
Modules for Teaching Parallel
Performance Concepts

Apan Qasem

Abstract This chapter introduces three teaching modules centered on parallel
performance concepts. Performance related topics embody many fundamental ideas
in parallel computing. In the ACM/IEEE curricular guidelines (ACM2013), an
entire knowledge unit has been devoted to parallel performance. In addition,
performance topics pervade every knowledge area within PDC and can be found
across other knowledge areas including Algorithms, Architecture and Systems
Fundamentals. The three modules presented in this chapter cover a range of parallel
performance topics. Since power savings have become an important consideration
from hand-held devices to supercomputers, energy efficiency is also emphasized in
each module. The modules focus more on architectural and algorithmic issues rather
than the programming aspects. The modules are constructed to illustrate parallel
performance issues primarily through code examples and experimental studies. This
approach makes the modules accessible to students who do not yet have a strong
background in parallel programming. Thus, the target audience for this chapter are
instructors who are teaching CS1, with or without parallel programming, and also
instructors who are teaching upper-level electives where their students may already
have taken a semester of parallel programming.

Relevant core courses: CS1, Operating Systems, Computer Architecture
Relevant PDC topics: speedup (C), efficiency (C), Amdahls Law (A), space

vs. time (C), power vs. time (C), synchronization and communication (C),
task granularity (A), scheduling and mapping on multicore (A), load balancing
(A), trade-offs in performance and power (C), Analysis and Evaluation: linear
and super linear speedup (C), latency and bandwidth trade-offs, data locality,
SMP (C), NUMA (C), strong and weak scaling (C), (Bloom classification in
parentheses)

A. Qasem (�)
Texas State University, San Marcos, TX, USA
e-mail: apan@txstate.edu

© Springer International Publishing AG, part of Springer Nature 2018
S. K. Prasad et al. (eds.), Topics in Parallel and Distributed Computing,
https://doi.org/10.1007/978-3-319-93109-8_3

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93109-8_3&domain=pdf
mailto:apan@txstate.edu
https://doi.org/10.1007/978-3-319-93109-8_3


60 A. Qasem

Context for use: CS1 fundamentals, operating system thread scheduling, parallel
architecture performance evaluation

Learning outcomes:

• list and define parallel performance metrics: speedup, efficiency, linear
speedup, super linear speedup, latency and bandwidth

• describe the implications of Amdahl’s law on parallel performance
• recognize the use of parallelism to achieve strong scaling and weak scaling
• analyze the effects of load imbalances on performance and power
• apply techniques to balance load across threads or processes
• explain the need for inter-thread synchronization and communication
• apply techniques to pin and schedule threads on multicore systems for

improved performance
• describe how cores share memory resources, such as DRAM and cache
• recognize the importance of exploiting data locality in parallel applications

Introduction

This chapter introduces three teaching modules centered on parallel performance
concepts. Performance related topics embody many fundamental ideas in parallel
computing. In the ACM/IEEE 2013 curricular guidelines (ACM2013), an entire
knowledge unit has been devoted to parallel performance [1, 2]. In addition,
performance topics pervade every knowledge area within PDC and can be found
across other knowledge areas including Algorithms, Architecture and Systems
Fundamentals.

The three modules presented in this chapter cover a range of parallel performance
topics. Since power savings have become an important consideration from hand-
held devices to supercomputers, energy efficiency is also emphasized in each
module. The topics provide at least 3.5 h of Core-Tier 1, Tier 2 and Elective hours
from ACM2013. The modules are designed to be introduced in CS1 and two
upper-level electives, namely, Operating Systems and Computer Architecture. They
are, however, designed with enough flexibility to enable adoption in a number of
undergraduate courses at various levels.

The modules focus more on architectural and algorithmic issues rather than
the programming aspects. The modules are constructed to illustrate parallel per-
formance issues primarily through code examples and experimental studies. This
approach makes the modules accessible to students who do not yet have a strong
background in parallel programming. Thus, the target audience for this chapter are
instructors who are teaching CS1, with or without parallel programming, and also
instructors who are teaching upper-level electives where their students may already
have taken a semester of parallel programming.



Modules for Teaching Parallel Performance Concepts 61

Elementary Concepts

This module is designed to introduce fundamental concepts in parallel computing
in a CS1 course. The concepts are illustrated with no particular binding to any
programming language and therefore can be introduced in different flavors of CS1
courses.

Recommended Length 1 lecture (1:15 min)
Recommended Course CS1, CS2

Organization and Content

The major topics in this module include (i) overview of parallel computation on a
multicore processor, (ii) data dependence and need for synchronization in parallel
programs, (iii) parallel performance and Amdahl’s law and (iv) energy efficient
computing. The topics are introduced through lectures slides, an in-class activity,
code examples and a program demo. The following subsections describe how these
topics are explained and the order in which they are introduced.

Parallelism in Real Life

The module begins with an in-class activity that engages the students and demon-
strates the benefits of parallelism. An activity that works quite well with CS
freshman is a live simulation of the word search problem where students act as
processing threads. In this activity, the class is split into k groups. Each group
is assigned the task of finding a collection of words in a book and reporting the
page numbers where the words occurred. Each group gets a copy of the book. But
the copies are sectioned into different-sized segments. Thus, one group might get
the entire book in one chunk while another may be assigned one page per group
member. The students are then asked to try to find an efficient method of solving the
problem with resources they are given. Naturally, the teams with fewer pages per
student (thread) are likely to get to the results first. However, care must be taken in
selecting the words and their positions and in segmenting the text.

Parallel Computing and Its Importance Today

Following the in-class example, a set of lecture slides defines parallel computing
and discusses its importance in today’s world. A high-level definition of a parallel
computer is presented. Student familiarity with basic Von-Neumann architecture is
assumed (not an unrealistic expectation for CS1 students). The discussion of the
definition of a parallel computer is followed by some history of parallel computing.



62 A. Qasem

Fig. 1 Lecture slides illustrating the differences in serial and parallel program execution. Anima-
tion is used for the different blocks in the slideshow

The point is made that parallel computing has been around for a long time, ever
since the beginning of computing. Notwithstanding, it has only become mainstream
in the last decade. Brief descriptions of mainframe, vector computers and clusters
are presented. This is followed by a discussion of multicore computers of today.
The importance of energy efficiency and the role it has played in the evolution of
computer chips and given rise to multicore systems is discussed. The lecture slides
emphasize the need for achieving higher performance at lower power consumption
or at specified power budgets. The ubiquity of parallel computers is also discussed.
Students are asked to guess/comment on the number of processing cores on their
smartphones and tablets. Their guesses are then validated against actual numbers. A
discussion follows on the need for more parallel processing cores.

Sequential vs. Parallel Program Execution

A major portion of the module is spent introducing the student to the fundamental
difference in sequential and parallel program execution. A walk-through example



Modules for Teaching Parallel Performance Concepts 63

Fig. 2 A simple parallel
code written in SimPar

int add() {
int x, y, result;
#PARALLEL {

x = 17;
y = 13;

}
result = x + y;
return result;

}

Fig. 3 Incorrectly
parallelized code

int add() {
int x, y, result;
#PARALLEL {

x = 17;
y = 13;
result = x + y;

}
return result;

}

is used for this purpose. Figure 1 shows a subset of the slides that are used to
explain this topic. The slides are accompanied by a set of examples written in
SimPar [3]. Two such examples are shown in Figs. 2 and 3. SimPar is a simple macro
language that uses an intuitive pragma based syntax. Since students are generally not
expected to be familiar with any parallel programming language in CS1, SimPar is
an effective tool to discuss parallelism with real examples without getting bogged
down in syntax minutiae. SimPar contains only one kind of parallel statement, a
directive in the form of #PARALLEL { ...}. This implies that all high-level
statements enclosed in the subsequent block will be executed concurrently. SimPar
processes such directives by taking each statement in the block and converting it
into a Pthread function. Supplementary materials for this chapter includes a SimPar
parser that can be used to create other simple examples. The instructor should be
aware that SimPar is not a realistic parallel language and is very limited in ability.
Thus it should not be used for creating extended examples beyond CS1. During
the walk-through of the example, students are asked to list the order in which
the statements will execute on the processor. A parallel directive is then inserted
for the two assignment statements and the meaning is explained to the students.
The program is then extended to include array assignments instead of just simple
assignments. This program is compiled and executed and the result examined in
class. Students are then asked to comment on what other statements could be
parallelized. The instructor leads them to an example where the result statement
is put in the PARALLEL block along with the two assignment statements. This



64 A. Qasem

program is run, potentially several times, and the error demonstrated to the students.
The students are then asked to describe the problem in the code. This is followed by
a discussion of data dependence and the challenges with parallel programming.

Parallel Programming Tools

Students are told that SimPar is not a real language. The syntax for real languages
are more complex and so is the programming model. Some of the currently available
parallel languages and tools, including OpenMP, Pthreads, MPI are presented. The
suitability of each is briefly discussed. The slides include example codes for each of
these parallel languages. However, students are told they are not expected to learn
the syntax at this stage.

Performance Metrics

In this segment of the module, performance issues in parallel computing are
reiterated. This is followed by definitions and examples of sequential and parallel
performance metrics. A simple parallel search code written in SimPar is used to do
an in-class demo to show the differences in the performance metrics. Sequential
and parallel (OpenMP) versions of the code are also shown in class. The code
is compiled and executed with different data sets. Execution time and energy are
measured for each run. A convenient tool for measuring power consumption on Intel
processors is Likwid [4], freely available for download. The specific performance
metrics and definitions that are discussed include

• Execution time
• Energy
• Speedup and Greenup
• Amdahl’s Law
• Linear speedup
• Scalability

Pedagogical Notes

The author has used this module in CS1 courses in three semesters at Texas State
University. In all three cases, it was helpful to introduce this module towards the end
of the semester when students are somewhat more confident with the syntax of the
sequential language that is being used in the class.



Modules for Teaching Parallel Performance Concepts 65

For the in-class activity, we found that a group size of four and a section size of
two pages per member for the most parallel group is ideal. Making groups larger,
makes the sequential group not as engaged. More than two pages of dense text
makes the example run too long. We also found that, it is helpful to assign some form
of reward to the team finishing first. This motivates the teams to be more engaged
in the activity. Our experience also showed that it is better to place the stronger
and more vocal students in the sequential group. Since the activity is framed as a
competition and the sequential group is almost certain to not win, putting under-
performing students in that group is not advisable.

It is advisable that instructors practice the live coding examples ahead of lecture
time. Students often raise questions and suggest alternate approaches. The instructor
should be fairly comfortable with the examples in order to incorporate these
suggestions on-the-fly. The instructor should also take care to use the same system
for the demo as the one used for practice. Variations in system configuration can
make some examples not work as expected.

Sample Exercises

1. Computer A has 4 processors and Computer B has 8 processors. A parallel
program P, takes 16 s to run on A and 12 s to run on B. Is this the type of
performance you would expect out of P? Give one explanation as to why P does
not achieve more/less performance.

2. Execute simple programs written in SimPar. Compare their performance with
performance of sequential versions.

3. Download the C++ implementations of (i) knapsack and (ii) quicksort from
http://tues.cs.txstate.edu. Consider the opportunities for paral-
lelism in these two codes. Insert SimPar directives to parallelize the two
applications. Execute the parallel applications and compare their performance
with the sequential version of the code.

Task Orchestration

This module focuses on performance issues related to communication and synchro-
nization of parallel applications. It is intended to be introduced in the Operating
Systems course, as it provides the most context for the material covered.

Recommended Length 1.5 lectures (2 h)
Recommended Course Operating Systems



66 A. Qasem

S2 needs
radius

from S1

S3
needs
area

from S2

#define PI 3.141

int main() {
double radius, area;
radius = get_radius_from_circle();
area = PI * radius * radius;
printf("Circle area = %f\n", area);

}

#define PI 3.141

int main() {
double radius, area;

S1 radius = get_radius_from_circle();
S2 area = PI * radius * radius;
S3 printf("Circle area = %f\n",area);

}

Fig. 4 Code example illustrating data dependence

Organization and Content

This module begins by introducing students to some fundamental concepts in
parallel programming. Notions of data dependence, synchronization, race condition,
load balance and task granularity are explained. Architecture-specific performance
issues such as those that occur on shared and distributed-memory parallel computers
are also covered. A producer-consumer application is used as a running example to
illustrate various performance issues. Power-performance trade-offs are highlighted
in each context.

Data Dependence

After a quick review of parallel computing (two slides, as used in CS1 module),
the module introduces the students to the notion of data dependence in parallel
programs. Sequential and parallel versions of a simple function is presented. The
example in Fig. 4 uses the computation of an area of a circle. But many other
examples are possible. The parallel version of the example code is written in
SimPar [3].

Students are asked to predict the outcome of the code when executed with
certain input. The code is run several times in sequential and parallel mode.
Results are discussed and students are asked to comment on the discrepancy.
Following this discussion, the annotated code is presented as a slide, highlighting
the dependencies in the code. The formal definition of data dependence is then
presented. Various forms of dependence are also discussed briefly. The point is



Modules for Teaching Parallel Performance Concepts 67

Fig. 5 Sequential version of
producer-consumer code

int main() {
while (!done) {  

fill_buffer(buf);       // produce 
if (buf_is_full(buf))

empty_buffer(buf);   // consume
}

}

#pragma omp parallel { 
#pragma omp section {     

fill_buffer(buf);       
} 
#pragma omp section { 

empty_buffer(buf); 
}

}

Fig. 6 Incorrectly parallelized producer-consumer code

made that both sequential and parallel programs must preserve all dependencies
in the code for semantically correct execution. For sequential programs this is
trivial since instructions are executed in program order. If students have already
taken the Architecture course, then the notion of instruction-level parallelism (ILP)
can be brought into this discussion. An example can be used to convey that the
degree to which ILP can be performed is determined by the dependencies between
the statements in question. Re-ordering transformations performed by compilers
can also be discussed to further illustrate the importance of data dependence in
semantically correct program execution.

Following this, the running example, a produce-consumer application is pre-
sented. The one shown in Fig. 5 uses the bounded-buffer problem as an example.
But many other examples for parallel producer-consumer can be created with slight
modifications. The supplementary material for this module includes an example
with the knapsack problem. The sequential code is then explained to the class.
(Figure 5 omits the actual producer-consumer functions). The parallel version of
the code is then presented. Figure 6 shows the example in OpenMP. The instructor
may continue the parallel example in SimPar but then it cannot be used later in the
module for performance experiments, as the results would prove non-intuitive. If
an OpenMP example is used, a brief review of OpenMP syntax may be required
at this point. Alternatively, this can be handled off-line with the aid of tutorials or
handouts, as discussed in section “Pedagogical Notes”. The parallel version of the
code is executed several times to produce incorrect results. Again, students are asked
to identify the cause of the problem. Class discussion ensues, until the dependencies
in the code have been identified and clearly articulated.



68 A. Qasem

Fig. 7 Another incorrectly
parallelized
producer-consumer code

full = 0;
#pragma omp parallel { 

#pragma omp section {
fill_buffer(buf);
full = 1;  

} 
#pragma omp section { 

while (!full) {
/* wait */

}
empty_buffer(buf); 

}
}

flag = 0;
#pragma omp parallel { 

#pragma omp section {     
fill_buffer(buf);        
#pragma omp flush     
flag = 1;    
#pragma omp flush(flag) 

} 
#pragma omp section { 

#pragma omp flush 
while (!flag) 
#pragma omp flush(flag) 

empty_buffer(buf); 
}

}

Fig. 8 Correctly parallelized producer-consumer code

Synchronization

After it has been established that the code in Fig. 6 is producing incorrect results due
to data dependence violation, students are then asked if it is possible to correctly
parallelize the code and if so what conditions must hold. This discussion leads to
the notion of synchronization in parallel programs. The example in Fig. 7 is then
constructed in-class by editing the example from Fig. 6. This code is compiled and
executed several times to show the code still has not been correctly parallelized.
The students are then asked to identify the dependence that caused this problem.
This brings up the need for atomic operations, the idea of a critical section and race



Modules for Teaching Parallel Performance Concepts 69

Pipelined Parallelism

CP

Shared 
Buffer

P

C

Synchronization window

Example: Streaming applications such as Netflix

(a)

Synchronization Interval

CP

Shared 
Data Set

P

C

Data produced in one stage is
being consumed in the next one

(b)

Synchronization Interval

CP

Shared
Data Set

P

C

Length of synchronization window
controlled by programmer

(c)

Ideal Synchronization Interval

Bad

Not as
bad

Better?

(d)

Fig. 9 Lecture slides illustrating pipelined parallelism and the role of synchronization interval on
performance

condition. The code is then fixed in-class by placing guards around the operations
on the flag. This version of the code is shown in Fig. 8. Finally, the code is executed
a few times to show that it indeed now produces correct results.

The pragmas are then modified to parallelize the example code in a pipelined
fashion. Figure 9 shows a subset of the animated slides that explains pipelined-
parallelism, the synchronization interval and its effect on performance.

Task Granularity

Task granularity and how it is controlled by the synchronization interval is intro-
duced using a set of lecture slides. The impact of task granularity on performance is
also explained. Following this the pipelined-parallel producer-consumer example
is revisited. Students are asked to identify the amount of work performed per
thread (i.e., task granularity). The amount of work is expressed in number of items
read/written to the buffer. The code is then executed with different task granularity
by using the BLOCK parameter in the OpenMP pragma. The results of these
executions demonstrate to the student the significance of task granularity and cost
of synchronization to parallel performance.



70 A. Qasem

Load Balancing

OS scheduling is revisited to introduce the concept of load balancing. The basic
scheduling algorithm is reviewed and once again the running example is used for an
in-class demo. In this demo, the program is launched with multiple producers and
consumers and the work is broken un-evenly between producers and consumers.
At launch time, Linux thread_affinity() API is used to pin certain threads
to specific cores to illustrate load imbalance. The script to perform this demo is
available with the supplementary materials.

Pedagogical Notes

Although this module can be introduced in other upper-level courses (e.g., Unix
Systems Programming), in our experience it works best in the OS course. A
seamless integration is possible if the module is introduced in the OS class during
the week when thread scheduling is discussed.

To provide background for OpenMP, a handout can be distributed ahead of time.
A sample handout is included with the lecture material. Furthermore, there are
several excellent online tutorials. Students can be asked to review one of these before
the lecture. The supplementary material contains urls for online tutorials.

To increase student engagement, lecture slides related to load balancing for
energy efficiency can be presented interactively as problem sets. The problems can
be drawn out on the board or the slides can be animated and students can be asked
to come up with a thread mapping solution as a group.

It is advisable that instructors practice the live coding examples ahead of
lecture time. Students often raise questions and suggest alternate approaches. The
instructor should be fairly comfortable with the examples in order to incorporate
their suggestions into the demo.

L3

L2 L2

L1

Core 0 Core 1 Core 2 Core 3

L1 L1 L1



Modules for Teaching Parallel Performance Concepts 71

Sample Exercises

1. Consider the high-level block diagram of a multicore system as shown in the
figure above. A multi-threaded producer-consumer application is executing on
this system. The application has 4 threads with 2 producers (p0 and p1) and
2 consumers (c2 and c1). Data produced by p0 is consumed by c1 and data
produced by p1 is consumed by c0.

• Describe a suitable schedule to improve the overall performance of the appli-
cation. Explain why your schedule is likely to deliver improved performance.

• Would your schedule change if the primary objective is to reduce power? Why
or why not?

2. Implement a feedback queue scheduler using the OS framework used in the
class. The scheduler should aim to minimize power consumption on a multicore
system.

3. Parallelize the provided n-body simulation code using OpenMP and then derive
an optimal affinity-based schedule. The scheduler can be implemented using
affinity support in either Pthreads or GNU OpenMP.

Analysis and Evaluation

This module concentrates on performance estimation and measurement of parallel
systems, including efficiency, linear and super-linear speedup, throughput, data
locality, weak and strong scaling, and load balance. Performance estimation of
sequential architectures and the implications of Amdahl’s law are typically part
of current computer architecture courses. This module extends these concepts and
investigates parallel performance in light of Amdahl’s law. It explores modern
parallel benchmark suites such as PARSEC (task, data, and pipelined parallelism)
and Lonestar (amorphous parallelism) and demonstrates how to write benchmark
programs to measure the performance of parallel hardware. It discusses how to
identify potential for speedup as well as upper speedup bounds and performance
obstacles.

Recommended Length 1 lecture (1:15 min)
Recommended Course Compilers, Computer Architecture, Upper-level CS elec-

tive

Organization and Content

This module starts with a review of elementary performance concepts and OpenMP
syntax. This is followed by discussion of several advanced performance concepts.



72 A. Qasem

The lecture slides for this module are complemented with a series of micro-
benchmarks written in OpenMP. Alternate implementations in Pthreads are also
provided in the supplementary materials. Each benchmark highlights a particular
performance issue. Each benchmark will also include several student versions. The
student versions expose parameters in the code that students can alter in various
ways to impact the performance of the code. The student versions of the code also
includes omitted code blocks that the students are expected to fill in as an exercise. A
set of scripts measure various performance metrics including execution time, cache
misses and processor power consumption.

Review of Elementary Performance Concepts

This section is similar to the module section described in section “Performance
Metrics”. The main difference is that the examples used are more involved and
written in OpenMP.

Review of OpenMP Syntax

This segment of the module provides a quick review of basic OpenMP syntax and
semantics. It is assumed the students are familiar with parallel program execution
but not necessarily with any programming language. Therefore, this introduction
is very basic. Only the parallel regions and parallel for constructs are
covered. The goal is to give students enough knowledge for them to modify existing
code but not necessarily for them to be able to write efficient parallel programs on
their own. If a student comes in with OpenMP programming experience, this module
is still very useful as it will train her to tune the OpenMP pragmas to extract better
performance from her code. As was done with the task orchestration module, the
OpenMP tutorial can also be done offline to save some lecture time.

Strong and Weak Scaling

The notion of scalability of parallel programs is introduced in this segment. The
distinction between strong scaling and weak scaling is discussed. The code shown in
Fig. 10 is used as a running example. The code is explained and then executed with
1, 2, 4, and 8 threads on an 8 core machine. Other configurations are feasible based
on computer availability. Before each run of the code, students are asked to guess
the execution time. As the code is written the program will achieve strong scaling on
up to 16 cores on current-generation processors. To observe scaling effects beyond
16 cores, the data set needs to be >4 GB. This introduces NUMA effects and page
faults that prevent the application from achieving linear speedup.



Modules for Teaching Parallel Performance Concepts 73

pixel *src_images = (pixel *) malloc(sizeof(pixel) * PIXELS_PER_IMG * IMGS);
pixel *dst_images = (pixel *) malloc(sizeof(pixel) * PIXELS_PER_IMG * IMGS);

initialize(src_images);

DATA_ITEM_TYPE gs;
omp_set_num_threads(THREADS); // fix number of threads
start = omp_get_wtime();
int i;
#pragma omp parallel for private(i)
for (i = 0; i < IMGS; i++) { // process images in parallel

int img_index = i * PIXELS_PER_IMG;
for (int k = 0; k < ITERS; k++) {

for (unsigned j = img_index; j < img_index + PIXELS_PER_IMG; j++)
dst_images[j] = (0.3 * src_images[j].r + 0.59 *

src_images[j].g + 0.11 * src_images[j].b;
}

}

Fig. 10 Example parallel code to demonstrate scaling

The code in Fig. 10 is then used to conduct a weak scaling experiment. The data
set size is increased progressively until performance stops to scale. How much the
data set needs to be increased depends on the particular platform where the code is
being run. On some machines, runs for larger data sets can take up several minutes.
So this needs to be weighed in when doing the demo. However, the code is designed
in a way such that on most machines, memory bound behavior will show up for
runs that take no more than 30 s. Similar to the strong scaling demo, before each
run students are polled for the execution time. Following these demos the notions of
strong scaling and weak scaling are formalized. A set of lectures slides and charts
illustrating scaling trends are used for this purpose.

Linear and Super Linear Speedup

The code from Fig. 10 is re-used to explain the concepts of linear and super-linear
speedups. The single-threaded version is labeled as the baseline and then speedup is
calculated for 2, 4, and 8 thread versions. The obtained speedup is correlated with
the number of threads/cores and shown to match the definition of linear speedup.
The image processing example code is then transformed using tiling to improve
data locality, as shown in Fig. 11. If time permits, this can be done live in class, as
the technique is explained. Otherwise the example can be created ahead of time.
The tiled version of the code is re-run with 2, 4, and 8 threads to demonstrate super-
linear speedup. The working set size is orchestrated to exceed most L2 caches on
current generation processors. A tiling size of 16–24 would keep the working set
in cache. Some trial and error may be necessary prior to the demo to determine the
exact size.



74 A. Qasem

pixel *src_images = (pixel *) malloc(sizeof(pixel) * PIXELS_PER_IMG * IMGS);
pixel *dst_images = (pixel *) malloc(sizeof(pixel) * PIXELS_PER_IMG * IMGS);

initialize(src_images);

#define TILESIZE 64

DATA_ITEM_TYPE gs;
omp_set_num_threads(THREADS); // fix number of threads
start = omp_get_wtime();
int i;
#pragma omp parallel for private(i)
for (i = 0; i < IMGS; i++) { // process images in parallel

int img_index = i * PIXELS_PER_IMG;
for (usigned j = img_index; j < img_index + PIXELS_PER_IMG; j = j + TILESIZE)

for (int k = 0; k < ITERS; k++) {
for (unsigned jj = j; jj < j + TILESIZE; jj++)

for (unsigned j = img_index; j < img_index + PIXELS_PER_IMG; j++)
dst_images[j] = (0.3 * src_images[j].r + 0.59 *

src_images[j].g + 0.11 * src_images[j].b;
}

}

Fig. 11 Tiled version of image processing parallel code used to demonstrate data locality effects

Latency vs. Bandwidth

The concepts of memory bandwidth and latency and their effects on parallel
performance is discussed next. Sequential versions of the code in Fig. 12 are first
used to demonstrate the importance of locality in performance. The code on the left
exploits spatial locality while the code on the right does not. The parallelization of
the two codes is then explained and the parallel versions of the codes are executed.
A second example with a tiled computation is also introduced briefly to illustrate the
notion of temporal locality and its impact on performance. This demo establishes the
fact that parallelism alone cannot overcome limitations with memory locality. The
code in Fig. 10 is then run with a larger data set where the data set is large enough
to exceed the available memory bandwidth per socket. After the execution of the
program, the point is reiterated that scalable performance can be limited by memory
factors.

SMP vs. NUMA

The discussion on latency and bandwidth leads to a discussion in parallel architec-
tures and the main considerations for programming such systems. This discussion
is left at a very high-level and uses slides to illustrate the differences between
the architectures. Programming models and tools for the different systems is also
discussed. GPUs and heterogeneous systems architectures with CPUs and GPUs
are also touched on.



Modules for Teaching Parallel Performance Concepts 75

Fig. 12 Parallel code with
and without spatial exploited
spatial locality

int main() {
int **a;
omp_set_num_threads(12);
a = (int **) malloc(sizeof(int *) *

DIMSIZE);
int i,j;
for (i = 0; i < DIMSIZE; i++)

a[i] = (int *) malloc(sizeof(int) *
DIMSIZE);

#pragma omp parallel for private(i,j)
for (i = 0; i < DIMSIZE; i++)

for (j = 0; j < DIMSIZE; j++)
a[i][j] = 17;

return 0;
}

int main() {
int **a;
omp_set_num_threads(12);
a = (int **) malloc(sizeof(int *) *

DIMSIZE);
int i,j;
for (i = 0; i < DIMSIZE; i++)

a[i] = (int *) malloc(sizeof(int) *
DIMSIZE);

#pragma omp parallel for private(i,j)
for (j = 0; j < DIMSIZE; j++)

for (i = 0; i < DIMSIZE; i++)
a[i][j] = 17;

return 0;
}

Power vs. Performance

This module ends with a discussion on energy efficiency of parallel applications.
The importance of saving power and attaining high-performance at specified power
budgets is explained.

Pedagogical Notes

It is advisable to run the experiments a few times before the actual in-class demo.
This will allow the codes to adapt to the execution environment and the instructor
will be able to make any necessary changes. Details on how to tune the parameters
of the code so that they exhibit the expected behavior are provided with sample
codes and scripts.



76 A. Qasem

In the default configuration, the slowest code in the examples runs for a few
seconds. This is done to not take up too much class time. Nonetheless, if time
permits, the longer versions of the codes should be used as the performance
differences make more of an impression on the students. During these long runs
the instructor may further elaborate on the topics.

Sample Exercises

1. Set the DIMSIZE, THREADS and BLOCK variables in the above code to
different values (select values based on class discussion) and execute the code
on a server X with 8 cores and server Y with 16 cores. Record performance
statistics using perf. Prepare a report and explain the performance variations
you observe on the two machines.

2. Download the PARSEC benchmark suite (http://parsec.cs.princeton.edu). Select
one application from the group: canneal, dedup and streamcluster and another

http://parsec.cs.princeton.edu


Modules for Teaching Parallel Performance Concepts 77

application from the group: swaptions, bodytrack, facesim. Conduct a perfor-
mance study of the two selected applications on a compute server with at least
16 cores. Use the parsecmgmt package to execute the applications with input
data sets: small, medium, large and native, and with different thread counts: 2, 4,
8, 16, 32 and 64. Record performance statistics using perf.

What are the main performance trends you observe? What does that say about
the characteristics of the two selected programs? Relate the performance trends
to scalability concepts discussed in this module and prepare a report.

References

1. The Joint Task Force on Computing Curricula Association for Computing Machinery
(ACM)/IEEE Computer Society, “Curriculum Guidelines for Undergraduate Degree Programs
in Computer Science,” 2013.

2. S. Prasad, A. Chtchelkanova, F. Dehne, M. Gouda, A. Gupta, J. Jaja, K. Kant, A. La Salle,
R. LeBlanc, A. Lumsdaine, D. Padua, M. Parashar, V. Prasanna, Y. Robert, A. Rosenberg,
S. Sahni, B. Shirazi, A. Sussman, C. Weems, and J. Wu, “2012 NSF/IEEE-TCPP Curriculum
Initiative on Parallel and Distributed Computing - Core Topics for Undergraduates, Version I,”
http://www.cs.gsu.edu/~tcpp/curriculum/, accessed: 2018-02-11.

3. A. Qasem, “SimPar : A macro language for introducing parallel concepts to CS 1 students,”
https://github.com/apanqasem/simpar.git, accessed: 2018-02-11.

4. J. Treibig, G. Hager, and G. Wellein, “LIKWID: A Lightweight Performance-Oriented Tool
Suite for x86 Multicore Environments,” in 39th International Conference on Parallel Processing
Workshops, 2010.

http://www.cs.gsu.edu/~tcpp/curriculum/
https://github.com/apanqasem/simpar.git

	Modules for Teaching Parallel Performance Concepts
	Introduction
	Elementary Concepts
	Organization and Content
	Parallelism in Real Life
	Parallel Computing and Its Importance Today
	Sequential vs. Parallel Program Execution
	Parallel Programming Tools
	Performance Metrics

	Pedagogical Notes
	Sample Exercises

	Task Orchestration
	Organization and Content
	Data Dependence

	Synchronization
	Task Granularity
	Load Balancing

	Pedagogical Notes
	Sample Exercises

	Analysis and Evaluation
	Organization and Content
	Review of Elementary Performance Concepts
	Review of OpenMP Syntax
	Strong and Weak Scaling
	Linear and Super Linear Speedup
	Latency vs. Bandwidth
	SMP vs. NUMA
	Power vs. Performance

	Pedagogical Notes
	Sample Exercises

	References


