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Abstract The objective of this chapter is to discuss the notion of scalability.
We start by explaining the notion with an emphasis on modern (and future)
large scale parallel platforms. We also review the classical metrics used for
estimating the scalability of a parallel platform, namely, speed-up, efficiency and
asymptotic analysis. We continue with the presentation of two fundamental laws of
scalability: Amdahl’s and Gustafson’s laws. Our presentation considers the original
arguments of the authors and reexamines their applicability in today’s machines
and computational problems. Then, the chapter discusses more advanced topics that
cover the evolution of computing fields (in term of problems), modern resource
sharing techniques and the more specific issue of reducing energy consumption. The
chapter ends with a presentation of a statistical approach to the design of scalable
algorithms. The approach describes how scalable algorithms can be designed by
using a “cooperation” of several parallel algorithms solving the same problem.
The construction of such cooperations is particularly interesting while solving hard
combinatorial problems. We provide an illustration of this last point on the classical
satisfiability problem SAT.

Relevant core courses: This material applies to ParAlgo courses.
Relevant PDC topics: Scalability in algorithms and architectures, speedup, Costs

of computation, Data parallelism, Performance modeling
Learning Outcome: Students at the end of this lesson will be able to:

• Perform a classical speed-up analysis,
• Perform an efficiency and isoefficiency analysis,
• Understand the complementarity between Amdahl’s and Gustafson’s laws,
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• Analyze the benefits of parallel processing,
• Determine the best approaches for designing a parallel program,
• Identify limitations in the parallelism of a program,
• Perform a trade-off analysis between time and energy consumption, and
• Envision alternative approaches for the design of scalable algorithms.

Context for use: This chapter is intended to be used in intermediate-advanced
courses on the design and analysis of parallel algorithms. The material covers
data parallelism, performance metrics, performance modeling, speedup, efficiency,
Amdahl’s law, Gustafson’s law, and isoefficiency. It also presents an analysis of
Amdahl’s and Gustafson’s laws when considering resource sharing techniques,
energy-efficiency and problem types. The analysis could be too advanced for a CS2
student because it requires a background in modern parallel systems and computer
architectures.

Introduction

Parallel machines are always highly powerful and complex (See the history of
computing in [20]). This is obvious when we consider the evolution in the number
of cores of top supercomputers in recent years.1 This progression is driven by
the conviction that with more powerful machines, we could reduce the running
times in the resolution of challenging, compute-intensive problems such as real-
time simulations (climate, brain, health, universe, etc.). On this latter point, let us
emphasize that the experts are convinced that such simulations could be undertaken
only with future exascale platforms.2

At first glance, it might seem obvious that given a parallel algorithm and
a machine, the running time of the algorithm while using x CPUs will be
greater than the one we could expect with more than x CPUs. However, this
is not necessarily true; indeed, the computation of a parallel algorithm is split
between a computational part required for creating parallelism (a set of workers
corresponding to threads or processes), computations required for running the
concurrent workers, and those necessary for communication and synchronization.
Given a more powerful machine (in term of cores or CPUs), the main option for
reducing the running time of a parallel algorithm would consist in increasing the
number of independent computations. However, this will probably induce more
communication, synchronization, and a more important overhead for the creation
of parallelism. Hence, it cannot be totally guaranteed that the gain induced by the
increase in parallelism will be balanced by these additional operations.

1Details are available at http://top500.org
2http://www.exascale-projects.eu/

http://top500.org
http://www.exascale-projects.eu/
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This observation shows that we need a conceptual support to justify why super-
computers with more computational units could serve to tackle more efficiently
compute intensive problems. Historically, the notion of scalability was introduced
for this purpose. Roughly speaking, it describes the capacity of an algorithm to
efficiently solve larger problems when it is executed on a machine with more
parallelism.

The purpose of this chapter is three-fold. First, we intend to provide an
understanding of scalability, deeper than the intuitive one. We define the concept,
discuss its interest and introduce key metrics used for its quantification. The
concept of scalability is also associated with two fundamental laws: Amdahl’s and
Gustafson’s laws. Our second objective is to put these laws in perspective with the
computability of problems, modern resource sharing techniques and the concept of
energy-efficiency. Finally, we introduce a new statistical approach for improving the
scalability of parallel algorithms.

Background on the Scalability

We conclude that an algorithm is scalable from an analysis of its behavior when it is
used in the processing of larger problems with more parallelism in the machine. For
this purpose, we need metrics to characterize the behavior of a parallel algorithm. In
this section, we will first introduce some classical metrics. Then, we will show how
they can be used to analyze scalability.

Speedup and Efficiency

Definition 1 (Speedup) Let us consider a parallel machine made of p computing
units and a computational problem P . Let us assume an instance of P for which the
sequential algorithm has a running time equal to T1. Finally, let us assume a parallel
algorithm A whose running time in the resolution of the instance on p computing
units is Tp. Then, we define the speedup achieved by A when solving the problem
instance as

Sp = T1

Tp

The notion of computing units will depend both on the parallelism of the
underlying machine and on the implementation of A . Thus, these units might
consist of cores, processors and even containers. For the sake of simplicity, in
the rest of this chapter, unless otherwise stated, we will consider that computing
units correspond to processors. This choice is debatable as a parallel algorithm
might support different types of parallelism (cores, processors, etc.) However, the
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resulting conclusion might still hold in choosing a lower level of parallelism.
Another question in this definition is how to define T1. There are at least two choices:
the execution time of the parallel algorithm on one processor, or the execution time
of the best sequential algorithm for solving P . It is this latter metric that we will
consider.

Given an instance of P , let us consider that the number of sequential operations
to perform in its resolution is W . We will also refer to W as the work. In general,
we could expect to have 1 ≤ Sp ≤ p. The argument derives from the common
sense since with p processors, we could divide the number of sequential operations
to perform into no more than p pieces of work, which leads to an acceleration in the
resolution time of at most p. However, for several reasons, it might be possible to
have Sp > p. One reason is that we might have more cache faults in the sequential
algorithm when it processes an instance I whose total work is W than in the case
where it processes sub-instances of I of work W

p
.

Definition 2 (Efficiency) The efficiency of a parallel algorithm on a problem
instance is as follows:

E = Sp

p

In general E ∈ [0, 1]. But, as Sp could exceed p, E could be greater than 1.
In order to compute the speedup or the efficiency, we need to consider a specific

instance of problem P . However, for the sake of clarity, we will consider that if two
instances have the same size, they also have the same work and execution time. For
instance, let us consider that P consists of multiplying two (dense) square matrices.
Let us also assume two problem instances A × B and C × D where A,B,C,D ∈
R

n×n. The size of the first instance is the number of elements of A added to the
number of elements of B, which is 2n2. The size of the second instance is also 2n2.
Thus, A×B and C×D hold the same amount of work. This conclusion is confirmed
in practice since the processing of both instances will require the same number of
floating-point operations.

Asymptotic Analysis of Speedup and Efficiency

The asymptotic analysis is a central concept in the study of parallel algorithms.
Given a metric that depends on a set of parameters, its objective is to state how
the metric behaves when the parameter values become infinite. The first model of
asymptotic analysis that we consider focuses on speedup. Its objective is to capture
the speedup behavior when the number of processors and problem size increase.
This model can be used for a theoretical or experimental analysis of the parallel
algorithm. The theoretical analysis is discussed in the next section by means of
Amdahl’s and Gustafson’s laws.
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In order to capture the speedup behavior through experiments, a classical tool
consists in generating a 2D chart, which states the speedup reached for the various
instances depending on the number of processors. An example is depicted in Fig. 1.
The curves have been obtained using following the function:

T (n, p) =
(

n

p
+ p

)
.4 × 10−8

This function is representative of the running time we could observe on the
problem of finding the maximum of a vector of real numbers. Indeed, with p

processors, the problem can be solved as follows. First the vector is partitioned into
p pieces. Local maxima are then computed in parallel for each sub-vector. Finally,
the maximum of the local maxima is returned. If we proceed this way, then the
number of comparisons is n

p
for each sub-vector and p for finding the maximum

among local maxima. If a comparison takes 4 × 10−8 s, then we have the above
function.

In Fig. 1, one can notice that the greater the size of the problem, the higher the
speedup we can reach with multiple processors. This is because, when n increases,
the speedup curve becomes close to the identity line (y = x). We obtain a speedup
close to p and hence, an efficiency close to 1. In such a situation, we conclude
that the parallel algorithm is scalable. More generally, we say that an algorithm
is scalable if its efficiency can be kept constant when increasing the size and the
number of processors. In this example, we make a projection of the speedup in
establishing that for large values of n and p, it remains close to the identity function.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

sp
ee

du
p

processors

n=64
n=512

n=1024
n=2048
n=4092
n=8192

n=16384
n=32768

y=x

Fig. 1 Practical example of speedup distribution in the search of the maximum element of a vector
of size n
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An interesting question is then to know whether or not it is only such a function that
can be achieved in an asymptotic analysis. This is discussed in the next section.

Types of Speedups

Definition 3 (Linear speedup) We say that a parallel algorithm has a linear
speedup if the speedup Sp converges towards p when both the problem size and
the number of processors increase.

The problem size is not included in the definition. This means that, whatever
the problem instance, the parallel algorithm efficiently shares the amount of work
among the processors. Linear speedups will typically be observed in parallel
algorithms composed of workers that do not need to communicate. This is the case
for instance of Monte-Carlo simulations.

Definition 4 (Super-linear speedup) We say that a parallel algorithm has a super-
linear speedup if Sp > p when both the problem size and the number of processors
increase.

Super-linear speedups will typically be observed in parallel search algorithms
based on backtracking. Indeed, assuming that the sequential depth first search space
is represented as a tree, we could avoid a deep exploration of the paths that do
not lead to optimal results in splitting the tree in the case where the solution is at
the beginning of another path. The order of cache accesses may also play a role in
super-linear speedups phenomena.

Definition 5 (sub-linear speedup) We say that a parallel algorithm has a sub-
linear speedup if Sp < p when both the problem size and the number of processors
increase.

Due to some limits in the parallelization that we will discuss further, sub-linear
speedups will frequently be observed.

Strong and Weak Scaling

Let us consider again the example of section “Asymptotic Analysis of Speedup and
Efficiency” (finding the largest element in a vector). We concluded that there is
a convergence towards the identity function by computing the speedup for various
problem sizes and processors numbers. Our conclusion was based on the distribution
of the chosen points (n, p). It is important to notice that if n was only selected
between 64 and 512, we would not have observed the convergence to the identity
line. As we cannot evaluate all possible points, an important challenge in asymptotic
analysis is to make an appropriate selection. For this purpose, two types of speedup
analysis are considered in practice: weak scaling and strong scaling analysis.
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In weak scaling analysis, we evaluate the speedup, efficiency or the running time
of a parallel algorithm in points (n, p) where we ensure that the problem size per
processor remains constant. A common practice in weak scaling analysis consists in
doubling both the size of the problem and the number of processors. If the running
time or the efficiency remains constant, then the algorithm is scalable. In strong
scaling analysis, we are interested in determining how far we can remain efficient
given a fixed problem size. Therefore, for a fixed problem size, we increase the
number or processors until we observe a change in the efficiency.

Isoefficiency

Given the running time function of section “Asymptotic Analysis of Speedup and
Efficiency”, we computed in Fig. 2, different values of the efficiency assuming
that the problem size per processor (denoted by np) is 64 and 1024. As one can
notice, if a linear speedup is clearly visible for np = 1024, it is not the case for
np = 64. An important question in scalability analysis is then to know how to
increase the problem size per number of processors. The isoefficiency [10] concept
was introduced for this purpose.

More generally, for a given efficiency, the isoefficiency function of a parallel
algorithm shows how to increase the problem size with respect to the number of
processors in order to keep a given value of the efficiency. Given a fixed efficiency
value, all parallel algorithms will not have the same isoefficiency function. In
general we will distinguish between algorithms for which the size must be increased
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as an exponential function of the number of processors (poorly scalable algorithms)
and those for which the size must be increased linearly (highly scalable algorithm).

There is no generic method for the computation of the isoefficiency function.
However, in the case where an analytic formulation of the sequential and parallel
algorithm execution time is available, such a function could be computed. For
instance, let us assume a basic sequential algorithm whose running time is expressed
as T1 = n · tc where n is the problem size and tc a computing time. This corresponds
to a simplified case where the sequential algorithm consists in performing n times
a given operation. Let us also assume that the parallelization of this algorithm has a
running time Tp = T1+To

p
. The idea in this latter formula is that given p processors,

we can divide the time of the sequential algorithm by a factor of p. However, we
must consider the overhead induced by communication, synchronization, and other
artifacts such as the creation of parallelism. Assuming the previous expression, the
efficiency becomes:

E = 1

1 + To

n·tc

Therefore, we can relate the problem size to the number of processors and the
efficiency with the following formula:

n = E · To

tc(1 − E)

Thus, if we want to keep efficiency constant, we must use the equation n = K ·To

where K = E
tc(1−E)

. In this formula, p does not explicitly appear; however, it is
implicitly considered in the overhead running time To that depends on the number
of processors. Finally, let us observe that in practice, it might be more complex to
derive the value of n to use since To might be a non-linear function that depends on
both p and n.

Limits of the Formalization

One of the main justification of the popularity of the concept of scalability is that
it provides a theoretical background to: (1) justify the design of large parallel
machines and (2) evaluate and compare parallel algorithms. In the early stage of
parallel computing, scalability was mainly used to show that it is possible to build
algorithms that can efficiently exploit a huge number of concurrent processors. This
argument is still valid today. Indeed, we are witnessing the end of Moore’s law as
it is discussed for instance in [23]; parallelism and scalable algorithms are then
becoming the only option for solving computing problems faster. However, this
does not mean that we have a blank check to design powerful supercomputers. It is
important to notice that we are also in another era of computation where the quality
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of algorithms is no longer strictly based on the running time. Other dimensions such
as energy consumption have gained in importance, which has led to the definition
of new metrics like energy-efficiency. Roughly speaking, the energy efficiency of a
parallel program captures the ratio between the amount of energy it uses and the
time it takes. Somehow, the term power efficiency is more precise because this
ratio corresponds to the amount of Watts used by the algorithm. We do believe
that the concept of scalability must be directly extended to deal with this new
notion. For instance, a scalable energy-efficient algorithm could be an algorithm
that can maintain its energy-efficiency when both the problem size and the number
of processors increase. In other words, the first limit of the formalization described
previously is not to take into account the other qualitative dimensions of the behavior
of an algorithm.

The second limit we observe is that the proposed formulation does not handle
the specificity of several computing problems and algorithms. Indeed, we implicitly
assumed here that the size of a problem instance determines (or at least is related
to) its hardness. In addition, we also assumed that all instances with the same size
are similarly hard. These assumptions are not true for many computing problems, in
particular those which are NP-hard. For instance, on the satisfiability problem SAT,
the execution time of a backtracking algorithm will depend on the distribution of
exact solutions in the search space. The difference between the running times of two
instances of the same size could be huge. A direct consequence of this inability to
relate work and problem size is that the concept of asymptotic analysis as described
previously could no longer be applied.

Finally, we considered in our presentation that computing units correspond
to processors. We also implicitly assumed that these processors have the same
performance. Today however, the architecture of parallel machines has greatly
evolved. Computing units could correspond to containers, virtual machines, cores
or any combination of hybrid components (heterogeneity). In addition, with the
complexity of machines nowadays, many other elements are related to the machine
configuration could play a role in the performance of an algorithm (and its
implementation). The question is then to determine whether or not the scalability
results observed on a specific machine are valid on another one. In the past, similar
interrogations led to the introduction of theoretical models of parallel machines like
the well-known PRAM model. We encourage the reader who wish to learn more
about it to read the seminal paper [7] or the dedicated chapter in the book of Cosnard
and Trystram [4].

Scalability Laws

In the previous section, we showed how to use speedup and efficiency in an
experimental evaluation of the scalability of a parallel algorithm. In this section,
we will present how to theoretically estimate these metrics.
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Amdahl’s Law

Somehow, it might be counterintuitive to consider Amdahl’s law as a scalability
law. In its original paper [1], Amdahl introduced the law to explain that most actual
problems do not have enough parallelism that could use the full potential power
of supercomputers. Amdahl’s argumentation was originally based on a statistical
analysis. He showed that there is little benefit in parallelizing some computing
problems and particularly, those for which we only have irregular algorithms.3

Amdahl’s analysis was right and even today, there are several computing problems
on which the best parallel algorithms only achieve poor speedups. The idea to
make a statistical analysis of the parallelism in term of computational problems
was also ingenious. We will come back to this point and briefly introduce the P-
completeness theory whose aim is to capture the problems of the P class that are
hard to parallelize [11].

Although Amdahl showed that the usefulness of supercomputers might be
overestimated, he proposed a simple but powerful model for the analysis of parallel
algorithms. This model shows how to characterize the speedup and efficiency of a
parallel algorithm as mathematical equations.

Mathematical Formulation of Amdahl’s Law

Let us assume a sequential algorithm that solves a problem instance in W operations.
The first assumption in Amdahl’s law is to partition W into two fractions: namely,
a sequential fraction fseq and a parallelizable part fpar such that fseq + fpar =
1. The sequential part is composed of operations that must be done one after the
other and the parallelizable part corresponds to operations that can be performed
simultaneously. Let us denote by tc the execution time of a basic operation (all
instructions are assumed to be identical). Then, the sequential running time of the
algorithm is

T1 = (fseq + fpar )W · tc

Given p processors, the second assumption in Amdahl’s law is that we will have
to distinguish between two types of computations: computations of the sequential
part that will be executed on a single processor and the ones from the parallel
fraction that will be shared (ideally) among all processors. This leads to the
following expression:

3Irregular algorithms are characterized by non-uniform memory pattern accesses. For such
algorithms, we will frequently be in the situation where the data we want to access are not in
the caches. Some such well-known irregular algorithms include: Cholesky factorization, finite
differences algorithms, agglomerative clustering, Prim’s algorithm, Kruskal’s algorithm, belief
propagation.
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Tp = fseq · W · tc + fpar · W · tc

p

Consequently, the speedup is

Sp = 1

fseq + 1−fseq

p

It is important to observe here that the assumptions underlying Amdahl’s law
are debatable. In particular the speedup in this model is at most linear whereas
super-linear speedups can be observed in practice. This situation happens because
Amdahl’s law assumes a parallel algorithm issued from the parallelization of the
instructions of a sequential one. But in practice, the parallel algorithm could be
issued from a completely new design of the problem.

Limits to Scalability

Amdahl’s work pioneered several researches on the limit to scalability. In 1973,
Stephen Cook introduced the P-completeness theory. This branch of the complexity
theory aims at identifying problems for which there is no parallel algorithm that
takes a poly-logarithmic time in the problem size, while using a polynomial number
of processors. One of the objective of the P-completeness theory is to identify
problems that are inherently sequential. This means that there is no efficient
parallel algorithm for their resolution. In their book, Greenlaw, Hoover and Ruzzo
give a compendium of P-complete problems [11] which includes several classical
problems including scheduling, minimum set cover, and linear programming.

Another important limit to scalability is the memory wall. The memory wall
is due to an imbalance between the memory bandwidth, latency and the processor
speed [26]. On several machines, the running time to perform a Load/Store operation
in DRAM exceeds the time of a multiplication. There are several techniques that
were introduced in computer machines to avoid such a wall. A possible solution is to
recover data loading with computations: the processor can start another instruction
if the data of a prior one are not available. With this approach, given a same parallel
program, the execution order of its instructions could change from one machine to
another (out-of-order execution [16]). However, even with such a solution, we can
still remain constrained by the DRAM access time.

The third limit is the energy consumption. Indeed, the power consumption of
a supercomputer grows with processor utilization. This consumed energy is trans-
formed into heat that must be dissipated. Several studies showed that the cooling
can account for up to 40% of the energy consumed in a datacenter[6]. To reduce
this cost, the Power Usage Efficiency metric (PUE) was introduced to estimate the
efficiency of datacenters. Roughly speaking, the PUE is the ratio between the total
energy consumed by a datacenter and the one devoted to computations. The closer



90 Y. Ngoko and D. Trystram

PUE to 1, the better the datacenter. In such a context, it is important to keep the
parallel efficiency of an algorithm under a threshold where it does not consume too
much energy in the perspective of PUE minimization.

Gustafson’s Law

The concept of scalability as it is known today owes much to the work of
Gustafson [12]. Indeed, the original Amdahl’s paper showed that given a fixed
problem size, we will always reach a limit in its parallelization. This view is what
we refer today as the strong scaling perspective. Without contradicting Amdahl’s
observation, Gustafson showed that this does not mean that huge parallel machines
are useless. Indeed, the greater the numbers of resources, the faster the solution
of large problems. Thus, he introduced the weak scaling analysis and the idea of
evaluating the efficiency of the algorithm in both increasing problem sizes and
number of processors. The work of Gustafson also revisited the analysis proposed
by Amdahl to show how large speedups can be obtained in parallel algorithms. The
general analysis he proposed is reviewed below.

Mathematical Formulation of Gustafson’s Law

Just like with Amdahl’s law, Gustafson’s law is based on the concept of serial
and parallelizable fraction of work (the global work is denoted by W as before).
However, instead of considering these proportions in the sequential algorithm,
Gustafson’s analysis assumes that we know them in the parallel algorithm. Let
us assume that for a parallel algorithm that runs with p processors, the serial and
parallel fractions are f ′

seq and f ′
par respectively. The algorithm running time is

Tp = (f ′
seq + f ′

par ) · W · tc

For the equivalent sequential algorithm, the running time is

T1 = (f ′
seq + f ′

par · p) · W · tc

This leads to a scaled speedup equal to

Sp = p + (1 − p)f ′
seq

In order to determine the difference between the scaled speedup and the speedup
as formulated by Amdahl, let us assume that p = 1024 and half of the work is
parallel (fseq = f ′

seq = 0.5). Then, while Amdahl’s speedup is equal to 1.998, the
scaled speedup is equal to 512.5. The difference is huge but it is easy to explain.
Indeed, Amdahl’s and Gustafson’s analyzes are implicitly based on two different
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approaches in the design of parallel algorithms. In Amdahl’s case, the parallel
algorithm will execute (in parallel) instructions of a sequential algorithm. This
envisions automatic parallelization and instruction level parallelism. In Gustafson’s
case, the parallelism is created depending on the number of processors. This
envisions data parallelism. Further, the scaled speedup is biased by the fact that
the sequential algorithm was considered as a degenerated version of the parallel
algorithm.

Discussion About Generic Laws

In this section, we will extend the discussion of the Amdahl’s and Gustafson’s laws.
The objective is to put in perspective these laws with respect to the problem types,
modern resource sharing techniques and energy-efficiency.

Problem Types in Amdahl’s and Gustafson’s Law

As already mentioned, the type of addressed problems is a central notion in both
Amdahl’s and Gustafson’s analysis. Indeed, the original Amdahl’s paper targeted a
set of problems that are hard to efficiently solve with a parallel algorithm because
of irregular boundaries or non-homogeneous data distributions. In the same spirit,
Gustafson introduced the notion of scaled speedup, emphasizing problems on which
he obtained near-linear speedups. We do believe that the notion of problem type has
received too little attention in parallel programming studies.

One of the most important theory developed for classifying the problem types
in parallelization is the P-complete theory [11]. Let us recall that a problem is P-
complete if: (1) it can be solved by a parallel algorithm in polynomial time, but (2) it
cannot be solved in poly-logarithmic time with a polynomial number of processors,
although P = NC. Here, NC is the class of problems that can be solved in poly-
logarithmic time using a polynomial number of processors [19]. The fundamental
question of the P-completeness theory reflects the pessimistic Amdahl’s view on the
parallelization (if P �= NC) and the optimistic Gustafson’s view (if P = NC).
Indeed, if P = NC, then we can develop a highly parallelizable algorithm for
all polynomial-time problems. Notice that a way to improve the algorithms is to
consider the randomized version RNC (which aims at determining an efficient
parallel solution with high probability). For instance, the problem of finding a
maximal matching is in RNC and not in NC. Despite its great interest, the P-
complete theory does not completely cover the class of all computational problems.
In particular, there are hard problems that we can only practically address with
heuristics. This includes problems of the NP and PSPACE class [8].

Another interesting view of problems type in parallelization was introduced
in [2]. In their paper, the authors considered 13 key techniques or kernels to
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implement parallel algorithms. The techniques/kernels cover several computing
domains like dense and sparse linear algebra, databases, machine learning, etc.
Contrary to the P-completeness theory, NP-hard problems can be considered here
since backtracking and branch-and-bound are part of these techniques. Despite the
interest of this work, it does not however discuss one of the main aspect of Amdahl’s
and Gustafson’s analyzes where the notion of problem types was considered within
the perspective of investigating the limits we can expect from parallelization.

To conclude this “philosophical” section, we could say that when dealing with
parallelization, the problem type under consideration is crucial. For instance, it is
more likely to have an efficient parallel algorithm on a numerical problem than on
NP-hard combinatorial problems. Hence, we feel that, to fully complete the vision
of problem types in both Amdahl’s and Gustafson’s works, a statistical evaluation
of the most frequent parallel computing kernels implemented in parallel systems is
necessary.

Amdahl’s and Gustafson’s Law Revisited for Modern Resource
Sharing

Amdahl’s and Gustafson’s discussions were about the usefulness of a massive
parallel machine. In his original paper, Amdahl wrote: “Demonstration is made
of the continued validity of the single processor approach and of the weaknesses of
the multiple processor approach in terms of application to real problems and their
attendant irregularities”. As an answer, Gustafson concluded with “Our work to
date shows that it is not an insurmountable task to extract very high efficiency from
a massively-parallel ensemble”.

The original papers of Amdahl and Gustafson share at least two common
assumptions regarding the usefulness of parallel machines. The first feature is the
interest in speedup optimization. Somehow, they considered that a parallel machine
is useful if it can help to solve problems faster. As already mentioned, such a
vision is debatable nowadays since computing has an energetic price. We will return
to this point in section “Amdahl’s and Gustafson’s Law and Energy-Efficiency”.
The second feature shared by both works is to consider the usefulness of parallel
machines in an algorithmic/application centered viewpoint that does not account on
the margin, we could have at the operating system and middleware levels.

Today, most parallel machines are associated with a resource managing system,
most often based on a client/server model. Here, each user (client side) can
concurrently submit, deploy and run several parallel algorithms on a subset of
processors of a parallel machine. To manage this concurrency, new concepts have
emerged like the notion of job and job scheduler. A job refers to an instance of a
parallel algorithm composed of features (the source algorithm to run, the input data
files, the output data files, the number of processors, etc.) Each job is routed towards
a job scheduler that will determine the compute nodes on which it will be executed.
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Depending on the parallel algorithm under consideration, a job could be parallel,
moldable or malleable [5]. In the former, the requirements in term of processors
for the job is fixed (typically like in MPI applications). In the moldable case, the job
could run with different number of processors. In the malleable case, we additionally
consider that the processor assignment of a job can change during its execution.

With modern resource sharing techniques, it does not matter whether a job
does not fully use the total number of available processors or not. In such cases,
we could deploy another job that will be concurrently executed with it. It is also
important to notice that important progress was done to ensure that a concurrent run
will not negatively impact another one. Finally, resource sharing even goes further
with virtualization [18]. With virtual machines and containers, we can artificially
duplicate the physical resources of a machine that will be shared between several
parallel algorithms. In addition, we can adaptively remove or add physical resources
to any parallel algorithm [13].

To conclude this discussion, we argue that with modern resource sharing
techniques, parallel machines became systems that are exploited to varying degrees
depending mainly on the activity of the users and the interactions with the system.
This does not mean that the question of the scalability of a parallel algorithm is
no longer important, but that there is a complementary answer to the question of
parallel machine utility. Modern resource sharing techniques have also introduced a
new consideration regarding scalability. As alluded to earlier, the greater the number
of requests for job processing, the more useful the parallel machine because it can
be maintained full. However, this reasoning holds only if we are able to quickly
take appropriate scheduling decisions for the submitted jobs. This means that job
scheduling algorithms should also be scalable.

Amdahl’s and Gustafson’s Law and Energy-Efficiency

When considering the question of energy-efficiency, we tend to focus excessively
on the huge consumption of supercomputers while neglecting the progress made in
the design of processors. At this point, it is important to recall that for several years,
the design of processors followed Koomey’s law which states that the number of
computations per joules of energy dissipated has been doubling every year [15]. This
means that for the past several years, efforts have been made to bear on improving
computer hardware regarding the energy-efficiency. Unfortunately, the same is not
true for computer software and algorithms. This is because energy-efficiency was
not taken into account in Amdahl’s and Gustafson’s laws. These laws should be
revisited since energy consumption could not be neglected any longer.

A naive belief is that, in order to minimize energy consumption, it is sufficient
to minimize the running time. This is because the energy consumed by a parallel
algorithm on a given machine can be estimated as the sum of the instantaneous
power consumed throughout the execution of the algorithm [17]. Unfortunately, this
reasoning does not hold for modern large scale platforms. The instantaneous power
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consumption is not always a fixed quantity. It includes a variable part that depends
on the algorithm run. This variable consumption will depend on the load, the
frequency and voltage at which the machine is run. Therefore, we could have a faster
algorithm that finally consumes more energy. However, the story does not end here.
Indeed, let us observe that faster algorithms will in general be also the ones which
are more compute-intensive. However, at the processor level, compute-intensive
algorithms generally produce more heat. Consequently, we could even need a more
sophisticated cooling mechanism to lower the temperature of a supercomputer on
which we run a compute-intensive algorithm.

One of the most interesting metrics for energy-efficiency in the vision of
Amdahl’s law is the speedup per Watt or performance per watt ratio used in the
top green 500 list (See the green500.org site for details) and well conceptualized
by Woo and Lee [25]. An algorithm that scales on the speedup per Watt is able
to maintain the same speedup and average watt consumption when both problem
size and number of processors increase. Woo and Lee also proposed a theoretical
estimation of the speedup per Watt on several types of multi-core architectures. In
the proposed expressions, the speedup is defined as in Amdahl’s law. The concept
of speedup per Watt has some weakness, for instance if the Watts refer to a unit, it
is not the case for the speedup. In addition, we could criticize the fact that it is hard
to isolate the consumption of a parallel program from the one induced by the run
of an operating system or middleware. Despite these weaknesses, it is certainly one
of the most promising option to extend Amdahl’s and Gustafson’s speedups to the
minimization of energy consumption.

Finally, let us observe that the isoefficiency could be used as a powerful tool
to reduce energy consumption. Indeed, a parallel algorithm will not lead to the
same energy consumption depending on the number of processors it uses. An
interesting question is then to determine the right number. Thanks to isoefficiency,
we could answer as follows: depending on the efficiency we want to maintain,
we can compute for each problem size the number of processors we want to use.
This observation also suggests new ideas. For instance, it might be interesting to
formulate the isoefficiency while considering an average Watt consumption we wish
to maintain. Such models could in particular use the important progress made these
last years on the theoretical modeling of the power consumption [17].

Designing Scalable Algorithms in Modern Large Scale
Platforms

We propose in this section a general method for building scalable parallel algo-
rithms. The proposed method is in particular motivated by the desire to automate
the parallel resolution of NP-hard problems. However, it can be applied to a larger
range of problems. It is based on three main pillars that are presented as follows.
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Background

Pillar I: The Need of New Strategies for Strong Scaling

Fifty years ago, parallelism mainly focused on supercomputers dedicated to sci-
entific computing, it is now available on any general purpose computer and
applications. At the same time, supercomputers are always increasingly more
powerful and alternative parallel systems like computational grids or clouds have
emerged. This constant increase of parallel processing capabilities is challenging
for the design of strong scaling algorithms. We illustrate this point on the following
example.

Let us assume a machine with a huge number of processors (pmax). Let us
also assume that we want to solve three instances I1, I2, I3 of the problem P . For
their resolution, we have two parallel algorithms A and A′. A has the best average
execution time on the three instances while A′ has the best execution time on I1. In
such a context, a rough asymptotic projection would consist in recommending A for
the resolution of P .4

Let us now assume that in the run of A on I1, a number of processors (denoted
by pssl) offers no gain in term of parallelism. We refer to this point as the strong
scaling limit and formally define it as the smallest number of processors pssl such
that:

∀p > pssl, Tp ≤ Tpssl

As one can notice, the strong scaling limit is not the same depending on the instance
we are solving. This is clearly visible in Fig. 1 where the limit is reached more
quickly for n = 64 than for n = 512. Due to the sequential part of any parallel
algorithm, we could expect such a limit to be determined with pmax −→ +∞.
Returning to the asymptotic projection we made, the existence of a strong scaling
limit suggests that for optimizing the efficiency in the resolution of I1, there are
pmax − pssl processors that we should not use. As machines are increasingly
powerful, we can expect in the future to have another machine whose processors are
similar to the ones of the first one but with a greater number of processors p′

max .5 In
this latter machine, the previous asymptotic projection will still hold. However, in
the resolution of I1, we will now have p′

max −pssl > pmax −pssl that are not useful.
In conclusion, if the evolution of architectures leads to generations of machines with
more processors, it could be inefficient to use these additional processors in the
resolution of simpler computational instances.

4The idea to compare algorithms based on their average running time on a set of representative
computational instances is used in international competitions between algorithms. One of the most
famous is the SAT competition where one goal is to solve the maximal number of SAT instances
given a maximal time limit. SAT refers to the boolean satisfiability problem.
5This was observed on multicore machines where generations of machines integrate more cores.
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To face this situation, let us assume that the strong scaling limit of A′ on I1 is
p′

l > pssl . We could have been able to scale on p′
l − pssl additional processors if it

was A′ instead of A that was run for solving I1. The fact of having two algorithms
with different strong scaling limits was observed in the resolution of several hard
combinatorial problems, including the boolean satisfiability problem that we will
present in section “Case Study”.

As the parallelism of machines increases, we should invest in the design of
cooperative executions of algorithms solving the same problem. In 1976, John Rice
paved the way for a general theory of cooperative algorithms in theorizing the
algorithm selection problem [21]. The Rice conceptualization latter inspired several
studies on the automatic composition of algorithms and automatic tuning. Rice also
introduced a methodology for the algorithm selection problem that we will not
present here. The method we will present is inspired by the work of Huberman,
Lukose and Hogg [14] on the formulation of a general theory for cooperative
parallelism based on algorithm portfolios. In particular, given k parallel algorithms
A1, . . . Ak , we propose to define a cooperative execution of the various algorithms
as a concurrent run of each algorithm Ai on pi processors that is stopped as soon as
an algorithm finds a solution. Here, pi ∈ {0, . . . , pmax} and

k∑
i=1

pi ≤ pmax

We will refer to such cooperative executions as resource sharing schedules.
Since 2010, resource sharing schedules have been successfully applied to the
parallelization of the boolean satisfiability problem. In particular, several resource
sharing-based solvers won the competition.

It should be noted that resource sharing schedules are not the only model of
cooperative parallelism based on algorithm portfolios. Alternatives like time and
malleable sharing schedules were proposed [9]. Nonetheless, they will not be
discussed in this chapter. In this part, we will show how with resource sharing
schedules, we can envision a new method for the design of scalable algorithms.

Pillar II: Benchmark Instead of Problem Size

In the previous weak scaling analysis, our conclusions on the general behavior
of a parallel algorithm were based on observations made on a subset of instances
characterized by their problem size. As already mentioned, however, the notion of
problem size is not meaningful with all types of problems. On an NP-hard problem,
we could have the following situations:

• the running time of a small instance exceeds the time of a larger instance
• the running times of two instances of the same size completely differ
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This suggests that the idea of projecting the general behavior of a parallel
algorithm based on a subset of instances, chosen mainly on their sizes, could be
wrong. In addition, such a selection might not have any sense if we consider the
problem resolution in a business perspective. Indeed, in this context, each problem
will be associated with a context or domain that will constraint the types of practical
instances. For instance, a delivery company that frequently solves the traveling
salesman problem in France will not necessarily be interested in problem instances
coming from Africa or the USA. When designing an algorithm for such a company,
the question is not to be able to scale on any problem instance but on those
representative of its business activity.

For these reasons, we do believe that in the evaluation of a parallel algorithm, we
should constitute a reference benchmark of instances that might be representative
of the context in which the problem will be solved. Fortunately, such benchmarks
exist for several classical computational problems like the resolution of sparse linear
systems or the satisfiability problem.

A main drawback while considering benchmarks is that we need another defi-
nition of the scalability. Indeed, the previous definition was based on maintaining
a value of the efficiency when both the problem size and the number of processors
increase. With this definition, the design of a parallel algorithm has a clear objective,
that is to target linear or super linear speedup in an asymptotic analysis. What should
then be the objective if we restrict ourselves to a (limited) benchmark viewpoint?

To address this question, we propose to proceed as follows. Let us assume that
U is the universe of problem instances on which we want to be efficient. Here, U

could be infinite. Let us also assume that there exists a finite set B of representative
problem instances (i.e., our benchmark). Let T (I, p) be the running time for solving
instance I with p processors. We define the average efficiency in the resolution of
B as:

φ(B) = 1

|B|
∑
I∈B

φ(I), where φ(I) =
(

T (I,1)
pmax ·T (I,pmax)

)

We then say that we correctly scale if

ζ(B) = 1

|B|
∑
I∈B

|φ(I) − φ(B)| −→ 0

This definition of scalability shares a core idea with the prior one we considered
in the previous sections of the chapter. It is to maintain an average efficiency over
the benchmark. Indeed, we scale when the efficiency on any benchmark instance
get close to the average efficiency. However, there is a major difference since the
proposed definition is machine-aware in the sense where the speedup is always
computed on the total number of available processors. Thus, this new definition
somehow combines features of strong scaling (behavior of a single instance on
large number of processors) with those of weak scaling (general behavior of several
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instances). However, there is a weak point in the proposed definition: given U , what
we really want is to have

1

|B|
∑
I∈U

|φ(I) − φ(B)| −→ 0

Thus, the choice of B is critical because it must be representative of the instances
we have in U . An open question at this stage is to know how we apply this new
definition of efficiency to cooperative executions. We will return to this point in
section “Computation of Cooperative Executions”.

Pillar III: The Need of Auto-Tuning-Based Approaches

The increasing complexity of current machines makes auto-tuning unavoidable [22].
Any auto-tuning approach aims at solving a fundamental problem whose abstract
view is the following: we assume an algorithm that can be configured on a set
of parameters θ . We also consider a performance criteria (running time, energy
consumption, etc.) on which we want to optimize the run of the algorithm. Each
parameter θi is associated with a definition domain dom(θi) that defines the values
it can take. The goal is then to decide on the values to set for each θi (in the run of the
algorithm) in the perspective of optimizing the performance criteria we considered.
Nowadays, auto-tuning is unavoidable because on modern parallel architectures,
there are several architectural parameters that can be configured to optimize the
implementation of an algorithm. For a short view on such parameters, we refer
the interested reader to works related to the optimization of dense linear algebra
kernels [24].

We are convinced that the design of a parallel algorithm could no longer be
restricted to the formulation of a computational process that states how to generate
a correct output from a given input. The algorithm designed must be associated
with a search optimization process that will state how to automatically tune the
algorithm in a particular machine. The method we will propose formulate such
a search process in the case of a parallel algorithm thought as the cooperative
execution of several other ones.

Computation of Cooperative Executions

Given a computational problem P , we propose the following method to design an
efficient parallel algorithm for its resolution.

• Phase 1: Collect a set of parallel algorithms A1, . . . , Ak that solves P .
• Phase 2: Create a set B of reference instances in the resolution of P .
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• Phase 3: Compute the running times TAj
(I, p) for solving any instance I by

algorithm Ai when using p processors (1 ≤ p ≤ pmax).
• Phase 4: Determine the resource sharing schedule for which φ(B) is maximized

and

ζ(B) = 1

|B|
∑
I∈B

|φ(I) − φ(B)| −→ 0.

• Phase 5: Encode the resource sharing schedule as a new parallel algorithm.

In this method, we assume that the running time of the resource sharing schedule
is defined according to the equations:

T (I, pmax) = min
1≤j≤k

TAj
(I, pi)

T (I, 1) = min
1≤j≤k

TAj
(I, 1)

As mentioned earlier, this is because, in resource sharing schedules, the execution
is halted as soon as an algorithm finds a solution. Summarizing our method states
how from a set of parallel algorithms and a benchmark, we can tune and build a
cooperative executions of algorithms. We state how to optimize the cooperation
of algorithms on the running time. But, the method could be extended to other
performance criteria like the minimization of energy consumption. In this case,
one challenge is to define aggregation rules that state how to deduce the energy
consumed by a cooperative execution on p processors, from the one measured on
p′ < p processors.

In the proposed method, we could have several choices in Phase 4. For instance,
let us assume that we have 2 processors and 5 parallel algorithms. Then, there are
20 valid resource sharing schedules we could consider. This result is obtained as
follows: we have 5 potential schedules where only one processor is used, 5 potential
schedules where one algorithm strictly uses the two processors and 10 schedules in
which two algorithms are run concurrently, each with one processor. A challenging
question is to choose between all these schedules. For this choice, our conviction is
that in the case where pmax is not too large, a brute force algorithm might be used.
However, in the general case, we do believe that the optimal solution can be found
from a search that uses the strong scaling limits as the frontiers of the search. We
can also use the different heuristics proposed in [3].

To illustrate the different options in the choice of a resource sharing schedule, let
us consider that we have the running time distribution of Fig. 3 on a basis B of 3
representative instances. Such running times are assumed to be collected in Phase
3 of the proposed method. It is important to notice that this phase can be extremely
time consuming. Indeed, given k algorithms and pmax processors, we have k×pmax

running time values to compute. Let us assume that any estimation takes in average
ta seconds. Then, the expected duration for data collection is k.pmax.ta seconds. In
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Fig. 3 Example of running
time on 1 and 2 processors for
5 algorithms and 3 instances

#processors 1 2
A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

I1 40 60 60 80 41 37 56 51 68 38
I2 100 130 70 150 125 89 100 65 125 100
I3 10.2 10.6 10.5 10.3 8.4 10 10.5 10.4 10 9

addition, we must repeat the execution of the algorithms in order to have an accurate
estimation. If we repeat s times, then the expected duration is k.pmax.ta.s seconds.
On NP-hard problems, ta could be high. This means that it is interesting to study
how we could reduce the duration of the data collection processes. We will not
discuss on these aspects on this chapter.

Let us come back to the running times of Fig. 3. On 2 processors, our method
clearly shows that the resource sharing we consider will lead to different behavior.
For instance, if we deploy only A1 on two processors, then we obtain

φ(B) = 40

(37 × 2)
+ 70

(89 × 2)
+ 8.4

(10 × 2)

	 0.45

ζ(B) = 1

3

(∣∣∣∣ 40

(37 × 2)
− φ(B)

∣∣∣∣ +
∣∣∣∣ 70

(89 × 2)
− φ(B)

∣∣∣∣ +
∣∣∣∣ 8.4

(10 × 2)
− φ(B)

∣∣∣∣
)

	 0.059

If now we consider the schedule that runs A3 on one processor and A5 on another
processor, then we have: φ(B) = 0.49 and ζ(B) = 0.0054. As one can remark, this
latter schedule is preferable to the prior one on both objectives.

For the method to work, we need to already have several algorithms solving
the same problem. Fortunately, this is the case for most computational problems.
We also need to be able to estimate the running times of an algorithm on problem
instances. Unfortunately, such estimations are not easy to obtain on some algorithms
like those based on random choices. In the next section, we will describe in detail a
practical case study of this method.

Case Study

The Boolean Satisfiability Problem

The objective in the boolean satisfiability problem (known as SAT) is to determine
whether or not, a propositional formula written in Conjunctive Normal Form (CNF)
is true (satisfiable) or not (unsatisfiable) [8]. Let us recall briefly the context of
this classical problem: a CNF formula is defined as a conjunction of clauses
over a finite set of boolean variables. More precisely, let us consider n boolean
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variables x1, . . . , xn, a literal has either a variable xi or its negation ¬xi . A
clause is a disjunction of literals. For instance, C1 = x2 ∨ ¬x4 is a clause and
(x2 ∨ ¬x4) ∧ (¬x1 ∨ x2 ∨ x3) is a CNF formula.

SAT is a good candidate for illustrating the previous method for the following
reasons:

• this problem is NP-complete and the hardness to solve an instance is not always
correlated to its size; For instance, if xu in a clause and ¬xu in another clause, it
is easy to remark that the formula is unsatisfiable (whatever its size);

• it is rather easy to find several algorithms for solving SAT. Indeed, new solvers
are proposed each year in the SAT competition (see www.satcompetition.org);

• there exist several benchmarks on the problem. The SAT competition regularly
proposes a set of benchmark instances. The benchmarks are grouped in different
classes reflecting practical scenarios and/or hardness to solve some instances;

• resource sharing schedules have already been applied successfully on SAT.
Several winners of the SAT competition implemented a portfolio of solvers based
on the resource sharing schedule model. However, to the best of our knowledge,
such schedules were not tuned according to the method we proposed in the
previous section.

Building Resource Sharing Schedules for SAT

To illustrate our method, let us consider the data of the SAT competition available
at.6 It is composed of a benchmark of 300 instances (corresponding to set B) and 4
parallel SAT solvers (A1, . . . , A4). The running times of the solvers are known for
all the instances for both 8 and 32 cores. Using these data, we were interested in
studying if the proposed method could be used to build a better solver on a larger
number of cores.

Since we already have a set of solvers and SAT instances, the requirements of
phases 1 and 2 of our method are met. For phase 3, we should have performed a
benchmark evaluation. However, we choose to only use the running time estimation
we already have. These data are available from the website of the Penelope solvers.
The drawback of this choice is that first we do not have the estimation for all
numbers of cores, and second, we cannot compute the efficiency because the
estimation of the sequential run is not known. On the first point, we assumed that
any of the available solver could only be run with 8 or 32 cores. Regarding the
second point, we propose to minimize the cumulative running time

∑
I∈B

T (I, pmax).

Let us remark that this goes in the direction of the maximization of φ(B). Finally, we
did not encode the parallel algorithm corresponding to the cooperative execution of
our resource sharing schedule. Figure 4, shows the cumulative time of the different

6http://www.cril.univ-artois.fr/~hoessen/penelope.html

www.satcompetition.org
http://www.cril.univ-artois.fr/~hoessen/penelope.html
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solvers. As we can notice, there is a gain in the running time when increasing the
number of cores. However, this gain is far from what could be expected in a linear
speedup.

On 8 cores, the best solver suggested by this figure is the penelope-nofreeze
solver. As it was run only with 8 cores (the results for 32 cores are not available), an
interesting question is then to know if we could obtain a better solver on 32 cores in
combining the prior ones. The answer is yes, as shown in Fig. 5a, we were able in
combining 4 different solvers to compute a better resource sharing schedule on 32
cores. The gain obtained here is 946.64 s. The gain here is the difference between
the cumulative runtime of the best solver and the best resource sharing schedule.

The second question is to know if in combining the solvers, we could obtain
a better solution on more than 32 cores. The answer again is yes. In Fig. 5b, we
depicted the absolute running time difference between the best solver we found on
p > 32 cores and the best solver on 32 cores. The increase in running time could be
observed until reaching p = 208 cores.

These results showed that the proposed method can be used to build an efficient
parallel algorithm by composing several algorithms solving the same problem SAT.
However, it is important to notice that we only provided here a theoretical validation.
An effective implementation of the resource sharing schedule can in practice add a
runtime overhead. However, the gain states that there is still an important margin.
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Fig. 5 Running times of resource sharing schedules. (a) Resource sharing schedules on 32 cores.
(b) Gain using more than 32 cores

It is also important to notice that we did not handle the maximal time limit set in the
run of the solvers and the correctness of the results. This latter point is important
since some of the solvers were based on a heuristic search.

Conclusion

Amdahl’s and Gustafson’s law are still valid for modeling the performance of
parallel algorithms. However, as discussed in this chapter, we need to extend them
to other qualitative dimensions (such as energy-efficiency) and to the specificity
of modern parallel platforms (virtual machines or containers, etc.) We also need
a general formulation of scalability that could handle a larger class of problems;
in particular problems for which it is not reasonable to assume that the larger the
problem size, the more compute intensive the instance.

In this text, we introduced a candidate solution for the modern design of scalable
algorithms. It is based on cooperative parallelism; it shows how to define a parallel
run based on a computable optimization model. The model can be adjusted to
optimize the run on several criteria like the efficiency, the runtime or even the
energy consumption. It is also noteworthy that the proposed method focuses on
strong scaling that will become a major issue, as the parallelism available in modern
machines will continue increasing. Finally, our method is based on automatic
tuning that is inescapable as the complexity of machines continues increasing.
Improvements to our proposed method include the choice of the benchmark of
instances or the reduction of the runtime required to measure the running time of
the algorithms on instances.
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Exercises

Exercises for Section “Amdahl’s Law”

1. In Amdahl’s law, assuming that fseq = 0.4, what is the maximal number of
processors to use to achieve an efficiency of at least 0.38?

2. On a machine with 8 cores, what is the maximal speedup in the multicore
parallelization of 90% of a program?

3. Let us consider the computer program

for (i = 0; i < 100; i++){
a[i] = b[i] + c[i];
d[i] = a[i] + d[i-1]/2

}

where a,b,c and d are arrays of integers of size 100.

(a) In considering only the inner loop instructions, what is the fraction of
additions of the program (b[0] + c[0] is an addition)?

(b) What is the maximal speedup we can expect from the parallelization of the
algorithm?

4. With the MapReduce paradigm, we can count the number of words in a document
by the means of a process that includes four steps: splitting, map, shuffle, reduce.

At the beginning, given a document of n lines, the master node splits it
into n sub-documents, each corresponding to a line. It then assigns these sub-
documents to different workers. The map step follows where each worker runs a
map function that consists of sending the pairs ("key", 1) where “key” is a word
found in the sub-document it processes. After the completion of the map step, the
master node groups the emitted pairs by keys and sends all the data of a given key
to a distinct worker. The process ends with the reduce step where each worker
adds up the number of keys it has and returns the cumulative value.

In Fig. 6, a graph illustration of this process is provided with an input
document of 3 lines. The objective is to count the number of occurrences of
each of the words. This number is obtained after the reduce step.

In a MapReduce process, a step is only started if the prior one is completed.
Let us assume that in the map step, we have p workers, each deployed on a
distinct processor. Let us also assume that the map function given a line li of
length |li | will run in Θ(|li |). We consider for the sake of simplicity that all
computations are done using a shared memory.

(a) In the worst case, what is the completion time of the map step assuming that
each worker will get n

p
lines?

(b) How many workers should we use in this phase to achieve a speedup of c (in
the step)?
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Fig. 6 MapReduce example

(c) Assuming that in each line li , we have the same probability to have 1, 2 or
|li | distinct words, how many workers should we use in the reduce step to
maximize the efficiency of this step?

(d) Assuming that the time of the splitting and shuffle steps are known, given
p workers in the map phase and q workers in the reduce step, propose a
theoretical estimation of the execution time.

5. The well-known Fibonacci numbers are defined by the recurrence

F(0) = 0 , F(1) = 1 , F(n) = F(n − 1) + F(n − 2) for n > 1

Let us consider a multi-threaded program that proceeds as follows: given a
value n > 1, it creates two threads that respectively computes F(n − 1) and
F(n − 2). It then adds the value produced by the thread and returns it.

(a) How many threads are created in the computation of F(n)?
(b) Propose an asymptotic analysis of the scalability of this program.
(c) What are the limits to the scalability of this program?
(d) Propose a better parallelization for the computation of the Fibonacci numbers.

6. Given a square matrix of size n and a vector of n elements, let consider an
algorithm for matrix-vector multiplication whose cost on p processors is given
by the following equations:

T1 = n2tc

Tp = tc

(
n2

p

)
+ ts log p + twn

where, tc, ts and tw are constants.
Determine the isoefficiency function of this algorithm.
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Exercises for Section “Gustafson’s Law”

1. Let us consider the product C = A × B where A,B,C ∈ Rm×m. The
computation of C is done by using a block matrix multiplication algorithm that
splits A,B,C into square blocks of size q. Thus, we have:

C =

⎡
⎢⎢⎢⎣

C11 C12 · · · C1n

C21 C22 · · · C2n

...
. . .

...

Cn1 Cn2 · · · Cnn

⎤
⎥⎥⎥⎦ where nq = m and Cij =

n∑
k=1

Aik · Bkj

Let us consider a multi-threaded implementation on a p cores machine. At
the beginning of the execution, a master thread creates n2 tasks and put them
in a stack S. Here, each task corresponds to the computation of a block Cij . p

other threads are next created; their processing consists of iteratively removing a
task from S that they then process. All threads are stopped as soon as S becomes
empty.

(a) Propose a parallel implementation of this algorithm.
(b) Develop an asymptotic analysis of the scaled speedup of the proposed

implementation in the case where q = n

(c) Assuming 4 threads, deduce the value of q that optimizes the scaled speedup
(Use experimental results of the proposed implementation for this).

2. In the prior algorithm, let us now consider that the sum
∑n

k=1 Aik · Bkj is
parallelized. This means that when a thread steals a task corresponding to the
computation of Cij , it next creates d other sub-threads such that the sub-thread l

will compute

Cij = Cij +
l( n

d
)∑

k=(l−1)( n
d
)+1

Aik · Bkj

Propose an asymptotic analysis for (q = n, d = 2) and (q = n, d = √
n).

3. Let us consider a vector of real numbers x̄ = (x1, . . . xn) on which we want to
compute the standard deviation and mean. Here,

σ(x̄) =
√√√√1

n

n∑
i=1

(xi − μ)2, and μ(x̄) = 1

n

n∑
i=1

xi

For the parallelization of this computation we consider a two-phase algorithm.
The first phase computes the mean in parallel. Assuming that we have p cores,
one subdivides the list into p near-equal partitions. Each thread then adds up
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the number in its partition and a final thread adds up the sub-sums of the other
threads. In the second phase, one proceeds in the same way as for the standard
deviation. The threads compute the squared differences of the numbers in their
partitions and a last thread computes the standard deviation.

(a) What is the computational complexity of this algorithm?
(b) What is its theoretical speedup?
(c) Could we do better while parallelizing the sums?

4. Let us consider a web server associated with a queue of incoming requests. The
server processes each request in Δ seconds.

(a) Which minimal number of requests per second ensures that the size of the
queue will be always greater than 1?

(b) In order to reduce the processing time, one decides to create p instances of
the web server. All the instances are associated with the same queue. What is
the number of requests that will be processed per second?

(c) At which date a request that enters in the queue at date t0, with d predecessors
in the queue, will be processed? What is the efficiency of the processing?

Exercises for Section “Designing Scalable Algorithms in
Modern Large Scale Platforms”

1. Let us assume a benchmark of instances B and the running time T (I, p) for
I ∈ B and 1 ≤ p ≤ pmax

(a) Write a brute force algorithm that computes the resource sharing for which
φ(B) is maximized and

1

|B|
∑
I∈B

|φ(I) − φ(B)| −→ 0

(b) What is the computational complexity of your algorithm?
(c) Discuss the desirability of computing such resource sharing schedules on

matrix multiplication algorithms (consider the case of dense and sparse
matrices).

2. Let us reconsider the case study of the satisfiability problem. Assuming that
T (I, 1) = T (I, 8)/8, apply the algorithm of the previous exercise to determine
the best resource sharing schedule.

3. In this case study, compute the best resource sharing schedule on 16 processors
and propose a parallel implementation of this algorithm.
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