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Chapter 6
Thermoluminescence: A Tool to Study 
Ecophysiology of Green Plants

Amarendra Narayan Mishra

1  �Introduction

Thermally induced light emission in physical chemical or biological systems is 
known as thermoluminescence or TL (Demeter and Govindjee 1989; Misra and 
Ramaswamy 2001; Misra et al. 2001a, b, 2012; Ducruet 2003; Maslenkova 2010; 
Sane et al. 2012; Misra 2013). This phenomena is the characteristic of a solid state 
or semi-conductor, in which thermally activated recombination of electrons with 
positive holes is generated by particle or electromagnetic radiation at room or low 
temperature prior to their heating in dark (Randall and Wilkins 1945; Demeter and 
Govindjee 1989). Luminescence occurs in materials absorbing light. Light energy 
absorbed by a system induces photochemical reactions and transduces light/photon 
energy to kinetic and/or chemical energy. Excess light energy that is not utilized 
by photochemical processes are emitted back or dissipated in various forms of 
luminescence viz. fluorescence, phosphorescence, delayed luminescence, chemilu-
minescence and thermoluminescence (Misra et al. 2001a, b, 2012). The time course 
of the emission lifetime of this luminescence is given in Table 6.1. These are the 
phenomena of de-excitation of any photo-excited materials. The quantum yield of 
the de-excited system is less than the excited state, due to internal conversion of 
energy and/or heat dissipation. Thermoluminescence (TL) is the characteristic of a 
system that emits light at a characteristic temperature due to the chemiluminescence 
properties, radical pair states, or electron hole pairs (Misra et al. 2001a, b, 2012; 
Ducruet 2003). The biophysical analysis of the charge recombination shows that the 
phenomenon in darkness is the reversal of the primary photochemical processes in 
PS II (Misra et al. 2001a, b; Sane 2004). In the present chapter, the practical use of 
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TL for the study of the assessment of environmental impact on the changes in the 
primary photochemical processes of PSII is explained.

2  �Instrumentation

TL measurement is done usually with an assembly of dark chamber, a copper 
planchet with a temperature sensor, a manual or peltier cooling/heating device, 
red-sensitive photo multiplier tube, signal amplifier, and a X-Y recorder or data 
acquisition instrument/computer (Tatake et al. 1971; Ducruet and Miranda 1992; 
Zeinalov and Maslenkova 1996; Bhatnagar et al. 2002; Ducruet 2003; Gilbert et al. 
2004b). The samples of photosynthetic materials are photo-excited by several (8–10 
nos.) flashes of short (5 ms) duration and cooled either to liquid nitrogen tempera-
ture in order to keep the charge particles in a physically separated state. Depending 
on the experimental requirement, one can also cool the samples to sub Zero tem-
peratures. Then the samples are heated in a gradual, slow and linear heating mode 
to induce charge recombination, giving rise to a set of different TL emission bands 
as a result of recombination of different charge pairs at a particular temperature 
(Misra et al. 2001a, b, 2012). A picture of the TL set-up is shown in Fig. 6.1. These 
characteristic TL bands are used in the study of various biotic and abiotic stress 
factors in green plants (Misra et  al. 2012). Photosynthetic materials are directly 
placed on the sample holder and excited by (i) continuous light during freezing or 
(ii) excited by flash(s) of saturating pulse, series, or (iii) excited by combining 

Sample planchet 
mounted over a 
temperature regulating
device

Photo multiplier
tube

Fig. 6.1  A thermoluminis-
cence apparatus set up

Table 6.1  The lifetime of different luminescence from an excited material

Luminescence
Temperature dependent or 
independent

Half life of emission after excitation 
(τc)

Fluorescence Independent <10−8 s
Phosphorescence Dependent >10−8 s
Delayed 
luminescence

Independent Minutes < τc < years

Thermoluminescence Dependent Minutes < τc < 4.6 × 109 years
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(i) with (ii) at a particular temperature prior to flash freezing the sample. (Ducruet 
and Vass 2009; Sane et  al. 2012). There are several TL apparatus commercially 
available by Photon Systems Instruments (Brno, Czech Republic), which provides 
spectral deconvolution programs (Ducruet and Miranda 1992).

3  �Thermoluminescence Glow Peaks

Photosynthetic materials, such as isolated photosystem II (PS II) pigment-protein 
complexes, thylakoid membranes, chloroplasts, cyanobacteria, algae and green 
leaves illuminated with a saturating flash of light, induce charge separation in PS 
II. The TL measurement is done by photoexcitation of the leaf sample, then cooling 
it at liquid nitrogen or to a low temperature, followed by heating in dark and 
recording the photo-emittance during heating (Tatake et  al. 1971; Zeinalov and 
Maslenkova 1996; Misra et al. 2001a, b, 2012; Ducruet 2003; Gilbert et al. 2004a, b; 
Bhagwat and Bhattacharjee 2005; Ducruet and Vass 2009). But recent commercial 
instruments use a peltier cooling and heating system. The TL emission is then 
measured with a sensitive photomultiplier. The emission around 730 nm vs. tem-
perature is plotted in a graph sheet. Arnold and Azzi (1968) showed the occurrence 
TL glow peaks between −40 °C and +50 °C in photosynthetic materials. In pre-
irradiated photosynthetic materials (pigment protein complexes, thylakoid mem-
branes, intact chloroplasts or green leaves) TL glow peaks arise in darkness (Misra 
and Ramaswamy 2001; Misra et al. 2001a, b, 2012; Misra 2013). The separated 
charge pairs recombine and emit photon. Saturating and sequential short pulses 
(in ms scale) light generates S0, S1, S2, and S3 states in the water oxidizing Mn 
cluster of PS II. The S0 and S1 states remain stable during darkness. Upon illumi-
nation, these states are photo-converted and the So and S1 states are distributed in 
25% and 75% approximately in the photosynthetic materials. In leaves, approxi-
mately 40% of QB is reduced (Rutherford et al. 1984a) and the QB − /QB ratio oscil-
lates with a periodicity of 2 flashes. When leaf photosynthesis is inhibited or the 
electron transfer from QA to QB in PS II is blocked, only QA

− charge accumulates. 
The recombination of charges and holes at a particular temperature and emission 
of photon is designated by specific nomenclatures as shown in Table  6.2. This 
charge recombination of QA

− and QB
− with S2/S3 results in Q band and B band, 

respectively, at around 5 °C and at 20–35 °C. The B- band is the major TL band 
observed in any photosynthetic material studied so far (Fig.  6.2). The charge 
recombination of S1/S2 states with QA

− is less stable than that of B band and 
recombines quicker than QB

−. These recombinations are very sensitive to redox 
changes in the charge pairs (Misra and Ramaswamy 2001; Misra et al. 2001a, b, 
2012; Misra 2013). Thus, any change in the stable environment of PS II can be 
measured by the changes in TL glow peaks. As it also oscillates with each flash 
number, the redox state of Mn cluster can be titrated with TL measurements (Misra 
et al. 2001a, b, 2012; Misra 2013).
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Fig. 6.2  Typical thermolumi-
nescence (TL) peaks 
observed in a green leaf with 
a linear heating rate of 
≤20 °C/s in darkness. (From 
Misra 2013)

Table 6.2  Characteristic thermoluminescence (TL) bands from photosynthetic materials. These 
bands are reported in PSII particles, thylakoid membranes, chloroplasts, cyanobacteria, algae and 
green leaves

TL band Temperature
Charge 
recombination References

Very low 
temperature 
TL peaks 
(LTL)

−200 to 
250 °C

Chlorophyll 
aggregates

Sane et al. (2012)

Z −160 °C Chl+ Chl− Misra et al. (2001a, b, 2012)
Zv (variable) −80 to 

30 °C
P680+ QA

− Sane et al. (2012)

A −15 °C Tyr Z+ QB− Misra et al. (2001a, b, 2012)
AT −10 °C S3QA

− Tatake et al. (1971), Inoue et al. (1977), Rosza 
and Demeter (1982), Demeter et al. (1985) and 
Homann (1999)

Q +5 °C S2QA
− Misra et al. (2001a, b, 2012)

B1 +20 °C S3QB
− Inoue (1976), Joliot and Joliot (1980), Vass 

et al. (1981), Rutherford et al. (1982, 1984b), 
Demeter and Sallai (1986) and Miranda and 
Ducruet (1995b)

B2 +30 °C S2QB
−

C +50 °C TyrD+QA
− Misra et al. (2001a, b, 2012)

AG +40 to 50 °C S2/S3QB
− Bertsch and Azzi (1965), Bjorn (1971), Inoue 

(1996), Nakamoto et al. (1988), Sundblad et al. 
(1988), Hideg et al. (1991), Johnson et al. 
(1994) and Miranda and Ducruet (1995a, b)

High 
temperature 
TL peaks 
(HTL)

50 to 160 °C Oxidative 
chemi-
luminescence

Venediktov et al. (1989), Vavilin et al. (1991), 
Merzlyak et al. (1992), Hideg and Vass (1993), 
Stallaert et al. (1995), Misra et al. (1997), 
Marder et al. (1998), Vavilin and Ducruet 
(1998), Ducruet and Vavilin (1999), Havaux 
and Niyogi (1999), Skotnica et al. (1999), 
Havaux and Niyogi (1999) and Ducruet and 
Vavilin (1999)

For more details see Sane and Rutherford (1986), Inoue (1996), Misra and Ramaswamy (2001), 
Misra et al. (2001a, b, 2012), Sane et al. (2012) and Misra (2013)
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4  �Stress Induced Changes in TL Glow Peaks

The TL glow peaks as depicted in Table 6.2 clearly show that TL is a useful tool for 
the study of PS II electron transfer, both at the donor and acceptor sides (Misra and 
Ramaswamy 2001; Misra et al. 2001a, b, 2012; Misra 2013). Extensive reports are 
available to suggest that biotic and abiotic stress bring about a qualitative and quan-
titative change in the TL peak temperature and intensity. The changes in the TL 
characteristics and the environmental factors affecting it are summarized in Table 6.3.

Table 6.3  Changes in TL glow peaks of photosynthetic materials induced by developmental and 
stress (biotic and abiotic) responses (Misra and Ramaswamy 2001; Misra et al. 2001a; b, 2012; 
Misra 2013)

Environmental stress 
and plastid 
development Changes in TL glow peaks References

Plastid development
Etiolated leaf Major TL peaks missing due to a lack of 

functional pigment-protein complexes 
associated with PS II and do not develop 
Mn cluster

Inoue (1996), Sane et al. 
(1977), Misra et al. (1998a, 
b, c) and Dilnawaz et al. 
(2000)

Greening leaf Q-band and B band intensity increases 
gradually from base to apex of that wheat 
leaves greening under continuous 
illumination

Misra et al. (1998b)

Leaf greening under intermittent 
illumination leaves does not show the TL 
bands, as these plastids do not develop 
Mn cluster properly

Inoue (1996) and Sane et al. 
(1977)

Aging and senescence 
of leaf

Decrease in Q and B-band. Biswal et al. (2001)
The titre shows a gradual decrease in 
quinone pool and a block in electron flow 
between QA to QB.

Genetic modification Origin of Tl glow peaks Farineau (1993) and 
Homann (1999)

Biotic stress
Pathogen (viral) 
infection

Decreased B-band intensity and higher 
peak temperature.

Stallaert et al. (1995) and 
Rahoutei et al. (1999)

A new TL peak at 70 °C
Abiotic stress
Salinity Affects Q-band and B-band in a dose and 

duration dependent manner. B-band 
comparatively more affected.

Misra et al. (1998c), Sahu 
et al. (1998, 1999), Biswal 
et al. (2001) and Zurita et al. 
(2005)Back flow of electrons in PS II.

Water/drought Temperature shift in the TL glow peaks 
due to redox shift in the charge pairs

Ducruet and Vavilin (1999), 
Janda et al. (1999) and Misra 
et al. (2002)

(continued)
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5  �Future Perspective

Environmental and developmental changes affect the photosynthetic machinery 
(Joshi et  al. 2013). Thermoluminescence is a non-invasive method and can give 
insight into the qualitative and quantitative changes in the QA and QB environment 
of PS II and thus give an insight to the donor/acceptor side structure and function, 
and also the oxidative state of thylakoid membranes (Misra and Ramaswamy 2001; 
Misra et al. 2001a, b, 2012; Misra 2013). Recently, TL signals have been used as 
‘sensors’ for the study of photosynthetic materials (Zhang et al. 2007). TL tech-
nique gives a wide array of information about the redox state of electron donors, 
acceptors and charge accumulation in PS II of green leaves, and TL studies have an 
extensive and wide use in eco-physiological and stress studies in photosynthesis, as 
well as in agriculture.
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