
What Do We Need to Know About
Parallel Algorithms and Their Efficient
Implementation?

Vladimir Voevodin, Alexander Antonov, and Vadim Voevodin

Abstract The computing world is changing and all devices—from mobile phones
and personal computers to high-performance supercomputers—are becoming paral-
lel. At the same time, the efficient usage of all the opportunities offered by modern
computing systems represents a global challenge. Using full potential of parallel
computing systems and distributed computing resources requires new knowledge,
skills and abilities, where one of the main roles belongs to understanding key
properties of parallel algorithms. What are these properties? What should be
discovered and expressed explicitly in existing algorithms when a new parallel
architecture appears? How to ensure efficient implementation of an algorithm on
a particular parallel computing platform? All these as well as many other issues are
addressed in this chapter. The idea that we use in our educational practice is to split
a description of an algorithm into two parts. The first part describes algorithms and
their properties. The second part is dedicated to describing particular aspects of their
implementation on various computing platforms. This division is made intentionally
to highlight the machine-independent properties of algorithms and to describe them
separately from a number of issues related to the subsequent stages of programming
and executing the resulting programs.

Relevant core courses: Data Structures and Algorithms, Second Programming
Course in the Introductory Sequence.

Relevant PDC topics: Parallel algorithms, computer architectures, parallel pro-
gramming paradigms and notations, performance, efficiency, scalability, locality.

Learning outcomes: Faculty staff mastering the material in this chapter should
be able to:

• Understand basic concepts of parallelism in algorithms and programs.
• Detect parallel (information) structure of algorithms.
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• Understand deep relationship between properties of algorithms and features
of computer architectures.

• Identify main features and properties of algorithms and programs affecting
performance and scalability of applications.

• Use proper algorithms for different types of computer architectures.

Context for use: This chapter has to touch all the main areas of computer sci-
ence and engineering: Architecture, Programming, Algorithms and Crosscutting
topics. The primary area is Algorithms but these materials should be taught
after learning the fundamentals of computer architecture and programming
technologies. Materials of the chapter can be easily adapted for use in core,
advanced or elective courses within bachelor’s or master’s curricula.

Introduction

Parallelism has been the “big thing” in the computing world in recent years.
All devices run in parallel: supercomputers, clusters, servers, notebooks, tablets,
smartphones. . . Even individual components are parallel: computing nodes can
consist of several processors, processors have numerous cores, each core has several
independent functional units that can be pipelined as well. All this hardware can
work in parallel, provided that special software and the corresponding parallel
algorithms are available.

After more than 60 years of development, a huge pool of software and algorithms
has been accumulated for computers. The training process has been refined with the
goal of learning programming technologies, and developing software, algorithms
and methods to address various tasks. Now all of this is changing as the word
“parallel” has literally found its way into everything: parallel programming tech-
nologies, parallel methods, parallel computing systems architecture, etc. Adding
parallelism to existing training curricula definitely implies preserving the current
serial programming methods, methodologies, technologies and algorithms, but
many new things that never existed before need to be added [6, 12, 15]. How does
one organize the parallel execution of a program to get a job completed faster? The
question sounds simple, but answering it requires learning new ideas that have not
been studied before.

In this chapter,1 we present our experience in studying and teaching parallel
methods of problem solving. This experience is based on using a large number
of very different parallel computing systems: vector-pipeline, with shared and
distributed memory, multi-core, computing systems with accelerators, and many

1The results were obtained in Lomonosov Moscow State University with the financial support of
the Russian Science Foundation (agreement N 14-11-00190). The research is carried out using the
equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow
State University.
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others. Various forums for teaching parallel computing, parallel programming
technologies, program and algorithm structures have been piloted at Lomonosov
Moscow State University including general and special courses, seminars, practical
computing exercises as part of the educational curricula at the Faculty of Com-
putational Mathematics and Cybernetics, as well as at the annual MSU Summer
Supercomputing Academy [1]. Many of the ideas described in this chapter were
implemented in the national project “Supercomputing education” [11, 21].

The chapter consists of three sections. In the first section, we want to show, using
numerous real-life examples, how many different properties of parallel algorithms
and programs need to be taken into account to create efficient parallel applications.
In the second section, these properties are described in a more systematic way,
building on a structure that can be used to describe any algorithm. This helps to
identify the most important properties for creating an efficient implementation. The
description structure itself is universal, and not limited to any specific class of
algorithms or methods. In the third section, we would like to show that the described
materials can easily be incorporated into the educational process.

Before proceeding to the chapter we would like to make a special remark. This
chapter is not a ready-to-use packaged lesson or a set of lessons, but rather ideas that
should be presented throughout courses devoted to modern computational sciences
and technologies. There is a high degree of freedom in choosing the methods for
incorporating parallelism concepts into educational curricula, which do not require
revolutionary changes and can be performed by existing academic staff within a
current set of educational courses. We intentionally did not explain all the notions
used in the chapter in a classical pedagogical way trying to concentrate on the main
goal—to show a universal nature and wide use of parallel computing. From this
point of view, our main target audience can be described as instructors who are
already familiar with the subject and want to introduce parallel computing concepts
into their courses, and parallel computing experts that teach related classes. At the
same time it is really necessary to extend this audience involving a wide range of
faculty staff into parallel computing as one of the most significant trends in computer
science. The idea behind the chapter is to outline possible directions and ways how
a teacher or instructor can incorporate parallel computing notions into any course.

What Knowledge of Algorithm Properties Is Needed in
Practice?

In this section, we will consider several examples, focusing in each case on one
property or another that determines how efficiently an algorithm is implemented.
While reading the section, it may seem that we are conflating parallel algorithms,
parallel computing for different platforms, and performance issues. In a sense, this
is true but this is necessary. If we are discussing high performance computing, we
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have to consider parallel algorithms, programming technologies, and architectures
all together to ensure high efficiency of the resulting code.

By giving examples, we are not trying to explain every minute detail, give
definitions, or explain newly introduced concepts, especially since many of them
are quite intuitive. Our goals here are different. On the one hand, we want to
show the great diversity of questions that arise in practice, the answers to which
are determined by knowledge of the fundamental properties of algorithms and
programs. On the other hand, by analyzing examples, we will gradually identify
the set of properties that must be included in an algorithm description, and which
teachers need to point out to their students.

Even in Simple Cases, It Is Important to Understand the
Algorithm Structure

Let’s look at the classical algorithm for multiplying dense square matrices of size
n × n. Based on the formula

Aij =
∑

k

BikCkj ,

it is quite natural to write the following version of the program (hereinafter in this
paragraph matrix A is initialized with zeros):

for(i=0; i<n; ++i)
for(j=0; j<n; ++j)

for(k=0; k<n; ++k)
A[i][j] += B[i][k] * C[k][j];

It has three nested loops and one assignment statement which calculates the
element Aij . The sequence of the loops in this example (i, j , k are the control
parameters) is absolutely clear as it reflects the essence of the algorithm: for each
element in matrix A (loop by i, loop by j ), calculate the element Aij (loop by k).

Let’s perform a seemingly strange procedure: shuffle the three loops. We’ll get a
new fragment in which the loops can be organized in any of the six possible orders,
for example (k, i, j ) or (j , k, i). Will the new fragment provide the same results as
the original program? A more general question also needs to be answered: “What
loop order will provide the same result for the new program as the original version?”
Below we show the two fragments mentioned above, with a loop order of (k, i, j )
and (j , k, i); will the results of their execution be the same as those of the original
fragment?

for(k=0; k<n; ++k)
for(i=0; i<n; ++i)

for(j=0; j<n; ++j)
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A[i][j] += B[i][k] * C[k][j];

for(j=0; j<n; ++j)
for(k=0; k<n; ++k)

for(i=0; i<n; ++i)
A[i][j] += B[i][k] * C[k][j];

Questions like this may sound surprising, as there doesn’t seem to be a reason
why a formal loop interchange can result in a fragment equivalent to the original
program. But the answer is even more surprising: in this example any loop order
provides a result that is equal to the original fragment’s results, accurate up to the
rounding error. This begs two questions. Why does any loop order result in an
equivalent fragment in this example? And the second question is why would we
do something so strange as interchanging loops?

The first question can be answered by looking at the information structure of
the matrix multiplication algorithm, shown in Fig. 1. The information structure is
presented in a graph, where each vertex corresponds to one iteration of the three
nested loops, and the vertices are connected with a directed edge [20, 22] if one
vertex calculates the data used in another one. We see n2 independent computational
branches, where each branch corresponds to the innermost k-loop for certain values
of i and j , i.e. the calculation of the element Aij . The picture is worth a thousand
words. First, we see at once that all n2 elements in the resulting matrix Aij can be
calculated independently from one another: the algorithm has a tremendous resource
of parallelism, offering good prerequisites for writing a parallel program. Second,

Fig. 1 Information structure of the matrix multiplication algorithm
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Fig. 2 Comparison of execution times for matrix multiplication programs with various loop orders
against the execution time for the classical order (i, j , k), the higher bars, the faster execution of
the order (x, y, z)

whatever the loop order in this fragment of the program: (k, i, j ), (j , k, i) or any
other, going through the vertices never violates the information relationship between
the vertices; thus a fragment with any loop order is guaranteed to produce the same
result as the original fragment. This feature of the information structure (information
graph) for this algorithm explains the equivalence of the original and transformed
fragments.

Now we only have to answer the second question: why did the need to
interchange loops arise at all? Figure 2 compares the execution time of the original
program (with the i, j , k loop order) with fragments using other loop orders on
different platforms. In some cases, a fragment with a loop order different from
the classical (i, j , k) order works several times faster! By simply changing the
loop order, we won’t change the program result, but may significantly reduce
its execution time. Why does this happen? This brings to the forefront another
property that we need to study, assess and describe—the data locality within a
program. In practice, both spatial and temporal locality can be of importance, so
both types of locality are important in understanding the quality of an algorithm’s
implementation. This is what we did for the example above: we revealed the
parallel structure of the algorithm (Fig. 1), understood its potential for equivalent
transformations (six sequences of loops) and finally found fragments with the
highest locality (i, k, j ) or (k, i, j ).

This transformation of the program is quite simple, and therefore it is often
performed by optimizers in modern compilers. At the same time, the compiler
isn’t actually guaranteed to perform the transformation. Moreover, even if the
transformation is performed, there is no guarantee that the compiler will actually
do it correctly and choose the one version with minimum execution time out of the
six possible loop orders: we’ve already seen how complex the reasoning behind such
a “simple” text change can be.
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Fig. 3 Linear graph (a) and its transitive closure (b): quadratic increase in the volume of output
information

Simple Properties Can Be Very Important, Too

No detail is an afterthought in an algorithm description, and even seemingly obvious
properties and parameters need to be properly observed. Let’s look at the volume
of input and output data for an algorithm. These figures almost invariably follow
the algorithm formulation and are therefore considered obvious and shrugged off
as being of little relevance. At the same time, these figures aren’t just important—
they can completely determine the structure of the resulting program. Suppose we
need to develop an algorithm to find the transitive closure of a directed graph. Let
the graph consist of n vertices and m edges—these are the input parameters of
the algorithm, which determine the input data volume. However, the output data
volume for this task is strongly dependent not just on n and m, but also on the graph
structure. In particular, if the input is a linear graph consisting of n vertices and
n − 1 edges, its transitive closure will contain n(n − 1)/2 edges (see Fig. 3). This
fact is no problem for processing relatively small graphs. However, it will be crucial
for processing graphs representing social networks, which are obviously nonlinear
but contain hundreds of millions of vertices and hundreds of billions of edges: due
to immense volumes of output information (a quadratic dependence on the input
data volume), the results will be impossible to store anywhere! The only way out
of this situation is to restate the task so that it doesn’t require listing every pair of
vertices connected by edges. Input and output data volumes seem to be quite obvious
parameters, but they do have to be thoroughly reviewed and described to understand
the algorithm properties.

A New Look at Traditional Concepts

There are other arguments in favor of considering every detail when describing
algorithm properties. Let’s look at an array of input data V and the total number
of operations N in an algorithm. Both values are well known, each one is of interest
in and of itself and is frequently used in practice. But it is equally important to
pay attention to the ratio P = N/V . P stands for “computational intensity” and
represents the number of operations per unit of input data required to execute the
algorithm.
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Despite its simplicity, computational intensity is a very important feature of
an algorithm. Suppose an algorithm’s computational intensity is very high. This
means input data requires a lot of processing before the algorithm’s results can be
obtained. As a result, this algorithm can be executed on an accelerator or a remote
computing node, as the data transmission overhead will be low compared to the
time it takes to process that data. This fact in particular explains why the Linpack
test, with a computational intensity of n is so efficient on computers with distributed
memory (about n2 data elements are transferred to each computing node and about
n3 operations are performed on them). The same fact explains the low efficiency of
an element-wise addition of two vectors using graphic accelerators: the time it takes
to transfer 2n vector elements to a GPU completely offsets the rapid execution of n
operations by the GPU.

In many cases determining the computational intensity requires taking output
data into account, and not just input. In the vector addition example above, correctly
evaluating the efficiency of the algorithm requires taking into account not just the
time it takes to send input data to the GPU, but also the time it takes to get the results
back. This will definitely reduce efficiency and decrease the computational intensity
of this algorithm from 1/2 to 1/3, but that’s the nature of the algorithm, and it must
be considered. In practice, it is sometimes possible to increase the computational
intensity by combining consecutive processing steps. For example, you might not
want to return the results of a vector addition but instead continue processing at the
accelerator, thereby eliminating unneeded data transfers.

Mathematics and Parallelism

The information structure of an algorithm is an important concept, but it should not
be used alone to evaluate the parallelism potential of an algorithmic approach. The
math behind the algorithm plays an equally important role. Let’s look at the classical
vector elements addition algorithm:

s = 0;
for(i=0; i<n; ++i)

s += A[i];

The information graph for this algorithm is a linear graph (see Fig. 4a), where
all vertices are connected with data dependency, which means only serial execution
can be performed. Does this mean that neither the addition of vector elements, nor
any other algorithms based on this operation can be used on parallel computers?
Not exactly. The summation operation obeys the associative law, which allows us to
tweak the original algorithm to achieve the appropriate degree of parallelism. Let’s
break all of the vector elements into non-overlapping groups, then find the subtotals
for each group, and finally sum up the subtotals to get the total of all elements
in a vector (see Fig. 4b). As the subtotals can be calculated independently (i.e.
simultaneously), we now have a parallel version of the vector addition algorithm.
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Fig. 4 The information structure of several vector element summation algorithms: (a) classical
algorithm, (b) parallel calculation of partial sums and (c) pairwise summation method

The associative law allows the elements to be added in any order with the same
result, so other methods of implementation are also possible. Figure 4c shows the
information structure of the pairwise summation method, which is also a parallel
modification of the original algorithm. All subtotals located at the same level can be
calculated in parallel, moving between levels from top to bottom, until we get the
desired result.

There are several important remarks regarding the serial-to-parallel process
described above. First, it is math that enables us to make the key step: we would
never get a parallel algorithm without using the associative law, based on just
the knowledge of the information structure (Fig. 4a). One needs to pay attention
to possibilities like this when explaining or describing algorithm’s properties,
otherwise their potential will not be fully revealed. Second, the associative law
implies that all operations are executed precisely, but computers operate using
approximations of the original numbers. When we change the summation order,
we may get a different result. Often the difference falls within the rounding error
accuracy, which is negligible in most cases, but the fact that the associative law may
not always work in computer arithmetic (just like the commutative and distributive
laws) is something to be kept in mind. This explains, to a certain extent, the
lack of reproducible results for parallel applications executed on supercomputers
with a high degree of parallelism: literally every global MPI operation is based
on the associative law, which results in various rounding errors and ultimately
in different results when executing the same application. This is a serious issue
that complicates the transition to Exaflop systems with an enormous degree of
parallelism [5, 10]. Third, one needs to understand clearly that Fig. 4a, b, c represent
different algorithms. The original task is the same: summing up the vector
elements, but the algorithms are different. There are many differences between these
algorithms: different information structures, different parallel complexity, different
complexity of the respective programs, different rounding errors. . .

A situation like this, where knowing the mathematical basics of an approach can
increase the degree of parallelism, is important in practice, and should be taken into
account. Let’s look at the task of finding the minimum spanning tree in a weighted
graph G with E edges and V vertices. Suppose MST (E) is the procedure for finding
the minimum spanning tree. If we break the set of edges E into k non-overlapping
subsets E1, E2, . . .Ek:
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E = E1 ∪ E2 ∪ · · · ∪ Ek,

then the basic MST procedure can be presented as follows:

MST (E) = MST (E1 ∪ E2 ∪ · · · ∪ Ek)

= MST (MST (E1) ∪ MST (E2) ∪ · · · ∪ MST (Ek))

Minimum spanning trees for subgraphs with edges in the subsets E1, E2, . . .Ek

can be found independently from one another; therefore, MST (E1), MST (E2),
. . . , MST (Ek) procedures can also be performed in parallel. If we leave this
mathematical fact aside, the algorithm’s potential will not be utilized in full, as the
available degree of parallelism grows with an increasing number of subsets Ei . After
finding MST (E1), MST (E2), . . . , MST (Ek), it is necessary to join the minimum
spanning trees found and perform the MST operation once again; however, the
advantage of using parallel computing will still be substantial for |E| >> |V |.

This correlation does more than just increase resource of the parallelism. Its
variations are exceptionally useful when processing very large graphs, as individual
subsets Ei can be entirely stored and efficiently processed within RAM.

Parallelism Can Be Inconvenient

If an algorithm has internal parallelism, this information is very important, but
knowing this fact alone is not enough to make an efficient parallel program. Let’s
look at the example in Fig. 5a.

All iterations of the outer loop by parameter i are independent and can be
executed in parallel (see Fig. 5b). To use the parallelism available in this fragment
all we need to do is, for example, to place an OpenMP directive similar to “#pragma
omp parallel for”—this makes the program parallel without any other modifications
to its text. Moreover, all parallel branches will be perfectly balanced, as each one is
used to execute n operations of the same kind.

The algorithm above has a very convenient structure and is easy to work with, but
that’s not always the case. Let’s look at the example in Fig. 6a. The source code here
looks very similar to the example we just looked at in Fig. 5a, but its information
structure is completely different (see Fig. 6b).

None of the loops in the fragment Fig. 6a can be marked as parallel, since
there are data dependencies in each dimension. But the fragment still has a great
resource of parallelism; its serial complexity equals n2 while the critical path of the
information graph, reflecting the algorithm’s parallel complexity, equals 2n − 2. To
show the possibility of parallel execution of the algorithm, we can draw diagonals,
as shown in Fig. 7a: all diagonals must be accessed serially, one after the other in
ascending order, while all vertices located on the same diagonal can be computed
in parallel (this type of parallelism is called skewed parallelism). To describe this
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Fig. 5 A fragment with “convenient” parallelism and its information graph

Fig. 6 A fragment with “inconvenient” parallelism

execution method for the program, its text needs to be transformed; one possible
transformation is shown in Fig. 7b. Moving from fragment Fig. 6a to fragment
Fig. 7b is not a trivial task, as parallelism must be explicitly declared in most existing
programming technologies.

The first reason why the parallelism in an algorithm can be called “inconvenient”
is the need to transform the original code. Suppose the transformation has been
completed; let’s go back to example Fig. 7. The first diagonal contains just one
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Fig. 7 Explicit identification of “inconvenient” parallelism

vertex, the second has two, the third—three; this number will increase to the value
of n, then it will reverse its course, reaching 1 by the last diagonal. The available
resource of parallelism change between steps, going from 1 to n and then returning
to 1 again. It is extremely hard to develop an efficient way to execute this fragment:
if too much computing resources (cores, processors, computing nodes) are allocated,
some of them will be idle for a long time; but allocate too little resources—and the
speed advantage will not be substantial compared to a serial implementation. This
serious imbalance in computation is the second reason for the “inconvenience” of
this type of parallelism.

How often do we focus on such properties of parallelism when we explain
algorithm features during classes? In practice, the criterion of “convenient” or
“inconvenient” parallelism in an algorithm is frequently the key factor in designing
parallel applications.

It’s All About Locality

Simple operations are efficiently implemented by a computer. This seems like
an intuitively clear and correct thesis. It’s much more complex in practice. The
simplicity of an operation is primarily understood as a simple algorithm structure,
but when we talk about implementation efficiency, it is important to take into
account not just the algorithm but also the program implementing it. Niklaus
Wirth called one of his books “Algorithms + Data Structures = Programs” [23],
and “Data Structures” are often what determines the efficiency of an algorithm’s
implementation, even for very simple algorithms.
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(a) A[i] = B[i]*x + c;
(b) A[i] = B[i]*x + C[i];
(c) A[i] = B[i]*X[i] + C[i];
(d) A[ind[i]] = B[ind[i]]*x+c;
(e) A[ind[i]] = B[ind[i]]*x+C[ind[i]];
(f) A[ind[i]] = B[ind[i]]*X[ind[i]]+C[ind[i]];

Fig. 8 Versions of the “triad” operation

Fig. 9 Efficiency (the ratio of sustained performance to peak performance) of different options for
“triad” operation

Let’s look at several versions of a “triad”, a basic operation used in many
algorithms (see Fig. 8). Everything seems very clear and should not cause any
efficiency implementation issues on modern processors: the structure is trivial,
regular, no data dependencies, and the addition and multiplication operations
are perfectly balanced. At the same time, the efficiency (the ratio of sustained
performance to peak performance) for the simplest operation in Fig. 8a never
exceeds 10% (see Fig. 9)! As we increase the number of input arrays (operations
Fig. 8b, c), the efficiency falls even further.

What is the reason behind such low efficiency for a seemingly “perfect”
operation? The main reason is the poor data locality in the resulting programs. The
main data structure in every version Fig. 8a–c is the arrays, and the elements in each
operation are accessed serially, but each element is used only once. This means that
spatial data locality is relatively low, and temporal locality does not exist at all. As
the number of input arrays increases, the situation only gets worse. How often do we
explain to the students what data locality is and how it affects program efficiency?

Let’s go further and look at sparse data structures, instead of dense ones
(operations Fig. 8d–f). In this case we must use indirect addressing arrays (ind[i]
array in Fig. 8), which further degrade the already low locality values and reduce
efficiency to less than one percent! How often do we pay attention to this aspect
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of algorithms that operate with sparse arrays? One should not skip over a locality
analysis when describing algorithm properties, otherwise the resulting program
efficiency can be an unpleasant surprise.

Parallel Algorithms: What to Pay Attention to?

In the previous section, we discussed just a few examples, but even this small
amount of material shows how diverse are the algorithm properties that affect
implementation efficiency. In this section we will focus on what needs to be
included in training curricula, so as to draw attention to the nuances for efficiently
implementing parallel algorithms for different parallel computing systems.

A description of any algorithm can reasonably be divided into two parts. The
first part is dedicated to the theoretical properties of the algorithm, while the second
describes the features of its implementation. This division is quite natural and helps
to separate the machine-independent properties of the algorithm from the numerous
issues that arise in practice. Both parts of the description are important: the first part
helps to describe theoretical potential of the algorithms, while the second part shows
the practical use of this potential. By learning information in the first part, students
will understand the algorithm’s general applicability, while the second part will help
finding a way to efficiently implement it.

Parallel Algorithms: Theoretical Potential

Let’s look at an algorithm’s computational kernel. It is the part of the algorithm
that takes up most of the processing time. The computational kernel determines the
quality of an algorithm’s implementation in general, therefore it has to be an area
of focus in the algorithm implementation process. If no acceptable implementation
exists for an algorithm’s computational kernel, it won’t exist for the entire algorithm
as well. Remember the analysis of the “triad” operation in the previous section
(see Fig. 8): if we suppose it is the computational kernel of an algorithm, and the
application uses sparse data structures, you can’t expect high efficiency from the
application in general (see Fig. 9).

The computational kernel does not have to be determined by operations on
real numbers: addition, multiplication, division, square root, sin(x), cos(x), etc.
For many algorithms, data load/store operations, boolean or integer operations are
the biggest bottlenecks. This doesn’t change anything, and a computational kernel
consisting of such operations has to be singled out and described just as well. If
most of the execution time for an algorithm is spent on matrix transposition, special
attention must be paid to carefully storing and copying the data.

Another fact must be noted. Even though the full description of an algorithm can
be quite large, the computational kernel is usually very compact, which allows the
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computational structure to be quickly understood and thus simplifies and speeds up
the algorithm analysis.

Serial complexity, i.e. the number of operations that need to be executed in a
serial implementation of the algorithm, is a highly important feature. Complexity
is always expressed through parameters that determine the task size, and helps
to quickly assess the viability of an algorithm’s practical implementation. The
operation type is not specified in any way, so whatever operations contribute
the most to an algorithm’s execution time shall be included in the formula for
serial complexity. This can include operations on real numbers or integers, bitwise
or memory loads/stores operations, array element updates, elementary functions,
macro operations, etc. Arithmetic operations on real numbers prevail in LU decom-
position, while large number factorization relies heavily on bitwise and boolean
operations; this has to be reflected in the complexity evaluation.

If an algorithm has high complexity, then it must be used for large task sizes
with extreme care. Moreover, if the algorithm is a component of another algorithm,
then overall complexity can be even higher, and one should be even more careful.
The computational complexity of a fast Fourier transform (Cooley-Tukey algorithm)
for vectors with a length equal to powers of two equals n log2 n complex addition
operations and (n log2 n)/2 complex multiplication operations. At the same time,
when looking at this algorithm, one should remember that a fast Fourier transform
is often a basic component of other algorithms, being part of some large loops,
which increases overall complexity.

All modern computers are parallel, so it is important to not just explain an
algorithm, it is vital to simultaneously show the algorithm’s parallel structure.
This can be done, for example, with the help of an information graph, sometimes
called an algorithm graph, data dependency graph or data-flow graph. Determining
the parallel structure of an algorithm is always the first step in creating a parallel
program, regardless of what specific parallel computing system the program is being
written for. This step is very important, and if the algorithm’s parallel structure is
known (see Figs. 1, 5b, 7a), many subsequent decisions become obvious.

There are many possible options for representing the information structure of
an algorithm. For some algorithms, the information structure must be shown in
every detail; for others a macro structure is more important. A lot of information
is available in various forms of information graph projections, which clarify the
algorithm’s regular components while hiding insignificant details. Sometimes it may
be useful to show a pattern in the graph that changes with the values of external
variables (e.g., matrix sizes): we often expect “similar” behavior in the information
graph, but it isn’t always obvious in practice.

Visualization of the information graph can be very useful for studying various
algorithm properties. But the task of displaying an information graph is not trivial.
To begin with, the information graph can potentially be endless, as the number of
vertices and edges is determined by external variables which can be very large.
In this situation it helps to look at likenesses, as described above, which consider
graphs for different values of external variables as “similar”: it is almost always
enough to present one small graph, stating that graphs for other values will look
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“exactly the same.” Not everything is so simple in practice, however; and one should
be very careful here.

Next, an information graph is potentially a multi-dimensional object. The most
natural coordinate system for placing vertices and edges in an information graph
relies on the nested loops in an algorithm’s implementation. If nested loops have
not more than three levels (see Fig. 1), the graph can be placed in the traditional
three-dimensional space, but complex loop constructs with nesting levels of four or
more require special methods for presenting and displaying the graph.

There are many difficulties here, but also many ways to deliver the information to
the students. The main task is to show the information structure of an algorithm so as
to demonstrate all its key features, its parallel structure features, edge sets features,
regularity areas and, vice versa, areas with an indeterministic structure dependent
on the input data, etc. Teachers very rarely talk about parallel algorithm structure,
while this is required in practice more and more often.

After telling about the parallel algorithm structure, one should proceed with
describing its resource of parallelism. The main characteristic is parallel com-
plexity, which is understood as the number of steps needed to execute this
algorithm given an infinite number of processors (functional units, computing
nodes, cores. . . ). The concept of infinite parallelism is somewhat idealistic, but it
helps to understand the advantages offered by the parallel execution of an algo-
rithm. Parallel complexity of the fast Fourier transform (Cooley-Tukey algorithm)
mentioned above for vectors with lengths equal to a power of two is log2 n, which
means this algorithm can potentially be executed 1.5n times faster.

The concepts of a canonical parallel form or the critical path of an information
graph are often used to evaluate and describe the resource of parallelism. The height
of the parallel form, or the length of the critical path, determine the algorithm’s
parallel complexity, while the level width is determined by the number of processors
needed at a specific level; all of this can be used to describe algorithm’s properties.
The complexity of an algorithm featuring the summation of n vector elements is
reduced from n− 1 in a serial implementation to log2 n in the parallel version, with
the number of operations executed in parallel at each level (i.e. at each step of the
pairwise parallel algorithm) falling from n/2 to 1.

Parallelism in an algorithm often has a natural hierarchical structure. This fact
is very useful in practice and should be reflected in a description of algorithm’s
properties. This hierarchical parallelism structure is well reflected through a loop
profile of the resulting program (including, in general, the call graph). Figure 10
shows a loop profile of a program, where each square bracket corresponds to a one
loop of the program and nesting structure of the brackets repeats nesting structure of

Fig. 10 Resource of parallelism of a program: parallel loops are marked by ‘1’ or ‘2’ in the loop
profile of the program
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loops. Information that the outer loop (marked by ‘1’) and all inner loops (marked
by ‘2’) are parallel (their iterations are independent) substantially improves the
perception of the original algorithm’s structure.

When explaining algorithms, it is important to pay attention to the algorithm
properties which can prove important during implementation. We mentioned some
of them in the previous section, namely computational complexity or input/output
data volume: these properties are simple, but they often determine the quality of the
future implementation.

Application efficiency and the balance of the computation process are two
closely related concepts. The main challenge is that the balance can appear in
different ways. This can include balancing between different types of operations,
particularly between arithmetic operations (addition and multiplication) or between
arithmetic operations and memory access operations. This can also include compu-
tational balance between different parallel branches of the algorithm. On the one
hand, load balancing is a necessary condition for efficiency of a parallel algorithm.
At the same time, this is a very challenging task, and one must explicitly show how
many of these features the algorithm has. If ensuring of balance is not obvious, it is
recommended to describe possible ways for solving a task.

An important aspect in practice is the determinacy of an algorithm, which can
be understood as the consistency of the computational process structure. From this
viewpoint, the classical multiplication of dense matrices is a highly deterministic
algorithm, as its structure, given a fixed matrix size, does not depend on the input
matrix elements. Multiplying a sparse matrix by a vector, when the matrix is stored
in a special format, is no longer deterministic: data locality depends on the structure
of the input matrices. An iterative algorithm with precision-based exit is also not
a highly deterministic one: the number of iterations, and therefore the number of
operations, changes depending on the input data.

The reason for pointing out determinacy as a property is clear: working with
a deterministic algorithm is easier, since a structure, once found, will determine
its implementation quality at all times. If determinacy is missing, this should be
specially pointed out, along with a description of how indeterminacy affects the
structure of the computational process.

A serious reason for the indeterminacy of a parallel program is a change in the
execution order of associative operations. A typical example is the use of collective
MPI operations by a group of parallel processes, such as summing elements of a
distributed array. The MPI runtime system chooses the operation execution order
assuming compliance with the associative law; rounding errors change for each
program run, introducing changes in the program output. This is a serious issue often
encountered on systems with massive parallelism, and it affects the reproducibility
of results of parallel programs. If analysis of an algorithm’s structure shows that a
parallel application cannot work without collective operations, this property must
also be kept in mind.

Interestingly, in some cases, determinacy can be “enforced” in an algorithm by
introducing macro operations, which makes the structure not only deterministic but
also more clearly understandable.
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An important aspect is a description of bit capacity needed to execute the
algorithm’s operations (precision). In practice, executing all arithmetic operations
on real numbers with double precision is rarely required, as this doesn’t affect
the algorithm’s stability or the accuracy of the output. If most operations can be
performed using a float type, and just a few fragments need to be changed to
double, this fact must also be explicitly mentioned, as it can substantially improve
implementation efficiency.

Parallel Algorithms: Implementation Features

In the beginning of this section we discussed two parts of the description for any
algorithm: a description of its theoretical potential and its implementation features.
The properties considered above are related to the first part of the description.
This information is important and relevant, it has to be explained, but it is just as
important to look ahead and point out some possible stumbling blocks that can be
encountered in the process of implementation. This is what we will address below.

The issues of data locality and computation locality are rarely included in
any training courses, but locality has a very high impact on the efficiency of
program execution on modern computing platforms. To get the whole picture of
an algorithm’s implementation features, it is important to analyze both temporal
and spatial locality, noting positive and negative factors related to locality, and
under which conditions and situations they are caused. It is important to mention
how locality changes when moving from a serial to a parallel implementation,
and to highlight typical memory access patterns for a program implementing
the given algorithm. We should also mention the potential correlation between
the available programming language constructs and the locality exhibited by the
resulting programs.

It is useful to show memory access profiles for computational kernels, which
often explain the efficiency of the entire application. Figure 11 shows memory
access profiles for programs that implement FFT, LU decomposition, dense matrix
multiplication and random memory access. Each small red dot corresponds to one
memory access operation. The X-axis shows the serial numbers of memory access
operations arranged in the order they were performed during the program execution.
It is similar to the timeline chart, but in this case we analyze only the order of
memory accesses, not the particular time when they were performed. The Y-axis
indicates the memory address used in each particular memory access operation.

For example, Fig. 11d, e show the memory access profiles for two versions of
matrix multiplication algorithms, which makes it clear why the (IKJ) fragment is
executed much faster than the (JKI) fragment: the profile in Fig. 11d has a much
higher spatial and temporal locality than that in Fig. 11e.

Knowing the algorithm’s resource of parallelism, it is important to show the
opportunities for equivalent transformation of the programs: the students will
see the program features for computers with certain architectures, and will feel
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Fig. 11 Memory access profiles for programs implementing FFT (a), LU decomposition (b),
random memory access (c) and dense matrix multiplication with different loop orders (d, e)

freedom in transforming the programs and obtaining program optimization skills.
Let’s go back to the program with loop profile shown in Fig. 10. It was mentioned
that the outer loop (marked by ‘1’) has many iterations, while the inner loops
were very short. In this form, the parallel structure is suitable for SMP computers,
allowing parallel execution of the outer loop iterations by processor cores. However,
if the target system is a vector-pipeline computer, the efficiency will be low for
sure: only the short innermost loops (marked by ‘2’) can be vectorized. As a way
out of this situation, we can perform a series of elementary transformations on
the loops (see Fig. 12), moving the long outside loop (marked by ‘1’) inside. The
transformation is certainly not trivial, and the program must effectively be “turned
inside out.” During some transformations we obtain loops which are not perfectly
nested (“dots” in the fourth and fifth loop profiles denote additional statements
“between” loops), but all the transformations are fully equivalent (program’s
information structure remains intact, and we operate strictly within the available
resource of parallelism). If you know about this freedom in code transformations,
you can easily compose a variant of code which matches well any target architecture.

It is worth noting that such non-trivial transformations can’t always be automat-
ically identified and performed by the compiler, which means that the programmer
himself must be aware of such features.

Scalability is one of the central notions in parallel computing, which shows how
efficiently the algorithm and the program implementing it can use the available
processing cores, processors and computing nodes. This is an important idea since
all computers are parallel today, yet it is a highly complex one. Application’s
scalability potential is originally determined by the algorithm, but can be reduced
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Fig. 12 Series of loop transformations that convert the outermost loop ‘1’ in the original fragment
into the innermost loop

substantially depending on the programming technology, bad data distribution,
inadequate composition of the parallel program, and many other reasons.

Many things can be discussed with students here: strong scalability, weak scala-
bility, wide scaling, possible reasons for low scalability. It is interesting to compare
scalability of different algorithms that address the same task. It is important to
show the connection between algorithm properties, program structure and computer
architecture features, which lays the groundwork for co-design technologies and
determines the scalability of parallel applications.

When explaining this idea, the most efficient argument is the behavior of the
actual scalability of a given algorithm’s various implementations, depending on
the number of processors and the problem size. An important thing here is to find
the right correlation between the number of processors used and the problem size
to highlight all points of interest in the behavior of a parallel program, such as
achieving maximum performance, and the more subtle issues that arise, for example,
out of the algorithm’s block structure or memory hierarchy.

Figure 13a shows scalability for an MPI implementation of the classical dense
matrix multiplication algorithm depending on the number of processes and the size
of the dataset. The chart clearly displays areas with higher performance correspond-
ing to different levels of cache memory. Figure 13b shows good scalability for the
Linpack benchmark: as the number of processors grows, so does the performance for
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Fig. 13 Scalability of the MPI implementation of the dense matrix multiplication algorithm (a)
and Linpack benchmark (b), MSU “Lomonosov” supercomputer

any matrix size shown in the chart. Some values are missing from the front part of
Fig. 13b, as large tasks cannot fit into the memory of a small number of processors.

In addition to scalability, performance and efficiency are other concepts of par-
ticular interest in understanding the quality of a parallel algorithm implementation.
These two notions are closely related and are often viewed not in abstract terms
but in combination with a specific computing system. Efficiency can be understood
differently: as parallel efficiency, or as efficiency compared to peak performance
indicators for the computing system.

Algorithms or their implementations can possess specific features that prevent
performance and efficiency from exceeding certain limits. These features need to
be singled out and discussed with students, as they will likely run into something
similar in practice. Figure 14 shows the performance and efficiency for Poisson’s
equation solution using the discrete Fourier transform depending on the number
of processors and the problem size. Despite using serious computing resources
(the experiments were conducted on the “Lomonosov” supercomputer [16] at
Lomonosov Moscow State University), the program’s performance was very low,
with efficiency never exceeding 1.5% and falling quickly as the number of proces-
sors grew (the main reason of poor efficiency is low data locality). These facts need
to be mentioned if we want students to have a realistic perception of what modern
parallel computing systems are capable of, to understand peak performance figures
correctly and to clearly understand the reasons why these situations arise.

Another subject for a more professional and detailed discussion is the search
for the root causes for low performance and efficiency in parallel applications.
The task is not a simple one. There isn’t currently a single, universally accepted
methodology or the respective tools to conduct such analysis. In fact, this requires
conducting a comprehensive analysis adequate for modern supercomputer co-design
technologies. One would need to assess and describe the efficiency of memory
access operations, the efficiency of using the resource of parallelism inherent
in an algorithm, the efficiency of using communication networks and particular
features of the communication profile, the efficiency of input/output operations, and
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Fig. 14 Performance and efficiency of Poisson’s equation solution using the discrete Fourier
transform

many other aspects. Sometimes average aggregated characteristics of a program are
generally sufficient; in some cases, it is necessary to show lower-level monitoring
data such as CPU load, cache misses, InfiniBand network usage intensity, etc.
Tools like TAU [18], Scalasca [17], Vampir [19], and JobDigest [2] provide a good
understanding of the parallel program quality, and students need to be taught how to
use them. Moreover, using such quality maintenance tools for parallel applications
must become an integral element of the software development cycle.

While discussing the properties of a parallel algorithm, it is also important
to evaluate its potential for the specific architecture of various classes of com-
puting systems, and the specific parallel programming technologies used. The
computational kernel is compact and has high computational intensity—a good
condition for using accelerators. The interaction between parallel processes is
intensive and results in major overhead on delivering messages—this means that
developers should look at computers with shared memory or use one-sided data
transfer functions like Put/Get. An algorithm has SIMD parallelism, so graphics
processors can efficiently implement it. By adding these touches to the description
of algorithm’s properties, we pursue the main goal of showing students a strong
connection between the parallel algorithm properties and the computer architecture
features, which form the grounds for creating high-quality parallel applications to
efficiently solve real-life problems.

Our experience in analyzing algorithm properties and implementations not only
determined the key issues that are addressed in this work, but also became the
foundation for the AlgoWiki project [3, 4]. The project’s main goal is to provide
a description of the fundamental algorithm properties that enable full understanding
of their theoretical potential and their implementation features regarding various
classes of parallel computing systems. The project is expected to result in the
development of an open encyclopedia based on wiki technologies and available
to the entire academic and educational community. The first version of the ency-
clopedia is available at [13], where users can describe both their own pedagogical
experience and their knowledge of specific parallel algorithms. The encyclopedia
already contains many useful and live examples that can be used in lectures and
seminars to explain the particular features of parallel algorithms.
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How Does One Make a Training Curriculum Parallel?

Parallel algorithms, parallel computing systems, parallelism—all of these are funda-
mental concepts that must be at the foundation of any curriculum on computational
mathematics, applied mathematics, and generally of any curriculum on Computer
Science. We are implementing this approach at the Faculty of Computational
Mathematics and Cybernetics at the Lomonosov Moscow State University (CMC
MSU), starting with Bachelor’s degree coursework and continuing with many
Master’s degree and post-graduate education programs. In this section we would
like to show the great diversity of methods and techniques that can be used in
the educational process to support parallel computing topics in various training
programs. The choice of particular materials needed in each specific case is up to
teachers. Our goal is to help selecting the most suitable methods for including this
topic in a curriculum, to inspire the teacher to explore various directions, and to
suggest potential pedagogical techniques for implementing this in practice.

Parallelism Concepts: In Every Lecture Course

We analyzed the structure of lecture courses in the Bachelor’s degree programs at
CMC MSU, and it turned out that parallelism concepts can be added to each one
rather easily and gracefully. Some courses only require parallelism to be mentioned;
for some, examples would need to be replaced with those having parallel specifics,
but without any impact on the logical flow of presentation; sometimes, a course
would need to add new lectures. However, this modification, turning the classical
“serial” curriculum into a parallel one based on the ideas of parallel computing, does
not present any specific challenges. Let’s give some examples of how individual
training courses can be modified; this will make it clearer regarding how parallelism
can be introduced into any training course.

Algorithms and algorithmic languages (1st year). The concept of parallel
execution for an algorithm needs to be introduced right in the very first semester
of study (at an intuitive level).

Linear algebra and analytical geometry (1st year). For simple examples (sum-
ming vector elements, dot product), introduce the idea of computational complexity,
discuss the possibility of parallel execution (without any theoretical justification),
and perform assessments of parallel execution timing. The information structure
of a classical matrix multiplication algorithm should be shown, pointing out the
possible options for parallel execution.

Computer architecture (1st year). Introduce the principles of pipeline and par-
allel data processing, explain the architecture of multi-core processors, introduce
the notions of independent functional units, vectorization, peak and sustained
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performance. Explain organization of memory subsystems in modern processors,
and memory hierarchies.

Physical basics of designing computers (2nd year). Computer representations of
numbers, accuracy, rounding, parallel bitwise execution of arithmetic operations.
Rounding, the laws of exact and machine arithmetic.

Operating systems (2nd year). Parallel processes, the fork/join model, synchro-
nization methods, process interaction methods, deadlocks, determinacy, correctness,
viability, fault tolerance.

Discrete mathematics, graph theory (2nd year). Two-dimensional grid, n-
dimensional torus, n-dimensional hypercube, etc. as examples of multi-processor
system topologies. The shortest path between nodes, critical path length, the
outcome degree of graph vertices, routing and fault-tolerance. The need for and
complexities of processing ultra-large graphs.

Algorithm complexity (3rd year). The serial and parallel complexity of an
algorithm, computational intensity of an algorithm.

Introduction to numerical methods (3rd year). Information structure of implicit
and explicit numerical methods, the trade-offs between computational complexity
and the parallel structure of algorithms (explicit methods have good parallel
structure but can have slow convergence, while implicit methods are serial in nature
but can have better convergence).

Mathematical physics equations (3rd year). Parallel problem-solving meth-
ods, key steps in problem-solving on computers: task—algorithm—programming
technology—program—compilation—execution, the need to preserve parallelism
at every problem-solving step.

Databases (4th year). Parallel DBMS, ultra-large DBMS, load balancing in
parallel query execution.

Optimization methods (4th year). Examples of parallel optimization methods.

Distributed systems (4th year). Metacomputing concepts, grid, cloud technolo-
gies, distributed processing technologies.

A detailed description can be provided for each training course, but this is not in
the scope of this work. The idea is to show how naturally the ideas of parallelism
can be included into almost every lecture course in a bachelor’s degree program.

Emphasis on Parallelism in Exam and Test Questions

Questions on exams and tests for various disciplines must be formulated in such
a way as to explicitly mention the ideas of parallelism, rather than conceal them.
Accents in the questions can vary and they can change a flavour of the questions—



What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 47

several possible question formulations are shown below, which could be used, with
minor modifications, for exams within many disciplines.

1. Types of parallel data processing, their features.
2. Evaluating the computational complexity of large tasks.
3. Memory hierarchy, computational locality, data locality.
4. Amdahl’s law, its corollaries, and superlinear speedup.
5. Quality indicators of parallel programs: speedup, efficiency, scalability.
6. Strong scalability, wide scaling, weak scalability. Isoefficiency.
7. Parallel implementation of problems characterized by high computational

complexity with matrix multiplication as an example.
8. Graph models of programs, their relationship.
9. The concepts of information dependency and information independence. An

algorithm’s resource of parallelism.
10. Information structure of algorithms. The critical path of an information graph.
11. Equivalent transformations of programs. Elementary loop transformations.
12. Types of parallelism: finite parallelism, massive parallelism, coordinate paral-

lelism, skewed parallelism.
13. Parallel form of an information graph, its width and height. Canonical parallel

form. Parallel complexity of algorithms.
14. Application efficiency dependence on the choice of data structures.

Online Testing: Knowledge Check and Continuing Education

A properly formulated question does more than just test the level of knowledge:
it allows objects and ideas to be observed and studied from another perspective,
showing alternative sides of the material just learned. An extensive bank of
questions was built with the authors’ active involvement in the Sigma student
knowledge online testing system for parallel computing [14]. Importantly, a system
like this not only allows one’s knowledge level to be checked for taking a test or
exam. It can be successfully used for self-testing, providing students an opportunity
to test how well they understand the material learned in the classroom.

All questions in the system can be divided into several categories, as we will
illustrate below with a few examples (“+” marks the correct answers).

1. Questions for testing the correct understanding of the definitions.
Mark the correct statements:

• Superlinear speedup can be achieved by a large number of functional units.
• Program’s scalability means that the program is suitable for parallel execution.
• A parallel program that does not possess strong scalability can possess weak

scalability. +
• Efficient parallelization can be measured in terms of the number of processes

running at a given moment in time.
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2. Simple calculation questions.
What is the minimum time it will take to add up 512 numbers on 200

processors using pairwise summation, if two numbers are added in 1 second and
the time for a transfer data between the processors is negligible:

• 1 second
• 8 seconds
• 9 seconds
• 10 seconds +
• 11 seconds
• 200 seconds
• 384 seconds
• No correct answer.

3. Questions for analyzing the structure of algorithms or program fragments.
The multiplication of two matrices is programmed using the following

fragment:

for(i = 0; i < n; ++i)
for(j = 0; j < n; ++j)

for(k = 0; k < n; ++k)
A[i][j] = A[i][j]+B[i][k]*C[k][j];

What statements regarding the structure of this fragment are correct:

• The height of the canonical parallel form of the information graph for this
fragment equals n. +

• The critical path length of the informational graph for this fragment equals n.
• The information graph for this fragment consists of n2 independent computa-

tional branches. +
• This fragment cannot be executed on a computer with shared memory.
• Using any loop order in this fragment will yield the same result up to the

rounding error. +
• Reordering the loops will not change the program’s execution time.

4. Questions for understanding serial and parallel algorithm complexity.
A computer executed a program that multiplies two square dense matrices

using a standard algorithm (without using fast multiplication methods) in
4 seconds at a performance of 32 GFlops. What were the sizes of the arrays?

• 500 × 500
• 1000 × 1000
• 2500 × 2500
• 4000 × 4000 +
• 5000 × 5000
• No correct answer.
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From Theory to Practice

Parallel algorithms, like parallel computing in general, are an area where practice
is the key. All of the theoretical ideas introduced can be easily illustrated with
examples, tasks, and exercises from parallel programming practice, and by all means
this should be done. Parallelism came from practice and should be explained in
practical examples all the time. The experience of teaching such disciplines shows
this is completely feasible even for “purely theoretical” concepts.

Various graph models of programs are considered as part of the “Structure of
algorithms and programs” topic. Let’s consider two types of vertices—operators
(V1) or separate executions of operators (V2). For example, if a statement is
executed three times in a loop, we’ll get 1 operator or 3 executions of operators.

Also there are two types of edges—operational (E1) or information (E2)
relationship. Vertex A is connected to vertex B with operational relationship if and
only if vertex B can be executed right after vertex A. Vertex A is connected to vertex
B with information relationship if and only if vertex B uses as an argument some
value obtained in vertex A.

By using different methods of choosing vertices and types of relationships
between them, we can derive four basic graph models: program control graph
(V1 + E1), program information graph (V1 + E2), operational history (V2 + E1)
and information history (sometimes referred to as information or dependency or
dataflow graph (V2 + E2)). Despite the abstract nature of these concepts, they can
easily be illustrated with simple examples. In particular, for one and the same
example:

for(i = 0; i < n; ++i) {
A[i] = A[i-1] + x; (1)
B[i] = B[i] + A[i]; (2)

}

all the four basic graph models are presented in Fig. 15.
To understand potential and properties of the models and to relate these ideas to

program features, presentation of the material can be accompanied by a number of
questions or tasks.

Fig. 15 Four basic graph models: program control graph (a); program information graph (b);
operational history (c); information graph (d)
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Task. Can the information history of a certain fragment be represented by an
empty graph?

The answer is “yes”. A fragment possessing this property is shown below:

for(i = 0; i < n; ++i)
A[i] = A[i] + B[i]*c;

Interestingly, an empty graph is far from “exotic”; on the contrary, it reflects an
exceptionally important property of the program—its high degree of parallelism.

It is also important to show potential limits for the introduced concepts.
Task. Can the information history of a certain program fragment have 20 vertices

and 200 edges?
Indeed, information history can be structured in different ways. But to answer

this question correctly, one needs to remember its two main properties: the absence
of multiple edges and its acyclic nature. This means that an information graph with
the maximum number of edges will look as follows (Fig. 16).

It follows from here that the maximum number of edges for a graph of n vertices
can be calculated as (n− 1)+ (n− 2)+ (n− 3)+ · · · + 2 + 1 = n(n− 1)/2, which
equals 190 for n = 20, so the correct answer to the question above is “no”.

Another type of task can help to assess the understanding of basic concepts such
as the serial and parallel complexity of an algorithm.

Task. Determine the serial and parallel complexity of an algorithm implemented
using the following fragment:

for(i = 2 ; i <= n ; ++i)
for(j = 2 ; j <= m ; ++j)

A[i][j] = A[i][j] * A[i][j-2];

The loop body will be executed (n − 1)(m − 1) times, and each execution of
the operator placed in the loop body corresponds to one multiplication operation;
therefore, the total number of operations and the serial complexity equal to (n −
1)(m − 1).

Parallel complexity is the critical path length of the fragment’s information graph
plus 1, where each vertex corresponds to one execution of the operator in the loop
body. To determine it, we need to build an information graph, which looks as follows
for this fragment (Fig. 17).

Obviously, parallel complexity is equal to �m/2�.
The next exercise is used in the “Equivalent transformations of programs” topic.
Task. Analyze the structure and transform the following fragment for parallel

execution:

for(i = 1; i < n; ++i) {

Fig. 16 Information graph
with the maximum number of
edges
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Fig. 17 Information graph of
the fragment

Fig. 18 Information graph of the fragment (a) and transformation of the loop body (b)

1 A[i] = A[i-1]*p + q;
2 C[i] = (A[i] + B[i-1])*s;
3 B[i] = (A[i] - B[i])*t;

}

The entire fragment’s information structure is shown in the Fig. 18a: the fragment
definitely has a substantial resource of parallelism. First let’s break down the
loop body to identify the serial and parallel parts within the loop body operators.
The respective training course contains a statement: the necessary and sufficient
condition for loop distribution is that the parts being distributed must be located in
different, strongly-connected components of the information graph that represents
the loop body. All three operations represent individual, strongly-connected compo-
nents of the information graph, so loop distribution is possible for all three operators.
The execution order for the three new loops is determined by the information
structure of the information graph for the loop body: first 1, then 3, then 2, as shown
on the right side of Fig. 18b.

Executions of operator 1 are connected with an informational dependency, so
vertex 1 has a self-loop, and the corresponding loop requires serial execution.
Operations 2 and 3 are not self-connected, so all iterations of these loops can be
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performed in parallel. The resulting fragment is shown below (OpenMP directives
are used to declare parallel loops):

for(i = 1; i < n; ++i)
A[i] = A[i-1]*p + q;

#pragma omp parallel for
for(i = 1; i < n; ++i)

B[i] = (A[i] - B[i])*t;
#pragma omp parallel for
for(i = 1; i < n; ++i)

C[i] = (A[i] + B[i-1])*s;

Parallel Programming Features

Moving students from serial programming to writing parallel programs usually
does not cause major issues. Nevertheless, they need to be explicitly warned about
the prospective issues that are typical for parallel algorithms and programs, to
prevent them from occurring again in the future. Race condition, computational load
disbalance, Amdahl’s law impact—it is very helpful to review these and many other
concepts.

A possible assignment for this topic would be to build a parallel implementation
of a simple algorithm, while the task can focus on very different ideas. For example,
build a parallel implementation of an algorithm optimized for a certain parameter,
such as the utilized resource of parallelism, execution time on a specific computer,
amount of memory used, scalability, implementation efficiency, etc.

Task. A program fragment is given:

for(i = 1 ; i <= n ; ++i)
for(j = 1 ; j <= n ; ++j)

A[i][j] = A[i][j] * A[i][j] * A[i-1][j-1] ;

Create an implementation that uses the maximum resource of parallelism for this
algorithm at any given moment.

The first thing one needs to do before building a parallel implementation is
to determine the information structure of a code and identify its resource of
parallelism. The information graph for this fragment will look as follows (Fig. 19a).

To use the maximum possible resource of parallelism, one needs to build the
canonical parallel form for this graph (it is shown in the Fig. 19b). Individual levels
are shown using dashed lines. The required parallel implementation must use the
entire resource of parallelism in a fragment by going through the levels in the
parallel form: the total number of levels is n (this number represents the parallel
complexity), and the number of vertices on each level, which can be executed in
parallel, varies from 2n − 1 to 1. This approach can be implemented as follows:

for(k = 1 ; k <= n ; ++k){
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Fig. 19 Information graph of the fragment (a) and its canonical parallel form (b)

#pragma omp parallel sections
{

#pragma omp parallel for
for(i = k; i <= n ; ++i)

A[i][k] = A[i][k] * A[i][k] * A[i-1][k-1];
#pragma omp section
#pragma omp parallel for

for(i = k+1 ; i <= n ; ++i)
A[k][i] = A[k][i] * A[k][i] * A[k-1][i-1];

}
}

This implementation also has its own nuances: the potential for using the
entire resource of parallelism with this program depends on whether the OpenMP
programming system supports nested parallelism.

One should recognize that this implementation is not necessarily optimal for
other criteria such as execution time or code simplicity. For example, the parallel
execution of the fragment can be organized using skewed parallel branches, even
though this type of implementation increases parallel complexity from n to 2n − 1.
At the same time, the structure of the dependencies in this example allows a very
simple form of parallelism to be used for any coordinate, i or j , as in the example
shown in the Fig. 20.

The parallel complexity of the implementation equals n, just like the first case,
but a more convenient regular parallelism type is used with the same number of
operations at every step. This version will likely be used in practice.
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Fig. 20 An implementation of the fragment using coordinate parallelism

The Efficiency of Parallel Applications: A Matter of Special
Attention

Creating efficient parallel applications is one of the objectives for training students
in this field. It requires knowledge of parallel problem-solving methods, experience
in using parallel programming technologies, and an understanding of parallel
computing system architecture. A number of techniques and methodologies can be
used to reinforce the material with focus on various stages of supercomputer co-
design, which is the central element ensuring the efficiency of parallel applications.

Let’s look at one possible version of this task which we used at the Summer
Supercomputing Academy [1] held at the Lomonosov Moscow State University.

Task. Implement a parallel program on a supercomputer that multiples dense
square matrices with double precision, and examine its scalability. A description
of the algorithm can be found at [7]. The implementation needs to be written in a
high-level programming language (C or Fortran) using MPI technology (for extra
points—write a hybrid version using OpenMP inside a computing node and MPI
for communication between nodes). The task requires that none of the matrices a, b
or c can be stored as a whole at any given node. Moreover, auxiliary arrays at each
node can only be used to store portions of the original matrices, but not the whole
matrices. The total RAM at all nodes is sufficient for storing all relevant data. The
size of matrices to be multiplied in this experiment is n = 4096. Matrix elements of
the type double (DOUBLE PRECISION) can be initialized as follows:

aii = bii = (n − 2)/n



What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 55

aij = bij = −2/n if i �= j

With these inputs, the output shall be an identity matrix, which is easy to verify.
The task is to determine the correlation between program execution time (excluding
initialization) and the number of processors. The number of processors p shall equal
to powers of four.

First let’s describe the approach to parallelization. A review of the information
dependency graph for this algorithm provided in section “What Knowledge of
Algorithm Properties Is Needed in Practice?” shows that all elements of the matrix
c can be computed independently from each other. Therefore, the parallel program
can use a procedure to determine a single element in the resulting matrix c as the
basic building block. In this case, various methods of distributing elements within
the matrix c between various processes will determine the different versions of the
resulting program.

Generally, an absence of information dependencies makes any distribution of the
elements in the matrix c possible; however, the most natural ones are row, column
and block distributions. To improve data locality, it is best to use a block distribution,
where the basic block is a set parts of adjacent rows or columns (see Fig. 21).

In the case of MPI implementation, the distribution cannot just apply to the
resulting matrix c (and related operations), but must also be determined for the
original matrices a and b. This determines how much data transfer the program
will need. Different versions of parallel implementation for this algorithm can be
found here:

• Version 1 [8] (row distribution of matrices a and c, column distribution of matrix
b);

• Version 2 [9] (block distribution of all three matrices).

In version 1, the whole row of matrix a needed to compute a certain matrix
element is stored in the memory allocated to that process, while a column in matrix
b may not be present in the memory for the same process, but rather is stored entirely
in the memory for another process. In fact, each column in matrix b is involved in

p1

p1

p1
p2

p2

p2

p3

p3

p3

p4

p4

p4

Fig. 21 Row, column and block distributions of the matrices between four processes
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Table 1 Comparison of two versions of matrix multiplication implementations

Number of Amount of data Volume of data stored
arithmetic operations transferred for each process

Version 1 2n3 n2(p − 1) 4n2

p

Version 2 2n3 2n2(
√
p − 1)

3n2+2n2√
p

p

Table 2 Comparison of execution time (in seconds) for two versions of the matrix multiplication
implementations on the MSU “Lomonosov-2” supercomputer

Number of processes 1 4 16 64 256 1024

Version 1 44.19 12.86 4.49 1.43 0.50 49.05

Version 2 44.66 12.76 4.44 0.84 1.05 3.05

computing the entire column of matrix c, so it must be sent to all processes of the
application.

In case of a block distribution into a two-dimensional process grid (version 2),
each matrix dimension requires

√
p processes. Matrices a, b and c are distributed

between the processes in uniform blocks. For the process to be able to execute its
part of operations associated with the elements of matrix c, it needs to receive data
from the processes containing the rows of matrix a and columns of matrix b for the
respective block.

A comparison of the two versions by the number of arithmetic operations, total
volume of data transferred and the volume of data stored by each process is shown
in the Table 1. Even though both versions have the same number of arithmetic
operations, version 2 requires transferring less data, but more data needs to be stored
for this implementation.

A comparison of each implementation’s scalability on the MSU “Lomonosov-2”
supercomputer (1280 nodes using Intel Xeon E5-2697v3 processors connected with
an InfiniBand FDR communication network) is shown in the Table 2.

The examples above illustrate just a small portion of the wide variety of
techniques and methods that can be used in the educational process for this topic. A
lot of materials for exercises can be found in the numerous algorithms described in
the AlgoWiki Open encyclopedia of parallel algorithmic features [13]. At the same
time, the results obtained by students while performing exercises can be used to
update the encyclopedia.

Task statements can easily be modified as well. In particular, the exercises can
focus on studying individual dynamic properties of programs, data locality, and var-
ious types of scalability, identifying bottlenecks in parallel implementation, building
a communication profile for an application, comparing various implementations of
the same algorithm, etc. Many options are possible, and they all should stimulate
a creative review of the theoretical materials presented in the lecture course. There
is a clear belief that obtaining practical skills in this area is as important as the
theoretical study.
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