
Arend Rensink
Jesús Sánchez Cuadrado (Eds.)

 123

LN
CS

 1
08

88

11th International Conference, ICMT 2018
Held as Part of STAF 2018
Toulouse, France, June 25–26, 2018, Proceedings

Theory and Practice
of Model Transformation

Lecture Notes in Computer Science 10888

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

Arend Rensink • Jesús Sánchez Cuadrado (Eds.)

Theory and Practice
of Model Transformation
11th International Conference, ICMT 2018
Held as Part of STAF 2018
Toulouse, France, June 25–26, 2018
Proceedings

123

Editors
Arend Rensink
University of Twente
Enschede
The Netherlands

Jesús Sánchez Cuadrado
University of Murcia
Murcia
Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-93316-0 ISBN 978-3-319-93317-7 (eBook)
https://doi.org/10.1007/978-3-319-93317-7

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer International Publishing AG
part of Springer Nature
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-1714-6319
http://orcid.org/0000-0001-9755-5616

Foreword

Software Technologies: Applications and Foundations (STAF) is a federation of
leading conferences on software technologies. It provides a loose umbrella organization
with a Steering Committee that ensures continuity. The STAF federated event takes
place annually. The participating conferences and workshops may vary from year to
year, but they all focus on foundational and practical advances in software technology.
The conferences address all aspects of software technology, from object-oriented
design, testing, mathematical approaches to modeling and verification, transformation,
model-driven engineering, aspect-oriented techniques, and tools. STAF was created in
2013 as a follow-up to the TOOLS conference series that played a key role in the
deployment of object-oriented technologies. TOOLS was created in 1988 by Jean
Bézivin and Bertrand Meyer and STAF 2018 can be considered its 30th birthday.

STAF 2018 took place in Toulouse, France, during June 25–29, 2018, and hosted:
five conferences, ECMFA 2018, ICGT 2018, ICMT 2018, SEFM 2018, TAP 2018, and
the Transformation Tool Contest TTC 2018; eight workshops and associated events.
STAF 2018 featured seven internationally renowned keynote speakers, welcomed
participants from all around the world, and had the pleasure to host a talk by the
founders of the TOOLS conference Jean Bézivin and Bertrand Meyer.

The STAF 2018 Organizing Committee would like to thank (a) all participants for
submitting to and attending the event, (b) the Program Committees and Steering
Committees of all the individual conferences and satellite events for their hard work,
(c) the keynote speakers for their thoughtful, insightful, and inspiring talks, and (d) the
Ecole Nationale Supérieure d’Electrotechnique, Electronique, Hydraulique et
Télécommunications (ENSEEIHT), the Institut National Polytechnique de Toulouse
(Toulouse INP), the Institut de Recherche en Informatique de Toulouse (IRIT) for
hosting us and for their support. A special thanks goes to all the members of the
Software and System Reliability Department of the IRIT laboratory and the members
of the INP-Act SAIC, coping with all the foreseen and unforeseen work to prepare a
memorable event.

June 2018 Marc Pantel
Jean-Michel Bruel

Preface

This volume contains the papers presented at ICMT 2018: the 11th International
Conference on Model Transformation held during June 25–26, 2018, in Toulouse,
France, as part of the STAF 2018 (Software Technologies: Applications and Foun-
dations) conference series. ICMT is the premier forum for researchers and practitioners
from all areas of model transformation.

Modeling is a key element in reducing the complexity of software systems during
their development and maintenance. Model transformations are essential for elevating
models from documentation elements to first-class artifacts. Transformations also play
a key role in analyzing models to reveal conceptual flaws or highlight quality bottle-
necks and in integrating heterogeneous tools into unified tool chains.

Model transformation encompasses a variety of technical spaces, including mod-
elware, grammarware, dataware, and ontoware, a variety of model representations, e.g.,
trees vs. graphs, and a variety of transformation paradigms including rule-based
transformations, term re-writing, and manipulations of objects in general-purpose
programming languages. Moreover, in other fields such as compiler construction, the
use of transformations is likewise essential. Identifying means to reuse and share
knowledge between fields is also of interest.

The study of model transformation includes foundations, structuring mechanisms,
and properties, such as modularity and composability, transformation languages,
techniques, and tools. An important goal of the field is the development of high-level
model transformation languages, providing transformations that are amenable to
higher-order model transformations or tailored to specific transformation problems. At
the same time, usable and scalable verification techniques for model transformations
are essential for the practical development of the field. Another key challenge is the
efficient execution of model queries and transformations by scalable transformation
engines. Novel algorithms as well as innovative (e.g., distributed) execution strategies
and domain-specific optimizations are sought in this respect. Model transformations
have become artifacts that need to be managed in a structured way, resulting in
developing methodology and tools to deal with versioning, (co-)evolution, reuse, etc.
Correctness of model transformations has to be guaranteed as well.

This year ICMT 2018 received 24 submissions. Each submission was reviewed by
three Program Committee members. After an online discussion period, the Program
Committee accepted nine papers as part of the conference program. These papers
included research, application, and tool demonstration papers presented in the context
of four sessions on verification of model transformations, model transformation tools,
transformation reuse, and graph transformations. In addition, we had an invited paper
by our keynote speaker, Markus Voelter, about the design and evolution of KernelF.

A lot of people contributed to the success of ICMT 2018. We are grateful to the
Program Committee members and reviewers for the timely delivery of thorough
reviews and constructive discussions under a very tight review schedule. We also thank

Markus Voelter for his excellent keynote talk. Last but not least, we would like to thank
the authors, who constitute the heart of the model transformation community, for their
enthusiasm and hard work.

The organization of STAF made for a successful conference. We thank the local
organizers, and in particular the general chairs, Marc Pantel and Jean-Michel Bruel; and
we thank the Ecole Nationale Supérieure d’Electrotechnique, Electronique, Hydrauli-
que et Télécommunications (ENSEEIHT), the Institut National Polytechnique de
Toulouse (Toulouse INP), and the Institut de Recherche en Informatique de Toulouse
(IRIT) for hosting us and for their support.

June 2018 Arend Rensink
Jesús Sánchez Cuadrado

VIII Preface

Organization

Program Committee

Anthony Anjorin Paderborn University, Germany
Rubby Casallas University of Los Andes, Colombia
Marsha Chechik University of Toronto, Canada
Antonio Cicchetti Mälardalen University, Sweden
Benoit Combemale IRIT, University of Toulouse, France
Davide Di Ruscio Università degli Studi dell’Aquila, Italy
Juergen Dingel Queen’s University, Canada
Gregor Engels University of Paderborn, Germany
Martin Gogolla Database Systems Group, University of Bremen,

Germany
Esther Guerra Universidad Autónoma de Madrid, Spain
Soichiro Hidaka Hosei University, Japan
Ludovico Iovino Gran Sasso Science Institute, Italy
Frédéric Jouault TRAME Team, ESEO, France
Timo Kehrer Humboldt-Universität zu Berlin, Germany
Dimitris Kolovos University of York, UK
Leen Lambers Hasso-Plattner-Institut, Universität Potsdam, Germany
Yngve Lamo Western Norway University of Applied Sciences,

Norway
Tanja Mayerhofer Vienna University of Technology, Austria
Richard Paige University of York, UK
Bernhard Rumpe RWTH Aachen University, Germany
Houari Sahraoui University of Montreal, Canada
Andy Schürr TU Darmstadt, Germany
Eugene Syriani University of Montreal, Canada
Gabriele Taentzer Philipps-Universität Marburg, Germany
Massimo Tisi Inria, France
Mark Van Den Brand Eindhoven University of Technology, The Netherlands
Hans Vangheluwe University of Antwerp, Belgium, and McGill

University, Canada
Daniel Varro Budapest University of Technology and Economics,

Hungary
Edward Willink Willink Transformations Ltd., UK
Manuel Wimmer Business Informatics Group, Vienna University

of Technology, Austria
Vadim Zaytsev University of Amsterdam, The Netherlands
Steffen Zschaler King’s College London, UK

Additional Reviewers

Bertram, Vincent
Bousse, Erwan
Burgueno, Loli
Cleophas, Loek
Eikermann, Robert
Kuhlmann, Mirco
Kästner, Andreas

Leblebici, Erhan
Michael, Judith
Neubauer, Patrick
Rabbi, Fazle
Sohr, Karsten
Zolotas, Athanasios

X Organization

Contents

Invited Paper

The Design, Evolution, and Use of KernelF: An Extensible
and Embeddable Functional Language . 3

Markus Voelter

Full Papers

Virtual Network Embedding: Reducing the Search Space
by Model Transformation Techniques . 59

Stefan Tomaszek, Erhan Leblebici, Lin Wang,
and Andy Schürr

Schema Transformations and Query Rewriting in Ontological Databases
with a Faceted Interface . 76

Tadeusz Pankowski

Model Transformation Reuse Across Metamodels:
A Classification and Comparison of Approaches . 92

Jean-Michel Bruel, Benoit Combemale, Esther Guerra,
Jean-Marc Jézéquel, Jörg Kienzle, Juan de Lara, Gunter Mussbacher,
Eugene Syriani, and Hans Vangheluwe

Systematic Recovery of MDE Technology Usage . 110
Juri Di Rocco, Davide Di Ruscio, Johannes Härtel,
Ludovico Iovino, Ralf Lämmel, and Alfonso Pierantonio

Technical Debt in Model Transformation Specifications 127
Kevin Lano, Shekoufeh Kolahdouz-Rahimi,
Mohammadreza Sharbaf, and Hessa Alfraihi

CoqTL: An Internal DSL for Model Transformation in Coq 142
Massimo Tisi and Zheng Cheng

A Formal Framework for Prototyping Executable Semantics in ATL 157
Artur Boronat

Tool Demonstration Papers

Scalable Queries and Model Transformations with the Mogwaï Tool 175
Gwendal Daniel, Gerson Sunyé, and Jordi Cabot

NMF: A Multi-platform Modeling Framework . 184
Georg Hinkel

Author Index . 195

XII Contents

Invited Paper

The Design, Evolution,
and Use of KernelF

An Extensible and Embeddable Functional Language

Markus Voelter(B)

Stuttgart, Germany
http://voelter.de

Abstract. KernelF is a functional language built on top of MPS. It is
designed to be highly extensible and embeddable in order to support its
use at the core of domain-specific languages, realising an approach we
sometimes call Funclerative Programming. “Funclerative” is of course a
mash-up of “functional” and “declarative” and refers to the idea of using
functional programming in the small, and declarative language constructs
for the larger-scale, often domain-specific, structures in a program. We
have used KernelF in a wide range of languages including health and
medicine, insurance contract definition, security analysis, salary calcula-
tions, smart contracts and language-definition. In this paper, I illustrate
the evolution of KernelF over the last two years. I discuss requirements
on the language, and how those drove design decisions. I showcase a cou-
ple of the DSLs we built on top of KernelF to explain how MPS was used
to enable the necessary language modularity. I demonstrate how we have
integrated the Z3 solver to verify some aspects of programs. I present the
architecture we have used to use KernelF-based DSLs in safety-critical
environments. I close the keynote with an outlook on how KernelF might
evolve in the future, and point out a few challenges for which we don’t
yet have good solutions.

Keywords: Domain-specific languages · Language modularity
Functional Language · Language engineering · Meta programming

1 Introduction

1.1 Funclerative Programming

Functional programming is suitable for programming in the small [6], for com-
pact algorithms. It is not ideally suited for programming in the large. Reasons
include the lack of means for grouping functions into interfaces, hiding infor-
mation, and defining contracts. To compensate for this, languages combine the
functional paradigm with other paradigms, such as object-oriented programming
in Scala [20]. Higher-level frameworks such as MapReduce [5] also provide more

M. Voelter—Independent/itemis.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Rensink and J. Sánchez Cuadrado (Eds.): ICMT 2018, LNCS 10888, pp. 3–55, 2018.
https://doi.org/10.1007/978-3-319-93317-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93317-7_1&domain=pdf

4 M. Voelter

coarse-grained control over program execution that goes beyond the typical
building blocks of functional languages: function calls, higher order functions
and monads.

KernelF combines functional programming in the small, and declarative
structures and behaviours in the large, in an approach we sometimes call “fun-
clerative programming”. Instead of using one particular paradigm for providing
coarse-grained behaviors and structure to programs, we extend a functional core
language with custom, domain-specific abstractions.

1.2 Domain-Specific Languages

The need for custom abstractions on top of a functional core arises from domain-
specific languages (DSLs). In our industry work, we1 develop many different
DSLs in a wide variety of different domains (we show a few examples in Sect. 5).
All except the very trivial ones require a “calculation core”: arithmetics, com-
parison, logical expressions, as well as functions, records and enums. Functional
programming is perfectly suited for this task, because the lack of side-effects
makes programs easy to analyse, and hence, safe to integrate into a DSL.

However, for most real-world DSL, functional abstractions alone are not suf-
ficient. Instead, higher-level abstractions for the coarse-grained, often stateful
behaviors are required, such as state machines, data flow or imperative pro-
gramming. Finally, these DSLs operate on domain-specific data structures such
as treatment logs in healthcare, insurance products or contract definitions in
logistics. Constructing these from functional abstractions (or classes/objects)
alone is not practical, since the result would be too limiting in terms of notation,
static analyzability and IDE support. Thus, a three layer architecture for DSLs
is typical in our work:

– Layer 1: Functional abstractions
– Layer 2: Higher-level behaviors, based on established paradigms
– Layer 3: Domain-specific data structures

1.3 A Reusable Functional Kernel Language

The domain specificity resides mostly in layers two and three, so there is poten-
tial for reuse of the functional abstractions of layer one. KernelF, the language
discussed in this paper, is a functional language optimized for reuse as layer one.
To make this feasible, it must be extensible, restrictable and configurable.

Extension. Extension refers to adding additional language constructs to the
language. For example, if KernelF is used to express guard conditions in the
transitions of state machines, it must be possible to add new expressions that
refer to the parameters of the events that trigger the transition. This must be
possible without invasively modifying the definition of KernelF itself, and the

1 ‘We’ refers to the team of languages engineers at itemis Stuttgart.

The Design, Evolution, and Use of KernelF 5

extension must comprise structure, notation, scoping and type systems. To fur-
ther enhance the potential for reuse, independently developed extensions should
be combinable, again without invasive modification of the definition of any of
the used languages (a feature called extension composition in [9]).

Restriction. This refers to the ability to not expose certain language concepts
to the end user; for example, a DSL might not need support for enums or option
types, so it must be possible to remove all traces of those concepts from KernelF
when it is used in a particular DSL. In particular, the associated keywords should
not be recognised and the IDE should not propose all related concepts in the
code completion menu.

Configurability. In KernelF, this refers specifically to the ability to replace
the primitive types. Often, a DSL will come with its own notion of numbers or
strings, and those must then be used by KernelF. This is not exactly the same
problem as restriction or extension because the type system will internally rely
on those primitive types. Consider a size operation; the type system must type
this operation to whatever (positive) integral type used by the surrounding DSL,
so the primitive types used by built-in operators must be configurable.

1.4 Design Guidelines for the Use in DSLs

KernelF is intended to be used as the calculation core of DSLs. Many of the users
of these DSLs may not be programmers – most will certainly not be experts
in functional programming. To make the language suitable for this purpose,
it should adhere to the following guidelines, in addition to being extensible,
restrictable and configurable, as discussed above.

Simplicity. Users should not be surprised or overwhelmed. Thus, the language
should use familiar or easy to learn abstractions and notations wherever possi-
ble. Advanced concepts, such as function composition or monads are not suit-
able. More generally, the ability to allow users to define their own (structural or
behavioral) abstractions in their programs can be limited (in the service of the
goal of simplicity), because those can be provided in domain-specific language
extensions. A subrequirement of simplicity is readability; it is particularly rel-
evant because many of the potential users who write KernelF code will start out
by reading KernelF code when reviewing code written by other users. Scaring
prospective users away during the reading phase is not helpful.

Robustness. Since the users of the DSLs that embeds KernelF may not be expe-
rienced programmers the language should not have features that make it easy
to make dangerous mistakes (such as pointer arithmetics, unbounded strings or
overflow for numbers). To the contrary, the language should make “doing the
right thing” easy. For example, handling errors should be integrated into the
type system as opposed to C’s approach of making checking of errno completely
optional. It should also enable advanced analyses, for example, to detect unhan-
dled cases in switch-style constructs.

6 M. Voelter

IDE Integration. DSLs must come with good an IDE, otherwise they are
not accepted by users. This means that the language should be designed so
that it can be supported well by IDEs. Such support includes code completion,
type checking, refactoring and debugging. IDE support is a way of achieving
writability, i.e., the ease with which code can be written. Writability is often
at odds with readability, which is why we optimize the syntax, once written,
for readability, and use IDE support to simplify writing code. In addition, pro-
grams should be executable with a short turnaround, to support end users to
“play”with the programs. Seeing what a program does is often easier for inexpe-
rienced users than imagining a program’s behavior based on the program code.

Portability. The various languages into which KernelF is embedded use differ-
ent means of execution such as code generation to Java and C, direct execution
by interpreting the AST as well as transformation into intermediate languages
for execution in cloud or mobile applications. KernelF should not contain fea-
tures that prevent execution on any of these platforms. Also, while not a core
feature of the language, a sufficient set of language tests should be provided to
align the semantics of the various execution platforms.

1.5 Language Engineering and MPS

KernelF, and all the DSLs discussed in this paper, are built with Jetbrains
MPS.2 MPS is a language workbench [10], a tool for developing ecosystems of
languages. MPS has been used for many interesting and significantly-sized lan-
guages over the last years, the biggest one probably being mbeddr [27,30], a set
of C extensions optimized for embedded programming. MPS supports a wide
range of modular language composition, in particular, extension and restriction
are supported directly [24]. This is possible because of two fundamental proper-
ties of MPS. First, it relies on a projectional editor. Because projectional editors
do not use parsing, no syntactic ambiguities arise when independently developed
languages are combined. Second, MPS has been designed to not just develop one
language, but ecosystems of collaborating languages. The formalisms for defin-
ing structure, type systems and scopes have all been designed with modularity
and composition in mind; some details on language development with MPS as
well as the general MPS language design philosophy is explained in [26]. We
analyze MPS’ suitability for modular language composition based on experience
with mbeddr in [28] (the paper also evaluates MPS more generally). MPS’ pro-
jectional editor also allows the use of a wide range of different notations such
as tables, diagrams, math symbols as well as structured (“code”) and unstruc-
tured (“prose”) text [29], a feature we exploit extensively in the construction
of DSLs. Projectional editors have historically had a bad reputation regarding
usability. However, recent advances as implemented natively in MPS and in an
extension called grammar cells [31] lead to good editor productivity and user
acceptance [2].

2 https://www.jetbrains.com/mps/.

https://www.jetbrains.com/mps/

The Design, Evolution, and Use of KernelF 7

2 KernelF Overview

2.1 Language

In this Sect. 1 point out the most important language features of KernelF. For
all of them, [25] provides more details and code examples; for many of these
features we also show examples part of the case studies in Sect. 5.

Purity and Effects. At its core, KernelF is a pure language. All expressions
are effect-free. There are no variables, only named (local and global) values. All
values, including collections are immutable. Of course, no sensible program can
be written this way; but it is expected that the hosting DSL has domain-specific
means of dealing with state. The core language thus supports effect tracking;
each expression can describe whether it performs a read or modify effect.

Types, Literals and Operators. KernelF comes with Boolean and string
types which work as one would expect. Numeric types comprise int and real,
even though they are constrained out of the language in most of the DSLs.
Instead, the number[min|max]{decimals} type is used, where the range and
precision are explicitly specified. The type system performs range calculations
for added type safety, and a change of the number of decimals has to be per-
formed explicitly. The usual operators are defined on those types. No null
values are supported, instead, the language supports option types (written
as opt<T> for any type T). Type checking is static, and most types can be
inferred (exceptions are function arguments, record members and return types
for recursive functions). Finally, KernelF supports type definitions written as
type <name>: <OriginalType>, useful for numbers with ranges/precisions, col-
lections, and constraints (see below).

Loops and Conditionals. KernelF has no loops (except higher-order functions
on collections). The basic if < cond > then < expr − 1 > else < expr − 2 >
distinguishes between two cases, whereas alt| < cond − 1 >⇒< expr − 1 > ...
< cond − n >⇒< expr − n > |, laid out vertically, evaluates to expr-i if cond-i
holds. if is also used to test options: if isSome(v) then v else w returns a T
if v is of type opt<T> and v actually contains a value; it returns w if v contains a
none. Various additional conditionals, in particular, decision tables and decision
trees, are supported as part of a language extension.

Functions and Blocks. Functions use the usual syntax. Argument
types have to be specified, the return type can be inferred except
for recursive functions. The block expression, which is used instead of
let, is written as {<expr-1> ... <expr-n> <expr-ret>}, laid out ver-
tically. The block evaluates to <expr-ret>, and all other expressions
must either have an effect or must be local values that are referenced
downstream, written as val v = <expr>. Function types are written as
(T-1, T-2, ... T-n => T). Values of function types can executed using
the () operator. Currying is supported via f.bind(v) if f is a function
value. Lambdas are written as |a-1: T-1, ... a-n: T-n: <expr>| or, for
lambdas with one argument which is then named it, as |... it ...|.

8 M. Voelter

References to functions (which can be used as values for function types) are
written as :f for any function f. KernelF also supports extension functions
where the first argument can be written as the left side of a dot expression.

Error Handling. Language support for error handling relies on attempt
types. Typically used with functions, if the function returns a T plus
one of several errors, then the return type is attempt<T|E-1,... E-n>
where the Es are error literals. Error values can be returned using
error(E); clients can react to errors using try <expr> => <success>
error <E-1> => <expr-1> ... error <E-n> => <expr-n>, where <expr>
has an attempt type, and the overall try evaluates to <success> if <expr>
does not represent an error, or one of the <expr-i> if expr evaluates to an error
literal E-i.

Collections. Lists, sets and maps are supported, together with the usual higher-
order functions. Collections specify their element type, plus an optional size
constraint, e.g. list<T>[min|max]. Literals use the same keyword; for example,
set(1, 2, 3) or map("Joe" => 12, "Jim" => 100).

User-Defined Types. KernelF supports enums, both plain and with asso-
ciated values. Tuples are supported as well, their types are written as
[<T-1>, ... <T-n>] and their values are written as [<expr-1>, ...
<expr-n>]. Member are accessed positionally, using array-access notation
(tuplevalue[p]). Records are declared using a Pascal-like notation, record
values are constructed via #T(<expr-1>, ..., <expr-n>) or a semi-graphical
build<T> expression. Members are accessed using dot notation.

Constraints. KernelF supports constraints that are checked at runtime. They
appear in several places, usually after the where keyword. type definitions can
constrain the values; records can constrain their members, function can define
pre- and postconditions, which typically constrain parameters or return values.

Boxes and Transactions. KernelF makes the notion of mutable state explicit
through boxes. A value v of type box<T> represents an immutable refer-
ence to a mutable “memory location”, of type T (similar to refs in Clo-
jure [14]). The box contents can change over time, but each value in the
box is immutable. v.val accesses the value inside the box, v.update(<expr>)
sets the contents of the box to expr. Inside the update, the it expres-
sion represents the current value; this way, evolutions of the box contents
can be written in a compact form, as in this example for a box lb of type
box<list<string>>, where an additional value is appended to the contents of
the box: lb.update(it.plus("additionalEntry")). To make working with
boxes safe, .val has a read effect, and update has a modify effect. Modifica-
tions to multiple boxes can be grouped into transactions. An failed update to
any box, for example, because of a violation of a type constraint, rolls back the
updates on all boxes.

State Machines. Once we had boxes to store evolving state, it was obvious that
we need first-class support for expressing behavior that depends on state, i.e.,

The Design, Evolution, and Use of KernelF 9

state machines. KernelF state machines declare states, one of them initial, and
the states can also be nested. Machines also declare events, which can optionally
have arguments. State machines are passive, i.e., they have to be actively trig-
gered by passing an event (and optionally, arguments) into an instance. A state
owns transitions which, reacting to an event, bring the machine into a new target
state. There are also automatic transitions that can be triggered by timeouts or
other implicitly occurring events. State machines support entry and exit actions
on states as well as transition actions.

2.2 Definition of the Semantics

The semantics of KernelF are given by the interpreter that ships with the lan-
guage, together with a sufficiently large amount of test cases. No other formal
definition of the language semantics is provided. To align the semantics of gen-
erators with the reference semantics given by the interpreter, one can simply
generate the test cases to the target platform and then run them there – if all
pass, the (relevant, functional) semantics are identical.

2.3 Tooling

Similar to the previous subsection, this one provides an overview over the tooling
provided for KernelF; details are in [25]. Tooling is crucial for the acceptance of
DSLs with their users, and all tooling discussed here for the core of KernelF is
also available for the DSLs built on top of KernelF.

An IDE, implicitly provided by MPS, supports the usual editor features
(syntax coloring, formatting, error markup, code completion, go to definition,
find usages, tooltips) as well as version control integration including diff/merge
support for arbitrary syntax. An interpreter is integrated directly into the IDE,
supporting live execution of (suitably structured) programs. The interpreter is
implemented in Java. A code generator to Java is available because most of the
DSLs we build are ultimately mapped to Java code. To make semantic alignment
with the interpreter easier, the generated code relies on the same persistent col-
lections library as the interpreter, and also uses Java’s BigInteger/BigDecimal
for numbers. A read-eval-print-loop (REPL) is available for interactive use
of the language. A debugger is available, it relies on rendering the execution
trace as a tree, and overlaid directly over the code. One language module of
KernelF supports writing tests, and, relying on the interpreter, they can be
executed directly in the IDE, leading to the usual red/green visual feedback,
directly in the code. Taken together, the REPL, tests, interpreter and debugger
lead to a very “live” programming experience with quick feedback. To ensure
test quality, KernelF supports coverage measurement, both structural (are
all language features used, and how) and relative to the interpreter (are all
parts of the interpreter executed). KernelF’s test infrastructure also supports
test case generation for language constructs that take arguments lists (func-
tions, records) as well as mutation testing with interactive visualisation of the
mutated code. Finally, we are in the process of integrating KernelF with the Z3
solver to provide advanced error checking.

10 M. Voelter

3 Design Decision

Based on the goals for KernelF outlined in Sect. 1, we have made the design
decisions outlined in this section.

3.1 General Design Decisions

Static Types. KernelF is statically typed. This means that every type is known
by the IDE (as well as the interpreter or generator). If a user is interested in the
type of an expression, they can always press Ctrl-Shift-T to see that type. This
helps with the design goals of [simplicity] and [idesupport], but also with
[robustness], because more aspects of the semantics can be checked statically
in the IDE. For example, the number ranges discussed below are an example of
such advanced checks.

Numeric Types. Instead of int and real types known from programming
languages, KernelF uses the number[min|max]{prec} type. This is motivated
primarily be [robustness] because it supports more end-user relevant checks.
The type system performs simple range computations, such as those listed below.

– Number literals have a type that has a singleton range based on
their value and number of decimal digits (e.g., 42.2 has the type
number[42.2|42.2]{1}.

– Supertypes of numeric types merge the ranges (for example, the supertype of
number[5|5], number[10|20] and number[30|50] is number[5|50]. This is
an over approximation (i.e., simplification in the type system implementa-
tion), because the type system could know that, for example, the value 25
is not allowed. However, to implement this, a number type would have to
have several ranges; we decided that this would be too complicated (both
for users and the language implementor) and induce performance penalties in
type checking; so we decided to live with the over approximation.

– For arithmetic operations (currently +, -, * and /), the type system com-
putes the correct result ranges; for example, if variables of type number[0|5]
and number[3|8] are added, the resulting type is number[3|13].

– A division always results in an infinite precision value; if a different precision
is required, the prevision<>() operator has to be used.

We are making the simplifying tradeoffs consciously, because, in the extreme,
we would have to implement a type system that supports dependent types (or
abstract interpretation of code); this is clearly out of scope.

Type Inference. To avoid the need to explicitly specify types (especially the
attempt types, collections and number types can get long), KernelF supports
type inference; this supports both [readability] and [writeability]. The
types of all constructs are inferred, with the following exceptions:

– Arguments and record members always require explicit types because they
are declarations without associated expressions from which to infer the type.

The Design, Evolution, and Use of KernelF 11

– Recursive functions require a type because our type system cannot figure out
the type of the body if this body contains a call to the same function.

If a required type is missing, an error message is annotated. Users can also use
an intention on nodes that have optional type declarations (functions, constants)
and have the IDE annotate the inferred type.

No Generics. KernelF does not support generics in user-defined functions,
another consequence of our goal of [simplicity]. However, the built-in col-
lections are generic (users explicitly specify the element type) and operations
like map, select, or tail retain the type information thanks to the type system
implementation in MPS. Domain-specific extensions can also define their own
“generic” language extensions, similar to collections.

Option and Attempt Types. To support our goal of [robustness], the type
system supports option types and attempt types. Options force client code to
deal with the possibility of null (or none) values in programs. Similarly, attempt
types deal systematically with errors and force the client code to handle them
(or return the attempt type to its own caller).

No Exceptions. KernelF does not support exceptions. The reason is that these
are hard or expensive to implement on some of the expected target platforms
(such as generation to C); [portability] would be compromised. Instead,
attempt types and the constraints can be used for error handling.

No Reflection or Meta Programming. By deciding to rely on the language
engineering capabilities of MPS, the language does not require an elaborate
reflective type system (like Scala) or meta programming support to enable exten-
sion and embedding.

No Function Composition and Monads. We decided not to implement full
support for monads; for our current use cases, this is acceptable and keeps the
implementation of the type system simpler, which supports our goal of exten-
sibility. Note that, because many operations and operators for T also work for
opt<T>, users can defer dealing with options and errors until it makes sense to
them; no nested if isSome(...) ... are required.

Effect Tracking and Types. Effect tracking is not implemented with the
type system: an effect is not declared as part of the type signature of a func-
tion (or other construct). There are two reasons for this decision. First, for
various technical reasons of the way the MPS type system engine works, this
would be inefficient. Second, language extenders and embedders would have to
deal with the resulting complexity when integrating with KernelF’s type system.
Instead, the analysis is based on the AST structure and relies on implementing
the IMayHaveEffect interface and overriding its effectDescriptor method cor-
rectly. While this is simpler for the language implementor or extender, a draw-
back of this approach is an over approximation in one particular case: if you
declare a function to take a function type that has an effect, then, even if a call
passes a function without an effect, the call will still be marked as having an
effect:

12 M. Voelter

fun f*(g: (=>* string)) = g.exec()* // declaration
f*(:noEffect) // call

Not Designed for Building Abstractions. KernelF is not optimized for
building custom structural or behavioral abstractions. For example, it has no
classes and no module system. The reason for this apparent deficiency lies in
the layered approach to DSL design shown at the end of Sect. 1.2: the DSLs
in which we see KernelF used ship their own domain-specific structural and
behavioral abstractions. More generally, if sophisticated abstractions are needed
(for example, for concurrency), these can be added as first-class concepts through
language engineering in MPS.

There are also no algebraic data types. Option types and attempt types
can be seen as a special case of algebraic data types, but we decided against
implementing the general case for two reasons. The first reason is the general
non-need for building abstractions. And second, by making attempt and option
types first class, we can support them with special syntax and type checks (e.g.,
the try expression for attempt types) or by making an existing concept aware
of them (the if statement wrt. option types).

Keyword-Rich. In contrast to the tradition of functional languages, KernelF
is keyword-rich; it has relatively many first-class language constructs. There
are several reasons for this decisions, the main reason being simplified analyz-
ability: if a language contains first-class abstractions for semantically relevant
concepts, analyses are easier to build. These, in turn, enable better IDE support
(helping with [simplicity] and making the language easier to explore for the
DSL users) and also make it easier to build generators for different platforms
([portability]) Finally, in contrast to languages that do not rely on a language
workbench, the use of first-class concepts does not mean that the language is
sealed: new first-class concepts can be added through language extension easily.

3.2 Extension and Embedding

Here is a quick overview of the typical approaches used for extension of KernelF.
We illustrate all of them in our case studies in Sect. 5.

Abstract Concepts. A few concepts act as implicit extension points. They
are defined as abstract concepts or interfaces in KernelF, to enable extending
languages to extend these concepts. They include Expression itself, IDotTarget
(the right side of a dot expression), IFunctionLike (for function-like callable
entities with arguments), IContracted (for things with constraints) and Type
(as the super concept of all types used in KernelF). IToplevelExprContent is
the interface implemented by all declarations (records, functions, typedefs).

Syntactic Freedom. A core ingredient to extension is MPS’ flexibility regarding
the concrete syntax itself: tables, trees, math or diagrams are an important
enabler for making KernelF rich in terms of the user experience.

The Design, Evolution, and Use of KernelF 13

KernelF is Modular. The language itself is modular; it consists of several MPS
languages that can be (re-)used separately, as long as the dependencies shown in
Fig. 1 are respected. Importantly, it is possible to use only the basic expressions
(base), or expressions with functional abstractions (lambda). Nothing depends
on the simpleTypes, so these can be replaced by a different set of primitive
types (discussed below). We briefly discuss the dependencies (other than those
to base) between the languages and explain why they exist and/or why they do
not hurt:

– A: required because of higher-order functions (where, map) on collections
– B: path navigation usually also has 1:n paths, which requires collections
– C: repl is a utility typically used when developing larger systems, which

usually also use toplevel expressions; so the dependency does not hurt.
– D: tests are themselves top level elements; also, a dependency on toplevel

does not hurt for a test model.
– E: functions in toplevel require generic function-like support from lambda
– F: the transactions in mutable require the blocks from lambda.

Fig. 1. Dependencies between the language modules in KernelF.

Removing Concepts. In many cases, embedding a language into a host lan-
guage requires the removal of some of the concepts from the language. One way
of achieving this is to use only those language modules that are needed; see
previous paragraph. If a finer granularity is needed the host language can use
constraints to prevent the use of particular concepts in specific contexts. A con-
cept whose use is constraint this way cannot be entered by the user – it behaves
exactly as if it were actually removed from the language.

Exchangeable Primitive Types. Many DSLs come with their own primitive
types, so it is crucial that it is possible to not use kernelF.primitiveTypes

14 M. Voelter

when KernelF is embedded into a particular DSL. Preventing the user from
entering a particular type into the program can be achieved with the approach
described in the previous paragraph. However, the type system rules in the
kernelF.base language rely on primitive types (some built-in expressions must
be typed to Boolean or integer). This means that the types constructed in those
rules types must also be exchangeable. To make this possible, KernelF internally
uses a factory to construct primitive types. Using an extension point, the host
language can contribute a different primitive type factory, thereby completely
replacing the primitive types in KernelF.

Structure vs. Types. The types and the underlying typing rules can be reused
independent from the language concepts. For example, if a language extension
defines a its own data structures (e.g., a relational data model), the collection
types from KernelF can be used to represent the type of a 1:n relation.

Scoping. Scopes are used to resolve references. Every DSL (potentially) has
its own way of looking up constants, functions, records, typedefs or its own
domain-specific declarations. To make the lookup strategy configurable, KernelF
provides an interface IVisibleElementProvider. Host language root concepts
can implement this interface and hence control the visibility of declarations.

Overriding Syntax. Imagine embedding KernelF into a language that uses
German keywords: the keywords of KernelF must now be adapted. MPS’ support
for multiple editors for the same concepts makes this possible.

4 Evolution

Number Types. Initially, KernelF had been designed with the usual types for
numbers: int and float. However, even in our very first customer projects it
turned out that those numeric types are really too much focussed on the need
of programmers (or even processors), and that almost no business domain finds
those types useful. Thus we quickly implemented the number types as described
earlier. Since this happened during the first real-world use, this evolution did
not involve any migration of existing, real-world models of customers, making
the evolution process very simple.

Transparent Options and Attempts. Initially, option types and attempt
types were more restrictive than what has been described in this paper. For
example, if a value of option<T> is expected, users had to return some(t) instead
of just t. Similarly for attempt types: users had to return a success(t). Options
and attempts also were not transparent for operators. For example, the following
code was illegal, users first had to unpack the options to get at the actual values,
which lead to hard to read nested if expressions.

val something : opt<number> = 10
val noText : opt<string> = none
something + 10 ==> 20 <option[number[-inf|inf]{0}]>
noText.length ==> none <option[number[0|inf]{0}]>

The Design, Evolution, and Use of KernelF 15

The reasons for the initial decision to do it in the more strict way were twofold.
One, we thought that the more explicit syntax would make it clearer for users
what was going on (less magic). Instead it turned out it was perceived as unin-
tuitive and annoying. The second reason was that the original explicit version
was easier to implement in terms of the type system and the interpreter, so we
decided to go with the simpler option.

The migration to the current version happened after significant end-user code
had been written, and so we implemented an automatic migration where possible:
all some(t) and success(t)were replaced by just t by migration script that was
automatically executed once users opened the an existing model once the new
language version was installed. The unnecessary unpackings were flagged with
a warning that explained the now possible simpler version. We expected users
to make the change manually because we were not able to reliably detect and
transform all cases, and because automated non-trivial changes to users’ code is
often not desired by users.

Enums with Data. Originally, enums were available only in the traditional
form, i.e., without associated values. However, it turned out that one major use
case for enums was to use them almost like a database table, where the structured
value of one enum literal would refer to another enum literal (through using
tuples or records as their value type):

enum T<TData> {
t1 -> #TData(100, true, u1)
t2 -> #TData(200, false, u2)
t3 -> #TData(300, true, u2)

}

enum U<number> {
u1 -> 42
u2 -> 33

}

Records. According to our own design goal to keep KernelF small and simple,
and in particular, the assumption that the host language would supply all (non-
primitive) data structures, we originally did not have records. However, it turned
out that this was a bad idea: records are useful as temporary data structures,
even if the hosting DSL defines the notion of a component, class or insurance
contract. Records are also useful for testing many other language constructs.
However we did not add advanced features to records, such as inheritance; we
reserve such features for host language domain-specific data types.

The internal implementation for records is based on interfaces. This way, it
is very easy for extension developers to create their own, record-like structures
that, for example, use custom syntax or support features such as inheritance.
This extension hook has been used in several KernelF-based DSLs by now.

Range Qualifiers. A very common situation is to work with ranges of numbers.
With the original scope of KernelF, for example, one could use an alt expression
to compute a value r based on slices of another value t:

16 M. Voelter

val r = alt | t < 10 => A |
| t < 10 && t < 20 => B | // or t.range[10..20]
| t > 20 => C |

However, as our users told us, this is perceived as unintuitive. The situation gets
worse once uses range checks as part of decision tables, where many more such
conditions have to be used. Our solution to this approach was to create explicit
range qualifiers, so one could write the following code:

val r = split t | < 10 => A |
| 10..20 => B |
| > 20 => C |

These are not really expressions, because, for example < 10 does not directly
specify on which value the check has to be performed; that argument is implicit
from the context. This is why these range qualifiers can only be used under
expressions that have been built specifically for use with range qualifiers. The
split expression is an example. We decided to make this part of the core KernelF
language instead of an extension because these constructs are used regularly.

Enhanced Effects Tracking. Originally, there was only one effect flag: an
expression either has an effect or it does not. However, when extending KernelF
with mutable data, it became clear that we must distinguish between read and
modify effects because, for example, a function’s precondition or a condition in
an if is allowed to contain expression that have read effects, but it is an error
for them to have write effects. Interpreting “has effect” as “has modify effect”
also does not work, because, even for expressions with read effects, caching is
invalid.

So far we have decided not to distinguish further between different kinds of
effects (IO, for example), because this distinction is irrelevant for our main use
of effect tracking, namely caching in the interpreter.

Mutable State. The initial plan for KernelF was to build a purely functional
language and leave all state handling to extensions. While this is still funda-
mentally the case, it turned out that a general framework for dealing with state
(beyond the declaration of effect discussed in the previous paragraph) is use-
ful. In particular, boxes enable the use of all functional/immutable data struc-
tures in a mutable way, and transactions handle the coordinated modification
of multiple box-style values. The functionality is implemented as a framework
(with interfaces such as IBoxValue or ITransactionalValue), and even if DSLs
define their own abstractions and syntax for dealing with state, the use of those
interfaces joins it together in a common semantic framework. This is why the
kernelf.mutable language extension is now part of KernelF.

5 Case Studies

In this section I will present languages we built that extend and/or embed Ker-
nelF. Basically, they are all used in real-world customer projects, even though I

The Design, Evolution, and Use of KernelF 17

took some liberty in assigning features to languages to make the discussion here
more compact. We will discuss three of them in detail in the next subsections.

Utilities. A reusable language extension that supports decision tables of various
shapes (actually rendered as tables), decision trees (actually rendered as trees),
math notation (sum symbols, fraction bars, roots). Examples are in Fig. 2. All
of these are Expressions and can (and are) used in many different languages.
The language also supports range specifiers (> 3 4..8) as well as type tags
(useful to, for example, track tainted data or required confidentiality levels, as
in fun publish(d: Data<!secret>, receiver: Address)).

Fig. 2. utils extension: decision trees, multi-valued decision tables and math symbols.

Solver Language. Many language concepts benefit from various checks with a
solver. For example, the decision trees and tables mentioned above can be checked
for completeness and overlap-freedom. To simplify the integration of the solver
with (domain-specific) language constructs, we have built an intermediate lan-
guage that abstracts over the solver API. It provides was of defining constrained
variables, as well as typical tasks for the solver, such as checking completeness,
consistency, equality, progressive refinement or subsetting of expressions. The
intermediate language itself makes use of KernelF to represent the expressions,
but uses different primitive types.

Healthcare. Voluntis’ mobile apps help patients with therapies and treatments.
The apps let users log data and they recommend actions such as taking a medi-
cation of a particular dose, behaving in particular ways or calling their medical
team. The algorithms in these apps are“programmed”by doctors and healthcare
professionals (HCP) using a KernelF-based DSL. The language reuses decision
tables and trees and supports component-based behavioral modules, in particu-
lar, state machines. A second language supports expressing test and simulation
scenarios. We discuss this language in detail in Sect. 5.3.

Salary/Tax Calculation. The purpose of this language is the specification of
algorithms for salary and tax calculations based on German law. We have build
extensions for ER-style data modeling as well as for calculation rules that re-
compute the data in a reactive way. The calculation rules and other declarations
can be polymorphic regarding their validity periods (the tax must be calculated
with rule A between until 2017, and then using rule B from 2018 onwards).
Finally, the language support temporal arithmetics, with operators overloaded

18 M. Voelter

to work with data whose value changes over time. Details about this language
are presented in Sect. 5.1.

Smart Contracts. We have developed a set of language extensions for effi-
ciently and reliably defining smart contracts that emphasize multi-party collab-
orative processes. The language extensions comprise state machines (which are
not specific to smart contracts), declarative abstractions for multi-party deci-
sions, agreements and auctions, as well as ways of declaratively preventing sev-
eral game-theoretical attack scenarios. This language also relies on boxes and
transactions to manage a contract’s state. Section 5.2 provides details.

Public Benefits. This system uses form-style syntax with embedded KernelF
expressions to let legal experts formalize German public benefits law (unem-
ployment payments, social welfare, old-age care support). In addition to the
forms, the system has domain-specific expressions for representing idioms in
public benefits payments. Finally, systematically representing the variability in
law between Germany’s 16 states is another challenge for which this language
provides custom-built abstractions and syntax.

Insurances. Insurance mathematicians use many conventions when writing
down there heavily numerical, recursive functions. For example, they distinguish
between iterator variables and parameters, where parameters remain constant
in (recursive) calls to functions that declare the same parameters (see Fig. 3).
Sameness is established by relating them to a common data dictionary defini-
tion, which is why the parameters do not declare types when they are used in
functions; those types are in the data dictionary. The language also relies heavily
on various forms of lookup tables.

Fig. 3. Definition of numerical, iterative insurance math formulas. Notice the calls to
l and D that pass the parameters implicitly. The type of q as defined in the data
dictionary (not shown) is a lookup table, which is why the lookup method is available.

Cloud-Based App Development. Our customer uses a proprietary object-
oriented programming language to develop and customize cloud-based applica-
tions. The language provides first-class support for their particular style of UIs
and persistence layer. KernelF is used as the functional core, the object-oriented
abstractions and a module system is built around it. Execution is based on

The Design, Evolution, and Use of KernelF 19

their own, existing cloud-based interpreter infrastructure, so KernelF (and their
embedding language) is transformed to their interpreter’s byte code format.

Systems Engineering. Several customers use MPS-based DSLs for systems
engineering, focusing on different aspects (such as structural modeling, perfor-
mance prediction, and security analysis). All reuse a common, hierarchical com-
ponent modeling language and a feature modeling language, both rendered in
their natural graphical notations. KernelF expressions are embedded in vari-
ous places, to define define type constraints on interfaces, to compute aggregate
attribute values, to propagate configuration values and to navigate over compo-
nent structures.

Meta Languages. As part of the Convecton3 project, a new browser-based
language workbench, we have developed a set of new meta languages which all
rely on KernelF regarding their functional core. The interesting challenges here
is the delineation between expressing behaviors functionally and domain-specific
declarative abstractions.4 The former are straight forward to build (and debug),
but the latter have advantages in terms of forward execution (for example, to
automatically derive quick fixes for errors). The code below illustrates a scope
definition that determines the valid targets for a reference. Note how it separates
the language feature (from) and path from the filter that selects targets; the
former two can be reused for the create parts.

scope FunCall::function -> pick from Module::declarations
path (node, prnt) = node.container<Module>.imported()

filter (node, prnt, candidate) = candidate.isPublic()
create (node, prnt, futureParent, prefix) = mkLabel(prefix)

at (node, prnt) = before(node.ancestor<Declaration>)

5.1 Salary/Tax Calculation

For this project, we have created several languages, as shown in Fig. 4. date is a
language or representing dates and some of their arithmetics. currency contains
types, literals and arithmetics for working with EUR currency. data provides
entities and their relationships. The core of the system is in the temporal and
calculation extensions. temporal contains temporal data types, literals and
arithmetics, and calculation contains to-be-computed data structures as well
as the rules to calculate them. In particular, the language supports the evolution
of calculation rules over time, a core feature for representing the changing tax
law. We discuss each of these languages in the remainder of this section.

Date Types. The system has to deal a lot with dates: people get married at
particular dates, their salary changes at particular points in time and a salary
calculation is valid for a particular month. So we need data types for dates, plus
arithmetic operations for adding time periods to dates or finding the number
of days between two dates. In the date extension we introduced a date type,

3 http://convecton.io.
4 https://languageengineering.io/thoughts-on-declarativeness-fc4cfd4f1832.

http://convecton.io
https://languageengineering.io/thoughts-on-declarativeness-fc4cfd4f1832

20 M. Voelter

Fig. 4. Overview over the languages created in this system and their dependencies. The
reasons for the dependencies are as follows: A: mixed arithmetics between dates and
numbers; B: temporal slices use date values; C: temporal values support higher-order
operations that contain lambdas; D: both contain top level declarations; E: treats the
BlockExpression specially; F: requires ILValue for data field assignments; G: special
typing rules for dealing with temporal values in calculation rules. Note that all of them
depend on kernelf.base; the dependency has been elided to declutter the diagram.

as well as date literals, written as /yyyy mm dd/. They can be used like any
other primitive type in KernelF, and the literals are expressions whose type is
DateType, the concept behind date. The following is then valid:

fun printDate(d: date) {...}
val today = /2018 01 23/ // date type inferred
{ printDate(today) }

The reason for the unusual notation for date literals is to retain [writeability]
despite a particular drawback of the projectional editor: eager binding. If we
were to use yyyy/mm/dd then, when you enter the slash behind the year, MPS
interprets this as a division binary operator. Since there is no context by which
to distinguish these two cases, the user would have to disambiguate manually,
which is tedious. We could use the German notation: dd.mm.yyyy. Even though
dd.mm would be initially interpreted as a number with a decimal point, entering

The Design, Evolution, and Use of KernelF 21

the second dot could be used to trigger a further transformation to a date literal.
However, using the /yyyy mm dd/ notation is just the simpler solution, despite
its slightly worse [readability] and domain alignment.

We have overloaded a few operators to work with date types, in particular +
and -. The former can be used to add days (the base unit of time in this system),
and the latter can be used to compute the number of days between two dates,
i.e., to subtract two dates. The following is valid:

val nextWeek: date = today + 7
val lastYear: date = today - 365 // ignoring leap years for now :-)
val howLongIsAYear: number = lastYear - today

To make this valid KernelF, no structural changes are required, since the oper-
ators already exist. However, the type system and the interpreter have to be
adapted. Both of these, however, can be done modularly, in the date language.
For the type system, we add a new overloaded operations rules, an MPS concept
that supports polymorphic typing, typically used with operators:

overloaded operations for PlusExpression
left argument :==: <date>
right argument :<=: <int>
result type { <date> }

overloaded operations for MinusExpression overloaded operations for MinusExpression
left argument :==: <date> left argument :==: <date>
right argument :<=: <int> right argument :==: <date>
result type { <date> } result type { <number> }

MPS executes overloaded operations by searching for all of those contributed by
the set of languages used in a particular model, and then executing the first one
that matches; since core KernelF has no rules that involve date types, the ones
defined by the extension language apply.

The interpreter extension works in a similar way: we define a new inter-
preter that lives in the date extension that contains the two evaluators for
PlusExpression and MinusExpression. Both first perform a check of the types
of the arguments, and if they don’t fit, return tryAnotherInterpreter, which
triggers the interpreter framework to continue its search for a matching evalua-
tor. Otherwise we use the JDK’s date API for the respective arithmetics.

Currency Types. Another primitive type we have introduced for this system
is currency. It is fundamentally a number with two decimals, the literals are
written as NN.DD EUR. Their implementation is essentially identical to the date
types discussed above, so we do not discuss it any further.

Temporal Types. A more interesting extension concerns temporal types. The
notation TT[U] represents a temporal version of a base type U. Temporality
means that a variable ttu: TT[U] does not represent a single value; instead,
ttu is a sequence of (date, U)-pairs, expressing when the particular value of
ttu changed to a particular u: U. The following example states that on Jan 1,
2017 the salary became 5.000 EUR, and on May 1 it changed to 6.000 EUR.

val salary : TT[currency] = TT | /2017 01 01/ => 5.000 EUR |
| /2017 05 01/ => 6.000 EUR |

22 M. Voelter

The reason for adding temporal types is that this customer’s system is bitempo-
ral [16], which means that the system manages two dimensions of time for each
data item. The first one represents a data item’s evolution over time, also known
as its validity time. The above salary is an example, and it is readily obvious
why this is useful: almost all quantities in (database-style) systems change as
time passes. Representing this as a first class concept in a language makes com-
putation with these values simpler, as we shall see. The second dimension of time
is the transaction time, i.e., the time at which something became known to the
system (and was stored). In a bitemporal system, the database stores both.
val salary#/2017 10 07/ = TT | /2017 01 01/ => 5.000 EUR |

| /2017 05 01/ => 6.000 EUR |
val salary#/2017 11 05/ = TT | /2017 01 01/ => 5.000 EUR |

| /2017 05 01/ => 5.500 EUR |

The example here essentially says that, on Oct 7, 2017, we knew that the salary
was as in the previous example; but on Nov 05 we changed the second value
to 5.500 EUR; we probably corrected a mistake. The database now contains
both states of knowledge, the one from October, and the one from November.
A typical use case in the context of our customer’s system is to calculate the
resulting tax for both perspectives, and then issue compensating transactions.
In the example, the person would probably get some money back.

A fully bitemporal system is quite complex, not just in terms of the database
and the implementation, but also from the perspective of the user, i.e., the
person who uses the DSL to create the salary/tax calculation rules. This is why,
in the interest of [simplicity], we only represent the first dimension (validity
time) in the DSL programs, and handle the second one as part of a surrounding
framework; we will not discuss it any further.

The temporal types support overloaded operators. Their most important
characteristic is that they “reslice” the temporal periods according to what is
shown intuitively in Fig. 5; except for the slicing, the semantics of the operators
regarding the basic types remain unchanged.

Fig. 5. Reslicing of temporal values; a and b are temporal values, s is a regular scalar.
When a temporal value is “operatored” with a scalar, the slices remain the same, but
their values change. In the case of two temporal values, the slices intersect, and the
values are computed per intersection.

In the implementation, we once again had to overload the typing rules for
the operators, this time for TemporalTypes. In this overload we fell back on the

The Design, Evolution, and Use of KernelF 23

typing rules of the base type. For an operator op, TT[U] op TT[V] is allowed
if U op V is allowed by the existing KernelF type system. The interpreter was
built similarly to the one for data types, except that the implementation of the
arithmetics is more complicated. Lots of test cases helped us get it right.

The overloaded operators let users write arithmetic code that works with
temporal data as if it was regular, scalar data. Being able to do this was one
major goal of this extension. But to effectively work with temporal data, more
support is required, as illustrated below (values beginning with d are dates, and
values beginning with tt are temporal):

– always(v) transforms a value v: U into a temporal value ttv: TT[U] with
exactly one slice that is dated to a predefined “beginning of time” date.

– ttv.add(d, v) adds a new slice to ttv begins at d and has the value v.
– ttv.valueAt(d) returns the scalar value at time d.
– ttv.between(d1, d2) cuts the slices to within the range d1 .. d2. In addi-

tion, ttv.after(d1) and ttv.before(d2) are also supported.
– ttv.reduce(S, r) where r: daterange (a type that represents time peri-

ods) reduces a temporal value back to a scalar. The operation takes into
account the slices within the time period r (for example, the month for
which taxes are calculated) and a reduction strategy S. The strategy includes
LAST (the value of the last slice in r), SUM (sums up all slice values), and
WEIGHTED_AVERAGE where the sum is weighted with the relative lengths of
each slice value. We will see examples of reduce below.

Basic Data. To model the basic data with which the system works (employee,
address, employer, employment), the language supports another extension for
data modeling. It supports entities with members which have either primitive,
temporal, or other entities as type. In the latter case, cardinalities can be speci-
fied, as well as whether the relationship is containment or reference. Constraints,
i.e., Boolean validation rules, are supported for entities as well. The language
supports a textual and a (fully editable) graphical notation that can be switched
on demand. Since this is “just another entity language” we do not discuss it any
further.

Result Data. Result data are part of the resulting salary or tax calculations.
Once computed, they are persisted in the database. The result data structures
are similar to basic data entities in that the have a list of members. However, they
are different in two important ways: first, they are always keyed by one or more
basic data entities. For example, a SalaryCalculation result data item is always
associated with an Employment entity, or the TaxBill result is associated with a
Person entity. Second, result data items are time-indexed (which is different from
being temporal). A time index identifies a discrete point in time and is typically
year or month: the SalaryCalculation is indexed monthly, and TaxBill is
indexed yearly. The association with the basic data entity and the time index
uniquely identify each result data record. In the end, it is the purpose of the
system to compute all result data item for all valid entity/time combinations.

24 M. Voelter

Calculation Rules. A calculation rule’s purpose is to compute a result data
item for a given entity/time pair; so each rule is thus associated with one result
data item. The rule also declares which other result data items it uses in its
calculation. Consider the following example:

result data [monthly] Salary { result data [monthly] Tax {
employment -> Employment // basic data person -> Person // basic data
amount : currency amount : currency

} }

calculation for Tax
depends Salary foreach person.employments // depends on Salaries of all employments

as salaries // of the Tax bill’s person
// in the respective time

calculate [monthly] {
val factor = // do some weird tax math
val total := salaries.amount.sum // sum up all salaries in current month
amount := total * factor // populate fields of the result data item
employment := ctx.employment // ctx is available in all calculations

}

Here, the calculation of the Tax relies on the calculation of the Salary. More
specifically, it depends on all Salary calculations for the current Tax’s person’s
employments. Because these dependencies are explicit, they can be exploited
during the execution. They can be used eagerly, like a function call: when the
user requests the Tax for a particular person and month, the corresponding
calculation rule is triggered, which in turn, when it calls s.amount, triggers the
calculation of the Salaries. While this style of execution is good enough for in-
IDE testing with the interpreter, a scalable engine for the data center will work
in a reactive style. If a data item is changed, the dependencies are used in the
reverse direction, and all dependent, upstream data is recalculated and persisted.
This way, data is accessible to the user without the calculation delay incurred
by the functional style. This is an example of [portability] in the sense that
different execution engines with different requirements in terms of performance
and scalability can use the same specification. Importantly, the dependencies can
also take into account the time index. Consider the next example:

calculation for SalaryReport // data structure indexed to an Employment
depends Salary as s

Salary[month.prev] as s_last
calculate [monthly] {

currentSalary := s.amount
lastMonthsSalary := s_last.amount
delta := s.amount - s_last.amount

}

The monthly salary report contains data from the previous month, as a means
of providing context for the employee. In the example above, the SalaryReport
data structure that stores this difference, has a dependency on the current
months’s Salary and on the one from the previous month, expressed with a little
sub-language for expressing dependencies that take time into account. Since it
is declarative (not full expressions!), it can also be evaluated in reverse order; it
works with the reactive execution engine.

The salary and the report calculation rules are also marked as monthly. This
is automatically derived from the data structure, which is time indexed monthly

The Design, Evolution, and Use of KernelF 25

as well. This way it is clear that the execution of the Salary calculation rule
always happens for a given time period, or increment (a month in this example).
This leads to various syntactic simplifications. Consider the following:

calculation for Salary
depends ...
calculate [monthly] {

val e = ctx.employment
val totalHoursWorked = e.workedHours.reduce(SUM)
val averageWage = e.wage.reduce(WEIGHTED_AVERAGE)
val religion = e.person.religion.reduce(LAST, increment.year)

}

As we have seen above, the reduce operator requires the specification of a
daterange, the time period for which the reduction applies. Because we are
in a time-indexed context (monthly), this time period is implicit (the partic-
ular month) and we do not have to specify it. However, it can be specified if
we need a different time period, as shown in the religion example, where we
want to get the last slice’s value in the current increment’s year. Not having to
specify the date range explicitly helps with syntactic [simplicity], but also
[robustness] because of the reduced potential for errors.

Note that in the code above, we use five KernelF extension languages
together: the data language (the employment reference), the currencies (in the
wages), the date extension (as part of the temporal types), the temporal types
themselves as well as the main extension for result data and calculation rules.
Except for an explicit dependency from temporal types to dates, there is no
language-level coordination code (composite grammars, disambiguation logic);
the extensions are independent, but still used together in the same program.
Please refer to Fig. 4 to recap the dependencies between the various languages.

Variants and Validity. Calculation rules depend on result data items, not
on particular calculation rules for items. This is because there can be many
calculation rules for a single result data item. There are two primary reasons for
this. First, different calculations might apply for various context, such as different
states, for married or unmarried people or for weekly vs. monthly pay. Instead
of making all of these distinctions with conditionals in one rule, we can define a
set of rules where each rule declares its applicability up front. Conditionals vs.
multiple rules allow different tradeoffs regarding modularity, understandability
and duplication, and thus help with [simplicity] and [robustness]. The
second reason is that the algorithms embodied by the rules change over time,
usually because of changes in the law that forms the basis for the calculation.
Thus, a calculation specifies applicability and validity:

calculation for Tax calculation for Tax
depends Salary as s depends Salary as s

valid from /2017 01 01/ SomeOtherThing as t
calculate [monthly] { valid from /2017 07 01/

... if ctx.employment.person.homeAddress.state == BW
} calculate [monthly] { .. }

In the example above, we define a generally applicable Tax calculation that is
valid from Jan 1, 2017. From Jul 1, a special rule has to be used if the employee

26 M. Voelter

Fig. 6. IDE features that support the language: date chooser to adapt the code to show
only those parts that are valid at that date; context buttons for the currently selected
result data item and for the currently selected rule.

lives in the BW state. If some other calculation rule declares a dependency on
Tax, then, during execution, a dynamic dispatch will be performed that takes
valid and if into account. The reason why this works is that all rules for a
given result data item have the same signature (no arguments), so a transparent
runtime dispatch is feasible – just as in object-oriented programming. However,
the data structure can also change:

result data [monthly] Salary { result data [monthly] Salary from /2017 10 01/ {
employment -> Employment employment -> Employment
amount : currency amount : currency

} taxFree : boolean
}

In this example, from Oct 1, we have to populate a Boolean flag that determines
if that salary is tax free. In this case the IDE has to be aware of the new version,
because the code that the user writes must now populate this field; instead of
this version being a runtime dispatch only, it now has to be taken into account
by the scoping rules and the IDE.

IDE Features. To keep track of the validity and applicability, we have imple-
mented several IDE features, illustrated in Fig. 6. First, through a drop down
box in the toolbar, users can optionally select a date for which they want to see
the rules. If a date is selected, the editor evaluates the validity expressions and
shows only those calculation rules that are valid at this point. In addition, if the
user selects a data item in the editor, a palette shows all the rules that apply to
this item. If the user selects a calculation rule, the palette shows the other rules
for the same data item, as well as all (directly) downstream dependencies. There
is a synergistic relationship between the language design and [idesupport]: if
the applicability and validity were implemented as conditionals in the body of a
rule, if would be much harder to provide this kind of tool support.

The IDE also helps with consistency. Since the validity is only specified using
a from date, there is no need to check for consistency and completeness. However,
we will implement a graphical timeline that shows how the periods of various
rules and their dependencies align. However, there is one particular aspect that
must be verified for the combination of runtime polymorphism (as used in cal-
culation rules) and static polymorphism (as used for the result data structures).

The Design, Evolution, and Use of KernelF 27

Fig. 7. Example of allowed (Rule-A/Rule-B) and non-allowed (Rule-B/Data-B) mis-
alignment between validity periods.

Consider the scenario in Fig. 7. Assuming that A depends on B, it is not a prob-
lem that the validity periods for the variants for Rule-A and Rule-B do not
fully overlap, because the runtime dispatch is transparent to the programmer.
However, the validity period misalignment between Rule-B and its result data
structure Data-B is an error because the same rule would have to work with
different data structures, in the IDE. This is not possible.

5.2 Smart Contracts

Blockchains [22] and smart contracts promise trusted, distributed execution of
arbitrary programs. Ethereum [32] is currently the most relevant platform as
a consequence of its flexible VM, expressive languages, comparatively mature
infrastructure and adoption rate. Several languages, all compiling to EVM byte-
code, exist, the most widely used one is Solidity. Solidity5 is essentially a general-
purpose programming language that also has some features that are specific to
Ethereum’s VM and distributed execution model.

However, Solidity does not provide first-class support for the typical patterns
found in the distributed, multi-party contrats for which blockchains are suppos-
edly ideally suited. Such abstractions are critical if we consider that a lot of the
interest in blockchains and smart contracts comes from non-technical people in
domains such as finance [21], logistics [18] or (computational) law.6 They are
very likely also the people who are interested in the specific behaviors encoded
in the contracts. So, while ensuring the correctness of the EVM and blockchain
infrastructure is crucial [1,15], a concise, understandable and (functionally) veri-
fiable specification of contracts is also crucial. The language introduced here has
this goal, but is of course not the only [11] one.7

Figure 8 shows stack of languages that potentially achieves this goal. At the
top we envision DSLs that are specific to the business domains for which con-
tracts should be specified. We have some exposure to finance, logistics and law,
and the requirements are quite different. On the level below we envision a lan-
guage (dubbed EMPCL) that has the basic abstractions for executable multi-
5 http://solidity.readthedocs.io/.
6 https://www.artificiallawyer.com/2018/01/19/welcome-to-the-first-computational-

law-blockchain-festival/.
7 https://runtimeverification.com/blog/?p=496.

http://solidity.readthedocs.io/
https://www.artificiallawyer.com/2018/01/19/welcome-to-the-first-computational-law-blockchain-festival/
https://www.artificiallawyer.com/2018/01/19/welcome-to-the-first-computational-law-blockchain-festival/
https://runtimeverification.com/blog/?p=496

28 M. Voelter

party collaborative processes. This language, in turn, extends and embeds Ker-
nelF. For execution, the contract behaviors are generated to suitable blockchain
technologies, and for verification, an integration with model checkers and solvers
is useful. In this chapter we focus on a prototypical implementation of EMPCL.

Fig. 8. A language architecture consisting of industry-specific DSLs, a set of common
abstractions in EMPCL, the KernelF foundation, plus generation to blockchain-based
execution infrastructures and verification tools for ensuring functional correctness.

Processes. A contract’s evolution over time is inherently stateful. The work
on smart contracts drove many of KernelF’s extensions for stateful programs,
such as boxes and transactions (see Boxes and Transactions in Sect. 2 as well
as [25]). Before we illustrate those features, let me introduce the notion of a
process. A process is a declarative description of a stateful, potentially long-
running behavior. The process definition configures the behavior and determines
how programs interact with it in terms of commands (that trigger changes in
the process) and values (how the environment can observe the process state).
Processes are a good baseline for representing the idiomatic behaviors expressed
in Smart Contracts such as decisions, agreements or auctions. We performed a
preliminary domain analysis for decisions and identified the following variations
points: which parties are involved in the decision, and can that list of parties
be changed dynamically during the execution of the decision process, what is
the decision procedure (unanimous, majority, specific threshold or completely
custom), is a minimum turnout required, is there a time limit for making the
decision, and can votes by a particular party be revoked. Figure 9 shows the nota-
tion used for MultiPartyDecisions, and a few example configurations (ignore
the code completion menus for now). Once defined this way, processes can be
instantiated and used; the code below uses the leftmost process in Fig. 9.

val s = run(Unanimous) // continued
s.vote(bernd) s.vote(markus)
s.vote(bernd) assert(s.decisionTaken)

The process above has one command vote(party) and one Boolean value,
decisionTaken. Which commands and values are available, depends on the con-
figuration of the process. For example, if we were to configure dynamic parties,
an additional command addParty(party) would be available (an example of

The Design, Evolution, and Use of KernelF 29

[idesupport]). This is interesting in two respects. From a language design
perspective, the fact that available commands and values depend on the pro-
cess configuration prevents the user from making certain mistakes; a degree of
correctness-by-construction is guaranteed, helping with [robustness]. As a
point of comparison, this feature could not be provided by an OO framework,
because it requires an IDE’s awareness of the program’s semantics, specifically
for the process abstraction.

Second, it is interesting from a language implementation perspective. Nor-
mally, a method call is an actual reference (in terms of the MPS AST) to the
method declaration. Here, no method vote or decisionTaken is available to
act as reference targets. This is why we have implemented a “reflective” mecha-
nism for commands and values. The process declares and registers them with a
descriptor, depending on the process’s configuration:

final IDCommand VOTE = new IDCommand("vote", new IDArg("who", <PartyType()>));
final IDValue DEC_TAKEN_BOOL = new IDValue("decisionTaken", PTF.createBooleanType());
final IDCommand ADD_PARTY = new IDCommand("addParty", new IDArg("who", <PartyType()>));

public void populateDescriptor(ProcessDescriptor d) {
d.add(VOTE);
d.add(DEC_TAKEN_BOOL);
if (this.dynamic) { // this queries the dynamic flag in the process definition

d.add(ADD_PARTY);
}

}

The invocation syntax (process.value and process.command(args)) is also
generic: the node on the right side of the dot is not a reference, as mentioned
above, instead it only stores the string that represents the name of the value or
command. Code completion proposes only those strings that correspond to the
currently active values or commands on the target process, and the type checker
also relies on the descriptors to check for valid names and arguments. A language
user cannot tell the difference; it behaves exactly like “native” references.

Meta Functions. This is also a good place to demonstrate how to “escape
from declarativeness”: what to do if you want to provide a declarative means
for configuring something (supporting [simplicity] for the simple cases), but
still allow the option of injecting arbitrary code. We will illustrate this with the
process’ decision procedure: in terms of structure, the process has a child proc
that is a DecisionProcedure, which is an abstract concept. I has three sub-
concepts: UnanimousDecProc, MajorityDecProc and CustomDecProc. The first
two are just keywords, whereas the last one looks as follows:

procedure: custom (voted, participated) = voted.size > (2/3) * participated.size

The custom decision procedure embeds a meta function. A meta function has
a number of parameters as well as an expression that computes a value from
the parameters. Meta functions are a generic utility, they can be configured and
executed easily: in terms of structure, CustomDecProc only has to implement
IMetaFunctionContext. In its behavior, it overrides the createMetaFunction
method to create the meta function structurally; in particular, it specifies the
name, return type and arguments:

30 M. Voelter

public node<MetaFunction> createMetaFunction()
createNew(PTF.createBooleanType(), "custom procedure")

.addArg("voted", <ImmutableSetType(baseType: PartyType())>)

.addArg("participated", <ImmutableSetType(baseType: PartyType())>);
}

Execution is just as straightforward. The DecisionProcedure declares a behav-
ior method isDecided that returns true of false, depending on whether the
decision has been made or not. The custom procedure implements it as follows:

public boolean isDecided(PSet parties, PSet whoVoted,
IContext ctx, ComputationTrace trace)

(boolean)(new MFI(ctx, this.function).run(whoVoted, parties, trace));
}

This code instantiates the meta function interpreter (MFI), passing the inter-
preter context and the to-be-executed function (the function child is inherited
from IMetaFunctionContext). Calling run, we pass values for the two argu-
ments defined for the function, voted and participated. The return value is
the Boolean flag that indicates whether the decision is successfully taken or not.

State, Boxes, and Transactions. The primary benefit of boxes is that existing
immutable data structures and their APIs can be reused in a mutable way in
the sense that the box stores an evolving sequence of immutable values. All
immutable data structures can immediately be used this way. In addition, boxes
allow a straightforward implementation of transactions:

– The user marks the start of a transaction in the program code; a Transaction
object is put into the interpreter context

– For any update of a box, the new value is stored in a map<box, value> that
lives inside the transaction object; the box contents are not actually modified.

– Inside a transaction, a box read is redirected to a lookup in the map8 (which
we can find out by looking for a Transaction object in the context)

– When we commit the transaction, the actual box contents are updated based
on the map inside the Transaction

– If the transaction is cancelled (for whatever reason), the map is discarded and
the boxes stay unchanged

There are also language constructs that make sense only in a stateful context.
The processes introduced above, as well as the state machines we will discuss
below, are examples. For them, there is no point in defining an immutable API,
and consequently there is also no benefit in using boxes to be able to reuse
an immutable API in a mutable context. This is why the decision’s vote or
addParty commands directly change the state of the process; they are a muta-
ble API. However, internally, objects that are mutable in this way still rely on
immutable data. In other words, a change to the state of the process internally
sets a new, updated state object.

8 Note that this also works if multiple transactions run in a concurrent context; isola-
tion is maintained because the boxes themselves are not updated.

The Design, Evolution, and Use of KernelF 31

Fig. 9. A couple of different configurations of the multi-party-decision process and
the resulting available entries in the code completion menu.

public void handleCommand(IDCommand command) {
if (command.is(VOTE)) {

string party = (string) payload.first;
state = state.voteFor(party); // old state is cloned with a new vote

}
...

}

Effectively, this makes a process (and other similar construct) a kind of “implicit
box”. Explicit and implicit share the runtime API through which they interact
with a transaction. This way, they can be used together:

val voteCount = box(0) fun voteAndCount(Party whoVotes)
val process = run(Unanimous) newTx { process.vote(whoVotes)

voteCount.update(it + 1) }

When calling the transactional function voteAndCount, and if the
vote(whoVotes) fails (for example, because the party whoVotes is not a valid
voter), then both the process and the voteCount remain unchanged.

Live Values and the REPL. The values published by the processes provide
a peek into its internal state, based on a generic, reflectively-defined API. In
addition, using a LiveValue wrapper, the processes provide these values in a
structured way, suitable for display in the REPL. Because of this homogeneous
structure, the REPL highlights the diffs between the current state and the pre-
vious one. Figure 10 shows a REPL session.

The generic interaction mechanisms of processes (and their generalised ver-
sion, IInteractors) are a good starting point for building simulators or other
end-user oriented UIs (roughly similar to [4]). For example, commands can ren-
dered as buttons, and the values can be rendered as text labels or other widget.
Because the internal state is a sequence of mutable values that can be retained
in such a simulator, it is easy to build “time travel” functionality [3] or even
branching, where users can interactively explore back and forth the behaviors of
contracts.

More Complex Contracts. We decided on declarative abstractions for the core
decision, agreement, auction and sales processes because those are ubiquitous
in smart contracts. In some sense they can be seen as the building blocks of
contracts. In addition, it is feasible to capture the vast majority of real-world

32 M. Voelter

Fig. 10. A REPL session where a processes is wrapped in a LiveValue to support
structured rendering of the internal state and diffs that highlight its evolution.

Fig. 11. Two decision processes used in the complex example contract.

variants into a set of configuration parameters. However, the overall contracts
that make use of these building blocks show more variability, which is why it is
more useful to use a less specific language for those: state machines are obvious
candidates. Consider the following requirement for a non-trivial smart contract:9

An online community has to continuously maintain a (selling) decision; it
can be revoked or granted as time passes. A group of individuals, called the

9 Another extensively documented example can be found in [23].

The Design, Evolution, and Use of KernelF 33

deciders, vote for and against this decision. The vote has to be unanimous.
In addition, additional people can be allowed into the group of deciders. The
existing deciders vote for new candidates, by simple majority, but with a
time limit. Once allowed into the group of deciders, the new member can
participate in the sell/no-sell decision. Multiple member approval processes
can go on at the same time. While a member request is pending, the sales
decision cannot be changed.

The implementation of this contract relies on two declarative decision processes,
Sale (to maintain the sales decision) and AccessControl (one is instantiated
for each allow-in of a potential new decider). Both configurations are shown in
Fig. 11. The remaining state machine-based implementation of this contract is
as follows (we omit the state machine declaration itself). First, we define the
events which we want to use to control the contract:

event openAccess // go to the mode where we allow new guys to request to join
event requestAccess(newGuy: party) // a new guy wants to join the deciders
event terminateAccessRequest(who: party, newGuy: party) // kill a decision procedure
event voteForAccess(voter: party, newGuy: party) // vote for a new guy to become decider
event letsSell // go to the state where we maintain the sell/no-sell decision
event voteForSelling(who: party) // vote for the sale decision
event voteForStopSelling(who: party) // vote against the sale decision

Next, we instantiate one Sale process in the state machine, and define a map
from party to AccessControl where we store all pending access requests. We
also define a query (essentially a parameterless Boolean function) that reports
whether the selling decision is currently true or false. The observable flag means
that the query can be invoked from outside the state machine:

var sale = run(Sale)
var pendingAccess = box(map<party, AccessControl>())
observable query currentlySelling = sale.decisionTaken

The similarity between processes and state machines is not coincidental: in
fact, the state machine also implements IInteractor, the events act as com-
mands and the observable queries or variables correspond to values. Thus, state
machines can be used in the same interactive way (for example in the REPL) as
the processes in the previous paragraph.

Next we define a few helper functions used inside the state machine; the /R
or /RM flags indicate the kind of effect they have (read only, or read-modify):

fun isDecider/R(who: party) = sale.registeredParties.contains(who)
fun isPending/R(who: party) = pendingAccess.val.keys.contains(who)
fun hasPending/R() = pendingAccess.val.size != 0

The core logic is implemented in the next few states. The first one represents the
phase where the contract is gathering new members. The following code handles
the requestAccess event, where a new party can request access to the group:

on requestAccess(newGuy) [!isDecider/R(newGuy)] : {
val acc = run(AccessControl)
pendingAccess.update(it.put(newGuy->acc))
acc.addParties(sale.registeredParties)

}

34 M. Voelter

The transition only fires if the newGuy is not yet among the existing deciders (see
guard condition); then we create a new AccessControl process and store it in the
map that keeps track of the currently pending membership requests. Before that
new AccessControl process can work, we have to populate it with the existing
deciders, because it is them who make the decision about the membership of the
newGuy. Note that this transition has no target state, so it remains in the current
one; its only purpose is to perform the action associated with the transition.

The second transition terminates an existing access request if one of the
deciders chooses to do so. The event has two arguments, the party who request
termination and the party whose membership request should be terminated. The
guard condition checks that these two parties actually play the respective roles. If
everything is in order, we just delete the corresponding AccessControl process
from the map of pending accesses.

on terminateAccessRequest(who, newGuy) [isDecider/R(who) && isPending/R(newGuy)]
: pendingAccess.update(it.remove(newGuy))

Next we deal with a current member (voter) voting for a new guy.
Again, we use the guard condition to establish the roles. We then get the
newGuy’s AccessControl from the pending list and submit our vote. If after
the voting the decision has been taken, we add the newGuy to the parties of our
Sale process and remove their AccessControl from the list of pendings.

on voteForAccess(voter, newGuy) [isPending/R(newGuy) && isDecider/R(voter)] : {
val acc = pendingAccess.val[newGuy]
acc.vote(voter)
if acc.decisionTaken then {

sale.addParty(newGuy)
pendingAccess.update(it.remove(newGuy))

} else none
}

The last thing we do in the requestAccess state is to handle the request to
move to the selling state, which is only possible if there are no pending requests
(which is why current deciders can terminate pending requests by force):

on letsSell [!hasPending/R()] -> selling

The selling state is really simple. It handles voting for and against the sales
decision maintained by the contract, as well as the openAccess event which
gets us back into the state where we accept new members. Note how the actual
logic of making the sales decision, independent of its own complexity, is handled
completely by the Sale process.

state selling {
on openAccess -> gatheringMembers
on voteForSelling(who) [isDecider/R(who)] : sale.vote(who)
on voteForStopSelling(who) [isDecider/R(who)] : sale.revoke(who)

}

Game Theory, Interceptors and Context Arguments. Game theory [12]
looks at how rules in cooperative processes (“games”) impact the outcome, and
also how the parties taking part in the game can cheat, i.e., exploit the rules for

The Design, Evolution, and Use of KernelF 35

their own benefit. Smart contracts are cooperative processes, which is why they
are susceptible to “game-theoretical” exploits.

For example, a sybil attack [7] is one where a reputation-based system is
subverted by one (real-world) party creating loads of fake (logical) identities
who then behave in accordance with the real world party’s goals. For example,
consider a decision that is based on majority vote. An attacker could create
lots of additional parties and thereby taking over the majority, leading to a
decision in the interest of the attacker. While there are many potential ways
how such attacks can be thwarted, one approach is to limit the rate at which
new parties can request to join the process. Instead of requiring users to imple-
ment this manually, the state machine language supports a declarative way: the
rate at which events come into a state machine can be limited (helping with
[robustness] without compromising [writeability]). The following code
expresses that while the machine is in state requesting, only three commands
per second are allowed. If more requests come in, they are rejected.

state requesting [rate(3/1000|commands-only)] {
...

}

The code between the brackets registers an interceptor (the term is inspired by
CORBA [19]). Interceptors see every incoming event before transitions have an
opportunity to react to them. They can then let it pass through, change param-
eters in the event, or discard it. Interceptors can maintain their own internal
state. They can be seen as a guard condition that applies for a whole state (or
substates), and not just a particular transition. The rate interceptor discards
events if the rate exceeds the one specified.

Looking at the example, you can see that many events take the sender as
an argument, usually in order to check that the event is authorised (the sender
is among the current deciders). This is typical for smart contracts, and in fact,
every message sent into an Ethereum contract carries an implicit sender address.
Implicit arguments, called context arguments, are also available for interactors.
Together with an interceptor, this can be used for authorization:

state playing [senderIs(players)] {
on offerBid(money) : bids := bids.put(sender->money)
...

}

The senderIs() interceptor checks whether the context argument sender is
supplied by the client (and rejects the event if not), and verifies that the sender
is in the collection passed as an argument to senderIs (and rejects the event if
not). In addition, because any transition in the state will only be executed if a
sender is given, the interceptor makes the sender variable available inside the
state. It can be used just like an explicitly given argument. In the example above
we use it to create an entry in the bids map that is keyed by the sender.

36 M. Voelter

The last interceptor worth mentioning in the context of smart contracts and
game theoretical exploits is the takeTurns interceptor. Many “games” require
a fair allocation of opportunities to participating parties. One way of achieving
this is to run a game turn-by-turn, where each party can make one “move” in
every “round”. Consider the bidding process example:

state playing [senderIs(players)] {
state bidding [takeTurns(players|ordered|after 1000 remove)] {

on offerBid(money) : bids := bids.put(sender->money)
if [timeInState > 2000] -> finished

}
...

}

The takeTurns interceptor can be configured regarding the strictness of the
turn-by-turn policy. Unordered means that in each round, every party has to
make a move, but the order within each round is not relevant. ordered means
that the order given by the list of parties passed to the interceptor is strictly
enforced. A violation leads to a rejection of the command. The interceptor also
provides access to the list of allowed next movers; this could potentially be used
to notify parties that it is their turn.

There is a risk of a denial-of-service attack in the case of ordered turn taking:
if the next party p does not make its move, the whole process is stuck. Nobody
else can make a move because it is p’s turn. This is why a turn-by-turn game
should always include a timeout, 1000 in the example above. If the next party
does not make their move within 1000 time units, that party is permanently
removed from the list of participants; alternatively, it can also be skipped.

5.3 Healthcare

Like all the other case studies, the set of languages built for this system builds
on top of KernelF and extends it with new expressions (see Fig. 12). High-level
domain-specific behaviors are expressed as state machines, as explained below.
However, this system is interesting because it removed about two thirds of Ker-
nelF (by constraining it out of program written in the context of this system).
For example, attempt types, option types, some of the advanced operators as
well as some of the collection operations are not accessible to the users of this
system.

Reactive Algorithm. The main algorithm controls notifications and reminders
submitted to the mobile operating system and reacts to a user’s data submissions.
It also makes high-level decision as to the execution of the algorithm and manages
data collected from the user (in what one could call databases).

The top level abstraction is the component, a unit of behavior. Components
can be instantiated and then started by other components, hierarchically. When a
parent component starts a child component, it supplies values to the parameters
defined by the child components (just like an operating system that starts a
process). The child then runs concurrently with the parent; it communicates
with the parent by sending output data events. The parent component can react

The Design, Evolution, and Use of KernelF 37

Fig. 12. The core of this system is a restricted version of KernelF. On top, we have
developed a set of functional extensions that help medical professionals make non-
trivial (multi-criteria) decisions. The core of the medical algorithm is expressed through
state machines, and validation is performed through a testing and scenario description
language. At the top is a language for configuring generated visualisations and reports.

to those events. By waiting for particular events (see below), the parent can
synchronise with (wait for completion of) a child it started.

In addition, a component also provides other means of interaction with its
environment, and in particular with the user, through the UI. A component can
bring up a UI, for example, a questionnaire where the user can then select one
of several options. A component can also register reminders: essentially, this is
an entry in the phone’s calendar. The framework that runs the applications on
the phone keeps track of the created notifications, and retracts them if the user
reacted, or if a timeout occurs.

The implementation of the behavior inside a component can potentially be
done in many ways to be able to handle future styles of applications. For now,
only a state-based implementation is supported: the content of a component is
a hierarchical state machine. The abstractions are the usual ones: nested states,
events, transitions, guards, actions.

Consider the following example: the application wants the user to measure
their blood sugar at 08:00 the next morning. To this end, the application reg-
isters a reminder for 07:55, 08:00 and 08:10. Once a new blood sugar value is
entered by the user at roughly 8am, the remaining reminders can be retracted. In
contrast, if no value is entered by 08:10, the process might have to react to that:
for example, a message might have to be shown to the user reminding them of
the importance of a timely blood sugar measurement, or, if things become more
serious, their medical team might have to be notified by the app. To realize this
behavior, a timeout event in the state machine is necessary.

The code to implement this behavior looks roughly like the following. We start
by defining a helper function that computes the next time at which a blood sugar
measurement should take place. The time literals, and the associated types use an
addition data type datetime whose implementation is similar to the one defined

38 M. Voelter

in the salary/tax case study in Sect. 5.110. Second, we define a timeseries for
the blood sugar measurements. Time series are essentially records with an index
of type datetime, and are also defined specifically for this system:

fun nextTime() {
alt | now in [08:01 .. 11:45] => 12:00 |

| now in [11:46 .. 17:45] => 18:00 |
| otherwise => 08:00 |

}

timeseries BloodSugarSeries {
value: number[50|400]

}

The meat of the blood sugar measurement functionality is in a component
AcquireBloodSugar. It has two configuration parameters; the time at which
the next measurement should take place, as well as the time series in which to
store the measurement.11

component AcquireBloodSugar

parameters t : datetime
db: BloodSugarSeries

Next, we define the interface of the component; it handles events of type
BloodSugarMeasurement from the UI layer. In addition, it emits the ok and
missed events, both without arguments.

inputs BloodSugarMeasurement(bs: BloodSugar)

outputs ok
missed

Next we declare a reminder. A reminder is essentially a group of OS-level
reminders which, as we will see below, are managed as a group from the perspec-
tive of the algorithm. The reminders are defined relative to the time t passed to
the component as a parameter.

val r = reminders at t - 15 : "Please enter blood sugar in 15 minutes"
at t - 5 : "Please enter blood sugar in 5 minutes"
at t : "Please enter blood sugar now"
at t + 10 : "URGENT: Please enter your blood sugar"

Finally, we define the actual behavior of the component. Note that, because
on mobile phones the app is passive when not in focus, and because it cannot
actively push content to the user (except through reminders), the app is reactive.
This is why a state machine is a very good fit. The start block is executed after
the component is started (essentially a constructor). We create the reminders
and unconditionally transition to the waiting state. In that state, as the name
suggests, we passively wait for input events, i.e., the BloodSugarMeasurement.
If one occurs, and the current time is within 20 min of the scheduled time t,
then we store the measurement in the time series, and terminate with the ok

10 We are currently consolidating both into a common datetime extension.
11 The actual syntax relied a little bit more on boxes and other semi-graphical elements;

we use text here so we do not have to resort to images.

The Design, Evolution, and Use of KernelF 39

event (terminate(<evt>) is a shorthand for sending an event (send(<evt>))
and then just terminating the execution of the component). If we do not receive
the event within t + 20, we terminate with a missed event. In any case, once the
waiting state is left, the OS-level reminders associated with r are all cancelled.
start: createReminders(r)

-> waiting

state waiting:
exit: cancelReminders(r)
on BloodSugarMeasurement

when now in [t - 20 .. t + 20]
store now, bs in db
terminate(ok)

when now < t - 20
message "too early, please submit around {t}"

if now > t + 20
terminate(missed)

Here is the (simplified) main state machine for the diabetes application that
uses the AcquireBloodSugar component above. It creates and starts the
Acquire-ıBloodSugar in its running state. It then keeps track of the missed
measurements and, if too many are missed, notifies the medical team.
component DiabetesApp

val db: = createDatabase<BloodSugarData>

val missed: counter = 0

state running:
val abs = AcquireBloodSugar.start(nextTime(), bloodSugarDB)
on abs.ok

abs.start(nextTime(), bloodSugarDB)
on abs.missed

missed.increment(1)
abs.start(nextTime(), bloodSugarDB)

if missed > 5
-> error

state error:
notifyMedicalTeam("missed blood sugar too often")

Decision Support. As part of the overall reactive algorithm, many complex
decisions have to be made. To represent those as intuitively as possible, we have
implemented a decision support language. All abstractions in that language, at
a high-level, can be seen as functions: based on a list of arguments, the func-
tion returns one or more values. Plain functions are available for arithmetic
calculations. However, it is typical of medical decisions that they depend on the
interactions between several criteria. To improve the [readability] of a func-
tion call for non-programmers, we support a style of signature that reads like a
sentence fragment. For example, the function in Fig. 13 can be annotated with
a syntax template that allows the following function call:
val riskScore = blood pressure risk for systolic <expr-1> and diastolic <expr-2>

The code completion and type checks for expr-1 and expr-2 work as usual,
but this notation provides more context for the two values a plain function call
BpScopeDecisionTable(<expr-1>, <expr-2>).

40 M. Voelter

To improve [readability] of the actual decision algorithm (and thus make
it easier to validate), they are often represented as decision trees (Fig. 13) or
decision tables. As mentioned in Sect. 2, basic tables and trees are available in
KernelF’s utility language. However, special forms are needed (and have been
built specifically for this project). An example is a table that splits two values
into ranges and returns a result based on these ranges. Figure 14 shows a table
that returns a score; scores represent standardised severities or risks that are then
used in the algorithm. KernelF’s number types with ranges, and their associated
static checking, is also an important ingredient to being able to improving the
[robustness] of the algorithms.

Fig. 13. A decision tree; the green/up edges represent yes answers to the preceding
node, the red/down edges represent no. (Color figure online)

Fig. 14. A decision table that specifically works on ranges of values. Note the compact
syntax for range representation.

Testing. Testing is an important contributor to the success of this project, and
we put significant effort into defining a suitable set of languages. For testing
functions and function-like abstractions, regular JUnit-style function tests are
supported; Fig. 16 shows an example. The first of the tests in Fig. 16 tests a
function with one argument, the second one passes an argument list, and the
last one shows how complex data structures, in this case, a patient’s replies to
a questionnaire, are passed to the test. The table notations for testing based on
equivalence partitions in shown in Fig. 15.

Scenario tests (Fig. 17) are more involved because they take into account the
execution of the reactive main algorithm over time. They are expressed in the

The Design, Evolution, and Use of KernelF 41

well-known given-when-then style,12 which is, for example, also supported by
Cucumber.13 To express the passage of time and occurrences at specific times,
the at notation is used. The execution of the tests is based on a simulation. The
number of steps and the time resolution is derived from the scenario specification.

Fig. 15. Equivalence partitions help test complex structures with relevant combinations
of values.

Fig. 16. Function tests call a function (or something function-like, such as a deci-
sion tree or table) with the arguments specified after given, and then check that the
expected valued is returned. The answers construct represents a user’s reply to a
questionnaire; it can be seen as an instance of a record.

Simulation. The purpose of the simulator is to let healthcare professionals
“play”with an algorithm. To this end, the in-IDE interpreter executes algorithms
and renders a UI that resembles the one on the phone (Fig. 18, right). A set of
DSLs is available to structure the UI; lower-level styling support is available

12 https://martinfowler.com/bliki/GivenWhenThen.html.
13 https://cucumber.io/.

https://martinfowler.com/bliki/GivenWhenThen.html
https://cucumber.io/

42 M. Voelter

Fig. 17. Scenarios follow the established given-when-then style: given preconditions,
when something happens, then a set of assertions must hold. Scenarios express the
passage of time, as well as points in time when something happens or is asserted.

through Javascript and CSS. A control panel lets users configure a particular
simulation and also fast-forward in time (Fig. 18, left). There is also a debugger
that, while relying on the same interpreter, provides a lower-level view on the
execution of algorithms. It is not used by HCPs.

Documentation Generation. An important output is the medical protocol,
a visualisation of the complete algorithm for review by HCPs, associated med-
ical personnel not trained in the use of the PLUTO DSLs, as well as external
reviewers. The outputs are too large to show in the paper; they are essentially
graphviz-style flow charts with a couple of special notational elements. It is often
necessary to highlight specific aspects on the overall algorithm, so the generation
of the flow chart can be configured using a DSL (Fig. 19). It supports:

– The level of detail (Deep in the example)
– The tags that should be included and excluded. Model elements can be tagged,

for example, whether they are part of the default flow or whether they are
relevant for complications in the treatment. A visualisation might highlight
specific tags.

– Color mappings for tags (e.g., render the case for complications in red)
– Human-readable labels for states or messages in order to make them more

understandable for outsides.

The reason why these configurations are represented as models (expressed in
their own DSL) as opposed to just configuring a particular visualisation through
a dialog is that many such configurations exist, and they must be reproduced in
bulk, automatically, as the algorithm evolves.

The Design, Evolution, and Use of KernelF 43

Fig. 18. Control panel to configure and execute simulations.

Fig. 19. Configuration for the generation of medical protocol flow charts.

Execution. We provide two separate execution infrastructures (Fig. 20), which
is important for quality assurance, as discussed below. The first one is an in-
IDE interpreter. It reuses the existing KernelF interpreter. For the functional
abstractions developed in this project, we have built additional interpreters using
the same interpreter infrastructure also used in KernelF. For the reactive, state-
machine based part of the system, an interpreter was built using plain Java
code that works on the MPS AST. It drives the overall execution and invokes
the functional interpreter. A similar approach has been taken for the scenario
testing DSL. The in-IDE interpreter provide short turnaround times for the users
of the DSL and are an example [idesupport].

The execution on the mobile phone is based on a second interpreter. It is
implemented in C++ so it can be used on iOS and Android platforms. A platform
adapter provides unified access to the necessary operating system services, such
as the system clock, reminders and notifications, as well as networking APIs.
The C++ interpreter works on an XML representation of the AST, essentially
a generic serialisation format for the MPS AST structure. Directly using the

44 M. Voelter

AST is infeasible, because MPS is written in Java, and the runtime needed to be
C++ for performance and portability. The reason why an interpreter was used
in the first place (as opposed to generating C++ code from the algorithm) was
because of the required update times: if a problem is found with the algorithm,
an update has to be delivered as soon as possible. Waiting for the clearance of
Apple’s review team was not an option.

Fig. 20. Execution architecture of the languages: an IDE-interpreter plus an interpreter
on the phone that works on an XML representation of the algorithms.

Quality Assurance. Ensuring the correctness of the algorithm models (valida-
tion) as well as their correct execution on the mobile phones (verification) was
a major aspect of this project. Both because the well-being of human beings
is directly at stake, and because the approach has to get FDA approval; oth-
erwise the applications cannot be legally sold, jeopardising the business case.
While a detailed discussion of our verification and validation approach is beyond
the scope of this paper, here are the steps we took, based on a systematic risk
analysis:

– Improved review-ability of the models because of the domain-oriented abstrac-
tions and notations

– Further validation of the model by healthcare experts using the simulator
– Extensive set of unit and scenario test cases that reach very high coverage of

the algorithms
– Test generation to improve coverage
– Mutation testing [17] (aka fuzzing) to ensure sensitivity of tests
– Coverage measurement also of the language structure, the Java interpreter,

and the C++ interpreter implementation, and 100% coverage for those
– Redundant [13] execution of all tests in the two interpreters to find random

errors in each
– The two interpreters were implemented by different (teams of) developers to

avoid systematic errors

The Design, Evolution, and Use of KernelF 45

– Architectural safety mechanisms such as runtime watchdogs [13] based on
independently specified invariants.

˜˜˜

This concludes our case studies. Figure 21 summarizes the extensions, aligning
them with the three layers introduced at the end of Sect. 1.2. Both, the salary/tax
and healthcare case studies contribute to all layers, as suggested by Sect. 1.2. The
smart contracts case study is a little bit different: because it is an “experimental”
set of languages, there are no domain-specific data structures or types; we used
the built-in ones. Based on our experience in the logistics domain, a fully fledged
contract language would need schemas, mappings to actual documents, types for
money and time, as well as physical units.

As a concluding remark of this chapter, the case studies should have given
the reader a good illustration of the philosophy of MPS-based language design
introduced in [26]. It is really more like “libraries with syntax and type system”,
with lots of first-class concepts aligned closely with the application domain.

Fig. 21. Overview of the extensions to functional abstractions, higher-level behavior,
structures and IDE extensions for the three case studies.

6 Challenges and Open Issues

In terms of language engineering, the development of KernelF is relatively similar
to the development of mbeddr, which we have evaluated extensively in [28]. This
is why this paper focuses on the language design in the development of KernelF.
However, a couple of issues are worth pointing out specifically in the context of
KernelF, even though they have been mentioned generally in [28].

46 M. Voelter

6.1 Type System

The type system was the biggest challenge in the current implementation. I will
point out two problems that both relate to subtyping.

Number Types. The first one relates to number types. Normally, MPS deter-
mines subtype relationships via subtyping rules. For a given type, a subtyping
rule returns the list of direct supertypes. MPS uses those to build a type hierar-
chy, and also uses it during type checking in situations like val v: T = <expr>
with expr: U, where U must be a subtype of T. Now consider the situation where
T is number[0|100] and U is number[5|10]. Clearly, the range 5..10 is a sub-
range of 0..100, so the subtyping holds. But it is impossible to enumerate all
supertypes of a number type, because there are infinitely many. MPS has replace-
ment rules for this case. They are called as a last resort: if a type check fails,
the engine tries the suitable replacement rules and sees if, by performing the
specified type replacements, the type check can be made to succeed. For number
types, we have defined the following replacement rule (slightly simplified):
replacement rule for supertype :==: NumberType as super

and subtype :==: NumberType as sub {
applicable if { sub.range.isSubrangeOf(super.range); }
replace {}

}

The rule applies if two NumberTypes are tested for a subtype relationship. It then
checks if the ranges of the two types are in the required relationship. If so, the
rule executes, which means the original type equation is replaced with the one
given in the replace part. Since this is empty here, the original typing rule is
effectively discarded. Since there’s nothing to fail, no error is shown.

We use replacement rules for a few other reasons as well, for example, in the
context of type definitions. Here is the catch: replacements are only executed
once during the solver’s attempt at solving the type system equations. So if
the replacement rules create a new set of equations which can only be solved by
applying more (different) replacement rules, this does not work. As of now, we
have not found a way to solve this problem. Sprinkling explicit casts over the
affected programs helps, but of course this is unintuitive for the end user.

Options and Attempts. The second problem relates to the computation of
supertypes in the presence of option and attempt types. Consider the following
program. What is the type of alt?
fun f(...) = alt | <cond-1> => 42 |

| <cond-2> => 33.33 |
| <cond-3> => error(FAIL) |
| <cond-3> => error(FATAL) |

A common supertype is typically calculated in the following way (see also [26]):
typing rule for AltExpression {

var T;
foreach alternative in node.alternatives {

T :>=: typeof(alternative.then);
}
typeof(node) :==: T;

}

The Design, Evolution, and Use of KernelF 47

For each of the alternatives, this code submits a type equation to the solver
which states that T, the to-be-calculated type of alt, is the-same-or-supertype
of the type of the then part of the particular alternative. T ends up as the least
common supertype of all the types of the thens. However, here the situation is
different, the correct type is attempt<real|FAIL, FATAL>, i.e., the least com-
mon supertype of all non-error values, wrapped in an attempt type that lists
all the possible errors. A similar issue arises if you mix values with none, because
this introduces an option. Now consider the following:

fun f(...) = alt | <cond-1> => 42 |
| <cond-2> => 33 |
| <cond-3> => error(FAIL) |
| <cond-3> => none |

There are two potentially correct types: attempt<opt<number[33|42]>, FAIL>
and opt<attempt<number[33|42], FAIL>>, depending on the order of treating
errors and options. We were not able to compute this type by using MPS’ declar-
ative type system DSL and resorted to imperative code. This code essentially
treats attempts and options explicitly. This means, for example, that we could
not implement options and attempt modularly: they are “baked into” the core
type system. And one such baked in rule is that you cannot mix options and
attempts; so the code above is flagged as illegal. For the DSLs we have built so
far, this is an acceptable restriction.

6.2 Reactive Interpreter

Consider the following code, which might be part of a larger program (the func-
tions) and test data (the values plus the assertions):

// test data for John
val j_last = "Doe"
val j_first = "John"
val j_birthYear = 1974

fun greet(f: string, l: string) = "Hello " + f + " " + l
fun age(y: int) = currentYear() - y
fun birthday(f: string, l: string, y: int) =

"Happy " + age(y) + ". birthday, " + f + " " + l

test case Test_John {
assert (1) greet(j_first, j_last) equals "Hello John Doe"
assert (2) greet("Geddy", "Lee") equals "Hello Geddy Lee"
assert (3) age(j_birthYear) equals 44
assert (4) birthday(j_first, j_last, j_birthYear) equals "Happy 44. birthday, John Doe"

}

The Status Quo. Our current interpreter works on-demand, always runs to
completion. On-demand means that a recomputation is explicitly requested. The
request can happen in two ways. One way is for the user to press Ctrl-Alt-Enter
on a program node that has a manual check (indicated through an interface
implemented by the node’s concept). Alternatively, the execution of manual
checks (and thus, the interpreter) can be triggered by the type system, in
which case MPS uses heuristics to decide when to trigger the update. In the
above example (and in the current KernelF implementation), the assertions
implement the required interface, so users can reevaluate an assert this way.

48 M. Voelter

Ctrl-Alt-Enter also works for containers, so pressing it on the whole test case,
or the surround (but not shown) tests suite recalculates all of them.

Once a recalculation is triggered it always recalculates everything, to com-
pletion. So, for example, when triggering the recomputation on the last assert,
the interpreter for assert is invoked. It invokes the interpreter for the actual
and expected slots. The string literal in the expected slot is trivial. The actual
slot evaluates the function call. In turn, it evaluates the arguments (by calling
the interpreter for the val references, and then, transitively, the interpreter for
the init expressions on the vals) and then dispatches to the birthday function.
Inside, among other things, evaluates the call to the age function.

Reactivity. A more scalable way would work as follows:

– A change to Geddy would trigger assertion 2
– Changing any of the j_ values would never trigger 2
– A change to j_last would trigger recalculation of 1 and 4
– A change to j_age would trigger recalculation of 3 and 4

We would also expect that, even if 4 is recalculated because j_last has changed,
we would not execute the call to age inside birthday, because the argument to
age, j_birthYear, did not change. Finally, we would also expect the on-demand
recalculation for changes to the program: if we change the implementation of age,
then 3 would have to be recalculated, but also 4, because it indirectly relies on
age. This behavior would be just like in Excel14: you can imagine the vals as
cells with user-entered values, the asserts as cells with formulas in them and the
function calls as macros. To make this reactive architecture work, the following
ingredients are required:

– Change Notifications: the engine that triggers the interpreter must be notified
of changes to program nodes. Since MPS is a projectional editor, and changes
to the AST are already performed essentially via an architecture that relies
on events, those change events are easy to get.

– Reverse Dependencies: MPS maintains a fully resolved AST, i.e., even refer-
ences such as j_first in assertion 1 or the reference to age in assertion 3 are
maintained as fully resolved “object pointers”. However, in order to find out
which parts of the program must be recomputed, the reverse dependencies
are required: if the string literal "Doe" is changed, then we have to follow
the upstream tree of containment and reference dependencies (as indicated in
Fig. 22). MPS does not currently maintain (all of) these reverse dependencies.
However, we assume we can maintain our own overlay data structure that is
updated based on the same program change events just mentioned.

– Persistent Interpreter: Currently, the interpreter is restarted from scratch for
every evaluation request (explicitly or by the type system). Restarting the
interpreter means that the interpreter context, the data structure that main-
tains the interpreter’s internal state, is also recreated, which means that all

14 An analogy that many of our users like to draw in more ways than is good for us!

The Design, Evolution, and Use of KernelF 49

caches are empty. Thus, when a function is called with an argument for which
it has been called before (and the function is pure), then the interpreter will
recompute the function’s result instead of reusing the one from the cache. So,
again assuming a change to "Doe", this triggers the recomputation of asser-
tion 4, which calls birthday, which then calls age. Even though the argument
to age did not change, the function is re-executed, because the (empty) cache
does not know the previous result. To fix this issue, the interpreter’s context
(and thus, caches), would have to be maintained persistently during a user’s
interactive editing session.

Fig. 22. The example code for reactive interpreters shown with the reverse dependen-
cies relevant for a change to the value "Doe". Solid lines represent containment, dashed
lines represent reference dependencies.

All of these changes are absolutely feasible, and we will work on this architec-
ture in the future. While the current implementation is not very scalable, we
can, for now, live with the limitation because the in-IDE-interpreter is used for
testing, and test cases are usually small and thus still run reasonably quickly.
For systems that require larger integration test-style scenarios, we have explicit
mocking features that act as “breakpoints” in the execution of the interpreter.

6.3 Shadow Models

Many language extension add new abstractions on top of existing ones. This
means that for their semantic definition, they can be “desugared” to more basic
constructs. The alt expression is an obvious example:

alt | <cond-1> => <val-1> |
| <cond-2> => <val-2> |
...
| otherwise => <val-n> |

desugars to
if <cond-> then <val-1> else

if <cond-2> then <val-2> else
...
else <val-n>

It is idiomatic for MPS generators to be stacked, and they can be scheduled
to perform desugarings to a base language, before that language is processed

50 M. Voelter

further. Essentially, all of mbeddr’s C extensions are translated this way. It would
be nice if the same approach could be used with interpreters as well: programs
are reduced to their most basic form, which is then submitted to the interpreter.
This way, the interpreter only has to be defined for a minimal language. More
importantly, the same desugaring could be used independent of what is done with
the desugared, basic form of the program: it could be interpreted, submitted to
a Java generator, or translated to the solver. You can see while this approach is
very desirable for reasons of reduced effort and improved quality.

The reason why the approach works well with generators is that those are exe-
cuted on demand; when the user requests a (re-)build of the model, the cascade of
generators is executed according to their relative priorities (“higher” desugarings
first). However, the interpreter is expected to run interactively, which means,
very fast: as the user changes parts of the program, the interpreter should be
executed and the results updated. The same is true for the checks performed with
the solver. What we would need is an incremental maintenance of the desugared
(or otherwise derived) models. While it is easy in MPS to receive fine-grained
notification of changes to programs, we have not yet found a way of expressing
the necessary incremental graph transformations. While we are actively working
on this challenge, for now, every language concept requires a native interpreter,
i.e., one that is specifically implemented for the (potentially desugarable) lan-
guage concept.

7 Related Work

7.1 Dynamic Languages

A widespread approach for building embedded DSLs is the use of dynamic lan-
guages that support reflection and flexible syntax. Prime examples are Groovy
and Ruby. However, the approach is not suitable for our purposes, for several
reasons. First, the implementation based on reflection prevents static analysis
and (automatic) IDE support. Second, the syntax of extensions is limited to the
freedom given by the grammars of the respective language.15 In addition, the
languages are all not purely functional and provide no support for explicit effects
tracking. We discarded this option early and clearly.

7.2 Other Base Languages

mbeddr C. mbeddr [30] is an implementation of C in MPS. It uses the same
extension mechanisms as KernelF because it is built on MPS as well. Like Ker-
nelF, mbeddr C is implemented in a modular way, i.e., even the core of C is split
into several languages. One of them, com.mbeddr.core.expressions, contains
only the C expressions and primitive types. In particular, it does not have user-
defined data types, pointers, statements, or a module system. The idea was to
15 Both of these points are clearly illustrated by a customer’s (not very satisfying)

attempt at building a whole range of business DSLs with Groovy.

The Design, Evolution, and Use of KernelF 51

make this a kind of core expression language to be hosted in other DSL. In prac-
tice, this works well as long as that DSL generates to C. However, even in this
core language subset, there are many implicit assumptions about C, making it
unsuitable as a generic, embeddable expression language; building an interpreter
is also tough. It also misses many useful features, such as higher-order functions.

When we started seeing the need for a core expression language, we thought
about generalising the mbeddr expressions; however, we decided against it and
started KernelF: the required changes would have been too great, making mbeddr
C too complicated. The use cases are just too different.

MPS BaseLanguage. MPS ships with a language called BaseLanguage – it
wears its purpose clearly on its sleeve. It is fundamentally a slightly extended
version of Java (for example, it had higher order functions and closures long
before they were standardised as part of Java 8). It also ships with a set of
(modular) extensions for meta programming, supplying language constructs, to,
for example, create, navigate and query ASTs.

BaseLanguage has been used successfully – by us and others – as the basis
for DSLs. If those DSLs either extend Java or at least generate to Java, Base-
Language is a great fit and the recommended way to go. Even though it is not
built in a modular way, MPS’ support for restricting languages using constraints
is powerful enough to cut it down to what is relevant in any particular DSL.

However, similar to mbeddr C, it suffers from its tight connection to Java
in terms of data types, operators and assumptions about the context in which
expressions are used. The fact that it is not a purely functional language and
does not support effects tracking also makes it much harder to analyze. It also
has several features, such as generics, that make it harder to extend. Finally, its
long evolution in MPS also means that it carries around a lot of baggage; we
decided that it is worth the effort to build a new, clean base language.

Xbase/Xtend. Xbase [8] is a functional language that ships with Xtext16. Sim-
ilar to KernelF, its purpose is to be extended and embedded in the context of
DSLs. Xtend17 is a full programming language (with classes, modules and effects)
that embeds Xbase expressions. Similar to Kotlin18 and Ceylon19, its goal is to
be a better, cleaned up Java, while not being as sophisticated/complex as Scala.
For the purposes of being an embeddable base language, Xtend’s scope is too
big (like Java or C), so we limit our discussion in this paragraph to Xbase.

In terms of its suitability as a base language, Xbase suffers from several
problems. The most obvious one for our use case is that it is implemented in
Xtext, and is thus useless for MPS-based languages. Of course, this does not
say anything about its conceptual suitability as a core language. However, there
are also two significant conceptual problems. First, because of the fact that it
is implemented in Xtext, its support for modular extension or embedding are

16 https://www.eclipse.org/Xtext/.
17 http://www.eclipse.org/xtend/.
18 https://kotlinlang.org/.
19 https://ceylon-lang.org/.

https://www.eclipse.org/Xtext/
http://www.eclipse.org/xtend/
https://kotlinlang.org/
https://ceylon-lang.org/

52 M. Voelter

limited: one cannot use several independently developed extensions in the same
program in a modular way. Consequently, no such extensions are known to us,
or documented in the literature. Second, Xbase is very tightly coupled to Java:
it uses Java classes, generates to Java and even its IDE support is realized by
maintaining Java shadow models in the background. While this is a great benefit
for Java-based languages (the goal of Xbase), it is a drawback in general.

In terms of its core abstractions, many of the ideas in KernelF and Xbase
are similar: everything is an expression, functional abstractions, no modules or
statements (those are supplied by Xtend).

7.3 Lisp-Style Languages

Lisp-style languages have a long tradition of being extensible with new constructs
and being used at the core of other systems, such as Emacs. Racket20 takes this
to an extreme and allows significant syntactical flexibility for Lisp or extensions.
We decided against this style of language for several reasons:

First, while, generally, it is a matter of taste (and of getting used to it)
whether developers like or hate the syntax, it is very clear that (our) end users
do not like it. Thus, adopting this syntactical style was out of the question.

Second, existing Lisp implementations are parser-based, and even the meta-
programming facilities rely on integrated parsing through macros. This limits
the syntactic freedom to textual notations in general, and to the capabilities of
the macro system more specifically. We needed more flexibility.

Third, we wanted language extensions to be first-class: instead of defining
them through meta programming, we wanted the power of a language workbench.
Of course we could have implemented (a version of) Lisp im MPS and then used
MPS’ extension mechanisms to build first-class extensions. However, then we
would not make use of Lisp’s inherent extensibility, while still getting the end-
user-unsuitable syntactic style – clearly not a good tradeoff.

Finally, Lisp language extensions only extend the language, not the IDE.
However, for our use cases, the IDE is just as important as the language itself,
so any language extension or embedding must also be known to the IDE. Lisp
does not support this (at least not out of the box).

7.4 Embeddable Languages

Lua21 is a small and embeddable language. In contrast to KernelF, it is not
functional – it has effects and statements. Also, the notion of extension relates
to extending the C-based runtime system, not the front-end syntax. So, out of
the box, Lua would not have been an alternative to the development of KernelF.

However, we could have reimplemented Lua in MPS and used MPS’ language
engineering facilities for syntactic extension. While possible, this would still mean
that we would use a procedural language as opposed to a functional one, which

20 https://racket-lang.org/.
21 https://www.lua.org/.

https://racket-lang.org/
https://www.lua.org/

The Design, Evolution, and Use of KernelF 53

was at odds with our design goals. On the plus side is Lua’s small and efficient
runtime system. While we did not perform any comparisons, it is certainly faster
than our MPS-integrated AST interpreter. However, performance considerations
are not a core requirement for the IDE-integrated interpreter. If fast execution
is required, we generate to Java or C, or implement reactivity (Sect. 6.2).

7.5 Other Language Workbenches

This paper is not about evaluating MPS’ suitability as a language workbench;
see [28] instead. Thus, a detailed evaluation about alternative implementation
technologies for KernelF is outside the scope of this paper. Nonetheless, if, for
some reason, we could not use MPS for KernelF and our customer projects,
Racket would probably be the best alternative.

8 Conclusion

We have built KernelF as a base language for DSLs. This means that it must be
extensible (so new, domain-specific language constructs can be added), embed-
dable (so it can be used as part of a variety of host languages) and language
concepts users do not need must be removable or replaceable. Our case studies
show that we have achieved this goal. Since developing KernelF, we have used it
in most customer projects that required expressions or a full-blown programming
language as a basis.

Why were we successful? Two factors contribute. One is that we have built
KernelF after years and years of building DSLs. So we had a pretty good under-
standing of the features required for the language, and to make it extensible and
embeddable. In particular, the design that enables extensibility was based on
our experience with mbeddr C, which has proven to be extensible as well. We
also had a good understanding of what features not to include, because they are
typically contributed by the hosting DSL. The second factor is MPS itself. As we
have analyzed in [28], MPS supports this kind of modular language engineering
extremely well.

We continue to use KernelF as a basis for our DSL work. We are also using
it as the core of a set of meta languages in our new web-based language work-
bench Convecton. Once it is expressive enough, we will implement KernelF in
Convecton so we have it available as a base language for Convecton-based DSLs
as well.

˜˜˜

Acknowledgements. I implemented most of KernelF myself. However, this would
not have been possible without the team at itemis: they were sparring partners in
design discussions, they helped mature the language by using and stressing it, they
built some of the features in the case studies, and generally provided the fertile ground
on which something like KernelF can flourish. I also want to thank our customers.
Not just those of the particular systems described in the case studies, but all of them:

54 M. Voelter

without their trust in us and, ultimately, their money, none of what is discussed in this
paper would have happened. Finally, I want to thank the MPS team at Jetbrains for
building an amazing tool and for helping us use it productively over the years.

References

1. Amani, S., Bégel, M., Bortin, M., Staples, M.: Towards verifying Ethereum smart
contract bytecode in Isabelle/HOL. In: Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2018, 8–9 Jan-
uary 2018, Los Angeles, CA, USA, pp. 66–77 (2018). https://doi.org/10.1145/
3167084

2. Berger, T., Völter, M., Jensen, H.P., Dangprasert, T., Siegmund, J.: Efficiency
of projectional editing: a controlled experiment. In: Proceedings of the 2016 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pp. 763–774. ACM (2016)

3. Booth, S.P., Jones, S.B.: Walk backwards to happiness: debugging by time travel.
In: Proceedings of the 3rd International Workshop on Automatic Debugging
(AADEBUG 1997), no. 001, pp. 171–184. Linköping University Electronic Press
(1997)

4. Bousse, E., Degueule, T., Vojtisek, D., Mayerhofer, T., Deantoni, J., Combemale,
B.: Execution framework of the GEMOC studio (tool demo). In: Proceedings of the
2016 ACM SIGPLAN International Conference on Software Language Engineering,
pp. 84–89. ACM (2016)

5. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

6. DeRemer, F., Kron, H.H.: Programming-in-the-large versus programming-in-the-
small. IEEE Trans. Softw. Eng. 2, 80–86 (1976)

7. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45748-8 24

8. Efftinge, S., Eysholdt, M., Köhnlein, J., Zarnekow, S., von Massow, R., Hasselbring,
W., Hanus, M.: Xbase: implementing domain-specific languages for Java. ACM
SIGPLAN Not. 48, 112–121 (2012)

9. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. In: Pro-
ceedings of the Twelfth Workshop on Language Descriptions, Tools, and Applica-
tions, p. 7. ACM (2012)

10. Fowler, M.: Language workbenches: the killer-app for domain specific languages
(2005)

11. Frantz, C.K., Nowostawski, M.: From institutions to code: towards automated gen-
eration of smart contracts. In: IEEE International Workshops on Foundations and
Applications of Self* Systems, pp. 210–215. IEEE (2016)

12. Gibbons, R.: A Primer in Game Theory. Harvester Wheatsheaf, Bushey (1992)
13. Hanmer, R.: Patterns for Fault Tolerant Software. Wiley, Chichester (2013)
14. Hickey, R.: The Clojure programming language. In: Proceedings of the 2008 Sym-

posium on Dynamic Languages, p. 1. ACM (2008)
15. Hirai, Y.: Defining the Ethereum virtual machine for interactive theorem provers.

In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 520–535. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 33

16. Jensen, C.S., Snodgrass, R.T.: Temporal data management. IEEE Trans. Knowl.
Data Eng. 11(1), 36–44 (1999)

https://doi.org/10.1145/3167084
https://doi.org/10.1145/3167084
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/978-3-319-70278-0_33

The Design, Evolution, and Use of KernelF 55

17. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

18. Korpela, K., Hallikas, J., Dahlberg, T.: Digital supply chain transformation toward
blockchain integration. In: Proceedings of the 50th Hawaii International Conference
on System Sciences (2017)

19. Narasimban, P., Moser, L.E., Melliar-Smith, P.M.: Using interceptors to enhance
CORBA. Computer 32(7), 62–68 (1999)

20. Odersky, M., Altherr, P. Cremet, V., Emir, B., Maneth, S., Micheloud, S.,
Mihaylov, N., Schinz, M., Stenman, E., Zenger, M.: An overview of the Scala
programming language. Technical report (2004)

21. Peters, G.W., Panayi, E.: Understanding modern banking ledgers through
blockchain technologies: future of transaction processing and smart contracts on
the internet of money. In: Tasca, P., Aste, T., Pelizzon, L., Perony, N. (eds.) Bank-
ing Beyond Banks and Money, pp. 239–278. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-42448-4 13

22. Tapscott, D., Tapscott, A.: Blockchain Revolution: How the Technology Behind
Bitcoin is Changing Money, Business, and the World. Penguin, Toronto (2016)

23. Voelter, M.: A smart contract development stack. Posted 6 December 2017
24. Voelter, M.: Language and IDE modularization and composition with MPS. In:

Lämmel, R., Saraiva, J., Visser, J. (eds.) GTTSE 2011. LNCS, vol. 7680, pp. 383–
430. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35992-7 11

25. Voelter, M.: The kernelF reference (2018)
26. Voelter, M.: Language development with MPS - a quick overview (2018)
27. Voelter, M., vand Deursen, A., Kolb, B., Eberle, S.: Using C language extensions

for developing embedded software: a case study. In: Proceedings of OOPSLA 2015,
pp. 655–674. ACM (2015)

28. Voelter, M., Kolb, B., Szabó, T., Ratiu, D., van Deursen, A.: Lessons learned from
developing mbeddr: a case study in language engineering with MPS. Softw. Syst.
Model. (2017). https://doi.org/10.1007/s10270-016-0575-4

29. Voelter, M., Lisson, S.: Supporting diverse notations in MPS’ projectional editor.
In: GEMOC Workshop (2014)

30. Voelter, M., Ratiu, D., Kolb, B., Schaetz, B.: mbeddr: instantiating a language
workbench in the embedded software domain. Autom. Softw. Eng. 20(3), 1–52
(2013)

31. Voelter, M. Szabó, T., Lisson, S., Kolb, B., Erdweg, S., Berger, T.: Efficient devel-
opment of consistent projectional editors using grammar cells. In: Proceedings of
the 2016 ACM SIGPLAN International Conference on Software Language Engi-
neering, pp. 28–40. ACM (2016)

32. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger.
Ethereum Proj. Yellow Pap. 151, 1–32 (2014)

https://doi.org/10.1007/978-3-319-42448-4_13
https://doi.org/10.1007/978-3-319-42448-4_13
https://doi.org/10.1007/978-3-642-35992-7_11
https://doi.org/10.1007/s10270-016-0575-4

Full Papers

Virtual Network Embedding: Reducing
the Search Space by Model
Transformation Techniques

Stefan Tomaszek1(B), Erhan Leblebici1, Lin Wang2, and Andy Schürr1

1 Real-Time Systems Lab, TU Darmstadt, Darmstadt, Germany
{stefan.tomaszek,erhan.leblebici,andy.schuerr}@es.tu-darmstadt.de

2 Telecooperation Lab, TU Darmstadt, Darmstadt, Germany
wang@tk.tu-darmstadt.de

Abstract. Virtualization is a promising technology to enhance the scal-
ability and utilization of data centers for managing, developing, and oper-
ating network functions. Furthermore, it allows to flexibly place and exe-
cute virtual networks and machines on physical hardware. The problem
of mapping a virtual network to physical resources, however, is known
to be NP-hard and is often tackled by optimization techniques, e.g., by
(ILP). On the one hand, highly tailored approaches based on heuristics
significantly reduce the search space of the problem for specific environ-
ments and constraints, which, however, are difficult to transfer to other
scenarios. On the other hand, ILP-based solutions are highly customiz-
able and correct by construction with a huge search space. To mitigate
search space problems while still guaranteeing correctness, we propose a
combination of model transformation and ILP techniques. This combi-
nation is highly customizable and extensible in order to support multiple
network domains, environments, and constraints allowing for rapid pro-
totyping in different settings of virtualization tasks. Our experimental
evaluation, finally, confirms that model transformation reduces the size
of the optimization problem significantly and consequently the required
runtime while still retaining the quality of mappings.

Keywords: Virtual network embedding · Integer linear programming
Model-driven development · Triple graph grammar · Data center

1 Introduction

Online services such as social networking, e-commerce, and other web applica-
tions are ubiquitous today and place high demands on service providers in terms
of availability and scalability. The huge amount of data generated during analy-
sis and processing pushes traditional network topologies and administrations to
their limits. In order to meet the high requirements for availability and scalabil-
ity as well as to realize fast development cycles, cloud computing has emerged
as the leading technology in this area. Data centers form the central facility for
c© Springer International Publishing AG, part of Springer Nature 2018
A. Rensink and J. Sánchez Cuadrado (Eds.): ICMT 2018, LNCS 10888, pp. 59–75, 2018.
https://doi.org/10.1007/978-3-319-93317-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93317-7_2&domain=pdf

60 S. Tomaszek et al.

cloud computing to provide the large number of computing and storage servers.
For operating these highly complex environments, hardware virtualization has
established itself as a viable technology for decoupling the underlying infrastruc-
ture and applications. In this regard, virtualized environments can be deployed
in a very flexible, scalable, and cost-effective manner. Encapsulating services in
virtual machines and (VNs), which are decoupled as logical units from the phys-
ical hardware, increases the flexibility to deploy them automatically via software
and to achieve a high utilization of multiplexed hardware resources. These vir-
tualization techniques make it possible to standardize the configuration, reduce
energy consumption, act independently of hardware, and enable a fast develop-
ment process.

The advantages of VNs, however, are accompanied by a high degree of com-
plexity, which is particularly evident in the problem of virtual network embed-
ding (VNE). This problem describes the embedding of VNs into a substrate
network (SN), e.g., into a data center, whereby restrictions on multiple dimen-
sions have to be observed and certain optimization goals such as maximization
of resource utilization have to be fulfilled. These restrictions apply to both server
and link properties including memory, computation capacity, and bandwidth as
well as to functional and non-functional requirements such as security zones or
service level agreements. The abundance of possibilities in combination with dif-
ferent network topologies, application scenarios, and optimization goals makes
it difficult to adapt, develop, and simulate embedding algorithms.

Due to the increasing importance of cloud computing and network virtual-
ization, research into the automation of VNE has been intensified. Since VNE
is known to be an NP-hard optimization problem with a considerable search
space [1], a variety of algorithms have been developed to significantly reduce the
search space (and consequently the required runtime) for this problem. In par-
ticular, the following two groups of approaches seem to be promising (we refer to
[1,2] for a survey): Heuristics-based, e.g., [3–5], and integer linear programming
(ILP)-based approaches, e.g. [5,6]. In the first case, practical yet case-specific
methods tailored for (a family of) certain infrastructures and application sce-
narios can massively reduce the search space to obtain an approximately good
result for the VNE problem even in large data centers. For example, Guo et al. [4]
introduces a heuristics-based approach to map virtual networks in the smallest
possible subset of a tree-based data center by respecting bandwidth constraints.
Zeng et al. [5] additionally consider the traffic between virtual machines and try
to minimize the total communication cost among them. However, no guaran-
tees can be given regarding adherence to all basic constraints, and the adaption
of these approaches to other environments and network topologies is difficult if
not impossible. In the second case, more generalized approaches based on ILP
support a wide range of applications, whereby compliance with the constraints
and requirements are ensured and an optimal result is achieved. However, these
approaches suffer from the large search space of the formulated optimization
problem limiting their applicability to smaller data centers [6].

To close the gap between highly adapted heuristics and purely ILP-based
solutions, we propose a (MdVNE) approach for capturing VNE problems as a

VNE: Reducing the Search Space by Model Transformation Techniques 61

combination of model transformation (MT) and ILP techniques. In this setting,
MT rules define which situations are to be considered as allowed mappings at
all between individual VN and SN elements and, consequently, the result of an
MT run is a set of potential mappings. Subsequently, ILP techniques are used to
reach an ultimate decision for the collected potential mappings. This way, MT is
utilized to reduce the search space among all possibilities of mappings, whereas
ILP operates in this reduced search space yet still provides its strengths with
regard to correctness and optimality. From an implementation point of view,
our concept for the combination of MT and ILP allows for developing new and
customized VNE algorithms at a higher level of abstraction (achieved with MT)
while still respecting the optimization characteristics of the VNE problem.

Based on our first ideas towards combining MT and ILP for VNE presented
in [7], our contributions in this paper are threefold:

(i) We provide a set-theoretical identification of search spaces involved in VNE
when tackled by MT, ILP, or a combination of both. This is useful to
conceptually locate the advantage of combining MT and ILP as compared
to using purely MT or ILP.

(ii) We informally demonstrate how to use different MT rules to reduce the
search space of potential mappings in VNE differently and flexibly (depend-
ing on, e.g., available heuristics or case-specific concerns that can be incor-
porated into the MT rules).

(iii) Based on our concrete implementations, we experimentally evaluate how
the conceptually expected advantage of combining MT and ILP is reflected
in practice in terms of required runtime as well as the size of the formulated
optimization problem.

Throughout the paper the network topology from Fig. 1 is used as a running
example to explain the VNE problem. On the virtual side, the VN consists of
one central switch (nV

1) and two servers (nV
2 , n

V
3), as well as bidirectional links

(lV12, l
V
13) from each server to the switch. On the substrate side (representing the

physical network), the SN is similar to the VN with one central switch and three
servers with different computing capacities and links from each server to the
switch. Note that the superscripts V and S in our notation refer to the virtual
and substrate networks, respectively.

(b) Substrate Network(a) Virtual Network

Fig. 1. Running example with a virtual and substrate network.

62 S. Tomaszek et al.

The structure of the paper is organized as follows. Section 2 describes the
VNE problem as an ILP-based problem description. Afterwards, Sect. 3 presents
the MdVNE approach with its different search spaces. Following an evaluation
in Sects. 4 and 5 presents related work. Finally, a summary and a brief discussion
of future work concludes the paper.

2 ILP-Based Problem Description

In this section we introduce and define the VNE problem as an ILP formulation
to achieve the best solution for a linear optimization function subject to a set of
linear equalities and inequalities as constraints [8]. The definition of constraints
and objectives in the following serves to give an overview of state-of-the-art
solutions based on ILP (before incorporating MT in the next section) and is
inspired by Sahhaf et al. [9].

2.1 Substrate Model

The SN is given as an undirected graph GS = (NS , LS) containing a set of
substrate nodes NS and substrate links LS . In addition, there are paths puv ∈ PS

consisting of acyclic connected links with the source node u and target node v.

PS = {p|p ⊆ LS and the links in p lead to an acyclic path}

Each substrate node and link has a certain amount of resources which can be
used by any virtual network. In this paper computing capacity (C), memory
(M), storage (S), and bandwidth (B) are considered.

∀u ∈ NS : CS
u ,M

S
u , S

S
u ∈ N

+;∀e ∈ LS : BS
e ∈ N

+

Additionally, every substrate node has a set of service types (Sr, Sw) to define
which services (Server, Switch) may run on this node.

∀u ∈ NS :

⎧
⎪⎨

⎪⎩

uSr, uSw ∈ {0, 1}
uSr = 1 iff u may host a Server
uSw = 1 iff u may host a Switch

2.2 Virtual Model

We model the VN similar to the SN as GV = (NV , LV) with the virtual nodes
NV and the virtual links eij ∈ LV with source node i and target node j. The
resources and services are similarly defined as those of the SN except that every
virtual node implements exactly one service.

∀i ∈ NV :

⎧
⎪⎨

⎪⎩

iSr, iSw ∈ {0, 1}, iSr + iSw = 1
iSr = 1 iff i may host a Server
iSw = 1 iff i may host a Switch

VNE: Reducing the Search Space by Model Transformation Techniques 63

2.3 Mapping Variables

For the placement of the nodes and links we define two sets of mapping variables.
The variable xi

u is used to indicate if the virtual node i is mapped to a substrate
node u or not.

∀i ∈ NV ,∀u ∈ NS , xi
u ∈ {0, 1}

The second set of mapping variables f
eij
puv is used to assign the placement of a

virtual link eij to one substrate path puv. Therefore, if feij
puv = 1 the virtual link

eij is mapped to the substrate path puv.

∀eij ∈ LV ,∀puv ∈ PS , feij
puv

∈ {0, 1}

2.4 Constraints

To ensure that all technical, functional and non-functional requirements of the
mapping from VNs to an SN are met, additional constraints are needed. These
constraints can be divided into node and link constraints which have restrictions
on the node or link level, respectively. A mapping can only be deployed if all
constraints are fulfilled. If no mappings fulfilling these constraints are found, the
embedding request is rejected.

Node Constraints. Node constraints ensure that the demands of the vir-
tual nodes are satisfied, supported service types of the substrate nodes are
respected, and resources of the substrate nodes are not overbooked. The first
constraint (1) ensures that every virtual node is mapped to exactly one sub-
strate node. Given NS = {u1, ..., un},

∑
xi
u denotes the sum xi

1, ..., x
i
n.

∀i ∈ NV :
∑

u∈NS

xi
u = 1 (1)

In the second constraint (2), a substrate node u must be able to host the service
types of all virtual nodes mapped to u. We use ≤ in the following constraints as
a logical implication. For example, choosing a mapping xi

u while iSr = 1 implies
that uSr = 1, i.e., iSrxi

u ≤ uSr (note that iSr is a constant here given by the
VN and equals to 1 iff the virtual node i hosts a server, while xi

u is further on
the mapping and thus the decision variable).

∀i ∈ NV ,∀u ∈ NS : iSrxi
u ≤ uSr, iSwxi

u ≤ uSw (2)

The last node constraint (3) ensures that the resources of a substrate node u
are not overbooked by the demands of the virtual nodes mapped to u. The used
resources, e.g., computing capacity C, are coefficients for a mapping variable xi

u

and flow into the sum iff xi
u = 1.

∀u ∈ NS :
∑

i∈NV

Cix
i
u ≤ Cu,

∑

i∈NV

Mix
i
u ≤ Mu,

∑

i∈NV

Six
i
u ≤ Su (3)

64 S. Tomaszek et al.

Link Constraints. The constraints for the links are similar to the constraints
for the nodes. Constraint (4) ensures that every virtual link is mapped to one
substrate path and that the source/target node of the virtual link is also mapped
to the source/target node of the substrate path. We again use implications (≤)
for the latter.

∀eij ∈ LV :
∑

puv∈PS

feij
puv

= 1

∀eij ∈ LV ,∀puv ∈ PS : feij
puv

≤ xi
u and feij

puv
≤ xj

v

(4)

The last constraint (5) guarantees that the resources of a substrate link e is not
overbooked by the virtual links mapped to a path containing e. Again, the used
resources (bandwidth B) are coefficients for mapping variables and flow into the
sum iff the respective mapping is chosen.

∀e ∈ LS :
∑

eij∈LV

∑

puv∈PS ,
e∈puv

Beijf
eij
puv

≤ Be (5)

2.5 Objective Function

The objective function to solve the VNE problem can be different in every sce-
nario or for every service provider. Throughout the paper the objective to min-
imize the costs for the embedding of the VN to the SN is used. Therefore, a
cost function is used for each mapping of a virtual to a substrate element. While
the functions costN and costL below abstract the costs for mappings in our
formalization, possible reference points for a cost calculation in practice include
required resources of virtual elements, hardware properties of substrate elements,
and hosted service types.

costN : (NS × NV) → R
+, costL : (PS × LV) → R

+

Finally, the following objective function minimizes the costs for mappings.

min:
∑

u∈NS

∑

i∈NV

xi
ucost

N (u, i) +
∑

puv∈PS

∑

eij∈LV

feij
puv

costL(puv, eij)

2.6 Search Spaces
VNE

ILP

VNEOpt = ILPOpt

Fig. 2. Venn diagram for an
ILP-based approach.

To clarify the search spaces and the solution space
for the ILP-based approach, the Venn diagram from
Fig. 2 is used. In this diagram, VNE describes the
entire search space for this problem. The specifica-
tion in an ILP-based approach restricts the search
space to the ILP area, whereby the search space
is only reduced by potential solutions that do not
meet the requirements. Since we assume that the
ILP-based approach meets all constraints, is cor-
rect by construction, and finds the optimal solution

VNE: Reducing the Search Space by Model Transformation Techniques 65

if a result exists, the optimal solution space for the VNE problem (V NEOpt) is
identical to the solution space of the ILP-based approach (ILPOpt).

3 MdVNE Approach

In our previous work [7], the MdVNE approach, combining model-driven devel-
opment and ILP technologies, is introduced for a restricted set of resources
and a fixed optimization goal. We extend MdVNE in the following for multiple
resources, demands, services, and optimization goals. Therefore, the meta model
is redesigned to support multiple nested networks, embedding scenarios, and is
easily extensible to other network domains like wireless or telecommunication
networks. Also, user specific constraints can be added and the optimization goal
is adjustable using the weighted-sum method. Additionally, we provide a set-
theoretical identification of search spaces involved in this approach with the aim
to demonstrate the reduction of the search spaces by using MT-based techniques.

3.1 MdVNE Process

A schematic view of the MdVNE mapping process is shown in Fig. 3. In step (1)
a user specifies VN requests (VNRs) for an existing SN already hosting some
VNs. The green + indicates that a new VN request is defined and waiting to be
deployed. In step (2), all possible mappings respecting the transformation con-
straints (e.g. structural constraints) are generated by using MT technologies to
reduce the search space resulting in a set of different possible mapping candidates
(step (3)). After that, these mapping options are encoded as an ILP problem
(step (4)) with additional constraints not covered by the MT rules. Then the
ILP solver returns an optimal solution for the given search space if one exists.
This solution is deployed in step (5). After that, the VN requests are hosted in
the SN and the next VN request can be mapped.

The MT in Fig. 3 is defined in the form of rules describing how to map a
source onto a target model based on the meta model which specifies the family
of models that can be expressed. Our MT rules are inspired by so-called (TGGs)
[10] which construct two graphs (VN and SN) together with correspondences
(mapping relationship between virtual and substrate networks in our concrete
case). ILP is then used to solve the optimization problem expressed as linear
inequalities. Transforming the mapping candidates generated using MT into an
ILP problem with added global and user specific constraints is described in detail
in [7].

66 S. Tomaszek et al.

Fig. 3. Schematic view of the MdVNE mapping process.

3.2 Search Spaces

VNE

ILP

MT

MdVNE

VNEOpt = ILPOpt

VNE

ILP

MT

MdVNE

VNEOpt = ILPOpt

Fig. 4. Venn diagram for the
MdVNE and ILP-based approach.

To clarify the search spaces for MdVNE,
the Venn diagram from Fig. 2 has been
expanded and merged in Fig. 4. ILP further
on describes the search space of a purely ILP-
based approach. In addition, the search space
MT and the solution space MdVNE have
been added to this diagram. MT describes
the search space that is stretched by the con-
crete MT rules and is located within the ILP
search space since the amount of mapping
candidates is in the worst case comparable
to an ILP specification due to the underlying
meta model and the MT language. Moreover,
we denote a translation T : MT → ILP that
maps the MT result to an ILP problem. The
output of T , i.e., ILP constraints and an objective function, is formed in line with
our formalization in the previous section (we refer to [7] for how to realize such
a translation, while the form of ILP constraints and objectives as provided in
the previous section suffices to understand the current discussion). Most impor-
tantly, the variables in the formulated ILP problem are reduced to the set of
potential mappings collected by MT instead of a pairwise consideration of all
possible mappings. This way, certain mapping conditions (in particular struc-
tural ones) are already respected by the MT run, whereas further conditions
that go beyond the MT capabilities and the optimization goal are again tackled
with ILP.

Overall, we distinguish between the following search spaces in Fig. 4:

– The search space VNE describes the set of all expressible mappings of a VN
to a SN.

– ILP and MT denote the set of all expressible mappings in the technical
domains of ILP and MT, respectively.

VNE: Reducing the Search Space by Model Transformation Techniques 67

– V NEOpt denotes the set of all optimal mappings of the VNE problem respect-
ing all constraints which is identical to the solution space of ILPOpt.

– The intersection MdVNE of V NEOpt and MT is the solution space for
MdVNE respecting all constraints of the VNE problem.

With regard to the translation T , we distinguish between the following cases:

(i) MT = ILP: MT techniques do not reduce the search space resulting in a
purely ILP-based approach.

(ii) |MT | ≤ 1: This results in a purely MT-based approach.
(iii) MT ∩V NEOpt �= ∅: This results in a mixed ILP and MT-based approach

that finds an optimal solution for the problem.
(iv) MT ∩V NEOpt = ∅: This results in a heuristics-based approach without

finding an optimal solution.

Among the different cases stated above, our goal and demonstrations in the rest
of the paper focus on (iii), solving the NP-hard VNE problem [1,2] still via ILP
but with a significant reduction of the search space and thus a strong influence
on the required runtime.

3.3 Example

The example introduced in Fig. 1 is used to illustrate the possibilities to reduce
the search space by using MT-based technologies in comparison to a purely ILP-
based approach. In Fig. 5, TGG rules are specified which restrict the search area
to different degrees. Note that these rules are used to calculate all possible map-
pings, which are then passed as input to the ILP solver. Each TGG rule consists
of elements from VN (left side) and SN (right side) with the mapping elements in
between. Green elements marked with ++ are created by the rule, whereby the
VN is element-wise mapped to the SN. In rule (a), all virtual servers are poten-
tially mapped to substrate servers, whereby the restriction here is only the type
of each element. In rule (b), potential mappings are restricted such that virtual
servers are only mapped to the substrate servers if the switches connected to the
servers have already been mapped to each other and the computing capacity of
the virtual server is less than or equal to the computing capacity of the substrate
server. The last rule (c) can be especially considered as a heuristics-based app-
roach, since the entire VN is mapped to a single substrate server, which directly
leads to a solution. While doing so the sum of the computing capacities of all
virtual servers must not exceed the computing capacity of the substrate server.

After defining the MT rules, we discuss the mapping candidates created for
the concrete instances from Fig. 1 when applying these rules. Figure 6 shows the
mapping candidates as dashed lines between the nodes once for the purely ILP-
based approach and for the MT-based approach with two different rule sets. In
the ILP-based approach, Fig. 6 shows all combinatorially possible mappings of
nodes that represent the mapping variable xi

u and thus the ILP search space.
Figure 6 (1) uses the two rules (a) and (b) from Fig. 5 for the MT-based app-
roach, disregarding the attribute condition CV

1 ≤ CS
1 . In case (2) in Fig. 6 the

68 S. Tomaszek et al.

type = Sr

(b)

type = Sw type = Sw

type = Sr

++
vn : VN

(c)
type = Sr

++

(a)
type = Srtype = Sr

++

Fig. 5. Example for different TGG rules.

attribute condition CV
1 ≤ CS

1 is also used, resulting in fewer mapping candi-
dates. It becomes clear that the MT search spaces from MdVNE in Fig. 6 can
be strongly restricted in this example by the rules and their attribute condi-
tions. That is, the style of the MT rules related to structural and/or attribute
conditions has a decisive impact of the resulting search space as demonstrated
here.

ILP MdVNE

(1) (2)

Fig. 6. Example for potential mappings in the ILP and MT search spaces.

4 Evaluation

In this section, the presented MdVNE approach is evaluated in four different
scenarios and compared to a purely ILP-based technique. The following research
questions are investigated in our experiments:

RQ 1: To what extent is the search space reduced by combining MT with ILP
as compared to a purely ILP-based solution?

RQ 2: How does the reduction of the search space using MT affect the runtime
of the ILP solver as compared to a purely ILP-based technique?

RQ 3: How does the reduction of the search space affect the embedding quality?

VNE: Reducing the Search Space by Model Transformation Techniques 69

4.1 Setup

The evaluation setup consists of a two-tier SN and one or more VNs with a
single-tier structure. The SN consists of 2 core switches with racks, each con-
sisting of a switch and 10 servers (cpu = 64, memory = 128 and storage = 1000).
The bandwidth between the servers and the switch in their rack is 1000, whereas
the bandwidth between a rack and a core switch is 10000. The VNs consist of a
central switch and range210 servers with varying resources (cpu = [2;12], mem-
ory = [2;24] and storage = [50;300]), which are interconnected (bandwidth = 100).
For embedding, a pre-built queue with 100 randomly created VNs is used in the
following four scenarios: Scenario S1 and S2 have 4 racks (Scenario S3 and S4
have 20 racks), and in each iteration either 1 VN (scenario S1 and S3) or 5
VNs simultaneously (scenario S2 and S4) are embedded. To calculate the costs
for each mapping, the following values are defined as costs: Mapping a virtual
switch to a substrate switch (server) costs 1 (2), and mapping a virtual server
to a substrate server costs 1. The costs for mapping a virtual link to a substrate
path are calculated depending on the path length (the number of links inside the
path): a path length of 1 costs 2, while longer paths lead to a cost of 4path length

(e.g., a path length 2 leads to a cost of 42 = 16). This strategy shall reflect the
influence of resource consumption or latency on the quality of the embeddings.
Finally, mapping a virtual link directly to a substrate node (server or switch)
costs 1 (which is only possible if the virtual nodes connected by the virtual link
are mapped to the same substrate node).

The following three configurations will be examined in more detail: ILP,
MdVNE A and MdVNE B. ILP is purely based on the ILP problem formula-
tion from Sect. 2. MdVNE A and MdVNE B demonstrate the possibilities of
MdVNE to reduce the search space to different degrees. MdVNE A consists
exclusively of rules of type (a) from Fig. 5, which check the type of the elements
and ignore attribute constraints. MdVNE B also take into account the attributes
and attribute constraints as depicted in the rules in Fig. 5(b).

The metrics defined by Fischer et al. [2] are used to measure quality. The first
metric refers to energy consumption and measures the number of active substrate
nodes (server and switches) in relation to all substrate nodes. An active element
is defined as an element to which a virtual element is mapped. The second metric
describes the average path length of a virtual link in hops, since each link has
the same unit length. All simulations were run on a machine with Intel Xeon
E5-2630 v3 with 2.40 GHz on Windows Server 2016 with Java SE Development
Kit 8 and Gurobi 7.52 [11] as the ILP tool. The median of five repetitions is
plotted in our runtime measurements.

4.2 Results

In the following, the results of the evaluation are presented on the basis of the
research questions and discussed in detail.

70 S. Tomaszek et al.

RQ 1: Search Space. As a metric for the size of the search space we mea-
sured the mapping variables and constraints. Figure 7 present the number of
mapping variables over the iterations for the scenarios S3 and S4 in the three
configurations: ILP, MdVNE A, and MdVNE B. Both diagrams show that the
ILP configuration requires about 7 times more variables than MdVNE A and
B (e.g., Fig. 7, scenario S4: ØILP = 290000 and ØMdV NE B = 41000). The
reduced number of variables for MdVNE B in comparison to MdVNE A is due
to the additional attribute constraints of MdVNE B, which limit the mapping
possibilities. A similar behavior can also be observed in scenario S1 and S2. The
number of constraints behave in the same way, whereby only 3 to 4 times more
constraints are created for the ILP configuration compared to MdVNE A and
B. The reduction of the numbers of constraints does not take place on the same
scale as the reduction of the variables, since no duplicate constraints are filtered
out in the translation T .

 0

20 000

40 000

60 000

80 000

100 000

0 10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f I
LP

 v
ar

ia
bl

es

Number of iterations

Scenario S3

ILP MdVNE A MdVNE B

 0

100 000

200 000

300 000

400 000

0 2 4 6 8 10 12 14 16 18 20

N
um

be
r o

f I
LP

 v
ar

ia
bl

es

Number of iterations

Scenario S4

ILP MdVNE A MdVNE B

Fig. 7. ILP variables for scenario S3 and S4.

RQ 2: Runtime. Next, we assess the time required by Gurobi to solve the
optimization problem as well as the entire runtime including preparation, MT,
ILP solving, and post-processing. The two diagrams in Fig. 8 show the Gurobi
runtime of scenario S3 and S4 (as scenario S1 and S2 behave similarly). Note that
the Gurobi timeout is set to 2 h, which may not be sufficient to find an optimal
result. It is shown that compared to MdVNE A and B, the ILP configuration
takes on average about 9 times longer in scenario S3 than MdVNE A and B
(ØILP = 58 and ØMdVNE B = 6), and in scenario S4 the runtime even deviate
by 2 orders of magnitude. Afterwards, the second measuring point in Fig. 8 (sce-
nario S4) for the ILP configuration was evaluated again without any timeout for
Gurobi resulting in approx. 8 h for the ILP solving. A similar behavior can also
be observed in the scenarios S1 and S2, where the ILP configuration requires
between 4 and 20 times longer to solve the ILP problem than MdVNE A and
B. Figure 9 shows the complete runtime over the iterations for scenario S3, with
the result that the ILP configuration takes approx. 4 times longer than MdVNE
A and B (ØILP = 62 and ØMdV NE B = 17). In scenario S4, this value is in
the range of one order of magnitude (ØILP = 6300 and ØMdV NEB = 111),
whereby the Gurobi timeout must be taken into account. In order to illustrate

VNE: Reducing the Search Space by Model Transformation Techniques 71

the ratios of preparation, MT, and post-processing, Fig. 10 shows the complete
runtime and the ILP solving time for scenario S4 and MdVNE B over the iter-
ations. On average, the complete runtime for MdVNE B is 111 s and 67 s for
ILP solving, so that in this case the ratio of MT and its preparation and post-
processing takes about 40% of the complete time, which is in a comparable range
as described in e.g. [12].

 0

 50

 100

 150

 200

 250

 300

 350

0 10 20 30 40 50 60 70 80 90 100

IL
P

so
lv

in
g

tim
e

[s
]

Number of iterations

Scenario S3

ILP MdVNE A and B

 0

2 000

4 000

6 000

8 000

0 2 4 6 8 10 12 14 16 18 20

IL
P

so
lv

in
g

tim
e

[s
]

Number of iterations

Scenario S4

ILP MdVNE A and B Gurobi timeout

Fig. 8. ILP solving time for scenario S3 and S4.

 0

 50

 100

 150

 200

 250

 300

 350

0 20 40 60 80 100

C
om

pl
et

e
ru

nt
im

e
[s

]

Number of iterations

Scenario S3

ILP MdVNE A and B

Fig. 9. Complete runtime for scenario
S3.

 0

 50

 100

 150

 200

 250

0 5 10 15 20

R
un

tim
e

[s
]

Number of iterations

Scenario S4, MdVNE B

Complete runtime ILP solving runtime

Fig. 10. Complete and ILP solving
runtime for MdVNE B in scenario S4.

RQ 3: Quality. To answer this question, the three metrics (i) accepted VNs,
(ii) average path length and (iii) active substrate nodes were evaluated. The
metrics accepted VNs and the average path length did not differ between the
three configurations as expected, except in scenario S4, where the ILP ran into
a timeout. Due to this, Gurobi was no longer able to find optimal solutions and
the number of successfully mapped VNs decreased significantly. The last metric,
counting the number of active substrate nodes, showed differences between the
three configurations, as different optimal solutions are possible.

Summary. The evaluation showed that the search space of the embedding prob-
lem encoded as an ILP problem can be significantly reduced by the use of MTs,
which also has a direct effect on the runtime for solving the optimization prob-
lem. Thus, MdVNE A and B required up to 7 times fewer variables and 4 times

72 S. Tomaszek et al.

fewer constraints than the ILP configuration, resulting in a reduction of the ILP
solution time by up to 2 orders of magnitude. When comparing the total runtime
for ILP and MdVNE A and B, the ILP configuration required approximately
one order of magnitude more time to solve the problem than MdVNE A and B
including a ratio of about 40% for the MT in scenario S4. It also showed that
the quality of the achieved solutions is comparable to the optimal solutions and
that MT can, therefore, be specified in such a way that the search space can be
significantly reduced without reducing the subset of optimal solutions.

Threats to Validity. Other technologies beside ILP are also possible to describe
and solve the problem, e.g., SAT/SMT solver technologies. However, the ILP for-
mulation used here is established [9] and is improved by an ongoing collaboration
with experts. Required runtime for ILP solving, furthermore, highly depends on
the choice of the ILP solver. Gurobi, nevertheless, represents a prominent and
state-of-the-art solver, while we also plan further experiments with CPLEX.

5 Related Work

The virtualization of data center networks and the VNE problem has been exten-
sively researched and an overview of these areas can be found in [2,13]. As a
result, many algorithms have been developed for VNE to reduce the search space
of this NP-hard problem [1]. Guo et al. [4] proposed SecondNet, a heuristics-
based approach to embed a subset of virtualized data centers in a tree-based
data center. To reduce the search space, the authors only consider the bandwidth
and number of virtual machines per physical server. Zeng et al. [5] additionally
consider the data traffic between the virtual machines and minimize the result-
ing communication costs. The authors present an ILP-based approach for small
data centers and a heuristics-based approach for larger data centers. Compared
to the algorithms mentioned earlier, different topologies, resource constraints,
requirements, and optimization goals can easily be taken into account by modi-
fying MdVNEs metamodel and MT rules as well as the translation of generated
models into sets of ILP formulas if necessary. Depending on the scenario, devel-
opers can reduce the search space and seamlessly adapt embedding decisions to
changed boundary conditions while all constraints are fulfilled by construction,
e.g., Fig. 5(b) CV

1 ≤ CS
1 .

Model-driven software development is a promising method developing appli-
cations independently of a concrete plattform. The partly automatic verification
of the specification and the automatic code generation also play an important
role in a large number of different applications. For example, brake-by-wire in
the automotive industry requires to allocate software components on networked
electronic control units. Pohlmann et al. [14] describe a model-driven allocation
approach specifying the problem in an OCL-based language, transformed into
an ILP model and solved afterwards. In the area of Software-defined Network-
ing, Lopes et al. [15] describe how to create application, controller, and network
independent code for Software-defined Networking applications by modeling the

VNE: Reducing the Search Space by Model Transformation Techniques 73

physical network and its functions. Kluge et al. [16] present methods for the
development of topology control algorithms by graph transformations taking into
account global and local consistency constraints (e.g., preservation of connectiv-
ity). The aforementioned approaches indicate that model-driven development is
a promising method for specifying algorithms in various network domains. Still,
the focus of these models and approaches is not the simultaneous support for
network resources and limitations or specifying VNE algorithms for data center
environments.

Another approach for combining model transformation and optimization
techniques is presented by Fleck et al. [17]. The objective is to calculate an “opti-
mal” sequence of rule applications using search-based algorithms. Evaluating
fitness values after each (arbitrarily performed) rule application, the approach
reduces the search space on the fly but might fail in finding a global optimum.
Another approach of optimization techniques in model-driven development is
learning model transformations by examples [18], whereby the applicability to
large models is the most limiting aspect.

6 Conclusion and Future Work

In this paper, we have introduced and expanded the MdVNE approach, which
relies on a combination of MT and ILP techniques. This supports various
resources, demands, constraints, and optimization goals while ensuring that all
constraints are met by construction. Since the reduction of the search space is an
important aspect in solving the VNE problem in data center, MdVNE enables
the developer to reduce the search space by MT techniques according to purpose
and scenario. This makes it possible to develop a series of embedding algorithms
for scenarios on an abstract level, generate prototypical implementations auto-
matically, and evaluate them rapidly within a reasonable time frame.

An evaluation of two MdVNE configurations and a pure ILP configuration
for a data center of 40 and 200 servers was studied to evaluate the potential of
reducing the search space, the runtime for problem solving and the quality of
the embeddings. Our approach was able to reduce the search space by a factor
of 7 compared to the pure ILP technique and thus the solver runtime can be
reduced by up to 2 orders of magnitude. The complete runtime including the
MT could be reduced by one order of magnitude in comparison to a purely ILP
configuration. In addition, there were no significant differences in quality of the
generated embeddings, so that MT was still able to find an optimal solution even
after reducing the potential search space, compared to the ILP approach.

In future research, we plan to reduce the runtime in complex data center
environments by using incremental pattern matching techniques. In addition,
dynamic system changes should be taken into account, which means that migra-
tion and failure protecting strategies have to be integrated. This raises the ques-
tion of the transition between different algorithms which, depending on the cur-
rent situation, guarantee an optimal result and are adaptable to the respective
environment. For further use of this approach, a simulation framework is cur-
rently being developed to test different configurations and new algorithms.

74 S. Tomaszek et al.

Acknowledgement. This work has been funded by the German Federal Ministry
of Education and Research within the Software Campus project GraTraM at TU
Darmstadt, funding code 01IS12054, and by the German Research Foundation (DFG)
as part of project A1 within CRC 1053–MAKI.

References

1. Amaldi, E., Coniglio, S., Koster, A.M.C.A., Tieves, M.: On the computational
complexity of the virtual network embedding problem. Electron. Notes Discrete
Math. 52, 213–220 (2016)

2. Fischer, A., Botero, J.F., Beck, M.T., de Meer, H., Hesselbach, X.: Virtual network
embedding: a survey. Commun. Surv. Tutorials 15(4), 1888–1906 (2013)

3. Ballani, H., Costa, P., Karagiannis, T., Rowstron, A.I.T.: Towards predictable
datacenter networks. In: Conference on Applications, pp. 242–253 (2011)

4. Guo, C., Lu, G., Wang, H.J., Yang, S., Kong, C., Sun, P., Wu, W., Zhang, Y.:
SecondNet: a data center network virtualization architecture with bandwidth guar-
antees. In: Proceedings of the 6th International Conference, pp. 15:1–15:12 (2010)

5. Zeng, D., Guo, S., Huang, H., Yu, S., Leung, V.C.: Optimal VM placement in
data centers with architectural and resource constraints. Int. J. Auton. Adapt.
Commun. Syst. 8(4), 392–406 (2015)

6. Yang, Z., Guo, Y.: An exact virtual network embedding algorithm based on integer
linear programming for virtual network request with location constraint. China
Commun. 13(8), 177–183 (2016)

7. Tomaszek, S., Leblebici, E., Wang, L., Schürr, A.: Model-driven development of
virtual network embedding algorithms with model transformation and linear opti-
mization techniques. In: Modellierung 2018, pp. 39–54 (2018)

8. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series
in Discrete Mathematics and Optimization. Wiley, New York (1999)

9. Sahhaf, S., Tavernier, W., Rost, M., Schmid, S., Colle, D., Pickavet, M., Demeester,
P.: Network service chaining with optimized network function embedding support-
ing service decompositions. Comput. Netw. 93, 492–505 (2015)

10. Schürr, A.: Specification of graph translators with triple graph grammars. In:
Graph-Theoretic Concepts in Computer Science, pp. 151–163 (1994)

11. Gurobi Optimization, Inc.: Gurobi Optimizer Reference Manual 2015 (2016)
12. Leblebici, E., Anjorin, A., Schürr, A.: Inter-model consistency checking using triple

graph grammars and linear optimization techniques. In: Fundamental Approaches
to Software Engineering, pp. 191–207 (2017)

13. Bari, M.F., Boutaba, R., Esteves, R.P., Granville, L.Z., Podlesny, M., Rabbani,
M.G., Zhang, Q., Zhani, M.F.: Data center network virtualization: a survey. Com-
mun. Surv. Tutorials 15(2), 909–928 (2013)

14. Pohlmann, U., Hüwe, M.: Model-driven allocation engineering (T). In: Interna-
tional Conference on Automated Software Engineering, pp. 374–384 (2015)

15. Lopes, F.A., Lima, L., Santos, M., Fidalgo, R., Fernandes, S.: High-level model-
ing and application validation for SDN. In: Network Operations and Management
Symposium, pp. 197–205 (2016)

16. Kluge, R., Stein, M., Varró, G., Schürr, A., Hollick, M., Mühlhäuser, M.: A sys-
tematic approach to constructing incremental topology control algorithms using
graph transformation. J. Vis. Lang. Comput. 38, 47–83 (2017)

VNE: Reducing the Search Space by Model Transformation Techniques 75

17. Fleck, M., Troya, J., Wimmer, M.: Marrying search-based optimization and model
transformation technology. In: Proceedings of NasBASE (2015)

18. Kessentini, M., Sahraoui, H., Boukadoum, M.: Model transformation as an opti-
mization problem. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 159–173. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87875-9 12

https://doi.org/10.1007/978-3-540-87875-9_12

Schema Transformations and Query
Rewriting in Ontological Databases

with a Faceted Interface

Tadeusz Pankowski(B)

Institute of Control, Robotics and Information Engineering,
Poznań University of Technology, Poznań, Poland

tadeusz.pankowski@put.poznan.pl

Abstract. In this paper, we discuss some problems identified in design-
ing and implementing a class of ontological database systems. The goal
of these systems is to provide an extended knowledge system that com-
bines flexibility of ontologies with efficiency of relational databases. The
terminological part of the ontology forms the ontological (conceptual)
schema of the database, and the extensional part is managed by a rela-
tional database server. Queries are formulated in an interactive way using
a faceted search over the ontological schema. In such scenario, a number
of transformations must be performed: (a) a mapping from an ontological
schema into relational scheme that concerns both the structure and rules
constituting the ontology; (b) transformation of faceted queries, defined
in a graphical form, into first-order queries and to SQL queries. The con-
siderations are based on verified solutions implemented in DAFO (Data
Access based in Faceted queries over Ontologies) system.

1 Introduction

In recent two decades, we witness the increasing importance of research on com-
bining ontologies and databases. Ontology-based data access (OBDA) systems
have been proposed as a way of integrating and querying information from
heterogeneous sources [6,21], in ontology-enhanced databases an ontology is
added to enrich databases with intensional knowledge encoded by ontology rules
[2,13,19], ontological databases are designed for ontologies, where query answer-
ing problems are more important than classical reasoning tasks [10]. In all these
cases, the goal is to achieve a synergy in the result of combining flexibility of
ontologies with efficiency of relational databases. The challenging issue is pro-
viding the system with a querying mechanism over ontologies, since the schema
of the database has then a form of an ontology. A standard query language
for ontologies is SPARQL [22] but it is not well-suited for end users. Thus, we
observe development of graphic-oriented query languages [26]. Among them, a
significant place takes the faceted search [2,24,25], and in this paper we will
exploit this paradigm as a query formulation mechanism in ontological database
systems.
c© Springer International Publishing AG, part of Springer Nature 2018
A. Rensink and J. Sánchez Cuadrado (Eds.): ICMT 2018, LNCS 10888, pp. 76–91, 2018.
https://doi.org/10.1007/978-3-319-93317-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93317-7_3&domain=pdf

Schema Transformations and Query Rewriting in Ontological Databases 77

Contribution. In this paper, we discuss and propose solutions to schema transfor-
mations and query rewriting problems identified in designing and implementing
in ontological database systems with faceted search. Main novelties discussed in
this paper, are:

1. Defining a mapping between a terminological part of an ontology (treated
as a conceptual schema) and a schema of relational database. This mapping,
called meta-schema mapping, since is defined on the meta-schema level and
concerns schemas, specifies a mapping for both structural elements of the
ontology as well as ontology rules. This is crucial in ontological databases since
the mapping is used in the process of translating ontology-oriented queries
into SQL queries executed by relational database engine.

2. Designing a transformation and rewriting procedures from ontology-oriented
faceted queries into first-order queries and finally to SQL queries. A faceted
query is created using a hierarchical graphical interface and is visualized as a
tree. We propose a method for transforming such a tree in a first-order query,
which is a tree-shaped monadic positive existential query [1,2], that is next
translated into a SQL query.

Related work. Similarities and differences between ontologies and relational
databases were investigated in both research papers [13,18] and text books,
notably [1]. A synergic combination of databases and ontologies can be observed
in data integration systems [6,21], ontology-enhanced databases [2,13,19] and
ontological databases [4,5,10]. Essential and inspiring for this paper was the
concept of the extended knowledge bases proposed in [13]. The theory of schema
mapping was initiated and developed in [8,9]. Faceted search is a prominent
search and data exploration paradigm in ontology-based and e-commerce appli-
cations and a number of RDF-based faceted search systems have been devel-
oped in recent years [2,12,20,25,27]. The theoretical foundations of faceted
search were studied [2]. In our previous papers [15,16] we presented the prelim-
inary results of our investigations and implementation of the Data Access based
on Faceted queries over Ontologies (DAFO) system and reported experimental
results, which prove high efficiency of proposed solutions.

2 Preliminaries: Ontological Databases

An application domain can be specified as an ontology, since an ontology is “an
explicit specification of a conceptualization of an application domain” [11]. On the
other hand, from a more technical point of view, an application domain is repre-
sented using the relational database technology, where the conceptual model of
the application domain is informally presented in a form of ER or UML diagram
(see our running example in Fig. 1). The idea of ontological databases is to com-
bine these two approaches. Ontologies provide a rich mechanism for intensional
knowledge specification (the conceptual model), and relational database technol-
ogy provides methods for efficient implementation of the extensional knowledge
(a relational database) and a query answering environment.

78 T. Pankowski

Fig. 1. ER diagram as a conceptual model of a bibliographic application domain.

2.1 Ontologies and Ontological Schemas

An ontology is defined as a triple O = (Σ,R,A), where: (a) Σ is a signature
consisting of a set of unary predicates (UP) (classes) and binary predicates (BP)
(properties), (b) R is a set of rules (intensional knowledge), and (c) A is a set
of facts or assertions. All expressions in R and in A are built from symbols
occurring in Σ and constants in a Const set. We assume that there is a subset
LabNull of labeled nulls in Const. For labeled nulls, the unique name assumption
(UNA) is not made, i.e., different symbols can denote the same individual. For
“regular” constants UNA is satisfied [1,8,13]. A pair T = (Σ,R) is referred to
as a terminological part of the ontology, and A as an extensional part of it [3].

In ontological databases, the intensional part plays a role of an ontological
(conceptual) schema presented to users, while the extensional part is represented
in a relational database R = (Sch, I), where Sch is a relational schema and I
is an instance of the schema [10]. In this paper, we impose some restrictions on
the terminological part to achieve ability to transform ontological schema into
the relational one.

Definition 1 (Ontological schema). A pair T = (Σ,R) is an ontological
schema (a schema of an ontological database), if:

1. Σ is partitioned into two disjoint sets of intensional and extensional predi-
cates, i.e., Σ = UP ∪ BP, where: UP = UPI ∪ UPE, and BP = BPI ∪ BPE,
and the distinguished extensional unary predicate String is in UPE.

2. The set of rules is partitioned into two disjoint sets, R = Rc ∪ Rw, Table 1,
where:
– Rc – a set of integrity constraint rules of the form (IC-1) – (IC-8).
– Rw – a set of rewriting rules of the form (RW-1) – (RW-5). All predicates

on the right-hand sides of rewriting rules are intensional.

Definition 1 determines a class of ontologies which can be transformed into
relational databases without losing knowledge, and which can be queried using
a faceted search paradigm.

Example 1. The conceptual model represented by an ER diagram in Fig. 1, can
be specified by an ontological schema BibOn = (Σ,Rc ∪ Rw), where:

Schema Transformations and Query Rewriting in Ontological Databases 79

Table 1. Categories of rules in DAFO ontologies.

Id General form of a rule Name

IC-1 P (x, y) → C(x) Domain rule

IC-2 P (x, y) → C(y) Range rule

IC-3 C(x) → C1(x) Subtype rule (follows from RW-3 or RW-4)

IC-4 P (x, y) → P1(x, y) Subproperty rule (follows from RW-5)

IC-5 C(x) → ∃y P (x, y) Totality on domain

IC-6 C(y) → ∃x P (x, y) Totality on range

IC-7 P (x, y1) ∧ P (x, y2) → y1 = y2 Functionality rule (a function on domain)

IC-8 P (x1, y) ∧ P (x2, y) → x1 = x2 Key rule (a function on range)

RW-1 ∃z P1(x, z)∧C(z)∧P2(z, y) → P (x, y) Chain (composition)

RW-2 P1(y, x) → P (x, y) Inversion

RW-3 C1(x) ∧ ∃yP (x, y) ∧ y = a → C(x) Type specialization determined by a value

RW-4 C1(x) ∧ ∃yP (x, y) ∧ C2(y) → C(x) Type specialization determined by a
subtype

RW-5 C1(x) ∧ P1(x, y) ∧ C2(y) → P (x, y) Property specialization determined by a
domain and/or a range subtype

1. Extensional predicates:
UPE = {String, Person, Paper, Proceedings, Conference}
BPE = {name, affiliation, authorOf, inProc, ofConf, country,
acronym . . . }.

2. Intensional predicates (not all are depicted in Fig. 1):
UPI = {Author,ACMConf,ACMPaper, . . . },
BPI = {writtenBy, presentedAt, authorConf, . . . }.

3. Integrity constraint rules (only concerning name):
Rc = {name(x, y) → Person(x), P erson(x) → ∃y name(x, y),

name(x, y1) ∧ name(x, y2) → y1 = y2,
name(x1, y) ∧ name(x2, y) → x1 = x2, . . . }

4. Rewriting rules specifying intensional predicates:
Rw = {Paper(x) ∧ ∃y authorOf(x, y) ∧ Paper(y) → Author(x),

Conference(x) ∧ ∃y acronym(x, y) ∧ y =′ ACM ′ → ACMConf(x),
Paper(x) ∧ ∃y presentedAt(x, y) ∧ ACMConf(y) → ACMPaper(x)
authorOf(y, x) → writtenBy(x, y),
∃z inProc(x, z) ∧ Proceedings(z) ∧ ofConf(z, y) → presentedAt(x, y),
∃z authorOf(x, z) ∧ Paper(z) ∧ presentedAt(z, y) → authorConf(x, y)}

2.2 Relational Schema

A relational schema specifies relation names, their types (set of attributes), pri-
mary keys for some relations, and such integrity constraints as: primary key
constraints, unique constraints, not-null constraints, referential constraints (for-
eign keys), and inclusion constraints.

80 T. Pankowski

Definition 2 (Relational schema). A relational schema is a tuple Sch =
(R,Att, att, pkey,Constr), where:

– R = {R1, . . . , Rn} is a finite set of relation (or table) names;
– Att is a finite set of attributes;
– att assigns a finite set att(R) ⊆ Att of attributes to each R ∈ R;
– pkey is a function assigning primary keys to some relation names, pkey(R) =

Id ∈ att(R) (i.e., we assume that all primary keys have the same name, Id);
– Constr is a set of constraints of the form: R[Id] PRIMARY KEY (primary key

constraint); R[A] UNIQUE (unique constraint); R[A] NOT NULL (not-null con-
straint); R[A] → R′[Id] (referential constraint); R′[Id] ⊆ R[A] (inclusion
constraint), where A ∈ att(R), Id = pkey(R′), R,R′ ∈ R.

Example 2. A sample relational schema of a bibliographic database is depicted
in Fig. 2. There are six relation names, and, for example:

att(Person) = {Id,Name},
att(Affiliation) = {PersonId,Affiliation},
pkey(Person) = Id,
Constr = {Person[Id] PRIMARY KEY, P erson[Name] UNIQUE,

P erson[Name] NOT NULL, AuthorPaper[AuthorId] NOT NULL,
AuthorPaper[AuthorId] → Person[Id],
Paper[Id] ⊆ AuthorPaper[PaperId], . . . }.

Fig. 2. Diagram of a bibliographic relational schema BibSch. Arrows denote referential
constraints, and ⊆ – inclusion constraints.

3 Transforming of an Ontology to Ontological Database

Given an ontology O = (Σ,Rc ∪ Rw,A), we have to transform it to a relational
database RDB = (Sch, I). So, two mappings must be defined:

– on a meta-schema level: a mapping of ontological to relational schema,
– on a schema level: a mapping of a set of facts, extended with materialized

extensional rules, to relational database instance.

In result, and ontological database ODB = (Σ,Rc ∪ Rw,RDB) is obtained.

Schema Transformations and Query Rewriting in Ontological Databases 81

3.1 Mapping of Ontological Schema to Relational Schema

Now, we show how elements of an ontological schema are mapped to elements
of a relational schema. Let T = (Σ,Rc ∪Rw) be an ontological schema. The set
BPE ⊆ Σ of extensional binary predicates is divided into four pairwise disjoint
sets:

FDP − a set of functional data properties,
MDP − a set of multivalued data properties,
FOP − a set of functional object properties,
MOP − a set of multivalued object properties.

Data properties are binary predicates which have String as their range, otherwise
they are object properties. A functional property is a binary predicate for which
the functionality rule is defined, otherwise it is a multivalued property. Further
on, by dom(P) and rng(P) we denote, respectively, the domain and the range of
P , by domTot(P) and rngTot(P) we denote that P is total on its domain and
range, respectively, and by key(P), that the key rule is defined for P .

Definition 3. Given an ontological schema T = (Σ,Rc ∪ Rw) and a relational
schema Sch = (R,Att, att, pkey,Constr), a (meta-schema) mapping from T to
Sch is defined by means of the following meta-schema mapping function

M = (rel, domAtt, rngAtt, constr),

where
rel : UPE ∪ BPE → R
domAtt : BPE → Att
rngAtt : BPE → Att
constr : UPE ∪ BPE → 2Constr.

We assume the following denotations:

– rel(C), and rel(P) will be denoted by RC and RP , respectively;
– domAtt(P) will be denoted by Ad

P ;
– rngAtt(P) will be denoted by Ar

P .

The above meta-schema mapping function M is defined as follows:

1. For every C,C ′ ∈ UPE , we assume RC �= RC′ for C �= C ′, and

RC [Id] PRIMARY KEY ∈ constr(C).

To any extensional unary predicate C, a relation name RC of type att(RC)
is assigned. There is an attribute Id ∈ att(RC), and Id is the primary key
of RC . Different relation names are assigned to different unary predicates.
For example: RPerson = Person, Id ∈ att(Person), pkey(Person) = Id,
Person[Id] PRIMARY KEY ∈ Constr.

82 T. Pankowski

2. For every P ∈ FDP , if dom(P) = C, then

RP = RC , Ad
P = Id, Ar

P ∈ att(RC), Ar
P �= Id.

If P is a functional data property with domain C, then: an attribute of RC

is assigned to P as its range attribute Ar
P , and the primary key of RC is

assigned to P as its domain attribute Ad
P . The mapping does not effect the

set of constraints in the relational schema. For example, if name ∈ FDP ,
dom(name) = Person, then Rname = Person, Ad

name = Id, Ar
name =

Name ∈ att(Person).
3. For every P ∈ MDP , if dom(P) = C, then:

RP �= RC , att(RP) = {Ad
P , Ar

P }, RP [Ad
P] → RC [Id] ∈ constr(P).

If P is a multivalued data property with domain C, then: a relation name
RP assigned to P is different from RC ; relation RP has two attributes,
att(RP) = {Ad

P , Ar
P }, assigned as the domain and the range attribute of P .

The domain attribute is the foreign key in RP referring to the primary key
of RC , i.e., the referential constraint RP [Ad

P] → RC [Id] is assigned to P . For
example, if affiliation is a multivalued data property with domain Person,
then Raffiliation = Affiliation, att(Affiliation) = {PersonId,Affiliation},
Ad

affiliation = PersonId, Ar
affiliation = Affiliation, and Affiliation[PersonId]

→ Person[Id] ∈ Constr.
4. For every P ∈ FOP , if dom(P) = C, and rng(P) = D, then

RP = RC , Ad
P = Id, Ar

P ∈ att(RC), RC [Ar
P] → RD[Id] ∈ constr(P).

If P is a functional object property with domain C and range D, then the
relation assigned to P is that assigned to C. The domain attribute of P is
the primary key of RC , and the range attribute of P is an attribute Ar

P ∈
att(RC). Ar

P is also a foreign key referring to the primary key of RD. For
example, if ofConf is a functional object property with domain Proceedings
and range Conference, then: RofConf = Proceedings, Ad

ofConf = Id =
pkey(Proceedings), Ar

ofConf = ConferenceId ∈ att(Proceedings), and the
referential constraint Proceedings[ConferenceId] → Conference[Id] is in
Constr.

5. For every P ∈ MOP , if dom(P) = C, and rng(P) = D, then:

RP �= RC , RP �= RD, att(RP) = {Ad
P , Ar

P },
{RP [Ad

P] → RC [Id], RP [Ar
P] → RD[Id]} ⊆ constr(P).

If P is a multivalued object property with domain C and range D, then the
relation assigned to P is a binary relation RP , different from RC and RD.
att(RP) = {Ad

P , Ar
P }, where Ad

P is a foreigns key referring to the primary
key of RC , and Ar

P is a foreign key referring to the primary key of RD. For
example, if authorOf is a multivalued object property with domain Person
and range Paper, then: RauthorOf = AuthorPaper , att(AuthorPaper) =
{AuthorId, PaperId}, Ad

authorOf = AuthorId, Ar
authorOf = PaperId and

the referential constraints AuthorPaper [AuthorId] → Person[Id] and
AuthorPaper [PaperId] → Paper[Id] are in Constr.

Schema Transformations and Query Rewriting in Ontological Databases 83

6. Mapping of another integrity constraint rules. Note that the following
integrity constraints rules: domain, range, and functionality, were considered
while defining the above mappings. The subtype and subproperty rules are
not mapped explicitly, since they are in fact consequences of some rewriting
rules. Now, we define mappings for totality and key rules.
(a) If dom(P) = C, and domTot(P) is a totality rule on domain of P , then

{RP [Ar
P] NOT NULL, RC [Id] ⊆ RP [Ad

P]} ⊆ constr(P).

In this case, the rule is mapped into two constraints in relational schema:
(1) the not-null constraint on the range attribute of P , and (2) the inclu-
sion dependency defining inclusion of the primary key of RC in the domain
attribute of P (trivially satisfied for functional properties).

– Person(x) → ∃y name(x, y) saying that name is total on Person
is mapped to Person[Name] NOT NULL, and to Person[Id] ⊆
Person[Id] (that is always true).

– The rule Person(x) → ∃y affiliation(x, y) says that at least one affili-
ation is given for any person. Then affiliation is total on Person, and
the rule is mapped into the set of two constraints:
(1) the not-null constraint: Affiliation[Affiliation] NOT NULL, and
(2) the inclusion dependency: Person[Id] ⊆ Affiliation[PersonId].

(b) If rng(P) = D, and rngTot(P) is a totality rule on range of P , then

{RP [Ad
P] NOT NULL, RD[Id] ⊆ RP [Ar

P]} ⊆ constr(P).

In this case, the rule is mapped into two constraints in relational schema:
(1) the not-null constraint on the domain attribute of P (trivially satisfied
for functional properties, since the domain attribute is then the primary
key), and (2) the inclusion dependency defining inclusion of the primary
key of RD in the range attribute of P .

– Conference(y) → ∃x ofConf(x, y) specifies that any conference has
proceedings, i.e., ofConf is total on its range Conference. The rule is
mapped to Proceedings[Id] NOT NULL (always true), and to inclusion
dependency Conference[Id] ⊆ Proceedings[ConferenceId].

– The rule Paper(y) → ∃x authorOf(x, y) says that at least one author
must be given for any paper. Then authorOf is total on Paper, and
the rule is mapped into the set of two constraints:
(1) the not-null constraint: AuthorPaper [AuthorId] NOT NULL, and
(2) the inclusion dependency: Paper[Id] ⊆ AuthorPaper [PaperId].

7. If key(P) is a key rule, then

RP [Ar
P] UNIQUE ∈ constr(P),

i.e., the UNIQUE constraint is enforced for the range attribute assigned to P .
For example, if name(x1, y) ∧ name(x2, y) → x1 = x2 says that a person is
uniquely determined by its name, then this rule is mapped to the constraint
Person[Name] UNIQUE in relational schema.

Meta-schema mappings for some predicates of the ontological schema in
Example 1 into relational schema in Example 2, is given in Table 2.

84 T. Pankowski

Table 2. Meta-schema mapping of an ontological schema into relational schema.

Predicate (P) rel (RP) domAtt (Ad
P) rngAtt (Ar

P) constr(P)

Person(UP) Person {Person[Id] PRIMARY KEY}
name(FDP) Person Id Name {Person[Name] NOT NULL,

Person[Name] UNIQUE}
affiliation(MDP) Affiliation PersonId Affiliation {Affiliation[PersonId] →

Person[Id]}
inProc (FOP) Paper Id ProcId {Paper[ProcId] →

Proceedings[Id], Proceedings[Id]

⊆ Paper[ProcId]}
authorOf (MOP) AuthorPaper AuthorId PaperId {AuthorPaper[AuthorId] →

Person[Id],

AuthorPaper[PaperId] →
Paper[Id], Paper[Id] ⊆
AuthorPaper[PaperId],

AuthorPaper[AuthorId] NOT

NULL, AuthorPaper[PaperId]

NOT NULL}

3.2 Mapping of an Ontology to Relational Database Instance

Now, we show haw extensional part of an ontology O = (Σ,Rc ∪ Rw,A) is
mapped to an relational database instance. This extensional part consists of the
set A and all consequences of it with respect to the set Rc of integrity constraint
rules, denoted A ∪ Rc. This extensional part, called the canonical model, is
obtained by using the chase procedure [7,8], denoted A ∪ Rc = chaseRc

(A).

Example 3. For the following sets from an ontology O:

– a set of facts (Ni denotes a labeled null in LabNull)
A = {Person(N1), P erson(p2), name(N1, john),

name(N2, ann), name(p1, john)}, N1,N2 ∈ LabNull, and
– a set of integrity constraint rules

Rc = {name(x, y) → Person(x), P erson(x) → ∃y name(x, y),
name(x1, y) ∧ name(x2, y) → x1 = x2};

it is easy to show that the canonical model is

A ∪ Rc = {Person(p1), P erson(p2), P erson(N2),
name(p1, john), name(p2,N3), name(N2, ann)}.

Definition 4. Let O = (T ,A) be an ontology, where T = (Σ,Rc ∪ Rw), and
M : T → Sch be a mapping from the ontological schema T to a relational schema
Sch. A mapping, m, of the extensional component of O to an instance of Sch,
is defined by the following set of rules executed on the canonical model A ∪ Rc:

– C(x) → ∃r RC(r) ∧ r.Id = x, for each C ∈ UPE;
– P (x, y) → ∃r RP (r) ∧ r.Ad

P = x ∧ r.Ar
P = y, for each P ∈ BPE;

– RP (r) ∧ isLN(r.Ar
P) → r.Ar

P = NULL, for each data property P .

Schema Transformations and Query Rewriting in Ontological Databases 85

where RC , RP , Ad
P , Ar

P are defined in the definition of M (Definition 3). The
function isLN(x) returns TRUE if x ∈ LabNull, and FALSE otherwise.

Note, that the right-hand sides of rules in m (Definition 4) are specified in rela-
tional tuple calculus (RTC) [1]. Labeled nulls, which are values of data properties,
are replaced by NULL, while the other are left in the relational database instance
and are interpreted as “regular” constants (satisfying UNA).

Example 4. For the canonical model in Example 3, and the mapping discussed
in Sect. 3.1, we obtain m(A ∪ Rc) = I, where

PersonI = {[Id : p1, name : john], [Id : p2, name : NULL], [Id : N2, name : ann]}.

4 Faceted Queries and Their First-Order Form

4.1 Formulating Faceted Queries Using a Faceted Interface

The main assumption in the faceted search paradigm is that a user is pro-
vided with a faceted interface that is a hierarchical view over the underlying
information source, in our case – over an ontology with the ontological schema
T = (Σ,Rc ∪ Rw). An ontology is, in general, a complex network not a hier-
archy. To deal with this issue, in DAFO system a user starts with writing a
keyword query that is a sequence of unary predicates from the ontology. In this
way she/he specifies an interesting subset of the ontology and its hierarchical
arrangement (consistent with the ordering of the keywords in the sequence).

Fig. 3. A faceted interface (a), faceted query tree (b), and first-order faceted query
before rewriting (c), and after rewriting (d). (Color figure online)

86 T. Pankowski

For example, (Paper,ACMConf,DEXAConf, Person) is the keyword
query in Fig. 3 that initiates a process of the faceted search. It means that the
user intends to create a query returning a set of objects of type Paper (the first
component of the sequence), and the query will involve conditions on remaining
components of the sequence. The system prepares an appropriate hierarchical
view of the ontology and presents it in a form of a faceted interface, Fig. 3(a).
Note that all unary predicates given in the keyword query, as well as binary
predicates connecting them, are selected (checked). In DAFO, a faceted inter-
face is implemented by a tree view object that is an instance of TreeView class
[23].

Now, a user can interactively and iteratively operate on the faceted interface
creating the expected final faceted query. In the running example, the faceted
query is presented as the tree in Fig. 3(b) (count = indicates the expected number
of elements in the answer). Note that:

– the blue color of a node indicates that the set of its children is a disjunctive
set (components are connected by OR),

– the red color of a node indicates that the set of its children forms a conjunctive
set (components are connected by AND),

– a disjunctive set of constants (or constant set names) is written as a list and
prefixed by ANY, e.g., ANY (‘INRIA France’, ‘PUT Poland’) in Fig. 3(c),

– a conjunctive set of constants (or constant set names) is written as a list and
prefixed by ALL, e.g., ALL (‘%database%’, ‘%query%’) in Fig. 4(b), where
%database% identifies a set of strings containing ‘database’ as a substring.

While operating on the faceted interface, a user can perform the following
operations: (a) selecting/unselecting nodes, (b) expanding/collapsing subtrees,
(c) switching: disjunctive/conjunctive, (d) cloning (duplicating) subtrees, (e)
inserting values, (f) removing unselected nodes.

In result of operating over a faceted interface, a final faceted query is
obtained. In Fig. 3(b) the faceted query is presented as a tree. The meaning
of the query is: “Get papers presented at an ACM or a DEXA conference and
written by a person affiliated to ‘INRIA France’ or ‘PUT Poland’”.

The faceted query in Fig. 4(a) means: “Get ACM papers, which concerns
both databases and queries” (for simplicity, we assume that the subjects of a
paper are included in its title).

4.2 Transformation of Faceted Queries into First-Order Form

To obtain an executable form of a faceted query, we have to make the following
transformations:

1. Transformation of the tree form of faceted query into first-order form, called
first-order faceted query (FOFQ).

2. Rewriting FOFQ into an extensional form, i.e., into a form in which no inten-
sional predicate occurs.

Schema Transformations and Query Rewriting in Ontological Databases 87

Fig. 4. Faceted query tree (a), first-order faceted query before rewriting (b), after
rewriting (c), and its translation to SQL (d).

3. Translation of extensional FOFQ into SQL query.

We start with a formal definition of a faceted query tree.

Definition 5 (Faceted query tree). A faceted query tree is an tree expression
fqt conforming to the syntax:

fqt ::= (root, qt)
qt ::= ◦{ct1, · · · , ctk}
ct ::= (C, ε) | (C, ◦{pt1, · · · , ptm})
pt ::= (P, qt) | (P−, qt) | (P, ◦{vs1, · · · , vsn})
vs ::= (a, ε) | (patt, ε),

(1)

where: (a) ◦ ∈ {∨,∧}; (b) a pair (lab, ◦{t1, · · · , tn}) denotes a tree with a root
labeled by lab and a set {t1, · · · , tn} of subtrees; when ◦ is ∨, then the set of
subtrees is treated as a disjunctive set, if ◦ is ∧, then the set of subtrees is treated
as a conjunctive set; (c) “root” is a distinguished label outside the ontology,
C ∈ UP, P ∈ BP, a ∈ Const, patt is a pattern denoting a set of constant values
(strings) belonging to String.

Example 5. The faceted query tree in Fig. 3(b) is the following expression con-
sistent with the syntax (1) (the root label will be always omitted):

T1 = ∨{(Paper,∧{(presentedAt,∨{(ACMConf, ε), (DEXAConf, ε)}),
(writtenBy,∨{(Person,
∧{(affiliation,∨{(′INRIAFrance′, ε), (′PUTPoland′, ε)})})})})}

For the faceted query tree in Fig. 4(a), we have:

T2 = ∨{(ACMPaper,∧{(paperT itle,∧{(%database%, ε), (%query%, , ε)})})}

88 T. Pankowski

The semantics of a faceted query tree is given by a first-order query (FOFQ),
obtained by means of the semantic function [[]]x, where x is a free variable in
FOFQ.

Definition 6 (First order faceted query). The semantics of a faceted query
tree fqt, denoted [[fqt]]x is the first-order query defined as follows:

[[fqt]]x =[[qt]]x
[[qt]]x =[[ct1]]x ◦ · · · ◦[[ctk]]x

[[(C, ε)]]x = C(x)
[[(C, ◦{pt1, · · · , ptm})]]x = C(x) ∧ ([[pt1]]x ◦ · · · ◦[[ptm]]x)

[[(P, qt)]]x = ∃y P (x, y) ∧[[qt]]y
[[(P−, qt)]]x = ∃y P (y, x) ∧[[qt]]y

[[(P, ◦{vs1, · · · , vsn})]]x = ∃y P (x, y) ∧ ([[vs1]]y ◦ · · · ◦[[vsn]]y)
[[(a, ε)]]x = x = a

[[(patt, ε)]]x = x LIKE patt,

(2)

where the variable y under existential quantifier is “fresh:, i.e., any variable is
at most once quantified.

In Fig. 3(c) and in Fig. 4(b), there are first-order faceted queries in forms
of syntactic trees. Note, that those queries are built from both extensional and
intensional predicates.

4.3 Transformation into Extensional First-Order Form and to SQL

Now, we show how a first-order faceted query is rewritten into an extensional
form, i.e., a form, in which no intensional predicate appears. In the rewriting
process, any atom built from an intensional predicate is rewritten according to
the following procedure:

1. Let P (y1, y2) be an atom in q, where P is an intensional predicate. Let ω =
α(x1, x2, x3) → P (x1, x2) be a rewriting rule of the form (RW-1). (RW-2) or
(RW-3) in Table 1, and let variables x1, x2, x3 do not appear in q.

2. The unification of P (y1, y2) and P (x1, x2), implies the substitution θ =
[x1/y1, x2/y2], i.e., any occurrence of xi must be substituted by yi, i = 1, 2.

3. The atom P (y1, y2) is replaced in q with α(x1, x2, x3)[x1/y1, x2/y2], i.e., with
the body of the rewriting rule with variables substituted accordingly.

4. A similar procedure is applied for any atom C(y), where C is an intensional
predicate, and the rewriting rule is of the form (RW-3) or (RW-4).

Example 6. Let us consider the following query, that is a fragment of FOFQ in
Fig. 3(c):

q(x) = Paper(x) ∧ ∃x1 presentedAt(x, x1) ∧ ACMConf(x1).

To rewrite the atom presentedAt(x, x1), we can use the following rewriting rule
of the form (RW-1), given in Example 1(4), in which names of variables are
changed to be different from those in the considered FOFQ in Fig. 3(c):

∃x4 inProc(x5, x4)∧Proceedings(x4)∧ofConf(x4, x6) → presentedAt(x5, x6).

Schema Transformations and Query Rewriting in Ontological Databases 89

Then, the substitution unifying the considered atom and the head of the rewrit-
ing rule, is θ = [x5/x, x6/x1]. Thus, after rewriting we have

q1(x) = Paper(x) ∧ ∃x4 inProc(x, x4) ∧ Proceedings(x4) ∧ ∃x1 ofConf(x4, x1)
∧ACMConf(x1).

Extensional forms of the considered faceted queries are presented in Figs. 3(d)
and 4(c), respectively. Finally, the extensional FOFQ is translated into SQL
query. For our running examples, results of these translations are shown in Fig. 5,
and in Fig. 4(d), respectively.

SELECT DISTINCT x.Id FROM Paper as x
JOIN Proceedings as x4 ON x.ProcId = x4.Id
JOIN Conference as x1 ON x4.ConfId = x1.Id AND x1.Acronym LIKE ’%ACM%’
JOIN AuthorPaper as x_x2 ON x.Id = x_x2.PaperId
JOIN Person as x2 ON x_x2.PersonId = x2.Id
JOIN Affiliation as x2_x3 ON x2.Id = x2_x3.PersonId
AND x2_x3.Affiliation IN (’INRIA, France’,’PUT, Poland’)
UNION SELECT DISTINCT x.Id FROM Paper as x
JOIN Proceedings as x4 ON x.ProcId = x4.Id
JOIN Conference as x1 ON x4.ConfId = x1.Id AND x1.Acronym LIKE ’%DEXA%’
JOIN AuthorPaper as x_x2 ON x.Id = x_x2.PaperId
JOIN Person as x2 ON x_x2.PersonId = x2.Id
JOIN Affiliation as x2_x3 ON x2.Id = x2_x3.PersonId
AND x2_x3.Affiliation IN (’INRIA, France’,’PUT, Poland’)

Fig. 5. SQL query created from extensional FOFQ in Fig. 3(d).

5 Summary

In this paper, we presented solutions to some model and language transfor-
mations in ontological databases. We considered an ontological database as a
knowledge base, where its schema (ontological schema) is defined in a form of an
ontology, and the extensional part is stored in a relational database. We studied
two transformation problems in such scenario: (a) a mapping from the termi-
nological part of the ontology into relational database schema (a meta-schema
mapping), and (b) a mapping from an extensional part of the ontology into
relational database instance (a schema mapping). We focused also on transfor-
mations connected with formulating faceted queries over an ontological schema.
A faceted query is created using a faceted interface, and must be: (a) trans-
formed into a first-order query, (b) rewritten into extensional first-order query,
and finally (c) translated into SQL query, that is executed in relational database.
The considerations are illustrated by solutions implemented in the DAFO (Data
Access based in Faceted queries over Ontologies) system [14,17].

This research has been supported by Polish Ministry of Science and Higher
Education under grant 04/45/DSPB/0185.

90 T. Pankowski

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Arenas, M., Grau, B.C., Kharlamov, E., Marciuska, S., Zheleznyakov, D.: Faceted
search over ontology-enhanced RDF data. In: ACM CIKM 2014, pp. 939–948
(2014)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Petel-Schneider, P. (eds.):
The Description Logic Handbook: Theory Implementation and Applications.
Cambridge University Press, New York (2003)

4. Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Pieris, A.: Datalog + /− : a family of
languages for ontology querying. In: de Moor, O., Gottlob, G., Furche, T., Sellers,
A. (eds.) Datalog 2.0 2010. LNCS, vol. 6702, pp. 351–368. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24206-9 20

5. Cal̀ı, A., Gottlob, G., Pieris, A.: Advanced processing for ontological queries.
PVLDB 3(1), 554–565 (2010)

6. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rosati, R.:
Ontology-based database access. In: SEBD 2007, pp. 324–331 (2007)

7. Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable rea-
soning and efficient query answering in description logics: the DL-Lite family. J.
Autom. Reason. 39(3), 385–429 (2007)

8. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and
query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

9. Fagin, R., Kolaitis, P.G., Popa, L.: Data exchange: getting to the core. ACM Trans.
Database Syst. 30(1), 174–210 (2005)

10. Gottlob, G., Orsi, G., Pieris, A.: Query rewriting and optimization for ontological
databases. ACM Trans. Database Syst. 39(3), 25:1–25:46 (2014)

11. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge
sharing? Int. J. Hum. Comput. Stud. 43(5–6), 907–928 (1995)

12. Hahn, R., Bizer, C., Sahnwaldt, C., Herta, C., Robinson, S., Bürgle, M., Düwiger,
H., Scheel, U.: Faceted Wikipedia search. In: Abramowicz, W., Tolksdorf, R. (eds.)
BIS 2010. LNBIP, vol. 47, pp. 1–11. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-12814-1 1

13. Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational
databases. J. Web Semantics 7(2), 74–89 (2009)

14. Pankowski, T.: Exploring ontology-enhanced bibliography databases using faceted
search. In: Kamps, J., Tsakonas, G., Manolopoulos, Y., Iliadis, L., Karydis, I. (eds.)
TPDL 2017. LNCS, vol. 10450, pp. 27–39. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-67008-9 3

15. Pankowski, T.: Rewriting and executing faceted queries over ontology-enhanced
databases. In: 21st Conference on Knowledge-Based and Intelligent Systems (KES
2017), pp. 137–146. Procedia Computer Science, Elsevier (2017)

16. Pankowski, T., Brzykcy, G.: Data access based on faceted queries over ontolo-
gies. In: Hartmann, S., Ma, H. (eds.) DEXA 2016. LNCS, vol. 9828, pp. 275–286.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44406-2 21

17. Pankowski, T., Brzykcy, G.: Faceted query answering in a multiagent system of
ontology-enhanced databases. In: Jezic, G., Chen-Burger, Y.-H.J., Howlett, R.J.,
Jain, L.C. (eds.) Agent and Multi-Agent Systems: Technology and Applications.
SIST, vol. 58, pp. 3–13. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-39883-9 1

https://doi.org/10.1007/978-3-642-24206-9_20
https://doi.org/10.1007/978-3-642-12814-1_1
https://doi.org/10.1007/978-3-642-12814-1_1
https://doi.org/10.1007/978-3-319-67008-9_3
https://doi.org/10.1007/978-3-319-67008-9_3
https://doi.org/10.1007/978-3-319-44406-2_21
https://doi.org/10.1007/978-3-319-39883-9_1
https://doi.org/10.1007/978-3-319-39883-9_1

Schema Transformations and Query Rewriting in Ontological Databases 91

18. Reiter, R.: On closed world data bases. In: Logic and Data Bases, pp. 55–76 (1977)
19. Sequeda, J.F., Arenas, M., Miranker, D.P.: OBDA: query rewriting or material-

ization? In practice, both!. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C.,
Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.)
ISWC 2014. LNCS, vol. 8796, pp. 535–551. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-11964-9 34

20. Sherkhonov, E., Cuenca Grau, B., Kharlamov, E., Kostylev, E.V.: Semantic faceted
search with aggregation and recursion. In: d’Amato, C., Fernandez, M., Tamma,
V., Lecue, F., Cudré-Mauroux, P., Sequeda, J., Lange, C., Heflin, J. (eds.) ISWC
2017. LNCS, vol. 10587, pp. 594–610. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-68288-4 35

21. Skjæveland, M.G., Giese, M., Hovland, D., Lian, E.H., Waaler, A.: Engineering
ontology-based access to real-world data sources. J. Web Sem. 33, 112–140 (2015)

22. SPARQL Query Language for RDF (2008). http://www.w3.org/TR/rdf-sparql-
query

23. TreeView Class (2017). https://msdn.microsoft.com/en-us/library/system.
windows.forms.treeview(v=vs.110).aspx

24. Tunkelang, D.: Faceted Search. Morgan & Claypool Publishers, San Rafael (2009)
25. Tzitzikas, Y., Manolis, N., Papadakos, P.: Faceted exploration of RDF/S datasets:

a survey. J. Intell. Inf. Syst. 48, 1–36 (2016)
26. Vega-Gorgojo, G., Slaughter, L., Giese, M., Heggestøyl, S., Soylu, A., Waaler,

A.: Visual query interfaces for semantic datasets: an evaluation study. J. Web
Semantics 39, 81–96 (2016)

27. Wagner, A., Ladwig, G., Tran, T.: Browsing-oriented semantic faceted search. In:
Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011. LNCS,
vol. 6860, pp. 303–319. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23088-2 22

https://doi.org/10.1007/978-3-319-11964-9_34
https://doi.org/10.1007/978-3-319-11964-9_34
https://doi.org/10.1007/978-3-319-68288-4_35
https://doi.org/10.1007/978-3-319-68288-4_35
http://www.w3.org/TR/rdf-sparql-query
http://www.w3.org/TR/rdf-sparql-query
https://msdn.microsoft.com/en-us/library/system.windows.forms.treeview(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.windows.forms.treeview(v=vs.110).aspx
https://doi.org/10.1007/978-3-642-23088-2_22
https://doi.org/10.1007/978-3-642-23088-2_22

Model Transformation Reuse Across
Metamodels

A Classification and Comparison of Approaches

Jean-Michel Bruel1, Benoit Combemale1, Esther Guerra2(B),
Jean-Marc Jézéquel3, Jörg Kienzle4, Juan de Lara2, Gunter Mussbacher4,

Eugene Syriani5, and Hans Vangheluwe4,6

1 University of Toulouse, IRIT, Toulouse, France
2 Universidad Autónoma de Madrid, Madrid, Spain

esther.guerra@uam.es
3 Univ Rennes, Inria, CNRS, IRISA, Rennes, France

4 McGill University, Quebec, Canada
5 Université de Montréal, Montréal, Canada
6 University of Antwerp, Antwerp, Belgium

Abstract. Model transformations (MTs) are essential elements of
model-driven engineering (MDE) solutions. MDE promotes the creation
of domain-specific metamodels, but without proper reuse mechanisms,
MTs need to be developed from scratch for each new metamodel. In this
paper, we classify reuse approaches for MTs across different metamodels
and compare a sample of specific approaches – model types, concepts,
a-posteriori typing, multilevel modeling, and design patterns for MTs –
with the help of a feature model developed for this purpose, as well as
a common example. We discuss strengths and weaknesses of each app-
roach, provide a reading grid used to compare their features, and identify
gaps in current reuse approaches.

Keywords: Model transformation · Reuse · Classification
Feature model · Model types · Concepts · A-posteriori typing
Multilevel modeling · Transformation design patterns

1 Introduction

As model-driven engineering (MDE) is used for engineering evermore numer-
ous and complex systems, model transformations (MTs) are becoming more and
more complex pieces of software. Like for any other piece of software [1], reuse
mechanisms for MTs have been proposed to limit reimplementing a transfor-
mation from scratch every time a new but related need arises. In this paper,
we focus on the reuse of MTs that were developed for a particular metamodel,
but are then applied to models typed by other metamodels, i.e., reuse across
metamodels.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Rensink and J. Sánchez Cuadrado (Eds.): ICMT 2018, LNCS 10888, pp. 92–109, 2018.
https://doi.org/10.1007/978-3-319-93317-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93317-7_4&domain=pdf

Model Transformation Reuse Across Metamodels 93

Many use cases of MT reuse have been identified in the literature [2], pro-
viding useful classifications. Since the use cases of MT reuse imply very differ-
ent trade-offs among non-functional properties such as type-safety, performance,
expressiveness and user-friendliness, no single MT reuse approach fits them all.

In this paper, we propose a classification of MT reuse approaches that work
across metamodels, and compare a sample of specific approaches—namely model
types [3,4], concepts [5,6], a-posteriori typing [7], multilevel modeling [8], and
design patterns for MTs [9]—with the help of a feature model developed for this
purpose, and a common example. We discuss strengths and weaknesses of each
proposal, provide a reading grid to compare their features, and identify gaps in
current reuse approaches.

The paper is organized as follows. Section 2 motivates the need for reuse mecha-
nisms across metamodels and presents a running example. Section 3 defines classi-
fication criteria using a feature model. Section 4 compares five existing approaches
based on the classification and the running example, and Sect. 5 discusses trade-
offs. Section 6 overviews related classification attempts and reuse techniques, and
Sect. 7 concludes by identifying challenges for the MT community.

2 Motivation

MDE supports the creation of metamodels to describe models using the most
appropriate primitives and level of abstraction. However, this entails the creation
of all kinds of services for each metamodel, including MTs. Without proper reuse
mechanisms, MTs need to be created from scratch even if there are MTs with
the same goal but defined over similar yet different metamodels.

As a concrete example, consider a MT that implements the common flatten-
ing operation. This MT traverses a given hierarchy and extracts its elements into
a flat collection. Figure 1(a) illustrates a specification for such a MT, defined over
a minimal metamodel that contains just the elements the MT needs (Container
and Element). In practice, the MT would be implemented using languages like
ATL [10], ETL [11], or Kermeta [12], but to stay language-agnostic, we only show
a post-condition that identifies its effect. The first two lines of the postcondition
state that, for a given hierarchy, all (sub-)elements should become contained in
the same root container; the last line ensures the hierarchy is removed.

Container Element

0..1

*
subs0..1

*
roots

container

context Container::flattening()
post : self.roots@pre->collect(e | Set{e}->closure(subs@pre))->

flatten()->asSet()->forAll(e | e.container = self)
and self.roots->forAll(e|e.subs->isEmpty())

State
Machine State

BasicOr

states
*machine

submachine

0..1 Package

NameSpace

Classpacks
*0..1

elems

Project

*

(a)

(b) (c) (d)

Goal

0..1

*
subgoals

1 parent

Fig. 1. (a) Reusable model transformation scheme. (b, c, d) Metamodels for which the
model transformation wants to be reused.

94 J.-M. Bruel et al.

Flattening is recurrent in many contexts, like in structural modeling
(class/package hierarchies, goal hierarchies) and behavioral languages (state
machines, activity diagrams). Figures 1(b), (c), (d) show three typical meta-
models of these kinds of languages.

Without proper reuse mechanisms, a flattening MT needs to be implemented
from scratch for each metamodel. Some ad-hoc reuse approaches are applied in
practice, like clone-and-own (copy-paste and manual adaptation) or translating
the models of interest to the metamodel accepted by the reused MT. Neither
approaches are optimal. In the first case, manual adaptation is time-consuming,
error-prone, hardly scalable, and leads to well-known maintenance problems with
code clones [13]. In the second case, illustrated by Fig. 2, an existing MT (rt
on the right) defined for a metamodel MM , wants to be reused on a model
(M ′ on the left) conformant to a different metamodel MM ′. In this figure (and
following ones), light boxes represent existing artifacts, and dark ones represent
new artifacts to be built. An adapter transformation is required to translate
the model into one that conforms to the metamodel the reused transformation
conforms to, so that the MT can be applied to this new model M . This is not
efficient since it requires executing an additional transformation in addition to
the reused one. Moreover, a reverse MT may be needed to transform the result
back to the original model’s metamodel.

Fig. 2. Explicit model adaptation approach to MT reuse

The MT community has proposed several approaches to facilitate reuse across
metamodels, like model typing, a-posteriori typing, concepts, multilevel model-
ing and transformation patterns, among others [14–17]. These approaches have
different trade-offs and are applicable in different scenarios and contexts. Hence,
there is an urging need to classify and compare them to know which approach
to use in a given situation.

Model Transformation Reuse Across Metamodels 95

3 Classification

We introduce a feature model to classify the different alternatives for MT reuse
across metamodels. The model, shown in Figs. 3 and 4, presents the features of
the reuse mechanism as well as properties of the reused transformation. In the
following, we write rt to denote the MT to be reused.

Mechanism

MT Reuse

Legend:
Mandatory
Optional
(Inclusive) Or

Abstract
Concrete

Alternative (exclusive or)

Opportunistic

Reused MT properties

Reuse interface

Form

Metamodel

Logic-based

DSL

Derived from MT

Copy

Reference
Reuse by

Correctness-checking

Checking type
Syntactic checking

Semantic checking

Checking time
Static checking

Dynamic checking

Mappings

Language-independent

Design

Code
Abstraction level

Complete

Partial
Scope

Inplace

Source reusability

Target reusability
Outplace

Transformation kind

Systematic
Strategy

Transformation

Fig. 3. Feature model: mechanisms for reuse and scenarios of reuse (the Mapping fea-
ture is expanded in Fig. 4

Strategy. In a systematic reuse strategy, a MT is developed by reusing spe-
cific units that were made available a priori. This is analogous to software built
following a component-based design. In this case, rt was developed with the
intention of being reused. Hence, depending on the reuse approach, the MT
needs to be packaged as a component [6], as a pattern [9], or the metamodel the
MT is defined on needs to be sliced [18]. All other kinds of reuse are considered
opportunistic.

Mappings. A reusable transformation rt, defined over a metamodel MM , is
applicable to a number of different metamodels MM ′. The way to specify the
correspondences or mappings between MM and MM ′ depends on the reuse
approach, and determines the set of metamodels where rt can be reused. Figure 4
shows the alternative features for mapping specifications.

96 J.-M. Bruel et al.

Mappings

Level

Definition

Multiple occurrences

Adaptation

Intensional

Extensional

Match Evaluation

Intra

Across

Meta

Model

Instantiation

Typing
Inferred

Explicit

Predefined

Bidirectional

Operators

Static

Dynamic

User-defined

Renaming

Class-to-association

Association-to-class
Arbitrary

Preprocessing
Derived features

Derived classes

1-1

1-n

n-1

n-m

Arity

(1-n⇒1-1)∧(n-1⇒1-1)∧(n-m⇒1-n∧n-1)∧(Model⇒Extensional)

Style

Fig. 4. Feature model: specification of mappings

– Arity: The relation between MM and the new reuse context MM ′ can be
one-to-one: injective where each element in MM needs to be mapped to
exactly one element in MM ′. The mapping can be one-to-many : each MM
element is mapped to any number of MM ′ elements, including none. It can
also be many-to-one: an MM element can be mapped several times. Finally,
the most general kind of mapping is many-to-many : elements in both MM
and MM ′ can be mapped several times.

– Style: The objects over which rt are reused can be specified either by exten-
sion (i.e., enumerating them) or by intension (i.e., providing necessary and
sufficient conditions that characterize the objects). Moreover, intensional
specifications can be evaluated statically at compile-time, dynamically at run-
time, or at the convenience of the user (user-defined).

– Level: Intra-level mappings relate elements at the same metalevel: either
two metamodels, which is the most common case, or two models. In contrast,
mappings across levels relate elements at different metalevels by means of
instantiation (e.g., in multilevel modeling) or typing relationships (e.g., in
transformation patterns, where rule elements are typed w.r.t. a metamodel).

– Definition: The mapping between MM and MM ′ can be explicit, i.e.,
defined by the user (using either an extensional or intensional approach),
or be inferred automatically, e.g., using name matching [3] or structural sim-
ilarity criteria [14].

– Multiple Occurrences: This refers to the possibility to define multiple
application contexts for rt within a metamodel MM ′, all of which are handled

Model Transformation Reuse Across Metamodels 97

simultaneously by rt, perhaps using a composition mechanism for coordina-
tion. Most existing approaches only support one application context at a
time.

– Adaptation: To widen the number of metamodels where a transformation
can be reused, several mechanisms bridge heterogeneities between MM and
MM ′. Some approaches provide a set of predefined operators for specific kinds
of adaptations, such as renaming a class, mapping a class to an association, or
mapping an association to a class [6,14] (please note that our feature model
does not list all possible predefined adaptation operators). Such operators
may be bidirectional or not. Other approaches allow arbitrary adaptations
between MM and MM ′, usually defined by means of OCL expressions. It is
also possible to rely on a preprocessing step that adds the necessary derived
classes or derived features to MM ′, making it structurally similar to MM
and allowing a direct mapping between them, before applying rt [6,19].

Reuse By. This feature refers to whether the original transformation is copied
or referenced. In the clone-and-own approach (cf. Sect. 2), the developer reuses
a copy of rt in the transformation. Therefore, any updates to rt will not be
propagated to the new transformation. Instead, the adapter approach of Fig. 2
reuses rt by reference, and hence any further update to the transformation affects
all places where it was reused.

Reuse Interface. Reusable transformations expose an interface for reuse that
can take different forms depending on the approach. It can be a metamodel
declaring the necessary classes and features in the context of reuse [3,4,6,9], a
logic-based specification stating the constraints that a metamodel should fulfill to
ensure a correct MT reuse [17], or a model describing metamodel requirements
using a domain-specific language (DSL) [15]. Sometimes, this reuse interface
can be (semi-)automatically derived from the MT [15,17,18]. While the above-
mentioned interface kinds yield a black-box approach to reuse, the interface for
reuse in white-box approaches is the reusable MT or an abstraction of it [9,14].
This is appropriate when a larger MT is to be composed out of smaller frag-
ments. Both interface kinds can be combined.

Correctness Checking. Different approaches make different choices on how
and when the correctness of rt with respect to m′ and MM ′ should be checked.

– Checking-Type: Checking can be either syntactic, e.g., simple type check-
ing, or semantic, typically also verifying the satisfaction of well-formedness
rules expressed in OCL, or additional semantic conditions capturing the trans-
formation intent (e.g., like bisimulation relations) [20].

– Checking-Time: When the correctness of rt is checked statically, it is
ensured that it will be syntactically correct for all models conforming to
the new context of reuse MM ′. Instead, a dynamic check needs to inspect at
run-time that every (read/write) access to the model by rt is correct. Static
checking of semantic properties requires some form of theorem proving or
model checking, while dynamic checking only requires a run-time evaluation
of OCL constraints.

98 J.-M. Bruel et al.

Properties of Reused Transformation. Transformation reuse approaches
can be language-independent (i.e., the reusable transformation can be written in
any transformation language) or be specific for a transformation language (e.g.,
ATL or graph transformation). Moreover, some approaches may be limited to a
particular kind of transformation, application scope or abstraction level.

– Transformation Kind: The reused transformation can be either inplace or
outplace (i.e., model-to-model). In the former case, the mechanism needs to
ensure that write accesses to the model are correct. In the latter case, the new
context of reuse can be for the source metamodel, which is typically read-only
(source reusability), for the target metamodel, which is typically write-only
(target reusability), or for both.

– Scope: The reused unit can be a complete model transformation or a part of
it, e.g., a rule (partial).

– Abstraction Level: Reuse can be at the design level, e.g., in the form of
design patterns [9], or directly at the implementation level to reuse transfor-
mation code.

4 Comparison of Some Existing Approaches

In this section, we analyze five prominent reuse approaches, classifying them by
the introduced feature model. Each approach is based on a different technique,
summarized in Fig. 5. Model types (Fig. 5a) is based on establishing a subtyping
relation between metamodels. A-posteriori typing (Fig. 5b) works by retyping the
model so that the reused MT can be applied to it. Concepts rely on genericity to
rewrite the MT using a high-order transformation (Fig. 5c) to make it applicable
to a particular metamodel. Similarly, MT patterns use a generative approach to

(a) Subtyping (b) Retyping

(c) High-Order Transformation/Generative (d) Multilevel

Fig. 5. Different techniques enabling MT reuse across metamodels

Model Transformation Reuse Across Metamodels 99

synthesize specific MT code from a design pattern. Finally, multilevel modeling
exploits the typing relation to apply the MT two (or more) metalevels below
(Fig. 5d).

Table 1 summarizes how each approach instantiates the feature model. We
provide more details on their working scheme using the running example in what
follows.

4.1 Model Typing

Fig. 6. Reuse with model typing

Model Types were introduced by Steel
et al. [3], as an extension of object typ-
ing to provide abstraction from object
types and enable model manipulation
reuse. The type of a model is a set of
types of objects that may belong to the
model, and their relationships. While
a model conforms to one and only one
metamodel (the one containing all the
types needed to instantiate objects of
the model), it can have several model
types which are subsets of its meta-
model. Substitutability is the ability to safely use a model of type A where a
model of type B is expected. Substitutability is supported in the model type
theory by defining a subtyping relationship among model types [4,21,22].

Figure 6 illustrates model typing, showing how to reuse the flattening MT
defined on MT for the object-oriented metamodel MM ′. Based on derived
attributes defined within the object-oriented metamodel, if an isomorphism is
statically (or possibly) found, the flattening MT can be safely applied on the
instances of the object-oriented metamodel (m′). Melange employs adapter gen-
erators at compile time to ensure the adaptation at runtime of the actual appli-
cation of the MT on the instances of the targeted metamodel [22].

4.2 Concepts

Inspired by generic programming, concepts were proposed in [5] as a mechanism
to express requirements for generic model management operations and transfor-
mations. A concept is similar to a metamodel, but its elements are parametric
types that need to be bound to elements in a metamodel. Generic transforma-
tions are defined over concepts. When a concept is bound to a metamodel, the
associated transformation gets rewritten in terms of the metamodel and can
be applied to its instances. In this approach, adapters [6] enable more flexible
bindings by the use of OCL expressions in mappings, which get injected in the
rewritten MT code.

Figure 7 shows how to reuse the flattening MT for the object-oriented meta-
model using concepts. The flattening metamodel is considered the concept, whose
elements need to be bound to elements in the concrete metamodel. In this case,

100 J.-M. Bruel et al.

Table 1. Classification of MT reuse approaches

Feature Model-typing Concepts A-posteriori Multilevel MT patterns

Mechanism

Strategy Systematic

opportunistic

Systematic

opportunistic

Systematic

opportunistic

Systematic

opportunistic

Systematic

Reuse by Reference Copy Reference Reference Copy

Reuse interface Metamodel

can be derived

Metamodel

can be derived

Metamodel Metamodel Transformation

Checking type Syntactic

semantic (pre.

and post.)

Syntactic Syntactic Syntactic Syntactic

Checking time Static

(type-level)

Dynamic

(inst-level)

Static Static

(type-level)

Dynamic

(inst-level)

Static Static

Mechanism.Mappings

Arity 1−1, 1−n,

n−1, n−ma
1−1, 1−n,

n−1, n−m

1−1, 1−n,

n−1, n−m

1−1, 1−n 1−1

Style Extensional Extensional Extens.

(type-level)

Intens.

(inst-level)

Dynamic

match

Extensional Extensional

Level Intra/meta Intra/meta Intra/meta Across/

instantiation

Across/typing

Definition Inferred Explicit Explicit Explicit Explicit

Multiple occur. No No No No No

Adaptation Renaming,

derived feats

Renaming,

c-to-a a-to-c,

arbitrary,

derived feats,

derived classes

Renaming,

arbitrary,

bidirectional,

derived feats

Renaming,

derived feats

Renaming

Reused MT properties

Lang. indep. Yes No Yes Yes Yesb

Transf. kind Inplace

Outplace

(M2M &

M2T)

Inplace [5]

Outplace [6]

src/tar

reusability

Inplace

Outplace

src/tar

reusability

Inplace

Outplace

src/tar

reusability

Inplace Outplace

src/tar reusability

Scope Complete Complete Complete Partialc Partial

Abstrac. level Code Code Code Code Design
aPreprocessing of derived features for alignment
bBy additional code generators
cThrough refining transformations [5]

an adapter is needed to filter Class objects out of the elems relation (see last
line of binding). As a last step, the generic transformation is rewritten using the
bindings and the adapters.

4.3 A-posteriori Typing

A-posteriori typing [7] permits classifying objects by classes different from the
ones used to initially create the objects, and hence enables multiple, partial,

Model Transformation Reuse Across Metamodels 101

Container

Element 0..1

*subs

0..1
* roots

container

binding {
class Container to Project
class Element to Package
feature Container.roots to packs
feature Element.container to project
feature Element.subs to

self.elems->select(e |
e.oclIsKindOf(Package))

}

Package

NameSpace

Classpacks
*0..1

elems

Project

*

concept

context Container …
post : self.roots.…

context Project …
post: self.packs.… binding induces adapta on of MT

Fig. 7. Binding of concept to metamodel, and MT adaptation (sketch)

Container

Element 0..1

*subs

0..1
* roots

container

Goal

0..1

*
subgoals

Goal.allInstances()->select(g | g.parent.oclIsUndefined()) → Container
subgoals → roots

Goal.allInstances()->select(g | not g.parent.oclIsUndefined()) → Element
parent → container
subgoals → subs

parent

Fig. 8. A-posteriori instance-level specification for the flattening of goal models

dynamic typings. This approach allows opportunistic reuse as MTs defined for
a metamodel can be reused with other models after being reclassified. In this
way, MTs become highly reusable as, similar to Java interfaces, one can design
metamodels whose goal is not object creation, but to serve as a type for MTs.
Figure 5b shows the working scheme of this approach: a model typed by an arbi-
trary metamodel is assigned new types from the metamodel a MT was defined
on, and as a result, the MT can be executed as-is on the model.

A-posteriori typing specifications can be type-level or instance-level. The
former induces a static relation between two metamodels, so that instances of
one can be seen as instances of the other. This mapping style is similar to those
in model typing. Instance-level specifications are more expressive than type-level
ones, as they permit classifying objects by queries that assign a given type to the
result of the query. This typing is dynamic because classification may depend
on the run-time value of the object properties, which may evolve. Moreover, it
allows an object to have multiple a-posteriori types.

Figure 8 shows an instance-level a-posteriori specification to reuse the flat-
tening transformation with goal models. In particular, all Goal objects with no
parent are retyped as Containers, all Goal objects with a parent goal are retyped
as Elements, and references are also retyped properly. When a goal model gets
retyped by this specification, the MT can be applied as-is on the model. This
instance-level example that partitions Goal objects into two sets at run-time
illustrates the power of dynamic match evaluation, which among the surveyed
approaches is only supported by a-posteriori typing.

102 J.-M. Bruel et al.

4.4 Multilevel Modeling

Fig. 9. Reuse by multilevel modeling

Multilevel modeling was proposed in
[23] as a way to enhance flexibil-
ity in modeling by enabling an arbi-
trary number of metalevels and a
dual type/instance facet for model
elements, so that they are instances
with respect to the metalevel above,
and types with respect to the meta-
level below. This approach facilitates
the definition of domain-specific meta-
modeling languages and families of
languages [8], which can be iteratively refined in successive metalevels to account
for domain-specific aspects. Model management operations defined in upper
metalevels become generic and applicable to the instances in direct and indi-
rect lower metalevels.

Figure 9 uses multilevel modeling to reuse the flattening transformation with
a metamodel for object-oriented design. The metamodel of the flattening trans-
formation needs to be promoted to a higher metalevel, and the object-oriented
design metamodel needs to be created as an instance of it. In this way, the trans-
formation can be applied on the object-oriented models created in the lower
metalevel.

4.5 Design Patterns for Model Transformations

Design patterns are artifacts reputed for reuse in software engineering. Unlike
the previous approaches, reuse must be planned for at design-time. The approach
in [9] introduces a DSL, called DelTa, to define design patterns for MTs. Given
a pattern in DelTa, a higher-order transformation (HOT) synthesizes a partial
MT that implements the pattern in a dedicated MT language by means of code
generation. A DelTa model describes an ordered set of rules containing abstract
entities and relations that can be matched (positively or negatively), created, or
deleted.

The top of Fig. 10 shows a design pattern in DelTa representing the flattening
operation that satisfies the specification in Fig. 1. It consists of three rules that
must be applied in this order on a given metamodel mm. It is thus an inplace
transformation. The roots rule creates a trace link (dotted arrow) from the con-
tainer to the root elements and removes the roots relation. In DelTa notation,
elements in gray shall be created, those in black shall be removed, and all oth-
ers are part of the constraint that shall be matched. Elements labeled with n0

are part of the negative constraint that shall not be matched. The closure rule
creates a trace link from the container to all sub-elements recursively (i.e., the
transitive closure). The leaves rule creates a roots relation from the container to
all elements with no sub-element. The Flatten design pattern and the mapping

Model Transformation Reuse Across Metamodels 103

Fig. 10. Binding of flattening design pattern to metamodel

are specified independently from the MT language. However, the HOT generates
its implementation in a specific MT language for a specific metamodel.

Using the notation in Fig. 5c for the MT patterns approach, MM corresponds
to the metamodel of DelTa (see [9]), rt is the Flatten design pattern, and MM ′

is the object-oriented design metamodel in this example. Then, similar to the
concepts approach, rt is reused by generating a MT tailored to MM ′.

5 Discussion

From the configurations shown in Table 1 for several MT reuse approaches, next,
we discuss their differences with regards to a number of properties: if reuse is
opportunistic or systematic, the customization techniques used to adapt a MT
to a particular context, the customization ease and expressiveness, the overhead
at execution time, and the properties guaranteed by the approaches. Table 2
synthesizes the results.

To reuse a MT, it is first necessary to make it reusable. This can be done
a priori when the MT is defined (i.e., systematic reuse) or a posteriori when
the MT is reused (i.e., opportunistic reuse). Model typing, concepts, a-posteriori
typing and multilevel modeling support both kinds of reuse. For opportunistic
reuse, the former two provide slicing mechanisms to extract the relevant part of
the metamodel used by the MT [18], and for planned reuse, they support the
definition of the MT on a generic metamodel (called abstract in model typing
and concept in the concepts approach) which is the minimal metamodel the
MT requires. Multilevel modeling uses promotion (i.e., pulls a metamodel one
metalevel up) to handle opportunistic reuse, and it creates deep metamodels
(i.e., which can be instantiated in successive metalevels) for systematic reuse. In
a-posteriori typing, there is no specific technique to simplify opportunistic reuse,
while for systematic reuse one can create a role metamodel [7] (i.e., its primary
goal is not instantiation but retyping). Patterns are only relevant for systematic
reuse, where abstract patterns are made available to be applied on a specific
metamodel.

104 J.-M. Bruel et al.

Table 2. Comparison of model transformation reuse approaches

Model-typing Concepts A-posteriori Multilevel MT patterns

Reusing existing

MT

(opportunistic)

Slicing Slicing Free Promotion N.A.

Making a MT

reusable

(systematic)

Abstract MM Generic MM

(concept)

Role MM Deep MM Design pattern

Customization

technique

Adapter +

Mappings

Adapter +

Mappings

Adapter +

Mappings

Instantiation Mappings

Customization ease Low to high Low to high Low to high Medium to

high

High

Customization

expressiveness

High

(polymorphic

reuse)

Medium-

high

(parametric

reuse)

Very high

(multi-

matching,

dynamic)

Medium

(instantiation)

Low (limited

matching)

Execution cost

overhead

Evaluation of

adapter at

run-time

None

(adapter

injected in

MT at

compile

time)

Evaluation of

adapter at

run-time

Traverse

typing

relations at

run-time

None (MT excerpt

generated from

pattern)

Property

preservation

guarantees

Static typing,

polymorphism

Static

typing,

generics

Dynamic

typing,

constraint

solving

Static typing,

multilevel

Static typing,

generative

Once the MT rt is available for reuse, it is necessary to align the initial
metamodel MM over which it is defined, to the actual metamodel MM ′ on which
it is to be reused. Model typing, concepts, a-posteriori typing, and patterns rely
on syntactic mappings. When further customizations are required to apply rt in a
particular context, model typing, concepts, and a-posteriori typing also support
the definition of explicit adapters. Multilevel modeling relies on instantiation to
map the initial metamodel MM to the actual metamodel MM ′ one metalevel
below. In the case of patterns, the developer must typically refine the MT by
hand if the mapping is complex.

The complexity of the adapters depends on the syntactic distance between
the initial and actual metamodels. The cost to specify them can range from low
to high accordingly. Multilevel modeling requires a special metamodeling archi-
tecture, and patterns require an explicit definition of the mapping even in case
of an isomorphic alignment, while other approaches may infer it automatically.

Regarding the expressiveness of the mapping customization, model-typing
relies on polymorphic reuse and concepts on parametric reuse. A-posteriori typ-
ing supports in addition multi-matching (i.e., a model element can get several
a-posteriori types) and dynamic typing. Multilevel modeling uses instantiation
for customization, and patterns are limited to isomorphic matching.

The expressiveness for defining the customization comes with the cost of
its evaluation when the MT is reused. Model typing and a-posteriori typing
evaluate the adapters when the MT is called, and multilevel modeling follows

Model Transformation Reuse Across Metamodels 105

a similar approach by traversing the typing relationships at run-time. However,
the added flexibility of a-posteriori typing for instance-level specifications may
incur run-time penalties, as object types are dynamically calculated by queries.
The concepts approach evaluates the adapters at compile-time to generate a
new MT fitting the new metamodel MM ′. The execution cost is not applicable
for patterns since they are reused at design-time [9], and then compiled into a
specific MT language.

Finally, the property preservation guarantee relies on the underlying theory
used by each approach. At design-time, model typing relies on polymorphic reuse,
concepts rely on parametric reuse, multilevel modeling relies on deep instantia-
tion, and patterns use a generative approach. A-posteriori typing uses constraint
solving at design-time to discard potentially unsafe matchings, but the correct-
ness guarantees are limited by the bounded search of the constraint solver [7].

Altogether, the discussed approaches cover most features in the feature
model, but a few remain uncovered. Two specification styles are not favored by
any approach. First, with respect to intensional specification of mappings, they
are either evaluated statically (in model types) or dynamically (in a-posteriori
typing); however, having user-defined evaluation points in the transformation
execution is unexplored. As for the level of mappings, they are either across
levels (instantiation for multilevel modeling, and typing for patterns) or intra-
level between metamodels (the rest); however, no approach supports intra-level
mappings between models. This latter specification style could be realized by
mapping the model elements to be transformed to the elements in reused rules,
which would lead to highly customized but very costly reuse specifications.

Other uncovered options relate to the functionality offered by the reuse mech-
anism. First, supporting semantic checkings (i.e., in line with the so-called trans-
formation “intents” [17,24]) would be a way to further characterize correct reuse
contexts by expressing requirements on the expected (possibly dynamic) seman-
tics of the reuse context. To our knowledge, there is no approach enabling the
definition or checking of MT intents. Another uncovered feature is supporting
multiple occurrences (i.e., reusing several instances of a MT). This would need
mechanisms for composing and synchronizing the multiple MT occurrences, in
line with “localized transformations” [25] or “flexible instantiation policies” [26].
More generally, automated mechanisms for composing a MT out of reused partial
MTs are not exploited by the analyzed approaches. This is so as all approaches –
except patterns – see the reused MT as a black box. In patterns, one can manu-
ally compose reused MTs, but none of the approaches have facilities to automate
the composition process at the code level. That would require a combination with
internal composition techniques like [27,28].

6 Related Work

Reuse of MDE-related artefacts, like metamodels [5] and DSLs [8,22,29], is being
actively investigated. In this paper, we have focused on reuse of transformations
across metamodels, so-called inter-transformations in [2]. Other kinds of MT

106 J.-M. Bruel et al.

reuse include intra-transformation reuse (i.e., reuse within a MT for the same
metamodel) and transformation composition. We refer to [2] for further details
on these kinds of reuse.

Intra-transformation reuse is typically specific for a transformation language.
Some of the proposed techniques include rules with variability [30], ATL module
superimposition [31], and rule inheritance [32]. Other internal composition mech-
anisms are phases, hooks [27] and unit combinators [28]. As mentioned in Sect. 5,
an interesting line of work is the combination of inter- and intra-transformation
reuse.

Several classifications of MT approaches [33] and tools [34] exist. The fea-
tures of some MT approaches, like parameterization or support for high-order
transformations, facilitate reuse. Most reuse approaches are independent of the
MT language. However, those that are dependent (like concepts [6]) benefit from
the declarative style of the MT language, as it simplifies the rewriting of the MT
specification.

For space constraints, we left out a detailed comparison with other reuse
approaches across metamodels, like [14–17]. Anyhow, these approaches were
taken into account when developing the proposed feature model. Mapping oper-
ators [14] are predefined adapters between metamodels, which by themselves
define a MT. In [15], a transformation requirement model is extracted from an
existing MT to describe the metamodels over which the MT can be reused. This
is similar to constraint-based model types [17], but while requirement models
use a DSL to express typing requirements, constraint-based model types use
logic. Finally, generic MTs [16] are similar to concepts, but specifying relations
between the type parameters is not possible, and there is limited support for
adaptation [16]. For comparison, we provide the feature model configuration of
those approaches at http://bit.ly/bellairs18.

7 Conclusion and Perspectives

To achieve true engineering of MDE solutions, mechanisms to scale up MT to
industrial practice – like reuse – are required. In this paper, we have analyzed and
classified approaches to MT reuse across metamodels in order to clarify the exist-
ing reuse options. We have provided a feature model mapping the current option
space, and identified gaps that signal opportunities for further research and chal-
lenges for the MT community. These include the specification and checking of
advanced semantic properties indicating a correct reuse [17], and the combina-
tion of intra- and inter-transformation reuse approaches.

In the future, we would like to outline guidelines for selecting the appropriate
reuse technique depending on the scenario. We also plan to expand our classi-
fication with a goal model to facilitate the decision on the reuse choice, and to
open the spectrum to other reuse scenarios. Analyzing how often are MTs reused
in practice and detecting reuse opportunities, e.g., using tools like [35], remain
as future work.

http://bit.ly/bellairs18

Model Transformation Reuse Across Metamodels 107

Acknowledgements. Work partially supported by the Spanish MINECO (TIN2014-
52129-R), the R&D programme of the Madrid Region (S2013/ICE-3006), the
Safran/Inria/CNRS collaboration GLOSE, and the Inria/CWI Associated Team ALE.

References

1. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (1992)
2. Kusel, A., et al.: Reuse in model-to-model transformation languages: are we there

yet? SoSyM 14(2), 537–572 (2015)
3. Steel, J., Jézéquel, J.M.: On model typing. SoSyM 6(4), 401–414 (2007)
4. Guy, C., Combemale, B., Derrien, S., Steel, J.R.H., Jézéquel, J.-M.: On model

subtyping. In: Vallecillo, A., Tolvanen, J.-P., Kindler, E., Störrle, H., Kolovos, D.
(eds.) ECMFA 2012. LNCS, vol. 7349, pp. 400–415. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31491-9 30

5. de Lara, J., Guerra, E.: From types to type requirements: genericity for model-
driven engineering. SoSyM 12(3), 453–474 (2013)

6. Cuadrado, J.S., Guerra, E., de Lara, J.: A component model for model transfor-
mations. IEEE Trans. Softw. Eng. 40(11), 1042–1060 (2014)

7. de Lara, J., Guerra, E.: A posteriori typing for model-driven engineering: concepts,
analysis, and applications. ACM TOSEM 25(4), 31:1–31:60 (2017)

8. de Lara, J., Guerra, E., Cuadrado, J.S.: Model-driven engineering with domain-
specific meta-modelling languages. SoSyM 14(1), 429–459 (2015)

9. Ergin, H., Syriani, E., Gray, J.: Design pattern oriented development of model
transformations. Comput. Lang. Syst. Struct. 46, 106–139 (2016)

10. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Programm. 72(1–2), 31–39 (2008)

11. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
46–60. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69927-9 4

12. Jézéquel, J.-M., Barais, O., Fleurey, F.: Model driven language engineering with
kermeta. In: Fernandes, J.M., Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE
2009. LNCS, vol. 6491, pp. 201–221. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-18023-1 5

13. Juergens, E., Deissenboeck, F., Hummel, B., Wagner, S.: Do code clones matter?
In: ICSE, IEEE Computer Society, pp. 485–495 (2009)

14. Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schoenboeck, J.,
Schwinger, W.: Surviving the heterogeneity jungle with composite mapping oper-
ators. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 260–275.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13688-7 18

15. de Lara, J., Di Rocco, J., Di Ruscio, D., Guerra, E., Iovino, L., Pierantonio, A.,
Cuadrado, J.S.: Reusing model transformations through typing requirements mod-
els. In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 264–282.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5 15

16. Varró, D., Pataricza, A.: Generic and meta-transformations for model transforma-
tion engineering. In: Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML
2004. LNCS, vol. 3273, pp. 290–304. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30187-5 21

17. Zschaler, S.: Towards constraint-based model types: a generalised formal founda-
tion for model genericity. In: VAO@STAF, pp. 11–18. ACM (2014)

https://doi.org/10.1007/978-3-642-31491-9_30
https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1007/978-3-642-18023-1_5
https://doi.org/10.1007/978-3-642-18023-1_5
https://doi.org/10.1007/978-3-642-13688-7_18
https://doi.org/10.1007/978-3-662-54494-5_15
https://doi.org/10.1007/978-3-540-30187-5_21
https://doi.org/10.1007/978-3-540-30187-5_21

108 J.-M. Bruel et al.

18. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: Reverse engineering of model trans-
formations for Reusability. In: Di Ruscio, D., Varró, D. (eds.) ICMT 2014. LNCS,
vol. 8568, pp. 186–201. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08789-4 14

19. Diskin, Z., Maibaum, T., Czarnecki, K.: Intermodeling, queries, and Kleisli cate-
gories. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 163–177.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2 12

20. Salay, R., Zschaler, S., Chechik, M.: Correct reuse of transformations is hard to
guarantee. In: Van Van Gorp, P., Engels, G. (eds.) ICMT 2016. LNCS, vol. 9765,
pp. 107–122. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42064-6 8

21. Sun, W., Combemale, B., Derrien, S., France, R.B.: Using model types to support
contract-aware model substitutability. In: Van Gorp, P., Ritter, T., Rose, L.M.
(eds.) ECMFA 2013. LNCS, vol. 7949, pp. 118–133. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39013-5 9

22. Degueule, T., Combemale, B., Blouin, A., Barais, O., Jézéquel, J.M.: Melange: a
meta-language for modular and reusable development of DSLs. In: SLE, pp. 25–36.
ACM (2015)

23. Atkinson, C., Kühne, T.: Rearchitecting the UML infrastructure. ACM Trans.
Model. Comput. Simul. 12(4), 290–321 (2002)

24. Lúcio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim, G.M., Syriani, E.,
Wimmer, M.: Model transformation intents and their properties. SoSyM 15(3),
685–705 (2014)

25. Etien, A., Muller, A., Legrand, T., Paige, R.F.: Localized model transformations
for building large-scale transformations. SoSyM 14(3), 1189–1213 (2015)

26. Morin, B., Klein, J., Kienzle, J., Jézéquel, J.-M.: Flexible model element introduc-
tion policies for aspect-oriented modeling. In: Petriu, D.C., Rouquette, N., Haugen,
Ø. (eds.) MODELS 2010. LNCS, vol. 6395, pp. 63–77. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16129-2 6

27. Sánchez Cuadrado, J., Garćıa Molina, J.: Approaches for model transformation
reuse: factorization and composition. In: Vallecillo, A., Gray, J., Pierantonio, A.
(eds.) ICMT 2008. LNCS, vol. 5063, pp. 168–182. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-69927-9 12

28. Kleppe, A.: MCC: a model transformation environment. In: Rensink, A., Warmer,
J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 173–187. Springer, Heidelberg
(2006). https://doi.org/10.1007/11787044 14

29. Sut̂ıi, A., van den Brand, M., Verhoeff, T.: Exploration of modularity and reusabil-
ity of domain-specific languages: an expression DSL in metamod. Comput. Lang.
Syst. Struct. 51, 48–70 (2018)

30. Strüber, D., Rubin, J., Arendt, T., Chechik, M., Taentzer, G., Plöger, J.:
Variability-based model transformation: formal foundation and application. Formal
Asp. Comput. 30(1), 133–162 (2018)

31. Wagelaar, D., Straeten, R.V.D., Deridder, D.: Module superimposition: a com-
position technique for rule-based model transformation languages. SoSyM 9(3),
285–309 (2010)

32. Wimmer, M., et al.: Surveying rule inheritance in model-to-model transformation
languages. JOT 11(2), 3:1–3:46 (2012)

33. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation
approaches. IBM Syst. J. 45(3), 621–645 (2006)

https://doi.org/10.1007/978-3-319-08789-4_14
https://doi.org/10.1007/978-3-319-08789-4_14
https://doi.org/10.1007/978-3-642-28872-2_12
https://doi.org/10.1007/978-3-319-42064-6_8
https://doi.org/10.1007/978-3-642-39013-5_9
https://doi.org/10.1007/978-3-642-16129-2_6
https://doi.org/10.1007/978-3-540-69927-9_12
https://doi.org/10.1007/11787044_14

Model Transformation Reuse Across Metamodels 109

34. Kahani, N., Bagherzadeh, M., R. Cordy, J., Dingel, J., Varro, D.: Survey and
classification of model transformation tools. In: SoSyM (2018, in press)

35. Mengerink, J., Serebrenik, A., Schiffelers, R.R.H., van den Brand, M.G.J.: Auto-
mated analyses of model-driven artifacts: obtaining insights into industrial appli-
cation of MDE. In: IWSM-Mensura, pp. 116–121. ACM (2017)

Systematic Recovery of MDE Technology
Usage

Juri Di Rocco1, Davide Di Ruscio1, Johannes Härtel2, Ludovico Iovino3,
Ralf Lämmel2(B), and Alfonso Pierantonio1

1 Department of Information Engineering, Computer Science and Mathematics,
Università degli Studi dell’Aquila, L’Aquila, Italy

{juri.dirocco,davide.diruscio,alfonso.pierantonio}@univaq.it
2 Faculty of CS, University of Koblenz-Landau, Mainz, Germany

{johanneshaertel,laemmel}@uni-koblenz.de
3 Gran Sasso Science Institute, L’Aquila, Italy

ludovico.iovino@gssi.it

Abstract. MDE projects may use various MDE technologies (e.g., for
model transformation, model comparison, or model/code generation)
and thus, contain various MDE artifacts (such as models, metamod-
els, and model transformations). The details of using the MDE tech-
nologies and the relationships between the MDE artifacts are typically
not accessible at a higher level of abstraction, which makes it hard to
understand, build, and test the MDE projects and thus, to reuse the
contained MDE artifacts. In this paper, we present a megamodel-based
reverse engineering methodology and an infrastructure MDEprofiler
for recovering details of using MDE technologies in MDE projects and
modeling these details at a higher level of abstraction. We exemplify the
approach for MDE projects that use ATL-based model transformations.

1 Introduction

The Model-Driven Engineering (MDE) community has made considerable
progress in recent years with improving productivity and quality in software
development. However, cost-efficient adoption of MDE is still a challenge [1].
Introspection about processes and usage of model-driven techniques and tech-
nologies may help here, if it enables a higher-level representation of tooling archi-
tectures, thereby enhancing understanding and reuse.

Research Problem. MDE projects may use various MDE technologies (e.g., for
model transformation, model comparison, or model/code generation) and thus,
they contain various artifacts (such as models, metamodels, and model transfor-
mations). The details of using MDE technologies and the relationships between
the artifacts are typically not accessible at a higher level of abstraction, which
makes it hard to understand, build, and test the projects and thus, to reuse
the contained artifacts. This problem is arguably very relevant for model repos-
itories [2,3] which, as a result of lacking access to a higher level of abstraction
c© Springer International Publishing AG, part of Springer Nature 2018
A. Rensink and J. Sánchez Cuadrado (Eds.): ICMT 2018, LNCS 10888, pp. 110–126, 2018.
https://doi.org/10.1007/978-3-319-93317-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93317-7_5&domain=pdf

Systematic Recovery of MDE Technology Usage 111

regarding usage of MDE technologies, end up focusing on aggregation of artifacts
without attached ‘architectural’ information.

In principle, one could use a megamodeling approach, up to the point of
executable megamodeling scripts [4], for managing MDE projects. The model
elements of a megamodel are artifacts such as models, metamodels and transfor-
mations. A megamodel also contains relationships between artifacts, for exam-
ple, conformance and transformation. Thus, megamodeling offers the possibility
to specify relationships between artifacts and to navigate between them. For a
megamodel to be practically useful though, it would need to address the techno-
logical heterogeneity of MDE projects which rely on, for example, mainstream
build systems, scripting languages, and test frameworks.

Further, we must not limit ourselves to prescriptive megamodeling or for-
ward engineering; we also need to be able to ‘discover’ megamodels and ‘recover’
their instances systematically, semi-automatically, and efficiently so that we can
benefit from them without much extra developer effort. Thus, we face a problem
similar to software architecture reverse engineering or architecture recovery [5,6]
in that software projects may lack higher-level architectural descriptions. Recov-
ery is to be leveraged when a suitable description has never existed or it is no
longer ‘in sync’ with the actual code. In an MDE technological context, we may
be interested in architectural knowledge such as model artifacts in a project,
more specific types of models (e.g., metamodels), model-to-metamodel confor-
mance, applications of model-management operations (e.g., model transforma-
tion, model/code generation, model merging, model weaving, model comparison,
and model patching), evolution-related relationships, and some types of techno-
logical traces, for example, build scripts, launcher configurations, or tests.

Previous Work by (Some of) These Authors. The software language repository
YAS manages a technologically heterogeneous project by a suitable megamodel,
as described in [7], but this work does not address ‘mainstream MDE’, neither
does it address reverse engineering. Megamodeling is discussed for MDE tech-
nologies (including EMF, ATL, and Xtext) in [8], but reverse engineering is
not addressed, despite being stated as a direction for future work. A rule-based
approach to mining artifact relationships with an application to EMF is pre-
sented in [9], but no methodology for discovering megamodels is provided. All
of this previous work invokes the term ‘linguistic architecture’ [10] as a form of
megamodeling and a form of software architecture.

Contributions of the Paper. We present a megamodel-based reverse engineer-
ing methodology and an infrastructure MDEprofiler for recovering details
of using MDE technologies in MDE projects. We exemplify the approach for
MDE projects that exercise ATL-based model transformations. Our experimen-
tal validation is limited to ATL and ‘implied’ technologies or languages such as
Ecore, KM3, Ant, and launcher configurations, but our approach is completely
‘generic’. Our methodology is designed to support the iterative process of dis-
covering a pool of recovery heuristics for megamodel elements. We demonstrate
the methodology with the ATL Zoo.1

1 https://www.eclipse.org/atl/atlTransformations/.

https://www.eclipse.org/atl/atlTransformations/

112 J. Di Rocco et al.

Road-Map of the Paper. Section 2 describes our methodology for recovering
MDE-technology usage. Section 3 describes our infrastructure for recovery.
Section 4 evaluates our approach by means of a case study for the ATL Zoo.
Section 5 discusses related work. Section 6 concludes the paper.

2 Recovery Methodology

Project
sources

Project
sources

Recovery

Project
megamodel

Project
megamodel

Recovery
heuristics

Recovery
measures

Analysis

Application

Fig. 1. Megamodel-based reverse engineering.

Figure 1 summarizes key aspects
of our methodology. Any num-
ber of MDE projects (possibly
also adding new ones over time)
are analyzed semi-automatically to
recover megamodels representing
MDE-usage information. Heuris-
tics are used to locate artifacts
of interests (e.g., models) and
artifacts that encode relationships
(e.g., build scripts with model
transformation applications). The
recovered megamodels are essen-
tially graphs with artifacts of inter-
est as nodes and relationships as
edges. Simple measures are com-
puted for the megamodels. In par-
ticular, ‘dangling’ nodes are determined, as they are considered indicators of
missing relationships. Domain knowledge and technology documentation are
leveraged to manually refine the applied heuristics and to conceive new ones
until all the artifacts of the analyzed MDE projects are modeled together with
the corresponding relationships. This recovery process is intrinsically incremen-
tal. In the sequel, we discuss artifacts in MDE projects, relationships between
them, and heuristics for relationship inference in more detail.

2.1 Artifacts in a MDE Project

As shown in Fig. 2 and described below, several kinds of artifacts are consid-
ered when applying MDE. Available artifacts make up the system in terms of
its source code and other resources that are available typically through version
control or download. All artifacts includes artifacts that may be not at all or
not directly available. For instance, an artifact may only be obtainable by system
building or testing. Also, an artifact may only be transient (e.g., as a runtime
object during the execution of a testcase). Further, an artifact may only be
obtainable by some well-defined computational step, for instance the applica-
tion of a code generator — with or without this application being exercised by
build management or testing. Yet further, an artifact may be unavailable, but
its existence, at least, in the past, is known simply because there are traces

Systematic Recovery of MDE Technology Usage 113

of it (i.e., references to it) in the available artifacts. Artifacts of interest are
those (available or not) that are obviously of interest for recovering technology
usage. In the case of ATL-based model transformation, artifacts of interest are
clearly the ATL transformations themselves, but also source and target models
for transformations as well as metamodels for conformance. Artifacts with traces
are those (available) artifacts (of interest or not) in which we may locate traces
to artifacts (mainly references). Subject to a classification of the artifacts with
traces, these artifacts may be interpreted as (encoding) relationships between
artifacts.

Fig. 2. Artifacts in a MDE project.

The overall assumption is that we may identify artifacts of interest by exam-
ining algorithmically the available artifacts and we may identify relationships
between artifacts by examining, again, algorithmically available artifacts on the
grounds of technology-specific patterns for traces.

2.2 Relationships to be Recovered

Source
model

Target
model

Source
MM

Target
MM

conformsTo conformsTo

MT
application

ATL
MT

applies

input output

Fig. 3. ‘Abstract’ artifacts and relationships
for ATL usage.

Figure 3 identifies ‘abstract’ arti-
facts of interest with relationships
for the running example of ATL.
In particular, there are source
and target models, the correspond-
ing metamodels (MMs), the actual
ATL model transformation (MT),
and the application thereof. We
also show relationships between
these artifacts that need to be
recovered. Relationships between artifacts, e.g., conformance and transforma-
tion application in the example, can be identified in different ways:

114 J. Di Rocco et al.

Trace-Based Identification. Based on the type of referring artifact (e.g., an ANT
file), based also on the details of reference (e.g., the argument position of an
ATL transformation execution), one may identify a relationship (e.g., a model
to serve as the ‘source’ of a model transformation).

Computational Identification. By considering a more or less standardized,
technology-specific functionality (e.g., the operation for Ecore-based confor-
mance checking) on given candidate artifacts (e.g., a model artifact and a meta-
model artifact), one may identify a relationship (e.g., conformance).

Mining-Based Identification. Based on a more ‘ad-hoc’ application of technology-
specific functionality (e.g., a comparison of vocabulary extracted from various
artifacts) on given candidate artifacts, one may identify a relationship (e.g.,
similarity).

2.3 Heuristics for Recovery

Heuristics for identifying artifacts of interest and finding traces for relationships
are based on the following techniques mostly inspired by existing work on reverse
engineering and megamodeling.

Filename Heuristics. Many types of artifacts may be precisely detected on the
grounds of filenames or extensions thereof [11]. For instance, the ‘.atl’ extension
identifies an ATL model transformation — especially within an MDE project.
Clearly, filenames may not always be sufficient; one may also need to consult
the content of files for the purpose of artifact classification. For instance, EMF
models may be stored in ‘.xmi’ files, but other extensions are also used.

Watermark Heuristics. Some types of artifacts may be precisely detected by
looking for specific content patterns (‘watermarks’) in files [11,12]. For instance,
a syntax definition for the EMFText technology would be a ‘.cs’ file that contains
the string ‘syntaxdef’ [12]. (The extension ‘.cs’ alone would be imprecise, if we
assume that C# files could also be in the same project.)

Parser Heuristics. Some types of artifacts may be precisely detected by just
trying to parse the artifact by a standard component for the type of interest.
For instance, an XML file could be precisely detected, by just invoking any
XML parser, e.g., a DOM-based one, on the file in a non-lax mode. A filename
or watermark heuristic can be used as a precondition, if costs of parsing are a
concern [13].

Component Heuristics. Some types of artifacts may be precisely detected and
some types of suspected relationships may be precisely verified by reusing the
technology of interest, or rather a component thereof [8,13]. For instance, a
suspected conformance relationship may be verified by the available component
(operation) for Ecore-based conformance checking, as discussed in Sect. 2.2.

Extractor Heuristics. Customized fact extractors [13–15] may be used to iden-
tify traces in given artifacts, thereby helping with recovery of relationships. For

Systematic Recovery of MDE Technology Usage 115

instance, a heuristics for ANT files may extract instances of common patterns
of using ANT for applying model transformations.

Analyser Heuristics. Ultimately, more advanced software analyses may be
used to detect or verify relationships. For instance, one may infer source and
target metamodels (or approximations thereof) from model transformations [16],
thereby preparing the detection of potential source or target models on the
grounds of attempted conformance checking.

Fig. 4. Artifacts involved in the recovery of ATL usage. (Color figure online)

Figure 4 arranges some of the heuristics that were developed in the case study
of Sect. 4. The root node is ‘abstract’; it does not correspond to any actual heuris-
tic. The rounded (green) shapes correspond to heuristics for detecting available
artifacts of interests. The angular (purple) shapes correspond to heuristics for
artifacts with potential traces. The heuristics are arranged in a specialization
hierarchy to express that a sub-heuristic should only be tried once the super-
heuristic was confirmed. For instance, we first try to find all models and then
we filter out all metamodels among them.

The key principle of the methodology is that heuristics like those in Fig. 4
are introduced in an iterative process on the grounds of measuring connective-
ness of the recovered graph and leveraging domain knowledge (regarding MDE
technologies) for identifying opportunities for relationship recovery by additional
heuristics.

3 The Recovery Infrastructure

In this section, the recovery infrastructure supporting the methodology presented
in the previous section is described. As shown in Fig. 5, the implemented recovery

116 J. Di Rocco et al.

machinery consists of three main components, namely RepositoryConnector,
HeuristicsManager, and MegamodelVisualizer.

Fig. 5. Components of the recovery architecture.

The RepositoryConnector connects to data sources that export reusable
MDE projects, which thus can be locally downloaded for subsequent analysis.
Currently, the recovery infrastructure can import data from the ATL Zoo and
from GitHub repositories (see Sect. 3.1). RepositoryConnector is extensible in
that it provides developers with interfaces that can be implemented for adding
new connectors.

The HeuristicsManager component is in charge of applying the available
heuristics on all the projects locally downloaded by RepositoryConnector.
The outcome of the recovery process consists of models conforming to a
specifically conceived metamodel as presented in Sect. 3.2. The outcome of
HeuristicsManager can be consumed in different ways — including the pos-
sibility of graphically visualizing it in order to give an overview of the ana-
lyzed projects and to support the understanding of the contained artifacts. The
MegamodelVisualizer component presented in Sect. 3.3 takes recovery models
as input and generates a graphical representation of them.

3.1 Repository Connector

In order to enable the analysis of MDE projects, our infrastructure downloads
the projects. Currently, the infrastructure can import projects from the ATL Zoo
and from GitHub repositories. The ATL Zoo is a widely used repository of model
transformations, which have been the subject of several empirical works over the
last few years. Unfortunately, the repository does not provide a dedicated API to
easily export the available projects. Thus, HTML scraping is the only viable way
to programmatically download the data available in the repository. The GitHub
connector exploits the Git API2 for locally cloning a project of interest identified
by its owner and name attributes.

2 https://developer.github.com/v3/.

https://developer.github.com/v3/

Systematic Recovery of MDE Technology Usage 117

3.2 Heuristics Manager

Once data has been downloaded by means of the available connectors, the actual
recovery process starts. The outcome of the process is a model conforming to a
specifically conceived recovery metamodel. The heuristics currently available are
presented later in this section.

The Recovery Metamodel. As mentioned earlier, the model generated by the
recovery process is a graph consisting of nodes and edges. For each artifact that
can be identified by the available heuristics, the recovery approach generates
a corresponding target node. The recovery process also detects relationships
among artifacts. Detected relationships are represented as edges among previ-
ously recovered nodes. For instance, a model transformation consuming models
conforming to a source metamodel and generating models conforming to a tar-
get metamodel give rise to a sub-graph consisting of nodes and edges as follows.
One node would represent the analyzed transformation. Two edges would link
the transformation with two further nodes representing the source and target
metamodels.

Fig. 6. Class diagram showing an overview of the Heuristic Manager. (Color figure
online)

Recovery Heuristics. Figure 6 shows a class diagram representing the hierarchi-
cal organization of the heuristics currently available in the HeuristicsManager
component shown in Fig. 5. Each heuristic implements the Heuristic interface
or extends an available implementation. In Fig. 6, the elements ATLHeuristic,
EcoreHeuristic, and KM3Heuristic are in green color in order to be consistent
with what is discussed in the previous section. These heuristics identify artifacts
of interest, i.e., ATL transformations and metamodels specified either in KM3
or Ecore. Heuristics that are shown in Fig. 6 with the violet color represents
heuristics that have been implemented in order to recover relationships among
transformations, models, and metamodels.

118 J. Di Rocco et al.

Listing 1. Fragment of ATLHeuristic
1 package i t . univaq . MDEProfiler . h e u r i s t i c ;

2 . . .

3 public class ATLHeuristic implements IH eu r i s t i c {
4 private Str ing extens ion = ” . a t l ” ;

5 private St r ing nodeKind = ”NodeType .ATL” ;

6 @Override

7 public Graph getGraph (St r ing repoFolder , Graph g){
8 F i l e repoFolderF = new F i l e (repoFolder) ;

9 List<Fi le> f L i s t = F i l eU t i l s . getFi lesByEndingValue (repoFolderF ,

10 extens ion) ;

11 for (F i l e f i l e : f L i s t) {
12 boolean guard = g . getNodes () . stream ()

13 . anyMatch (s −> s . getUr i () . equa l s (f i l e . getAbsolutePath ())) ;

14 i f (! guard) {
15 Node n = GraphFactory . eINSTANCE. createNode () ;

16 n . setDer ivedOrNotExists (fa l se) ;

17 n . getType () . add (nodeKind) ;

18 n . s e tUr i (f i l e . getAbsolutePath ()) ;

19 n . setName (f i l e . getName ()) ;

20 g . getNodes () . add (n) ;

21 }
22 }
23 return g ;

24 }
25 }

Listing 1 shows a fragment of the Java implementation of ATLHeuristic.
Essentially, in each project, the heuristic searches for files having the .atl exten-
sion (see line 4), and for each of them a new node typed NodeType.ATL is
generated in the target recovery model (see line 5 and lines 13–20). Similarly,
KM3Heuristic and EcoreHeuristic search for .km3 and .ecore files, respectively
and generate target NodeType.KM3 and NodeType.Ecore nodes accordingly.

The recovery of relationships among generated nodes requires more elabo-
rated analyses that should consider additional artifacts like ANT scripts and
launcher files. For instance, Listing 2 shows the launch file configuration for the
ATL transformation Families2Persons3. Lines 6–15 contain precious information
about the input and target elements of the ATL Families2Persons transforma-
tion, which if considered alone does not contain such details.

Listing 2. A sample ATL launch file

1 <?xml version=” 1 .0 ” encoding=”UTF−8” standalone=”no”?>

2 <l aunchConf igurat ion . .>

3 <s t r i n gAt t r i bu t e key=”ATL F i l e Name”

4 value=”/Fami l i e s2Persons / Fami l i e s2Persons . a t l ”/>

5 . . .

6 <mapAttribute key=”Path”>

7 <mapEntry key=”Fami l i e s ”

8 value=”/Fami l i e s2Persons / Fami l i e s . ecore ”/>

9 <mapEntry key=”IN”

10 value=”/Fami l i e s2Persons /sample−Fami l i e s . xmi”/>

11 <mapEntry key=”OUT”

12 value=”/Fami l i e s2Persons /sample−Persons . xmi”/>

13 <mapEntry key=”Persons ”

14 value=”/Fami l i e s2Persons /Persons . e core ”/>

15 </mapAttribute>

16 </ launchConf igurat ion>

3 https://www.eclipse.org/atl/atlTransformations/#Families2Persons.

https://www.eclipse.org/atl/atlTransformations/#Families2Persons

Systematic Recovery of MDE Technology Usage 119

The analysis of ATL launch configuration files like the one shown in Listing 2
is implemented by the LauncherATLHeuristic shown in Fig. 6. Due to space
limitation, this paper does not give more details about the implementation of the
currently available heuristics. Interested reader can refer to the Github project
related to this work4.

(a) Content of the project as it is available from the ATL Zoo

(b) Graphically representation of the recovered model

Fig. 7. The Table 2SVGBarChart project.

3.3 Megamodel Visualizer

The recovered model generated for each project can be processed by other ser-
vices, for example, to graphically represent the automatically recovered project
as shown in Fig. 7b. By looking at such a model, users can get a clear under-
standing about how the different elements are connected. By contrast, Fig. 7a
shows the folders contained in the package of the Table 2SVGBarChart project5,
as users could explore the project by means of a file explorer and view the con-
tent of files to understand how different artifacts are related. We contend that
the visualized megamodel helps much better with understanding.

The MegamodelVisualizer component shown in Fig. 5 is in charge of gener-
ating diagrams like the one shown in Fig. 7b by means of an Acceleo6-based
generator; it takes a recovery model as input and generates HTML5+Javascript
code. The generated code uses the Visjs7 Javascript library and it can han-
4 https://github.com/MDEGroup/MDEProfile.
5 https://www.eclipse.org/atl/atlTransformations/#Table2SVGBarChart.
6 https://www.eclipse.org/acceleo/.
7 http://visjs.org.

https://github.com/MDEGroup/MDEProfile
https://www.eclipse.org/atl/atlTransformations/#Table2SVGBarChart
https://www.eclipse.org/acceleo/
http://visjs.org

120 J. Di Rocco et al.

dle large amounts of dynamic data while enabling manipulation, representa-
tion, and interaction. For instance, in the diagram shown in Fig. 7b, the artifact
XML.ecore is visually associated with the Ecore type and the link with the arti-
fact example-XML.ecore highlights that the latter is a model conforming to the
former. Moreover, the ATL transformation SVG2XML.atl takes as input the
XML.ecore node as metamodel and the example-XML.ecore element as model.
The output consists of the example-SVGBarChart.ecore model conforming to
the SVG.ecore metamodel. The node build.xml contributes the discovery of the
represented relationship as shown by the hovering label discovered by.

4 Case Study

This section discusses the application of the proposed approach to the ATL Zoo
consisting of ≈100 model transformation projects. The case study was performed
in an iterative process in order to gradually add heuristics for new types of
nodes and edges. Initially, we implemented some heuristics to identify ‘obvious’
artifact types of interest. Subsequently, we went through some iterations to add
heuristics to recover relationships among previously discovered nodes. The case
study addresses the following research questions:

– RQ1: What is the accuracy of recovered models?
– RQ2: How much effort is saved by automated recovery?

Evaluation Measures. We use precision and recall measures as follows:

precision =
Corra
Alla

(1)

recall =
Corra
Allm

(2)

where Corra is the correct number of elements recovered by the approach, Alla is
the total number of elements automatically produced by the approach, and Allm
is the expected total number of elements as produced by a manual harvesting
phase.

Results. Table 1 shows representative results related to each iteration of the per-
formed case study. In the first five iterations, we gradually added heuristics to
discover Ecore, ATL, KM3, and ANT files. All the artifacts of interest were dan-
gling (see the #Edges and #DanglingNodes columns). This means that we were
able to increasingly discover new types of elements even though they were added
in the recovery model as nodes without edges. The addition of heuristics for ana-
lyzing ATL launcher file configurations and ANT scripts for ATL automation led
to a turning point. That is, even though new nodes were discovered, the number
of dangling ones was decreased.

Systematic Recovery of MDE Technology Usage 121

Table 1. Case-study results

Iteration Applied heuristics #Nodes #Edges #Dangling
nodes

1 EH 327 0 327

2 EH, AH 587 0 587

3 EH, AH, KH 795 0 795

4 EH, AH, KH, LH 887 0 887

5 EH, AH, KH, LH, ANH 1001 0 1001

6 EH, AH, KH, LH, ANH, APH 1001 37 965

7 EH, AH, KH, LH, ANH, APH, LTH 1041 236 887

8 EH, AH, KH, LH, ANH, APH, LTH, ANATLH 1133 533 745

Legend: EH: EcoreHeuristic, AH: ATLHeuristic, KH: KM3Heuristic, LH: LauncherHeuristic
ANH: ANTHeuristic, APH: ATLWithPathHeuristic, LTH: LauncherATLHeuristic
ANATLH: ANTWithATLHeuristic

Fig. 8. Nodes recovered during the case study.

Figure 8 graphically repre-
sents the effect of applying the
heuristics by focusing on the
discovered and dangling nodes.
The chart shows how consider-
ing specific files and properties
leads to the discovery of new
relationships. Starting at itera-
tion 6, new nodes were discov-
ered with a consequent reduc-
tion of dangling ones.

Reducing the number of
dangling nodes is a challenging
task, which requires the imple-
mentation of new heuristics able to cover new node types and relationships by
deducing additional information from the available artifacts. For instance, by
looking at the dangling nodes at the end of the last iteration shown in Table 1
we noticed that many of them are of KM3 type and many ATL transformations
are defined on Ecore metamodels that can be automatically generated from the
available KM3 specifications. For instance, in the case shown in Fig. 7b there are
three dangling nodes of type KM3 (i.e., XML.km3, Table.km3, and SVG.km3).
By applying the ATL transformation KM32Ecore [17] on such KM3 specifica-
tions, we noticed that the obtained Ecore metamodels are those already available
in the project (i.e., XML.ecore, Table.ecore, and SVG.ecore). By applying such a
heuristic, the three KM3 nodes shown in Fig. 7b would be removed from the list
of dangling nodes. The ATL Zoo contains 73 projects that have similar cases. If
all of them are managed, as previously discussed, the number of dangling nodes
would decrease from 745 to 347.

122 J. Di Rocco et al.

To evaluate the accuracy of the approach and thus, to answer RQ1, we man-
ually analysed 40 projects (randomly) downloaded from the ATL Zoo. In par-
ticular, a senior modeler manually inspected such projects (without knowing in
advance the results of the tools) and recovered the nodes and relations of the
corresponding megamodels8.

The case study’s accuracy can be increased by means of adding heuristics.
For instance, the analysed projects contain TCS specifications [18], which are
currently not covered by MDEprofiler and this is reflected by the precision
and recall measures.

Table 2. Precision and recall of
recovery.

Nodes Relations

Precision 0.913 0.896

Recall 0.942 0.636

To answer RQ2, the 40 projects consid-
ered to produce the data in Table 2 have
been analysed by means of MDEprofiler
executed on an Intel Core i5 machine with
8 GB of RAM. The analysis took ≈10 s,
whereas the senior modeler needed 2 full-
time working days to perform the analysis
on the same data set.

5 Related Work

We begin with a discussion of heuristics used for recovery purposes in the
domains of (a) architecture recovery, (b) traceability recovery, and (c) analy-
sis of software, technology or language usage. Afterwards, we discuss related
work on megamodels in model-management systems.

Heuristics for Architecture Recovery. Bowman et al. [19] compare three recov-
ered architectures: a conceptual architecture based on the documentation, a
concrete architecture that is derived from the actual system, and an owner-
ship architecture extracted from version control. By examining the overlap of
edges, they check whether one architecture correlates with another. Concrete,
ownership and conceptual architecture recovery can be considered as a kind of
heuristic. In contrast, our work combines the output of heuristics and refines
the set of used heuristics through an iterative process. While Bowman et al.
considers fundamentally different sources, in [20] a very fine-grained and specific
set of heuristics on code-package structures is employed to guide exploration of
system architecture. Our work also facilitates fine-grained exploration, by means
of an extensible heuristics-based mechanism. In [21], source code is represented
as a graph of, e.g., variables, types, or import relations. Here, heuristics are used
in the form of patterns that are matched on this graph. These patterns contain
placeholders for abstract components and connectors. An approximate instanti-
ation on the source graph produces the resulting architecture. The methodology
comes close to ours in that it facilitates domain knowledge in an iterative and

8 A replication package consisting of the MDEprofiler tool, the analysed projects,
and of the obtained results is available for download at https://github.com/
MDEGroup/MDEProfile.

https://github.com/MDEGroup/MDEProfile
https://github.com/MDEGroup/MDEProfile

Systematic Recovery of MDE Technology Usage 123

interactive process to define the patterns. Our approach recovers megamodels
of actual systems based on file-type recognition. This motivates our need for
flexible heuristics that we implement in plain Java. In [22], the authors compare
a set of alternatives to group the system using hierarchical clustering and con-
clude on their characteristics (e.g., one way of clustering is good for detecting
utility functions). Depending on which similarity definition is chosen for cluster-
ing, this method can be seen as very general and domain-independent heuristics
for grouping and connecting nodes. Architecture recovery of web applications
facilitated by different extractors is pursued in [23] with a form of extractors
comparable to our heuristics. The extractors also provide relationships for the
web application.

Heuristics for Traceability Recovery. Traceability recovery concentrates on min-
ing edges between artifacts. Here, the usage of language-agnostic heuristics is
very common, since trace links often reside between artifacts in different lan-
guages including natural language. For instance, in [24], links are recovered by
computing the cosine similarity between the artifact term vectors. The recovered
trace links connect Java and functional requirements as well as C++ and manual
pages. Alternatively, in [25], sequential pattern mining is applied on commits to
connect any type of artifact in a repository co-occurring in a change. We see such
types of generic heuristics as a promising extension to our approach, especially
to uncover unknown domain-specific heuristics. In this paper we concentrate on
ATL-specific recovery.

Heuristics for Software, Technology, and Language Usage. In [12], the usage
of Eclipse-based MDE technologies in projects hosted on GitHub is analyzed
by counting the files that are strongly related to technology usage. Another
language-usage analysis of repositories, without being focused on MDE, is
described in [26]. The authors also use file extensions as a heuristic to detect
languages. We use file extensions only as the simplest heuristic. API usage in
projects, as a very specific kind of software usage, is analyzed extensively in
related work (e.g., [27–29]). Different features or metrics are used for character-
izing API usage, for example, whether or not a component uses a given API or
whether or not the component extends or simply reuses the API.

Megamodeling and Executable Model Management. Megamodels, as introduced
in [30], are concerned with models as first-class entities. Megamodels are often
used in executable model management systems to organize tasks on models,
e.g., the application of transformations, querying, merging, and constraint check-
ing. For instance, in [31], an explorative framework for working with models is
described that follows the megamodeling principles. Alternatively, in [4], a layer
on top of heterogeneous repositories is presented to get uniform model-based
access to the system by writing model operations in a DSL. In [32], graphical
and interactive support is described; this work is close to our model visualizer.
There is no related work on megamodels where heuristics are used for identifi-
cation of model elements and recovery of relationships. In some of our previous

124 J. Di Rocco et al.

work on megamodeling [8,9,13], we considered heuristics, but without a method-
ology for their discovery along an iterative process.

6 Conclusion and Future Work

MDE projects are typically shared without any machine-readable description.
Projects are given as packages consisting of files, possibly organized in folders,
that modelers have to manually scan in order to figure out how the different
project artifacts are related. Thus, understanding the artifacts contained in MDE
projects and their relationships can be a strenuous and error-prone activity.

In this paper, we presented an approach based on megamodels which per-
mits to automatically recover the structure of MDE projects represented as
typed nodes and relationships among them. The approach is implemented as
the recovery infrastructure MDEprofiler. The approach has been applied in
a case study on the widely used ATL Zoo consisting of ≈100 model transforma-
tion projects. In future work, we plan to apply the approach to MDE projects
retrieved from elsewhere, e.g., GitHub, and to implement additional heuristics,
as needed in order to minimize the number of dangling nodes and improve the
overall accuracy of the approach. We are also working on extending the portfolio
of MDE technologies beyond the current focus on ATL.

References

1. Tomassetti, F., Torchiano, M., Tiso, A., Ricca, F., Reggio, G.: Maturity of soft-
ware modelling and model driven engineering: a survey in the Italian industry. In:
Proceedings of the EASE, pp. 91–100 (2012)

2. Basciani, F., Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Model reposi-
tories: will they become reality? In: Proceedings of the CloudMDE@MoDELS 2015.
CEUR Workshop Proceedings, vol. 1563, pp. 37–42 (2016)

3. Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Collaborative repositories
in model-driven engineering. IEEE Softw. 32, 28–34 (2015)

4. Kling, W., Jouault, F., Wagelaar, D., Brambilla, M., Cabot, J.: MoScript: a DSL for
querying and manipulating model repositories. In: Sloane, A., Aßmann, U. (eds.)
SLE 2011. LNCS, vol. 6940, pp. 180–200. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-28830-2 10

5. Stringfellow, C., Amory, C.D., Potnuri, D., Andrews, A.A., Georg, M.: Comparison
of software architecture reverse engineering methods. Inf. Softw. Technol. 48, 484–
497 (2006)

6. Krikhaar, R.L.: Reverse architecting approach for complex systems. In: Proceed-
ings of the ICSM, pp. 4–11. IEEE (1997)

7. Lämmel, R.: Relationship maintenance in software language repositories. Art Sci.
Eng. Program. J. 1, 27 (2017)

8. Härtel, J., Härtel, L., Heinz, M., Lämmel, R., Varanovich, A.: Interconnected lin-
guistic architecture. Art Sci. Eng. Program. J. 1, 27 (2017)

9. Härtel, J., Heinz, M., Lämmel, R.: EMF patterns of usage on GitHub. In: Proceed-
ings of the ECMFA. LNCS. Springer (2018, to appear)

https://doi.org/10.1007/978-3-642-28830-2_10
https://doi.org/10.1007/978-3-642-28830-2_10

Systematic Recovery of MDE Technology Usage 125

10. Favre, J.-M., Lämmel, R., Varanovich, A.: Modeling the linguistic architecture
of software products. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C.
(eds.) MODELS 2012. LNCS, vol. 7590, pp. 151–167. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33666-9 11

11. Favre, J., Lämmel, R., Leinberger, M., Schmorleiz, T., Varanovich, A.: Linking
documentation and source code in a software chrestomathy. In: Proceedings of the
WCRE, pp. 335–344. IEEE (2012)

12. Kolovos, D.S., Matragkas, N.D., Korkontzelos, I., Ananiadou, S., Paige, R.F.:
Assessing the use of eclipse MDE technologies in open-source software projects.
In: Proceedings of the OSS4MDEMODELS. CEUR Workshop Proceedings, vol.
1541, pp. 20–29 (2015)

13. Lämmel, R., Varanovich, A.: Interpretation of linguistic architecture. In: Cabot,
J., Rubin, J. (eds.) ECMFA 2014. LNCS, vol. 8569, pp. 67–82. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-09195-2 5

14. Murphy, G.C., Notkin, D.: Lightweight lexical source model extraction. ACM
Trans. Softw. Eng. Methodol. 5, 262–292 (1996)

15. Ferenc, R., Siket, I., Gyimóthy, T.: Extracting facts from open source software. In:
Proceedings of the ICSM, pp. 60–69. IEEE (2004)

16. de Lara, J., Di Rocco, J., Di Ruscio, D., Guerra, E., Iovino, L., Pierantonio, A.,
Cuadrado, J.S.: Reusing model transformations through typing requirements mod-
els. In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 264–282.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5 15

17. Kurtev, I., Bézivin, J., Jouault, F., Valduriez, P.: Model-based DSL frameworks.
In: Companion to the 21st ACM SIGPLAN OOPSLA 2006, pp. 602–616. ACM
(2006)

18. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual
concrete syntaxes in model engineering. In: Proceedings of the GPCE, pp. 249–
254. ACM (2006)

19. Bowman, I.T., Holt, R.C.: Software architecture recovery using Conway’s law. In:
Proceedings of the CASCON, p. 6. IBM (1998)

20. Lungu, M., Lanza, M., Gı̂rba, T.: Package patterns for visual architecture recovery.
In: Proceedings of the CSMR, pp. 185–196. IEEE (2006)

21. Sartipi, K., Kontogiannis, K.: On Modeling software architecture recovery as graph
matching. In: Proceedings of the ICSM, pp. 224–234. IEEE (2003)

22. Maqbool, O., Babri, H.A.: Hierarchical clustering for software architecture recov-
ery. IEEE Trans. Softw. Eng. 33, 759–780 (2007)

23. Hassan, A.E., Holt, R.C.: Architecture recovery of web applications. In: Proceed-
ings of the ICSE, pp. 349–359. ACM (2002)

24. Antoniol, G., Canfora, G., Casazza, G., Lucia, A.D.: Information retrieval models
for recovering traceability links between code and documentation. In: ICSM, pp.
40–49. IEEE (2000)

25. Kagdi, H.H., Maletic, J.I., Sharif, B.: Mining software repositories for traceability
links. In: ICPC, pp. 145–154. IEEE (2007)

26. Karus, S., Gall, H.C.: A study of language usage evolution in open source software.
In: Proceedings of the MSR, pp. 13–22. ACM (2011)

27. Lämmel, R., Pek, E., Starek, J.: Large-scale, AST-based API-usage analysis of
open-source Java projects. In: SAC, pp. 1317–1324. ACM (2011)

28. Lämmel, R., Linke, R., Pek, E., Varanovich, A.: A framework profile of .NET. In:
Proceedings of the WCRE, pp. 141–150. IEEE (2011)

29. Roover, C.D., Lämmel, R., Pek, E.: Multi-dimensional exploration of API usage.
In: Proceedings of the ICPC, pp. 152–161. IEEE (2013)

https://doi.org/10.1007/978-3-642-33666-9_11
https://doi.org/10.1007/978-3-319-09195-2_5
https://doi.org/10.1007/978-3-662-54494-5_15

126 J. Di Rocco et al.

30. Bézivin, J., Jouault, F., Valduriez, P.: On the need for Megamodels. In: Proceedings
of the OOPSLA/GPCE: Best Practices for Model-Driven Software Development
Workshop (2004)

31. Bézivin, J., Jouault, F., Rosenthal, P., Valduriez, P.: Modeling in the large and
modeling in the small. In: Aßmann, U., Aksit, M., Rensink, A. (eds.) MDAFA
2003 and MDAFA 2004. LNCS, vol. 3599, pp. 33–46. Springer, Heidelberg (2005).
https://doi.org/10.1007/11538097 3

32. Sandro, A.D., Salay, R., Famelis, M., Kokaly, S., Chechik, M.: MMINT: a graphical
tool for interactive model management. In: Proceedings of the MoDELS 2015 Demo
and Poster Session. CEUR Workshop Proceedings, vol. 1554, pp. 16–19 (2016)

https://doi.org/10.1007/11538097_3

Technical Debt in Model Transformation
Specifications

Kevin Lano1(B), Shekoufeh Kolahdouz-Rahimi2, Mohammadreza Sharbaf2,
and Hessa Alfraihi1

1 Department of Informatics, King’s College London, London, UK
{kevin.lano,hessa.alfraihi}@kcl.ac.uk

2 Department of Software Engineering, University of Isfahan, Isfahan, Iran
{sh.rahimi,m.sharbaf}@eng.ui.ac.ir

Abstract. Model transformations (MT), as with any other software
artifact, may contain quality flaws. Even if a transformation is func-
tionally correct, such flaws will impair maintenance activities such as
enhancement and porting. The concept of technical debt (TD) models
the impact of such flaws as a burden carried by the software which must
either be settled in a ‘lump sum’ to eradicate the flaw, or paid in the
ongoing additional costs of maintaining the software with the flaw. In this
paper we investigate the characteristics of technical debt in model trans-
formations, analysing a range of MT cases in different MT languages,
and using measures of quality flaws or ‘bad smells’ for MT, adapted
from code measures.

Based on these measures we identify significant differences in the level
and kinds of technical debt in different MT languages, and we propose
ways in which TD can be reduced.

1 Introduction

This paper will investigate the issue of technical debt (TD) [14] in model transfor-
mations (MT). Technical debt refers to the short and long-term impact of soft-
ware quality flaws such as duplicated code. The principal cost of TD is incurred
when refactoring or other redesign is used to remove the TD from the software,
whilst the interest is paid in the additional cost due to the TD each time the
software is maintained.

The concept of TD was initially applied to code artifacts, but can also be
extended to analysis and design models [3].

In the MDE context, model transformations are a key software resource,
which enable MDE processes such as the production of software and documen-
tation from models, the synchronisation of models, and model comparison. Thus
the quality and maintainability of MT are likely to be important factors in the
successful use of MDE.

The high-level goal of our research is to quantify and characterise the nature
of technical debt in model transformations. We will adopt the goal-question-
metric (GQM) approach of [4] to decompose this goal into specific questions and
metrics. The goal leads to the following research questions:
c© Springer International Publishing AG, part of Springer Nature 2018
A. Rensink and J. Sánchez Cuadrado (Eds.): ICMT 2018, LNCS 10888, pp. 127–141, 2018.
https://doi.org/10.1007/978-3-319-93317-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93317-7_6&domain=pdf

128 K. Lano et al.

RQ1: What is the prevalence (flaw density) of TD in MT cases?
RQ2: What are the most frequent forms of quality flaw in MT cases?
RQ3: Does the level and character of TD vary between MT languages and

between MT categories?
RQ4: Is there a difference between TD prevalence in MT languages and in

traditional programming languages?

The questions imply that a significant sample of transformations must be
surveyed, for a range of transformation languages and categories. We will use
published and machine-readable transformation cases, and public repositories
of transformations. Only cases where the complete code of the transformations
is available will be considered. We survey the ATL and QVT-R transformation
languages because these are the most widely-used MT languages by practition-
ers [5]. We also consider ETL and UML-RSDS, which are MT languages with
distinctive features (implicit invocation in ETL; no rule-rule dependencies in
UML-RSDS) whose impact on TD levels is of interest.

2 Metrics for Technical Debt

Following on from the research questions, we need to find concrete measures
which quantify the aspects (TD and categories of TD) which the questions refer
to. Measures of various ‘bad smells’ or quality flaws are typically used as metrics
of TD in code. However, these need adaptation when used for declarative or
hybrid MT specification languages: MT specifications define their effect in a less
procedural manner than code, they are usually more concise, and are structured
based upon rules and operations instead of upon classes and objects. Therefore
we define measures specific to MT specifications, adapting TD measures Exces-
sive Class Length, Excessive Method Length, Excessive Number of Parameters,
Duplicate Code, Cyclomatic Complexity, Coupling Between Objects, Too Many
Methods to the MT context.

Based on our experience of developing and maintaining MT specifications, we
considered that the following were the most significant factors in impeding the
understanding and maintenance of MT specifications: size; semantic complexity
(of expressions, rules and operations); complexity of relationships and depen-
dencies between rules/operations; redundancy. These impact the Analysability,
Changeability and Testability quality characteristics of software as defined in
the ISO/IEC 25010 quality model [8]. In practice they manifest as:

– Excessively large transformations, with many rules/operations and/or high
total length (MT size factor). Measured by ETS , ENR, ENO , defined below.

– Unclear rule precedence or execution order (MT rule dependency factor).
Measured by UEX .

– Excessively complex expressions (MT semantic complexity factor): ETS ,
ERS , EHS .

– Excessive rule or operation length (MT size factor): ERS , EHS .

Technical Debt in Model Transformation Specifications 129

– Excessive numbers of parameters/auxiliary variables for a rule, transforma-
tion or operation (MT semantic complexity factor): EPL.

– Duplicated expressions or code (MT redundancy factor): DC .
– Complex rule or code logic (MT semantic complexity factor): CC .
– Complex calling relations between rules, especially cyclic relations (self or

mutual recursion). Inheritance of rules/operations is also counted as a depen-
dency of the generalised rule/operation upon the specialised rules/operations
(MT rule dependency factor): CBR.

– Excessive numbers of rules/operations called from one rule or operation (MT
rule dependency factor): EFO .

The size of software artifacts is often measured in terms of lines of code
(LOC). We prefer to adopt a measure c(τ) of the semantic content of a model
transformation specification τ , based on the complexity of expressions/activities
in the transformation. Unlike LOC, this is independent of code formatting style
or white space. Each of ATL, ETL, QVT-R and UML-RSDS have similar expres-
sion languages based on OCL, and ATL, ETL and UML-RSDS have similar
activity languages. Therefore c(τ) can be defined consistently for all these lan-
guages. Table 1 summarises the semantic complexity measure c(e) for some OCL
expressions e. c(e) can be considered a count of the number of basic semantic ele-
ments in a specification (identifiers plus composite expressions). We also include
a token count measure t(e), which is used for clone detection. We will investigate
how LOC correlates with the c measure of size.

Table 1. OCL expression complexity measures

Expression e Complexity c(e) Token count t(e)

Numeric, boolean or String
value

0 1

Identifier iden
Basic expression obj .f

1
c(obj) + c(f) + 1

1
t(obj) + t(f) + 1

Operation call e(p1, ..., pn) c(e) + 1 + Σic(pi) t(e) + n + 1 + Σi t(pi)

Unary expression op e
e→op()

1 + c(e) 1 + t(e)
4 + t(e)

Binary expression e1 op e2
e1→op(e2)

c(e1) + c(e2) + 1 t(e1) + t(e2) + 1
t(e1) + t(e2) + 4

Ternary expression op(e1, e2, e3)
if e1 then e2
else e3 endif

c(e1) + c(e2) +
c(e3) + 1

t(e1) + t(e2) + t(e3) + 5
t(e1) + t(e2) + t(e3) + 4

Set{e1, ..., en}
Sequence{e1, ..., en}

1 + Σic(ei) 2 + n + Σi t(ei)

130 K. Lano et al.

A similar measure can be given to activities (Table 2 shows the values for
UML-RSDS syntax, similar definitions can be given for the ATL and ETL state-
ment syntax).

Table 2. Activity complexity measures

Activity s Complexity c(s) Token count

return e 1 + c(e) 1 + t(e)

v := e c(v) + c(e) + 1 t(v) + t(e) + 1

s1; s2 c(s1) + c(s2) + 1 t(s1) + t(s2) + 1

Operation call e(p1, ..., pn) c(e) + 1 + Σic(pi) t(e) + n + 1 + Σi t(pi)

if e then s1 else s2 1 + c(e) + c(s1) + c(s2) 3 + t(e) + t(s1) + t(s2)

for v : e do s c(e) + c(s) + 1 3 + t(e) + t(v) + t(s)

while e do s c(e) + c(s) + 1 t(e) + t(s) + 2

break 1 1

continue 1 1

Using these measures, c(r) for a transformation rule r is taken as the sum
of the c measures of its parts (such as from, to and do clauses in ATL), likewise
for operation definitions. The semantic complexity c(τ) of a transformation is
taken as the sum of the complexities of its rules and operations. We also adopt
the metric of fan-out from [9], this is the number of different rules or operations
called from one rule or operation. This quantity has a direct impact on the
understandability of the calling rule/operation.

We also consider LOC measures of size because this is widely used for TD
estimation. We will evaluate flaw density both wrt LOC and complexity. Based
on [9], we adopt 50 LOC per rule/operation and 500 LOC per transformation as
size thresholds, for size measured by LOC. These thresholds apply to ATL, ETL
and QVT-R. For UML-RSDS we adopt limits based on expression complexity
(100 and 1000 respectively) since UML-RSDS specifications consist of graphical
use cases and class diagrams. These limits are based on our experience with
maintenance of UML-RSDS transformations. In future work we will evaluate
the validity of these limits using normalisation of encountered values [14].

Technical debt in MT developments will therefore be measured by identi-
fying the frequency of occurrence of the following specific ‘bad smells’ in MT
specifications:

ETS: Excessive transformation size (c(τ) > 1000, or length > 500 LOC)
ENR: Excessive number of rules (nrules > 10)
ENO: Excessive number of helpers/operations (nops > 10)
UEX: Excessive use of undefined execution orders/priorities between rules (>10

undefined orderings)
ERS: Excessive rule size (c(r) > 100 or length greater than 50 LOC)

Technical Debt in Model Transformation Specifications 131

EHS: Excessive helper size (c(h) > 100 or length > 50 LOC)
EPL: Excessive parameter list (for transformation, rules, and helpers): >10

parameters including auxiliary rule/operation variables
DC: Duplicate expressions/code (duplicate expressions or statements x with

token count t(x) > 10)
CC: Cyclomatic complexity (of rule logic or of procedural code) (>10)
CBR: Coupling between rules (number of rule/operation explicit or implicit

calling relations > nrules + nops, or any cyclic dependencies exist in the
rule/operation call graph).

EFO: Excessive fan-out of a rule/operation (>5 different rules/operations called
from one rule/operation).

Number of tokens is used for detecting clones, because in this case value
expressions should be counted as contributing to the clone. The lower limit for
clone size is set to avoid trivial clones. It could be reduced, at the cost of increased
processing time. In [15] clones of any size are considered. In [7], a lower bound
of 50 tokens is used for code clone detection. We experimented with using 25
tokens as the threshold, but this led to many significant clones being ignored,
and we adopted 10 tokens for our analysis. Only identical clones are counted.

At present, we limit our scope to considering individual transformations,
rather than transformations in a system of inter-operating transformations. We
also do not consider problematic issues in the use of OCL [6] – OCL ‘smells’
such as the use of chained implies, ‘magic literals’, chained forAll quantifiers,
long chained navigations in expressions, and other constructions which impair
the comprehensibility of the specification.

3 Analysis and Results

The measures of TD are computed on the abstract syntax representations of
ATL, ETL, QVT-R and UML-RSDS specifications, according to the respective
metamodels of these languages. The languages have many similarities at this
level (eg., top-level rules in QVT-R correspond to non-lazy rules in ETL, non-
lazy non-called rules in ATL, and to use case constraints in UML-RSDS). Hence
the same general specification of measures can be applied to each language, with
some differences to account for the different language styles and semantics.

We present the results in Tables 3, 4, 5, 6, 7 and 8. For ETS we show sep-
arately the LOC measures rs of the transformation rules and os of the helper
operations, after their total. ENR is the number of rules in the case, ENO is the
number of operations. ERS is the number of rules with length over the threshold
(50 LOC), likewise EHS for operations. EPL is the number of rules/operations
with more than 10 parameters, including local auxiliary variables. EFO is the
number of rules/operations which depend on more than 5 rules/operations. CC
is the number of rules/operations over the CC threshold (10). CBR is expressed
as CBR1(CBR2) where CBR1 is the total number of rule/operation dependen-
cies, and CBR2 is the number of rules/operations which occur in cycles of calling
dependencies. DC is the number of distinct cloned expressions (e with t(e) > 10)
in the case. Underlined measures in Tables 3 and 6 identify where flaws occur.

132 K. Lano et al.

3.1 ATL

For ATL we consider the cases of Table 3 from the ATL transformations zoo,
which is widely used in surveys of model transformations. The cases are chosen
as being typical of medium to large sized ATL transformations.

For ATL, UEX is n ∗ (n − 1)/2 where n is the number of concrete non-
lazy, non-called rules. For all of the ATL examples EPL and EFO are 0, so are
omitted. Where a transformation consists of several subtransformations, we list
these as (i), (ii) etc. below the main transformation entry.

Table 3. Technical debt measures for ATL

Transformation ETS (rs, os) ENR ENO ERS EHS CC CBR DC UEX

MOF to UML 935 (746, 189) 11 11 5 0 0 27(0) 7 55

KM3 to DOT 451 (251,200) 7 18 1 0 0 33(0) 4 21

MySQL to KM3 995 (571, 424) 20 28 1 0 1 62(4) 7 71

(i) XML2XML 101 (87, 14) 4 1 0 0 0 2(0) 2 6

(ii) XML2MySQL 281 (137,144) 5 10 0 0 0 22(2) 2 10

(iii) MySQL2KM3 613 (347,266) 11 17 1 0 1 38(2) 3 55

Excel Injector 395 (231,164) 11 10 0 0 0 38(0) 3 55

Excel Extractor 311 (251,60) 13 5 0 0 0 6(1) 2 66

(i) SpreadsheetML Simplified2XML 263 (246,17) 12 1 0 0 0 1(0) 2 66

(ii) XML2ExcelText 48 (5,43) 1 4 0 0 0 5(1) 0 0

PetriNet to/from PathExpression 1267 (799,468) 23 32 2 1 0 88(2) 8 47

(i) PetriNet2PathExp 70 (70,0) 3 0 0 0 0 0(0) 1 3

(ii) XML2PetriNet 228 (136,92) 5 8 0 0 0 22(0) 2 10

(iii) PetriNet2XML 222 (189,33) 5 3 1 0 0 12(0) 4 10

(iv) PathExp2PetriNet 104 (87,17) 3 1 0 0 0 5(0) 0 3

(v) TextualPathExp2PathExp 643 (317,326) 7 20 1 1 0 49(2) 1 21

Make to Ant 368 (242,126) 13 11 0 0 0 13(2) 2 31

(i) XML2Make 147 (73,74) 5 7 0 0 0 7(1) 0 10

(ii) Ant2XML 177 (164,13) 7 1 0 0 0 2(0) 2 21

(iii) XML2Text 44 (5,39) 1 3 0 0 0 4(1) 0 0

Maven to Ant 1307 (1139,168) 90 18 0 0 0 80(0) 7 1326

(i) XML2Maven 575 (472,103) 36 13 0 0 0 74(0) 3 630

(ii) Maven2Ant 360 (308,52) 30 4 0 0 0 4(0) 1 420

(iii) Ant2XML 372 (359,13) 24 1 0 0 0 2(0) 3 276

Table 4 gives a summary of the technical debt of these cases. To compute the
number of flaws in a transformation, we count 1 for each of ETS , ENR, ENO ,
UEX , CBR1 over the thresholds, plus ERS + EHS + CC + EPL + EFO + DC
+ CBR2. For a transformation system, we sum the number of flaws in each of
its subtransformations. We use the transformation intent classifications of [12]
for MT categories. It is noticeable that the number of flaws per LOC is quite
similar across all of the cases, (the standard deviation is 0.0023).

It can be noted that the ratio of complexity to LOC is 1.71, reflecting the
relatively low semantic density of typical ATL specifications. The flaw rate per
semantic element is 0.00931 (number of flaws divided by complexity).

Technical Debt in Model Transformation Specifications 133

Table 4. Results summary for ATL

Transformation Category [12] LOC c(τ) % in rules # flaws Flaws/LOC

MOF to UML Migration 935 1002 79.7% 17 0.018

KM3 to DOT Refinement 451 926 55.6% 8 0.017

MySQL to KM3 Abstraction 995 1726 57.3% 19 0.019

Excel Injector Migration 395 601 58.5% 6 0.015

Excel Extractor Migration 311 528 81% 5 0.016

Petri Net from/to Semantic map 1267 1645 63% 20 0.016

Make to Ant Migration 368 808 65.7% 5 0.013

Maven to Ant Migration 1307 3075 87% 16 0.012

Average 753.6 1288.9 70.2% 12 0.016

3.2 ETL

ETL has a similar rule and transformation structure to ATL, but with a more
general processing model and more complex semantics. For ETL we define UEX
as n∗(n−1)

2 where n is the number of concrete non-lazy rules. We identified ETL
cases to analyse from the Eclipse ETL repository (git.eclipse.org), and from other
published cases (github.com/epsilonlabs).

ETL has implicit invocation of rules by rules or operations, where the text of
the transformation does not contain an explicit reference to rules that may be
invoked due to equivalent/equivalents expressions. In calculating the call graph
and CBR metric, such implicit calls must be taken into account. In ETL, an
expression e.equivalent() may implicitly invoke any concrete lazy or non-lazy
rule which has an input variable v : T with T containing the actual value of e at
runtime. Thus the calling rule or operation implicitly depends upon all concrete
rules in the transformation, potentially leading to large values for fan-out and
call graph size. The abbreviated form v :: = e of v = e.equivalent() is considered
in the same manner. The detailed TD evaluations for ETL may be found at
nms.kcl.ac.uk/kevin.lano/icmt18.pdf.

Table 5 gives a summary of the technical debt of these cases. The same com-
putation of number of flaws is used as for ATL. It is noticeable that the rate
of flaws per LOC is higher than for ATL in general, and with a much wider
range of rates than for ATL (the s.d. is 0.06). This may be due to the wide
variety of styles supported by ETL, from the highly imperative transformations
of StateElimination, to the very implicit and declarative CopyOO . Using the F-
distribution test, there is a statistically-significant difference between the ETL
and ATL TD levels [17]. In the most complex cases, such as MDDTIF , three
forms of inter-rule/operation dependence are used simultaneously: inheritance,
explicit calls and implicit calls, leading to high values for CBR and EFO .

From Table 5 we have that complexity/LOC for ETL is 2.9, indicating a
greater semantic density in ETL specifications than for ATL. The rate of flaws
per semantic element is 0.024.

https://git.eclipse.org/
https://github.com/epsilonlabs
https://nms.kcl.ac.uk/kevin.lano/icmt18.pdf

134 K. Lano et al.

Table 5. Results summary for ETL

Transformation Category LOC c(τ) % in rules # flaws Flaws/LOC

Flowchart2HTML Code-
generation

163 377 100% 2 0.012

CopyFlowchart Migration 57 153 100% 7 0.122

CopyOO Migration 110 438 100% 23 0.209

In2out Migration 19 53 100% 1 0.052

OO2DB Refinement 142 464 85.2% 6 0.042

RSS2ATOM Refinement 88 154 84% 6 0.068

Tree2Graph Refinement 15 37 100% 1 0.066

uml2xsd Migration 17 44 100% 1 0.058

MDDTIF Refinement 145 377 95.8% 26 0.179

Argouml2ecore Migration 96 321 79% 13 0.135

StateElimination Refactoring 313 1062 49.5% 7 0.022

TTC Live Case
2017

Refinement 206 573 79% 6 0.029

uml2Simulink Refinement 148 477 77% 11 0.074

Average 116.8 348.46 80.5% 8.46 0.072

3.3 QVT-R

For QVT-R transformations the CBR and UEX measures are of particular inter-
est, since QVT-R rules (termed ‘relations’) may be interdependent in several
different ways: a rule may refer to another in its when or where clause, and may
have a recursive dependency upon itself, and may override another rule. UEX is
taken as n∗(n−1)

2 where n is the number of concrete top-level rules in a transfor-
mation. A special feature of QVT-R is that relations may define a large number
of auxiliary variables to transfer data from one relation domain to another, or
to transfer data between relations. This may result in high EPL values even for
small transformations. This can cause problems in understanding the relations
because the meaning and role of each variable needs to be understood.

The OCL syntax used in QVT-R differs from that of the other MT languages.
We evaluate complexity directly on this syntax, rather than upon its standard
OCL translation. Thus an object specification e

obj : E1 { att = var, rel = obj2 : E2{} }

has c(e) = 11, versus 19 for its conventional OCL equivalent expression:

obj : E1 and obj .att = var and obj2 : E2 and obj .rel = obj2

We have selected published examples of QVT-R specifications from the Mod-
elMorf repository, from the QVT-R standard, and from published papers [13].
Table 6 gives the measures for the selected QVT-R cases.

Technical Debt in Model Transformation Specifications 135

Table 6. Technical debt measures for QVT-R

Transformation ETS

(rs, os)

ENR ENO ERS EHS EPL EFO CBR DC UEX

HierarchicalStateMachine2

FlatStateMachine

85 (79, 6) 3 1 0 0 1 0 3(0) 0 3

AbstractToConcrete 47 (47,0) 1 0 0 0 0 0 0(0) 0 0

ClassModelToClassModel 85 (85,0) 3 0 0 0 0 0 4(1) 0 1

DNF 396 (396,0) 9 0 4 0 4 0 10(4) 3 6

DNF bbox 263 (263,0) 5 0 4 0 5 0 4(0) 3 6

SeqToStm 104 (104,0) 4 0 0 0 1 0 4(0) 0 6

seqtostmct 149 (149,0) 5 0 0 0 0 0 6(3) 0 0

UmlToRdbms 238

(226,12)

7 1 1 0 1 0 10(3) 0 3

UmlToRel 98 (65,33) 2 2 0 0 0 0 3(0) 0 1

RelToCore 2038

(1937, 101)

50 5 11 0 13 5 141(7) 3 15

Bpmn2UseCase 522 (522,0) 23 0 0 0 0 0 12(0) 4 55

hsm2nhdm (recursion) 48 (48,0) 5 0 0 0 0 0 5(2) 0 3

Table 7 gives a summary of the technical debt of these cases. The same com-
putation of number of flaws is used as for ATL. There are 0.023 flaws/LOC
and 0.011 flaws per semantic element, figures intermediate between ATL and
ETL. There are 2.09 semantic elements/LOC, a density figure again intermedi-
ate between ATL and ETL.

Table 7. Results summary for QVT-R

Transformation Category LOC c(τ) % in rules # flaws Flaws/LOC

HSM2FlatSM Abstraction 85 137 93% 1 0.011

AbstractToConcrete Refactoring 47 57 100% 0 0

ClassModelToClassModel Migration 85 85 100% 2 0.023

DNF Refactoring 396 665 100% 16 0.04

DNF bbox Refactoring 263 470 100% 12 0.045

SeqToStm Refinement 104 175 100% 1 0.009

seqtostmct Refinement 149 162 100% 4 0.027

UmlToRdbms Refinement 238 314 95% 6 0.025

UmlToRel Refinement 98 75 95% 0 0

RelToCore Refinement 2038 5415 95% 43 0.021

Bpmn2UseCase Migration 522 877 100% 7 0.013

hsm2nhdm (recursion) Abstraction 48 105 100% 2 0.041

Average 339.4 711.25 96% 7.83 0.023

3.4 UML-RSDS

For UML-RSDS transformations we consider three substantial case studies:
two parts of the UML2C code generator [11] and the class diagram mod-
ulariser cra from [10]. A range of other examples are also included from

136 K. Lano et al.

nms.kcl.ac.uk/kevin.lano/uml2web/zoo. In total there are 36 individual trans-
formations and 10 transformation systems. The TD detailed measures for UML-
RSDS are available at nms.kcl.ac.uk/kevin.lano/icmt18.pdf.

Table 8 summarises the results for UML-RSDS. We estimated LOC by print-
ing the specification files and counting lines of operation and use case code,
omitting metamodel class, generalisation and association declarations.

Table 8. Results summary for UML-RSDS

Transformation Category LOC c(τ) % in rules # flaws Flaws/LOC

uml2Ca Code generation 874 1272 69% 22 0.025

uml2Cb Code generation 1576 5621 16% 119 0.075

cra Refactoring 490 1360 32% 12 0.024

f2p/p2f Bidirectional 58 158 86% 3 0.052

calc Analysis 15 83 100% 0 0

movies Analysis 156 432 40% 3 0.019

Monte-Carlo sim Analysis 51 90 68% 0 0

Nelson-Seigal Refinement 458 1219 67% 15 0.032

CDO Analysis 94 182 17% 2 0.02

PetriNet to SM Refactoring 66 174 100% 0 0

Average 383.8 1059.1 34.9% 17.6 0.0458

It can be noted that the c(τ) measure is around 2.76 times the LOC, a similar
level of semantic density to ETL.

An interesting aspect of the results is the balance of functionality between
helpers and rules. Excessive use of helpers produces transformations which are
akin to programs in a functional programming language. In the largest transfor-
mation (uml2Cb, cra) there is a considerable imbalance of functionality towards
helpers, whilst smaller transformations such as the Monte-Carlo simulator are
more balanced.

4 Discussion and Summary of Results

We consider the results for each language with respect to the research questions.
For ATL, for RQ1, all of the 19 individual transformations had flaws (100%),
and 8 of 8 transformation systems contained transformations with flaws (100%).
For RQ2, the most common flaws were DC (15/19), CBR – either CBR1 > 0 or
CBR2 > 0 – (13/19), UEX (10/19), ENR (7/19) and ENO (5/19).

A particular issue in ATL is the use of resolveTemp expressions in rules to
look up target model elements produced by another rule, during transformation
processing. This is considered a semantic complexity factor in [2] because it
introduces a syntactic and semantic dependency of the rule calling resolveTemp

https://nms.kcl.ac.uk/kevin.lano/uml2web/zoo/
https://nms.kcl.ac.uk/kevin.lano/icmt18.pdf

Technical Debt in Model Transformation Specifications 137

upon the rule identified by the call. We include the rule-to-rule dependencies
induced by resolveTemp in the CBR measure.

For ETL, the critical factor in the considered transformations is the implicit
CBR due to usage of equivalent and related operators. For RQ1, 19 of the 24
individual transformations contained flaws (79%), and all of the 13 transforma-
tion systems contained transformations with flaws (100%). For RQ2 the most
common flaws were CBR (18/24), EFO (7/24) and DC and UEX (both 5/24).
Excessive size of rules/helpers or transformations was not a significant problem.

For QVT-R, for RQ1, out of 12 transformations, 10 had flaws (83%). For
RQ2, EPL and CBR both occur in 6 of 12 transformations, whilst DC and ERS
occur in 4. High values of EPL arise because of the use of many local variables
within QVT-R relations, to facilitate bidirectional use of the relations. CBR
flaws arise from the unstructured nature of QVT-R transformations in which
rules may be closely inter-dependent. In the largest transformation, relToCore,
there is informal stratification of the transformation into groups of rules, but
this could be clearer if the transformation were explicitly decomposed into client
and supplier sub-transformations.

For UML-RSDS, for RQ1, out of 36 transformations, 16 had some flaws
(44%), whilst 7 of 10 transformation systems contained some transformations
with flaws (70%). The uml2Cb case somewhat distorts the flaw density data:
without this case the flaws per LOC would be the same as for QVT-R.

For RQ2, excessive CBR occurs in 9 transformations. DC also occurs in 9
cases. ENO occurs in 7 cases. CC occurs in 6 cases. In all cases, the coupling
issues concern complex dependencies between helpers, rather than between rules.
The prevalence of CBR and ENO flaws suggest overuse of helpers/operations.
Poor structure and high numbers of flaws were apparent in the largest transfor-
mations.

For RQ3, Table 9 summarises the different prevalence of TD types in different
MT languages, counting the number of individual transformations which have
flaws of each kind. Unusual patterns of TD are emphasised.

In summary, it seems that excessive CBR and DC are the most significant
design flaws which arise across all MT languages, although there are significant
variations in the kinds of TD problem between different languages. These find-
ings suggest that an important factor in understanding and maintaining model
transformations are the dependencies between rules/operations.

CBR could be reduced by the stratification and modularisation of transfor-
mations into smaller units. Currently MT languages offer such external compo-
sition [16] of transformations by the sequencing of individual transformations:
a facility heavily used in the UML-RSDS examples in particular. However it
seems what is needed is a modularisation mechanism to support a hierarchical
client-supplier relationship between transformations, with the internal details of
the supplier module independent of its clients. This would enable, for example,
a transformation mapping OCL expressions to be called as a ‘black box’ from
a transformation mapping UML activities. The combination of these two trans-
formation processes into uml2Cb is a significant factor in its high flaw count.

138 K. Lano et al.

Table 9. Technical debt prevalence in different MT languages

TD category ATL ETL QVT-R UML-RSDS Overall

CBR 13/19 18/24 6/12 9/36 46/91

DC 15/19 5/24 4/12 9/36 33/91

UEX 10/19 5/24 2/12 0/36 17/91

ENR 7/19 0/24 2/12 3/36 12/91

ENO 5/19 0/24 0/12 7/36 12/91

ERS 5/19 2/24 4/12 0/36 11/91

EFO 0/19 7/24 1/12 1/36 9/91

EPL 0/19 2/24 6/12 0/36 8/91

ETS 4/19 0/24 2/12 2/36 8/91

CC 1/19 0/24 0/12 6/36 7/91

EHS 1/19 2/24 0/12 1/36 4/91

Table 10 shows the overall figures for LOC, c, and flaws, for each language.

Table 10. Overall size and TD results

Language LOC c c/LOC Flaws Flaws/LOC Flaws/c

ATL 6029 10311 1.71 96 0.016 0.009

ETL 1519 4530 2.98 110 0.072 0.024

QVT-R 4073 8535 2.09 94 0.023 0.011

UML-RSDS 3838 10591 2.76 176 0.046 0.017

Overall 15459 33967 2.19 476 0.031 0.014

The flaw density figures for ETL and UML-RSDS are higher than for ATL
and QVT-R, both wrt LOC and wrt c. This difference can be due to specific
language features such as implicit calls (ETL), or excessive use of operations
(UML-RSDS), but also due to the use of ETL and UML-RSDS for more complex
transformations, including update-in-place cases such as PetriNet to SM which
would be very difficult to express in ATL or QVT-R.

We can also compare the levels of TD in different categories of transforma-
tion, across languages. Table 11 shows the TD frequency for the main categories
of transformations in our survey. Although the sample numbers are too small for
statistical significance, the difference in flaw levels between the main categories
is in accord with expectations that more complex MT tasks such as refinement
will result in transformations with higher numbers of flaws compared to simpler
tasks such as migration.

For RQ4, TD densities in developer-coded Eclipse projects have been mea-
sured in [7], with values ranging from 0.005 to 0.04 flaws per LOC, with an

Technical Debt in Model Transformation Specifications 139

Table 11. TD for MT categories

Category LOC Flaws Flaws/LOC

Code generation 2613 143 0.055

Bidirectional 58 3 0.052

Refinement 4280 133 0.031

Refactoring 1575 47 0.029

Migration 4222 103 0.024

Abstraction 1128 22 0.019

Analysis 316 5 0.016

Semantic map 1267 20 0.016

average around 0.015. We also evaluated manually coded versions of a UML to
C++ translator (18,100 lines of Java), and 2 versions of the CDO case study (200
lines of C++, and 236 lines of Java) using the PMD code size library (https://
pmd.github.io). These had TD levels of 0.009/LOC, 0.021/LOC and 0.017/LOC,
respectively. The TD levels of ETL and UML-RSDS are high in comparison with
these code TD results, whilst ATL and QVT-R exhibit TD levels more typical
of executable code.

5 Threats to Validity

The conclusions we have drawn may be challenged on the basis that (a) the
measures chosen are not appropriate for evaluating TD; (b) the selection of
transformation cases was unrepresentative; (c) the basis of TD measurement of
different MT languages are not equivalent.

Regarding (a), we have adopted established TD measures which have been
used extensively for TD evaluation of programs. We have used 500 LOC as a
threshold for transformation size, and 50 LOC as a threshold for rule/operation
size. This is partly justified by the fact that overall the ratio of complexity to
LOC is close to 2, and thus the 50/500 LOC limits correspond, on average, to
the 100/1000 limits for complexity. In addition, out of 74 cases where both trans-
formation LOC and c(τ) were available, in 69 cases (93%) the thresholds were
in agreement: both c(τ) > 1000 and LOC > 500 in 9 cases, or both c(τ) ≤ 1000
and LOC ≤ 500 in 60 cases. Two cases were over 500 LOC but below 1000
c(τ) whilst 3 had the converse. Transformations that operate on large meta-
models or that perform complex tasks will typically have high TD if they are
not effectively modularised (such as MOF to UML, RelToCore, or uml2Cb).
Decomposition into subtransformations (as for PetriNet to/from PathExpres-
sion, and cra) can significantly reduce TD levels, even for transformations with
large metamodels/complex tasks.

Regarding (b), we have considered public repositories of cases and published
examples of MT specifications for each language, and the selection of cases has

https://pmd.github.io
https://pmd.github.io

140 K. Lano et al.

been on the same basis for each language. For each language, we have endeav-
oured to obtain a wide range of transformation examples, spanning in size from
small cases to the largest cases available, and across the range of all available
categories of transformation. However, higher TD measures were obtained for
languages (ETL, UML-RSDS) with a wider range of transformation facilities,
and hence that have been applied to more complex tasks. It can be noted that
the ETL cases are significantly smaller (average complexity size 348) than the
ATL, QVT-R or UML-RSDS cases (average sizes 1289, 711 and 1059). There are
few large publicly-available ETL cases, which restricted our choice for analysis.

Regarding (c), some distortion is introduced by the analysis of cases where
one MT language feature is used to express another concept in the source speci-
fication. For example, in the KM32DOT ATL transformation, the first 9 helper
operations DiagramType(), Mode(), etc. are used to represent the parameters of
the transformation. Such cases would require manual correction in the analysis,
but we consider that it is preferable to analyse the transformations on the basis
of their actual text, not on the basis of how the specifier intended the text to be
interpreted (since this knowledge may not be available in some cases, leading to
inconsistency in the analysis).

6 Related Work

One of the first works to consider metrics for MT was [9]. They define mea-
sures for the size and complexity of QVT-R transformations, including lines
of code, number of relations (corresponding to number of rules), and specific
measures for the size and inter-relationship of QVT-R rules. Their analysis is
limited to QVT-R and does not consider clone detection or detailed analysis of
the rule dependency graph. They evaluated one large (auto-generated) QVT-R
transformation and three moderate/small transformations. Undefined execution
order between rules is a significant problem in the large transformation. In [1],
measures of ATL and QVT-R and QVT-O are computed for versions of two
transformations in each language. In [2], seven ATL transformations are evalu-
ated by metrics and by expert analysis, in order to identify correlations between
metric values and expert evaluation of quality characteristics. Wimmer et al.
[18] use quality measures to evaluate the effect of MT refactorings. They adopt
ERS, DC and EFO as quality criteria for ATL transformations.

Clone detection in transformations is considered by [15], and they evaluate
alternative tools for clone detection in graph transformations.

7 Conclusion

We have shown that technical debt can be evaluated for different MT languages.
We have evaluated 91 transformations in four transformation languages, and
identified significant differences between the languages in their frequency and
type of TD: while ATL and QVT-R cases have flaw densities similar to tradi-
tional code, the more complex languages ETL and UML-RSDS have cases with

Technical Debt in Model Transformation Specifications 141

typically higher flaw densities. All languages suffer from flaws due to complex
dependencies between rules/operations. This may be a symptom of poor modu-
larisation facilities in MT languages. The identification of design flaws can help
MT specifiers to improve their transformations and to prioritise refactoring or
other quality improvement work on their transformations.

References

1. van Amstel, M., Bosems, S., Kurtev, I., Ferreira Pires, L.: Performance in model
transformations: experiments with ATL and QVT. In: Cabot, J., Visser, E. (eds.)
ICMT 2011. LNCS, vol. 6707, pp. 198–212. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-21732-6 14

2. van Amstel, M., van den Brand, M.: Using metrics for assessing the quality of ATL
model transformations. In: MtATL 2011 (2011)

3. Arendt, T., Taentzer, G.: UML model smells and model refactorings in early soft-
ware development phases. Technical report FB 12. Philipps Universitat, Marburg
(2010)

4. Basili, V.: Software modeling and measurement: the goal/question/metric
paradigm (1992)

5. Batot, E., Sahraoui, H., Syriani, E., Molins, P., Sboui, W.: Systematic mapping
study of model transformations for concrete problems. In: Modelsward 2016, pp.
176–183 (2016)

6. Correa, A., Werner, C.: Refactoring OCL specifications. SoSyM 6, 113–138 (2007)
7. He, X., Avgeriou, P., Liang, P., Li, Z.: Technical debt in MDE: a case study on

GMF/EMF-based projects. In: MODELS 2016 (2016)
8. IEC/ISO, 25010 Systems and software engineering - systems and software quality

models (2011)
9. Kapová, L., Goldschmidt, T., Becker, S., Henss, J.: Evaluating maintainability with

code metrics for model-to-model transformations. In: Heineman, G.T., Kofron, J.,
Plasil, F. (eds.) QoSA 2010. LNCS, vol. 6093, pp. 151–166. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13821-8 12

10. Lano, K., Kolahdouz-Rahimi, S., Yassipour-Tehrani, S.: Solving the CRA case
using UML-RSDS. In: TTC 2016 (2016)

11. Lano, K., et al.: Translating from UML-RSDS OCL to ANSI C. In: OCL 2017
(2017)

12. Lucio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim, G., Syriani, E.,
Wimmer, M.: Model transformation intents and their properties. SoSyM 15, 647–
684 (2016)

13. Macedo, N., Cunha, A.: Least-change bidirectional model transformation with
QVT-R and ATL. SoSyM 15, 783–810 (2016)

14. Marinescu, R.: Assessing technical debt by identifying design flaws in software
systems. IBM J. Res. Dev. 56(5), 9:1–9:13 (2012)

15. Struber, D., Ploger, J., Acretoaie, V.: Clone detection for graph-based MT lan-
guages. In: ICMT 2016 (2016)

16. Wagelaar, D.: Composition techniques for rule-based MT languages. In: ICMT
2008 (2008)

17. Weatherill, G.B.: Elementary Statistical Methods. Chapman and Hall, London
(1978)

18. Wimmer, M., et al.: A Catalogue of Refactorings for model-to-model transforma-
tions. J. Object Technol. 11(2), 1–40 (2012)

https://doi.org/10.1007/978-3-642-21732-6_14
https://doi.org/10.1007/978-3-642-21732-6_14
https://doi.org/10.1007/978-3-642-13821-8_12

CoqTL: An Internal DSL for Model
Transformation in Coq

Massimo Tisi1(B) and Zheng Cheng2

1 IMT Atlantique, LS2N (UMR CNRS 6004), Nantes, France
massimo.tisi@imt-atlantique.fr

2 Research Center INRIA Rennes - Bretagne Atlantique, Rennes, France
zheng.cheng@inria.fr

Abstract. In model-driven engineering, model transformation (MT)
verification is essential for reliably producing software artifacts. While
recent advancements have enabled automatic Hoare-style verification for
non-trivial MTs, there are certain verification tasks (e.g. induction) that
are intrinsically difficult to automate. Existing tools that aim at sim-
plifying the interactive verification of MTs typically translate the MT
specification (e.g. in ATL) and properties to prove (e.g. in OCL) into
an interactive theorem prover. However, since the MT specification and
proof phases happen in separate languages, the proof developer needs a
deep knowledge of the translation logic. Naturally any error in the MT
translation could cause unsound verification, i.e. the MT executed in the
original environment may have different semantics from the verified MT.

We propose an alternative solution by designing and implementing
an internal domain specific language, namely CoqTL, for the specifica-
tion of declarative MTs directly in the Coq interactive theorem prover.
Expressions in CoqTL are written in Gallina (the specification language
of Coq), increasing the possibilities of reuse of native Coq libraries in the
transformation definition and proof. In this paper we introduce CoqTL,
we evaluate its practical applicability on a case study, and identify its
limitations.

Keywords: Model-driven engineering · Model transformation
Interactive theorem proving · Coq

1 Introduction

Model-driven engineering (MDE), i.e. software engineering centered on software
models and MTs, is widely recognized as an effective way to manage the com-
plexity of software development. With the increasing complexity of MTs (e.g.,
in automotive industry [20], medical data processing [22], aviation [2]), it is
urgent to develop techniques and tools that prevent incorrect MTs from gener-
ating faulty models. The effects of such faulty models could be unpredictably
propagated into subsequent MDE steps, e.g. code generation.

c© Springer International Publishing AG, part of Springer Nature 2018
A. Rensink and J. Sánchez Cuadrado (Eds.): ICMT 2018, LNCS 10888, pp. 142–156, 2018.
https://doi.org/10.1007/978-3-319-93317-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93317-7_7&domain=pdf

CoqTL: An Internal DSL for Model Transformation in Coq 143

Deductive verification is a promising approach for quality assurance in MT:
correctness is specified by MT developers using contracts (i.e. pre/postcondi-
tions), then the semantics of the MT language together with contracts and
metamodels are encoded into a deductive theorem prover. Thanks especially
to recent advancements in SMT solvers, automatic deductive verification is giv-
ing good results in several scenarios [3,4,6,16]. However, because of the gen-
eral undecidability, interactive deductive verification is inevitable for complex
tasks (for instance, automatic deductive theorem provers usually lack support
for induction or finding witnesses for existential quantifiers).

Coq is an interactive theorem prover. The user can use Coq to write mathe-
matical definitions, executable algorithms and theorems together with an envi-
ronment for semi-interactive development of proofs (in the sense that routine
proofs can be automatically performed while difficult proofs require human guid-
ance). It has been used to prove non-trivial mathematical theorems, or as an envi-
ronment for developing formally certified software and hardware (e.g. [10,15]).
While not strictly needed for understanding this paper, we refer the reader to [18]
for an introduction to the Coq system.

Previous work aiming at simplifying the interactive verification of MTs, has
already proposed translations from MT specifications (e.g. in MT languages
like ATL) and properties to prove (e.g. in OCL) into Coq. However, the prac-
tical applicability of this translational approach is hampered by the fact that
the two phases of MT specification and correctness proof require developments
in languages (e.g. ATL+OCL and Coq, respectively) at two different levels of
abstraction. The proof developer needs a deep knowledge of the translation logic
to be able to write meaningful proofs. Any change in the MT code propagates
through the translator, and it is difficult to predict the proof steps that will
be invalidated. Naturally any error in the MT translation could cause unsound
verification, i.e. the MT executed in the original environment may have different
semantics from the verified MT. Certifying that the semantics of the MT lan-
guage has being correctly axiomatized in the back-end theorem prover is a hard
task, and very few attempts exist [1,6].

Coq includes Gallina, a functional programming language with pattern
matching and rich type system, well suited as a platform for embedding domain-
specific programming languages (DSLs) (e.g. [7]). In this work, we draw on this
aspect of Coq and propose a DSL, namely CoqTL, to turn Coq into a tool for
developing certified MTs. We argue that using an internal DSL for the MT spec-
ification phase simplifies the iterative process of MT development and proof in
MDE. Moreover, expressions in CoqTL are directly written in Gallina, increas-
ing the possibilities of reuse of sophisticated native Coq libraries during the
transformation definition and proof.

Our main contributions are:

– We design and implement CoqTL, to our knowledge the first DSL for rule-
based MT in Coq (Sect. 3.2). The language is both functional and declarative
in style, its syntax and semantics is inspired from ATL [12] (hence it should
be familiar also to users of other rule-based MT languages, like ETL [13], or

144 M. Tisi and Z. Cheng

RubyTL [8]). Thus, CoqTL aims to lighten the cognitive load of MT devel-
opers trying to build certified MTs in Coq.

– We design and implement a transformation engine in Coq that interprets pro-
grams written in CoqTL to transform models (Sect. 3.3). The engine includes
an on-the-fly parser that transforms the domain-specific syntax into a Coq
data structure to interpret. The parser is transparently invoked (by an exten-
sive use of the Coq Notation mechanism) so that any Coq development envi-
ronment is able to support the domain-specific CoqTL syntax without requir-
ing ad-hoc modifications.

– We show the practical applicability of CoqTL, by using it to specify a sample
transformation, prove non-trivial contracts over it and automatically extract
a certified implementation.

We make CoqTL publicly available as open source1. The repository contains
also the example and proofs described in this paper.
Paper Organization. We motivate our work by a sample transformation in
Sect. 2. Section 3 illustrates the design of CoqTL in detail. In Sect. 4 we prove
theorems on a CoqTL specification. Section 5 compares our work with related
research, and Sect. 6 draws conclusions and lines for future work.

2 Class to Relational in CoqTL

We consider a very simplified version of the transformation from class diagrams
to relational schemas (arguably, the Hello World transformation in the MT com-
munity). The example is intentionally very small, so that it can be completely
illustrated within this paper. However we believe it to be easily generalizable by
the reader to more complex scenarios. The structure of the involved metamodels
is shown in Fig. 1.

Fig. 1. A simplified structural metamodel for class diagrams (left), and relational
schemas (right)

The left part of Fig. 1 shows the simplified structural metamodel of class
diagrams. Each class diagram contains a list of named classes with identities.
1 CoqTL (online). https://github.com/atlanmod/CoqTL.

https://github.com/atlanmod/CoqTL

CoqTL: An Internal DSL for Model Transformation in Coq 145

1 Definition Class2Relational :=

2 transformation from ClassMetamodel to RelationalMetamodel

3 with m as ClassModel := [

4

5 rule Class2Table

6 from

7 element c class Class from ClassMetamodel

8 when true

9 to

10 [

11 output ”tab”

12 element t class Table from RelationalMetamodel :=

13 BuildTable (getClassId c) (getClassName c)

14 links

15 [

16 reference TableColumns from RelationalMetamodel :=

17 attrs ← getClassAttributes c m;

18 cols ← resolveAll (match Class2Relational m) ”col” Column (singletons attrs);

19 return BuildTableColumns t cols

20]

21];

22

23 rule Attribute2Column

24 from

25 element a class Attribute from ClassMetamodel

26 when (negb (getAttributeDerived a))

27 to

28 [

29 output ”col”

30 element c class Column from RelationalMetamodel :=

31 BuildColumn (getAttributeId a) (getAttributeName a)

32 links

33 [

34 reference ColumnReference from RelationalMetamodel :=

35 cl ← getAttributeType a m;

36 tb ← resolve (match Class2Relational m) ”tab” Table [cl];

37 return BuildColumnReference c tb

38]

39]

40].

Listing 1.1. Class2Relational model transformation in CoqTL

Each class contains a list of named and typed attributes with unique identi-
ties. In this simplified model we do not consider attribute multiplicity (i.e., all
attributes are single-valued). Primitive data types are not explicitly modeled,
thus we consider every attribute without an associated type to have primitive
data type. A derived feature identifies which attributes are derived from other
values. The simplified structural metamodel of relational schemas is shown on
the right part of Fig. 1. Tables contain Columns, Columns can refer to other
Tables in case of foreign keys.

In Listing 1.1 we use the CoqTL language to specify how to transform class
diagrams to relational schemas. A transformation is a Coq Definition. First, we
declare that a transformation named Class2Relational is to transform a model
conforming to the Class metamodel to a model conforming to the Relational
metamodel, and we name the input model as m (lines 2–3).

146 M. Tisi and Z. Cheng

Then, the transformation is defined via two rules in a mapping style: one maps
Classes to Tables, another one maps non-derived Attributes to Columns. Each
rule in CoqTL has a from section that specifies the input pattern to be matched
in the source model. A boolean expression in Gallina can be added as guard, and
a rule is applicable only if the guard evaluates to true for a certain assignment of
the input pattern elements. Each rule has a to section which specifies elements
and links to be created in the target model (output pattern) when a rule is
fired. The to section is formed by a list of labeled outputs, each one including
an element and a list of links to create. The element section includes standard
Gallina code to instantiate the new element specifying the value of its attributes
(line 13). The links section contains standard Gallina code to instantiate links
related to the previous element (lines 17–19).

For instance in the Class2Table rule, once a class c is matched (lines 6 to 8),
we specify that a table should be constructed by the constructor BuildTable,
with the same id and name of c (line 13). While the body of the element section
(line 13) can contain any Gallina code, it is type-checked against the element
signature (line 12), i.e. in this case it must return a Table.

In order to link the generated table t to the columns it contains, we get
the attributes of the matched class (line 17), resolve them to their correspond-
ing Columns, generated by any other rule (line 18), and construct new set of
links connecting the table and these columns (line 19). While this is standard
Gallina code, we use for this example an imperative style with a monadic nota-
tion (←, similar to the do-notation in Haskell) that makes the code more clear
in this case2. The resolveAll function will only return the correctly resolved
attributes. In particular derived Attributes do not generate Columns (i.e. they
are not matched by Attribute2Column), so they will be automatically filtered
out by resolveAll. The result of this Gallina code (i.e. the constructed links) are
type-checked against the link signature (i.e. in this case they must have type
TableColumns, as specified at line 16).

In the Attribute2Column rule we can notice the presence of a guard. When
the Attribute is not derived, a Column is constructed with the same name and
identifier of the Attribute. If the original attribute is typed by another Class we
build a reference link to declare that the generated Column is a foreign key of
a Table in the schema. This Table is found by resolving (resolve function) the
Class type of the attribute.

CoqTL naturally enables deductive verification of model transformations.
Users can write Coq theorems that apply pre/postconditions (correctness con-
ditions) to the model transformation. For example, Listing 1.2 defines a theo-
rem stating that if all elements contained by the input model have not-empty
names, by executing the Class2Relational MT, all generated elements in the
output model will also have not-empty names. Interactively proving this simple

2 The intuitive semantics of ← is: if the right-hand-side of the arrow is not None, then
assign it to the variable in the left-hand side and evaluate the next line, otherwise
return None.

CoqTL: An Internal DSL for Model Transformation in Coq 147

1 Theorem Table_name_definedness :
2 ∀ (cm : ClassModel) (rm : RelationalModel),
3 (* transformation *)

4 rm = execute Class2Relational cm
5 →
6 (* precondition *)

7 (∀ (i : Class), In i (allModelElements cm)→ length (getClassName i)>0)
8 →
9 (* postcondition *)

10 (∀ (o : Table), In o (allModelElements rm)→ length (getTableName i)>0).

Listing 1.2. Name definedness theorem for the Class2Relational transformation

theorem in Coq takes 56 lines of routine proof code (this short proof can be even
automated by using modern automatic theorem provers [3,6]).

To illustrate more complex theorems we want to prove that our transfor-
mation preserves unreachability. (Un)reachability is an important property for
several models, e.g. one may typically need to demonstrate that error states
in generated state machines are not reachable. In our simple Class2Relational
example, one can inductively define reachability for classes (similarly for tables),
i.e. a class is reachable from itself, and two classes are reachable if they are
transitively linked by attributes. We can define an unreachability preservation
theorem as follows: if a certain class is not reachable from a given class, their
corresponding tables will not be reachable from each other. Interactively prov-
ing this theorem in CoqTL needs more than a thousand lines of proof code. The
major difficulty comes from choosing the right induction strategy, and to our
knowledge, the automatic proof of similar theorems is not addressed by existing
work. The full proof in Coq is available on the paper website.

3 The Design of CoqTL

CoqTL is an internal DSL for model transformation in Coq. In this section we
will describe the three main parts of its design:

– (Section 3.1) Metamodels and models are encoded as graph structures that
can be automatically translated from/to EMF.

– (Section 3.2) Transformation specifications are encoded as a data structure
wrapped up in a user-friendly domain specific syntax.

– (Section 3.3) A transformation engine interprets transformation specifications
against input models.

3.1 Metamodels and Models

Our encoding of metamodels in Coq is similar to analogous encodings in related
work, based on inductive data types. As an example, Listing 1.3 shows the basic
definitions for encoding the Relational metamodel of Fig. 1. Since this interface

148 M. Tisi and Z. Cheng

is the main means to access source and target models, we aim at providing the
simplest native representation.

Each metaclass is represented by an inductive data type, with a single con-
structor whose arguments are the attributes of the metaclass. References between
metaclasses are represented as separate inductive types, with a constructor
requiring the source and target elements as arguments. Optional or multival-
ued attributes and references are respectively represented using the option and
list Coq types in the appropriate constructor argument (e.g. at line 15).

Constructing any model requires providing a list of model elements and one
of links, as specified by the Model type in the CoqTL library (shown in lines 23–
26 in the listing). These lists are typed by generic ModelElement and ModelLink
types, that are meant to be the sum types for elements and links of the specific
metamodel. For defining the type of Relational model, we first define the two sum
types RelationalModelElement, sum of Table and Column, and RelationalMod-
elLink, sum of TableColumns and ColumnReference (for simplicity here we omit
the definition of sum types, that relies on dependent types). The RelationalModel
type is obtained by parametrizing Model with these sum types.

We create accessors for every attribute and reference of each metaclass.
Notice that while attribute accessors need only to inspect the element passed as
argument to retrieve the attribute value (e.g., getTableId and getTableName at
lines 37–44), reference accessors need to pass through the list of links to find the
ones connected to the element in parameter. Thus, reference accessors need to
have the whole model as extra parameter (e.g., getTableColumns in the listing).

Listing 1.3 shows a small portion of the encoding of the Relational metamodel
in Fig. 1. The full encoding takes over 300 lines of Gallina code, and includes a
reflective API. Briefly, metamodel classes are reified in a RelationalMetamod-
elClass type (with values corresponding to Table and Column), that is used as
argument to reflective functions. The reflective API can be used for obtaining the
metaclass of an element, checking that an element is an instance of a metaclass,
and casting a generic element to/from a specific metaclass. Similar functions are
available for links.

While our representation allows us to encode any model instance, in our cur-
rent prototype we do not directly implement several features that are found in
modeling frameworks like EMF. Bidirectional references currently have no spe-
cial treatment: both sides are encoded as separate references, that need to be
separately assigned in the transformation code. No direct support is provided for
metaclass inheritance: the instance of a superclass can be provided as parame-
ter of a subclass constructor, but the two instances (of superclass and subclass)
need to be managed separately. Constraints for reference multiplicity or strong
containment can only be encoded via extra pre/postconditions. Finally, differ-
ently from EMF, identifiers are considered as normal attributes and elements
are considered equal when all their attributes are.

Automatic translators to/from EMF are still under development, and only
partial implementations are provided on the CoqTL website.

CoqTL: An Internal DSL for Model Transformation in Coq 149

3.2 Transformation Specification

Grammar 1.1 describes the concrete syntax of CoqTL. With respect to what we
already discussed in Sect. 2, the grammar shows that CoqTL supports patterns
with multiple input and output pattern elements. As indicated by the header
production rule, CoqTL currently supports only transformations from a single
source model to a single target model.

150 M. Tisi and Z. Cheng

The way we implement the concrete syntax of CoqTL relies on the Notation
facility of Coq. A notation is a symbolic abbreviation to denote some expressions,
and is one of the main commands that modifies the way Coq parses and prints
the representation of expressions.

For example, the first notation shown in Listing 1.4 implements the produc-
tion rules link-def and link-decl in Grammar 1.1. After the declaration of this
notation, when the expression on the left-hand-side is matched, it is expanded in
memory to the right-hand-side. A notation allows also the specification of asso-
ciativity and precedence levels, to solve parsing ambiguities. Notations can be
seen as a very limited compiler, that compiles in one pass without memory. For
this reason they strongly limit the classes of DSLs that can be implemented. In

CoqTL: An Internal DSL for Model Transformation in Coq 151

the implementation of CoqTL every notation is simply translated into an appro-
priate constructor, encapsulating the values matched by the notation (line 3).
Whenever the notation is matching the declaration of some variable that needs
to be visible to the rest of the code, we introduce a lambda expression as an
argument of the constructor. This is shown in the second notation in Listing 1.4,
that implements the output-elem production rule in the grammar. The created
element elname needs to be visible in the following links section, so we store the
content of this section in an anonymous function with elname as input (line 9).

The constructors used in our notations, like BuildOutputPatternLinkDefini-
tion in Listing 1.4 build a representation of the abstract syntax of the CoqTL
program. Hence CoqTL is a deeply embedded DSL for the rule structure part.
CoqTL has however shallow embedding of expressions, to allow the direct use of
the Gallina language for guards and output patterns (gallina-expr in the gram-
mar).

Gallina has several characteristics that make it suitable as an expression
language for CoqTL. It is:
– Expressive. Gallina is based on a formal language called the Calculus of Induc-

tive Constructions, combining a higher-order logic and a richly-typed func-
tional programming language.

– Easy to learn. In our experience, the learning curve of the language is low if
the user had some exposure to functional languages.

– Accompanied by sophisticated libraries. Reusing functions in those libraries
during the MT specification is also important for the proof phase, that can
exploit the theorems and lemmas provided by the library for those functions.

Finally, CoqTL provides auxiliary functions meant to be used in Gallina
expressions for guards and output patterns. The most important is the function
resolve (and its corresponding multivalued version, resolveAll) for element reso-
lution. As illustrated at lines 18 and 36 in Listing 1.1, its signature requires the
following arguments: (1) the result of the matching phase of the current trans-
formation (match Class2Relational m), (2) the label associated to the required
output element, useful for rules with multiple output elements (“col”), (3) the
type of the expected result, useful for type checking (Column), (4) the source
pattern to resolve (or the list of source patterns in case of resolveAll). Notice
that the matching phase is provided as a new application of the transformation
in a specific match mode. While this choice affects the global efficiency of the
transformation, it simplifies the development of proofs, because it avoids having
a concept of transformation traces as side effects of the transformation execution.

While the expressiveness of CoqTL has important limitations, we are cur-
rently able to manually translate to CoqTL a significant subset of ATL transfor-
mations: 1-to-1 model transformations, in standard (non-refining) mode, written
in the declarative subset of ATL, without lazy rules.

3.3 Transformation Engine

Algorithm 1 illustrates in pseudocode how the transformation specifications are
interpreted by our transformation engine. This algorithm has been influenced

152 M. Tisi and Z. Cheng

by the execution algorithm of ATL [12] (notably in the distinction between
a match/instantiate and an apply function), but is very different, having the
objective to simplify the proof development, at the cost of sacrificing execution
efficiency.

Our transformation engine is implemented in an execute function (called for
instance in Listing 1.2) that takes as input a transformation specification R
and an input model I (which contains elements Ie and links Il). The output is
elements Oe and links Ol, which form an output model.

First, the transformation engine records the maximum size (m) of input
patterns among all the rules in the transformation specification. This value is
used to calculate all the potential pattern instances P that the input model
can produce to be matched against the transformation specification, i.e. all the
subsets of Ie whose size is less or equal to m are enumerated.

Next, the engine iterates on each potential pattern instance p, and seeks for
a rule r in R that matches it (i.e. if model elements in the pattern instance have
the types defined in the input pattern of the rule) and satisfies the guard of that
rule. If a rule r is found for the pattern instance p, then the instantiation phase
of r will be invoked to construct the corresponding output elements of p and add
them to the output model. Finally the apply phase is invoked, i.e. to construct
the corresponding output links and add them to the output model.

Algorithm 1. Algorithm of the execute function
1: m ← maxArity(R)
2: P ← allPatterns(Ie, m)
3: for each p ∈ P do
4: r ← findRule(R, p)
5: if r �= None then
6: Oe ← Oe ∪ instantiate(r, p)
7: Ol ← Ol ∪ apply(r, p)
8: end if
9: end for

Notice that Gallina expressions for output links are only evaluated during
the apply phase. The developer may include in these expressions calls to the
resolve or resolveAll functions, whose evaluation requires the execution of the
instantiate phase. As mentioned in the previous section, in our solution the
user passes to resolve the result of the transformation execution in match mode
(i.e. match function at (lines 18 and 36 in Listing 1.1). The algorithm imple-
mented in match is identical to Algorithm 1, without line 7 (that would make
the whole computation recur indefinitely). Multiple executions of the transfor-
mation for element resolution slow down the execution, but simplify the proofs,
since no explicit traces are necessary as applications of instantiate and apply
with identical inputs can be trivially checked for equality. Possible optimizations
are however the subject of future work.

CoqTL: An Internal DSL for Model Transformation in Coq 153

Finally the application of the transformation by the execute function can be
automatically extracted by Coq into a separate executable program in several
languages (e.g., OCaml, Haskell).

4 Proving Theorems with CoqTL

In this section we show that CoqTL can enable practical verification for MTs. We
formulate 4 theorem proofs over the model transformation presented in Sect. 2.
Some measures are shown in Table 1, to give the reader an idea of the complexity
of the proofs: lines of code (LoC) and number of user-developed lemmas.

Table 1. Theorem proofs on Class2Relational

Theorem LoC No. Lemmas

positive ids 180 4

positive ids surj 75 1

name definedness 89 2

Unreachability preservation 1161 17

As a first theorem we prove that Class2Relational preserves id positivity, i.e.
if all identifiers in the source model are positive, then they also are in the target
model. In the first and second row we show two proofs for this theorem. In the
second proof we obtain a reduction of about 60% LoC, thanks to the use of a
generic lemma for transformation surjectivity, provided in the CoqTL library.
This shows that CoqTL enables the design and proof of generic theorems that
make interactive verification more efficient and concise.

Transformation surjectivity states that for all elements contained in the out-
put model there has to exist a rule and a matching input pattern that created
them. Our design choices in CoqTL enable this kind of theorems: during the proof
we can refer to syntactic elements of the transformation (e.g. rules, input/output
patterns) by their type in the abstract syntax (e.g., OutputPatternLinkDefini-
tion in Listing 1.4), and quantify over them. Moreover we use the reflective model
API mentioned in Sect. 3.1 to reason on metamodel-agnostic properties.

The surjectivity lemma is also used in the third and fourth proof. In the third
row we prove the name definedness property shown in Listing 1.2, separately for
all element types in source and target models. Finally by the fourth row, it is
clear that the unreachability preservation theorem (Sect. 2) is difficult to prove,
and shows the need of further work in proof engineering for MTs.

One road we want to follow is providing a complete library of generic lemmas
for CoqTL such as transformation surjectivity, to shorten proofs on CoqTL.
Some recurring proof patterns could be factorized into domain-specific automatic
proof tactics, aware of the CoqTL representation and properties. Another line
could be investigating a set of domain specific guidelines to construct proofs

154 M. Tisi and Z. Cheng

for MT verification. For example, to prove that if two Tables are reachable,
the Classes that generated them are reachable too; we induct on the definition
of reachability. However other induction strategies, e.g. on the structure of the
model, may be more efficient.

5 Related Work

There are many automatic theorem proving approaches for MTs (e.g. [3,4,6,16]).
However, interactive theorem proving is inevitable for more serious verification
tasks. In this section, we focus on recent advancements of MT verification based
on interactive theorem proving. To our knowledge, none of the existing works
designs and implements DSLs for MT within interactive theorem provers.

Yang et al. interactively verify that a particular model transformation, i.e.
from AADL to TASM language, is semantic preserving [23]. The approach is
based on providing a translational semantics of both languages as timed transi-
tion systems in Coq and then reasoning on their equivalence. CoqTL could be
used to simplify this kind of work.

Most previous works focus on giving a translational semantics of a MT lan-
guage towards the target theorem prover. Generally they do not investigate a
way to formally ensure that the semantics of the MT language has been axiom-
atized correctly in the back-end theorem prover. Calegari et al. encode ATL
MTs and OCL contracts into Coq to interactively verify that the MT is able to
produce target models that satisfy the given contracts [5]. In [21], a Hoare-style
calculus is developed by Stenzel et al. in the KIV prover to analyze transforma-
tions expressed in (a subset of) QVT Operational. UML-RSDS is a tool-set for
developing correct MTs by construction [14]. It chooses well-accepted concepts
in MDE to make their approach more accessible by developers to specify MTs.
Then, the MTs are verified against contracts by translating both into interactive
theorem provers.

Kezadri et al. defines the Coq4MDE framework to formally embed some key
aspects of MDE in Coq [11]. We have a similar abstraction of metamodels as
graphs. While our understanding is that Coq4MDE is capable of embedding MT
languages and enabling MT verification, no specific work has been proposed. We
expect an evaluation in the future to compare the complexity of MT verification
between the two works.

Poernomo and Terrell follow the classical approach in type theory to formally
specify MTs as ∀∃ types in interactive theorem provers [19]. Their approach does
not target any specific MT languages. In addition, although their work does not
propose a generic MT engine as we presented here, a corresponding executable
MT program can be extracted once the MT is proved. The approach is further
extended by Fernández and Terrell on using co-inductive types to encode bi-
directional or circular references [9]. We also plan to investigate how co-inductive
types can cooperate with our encoding and proofs (e.g. guardedness issues of co-
recursive functions might arise because the syntactic criterion applied by the
Coq system is too rigid [17]).

CoqTL: An Internal DSL for Model Transformation in Coq 155

6 Conclusion

In conclusion, we present CoqTL, to our knowledge the first DSL in Coq for
MTs and their verification. CoqTL is both functional and declarative in style,
providing a familiar environment for transformation developers in Coq. Its under-
lining transformation engine, implemented in Coq, allows CoqTL programs to
be interpreted against input models to compute output models. We show the
practical applicability of CoqTL, by proving non-trivial contracts over a sample
transformation.

Our future work would focus on the issues we identified in different points of
our discussion. We want to develop a theorem library on top of CoqTL to facili-
tate MT verification, including of transformation-agnostic lemmas such as trans-
formation surjectivity and domain-specific proof tactics to automatize recurring
proof steps. We aim to investigate whether there are domain-specific guidelines
to construct proofs for MT verification. We want to improve interoperability
between CoqTL and common MDE tools such as EMF, for industry readiness.

Acknowledgements. We thank Rémi Douence for his valuable help during the devel-
opment of CoqTL.

References

1. Rahim, L.Ab., Whittle, J.: A survey of approaches for verifying model transforma-
tions. Softw. Syst. Model. 14(2), 1003–1028 (2015)

2. Berry, G.: Synchronous design and verification of critical embedded systems using
SCADE and esterel. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916,
p. 2. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79707-4 2

3. Büttner, F., Egea, M., Cabot, J.: On verifying ATL transformations using ‘off-
the-shelf’ SMT solvers. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C.
(eds.) MODELS 2012. LNCS, vol. 7590, pp. 432–448. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33666-9 28

4. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL transformations
using transformation models and model finders. In: Aoki, T., Taguchi, K. (eds.)
ICFEM 2012. LNCS, vol. 7635, pp. 198–213. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-34281-3 16

5. Calegari, D., Luna, C., Szasz, N., Tasistro, Á.: A type-theoretic framework for
certified model transformations. In: Davies, J., Silva, L., Simao, A. (eds.) SBMF
2010. LNCS, vol. 6527, pp. 112–127. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19829-8 8

6. Cheng, Z., Monahan, R., Power, J.F.: A sound execution semantics for atl via
translation validation. In: Kolovos, D., Wimmer, M. (eds.) ICMT 2015. LNCS,
vol. 9152, pp. 133–148. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21155-8 11

7. Chlipala, A.: The Bedrock structured programming system: combining generative
meta programming and hoare logic in an extensible program verifier. In: 18th ACM
SIGPLAN International Conference on Functional Programming, ICFP 2013, pp.
391–402. ACM, Boston (2013)

https://doi.org/10.1007/978-3-540-79707-4_2
https://doi.org/10.1007/978-3-642-33666-9_28
https://doi.org/10.1007/978-3-642-34281-3_16
https://doi.org/10.1007/978-3-642-34281-3_16
https://doi.org/10.1007/978-3-642-19829-8_8
https://doi.org/10.1007/978-3-642-19829-8_8
https://doi.org/10.1007/978-3-319-21155-8_11
https://doi.org/10.1007/978-3-319-21155-8_11

156 M. Tisi and Z. Cheng

8. Cuadrado, J.S., Molina, J.G., Tortosa, M.M.: RubyTL: a practical, extensible
transformation language. In: Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006.
LNCS, vol. 4066, pp. 158–172. Springer, Heidelberg (2006). https://doi.org/10.
1007/11787044 13

9. Fernández, M., Terrell, J.: Assembling the proofs of ordered model transformations.
In: 10th International Workshop on Formal Engineering approaches to Software
Components and Architectures, pp. 63–77. EPTCS, Rome, Italy (2013)

10. Gu, R., Shao, Z., Chen, H., Wu, X., Kim, J., Sjöberg, V., Costanzo, D.: CertiKOS:
an extensible architecture for building certified concurrent OS kernels. In: 12th
USENIX Conference on Operating Systems Design and Implementation, pp. 653–
669. USENIX Association, Berkeley (2016)

11. Hamiaz, M.K., Pantel, M., Combemale, B., Thirioux, X.: A formal framework to
prove the correctness of model driven engineering composition operators. In: Merz,
S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 235–250. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11737-9 16

12. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Program. 72(1–2), 31–39 (2008)

13. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language.
In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
46–60. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69927-9 4

14. Lano, K., Clark, T., Kolahdouz-Rahimi, S.: A framework for model transformation
verification. Formal Aspects Comput. 27(1), 193–235 (2014)

15. Leroy, X.: Formal certification of a compiler back-end or: programming a compiler
with a proof assistant. SIGPLAN Not. 41(1), 42–54 (2006)

16. Oakes, B.J., Troya, J., Lúcio, L., Wimmer, M.: Fully verifying transformation con-
tracts for declarative ATL. In: 18th ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems, pp. 256–265. IEEE, Ottawa (2015)

17. Picard, C., Matthes, R.: Coinductive graph representation: the problem of embed-
ded lists. Electron. Commun. EASST 39 (2011)

18. Pierce, B.C., de Amorim, A.A., Casinghino, C., Gaboardi, M., Greenberg, M.,
Hriţcu, C., Sjöberg, V., Yorgey, B.: Software Foundations. In: Electronic Textbook
(2017)

19. Poernomo, I., Terrell, J.: Correct-by-construction model transformations from par-
tially ordered specifications in Coq. In: Dong, J.S., Zhu, H. (eds.) ICFEM 2010.
LNCS, vol. 6447, pp. 56–73. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-16901-4 6

20. Selim, G.M.K., Wang, S., Cordy, J.R., Dingel, J.: Model transformations for
migrating legacy models: an industrial case study. In: Vallecillo, A., Tolvanen, J.-
P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp.
90–101. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31491-9 9

21. Stenzel, K., Moebius, N., Reif, W.: Formal verification of QVT transformations for
code generation. Softw. Syst. Model. 14, 981–1002 (2015)

22. Wagelaar, D.: Using ATL/EMFTVM for import/export of medical data. In: 2nd
Software Development Automation Conference, Amsterdam, Netherlands (2014)

23. Yang, Z., Hu, K., Ma, D., Bodeveix, J.P., Pi, L., Talpin, J.P.: From AADL to timed
abstract state machines: a verified model transformation. J. Syst. Softw. 93, 42–68
(2014)

https://doi.org/10.1007/11787044_13
https://doi.org/10.1007/11787044_13
https://doi.org/10.1007/978-3-319-11737-9_16
https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1007/978-3-642-16901-4_6
https://doi.org/10.1007/978-3-642-16901-4_6
https://doi.org/10.1007/978-3-642-31491-9_9

A Formal Framework for Prototyping
Executable Semantics in ATL

Artur Boronat(B)

Department of Informatics, University of Leicester, Leicester, UK
aboronat@le.ac.uk

http://arturboronat.info

Abstract. ATL is a well-established model transformation language
both in industry and in academia, where it is used as a reference lan-
guage for studying different types of model transformations and their
properties. In this paper, we discuss current limitations of ATL’s in-
place semantics that hamper its application for modelling and verifying
systems and propose a new in-place semantics for ATL that enables it
as a specification language for simulating and verifying EMF-based sys-
tems. Our approach is based on FMA-ATL, an executable specification
of a large excerpt of ATL in Maude, which has been augmented with
the new in-place semantics so that Maude’s verification tools can then
be used both to perform bounded model checking of invariants and to
model check LTL formulas in the resulting system models, where appro-
priate. Furthermore, FMA-ATL uses ATL as front-end language and it
can be reused as-is for verification, including its tool support.

Keywords: EMF · ATL · System specification · Formal methods

1 Introduction

ATL is a model-to-model transformation language that seeks pragmatism by
ensuring that executed model transformations always produce the same result.
This offloads the responsibility of ensuring those conditions from software engi-
neers when designing a model transformation, which helps to focus on the domain
problem, namely the transformation definition. Such pragmatism is implemented
by using a read-only source model in which model elements are transformed only
once, building an output model from scratch. There are situations where such
bulk semantics is too expensive, both from a productivity point of view and from
a computational point of view. For example, when endogenous model transfor-
mations involve sparse model updates in possibly large models, explicit rules
need to be introduced in order to copy the model elements that are not the
target of model updates and that are to be preserved.

The ATL2010 compiler addresses these concerns by emulating in-place model
transformations [10] for ATL transformations in refining mode using a two-step
process, which relies on an abstract language for defining updates. In a first step,
c© Springer International Publishing AG, part of Springer Nature 2018
A. Rensink and J. Sánchez Cuadrado (Eds.): ICMT 2018, LNCS 10888, pp. 157–172, 2018.
https://doi.org/10.1007/978-3-319-93317-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93317-7_8&domain=pdf
http://orcid.org/0000-0003-2024-1736

158 A. Boronat

rules are applied and a diff model is computed representing in-place changes as
a patch of model differences. In a second step, the changes obtained from all the
rules are reordered in order to apply creations first, modifications afterwards and
deletions at the end, ensuring the standard properties of ATL transformations.
The resulting sequence of model changes is applied as a patch to the model.

One could consider the use of in-place ATL transformations for specifying
and simulating software systems by modelling system states with EMF (Eclipse
Modeling Framework) models and by capturing the dynamic aspects of the sys-
tem with an ATL modules. System simulation could be achieved by successive
applications of the transformation to pre-states in order to produce post-states,
with the amalgamated updates of several rule applications. However, ATL in-
place semantics presents a number of drawbacks that hampers such an approach.
By the very nature of ATL, transformations are deterministic when they are
evaluated by ensuring that each source object is matched by an ATL rule only
once. This means that only a subset of deterministic systems can be modelled
for verification purposes. Non-deterministic systems and, hence, concurrent sys-
tems cannot be modelled with ATL transformations. In particular, there are
two reasons that hinder soundness and completeness of the verification of sys-
tems modelled with ATL. First, when a transformation is applied to a source
model, ATL’s in-place strategy affects side-effects but not the matches of rules,
which are computed up front. For example, the application of a rule that dis-
ables a pre-computed match is disregarded, yielding an incorrect result. Second,
the application of rules that enable new matches are also disregarded for the
same reason. This means that in-place ATL transformations may not capture all
the intended behaviour of a system. That is, an in-place model transformation
model, understood as the class of model transformations for all models conform-
ing to the source metamodel, cannot be used as a system model, corresponding
to execution paths between system states. This is important from a verification
point of view, as the absence of errors in that case is no guarantee of the correct-
ness of the actual system. That is, the specification is an under-approximation
of the intended behaviour. These drawbacks are illustrated with the running
example of Sect. 2 in 5.

In this work, the structural operational semantics (SOS) of FMA-ATL [2],
which formalizes a large excerpt of representable ATL model transformations,
has been augmented with a new in-place semantics that overcomes those prob-
lems. This semantics specification is implemented faithfully in Maude [3] yielding
a scheduler for applying matched rules and an interpreter for their side effects.
FMA-ATL uses the EMF as front-end for defining metamodels and models,
permitting the reuse of EMF-based systems and domain-specific modelling lan-
guages (DSMLs). Furthermore, our approach reuses Maude’s verification tools
for analysing correctness properties in the resulting system models. Further-
more, we use the official ATL language as the front-end language for FMA-ATL,
providing a new engine for ATL equipped with formal verification techniques.
This last contribution facilitates the validation and verification of ATL system
specifications by reusing the tool ecosystem that is already available for ATL,

A Formal Framework for Prototyping Executable Semantics in ATL 159

facilitating the collaboration between software engineers specialized in (model-
driven) software development and software engineers specialized in validation
and verification. The tool and examples used are available at https://fma-atl.
github.io/.

In the rest of the paper: in Sect. 2, ATL is presented as a specification lan-
guage for EMF-based systems, using the Concurrent Append Problem from [9]
as a running example; in Sect. 3, ATL is used as property specification lan-
guage and the different verification techniques supported in FMA-ATL are illus-
trated; in Sect. 4, the integration of ATL is discussed; in Sect. 5, the shortcomings
of ATL2010’s in-place semantics are illustrated with the running example and
FMA-ATL features are compared against those of representative tools used for
simulating and verifying EMF-based systems; and final concluding remarks are
given in Sect. 6.

2 ATL as System Specification Language

Combining refining mode and in-place transformations without control flow con-
straints removes the guarantees that make ATL transformations confluent and
terminating. Fortunately, these are also the conditions that enable ATL as a
specification language for modelling concurrent processes, which we consider in
the rest of this section. We first introduce an example that cannot be modelled
using the in-place semantics of ATL, explaining the syntax used to model EMF-
based systems, and then show how this semantics is captured by augmenting the
FMA-ATL semantics with a new scheduler rule.

2.1 The Concurrent Append Problem

Our running example is the concurrent append problem of the Java program of
Fig. 1, adapted from [9], which implements the append method on cells, which
may be arranged forming a list, of Fig. 1. Given a String value x as parameter,
the program appends a new tail cell to the list if x is not contained in any of the
existing cells. An example correctness criterion is that the list of cells must not
contain the same value more than once. However, different threads may access
cells concurrently by calling the append method, which might result in undesired
race conditions without certain assumptions on atomicity.

In this paper, the example is modelled using the ATL system specification of
Fig. 2, where the state model, represented as an EMF model, and an initial state
are given in Fig. 1. The state model expresses that each cell contains a value
val and may have a successor via the composition next. The append method
call is represented with: an Append object with the argument x to be inserted; an
active flag (corresponding to the program counter) indicating that the method
is being executed; and a return flag indicating that the execution of the method
is over. Recursion is modelled using the containment reference callee.

https://fma-atl.github.io/
https://fma-atl.github.io/

160 A. Boronat

States are represented as nested object diagrams, where objects may be
nested through containment references. Each containment reference is depicted
as a labelled box, whose contents are the immediate children. The state of Fig. 1
shows two concurrent calls to append("b") on the singleton list ["a"].

class Cell {
Cell next;
int val;
void append(int x) {

if (x == this.val)
return;

if (this.next == null) {
this.next = new Cell();
this.next.val = x;

} else
this.next.append(x);

}
}

Fig. 1. Java program (left), model of states (middle) and initial state (right).

In the following, we explain how to use ATL to model the Append method
using a new in-place semantics, an defer the discussion of deviations w.r.t the
current in-place semantics in Subsect. 5.1.

In ATL, a (matched) specification rule has: a name; a source pattern, denoted
with the keyword from, consisting of an object variable (or element) to be
matched for the rule to be enabled and a filter condition expressed in OCL
where the object variable can be used; a potentially empty list of local variable
initializations, enclosed by the using block; and a target pattern, denoted by
the keyword to, containing a list of object variables (or elements) that refer
to objects that are created, when a new variable is used, or to objects that
are updated, when the name of a declared variable (either the source pattern
variable or a local variable) is suffixed with ref. Each target object variable
encloses a list of bindings, each of which corresponds to a feature (attribute
or reference) initialization, when the object is created, or to a feature update,
when the ref naming convention is used in the object variable name. Updates
for attributes reset their value. Updates for references (including containments)
either reset their value, if the upper bound is one, or append a new reference if
the upper bound is not met. Updates may also be destructive for references if
the suffix unset is appended to the name of the reference. In that case, the
corresponding reference is deleted if the lower bound is not met. A containment
reference can only be deleted when the contained object is isolated, there are no
incident references to it or to any of its contents. The deletion of a containment
reference implements cascade delete semantics, that is the contained object and
its contents vanish outright. ATL also provides the statement drop that can be
used in the target pattern of a specification rule, denoting the deletion of the
object matched by the source pattern, with the same delete cascade semantics.

A Formal Framework for Prototyping Executable Semantics in ATL 161

An ATL specification can also contain lazy specification rules, which are not
matched by the scheduler and have to be called from matched rules explicitly.
In FMA-ATL [2], unique lazy rules are used to reduce the state space of a system
specification from an initial state by amalgamating the side effects of all the lazy
rule applications in one big transition step. Moreover, an ATL specification can
contain helpers, which are functional operations that can be used to query the
source model or to perform computations. ATL helpers will be discussed in
Sect. 3.

The ATL specification modelling the dynamic behaviour of the append
method, adapted from [9], is shown in Fig. 2, and consists of the following rules:

Append a new cell. Rule Append is responsible for appending a new cell to
the list if the control reaches the last cell (there is an active Append object
pointing to the last cell) and the value stored at this last cell is not equal to
the method argument.

Go to next cell. Rule Next checks whether the method argument is not equal
to the value stored at the current (this) cell and makes a recursive call then
for checking the next cell by generating a new Append object and declaring
it as the active call, deactivating the current call.

Value found in list. Rule Found checks if the method argument matches the
value stored at the current (this) cell and, if so, indicates that the compu-
tation is over by disabling active and by enabling return.

Return result. Finally, rule Return simply removes an append invocation
object (from the stack of recursive calls) if it has already calculated the result.

rule Next {
from a1 : append!Append (

a1.active=true and a1.x <> a1.this.val
and a1.callee.oclIsUndefined ()

) using {
c : append!Cell = a1.this.next;

} to a1__ref : append!Append (
active <- false ,
x <- ’’,
callee <- a2

),
a2 : append!Append (

active <- true ,
x <- a1.x,
this <- c

)
}

rule Return {
from a1 : append!Append (

a1.return = true and
not(a1.caller.oclIsUndefined ())
and a1.callee.oclIsUndefined ()

) using {
caller : append!Append = a1.caller;

} to caller__ref : append!Append (
return <- true ,
callee__unset <- a1

)
}

rule Found {
from a1 : append!Append (

a1.active and a1.x = a1.this.val
) to a1__ref : append!Append (

x <- ’’,
active <- false ,
return <- true

)
}

rule Append {
from a1 : append!Append (

a1.active and a1.this.val <> a1.x
and a1.this.next.oclIsUndefined ()

) using {
c1 : append!Cell = a1.this;

} to a1__ref : append!Append (
x <- ’’,
active <- false ,
return <- true

),
c2 : append!Cell (

val <- a1.x
),
c1__ref : append!Cell (

next <- c2
)

}

Fig. 2. An ATL version of the method Cell::append(x: String).

162 A. Boronat

The FMA-ATL engine consists of a scheduler rule that is applied to engine
configurations, i.e. states of the FMA-ATL engine. Given an ATL system spec-
ification, the FMA-ATL engine parses matched/lazy rules and helpers, produc-
ing the initial engine configuration. This includes the computation of attribute
helpers, caching their result. It then computes all enabling matches for matched
rules, by considering their source pattern element and its filter condition. Then
the scheduler starts the system simulation by selecting one enabling match and
the corresponding ATL matched rule. The execution of a matched rule involves
the interpretation of both a FMA statement representing the side effects in the
system state. After these side effects are applied, continues the execution with
the next enabling match until no more rules can be applied. In subsequent sec-
tions, we describe the engine configurations and how the scheduler rule is used
to simulate ATL system specifications from an initial system state.

2.2 FMA-ATL Configurations and Engine Initialization

The main configuration types of the FMA-ATL engine are depicted in Fig. 3.
The class AtlMatchingConfig represents the configuration of the engine for
applying matched rules: a ruleStore and a helperStore with the set of ATL
rules and the set of helpers, respectively, that are defined in the transformation;
a queryDomain pointing to the domain that contains the source model and a
set of domains that correspond to the different target models that are created
by the transformation. A domain contains a name that identifies the domain,
a model referring to a collection of objects, a loc map with locations for the
objects in the model, and a factory new for obtaining fresh identifiers when a
new object is created.

To simulate a system specification, the FMA-ATL engine first initializes an
AtlMatchingConfig configuration, loading each specification rule into a rule store
and helpers into a helper store. A FMA-ATL rule is initialized, by generating a
FMA statement that models the side-effects on the state that are represented in
the bindings of the target pattern of a specification rule, as described in [2].

A FMA statement can be regarded as a sequence of typical updates that
can be performed in an EMF model instance. This initialization is performed by
extracting a graph of side effects from the list of bindings of each target pattern
element. Nodes are target pattern object variables and expressions representing
a query (used in the initialization of the binding). Named edges are defined from
object variables to expressions or to other object variables representing each
binding. Once the graph is generated, FMA-ATL walks through the graph twice
starting from the root object and following containment edges: first, it obtains a
FMA statement that creates a tree of objects that initializes their containment
references; second, for each object created in the first traversal, it initializes their
attributes and non-containment references.

For the in-place semantics, the type graph of the graph that is used to repre-
sent the side effects of an ATL specification rule has been augmented with update
and drop nodes. On the one hand, update nodes are obtained when the name
of an object variable in the target pattern of a rule contains the suffix ref

A Formal Framework for Prototyping Executable Semantics in ATL 163

traceGlobal = TG1
traceLocal = TL1
ruleStore = RS
helperStore = HS
matchPool = MP1
domains = DS1
rtClasses = RTC

traceGlobal = TG2
traceLocal = TL2
ruleStore = RS
helperStore = HS
matchPool = MP2
domains = DS2
rtClasses = RTC

traceGlobal = TG1
traceLocal = TL1
ruleStore = RS
helperStore = HS
domains = DS1
rtClasses = RTC

rule = RN

: Match

match

model = OS1
loc = LOC1

1 : Domain
queryDomain

traceGlobal = TG2
traceLocal = TL2
domains = DS2

E-Schedule-InPlace

⇓ATL

⇒

when

name = RN
var = V

2 : AtlRule

ruleStore

name = DN1
model = OS1
loc = LOC1

1 : Domain

name = DN1
model = OS1
loc = LOC1

2 : Domain

domains

name = RN
var = V
varType = C

2 : AtlRule

ruleStore

mode = in-place= in-place

 IS=evalOcl(CT . allInstances() -> select(V | FC) -> asSequence(), OS1, LOC1) /\ O in IS /\

varType = C

domainsdomains

IS=evalOcl(CT . allInstances() -> select(V | FC) -> asSequence(), OS1, LOC1) /\ O in IST

varType = CTT

traceGlobal : Map<Tuple(source:Oid,var:ValExpr),Tuple(rule:ValExpr,target:Oid)>
traceLocal : Map<Tuple(source:Oid,var:ValExpr),Tuple(rule:ValExpr,target:Oid)>
rtClasses: String [0..*] {set}
mode : AtlMode

stmt : FmaStmt

AtlMatchingFinal

name : ValueExpr
fmaStmt : FmaStmt
traceStmt : TraceStmt

DomainAction

self.matchPool.isEmpty()

name : ValueExpr
var : VarExpr
type : TypeName

AtlRule

*

1

ruleStore

actions

atlStmt : AtlStmt

rule : ValueExpr
match : Map<VarExpr,ValueExpr>

Match

*matchPool match0..1
self.actions.isEmpty()

name : VarExpr

model : ObjectSet
loc : Map<Oid,Location>

Domain

* queryDomain

*

domains

domain1

*
actions

Env
1

env

name : ValExpr

AtlHelper

helperStore *
value : ValExpr

AttributeHelper

ContextHelper

normal

in-place

AtlMode

match = V |-> Omatch = V |-> O

Fig. 3. FMA-ATL configuration model (top) and in-place scheduler rule (bottom).

and it coincides with the object variable used in a source object variable (either
the source pattern object variable or a local variable of the using block). On the
other hand, drop nodes are obtained when a drop statement is parsed. When a
side-effect graph is translated into a FMA procedure, update nodes correspond
to free variables that are to be bound in the environment. That is, FMA-ATL
does not create a new object for update nodes in the first traversal of the graph.
Moreover, drop nodes correspond to object destruction by deleting the corre-
sponding containment reference when the object is not a root one.

Moreover, binding compilation to FMA statements has also been augmented
by allowing deletion of references. This is used in an ATL specification by
appending the suffix unset to a reference name in a binding of a target pattern
element. Such bindings are compiled to unset model actions in FMA when the
graph of side-effects is traversed. In FMA, an unset action deletes a reference
if the lower bound of the reference is not met. The deletion of a containment
can only be applied when the object to be deleted or any of its contents are not
referenced from an external object. Such a deletion entails the deletion of the
objects, including its contents.

164 A. Boronat

2.3 Rule Scheduling

In-place semantics for ATL specifications is defined by using a new scheduler
rule E-Schedule-InPlace, shown in Fig. 3, where the main differences w.r.t. the
normal (out-place) scheduler rule of [2] are highlighted. This rule is introduced in
order to compute matches during the execution of the transformation, avoiding
the up-front computation of the matches.

A match is computed as in the computation of matches up-front when ATL is
executed in normal or refining mode. Given the contextual type C of the variable
V used in the in pattern element of the rule and the filter condition FC, the list
of matches for a rule is computed by evaluating the expression

CT.allInstances()->select(V | FC)->asSequence()

over the model OS1 with the location map LOC1 using the operation evalOcl.
Thereby, the scheduler considers causal dependencies between rules based on the
current state. In the implementation, rules are ordered lexicographically by name
and the list of matches is ordered by each object internal id, a natural number.
Therefore, each rule is applied for each list of matched objects orderly in the
expression O in IS given that the list IS is computed for each rule application.
This is, however, a potential source of starvation that needs to be taken into
account when specifying a system: if a rule is always enabled for a list of objects,
it will always be applied to the first object, treating others unfairly.

Once a match is found for a given specification rule, the match is defined
by using the variable V of the in pattern element, and the side-effects of the
specification rule, represented as a FMA statement, are interpreted using the
big-step evaluation relation ⇓ATL presented in [2]. We can regard this evaluation
relation as a black-box component where the precondition involves that a match
for a rule must be selected and that the system state must be in the query
domain (used to evaluate OCL queries) and in the domain (used to apply rule
side effects). The postcondition of the evaluation relation guarantees that the
system state in the resulting domain DS2 is well-formed after applying the rule.

The new scheduler rule of Fig. 3 allows FMA-ATL to simulate system spec-
ifications. More specifically, this rule has been faithfully been implemented in
Maude as a rewrite rule and each application of the in-place scheduler rule
coincides with one system transition, thus executing the FMA-ATL engine from
an initial configuration amounts to simulating the system specification from an
initial system state. Furthermore, the in-place scheduler rule allows to reuse
Maude’s toolkit to traverse the system state space for verification purposes, as
explained in the following section.

The behaviour of the system specification of our running example can thus be
simulated by running the FMA-ATL engine with a system specification from an
initial system state. Taking the system state of Fig. 1 as initial, a valid resulting
execution path is graphically depicted in Fig. 4, denoting a rule application with
an arrow, whose label contains the name of the arrow between system states,
but for the initial state, and the identifier of the matched object (in between
parenthesis).

A Formal Framework for Prototyping Executable Semantics in ATL 165

Fig. 4. Simulation from the initial system state of Fig. 1.

3 ATL as Property Specification Language

FMA-ATL is implemented in Maude so that we can reuse its LTL model checker
for verifying temporal properties when the system specification models a finite
state space [6], and its bounded model checker for invariants when the state
space is infinite. The model checking problem consists in deciding whether a given
correctness property holds in a specified system by systematically traversing all
enabled transitions in all system states. That is, in FMA-ATL, given a system
state, represented as an Ecore model instance, all possible enabled specification
rules are applied and this procedure is recursively repeated on the successor
states until no more matches are found.

Relevant classes of such correctness properties are safety and reachability prop-
erties.A safety propertydefines adesiredproperty that should always hold on every
execution path or (equivalently) an undesired situation which should never hold on
any execution path. A reachability property describes, on the contrary, a desired
situation which should be reached along at least one execution path. These two

166 A. Boronat

types of properties are interrelated in that a proof of the violation of a safety prop-
erty is a witness of the reachability property defined as the negation of the safety
property. Hence, if a safety property holds (or a reachability property is violated),
the entire state space needs to be examined.

Such correctness properties are frequently formalized as LTL formulae built
over a set of state properties, which either hold or not in a given system state. In
FMA-ATL, the property specification is given in a separate ATL module defining
the satisfaction of each state proposition using an ATL attribute of the form
helper def : P : Boolean = B ; where P is the name of the state property
and B is the boolean OCL expression that defines its satisfaction. The property
specification module must share the same header with the system specification
module. For example, in the listing below, the Shared property denotes when
two distinct cells of the list contain the same value, a situation that is prohibited.
Moreover, the Isolated property denotes a desired behaviour, a cell in the list
and an append call will never share the same value in the same system state.

helper def: Shared : Boolean =
append!Cell.allInstances ()->exists(c1 |

append!Cell.allInstances ()->exists(c2 | c1<>c2 and c1.val=c2.val)
);

helper def: Isolated : Boolean =
append!Cell.allInstances ()->forAll(c |

append!Append.allInstances ()->forAll(a | a.x<>c.val)
);

To use Maude’s model checker, the following components need to be character-
ized: the type of states, by defining a subsort of the sort State; the set of state
predicates to be used as invariants or as atomic propositions in LTL formulas, by
declaring them as subsort of the sort Prop; and finally the satisfaction of such
state predicates, by providing equations for the operation

op |= : State Prop -> Bool

In FMA-ATL, the set of states is defined by the class AtlMatchingConfig
of our interpreter in Fig. 3. In that way, system states included in domains are
wrapped by additional constructs that are used to specify the operational seman-
tics. FMA-ATL declares a state property for each of the helper attributes defined
in an ATL property specification module and defines its satisfaction using equa-
tions of the form1

name : DN
model : OS
loc : LOC

Domain
domains

P = evalOcl(B, OS, LOC)

1 Internally FMA-ATL works with a term representation of engine configurations and
system states, which is depicted graphically for the sake of presentation.

A Formal Framework for Prototyping Executable Semantics in ATL 167

Then we can verify that the system satisfies the property that all cells in a given
list will always contain unique values after a set of append calls, which may or
may not contain the same values, with the following command:

red modelCheck(initialConfig , []~Shared) .

where ~ denotes not, and [] is the LTL operator always (�) meaning that the
property must hold in all future states, and initialConfig is the term resulting
from the engine initialization phase as explained in Sect. 2.2.

Given an ATL system specification and property specification modules, an
initial system state and the name P of an state property with body expression
B, in the property specification module, FMA-ATL can verify invariants, such
as Isolated, by traversing the state space using a breadth-first strategy with
Maude’s search command2

name : DN
model : OS
loc : LOC

Domain
domains

such that evalOcl(not B, OS, LOC) = true .

search initialConfig =>*

That is, the command searches for a configuration containing a system state
where the expression B is violated. If such configuration is not found, the refuta-
tion process ends unsuccessfully and the invariant is satisfied because the state
space is finite, in the example. For systems where the state space is infinite, an
upper bound can be used for the analysis trading completeness for decidability.

4 Integration with ATL

FMA-ATL is available3 as an EMF-based standalone library that can be used to
execute a substantial excerpt of ATL model transformations. It enables formal
verification of systems where the specification language, both for systems and
for state properties, is ATL itself.

The execution of out-place model transformations, which was presented in [2],
has been augmented with new functionality developed for this work: (1) inte-
gration with the ATL language; (2) simulation of model-based systems using
ATL as specification language (with in-place matched rules); (3) bounded model
checking of invariants, which are specified in ATL, when the state space of the
specified system is infinite; and (4) software verification using LTL model check-
ing, where state properties are specified in ATL, when the state space of the
specified system is finite.

The front-end language for defining metamodels and system state models
is EMF (Ecore) and the language for specifying model transformations, system

2 Using =>* the search will be performed along zero or many simulation steps. However,
other strategies that can be used are =>! for run to completion semantics, =>1 for
one step, =>+ for at least one step.

3 https://fma-atl.github.io.

https://fma-atl.github.io

168 A. Boronat

specifications and property specifications is ATL. To implement the integration
with ATL, FMA-ATL reuses parts of AnATLyzer [4] to infer types from ATL
expressions and extends its ATL serializer to serialize ATL transformations to
FMA-ATL. In FMA-ATL, expressions that are specific to ATL and extraneous to
OCL, like resolveTemp, are evaluated independently of OCL expressions so that
a Maude implementation of OCL, mOdCL [8], can be reused. This means that ATL
expressions have to be transformed in order to extract ATL specific expressions
(resolveTemp expressions, invocation of helpers and attributes, invocation of
lazy rules) from OCL expressions, which requires transforming local variables
(iterator variables) into global variables (FMA variables) while using unique
names and remembering the scope where they are used.

5 Related Work

In this section, we analyse our contribution w.r.t. related work by looking at
the differences with ATL in-place semantics in detail and, then, by providing a
broader view of the features of FMA-ATL.

5.1 Differences with ATL In-Place Semantics

From a system specification point of view, when using ATL2010 in refining mode,
transformation rules can match several objects by means of the using block,
and several objects can be added to the model but only the object matched
by the source pattern element can be updated. That is, ATL does not support
the update those objects matched in the using block. However, the matched
object (and its contents) can be deleted using the statement drop (in the output
pattern of a rule). Moreover, the naming conventions ref and unset and
their semantics for applying updates to source object variables are ignored by
ATL. These naming conventions are used by FMA-ATL to unset references,
which cannot be done in ATL.

Regarding system verification, ATL in-place semantics is not sufficient for
system specification, as explained in the introduction. To illustrate the unsound-
ness and the incompleteness of an ATL specification using ATL2010 in-place
semantics (w.r.t. the intended behaviour of the system), we consider the scenario
of the running example where the same element ’b’ is inserted twice in the sin-
gleton list of Fig. 1. We have modified the rule Append as a workaround for the
problems stated above, that is to help ATL apply updates to the matched object
only. The main change in the state model of Fig. 1 involves the declaration of a
reference previous as opposite to next. The new rule Append, shown in Fig. 5,
captures the intended behaviour of the original rule: a new cell is appended to
the list if it has not been found (the appender is marking the last element of the
list, which has a different value). To apply the transformation, ATL computes
the matches, enabling the rule for both objects Append, with ids 1 and 2. When
the transformation is executed, the first application of the rule Append inserts
the new cell with id 4. This should disable the match of the rule for object 1.

A Formal Framework for Prototyping Executable Semantics in ATL 169

rule Append {
from a1 : append!Append (

a1.active and
a1.this.next.oclIsUndefined ()
and a1.this.value <> a1.x

) to a1__ref : append!Append (
active <- false ,
return <- true ,
x <- ’’

),
c2 : append!Cell (

value <- a1.x,
previous <- a1.this ,
list <- a1.this.list

)
}

Fig. 5. Modified rule Append (left) and resulting state (right) from state of Fig. 1.

However, as the engine is blindly applying the pre-computed matches, a new cell
with id 5 is inserted, leaving cell 4 dangling because of the upper bound of the
reference next, as shown in the resulting state in Fig. 5. Hence, violating the
state property Shared.

To consider a witness of incompleteness of an ATL2010 specification using in-
place semantics w.r.t. the system behaviour, we look at the rule Return, which is
enabled for object 1 after the first application of Append. However, the execution
path of Fig. 4, where rule Return is applied before the application of Append to
object 1, is obliterated for the same reason and this behaviour is not captured
by the ATL2010 in-place semantics of the system specification.

5.2 Comparison

Table 1 shows a comparison of features of ATL2010 in-place semantics with two
ATL-based specification languages, namely SimpleGT [12] andFMA-ATL.To give
a broader view of the contributions, we have also included Henshin [1], Groove [7]
and e-Motions [5,11], which are also based on EMF (either directly or indirectly)
and provide rule-based languages both for modelling and for verifying EMF-based
systems.

We classify our comparison under two main dimensions: specification and ver-
ification. Question marks are inserted wherever definite information could not be
found to sustain the claim. From a system specification point of view, we consider
the type concrete syntax used for specifying systems, that is using the ATL lan-
guage, abstract syntax (object diagrams or similar), domain-specific modelling
language (DSML) or other; the language for specifying queries; their support
for negative-application conditions (NACs); whether updates can be applied to
several objects matched in the query part of the rule; control mechanisms to
handle the application of rules, for example application of rules as long as pos-
sible (alap), only one match per rule unique, arbitrary selection of the rule to be
applied, rule priorities, a dedicated control language, or other scheduling policies;
whether rule application amalgamation is supported by using mechanisms that
group several transitions in one single transition; strategies available to explore

170 A. Boronat

Table 1. Comparison of system specification languages for EMF-based systems.

Features FMA-ATL

in-place

ATL2010

in-place

SimpleGT Groove Henshin e-Motions

System specification

Concrete

syntax

textual

(ATL)

textual

(ATL)

textual

(other)

graphical

(abstract)

graphical

(abstract)

graphical

(DSML)

Query

language

mOdCL ATL-OCL SimpleOCL graph

patterns

graph patterns graph

patterns,

mOdCL

NACs OCL (filter) OCL

(filter)

✓ ✓ ✓ ✓

Updates ✓ ✗ ✓ ✓ ✓ ✓

Control alap unique alap?

unique

arbitrary

priorities

control lang

alap priorities round-robin

Amalgamation ✓ ✗ ✗ ✓ ✓ ✗

Rule

inheritance

✗ ✓ ✓ ✗ ✗ ✗

Non-

determinism

✓ ✗ ✓ ✓ ✓ ✓

State-space

generation

BFS ✗ ✗ DFS, BFS

linear

BFS? BFS

Property specification and verification

Language ATL helpers ✗ ✗ graphs OCL Maude

Model

checking

bound. inv,

LTL

✗ ✗ bound. inv,

LTL, CTL

bound.? inv,

qualitative

probabilistic

bound. inv,

LTL

statistical

the state space, usually depth-first search (DFS), breadth-first search (BFS) or
linear; and whether the specification language can model non-determinism.

Regarding verification, we focus on the language used to specify state proper-
ties and on model checking techniques supported. Additionally: Groove provides
mechanisms for symmetry reduction; Henshin4 provides support for qualitative
model checking with CADP and mCRL2, and stochastic and probabilistic model
checking with PRISM; and e-Motions system specifications can model both real-
time systems and stochastic systems, the latter class of models can be analysed
with statistical model checking using PVeStA.

FMA-ATL, Groove and Henshin support amalgamation mechanisms to
reduce the state space. In particular, FMA-ATL achieves this by using lazy
rules [2]. However, these tools, together with e-Motions, do no provide sup-
port for rule inheritance. By using ATL as front-end language in FMA-ATL,
the ecosystem of tools available both for developing ATL transformations (e.g.
IDE support, parser) and for analysing them can be reused for facilitating the
correct definition of ATL transformations/specifications. Conversely, our tool
contributes to that ecosystem as well.

4 http://wiki.eclipse.org/Henshin/State Space Tools.

http://wiki.eclipse.org/Henshin/State_Space_Tools

A Formal Framework for Prototyping Executable Semantics in ATL 171

6 Conclusions

Verification of model-based software systems have normally been studied with
in-place graph transformation and, up to now, ATL has not been used for this
purpose. In this work, we have discussed several drawbacks that hamper the
use of the current ATL in-place semantics for modelling and verifying EMF-
based systems. In particular, we illustrated why such system specifications are
potentially incomplete and unsound w.r.t. the intended behaviour of a system
for verification purposes by using a representative example form the literature.

We presented a new in-place semantics for ATL by augmenting FMA-ATL’s
semantics with a new scheduler rule, by enabling ATL as its front-end language
and by linking Maude’s verification techniques to ATL. FMA-ATL thus enables
the use of ATL for specifying, simulating and verifying both deterministic and
non-deterministic systems.

Acknowledgements. The author would like to thank Frédéric Jouault and Massimo
Tisi for insightful discussions on the semantics of ATL, and the anonymous reviewers
for their observations, which helped improve this work greatly.

References

1. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010. LNCS, vol. 6394, pp. 121–135.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16145-2 9

2. Boronat, A.: Experimentation with a big-step semantics for ATL model transfor-
mations. In: Guerra, E., van den Brand, M. (eds.) ICMT 2017. LNCS, vol. 10374,
pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61473-1 1

3. Clavel, M., Durán, F., Eker, S., Meseguer, J., Lincoln, P., Mart́ı-Oliet, N., Talcott,
C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

4. Cuadrado, J.S., Guerra, E., de Lara, J.: Uncovering errors in ATL model transfor-
mations using static analysis and constraint solving. In: ISSRE, pp. 34–44. IEEE
Computer Society (2014)

5. Durán, F., Moreno-Delgado, A., Álvarez-Palomo, J.M.: Statistical model checking
of e-motions domain-specific modeling languages. In: Stevens, P., W ↪asowski, A.
(eds.) FASE 2016. LNCS, vol. 9633, pp. 305–322. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49665-7 18

6. Eker, S., Meseguer, J., Sridharanarayanan, A.: The maude LTL model checker.
Electr. Notes Theor. Comput. Sci. 71, 162–187 (2002)

7. Ghamarian, A.H., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling
and analysis using GROOVE. STTT 14(1), 15–40 (2012)

8. Roldán, M., Durán, F.: The mOdCL evaluator: Maude + OCL (2013). http://
maude.lcc.uma.es/mOdCL/. Accessed 3 Mar 2016

9. Rensink, A., Schmidt, Á., Varró, D.: Model checking graph transformations: a com-
parison of two approaches. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg,
G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 226–241. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30203-2 17

https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-319-61473-1_1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-662-49665-7_18
http://maude.lcc.uma.es/mOdCL/
http://maude.lcc.uma.es/mOdCL/
https://doi.org/10.1007/978-3-540-30203-2_17

172 A. Boronat

10. Tisi, M., Mart́ınez, S., Jouault, F., Cabot, J.: Refining Models with Rule-based
Model Transformations. Research Report RR-7582, March 2011

11. Troya, J., Rivera, J.E., Vallecillo, A.: Simulating domain specific visual models by
observation. In: SpringSim, p. 128. SCS/ACM (2010)

12. Wagelaar, D., Tisi, M., Cabot, J., Jouault, F.: Towards a general composition
semantics for rule-based model transformation. In: Whittle, J., Clark, T., Kühne,
T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 623–637. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24485-8 46

https://doi.org/10.1007/978-3-642-24485-8_46

Tool Demonstration Papers

Scalable Queries and Model
Transformations with the Mogwäı Tool

Gwendal Daniel1(B), Gerson Sunyé2, and Jordi Cabot1,3

1 Internet Interdisciplinary Institute (IN3),
Universitat Oberta de Catalunya (UOC), Barcelona, Spain

gdaniel@uoc.edu
2 LS2N, Université de Nantes, Nantes, France

gerson.sunye@ls2n.fr
3 ICREA, Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. Scalability of modeling frameworks has become a major issue
hampering MDE adoption in the industry. Specifically, scalable model
persistence, as well as efficient query and transformation engines, are two
of the key challenges that need to be addressed to enable the support
for very large models in current applications. In this paper we demon-
strate Mogwäı, a tool designed to efficiently compute queries and trans-
formations (expressed in OCL and ATL) over models stored in NoSQL
databases. Mogwäı relies on a translational approach that maps con-
structs of the supported input languages to Gremlin, a generic NoSQL
query language, and a model to datastore mapping allowing to compute
the generated query on top of several datastores. The produced queries
are computed on the database side, benefiting of all its optimizations,
improving the execution time and reducing the memory footprint com-
pared to standard solutions. The Mogwäı tool is released as a set of open
source Eclipse plugins and is fully available online.

Keywords: MDE · Scalability · OCL · ATL · Model query
Model transformation

1 Introduction

Existing empirical assessments from industrial companies adopting MDE [14]
point to the limited support for managing large models as one of the factors
limiting the success of MDE in industrial MDE processes. Indeed, existing mod-
eling solutions were primary designed to handle simple, human-based modeling
activities, and existing technical solutions are not designed to handle large mod-
els (potentially generated using model driven reverse engineering techniques [2])
commonly used nowadays. In particular, several studies have reported the scala-
bility issues of the Eclipse Modeling framework (the de-facto standard framework
for building modeling tools in the Eclipse community) and its default serializa-
tion mechanism XMI.
c© Springer International Publishing AG, part of Springer Nature 2018
A. Rensink and J. Sánchez Cuadrado (Eds.): ICMT 2018, LNCS 10888, pp. 175–183, 2018.
https://doi.org/10.1007/978-3-319-93317-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93317-7_9&domain=pdf

176 G. Daniel et al.

These limitations have led to the creation of several scalable model persis-
tence frameworks built on top of different types of databases [1,4,7] combined
with advanced mechanisms such as application-level caches [13] and lazy-loading.
While this new generation of model persistence techniques has globally improved
the support for managing large models, they are partial solutions to the scalabil-
ity problem in current modeling frameworks. In its core, all frameworks are based
on the use of low-level model handling APIs that are focused on manipulating
individual model elements and do not provide support for generic model query
and transformation computation. This approach is clearly inefficient because
(i) the API granularity is too fine-grained to benefit from the advanced query
capabilities of the backend and (ii) an important time and memory overhead
is necessary to construct navigable intermediate objects that are needed by the
modeling API.

To overcome this situation, we developed Mogwäı, a scalable query and trans-
formation framework for large models. Mogwäı consists of a translation com-
ponent that maps model queries and transformations (expressed in OCL [11]
and ATL [8]) into expressions of a graph traversal language, Gremlin [12], a
multi-database graph traversal query language we use as our output language.
Generated queries are then directly computed on the database side, bypassing
the standard modeling API. This avoids the above mentioned problems and
significantly improves the overall performance.

This paper complements our existing work [3,5] by introducing its modular
architecture, additional tool implementation details, and includes a unified Mod-
elDatastore component that allows to access multiple datastores transparently
for both query and transformation computations.

The rest of the paper is organized as follows: Sect. 2 gives an overview of the
Mogwäı infrastructure, Sect. 3 presents the architecture of our tool and its query
processing engine, and Sect. 4 presents the tool implementation. Finally, Sect. 5
summarizes the key points of the paper.

2 Framework Overview

Figure 1 shows an overview of the Mogwäı framework that creates Gremlin
scripts from input model queries and transformations. An initial Model Query or
Transformation is parsed and sent to a Translation Engine, that selects the trans-
lation to apply and performs a systematic mapping of the input expressions’ to
Gremlin constructs. These constructs are then assembled into a Gremlin Script
that is sent to the database for computation.

The Mogwäı Translation Engine relies on a Model Datastore Definition to
produce the output gremlin script. This generic library provides an abstrac-
tion layer that decouples the computation from the low-level database access
by adding modeling primitives to manipulate natively the data representing the
model. As a result, the generated Gremlin Script is not tailored to a specific data
store, and can be parametrized with a Model Datastore Implementation, that
wraps the concrete Model Datastore to use (i.e. the backend storing the model).

Scalable Queries and Model Transformations with the Mogwäı Tool 177

Fig. 1. Mogwäı infrastructure

This architecture, originally defined for the Gremlin-ATL engine [3], has been
integrated in the OCL engine [5] to allow to query models stored in multiple
types of data storage solutions, and can be easily extended to support addi-
tional backends.

Internally, the framework defines two model-to-model transformations:
OCL2Gremlin, that handles model queries expressed using the OCL lan-
guage [11], and ATL2Gremlin, that translates model transformations expressed
in ATL [8]. Note that the modular architecture of the framework allows to define
additional translations to support alternative query and transformation solutions
such as EOL [9] or QVT [10].

The generated scripts can be returned to the modeler and used as stored
procedures to execute in the future, or directly computed with a specific imple-
mentation of the Model Datastore library. Finally, the returned elements from
the computation (if any) are reified into regular model elements thanks to the
Model Datastore implementation.

Compared to existing query frameworks, Mogwäı does not rely on the default
modeling API to compute model queries and transformations. In general, API
based frameworks translate queries and transformations into a sequence of low-
level API calls, which are then performed one after another on the persistence
layer. While this approach has the benefit to be compatible with every API-
based applications, it does not take full advantage of the database structure
and query optimizations. Furthermore, each object fetched from the database
has to be reified to be navigable, even if it is not going to be part of the end
result. Therefore, the execution time and memory consumption of the API-based
solutions strongly depends on the number of intermediate objects fetched from
the database.

3 Architecture

Figure 2 describes the internal structure of the Mogwäı framework. The
QueryProcessor is the core of the engine: it provides the process method, that

178 G. Daniel et al.

Fig. 2. Mogwäı internal structure

takes as its input a MogwaiQuery and a set of ModelDatastores, and returns a
QueryResult containing the result of the computation and additional monitoring
information (such as the computed MogwaiQuery and the raw query execution
time).

The QueryProcessor relies on an internal GremlinScriptRunner that provides
utility methods to setup a Gremlin environment and execute queries. Note that
the tool provides two implementations of the abstract QueryProcessor : the first
one, ATLProcessor, is dedicated to ATL transformation computation, and the
second one, OCLProcessor, handles OCL queries. Both processors rely on an
internal model to model transformation responsible for mapping the constructs
of the input languages to Gremlin. Note that this modular architecture could be
easily extended to support alternative query and transformation languages.

The Mogwäı’s architecture is not tailored to a specific backend or model
persistence technology, and can be used on top of any ModelDatastore imple-
mentation. However, the tool also provides an advanced integration into the
NeoEMF platform (light-grey boxes) that speeds-up query computation and
improves the tool’s integration with existing EMF-based application by return-
ing EMF-compatible objects. The MogwaiResource class extends the NeoEMF
one with a simple API defining the query and transform methods. This resource
embeds a set of QueryProcessors as well as a preset ModelDatastore imple-
mentation targeting the native API of the database storing the model. Query
and transformations executed through the MogwaiResource return NeoEMF-
QueryResults, that contain database records that can be reified into navigable
EMF elements if needed. Note that resulting model elements are created only
from the results of the Gremlin script execution, removing the memory overhead
implied by intermediate objects created during EMF-based computations.

Scalable Queries and Model Transformations with the Mogwäı Tool 179

4 Implementation

The Mogwäı tool is implemented as a set of open-source Eclipse plugins released
under the EPL license. Source code and benchmark materials are fully available
in the project’s GitHub repository1. An Eclipse update site containing the last
stable version of the framework is also available online2.

The OCL engine relies on Eclipse MDT OCL [6] to parse the input queries,
and the produced OCL models constitute the input of a set of 70 ATL [8] trans-
formation rules and helpers implementing the mapping and the transformation
process presented in detail in our previous work [5].

The ATL engine presents a similar architecture, and relies on the ATL parser
to create a model from the transformation to compute. This transformation
model is then sent to a high-order transformation mapping ATL constructs to
Gremlin [3] (represented as a set of 80 rules and helpers).

5 Conclusion

We have showcased Mogwäı, a tool that generates Gremlin scripts from model
queries and transformations in order to maximize the benefits of using a NoSQL
backend to store and manipulate large models. Gremlin scripts are created using
a set of model-to-model transformations, and are parametrized with a specific
Model Datastore, enabling their computation over a variety of backends com-
patible with the Gremlin language. The Mogwäı approach allows to bypass the
existing modeling framework’s API, improving the performance of query and
transformation computations both in terms of execution time and memory con-
sumption [3,5]. The tool development roadmap for Mogwäı includes adding sup-
port for more types of NoSQL backends, like document-oriented and column
databases by providing the necessary translations from ATL and OCL to their
native languages.

Appendix A Demonstration Overview

The demonstration presents two typical use cases where the Mogwäı framework
significantly improves the execution time and memory consumption of an appli-
cation computing OCL queries and ATL transformations on top of large models.

First, we briefly introduce the sample model, that is a real-world model
obtained by applying model driven reverse engineering techniques on an existing
code base. The manipulated model contains around 80 000 elements represent-
ing a Java application. Figure 3 shows an excerpt of the metamodel describing
the sample. Note that the complete metamodel can be found in the MoDisco
repository3.

1 https://github.com/atlanmod/Mogwai.
2 atlanmod.github.io/Mogwai.
3 http://git.eclipse.org/c/modisco.

https://github.com/atlanmod/Mogwai
http://atlanmod.github.io/Mogwai
http://git.eclipse.org/c/modisco

180 G. Daniel et al.

Fig. 3. Excerpt of the MoDisco Java metamodel

Then, we present a set of OCL queries to compute against this model.
An example of such query is provided in Listing 1.1, that describes the
protectedMethod query, which finds in the model all the MethodDeclarations
that have a protected Modifier. We show in the demonstration how to initialize
and configure the Mogwäı engine to translate and run the query from an exist-
ing Java application (Fig. 4). In parallel, we show how the query is computed
using the regular Eclipse MDT-OCL interpreter embedded with Eclipse, and
emphasize the differences.

Listing 1.1. Sample OCL Query
context Clas sDec l a ra t i on
de f : protectedMethods : Sequence (BodyDeclaration) =
Cla s sDec l a ra t i on . allInstances ()−>
col lect (bodyDec larat ions)−>
select (each | each . oclIsTypeOf (MethodDeclaration))−>
select (each | not (each . mod i f i e r . o c l I sUnde f ined ()))−>

select (each | each . mod i f i e r . v i s i b i l i t y = V i s i b i l i t yK ind : : p ro tec ted)−>
asSequence ()

Then, we introduce a simple model-to-model transformation defined with
the ATL language to compute on top of the sample model (Listing 1.2). This
transformation extracts all the ClassDeclaration instances from the input model
and maps them to the Table construct of the output metamodel, and sets a
unique key that allows to identify a ClassDeclaration instance. A second rule is
responsible of transforming each MethodDeclaration into a Column representing
the number of calls to the method.

In the demonstration, we show the required steps to initialize the Mogwäı
engine with the transformation and compute it against the database storing the
model (Fig. 5). In addition, we show how the output model can be stored in
another data representation using a different Model Mapping Implementation.
We also compare the execution time of computing the transformation using the

Scalable Queries and Model Transformations with the Mogwäı Tool 181

Fig. 4. Running OCL queries with Mogwäı

regular ATL engine with Mogwäı, and show that using our approach can bring
significant improvements in terms of execution time.

Listing 1.2. Sample ATL Transformation

module Cla s s2Re l a t i ona l ;

create OUT : RelationalMM from IN : Java ;

rule Class2Table {
from

c : Java ! C la s sDec l a ra t i on

to

out : RelationalMM ! Table (

name ← c . name ,

c o l ← Sequence{key}−>union (c . bodyDec larat ions

−>select (b | b . oclIsTypeOf (Java ! MethodDeclaration))) ,

key ← key

) ,

key : RelationalMM !Column (

name ← ’ ob j e c t Id ’ ,

type ← keyType

) ,

keyType : RelationalMM ! Type (

182 G. Daniel et al.

name ← ’ I n t eg e r ’

)

}

rule Method2Column {
from

m : Java ! MethodDeclaration

to

out : RelationalMM !Column (

name ← m. name + ’ CallCount ’ ,

type ← type

) ,

type : RelationalMM ! Type (

name ← ’ I n t eg e r ’

)

}

Fig. 5. Running ATL queries with Mogwäı

Scalable Queries and Model Transformations with the Mogwäı Tool 183

Finally, the key points of the tool will be summarized and some remarks
on the integration into existing modeling application will be provided. All the
presented examples and models will be publicly available on the Mogwai GitHub
repository. In addition, a video summarizing the key points of the demonstration
is available online at https://youtu.be/ nTBPJMVRQY.

References

1. Barmpis, K., Kolovos, D.: Hawk: towards a scalable model indexing architecture.
In: Proceedings of the 1st BigMDE Workshop, pp. 6–9. ACM (2013)

2. Bruneliere, H., Cabot, J., Dupé, G., Madiot, F.: MoDisco: a model driven reverse
engineering framework. Inf. Softw. Technol. 56(8), 1012–1032 (2014)

3. Daniel, G., Jouault, F., Sunyé, G., Cabot, J.: Gremlin-ATL: a scalable model
transformation framework. In: Proceedings of the 32nd ASE Conference, pp. 462–
472. IEEE (2017)

4. Daniel, G., Sunyé, G., Benelallam, A., Tisi, M., Vernageau, Y., Gómez, A., Cabot,
J.: NeoEMF: a multi-database model persistence framework for very large models.
Sci. Comput. Program. 149, 9–14 (2017)

5. G. Daniel, G. Sunyé, and J. Cabot. Mogwäı: a framework to handle complex queries
on large models. In: Proceedings of the 10th RCIS Conference, pp. 225–237. IEEE
(2016)

6. Eclipse Foundation. MDT OCL (2018). http://www.eclipse.org/modeling/mdt/?
project=ocl

7. Eclipse Foundation. The CDO Model Repository (CDO) (2018). http://www.
eclipse.org/cdo/

8. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: a model transformation tool.
Sci. Comput. Programm. 72(1), 31–39 (2008)

9. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon object language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006). https://doi.org/10.1007/11787044 11

10. OMG. QVT Specification (2017). http://www.omg.org/spec/QVT
11. OMG. OCL Specification (2018). http://www.omg.org/spec/OCL
12. Tinkerpop. The Gremlin Language (2018). www.gremlin.tinkerpop.com
13. Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári,

Z., Varró, D.: EMF-INCQUERY: an integrated development environment for live
model queries. Sci. Comput. Program. 98, 80–99 (2015)

14. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven
engineering. IEEE Softw. 31(3), 79–85 (2014)

https://youtu.be/_nTBPJMVRQY
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.eclipse.org/cdo/
http://www.eclipse.org/cdo/
https://doi.org/10.1007/11787044_11
http://www.omg.org/spec/QVT
http://www.omg.org/spec/OCL
www.gremlin.tinkerpop.com

NMF: A Multi-platform
Modeling Framework

Georg Hinkel(B)

FZI Research Center of Information Technologies (FZI),
Haid-und-Neu-Straße 10-14, 76131 Karlsruhe, Germany

hinkel@fzi.de

Abstract. For its promises in terms of increased productivity, Model-
driven engineering (MDE) is getting applied increasingly often in both
industry and academia. However, most tools currently available are based
on the Eclipse Modeling Framework (EMF) and hence based on the Java
platform whereas tool support for other platforms is limited. This leads to
a language and tool adoption problem for developers of other platforms
such as .NET. As a result, few projects on the .NET platform adopt
MDE. In this paper, we present the .NET Modeling Framework (NMF),
a tool set for model repositories, model-based incrementalization, model
transformation, model synchronization and code generation that is now
available for a multitude of different operating systems, including Win-
dows, Linux, Android, iOS and Mac. The framework makes intensive
use of the C# language as host language for model transformation and
synchronization languages, whereas the model repository serialization is
compatible with EMF. This solves the language adoption problem for
C# programmers and creates a bridge to the EMF platform.

1 Introduction

Model-driven engineering (MDE) is getting applied increasingly often both in
industry and academia. Dedicated support to use models for analysis or transfor-
mation purposes reduces manual development efforts as repetitive infrastructure
code can be reused. Most of the existing tools that support MDE are currently
based on the Java platform. As a consequence, legacy software built on other
platforms can hardly be reused.

Furthermore, MDE is increasingly applied on mobile platforms [1] where
traditional tools such as Eclipse are difficult to operate and alternatives are
necessary. Ideally, such alternative modeling environments should support as
many platforms as possible to reduce the code duplication in the support for
multiple platforms.

In this paper, we present the .NET Modeling Framework (NMF), a frame-
work of libraries, tools and languages to support model-driven engineering on
the .NET platform. The framework is dedicated to process existing models
through analysis, transformation and synchronization. NMF contains tools to

c© Springer International Publishing AG, part of Springer Nature 2018
A. Rensink and J. Sánchez Cuadrado (Eds.): ICMT 2018, LNCS 10888, pp. 184–194, 2018.
https://doi.org/10.1007/978-3-319-93317-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93317-7_10&domain=pdf

NMF: A Multi-platform Modeling Framework 185

generate model representations compliant with EMF, supports a model man-
agement repository system and allows developers to specify model analyses,
model transformations and model synchronizations. To minimize both the lan-
guage adoption problem and the tool support problem, NMF is entirely based
on internal languages that use C# as a host language.

Since December 2017, the runtime libraries of NMF all support the .NET
Standard 2.0 and are therefore usable not only in Windows but also on various
other platforms such as Linux and Mac through .NET Core1, but also Android
and iOS through the Xamarin platform2. In particular, NMF allows to create
model-based libraries that can be shared across all of these platforms.

An introductory tutorial for NMF can be found on YouTube3.
The remainder of this paper is structured as follows: Sect. 2 presents the

meta-metamodel used in NMF and discusses serialization. Section 3 explains the
support for model repositories and how they are used. Section 4 describes the
support for implicit incremental model analyses that is built into NMF. Section 5
introduces the model transformation language NTL. Section 6 shows how the
concepts are combined in a language for the synchronization of heterogeneous
metamodels. Finally, Sect. 7 concludes the paper.

2 Meta-metamodel

NMF contains its own meta-metamodel called NMeta. NMeta is similar to Ecore
but contains dedicated support for type system features widely used on the .NET
platform such as structures or events. Furthermore, it also supports an extension
mechanism closely related to stereotypes as well as refinements. The semantics
of NMeta is clearly defined through a mapping to category theory. Though there
is a high semantic overlap with the Essential Meta Object Facility (EMOF)
standard, there are also some features that do not have a counterpart in NMeta,
in particular factories and generic types.

However, since Ecore is the meta-metamodel most often used in MDE, NMF
contains a model transformation from Ecore to NMeta. This transformation is
based on the extensible Model Transformation Language NTL (cf. Sect. 5 or [2])
and thus support for other types can be easily added.

The resulting NMeta metamodel is compliant with the original Ecore meta-
model if the latter only contains basic structures (packages, classes, attributes
and references). Here, compliant means that serialized instances of the original
Ecore metamodel can be deserialized with the NMeta metamodel (if no custom
XMI handlers are used) and vice versa. In particular, the XMI serialization of
the metamodels is equivalent and the NMF serializer uses the same addressing
scheme for cross references as the EMF serializer uses for Ecore.

1 A list of supported linux distributions is available under https://github.com/dotnet/
core/blob/master/release-notes/2.0/2.0-supported-os.md.

2 http://www.xamarin.com/platform.
3 https://youtu.be/NIMYuwTltVs.

https://github.com/dotnet/core/blob/master/release-notes/2.0/2.0-supported-os.md
https://github.com/dotnet/core/blob/master/release-notes/2.0/2.0-supported-os.md
http://www.xamarin.com/platform
https://youtu.be/NIMYuwTltVs

186 G. Hinkel

Similar to Ecore, NMeta is bootstrapped and the classes ModelElement and
Model are the only ones with a custom implementation, the implementation of
all other classes originate directly from the code generator.

3 Model Repositories

In NMeta, all model elements have both an absolute and a relative URI that allow
developers to easily reference model elements in a defined way. The addressing
scheme is based on the containment hierarchy where the elements are identified
by their identifier or by the collection index. The syntax is the same as used in
the EMF serializer to push interoperability to EMF.

NMF is able to resolve URIs from different sources, including files, embed-
ded resources and network streams. To resolve a model, NMF uses a singleton
meta repository (which itself is a model repository) where all metamodels are
loaded and linked to the implementation, if available. The registration of model
representation code is done simply through an assembly annotation that links a
namespace to an assembly embedded resource where the metamodel is formally
described. Here, assemblies are the components of the .NET component model.
When the meta-repository is loaded for the first time, it iterates through the
loaded assemblies and finds all metamodels registered, so that a repository is
able to load a model just in case the assembly containing the model representa-
tion classes is referenced.

4 Model-Based Incrementalization

Again similar to EMF, NMF provides elementary change notifications,
offered through the industry standard interfaces INotifyPropertyChanged and
INotifyCollectionChanged. These interfaces are required by many modern user
interface libraries, hence the model representation code can directly be used for
these techniques.

However, NMF is also able to combine these elementary change notifications
to determine when the result of analyses based on a model has changed. Fur-
thermore, an incremental algorithm is inferred to recalculate the analysis upon
a model change more efficiently by the implicit introduction and management
of buffers to save intermediate results. This incrementalization works online, i.e.
the model needs to be kept in memory and changes must be made on the model
elements in memory.

The incrementalization has a sound theoretical foundation based on category
theory and is implemented in NMF Expressions. NMF Expressions operates
on lambda expressions, supported by many .NET languages such as C# and
VB.NET in their regular syntax. To realize the incrementalization, the abstract
syntax tree is converted into a dynamic dependency graph on a high abstraction
level. Changes of the model under analysis are then propagated through the
dependency graph, ultimately updating the analysis result.

NMF: A Multi-platform Modeling Framework 187

1 var faultyPositions = from route in routes

2 where route.Entry != null && route.Entry.Signal == Signal.GO

3 from swP in route.Follows

4 where swP.Switch.CurrentPosition != swP.Position

5 select swP;

Listing 1. Query to find inaccurate switch positions in a collection of routes

As an example, consider the code in Listing 1, taken from the NMF solution
of the TTC Train Benchmark [3]. NMF allows the user to specify queries like
this in regular C# code with all of the tool support provided for this language
and is able to implicitly deduct an incremental evaluation.

The high abstraction level in the dynamic dependency graph is achieved by a
manual incrementalization of analysis operators yielding valid results as a conse-
quence of the underlying formalization as a categorial functor. NMF Expressions
includes a library of such manually incrementalized operators, including most of
the Standard Query Operators (SQO)4. As a consequence, developers can specify
query analyses conveniently through the query syntax such as used in Listing 1.

5 Model Transformation

To support model transformation, NMF contains the NMF Transformations
Language (NTL) [4], an internal model transformation language integrated in
C#, reusing the tool support for C# [5]. This transformation language allows
to specify extensible rule-based model transformations with explicit dependen-
cies between the transformation rules. The underlying transformation engine is
not restricted to NMeta models as input or output models such that also arbi-
trary CLR objects can be transformed where the CLR denotes the .NET virtual
machine, similar to the JVM in Java.

Model transformations in NTL are essentially classes whose transformation
rules are inferred by the public nested classes. These are encoded also as sepa-
rate classes that inherit from a set of generic base classes and the generic type
parameters specify the source and target model elements. These transforma-
tion rule classes may override a method to define their dependencies. Inside
this method, transformation rules may define dependencies to other transfor-
mation rules, their instantiation or patterns that declaratively specify when the
transformation rule should be called. Other than that, the transformation rules
may override a method that is called to initialize the transformation rule result.
Similar to ATL, NTL also allows transformations to be based on other trans-
formation rules overriding some of their transformation rules. This technique
is called superimposition in ATL [6], in NTL it is called transformation rule
inheritance as it is realized in inheriting the transformation rule classes.

6 Model Synchronization

Based on NTL and NMF Expressions, NMF also contains a language to syn-
chronize models of heterogeneous metamodels, named NMF Synchronizations
4 http://msdn.microsoft.com/en-us/library/bb394939.aspx.

http://msdn.microsoft.com/en-us/library/bb394939.aspx

188 G. Hinkel

[7]. Like NTL, it is also implemented as an internal DSL so that developers can
familiarize quickly. This synchronization language is able to support 18 different
operation modes out of a single specification: One may choose between three dif-
ferent change propagation modes (none, one-way and two-way) and six different
directions (left-to-right and right-to-left in three different variants each).

Similar to NTL, a synchronization rule in NMF Synchronizations is repre-
sented by a class, inferring the synchronization rules by the public nested classes.
The synchronization rules each define an isomorphism between the classes they
are to synchronize, referred to as left-hand-side (LHS) and right-hand-side (RHS)
class. These classes are passed as generic type parameters.

7 Conclusion

In this paper, we have given an overview on NMF, a framework to support
model-driven engineering on the .NET platforms. Through the support of .NET
Standard, NMF is available on most modern platforms, including Windows,
Linux, Android, iOS and Mac. The framework is largely compatible with EMF
such that EMF models (metamodels and instance models) can be reused. Fur-
ther, the framework provides tools to generate model representation code and
analyze, transform and synchronize the models, also incrementally.

A Tutorial of NMF

The following instructions will describe how to set up a project with NMF and
create a model transformation from state machines to Petri nets. Although the
tutorial is specifically written for a usage in Visual Studio, the tutorial can be
adapted to any IDE on the .NET platform. The tutorial also assumes that you
have already started to create a metamodel and some instances of it in EMF,
i.e. Eclipse.

If you get stuck at any point, there is a ready-made solution available on
GitHub5 that can be just downloaded and tried. Furthermore, there is a YouTube
video available6 demonstrating creating a new project, loading, altering and
saving a model.

A.1 Create a Project

NMF is a framework that can be easily installed through the NuGet Package-
manager7. Therefore, first create a new project. In Visual Studio, click on File
→New→ Project, select a C# console application as project type and name
it as you wish, though in the remainder we will assume the name NMFDemo.

5 https://github.com/NMFCode/NMFDemo.
6 https://youtu.be/NIMYuwTltVs.
7 http://www.nuget.org.

https://github.com/NMFCode/NMFDemo
https://youtu.be/NIMYuwTltVs
http://www.nuget.org

NMF: A Multi-platform Modeling Framework 189

Note that NMF is generally not restricted to console applications nor to C#,
you can use it in any .NET project.

To import NMF, go to Tools→NuGet Package-manager→Manage NuGet
packages for this project and search for NMF. You should find the package NMF-
Basics. Install it by hitting the Install button while your project is selected.

Alternatively, there is also a NuGet console at the bottom, where you can
install NMF as follows:

1 PM> Install-Package NMF-Basics

NuGet will download the package for you together will all of its dependencies
and add all the contained libraries as references into the current project. There
is no strict 1:1-mapping from NuGet packages to libraries so there are multiple
libraries being installed that may be not needed.

A.2 Import Metamodels from Ecore

Metamodels are at the core of any model-driven development process. Thus, as
a first step, we will generate code in order to be able to load any models for a
given metamodel in our .NET application. For this, the NuGet package NMF-
Basics contains the console application Ecore2Code. After a restart of Visual
Studio, NuGet will automatically add Ecore2Code to the Path variable used
inside Visual Studio, so you can just use the NuGet Package-manager console. If
run without any arguments, this application prints a help information showing
its correct usage (cf. Fig. 1).

Fig. 1. The console application Ecore2Code to generate model representation code.

Now, use this tool to generate the code for the state machine metamodel and
the Petri net metamodel. You can download these metamodels from our examples

190 G. Hinkel

project8. First copy the metamodels into your project folder, then generate the
code for them. The complete commandline for the latter is as follows:

1 PM> Ecore2Code -f -n NMFDemo.Metamodels -m fsm.nmf -o Metamodels\FiniteStateMachines fsm.ecore

2 PM> Ecore2Code -f -n NMFDemo.Metamodels -m pn.nmf -o Metamodels\PetriNets pn.ecore

The generated code now has to be added to your project. Thus, first dis-
play all files in the projects folder by clicking on Show All Files in the project
explorer, then include the generated folder Metamodels and the generated NMeta
metamodels into your project (right-click and Include In Project).

As soon as the generated code is added to the project, it is already possible
to programatically create and save models. However, the metamodel is not yet
registered and thus no models can be loaded. To register the metamodel, we
first need to include the NMeta metamodel in the assembly as an embedded
resource and then register the metamodel. To make the metamodel an embedded
resource, simply change its Build Option to Embedded Resource in the properties
view while the metamodel is selected.

The metamodel registration is done through an assembly-wide attribute,
which can be specified anywhere in the project. The typical place for this regis-
tration, however, would be the AssemblyInfo.cs file in the properties folder. At
the top of this file, add the following two lines:

1 [assembly: NMF.Models.ModelMetadata("http://github.com/NMFCode/Examples/FiniteStateMachines", "NMFDemo.

fsm.nmf")]

2 [assembly: NMF.Models.ModelMetadata("http://github.com/NMFCode/Examples/PetriNets", "NMFDemo.pn.nmf")]

This is all there is, even if you compile your project not as an executable but
as a reusable library. As a reason, when loading the serializer, NMF looks for
these attributes in all assemblies referenced by the executing assembly and loads
any metamodel registrations it can get.

A.3 Loading a Model

In NMF, models are loaded by resolving their URI in a model repository. If
the repository does not contain a model with the given URI, then the model
is automatically loaded into the repository, provided NMF is able to locate it.
Repositories are closed under cross-reference, meaning that all references to other
model elements are always resolved within the repository or its parent repository.

To create a repository, we simply need to create an object of type
ModelRepository. With the default configuration, this repository is able to deseri-
alize any models conforming to metamodels registered in referenced assemblies,
as all repositories implicitly use the meta repository where the metamodels are
loaded into.

8 https://github.com/NMFCode/NMFDemo.

https://github.com/NMFCode/NMFDemo

NMF: A Multi-platform Modeling Framework 191

1 var repository = new ModelRepository();

2 var model = repository.Resolve("Example.fsm");

3 var fsm = model.RootElements[0] as FiniteStateMachine;

Listing 2. Loading Models in NMF

For example, the code needed to load a model from the file Example.fsm9

representing a small order process is depicted in Listing 2. Add these lines to the
main method. You can now launch the application and validate that the model
can be loaded successfully.

A.4 Incrementalization

The generated model representation classes for the metamodel sup-
port change notifications through the .NET de-facto standard interfaces
INotifyPropertyChanged and INotifyCollectionChanged. Thus, the generated
classes raise events whenever some properties have been changed or elements
have been added to or removed from collections. NMF is able to combine these
elementary change notifications to deduct when the value for a combined expres-
sion has changed.

For example, let us analyze hubs in the finite state machines, i.e. states that
have the maximum incoming transitions. A set of such states can be deducted
through the analysis depicted in Listing 3.

1 var stateHubs = from s in fsm.States

2 where s.Incoming.Count == fsm.States.Max(s2 => s2.Incoming.Count)

3 select s.Name;

Listing 3. Analyzing which states are hubs

Verify that the variable stateHubs is of type IEnumerable<string>, i.e. a stan-
dard collection of strings. Now, we need to add a using statement at the top
of the program file to the query implementation of NMF Expressions. Add the
code from Listing 4 to the top of the program file.

1 using NMF.Expressions.Linq;

Listing 4. Registering the query implementation of NMF Expressions

As a consequence, the query implementation of NMF Expressions is used
and thus, the variable stateHubs has the type IEnumerableExpression<string>.
This adds a method to obtain an incrementalized version of the query through
the AsNotifiable method.

9 https://github.com/NMFCode/NMFDemo/blob/master/Example.fsm.

https://github.com/NMFCode/NMFDemo/blob/master/Example.fsm

192 G. Hinkel

1 stateHubs.AsNotifiable().CollectionChanged += (o,e) => {

2 if (e.NewItems != null)

3 for (string name in e.NewItems) { Console.WriteLine("{0} is a new hub", name); }

4 if (e.OldItems != null)

5 for (string name in e.OldItems) { Console.WriteLine("{0} is no longer a hub", name); }

6 };

Listing 5. Adding handlers when the analysis results have changed

To verify the change propagation, visualize changes made to the state hub
analysis through the code shown in Listing 5. Normally, the method AsNotifiable

is a very expensive operation, thus one would save the return value.

1 var checkStock = fsm.States[1];

2 checkStock.Outgoing.Add(new Transition() {

3 Input = "items are for free",

4 Target = fsm.States[2]

5 });

Listing 6. Adding a new transition to imply a new hub

Add some change operations after registering the handler, step through the
console application and see how new hubs are immediately shown in the console.
For example, you can use the code listed in Listing 6 to create a new transition
to skip payment when items of the order process are for free. As a consequence
of this change, a message will pop up in the console that a new hub has been
detected directly after Line 2–5 of Listing 6 have been executed.

A.5 Creating a Model Transformation

Now, we are going to transform the state machine model into a different model,
for instance in a Petri net.

At first, we need to add the libraries to run model transformations in NTL.
The easiest way to get them is to download them as another NuGet package.
Install NMF Transformations through the NuGet command shown in Listing 7
or again through the GUI.

1 PM> Install-Package NMF-Transformations

Listing 7. Installing NMF Transformations

A model transformation in NMF Transformations is a special class, inher-
iting from ReflectiveTransformation. Thus, create a new class by adding a new
class to the project. Download the model transformation FSM2PN from finite state
machines to Petri nets from the examples page10 and copy its contents into the
new file.

10 https://github.com/NMFCode/NMFDemo/blob/master/FSM2PN.cs.

https://github.com/NMFCode/NMFDemo/blob/master/FSM2PN.cs

NMF: A Multi-platform Modeling Framework 193

To run this model transformation, we need to instantiate the model trans-
formation, initialize it and run it. The initialization can be reused for multiple
passes of a model transformation, in case the model transformation initialization
is costly. To apply the model transformation, we need to pass the source and
target model type as generic parameters. The transformation then selects an
appropriate rule to start with and traverses the transformation through the rule
dependencies. Thus, we can ask the transformation to transform states or entire
state machines.
1 var transformation = new FSM2PN();

2 var context = new TransformationContext();

3 var petriNet = TransformationEngine.Transform<StateMachine, Net>(fsm, context);

Listing 8. Running NMF Model Transformations

After the transformation, the context object can be used for tracing
purposes.

A.6 Saving Result Model to a File

In NMF, the serialization information of model elements is attached directly to
the model representation classes. The NMF serializer uses this information and
interprets how the model should be serialized to XMI. To serialize the Petri net,
we simply save it into our model repository (or create a new one). Any referenced
model element already contained in another existing file is referenced through a
fully qualified reference.
1 repository.Save(petriNet, "Example.pn");

Listing 9. Serializing models in NMF

To save a model element to a file, it is sufficient to call the Save method on
the repository such as shown in Listing 9. Verify that you can open this file in
Eclipse.

References

1. Vaquero-Melchor, D., Palomares, J., Guerra, E., de Lara, J.: Active domainspecific
languages: making every mobile user a modeller. In: 2017 ACM/IEEE 20th Inter-
national Conference on Model Driven Engineering Languages and Systems (MOD-
ELS), pp. 75–82. IEEE (2017)

2. Hinkel, G., Happe, L.: Using component frameworks for model transformations by
an internal DSL. In: Proceedings of the 1st International Workshop on Model-Driven
Engineering for Component-Based Software Systems Co-located with ACM/IEEE
17th International Conference on Model Driven Engineering Languages & Systems
(MoDELS 2014), ser. CEURWorkshop Proceedings, vol. 1281, CEUR-WS.org, pp.
6–15 (2014)

3. Hinkel, G., Happe, L.: An NMF solution to the TTC train benchmark case. In:
Proceedings of the 8th Transformation Tool Contest, a Part of the Software Tech-
nologies: Applications and Foundations (STAF 2015) Federation of Conferences, ser.
CEUR Workshop Proceedings, vol. 1524, CEUR-WS.org, pp. 142–146 (2015)

194 G. Hinkel

4. Hinkel, G.: An approach to maintainable model transformations using an internal
DSL. Master’s thesis, Karlsruhe Institute of Technology (2013)

5. Hinkel, G., Goldschmidt, T.: Tool support for model transformations: on solutions
using internal languages. In: Modellierung 2016 (2016)

6. Wagelaar, D., Van Der Straeten, R., Deridder, D.: Module superimposition: a com-
position technique for rule-based model transformation languages. Softw. Syst.
Model. 9(3), 285–309 (2010)

7. Hinkel, G., Burger, E.: Change propagation and bidirectionality in internal trans-
formation DSLs. Software & Systems Modeling (2017)

Author Index

Alfraihi, Hessa 127

Boronat, Artur 157
Bruel, Jean-Michel 92

Cabot, Jordi 175
Cheng, Zheng 142
Combemale, Benoit 92

Daniel, Gwendal 175
de Lara, Juan 92
Di Rocco, Juri 110
Di Ruscio, Davide 110

Guerra, Esther 92

Härtel, Johannes 110
Hinkel, Georg 184

Iovino, Ludovico 110

Jézéquel, Jean-Marc 92

Kienzle, Jörg 92
Kolahdouz-Rahimi, Shekoufeh 127

Lämmel, Ralf 110
Lano, Kevin 127
Leblebici, Erhan 59

Mussbacher, Gunter 92

Pankowski, Tadeusz 76
Pierantonio, Alfonso 110

Schürr, Andy 59
Sharbaf, Mohammadreza 127
Sunyé, Gerson 175
Syriani, Eugene 92

Tisi, Massimo 142
Tomaszek, Stefan 59

Vangheluwe, Hans 92
Voelter, Markus 3

Wang, Lin 59

	Foreword
	Preface
	Organization
	Contents
	Invited Paper
	The Design, Evolution, and Use of KernelF
	1 Introduction
	1.1 Funclerative Programming
	1.2 Domain-Specific Languages
	1.3 A Reusable Functional Kernel Language
	1.4 Design Guidelines for the Use in DSLs
	1.5 Language Engineering and MPS

	2 KernelF Overview
	2.1 Language
	2.2 Definition of the Semantics
	2.3 Tooling

	3 Design Decision
	3.1 General Design Decisions
	3.2 Extension and Embedding

	4 Evolution
	5 Case Studies
	5.1 Salary/Tax Calculation
	5.2 Smart Contracts
	5.3 Healthcare

	6 Challenges and Open Issues
	6.1 Type System
	6.2 Reactive Interpreter
	6.3 Shadow Models

	7 Related Work
	7.1 Dynamic Languages
	7.2 Other Base Languages
	7.3 Lisp-Style Languages
	7.4 Embeddable Languages
	7.5 Other Language Workbenches

	8 Conclusion
	References

	Full Papers
	Virtual Network Embedding: Reducing the Search Space by Model Transformation Techniques
	1 Introduction
	2 ILP-Based Problem Description
	2.1 Substrate Model
	2.2 Virtual Model
	2.3 Mapping Variables
	2.4 Constraints
	2.5 Objective Function
	2.6 Search Spaces

	3 MdVNE Approach
	3.1 MdVNE Process
	3.2 Search Spaces
	3.3 Example

	4 Evaluation
	4.1 Setup
	4.2 Results

	5 Related Work
	6 Conclusion and Future Work
	References

	Schema Transformations and Query Rewriting in Ontological Databases with a Faceted Interface
	1 Introduction
	2 Preliminaries: Ontological Databases
	2.1 Ontologies and Ontological Schemas
	2.2 Relational Schema

	3 Transforming of an Ontology to Ontological Database
	3.1 Mapping of Ontological Schema to Relational Schema
	3.2 Mapping of an Ontology to Relational Database Instance

	4 Faceted Queries and Their First-Order Form
	4.1 Formulating Faceted Queries Using a Faceted Interface
	4.2 Transformation of Faceted Queries into First-Order Form
	4.3 Transformation into Extensional First-Order Form and to SQL

	5 Summary
	References

	Model Transformation Reuse Across Metamodels
	1 Introduction
	2 Motivation
	3 Classification
	4 Comparison of Some Existing Approaches
	4.1 Model Typing
	4.2 Concepts
	4.3 A-posteriori Typing
	4.4 Multilevel Modeling
	4.5 Design Patterns for Model Transformations

	5 Discussion
	6 Related Work
	7 Conclusion and Perspectives
	References

	Systematic Recovery of MDE Technology Usage
	1 Introduction
	2 Recovery Methodology
	2.1 Artifacts in a MDE Project
	2.2 Relationships to be Recovered
	2.3 Heuristics for Recovery

	3 The Recovery Infrastructure
	3.1 Repository Connector
	3.2 Heuristics Manager
	3.3 Megamodel Visualizer

	4 Case Study
	5 Related Work
	6 Conclusion and Future Work
	References

	Technical Debt in Model Transformation Specifications
	1 Introduction
	2 Metrics for Technical Debt
	3 Analysis and Results
	3.1 ATL
	3.2 ETL
	3.3 QVT-R
	3.4 UML-RSDS

	4 Discussion and Summary of Results
	5 Threats to Validity
	6 Related Work
	7 Conclusion
	References

	CoqTL: An Internal DSL for Model Transformation in Coq
	1 Introduction
	2 Class to Relational in CoqTL
	3 The Design of CoqTL
	3.1 Metamodels and Models
	3.2 Transformation Specification
	3.3 Transformation Engine

	4 Proving Theorems with CoqTL
	5 Related Work
	6 Conclusion
	References

	A Formal Framework for Prototyping Executable Semantics in ATL
	1 Introduction
	2 ATL as System Specification Language
	2.1 The Concurrent Append Problem
	2.2 FMA-ATL Configurations and Engine Initialization
	2.3 Rule Scheduling

	3 ATL as Property Specification Language
	4 Integration with ATL
	5 Related Work
	5.1 Differences with ATL In-Place Semantics
	5.2 Comparison

	6 Conclusions
	References

	Tool Demonstration Papers
	Scalable Queries and Model Transformations with the Mogwaï Tool
	1 Introduction
	2 Framework Overview
	3 Architecture
	4 Implementation
	5 Conclusion
	Appendix A Demonstration Overview
	References

	NMF: A Multi-platform Modeling Framework
	1 Introduction
	2 Meta-metamodel
	3 Model Repositories
	4 Model-Based Incrementalization
	5 Model Transformation
	6 Model Synchronization
	7 Conclusion
	A Tutorial of NMF
	A.1 Create a Project
	A.2 Import Metamodels from Ecore
	A.3 Loading a Model
	A.4 Incrementalization
	A.5 Creating a Model Transformation
	A.6 Saving Result Model to a File

	References

	Author Index

