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Abstract. Model transformations (MTs) are essential elements of
model-driven engineering (MDE) solutions. MDE promotes the creation
of domain-specific metamodels, but without proper reuse mechanisms,
MTs need to be developed from scratch for each new metamodel. In this
paper, we classify reuse approaches for MTs across different metamodels
and compare a sample of specific approaches – model types, concepts,
a-posteriori typing, multilevel modeling, and design patterns for MTs –
with the help of a feature model developed for this purpose, as well as
a common example. We discuss strengths and weaknesses of each app-
roach, provide a reading grid used to compare their features, and identify
gaps in current reuse approaches.
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1 Introduction

As model-driven engineering (MDE) is used for engineering evermore numer-
ous and complex systems, model transformations (MTs) are becoming more and
more complex pieces of software. Like for any other piece of software [1], reuse
mechanisms for MTs have been proposed to limit reimplementing a transfor-
mation from scratch every time a new but related need arises. In this paper,
we focus on the reuse of MTs that were developed for a particular metamodel,
but are then applied to models typed by other metamodels, i.e., reuse across
metamodels.
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Many use cases of MT reuse have been identified in the literature [2], pro-
viding useful classifications. Since the use cases of MT reuse imply very differ-
ent trade-offs among non-functional properties such as type-safety, performance,
expressiveness and user-friendliness, no single MT reuse approach fits them all.

In this paper, we propose a classification of MT reuse approaches that work
across metamodels, and compare a sample of specific approaches—namely model
types [3,4], concepts [5,6], a-posteriori typing [7], multilevel modeling [8], and
design patterns for MTs [9]—with the help of a feature model developed for this
purpose, and a common example. We discuss strengths and weaknesses of each
proposal, provide a reading grid to compare their features, and identify gaps in
current reuse approaches.

The paper is organized as follows. Section 2 motivates the need for reuse mecha-
nisms across metamodels and presents a running example. Section 3 defines classi-
fication criteria using a feature model. Section 4 compares five existing approaches
based on the classification and the running example, and Sect. 5 discusses trade-
offs. Section 6 overviews related classification attempts and reuse techniques, and
Sect. 7 concludes by identifying challenges for the MT community.

2 Motivation

MDE supports the creation of metamodels to describe models using the most
appropriate primitives and level of abstraction. However, this entails the creation
of all kinds of services for each metamodel, including MTs. Without proper reuse
mechanisms, MTs need to be created from scratch even if there are MTs with
the same goal but defined over similar yet different metamodels.

As a concrete example, consider a MT that implements the common flatten-
ing operation. This MT traverses a given hierarchy and extracts its elements into
a flat collection. Figure 1(a) illustrates a specification for such a MT, defined over
a minimal metamodel that contains just the elements the MT needs (Container
and Element). In practice, the MT would be implemented using languages like
ATL [10], ETL [11], or Kermeta [12], but to stay language-agnostic, we only show
a post-condition that identifies its effect. The first two lines of the postcondition
state that, for a given hierarchy, all (sub-)elements should become contained in
the same root container; the last line ensures the hierarchy is removed.

Container Element

0..1

*
subs0..1

*
roots

container

context Container::flattening() 
post : self.roots@pre->collect(e | Set{e}->closure(subs@pre))->

flatten()->asSet()->forAll(e | e.container = self) 
and self.roots->forAll(e|e.subs->isEmpty())

State
Machine State

BasicOr
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*machine

submachine
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*0..1

elems

Project
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*
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Fig. 1. (a) Reusable model transformation scheme. (b, c, d) Metamodels for which the
model transformation wants to be reused.
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Flattening is recurrent in many contexts, like in structural modeling
(class/package hierarchies, goal hierarchies) and behavioral languages (state
machines, activity diagrams). Figures 1(b), (c), (d) show three typical meta-
models of these kinds of languages.

Without proper reuse mechanisms, a flattening MT needs to be implemented
from scratch for each metamodel. Some ad-hoc reuse approaches are applied in
practice, like clone-and-own (copy-paste and manual adaptation) or translating
the models of interest to the metamodel accepted by the reused MT. Neither
approaches are optimal. In the first case, manual adaptation is time-consuming,
error-prone, hardly scalable, and leads to well-known maintenance problems with
code clones [13]. In the second case, illustrated by Fig. 2, an existing MT (rt
on the right) defined for a metamodel MM , wants to be reused on a model
(M ′ on the left) conformant to a different metamodel MM ′. In this figure (and
following ones), light boxes represent existing artifacts, and dark ones represent
new artifacts to be built. An adapter transformation is required to translate
the model into one that conforms to the metamodel the reused transformation
conforms to, so that the MT can be applied to this new model M . This is not
efficient since it requires executing an additional transformation in addition to
the reused one. Moreover, a reverse MT may be needed to transform the result
back to the original model’s metamodel.

Fig. 2. Explicit model adaptation approach to MT reuse

The MT community has proposed several approaches to facilitate reuse across
metamodels, like model typing, a-posteriori typing, concepts, multilevel model-
ing and transformation patterns, among others [14–17]. These approaches have
different trade-offs and are applicable in different scenarios and contexts. Hence,
there is an urging need to classify and compare them to know which approach
to use in a given situation.
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3 Classification

We introduce a feature model to classify the different alternatives for MT reuse
across metamodels. The model, shown in Figs. 3 and 4, presents the features of
the reuse mechanism as well as properties of the reused transformation. In the
following, we write rt to denote the MT to be reused.

Mechanism

MT Reuse

Legend:
Mandatory
Optional
(Inclusive) Or

Abstract
Concrete

Alternative (exclusive or)

Opportunistic

Reused MT properties

Reuse interface

Form

Metamodel

Logic-based

DSL

Derived from MT

Copy

Reference
Reuse by

Correctness-checking

Checking type
Syntactic checking

Semantic checking

Checking time
Static checking

Dynamic checking

Mappings

Language-independent

Design

Code
Abstraction level

Complete

Partial
Scope

Inplace

Source reusability

Target reusability
Outplace

Transformation kind

Systematic
Strategy

Transformation

Fig. 3. Feature model: mechanisms for reuse and scenarios of reuse (the Mapping fea-
ture is expanded in Fig. 4

Strategy. In a systematic reuse strategy, a MT is developed by reusing spe-
cific units that were made available a priori. This is analogous to software built
following a component-based design. In this case, rt was developed with the
intention of being reused. Hence, depending on the reuse approach, the MT
needs to be packaged as a component [6], as a pattern [9], or the metamodel the
MT is defined on needs to be sliced [18]. All other kinds of reuse are considered
opportunistic.

Mappings. A reusable transformation rt, defined over a metamodel MM , is
applicable to a number of different metamodels MM ′. The way to specify the
correspondences or mappings between MM and MM ′ depends on the reuse
approach, and determines the set of metamodels where rt can be reused. Figure 4
shows the alternative features for mapping specifications.
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Mappings

Level

Definition

Multiple occurrences

Adaptation

Intensional

Extensional

Match Evaluation

Intra

Across

Meta

Model

Instantiation

Typing
Inferred

Explicit

Predefined

Bidirectional

Operators

Static

Dynamic

User-defined

Renaming

Class-to-association

Association-to-class
Arbitrary

Preprocessing
Derived features

Derived classes

1-1

1-n

n-1

n-m

Arity

(1-n⇒1-1)∧(n-1⇒1-1)∧(n-m⇒1-n∧n-1)∧(Model⇒Extensional)

Style

Fig. 4. Feature model: specification of mappings

– Arity: The relation between MM and the new reuse context MM ′ can be
one-to-one: injective where each element in MM needs to be mapped to
exactly one element in MM ′. The mapping can be one-to-many : each MM
element is mapped to any number of MM ′ elements, including none. It can
also be many-to-one: an MM element can be mapped several times. Finally,
the most general kind of mapping is many-to-many : elements in both MM
and MM ′ can be mapped several times.

– Style: The objects over which rt are reused can be specified either by exten-
sion (i.e., enumerating them) or by intension (i.e., providing necessary and
sufficient conditions that characterize the objects). Moreover, intensional
specifications can be evaluated statically at compile-time, dynamically at run-
time, or at the convenience of the user (user-defined).

– Level: Intra-level mappings relate elements at the same metalevel: either
two metamodels, which is the most common case, or two models. In contrast,
mappings across levels relate elements at different metalevels by means of
instantiation (e.g., in multilevel modeling) or typing relationships (e.g., in
transformation patterns, where rule elements are typed w.r.t. a metamodel).

– Definition: The mapping between MM and MM ′ can be explicit, i.e.,
defined by the user (using either an extensional or intensional approach),
or be inferred automatically, e.g., using name matching [3] or structural sim-
ilarity criteria [14].

– Multiple Occurrences: This refers to the possibility to define multiple
application contexts for rt within a metamodel MM ′, all of which are handled
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simultaneously by rt, perhaps using a composition mechanism for coordina-
tion. Most existing approaches only support one application context at a
time.

– Adaptation: To widen the number of metamodels where a transformation
can be reused, several mechanisms bridge heterogeneities between MM and
MM ′. Some approaches provide a set of predefined operators for specific kinds
of adaptations, such as renaming a class, mapping a class to an association, or
mapping an association to a class [6,14] (please note that our feature model
does not list all possible predefined adaptation operators). Such operators
may be bidirectional or not. Other approaches allow arbitrary adaptations
between MM and MM ′, usually defined by means of OCL expressions. It is
also possible to rely on a preprocessing step that adds the necessary derived
classes or derived features to MM ′, making it structurally similar to MM
and allowing a direct mapping between them, before applying rt [6,19].

Reuse By. This feature refers to whether the original transformation is copied
or referenced. In the clone-and-own approach (cf. Sect. 2), the developer reuses
a copy of rt in the transformation. Therefore, any updates to rt will not be
propagated to the new transformation. Instead, the adapter approach of Fig. 2
reuses rt by reference, and hence any further update to the transformation affects
all places where it was reused.

Reuse Interface. Reusable transformations expose an interface for reuse that
can take different forms depending on the approach. It can be a metamodel
declaring the necessary classes and features in the context of reuse [3,4,6,9], a
logic-based specification stating the constraints that a metamodel should fulfill to
ensure a correct MT reuse [17], or a model describing metamodel requirements
using a domain-specific language (DSL) [15]. Sometimes, this reuse interface
can be (semi-)automatically derived from the MT [15,17,18]. While the above-
mentioned interface kinds yield a black-box approach to reuse, the interface for
reuse in white-box approaches is the reusable MT or an abstraction of it [9,14].
This is appropriate when a larger MT is to be composed out of smaller frag-
ments. Both interface kinds can be combined.

Correctness Checking. Different approaches make different choices on how
and when the correctness of rt with respect to m′ and MM ′ should be checked.

– Checking-Type: Checking can be either syntactic, e.g., simple type check-
ing, or semantic, typically also verifying the satisfaction of well-formedness
rules expressed in OCL, or additional semantic conditions capturing the trans-
formation intent (e.g., like bisimulation relations) [20].

– Checking-Time: When the correctness of rt is checked statically, it is
ensured that it will be syntactically correct for all models conforming to
the new context of reuse MM ′. Instead, a dynamic check needs to inspect at
run-time that every (read/write) access to the model by rt is correct. Static
checking of semantic properties requires some form of theorem proving or
model checking, while dynamic checking only requires a run-time evaluation
of OCL constraints.
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Properties of Reused Transformation. Transformation reuse approaches
can be language-independent (i.e., the reusable transformation can be written in
any transformation language) or be specific for a transformation language (e.g.,
ATL or graph transformation). Moreover, some approaches may be limited to a
particular kind of transformation, application scope or abstraction level.

– Transformation Kind: The reused transformation can be either inplace or
outplace (i.e., model-to-model). In the former case, the mechanism needs to
ensure that write accesses to the model are correct. In the latter case, the new
context of reuse can be for the source metamodel, which is typically read-only
(source reusability), for the target metamodel, which is typically write-only
(target reusability), or for both.

– Scope: The reused unit can be a complete model transformation or a part of
it, e.g., a rule (partial).

– Abstraction Level: Reuse can be at the design level, e.g., in the form of
design patterns [9], or directly at the implementation level to reuse transfor-
mation code.

4 Comparison of Some Existing Approaches

In this section, we analyze five prominent reuse approaches, classifying them by
the introduced feature model. Each approach is based on a different technique,
summarized in Fig. 5. Model types (Fig. 5a) is based on establishing a subtyping
relation between metamodels. A-posteriori typing (Fig. 5b) works by retyping the
model so that the reused MT can be applied to it. Concepts rely on genericity to
rewrite the MT using a high-order transformation (Fig. 5c) to make it applicable
to a particular metamodel. Similarly, MT patterns use a generative approach to

(a) Subtyping (b) Retyping

(c) High-Order Transformation/Generative (d) Multilevel

Fig. 5. Different techniques enabling MT reuse across metamodels
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synthesize specific MT code from a design pattern. Finally, multilevel modeling
exploits the typing relation to apply the MT two (or more) metalevels below
(Fig. 5d).

Table 1 summarizes how each approach instantiates the feature model. We
provide more details on their working scheme using the running example in what
follows.

4.1 Model Typing

Fig. 6. Reuse with model typing

Model Types were introduced by Steel
et al. [3], as an extension of object typ-
ing to provide abstraction from object
types and enable model manipulation
reuse. The type of a model is a set of
types of objects that may belong to the
model, and their relationships. While
a model conforms to one and only one
metamodel (the one containing all the
types needed to instantiate objects of
the model), it can have several model
types which are subsets of its meta-
model. Substitutability is the ability to safely use a model of type A where a
model of type B is expected. Substitutability is supported in the model type
theory by defining a subtyping relationship among model types [4,21,22].

Figure 6 illustrates model typing, showing how to reuse the flattening MT
defined on MT for the object-oriented metamodel MM ′. Based on derived
attributes defined within the object-oriented metamodel, if an isomorphism is
statically (or possibly) found, the flattening MT can be safely applied on the
instances of the object-oriented metamodel (m′). Melange employs adapter gen-
erators at compile time to ensure the adaptation at runtime of the actual appli-
cation of the MT on the instances of the targeted metamodel [22].

4.2 Concepts

Inspired by generic programming, concepts were proposed in [5] as a mechanism
to express requirements for generic model management operations and transfor-
mations. A concept is similar to a metamodel, but its elements are parametric
types that need to be bound to elements in a metamodel. Generic transforma-
tions are defined over concepts. When a concept is bound to a metamodel, the
associated transformation gets rewritten in terms of the metamodel and can
be applied to its instances. In this approach, adapters [6] enable more flexible
bindings by the use of OCL expressions in mappings, which get injected in the
rewritten MT code.

Figure 7 shows how to reuse the flattening MT for the object-oriented meta-
model using concepts. The flattening metamodel is considered the concept, whose
elements need to be bound to elements in the concrete metamodel. In this case,
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Table 1. Classification of MT reuse approaches

Feature Model-typing Concepts A-posteriori Multilevel MT patterns

Mechanism

Strategy Systematic

opportunistic

Systematic

opportunistic

Systematic

opportunistic

Systematic

opportunistic

Systematic

Reuse by Reference Copy Reference Reference Copy

Reuse interface Metamodel

can be derived

Metamodel

can be derived

Metamodel Metamodel Transformation

Checking type Syntactic

semantic (pre.

and post.)

Syntactic Syntactic Syntactic Syntactic

Checking time Static

(type-level)

Dynamic

(inst-level)

Static Static

(type-level)

Dynamic

(inst-level)

Static Static

Mechanism.Mappings

Arity 1−1, 1−n,

n−1, n−ma
1−1, 1−n,

n−1, n−m

1−1, 1−n,

n−1, n−m

1−1, 1−n 1−1

Style Extensional Extensional Extens.

(type-level)

Intens.

(inst-level)

Dynamic

match

Extensional Extensional

Level Intra/meta Intra/meta Intra/meta Across/

instantiation

Across/typing

Definition Inferred Explicit Explicit Explicit Explicit

Multiple occur. No No No No No

Adaptation Renaming,

derived feats

Renaming,

c-to-a a-to-c,

arbitrary,

derived feats,

derived classes

Renaming,

arbitrary,

bidirectional,

derived feats

Renaming,

derived feats

Renaming

Reused MT properties

Lang. indep. Yes No Yes Yes Yesb

Transf. kind Inplace

Outplace

(M2M &

M2T)

Inplace [5]

Outplace [6]

src/tar

reusability

Inplace

Outplace

src/tar

reusability

Inplace

Outplace

src/tar

reusability

Inplace Outplace

src/tar reusability

Scope Complete Complete Complete Partialc Partial

Abstrac. level Code Code Code Code Design
aPreprocessing of derived features for alignment
bBy additional code generators
cThrough refining transformations [5]

an adapter is needed to filter Class objects out of the elems relation (see last
line of binding). As a last step, the generic transformation is rewritten using the
bindings and the adapters.

4.3 A-posteriori Typing

A-posteriori typing [7] permits classifying objects by classes different from the
ones used to initially create the objects, and hence enables multiple, partial,
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Container
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0..1
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Classpacks
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*
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post : self.roots.…
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Fig. 7. Binding of concept to metamodel, and MT adaptation (sketch)

Container

Element 0..1

*subs

0..1
* roots

container

Goal

0..1

*
subgoals

Goal.allInstances()->select(g | g.parent.oclIsUndefined()) → Container
subgoals → roots

Goal.allInstances()->select(g | not g.parent.oclIsUndefined()) → Element
parent → container
subgoals → subs

parent

Fig. 8. A-posteriori instance-level specification for the flattening of goal models

dynamic typings. This approach allows opportunistic reuse as MTs defined for
a metamodel can be reused with other models after being reclassified. In this
way, MTs become highly reusable as, similar to Java interfaces, one can design
metamodels whose goal is not object creation, but to serve as a type for MTs.
Figure 5b shows the working scheme of this approach: a model typed by an arbi-
trary metamodel is assigned new types from the metamodel a MT was defined
on, and as a result, the MT can be executed as-is on the model.

A-posteriori typing specifications can be type-level or instance-level. The
former induces a static relation between two metamodels, so that instances of
one can be seen as instances of the other. This mapping style is similar to those
in model typing. Instance-level specifications are more expressive than type-level
ones, as they permit classifying objects by queries that assign a given type to the
result of the query. This typing is dynamic because classification may depend
on the run-time value of the object properties, which may evolve. Moreover, it
allows an object to have multiple a-posteriori types.

Figure 8 shows an instance-level a-posteriori specification to reuse the flat-
tening transformation with goal models. In particular, all Goal objects with no
parent are retyped as Containers, all Goal objects with a parent goal are retyped
as Elements, and references are also retyped properly. When a goal model gets
retyped by this specification, the MT can be applied as-is on the model. This
instance-level example that partitions Goal objects into two sets at run-time
illustrates the power of dynamic match evaluation, which among the surveyed
approaches is only supported by a-posteriori typing.
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4.4 Multilevel Modeling

Fig. 9. Reuse by multilevel modeling

Multilevel modeling was proposed in
[23] as a way to enhance flexibil-
ity in modeling by enabling an arbi-
trary number of metalevels and a
dual type/instance facet for model
elements, so that they are instances
with respect to the metalevel above,
and types with respect to the meta-
level below. This approach facilitates
the definition of domain-specific meta-
modeling languages and families of
languages [8], which can be iteratively refined in successive metalevels to account
for domain-specific aspects. Model management operations defined in upper
metalevels become generic and applicable to the instances in direct and indi-
rect lower metalevels.

Figure 9 uses multilevel modeling to reuse the flattening transformation with
a metamodel for object-oriented design. The metamodel of the flattening trans-
formation needs to be promoted to a higher metalevel, and the object-oriented
design metamodel needs to be created as an instance of it. In this way, the trans-
formation can be applied on the object-oriented models created in the lower
metalevel.

4.5 Design Patterns for Model Transformations

Design patterns are artifacts reputed for reuse in software engineering. Unlike
the previous approaches, reuse must be planned for at design-time. The approach
in [9] introduces a DSL, called DelTa, to define design patterns for MTs. Given
a pattern in DelTa, a higher-order transformation (HOT) synthesizes a partial
MT that implements the pattern in a dedicated MT language by means of code
generation. A DelTa model describes an ordered set of rules containing abstract
entities and relations that can be matched (positively or negatively), created, or
deleted.

The top of Fig. 10 shows a design pattern in DelTa representing the flattening
operation that satisfies the specification in Fig. 1. It consists of three rules that
must be applied in this order on a given metamodel mm. It is thus an inplace
transformation. The roots rule creates a trace link (dotted arrow) from the con-
tainer to the root elements and removes the roots relation. In DelTa notation,
elements in gray shall be created, those in black shall be removed, and all oth-
ers are part of the constraint that shall be matched. Elements labeled with n0

are part of the negative constraint that shall not be matched. The closure rule
creates a trace link from the container to all sub-elements recursively (i.e., the
transitive closure). The leaves rule creates a roots relation from the container to
all elements with no sub-element. The Flatten design pattern and the mapping



Model Transformation Reuse Across Metamodels 103

Fig. 10. Binding of flattening design pattern to metamodel

are specified independently from the MT language. However, the HOT generates
its implementation in a specific MT language for a specific metamodel.

Using the notation in Fig. 5c for the MT patterns approach, MM corresponds
to the metamodel of DelTa (see [9]), rt is the Flatten design pattern, and MM ′

is the object-oriented design metamodel in this example. Then, similar to the
concepts approach, rt is reused by generating a MT tailored to MM ′.

5 Discussion

From the configurations shown in Table 1 for several MT reuse approaches, next,
we discuss their differences with regards to a number of properties: if reuse is
opportunistic or systematic, the customization techniques used to adapt a MT
to a particular context, the customization ease and expressiveness, the overhead
at execution time, and the properties guaranteed by the approaches. Table 2
synthesizes the results.

To reuse a MT, it is first necessary to make it reusable. This can be done
a priori when the MT is defined (i.e., systematic reuse) or a posteriori when
the MT is reused (i.e., opportunistic reuse). Model typing, concepts, a-posteriori
typing and multilevel modeling support both kinds of reuse. For opportunistic
reuse, the former two provide slicing mechanisms to extract the relevant part of
the metamodel used by the MT [18], and for planned reuse, they support the
definition of the MT on a generic metamodel (called abstract in model typing
and concept in the concepts approach) which is the minimal metamodel the
MT requires. Multilevel modeling uses promotion (i.e., pulls a metamodel one
metalevel up) to handle opportunistic reuse, and it creates deep metamodels
(i.e., which can be instantiated in successive metalevels) for systematic reuse. In
a-posteriori typing, there is no specific technique to simplify opportunistic reuse,
while for systematic reuse one can create a role metamodel [7] (i.e., its primary
goal is not instantiation but retyping). Patterns are only relevant for systematic
reuse, where abstract patterns are made available to be applied on a specific
metamodel.
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Table 2. Comparison of model transformation reuse approaches

Model-typing Concepts A-posteriori Multilevel MT patterns

Reusing existing

MT

(opportunistic)

Slicing Slicing Free Promotion N.A.

Making a MT

reusable

(systematic)

Abstract MM Generic MM

(concept)

Role MM Deep MM Design pattern

Customization

technique

Adapter +

Mappings

Adapter +

Mappings

Adapter +

Mappings

Instantiation Mappings

Customization ease Low to high Low to high Low to high Medium to

high

High

Customization

expressiveness

High

(polymorphic

reuse)

Medium-

high

(parametric

reuse)

Very high

(multi-

matching,

dynamic)

Medium

(instantiation)

Low (limited

matching)

Execution cost

overhead

Evaluation of

adapter at

run-time

None

(adapter

injected in

MT at

compile

time)

Evaluation of

adapter at

run-time

Traverse

typing

relations at

run-time

None (MT excerpt

generated from

pattern)

Property

preservation

guarantees

Static typing,

polymorphism

Static

typing,

generics

Dynamic

typing,

constraint

solving

Static typing,

multilevel

Static typing,

generative

Once the MT rt is available for reuse, it is necessary to align the initial
metamodel MM over which it is defined, to the actual metamodel MM ′ on which
it is to be reused. Model typing, concepts, a-posteriori typing, and patterns rely
on syntactic mappings. When further customizations are required to apply rt in a
particular context, model typing, concepts, and a-posteriori typing also support
the definition of explicit adapters. Multilevel modeling relies on instantiation to
map the initial metamodel MM to the actual metamodel MM ′ one metalevel
below. In the case of patterns, the developer must typically refine the MT by
hand if the mapping is complex.

The complexity of the adapters depends on the syntactic distance between
the initial and actual metamodels. The cost to specify them can range from low
to high accordingly. Multilevel modeling requires a special metamodeling archi-
tecture, and patterns require an explicit definition of the mapping even in case
of an isomorphic alignment, while other approaches may infer it automatically.

Regarding the expressiveness of the mapping customization, model-typing
relies on polymorphic reuse and concepts on parametric reuse. A-posteriori typ-
ing supports in addition multi-matching (i.e., a model element can get several
a-posteriori types) and dynamic typing. Multilevel modeling uses instantiation
for customization, and patterns are limited to isomorphic matching.

The expressiveness for defining the customization comes with the cost of
its evaluation when the MT is reused. Model typing and a-posteriori typing
evaluate the adapters when the MT is called, and multilevel modeling follows
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a similar approach by traversing the typing relationships at run-time. However,
the added flexibility of a-posteriori typing for instance-level specifications may
incur run-time penalties, as object types are dynamically calculated by queries.
The concepts approach evaluates the adapters at compile-time to generate a
new MT fitting the new metamodel MM ′. The execution cost is not applicable
for patterns since they are reused at design-time [9], and then compiled into a
specific MT language.

Finally, the property preservation guarantee relies on the underlying theory
used by each approach. At design-time, model typing relies on polymorphic reuse,
concepts rely on parametric reuse, multilevel modeling relies on deep instantia-
tion, and patterns use a generative approach. A-posteriori typing uses constraint
solving at design-time to discard potentially unsafe matchings, but the correct-
ness guarantees are limited by the bounded search of the constraint solver [7].

Altogether, the discussed approaches cover most features in the feature
model, but a few remain uncovered. Two specification styles are not favored by
any approach. First, with respect to intensional specification of mappings, they
are either evaluated statically (in model types) or dynamically (in a-posteriori
typing); however, having user-defined evaluation points in the transformation
execution is unexplored. As for the level of mappings, they are either across
levels (instantiation for multilevel modeling, and typing for patterns) or intra-
level between metamodels (the rest); however, no approach supports intra-level
mappings between models. This latter specification style could be realized by
mapping the model elements to be transformed to the elements in reused rules,
which would lead to highly customized but very costly reuse specifications.

Other uncovered options relate to the functionality offered by the reuse mech-
anism. First, supporting semantic checkings (i.e., in line with the so-called trans-
formation “intents” [17,24]) would be a way to further characterize correct reuse
contexts by expressing requirements on the expected (possibly dynamic) seman-
tics of the reuse context. To our knowledge, there is no approach enabling the
definition or checking of MT intents. Another uncovered feature is supporting
multiple occurrences (i.e., reusing several instances of a MT). This would need
mechanisms for composing and synchronizing the multiple MT occurrences, in
line with “localized transformations” [25] or “flexible instantiation policies” [26].
More generally, automated mechanisms for composing a MT out of reused partial
MTs are not exploited by the analyzed approaches. This is so as all approaches –
except patterns – see the reused MT as a black box. In patterns, one can manu-
ally compose reused MTs, but none of the approaches have facilities to automate
the composition process at the code level. That would require a combination with
internal composition techniques like [27,28].

6 Related Work

Reuse of MDE-related artefacts, like metamodels [5] and DSLs [8,22,29], is being
actively investigated. In this paper, we have focused on reuse of transformations
across metamodels, so-called inter-transformations in [2]. Other kinds of MT



106 J.-M. Bruel et al.

reuse include intra-transformation reuse (i.e., reuse within a MT for the same
metamodel) and transformation composition. We refer to [2] for further details
on these kinds of reuse.

Intra-transformation reuse is typically specific for a transformation language.
Some of the proposed techniques include rules with variability [30], ATL module
superimposition [31], and rule inheritance [32]. Other internal composition mech-
anisms are phases, hooks [27] and unit combinators [28]. As mentioned in Sect. 5,
an interesting line of work is the combination of inter- and intra-transformation
reuse.

Several classifications of MT approaches [33] and tools [34] exist. The fea-
tures of some MT approaches, like parameterization or support for high-order
transformations, facilitate reuse. Most reuse approaches are independent of the
MT language. However, those that are dependent (like concepts [6]) benefit from
the declarative style of the MT language, as it simplifies the rewriting of the MT
specification.

For space constraints, we left out a detailed comparison with other reuse
approaches across metamodels, like [14–17]. Anyhow, these approaches were
taken into account when developing the proposed feature model. Mapping oper-
ators [14] are predefined adapters between metamodels, which by themselves
define a MT. In [15], a transformation requirement model is extracted from an
existing MT to describe the metamodels over which the MT can be reused. This
is similar to constraint-based model types [17], but while requirement models
use a DSL to express typing requirements, constraint-based model types use
logic. Finally, generic MTs [16] are similar to concepts, but specifying relations
between the type parameters is not possible, and there is limited support for
adaptation [16]. For comparison, we provide the feature model configuration of
those approaches at http://bit.ly/bellairs18.

7 Conclusion and Perspectives

To achieve true engineering of MDE solutions, mechanisms to scale up MT to
industrial practice – like reuse – are required. In this paper, we have analyzed and
classified approaches to MT reuse across metamodels in order to clarify the exist-
ing reuse options. We have provided a feature model mapping the current option
space, and identified gaps that signal opportunities for further research and chal-
lenges for the MT community. These include the specification and checking of
advanced semantic properties indicating a correct reuse [17], and the combina-
tion of intra- and inter-transformation reuse approaches.

In the future, we would like to outline guidelines for selecting the appropriate
reuse technique depending on the scenario. We also plan to expand our classi-
fication with a goal model to facilitate the decision on the reuse choice, and to
open the spectrum to other reuse scenarios. Analyzing how often are MTs reused
in practice and detecting reuse opportunities, e.g., using tools like [35], remain
as future work.

http://bit.ly/bellairs18


Model Transformation Reuse Across Metamodels 107

Acknowledgements. Work partially supported by the Spanish MINECO (TIN2014-
52129-R), the R&D programme of the Madrid Region (S2013/ICE-3006), the
Safran/Inria/CNRS collaboration GLOSE, and the Inria/CWI Associated Team ALE.

References

1. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (1992)
2. Kusel, A., et al.: Reuse in model-to-model transformation languages: are we there

yet? SoSyM 14(2), 537–572 (2015)
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