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Abstract The goal of the chapter is to introduce the upper-level Computer Engi-
neering/Computer Science undergraduate (UG) students to general-purpose graph-
ical processing unit (GPGPU) computing. The specific focus of the chapter is on
GPGPU computing using the Compute Unified Device Architecture (CUDA) C
framework due to the following three reasons: (1) Nvidia GPUs are ubiquitous
in high-performance computing, (2) CUDA is relatively easy to understand versus
OpenCL, especially for UG students with limited heterogeneous device program-
ming experience, and (3) CUDA experience simplifies learning OpenCL and
OpenACC. The chapter consists of nine pedagogical sections with several active-
learning exercises to effectively engage students with the text. The chapter opens
with an introduction to GPGPU computing. The chapter sections include: (1) Data
parallelism; (2) CUDA program structure; (3) CUDA compilation flow; (4) CUDA
thread organization; (5) Kernel: Execution configuration and kernel structure; (6)
CUDA memory organization; (7) CUDA optimizations; (8) Case study: Image
convolution on GPUs; and (9) GPU computing: The future. The authors believe that
the chapter layout facilitates effective student-learning by starting from the basics of
GPGPU computing and then leading up to the advanced concepts. With this chapter,
the authors aim to equip students with the necessary skills to undertake graduate-
level courses on GPU programming and make a strong start with undergraduate
research.

Relevant core courses: Computer Systems Architecture and Advanced Computer
Systems courses.

Relevant PDC topics: Table 1 lists the relevant PDC concepts covered along with
their Bloom levels.
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Table 1 PDC concepts across chapter sections and their Bloom levels

Chapter section

PDC concept 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9

Data parallelism C

GPGPU devices C A A A A A A

nvcc compiler A

Thread management A A

Parallel patterns A A

Performance evaluation A

Performance optimization A A

CUDA A A A A A A

Advancements in GPU computing K

Learning outcomes: By the end of this chapter, students will be able to:

• Explain CUDA concepts including thread management, memory manage-
ment, and device management.

• Identify performance bottlenecks in CUDA programs and calculate perfor-
mance achieved in floating-point operations per second (FLOPS).

• Develop CUDA programs and apply optimizations pertaining to memory
hierarchy, instructions, and execution configuration.

Context for use: The book chapter is envisioned for upper-level Computer
Science/Computer Engineering undergraduate courses/electives on systems,
advanced computer systems architecture, and high-performance computing with
GPUs. The book chapter is also intended as a “quick start” guide to general-
purpose GPU programming in undergraduate research.

The general-purpose graphical processing units (commonly referred to as GPG-
PUs) are throughput-oriented devices. Unlike the conventional central processing
units (CPUs) that employ a significant portion of the silicon wafer for caches,
GPGPU devices devote a large chunk of the chip real-estate to computing logic.
Consequently, GPGPU devices today feature several hundreds of cores dedicated
to performing accelerated computing. To unleash the tremendous power in these
computing cores, programmers must create several hundreds of thousands of
threads. This task warrants programmers devise creative techniques for task decom-
position, data partitioning, and synchronization. The GPGPU computing includes
an additional challenge of CPU-GPGPU device communication, which stems from
the fact that CPU and GPGPU device memories are typically disjoint. In most
GPGPU programs, the CPU (host) prepares and transfers the data to the GPGPU
device via the Peripheral Interconnect Express (PCIe) bus for computations. Once
the GPGPU device finishes all of the computations, it sends the processed data back
to the CPU host via the PCIe bus. A few recent architectures from AMD feature
accelerated processing units (APUs) that integrate CPU and GPU in a single chip.
AMD calls this approach as heterogeneous unified memory access (hUMA) where



The Realm of Graphical Processing Unit (GPU) Computing 193

the CPU and GPU memory spaces are unified, thereby avoiding any explicit data
transfers between the CPU host and GPU device. However, such integration leads
to CPU-GPU competition for the on-chip resources, leading to limited performance
benefits. This chapter builds the GPGPU programming concepts using the disjoint
CPU-GPGPU memory model.

To enable programmers to perform general purpose computing with GPUs,
NVIDIA introduced the Compute Unified Device Architecture (CUDA) [1] in
2006, ultimately replacing the notion of “express-it-as-graphics” approach to GPU
computing. CUDA is appropriately classified as a parallel computing platform and
programming model – it helps programmers to develop GPGPU programs written
in common languages such as C, C++, and Fortran by providing an elegant set of
keywords and language extensions. Additionally, CUDA provides useful libraries
such as the CUDA Basic Linear Algebra Subroutines (cuBLAS) library [2] for
GPGPU accelerated linear algebra routines and the CUDA Deep Neural Network
(cuDNN) library [3] for GPGPU accelerated primitives for deep neural networks.
At the time of this writing, CUDA is in its current avatar CUDA 9 and is freely
available for Linux, Windows, and Mac OSX.

GPGPU programming has continued to evolve ever since the introduction of
CUDA. Open Computing Language (OpenCL [4]) was released in 2009 as a royalty-
free standard for parallel programming on diverse architectures such as GPGPUs,
multi-core CPUs, field programmable gate arrays (FPGAs), and digital signal
processors (DSPs). Using a set of platform specific modifications, OpenCL allows
programmers to adapt their codes for execution across a variety of heterogeneous
platforms. Both CUDA and OpenCL tend to be verbose, for instance CUDA
traditionally requires programmers to perform explicit data transfers between the
CPU host and GPGPU device. The CPU host explicitly calls the GPGPU device
functions (called kernels) to execute the parallel tasks. OpenCL, with its cross-
platform requirements, further requires programmers to explicitly create device-
related task queues. To reduce such burden on programmers, OpenACC [5] standard
was officially released in 2013 as a paradigm to simplify CPU-GPGPU program-
ming. OpenACC offers compiler directives (for example, #pragma acc) that are
strategically placed across the source code to automatically map computations to
the GPGPU device. The software advancements are not only limited to GPGPU
programming models – software libraries such as Thrust [6] accelerate GPGPU code
development by providing helper classes and functions for common algorithms such
as sort, scan, reduction, and transformations, enabling programmers to focus on the
high-level details of the application.

This chapter introduces students to the basics of GPGPU computing using the
CUDA programming model. Section “Data Parallelism” introduces the concept of
data parallelism, which is critical for GPGPU computing. Section “CUDA Program
Structure” explains the typical structure of a CUDA program. Section “CUDA Com-
pilation Flow” describes the compilation flow of CUDA programs. Sections “CUDA
Thread Organization” and “Kernel: Execution Configuration and Kernel Struc-
ture” describe the CUDA thread organization and CUDA kernel configuration,
respectively. Section “CUDA Memory Organization” details the GPGPU memory
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organization as viewed by a CUDA program. Section “CUDA Optimizations”
expounds several CUDA optimization techniques employed by programmers to
maximize the application performance. The chapter concludes in section “Case
Study: Image Convolution on GPUs” on convolution with GPGPU devices as a
case study. By the end of this chapter, students will be able to explain computation
mapping to CUDA threads, write GPGPU device kernels, and employ optimization
strategies to achieve high application performance using GPGPU devices.

Data Parallelism

Several scientific applications today process large amounts of data. Some example
applications include molecular dynamics, deep neural networks, and image pro-
cessing, among others. A sequential scan of the data for such applications on a
conventional CPU may incur significant application runtime. Fortunately, several
scientific applications offer data parallelism, meaning the data can be partitioned
into several chunks that can be executed independent of each other. The data
parallelism is the primary source of scalability for many programs. In a molecular
dynamics simulation, the electrostatic potential of atoms at grid points is evaluated
in parallel. In a neural network simulation, the voltages of firing neurons at a given
neuron layer are independent, and therefore can be evaluated in parallel. Several
image-processing applications offer data parallelism via independent evaluation of
pixel attributes. Life teaches us several lessons – including data parallelism! When
the professor allows students to collaborate for an assignment, students divide work
(equally) with each other and complete the assignment in a short time. Similarly,
teaching assistants divide the grading work among themselves to reduce the grading
time.

Active Learning Exercise 1 – Identify five common activities in day-to-day life
that express significant data parallelism.

GPGPU devices work extremely well with applications that offer significant data
parallelism. In fact, the very primitive job of a GPU device, i.e. graphics rendering,
is extremely data parallel. Consider a simple example of vector-vector addition to
illustrate the concept of data parallelism. Figure 1 shows the addition of two vectors
A and B; the result is stored in vector C. The corresponding elements of vectors A

and B are added using processing elements, PEs. Clearly, each processing element,
PEi , works independently of any other processing element. Therefore, each data
element of vector C can be evaluated in parallel, thereby utilizing data parallelism
inherent in this operation.

Matrix-matrix multiplication is another frequently used mathematical operation
that offers significant data parallelism. Consider the multiplication of two matrices,
Am×n and Bn×p; the result is stored in the matrix Cm×p. Each element cij of Cm×p

is evaluated by computing the scalar product (also called the inner product in the
context of Euclidean space) between the ith row of Am×n and j th column of matrix
Bn×p. Equation 1 summarizes cij computation.
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Fig. 1 Addition of two vectors A and B to elucidate data parallelism. The processing elements,
PEs, work independently to evaluate elements in C

cij =
n∑

k=1

aik × bkj (1)

A careful inspection of the above equation reveals that computation of any cij is
independent of the others; therefore, cij can be computed in parallel. Matrix-matrix
multiplication is an interesting operation because it can be parallelized in a variety
of ways. For example, one can create m×p processing elements (PEs) where each
PEij computes a specific matrix element, cij . Consider another example, where the
PEs perform partial product computations and then add the partial product results
from other pertinent PEs to obtain the final result, cij . Ahead in this chapter, we
study the parallelization of matrix-matrix multiplication on the GPGPU device.

There are several computationally-intensive mathematical operations used in
engineering and science that offer data-parallelism. Some examples include reduc-
tion, prefix sum, scan, sorting, among many others. Not surprisingly, many scientific
applications are composed of these computationally-intensive operations. By paral-
lelizing these operations, programmers can achieve significantly high performance
for their scientific codes and simulations.

Active Learning Exercise 2 – Perform a research on the following operations and
explain how they offer data-parallelism: reduction, prefix sum, scan, and sorting.

CUDA Program Structure

In this section, we explore the structure of common CUDA programs. First, we
explore a simple real-world example and then transfer the intuition to CUDA
programs. Consider the example of multiple graders sharing the grading workload
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Fig. 2 Program flow of a
typical CUDA program
interleaved with host portion
(executed by a single CPU
thread) and device portion
(executed by several
thousands of GPU threads).
The host-to-device (H2D) and
device-to-host (D2H)
communications occur
between the interleaved
portions denoting data
transfers from
CPU-to-GPGPU and
GPGPU-to-CPU, respectively

for a large class. Let us assume that the instructor collects the student assignments
and distributes them equally to all of the graders. There are multiple scenarios that
can arise in this case. In Scenario A, the graders complete the grading job easily
without any doubts and/or clarifications with respect to grading. In this scenario,
the instructor gets the graded assignments expeditiously. In Scenario B, the graders
may have questions on grading and they visit the instructor’s office for clarification.
Due to this instructor-grader communication, the grading is slower than Scenario
A. In another Scenario C, the graders may choose to communicate with each
other and avoid long trips to the instructor’s office, thereby finishing the job faster
than Scenario B. The structure of typical CUDA programs is no different than the
structure of grading scenarios – in what follows, we describe the layout of a typical
CUDA program.

Figure 2 illustrates the structure of a typical CUDA program, which has two
primary interleaved sections namely, the host portion and the device portion.
Depending on the application, these interleaved sections may be repeated several
times. A single CPU thread executes the host portion, while the GPGPU device
executes the device portion of the CUDA program. At the start of the program, the
CPU host portion prepares the data to be executed on the GPGPU device. After
the data preparation, the CPU host transfers the data to the GPGPU device memory
via host-to-device (H2D) transfer operation, which is performed over the PCIe bus.
After the GPGPU device portion finishes operating on the data, the processed data
is transferred back to the CPU host memory via device-to-host (D2H) operation. A
CUDA program may contain several interleaved host and device portions (similar
to the multiple graders case discussed above); however a prudent programmer must
be wary of communication costs incurred due to frequent H2D and D2H transfers.
To maximize the performance of CUDA programs, it is recommended to minimize
the host-device communications.

Let us investigate the structure of our first CUDA program. Listing 1 provides the
complete CUDA program for vector-vector addition. Line 1 includes the cuda.h
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header file that provides GPGPU device-related functions. Inside the main()
function, note the host and device pointer variables declaration in lines 14 and
15, respectively. It is recommended to provide the h_ prefix for the host pointer
variables and d_ prefix for the device pointer variables. These prefixes enable
programmers to avoid the accidental de-referencing of device pointers by the
host and vice-versa, which cause the programs to break with error messages.
The host portion of the CUDA program prepares the data for the GPGPU device
execution (see Lines 18 through 29) and allocates the host and device memories for
computations (Lines 19 though 25). For seamless programming, CUDA provides
the cudaMalloc() function (similar to host’s malloc() function) for allocating
device pointers in the GPGPU device memory.

Once the host portion of the code finishes the necessary preprocessing steps, it
initiates a host-to-device data transfer via the cudaMemcpy() function call (Lines
31 and 32). The cudaMemcpy() function inputs the destination pointer, source
pointer, number of bytes to be transferred, and the data transfer direction (host-
to-device, device-to-host, etc.). Readers are encouraged to pay special attention to
cudaMemcpy() function and its parameters. Incorrect function parameters can
also lead to incorrect referencing of pointers. In Listing 1 on lines 31 and 32, the
destination pointer arguments are the device pointers d_a and d_b, respectively,
the source pointer arguments are the host pointers h_a and h_b, respectively, and
the data transfer direction is specified by the cudaMemcpyHostToDevice flag,
denoting host-to-device data transfer.

Listing 1 An example CUDA program illustrating vector-vector addition. Note the interleaved
CPU-host and GPGPU device portions. Host-device communications occur between the inter-
leaved host and device portions of the CUDA program.
1 . # i n c l u d e <cuda . h>
2 . # i n c l u d e < s t d i o . h>
3 . / / Device k e r n e l
4 . _ _ g l o b a l _ _
5 . vo id g p u _ k e r n e l ( i n t ∗d_a , i n t ∗d_b , i n t ∗d_c , i n t v e c _ s i z e ) {
6 . i n t t i d = t h r e a d I d x . x + b l o c k I d x . x∗blockDim . x ;
7 . i f ( t i d < v e c _ s i z e ) {
8 . d_c [ t i d ] = d_a [ t i d ] + d_b [ t i d ] ;
9 . }
1 0 . } / / end d e v i c e k e r n e l
1 1 . i n t main ( i n t a rgc , c h a r ∗∗ a r g v ) {
1 2 . / / d e c l a r e v a r i a b l e s
1 3 . i n t i , v e c _ s i z e ;
1 4 . i n t ∗h_a ,∗ h_b ,∗ h_c ; / / d a t a p o i n t e r s f o r hos t −s e c t i o n
1 5 . i n t ∗d_a ,∗ d_b ,∗ d_c ; / / d a t a p o i n t e r s f o r dev i ce −s e c t i o n
1 6 . / / Host−S e c t i o n p r e p a r e s t h e d a t a
1 7 . v e c _ s i z e =1000;
1 8 . / / Host−p o r t i o n p r e p a r e s t h e h o s t d a t a and a l l o c a t e s d e v i c e p o i n t e r s
1 9 . h_a =( i n t ∗ ) m a l loc ( s i z e o f ( i n t )∗ v e c _ s i z e ) ;
2 0 . h_b =( i n t ∗ ) m a l loc ( s i z e o f ( i n t )∗ v e c _ s i z e ) ;
2 1 . h_c =( i n t ∗ ) m a l loc ( s i z e o f ( i n t )∗ v e c _ s i z e ) ;
2 2 . / / A l l o c a t e GPGPU d e v i c e p o i n t e r s
2 3 . cudaMal loc ( ( vo id ∗∗)&d_a , s i z e o f ( i n t )∗ v e c _ s i z e ) ;
2 4 . cudaMal loc ( ( vo id ∗∗)&d_b , s i z e o f ( i n t )∗ v e c _ s i z e ) ;
2 5 . cudaMal loc ( ( vo id ∗∗)&d_c , s i z e o f ( i n t )∗ v e c _ s i z e ) ;
2 6 . / / Host−p o r t i o n p r e p a r e s t h e d a t a
2 7 . f o r ( i =0 ; i < v e c _ s i z e ; i ++) {
2 8 . h_a [ i ]= i ; h_b [ i ]= i ;
2 9 . }
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3 0 . / / CPU h o s t t r a n s f e r s t h e d a t a t o GPGPU d e v i c e memory
3 1 . cudaMemcpy ( d_a , h_a , s i z e o f ( i n t )∗ v e c _ s i z e , cudaMemcpyHostToDevice ) ;
3 2 . cudaMemcpy ( d_b , h_b , s i z e o f ( i n t )∗ v e c _ s i z e , cudaMemcpyHostToDevice ) ;
3 3 . / / CPU h o s t i n v o k e s t h e GPGPU d e v i c e p o r t i o n
3 4 . gpu_ke rne l <<<1 , 1000 > > >( d_a , d_b , d_c , v e c _ s i z e ) ;
3 5 . / / GPGPU d e v i c e t r a n s f e r s t h e p r o c e s s e d d a t a t o CPU h o s t
3 6 . cudaMemcpy ( h_c , d_c , s i z e o f ( i n t )∗ v e c _ s i z e , cudaMemcpyDeviceToHost ) ;
3 7 . / / CPU hos t −p o r t i o n resumes o p e r a t i o n
3 8 . f o r ( i =0 ; i < v e c _ s i z e ; i ++){
3 9 . p r i n t f ( ‘ ‘ \ n C[%d]=%d ’ ’ , i , h_c [ i ] ) ;
4 0 . }
4 1 . f r e e ( h_a ) ;
4 2 . f r e e ( h_b ) ;
4 3 . f r e e ( h_c ) ;
4 4 . c u d a F r e e ( d_a ) ;
4 5 . c u d a F r e e ( d_b ) ;
4 6 . c u d a F r e e ( d_c ) ;
4 7 . r e t u r n 0 ;
4 8 . }

After transferring the data to the GPGPU device, the host portion invokes the
GPGPU device kernel in Line 34. A device kernel is a GPGPU device function
that is callable from the host and executed by the GPGPU device. A device kernel
invocation is also referred to as a kernel launch. The calling name (gpu_kernel)
specifies the name of the device kernel. The angular brackets (<<< >>>) specify
the GPGPU device execution configuration, which mainly consists of the number
of thread blocks and the number of threads per block to operate on the input
data. We discuss threads and thread blocks in detail in section “CUDA Thread
Organization”. In this example when the gpu_kernel is launched, one thread
block containing 1000 CUDA threads are created that execute the kernel function
concurrently. More details on GPGPU device kernels and execution configuration
appear in section “Kernel: Execution Configuration and Kernel Structure”. The lines
4–9 are executed as the device portion of the code on the GPGPU device. The
__global__ keyword specifies that the following function (gpu_kernel in
our case) is a device kernel. The in-built variables threadIdx, blockIdx, and
blockDim in Line 6 enable programmers to access the threads’ global indices. In
this program, a thread with index tid operates on tid-th element of the vectors
A, B, and C. It should be noted that GPGPU device kernel calls are asynchronous,
meaning that after the kernel launch, the control immediately returns to the host
portion. In this program after the kernel launch, the host portion invokes the
cudaMemcpy() function (Line 36), which waits for all of the GPGPU threads to
finish the execution. After the GPGPU device finishes execution, the control returns
to line 36 where the device transfers the processed data (vector C) to the host.
Note that in this device-to-host transfer, the host pointer (h_c) is the destination,
the device pointer (d_c) is the source, and the direction of the data transfer is
device-to-host denoted by the cudaMemcpyDeviceToHost flag. The lines 44
through 46 release the device memory variables via the cudaFree() function
call.
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CUDA Compilation Flow

Now that we understand the structure of CUDA programs, let us study how
CUDA programs are compiled and a single executable is generated in a Linux-
based environment. NVIDIA’s nvcc compiler facilitates the splitting, compilation,
preprocessing, and merging of CUDA source files to create an application’s
executable. Although the nvcc compiler enables transparent code compilation, an
understanding of the compilation flow can enable further performance improvement.
The nvcc compiler in the Linux environment recognizes a selected set of input files
given in Table 2. In what follows, we study a high-level compilation flow of CUDA
source programs.

Figure 3 provides a high-level abstraction of the CUDA compilation process.
The nvcc compiler, in conjunction with a compatible host code compiler such as
gcc/g++, splits the compilation of CUDA source programs into two trajectories
namely, the host trajectory and the device trajectory. These trajectories are not
completely disjoint and often interact with each other via intermediate ‘stub’
functions. The host trajectory extracts the host code, host stub functions (functions
that set up the kernel launch when the device kernel is invoked by the host), and
compiles the host code to produce the .o object file. The device trajectory includes
multiple steps such as device code extraction, host stub extraction, and device code
optimization. The nvopenacc command inputs the intermediate compilation files
(.cpp3.i) to produce the virtual architecture assembly file (.ptx) that contains
a generic device instruction set. Next, the ptxas assembly command generates
the .cubin file: the real architecture binary for a specific GPGPU device. The
fatbinary stage combines multiple .cubin files (each targeting a different GPGPU
device) into a .fatbin binary file. This binary file is ultimately linked with the
host .o object file to create the final executable file, a.out. When a.out is
executed, an appropriate .cubin file is selected from .fatbin for the target
GPGPU device.

The CUDA toolkit documentation [7] provides a highly detailed explanation
of the compilation process. The nvcc compiler also offers programmers with

Table 2 List of input files recognized by the nvcc compiler in Linux-based environment

Input file type Description

.cu CUDA source file containing host and device portions

.c C source file

.cpp, .cc, .cxx C++ source file

.gpu Intermediate device-code only file

.o Object file

.a Library file

.so Shared object files (not included in executable)

.res Resource file
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Fig. 3 A high-level abstraction of nvcc compilation process. The nvcc compiler breaks the
compilation process into two trajectories: host trajectory and device trajectory

several compiler switches to control the code generation. Here, we only discuss two
important switches: --gpu-architecture and --gpu-code. These switches
allow for the GPGPU device architecture evolution. Before describing the role of
these compiler switches, let us define the term Compute Capability. The Compute
Capability of a device is represented by a version number that identifies the
supported hardware features of the GPGPU device. The Compute Capability is used
during the compilation process to determine the set of instructions for the target
GPGPU device. The purpose of the above-mentioned nvcc compiler switches is as
follows.

--gpu-architecture (short: -arch): This switch enables the selection of
a virtual architecture, thereby controlling the output of the nvopencc command. A
virtual architecture is a generic set of instructions for the virtual GPGPU device with
the desired compute capabilities. By itself, the virtual architecture does not represent
a specific GPGPU device. Some example values of --gpu-architecture
switch are: compute_20 (Fermi support); compute_30 (Kepler support);
compute_35 (recursion via dynamic parallelism); compute_50 (Maxwell
support).

--gpu-code (short: -code): The switch enables the selection of a specific
GPGPU device (the actual GPU architecture). Some examples values include:
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Table 3 Examples of code generation using --gpu-architecture and --gpu-code
switches

Example Description

nvcc vector.cu The fatbinary includes two cubins;

--gpu-architecture=compute_30 one cubin corresponding to each architecture.

--gpu-code=sm_30,sm_35

nvcc vector.cu The same as the above with the inclusion

--gpu-architecture=compute_30 of PTX assembly in the fatbinary.

--gpu-code=compute_30,
sm_30,sm_35

nvcc vector.cu Fails because sm_20 is lower than the

--gpu-architecture=compute_30 virtual architecture compute_30

--gpu-code= sm_20,sm_30

sm_20 (Fermi support); sm_30 (Kepler support); sm_35 (recursion via dynamic
parallelism); sm_50 (Maxwell support).

In what follows, we outline the general guidelines used to set values of
the above mentioned compiler switches for different types of code generation.
The --gpu-architecture switch takes a specific value, whereas the
--gpu-code switch can be set to multiple architectures. In such a case, .cubin
files are generated for each architecture and included in the fatbinary. The
--gpu-code switch can include a single virtual architecture, which causes
the corresponding PTX code to be added to the fatbinary. The NVIDIA
documentation suggests keeping the value of --gpu-architecture switch
as low as possible to maximize the number of actual GPGPU devices. The
--gpu-code switch should preferably be higher than the selected virtual
architecture. Table 3 provides several compilation examples for code generation.
We encourage readers to peruse the Nvidia software development kit (SDK) for
sample Makefiles and adapt them for their respective applications and GPGPU
devices.

Active Learning Exercise 3 – Write a compilation command for generating a
fatbinary with PTX included for Fermi and Kepler architectures.

CUDA Thread Organization

A CUDA program follows Single Program, Multiple Data (SPMD) methodology
where several thousands of threads work concurrently to execute the same kernel
function on different data elements. However, different groups of threads may be
executing different sections of the same CUDA kernel. To enable CUDA threads
to access the relevant data elements upon which to operate, it is imperative to fully
understand the CUDA thread organization. The CUDA threads are organized in a
two-level hierarchy of grids and blocks. A grid is a three-dimensional collection
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Fig. 4 Two examples of
CUDA grids and thread
blocks. When Kernel1 is
called, it launches a 2 × 2
grid of 2 × 2 thread blocks.
When Kernel2 is called, it
launches a 1D grid with two
1D thread blocks with each
block containing 5 threads

of one or more blocks and a block is a three-dimensional collection of several
threads. When a kernel function is called, a grid containing multiple thread blocks
is launched on the GPGPU device (Fig. 4). As shown in the same figure, when
the kernel function Kernel1 is called, a two-dimensional grid of thread blocks
(2 blocks each in x and y dimensions) is launched on the GPGPU device. In this
example, each thread block is a two-dimensional arrangement of threads with two
threads in both the x and y dimensions. The Kernel2 function call launches a
CUDA grid with two thread blocks, where each thread block is a one-dimensional
arrangement of five threads. For illustration purposes, the above examples work with
only four or five threads per block. Readers should note that GPGPU devices require
a minimum number of threads per block depending on the Compute Capability.

First, let us investigate CUDA grids. As mentioned earlier, each grid is a three-
dimensional arrangement of thread blocks. When the kernel function is launched,
the first parameter in execution configuration, <<<dimGrid, ..>>>, specifies
the dimensions of the CUDA grid. The size of grid dimensions depends on the
Compute Capability of the GPGPU device. In CUDA programs, the dimensions of
the grids can be set using the C structure, dim3, which consists of three fields:
x, y, and z for x, y, and z dimensions, respectively. By setting the dimensions
of CUDA grids in the execution configuration, we automatically set the values of
x, y, and z fields of the predefined variable, gridDim. This variable is used in
the kernel function to access the number of blocks in a given grid dimension. The
blocks in each dimension are then accessed via the predefined variable, blockIdx,
which also contains three fields: x, y, and z. The variable blockIdx.x takes on
values ranging from 0 to gridDim.x-1; blockIdx.y takes on values ranging
from 0 to gridDim.y-1; and blockIdx.z takes on values ranging from 0 to
gridDim.z-1. Table 4 provides examples of CUDA grid initialization using the
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Table 4 Examples of CUDA grid initialization using dim3 structure. The corresponding values
(range of values) of gridDim and blockIdx variables are shown

gridDim blockIdx

Example Description variable variable

dim3 dimGrid1(32,1,1) 1D grid with 32 thread-blocks x y z x y z

32 1 1 0–31 0 0

dim3 2D grid with 16 blocks in 16 16 1 0–15 0–15 0

dimGrid2(16,16,1) x and y dimensions

dim3 3D grid with 16 blocks in 16 16 2 0–15 0–15 0–1

dimGrid3(16,16,2) x and y dimensions and 2

blocks in z dimension

dim3 structure and illustrates the values of gridDim and blockIdx variables.
Note that the unused dimensions in the dim3 structure are set to one.

The dimensions of a CUDA grid can also be set at runtime. For instance, if a
programmer requires 256 threads per block to work on n elements, the dimensions
of the grid can be set as:

<<<dimGrid(round_up(n,256)),..>>>. Note that round_up()
function is required to launch enough thread blocks to operate on all of the n
elements.

Active Learning Exercise 4 – Initialize a three-dimensional CUDA grid with two
blocks in each dimension. Give the values of pertinent predefined variables.

Next, we turn our attention to CUDA thread blocks. As mentioned before, the
CUDA thread blocks are three-dimensional arrangements of threads. The second
parameter in the execution configuration, <<<dimGrid,dimBlock,..>>>,
specifies the dimensions of a single thread block. Similar to grids, the thread
block dimensions can also be set using the dim3 structure. It should be noted that
the total number of threads in a block should not exceed 1024. Once the block
dimensions are set, the x, y, and z fields of the in-built variable, blockDim
are initialized. Each field of blockDim variable denotes the number of threads
in x, y, and z dimensions. Each thread in a given thread block is then accessed
using the predefined variable, threadIdx. Akin to the blockIdx variable, the
threadIdx variable has three fields namely, threadIdx.x varying from 0
to blockDim.x-1, threadIdx.y varying from 0 to blockDim.y-1, and
threadIdx.z varying from 0 to blockDim.z-1. Table 5 provides examples
of block dimension initialization and the corresponding values of blockDim and
threadIdx variables.

Active Learning Exercise 5 – Initialize a 2D CUDA block with 16 threads in each
dimension. Give the values of pertinent predefined variables.

As discussed before, the maximum grid and block dimensions depend on the
Compute Capability of the GPGPU device. It is always a good idea to verify these
values for newer architectures. Table 6 provides the maximum device specific values
for Compute Capability 3.x, 5.x, and 6.x devices.
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Active Learning Exercise 6 – Investigate the device specific values of earlier
compute capabilities, i.e. 1.x and 2.x. Also provide one GPGPU device from these
compute capabilities. What are the significant changes in device specific values for
Compute Capability 2.x onwards? Make a note on how these changes influence the
GPGPU programming.

Kernel: Execution Configuration and Kernel Structure

As readers may recall, several thousands of threads created by the programmer in a
CUDA program concurrently execute a special device function, the kernel. The host
portion of the CUDA program asynchronously calls the CUDA kernel, meaning that
the control immediately returns to the host portion after the kernel launch. During
the kernel execution, the host portion may perform some computations (thereby
overlapping computations) or may choose to wait for the GPGPU device to finish
operating on the data. An example of kernel launch is as follows:

gpu_kernel <<<dimGrid,dimBlock>>> (arg1, arg2,..,argN);
In the above statement, the GPGPU device kernel named gpu_kernel is

executed by all of the threads created in the CUDA program. The number of
threads created is a function of the kernel execution configuration specified by the
dimGrid and dimBlock (dim3 type) variables configured by the programmer
(see Tables 4 and 5 for examples). As discussed in the foregoing section, the
dimGrid variable specifies the number of CUDA blocks arranged in x, y, and z
dimensions of a CUDA grid, whereas the dimBlock variable specifies the number
of CUDA threads arranged in x, y, and z dimensions in a CUDA block. A general
procedure for setting an execution configuration is follows.

1. Set the thread block dimensions and the number of threads in each dimension
such that the total number of threads in a block does not exceed 1024. Pay
attention to GPGPU device specific limits (see Table 6).

2. Calculate the number of thread blocks required in each grid dimension.

Table 5 Examples of CUDA block initialization using dim3 structure. The corresponding values
(range of values) of blockDim and threadIdx variables are shown

blockDim threadIdx

Example Description variable variable

dim3 dimblock1(32,1,1) 1D block with 32 threads x y z x y z

32 1 1 0–31 0 0

dim3
dimblock2(32,32,1)

2D block with 32 threads in x
and y dimensions

32 32 1 0–31 0–31 0

dim3
dimblock3(32,32,2)

Incorrect. The number of
threads in the block exceeds
1024.

– – – – – –
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Table 6 Limitations on device specific parameters for Compute Capability 3.x, 5.x, and 6.x
devices

Device parameter Maximum number

Maximum number of grid dimensions 3

Grid maximum in x dimension 231 − 1

Grid maximum in y and z dimensions 216 − 1

Maximum number of block dimensions 3

Block maximum in x and y dimensions 1024

Block maximum in z dimension 64

Maximum threads per block 1024

Example GPGPU device (3.x) Kepler GK110

Example GPGPU device (5.x) Maxwell GM200

Example GPGPU device (6.x) Pascal GP102

Once the execution configuration is set and the kernel is launched, it is customary
for each thread to ‘know’ its local and global thread identification numbers (IDs).
It is via these thread IDs that different threads access their respective portions of
the data. As discussed in section “CUDA Thread Organization”, threads can access
their IDs inside the device kernel function using in-built variables: gridDim,
blockDim, blockIdx, and threadIdx. These variables are set when the
execution configuration is passed to the kernel during the kernel launch. The
methodology of setting the execution configuration usually depends on the type
of parallel patterns in an application. Simple parallel patterns such as vector-
vector addition, prefix sum, etc. may only require one-dimensional execution
configuration. Whereas more complex patterns such as matrix-matrix multipli-
cation, two-dimensional image convolution, etc. intuitively lend themselves to
two-dimensional execution configuration. More complex applications that operate
on three-dimensional data are parallelized using a three-dimensional execution
configuration. In what follows, we use two example parallel patterns illustrating
one-dimensional and two-dimensional execution configurations, namely vector-
vector addition and matrix-matrix multiplication. We study how the execution
configuration is set and the threads are accessed inside the device kernel function
for these two parallel patterns. These examples help us build our intuition for one-
and two-dimensional grids and blocks, which can be easily extended to three-
dimensional execution configuration.

Consider addition of two vectors A and B, each containing n elements. The result
of addition is stored in vector C as illustrated by Fig. 1. We use 1D blocks and grids
for this case, given that our working arrays A, B, and C are one-dimensional arrays.
An example execution configuration with 256 threads per block appears in Listing 2.

Listing 2 The example illustrates an execution configuration with 256 threads per block for
vector-vector addition. The example also shows how a thread accesses its global index/identifier
(ID) in the CUDA grid.
/ / A u x i l i a r y C f u n c t i o n f o r r o u n d i n g up
i n t round_up ( i n t numera to r , i n t d e n o m i n a t o r ) {
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Fig. 5 The illustration shows how a thread accesses its global ID and the corresponding data
element in the vector

r e t u r n ( n u m e r a t o r + denomina to r −1) / d e n o m i n a t o r ;
}

/ / I n s i d e main

/ / S t e p 1 : S e t t h e b l o c k c o n f i g u r a t i o n
1 . dim3 dimBlock ( 2 5 6 , 1 , 1 ) ;
/ / S t ep 2 : S e t t h e g r i d c o n f i g u r a t i o n
2 . dim3 dimGrid ( round_up ( n , 2 5 6 ) , 1 , 1 ) ;
/ / GPU k e r n e l c a l l
3 . g p u _ k e r n e l <<<dimGrid , dimBlock >>>(A, B , C ) ;
:
:
/ / I n s i d e g p u _ k e r n e l f u n c t i o n ( d e v i c e p o r t i o n )
:
/ / The l o c a l t h r e a d ID i n a g i v e n b l o c k

A. l o c a l _ t i d = t h r e a d I d x . x ;
/ / The g l o b a l t h r e a d ID i n t h e e n t i r e g r i d
B . g l o b a l _ t i d = l o c a l _ t i d + b l o c k I d x . x∗blockDim . x ;
:
/ / Array a c c e s s

AA. C[ g l o b a l _ t i d ] = A[ g l o b a l _ t i d ] + B[ g l o b a l _ t i d ] ;

In Listing 2, Line 1 sets the x dimension of the thread block to 256 and the
remaining unused fields (y and z) are set to one. In Line 2, the x dimension of
the grid is set to round_up(n,256), whereas the unused y and z dimensions
are set to 1. The rounding up operation (using round_up()) is performed to
create enough number of thread blocks to execute all of the n data elements.
Inside the gpu_kernel function, Line A performs the access of the local thread
ID, i.e. the thread’s ID in its block. Line B shows how a thread accesses its
global thread ID. In general, the global thread ID in any dimension follows
the formula: global_tid = local_tid + offset. In this case, the offset
equals blockIdx.x*blockDim.x and local ID equals threadIdx.x. Each
thread then accesses a unique element of vectors A, B, and C using the global
thread ID (global_tid) in Line AA. Figure 5 illustrates the global thread ID
access discussed above.

Next, we consider the example of matrix-matrix multiplication to illustrate
two-dimensional execution configuration. For simplicity, assume multiplication of
two 2D matrices An×n and Bn×n of dimensions n × n each. The result of this
multiplication is stored in another 2D matrix of the same dimensions, Cn×n. For
the purpose of illustration, assume 16 × 16 as the thread block dimensions. Readers
should recall that the number of threads per block should not exceed 1024. The
dim3 type variables, dimGrid and dimBlock, are configured as shown in
Listing 3.
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Listing 3 Configuration of dimGrid and dimBlock in the host portion; and access of local and
global thread IDs in the device portion.
/ / P r e p a r i n g t h e e x e c u t i o n c o n f i g u r a t i o n i n s i d e h o s t p o r t i o n o f t h e code
/ / S t e p 1 : S e t t h e b l o c k c o n f i g u r a t i o n
1 . dim3 dimBlock ( 1 6 , 16 , 1 ) ;
/ / S t ep 2 : S e t t h e g r i d c o n f i g u r a t i o n
2 . dim3 dimGrid ( round_up ( n , 1 6 ) , round_up ( n , 1 6 ) , 1 ) ;
/ / GPU k e r n e l c a l l
3 . g p u _ k e r n e l <<<dimGrid , dimBlock >>>(A, B , C ) ;
:
:
/ / I n s i d e g p u _ k e r n e l f u n c t i o n ( d e v i c e p o r t i o n )
:
/ / The l o c a l t h r e a d ID i n x−d im e ns ion i n a g i v e n b l o c k

A. l o c a l _ t i d x = t h r e a d I d x . x ;
/ / The l o c a l t h r e a d ID i n y−d im e ns ion i n a g i v e n b l o c k
B . l o c a l _ t i d y = t h r e a d I d x . y ;
/ / The g l o b a l t h r e a d ID i n x−d imens ion i n t h e e n t i r e g r i d
C . g l o b a l _ t i d x = l o c a l _ t i d x + b l o c k I d x . x∗blockDim . x ;
/ / The g l o b a l t h r e a d ID i n y−d imens ion i n t h e e n t i r e g r i d

D. g l o b a l _ t i d y = l o c a l _ t i d y + b l o c k I d x . y∗blockDim . y ;
:
/ / Array a c c e s s

AA. a=A[ g l o b a l _ t i d x ] [ g l o b a l _ t i d y ] ; b=B[ g l o b a l _ t i d x ] [ g l o b a l _ t i d y ] ;

In the example shown in Listing 3, a dim3 structure (dimBlock) for 2D CUDA
block is declared with 16 threads in x and y dimensions, respectively; the unused
z dimension is set to 1. Because the matrices are square with n elements in x and
y dimensions, the CUDA grid consists of round_up(n,16) number of CUDA
blocks in x and y dimensions; the unused z dimension is set to 1 (Line 2). Inside the
gpu_kernel, the local and global thread IDs in x and y dimensions are accessed
as shown in lines A through D. The global element access using the global thread
IDs is elucidated in Line AA. Figure 6 illustrates the above discussed concept for
two-dimensional thread ID access.

In the foregoing examples and parallel patterns similar to them, readers should
ensure that the threads cover all of the data elements and the number of idle threads
is minimized. For instance, consider an example of addition of two vectors with
1000 elements each. A choice of 256 threads per block results in four thread blocks,
thereby creating 1024 threads for the entire application. Because the threads with
global IDs 0 through 999 operate on the corresponding data elements 0 through
999, the threads with IDs 1000 through 1023 remain idle. Similarly, a choice of
200 threads per block results in 5 thread blocks with no idle threads. However,
there is more to execution configuration than simply creating sufficient number of
threads. The number of threads per block and thread blocks affect the number of
concurrent thread groups (a group of 32 concurrent threads is called a warp) active
on a streaming multiprocessor. This concept is discussed in detail in section “CUDA
Memory Organization”.

Active Learning Exercise 7 – Create a 2D grid with 2D blocks for operation on
an image of size 480 × 512. Elucidate, how each thread accesses its ID and its
corresponding pixel element (x, y). How can you extend this process for a color
image 480 × 512 × 3 where the third dimension corresponds to the red, green, and
blue (RGB) color channels?
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Fig. 6 The illustration shows how a thread accesses its global 2D ID (x, y) and the corresponding
data element (x, y) in a two-dimensional matrix, An×n

CUDA Memory Organization

The GPGPU devices are throughput-oriented architectures, favoring compute-logic
units over memory units. The GPGPU device’s main memory (also called the
device memory) is usually separate from the GPGPU device. Consequently, most
of the CUDA programs observe a performance bottleneck due to frequent device
memory accesses. Therefore, programmers pursuing high-performance on GPGPU
devices must have a deep understanding of the device memory hierarchy. A sound
understanding of the CUDA memory hierarchy enables programmers to perform
optimizations effectively. In what follows, we discuss the device memory hierarchy
with respect to the CUDA programming model.

Figure 7 shows an abstract representation of a CUDA GPGPU device with its
streaming multiprocessors interacting with the device memory. Henceforth, we refer
to this memory hierarchy as the CUDA memory hierarchy.

As shown in Fig. 7, a GPGPU device contains multiple streaming processors
(SMs), each containing multiple CUDA cores. In a typical CUDA program, the
thread blocks are launched on the SMs while the CUDA cores execute the threads
in a thread block. The CUDA memory hierarchy follows a pyramid fashion from
the fastest but smallest memory units to the slowest but largest memory units as
under:

• On-chip Registers (≈32 K registers per SM) – In a SM, each CUDA core has
exclusive access to its own set of registers. The register accesses are blazingly
fast, each access taking only one clock cycle. The lifetime of registers is the
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Fig. 7 The CUDA memory hierarchy: at the lowest level, CUDA cores inside SMs have access
to fast registers. All of the CUDA cores in a given SM have shared access to L1 cache/shared
memory (fast but slower than registers). All the SMs share the L2 cache (if present). The farthest
memory unit from the GPGPU device is the device memory, which consists of special memory
units including local memory, cached constant memory, texture memory, and global memory

lifetime of a thread. The automatic variables in the CUDA kernel are allotted
registers depending on the device’s Compute Capability. The leftover registers
spill into the device’s local memory, which resides in the off-chip device memory.

• On-chip Shared memory (≈64 KB per SM) – Further away from the registers
is the shared memory shared by all of the CUDA cores in a SM. The accesses
to shared memory are also fast; an access typically takes ≈30 clock cycles. The
shared memory persists for the lifetime of a thread block.

• Off-chip Device Memory (typically several GB) – The largest and perhaps the
most important memory unit of all is the GPGPU device memory, which resides
in the off-chip random access memory (RAM). The device memory further
consists of sub-units including:

– Local memory for storing ‘spilled’ register variables.
– Cached constant memory for storing constant values.
– Texture memory with specialized hardware for filtering operations.
– Global memory accessible to the entire GPGPU device via CUDA memory

transfer functions.

Accesses to the device memory typically take 300–600 clock cycles. However,
a CUDA program can obtain significant performance boost due to L1/L2 caches
in recent GPGPU architectures. The device memory persists for the lifetime of
the entire program.
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In what follows, we explore registers, shared memory, constant memory, and the
global memory in detail. The texture memory is operated via the Texture Object
APIs and its usefulness is limited in general-purpose computing. Therefore, we
skip the discussion on texture memory, although readers are encouraged to explore
texture memory discussed in the CUDA programming guide [7].

Registers

As shown in Fig. 7, each streaming multiprocessor has a set of on-chip registers that
provide fast data access for various operations, which would otherwise consume
several clock cycles due to frequent device memory accesses. Upon compilation
with the nvcc compiler, the automatic variables declared in a CUDA kernel are
stored in registers. However, not all automatic variables reap the benefits of registers
because the GPGPU device’s Compute Capability limits the maximum number of
registers per streaming multiprocessor. If the number of requested registers in a
CUDA kernel exceeds the device’s capability, the leftover variables spill into the
local memory (in off-chip device memory). Thereafter, any subsequent accesses
to these variables may consume several hundreds of clock cycles. With recent
advancements in the GPGPU device architecture and inclusion of caches, this
performance artifact can be alleviated, however it is application-specific.

The number of registers used by threads in a CUDA kernel in conjunction with
the number of threads per block also has a major performance implication – to what
extent are the SMs occupied? The GPGPU devices realize parallelism via warps,
a group of 32 concurrent threads. All of the threads in a warp execute the same
instruction. Although, different warps may be executing different instructions of the
same kernel. A streaming multiprocessor can have several active warps that can
execute concurrently – when a set of warps executes memory instructions, the other
set of warps performs useful computations. This level of concurrency amortizes the
global memory latency. The multiprocessor occupancy is defined as the ratio of the
number of active warps on SM to the maximum number of warps that can reside
on a SM. Consequently, this ratio can at most be equal to 1 and a high value of
multiprocessor occupancy is desirable to ensure high concurrency.

With the above background, let us study how the number of registers per thread
and the number of threads per block affect the multiprocessor occupancy. Consider
the Kepler K20Xm GPGPU device architecture, which belongs to Compute Capa-
bility 3.5. For this device, the maximum number of registers per SM is equal to
65536 and the maximum number of warps per SM is equal to 64. Using the nvcc
compiler’s Xptxas switch, we can determine the number of registers used and the
amount of spill into the local memory. An illustration appears in Listing 4 where
we compile a CUDA program, convolve.cu. As shown in the listing, the total
number of registers per thread is 23 and there is no spill into the device’s local
memory.
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Listing 4 An illustration of nvcc compiler’s Xptxas option to determine the number of registers
used and the amount of register spill into the local memory.
bash −4.2# nvcc −Xptxas −v −a r c h =sm_35 c o n v o l v e . cu
p t x a s i n f o : 0 \ , b y t e s gmem
p t x a s i n f o : Compi l ing e n t r y f u n c t i o n ’ _ Z 8 c o n v o l v e P i i i P f i S _ ’ f o r ’ sm_35 ’
p t x a s i n f o : F u n c t i o n p r o p e r t i e s f o r _ Z 8 c o n v o l v e P i i i P f i S _
0 \ , b y t e s s t a c k frame , 0 \ , b y t e s s p i l l s t o r e s , 0 \ , b y t e s s p i l l l o a d s
p t x a s i n f o : Used 23 r e g i s t e r s , 3 6 0 \ , b y t e s cmem [ 0 ]

The multiprocessor occupancy for a given kernel is obtained via Eqs. 2 through 5.

registers_per_block = registers_per_thread × threads_per_block (2)

total_blocks = (max_registers_per_SM)

(registers_per_block)
(3)

resident_warps = min

(
maximum_warps,

total_blocks × threads_per_block

32

)

(4)

occupancy = resident_warps

maximum_warps
(5)

For the example in Listing 4, let us assume that the CUDA kernel is launched with
256 threads per block. The total number of registers per block is: 23 × 256 = 588
registers. For this example, a SM in theory can execute a total of 11 blocks.
The total number of resident warps is min(64, 11×256

32 ) = 64, thereby yielding
multiprocessor occupancy equal to 1. Equations 6 through 11 show the calculations
for multiprocessor occupancy if the threads in the above example were to use 100
registers.

registers_per_thread = 100; threads_per_block = 256 (6)

registers_per_SM = 65536;maximum_warps = 64 (7)

registers_per_block = 100 × 256 = 25600 (8)

total_blocks =
⌊

65536

25600

⌋
= 2 (9)

resident_warps = min(64,
2 × 256

32
) = 16 (10)

occupancy = 16

64
= 25% (11)

NVIDIA’s CUDA occupancy calculator facilitates the occupancy calculations
and elucidates the impact of varying thread block size and register count per thread
on the multiprocessor occupancy. We discuss the occupancy calculator in detail in
section “CUDA Optimizations”.
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Active Learning Exercise 8 – For a Compute Capability device 3.0, the nvcc
compiler reports a usage of 50 registers per thread. If the thread block size is 512,
what is the multiprocessor occupancy? Make sure to use the NVIDIA GPU data
for the device related constants (maximum registers per SM, warp size, maximum
number of warps per SM, etc.). Will the occupancy be any better if the kernel were
to use 128 threads per block?

Shared Memory

NVIDIA GPGPU devices offer 64 KB on-chip shared memory that is used to cache
frequently accessed data. The shared memory is slower than registers (≈30 cycles
per access versus 1 cycle per access for registers). However unlike registers, shared
memory is accessible to all the threads in a thread block. The shared memory space
is commonly used for thread collaboration and synchronization. These accesses, if
performed via global memory, would typically consume several hundreds of clock
cycles, thereby reducing the performance.

The kernel functions should be ‘aware of’ whether the variables are located in
the device memory or in the shared memory. Programmers can statically allocate
shared memory inside the kernel using the __shared__ qualifier. Some examples

Table 7 Examples of CUDA shared memory declaration

Example Syntax Description

1 __shared__ float a; The variable a is allocated in
shared memory and is accessible
to all threads inside a thread block

2 __shared__ float
A[BLOCKSIZE][BLOCKSIZE];
//All threads
load a value
tidx=threadIdx.x;
tidy=threadIdx.y;
global_tidx=
tidx+blockIdx.x

*blockDim.x;
global_tidy=
tidy+blockIdx.y

*blockDim.y;
A[tidx][tidy]=
global_A[global_tidx]
[global_tidy];

A two-dimensional array A
is declared in the shared
memory. The dimensions are
BLOCKSIZE x BLOCKSIZE
where BLOCKSIZE is the
number of threads per block.
All of the threads inside the
thread block can access this
array. This type of allocation is
usually performed when each
thread inside a thread block loads
a value from the device global
memory to shared memory,
thereby optimizing the global
memory bandwidth

3 __shared__ float *A;
A=(float *)malloc
(sizeof(float)

*BLOCKSIZE);

Incorrect because array A is
not static. See text for dynamic
shared memory allocation
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of static shared memory allocation appear in Table 7. In the first example, a simple
shared memory variable, a is declared. Example 2 shows how a 2D shared memory
variable is declared inside a kernel function. All of the threads in a thread block
have access to this 2D shared memory variable. Example 2 also shows how local
threads in a thread block load the corresponding global data element into this shared
variable. The last example shows an incorrect way of dynamically allocating a
shared memory variable.

It is also possible to dynamically allocate variables in the shared memory.
The third parameter of execution configuration (the first two parameters are for
specifying the dimensions of grid and thread blocks, respectively) specifies the
size of the shared memory to be dynamically allocated inside the kernel function.
Additionally, the dynamic shared memory variable inside the kernel function is
declared with the extern qualifier. For example, consider that the BLOCKSIZE
parameter is determined at runtime – in this case, example 3 in Table 7 for allocating
array A will not work. Programmers can specify the size of the shared memory in
the execution configuration during the kernel call as shown in Listing 5.

Note that it is also possible to perform multiple dynamic shared memory
allocations by specifying the combined size of required arrays in the execution
configuration. Inside the kernel function, a single shared memory array is used
with appropriate offsets (using array sizes) to access the individual shared memory
arrays.

Listing 5 An illustration of dynamic shared memory allocation by specifying the amount of
memory to be allocated in the execution configuration. The corresponding shared memory variable
declaration has extern qualifier.
_ _ g l o b a l _ _ v o i d k e r n e l ( k e r n e l −a r g s ) {
:
e x t e r n _ _ s h a r e d _ _ f l o a t A [ ] ;
:
}
i n t main ( ) {
: k e r n e l <<<dimGrid , dimBlock , s i z e o f ( f l o a t )∗BLOCKSIZE>>>( k e r n e l −a r g s ) ;
:
}

Next, we study how threads within a thread block synchronize their accesses
to the shared memory for thread collaboration. The threads in a thread block can
synchronize via the __syncthreads() function, which provides a barrier for
all of the threads in a thread block. Unless all the threads in a thread block finish
executing the code preceding the __syncthreads(), the execution does not
proceed ahead. This concept is illustrated by Fig. 8. More on __syncthreads()
function appears in section “CUDA Optimizations” where we discuss shared mem-
ory optimization for algorithms that re-use the data (matrix-matrix multiplication
for instance).

Active Learning Exercise 9 – Declare a BLOCKSIZE sized shared memory
variable called mask inside of a CUDA kernel. Outline the methodology for
allocating shared memory space for the shared variable, mask.

Active Learning Exercise 10 – In the foregoing section, we mentioned a
method of allocating multiple shared memory variables inside a CUDA kernel. The
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Fig. 8 Threads 0 to t inside a thread block synchronizing via the __syncthreads() function.
All of the preceding statements before the __syncthreads() statement must be executed by
all the threads in a thread block

methodology is as follows: (a) Specify the overall shared memory size in bytes
in the execution configuration. This step is similar to the dynamic shared memory
allocation method. (b) Declare a single extern __shared__ variable in the
CUDA kernel. (c) Using the individual shared variable sizes as offsets, access the
appropriate base addresses using the shared variable declared in Step b. Employ the
outlined methodology to reserve a shared memory space for three variables: float
A (k elements), float B (l elements), and float C (m elements).

In addition to shared memory, there are other mechanisms that enable threads
to communicate with each other. The preceding discussion examines how threads
within a block synchronize using the shared memory and __synchthreads()
function. The threads within a warp can also synchronize and/or communicate via
warp vote functions and warp shuffle functions. As readers may recall, a warp is a
group of 32 concurrent threads.

The vote functions allow active threads within a warp to perform reduce-and-
broadcast operation. The active threads within a warp are all threads that are in the
intended path of warp execution. The threads that are not in this path are disabled
(inactive). The vote functions allow active threads to compare an input integer from
each participating thread to zero. The result of comparison is then broadcast to all
of the participating threads in the warp. The warp voting functions are as follows.

• __all(int input): All participating threads compare input with zero.
The function returns a non-zero value if and only if all active threads evaluate
the input as non-zero.
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• __any(int input): The function is similar to __any(input), however
the function returns a non-zero value if and only if any one of the active threads
evaluates the input as non-zero.

• __ballot(int input): The function compares the input to zero on all
active threads and returns an integer whose Nth bit is set when the Nth thread of
the warp evaluates the input as non-zero.

The shuffle functions (__shfl()) allow all active threads within a warp to
exchange data while avoiding shared memory all together. At a time, threads
exchange 4 bytes of data; exchanges of 8 byte data is performed by calling shuffle
functions multiple times. The exchanges are performed with respect to a thread’s
lane ID, which is an integer number from 0 to warpSize − 1. Some of the shuffle
functions are as follows:

• __shfl(int var, int srcLane,int width=warpSize): This fun-
ction allows an active thread to look up the value of variable var in the source
thread whose ID is given by srcLane. If the width is less than warpSize
then each subsection of the warp acts as a separate entity with starting lane ID
of 0. If srcLane is outside the [0 : width − 1], then the function calculates the
source as srcLane%width.

• __shfl_up(int var, unsigned int delta, int width=warp
Size): The function calculates the lane ID of the source thread by subtracting
delta from the current thread’s lane ID and returns the value var held by the
source thread. If the width is less than warpSize then each subsection of
the warp acts as a separate entity with starting lane ID of 0. The source index
does not wrap around the value of width, therefore lower delta lanes are
unchanged.

• __shfl_down(int var,unsigned int delta,int width=warp
Size): This function is similar to __shfl_up() function, except that
__shfl_up() computes the source lane ID by adding delta to the current
thread’s lane ID. Similar to __shfl_up(), the function does not wrap around
for upper values of delta.

• __shfl_xor(int var,int laneMask,int width=warpSize):
This function calculates the source’s lane ID by performing bitwise-XOR of
the caller’s lane ID and laneMask. The value held by the resulting source is
returned into var. If width is less than warpSize, then each group of width
threads is able to access elements from earlier groups of threads. However, if a
group attempts to access later groups’ elements, then the function returns their
own value of the variable, var.

The warp vote and shuffle functions typically find their application when
programmers wish to perform reduction or scan operations. Note that our discussion
thus far comprised intra-block and intra-warp synchronizations. The synchroniza-
tion between two blocks can only be accomplished via global memory accesses,
which consumes significant amount of time. Programmers must pay attention to
the type of applications they are porting to the GPGPU devices – applications that
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involve significant memory accesses and frequent global memory synchronization
may perform better on the CPU host instead on the GPGPU device.

Constant Memory

The constant memory resides in the device memory and is cached. This memory
space is used for storing any constant values frequently accessed by the kernel
function, which would otherwise consume several clock-cycles if done via the
device global memory. The constant memory is also useful for passing immutable
arguments to the kernel function. The current GPGPU architectures provide L1 and
L2 caches for global memory, making the constant memory less lucrative. However,
constant memory can provide performance boost for earlier GPGPU architectures.
To declare constant memory variables inside a .cu file, programmers must declare
global variables with __constant__ prefix. For example,

__constant__ float pi=3.14159;
The host portion (CPU) is capable of changing a constant memory variable since

a constant variable is constant only with respect to the GPGPU device. The host
performs any changes to the constant memory via cudaMemcpyToSymbol()
function:

t e m p l a t e < c l a s s T> c u d a E r r o r _ t cudaMemcpyToSymbol (
c o n s t T & symbol , / / D e s t i n a t i o n a d d r e s s
c o n s t vo id &s r c , / / s o u r c e a d d r e s s
s i z e _ t count , / / t h e number o f b y t e s t o copy
s i z e _ t o f f s e t , / / O f f s e t from t h e s t a r t o f symbol
enum cudaMemcpyKind k ind ) ; / / k ind i s cudaMemcpyHostToDevice

Active Learning Exercise 11 – Consider a host variable h_Cosine, a one-
dimensional vector of constant size, Bins, initialized with cosine function values
at Bins number of angles between 0 and 2π . Declare a constant memory variable
d_Cosine of a fixed size equal to Bins. Perform a host-to-device copy from
h_Cosine to d_Cosine.

Global Memory

In section “CUDA Program Structure”, we explored how to manage the device
global memory using cudaMalloc and cudaMemcpy functions. In this section,
we study these functions in more depth. The device global memory is easily the
most important unit with respect to the CUDA architecture. It is the largest memory
unit where all (or at least, most) of the data for GPGPU processing is stored.
Because this memory unit is located in the off-chip RAM, frequent accesses to the
device global memory constitutes one of the major performance limiting factors
in GPGPU computing. As discussed before, the CPU host and GPGPU device
memories are usually disjoint. The host portion of a CUDA program explicitly
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allocates the device global memory for device variables. Throughout the program,
the host portion communicates with the GPGPU device by copying data to-and-
from the device global memory. In what follows, we discuss CUDA functions that
enable programmers to allocate the device memory variables and perform host-
device communications.

C programmers are already aware of the procedure for allocating and deallocat-
ing memory regions using the malloc() and free() functions, respectively. The
CUDA programming model provides simple C extensions to facilitate device global
memory management using the cudaMalloc() and cudaFree() functions.
The syntaxes appear under.

/ / cudaMal loc : h o s t p o r t i o n a l l o c a t e s d e v i c e g l o b a l memory f o r d e v i c e v a r i a b l e s
c u d a E r r o r _ t cudaMal loc (
vo id ∗∗ devP t r , / / Host p o i n t e r a d d r e s s t h a t w i l l s t o r e t h e
/ / a l l o c a t e d d e v i c e memory s a d d r e s s
s i z e _ t s i z e ) / / s i z e number o f b y t e s t o be a l l o c a t e d i n d e v i c e memory

/ / c u d a F r e e : h o s t p o r t i o n ‘ f r e e s ’ t h e d e v i c e g l o b a l memory
c u d a E r r o r _ t c u d a F r e e ( vo id ∗ d e v P t r ) ;
/ / The h o s t p o i n t e r a d d r e s s s t o r i n g t h e a l l o c a t e d e v i c e memory ’ s
/ / a d d r e s s t o be f r e e d

The data transfer between the host portion of the code and device portion of the
code is performed via the cudaMemcpy() function as follows:

/ / cudaMemcpy : Data t r a n s f e r be tween t h e h o s t and GPGPU d e v i c e
cudaMemcpy (
vo id ∗ d s t _ p t r , / / d e s t i n a t i o n a d d r e s s
c o n s t vo id ∗ s r c , / / s o u r c e a d d r e s s
s i z e _ t count , / / number o f b y t e s t o be t r a n s f e r r e d
cudaMemcpyKind k ind ) / / enum t y p e k ind where k ind can be
/ / cudaMemcpyHostToHost ( 0 ) , cudaMemcpyHostToDevice ( 1 ) ,
/ / cudaMemcpyDeviceToHost ( 2 ) , cudaMemcpyDeviceToDevice ( 3 )

Readers are encouraged to exercise caution with de-referencing the device
pointers inside the host portion, which can prove fatal for the CUDA program.
Seasoned CUDA programmers avoid such mistakes by adding h_ prefix for the
host pointers and d_ prefix for the device pointers. Additionally, readers are strongly
encouraged to free the allocated device global memory pointers because the GPGPU
device does not have a smart operating system for garbage collection. A complete
reboot may be the only way to recover the lost device global memory.

CUDA Optimizations

The CUDA programming model is not known for straight-forward GPGPU appli-
cation development. A naïve and sloppy CUDA program may provide little to no
performance benefits at all! To develop an efficient CUDA application, program-
mers must be highly intimate with the device architecture to reap its complete
benefits. Fortunately, researchers have meticulously studied different applications
on GPGPU architectures to provide a generic set of strategies to perform GPGPU
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Fig. 9 A list of commonly used memory-level optimization strategies to alleviate host-device and
global memory traffic

program optimization. Although, the strategies may vary from one application
to another. In general, CUDA provides three primary optimization strategies
namely, Memory-level optimization, Execution Configuration-level optimization,
and Instruction-level optimization. In addition, CUDA also offers program structure
optimization via unified memory. In what follows, we discuss each of these
optimization strategies.

Memory-Level Optimization

While CUDA programming model provides several memory-level optimizations,
we discuss memory optimization strategies to alleviate common performance
bottlenecks arising due to host-device transfers and global memory traffic. These
memory-level optimization strategies are listed in Fig. 9.

Memory-level optimization: Host-device transfers – One memory optimization
strategy is to reduce the frequent transfers between the host and the device since the
host-to-device bandwidth is usually an order of magnitude lower than the device-
to-device bandwidth. It is highly beneficial to transfer all of the relevant data to the
device memory for processing (even if it requires multiple kernel calls) and later
transfer the data back to the host memory once all of the operations are finished.
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Overlapping the kernel execution with data transfers using Zero-Copy can
further optimize the host-device bandwidth. In this technique, the data transfers are
performed implicitly as needed by the device kernel code. To enable Zero-Copy,
the GPGPU device should support the host-mapped memory. The CUDA program-
ming model provides cudaHostAlloc() and cudaFreeHost() functions
to allocate and free the paged host memory. The mapping of the paged host
memory into the address space of the device memory is performed by pass-
ing cudaHostAllocMapped parameter to cudaHostAlloc() function. The
GPGPU device kernel implicitly accesses this mapped memory via the device
pointer returned by the cudaHostGetDevicePointer() function. The func-
tions for managing the page mapped memory are as follows.

Listing 6 Functions for zero-copy between host and device.
c u d a E r r o r _ t c u d a H o s t A l l o c (
vo id ∗∗ p t r , / / Host p o i n t e r t o be paged
s i z e _ t s i z e , / / S i z e o f t h e paged memory i n b y t e s
u n s i g n e d i n t f l a g s ) ; / / cudaHostAl locMapped f o r z e r o copy .

c u d a H o s t G e t D e v i c e P o i n t e r (
vo id ∗∗ d e v p t r , / / Device p o i n t e r f o r GPGPU t o a c c e s s t h e paged memory
vo id ∗ h o s t p t r , / / The h o s t p o i n t e r o f t h e paged memory
u n s i g n e d i n t f l a g s ) ; / / f l a g s i s meant f o r any e x t e n s i o n s , z e r o f o r now

Listing 7 illustrates Zero-Copy between the CPU host and the GPGPU device.
The readers are also encouraged to read about cudaMemcpyAsync() [7] function
for asynchronous host-device data transfers.

Listing 7 Illustration of Zero-Copy between the CPU host and GPGPU device. The memory copy
is performed implicitly whenever the device accesses the host mapped memory via the device
pointer (d_nfire) returned by cudaHostGetDevicePointer() function.
i n t main ( ) {
:
/ / h o s t v e c t o r t o be page mapped
c h a r ∗ h _ n f i r e ;
/ / d e v i c e p o i n t e r f o r t h e mapped memory
c h a r ∗ d _ n f i r e ;
c u d a A l l o c H o s t ( ( vo id ∗∗)& h _ n f i r e , s i z e o f ( c h a r )∗ num_neurons , cudaHostAl locMapped ) ) ;
c u d a H o s t G e t D e v i c e P o i n t e r ( ( vo id ∗∗)& d _ n f i r e , ( vo id ∗ ) h _ n f i r e , 0 ) ) ;
:
k e r n e l <<dimGrid , dimBlock >>>( d _ n f i r e , num_neurons ) ;
:
}

Memory-level optimization: Caching in L1 and L2 caches; and coalescing – The
more recent GPGPU devices (Compute Capability 2 and higher) offer caches for
global memory namely the L1 and L2 caches. For Compute Capability devices 2.x,
by using the nvcc compiler flag dlcm, programmers can enable either both L1
and L2 caches by default (-Xptxas dlcm=ca) or L2 cache alone (-Xptxas
dlcm=cg). A cache line is 128 bytes and is aligned with a 128-byte segment in the
device memory. If both L1 and L2 caches are enabled, then the memory accesses
are serviced via 128-byte transactions. If only L2 cache is enabled, then the memory
accesses are serviced via 32-byte transactions. If the request size is 8 bytes, then



220 V. K. Pallipuram and J. Gao

the 128-byte transaction is broken into two requests, one for each half-warp. If the
request size is 16 bytes, then the 128-byte transaction is broken into four requests,
one for each quarter warp (8 threads). Each memory request is broken into cache
line requests, which are serviced independently. The cache behavior for GPGPU
devices is similar to general-purpose processors. If there is a cache hit, the request
is served at the throughput of L1 or L2 cache. A cache miss results in a request that
is serviced at the device global memory throughput.

Compute Capability 3.x, 5.x, and 6.x devices usually allow global memory
caching in L2 cache alone. However some 3.5 and 3.7 devices allow programmers
to opt for the L1 cache as well. The L2 caching for Compute Capability devices 3.x
and above is similar to Compute Capability 2.x devices.

A progam optimally utilizes the global memory when the accesses lead to
as many cache hits as possible. In such a case, threads within a warp complete
memory accesses in fewer transactions. This optimized global memory access
pattern is generally called coalesced access. The term global memory coalescing
had significant importance to Compute Capability 1.x devices, where coalesced
access rules were highly stringent. However, with the introduction of caches in
recent GPGPU architectures, the term coalescing has become obscure. To achieve
global memory ‘coalescing’ in recent GPGPU architectures, programmers must
strive to write cache-friendly codes that perform aligned accesses. Similar to CPU
architectures, good programming practices lead to optimal GPGPU codes.

Active Learning Exercise 12 – Perform research on Compute Capability 1.x
devices; and write down the rules for coalesced global memory accesses.

Memory-level optimization: Software-prefetching using registers and shared
memory – The device global memory is an order of magnitude slower than registers
and shared memory. Programmers can use the register and shared memory space
for caching frequently used data from the device global memory. This technique is
referred to as software prefetching; avid assembly language programmers among
readers may already be aware of this technique.

Memory-level optimization: Shared memory to alleviate global memory traffic
– The judicious use of shared memory space to reduce the global memory traffic
is a highly important technique especially for algorithms that exploit data locality,
matrix-matrix multiplication and several image processing applications for instance.
Here, we discuss how the shared memory space can be used to enhance the global
memory throughput using matrix-matrix multiplication as a case study. Readers
should recall the concept of matrix-matrix multiplication: any two matrices Am×n

and Bn×p are multiplied to yield a matrix, Cm×p. Any element cij in matrix Cm×p

is obtained by computing the scalar product between the ith row of matrix A and
j th column of matrix B. Let us first consider a naïve matrix-matrix multiplication
and find out why it sub-optimally utilizes the global memory bandwidth. Listing 8
shows the naïve implementation that multiplies two matrices of equal dimensions
(width x width each).

Listing 8 A naïve implementation of matrix-matrix multiplication kernel.
1 . _ _ g l o b a l _ _ vo id
2 . m a t r i x m u l _ k e r n e l ( f l o a t ∗d_A , f l o a t ∗d_B , f l o a t ∗d_C , i n t wid th ) {
3 . i n t row , co l , k =0;
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4 . f l o a t temp =0;
/ / t h r e a d a c c e s s e s g l o b a l row
5 . row = t h r e a d I d x . x + b l o c k I d x . x∗blockDim . x ;
/ / t h r e a d a c c e s s e s g l o b a l c o l
6 . c o l = t h r e a d I d x . y + b l o c k I d x . y∗blockDim . y ;
7 . i f ( row < wid th && c o l < wid th ) { / / o u t o f bound t h r e a d s must n o t work
8 . temp =0;
9 . f o r ( k =0; k< wid th ; k ++){
1 0 . temp+=d_A [ row∗ wid th + k ]∗ d_B [ k∗ wid th + c o l ] ;
1 1 . }
1 2 . d_C [ row∗ wid th + c o l ]= temp ;
1 3 . }
1 4 . }

A careful inspection of the kernel function in Listing 8 reveals that the per-
formance bottleneck is in lines 9 and 10. Note that in each iteration of the
for loop in Line 9, a thread performs two global memory loads (loads ele-
ments d_A[row*width +k] and d_B[k*width + col], respectively) and
performs two floating-point operations (multiplies the two loaded elements and
adds the product with the temp variable). Let us define the term computation-
to-global memory access (CGMA) ratio, which is the ratio of the total number of
computations to the total number of global memory accesses. The CGMA ratio
is often used to characterize a GPGPU kernel as a computation-bound kernel or a
communication-bound kernel. In our example of naïve matrix-matrix multiplication,
the CGMA ratio is (2 floating-point operations per 2 floating-point accesses) equal
to 1. This ratio is too small to reap the maximum benefits of a throughput-oriented
architecture. For instance, if the GPGPU device memory has a bandwidth of
200 GB/s, then the kernel in Listing 8 performs computations at the rate of 50 giga-
floating point operations per second (GFLOPS). This computation throughput does
not do justice to modern day GPGPU devices with peak performance as high as 10
TFLOPS for single-precision.

It is clear from the above example that the CGMA ratio for matrix-matrix multi-
plication needs to improve, possibly by boosting the global memory bandwidth. In
what follows, we discuss ‘tiled’ matrix-matrix multiplication using shared memory,
which enables us to improve the global memory bandwidth for this operation. Prior
to delving into the GPGPU implementation, let us investigate the concept of ‘tiling’.
To perform matrix-matrix multiplication, the matrices can be broken into smaller
tiles that are multiplied together to yield partial results. The partial results from
pertinent tile-multiplication are then added to obtain the final result.

For example, consider multiplication of two matrices, M4×4 and N4×4; the result
is stored in the matrix, P4×4 (see Fig. 10). The matrix P can be broken into four tiles
where tile-1 comprises elements P0,0, P0,1, P1,0, and P1,1; tile-2 comprises elements
P0,2, P0,3, P1,2, and P1,3, and so on. Consider the evaluation of tile-1 elements;
Fig. 10 shows the tile-1 elements of matrix P enclosed in the square box. The tile-1
elements are evaluated in two steps: In the first step, the curved tiles over matrices
M and N (see Fig. 10) are multiplied together to yield the partial result for tile-1
elements P0,0 through P1,1 (first two terms in the right hand side of the equations in
Fig. 10). In the second step, the tile over matrix M moves to the right (see Fig. 11)
and the tile over matrix N moves down (see Fig. 11) to compute the next set of
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Fig. 10 The tiles in matrices M and N (curved tiles) multiply to yield the partial results for the tile
in matrix P (highlighted in square box)

Fig. 11 The tiles in matrices M and N (curved tiles) multiply to yield the partial results for the tile
in matrix P (square box)
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Fig. 12 A general depiction of matrix-matrix multiplication on a multi-threaded architecture with
shared memory

partial results (last two terms in the right hand side of the equations in Fig. 11). The
partial results from the above two steps are added to produce the complete result
for tile-1 elements. This tile movement is in agreement with the concept of matrix-
matrix multiplication where we compute the scalar product between the rows of
the first matrix (M in this case) and the columns of the second matrix (N in this
case). The evaluation of the other tiles is similar to this tile-1 example. Readers are
encouraged to compute the results for the remaining tiles for practice.

In general, how does tiling help with parallelization of matrix-matrix multipli-
cation? To obtain an answer to this question, consider a multi-threaded computing
architecture (see Fig. 12) that stores the operand matrices in the off-chip memory,
which resides far away from the computing architecture. Consequently, accesses to
this off-chip memory is slow. Let us assume that this architecture is also equipped
with on-chip shared memory that provides faster access versus the off-chip memory.
The architecture contains four processing elements (PEs) that share the on-chip
memory. For the foregoing example of multiplying matrices M4×4 and N4×4,
envision the following scenario. Each one of the four PEs loads a curved tile
element from matrices M and N into the shared memory as depicted in Fig. 12
(top). PE1 loads M0,0 and N0,0; PE2 loads M0,1 and N0,1; and so on. After this
collaborative loading, the shared memory now contains the curved tiles from M and
N for the computation of the first set of partial result. Each PE computes its partial
result via shared memory look-up: PE1 computes the partial result for P0,0, PE2
computes the partial result for P0,1 and so on. Similarly, the PEs cooperatively load
the next set of curved tile elements (see Fig. 12 bottom) to evaluate the second set
of partial result. This collaborative loading has clearly reduced the number of trips
to the farther, off-chip memory, thereby providing tremendous benefits. Do we have
an architecture that facilitates this tiling operation? GPGPU devices are great fit!
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Listing 9 The shared memory implementation of matrix-matrix multiplication, also called as tiled
matrix-matrix multiplication.
0 . # d e f i n e TILEWIDTH 16
1 . _ _ g l o b a l _ _ vo id
2 . m a t r i x m u l _ k e r n e l ( f l o a t ∗d_A , f l o a t ∗d_B , f l o a t ∗d_C , i n t wid th ) {
3 . _ _ s h a r e d _ _ f l o a t Ashared [TILEWIDTH ] [ TILEWIDTH ] ;
/ / s h a r e d memory t o l o a d s h a r e d t i l e from m a t r i x A
4 . _ _ s h a r e d _ _ f l o a t Bshared [TILEWIDTH ] [ TILEWIDTH ] ;
/ / s h a r e d memory t o l o a d s h a r e d t i l e from m a t r i x B
5 . i n t bx= b l o c k I d x . x , by= b l o c k I d x . y ;
6 . i n t t x = t h r e a d I d x . x , t y = t h r e a d I d x . y ;
7 . i n t row=bx∗TILEWIDTH+ t x ;
8 . i n t c o l =by∗TILEWIDTH+ t y ;
9 . f l o a t temp =0;
1 0 . / / Loop ove r t h e t i l e s Ashared and Bshared t o compute an e l e m e n t i n d_C
1 1 . f o r ( i n t i =0 ; i < wid th / TILEWIDTH ; i ++){
/ / t h r e a d s c o l l a b o r a t i v e l y l o a d Ashared
1 2 . Ashared [ t x ] [ t y ] = d_A [ row∗ wid th + i ∗TILEWIDTH + t y ] ;
/ / t h r e a d s c o l l a b o r a t i v e l y l o a d Bshared
1 3 . Bshared [ t x ] [ t y ] = d_B [ ( i ∗TILEWIDTH+ t x )∗ wid th + c o l ] ;
1 4 . _ _ s y n c t h r e a d s ( ) ; / / w a i t f o r t h r e a d s i n t t h e b l o c k t o f i n i s h
1 5 . / / Loop ove r t h e t i l e s and pe r fo rm c o m p u t a t i o n s
1 6 . f o r ( i n t k =0; k<TILEWIDTH ; k ++){
1 7 . temp+= Ashared [ t x ] [ k ]∗ Bshared [ k ] [ t y ] ;
1 8 . }
1 9 . _ _ s y n c t h r e a d s ( ) ; / / w a i t f o r t h r e a d s i n t h e b l o c k t o f i n i s h
2 0 . }
2 1 . d_C [ row∗ wid th + c o l ] = temp ;
2 2 . }

Listing 9 provides the kernel for the shared memory implementation. In List-
ing 9, Line 0 sets the width of the tile via #define TILEWIDTH 16. For
simplicity, we assume that the program creates thread blocks of dimensions,
TILEWIDTH*TILEWIDTH. Lines 3 and 4 statically declare two shared variables,
Ashared and Bshared. Because these variables reside in the shared memory
space, all the threads in a thread block will have access to these variables. Lines
5 and 6 store the thread block IDs (in x and y dimensions) and thread IDs (in x
and y dimensions) in variables bx, by, tx, and ty, respectively. In Lines 7 and 8,
each thread calculates the global row (row) and global column (col) indices of the
target element in d_C.

Figure 13 shows the conceptual representation of calculating the matrix indices
for tiled matrix multiplication. A for loop over counter, i in Line 11 performs tile
traversal over the matrices. Because the matrix d_A is traversed horizontally, the tile
traversal requires an offset of i*TILEWIDTH in the horizontal direction for each
iteration of the counter, i. A single thread with local ID (tx, ty) then accesses the
element (row, i*TILEWIDTH + ty) in matrix d_A and loads it in the shared
array Ashared[tx][ty] (Line 12). Similarly, the matrix d_B is traversed in
vertical direction; therefore the tile traversal requires an offset of i*TILEWIDTH
in vertical direction for each iteration of counter, i. Correspondingly, a thread with
local ID (tx, ty) accesses the element (i*TILEWIDTH + tx, col) in matrix
d_B and loads it in shared array, Bshared[tx][ty] (Line 13). Note that the
threads in a thread block must wait for all the other participant threads to load their
respective elements. This synchronization is provided by __syncthreads()
in Line 14. After loading the shared arrays with relevant matrix elements, each
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Fig. 13 Conceptual representation of index calculation for tiled matrix multiplication

thread evaluates its partial result in Lines 16 through 18. Line 19 provides the
synchronization such that all the threads in a thread block finish their respective
computations. At the end of the for loop (Line 20), each thread loads the complete
result of its respective element (row,col) in matrix, d_C (Line 21).

Readers should carefully observe that each thread performs exactly two global
loads, one for each matrix in lines 12 and 13. After these global loads, each
thread performs TILEWIDTH multiplications and TILEWIDTH additions (i.e.,
TILEWIDTHx2 floating-point operations) in lines 16–18. Therefore, this kernel
performs TILEWIDTH floating-point computations for every floating-point global
memory access, thereby providing TILEWIDTH times boost to the CGMA ratio
(recall that CGMA ratio for the naïve implementation is 1). On a GPGPU device
with 200 GB/s global memory bandwidth, the kernel provides a performance of

200 GB/s
4B per f loating−point

× (T ILEWIDT H = 16) = 800 GFLOPS!
Active Learning Exercise 13 – A kernel performs 100 floating-point operations

for every 10 floating-point global memory accesses. What is the CGMA ratio for this
kernel? Assuming that the GPGPU device has a global memory bandwidth equal to
150 GB/s, what is the kernel performance in GFLOPS?
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Fig. 14 This illustration shows examples of two stride accesses, s= 1 (top) and s= 2 (bottom).
For the stride access, s= 1, each thread in a warp accesses a unique bank. For stride access, s= 2,
there is two-way bank conflict between the first half-warp and the second half-warp

With our previous discussion on the use of shared memory to alleviate the global
memory congestion, it is clear that judicious use of the shared memory can provide
substantial performance boost for CUDA programs. However, programmers should
be aware of a potential shared memory performance bottleneck called the bank
conflict. In GPGPU devices, the shared memory is divided into 32 banks such that
successive 32-bit words are stored in successive banks. A bank conflict arises when
multiple threads within a warp access the same bank. Whenever a bank conflict
arises, the accesses to the shared memory bank are serialized. An n-way bank
conflict arises when n threads in a warp access the same bank – such accesses are
completed in n serial steps. If two threads access the addresses within the same 32-
bit word, then the word is broadcast to the threads, thereby avoiding a bank conflict.
Similarly, a bank conflict is avoided when all the threads in a warp or a half-warp
access the same word. In such a case, the word is broadcast to the entire warp or
the half-warp. Bank conflicts usually arise when threads access the shared memory
with some stride, s. For example:

extern __shared__ float Ashared[];
data=Ashared[Base+s*thread_id];

Figure 14 shows examples of two stride accesses, s= 1 and s= 2. As shown in
the same figure, the shared memory is divided into 32 banks with successive words
stored in successive banks. The bank-0 stores words 0 and 32, bank-1 stores, 1 and
33, and so on. For stride s= 1, each thread (0 through 31) in a warp accesses a unique
bank (0 through 31), therefore there is no bank conflict in this case. However, for
stride s= 2, the threads in the first half-warp (0–15) have a two-way bank conflict
with the threads in the second half-warp (16–31). For example, the thread with ID
equal to 0 (belonging to the first half-warp) accesses a word at offset 0 from the
base address (stored in bank-0) and the thread with ID equal to 16 (belonging to the
second half-warp) accesses a word at offset 32 from the base address (also stored in
bank-0), leading to a two-way bank conflict.
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Active Learning Exercise 14 – This activity summarizes our understanding of
the CGMA ratio and shared memory bank conflict. Assume that the kernel given in
Listing 10 is executed on a GPGPU device with global memory bandwidth equal to
200 GB/s. Calculate the CGMA ratio and the performance achieved by this kernel
in GFLOPS. Notice the use of two shared memory variables, fire and fired. Is
there a potential for bank conflict(s)? Why or why not?

Listing 10 Kernel code for active learning Exercise 14.
1 . _ _ g l o b a l _ _ vo id k e r n e l ( f l o a t ∗ l e v e l 1 _ I , f l o a t ∗ l e v e l 1 _ v ,
f l o a t ∗ l e v e l 1 _ u , mytype ∗ L 1 _ f i r i n g s , mytype2 ∗ myf i re , i n t Ne ) {
2 . e x t e r n _ _ s h a r e d _ _ b o o l f i r e [ ] ;
3 . _ _ s h a r e d _ _ b o o l f i r e d ;
4 . i n t k = t h r e a d I d x . x + b l o c k I d x . x∗blockDim . x ;
5 . i n t j = t h r e a d I d x . x ;
6 . a u t o f l o a t l e v e l 1 v , l e v e l 1 u ;
7 . i f ( j ==0)
8 . f i r e d =1;
9 . _ _ s y n c t h r e a d s ( ) ;
1 0 . i f ( k<Ne ) {
1 1 . l e v e l 1 v = l e v e l 1 _ v [ k ] ;
1 2 . l e v e l 1 u = l e v e l 1 _ u [ k ] ;
1 3 . i f ( l e v e l 1 v >30) {
1 4 . L 1 _ f i r i n g s [ k ] = 0 ;
1 5 . l e v e l 1 v =−55;
1 6 . l e v e l 1 u = l e v e l 1 u +4;
1 7 . }
1 8 . l e v e l 1 v = l e v e l 1 v + 0 . 5∗ ( l e v e l 1 v ∗ ( 0 . 0 4∗ l e v e l 1 v +5)

+140− l e v e l 1 u + l e v e l 1 _ I [ k ] ) ;
1 9 . l e v e l 1 u = l e v e l 1 u + 0 . 0 2 ∗ ( 0 . 2 ∗ ( l e v e l 1 v )− l e v e l 1 u ) ;
2 0 . l e v e l 1 _ v [ k ] = l e v e l 1 v ; l e v e l 1 _ u [ k ] = l e v e l 1 u ;
2 1 . f i r e [ j ] = L 1 _ f i r i n g s [ k ] ;
2 2 . f i r e d &= f i r e [ j ] ;
2 3 . _ _ s y n c t h r e a d s ( ) ;
2 4 . }
2 5 . }

Execution Configuration-Level Optimization

This level of optimization targets the parameters appearing in the kernel execution
configuration (<<< >>>) and serves two primary performance objectives: (1)
maximize the multiprocessor occupancy and (2) enable concurrent execution via
streams. In what follows, we discuss these two performance objectives.

Maximizing multiprocessor occupancy – As discussed in section “CUDA Mem-
ory Organization”, on-chip, fast memories such as registers and shared memory
can provide tremendous performance boost. However, the catch lies in their limited
quantity, which is dependent on the device’s Compute Capability. The limited
number of registers and shared memory limits the number of thread blocks (and
therefore, the number of warps) that can reside on a streaming multiprocessor
(SM), affecting the multiprocessor occupancy. Readers should recall that the
multiprocessor occupancy is the ratio of the total number of warps residing on an
SM to the maximum number of warps that can reside on an SM. While a high
multiprocessor occupancy does not always imply high performance, nonetheless it
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is a good measure of concurrency. Therefore, CUDA programmers must strive to
create grids and thread blocks for kernels such that the multiprocessor occupancy
is generally high. Although this process may involve some experimentation with
multiple execution configurations.

How can I achieve high multiprocessor occupancy, whilst not spending time
performing meticulous calculations as shown in Eqs. 6, 7, 8, 9, 10, and 11? NVIDIA
has a wonderful and simple tool called the CUDA occupancy calculator [7] to
perform all of this mathematical work! The CUDA occupancy calculator allows
users to select the Compute Capability and shared memory configuration for
their GPGPU devices. Once these device configurations are selected, the CUDA
occupancy calculator automatically fills the device related constants such as active
threads per SM, active warps per SM, etc. The programmer then provides kernel
information including the number of registers per thread (identified using the
Xptxas nvcc switch discussed in section “CUDA Memory Organization”),
the amount of shared memory per block, and the number of threads per block
information to the occupancy calculator. After receiving the above pertinent kernel
information, the occupancy calculator provides the multiprocessor occupancy value
(in percentage) and graphically displays the impact of varying block size, shared
memory usage per block, and register count per thread on the multiprocessor
occupancy.

For the CUDA kernel in Listing 10, let us assume that the target architecture
belongs to Compute Capability 3.5 and the shared memory configuration is 16 KB
(48 KB for L1 cache). The nvcc compilation with Xptxas option for this kernel
yields 20 registers per thread. If we assume a thread block size equal to 192 and
shared memory per block equal to 192 bytes, then CUDA occupancy calculator
provides us with multiprocessor occupancy value equal to 94%. Figure 15 shows
the impact of varying block size, shared memory usage, and register count on
occupancy, as given by the occupancy calculator. These figures suggest that for the
thread block size equal to 256, we can expect the occupancy to reach 100%.

Readers are also encouraged to explore CUDA APIs such as
cudaOccupancyMaxActiveBlocksPerMultiprocessor [7] for cal-

culating the multiprocessor occupancy for CUDA kernels.
Active Learning Exercise 15 – Analyze the multiprocessor occupancy for the

tiled matrix-matrix multiplication example. Assuming Compute Capability devices
3 and 5, use the CUDA occupancy calculator to obtain the multiprocessor occupancy
values for thread block sizes: 128, 256, 512, and 1024.

Concurrent execution using streams – Readers should recall that frequent host-
device transfers are significant bottlenecks that appear in CUDA programs. The
CUDA streams provide a way to hide the data transfer latency by overlapping
the memory transfers with kernel invocations. A stream consists of a sequence
of instructions that execute in-order; these sequences include host-device transfers,
memory allocations, and kernel invocations. For devices with Compute Capability
2.0 and above, streams enable programmers to perform device-level concurrency
– while all of the instruction sequences within a stream execute in-order, multiple
streams may have instruction sequences executing out-of-order. Therefore, instruc-
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Fig. 15 Impact of thread block size, shared memory per block usage, and register count per thread
on multiprocessor occupancy. (a) Impact of block size on occupancy. (b) Impact of shared memory
on occupancy. (c) Impact of register count on occupancy

tion sequences from different streams can be issued concurrently. For instance, when
a single stream performs kernel invocation, the other stream completes any data
transfer operation. It should be noted that relative execution order of instruction
sequences across streams is unknown.

CUDA streams are of type cudaStream_t type and generally follow the
coding sequence given under:

• Stream creation: : cudaStreamCreate() function call creates a stream:
cudaError_t cudaStreamCreate(cudaStream_t *stream);

• Stream use in asynchronous data transfer: A stream can also perform
asynchronous data transfers using cudaMemcpyAsync() function as follows:
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cudaError_t cudaMemcpyAsync(void *dst, const void *src, size_

t count, enum cudaMemcpyKind kind, cudaStream_t stream);

It should be noted that the host memory should be pinned for the above usage.
• Stream use in execution configuration: A kernel invocation is assigned to a

stream by specifying the stream in execution configuration as under:
kernel <<<dimGrid,dimBlock,SharedMemory,stream>>>

(<kernel-args>);

• Stream Destruction: After use, the stream is destroyed using the
cudaStreamDestroy() function. This function is blocking and only returns
when all of the instruction sequences within a stream are completed.

Listing 11 provides a self-explaining code snippet elucidating the above
described sequence.

Listing 11 Illustration of two concurrent streams following the sequences: stream creation,
asynchronous data transfer, kernel invocation, and stream destruction.
/ / C r e a t i n g two s t r e a m s
1 . i n t s i z e =1024; / / 1 0 2 4 d a t a i t e m s p e r s t r e a m
2 . :
3 . c u d a S t r e a m _ t s t r e a m [ 2 ] ;
4 . / / A l l o c a t e h o s t and d e v i c e memory
5 . f l o a t ∗ h _ d a t a [ 2 ] , ∗ d _ d a t a [ 2 ] ;
/ / one hos t −d e v i c e p a i r f o r each s t r e a m
6 . f o r ( i =0 ; i <2 ; i ++) {
7 . cudaMal locHos t ( ( vo id ∗∗)& h _ d a t a [ i ] , s i z e o f ( f l o a t )∗ s i z e ) ;
8 . cudaMal loc ( ( vo id ∗∗)& d _ d a t a [ i ] , s i z e o f ( f l o a t )∗ s i z e ) ;
9 . }
1 0 . / / Per fo rm i n i t i a l i z a t i o n
1 1 . :
1 2 . / / Fol low t h e s t r e a m s e q u e n c e s e x c e p t f o r d e s t r u c t i o n
1 3 . f o r ( i =0 ; i <2 ; i ++) {
1 4 . c u d a S t r e a m C r e a t e (& s t r e a m [ i ] ) ; / / c r e a t e s t r e a m i
/ / i t h s t r e a m i n i t i a l i z e s async . hos t −to−d e v i c e t r a n s f e r
1 5 . cudaMemcpyAsync ( d _ d a t a [ i ] , h _ d a t a [ i ] , s i z e o f ( f l o a t )∗ s i z e ,

cudaMemcpyHostToDevice , s t r e a m [ i ] ) ;
/ / i t h s t r e a m i n v o k e s t h e k e r n e l
1 6 . k e r n e l <<<dimGrid , dimBlock , sha red , s t r e a m [ i ] > > >( d _ d a t a [ i ] , s i z e ) ;
1 7 . cudaMemcpyAsync ( h _ d a t a [ i ] , d _ d a t a [ i ] , s i z e o f ( f l o a t )∗ s i z e ,

cudaMemcpyDeviceToHost , s t r e a m [ i ] ) ;
/ / i t h s t r e a m i n i t i a l i z e s async . dev ice −to−h o s t t r a n s f e r
1 8 . }
1 9 . / / S t r eams s y n c h r o n i z e . B locks u n t i l s t r e a m s f i n i s h
2 0 . c u d a S t r e a m D e s t r o y ( s t r e a m [ 0 ] ) ;
2 1 . c u d a S t r e a m D e s t r o y ( s t r e a m [ 1 ] ) ;
2 2 . / / f r e e p o i n t e r s
2 3 . }

Active Learning Exercise 16 – Write a CUDA program that creates n streams to
perform vector-vector addition. Hint: The ith stream operates on the data starting
from &d_A[i*data_per_stream] and &d_B[i*data_per_stream].

Instruction-Level Optimization

This level of optimization targets the optimization of arithmetic instructions and
branching statements in a CUDA kernel. The arithmetic operations can be easily
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Fig. 16 An illustration of participating threads (highlighted in black) within hypothetical warps
of size equal to 8 threads. In each iteration of the for loop, there is at least one divergent warp

optimized using fast math [1] functions. The branching statement optimization,
however, requires meticulous handling of statements to avoid an artifact known as
divergent warps. Readers should recall that all of the threads within a warp execute
the same instruction. A warp is divergent if the threads inside a warp follow different
execution paths (for example, first half-warp satisfies the if statement while the
second half-warp satisfies the else statement). In such a case, divergent paths
are serialized, which results in reduced performance. To illustrate this concept, we
discuss an important parallel pattern called reduction, which derives a single value
by applying an operation (addition, for instance) to all of the elements in an array.
Listing 12 provides the code snippet of a reduction kernel (Variant 1), which is prone
to producing divergent warps. Readers are encouraged to verify that the code will
produce the correct reduction result.

Listing 12 Reduction kernel snippet (Variant 1) that produces divergent warps.
1 . _ _ s h a r e d _ _ f l o a t p a r t i a l S u m [ BLOCKSIZE ] ;
2 . :
3 . i n t t = t h r e a d I d x . x ;
4 . f o r ( i n t s t r i d e = 1 ; s t r i d e < blockDim . x ; s t r i d e ∗=2){
5 . _ _ s y n c t h r e a d s ( ) ;
6 . i f ( t %(2∗ s t r i d e )==0)
7 . p a r t i a l S u m [ t ]+= p a r t i a l S u m [ t + s t r i d e ] ;
8 . }

To analyze this example, let us assume that our hypothetical GPGPU device
supports 8 threads per warp. Further assume that reduction is performed using
blocks of size 32 threads. Figure 16 illustrates the participating threads (highlighted
in black) within a warp in each iteration of the for loop (stride varies from 1 to
16). As seen in the same figure, there is at least one divergent warp in each iteration
of the for loop. Specifically, strides 1, 2, and 4 include four divergent warps each;
whereas strides 8 and 16 include two and one divergent warps, respectively. The
entire execution of the for loop leads to 4+4+4+2+1 = 15 divergent warps. As
discussed before, divergent warps are serialized, thereby reducing the performance.



232 V. K. Pallipuram and J. Gao

Fig. 17 Illustration of participating threads (highlighted in black) within hypothetical warps of
size equal to 8 threads. In first two iterations, none of the warps are divergent. Divergent warps
(one each) occur in last three iterations

Listing 13 provides the code snippet of a reduction kernel (Variant 2 that reduces
the number of divergent warps). Figure 17 illustrates the participating threads within
a warp in each iteration of the for loop (stride varies from 16 to 1).

Listing 13 Reduction kernel snippet (Variant 2) that reduces the number of divergent warps.
1 . _ _ s h a r e d _ _ f l o a t p a r t i a l S u m [ BLOCKSIZE ] ;
2 . i n t t = t h r e a d I d x . x ;
3 . f o r ( i n t s t r i d e = blockDim . x / 2 ; s t r i d e >= 1 ; s t r i d e / = 2 ) {
4 . _ _ s y n c t h r e a d s ( ) ;
5 . i f ( t < s t r i d e )
6 . p a r t i a l S u m [ t ]+= p a r t i a l S u m [ t + s t r i d e ] ;
7 . }

As seen in Fig. 17, none of the 8-thread warps are divergent in the first two
iterations of the for loop. The divergent warps (one each) occur only in the last
three iterations, thereby leading to a total of three divergent warps (versus 15
divergent warps in Variant 1). Therefore, Variant 2 provides higher performance
versus Variant 1.

Active Learning Exercise 17 – Assume that there are 256 threads per block;
calculate the total number of divergent warps for Variant 1 and Variant 2 of the
reduction kernel. Is the scenario any better for 512 threads per block?

Program Structure Optimization: Unified Memory

In our programs so far, we performed explicit (with the exception of Zero-
Copy) data transfers between the CPU host and GPGPU device via cudaMemcpy
function. Needless to say, this process may be very lengthy and highly error-prone
for large programs. Unified memory is a nice feature introduced in CUDA 6.0 that
enables programmers to perform implicit data transfers between the host and the
device. Unified memory introduces the concept of managed memory wherein the
memory is allocated on both the host and the device under the supervision of the
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Fig. 18 Difference in ‘developer’s view’ between explicit data transfers and unified memory data
transfers

device driver. The device driver ensures that these two sets of data remain coherent
throughout the program execution. In essence, the user just maintains a single
pointer for both the CPU host and GPGPU device. A data transfer is implicitly
triggered before the kernel launch and another one immediately after the kernel
termination. Readers should note that the unified memory operation is similar to
explicit host-device transfers, with the exception that the device driver automatically
manages data transfers in unified memory. Unified memory alleviates programmers
with the burden of meticulous host-device transfer management, allowing them to
write shorter codes and focus more on the program logic. Unified memory should
not be confused with Zero-Copy where the data transfer is triggered whenever the
device kernel accesses the data. Figure 18 summarizes the difference in ‘developer’s
view’ between an explicit data transfer (shown on the left) and unified memory data
transfer (shown on the right).

Programmers can allocate managed memory in two ways:

1. Dynamically via the cudaMallocManaged() function call.
2. Statically by declaring global variable with the prefix: __managed__.

The syntax for cudaMallocManaged() is as follows.

t e m p l a t e < c l a s s T> cudaMallocManaged (
T ∗∗ d e v _ p t r , / / a d d r e s s o f t h e memory p o i n t e r

s i z e _ t b y t e s , / / s i z e i n b y t e s o f t h e r e q u i r e d memory
u n s i g n e d f l a g s ) / / E i t h e r cudaMemAttachGlobal f o r a l l k e r n e l s t o a c c e s s o r

/ / cudaMemAttachHost t o make t h e v a r i a b l e l o c a l t o d e c l a r i n g h o s t
/ / and k e r n e l s invoked by t h e d e c l a r i n g h o s t .

Listing 14 illustrates unified memory using vector-vector addition as example.
While the kernel construction is the same as Listing 1, notice the changes in
the main() function. Using cudaMallocManaged(), lines 4–6 allocate the
space for variables a, b, and c on both the CPU host and GPGPU device. The
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host input is initialized in lines 8–10 and the device output is evaluated by the
kernel call in Line 12. Prior to accessing the modified values of the variables,
programmers must ensure that the kernel has terminated. This check is done via
cudaDeviceSynchronize() function call in Line 13. The variables a, b, and
c are freed via cudaFree() function call in lines 15–17.

Listing 14 Vector-vector addition code snippet illustrating unified memory.
1 . i n t main ( i n t a rgc , c h a r ∗∗ a rgv ) {
2 . i n t ∗a ,∗ b ,∗ c ;
3 . i n t v e c _ s i z e =1000 , i ;
4 . cudaMallocManaged (&a , v e c _ s i z e ∗ s i z e o f ( i n t ) ) ;
5 . cudaMallocManaged (&b , v e c _ s i z e ∗ s i z e o f ( i n t ) ) ;
6 . cudaMallocManaged (&c , v e c _ s i z e ∗ s i z e o f ( i n t ) ) ;
7 . / / Host−p o r t i o n p r e p a r e s t h e d a t a
8 . f o r ( i =0 ; i < v e c _ s i z e ; i ++) {
9 . a [ i ]= i ; b [ i ]= i ;
1 0 . }
1 1 . / / Run t h e GPU Ke r ne l
1 2 . gpu_ke rne l <<<1 , v e c _ s i z e >>>(a , b , c , v e c _ s i z e ) ;
1 3 . c u d a D e v i c e S y n c h r o n i z e ( ) ; / / Wait f o r t h e GPU t o f i n i s h e x e c u t i o n .
1 4 . / / F r e e p o i n t e r s
1 5 . c u d a F r e e ( a ) ;
1 6 . c u d a F r e e ( b ) ;
1 7 . c u d a F r e e ( c ) ;
1 8 . r e t u r n 0 ;
1 9 . }

The example in Listing 14 shows substantial simplification of the vector-vector
addition code structure using the unified memory concept. Although, programmers
must note that unified memory is not a performance optimization. Proficient CUDA
programmers with a command on explicit host-device transfers and Zero-Copy
optimization technique can achieve high-performance for their applications.

In this section, we discussed several optimization strategies that CUDA program-
mers can employ to achieve significant application performance. It is worth noting
that the choice of optimization varies across applications. While the techniques cov-
ered here are quite comprehensive, we have not fully exhausted the list of possible
strategies. For instance, dynamic parallelism allows a CUDA kernel to create child
kernels, thereby avoiding kernel synchronization in the host portion and any host-
device transfers. The high-performance computing (HPC) community continually
augments the optimization strategy list via exhaustive research efforts. Readers are
encouraged to stay abreast with scientific publications. Several applications share
‘parallelization logic’ that helps programmers avoid re-inventing the wheel.

Case Study: Image Convolution on GPUs

In this section, we study a parallel pattern that commonly arises in various scientific
applications namely, the convolution. The convolution algorithm frequently occurs
in signal processing contexts such as audio processing, video processing, and image
filtering, among others. For example, images are convolved with convolution kernels
(henceforth referred to as convolution masks to avoid ambiguity with the CUDA
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kernel) to detect sharp edges. The output of a linear time invariant (LTI) design is
obtained via convolution of the input signal with the impulse response of the LTI
design. The convolution operation has two interesting aspects that make it highly
lucrative for the GPGPU device. First, the convolution operation is highly data
parallel – different elements of the input data can be evaluated independent of the
other elements. Second, the convolution operation on a large input (a large image
or an audio signal for instance) leads to significantly large number of operations.
In what follows, we first provide a brief mathematical background on this highly
important mathematical operation. Then, we explore how the convolution operation
can be effectively deployed on GPGPU devices.

Convolution is a mathematical array operation (denoted with asterisk, *) where
each output element (P[j]) is a weighted sum of neighboring elements of the
target input element (N[j]). The weights are defined by an input array called, the
convolution mask. The weighted sum, P[j], is calculated by aligning the center
of the convolution mask over the target element, N[j]. The input mask usually
consists of odd number of elements so that equal numbers of neighboring elements
surround the target element in all directions.

Let us consolidate our understanding of the convolution operation via an
example. For simplicity, let us assume that we need to convolve an array of eight
elements, N, with a convolution mask of five elements, M. Figure 19 illustrates the
convolution procedure. Notice the evaluation of element, P[2] (top) – the center
of the mask (M[2]) is aligned with the target input element N[2] (dark gray); next
the overlapping elements of P and M are multiplied and the products are added to
obtain the weighted sum:

P [2] = N [0]×M[0]+N [1]×M[1]+N [2]×M[2]+N [3]×M[3]+N [4]×M[4]
Notice the evaluation procedure of the element, P[1] (Fig. 19 bottom). Similar

to evaluation of P[2], the center of the mask, M[2] is aligned with the target input
element N[1] (highlighted in dark gray). However, the mask element, M[0] flows
out of array, N. In such a case, the overflowing elements of the mask are multiplied
with ‘ghost elements’, gi , which are customarily set to zero. The element, P[1] in
this case is evaluated as:

g1 = 0
P [1] = g1×M[0]+N [0]×M[1]+N [1]×M[2]+N [2]×M[3]+N [3]×M[4]
This process is performed on all of the array elements to obtain the convolution

output, P.
The convolution operation can also be extended to higher dimensions. Figure 20

shows the convolution of a two-dimensional matrix, N5×5 with a two-dimensional
convolution mask, M5×5. Consider the evaluation of element, P[1][1]. As shown
in Fig. 20, the center of the convolution mask, M[1][1], aligns with the target
element, N[1][1]. The overlapping elements of matrices M and N are then
multiplied and the products are added to obtain the weighted sum as:

P [1][1] = M[0][0] × N [0][0] + M[0][1] × N [0][1] + M[0][2] × N [0][2]+
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Fig. 19 An illustration of one-dimensional convolution operation. The evaluation of element
P[2] (see top) involves internal elements N[0] through N[4]. However, the evaluation of
element P[1] (see bottom) requires a ghost element, g1, which is customarily set to zero. The
aligned elements are highlighted in gray and the center and target elements of M and N are
highlighted in dark gray

M[1][0] × N [1][0] + M[1][1] × N [1][1] + M[1][2] × N [1][2]+
M[2][0] × N [2][0] + M[2][1] × N [2][1] + M[2][2] × N [2][2]
Notice the evaluation of element P[0][1] as shown in the same figure with

mask element, M[1][1] aligned with the target element, N[0][1]. The mask
elements M[0][0], M[0][1], and M[0][2] flow beyond the bounds of matrix,
N. Therefore, the overflowing mask elements are multiplied with ghost elements,
g1, g2, g3, which are all set to zero. The element P[0][1] is evaluated as:

g1 = g2 = g3 = 0
P [0][1] = M[0][0] × g1 + M[0][1] × g2 + M[0][2] × g3+
M[1][0] × N [0][0] + M[1][1] × N [0][1] + M[1][2] × N [0][2]+
M[2][0] × N [1][0] + M[1][1] × N[2][1] + M[2][2] × N [1][2]
The above process is performed on all of the array elements to obtain the

convolution output, P. As illustrated through examples in Figs. 19 and 20, it is clear
that: (a) convolution operation is highly data parallel; (b) convolution operation can
be computationally intensive for large input sizes; and (c) programmers must pay
special attention to boundary conditions, i.e. when the convolution mask elements
flow beyond the bounds of the input data.

Active Learning Exercise 18 – Perform the convolution of the two vectors, A and
B given as: A = [−1, 0, 1] B = [−3,−2,−1, 0, 1, 2, 3].
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Fig. 20 Illustration of two-dimensional convolution operation. The evaluation of element
P[1][1] (see top) involves internal elements of N highlighted in gray (target element is
highlighted in dark gray). However, the evaluation of element P[0][1] requires a ghost elements,
g1, g2, g3, which are customarily set to zero

Now that we are mathematically equipped to perform the convolution operation,
let us study how it can be performed on the GPGPU devices. For simplicity, let
us perform one-dimensional convolution. The arguments for a CUDA convolution
kernel include the following arrays: N (input), M (mask), and output, P. In addition,
the kernel requires the width of array N, let this variable be width; and width of
the convolution mask, let this variable be mask_width. A naïve implementation
of the one-dimensional convolution kernel appears in Listing 15.

Listing 15 A naïve implementation of one-dimensional convolution kernel.
1 . _ _ g l o b a l _ _ vo id k e r n e l ( f l o a t ∗N, f l o a t ∗M, f l o a t ∗P ,

i n t width , i n t mask_width ) {
2 . i n t t i d = t h r e a d I d x . x + b l o c k I d x . x∗blockDim . x ;
3 . i n t s t a r t _ p o i n t = t i d −mask_width / 2 ; / / p l a c e t h e mask c e n t e r on N[ t i d ]
4 . f l o a t temp =0;
5 . f o r ( i n t i =0 ; i <mask_width ; i ++) { / / l oop ove r t h e mask
6 . i f ( s t a r t _ p o i n t + i >=0 && s t a r t _ p o i n t + i < wid th ) / / check boundary
7 . temp+=N[ s t a r t _ p o i n t + i ]∗M[ i ] ;
8 . }
9 . P [ t i d ]= temp ;
1 0 . }

As seen in Listing 15, each thread obtains its global thread ID, tid in Line 2.
Because the center of the mask is placed on the target element N[tid], the starting
element of the mask, M[0] is aligned with N[tid - mask_width/2]. Line 3
sets the starting point to tid - mask_width/2. Lines 5 through 8 perform the
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weighted sum calculation and finally, the answer is written to the global memory
location, P[tid](Line 9).

What are the performance bottlenecks for this naïve kernel? A careful inspection
would yield two bottlenecks: (1) There is a control flow divergence due to Line 6
– threads within a warp may or may not satisfy the if statement; and (2) global
memory is sub-optimally utilized. In each iteration of the for loop in Line 5,
each thread performs two floating-point operations (one multiplication and one
addition) for every two accesses of the global memory (access of the input array
and the mask). Consequently, the CGMA ratio is only 1, yielding a fraction of
the peak performance. The control flow divergence may not be a significant issue
here because only a handful of threads process the ghost elements (mask size is
usually much smaller than the thread block size). The global memory accesses are a
significant source of performance bottleneck and therefore must be alleviated. One
immediate remedy is to store the convolution mask in the constant memory. As
discussed in section “CUDA Memory Organization”, all of the threads in a kernel
globally access the constant memory. Because the constant memory is immutable,
the GPGPU device aggressively caches the constant memory variables, promoting
performance. As an exercise, readers are left with the task of declaring constant
memory for the convolution mask and use cudaMemcpyToSymbol() to copy
the host mask pointer, h_M to the device constant memory, M.

A careful inspection of the naïve convolution kernel in Listing 15 also suggests
that threads within a block tend to share the access to array elements. For instance
in Fig. 19, elements required to evaluate P[2] are N[0] through N[4]. Similarly,
elements needed to evaluate P[3] are N[1] through N[5]. Therefore, consecutive
threads in a warp evaluating elements P[2] and P[3] require common access
to elements N[2] through N[4]. The threads in a block can access the shared
computational elements via shared memory. Specifically, the threads in a block
load their respective elements into the shared memory, reducing the number of
trips to the global memory unlike the naïve convolution. Despite of this cooperative
loading, some of the threads may need access to the elements loaded by the adjacent
thread blocks. Additionally, some threads within a block may require access to ghost
elements. This issue is illustrated in Fig. 21. In the same figure, consider the thread
blocks of size four threads, array N of size equal to 15, and a convolution mask of
size equal to 5. The convolution operation requires four blocks: block-0 operates on
elements 0 through 3; block-1 operates on elements 4 through 7, and so on. Consider
block-0 for example – the evaluation of elements 2 and 3 clearly require elements 4
and 5, which are loaded into the shared memory by threads in block-1. We refer to
these elements as halo elements (highlighted in gray). In addition to halo elements,
threads 0 and 1 need access to ghost elements (highlighted in vertical bars).

With the introduction of L2 caches in modern GPGPU devices, the access to
the halo elements is greatly simplified; whereas the ghost elements can be tackled
using the code logic. When the threads in block-1 load elements N[4] through
N[7], it is a reasonable assumption that these values will also be stored in the L2
cache. Consequently with high probability, block-0 can find its halo elements (N[4]
and N[5]) in the L2 cache, thereby optimizing global memory accesses. Similarly,
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Fig. 21 Illustration of thread blocks of size 4 requiring access to halo and ghost elements

block-1 can also find the halo elements, 8 and 9 when block-2 threads load their
respective elements (N[8] through N[11]) into the shared memory.

To summarize, an optimized CUDA kernel can alleviate the global memory
traffic using three strategies: (1) by storing the convolution mask in the constant
memory, which is aggressively cached, (2) by requiring threads in a block to load
their respective elements into the shared memory; these elements will also be cached
in L2, and (3) access the halo elements via L2 cache. The optimized CUDA kernel
for convolution operation appears in Listing 16.

Listing 16 Optimized convolution kernel that makes use of: constant memory to cache the
convolution mask, L2 cache to enable threads access the elements loaded by neighboring thread
blocks, and shared memory for collaborative load of elements by threads in a block.
1 . _ _ g l o b a l _ _ vo id c o n v o l u t i o n _ k e r n e l ( f l o a t ∗N, f l o a t ∗P ,

i n t width , i n t mask_width ) {
2 . i n t t i d = t h r e a d I d x . x + b l o c k I d x . x∗blockDim . x ;
3 . _ _ s h a r e d _ _ f l o a t Nshared [BLOCKSIZE ] ;
4 . Nshared [ t h r e a d I d x . x ]=N[ t i d ] ; / / each t h r e a d l o a d s i t s r e s p e c t i v e e l e m e n t i n
/ / s h a r e d memory
5 . _ _ s y n c t h r e a d s ( ) ; / / make s u r e a l l t h r e a d s f i n i s h l o a d i n g b e f o r e p r o c e e d i n g
6 . i n t m y b l o c k _ s t a r t = b l o c k I d x . x∗blockDim . x ;
7 . i n t n e x t b l o c k _ s t a r t =( b l o c k I d x . x +1)∗ blockDim . x ;
8 . i n t s t a r t = t i d − mask_width / 2 ; / / p l a c e s t h e c e n t e r o f mask on N[ t i d ]
9 . f l o a t temp =0;
1 0 . f o r ( i n t i =0 ; i <mask_width ; i ++){ / / l oop ove r t h e mask
1 1 . i n t Nelement= s t a r t + i ; / / e l e m e n t o v e r l a p p i n g wi th i
1 2 . i f ( Nelement >=0 && Nelement < wid th ) { / / boundary check
1 3 . i f ( Nelement >= m y b l o c k _ s t a r t &&Nelement < n e x t b l o c k _ s t a r t ) {
/ / Nelement p r e s e n t i n s h a r e d memory
1 4 . temp+= Nshared [ t h r e a d I d x . x+ i−mask_width / 2 ] ∗M[ i ] ; }
1 5 . e l s e {

/ / n o t i n s h a r e d memory . Access u s i n g L2 cache
1 6 . temp+=N[ Nelement ]∗M[ i ] ;
1 7 . }
1 8 . }
1 9 . }
2 0 . P [ t i d ]= temp ; / / w r i t e t h e answer t o g l o b a l memory
2 1 . }
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In Listing 16, note that the convolution mask, M resides in the device constant
memory (copied into the constant memory of the device by the host in host portion);
therefore, it is not passed as an argument to the kernel. In line 4, each local thread
(threadIdx.x) within a block cooperatively loads its respective global element
N[tid], where tid is equal to threadIdx + blockIdx.x*blockDim.x,
into the shared memory, Nshared (see Lines 3–5). After the shared memory has
been loaded by all of the threads within a block, the threads in a block identify the
end points of their block (see Lines 6 and 7) and their respective start positions such
that the center of the mask is centered at N[tid] (see Line 8). The computations
occur from Line 10 through 19 – for each iteration of the mask counter, i, the
thread obtains the position of the element in N (labeled as Nelement) that overlaps
with mask element, M[i]. If this element is within the bounds of the thread block
(calculated in Lines 6 and 7), then the Nelement is obtained from the shared
memory variable, Nshared (see Lines 13 and 14). However, if Nelement lies
outside of the block boundaries, then the corresponding element in N is obtained
via a global memory access (see Lines 15 through 17). With high probability, this
global memory location is cached in L2, therefore served with L2 cache throughput.
The final computation result is written back to the global memory in Line 20.

Active Learning Exercise 19 – Extend the optimized 1D convolution kernel to
perform 2D convolution. Assume modern GPGPU devices that allows for general
L2 caching.

In section “Case Study: Image Convolution on GPUs”, we discussed an interest-
ing parallel pattern, the convolution, which appears frequently in several scientific
applications and simulations. Due to its inherent data parallelism and computation-
intensiveness, the convolution operation is a great fit for GPGPU devices. Readers
are also encouraged to investigate other parallel patterns including prefix sums and
sparse matrix multiplication for a comprehensive understanding of GPGPU device
optimizations.

We conclude our discussion on the CUDA programming model. In this chapter,
we discussed the CUDA thread model and CUDA memory hierarchy, which are
critical to writing effective CUDA programs. We studied different optimization
strategies to attain a significant fraction of the device’s peak performance. We com-
pleted our discussion on CUDA with convolution as a case study, which highlights
the importance of optimizations such as constant memory, shared memory, and
general L2 caching. The exploration of CUDA optimizations is figuratively endless
– several applications continue to emerge that are re-organized or re-written for
GPGPU computing, thereby making it a truly disruptive technology.

GPU Computing: The Future

In summary, this chapter covers major topics in GPGPU computing using the CUDA
framework for upper-level Computer Engineering/Computer Science undergraduate
(UG) students. Starting with the concept of data parallelism, we explained in
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detail the CUDA program structure, compilation flow, thread organization, memory
organization, and common CUDA optimizations. All of these concepts were put
together in section “Case Study: Image Convolution on GPUs” where we discussed
convolution on GPGPUs as a case study. We organized the previous eight sections in
a way that promotes active learning, encourages students to apply their knowledge
and skills immediately after learning, and prepares them for more advanced topics
in HPC. We hope that, after studying this chapter and finishing all active learning
exercises, the students will have a good understanding of GPGPU computing and
will be able to program GPGPUs using the CUDA paradigm.

Over the years, with a humble start as graphics-rendering devices, GPUs have
evolved into powerful devices that support tasks that are more general, more
sophisticated, and more computationally intensive. After decades of competition in
the GPU world, NVIDIA and AMD are the two major players left. Their GPUs have
been used to build the world’s fastest and greenest supercomputers. In April 2016,
NVIDIA unveiled the world’s first deep-learning supercomputer in a box. Supported
by a group of AI industry leaders, the company’s new products and technologies
are focusing on deep learning, virtual reality and self-driving cars. Equipped with
the NVIDIA Tesla P100 GPU, the servers can now deliver the performance of
hundreds of CPU server nodes. Taking advantage of the new Pascal architecture,
the updated NVIDIA SDK provides extensive supports in deep learning, accelerated
computing, self-driving cars, design visualization, autonomous machines, gaming,
and virtual reality. Supporting these key areas will definitely attract more researchers
and developers to this exciting field and enable them to create efficient solutions for
problems that were considered unsolvable before. In the coming years, the evolution
of GPUs will follow this increasing trend in terms of GPU processing power,
software capabilities, as well as the diversity of GPU-accelerated applications.
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