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Abstract Recent advancements in computing technology have increased the com-
plexity of computational systems and their ability to solve larger and more complex
scientific problems. Scientific applications express solutions to complex scientific
problems, which often are data-parallel and contain large loops. The execution of
such applications in parallel and distributed computing (PDC) environments is com-
putationally intensive and exhibits an irregular behavior, in general due to variations
of algorithmic and systemic nature. A parallel and distributed system has a set of
defined policies for the use of its computational resources. Distribution of input data
onto the PDC resources is dependent on these defined policies. To reduce the overall
performance degradation, mapping applications tasks onto PDC resources requires
parallelism detection in the application, partitioning of the problem into tasks, dis-
tribution of tasks onto parallel and distributed processing resources, and scheduling
the task execution on the allocated resources. Most scheduling policies include
provisions for minimizing communication among application tasks, minimizing
load imbalance, and maximizing fault tolerance. Often these techniques minimize
idle time, overloading resources with jobs and control overheads. Over the years,
a number of scheduling techniques have been developed and exploited to address
the challenges in parallel and distributed computing. In addition, these scheduling
algorithms have been classified based on a taxonomy for an understanding and
comparison of the different schemes. These techniques have broadly been classified
into static and dynamic techniques. The static techniques are helpful in minimizing
the individual task’s response time and do not have an overhead for information
gathering. However, they require prior knowledge of the system and they cannot
address unpredictable changes during runtime. On the other hand, the dynamic
techniques have been developed to address unpredictable changes, and maximize
resource utilization at the cost of information gathering overhead. Furthermore,
the scheduling algorithms have also been characterized as optimal or sub-optimal,
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cooperative or non-cooperative, and approximate or heuristic. This chapter provides
content on scheduling in parallel and distributed computing, and a taxonomy of
existing (early and recent) scheduling methodologies.

• Relevant core courses: DS/A, ParAlgo, DistSystems.
• Relevant PDC topics: shared memory (C), distributed memory (C), data parallel

(C), parallel tasks and jobs (K), scheduling and mapping (C), load balancing (C),
performance metrics (C), concurrency (K), dependencies (K), task graphs (K).

• Learning outcomes: The chapter provides an introduction of scheduling in
PDC systems such that it can be easily understood by undergraduate students,
who are exposed to this topic for the first time. The chapter is intended to
provide learning to undergraduate students, who are beginners in the field
of high performance computing. Therefore, the goal of this book chapter is
to present an overview of scheduling in parallel and distributed computing.
Using the knowledge from this chapter, students are expected to understand
the basics and importance of scheduling in parallel and distributed computing,
understand the difference between different classes of scheduling algorithms
and the computational scenarios for their application, and be able to compare
different scheduling strategies based on various performance metrics, such as
execution time, overhead, speedup, efficiency, energy consumption, and others.
In addition, a number of useful resources related to scheduling in PDC systems
have been provided for instructors.

• Context for use: The material is designed for being incorporated into core
courses such as, data structures and algorithms (DS/A), or advanced courses
such as, parallel algorithms (ParAlgo), and distributed systems (DistSystems).
The material is intended for students who already have an understanding of the
basic concepts and terminology of parallel and distributed computing systems.

Introduction

The scheduling problem has been formulated with several definitions across many
different fields of application. The problem of job sequencing in manufacturing
systems forms the basis for scheduling in parallel and distributed computing
systems, and is also recognized as one of the original scheduling problems. Similar
to the job sequencing problem in a manufacturing process, a scheduling system is
comprised of a set of consumers, a set of resources, and a scheduling policy. A basic
scheduling system is illustrated in Fig. 1, where a task in a computer program, a bank
customer, or a factory job are examples of consumers, and a processing element in a
computer system, a bank teller, or a machine in a factory are examples of resources
in a scheduling system. A scheduler acts as an intermediary between the consumers
and the resources to optimally allocate resources to consumers according to the best
available scheduling policy [1].
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Fig. 1 A basic scheduling framework

In parallel and distributed computing, multiple computer systems are often
connected to form a multi-processor system. The network formed with these
multiple processing units can vary from being tightly coupled high speed shared
memory systems to relatively slower loosely coupled distributed systems. Often,
processors communicate with each other by exchanging information over the
interconnection structure. One of the fundamental ideas behind task scheduling is
the proper distribution of program tasks among multiple processors, such that the
overall performance is maximized by reducing the communication cost. Various
task scheduling approaches have a trade-off, between performance and scheduling
overhead, associated with them for different applications in parallel and distributed
computing. A solution to a scheduling problem determines both the allocation and
the execution of order of each task. If there is no precedence relationship among the
tasks, then the scheduling problem is known as a task allocation problem [1].

Scheduling is a feature of parallel computing that distinguishes it from sequential
computing. The Von Neumann model provides generic execution instructions for
a sequential program, where a processor fetches and executes instructions one
at a time. As a parallel computing analogy to the sequential model, parallel
random access memory (PRAM) was formulated as a shared memory abstract
machine [2, 3]. However, no such practical model has yet been defined for parallel
computing. Therefore, many different algorithms have been developed for executing
parallel programs on different parallel architectures. Scheduling requires allocation
of parallel parts of an application program onto available computational resources
such that the overall execution time is minimized. In general, the scheduling
problem is known to be NP-Complete [4–6]. Therefore, a large number of heuristics
have been developed towards approximating an optimal schedule. Different heuris-
tics are applicable in different computational environments depending on various
factors, such as, problem size, network topology, available computational power,
and others. Based on the heuristics a large number of scheduling algorithms have
been developed and the performance of these algorithms also vary with the type
of computational environment. One of the goals of this chapter is to clarify the
differences among scheduling algorithms, and their application domains. In general,
during the scheduling of program tasks on parallel and distributed computing
systems, the tasks are often represented using directed graphs called task graphs
and the processing elements and their interconnection network is represented using
undirected graphs. A schedule is represented using a timing diagram that consists
of a list of all processors and all the tasks allocated to every processor. The tasks are
ordered on a processor by their starting times [1].
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The rest of the chapter is organized as follows. An overview of mapping
algorithms onto parallel computing architectures is described in section “Mapping
Algorithms onto Architectures”. A detailed taxonomy of scheduling in parallel
and distributed computing is explained in section “A Scheduling Taxonomy”. A
discussion of the recent trends in scheduling in parallel and distributed computing
systems is given in section “Examples of Recent Trends in Scheduling”.

Mapping Algorithms onto Architectures

The mapping problem consists of assigning the subtasks of an application to
processors, so that its execution time is minimized. The basic steps involved are:
detecting parallelism, partitioning the problem into independent sub tasks, and
scheduling these subtasks on processors. Performing any of these steps in isolation
can lead to poor mappings, and therefore, low performance. The parallelism in a
program depends on the nature of the problem and the algorithm employed by
the programmer. To obtain high performance, a problem must contain sufficient
parallelism. Parallelism detection is usually independent of the target machine.
In contrast, partitioning and scheduling are highly dependent on architectural
parameters, such as the number of processors, processor speed, communication
overhead, scheduling overhead, etc. Partitioning attempts to match the granularity
of the parallel subtasks to that of the target machine. Scheduling assigns subtasks
to processors and orders their execution. The goals of scheduling are to spread the
load as evenly as possible to processors and to minimize data communication.

Scheduling schemes can be static or dynamic. In static schemes, subtasks are
assigned to processors at compile time either by the programmer or by the compiler.
There is no runtime overhead. The disadvantage of static allocation is that the
unpredictable runtime execution of subtasks can lead to load imbalance. Dynamic
scheduling schemes assign subtasks to processors at runtime. Dynamic assignment
of tasks can improve processor utilization, with a trade-off for an additional
allocation overhead. Dynamic assignments can be distributed or centralized. In a
centralized allocation scheme, there is a pool of tasks that is accessible by all idle
processors. Accessing the central pool may be a bottleneck when the number of
processors is large. In a distributed allocation scheme, tasks are allocated on the
basis of processor negotiation. Distributed allocation may result in sub-optimal load
balancing, as scheduling decisions are mainly based on local information.

For some applications, it may be necessary to order the execution of tasks
with data dependencies. Executing data dependent tasks on different processors
requires costly synchronization and communication. Therefore tasks allocated to
different processors should be made as independent of each other as possible.
Synchronization and communication overhead depend upon several factors, such
as, the algorithm, the subdomain size, and the machine characteristics. An effective
scheduling algorithm must ensure that computational tasks with dependencies are
mapped onto processors that can communicate with low latency. Therefore, work
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allocation is not independent of work partitioning. Mapping should, thus, consider
the communication topology during the partitioning step. This leads to a need for
a close match between the topology of the dependency graph of the tasks and the
communication topology of the machine.

Parallelism Detection

An important component for parallel and distributed computing is a technique that
detects and schedules the parallelism in a sequential program, possibly by applying
code transformations to effectively utilize the system resources. This process of
detecting parallelism is done by examining the code for fine grain operations (such
as, parallel operations in program statements) and/or coarse grain operations (such
as, vector operations or loop parallelization), depending on the target architecture.
Coarse grain parallelism is best detected using the program source code while
the detection of fine grain parallelism usually requires an intermediate level
program representation. Techniques for the detection of both coarse and fine grain
parallel operations have been developed to take advantage of various parallel
architectures [7].

Coarse grain parallelism found in sequential programs is mainly in the form
of vectorizable computations. Considerable research attention has been devoted to
the detection of vectorizable loops in Fortran programs. The techniques include
the detection of coarse grain parallelism useful in generation of code for loosely
coupled multiprocessor systems. Research in the detection and utilization of fine
grain parallelism has also received some attention. A technique that has effectively
tackled the problem of detecting fine grain parallelism across basic blocks is trace
scheduling which uses a control flow graph representation of a program [8].

In general, algorithms for parallelism detection transform the code so that
each statement is surrounded by the same number of loops before and after
the transformation. Parallelism detection is optimal if, after transformation, each
statement is surrounded by a maximal number of parallel loops. The only constraint
that a parallelism detection algorithm must respect is that the partial order of
operations defined by the dependencies in the program are preserved. Parallelism
detection is a wide topic and has been a research topic in the area of compiler
optimization [7].

Partitioning

A process or a task is the basic unit of program execution, and a parallel application
is one that has multiple processes or tasks actively performing computation at one
time. Partitioning is the process of decomposing a serial application into multiple
concurrently executing parts. In parallel and distributed computing applications,
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task and data parallelism are two of the most commonly referenced parallel
patterns [9]. A task parallel application is decomposed into concurrent units that
execute separate instructions simultaneously. On the other hand, a data parallel
application is decomposed into concurrent units that execute the same instructions
on distinct data sets. Moreover, applications in parallel and distributed computing
exhibit spatial and temporal patterns indicating their execution in time and space.
For instance, the location of a data point in memory represents the spatial index for
that application, and the order in which the data points are accessed for application
execution represents the temporal index of that application. Different partitioning
strategies are developed to distinguish parallel patterns in an application and further
employ temporal and spatial partitioning as required. A generic procedure for
determining the dimensionality of the instructions and data of an application to
prepare it for partitioning, is summarized as follows [10]:

1. Determine what constitutes a single input to define the temporal dimension of
the program’s data. For some programs an input might be a single reading from
a sensor. In other cases an input might be a file, data from a keyboard or a value
internally generated by the program.

2. Determine the distinct components of an input to define the spatial dimension of
the program’s data.

3. Determine the distinct functions required to process an input to define the spatial
dimension of the program’s instructions.

4. Determine the partial ordering of functions using topological sort on the program
dependence graph to define the temporal dimension of the program’s instruc-
tions.

The problem of building a partition with the smallest partitioning cost is known to
be intractable [11]. Therefore, research in this area has been focused on developing
approximation algorithms to provide a solution to the partitioning problem.

Task Allocation and Scheduling

Task allocation is a relevant concept in distributed systems. Given a distributed
system made up of a number of processing elements connected together using an
interconnection network and a distributed application consisting of communicating
tasks, allocation techniques assign tasks to processing elements, to optimize the
execution of the application as a whole. Task allocation is considered when there
is no precedence among the tasks forming a program or an application [1].
Scheduling is an ordering of the execution of the application tasks on the available
processing elements. Often, task allocation and scheduling are used interchangeably
and are considered to be performed together. Moreover, scheduling is considered
to encompass the previous steps of parallelism detection, partitioning, and task
allocation.
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There are four components in any scheduling system: the target machines, the
parallel tasks (defined as a set of sequential tasks, where different tasks can be
executed in parallel if there are no dependencies), the generated schedule, and
a performance criterion. The following mathematical description, of these four
components of a scheduling system, has been adopted from [1].

Target Machine

The target machine is assumed to be made up of m heterogeneous processing
elements connected using an arbitrary interconnection network. Each processing
element can run one task at a time and all tasks can be processed by any processing
element. Formally, the target machine characteristics can be described as a system
(P, [Pij ], [Si], [Ii], [Bi], [Rij ]) as follows:

1. P = {P1, · · · , Pm} is a set of processors forming the parallel architecture. Pij is
an m×m interconnection topology matrix of processors as its rows and columns,
and each matrix element represents a link between corresponding processors.

2. Si, 1 ≤ i ≤ m, is the speed of processor Pi .
3. Ii, 1 ≤ i ≤ m, is the startup cost of initiating a message on processor Pi .
4. Bi, 1 ≤ i ≤ m, is the startup cost of initiating a process on processor Pi .
5. Rij is the transmission rate over the link connecting two adjacent processors Pi

and Pj .

The connectivity of the processing elements can be represented using an
undirected graph called the target machine graph as illustrated in Fig. 2.

Fig. 2 An example of a
target machine with eight
processors (m = 8) forming a
three dimensional hypercube
network.The nodes are
labeled with integers
indicating the processor
numbers
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Parallel Application Tasks

A parallel program is modeled as a partially ordered set (poset) (T ,<), where T is
a set of tasks. The relation u < v implies that the computation of task v depends on
the results of the computation of task U , and therefore, task u must be computed for
delivering the result to the processor computing the task v. The characteristics of a
parallel program can be defined as the system (T ,<, [Dij ], [Ai]) as follows [1]:

1. T = {t1, · · · , tn} is a set of application tasks to be executed.
2. < is a partial order defined on T , which specifies the operational precedence

constraints.
3. [Dij ] is an n × n communication data matrix, where Dij ≥ 0 is the amount of

data required to be transmitted from task ti to task tj .
4. [Ai] is an n-length vector specifying the computational requirements of a task ti

in terms of number of instructions.

The ordered tasks are represented using a directed acyclic graph, which is called
a task graph. A directed edge, (i, j ), between two tasks ti and tj indicates that ti must
be completed before a processor starts executing tj . An example of a task graph is
illustrated in Fig. 3.

Given a parallel program model in the form of a task graph and a descrip-
tion of the target machine, task execution time (Tij ) and communication delay
(C(i1, i2, j1, j2)), between two processors j1, j2 executing tasks i1, i2 respectively,
can be calculated as follows [1]:
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Fig. 3 A task graph with five tasks represented as nodes showing task numbers and task execution
times (for example, milliseconds), and directed edges, indicating the order of execution of tasks,
labeled with communication costs
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Tij = Ai

Sj
+ Bj (1)

C(i1, i2, j1, j2) = Di1i2

Rj1j2

+ Ij1 (2)

The Schedule

Given a task graph G = (T ,A) for a target machine consisting of m processors, a
schedule is a function f that maps each task to a processor at a specific starting time.
A schedule f (v) = (i, t), indicates that a task v ∈ T is scheduled to be processed
by processor pi starting at time = t units. No two tasks can have equal scheduling
function. If v < u, where v, u ∈ T and f (v) = (i, t1), f (u) = (j, t2), then t1 < t2.
A schedule is considered feasible if it preserves all task precedence relations and
communication restrictions. A Gantt chart is used to represent a schedule with task
start and finishing times [1]. An example of a system that takes as input the task
graph and the target machine representation, and gives out a Gantt chart representing
the schedule as an output is illustrated in Fig. 4.

Performance Measures

The primary goal for scheduling in parallel and distributed computing systems
is to achieve load balancing and to minimize the overall application execution
time. The performance measure used to achieve this goal is the parallel execution
time. The scheduling objective then is to minimize the parallel execution time for
minimizing the overall completion time of an application. This, in turn, requires the
minimization of the overall schedule length. Given a task graph G = (T ,A), the
length of a schedule is the maximum finishing time of any task belonging to G.
Formally [1],
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P0 t0 t3

t1 t2

t4

22 34

20 25

Fig. 4 A Gantt chart representing a schedule for the task graph shown in Fig. 3 on a machine with
two processors P0 and P1. The shaded area represents the waiting time for each processor based
on the task communication delays, assuming the tasks are initially located at processor P1
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length(f ) = tmax, where tmax = max{t + Tij } and f (i) = (j, t)

∀i ∈ T , 1 ≤ j ≤ m
(3)

A Scheduling Taxonomy

Parallel and distributed computing has increasingly gained capacity to include
a large range of applications. However, the power of a parallel and distributed
computation can only be exploited to its full potential with efficient management
and allocation of system resources relative to the computational load of the
system. This motivation led to a large number of research, which focused on
proposing solutions, in the form of scheduling techniques, to solve the problem
of resource management in parallel and distributed computing systems. However,
this has resulted in the development of various scheduling methodologies leading
to the use of inconsistent terminology, problem formulations, and assumptions.
Different techniques have been developed for optimizing different performance
goals that used different performance metrics. Therefore, to unify the vast number of
available scheduling methodologies for parallel and distributed computing, under a
common, uniform set of terminology, Casavant and Kuhl [12] proposed a taxonomy
that allows the classification of distributed scheduling algorithms according to a
common and manageable set of salient features. This section details upon the
proposed taxonomy along with a discussion on scheduling at global or system level,
and at local or operating system level.

As already described in the previous section, the scheduling problem consists of
three main components: (i) consumer(s), (ii) resource(s), and (iii) scheduling policy.
Often, there is an assumption in parallel and distributed computing that considers a
slight difference in the terms scheduling and allocation. Allocation is viewed in
terms of resource allocation from the perspective of a resource, and scheduling
is viewed from the perspective of a consumer in a computing system. Therefore,
it is often assumed that allocation and scheduling are terms that exhibit a similar
general mechanism from different viewpoints. Considering the three components, a
scheduling system is evaluated via (1) performance, and (2) efficiency. Performance
in a scheduling system is directly related to consumer satisfaction, which depends on
how the scheduler allocates resources to process the consumer demands. Efficiency
is measured in terms of the overhead and the cost to access the required resource.

There are two kinds of classification schemes for categorizing the scheduling
algorithms: (i) hierarchical classification, and (ii) flat classification. The taxonomy
presented in [12] is based on a hierarchical classification. However, a hierarchical
classification does not capture all the issues in a scheduling system. Therefore, a
flat classification that covers a number of scheduling parameters, which are not
considered in a hierarchical scheme.
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Hierarchical Classification

A tree based hierarchical classification of the taxonomy in [12] is illustrated in
Fig. 5.

(a) Local and global scheduling: Local scheduling is performed at the operating
system (OS) level and manages the assignment of tasks or processes to the
time-slices of a single processor. Global scheduling is done at system level and
provides a mechanism for allocating application tasks onto available processing
elements. The classification discussed below has been developed for global
scheduling techniques. Local scheduling will be discussed in more detail later
in this section.

(b) Static versus dynamic: a choice between static and dynamic scheduling indi-
cates the time at which the scheduling or allocation decisions are to be
determined. Static scheduling algorithms are based on the assumption that the
information regarding the application tasks, processes within these tasks, and
the characteristics of the processing elements are available before the scheduling
decision is made. Hence, each application task has a static assignment to a
specific processor. Moreover, every time the scheduler encounters the same
task, it assigns the task to that specific processor. Therefore, static scheduling
algorithms are developed for a particular system configuration. Further, the
scheduler may generate a new static assignment of tasks to processors, if
the system topology or the task configurations change over a period of time.
Static scheduling algorithms are also referred to as deterministic scheduling
algorithms. Dynamic scheduling algorithms are based on a more realistic
assumption that little or no a priori knowledge is available about the resource
requirements of an application task, or about the computational environment in
which the application will execute during its lifetime. In dynamic scheduling,
an allocation decision is not made until the application tasks begin execution in
the dynamic computational environment.

Scheduling

Static

GlobalLocal

Dynamic

Physically
distributed

Physically non-
distributed

Non-
cooperativeCooperative

Optimal Sub-optimal

Optimal

O

Enumerative Graph theory

Math.
Programming

Queuing
theory

Sub-optimal

Approximate Heuristic

Approximate Heuristic

Fig. 5 Hierarchical classification based taxonomy for distributed scheduling algorithms [12]
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(c) Optimal versus sub-optimal: In static scheduling, where complete information
regarding the state of the computational system, and the resource requirements
of application tasks are known a priori, optimal scheduling can be achieved
based on some optimization function, such as, a function for minimizing
the parallel execution time, a function for maximizing resource utilization,
or a function for maximizing system throughput. However, for a different
case of static scheduling, where some system parameters are computationally
infeasible, suboptimal scheduling algorithms are more useful. Suboptimal
scheduling algorithms are further categorized as approximate and heuris-
tic algorithms, which are discussed next. Further, static optimal and static
suboptimal-approximate scheduling is further categorized to employ the fol-
lowing techniques:

• Solution space enumeration and search.
• Graph theory
• Mathematical programming
• Queuing theory

(d) Approximate versus heuristic: Approximate solutions settle for a “good enough”
solution as soon as it can be obtained, instead of searching the entire solution
space for an optimal solution. Such solutions are often based on the assumption
that a good solution can be recognized with minimal overhead. Moreover, in
cases, where a metric is available for evaluating a solution that is obtained using
approximate algorithms, result in decreased overhead time that is required to
obtain the first acceptable schedule. The factors determining when an approx-
imate algorithm should be used are: (i) availability of a function to evaluate
a solution, (ii) time required to evaluate a solution using the function, (iii)
availability of a metric to calculate the value of a solution, and (iv) availability
of a mechanism for efficiently reducing the search space. The other suboptimal
category belongs to heuristic-based algorithms. These are static algorithms,
which are based on realistic assumptions regarding prior knowledge about the
application and system characteristics. Unlike approximate algorithms, heuris-
tic algorithms provide solutions to static scheduling problems, which require an
exhaustive search of the solution space and obtain a solution in a reasonable
amount of time. Often, the parameter being monitored for obtaining a solution
is correlated to system performance in an indirect manner, and is easier to
calculate than the actual performance of the system. Tuning the monitored
parameter results in an impact on the overall application performance. However,
quantitatively, the parameter tuning can not be directly related to system
performance from an application viewpoint. Therefore, heuristic algorithms are
based on the assumption that certain actions, on a system parameter, could
result to an improved system performance. Although, a first-order relationship
between the algorithm actions and the desired results may not be proved for
existence.

(e) Distributed versus non-distributed: This classification has been categorized
under dynamic scheduling algorithms. In dynamic scheduling, the decision
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for assigning tasks to processors is made during runtime. This classification
categorizes dynamic scheduling techniques that either distribute the responsi-
bility of assignment decisions among several processors (physically distributed
approach), or that use a single processor for the work involved in making
scheduling decisions (physically non-distributed approach). Therefore, this
classification distinguishes between dynamic scheduling techniques, based on
the logical authority of the decision-making process for task allocation.

(f) Cooperative versus non-cooperative: this classification distinguish between
dynamic scheduling techniques, which target cooperation between the dis-
tributed components (cooperative), or the techniques that are developed for
systems, where individual processors make decisions independent of the actions
of the other processors (non-cooperative). In the non-cooperative case, individ-
ual processors are autonomous entities that make decisions for the use of their
resources independently, disregarding the effect of their decision on the other
processors in the system. In the cooperative case, every processor, in addition
to delivering its own scheduling task, is responsible for working with the other
processors to achieve a common system-wide goal.

In addition to the attributes that have been categorized using the hierarchical
classification, there are a number of other distinguishing characteristics of schedul-
ing in parallel and distributed systems that are not captured under any branch of
the tree-structured taxonomy [12]. These attributes of a scheduling system could be
sub categorized under several nodes of the hierarchical structure. Therefore, for the
sake of clarity, these characteristics of a scheduling system are represented as a flat
classification providing an extension to the existing hierarchical taxonomy.

Flat Classification

(a) Adaptive versus nonadaptive: An adaptive scheduling algorithm provides a
solution for mapping application tasks to processing elements in the presence
of runtime variations in application, algorithm, and system parameters. Such an
adaptive scheduler is capable of taking multiple parameters into consideration
while formulating a scheduling decisions. An adaptive scheduler modifies the
value of a parameter in response to the behavior of the system. Often, such
a system is known as a reward based system, where the scheduler receives
reward, in the form of system performance, upon an action that it executes in
the form of a specific resource assignment. Based on the reward, the scheduler
may reformulate its allocation policy by tuning certain system parameters, if
those parameters are inconsistent with the desired execution performance. On
the other hand, a nonadaptive scheduler does not modify its basic scheduling
mechanism due to variations in system activity. A non-adaptive scheduler
manipulates the input parameters in the same way regardless of the system
behavior.
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(b) Load balancing: Runtime variations in application, algorithm, or system char-
acteristics, along with poor scheduling decisions, lead to load imbalance among
the executing processors in a parallel and distributed computing system. Often,
load imbalance is one of the major reasons for performance degradation causing
poor resource utilization, increased execution time and decreased system
throughput. Recently, scheduling algorithms, focusing on load balancing, have
received a great deal of attention. The goal of such scheduling algorithms
is to allow processes on all nodes to finish execution at the same rate. A
homogeneous system configuration facilitates this approach due to similar char-
acteristics of all the processing elements. A load balancing scheduling system
can further be categorized as a centralized system, or a distributed system.
In a centralized system, a single master node is responsible for maintaining
the information about the workload on the other processing elements. Further,
in case of a load imbalance, the central node is responsible for transferring
work from a heavily loaded processor to an idle or lightly loaded processor.
However, in case of a highly imbalanced environment, the centralized node
can become a bottleneck generating a large overhead leading to performance
degradation. In a distributed scheduling system, each processor is responsible
for maintaining the current state of information about the workload of other
processors. In such a system, workload information is circulated over the
network at regular time intervals, or as demanded by a processor. The processors
are responsible for cooperating such that work can be transferred from a heavily
loaded processor to a lightly loaded processor. However, with an increase in
the skewed distribution of heavily loaded and idle processors, a distributed
approach can generate large communication overhead where processors spend
more time transferring work over the network than performing any useful work
leading to a degraded performance. Often, load balancing scheduling algorithms
are based on the assumption that the workload information, available for making
load balancing decisions, is always accurate.

(c) Bidding: Scheduling techniques that utilize a bidding approach for assigning
tasks to processors, deliver a cooperative scheduler such that enough infor-
mation is exchanged between task nodes and processor nodes to facilitate an
efficient allocation to optimize the overall performance of the system. As a
basic mechanism of bidding, each processor node behaves as a manager and a
contractor. The manager represents a task in a waiting state which is waiting
to be allocated some computational resources. The contractor represents a
processor node that is waiting to be allocated to a task node for execution. The
manager announces the state of the task waiting for a computational resource.
Further, the manager node receives bids from the potential contractor nodes.
The amount and type of information exchanged, between the manager and the
contractor, are the major factors in determining the efficiency of the bidding-
based scheduler. Such a scheduling system is based on the notion of a fully
autonomous collection of nodes, such that the manager has the freedom to
select autonomously from a collection of bidding computational nodes, and
the contractors are allowed to reject any assigned work if it leads to violation
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of local performance goals. Cloud brokers are an example of a bidding based
scheduling system in cloud computing environments [13].

(d) Probabilistic: Probabilistic scheduling algorithms employ random selection of
task to processor mapping from a large number of permutations of the available
mappings, to reduce the prohibitive amount of time that would otherwise be
required for analytically examining the entire solution space. The methodology
generates a large number of different schedules via iteratively using the random
selection process. Further, the generated set of randomly selected schedules is
analyzed for selecting the best schedule from this set. Probabilistic scheduling
is based on the assumption that enough variation is introduced by the random
selection (using a certain probability distribution) to allow at least one good
solution to enter into the randomly chosen set.

(e) One-time assignment versus dynamic reassignment: Scheduling methodolo-
gies that use one-time assignment technique are often used for jobs in the
traditional batch processing environment in a parallel and distributed system.
Such techniques generate a fixed schedule at a single point in time. Although
many dynamic scheduling techniques use one-time assignment approach, they
are considered static such that once a schedule has been generated for task
allocation at runtime, no further changes can be made to that schedule. The
scheduler generates a mapping of tasks to resources based on the information
(in the form of estimated execution times or other system resource demands)
provided by the application user. However, the variations that occur in the
application and the system parameters at runtime are not considered by the
generated schedule. Moreover, a user that understands the characteristics of
the underlying computational system and the application, may provide false
information to the system for manipulating the system to achieve better results.

Scheduling techniques that employ dynamic reassignment iteratively improve
on earlier scheduling decisions. Dynamic reassignment is based on information on
smaller computation units that are monitored over a time interval. Such techniques
use dynamically created information, available from monitoring resources, to adapt
to variations in application and system parameters. Therefore, dynamic reassign-
ment can also be viewed as an adaptive approach for scheduling. Often, such an
approach requires migrating tasks among processors generating an overhead. Thus,
the use of such techniques should be weighed for trade-off between the generated
overhead and the performance gain.

Operating System Scheduling

The classification of the scheduling strategies that have been discussed so far have
been designed for global scheduling at system level. However, once the tasks
are mapped to a processor, there is a need for a local scheduling mechanism
that manages the execution of processes mapped to that processor. Scheduling
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at operating system level, also known as process scheduling, is an activity of
a process manager that manages process selection, mapping, and removal of a
process for a processor, according to a particular local scheduling methodology.
Process scheduling is an integral part of operating systems running in the processing
elements of parallel and distributed computing systems. A good process scheduling
scheme allows multiple processes to be loaded simultaneously into the executable
memory and share the CPU using time multiplexing.

During the lifetime of a process, it spends some time executing instructions
(computing) and then makes some I/O request, for example, to read or write data
to a file or to get input from a user. The period of computation between I/O
requests is called a CPU burst. Interactive processes spend more time waiting for
I/O and generally experience short CPU bursts. A text editor is an example of an
interactive process with short CPU bursts. Compute-intensive processes, conversely,
spend more time running instructions and less time on I/O. They exhibit long CPU
bursts. A video transcoder is an example of a process with long CPU bursts. Even
though it reads and writes data, it spends most of its time processing that data.
A comparative example of an interactive process and a compute-intensive process
switching between I/O and CPU burst cycles is shown in Fig. 6.

Almost all programs have some alternating cycle of CPU number crunching
and waiting for I/O of some kind. In a simple system running a single process,
the time spent waiting for I/O is wasted, and those CPU cycles are lost forever.
A scheduling system allows one process to use the CPU while another is waiting
for I/O, thereby making full use of otherwise lost CPU cycles. The challenge is
to optimize the overall system performance and efficiency, subject to dynamically
varying conditions. When the process enters into the system, then this process is put
into a job queue. This queue consists of all processes in the system. The operating
system also maintains other queues such as device queues. A device queue contains
multiple processes waiting for a particular I/O device. Each device has its own
device queue. A newly arrived process is put in the ready queue. Processes wait
in ready queue for allocating the CPU. Once the CPU is assigned to a process, then
that process will execute. To provide good time-sharing performance, the scheduler
preempts a running process to let another one run. When an I/O request for a process
is complete, the process moves from the waiting state to the ready state and gets
placed on the ready queue. The process scheduler is the component of the operating
system that is responsible for deciding whether the currently running process should
continue running and, if not, which process should run next. There are four events
that may occur where the scheduler needs to step in and make this decision:

CPU CPU CPU
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U

I/O I/O I/O

(a) (b)
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Fig. 6 A comparative example of differences between the I/O and CPU burst cycles of an
interactive process versus a compute-intensive process. (a) Interactive process. (b) Compute-
intensive process
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1. The current process goes from the running to the waiting state because it
issues an I/O request or some operating system request that cannot be satisfied
immediately.

2. The current process terminates.
3. A timer interrupt causes the scheduler to run and decide that a process has run

for its allotted interval of time and it is time to move it from the running to the
ready state.

4. An I/O operation is complete for a process that requested it and the process
now moves from the waiting to the ready state. The scheduler may then decide
to preempt the currently-running process and move this newly-ready process
into the running state.
A scheduler is a preemptive scheduler if it has the ability to get invoked by an
interrupt and move a process out of a running state to let another process run.
The last two events in the above list may cause this to happen. If a scheduler
cannot take the CPU away from a process then it is a cooperative, or non-
preemptive scheduler. Older operating systems, such as Microsoft Windows 3.1
or Apple MacOS prior to OS X, are examples of cooperative schedulers.

A number of local scheduling algorithms are being widely used by different
operating systems. There are several performance metrics that form the optimization
criteria for selecting the most appropriate scheduling algorithm for a specific
computing environment. Following is a list of these performance metrics that play
an important role in the selection of a particular process scheduling algorithm:

• CPU utilization – percentage of CPU being used for computational work.
• Throughput – number of processes completed per unit time.
• Turnaround time – time required for a particular process to complete, from

submission time to completion.
• Waiting time – time spent by a process in the ready queue.
• Response time – The time taken in an interactive program from the issuance of a

command to completion a response to that command.

First come first serve (FCFS) is the most straightforward approach to scheduling
processes that are stored in a first-in, first-out (FIFO) ready queue. When the
scheduler needs to run a process, it picks the process that is at the head of the queue.
This scheduler is non-preemptive. Round robin (RR) scheduling is a preemptive
version of FCFS scheduling. Processes are dispatched in a FIFO sequence, such
that each process is allowed to run for a limited amount of time. This time interval
is known as a time-slice or quantum. If a process does not complete within the
time slice, the process is preempted and placed at the back of the ready queue. The
shortest remaining time first (SRTF) scheduling algorithm is a preemptive version of
an older non-preemptive algorithm known as shortest job first (SJF) scheduling. In
SJF, the queue of jobs is sorted by estimated job length so that the smaller processes
get to run first. This minimizes average response time. In SRTF, the algorithm sorts
the ready queue by the estimated CPU burst time of a process. In priority scheduling,
each process is assigned a priority based on a pre-defined criteria. A process, in the
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ready queue, with the highest priority gets to run next (UNIX-derived systems tend
to use smaller numbers for high priorities while Microsoft systems tend to use higher
numbers for high priorities). If the system uses preemptive scheduling, a process is
preempted whenever a higher priority process is available in the ready queue. For a
more detailed study on operating system process scheduling, the reader is referred
to the literature in [14].

Examples of Recent Trends in Scheduling

With the evolution of the complexity of parallel and distributed computing, there
has been a wide range of development of various scheduling algorithms and
methodologies that can cater to the growing needs of the modern computing
systems. A few examples of the recent trends in the development of scheduling in
parallel and distributed computing will be discussed in this section. The examples
have been selected such that they cover multiple classification categories of
scheduling from the taxonomy described in the previous section. The examples
begin with a description of work that have proposed and compared static, dynamic-
nonadaptive, and dynamic-adaptive scheduling techniques employed in traditional
high performance computing systems for scientific applications, followed by a
discussion of a number of heuristic-based scheduling techniques employed in
grid computing systems. Further, an example of scheduling strategies for cloud
computing systems, which are defined as one of the modern parallel and distributed
computing systems, will be discussed.

Dynamic Load Balancing Via Loop Scheduling in High
Performance Computing

High performance computing was developed to serve the interests in the accurate
modeling and simulation of various complex phenomena from various scientific
areas. The scientific applications are often routines that perform varying number of
repetitive computations (in the form of DO/FOR loops) over very large data sets.
Moreover, these applications may exhibit irregular behavior leading to differing
execution times of each iteration. In scientific applications, a loop iteration (or a
chunk of loop iterations) with variable execution time is considered to be a task
with varying execution time.

Dynamic loop scheduling (DLS) algorithms provide application-level load bal-
ancing of loop iterations, with the goal of maximizing application performance on
the underlying system. Many DLS methods are based on probabilistic analyses,
and therefore possess the capability to be inherently robust against unpredictable
variations in application and system characteristics. A number of DLS algorithms
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Fig. 7 Dynamic loop scheduling management approaches. (a) Centralized management. (b)
Hierarchical management system

have been proposed in the last decade and have been integrated into several sci-
entific applications, yielding significant performance improvements [15]. The DLS
methods are further categorized as non-adaptive and adaptive. The non-adaptive
DLS techniques have been described in a survey presented in [16]. However, the
dynamic non-adaptive techniques did not address the unpredictable changes in the
computational environment at runtime. Therefore, adaptive DLS techniques were
developed to address this problem [17, 18]. Most of the above adaptive methods
use a combination of runtime information about the application and the system, to
estimate the time the remaining tasks will require to finish execution, in order to
achieve the best allocation possible for optimizing application performance via load
balancing.

Most loop scheduling methods are developed assuming a central ready work
queue of tasks (central management approach), where idle processors obtain chunks
of tasks to execute. The scheduling decisions are centralized in the master node,
which is also known as the foreman node. However, accessing the foreman may
become a bottleneck when a large number of workers attempt to simultaneously
communicate with it. To address this bottleneck, a two-level (hierarchical) manage-
ment strategy is employed, which uses multiple-foremen and partitioned disjoint
processor groups of worker nodes. Each processor group executes concurrently
independent parts of the problem. Forming processor groups dynamically assists
the DLS methods to leverage the best possible application performance on the
large-scale platform [19]. Figure 7 illustrates the centralized, and the distributed
management approach used in dynamic loop scheduling methods.

Heuristic Scheduling for Grid Computing

Grids computing is a new trend in parallel and distributed computing. Computa-
tional grids are distributed systems with independent, and non-interactive compute
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intensive workloads. Unlike conventional high performance computing systems
such as cluster computing, grid computing is more loosely coupled, heteroge-
neous, and geographically dispersed. Moreover, scheduling in a grid computing
environment is different from scheduling in a traditional computing system, where
a scheduler only manages a single local cluster and has control over the cluster
resources, whereas a grid scheduler has no control over the distributed resources,
and its availability of information about the system state is limited. Scheduling and
resource allocation decisions in grid computing systems are approached differently
for computational grid versus data grid. The scheduling techniques implemented in
a compute grid focuses on managing computational resources, such as, processor
compute cycles. In a data grid, the scheduler focuses on managing the distributed
data and the related communication over the grid network connecting the distributed
geographical locations. The scheduling problem in a grid computing system can
be viewed as an optimization problem which is known to be NP-Complete [20].
Therefore, recent research has shown that heuristic techniques are increasingly
being used for solving the scheduling optimization problem.

Ant Colony Optimization (ACO) is a heuristic algorithm that employs local
search for combinatorial problems. ACO has been used to solve several NP-
hard problems such as the traveling salesman problem, graph coloring problem,
vehicle routing problem, and others. As a recent study, a modified version of the
ACO algorithm, called the Balanced ACO (BACO) algorithm, has been used for
grid scheduling to optimize the system makespan [21]. Using this algorithm, the
grid scheduler selects a resource for mapping to the job request by finding the
largest entry in the Pheromone Indicator (PI) matrix among the available jobs to
be executed, where jobs are independent of each other. Another framework that
combines the Fuzzy C-Mean clustering ACO algorithm to improve the scheduling
in a heterogeneous grid is presented in [22]. Herein, the Fuzzy C-Mean algorithm is
used for classification of the jobs into separate classes, and the ACO algorithm maps
the jobs to the appropriate resources that are relevant to those classes. A scheduling
algorithm for task scheduling using particle swarm optimization (PSO) heuristic for
an improved job classification is given in [23]. The heuristic approach is used to map
jobs to grid resources based on the calculated task length of a job and the calculated
processing power of a grid resource. This method has been developed to optimize
resource utilization in a grid environment. Tabu Search (TS) heuristic has also been
used in a scheduling technique in grid computing using the GridSim tool in [24].
The basic principle of TS is employ local search techniques after reaching a local
optimum and prevent cycling back to previously visited solutions by the use of a
storage data structure called Tabu list. Further, TS can be used in conjunction with
other heuristic approaches such as genetic algorithm, constraint programming, and
integer programming technique, for improved performance results.
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Scheduling Advances for Cloud Computing

The advent of cloud computing has revolutionized the concept of parallel and
distributed computing. Cloud computing enables the access to computational
resources, information, and technology to users as services over the Internet. The
services that are provided in a cloud computing environment have been categorized
into three main classes: (i) Infrastructure as a Service (IaaS), (ii) Platform as a
Service (PaaS), and (iii) Software as a Service (SaaS). These services are provided
on demand in a pay-per-use manner via the Internet. Cloud computing differs from
traditional computing environments, such as cluster computing and grid computing,
as it uses virtualization for resource management. This allows cloud computing
resources to be scheduled as cloud services, and are provided to the end-user
as a utility [25]. Recently, the concept of a cloud broker has evolved and cloud
computing environments are being considered as federated systems that consist of a
large number of resources as a federation [13]. However, cloud computing provides
a finite pool of virtual on-demand resources, therefore, requiring efficient scheduling
and resource allocation techniques that can manage the dynamic and competitive
computing environment.

Cloud computing is seen as a three-layered framework consisting of an infras-
tructure layer, a platform layer, and a software layer. Thus, scheduling methodolo-
gies have been proposed for resource management in and between all these layers. A
taxonomy of scheduling in the three cloud resource layers has been defined in [26].
The architecture consisting of the three layers, the IaaS, PaaS, and SaaS stacks, and
a classification of the scheduling requirements for each of the layers is illustrated
in Fig. 8. Scheduling in the software service layer requires delivering software
in the form of user applications, tasks, workflows, and others, while optimizing
the efficiency and maintaining the QoS requirements. Scheduling in the platform
service layer requires mapping virtual resources to physical resources such that
there is minimal load balance, and minimized power consumption. Scheduling
in the infrastructure service layer requires delivery of physical computational
and communication resources to the above two layers for efficient application to
resource mapping, with minimal application or virtual machine migration, in a
federated cloud computing environment.

Given that cloud computing is still an emerging technology, solutions for
scheduling and resource management are fairly recent developments in the field.
Some of the solutions to the scheduling problem for different aspects of cloud
computing have been proposed as combinatorial solutions in [27–29], and as
heuristic approaches in [30–32].
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Chapter Review

This chapter provides a fundamental description of scheduling in parallel and
distributed computing systems. The knowledge presented in here is a result of
a survey and collection of information from a number of state-of-the-art work
(provided as references) done in this field. Scheduling has been defined as a
collective task consisting of the following sub-tasks: detecting parallelism, par-
titioning the problem into independent sub-tasks, and scheduling these sub-tasks
on processors. Often, when scheduling is referred, it is assumed to encompass
the afore mentioned sub-tasks. A generic scheduling system is comprised of four
components: the target machines, the parallel tasks, the generated schedule, and
a performance criterion. Over the years, a number of scheduling techniques have
been developed to define the mapping policy for executing applications or tasks in a
parallel and distributed computing environment. A taxonomy, proposed in [12], for
the classification of various scheduling techniques has been described in section “A
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Scheduling Taxonomy”. Further, a distinction between application level scheduling
and process scheduling at OS level is given via a description of scheduling at global
and local level, respectively. A few examples of scheduling in traditional parallel and
distributed computing systems, such as clusters and grid, and modern computing
systems, such as clouds, have also been discussed to explain the differences in the
scheduling approaches and objectives for such systems.

Exercises

1. Conduct a comparison between static and dynamic approaches. Exemplify with
some cases, where one approach might be better than the other.

2. Suggest a performance metric that would be most appropriate for each of the
following scenario:

• job scheduling in a manufacturing plant
• management for an aircraft waiting for landing clearance
• customers waiting for a teller in a banking system

3. Show an example of a case, where load balancing is more important than
minimizing the finishing times of every machine.

4. Discuss the differences between scheduling at global and local levels. How does
a poor scheduling decision at one of these levels affect the performance at the
other level?

5. The Ready queue of an operating system at a particular time instance is given in
Table 1. The behavior of each process (if it were to use the CPU exclusively) is as
follows. A process runs for the CPU burst given, then requests an I/O operation
that takes 10 ms, then runs for another CPU burst of equal duration to its first
CPU burst and then terminates. However, the four processes must share the CPU.
Assume that the I/O operations can proceed in parallel. Draw a chart showing the
execution of these processes under the round robin policy, with time quantum = 2.

6. Discuss the differences in the objectives and the challenges for scheduling in
a cluster computing environment, a grid computing environment, and a cloud
computing environment.

Table 1 Ready queue of an
operating system with process
CPU burst in milliseconds

Process Next CPU burst

P1 2

P2 3

P3 7

P4 18
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