 3). Consider the game
of Assumption 3, but where step 1 is preceded with a step where A, on input only
the security parameter X\, outputs the message m € U, and in step 3 outputs
the remaining items &, ¢1,¢3 € C, and S. The assumption states that no PPT
adversary can win this previous game with non-negligible advantage.

Theorem 2 (Hardness of Assumption 4). Let A be a probabilistic algorithm
that breaks Assumption 4 in time t with probability € ». Then there exists a prob-
abilistic algorithm B that either breaks Ring-LWE,, p_ in time t with probability
€A or Ring-SISsym q.p. in time t with probability ep > (ea—erwr)/(2+]C|), where
Bs=N"?+ %ﬁzn2(\/§+ Vi 4 log n)2(2V2K0) 2N 4+ Zn(1 4 v/2 4 log n)2(C"2 +
(1.0504+/n)?), epwr is the probability of breaking the Ring-LWE problem over
Rq in time t, in the Random Oracle Model.

The bound f; is different from the original result, as we choose larger message
and challenge spaces. From complexity leveraging (guessing m in &/ and ¢; in C)
it follows that breaking Assumption4 implies breaking Assumption 3.

2.5 Group Signature

A group signature is a set of algorithms (GPGen, GKGen, UKGen, OKGen, GSign,
GVerify, GOpen) run by a group manager, an opener and users. The group sig-
nature parameters gpar are generated via GPGen(1*) (where \ is the secu-
rity parameter). The group manager and the opener generate their keys run-
ning (gpk, gsk) — GKGen(gpar) and (opk, osk) — OKGen(gpk) respectively.
If a user wants to join, she sends her identity to the group manager and
obtains back her user secret key usk < UKGen(gsk,id). The user can sign
a message M on behalf of the group using her secret key with the algo-
rithm GSign(usk, gpk, opk, M). A signature sig on a message M can be verified
with the algorithm {1,0} «— GVerify(M, sig, gpk, opk). Finally, the opener can
recover the identity of the group member that signed a message M running
id «— GOpen(M, sig, osk). We require the scheme to be correct (honestly gen-
erated signatures satisfy verification and can be opened to the identity of the
signer), traceable (the group manager should be able to link every signature
to the user who produced it) and anonymous (signatures produced by different
users should be indistinguishable).

2.6 One-Time Signature

A One-Time Signature (OTS) scheme for message set M is a triple (OTSGen,
OTSSign, OTSVf), where (sk,vk) <+ OTSGen(1%) is the key generation algo-
rithm, ots « OTSSign(sk, msg) is the signing algorithm and 0/1 «— OTSVf(vk,
msg, ots) is the verification algorithm. Correctness requires that for all security
parameters A € N the verification of a honestly generated signature always out-
puts 1. An OTS is unforgeable if, given sk, vk, no adversary can come up with a
signature on a message msg’ w.r.t. vk after seeing a signature on msg generated

170 C. Boschini et al.

using sk. In particular, the Lamport signature [22] is quantum-secure, thus it
can be used with the relaxed X-protocol.

2.7 Relaxed ZK Proofs

Given two NP-languages L C L defined by the relations R C R respectively,
a relaxed Y-protocol for L,L is a three-rounds two-party protocol between
PPT algorithms (P, V) that satisfies standard completeness and zero-knowledge,
but where extraction is only guaranteed to output a witness w such that
(r,w) € R. A protocol can be made non-interactive using Fiat-Shamir trans-
form [17]. Simulation-soundness of the transform can be ensured (cf. [16]) by a
property called “quasi-unique responses”: it should be impossible for an adver-
sary to create two valid transcripts that differ only in the responses. Applying
the Fiat-Shamir transform to a relaxed X-protocol with quasi-unique responses
results in a relaxed NIZK proof, i.e., a non-interactive protocol that satisfies clas-
sical completeness, unbounded non-interactive zero-knowledge and the following
relaxed definition of simulation soundness:

Definition 3 (Relaxed unbounded simulation soundness). There ezists
a PPT simulator S such that for all PPT adversaries A,

Pr [Vsl(ac*,ﬂ*) =1A2* ¢ LA (2%, 7°)€Q : (z,7%) A517S/2(1>‘)}

is negligible, where Q is the set of tuples (x,) where A made a query So(x) and
obtained response .

It is also possible to obtain relaxed unbounded simulation soundness using
an OTS scheme with the Fiat-Shamir transform. A formal description and full
proof of the construction can be found in the work by Boschini et al. [8].

To instantiate such protocols over lattices, consider the languages (L, L) asso-
ciated with the following relations:

R={((A,U),(S,1)) e RE“™ x R x R x {1} : AS="U,||S|| <N}
R ={((A,U),(8,¢)) € REX™ x RIX* x RI" x C: AS = ¢U, ||S|| < Nz, [|S] < Noo }

where 0 < N < Ny, 0 < N4 and, if the set of the challenges used in the
protocol is C, the set of relaxed challenges is C = {c — ¢’ : ¢,c’ € C}. Finding
a witness (S,c) for an element (A,U) of the language L is hard under the
computational assumption that Ring-SISy is hard. In the relaxed X-protocol
for L, L, the prover P samples a masking vector Y <& D™ and sends T = AY to
the verifier V. Next, V samples a challenge ¢ € C and sends it back to P. The
prover constructs Z = Y + ¢S and, depending on rejection sampling (see [27,
Theorem 4.6]), either aborts or sends it to V. The verifier accepts if AZ—cU =T
and ||Z|| < 1.050v/mn =: N3, | Z||cc < 80 =: N&. The zero-knowledge property
is guaranteed by rejection sampling. A standard deviation ¢ = 127, where T is
a bound on the norm of ¢S obtained from N, guarantees that the prover outputs

Floppy-Sized Group Signatures from Lattices 171

something with probability greater than (1 — —219%)/e (cf. [27, Theorem 4.6]).
Setting Ny = 2Ny = 2.10y/mn and N, = 2N, = 160 allows to prove that this
is a relaxed X-protocol.

The proof-system we introduced can be adapted to prove that a component

. . (25m) . _ (25
s; of S is in a subring Rq by using as challenge space C = Ry~ ’, that

is a subset of R,(JZKM) when K,, > K. and sampling the i-th element of the

)

Km
“masking” vector Y from R,(f . Hence the output vector Z = Sc + Y is such

Km
that z; € Rgf). The verifier has to check also this latter condition before
accepting.

2.8 Relaxed Signatures

Boschini et at. [8] introduced a new lattice-based relaxed signature scheme, i.e.,
a signature (SParGen, SKeyGen, Sign, SVerify) where the verification algorithm is
relaxed to accept signature on messages coming from a set M larger than the
set M of signed messages. The signature is proved unforgeable under a relaxed
notion of unforgeability under chosen-message attacks that includes as a forgery
a signature on a message in M that is the image of a message in M through
some function f that was not signed by the signing oracle. The relaxation in
the definition is necessary in order to combine the signature with the relaxed
X-protocol (see Sect.2.7).

Given that we reduce the unforgeability of the group signature directly to the
hardness of Assumption 1, we do not discuss security of the signature here. We
only remark that we use a different set of messages, namely U = Ré16)7 while the
original lattice instantiation signs messages composed by a small polynomial and
a bit-string. When using it in the group signature, the small polynomial m € U
encodes a user’s identity, but there is no need for the bit string. Therefore, we
substitute the output of the hash of the bit-string with a constant polynomial
u chosen uniformly at random in R, during the key generation and sign only
messages in M = U. The modified scheme is trivially still unforgeable under
Assumption 3 in the Random Oracle Model.

Parameters Generation. The parameters spar are generated by SParGen(1%)
and include (n,q,m, o, 0,7, N, N’ ,C’, C) where: n is a power of 2, ¢ is a prime,
q = 5 mod 8, m determines the gadget vector G in Theorem 1, o; is standard
deviation of the distribution of the trapdoor, o = ql/m%\/ﬁ (v2+y/m+log(n))
is the standard deviation of the Gaussian from which signatures are sampled,
r bounds the norm of the polynomial part of the messages in U = RQG), N =
1.050/n(2m + 2) bounds the norm of a signature output by Sign, N’ > N and
C’" > 1 define the set of valid signatures X, and C is uniformly random matrix
in erlxm.

Key generation. The signer selects a uniformly random matrix A = [a1]
in Ré“ and an element u R, as verification key and a matrix with small

172 C. Boschini et al.

coefficients X & D%thzt as secret signing key. The public verification key is the
vector V=[ABC] =[AAX+GC]| ¢ Ré><(2+2m).

Signing. If M = m ¢ M abort. Otherwise, the signer computes S « SampleD
([A BC+ mG} ,u,0) (see Lemma4) and outputs a signature sig = (1, [S ; O} ,
1). The entry (m, sig) is stored so that if a signature on m is queried twice, the
algorithm outputs always sig.

Verification. Verification of a signature sig = (c1,S,c2) on message M = m
returns 1 if [A Bc,C+mG 1] S = cou, if the message M € M, and if the
signature sig € X' = {(c1,8,¢2) € C X RIP? x Ry : S| < N' A Jleof] < C'}.
Otherwise, it returns 0.

The relaxed signature scheme is f-uf-cma secure w.r.t. the message relaxation
function f(m) = {(mc) : c €C}.

Theorem 3. An algorithm A that breaks the f-uf-cma unforgeability of the
relaxed signature scheme in time t and probability €4 can break the Assump-
tion 3 in time t with probability €4 in the Random Oracle Model.

To prove knowledge of a signature on a message m without revealing m,
Boschini et al. combine the relaxed signature, a relaxed commitment and the
relaxed X-protocol, where the commitment is used to hide the part of the ver-
ification key of the signature that depends on m. Let S = [Sl 1 S95S3; 1] be
a signature on m w.r.t. the public key spk = [A B C]. To hide the part of the
verification equation of the signature that depends on m, Boschini et al. present
the following trick. First, construct F = b~!(C + mG + E) choosing random
E &£ RY™ and b<& Rj. Assuming Assumption 1 is hard or using complexity
leveraging and assuming the hardness of Ring-LWE (cf. Sect. 2.4), we have that
F hides m' then, set Sg to be Sy = [Sl : Sy ; bS3; —ES3]. It is easy to see that
Ss satisfies [A BF 1] S, =u

3 Relaxed Partial Verifiable Encryption

Lyubashevsky and Neven [29] defined a relaxed verifiable encryption as a scheme
to encrypt a witness w of x € L such that decryption of a valid ciphertext is
guaranteed to yield a witness w in the relaxed language such that (z,w) € R.
The straightforward combination with the relaxed signature and commit-
ment scheme of Boschini et al. [8] does not yield a particularly efficient group
signature scheme, however, because the Lyubashevsky-Neven verifiable encryp-
tion scheme encrypts and recovers the full witness. A group signature typically
consists of a verifiable encryption of the user’s identity together with a proof that
the user knows a valid signature on the encrypted identity by the group manager.

! Boschini et al. proved that, for U C Rgm)’ this is actually a relaxed commitment
scheme. We do not need the relaxed binding property, hence we can choose a larger
set of messages (as long as it still guarantees the hiding property).

Floppy-Sized Group Signatures from Lattices 173

The verifiable encryption as defined by Lyubashevsky and Neven would there-
fore encrypt both the user’s identity and the signature on it, which unnecessarily
blows up the size of the verifiable ciphertext. Even when using a commitment
to the user’s identity to separate the proof of knowledge of the signature from
the verifiable encryption, the ciphertext will encrypt the user’s identity as well
as the opening information to the commitment.

We therefore introduce a variant of the Lyubashevsky-Neven relaxed verifi-
able encryption scheme called relaxed partial verifiable encryption that, rather
than decrypting the full witness w, recovers only a function of that witness
g(w) while proving knowledge of the full witness @w. When constructing a group
signature case, we will use a function g that outputs just the user’s identity.

3.1 Definition of Relaxed Partial Verifiable Encryption

Our general definition of relaxed partial verifiable encryption are inspired by the
definition of relaxed verifiable encryption by Lyubashevsky and Neven [29] and
of verifiable encryption by Camenisch and Shoup [11]. Let L be a language with
witness relation R and let L O L be a relaxed language with relaxed relation
RO R Let RCLx W andlet g: W — D be a function.

Given relations R, R and function g, a relaxed partial verifiable encryp-
tion scheme is composed by four algorithms (EKeyGen, Enc, EVerify, Dec). The
key generation algorithm EKeyGen(1}) outputs a pair of keys (epk, esk). The
encryption algorithm Enc(epk,z,w,), where (z,w) € R and £ € {0,1}* is an
encryption label, returns a ciphertext ¢ and a proof 7 = (a, 3,7). Verification
EVerify(epk, z,t, 7,) returns 1 if m shows that ¢ is a valid ciphertext w.r.t. =
and epk with label ¢, and returns 0 otherwise. Finally, the decryption algorithm
Dec(esk, x,t, 7,) returns a value M or a failure symbol L.

Correctness. The scheme is correct if Pr[Dec(esk, z, Enc(epk,z,w,) = g(w)]
= 1 for all keys (epk, esk) « EKeyGen(1*), all (x,w) € R, and all £ € {0, 1}*.

Completeness. The scheme satisfies completeness if Pr[EVerify(epk, Enc(epk, x,
w,f),0) = 1] =1 for all keys (epk, esk) «+ EKeyGen(1*), all (x,w) € R, and
all £ € {0,1}*.

Special soundness. Special soundness implies that a valid proof 7 is a proof of
knowledge of a valid witness @ for the relation R and that decryption of the
ciphertext ¢ returns g(w). More specifically, for all PPT adversaries A there
exists a PPT extractor E such that the following probability is negligible:

(epk, esk) «— EKeyGen(1%),

b:b/::l /\ /B#/B, /\ (x’t7 (a7/8777/3/7’y/)7£) H,A(epk7 BSk)’
Pr (Dec(esk, z,t, () # g(w) : b «— EVerify(epk, z,t, (o, B,7),),
V (z,w) ¢ R) b« EVerify(epk,z,t, (o, 3',7'),£)),

w — E(epk7 68k7x7t7 (a7ﬂ7’775/77/)7£)

Chosen-ciphertext simulatability. There exists a simulator S that outputs
ciphertexts indistinguishable from honestly generated ones, i.e., the following
probability is negligible:

174 C. Boschini et al.

b2{0,1}, (epk, esk) «— EKeyGen(1*),
Prio=10t" : (,x,w,f) — ADeC(E‘Skm-’-")(epk)v _
— 7 (to,mo) < Enc(epk,z,w), (t1,m) < S(epk,z,),

b — ADec(esk,<,<,-,-) (7 t}), 7Tb)

=

where A cannot query its Dec oracle on (z, ty, mp, £).

Observe that our definition of Special Soundness hardwires the use of Fiat-
Shamir in the general construction. It is possible to give a more general definition
of Special Soundness adapting the definition of weak simulation extractability
By Faust et al. [16], but such a definition would be beyond the scope of this

paper.

3.2 Relaxed Partial Verifiable Encryption over Lattices

Let L and L be a language and its relaxed version defined w.r.t. the following
relations

B ((A,U),(m,S,1)) €
ve (R (1) R x (U x Rz x {1})

R — ((AaU)a(m7S7(})) € _
ve (RE () REV) x (U xR xC

: A[rél} =Umod g A S||§N}

) : A[gl} =¢U mod g A |S||<Z\7}

for some sets U,U,C C R, and some integers (1, {2, N, N > 0.

We will construct a relaxed partial verifiable encryption scheme for relations
Rye and Ry, and function g((m,S,¢)) = m/¢ mod ¢. Our scheme is a modified
version of the “multi-shot” chosen-ciphertext secure verifiable encryption scheme
of Lyubashevsky-Neven. The multi-shot scheme involves multiple parallel repeti-
tions of the proof with sub-exponential challenge set sizes, and decryption takes
strictly sub exponential time (as opposed to expected polynomial time for the
one-shot scheme).

Rather than producing one big proof of knowledge of the terms in relation
R, we split it into two proofs, one for each term. The first proof only contains
the ciphertext equations and is repeated multiple times with a sub-exponential
challenge set to enable efficient decryption. The second includes the relation
equation as well as the ciphertext, proving that the encrypted plaintext is derived
from a valid witness. The latter proof uses an exponential-size challenge set, so
that it doesn’t need to be repeated. Let p and g be two public primes with p > 2.

Key Generation. The recipient generates two key pairs for Ring-LWE encryp-
tion [30], but discards the secret key of the second pair. It samples s1,dq, s2,
d2 £ R3 and a i R,, and computes t; = as; + d; mod ¢ and t; = as; +
ds mod g. The public key is epk = (p, g, a, t1,t2), the secret key is esk = s;.

Encryption. Given a witness (m, S, 1) for language member (A, U) in the rela-
tion Rye, the algorithm Enc uses the Naor-Yung technique [33] by encrypting m
twice using standard Ring-LWE encryption under public keys t; and ts. More

Floppy-Sized Group Signatures from Lattices 175

precisely, it samples r, eq, eq, f1, f> & R3 and sets vi = p(ar + e1) mod ¢, wy =
p(tir+1f1)+m mod ¢, vo = p(ar+e2) mod ¢, and wo = p(tor+£f5) + m mod gq.

Then, letting A be the first column of the matrix A = [Al Ag} in relation
R, it constructs a NIZK proof II; using the scheme from Sect.2.7 for the
relation

0 pa p 0 0 0 0] |r Vi
1 pt; O P 0 0 0| |e w1
0 pa O 0 P 0 0| |fi| = [vof, (1)
1 pty O 0 0 p 0VXfz]| ley wo
A1 Ollxl Ol.xl O/Z1><1 Oflxl 0£1><1 _A2 f2 U
S

whereby it uses the challenge set C; = {c € R3 | ||c|1 < 32}.

To enable Lyubashevsky-Neven’s multi-shot decryption technique without
having to repeat the above proof multiple times, the encryptor again uses the
relaxed NIZK proof of Sect. 2.7 to construct a separate proof I, for the relation

m
0Opap00O r Vi
1pt;0p00]| |e; _ W (2)
OpalOpoO| |f; va |’
1pta000p| |e2 Wo

fs

whereby it includes epk, (A, U), (vi, W1, Ve, W2), IT1, ¢ in the Fiat-Shamir hash.
To obtain efficient decryption but keep the soundness error negligible, this proof
is repeated [= 11 times with challenge set Co = Réw). The algorithm outputs
ciphertext (vq,wy,va, wo) and proof (11, IT5).

Verification. The verification algorithm EVerify((p, ¢,a,t1,t2), (A, U), (vq, wy,
vo,Wo, IT1, II5), £) checks that IT; and ITy are valid relaxed NIZK proofs for
the relations of Egs. (1) and (2), including the correct arguments epk, (A, U),
(v1, W1, Vo, Wa), IT1, £ in the Fiat-Shamir hash of 1.

Decryption. The decryption algorithm Dec(si, (A, U), (vi, w1, va, wa), (I,
I1,),¢) first checks that the proofs are valid using the verification algorithm
above, returning | if it is not valid. It then decrypts the cihpertext by apply-
ing the Lyubashevsky-Neven multi-shot decryption on proof ITo = (Y, ¢!,
ZM YWD W ZO) by, for i = 1,...,1, going over all challenges ¢’ € Cy
to try to decrypt (€v,cwi) as a Ring-LWE ciphertext, where ¢ = ¢ — ¢/. Tt
does so by computing m’ = (w3 — vys1)€ mod ¢, checking that |m’||. < ¢/2C
where C' is as defined in Lemma 5, and if so, compute m = m’ mod p and return
m/c mod g; otherwise, it returns L.

Decryption Runtime. Decryption terminates in time at most 226, Indeed, if the
ciphertext is honestly generated the algorithm needs to guess the challenge only
once. On the other hand, for a dishonestly generated ciphertext the probability
that verification succeeds and still decryption fails is negligible. Indeed, if the

176 C. Boschini et al.

adversary could answer only one challenge ¢, when making the random oracle
queries the probability of hitting always ¢ would be 1/(¢ - |Cz|). Hence, a second
challenge exists w.h.p. and decryption requires to guess a challenge ¢’ at most
|Ca| < 226 times.

Remark that the decryption does not recover the full witness: the algorithm
decrypts the ciphertext, but it does not recover the randomness used to generate
it or the vector S. Moreover, differently from Lyubashevsky-Neven construction,

in our case the relation A {rg} = U holds modulo ¢, while in the original scheme
it has to hold modulo p. We show the correctness of the scheme using Lemma 5,
which is a variant of a result by Lyubashevsky and Neven [29, Lemma 3.1]. In
this lemma we show that, for some choice of the parameters, the decryption
always return the same value m/c over the ring R,. This is slightly different
from the original decryption algorithm, as in the original scheme it was enough
for decryption to return the same m/c modulo p.

Lemma 5. Let a R, and t = as + d where s,d & R3. If there exist T, €, f,
m, ¢ such that

p(ar +&) =cv mod ¢ and p(tt+f)+m = cw mod q (3)

and ||p(td+f —&s)+mlo < ¢/2C and ||m| s < p/2C, where C = maxgce ||E]|1
= maXge'eC ||é - élul, then

1. [[(w —vs)c’ mod ql|c < ¢/2C and ||(w — vs)c’ mod ¢ mod p|l < p/2C
2. for any ¢ € C such that ||(w — vs)c’ mod qllc < ¢/2C and ||(w — vs)c’
mod q mod plleo < p/2C we have (w — vs)¢’ mod ¢ mod p/¢’ = m/c.

Proof. The proof is a simple verification of the claims and it is very similar to
the proof of Lemma 3.1 in [29], hence we omit it.

Hence, for decryption to be correct, we must choose parameters that guaran-
tee that the values decrypted from II, using s; for i = 1,2 satisfy ||p(t;d; + f; —
€;s;) + Mo < ¢/2C and ||m;|lc < p/2C, i.e., p, ¢ and n should be such that
1602(2np +p+ 1) < ¢/2C and 1602 < p/2C, where C' < 64 as challenges come
from Réw). We enforce this condition on both ciphertexts to guarantee decryp-
tion to work using either s; or ss. This allows to prove CCA simulatability
following the Naor-Young paradigm [33].

In the next lemma, we prove that with high probability the m/¢ returned by
decryption is equal to the polynomial m’/¢’ returned from an extractor for Ils.
The proof of this lemma consists only of a plain computation of the probability,
and can be found in the full version of the paper.

Lemma 6. Let m and € be the output of the decryption and m’,c’ be the values
extracted from IT,. Then with probability at least 1 — 2735928 over the choice of
the opening key t, m/c = m’/c’ (where parameters are set as in Table 1).

Floppy-Sized Group Signatures from Lattices 177

Finally, for the CCA simulatability the proofs that we use in the scheme
need to be unbounded simulation soundness. Following the same reasoning used
in Lyubashevsky and Neven, we prove that I15 has quasi-unique responses, hence
simulation soundness. Indeed, breaking quasi-uniqueness means finding z # z’
with ¢, norm less than 805 such that Mz = Mz’ mod ¢, where with M we
mean the matrix in 2. Thus, either there is a non-zero tuple (y1,y2) € R, with
Lo norm less than 1604 such that p(ay; +y2) = 0 mod ¢ or py; +y2 = 0 mod gq.
Imposing p > 1602 and 1609p + 1602 < ¢ implies that the second equality is not
possible. Also, setting (3202)? < ¢, we can use a standard probabilistic argument
to show that for all y1, yo of ¢, norm less than 160,

Pracr, [ay1 + py2 = 0 mod ¢] = 2=,

Therefore for almost all a, there will not be a short solution (y1,y2) that satisfies
ay; + py2 = 0. Observe that the same argument works for I7;. Hence imposing
the same inequalities on oy yields simulation soundness also for Iy, thus for the
protocol (I1q, I15).

Theorem 4. If Ring-LWEy(r,) is hard and the relazed NIZK proof system is
unbounded non-interactive zero-knowledge and unbounded simulation soundness,
the scheme (EKeyGen, Enc, EVerify, Dec) is a relaxed partial verifiable encryption
scheme w.r.t. the function g.

4 Group Signature Scheme

The combination of Boschini et al.’s relaxed signature scheme [8] with our relaxed
partial verifiable encryption scheme yields an efficient group signature with
practical parameters (see Sect. 4.2). Although the building blocks are “relaxed”
schemes, the resulting group signature enjoys non-relaxed traceability. Indeed,
the correctness of the verifiable encryption guarantees that when opening a sig-
nature, the recovered identity is in the original set of group members id (and
not in the relaxed one).

4.1 A Lattice-Based Group Signature

Let U = ng) be the set of possible user identities.

Parameters Generation. On input the security parameter A, the algorithm runs
the parameter generator of the signature scheme par « SParGen(1%) and chooses
integer p, ¢, n where p and q are prime and p < ¢. It outputs gpar := (par,p, ¢, n).

Group Manager Key Generation. The group manager generates the keys gsk =
X and gpk = ([A BC 1} ,u) by running SKeyGen and choosing a random ring
element u & R,

178 C. Boschini et al.

Opener Key Generation. The opener runs the key generation algorithm of the
verifiable encryption scheme EKeyGen(1?) and returns the resulting key pair
(opk = epk, osk = esk).

User Key Generation. The group manager generates a signing key user identity
id=melU = ’Réw) by running Sign(gsk, m) to yield (1, [S ; O] ,1) as described
in Sect. 2.8. Recall that S is a short vector so that [A BC+ mG] S =u mod gq.
It then returns usk := S.

Signing Algorithm. The user first generates a key one-time signature key pair
(sk,vk) «— OTSGen(1%). The user then blinds her identity m using the technique
from Sect. 2.8 by choosing random E <& Réxm and b <& R3, and computing F =
b }(C+mG +E). If S = [81 1 So; Sg] with S; € Rg“ and S5,S3 € R;”Xl,
then we have that [A BF 1] [Sl 1Sy ; bS3; —ES3] = u mod ¢. The user can

therefore create a relaxed NIZK proof I for the relation

Ry ={(([ABF1],u),(To,1)) : [ABF1]To=u A |Tol| < No}
Ry ={(([ABF1],u),(To,c)) : [ABF1]To=cun ceC A ||To| <Ny}

where she includes vk in the Fiat-Shamir hash. The parameters follow from
rejection sampling (see Sect.2.7): the noise vector is sampled from a Gaussian
with standard deviation og = 1275, where T} is obtained from Ny as a bound on
the norm of cTy for ¢ € Cy, and Ny = 2.109/1(3 4+ 2m). The challenge space is
set to Cp = {c € R3 : ||c||1 < 32} so that the proof only needs to be repeated
once, as indeed |Co| > 22°6.

Next, from the way F was computed, we have that [GT FT Hm] [m ; —b; ET]
= —CT. Setting Tye = [—b ; ET] the prover can therefore use the verifiable
encryption scheme to encrypt a witness of the languages with relations

([GTEFT L], —CT), (m, Tue, 1)) € (RF T xRy x U x Ry x {1))

Ry =
c [GTF I {Tm} = —CTmod ¢ A [Tuel| < Nee
. ([GTFT1,],~CT), (m, T\, €)) € (R s R x (U x R x Cre)
ve = . [GTETL [Tm C eCT mod g A [Toe]l < N

The user runs the encryption algorithm Enc(opk, z, w, vk) with language member
T = ([GT FT]Im] ,—CT), witness w = (m, [—b ; ET] ,1), and the verification
key vk as the encryption label, to generate a ciphertext ¢ = (vq, w1, vy, Wa)
and proof m = (II,II5). The user then computes the one-time signature
ots — OTSSign(sk, (A,B,F,u, Ily,t,m, M)) and returns the group signature
sig = (F, Iy, t, 7, vk, ots).

Verification Algorithm. The verifier checks the one-time signature by running
OTSVf(vk, (A,B,F,u, Iy, t, 7, M), ots), checks the NIZK proof ITy in the group
signature sig = (F, Iy, t,), making sure that vk is included in the Fiat-Shamir

Floppy-Sized Group Signatures from Lattices 179

hash, and checks the encryption proof by running EVerify(opk, z,t, 7, vk) with
= (|GTFT L,],—CT) and with vk as the encryption label. If all tests succeed
then he outputs 1, else he outputs 0.

Opening Algorithm. The opener first verifies the group signature by running
the GVerify algorithm above. If it is invalid, then the opener returns L, else it
decrypts m <« Dec(esk, z,t, 7, vk) with z as above and returns id = m.

To guarantee the correctness of the scheme, the norm bounds Ny, Ny, and
Ny, should be chosen carefully. First, as observed in Sect. 2.8, a honest T is gener-
ated as T = [Sl S, bS5 —ES?,}, where the vector S = [Sl S, Sg] S RéX(HQm)
is sampled from a Gaussian with standard deviation o. Hence it each of its com-
ponents has norm bounded by 1.0501/n. Moreover, using the bounds in Lemma 2,

it holds ||bSs|| < 8ony/m and || — ES3|| < />~ [|[E;Ss,[|3 < 80ny/m. Hence

we can set the bound Ny to be:

Ny = \/(2 +m)(1.050y/n)? + m(8on)? + m(8an)?.

The value Ny, in Ry, bounds the norm of a vector of polynomials with coefficients
in {0,1} one of which is in R{'”, hence Ny := /256 + n(m? + 1). Finally,
the parameter Ny, bounds the norm of what is returned extracting from the
NIZK proof, hence it is computed from the standard deviation of the Gaussian
distribution used in rejection sampling as explained in Sect.2.7.

Theorem 5 (Traceability). Our group signature scheme is traceable in the
random-oracle model if Assumption 8 holds and the relaxed partial verifiable
encryption scheme of Sect. 3 satisfies special soundness.

Theorem 6 (CCA-Anonymity). Our group signature scheme is CCA-
anonymous in the random-oracle model if Assumption 1 holds, if the NIZK
proof is statistical zero-knowledge and if the relaxed partial verifiable encryption
scheme of Sect. 3 is chosen-ciphertext simulatable.

As stated in Sect.2.4, there are two ways to interpret Assumption3 and
Assumption 1, either as a quite strong interactive assumption, or as implied
through a complexity leveraging argument by the Ring-LWE and the Ring-SIS
assumptions, and by the Ring-LWE,,, p assumption, respectively.

4.2 Practical Parameters and Storage Requirement

In Table1 we give a set of practical parameters for different security require-
ments and all guaranteeing A = 80 bits of security against quantum adversaries.
Following the approach in Boschini et al. [8], we give the possibility to choose
whether to base the security of the scheme on complexity leveraging or not. All
parameters are computed w.r.t. fixed n = 2!', o, = 4 and p a prime such that
log p < 259, The second column contains the maximum value of the Hermite root
factor computed for the Ring-SIS instance in Theorem 2. Given that not only
Assumption 4, but also the hardness of finding a witness for an element of L in

180 C. Boschini et al.

Table 1. Table of parameters for n = 21, o, =4 and p ~ 2°° for 22° users.

Parameters Sizes
Compl. lev. |dg m | q oo o1 o2 gpk(MB) usk(kB) opk(kB) sig(MB)
NO 1.00352 |7 | ~2'15/2.891.10'7 |6.51 - 10%|2.13 - 10* | 0.501 122.95 |88.32 0.91
YES 1.0014 |22 ~2'16 4.325.10'% |9.36 - 10* |2.13 - 10* | 1.396 224.26 |89.1 1.72

Sect. 2.7 is based on that, we decided to use it to have a hardness estimate even
when relying only on the hardness of Assumption3. The only difference with
the other case (and the reason for which J, is different) is that when assuming
complexity leveraging we need to compensate also for the tightness loss of the
reductions in Sect. 2.4, while in the other case it is only necessary to compensate
for the tightness loss in the proofs of Theorems 5 and 6. We recall that the most
efficient scheme prior to ours [23] has signatures over 60 MB and public keys of
4.9 MB for a group size of only 2! users for 80 bits of security. While they still
have to deal with big lattices (dimensions: n = 28, m = 212), their coefficients
are smaller than ours (bounded by ¢ = 2%), and this allow for more efficient
computations.

Acknowledgements. The authors thank Vadim Lyubashevsky for many helpful
discussions and the anonymous reviewers for the useful comments. This work was
supported by the ERC under grant #321310 PERCY) and the SNF under grant
#200021-157080 (Efficient Lattice-Based Cryptographic Protocols).

References

1. Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure
coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000.
LNCS, vol. 1880, pp. 255-270. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-44598-6_16

2. Banaszczyk, W.: New bounds in some transference theorems in the geometry of
numbers. Math. Ann. 296(1), 625-635 (1993)

3. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614-629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_38

4. Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: the case of
dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136—
153. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_11

5. Benhamouda, F., Camenisch, J., Krenn, S., Lyubashevsky, V., Neven, G.: Better
zero-knowledge proofs for lattice encryption and their application to group signa-
tures. In: Sarkar, P., Iwata, T. (eds.) ASTACRYPT 2014. LNCS, vol. 8373, pp.
551-572. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
829

6. Bichsel, P., Camenisch, J., Grof}, T., Shoup, V.: Anonymous credentials on a stan-
dard Java card. In: ACM CCS (2009)

https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/3-540-44598-6_16
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-540-30574-3_11
https://doi.org/10.1007/978-3-662-45611-8_29
https://doi.org/10.1007/978-3-662-45611-8_29

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Floppy-Sized Group Signatures from Lattices 181

Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440-456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_26
Boschini, C., Camenisch, J., Neven, G.: Relaxed lattice-based signatures with short
zero-knowledge proofs. Cryptology ePrint Archive, Report 2017/1123 (2017)
Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM
CCS (2004)

Camenisch, J., Neven, G., Riickert, M.: Fully anonymous attribute tokens from
lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp.
57-75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9_4
Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126-144.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_8

Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78-96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175.5

Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257-265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6_22

Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40-56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4-3

Ducas, L., Lyubashevsky, V., Prest, T.: Efficient identity-based encryption over
NTRU lattices. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 22-41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
45608-8_2

Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the Fiat-Shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60-79. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34931-7_5

Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186-194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12
Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 31-51. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-78967-3_3

Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: ACM STOC (2008)

Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice
assumptions. In: Abe, M. (ed.) ASTACRYPT 2010. LNCS, vol. 6477, pp. 395-412.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_23
Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signa-
tures with logarithmic signature size. In: Sako, K., Sarkar, P. (eds.) ASTACRYPT
2013. LNCS, vol. 8270, pp. 41-61. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-42045-0_3

Lamport, L.: Constructing digital signatures from a one-way function. Technical
report SRI-CSL-98, SRI International Computer Science Laboratory (1979)

https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/978-3-642-32928-9_4
https://doi.org/10.1007/978-3-540-45146-4_8
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-662-45608-8_2
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-540-78967-3_3
https://doi.org/10.1007/978-3-642-17373-8_23
https://doi.org/10.1007/978-3-642-42045-0_3
https://doi.org/10.1007/978-3-642-42045-0_3

182

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

C. Boschini et al.

Libert, B., Ling, S., Nguyen, K., Wang, H.: Zero-knowledge arguments for lattice-
based accumulators: logarithmic-size ring signatures and group signatures without
trapdoors. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol.
9666, pp. 1-31. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49896-5-1

Libert, B., Mouhartem, F., Nguyen, K.: A lattice-based group signature scheme
with message-dependent opening. In: Manulis, M., Sadeghi, A.-R., Schneider, S.
(eds.) ACNS 2016. LNCS, vol. 9696, pp. 137-155. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39555-5_8

Ling, S., Nguyen, K., Wang, H.: Group signatures from lattices: simpler, tighter,
shorter, ring-based. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 427-449.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2_19

Ling, S., Nguyen, K., Wang, H., Xu, Y.: Lattice-based group signatures: achieving
full dynamicity with ease. Cryptology ePrint Archive, Report 2017/353 (2017)
Lyubashevsky, V.. Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738-755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_43

Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision
resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, 1. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 144-155. Springer, Heidelberg (2006). https://doi.org/
10.1007/11787006-13

Lyubashevsky, V., Neven, G.: One-shot verifiable encryption from lattices. In:
Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10210, pp. 293—
323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_11
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1-23.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography.
In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp.
35-54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_3
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700-718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
441

Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: ACM STOC (1990)

Nguyen, P.Q., Zhang, J., Zhang, Z.: Simpler efficient group signatures from lattices.
In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 401-426. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46447-2_18

Riickert, M.: Lattice-based blind signatures. In: Abe, M. (ed.) ASTACRYPT 2010.
LNCS, vol. 6477, pp. 413-430. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8_24

Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13-21. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2_2

Xagawa, K., Tanaka, K.: Zero-knowledge protocols for NTRU: application to iden-
tification and proof of plaintext knowledge. In: Pieprzyk, J., Zhang, F. (eds.)
ProvSec 2009. LNCS, vol. 5848, pp. 198-213. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-04642-1_17

https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-662-49896-5_1
https://doi.org/10.1007/978-3-319-39555-5_8
https://doi.org/10.1007/978-3-319-39555-5_8
https://doi.org/10.1007/978-3-662-46447-2_19
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/11787006_13
https://doi.org/10.1007/978-3-319-56620-7_11
https://doi.org/10.1007/978-3-642-13190-5_1
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-662-46447-2_18
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/978-3-642-17373-8_24
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1007/978-3-642-04642-1_17
https://doi.org/10.1007/978-3-642-04642-1_17

®

Check for
updates

On the Security Notions
for Homomorphic Signatures

Dario Catalano!, Dario Fiore?, and Luca Nizzardo?®)
! Dipartimento di Matematica e Informatica, Universita di Catania, Catania, Italy
catalano@dmi.unict.it
2 IMDEA Software Institute, Madrid, Spain
{dario.fiore,luca.nizzardo}@imdea.org

Abstract. Homomorphic signature schemes allow anyone to perform
computation on signed data in such a way that the correctness of com-
putation’s results is publicly certified. In this work we analyze the secu-
rity notions for this powerful primitive considered in previous work,
with a special focus on adaptive security. Motivated by the complica-
tions of existing security models in the adaptive setting, we consider a
simpler and (at the same time) stronger security definition inspired to
that proposed by Gennaro and Wichs (ASIACRYPT’13) for homomor-
phic MACs. In addition to strength and simplicity, this definition has the
advantage to enable the adoption of homomorphic signatures in dynamic
data outsourcing scenarios, such as delegation of computation on data
streams. Then, since no existing homomorphic signature satisfies this
stronger notion, our main technical contribution are general compilers
which turn a homomorphic signature scheme secure under a weak defi-
nition into one secure under the new stronger notion. Our compilers are
totally generic with respect to the underlying scheme. Moreover, they
preserve three important properties of homomorphic signatures: com-
posability, context-hiding (i.e. signatures on computation’s output do
not reveal information about the input) and efficient verification (i.e.
verifying a signature against a program P can be made faster, in an
amortized, asymptotic sense, than recomputing P from scratch).

1 Introduction

Digital signatures are a fundamental cryptographic primitive for guaranteeing
the authenticity of digital information. In a digital signature scheme, a user
Alice can use her secret key sk to generate a signature o, on a message m, and
a user Bob can use Alice’s public key pk to check the authenticity of (m,o.,).
The standard security notion of digital signatures, unforgeability against chosen
message attacks, says that an attacker who has access to a collection of signatures
on messages of his choice cannot produce a signature on a new message. This
notion essentially means that signatures must be non-malleable in the sense that,
from a signature on m one cannot derive a signature on some m’ # m.

Even if in the most popular applications one wishes such a strong notion of
non-malleability, there are application scenarios where some form of malleability

© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 183-201, 2018.
https://doi.org/10.1007/978-3-319-93387-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_10&domain=pdf

184 D. Catalano et al.

can become very useful, paradoxically even for signature schemes. A notable
example is that of homomorphic signatures, a notion first proposed by Desmedt
[19] and Johnson et al. [26], defined in the context of linear network coding by
Boneh et al. [6] and later properly formalized by Boneh and Freeman [7]. This
is what we study in this work.

Homomorphic Signatures. In homomorphic signatures, a user Alice can
use her secret key sk to generate signatures o1,...,0, on a collection of mes-
sages (mq,...,my) — a so-called dataset. Then the interesting feature of this
primitive is a (publicly computable) Eval algorithm that takes the signatures
o1,...,0, and a program P, and outputs a signature op,, on the message
m=P(m,...,my) as the output of P. It is crucial that op ,, is not a signature
on just m, but on m as output of the program P. The latter observation indeed
makes sure that signatures are not “too malleable”, but they rather have a con-
trolled malleability. This means that a user Bob will use Alice’s public key pk
to check the triple (P, m,op) and get convinced of whether m is the correct
output of P on messages previously signed by Alice.

In addition to this interesting functionality, what makes this primitive attrac-
tive is the following set of features. First, homomorphic signatures must be suc-
cinct, meaning that their size must be significantly smaller than the size of the
input dataset.! Second, Bob can verify computation’s outputs without needing
to know the original dataset, a very appealing feature when considering compu-
tations on very large datasets that could not be stored locally by verifiers. Third,
homomorphic signatures are composable, in the sense that signatures obtained
from Eval can be fed as inputs to new computations. Using composability, one
can, for example, distribute different subtasks to several untrusted workers, ask
each of them to produce a proof of its local task, and use these proofs to create
another unique proof for the final job (as in the MapReduce approach). All these
features make homomorphic signatures an interesting candidate to be used for
securely delegating computation on previously outsourced data.

If the functionality of homomorphic signatures can be explained as above,
defining the security notion of this primitive is a more delicate task. The fol-
lowing paragraphs provide an explanation of the security notions and then give
an overview of our results. We warn the reader that the explanations in the
introduction intentionally hide some details of the model for ease of exposition.
A detailed formalization appears in Sect. 2.

Security of Homomorphic Signatures. Properly defining security for homo-
morphic signatures is tricky. Clearly, an homomorphic signature cannot meet the
usual unforgeability requirement [24] as the primitive does allow the adversary
to come up (honestly) with new signatures. The first satisfactory security defi-
nition was proposed by Boneh and Freeman in [7]. Intuitively, a homomorphic

! Without the succinctness requirement homomorphic signatures are trivial to realize
as one can simply set o = (P, (m1,01), ..., (me, o¢)).

On the Security Notions for Homomorphic Signatures 185

signature is secure if an adversary who knows the public key can only come up
with signatures that are either obtained from the legitimate signer Alice, or they
are obtained by running Eval on the signatures obtained by Alice. In other words,
the adversary can only do what is in the scope of the public evaluation algo-
rithm. Slightly more in detail, this new unforgeability game can be explained as
follows. During a training phase the adversary A is allowed to see the signatures
of messages belonging to different datasets. The adversary then wins the game if
she can produce either (1) a signature on a message m belonging to some previ-
ously unseen dataset (this is called a Type 1 forgery), or (2) for some previously
seen dataset A = {mq,...,m,}, she manages to produce a triplet (P, o, m),
such that o verifies correctly but m # P(mq,...,my,) (this is called a Type 2
forgery). Again explained in words, this definition means that the adversary can
cheat either by claiming an output on a dataset that she never saw/queried, or
by claiming an incorrect output of a given program P, executed on a collection
of messages for which she saw signatures.

A noteworthy caveat of the Boneh and Freeman [7] definition is the require-
ment that the adversary submits all the messages belonging to each queried
dataset. Namely, for each queried dataset A, A has to ask ezactly n signing
queries.? In this work, because of this limitation, we call this notion semi-adaptive
security.’

To overcome this limitation, Freeman [21] later proposed a stronger notion
where the adversary is allowed to adaptively query messages one by one, and
even to sprinkle queries from different datasets. In this work, because of its
increased adaptivity, we call the notion in [21] adaptive security.

The Shortcomings of Adaptive Security. Adaptive security, while very
natural, has a dark side. Loosening the query-all requirement implies that the
adversary might provide a forgery (P,o,m) that corresponds to a previously
seen dataset A, but for which A did not ask signing queries on all the inputs
of P. For instance, A might pretend to have a signature on m # P(mi, mso)
without having ever made a query on ms. The issue in this case is that it is not
even possible to define what is the correct output of P in order to say whether
the adversary has cheated (i.e., if m is a correct output or not). To deal with this
issue, Freeman proposed a notion of “well-defined program” which characterizes
when the output of P can be defined in spite of missing inputs. The idea is
simple and intuitively says that a program is well defined if the missing inputs
do not change its outcome (e.g., P(myq,-) is constant). Freeman’s definition then
considered a forgery also one that passes verification for a P not well-defined,
and called such a forgery Type 3.

Type 3 forgeries are however nasty animals. Not only they are very hard to
work with (as the security definition turns complicated), but they also make

2 We remark that the original Boneh-Freeman definition imposes the even stronger
restriction that these n messages are queried all at once.

3 We stress that semi-adaptive security does not limit the way the adversary is allowed
to choose its signing queries. It only restricts the number of signing queries permitted.

186 D. Catalano et al.

the outcome of the security experiment not efficiently computable. In fact, when
considering general functions it may not be possible to check the well-definedness
of P in polynomial time. This can be solved when P is a linear [21] or a low
degree polynomial [9,17], but the issue remains for the more general case, e.g.,
polynomial size circuits. In particular, this issue can generate troubles when
proving the security of homomorphic signatures as well as when using them in
larger protocols (as simply testing whether an adversary returned a forgery may
not be doable in polynomial time).

1.1 Owur Contribution

The state of the art of security notions for homomorphic signatures, as discussed
above, seems quite unsatisfactory. Having expressive, yet easy to use, definitions
is indeed a fundamental step towards a better understanding of cryptographic
primitives.

A Stronger and Simpler Security Notion. To address the issues of adaptive
security, we consider a new security notion that is both simpler and stronger than
the one in [21]. This notion, that we call strong adaptive security, is the public key
version of the one proposed by Gennaro and Wichs [23] for homomorphic message
authenticators (the secret key equivalent of homomorphic signatures).* Strong
adaptive security deals with the case of programs with missing inputs in a simple
way: if the triplet (P, m, o) returned by the adversary verifies correctly and some
inputs of P were not queried during the experiment, then it is considered a
forgery (we call it a Type 3 Strong forgery).

Compared to previous notions, strong adaptive security has several advan-
tages. First, the winning condition of the experiment is efficiently computable,
thus avoiding the issues that may arise when proving and using homomorphic
signatures. Second, the new forgery definition is arguably much simpler to state
and work with. Finally, being a strengthening of adaptive security, homomor-
phic signature schemes that are strongly adaptive secure can be used in more
application scenarios as discussed before.

Realizing Strong Adaptive Security, Generically. If we aim for strong
adaptive security to be the “right” strong notion to use for homomorphic signa-
tures, then we face the problem that virtually all existing schemes are not secure
under this strong notion. This is the case for those schemes that support linear
or low-degree polynomials and were proven secure under the adaptive notion of
[21], as well as for the recently proposed leveled homomorphic scheme for cir-
cuits [25] which is only semi-adaptive secure. Notably, all these constructions
break down in the new security experiment as they do not tolerate adversaries
that issue Type 3 Strong forgeries. The only scheme which stands security in

4 With some adaptations to deal with multiple datasets which was not considered in
[23].

On the Security Notions for Homomorphic Signatures 187

this stronger model is a recent proposal of Elkhiyaoui et al. [20] which supports
constant-degree polynomials and relies on multilinear maps in the random oracle
model. To remedy this situation, our main contribution is to show that strong
adaptive security can be easily achieved without additional assumptions and in
the standard model. Specifically, our main result is a generic compiler that, start-
ing from an homomorphic signature scheme X' satisfying semi-adaptive security,
converts X' into a strongly adaptive secure scheme that supports the same class
of functions.

The compiler uses, as additional building block, a semi-adaptive secure sig-
nature scheme Yor that supports OR operations over Zsy. Clearly, if X sup-
ports arbitrary boolean circuits, then Yor can be instantiated using X itself.
In such a case, our result is thus providing a transformation that “bootstraps”
semi-adaptive security to strong adaptive security. If, on the other hand, Yog
cannot be instantiated using Y, our result still provides a way to get strong
adaptive security, under the additional assumption that semi-adaptive secure
OR-homomorphic signatures exist. Nevertheless, since very few concrete exam-
ples of OR-homomorphic signatures are known (essentially, only one [25]), even
if we think that this is not a limitation by itself, we asked whether a similar result
could be obtained out of some more widely studied primitive. Along this direc-
tion, our second result is another compiler that combines a semi-adaptive secure
scheme Y’ together with a semi-adaptive secure linearly-homomorphic signature
2n that works for messages over a large ring, say Zj,. This combination yields
a homomorphic signature scheme that is strongly adaptive secure and supports
the same class of functions supported by X. A limitation of this second trans-
formation is that it applies only to schemes that are leveled homomorphic (i.e.,
for circuits of bounded depth). As an interesting feature, however, this result
shows that strong adaptive security can be obtained from linearly-homomorphic
schemes, a class of constructions for which many constructions are known (most
of which are also way more efficient in practice than [25]).

Both our transformations hold in the standard model, and they preserve
three properties of homomorphic signatures: composability, context-hiding and
efficient-verification (so, security can be upgraded without penalties). Context
hiding deals with privacy and informally says that signatures on computation’s
outputs do not reveal information on the inputs. The latter instead fully enables
the use of homomorphic signatures for verifiable delegation of computation, by
requiring that verifying a signature for a program P is asymptotically faster (in
an amortized, offline-online sense) than recomputing P from scratch (for the
formal definitions of both context hiding and efficient verification we refer to
[14]). We point out that our compilers are completely generic with respect to
the semi adaptive secure scheme. This means, for instance, that when applied to
the recent (leveled) fully homomorphic solution of [25] they lead to homomorphic
signature schemes for general circuits achieving strong adaptive security.

On the Importance of Strong Adaptive Security. As an important appli-
cation of (strong) adaptive secure homomorphic signatures, we mention certified

188 D. Catalano et al.

computation on streaming data. Consider a scenario where a user Alice out-
sources a stream of data mq,mo,... to an untrusted Cloud, so that the Cloud
can compute a program P on the current snapshot (mq,...,m;) and post the
result publicly (e.g., on a third party website). Using homomorphic signatures,
Alice can sign each element of the data stream, while the Cloud can compute a
homomorphic signature op ,, on every computed result y; = P(mq,...,m;) and
post (yi, op,y,). This way, anyone with the only knowledge of Alice’s public key
is able to check the results validity. Notably, the Cloud can produce the certified
results in a completely non-interactive fashion, and no communication between
Alice and the verifiers is needed (except, of course, for sending the public key).
In such a scenario, where datasets grow dynamically and one performs compu-
tations on their current version, (strong) adaptive security is fundamental as it
prevents the cloud from claiming to have results computed on dataset elements
that it did not receive (yet). This is particularly relevant in scenarios where there
is no communication between the signer and the verifiers, who may not be aware
of the current status of the outsourced stream. Furthermore, strong adaptive
security is important in the case of very large, potentially unbounded, datasets
(as in the streaming case) as one cannot assume that the adversary queries
the whole dataset. This actually shows an inherent limitation of semi-adaptive
security, which cannot cope with datasets of arbitrarily large, unbounded, size.
Indeed, to fit the requirements of the definition, adversaries would be required
to ask signing queries on the whole dataset. However, if datasets are unbounded
either the notion of whole dataset does not exist, or it can be approximated by
configuring the scheme to work on a dataset of exponential size, which could not
be queried in full by a polynomially bounded adversary.

As a final note, we remark that, in settings where the messages my,...,m;
are signed sequentially, one at a time, it might be tempting to address the limita-
tions of semi-adaptive security via (standard) signatures as follows. One simply
includes a signature of the largest index ¢ signed so far. When verifying an homo-
morphic signature for P(myq, ..., my), where k is the largest index touched by P,
one also requires a (standard) signature on k. This solution has the drawback of
requiring an ordering of indexes. More seriously, it only works in contexts where
messages are signed in index-increasing order. Our solution, on the other hand,
encompasses the more general case where messages are signed in completely
arbitrary order (and without imposing additional constraints on the underlying
indexes).

Other Related Work. The notion of homomorphic signature was (informally)
suggested by Desmedt [19] and later more formally introduced by Johnson et al.
[26]. The special case of linearly homomorphic signatures was first considered
by Boneh et al. [6] as a key tool to prevent pollution attacks in network coding
routing mechanisms. Following this work, several papers further studied this
primitive both in the random oracle [7,8,11,22], and in the standard model
[3-5,13,15,16,21]. In the symmetric setting realizations of linearly homomorphic
MACs have been proposed by Agrawal and Boneh in [1].

On the Security Notions for Homomorphic Signatures 189

Several recent works also considered the question of constructing homomor-
phic authenticators (i.e., signatures and/or MACs) supporting more expressive
functionalities. Boneh and Freeman in [7] proposed an homomorphic signature
scheme for constant degree polynomials, in the random oracle model. Gennaro
and Wichs [23] presented a construction of fully homomorphic MACs based on
fully homomorphic encryption in a restricted adversarial model where no verifi-
cation queries are allowed. Catalano and Fiore [9] proposed a much more efficient
homomorphic MAC solution that, while capturing a less expressive class of func-
tionalities (i.e. arithmetic circuits of polynomially bounded degree), allows for
verification queries. This latter result was further generalized in [10]. All these
constructions of homomorphic MACs achieve adaptive security.

In the asymmetric setting, Catalano, Fiore and Warinschi [17] proposed a
homomorphic signature that achieves adaptive security in the standard model,
works for constant degree polynomials and is based on multilinear maps. More-
over, Gorbunov, Vaikuntanathan and Wichs [25] recently proposed the first
homomorphic signature construction that can handle boolean circuits of bounded
polynomial depth; their scheme is secure in the semi-adaptive model, and is based
on standard lattices.

Finally, we notice that Ahn et al. [2] and Chase et al. [18] worked on malleable
signatures. In particular, [18] considered a problem similar to the one addressed
in this work, i.e., elaborating a definition that allows one to establish, in an
efficient way, when the signature produced by the adversary is a valid forgery.
They deal with this problem by formalizing the idea that the adversary “must
know” the function and the input that were used to obtain the forgery. To
formalize this idea, their definition asks for the existence of a black-box extractor
that must extract this information from what is in the view of the game and
the output of the adversary. Unfortunately, this type of definition is impossible
to achieve when one considers the case of succinct homomorphic signatures for
n-ary functions, as we do in our paper. The reason is simply that the extractor
should extract an amount of information (such as the function input) that is
much larger than what is in its input.

1.2 An Overview of Our Compiler

To obtain strongly-adaptive secure homomorphic signatures from semi-adaptive
secure ones, we propose a compiler that takes a semi-adaptive secure scheme
Y} and upgrades its security with the help of an additional building block: an
homomorphic signature scheme Yor that supports OR operations over Zs. The
basic idea of our compiler is to use Yor to additionally sign a bit ‘0’ for every
dataset input. The homomorphic properties of this scheme then guarantee that
the resulting bit remains 0 if and only if one properly operates on ‘0’ bits. This
can be achieved either directly, by employing an or-homomorphic scheme, or
indirectly, via an homomorphic signature for additions (over a sufficiently large
ring Z,). This latter construction is more efficient, but it comes with restrictions.
Indeed, to avoid false positives (i.e., invalid signatures that are interpreted as

190 D. Catalano et al.

correct ones), p should be large, i.e., larger than c¢?, where c is the (constant)
fan-in and d the maximum depth of the supported circuits.

More in detail, the compiler works as follows. For every dataset input m, in
addition to signing m using the scheme ', we also sign the bit ‘0’ using Yog.
So, every signature now consists of a pair (o,,,0,), where o, is a signature
with the scheme Y on some message m, and o} is a signature of a bit b with
the scheme Yogr. Next, at every gate g we compute g homomorphically on the
om’s components, and we compute OR homomorphically on the o,’s. Finally,
signature verification consists into the usual verification of o,, (for a program P),
plus checking that o}, verifies for 0 for a computation that is simply an OR of all
the dataset input bits. The reason why this makes the scheme resistant to strong
Type-3 forgeries is that when the adversary does not ask all the dataset inputs
(and thus misses a signature of ‘0’ on the missing inputs) it is forced to create
a forgery for the o, component. The latter must verify for ‘0’ by construction.
However, one of the missing bits could be set to be ‘1’ (notice indeed that the
adversary does not see it), thus making the correct output of the OR computation
‘1’. Hence the signature returned by the adversary must verify for an incorrect
output, i.e., it is a forgery for Yog.

Notation. We denote with A € N a security parameter. A probabilistic polyno-
mial time (PPT) algorithm A is a randomized algorithm for which there exists a
polynomial p(-) such that for every input z the running time of A(z) is bounded
by p(Jz|). We say that a function € : N — R* is negligible if for every positive
polynomial p(A) there exists A9 € N such that for all A > Ag: €(A) < 1/p(N). If
S is a set, z < S denotes the process of selecting = uniformly at random in S.
If A is a probabilistic algorithm, y <~ A(-) denotes the process of running A on
some appropriate input and assigning its output to y. For a positive integer n,
we denote by [n] the set {1,...,n}.

2 Homomorphic Signatures

In this section we recall the definition of homomorphic signatures. This definition
extends the one by Freeman in [21] in order to work with the general notion of
labeled programs [23].

Labeled Programs [23]. A labeled program P is a tuple (f,71,...,7,) such
that f: M™ — M is a function of n variables (e.g., a circuit) and 7; € {0,1}*
is a label of the ¢-th input of f. Labeled programs can be composed as follows:
given P1,...,P; and a function g : M* — M, the composed program P* is the
one obtained by evaluating g on the outputs of Pi,..., P, and it is denoted
as P* = g(P1,...,P:). The labeled inputs of P* are all the distinct labeled
inputs of Py,...,P; (all the inputs with the same label are grouped together
and considered as a unique input of P*).

On the Security Notions for Homomorphic Signatures 191

Let fiq : M — M be the identity function and 7 € {0,1}* be any label. We
refer to Z, = (f;q,7) as the identity program with label 7. Note that a program
P =(f,71, - ,7n) can be expressed as the composition of n identity programs

P = f(Ina"' 7:[7'")'

Definition 1 (Homomorphic Signature). A homomorphic signature scheme
HSig consists of a tuple of PPT algorithms (KeyGen,Sign, Ver, Eval) with the
following syntax:

KeyGen(1*, L) the key generation algorithm takes as input a security parameter
A, a description of the label space L (which fixes the mazimum data set size
N), and outputs a public key vk and a secret key sk. The public key vk contains
a description of the message space M and the set F of admissible functions.

Sign(sk, A, 7,m) the signing algorithm takes as input a secret key sk, a data set
identifier A € {0,1}*, a label T € L, a message m € M, and it outputs a
stgnature o.

Eval(vk, f,o1,...,04,) the evaluation algorithm takes as input a public key vk, a
function f € F and a tuple of signatures {o;}7, (assuming that f takes n
inputs). It outputs a new signature o.

Ver(vk, P, A, m, o) the verification algorithm takes as input a public key vk, a
labeled program P = (f,71,...,7n) with f € F, a dataset identifier A, a
message m € M, and a signature o. It outputs either 0 (reject) or 1 (accept).

A homomorphic signature scheme is required to satisfy the properties of authen-
tication correctness, evaluation correctness and succinctness that we describe
below. The security property is discussed slightly later in Sect. 2.1.

Authentication Correctness. Intuitively, a homomorphic signature scheme
has authentication correctness if the signature generated by Sign(sk, A, 7, m)
verifies correctly for m as the output of the identity program 7. on a dataset with
identifier A. More formally, a scheme HSig satisfies the authentication correctness
property if for a given label space L, all key pairs (sk,vk) <+ KeyGen(1*, £), any
label 7 € £, dataset identifier A € {0,1}*, and any signature o < Sign(sk, A, ,
m), Ver(vk,Z., A, m, o) outputs 1 with all but negligible probability.

Evaluation Correctness. Intuitively, this property says that running the

evaluation algorithm on signatures (o1,...,0;) such that each o; verifies for
m; as the output of a labeled program P; and a dataset with identifier A,
produces a signature o which verifies for g(my,...,m;) as the output of the

composed program g(P1,...,P:) and same dataset A. More formally, fix a
key pair (vk,sk) & KeyGen(1*, £), a function g : M! — M, and any set of
program/message/signature triples {(P;, m;, 0;)}!_; such that Ver(vk, P;, A, m;,
;) =1.Im* =g(mq,...,my), P* =g(P1,...,P:), and c* = Eval(vk, g,01,...,
ot), then Ver(vk, P*, A;m* c*) = 1 holds with all but negligible probability.

192 D. Catalano et al.

Succinctness. A homomorphic signature scheme is said to be succinct if, for a
fixed security parameter A, the size of signatures depends at most logarithmically
on the size of the input dataset. More formally, HSig satisfies succinctness if
there exists a polynomial p(\) such that for all (vk,sk) < KeyGen(1*, £), all
(ma,...,my) € Mt all (11,...,7) € LY, any A € {0,1}*, and all functions f €
F,ifo; & Sign(sk, A, 7;,m;) and o«Eval(vk, f,01,...,0¢), then |o| < p(A)-logt.

2.1 Security

At an intuitive level, a homomorphic signature is secure if an adversary, without
knowledge of the secret key, can only come up with signatures that it obtained
from the signer, or signatures that are obtained by running the Eval algorithm on
signatures obtained from the legitimate signer. Formalizing this intuition turns
out to be tricky and leaves space to different possibilities.

In what follows we present three different security notions for homomorphic
signatures that we call semi-adaptive, adaptive, and strong adaptive, respectively.
These notions share the same security experiment between an adversary A and
a challenger, and the only difference lies in what is considered a forgery. The
security experiment, denoted Exp%HSig()\), proceeds as described below:

Key Generation. The challenger runs (vk,sk) & KeyGen(1*, £) and gives vk
to A.

Signing Queries. A can adaptively submit queries of the form (A, 7, m), where
A is a data set identifier, 7 € £, and m € M. The challenger proceeds as
follows:

— if (A, 7,m) is the first query with the data set identifier A, the challenger
initializes an empty list Ta = () for A.

— If Th does not already contain a tuple (7,-) (i.e., A never asked for a
query (A, 7,-)), the challenger computes o & Sign(sk, A, 7,m), returns o
to A and updates the list Ta « Ta U (7,m).

— If (1,m) € Ta (i.e., the adversary had already queried the tuple (A, 7,m)),
the challenger replies with the same signature generated before.

— If Th contains a tuple (7,m') for some message m’ # m, then the chal-
lenger ignores the query. Note that this means that a tuple (A, 7,-) can
be queried only once.

Forgery. The previous stage is executed until the adversary A outputs a tuple
(P*, A*,; m*,0*). The experiments outputs 1 if the tuple returned by A is a
forgery, and 0 otherwise.

To complete the description of the experiment, it remains to define when
a tuple (P*, A* m*, 0*) is considered a forgery. We give below three different
forgery definitions; each of them yields a corresponding security notion for the
homomorphic signature scheme.

On the Security Notions for Homomorphic Signatures 193

Semi-adaptive Secure Homomorphic Signatures. Informally speaking, in
the semi-adaptive security game a forgery is one where either (1) the dataset
A* is “new” (i.e., no signing query (A*, -, -) was ever made during the game),
or (2) the claimed output m* of P* is not the correct one. The crucial aspect of
this definition is that to identify what is a correct output, one assumes that the
adversary has fully specified the inputs of P*, namely A has asked for signatures
on (A*, 77, m;), for all i = 1 to n. More formally,

v g

Definition 2 (Semi-adaptive Security). We define Expsjwjg?;'w()\) as the
security experiment which proceeds as Exp%HSIg(A) with the addition that the
tuple (P* = (f*,75,...,75), A*,m*,0*) returned by the adversary A is con-
sidered a forgery if Ver(vk, P*, A* m* o*) = 1 and either one of the following
conditions hold:

Type 1: The list Ta~ has not been initialised during the game.
Type 2: For alli € [n], 3(1;,m;) € Tar and m* # f*(ma,...,my).

Let Advﬁm;\;’UF(}\) = Pr[EXpﬁfﬂ‘S/?gd‘UF()\) = 1] be the advantage of A against
the semi-adaptive security of scheme HSig. We say that a homomorphic signature
scheme HSig is semi-adaptive secure (or simply secure) if for every PPT adver-
sary A there exists a negligible function e(X\) such that AdvfjfﬂéiA;'UF()\) < e(N).

We stress that in the above security experiment the adversary A is restricted
to produce Type 2 forgeries where all the inputs of the labeled program have
been queried during the experiment. This notion works well for applications
where the dataset is signed in one shot (as in the earlier proposals of homomor-
phic signatures [7]), or where one computes on the signed data only after the
whole dataset has been filled up. In contrast, in those applications where the
dataset is signed incrementally and one performs computations in between (e.g.,
in streaming applications), semi-adaptive security falls short of providing good
guarantees. The issue is that in such a dynamic setting the adversary may claim
a forgery with a labeled program containing a label 7% that was not queried
during the game. In this case, the input of P* is no longer specified and defining
whether the adversary’s output is a forgery is not captured by Definition 2. From
the literature, we note that the schemes in [6,7,22,25] are proven under a weaker
version of semi-adaptive security where the messages of every dataset have to
be queried all at once.?

Adaptive Secure Homomorphic Signatures. The issue of adversaries who
claim programs in which some of the inputs are missing in the forgery stage
was recognized earlier on by Freeman [21]. To deal with this issue, he proposed
a notion of “well-defined programs” which characterizes when the output of a
program can be defined in spite of missing inputs. Intuitively, the idea is that a
program is well-defined if the missing inputs do not change its outcome.

5 Actually, the authors of [25] mention that the proof of their scheme can be modified
to hold under a definition with adaptive queries to data items, corresponding to the
semi-adaptive security presented in this paper.

194 D. Catalano et al.

Definition 3 (Well-Defined Labeled Program [21]). A labeled program
P* = (f* 75, ...,7)) is well-defined with respect to a list T = {(7;, m;)}ier
if one of the two following cases holds:

-Vi=1,...,n:(rf,m;) €T.

- 3j€n] st (15,-) ¢ T, and for all possible choices of m; € M such that
(15,°) ¢ T f*(m},...,m}) is the same, where m; =m; for alli s.t. (1;,m;) €
T and m, = m; otherwise.

With the notion of well-defined programs, adaptive security can be defined
as follows.

Definition 4 (Adaptive Security [21]). We define Expﬁcfgusfg()\) as the secu-
rity experiment which proceeds as Expﬁ{HSig()\) with the addition that the tuple
(P* = (f*,1f,...,7r), A%, m* o) returned by the adversary A is considered a
forgery if Ver(vk, P*, A*,m*, 6*) = 1 and either one of the following conditions
hold:

Type 1: The list Ta~ has not been initialized during the game.

Type 2: P* is well-defined with respect to Tax, and m* # f*(mf,...,m)
where m, = m; for all i s.t. (1;,m;) € Ta» and m; = m (for some arbi-
trary m € M), otherwise.

Type 3: P* is not well-defined with respect to Tax.

Let Advﬁcf;i%fg()\) = Pr[Expﬁ‘ngng()\) = 1] be the advantage of A against the
adaptive security of scheme HSig. We say that a homomorphic signature scheme

HSig is adaptive secure if for every PPT adversary A there exists a negligible
function €(\) such that Advﬁ‘f,’_%i:g(/\) <e(N).

Comparing the above definition of adaptive security with the semi-adaptive
definition presented earlier, we note the following: Type 1 forgeries are identical
in both definitions. Type 2 forgeries are similar: intuitively, they both capture
the case when the adversary cheats on the result of P*, except that Definition 4
addresses the case of missing inputs by defining what is, in this case, a correct
output (using the notion of well-defined program). Finally, Type 3 forgeries are
introduced in Definition 4 to address the remaining case in which P* may have
different outputs, yet the forgery verifies correctly.

From the literature, the schemes in [3,11,13,15-17,21] are proven under the
adaptive security notion presented above.

Strongly Adaptive Secure Homomorphic Signatures. The good of the
adaptive definition given above is that it addresses the issue of labeled programs
with unspecified inputs by modeling when an adversary is cheating. The model-
ing of Definition 4 however comes at the price of a rather cumbersome security
definition. Well-defined programs are certainly not the most intuitive notion to
work with. In addition, besides simplicity, the main issue with the above notion
is that deciding whether the tuple returned by the adversary is a forgery may

On the Security Notions for Homomorphic Signatures 195

not be doable in polynomial time. Indeed, making this test would require to exe-
cute f* on all possible values of the missing inputs (that may be exponentially
many). In the case when admissible functions are low-degree arithmetic circuits
over a large field, it has been shown that well-defined programs can be tested
probabilistically, and that Type 3 forgeries can be reduced to Type 2 ones [10].
However, for general circuits the inefficient test issue remains and can generate
troubles when proving the security of homomorphic signature schemes as well
as when using them in larger protocols (as simply testing whether an adversary
returned a forgery — wins — may not be doable in polynomial time).

To address this issue, in what follows we consider a stronger and much simpler
security definition. This notion is obtained by extending the notion of semi-
adaptive security (Definition 2) with a very simple notion of Type 3 forgeries.
The latter are just forgeries where the labeled program contains a “new” label.
The formal definition follows.

Definition 5 (Strong Adaptive Security). We define Exp it A4YF(\) as

A, HSig
the security experiment which proceeds as Exp%HSig(x\) except that the tuple
(P* := (f*,7f,...,7}), A%, m* 0*) returned by the adversary A is considered

a forgery if Ver(vk, P%.,m*,0*) = 1 and either one of the following conditions
hold:

Type 1: The list Ta~ has not been initialized during the game.
Type 2: For alli € [n], 3(1;,m;) € Tar and m* # f*(ma,...,my).
Type 3 Strong: there exists j € [n] such that (1},-) ¢ Ta~.

Let Advji%"sgi?d'UF()\) = Pr[ExpiiiinsgiéAd'UF()\) = 1] be the advantage of A
against the strong adaptive security of scheme HSig. We say that a homomorphic
signature scheme HSig is strongly adaptive secure if for every PPT adversary A
there exists a negligible function e(\) such that Advjr‘f_lné'gAd'UF()\) < e(N).

The security notion of Definition 5 now allows to detect forgeries in polyno-
mial time, and is without doubt much simpler than Definition 4. Basically, this
notion is the public-key equivalent of the security notion proposed by Gennaro
and Wichs [23] for fully-homomorphic MACs (with some cosmetic changes due
to the handling of multiple datasets).

Relation Between Security Notions. We note that the three security def-

initions presented in this Section are increasingly strong. Definition4 is strictly
stronger than Definition 2: while all forgeries in Expfi?f_i‘s/?;'UF(/\) are also forg-

eries in Exvaéff[_,USFig()\), the converse is not true as any forgery in Expﬁ{fhusfg()\)
where the labeled program P* contains an unqueried label is not considered a
forgery in Expfﬁ?f_;'s’?;'UF()\).

Definition 5 is strictly stronger than Definition 4. In one direction, any Type
1 and Type 3 forgery in Expﬁ‘fh%fg(/\) yields, respectively, a Type 1 and a Type
3 Strong forgery in Expit%"sgi?d'w()\), and a Type 2 forgery in Expﬁ‘fhusfg()\)

becomes either a Type 2 forgery or a Type 3 Strong forgery in Expii%"sgngd'UF()\)

196 D. Catalano et al.

In the other direction, there exist forgeries in experiment Expjr’i,"sgi'gAd'UF(/\) that

are not considered so in Expﬁd’[_,us'i:g()\). We show this by considering the fol-
lowing adversary A. A asks signing queries (A, 11, m1), (4,72, m3) and obtains
signatures o1,09; it computes o*<—Eval(vk, x,01,09), and outputs (P* :=
(f,71,72,73), A,m1 - m3), where f is the function f(z,y,2) = z(y + 2) — 22.°
As one can see, the output of A is a Type 3 Strong forgery, since 73 is a
label which has never been queried, while it is not a forgery in Expﬁ(f;_,usfg()\),
since P* := (f,11,72,73) is well-defined with respect to the set of queries
Ta ={(71,m1), (12, m2)}, and my - my is the correct output.

In addition to the fact that the security notions are strictly separated, we
also note that by using a counterexample such as the one above it is possible to
show that previously proposed homomorphic signatures (e.g., [7,17,25] are not
strong adaptive secure.

3 A Generic Transformation from Semi-adaptive
to Strong Adaptive Security

In this Section we show a technique that allows one to turn a semi-adaptive
unforgeable homomorphic signature into one that satisfies strong adaptive secu-
rity. Specifically, our main result is stated in the following theorem:

Theorem 1. If X is a semi-adaptive unforgeable fully (resp. leveled) homomor-
phic signature scheme for boolean circuits, then there exists a strong adaptive
unforgeable homomorphic signature scheme X that supports the same class of
functions. Furthermore, if X satisfies context-hiding (resp. efficient verification,
composability) so does 58

The core of our result is a general transformation which shows how to combine
a semi-adaptive secure scheme X' together with a semi-adaptive secure scheme
Yor that supports only OR operations over Zs. This combination yields a homo-
morphic signature scheme that is strong adaptive secure and supports the same
class of functions supported by .

Clearly, if X' supports the evaluation of boolean circuits, then Yor can be
instantiated using Y. In this case, our result provides a way to bootstrap the
security of X from semi-adaptive to strong adaptive. This yields our main result
above.

In the case where Yor cannot be instantiated using X (e.g., X' is not expres-
sive enough), our transformation still provides a recipe to obtain strong adaptive
security using a separate OR-homomorphic scheme. However, motivated by the
lack of many candidates of OR-homomorphic signature schemes (concretely, [25]
is the only available one), we investigated how to obtain a similar transforma-
tion by using schemes that have been studied more widely. Our second result is

5 Any other function where the third input cancels out would work. Furthermore,
although in the given example it is trivial to recognize that P is well-defined, this
may not be the case for general functions.

On the Security Notions for Homomorphic Signatures 197

a transformation which can combine a semi-adaptive secure scheme X' together
with a semi-adaptive secure linearly-homomophic signature Xy that works for
scalar messages’ over a large ring, say Z,. This combination yields a homo-
morphic signature scheme that is strong adaptive secure and supports the same
class of functions supported by Y. A limitation of this second transformation
is that it applies only to schemes that are leveled homomorphic (i.e., for cir-
cuits of bounded depth) as it requires to set p > 2¢ where d = poly()\) is the
bound on circuits depth. On the other hand, the advantage is that strong adap-
tive security can be obtained by using linearly-homomorphic schemes, a class
of constructions that has received significant attention, of which we know many
constructions from several assumptions [3-5,11,13,15,16,21], most of which are
way more efficient in practice than [25]. As for the efficiency of the scheme result-
ing from our transformations, it basically depends on the efficiency of the scheme
one starts from. In the worst case, however, the efficiency loss is comparable to
executing the original algorithms twice.

3.1 Strong Adaptive Security from OR-Homomorphic Signatures

Here we present our first transformation. The tools we start from are a homo-
morphic signature scheme Y := (X.KeyGen, X.Sign, X .Ver, X.Eval) for a class
C of (boolean or arithmetic) circuits, and a homomorphic signature Yog :=
(Xor-KeyGen, X'or.Sign, Xogr.Ver, Yor.Eval) that works over message space Zs
and supports homomorphic OR operations. More precisely, Yogr must support
circuits that are composed only of OR gates and have the same depth as those
in C. N

Using X' and Yog in a black box way, we build a scheme Y which supports
evaluation of circuits in C. Moreover, assuming only semi-adaptive security of
both X' and Yogr, we show that X' is strong adaptive secure.

f.KeyGen(lA,E). Run the key generation algorithms (vk, sk) « KeyGen(1*, £)
and (vkor,skor) — Zor.KeyGen(1*,£), and output (vk,sk) := ((vk, vkor),

R (sk, skor))-

E.Sign(sAk, A,7,m). The signing algorithm uses the secret key to compute o «—
Sign(sk, A, 7,m) and oor < Xor.Sign(skor, 4, 7,0), and outputs ¢ := (o,
UOR)-

Note that the OR-homomorphic component oor of the signature signs the
bit 0. Although the usefulness of this component will become more clear in
the security proof, the intuition is that this component keeps track of those

__ labels that are used throughout the computation.

X .EvaI(vAk, fy61,...,6,). We describe the homomorphic evaluation of f in a
gate-by-gate fashion, distinguishing the cases of unary and binary gates. One
can easily see that the construction generalizes to n-ary gates. Describing the
evaluation gate-by-gate is also useful to clearly see that our transformation

7 Namely, we do not need to work with vectors as most linearly-homomorphic signa-
tures do.

198 D. Catalano et al.

allows for arbitrary composition of signatures (i.e., running 5 Eval on outputs

of & .Eval). At every gate g, one proceeds as follows.

Unary Gates. Let g be an unary gate and let 61 := (01, oor,1) be the input.
We compute the output signature Gout = (0out; TOR,0ut) by computing
Oout — X.Eval(vk, g,01) and oor out<—00Rr,1. Basically, we evaluate g over
the X' component, while for the OR-homomorphic component we simply
evaluate an identity function.

Binary Gates. Let g be a binary gate and let 61 := (01,00r1) and
G2 = (02,00r2) be its two inputs. We compute the output signature
Gout = (Oout, 0ORout) by first evaluating ooy «— X.Eval(vk,g,01,02)

and then evaluating ooroeuwt — Xor-Eval(vkor,OR,00Rr1,00r2). Basi-
cally, we evaluate the binary g over the X' components, while for the
OR-homomorphic components we perform their homomorphic OR.
By proceeding over f in a gate-by-gate fashion, eventually we obtain a signa-
ture 6 := (0, 00Rr), and X.Eval returns &.
At this point, it is worth mentioning that the evaluation algorithm of our
transformation generates (o, oor) such that o = X.Eval(vk, f,01,...,0,) and
oor = Xor.Eval(vkor, for,00R 1. --,00Rn), Where for is an “OR version”
of the circuit f obtained by changing any unary gate with an identity gate

__and any binary gate with an OR gate.

X Ver(vk, P, A,;m,). Parse P = (f,m1,...,m) and & := (0,00r). Next, define
Por := (for,T1,...,7n), where for is the circuit composed only of OR
(and identity) gates, obtained from f as described above. Then check if
Y Ver(vk, P, A;m,0) = 1 and Xogr.Ver(vkor, Por, 4,0,00r) = 1. If both the
verification runs output 1, then output 1, otherwise output 0.

In the following theorem we show that our generic scheme 5 satisfies strong
adaptive security, as long as the schemes X' and Yor are only semi-adaptive
secure (proof is given in the full version of the paper [12].

Theorem 2. Assume that X is a semi-adaptive secure homomorphic signature
scheme for a class of circuits C, and that Yogr is a semi-adaptive secure homo-
morphic signature with message space Zy and supporting OR circuits. Then the
scheme X described above is a strong-adaptive secure homomorphic signature
for C. Furthermore, if both X and Yor satisfy context-hiding (resp. efficient
verification, composability), then so does 5.

3.2 Strong Adaptive Security from Linearly-Homomorphic
Signatures

Here we present our second transformation. This transformation is similar to
the one of Sect. 3.1: it incorporates signatures from a second homomorphic sig-
nature scheme in order to handle Type 3 forgeries. However, instead of a OR-
homomorphic scheme, here we use a linearly-homomorphic one. More in detail,
our constructions takes in a homomorphic signature scheme X := (X.KeyGen,
X .Sign, X .Ver, X.Eval) that supports circuits of polynomial depth at most d

On the Security Notions for Homomorphic Signatures 199

and fan-in 2,8 and an additive-homomorphic signature Xy = (X y.KeyGen,
Xn.Sign, Xin.Ver, Xy .Eval) that works over message space Z,, where p > 24,
Using X and Xy in a black box way, we build a scheme X’ which supports the
same circuits as X', and assuming only semi-adaptive security of X and Xy, we
show that Y’ is strong adaptive secure. The scheme X’ is defined as follows:

Y’ KeyGen(1*, £). Run both (vk,sk) « X.KeyGen(1*,£) and (vkip,skiy) «
Yin-KeyGen(1*, £), and output (vk’,sk’) := ((vk, vkip), (sk, skin))-

X' Sign(sk’, A, 7,m). The signing algorithm uses sk’ to compute o « Sign(sk,
A,7,m) and oLy «— X1 n.Sign(skLn, 4, 7,0), and outputs o’ := (0, oLn).

X' Bval(vk', f,o},...,0%). As in the previous section, we describe the homo-
morphic evaluation of f in a gate-by-gate fashion, distinguishing the cases of
unary and binary gates. At every gate g, one proceeds as follows.

Unary Gates. Let g be an unary gate and let o} := (01, 01n,1) be the input.

We compute the output signature ol = (0out,OLH,0ut) by computing
Oout < X.Eval(vk, g,01) and oLH out<—0LH,1-
Binary Gates. Let g be a binary gate and let o} := (01,01n,1) and o} =

(02,01H,2) be its two inputs. We compute the output signature ol :=

(Couts OLH,out) by first evaluating ooy «— X.Eval(vk,g,01,02) and then
evaluating OLH,out “— ELH.EvaI(vkLH, =+, GLH,lyaLH,2)~
By proceeding over f in a gate-by-gate fashion, eventually we obtain

a signature ¢’ := (o,0Ln), and X’.Eval returns o’. We note that the
evaluation algorithm of our transformation generates (o,o1n) such that
o = X.Eval(vk, f,01,...,04,) and oy = Xin.Eval(vkew, f+, 0tH 1, -5 OLH),

where f, is an “additive version” of the circuit f obtained by changing any
unary gate with an identity gate and any binary gate with an additive gate.

X' Ver(vk, P, A;m,o’). Parse P = (f,71,...,7,) and ¢’ := (0, o). Next, define
P+ = (f+,71,...,7Tn), where fi is the additive circuit obtained from f as
described above. Then check if X.Ver(vk, P, A,;m,o0) = 1 and X\ y.Ver(vkpy,
P, A 0,004) = 1. If both the verification runs output 1, then output 1,
otherwise output 0.

In the following theorem we show that our generic scheme X’ satisfies strong
adaptive security, as long as the schemes X and Xy are only semi-adaptive
secure (proof is given in the full version of the paper [12]).

Theorem 3. Assume that X is a semi-adaptive secure homomorphic signature
scheme for circuits of polynomial depth at least d and fan-in 2, and that Xy is
a semi-adaptive secure linearly-homomorphic signature scheme whose message
space is Ly, with p > 2¢. Then the scheme X' described above is a strong-adaptive
secure homomorphic signature. Furthermore, if both X and Xy satisfy context-
hiding (resp. efficient verification), then so does X'.

8 We describe the transformation for fan-in 2 only for ease of exposition. It is easy to
see that the same technique would work for constant fan-in ¢ setting up p > ¢.

200 D. Catalano et al.

Acknowledgements. The work of Dario Fiore and Luca Nizzardo was partially sup-
ported by the Spanish Ministry of Economy under project references TIN2015-70713-R
(DEDETIS), RTC-2016-4930-7 (DataMantium), and under a Juan de la Cierva fellow-
ship to Dario Fiore, and by the Madrid Regional Government under project N-Greens
(ref. $2013/ICE-2731).

References

1. Agrawal, S., Boneh, D.: Homomorphic MACs: MAC-based integrity for network
coding. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D. (eds.) ACNS
2009. LNCS, vol. 5536, pp. 292-305. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-01957-9_18

2. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.:
Computing on authenticated data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol.
7194, pp. 1-20. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
28914-9_1

3. Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the stan-
dard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011.
LNCS, vol. 6571, pp. 17-34. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-19379-8_2

4. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new
privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASTACRYPT
2012. LNCS, vol. 7658, pp. 367-385. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34961-4_23

5. Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding
quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. LNCS, vol. 7778, pp. 386-404. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7_24

6. Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature
schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 68-87. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00468-1_5

7. Boneh, D., Freeman, D.M.: Homomorphic signatures for polynomial functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149-168. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_10

8. Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields
and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1-16. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8_1

9. Catalano, D., Fiore, D.: Practical homomorphic MACs for arithmetic circuits. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 336—
352. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_21

10. Catalano, D., Fiore, D., Gennaro, R., Nizzardo, L.: Generalizing homomorphic
MACs for arithmetic circuits. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol.
8383, pp. 538-555. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54631-0_31

11. Catalano, D., Fiore, D., Gennaro, R., Vamvourellis, K.: Algebraic (trapdoor) one-
way functions and their applications. In: Sahai, A. (ed.) TCC 2013. LNCS, vol.
7785, pp. 680-699. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36594-2_38

https://doi.org/10.1007/978-3-642-01957-9_18
https://doi.org/10.1007/978-3-642-01957-9_18
https://doi.org/10.1007/978-3-642-28914-9_1
https://doi.org/10.1007/978-3-642-28914-9_1
https://doi.org/10.1007/978-3-642-19379-8_2
https://doi.org/10.1007/978-3-642-19379-8_2
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-642-34961-4_23
https://doi.org/10.1007/978-3-642-36362-7_24
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-00468-1_5
https://doi.org/10.1007/978-3-642-20465-4_10
https://doi.org/10.1007/978-3-642-19379-8_1
https://doi.org/10.1007/978-3-642-38348-9_21
https://doi.org/10.1007/978-3-642-54631-0_31
https://doi.org/10.1007/978-3-642-54631-0_31
https://doi.org/10.1007/978-3-642-36594-2_38
https://doi.org/10.1007/978-3-642-36594-2_38

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

On the Security Notions for Homomorphic Signatures 201

Catalano, D., Fiore, D., Nizzardo, L.: On the security notions for homomorphic
signatures. Full Version: Cryptology ePrint Archive. https://eprint.iacr.org/2016/
1175.pdf

Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private:
constructions and applications to (homomorphic) signatures with shorter public
keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp.
254-274. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48000-
7-13

Catalano, D., Fiore, D., Nizzardo, L.: Homomorphic signatures with sublinear
public keys via asymmetric programmable hash functions. Des. Codes Cryptogr.
(2017). https://doi.org/10.1007/s10623-017-0444-3

Catalano, D., Fiore, D., Warinschi, B.: Adaptive pseudo-free groups and applica-
tions. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 207-223.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_13
Catalano, D., Fiore, D., Warinschi, B.: Efficient network coding signatures in the
standard model. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012.
LNCS, vol. 7293, pp. 680-696. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-30057-8_40

Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient ver-
ification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO
2014. LNCS, vol. 8616, pp. 371-389. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44371-2_21

Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures:
new definitions and delegatable anonymous credentials. In: 2014 IEEE 27th Com-
puter Security Foundations Symposium, pp. 199-213. IEEE (2014)

Desmedt, Y.: Computer security by redefining what a computer is. In: NSPW
(1993)

Elkhiyaoui, K., Onen, M., Molva, R.: Online-offline homomorphic signatures for
polynomial functions. Cryptology ePrint Archive, Report 2015/954 (2015). http://
eprint.iacr.org/

Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic
framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 697-714. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8_41

Gennaro, R., Katz, J., Krawczyk, H., Rabin, T.: Secure network coding over the
integers. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
142-160. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-
79

Gennaro, R., Wichs, D.: Fully homomorphic message authenticators. In: Sako,
K., Sarkar, P. (eds.) ASTACRYPT 2013. LNCS, vol. 8270, pp. 301-320. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0-16

Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281-308 (1988)
Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signa-
tures from standard lattices. In: 47th ACM STOC. ACM Press (2015)

Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244-262. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45760-7_17

https://eprint.iacr.org/2016/1175.pdf
https://eprint.iacr.org/2016/1175.pdf
https://doi.org/10.1007/978-3-662-48000-7_13
https://doi.org/10.1007/978-3-662-48000-7_13
https://doi.org/10.1007/s10623-017-0444-3
https://doi.org/10.1007/978-3-642-20465-4_13
https://doi.org/10.1007/978-3-642-30057-8_40
https://doi.org/10.1007/978-3-642-30057-8_40
https://doi.org/10.1007/978-3-662-44371-2_21
https://doi.org/10.1007/978-3-662-44371-2_21
http://eprint.iacr.org/
http://eprint.iacr.org/
https://doi.org/10.1007/978-3-642-30057-8_41
https://doi.org/10.1007/978-3-642-30057-8_41
https://doi.org/10.1007/978-3-642-13013-7_9
https://doi.org/10.1007/978-3-642-13013-7_9
https://doi.org/10.1007/978-3-642-42045-0_16
https://doi.org/10.1007/3-540-45760-7_17

q

Check for
updates

1

Sanitizable signature schemes enable the signer of a document to declare certain
sections of the message as admissible for modification, so that another designated
party (the sanitizer) can modify them and update the signature without affecting
the authenticity and integrity of the immutable parts. The main motivation is
to balance out the verifier’'s wish to check authenticity of parts of the original
document and the signer’s desire for privacy of the sanitized data. The idea of

Invisible Sanitizable Signatures and
Public-Key Encryption are Equivalent

Marc Fischlin and Patrick Harasser(®)

Cryptoplexity, Technische Universitat Darmstadt, Darmstadt, Germany
{marc.fischlin,patrick.harasser}@cryptoplexity.de
http://www.cryptoplexity.de

Abstract. Sanitizable signature schemes are signature schemes which
support the delegation of modification rights. The signer can allow a
sanitizer to perform a set of admissible operations on the original mes-
sage and then to update the signature, in such a way that basic security
properties like unforgeability or accountability are preserved. Recently,
Camenisch et al. (PKC 2017) devised new schemes with the previously
unattained invisibility property. This property says that the set of admis-
sible operations for the sanitizer remains hidden from outsiders. Sub-
sequently, Beck et al. (ACISP 2017) gave an even stronger version of
this notion and constructions achieving it. Here we characterize the
invisibility property in both forms by showing that invisible sanitizable
signatures are equivalent to IND—CPA-secure encryption schemes, and
strongly invisible signatures are equivalent to IND—CCA2-secure encryp-
tion schemes. The equivalence is established by proving that invisible
(resp. strongly invisible) sanitizable signature schemes yield IND—CPA-
secure (resp. IND—CCA2-secure) public-key encryption schemes and that,
vice versa, we can build (strongly) invisible sanitizable signatures given
a corresponding public-key encryption scheme.

Keywords: Sanitizable signatures - Digital signatures - Invisibility
Public-key encryption + One-way functions

Introduction

sanitizable signature schemes dates back to a work by Ateniese et al. [2].

In [2], the authors introduced several security properties for sanitizable sig-
nature schemes. Besides unforgeability against outsiders, a desirable property
is immutability, which demands that even a malicious sanitizer can only alter

© Springer International Publishing AG, part of Springer Nature 2018
B. Preneel and F. Vercauteren (Eds.): ACNS 2018, LNCS 10892, pp. 202-220, 2018.
https://doi.org/10.1007/978-3-319-93387-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93387-0_11&domain=pdf

Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 203

admissible parts. Privacy asks that one cannot reconstruct the original docu-
ment given only the sanitized version and signature, and its strengthening called
unlinkability [7] says that one cannot determine the origin to a sanitized doc-
ument among several known possibilities. Signer and sanitizer accountability
ensure that in case of a dispute the parties can give a convincing proof of who
created a signature, the signer or the sanitizer. A less common property is trans-
parency, which should hide who created a signature, in case neither of the parties
helps to determine the originator—this stands in contrast to public accountabil-
ity, where no additional help is required to determine who signed the document.

1.1 Invisible Sanitizable Signatures

Recently, Camenisch et al. [10] formalized the notion of invisibility of sanitiz-
able signatures. This property, formerly called strong transparency in [2], should
hide which modifications a sanitizer is allowed to perform. In previous construc-
tions the description of admissible operations, denoted ADM, had usually been
attached in clear to the signature. Gong et al. [25] were the first to argue that
this information can be of value, and later Camenisch et al. showed that hid-
ing it may be a desirable goal. They also revised the theoretical framework of
sanitizable signatures in order to capture the invisibility property, and gave con-
structions achieving it based on a new type of chameleon hash functions with
ephemeral trapdoors. Soon after, Beck et al. [3] further strengthened the notion
of invisibility.

In its basic form, invisibility protects against leakage of ADM if the sanitizer
public key is only used in connection with a single signer. In applications this
means that the sanitizer must create a fresh key pair for each user. Strong
invisibility, on the other hand, allows to use the same sanitizer key pair with
multiple signers. Beck et al. use unique signatures, IND—CCA2-secure encryption,
and collision-resistant chameleon hash functions to achieve strong invisibility.

Technically, the difference between the two invisibility notions lies in the
capabilities of an adversary trying to establish which of two potential operation
sets, ADMg or ADMj, has been encoded as admissible into the signature. Given
a challenge signature, the adversary may query a sanitizing oracle on it as long
as the requested modification does not allow to distinguish the two cases trivially
(this happens e.g. if the modification is admissible for one of the two sets but
not for the other). For the basic invisibility notion the adversary can ask for
sanitizations only in connection with the public key pkg;, of the genuine signer.
In the stronger notion, the adversary can also request sanitizations of messages
signed with other, possibly maliciously chosen signer keys pkgig.

1.2 Owur Contributions

In this work we show that invisible sanitizable signature schemes and public-key
encryption schemes are equivalent. Qur equivalence proof consists of four parts.

204 M. Fischlin and P. Harasser

Invisibility Implies IND—CPA-Secure Encryption. Our first result is to show that
an invisible sanitizable signature scheme yields an IND—CPA-secure bit-encryp-
tion scheme. An invisible scheme hides the actual admissible operations for a
signature; we can use this property to securely embed a message bit b by using
one of two fixed and distinct admissible operation descriptions (ADMg or ADM;)
to build a signature ¢ under a fresh signer key pair. The ciphertext consists of
the signature o and the signer public key pkg,. Invisibility now guarantees that
no outsider is able to distinguish the two cases.

The trapdoor information for decryption is the sanitizer secret key; his public
key acts as the public key of the encryption scheme. With his secret key, the sani-
tizer can run the sanitization process and check via a distinguishing modification
which operation ADM, has been embedded: Only the admissible one (ADMy)
will result in a valid new signature. For the other operation (ADM;_;), the
modification should fail by the immutability property of the sanitizable scheme.
Note that we obviously need some other security property besides invisibility,
because it is easy to devise invisible signature schemes without any other security
property, e.g. with constant signatures.

Strong Invisibility Implies IND—CCA2-Secure Encryption. While the construc-
tion of an IND—CPA-secure scheme via the embedding of the hidden ADM may
be expected, we argue next that the same construction yields an IND—CCA2-
secure encryption scheme if the underlying sanitizable signature scheme is
strongly invisible. This result is less conventional, since it links the sanitization
for different signer keys with the ability to securely decrypt different ciphertexts.

The proof idea is to note that ciphertexts in our encryption system are of the
form (o, pkgjg). Given a challenge ciphertext (o, pkg;g), recall that for IND—CCA2-
security we must allow for oracle decryptions of ciphertexts (o, pkéig) #*
(0, pksig). Since decryption is performed via sanitization, and strong invisibil-
ity allows us to call the sanitizer for different keys pkgig, we can easily decrypt
ciphertexts of the form (o’, pkg;) with pksy # pksg. To handle ciphertexts
(0, pksig) under the original signer key we rely on the strong unforgeability
property of the signature scheme: it says that one cannot create fresh signa-
tures o’ under pkg,, and therefore an IND—CCA2-adversary cannot submit valid
oracle queries of this form.

In a sense, this result warrants the deployment of an IND—CCA2-secure
encryption scheme in the strongly invisible construction of Beck et al. [3]: Any
strongly invisible sanitizable signature scheme already implies IND—CCA2-secure
encryption systems. Note that we construct an IND—CCA2-secure bit encryption
scheme, but this is sufficient to derive an IND—CCA2-secure string encryption
scheme [14,26,31,32].

IND—CPA-Secure Encryption Implies Invisibility. Next we establish the converse
implication, i.e. from IND—CPA-secure public-key encryption schemes to invisible
sanitizable signatures. Note that the existence of the former primitive also implies
the existence of one-way functions (the argument is identical to the one in [35,
Lemma 1]), and thus of secure digital signature schemes [33,35], so that we can

Invisible Sanitizable Signatures and Public-Key Encryption are Equivalent 205

use this building block in our construction as well. Besides invisibility, the derived
sanitizable signature scheme has all the common properties, like unforgeablility,
immutability, privacy, and accountability.

The construction idea is to have the signer sign every message block of the
message with a different, ephemeral key, and then to protect this tuple of signa-
tures with an additional signature under his secret key. This “message” part of
the signature ensures unforgeability, privacy, and accountability. To enable the
sanitizer to modify th