
Chapter 15
Free Flexural Vibrations of Axially
Loaded Timoshenko Beams
with Internal Viscous Damping
Using Dynamic Stiffness Formulation
and Differential Transformation

Baran Bozyigit, Yusuf Yesilce and Hikmet Huseyin Catal

Abstract The effects of axial compressive load and internal viscous damping on
the free vibration characteristics of Timoshenko beams are carried out using
the dynamic stiffness formulation and the differential transformation method. The
governing equations of motion are derived using the Hamilton’s principle. After the
analytical solution of the equation of motion has been obtained, the dynamic
stiffness method (DSM) is used and the dynamic stiffness matrix of the axially
loaded Timoshenko beam with internal viscous damping is constructed to calculate
natural frequencies. Moreover, an efficient mathematical technique called the
differential transform method (DTM) is used to solve the governing differential
equations of motion. The calculated natural frequencies of Timoshenko beams
with various combinations of boundary conditions using the DSM and DTM are
presented and compared with the analytical results where a very good agreement is
observed.

Keywords Axial load � Timoshenko beam � Internal viscous damping
Differential transformation � Dynamic stiffness � Natural frequencies

15.1 Introduction

Axially loaded beams with distributed internal viscous damping are of great
importance in a wide class of civil engineering and mechanical engineering
structures. The effects of internal viscous damping and the axial load of a beam
play an important role on its vibration characteristics and dynamic stability.
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Several studies on vibrations and stability of axially loaded beams with viscous
damping have been reported. Gürgöze and Erol (2004) investigated the eigen-
characteristics of multistep Bernoulli–Euler beams carrying a tip mass subjected to
nonhomogeneous external viscous damping. Cai et al. (2006) studied on an ana-
lytical approach for vibration response analysis of a Bernoulli–Euler beam with a
single active constraining layer damping patch. In another study, the modal analysis
of nonhomogeneous Timoshenko beams with generalized damping distributions is
investigated (Sorrentino et al. 2007). Dohnal et al. (2008) investigated a uniform
cantilever beam under the effect of a time-periodic axial force by using a
finite-element approach. In the other study, an enhanced beam model for con-
strained layer damping and a parameter study of damping contribution are studied
by Xie and Shepard (2009). Bending-bending vibration equations of a twisted beam
with internal damping of Kelvin–Voigt type are studied using Timoshenko beam
theory (Chen et al. 2013). The dynamic response of a Timoshenko beam with
distributed internal viscous damping is investigated (Capsoni et al. 2013). Lin
(2014) studied the forced vibration of beam subjected to a harmonic external force
and with the squeezing film and thermos elastic damping in non-Fourier model. In
the other study, bending–bending vibrations of an axially loaded twisted
Timoshenko beam with locally distributed Kelvin–Voigt damping are investigated
by Chen (2014a). In the other study, Chen (2014b) studied the vibration behavior of
a cantilevered twisted Timoshenko beam with partially distributed Kelvin–Voigt
damping using a finite-element method.

DSM is an effective method for free and forced vibration analyses of structures
such as beams, plates, and their assemblies. Banerjee (1997) noted that the
Wittrick–Williams algorithm can be used as a nonlinear eigenvalue problem is
experienced. Free vibration analysis of laminated composite beams under axial
compressive force is performed by Jun et al. (2008) using DSM. The effectiveness
of DSM for solving free vibration problem of laminated composite beams is
observed. Dynamic stiffness approach is used for free vibration analysis of pipe
conveying fluid according to Timoshenko beam theory (Bao-Hui et al. 2011).
The first three natural frequencies of a multi-span pipe conveying fluid are calcu-
lated. Banerjee (2012) researched free vibrations of beams carrying spring–mass
systems using the DSM. The natural frequencies of rotating tapered beams are
obtained according to Rayleigh beam theory by using the DSM by Banerjee and
Jackson (2013). The results are compared with the first natural frequencies obtained
according to Euler–Bernoulli beam theory. Su and Banerjee (2015) calculated
nondimensional natural frequencies of functionally graded Timoshenko beams for
different boundary conditions. DSM is applied to in-plane free vibration problem
and response analysis of isotropic rectangular plates. Different boundary conditions
and length/width ratios are considered (Nefovska-Danilovic and Petronijevic 2015).
Bozyigit and Yesilce (2016) applied dynamic stiffness approach for free vibration
analysis of moving beams according to high order shear deformation theory.
Different axial tensile force and axial speed values are used to reflect their effects on
natural frequencies.
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The concept of DTM was first introduced by Zhou (1986). Ozgumus and Kaya
(2006) investigated the out-of-plane free vibration analysis of a double tapered
Bernoulli–Euler beam using DTM. Çatal (2006, 2008) used DTM for the free
vibration analysis of Timoshenko beams with fixed and simply supported ends.
Çatal and Çatal (2006) calculated the critical buckling loads of partially embedded
Timoshenko pile in elastic soil by DTM. Free vibration analysis of a rotating,
double tapered Timoshenko beam featuring coupling between flapwise bending and
torsional vibrations is performed using DTM by Ozgumus and Kaya (2007). In
another study, Kaya and Ozgumus (2007) used DTM to analyze the free vibration
response of an axially loaded, closed section composite Timoshenko beam. Yesilce
(2010, 2013) investigated the free vibration analysis of moving Bernoulli–Euler and
Timoshenko beams by using DTM. Yesilce (2015) described the determination of
the natural frequencies and mode shapes of the axially loaded Timoshenko
multiple-step beam carrying a number of intermediate lumped masses and rotary
inertias by using the numerical assembly technique and the DTM. Previous studies
have shown that the DTM is an efficient tool and it has been applied to solve
boundary value problems in fluid mechanics, viscoelasticity, control theory,
acoustics, etc. Besides the variety of the problems that DTM may be applied to, its
accuracy and simplicity in calculating the natural frequencies and plotting the mode
shapes make this method outstanding among many other methods.

The free vibration analysis of simply supported, one end fixed, the other end
simply supported, fixed supported and axially loaded Timoshenko beams with
distributed internal viscous damping is performed in this study. At the beginning of
the study, the governing equations of motion are derived by applying Hamilton’s
principle. In the next step, the equations of motion, including the parameters for the
damping factor and the nondimensionalized multiplication factor for the axial
compressive force, are solved using an efficient mathematical technique, called
DTM. Besides DTM, DSM is used for calculating the natural frequencies of the
axially loaded Timoshenko beams with distributed internal viscous damping. The
first four mode shapes are plotted and the effects of the parameters, mentioned
above, are investigated. A suitable example that studies the effects of axial com-
pressive load and internal viscous damping on the free vibration analysis of
Timoshenko beam using DSM and DTM has not been investigated by any of the
studies in open literature so far.

15.2 The Mathematical Model and Formulation

An axially loaded uniform Timoshenko beam with distributed internal viscous
damping is presented in Fig. 15.1.

The total kinetic energy T and the total potential energy V of the axially loaded
Timoshenko beam can be written as
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where y x; tð Þ is the total transverse deflection, / x; tð Þ is the angle of rotation due to
bending, m is the mass per unit length of the beam, L is the length of the beam, N is
the axial compressive force, A is the cross-section area, �k is the shape factor due to
cross-section geometry, I is the moment of inertia, E and G are the Young’s
modulus and shear modulus of the beam, respectively, x is the beam position, and
t is time variable.

The concept of Rayleigh’s dissipation function is utilized to express the dissipation
function VD of Timoshenko beam with distributed internal viscous damping as:
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In Eq. (15.3), for an isotropic material, the relationship between the coefficients
of the internal damping CE and CG is assumed to be similar to those between E and
G, respectively.

The equations of motion for the axially loaded Timoshenko beam with dis-
tributed internal viscous damping are derived by applying Hamilton’s principle,
which is given by

d
Zt2
t1

Lgdt ¼ 0 ð15:4aÞ

Fig. 15.1 Axially loaded Timoshenko beam with internal viscous damping
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where

Lg ¼ T � V � VD ð15:4bÞ

is termed as the Lagrangian density function.
Taking the variation of the Lagrangian density function and integrating

Eq. (15.4a) by parts, the equations of motion for the axially loaded Timoshenko
beam with distributed internal viscous damping can be derived as 0� x� Lð Þ:

AG
�k

@2y x; tð Þ
@x2

� @u x; tð Þ
@x

� �
� N

@2y x; tð Þ
@x2

� m
@2y x; tð Þ

@t2

þ CGA
�k

@3y x; tð Þ
@x2@t

� @2u x; tð Þ
@x@t

� �
¼ 0

ð15:5Þ

EI
@/2 x; tð Þ

@x2
� mI

A
@/2 x; tð Þ

@t2
þ AG

�k
@y x; tð Þ
@x

� / x; tð Þ
� �

þCEI
@/3 x; tð Þ
@x2@t

þ CGA
�k

@2y x; tð Þ
@x@t

� @/ x; tð Þ
@t

� �
¼ 0

ð15:6Þ

The bending moment function M(x, t) and the shear force function T(x, t) of the
axial-loaded Timoshenko beam with distributed internal viscous damping are
written as

M x; tð Þ ¼ EI
@/ x; tð Þ

@x
þCEI

@2/ x; tð Þ
@x@t

ð15:7Þ
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where c x; tð Þ is the corresponding shear deformation.
Assuming that the motion is harmonic we substitute for y(x, t) and /ðx; tÞ the

following:

y x; tð Þ ¼ y xð Þeixt ð15:9aÞ

/ x; tð Þ ¼ / xð Þeixt ð15:9bÞ

where y xð Þ and / xð Þ are the amplitudes of the total transverse deflection and the
angle of rotation due to bending, respectively; x is the natural circular frequency of
the vibrating system and i ¼ ffiffiffiffiffiffiffi�1

p
. By using Eq. (15.9a, b) and introducing the

dimensionless coordinate z = x/L, Eqs. (15.5) and (15.6) can be converted into the
ordinary differential equations:
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y zð Þ ¼ C � eisz ð15:12Þ

/ zð Þ ¼ P � eisz ð15:13Þ

Substituting Eqs. (15.12) and (15.13) into Eqs. (15.10) and (15.11) results in
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Equations (15.14)–(15.15) can be written in matrix form as
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0

	 

ð15:16Þ

where

A11 ¼ mx2 � AGþCGAix
�kL2

� N
L2
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The nontrivial solution is obtained when the determinant of the coefficient matrix
is set up to zero. Thus, we have a fourth-order equation with the unknowns,
resulting in four values and the general solution functions can be written as:
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y z; tð Þ ¼ C1eis1z þC2eis2z þC3eis3z þC4eis4z
� �

eixt ð15:18Þ

/ z; tð Þ ¼ P1eis1z þP2eis2z þP3eis3z þP4eis4z
� �

eixt ð15:19Þ

The eight constants, C1, …, C4 and P1, …, P4 will be found from Eqs. (15.14),
(15.15) and boundary conditions.

The bending moment and shear force functions of the axially loaded
Timoshenko beam with distributed internal viscous damping can be obtained by
using Eqs. (15.7) and (15.8) as:

M z; tð Þ ¼ EI þCEIix
L

� �
d/ zð Þ
dz

� �
eixt ð15:20Þ

T z; tð Þ ¼ AG� CGAixð Þ
�kL
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� �
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15.3 The Differential Transform Method (DTM)

DTM is a semi-analytic transformation technique based on Taylor series expansion
and is a useful tool to obtain analytical solutions of the differential equations.
Certain transformation rules are applied and the governing differential equations
and the boundary conditions of the system are transformed into a set of algebraic
equations in terms of the differential transforms of the original functions in DTM.
The solution of these algebraic equations gives the desired solution of the problem.
The DTM differs from Taylor series as Taylor series method requires symbolic
computation of the necessary derivatives of the data functions and is expensive for
large orders. DTM is an iterative procedure to obtain analytic Taylor series solu-
tions of differential equations (Yesilce 2015).

A function y zð Þ, which is analytic in a domain D, can be represented by a power
series with a center at z ¼ z0, any point in D. The differential transform of the
function y zð Þ is given by

Y kð Þ ¼ 1
k!

dky zð Þ
dzk

� �
z¼z0

ð15:22Þ

where y zð Þ is the original function and Y kð Þ is the transformed function. The inverse
transformation is defined as

y zð Þ ¼
X1
k¼0

z� z0ð ÞkY kð Þ ð15:23Þ
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From Eqs. (15.22) and (15.23), we get

yðzÞ ¼
X1
k¼0

ðz� z0Þk
k!

dkyðzÞ
dzk

� �
z¼z0

ð15:24Þ

Equation (15.24) implies that the concept of the differential transformation is
derived from Taylor’s series expansion, but the method does not evaluate the
derivatives symbolically. However, relative derivatives are calculated by iterative
procedure that are described by the transformed equations of the original functions.
In real applications, the function y zð Þ in Eq. (15.23) is expressed by a finite series
and can be written as:

yðzÞ ¼
X�N
k¼0

ðz� z0ÞkYðkÞ ð15:25Þ

Equation (15.25) implies that
P1

k¼�Nþ 1
ðz� z0ÞkYðkÞ is negligibly small. Where �N

is the series size and the value of �N depends on the convergence of the eigenvalues.
Theorems that are frequently used in differential transformation of the differ-

ential equations and the boundary conditions are introduced in Tables 15.1 and
15.2, respectively.

15.3.1 Application of DTM for Solving Equations of Motion

Equations (15.10) and (15.11) can be rewritten as follows:

d2y zð Þ
dz2

¼ AGþgAGixð Þ � L3
AGþgAGixð ÞL2 � �kNrEI

� �
d/ zð Þ
dz

� mx2�kL4

AGþgAGixð ÞL2 � �kNrEI

� �
y zð Þ

ð15:26Þ

Table 15.1 DTM theorems
used for equations of motion

Original function Transformed function

y zð Þ ¼ u zð Þ � v zð Þ Y kð Þ ¼ U kð Þ � V kð Þ
y zð Þ ¼ a � u zð Þ Y kð Þ ¼ a � U kð Þ
y zð Þ ¼ dm

u zð Þ
dzm

Y kð Þ ¼ kþmð Þ!
k! � U kþmð Þ

y zð Þ ¼ u zð Þ � v zð Þ
Y kð Þ ¼ Pk

r¼0
U rð Þ � V k � rð Þ
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d2/ zð Þ
dz2

¼ � AGþgAGixð ÞL
EIþgEIixð Þ�k

� �
dy zð Þ
dz

þ AGþgAGixð ÞL2
EI þgEIixð Þ�k � mIx2L2

EIþgEIixð ÞA
� �

/ zð Þ
ð15:27Þ

where

Nr ¼ NL2

EI
Nondimensionalized multiplication factor for compressive forceð Þ

ð15:28aÞ

CE ¼ gE ð15:28bÞ

CE ¼ gG ð15:28cÞ

g ¼ n

ffiffiffiffiffiffiffiffi
mI
EA2

r
ðn is nondimensionalized damping

value called as damping factorÞ
ð15:28dÞ

The differential transformation is applied to Eqs. (15.26) and (15.27) by using
the theorems introduced in Table 5.1 and the following expressions are obtained:

Y kþ 2ð Þ ¼ AGþgAGixð ÞL3
AGþgAGixð ÞL2 � �kNrEI

� �
U kþ 1ð Þ
kþ 2ð Þ

� mx2�kL4

AGþgAGixð ÞL2 � �kNrEI

� �
Y kð Þ

kþ 1ð Þ kþ 2ð Þ
ð15:29Þ

Table 15.2 DTM theorems used for boundary conditions

z = 0 z = 1

Original
boundary
conditions

Transformed
boundary
conditions

Original
boundary
conditions

Transformed boundary
conditions

yð0Þ ¼ 0 Yð0Þ ¼ 0 yð1Þ ¼ 0 P1
k¼0

YðkÞ ¼ 0

dy
dz ð0Þ ¼ 0 Yð1Þ ¼ 0 dy

dz ð1Þ ¼ 0 P1
k¼0

kYðkÞ ¼ 0

d2
y

dz2
ð0Þ ¼ 0 Yð2Þ ¼ 0 d2

y

dz2
ð1Þ ¼ 0

P1
k¼0

kðk � 1ÞYðkÞ ¼ 0

d3
y

dz3
ð0Þ ¼ 0 Yð3Þ ¼ 0 d3

y

dz3
ð1Þ ¼ 0

P1
k¼0

kðk � 1Þðk � 2ÞYðkÞ ¼ 0
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U kþ 2ð Þ ¼ � AGþgAGixð ÞL
EI þgEIixð Þ�k

� �
Y kþ 1ð Þ
kþ 2ð Þ

þ AGþgAGixð ÞL2
EI þgEIixð Þ�k � mIx2L2

EI þgEIixð ÞA
� �

U kð Þ
kþ 1ð Þ kþ 2ð Þ

ð15:30Þ

where Y kð Þ is the transformed function of y(z) and U kð Þ is the transformed function
of / zð Þ.

The boundary conditions of a simply supported Timoshenko beam with dis-
tributed internal viscous damping are given below:

y z ¼ 0ð Þ ¼ 0 ð15:31aÞ

M z ¼ 0ð Þ ¼ 0 ð15:31bÞ

y z ¼ 1ð Þ ¼ 0 ð15:31cÞ

M z ¼ 1ð Þ ¼ 0 ð15:31dÞ

Applying DTM to Eqs. (15.31a)–(15.31d) and using the theorems introduced in
Table 15.2, the transformed boundary conditions of a simply supported beam are
obtained as

for z ¼ 0; Y 0ð Þ ¼ U 1ð Þ ¼ 0 ð15:32aÞ

for z ¼ 1;
X�N
k¼0

Y kð Þ ¼
X�N
k¼0

�M kð Þ ¼ 0 ð15:32bÞ

where �M kð Þ is the transformed function of M zð Þ.
The boundary conditions of a fixed-fixed Timoshenko beam with distributed

internal viscous damping are given below

y z ¼ 0ð Þ ¼ 0 ð15:33aÞ

u z ¼ 0ð Þ ¼ 0 ð15:33bÞ

y z ¼ 1ð Þ ¼ 0 ð15:33cÞ

u z ¼ 1ð Þ ¼ 0 ð15:33dÞ

Applying DTM to Eqs. (15.33a)–(15.33d), the transformed boundary conditions
of a fixed-fixed beam are obtained as:

for z ¼ 0; Y 0ð Þ ¼ U 0ð Þ ¼ 0 ð15:34aÞ
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for z ¼ 1;
X�N
k¼0

Y kð Þ ¼
X�N
k¼0

U kð Þ ¼ 0 ð15:34bÞ

The boundary conditions of one end (z = 0) fixed and the other end (z = 1)
simply supported Timoshenko beam are given below:

y z ¼ 0ð Þ ¼ 0 ð15:35aÞ

u z ¼ 0ð Þ ¼ 0 ð15:35bÞ

y z ¼ 1ð Þ ¼ 0 ð15:35cÞ

M z ¼ 1ð Þ ¼ 0 ð15:35dÞ

Applying differential transformation to Eqs. (15.35a)–(15.35d), the transformed
boundary conditions of one end fixed and the other end simply supported beam are
obtained as

for z ¼ 0; Y 0ð Þ ¼ U 0ð Þ ¼ 0 ð15:36aÞ

for z ¼ 1;
X�N
k¼0

Y kð Þ ¼
X�N
k¼0

�M kð Þ ¼ 0 ð15:36bÞ

For simply supported beam, substituting the boundary conditions expressed in
Eqs. (15.32a) and (15.32b) into Eqs. (15.29) and (15.30), and taking Y 1ð Þ ¼ c1,
U 0ð Þ ¼ c2; for fixed-fixed supported beam, substituting the boundary conditions
expressed in Eqs. (15.34a) and (15.34b) into Eqs. (15.29) and (15.30), and taking
Y 1ð Þ ¼ c1, U 1ð Þ ¼ c2; for one end fixed and the other end simply supported beam,
substituting the boundary conditions expressed in Eqs. (15.36a) and (15.36b) into
Eqs. (15.29) and (15.30), and taking Y 1ð Þ ¼ c1, U 1ð Þ ¼ c2; the following matrix
expression is obtained:

�Að�NÞ
11 xð Þ �Að�NÞ

12 xð Þ
�Að�NÞ
21 xð Þ �Að�NÞ

22 xð Þ

2
4

3
5 c1

c2

( )
¼

0

0

( )
ð15:37Þ

where c1 and c2 are constants and �Að�NÞ
j1 xð Þ, �Að�NÞ

j2 xð Þ (j = 1, 2) are polynomials of x
corresponding �N.

In the last step, for nontrivial solution, equating the coefficient matrix that is
given in Eq. (15.37) to zero one determines the natural frequencies of the vibrating
system as given in Eq. (15.38).
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�Að�NÞ
11 xð Þ �Að�NÞ

12 xð Þ
�Að�NÞ
21 xð Þ �Að�NÞ

22 xð Þ


 ¼ 0 ð15:38Þ

The jth estimated eigenvalue, xð�NÞ
j corresponds to �N and the value of �N is

determined as

xð�NÞ
j � xð�N�1Þ

j

 � e ð15:39Þ

where xð�N�1Þ
j is the jth estimated eigenvalue corresponding to �N � 1ð Þ and e is the

small tolerance parameter. If Eq. (15.39) is satisfied, the jth estimated eigenvalue,

xð�NÞ
j is obtained.
The procedure explained below can be used to plot the mode shapes of the

axially loaded Timoshenko beam with distributed internal viscous damping. The
following equalities can be written by using Eq. (15.37):

�A11 xð Þc1 þ �A12 xð Þc2 ¼ 0 ð15:40Þ

Using Eq. (15.40), the constant c2 can be obtained in terms of c1 as follows:

c2 ¼ �
�A11 xð Þ
�A12 xð Þ c1 ð15:41Þ

All transformed functions can be expressed in terms of x, c1 and c2. Since c2 has
been written in terms of c1 above, Y kð Þ, U kð Þ and �M kð Þ can be expressed in terms
c1 as follows:

Y kð Þ ¼ Y x; c1ð Þ ð15:42aÞ

U kð Þ ¼ U x; c1ð Þ ð15:42bÞ
�M kð Þ ¼ �M x; c1ð Þ ð15:42cÞ

The mode shapes can be plotted for several values of x by using Eq. (15.42a).

15.4 Dynamic Stiffness Formulation

The dynamic stiffness matrix of a beam relates the amplitudes of end forces to the
amplitudes of end displacement of a beam. The vector of end displacements of
beam and the vector of coefficients are given in Eqs. (15.43) and (15.44),
respectively.
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d ¼ y0 y1 /0 /1½ �T ð15:43Þ

C ¼ C1 C2 C3 C4½ �T ð15:44Þ

where

y0 ¼ yðz ¼ 0Þ; y1 ¼ yðz ¼ 1Þ;/0 ¼ /ðz ¼ 0Þ;/1 ¼ /ðz ¼ 1Þ

Equations (15.18) and (15.19) are used to obtain Eq. (15.45):

y0
y1
/0
/1

2
664

3
775 ¼

1 1 1 1
eis1 eis2 eis3 eis4

K1 K2 K3 K4

K1eis1 K2eis2 K3eis3 K4eis4

2
664

3
775

C1

C2

C3

C4

2
664

3
775 ð15:45Þ

where

K1 ¼
� AGþCGAix

�kL2 � N
L2

� �
s21 þmx2

AGþCGAix
L�k

� �
is1

; K2 ¼
� AGþCGAix

�kL2 � N
L2

� �
s22 þmx2

AGþCGAix
L��k

� �
is2

;

K3 ¼
� AGþCGAix

�kL2 � N
L2

� �
s23 þmx2

AGþCGA�ix
L�k

� �
is3

; K4 ¼
� AGþCGAix

�kL2 � N
L2

� �
s24 þmx2

AGþCGAix
L�k

� �
is4

The closed form of Eq. (15.45) is presented in Eq. (15.46):

d ¼ DC ð15:46Þ

where

D ¼
1 1 1 1
eis1 eis2 eis3 eis4

K1 K2 K3 K4

K1eis1 K2eis2 K3eis3 K4eis4

2
664

3
775

The vector of end forces of a member is given by

F ¼ ½ T0 T1 M0 M1 �T ð15:47Þ

where

T0 ¼ Tðz ¼ 0Þ; T1 ¼ T ðz ¼ 1Þ;M0 ¼ Mðz ¼ 0Þ;M1 ¼ M ðz ¼ 1Þ

It should be noted that the following sign convention is valid for DSM.
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T0 ¼ �T1;M0 ¼ �M1 ð15:48Þ

Equations (15.20) and (15.21) are used to construct the matrix form below

T0

T1

M0

M1

2
664

3
775 ¼ j

C1

C2

C3

C4

2
664

3
775 ð15:49Þ

The closed form of Eq. (15.49) is presented in Eq. (15.50):

F ¼ jC ð15:50Þ

where

j¼

R1is1 � R2K1 R1is2 � R2K2 R1is3 � R2K3 R1is4 � R2K4

ðR1is1 � R2K1Þeis1 ðR1is2 � R2K2Þeis2 ðR1is3 � R2K3Þeis3 ðR1is4 � R2K4Þeis4
R3is1K1 R3is2K2 R3is3K3 R3is4K4

ðR3is1K1Þeis1 ðR3is2K2Þeis2 ðR3is3K3Þeis3 ðR3is4K4Þeis4

2
6664

3
7775

R1 ¼ AG� CGAixð Þ
�kL

; R2 ¼ AG� CGAix
�k

� �
; R3 ¼ EI þCEIix

L

� �

The dynamic stiffness matrix of the beam can be obtained by using Eqs. (15.46)
and (15.50):

F ¼ jðDÞ�1d ð15:51Þ

K� ¼ jðDÞ�1 ð15:52Þ

K� denotes dynamic stiffness matrix of a Timoshenko beam with internal vis-
cous damping and subjected to axial compression force.

15.5 Numerical Analysis and Discussions

Axially loaded Timoshenko beams with distributed internal viscous damping are
considered in the numerical analysis. The first four natural frequencies, ƒi (i = 1,
…, 4 where ƒi = 2pxi) are calculated by using computer programs prepared in
Matlab by the authors. The natural frequencies are calculated by equating the
determinant of the coefficient matrix to zero for the analytical and differential
transformation solutions. In the DSM, the natural frequencies are calculated by
applying boundary conditions to K� and using the equation below:
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K�j j ¼ 0 ð15:53Þ

The numerical results of this paper are obtained based on uniform, rectangular
Timoshenko beams with the following data:

m = 0.31250 kNs2/m; EI ¼ 7:28086 � 104 kNm2; AG ¼ 1:344159 � 106 kN;
�k ¼ 6=5; L = 3.0 m; Nr = 0.00, 0.50 and 1.00; n = 0.00, 0.10 and 0.20

Using the DTM and DSM, the frequency values of the simply supported
Timoshenko beam for the first four modes are presented in Table 15.3. In
Table 15.4, the first four frequency values of one end fixed, the other end simply
supported Timoshenko beam can be seen. The fixed-fixed Timoshenko beam’s first
four frequency values are presented in Table 15.5. The first four mode shapes of the
axially loaded Timoshenko beam with various boundary conditions for Nr = 1 and
n = 0.2 are shown in Figs. 15.2, 15.3 and 15.4.

For all boundary conditions, as the axial compressive force acting to beams is
increased with constant damping, the natural frequency values are decreased. This
result indicates that the increasing axial compressive force leads to the reduction in
natural frequencies for all types of boundary conditions. This result is very
important for the effect of axial compressive force.

For the fixed supported axially loaded Timoshenko beams, an increase in natural
frequency values is observed for the condition of Nr being constant and the values
of the damping factor is increased. This result indicates that the increasing damping
factor leads to an augmentation in natural frequency values for fixed-fixed boundary
condition.

For simply supported and one end fixed, the other end simply supported
boundary conditions, when the damping factor is increased with constant axial
compressive load, a decrease is observed in natural frequency values of the first
mode and the fourth mode and an increase is observed in natural frequency values
of the second mode.

For the constant Nr and increasing damping factor, it is observed that the natural
frequency values of the third mode of simply supported beam is increased.
However, the third mode frequency of fixed-simple supported beam is decreased
when the damping factor is increased with constant axial compressive force.

In the application of the DTM, the natural frequency values of the axially loaded
Timoshenko beams with internal viscous damping are calculated by increasing
series size �N. In Tables 15.3, 15.4 and 15.5, convergences of the first four natural
frequencies are introduced. It is seen that the series size varies between 14 and 30
for perfect convergence in the DTM application for the first four modes of axially
loaded Timoshenko beams with internal viscous damping. Additionally, it is
observed that higher modes appear when more terms are taken into account in the
DTM applications. Thus, depending on the order of the required mode, one must try
a few values for the term number at the beginning of the calculations in order to find
the adequate number of terms.

It is observed that the DSM is a reliable method for free vibration analysis of
axially loaded Timoshenko beams with internal viscous damping.
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Fig. 15.2 The first four mode shapes of the simply supported and axial-loaded Timoshenko beam
with internal viscous damping, Nr = 1.00 and n = 0.20

Fig. 15.3 The first four mode shapes of one end fixed, the other end simply supported and
axial-loaded Timoshenko beam with internal viscous damping, Nr = 1.00 and n = 0.20
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15.6 Conclusions

The effects of viscous damping with axial compressive load on natural frequencies
of Timoshenko beams are observed for different support conditions. This study
reveals that DSM and DTM can be used effectively for free vibration analysis of
axially loaded Timoshenko beams including internal viscous damping. The pro-
cedure of DSM is simple when compared to DTM. The application of the DTM to
both the equations of motion and the boundary conditions seem to be involved
computationally. However, all the algebraic calculations are finished quickly using
symbolic computational software. Besides all these, the results show that DTM
solutions converge fast. When the results of the DTM and DSM are compared with
the results of analytical method, very good agreement is observed.
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