
Editors’ Introduction and Roadmap

Sushil K. Prasad, Anshul Gupta, Arnold L. Rosenberg, Alan Sussman,
and Charles Weems

The premise of the NSF-supported Center for Parallel and Distributed Computing
Curriculum Development and Educational Resources (CDER) is that every com-
puter science (CS) and computer engineering (CE) undergraduate student should
achieve a basic skill level in parallel and distributed computing (PDC). This book is
a companion to our 2015 book, the first product of the CDER Book Project.1 The
book series we have embarked on addresses the lack of adequate textbook support
for integrating PDC-related topics into undergraduate courses, especially in the early
curriculum.2

1Prasad, Gupta, Rosenberg, Sussman, and Weems. 2015. Topics in Parallel and Distributed
Computing: Introducing Concurrency in Undergraduate Courses, 1st Edition, Morgan Kaufmann,
ISBN : 9780128038994, Pages: 360. http://grid.cs.gsu.edu/~tcpp/curriculum/?q=cedr_book
2This material is based upon work partially supported by the National Science Foundation under
Grants IIS 1143533, CCF 1135124, CCF 1048711 and CNS 0950432. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

S. K. Prasad (�)
Georgia State University, Atlanta, GA, USA
e-mail: sprasad@gsu.edu

A. Gupta
IBM Research AI, Yorktown Heights, NY, USA

A. L. Rosenberg · C. Weems
University of Massachusetts Amherst, Amherst, MA, USA

A. Sussman
University of Maryland, College Park, MD, USA

© Springer International Publishing AG, part of Springer Nature 2018
S. K. Prasad et al. (eds.), Topics in Parallel and Distributed Computing,
https://doi.org/10.1007/978-3-319-93109-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93109-8_1&domain=pdf
http://grid.cs.gsu.edu/~tcpp/curriculum/?q=cedr_book
mailto:sprasad@gsu.edu
https://doi.org/10.1007/978-3-319-93109-8_1

2 S. K. Prasad et al.

Why the CDER Book Project?

A curriculum working group drawn from the IEEE Technical Committee on
Parallel Processing (TCPP), the National Science Foundation (NSF), and sibling
communities such as the ACM and industry, has taken up the challenge of proposing
and refining curricular guidelines for blending PDC-related concepts into early-
stage undergraduate curricula in computational areas. A first version of the group’s
guidelines for a core curriculum that includes PDC was released in December 2012.3

This curriculum and related activities – see Appendix for a brief description of the
NSF/TCPP Curriculum Initiative – have spawned a vibrant international community
of educators who are committed to PDC education. It is from this community
that the desirability of the CDER Book Project, a series of books to support both
instructors and students of PDC, became evident.

Curricular guidelines such as those promulgated by both us and the CS2013
ACM/IEEE Computer Science Curriculum Joint Task Force are an essential first
step in propelling the teaching of PDC-related material into the twenty-first century.
But such guidelines are only a first step: both instructors and students will benefit
from suitable textual material to effectively translate guidelines into the curriculum.
Moreover, experience to this point has made it clear that the members of the PDC
community have much to share with each other and with aspiring new members, in
terms of creativity in forging new directions and experience in evaluating existing
ones. The Book Project’s goal is to engage the community to address the need for
suitable textbooks and related textual material to integrate PDC topics into the lower
level core courses (which we affectionately, and hopefully transparently, refer to as
CS1, CS2, Systems, Data Structures and Algorithms, Logic Design, etc.), and, as
appropriate, into upper level courses. The current edited book series intends, over
time, to cover all of these proposed topics.

In 2016, we invited proposals for chapters on teaching parallel and distributed
computing topics, suitable for either instructors or students, specifically on topics
from the current NSF/TCPP curriculum guidelines for introductory courses that
have not been addressed by the chapters in the earlier book. Subsequently, we saw
good community interest in authoring chapters for higher level elective courses
as well. To address this, we extended the scope of this book to both lower-level
core courses and more advanced, specialized topics in parallel and distributed
computing that are targeted at students in upper level classes. The book has evolved
organically based on contributions received in response to calls for book chapters.
All contributions have been rigorously reviewed internally by the editors and
externally by experts.

3Prasad, S. K., Chtchelkanova, A., Dehne, F., Gouda, M., Gupta, A., Jaja, J., Kant, K., La Salle,
A., LeBlanc, R., Lumsdaine, A., Padua, D., Parashar, M., Prasanna, V., Robert, Y., Rosenberg, A.,
Sahni, S., Shirazi, B., Sussman, A., Weems, C., and Wu, J. 2012. NSF/IEEE-TCPP Curriculum
Initiative on Parallel and Distributed Computing – Core Topics for Undergraduates, Version I,
Online: https://grid.cs.gsu.edu/~tcpp/curriculum/, 55 pages.

https://grid.cs.gsu.edu/~tcpp/curriculum/

Editors’ Introduction and Roadmap 3

Book Organization

This book has two parts.

Part I – For instructors: These chapters are aimed at instructors to provide back-
ground, scholarly materials, insights into pedagogical strategies, and descriptions
of experience with both strategies and materials. The emphasis is on the basic
concepts and references on what and how to teach PDC topics in the context of
the existing topics in various core courses.

Part 2 – For students: These chapters provide supplemental textual material for
core courses that students can rely on for learning and exercises. These are
envisioned as being at the quality of a textbook presentation, with many
illustrations and examples, following a sequence of smaller steps to build larger
concepts. We envision the student materials as supplemental sections that could
be inserted into existing texts by instructors.

Print and Free Web Publication: While a print version through a renowned
commercial publisher will foster our dissemination efforts in a professional format,
the preprint versions of all the chapters of this book series will be freely available
on the CDER Book Project website.4

Chapter Organization: This introductory chapter is organized as follows. Sec-
tion “Chapter Introductions” gives brief outlines of each of the ten subsequent
chapters. Section “How to Find a Topic or Material for a Course?” provides a
roadmap for the readers to find suitable chapters and sections within these which
are relevant for specific courses or PDC topics from the NSF/TCPP Curriculum.
Section “Editor and Author Biographical Sketches” contains biographical sketches
of the editors and authors. Appendix gives a brief history of the NSF/TCPP
Curriculum Initiative.

Chapter Introductions

Part I: For Instructors

Chapter 2, What Do We Need to Know about Parallel Algorithms and Their Efficient
Implementation?, by Vladimir Voevodin, Alexander Antonov, and Vadim Voevodin,
explores a two-phase paradigm for teaching parallel algorithmics. A student is first
taught to investigate an algorithmic problem in a machine-independent manner,
learning to recognize opportunities for exploiting concurrency and to identify
inherent sequentiality that will preclude such exploitation. After having mastered

4CDER Book Project – Free Preprint Version: http://cs.gsu.edu/~tcpp/curriculum/?q=
CDER_Book_Project

http://cs.gsu.edu/~tcpp/curriculum/?q=CDER_Book_Project
http://cs.gsu.edu/~tcpp/curriculum/?q=CDER_Book_Project

4 S. K. Prasad et al.

this inherent aspect of the problem, the student is taught to investigate the problem
in the context of a variety of computing platforms. This two-phase paradigm allows
a student to approach computing with an understanding of the opportunities and
challenges provided by the structure of the problem to be solved, as well as the
opportunities and challenges provided by the structure of the computing platform
one has access to. This chapter is intended for the instructors of introductory courses
on parallel algorithms.

In chapter 3, titled Modules for Teaching Parallel Performance Concepts, Apan
Qasem discusses three teaching modules targeting parallel performance concepts.
The first module discusses fundamental concepts in parallel computing performance
and mainly targets a CS1 course, highlighting parallel programming tools and
performance metrics, and provides several sample exercises. The second module
targets an upper-level operating systems class and focuses on communication
and synchronization and how they affect performance for parallel applications,
introducing the concepts of data dependences, synchronization, race conditions, and
load balancing, again providing several sample exercises. The third module focuses
on performance measurement and estimation of parallel systems, targeting compiler
and computer architecture classes. This module reviews basic performance concepts
and discusses advanced concepts such as strong and weak scaling, linear and super-
linear speedup, and latency vs. bandwidth measurements in the context of OpenMP,
and provides two sample exercises.

Chapter 4, Scalability in Parallel Processing, by Yanik Ngoko and Denis
Trystram, provides a broad exposure to the notion of scalability, which is so
important in modern (and future) large-scale parallel computing environments.
The chapter discusses how scalability manifests itself and the many ways in
which the “degree” of scalability is measured. The classical laws of Amdahl and
Gustafson provide a central focus. The original arguments leading to those laws are
described, accompanied by a reexamination of the laws’ applicability in today’s
machines and computational problems. The notion of scalability is then further
examined in the light of the evolution of the field of computing, with explorations of
modern resource-sharing techniques and the more specific issue of reducing energy
consumption. The chapter ends with a statistical approach to the design of scalable
algorithms, specifically by organizing teams of parallel algorithms that “cooperate”
in solving a single problem. The technically sophisticated aspects of organizing such
cooperations is illustrated using the classical Satisfiability Problem. This chapter
is intended for intermediate and advanced courses on the design and analysis of
parallel algorithms.

In chapter 5, titled Energy Efficiency Issues in Computing Systems, Krishna Kant
introduces energy efficiency issues in computer systems. Traditionally, computing
has focused only on performance at all levels including circuits, architecture,
algorithms, and systems. With power consumption and power density playing a
central role at all these levels, it is crucial to teach students about power and
performance tradeoffs. Power and energy issues are gaining importance in the
context of mobile and embedded systems as well as server farms and data centers,
although for different reasons. This chapter introduces topics like the basics of

Editors’ Introduction and Roadmap 5

energy, power and thermal issues in computing, importance of and technology
trends in power consumption, power-performance tradeoffs, power states, power
adaptation, and energy efficiency of parallel programs.

Chapter 6, Scheduling for fault-tolerance, by Guillaume Aupy and Yves Robert,
addresses a problem that has plagued large-scale parallel computing since its devel-
opment in the 1970s and 1980s – fault tolerance. The electronically “aggressive”
circuitry that enables high-performance large-scale parallel computing is vulnerable
to both (permanent) failures and (transient) faults. Achieving high performance
in practice, even for perfectly parallel applications, therefore demands the use of
techniques that cope with these vulnerabilities. This chapter discusses the challenges
of coping with faults and failures and introduces three simple strategies to achieve
this: checkpointing, prediction, and work replication. Scheduling techniques are
developed to optimize these three strategies. This chapter is intended for interme-
diate and advanced courses on the design and analysis of parallel algorithms. An
operational understanding of elementary probability theory is necessary for true
mastery of this material.

Part 2: For Students

In chapter 7, titled MapReduce – The Scalable Distributed Data Processing
Solution, Bushra Anjum provides students with an overview of how to process large
datasets using the MapReduce programming model. Along with multiple examples
of MapReduce applications, the chapter provides an outline of the basic functions
that must be written to build a MapReduce application, and also discusses how the
map and reduce steps in a distributed MapReduce system (i.e., Hadoop) execute
a MapReduce application with scalable performance. The chapter also discusses
the strengths and limitations of the MapReduce model, addressing scalability,
flexibility, and fault tolerance. Finally, the chapter discusses higher level services
built on top of the basic Hadoop MapReduce system.

In chapter 8, titled The Realm of Graphical Processing Unit (GPU) Computing,
Vivek Pallipuram and Jinzhu Gao provide an introduction to general-purpose
graphical processing unit (GPGPU) computing using the Compute Unified Device
Architecture (CUDA) programming model. The chapter extensively covers the
GPGPU architecture as viewed by a CUDA programmer and CUDA concepts
including CUDA thread management, memory management, and performance
optimization strategies. The chapter pedagogically reinforces the CUDA concepts
using parallel patterns such as matrix-matrix multiplication and convolution. The
chapter includes several active-learning exercises that engage students with the
text. Throughout this chapter, students will develop an ability to write effective
CUDA codes for maximum application performance. The chapter is intended for
an upper-level undergraduate course with object-oriented programming and data
structures using C++ as prerequisites. The chapter can also be used in a sophomore-
or junior-level software engineering course, or in an undergraduate elective course

6 S. K. Prasad et al.

dedicated to high-performance computing using a specialized architecture. Because
the chapter covers the GPGPU architecture and programming in detail, a prior
exposure to CS1/CS2 level programming with basic computer organization is
desirable.

In chapter 9, titled Managing Concurrency in Mobile User Interfaces with Exam-
ples in Android, Konstantin Läufer and George K. Thiruvathukal discuss parallel
and distributed computing from a mobile application development perspective,
specifically addressing concurrency in interactive, GUI-based applications on the
Android platform. The chapter gives an overview of GUI-based applications and
frameworks, then looks at implementing simple interactive application behavior in
the Android mobile application development framework using a running example.
More complex use cases are introduced that enable discussing event handling and
timers, to further show how GUI applications display all the benefits and costs
of concurrent execution. Finally, the chapter closes with a deeper exploration
of long-running compute-bound applications, where the problem is to maintain
responsiveness to user requests.

In chapter 10, titled Parallel Programming for Interactive GUI Applications,
Nasser Giacaman and Oliver Sinnen show students how to use Java threads to imple-
ment a graphical user interface (GUI) that is responsive even while computation is
being done. Because this example of concurrency is concrete and visual, it can be
introduced fairly early in the curriculum. If the first course in programming makes
active use of the Java GUI framework, then this will be a modest extension of that
coverage. By at least the second course in programming (again if GUI programming
is already included), and certainly in a sophomore software engineering class, this
material can be used as a means to introduce many ideas that are basic to PDC, and
get students thinking in terms of using explicit concurrency to take advantage of the
capabilities of modern systems. The foundation that is laid by this material could
easily be extended, for example, in a programming with data structures course, to
introduce thread-safe processing of larger structures, including algorithms such as
parallel merge sort.

Chapter 11, titled Scheduling in Parallel and Distributed Computing Systems by
Srishti Srivastava and Ioana Banicescu addresses the important topic of mapping
tasks onto computational resources for parallel execution. The chapter provides
an introduction to scheduling in PDC systems such that it can be understood by
undergraduate students who are exposed to this topic for the first time. It contains
detailed taxonomy of scheduling methods and comparisons between different
methods from the point of view of applicability as well performance metrics such
as runtime, speedup, efficiency, etc.

Editors’ Introduction and Roadmap 7

How to Find a Topic or Material for a Course?

Table 1 lists the remaining chapters in the book, core/elective undergraduate courses
they can be used for (see list below), and their prerequisites, if any. More detailed
chapter-wise tables which follow list the topics covered in each chapter.

Relevant Courses and Prerequisites

CORE COURSES:
CS0: Computer Literacy for Non-majors
CS1: Introduction to Computer Programming (First Course)
CS2: Second Programming Course in the Introductory Sequence
Systems: Introductory Systems/Architecture Course
DS/A: Data Structures and Algorithms
CE1: Digital Logic (First Course)

ADVANCED/ELECTIVE COURSES:
Arch2: Advanced Elective Course on Architecture
Algo2: Elective/Advanced Algorithm Design and Analysis (CS7)
Lang: Programming Language/Principles (after introductory sequence)
SwEngg: Software Engineering
ParAlgo: Parallel Algorithms
ParProg: Parallel Programming
Compilers: Compiler Design
Networking: Communication Networks
DistSystems: Distributed Systems
OS: Operating Systems

Chapters and Topics

The following tables list the topics covered in each chapter. The depth of coverage
of each topic is indicated by the intended outcome of teaching that topic, expressed
using Bloom’s taxonomy of educational objectives:

K = Know the term
C = Comprehend so as to paraphrase/illustrate
A = Apply it in some way

8 S. K. Prasad et al.

Table 1 Relevant Courses and Prerequisites

Chap Short Primary Other

title core course courses Prerequisites

Part I

2 Parallel algorithms CS0 CS1, DS/A, –

and implementation ParAlgo

3 Parallel performance CS1, OS, DS/A DS/A for

concepts Systems advanced modules

4 Scalability Systems CS2, ParAlgo Math maturity

5 Energy efficiency CE1 CS2, DS/A Math maturity

6 Scheduling Systems CS2, DS/A CS1, Probabilities

for fault tolerance

Part II

7 MapReduce DS/A CS2, ParAlgo, CS0, CS1

DistSystems

8 GPU computing Systems Arch 2, CS1, CS2

ParProg

9 Mobile user DS/A Lang, CS1, CS2

interfaces ParProg

10 Interactive GUI CS2 SwEng, CS1, CS2

applications DS/A ParProg

11 Scheduling DS/A ParAlgo, Basic PDC terms

DistSystems and concepts

Editor and Author Biographical Sketches

Editors

Anshul Gupta is a Principal Research Staff Member in IBM Research AI at IBM
T.J. Watson Research Center. His research interests include sparse matrix
computations and their applications in optimization and computational sciences,
parallel algorithms, and graph/combinatorial algorithms for scientific computing.
He has coauthored several journal articles and conference papers on these topics
and a textbook titled “Introduction to Parallel Computing.” He is the primary
author of Watson Sparse Matrix Package (WSMP), one of the most robust and
scalable parallel direct solvers for large sparse systems of linear equations.

Sushil K. Prasad (BTech’85 IIT Kharagpur, MS’86 Washington State, Pullman;
PhD’90 Central Florida, Orlando – all in Computer Science/Engineering) is
a Professor of Computer Science at Georgia State University and Director
of Distributed and Mobile Systems (DiMoS) Lab. Sushil has been honored
as an ACM Distinguished Scientist in Fall 2013 for his research on parallel
data structures and applications. He was the elected chair of IEEE Technical
Committee on Parallel Processing for two terms (2007–2011), and received its

Editors’ Introduction and Roadmap 9

Chapter 2: What Do We Need to Know About Parallel Algorithms and Their
Efficient Implementation?

Chapter section

PDC concept 2.1 2.2 2.3

Performance issues C C C

Information structure C C C

Data locality C C

Computational intensity K

Resource of parallelism C C C

Computational kernel K

Serial complexity K C

Parallel complexity K C

Load balancing C A

Determinacy of an algorithm C

Scalability C A

Efficiency C C

Race conditions A

Chapter 3: Modules for Teaching Parallel Performance Concepts

Chapter section

PDC concept 3.2 3.3 3.4

Speedup K C

Efficiency K C

Linear and super linear speedup K C

Strong and weak scaling K C

Amdahl’s law C A

Power vs. time trade-offs K A

Task granularity A

Load balancing A

Communication and synchronization C

Scheduling and thread mapping A

SMP and NUMA C

Data locality C

highest honors in 2012 – IEEE TCPP Outstanding Service Award. Currently,
he is leading the NSF-supported IEEE-TCPP curriculum initiative on parallel
and distributed computing with a vision to ensure that all computer science
and engineering graduates are well-prepared in parallelism through their core
courses in this era of multi- and many-cores desktops and handhelds. His
current research interests are in Parallel Data Structures and Algorithms, and
Computation over Geo-Spatiotemporal Datasets over Cloud, GPU and Multicore
Platforms. Sushil is currently a Program Director leading the Office of Advanced
Cyberinfrastructure (OAC) Learning and Workforce Development crosscutting

10 S. K. Prasad et al.

Chapter 4: Scalability in Parallel Processing

Chapter section

PDC concept 4.1 4.2 4.3 4.4 4.5

Scalability K C

Speedup C C C A

Efficiency C C C A

Data parallelism K

Isoefficiency C

Amdahl’ law K C C A

Gustafson’ law K C C A

Strong scaling C C

Weak scaling C C

Resource sharing C A

Energy efficiency K K

P-completeness K

Algorithm portfolio A

Chapter 5: Energy Efficiency Issues in Computing Systems

Chapter section

PDC concept 5.1 5.2 5.3 5.4 5.5 5.6 5.7

Energy efficiency in computing C C

Power states and their Management K K

Software energy efficiency K

Energy efficiency vs. parallelism C

Energy adaptation N

Chapter 6: Scheduling for Fault-Tolerance

Chapter section

PDC concept 6.1 6.2 6.3 6.4 6.5 6.6

Why/What is par/Dist computing K K K K K K

Performance issues, Computation K A C A A K

Cluster K K K K K K

Performance measures A A A A

Basic probabilities C A C C

Programming SPMD C

Load balancing K K A

Scheduling C C C

Dynamic programming A

programs at U.S. National Science Foundation. His homepage is www.cs.gsu.
edu/prasad.

Arnold L. Rosenberg holds the rank of Distinguished University Professor Emeritus
in the School of Computer Science at the University of Massachusetts Amherst.

www.cs.gsu.edu/prasad
www.cs.gsu.edu/prasad

Editors’ Introduction and Roadmap 11

Chapter 7: MapReduce: The Scalable Distributed Data Processing Solution

Chapter section

PDC concept 7.1 7.2 7.3 7.4 7.5

Why/What is par/Dist computing A A C K A

Concurrency K K C A

Cluster computing A C A K K

Scalability A C A K A

Speedup K C A

Divide & Conquer (parallel aspects) C A K A

Recursion (parallel aspects) K A

Scan (parallel-prefix) K A C

Reduction (map-reduce) K A K A

Time C A A

Sorting K A A

Chapter 8: The Realm of Graphical Processing Unit (GPU) Computing

Chapter section

PDC concept 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9

Data parallelism C

GPGPU devices C A A A A A A

nvcc compiler A

Thread management A A

Parallel patterns A A

Performance evaluation A

Performance
optimization

A A

CUDA A A A A A A

Advancements in GPU
computing

K

Prior to joining UMass, Rosenberg was a Professor of Computer Science at
Duke University from 1981 to 1986, and a Research Staff Member at the IBM
Watson Research Center from 1965 to 1981. He has held visiting positions at
Yale University and the University of Toronto, as well as research professorships
at Colorado State University and Northeastern University. He was a Lady Davis
Visiting Professor at the Technion (Israel Institute of Technology) in 1994, and
a Fulbright Senior Research Scholar at the University of Paris-South in 2000.
Rosenberg’s research focuses on developing algorithmic models and techniques
to exploit the new modalities of “collaborative computing" (wherein multiple
computers cooperate to solve a computational problem) that result from emerging
computing technologies. Rosenberg is the author or coauthor of more than 190
technical papers on these and other topics in theoretical computer science and
discrete mathematics. He is the coauthor of the research book Graph Separators,
with Applications and the author of the textbook The Pillars of Computation

12 S. K. Prasad et al.

Chapter 9: Managing Concurrency in Mobile User Interfaces with Examples in
Android

Chapter section

PDC concept 9.1 9.2 9.3 9.4 9.5 9.6 9.7

Why and what is PDC K

Tasks and threads K C A A

Thread safety K C C A A A

Race conditions K C C C A A

Thread/Task spawning K A A

Synchronization C C A A A

Nondeterminism C A

Deadlocks K

Chapter 10: Parallel Programming for Interactive GUI Applications

Chapter section

PDC concept 10.1 10.2 10.3 10.4 10.5 10.6

Concurrency C A A C A A

Race conditions C A

Thread safety C C

GUI concurrency C A A

Theory: State, Encoding, Nondeterminism; additionally, he has served as coeditor
of several books. Rosenberg is a Life Fellow of the ACM, a Life Fellow of the
IEEE, a Golden Core member of the IEEE Computer Society, and a member
of the Sigma Xi Research Society. Rosenberg received an A.B. in mathematics
at Harvard College and an A.M. and Ph.D. in applied mathematics at Harvard
University.

Alan Sussman is a Professor in the Department of Computer Science and Institute
for Advanced Computer Studies at the University of Maryland. Working with
students and other researchers at Maryland and other institutions he has published
numerous conference and journal papers and received several best paper awards
in various topics related to software tools for high performance parallel and
distributed computing, and has contributed chapters to six books. His research
interests include peer-to-peer distributed systems, software engineering for high
performance computing, and large scale data intensive computing. Software tools
he has built with his graduate students have been widely distributed and used in
many computational science applications, in areas such as earth science, space
science, and medical informatics. He is a subject area editor for the Parallel
Computing journal and an associate editor for IEEE Transactions on Services
Computing, and edited a previous book on teaching parallel and distributed
computing. He is a founding member of the Center for Parallel and Distributed
Computing Curriculum Development and Educational Resources (CDER). He
received his Ph.D. in computer science from Carnegie Mellon University.

Editors’ Introduction and Roadmap 13

Chapter 11: Scheduling in Parallel and Distributed Computing Systems

Chapter section

PDC concept 11.1 11.2 11.3 11.4

MIMD architecture K

Multicore C

SMP N C

Topologies N N

Latency K

Heterogeneous K K

Data Parallel C

Computation C C C C

Load balancing C C C

Distributed memory C C

Client server C

Static C C

Dynamic C C C

Asymptotic C

Communication C C

Synchronization C C

Speedup A

Efficiency A A

Makespan C C

Concurrency C

Performance modeling K

Fault tolerance K

Charles Weems is co-director of the Architecture and Language Implementation
lab at the University of Massachusetts. His current research interests include
architectures for media and embedded applications, GPU computing, and high
precision arithmetic, and he has over 100 conference and journal publications.
Previously he led development of two generations of a heterogeneous parallel
processor for machine vision, called the Image Understanding Architecture, and
co-directed initial work on the Scale compiler that was eventually used for
the TRIPS architecture. He is the author of numerous articles, has served on
many program committees, chaired the 1997 IEEE CAMP Workshop, the 1999
IEEE Frontiers Symposium, co-chaired IEEE IPDPS in 1999, 2000, and 2013,
was general vice-chair for IPDPS from 2001 through 2005, is on the steering
committees of EduPar and EduHPC. He has co-authored 28 introductory CS
texts. He is a member of ACM, Senior Member of IEEE, a member of the
Executive Committee of the IEEE TC on Parallel Processing, has been an editor
for IEEE TPDS, Elsevier JPDC, and is an editor with Parallel Computing.

14 S. K. Prasad et al.

Authors

Bushra Anjum has a PhD in Computer Science from North Carolina State University
and is currently serving as a Tech Lead for the Amazon Prime Program at
Amazon, Inc. Alongside, she is also a visiting professor at the Computer Science
Department of the California Polytechnic Institute, San Luis Obispo. Anjum has
been extensively using Elastic MapReduce platform provided by Amazon Web
Services for a few years now for job related tasks. Before joining industry, she
served in academia full time both in the USA and in Pakistan for 5+ years.
With unconventional career choices and international exposure, she brings the
expertise of being an academician, a researcher and a practitioner at the same
time.

Alexander Antonov is a leading researcher in Research Computing Center of
Lomonosov Moscow State University (RCC MSU). His main research interests
are related to research in such fields as parallel and distributed computing,
performance and efficiency of computers, parallel programming, informational
structure of algorithms and programs, application optimization and fine tuning,
architecture of computers, benchmarks, etc. In 1999 Alexander Antonov received
PhD degree on the subject of interprocedural analysis of programs. Alexander
took part in a number of projects supported by the Ministry of Education and
Sciences of the Russian Federation, Russian Foundation for Basic Research
and Russian Science Foundation. Alexander is editor of Parallel.Ru Information
analytical center for parallel computing. Alexander Antonov is one of the main
developers of the AlgoWiki Open encyclopedia of parallel algorithmic features.
At the present time Alexander Antonov takes part in different researches being
conducted in RCC MSU that are devoted to efficiency analysis of parallel
applications and supercomputer systems in general. He has published over 50
scientific papers with 4 books among them.

Guillaume Aupy received his PhD from ENS Lyon. He is currently a tenured
researcher at Inria Bordeaux Sud-Ouest. His research interests include data-
aware scheduling, reliability, energy efficiency in high-performance computing.
He is the author of numerous articles, has served on many program committees.
He was the technical program vice-chair of SC17.

Ioana Banicescu is a professor in the Department of Computer Science and Engi-
neering at Mississippi State University (MSU). Between 2009 and 2017, she
was also a Director of the NSF Center for Cloud and Autonomic Comput-
ing at MSU. Professor Banicescu received the Diploma in Electronics and
Telecommunications from Polytechnic University – Bucharest, and the M.S.
and the Ph.D. degrees in Computer Science from New York University –
Polytechnic Institute. Her research interests include parallel algorithms, scientific
computing, scheduling and load balancing algorithms, performance modeling,
analysis and prediction, and autonomic computing. Between 2004–2017, she
was an Associate Editor of the Cluster Computing journal and the International
Journal on Computational Science and Engineering. Professor Banicescu, served

Editors’ Introduction and Roadmap 15

and continues to serve on numerous research review panels for advanced
research grants in the US and Europe, on steering and program committees
of a number of international conferences, symposia and workshops, on the
Executive Board and Advisory Board of the IEEE Technical Committee on
Parallel Processing (TCPP). She has given many invited talks at universities,
government laboratories, and at various national and international forums in the
United States and overseas.

Jinzhu Gao received the Ph.D. degree in Computer Science from The Ohio State
University in 2004. From June 2004 to August 2008, she worked at the Oak
Ridge National Laboratory as a research associate and then the University of
Minnesota, Morris, as an Assistant Professor of Computer Science. She joined
the University of the Pacific (Pacific) in 2008 and is currently a Professor of
Computer Science at Pacific. Her main research focus is on intelligent data
visual analytics. Over the past 15 years, Dr. Gao has been working closely
with application scientists and Silicon Valley technology companies to develop
online data visual analytics and deep learning platforms to support collaborative
science, mobile health, IoT data analytics, business operational visibility, and
visual predicative analysis for industries. Her work has been published in top
journals such as IEEE Transactions on Visualization and Computer Graphics,
IEEE Transactions on Computers, and IEEE Computer Graphics and Applica-
tions.

Nasser Giacaman is a Senior Lecturer in the Department of Electrical and Com-
puter Engineering at the University of Auckland, New Zealand. His disciplinary
research interest includes parallel programming, particularly focusing on high-
level languages in the context of desktop and mobile applications running
on multi-core systems. He also researches Software Engineering Education
by driving the development of tools and apps to help students learn difficult
programming concepts.

Krishna Kant is a full professor in the department of computer and information
science at Temple University. He has 37 years of combined experience in
academia, industry, and government and has published in a wide variety of areas
in computer science, telecommunications, and logistics systems. His current
research interests span energy management, data centers, wireless networks,
resilience in high performance computing, critical infrastructure security, storage
systems, database systems, configuration management, and logistics networks.
He is a fellow of IEEE.

Konstantin Läufer is a full professor of computer science at Loyola University
Chicago. He received a PhD in computer science from the Courant Institute at
New York University in 1992. His research interests include programming lan-
guages, software architecture, and distributed and pervasive computing systems.
His recent focus in research and teaching has been on the impact of programming
languages, methodologies, frameworks, and tools on software quality. Konstantin
has repeatedly served as a consultant in academia and industry and is a co-
inventor on two patents owned by Lucent Technologies.

16 S. K. Prasad et al.

Yanik Ngoko received his B.Sc. in Computer Science from University of Yaoundé
I (UYI), Cameroon, his M.Sc. in parallel and numerical computing also from
UYI, and his doctorate in Computer Science from the Institut National Polytech-
nique de Grenoble, France (2010). From 2011 to 2014, he was a postdoctoral
researcher, first at the university of São Paulo and then at the university of Paris
13. Since October 2014, he is a research scientist at Qarnot computing and an
associate member of the Laboratoire d’Informatique de Paris Nord (University
of Paris 13). His research interests include parallel and distributed computing,
web services, cloud computing, applications of edge computing to IoT.

Vivek Pallipuram (B.Tech.2008 NIT Trichy, MS2010 Clemson University,
Ph.D.2013 Clemson University) is an Assistant Professor of Computer Engi-
neering at University of the Pacific, Stockton, California. His research interests
include high-performance computing (HPC), heterogeneous architectures such
as general-purpose graphical processing units (GPGPUs) and Xeon Phi co-
processors, Cloud computing, image processing, and random signal processing.
His interests also include promoting HPC education and scientific computing in
primarily-undergraduate universities. His work has been published in journals
such as the Journal of Supercomputing, and Concurrency and Computation:
Practice and Experience; and in top conferences such as IEEE Cluster and
eScience. He is also a peer-reviewer for a number of international journals
and conference proceedings. In the classroom, he strives to be a facilitator by
engaging students using active-learning techniques. In addition to receiving
information from the instructor, students interact with their peers via in-class
group activities and gain valuable perspective. This process increases the
influx of knowledge per student, promoting well-rounded and comprehensive
learning. He enjoys teaching high-performance computing, computer systems
and networks, random signals, and image processing.

Apan Qasem is an Associate Professor in the Computer Science Department at
Texas State University. He received his PhD in 2008 from Rice University.
Qasem directs the Compilers Research Group at Texas State where he and his
students are working on a number of projects in the area of high-performance
computing including developing intelligent software for improving programmer
productivity and using GPUs for general-purpose computation. Qasem’s research
has received funding from the National Science Foundation, Department of
Energy, Semiconductor Research Consortium (SRC), IBM, Nvidia and the
Research Enhancement Program at Texas State. In 2012, he received an NSF
CAREER award to pursue research in autotuning of exascale systems. Qasem
has co-authored over 50 peer-reviewed publications including two that won best
paper awards. He regularly teaches the undergraduate and graduate Compilers
and Computer Architecture courses.

Yves Robert received the PhD degree from Institut National Polytechnique de
Grenoble. He is currently a full professor in the Computer Science Laboratory
LIP at ENS Lyon. He is the author of 7 books, 150 papers published in
international journals, and 240 papers published in international conferences. He
is the editor of 11 book proceedings and 13 journal special issues. He is the

Editors’ Introduction and Roadmap 17

advisor of 30 PhD theses. His main research interests are scheduling techniques
and resilient algorithms for large-scale platforms. He is a Fellow of the IEEE.
He has been elected a Senior Member of Institut Universitaire de France in
2007 and renewed in 2012. He has been awarded the 2014 IEEE TCSC Award
for Excellence in Scalable Computing, and the 2016 IEEE TCPP Outstanding
Service Award. He holds a Visiting Scientist position at the University of
Tennessee Knoxville since 2011.

Oliver Sinnen graduated in Electrical and Computer Engineering at RWTH Aachen
University, Germany. Subsequently, he moved to Portugal, where he received
his PhD from Instituto Superior Técnico (IST), University of Lisbon, Portugal
in 2003. Since 2004 he is a (Senior) Lecturer in the Department of Electrical
and Computer Engineering at the University of Auckland, New Zealand, where
he leads the Parallel and Reconfigurable Computing Lab. His research interests
include parallel computing and programming, scheduling and reconfigurable
computing. Oliver authored the book “Task Scheduling for Parallel Systems",
published by Wiley.

Srishti Srivastava is an Assistant Professor of Computer Science at the University
of Southern Indiana. She received her Ph.D. in Computer Science at Missis-
sippi State University in May 2015. Her research interests include dynamic
load balancing in parallel and distributed computing, performance modeling,
optimization, and prediction, robustness analysis of resource allocations, and
autonomic computing. Srishti has authored and co-authored a number of articles
published in renowned IEEE and ACM conferences, journals, and book chapters.
Srishti has served on the program committees of international conference
workshops such as, EduHPC, and EduPar. She has also been a peer reviewer
for a number of international journals, and conference proceedings. She is a
professional member of the IEEE computer society, ACM, Society for Industrial
and Applied Mathematics (SIAM), Computing Research Association (CRA,
CRA-W), Anita Borg Institute Grace Hopper Celebration (ABI-GHC), and an
honor society of Upsilon Pi Epsilon (UPE). She is also a 2014 young researcher
alumna of the Heidelberg Laureate Forum, Germany.

George K. Thiruvathukal received his PhD from the Illinois Institute of Technology
in 1995. He is a full professor of computer science at Loyola University
Chicago and visiting faculty at Argonne National Laboratory in the Mathematics
and Computer Science Division, where he collaborates in high-performance
distributed systems and data science. He is the author of three books, co-editor of
a peer-reviewed collection, and author of various peer-reviewed journal and con-
ference papers. His early research involved object-oriented approaches to parallel
programming and the development of object models, languages, libraries, and
tools (messaging middleware) for parallel programming, mostly based on C/C++
on Unix platforms. His subsequent work in Java resulted in the book High-
Performance Java Platform Computing, Prentice Hall and Sun Microsystems
Press, 2000. He also co-authored the book Codename Revolution: The Nintendo
Wii Platform in the MIT Press Platform Studies Series, 2012. Recently, he co-

18 S. K. Prasad et al.

edited Software Engineering for Science, Taylor and Francis/CRC Press, October
2016.

Denis Trystram is a Professor in Computer Science at Grenoble Institute of tech-
nology since 1991 and is now distinguished professor there. He was a senior
member of Institut Universitaire de France from 2010 to 2014. He obtained in
2011 a Google research award in Optimization for his contributions in the field of
multi-objective Optimisation. Denis is leading a research group on optimization
of resource management for parallel and distributed computing platforms in a
joint team with Inria. Since 2010, he is director of the international Master
program in Computer Science at university Grenoble-Alpes. He has been elected
recently as the director of the research pole in Maths and Computer Science in
this university.

Vadim Voevodin is a senior research fellow in Research computing center of
Lomonosov Moscow state university (RCC MSU). His main research interests
are related to different aspects of high-performance computing: analysis
of parallel program efficiency, development of system software, parallel
programming, etc. Vadim Voevodin got his PhD in memory locality analysis
in parallel computing. Also he was a main developer in a research devoted to
the study of memory hierarchy usage. At the present time Vadim Voevodin is
actively involved in different researches being conducted in RCC MSU that
are devoted to efficiency analysis of parallel applications and supercomputer
systems in general. One research is dedicated to detecting abnormal inefficient
job behavior based on constant monitoring of supercomputer job flow. The other
newly started research is aimed to develop a universal software tool suite that will
help common users to conduct both large-scale efficiency analysis of the entire
set of applications and a professional in-depth analysis of individual parallel
applications, based on many researches previously done in RCC MSU. Another
major research area concerns the analysis of supercomputer resource utilization
and efficiency of using application packages installed on a supercomputer.

Vladimir Voevodin is Deputy Director of the Research Computing Center
at Lomonosov Moscow State University. He is Head of the Department
“Supercomputers and Quantum Informatics” at the Computational Mathematics
and Cybernetics Faculty of MSU, professor, corresponding member of Russian
academy of sciences. Vl. Voevodin specializes in parallel computing, super-
computing, extreme computing, program tuning and optimization, fine structure
of algorithms and programs, parallel programming technologies, scalability
and efficiency of supercomputers and applications, supercomputing co-design
technologies, software tools for parallel computers, and supercomputing
education. His research, experience and knowledge became a basis for the
supercomputing center of Moscow State University, which was founded
in 1999 and is currently the largest supercomputing center in Russia. He
has contributed to the design and implementation of the following tools,
software packages, systems and online resources: V-Ray, X-Com, AGORA,
Parallel.ru, hpc-education.ru, hpc-russia.ru, LINEAL, Sigma, Top50, OctoShell,
Octotron, AlgoWiki. He has published over 100 scientific papers with 4

Editors’ Introduction and Roadmap 19

books among them. Voevodin is one of the founders of Supercomputing
Consortium of Russian Universities established in 2008, which currently
comprises more than 60 members. He is a leader of the major national activities
on Supercomputing Education in Russia and General Chair of the two largest
Russian supercomputing conferences.

Appendix: A Brief History of The NSF/TCPP Curriculum
Initiative

The pervasiveness of computing devices containing multicore CPUs and GPUs,
including PCs, laptops, tablets, and mobile devices, is making even casual users
of computing technology beneficiaries of parallel processing. Certainly, technology
has developed to the point where it is no longer sufficient for even basic pro-
grammers to acquire only the sequential programming skills that are the staple in
computing curricula. The trends in technology point to the need for imparting a
broad-based skill set in PDC technology at various levels in the educational fabric
woven by Computer Science and Computer Engineering programs as well as their
allied computational disciplines. To address this need, a curriculum working group
drawn from the IEEE Technical Committee on Parallel Processing (TCPP), the
National Science Foundation (NSF), and sibling communities such as the ACM
and industry, has taken up the challenge of proposing and refining a curricular
guidleines for blending PDC-related concepts into even early-stage undergraduate
curricula in computational areas. This working group is built around a constant core
of members and typically includes members from all segments of the computing
world and the geographical world. A first version of the group’s guidelines for a core
curriculum that includes PDC was released informally in December, 2010, with a
formal version3 following in December 2012. The CS2013 ACM/IEEE Computer
Science Curriculum Joint Task Force has recognized the need to integrate parallel
and distributed computing topics in the early core courses in the computer science
and computer engineering curriculum, and has collaborated with our working group
in leveraging our curricular guidelines. The CS2013 curriculum5 explicitly refers to
the NSF/TCPP curricular guideines for comprehensive coverage of parallelism (and
provides a direct hyperlink to the guidelines).

The enthusiastic reception of the CDER guidelines has led to a commitment
within the working group to continue to develop the guidelines and to foster
their adoption at an even broader range of academic institutions. Toward these
ends, the Center for Curriculum Development and Educational Resources (CDER)
was founded, with the five editors of this volume comprising the initial Board of
Directors. An expanded version of the working group has taken up the task of

5The ACM/IEEE Computer Science Curricula 2013: (https://www.acm.org/binaries/content/
assets/education/cs2013_web_final.pdf)

https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

20 S. K. Prasad et al.

revising and expanding the 2012 NSF/TCPP curriculum during the 2016–2018
timeframe. One avenue for expansion has been to add special foci on a select set
of important aspects of computing that are of particular interest today – Big Data,
Energy-Aware Computing, Distributed Computing – and to develop Exemplars that
will assist instructors in assimilating the guidelines’ suggested topics into their
curricula. CDER has initiated several activities toward the goal of fostering PDC
education.

1. A courseware repository6 has been established for pedagogical materials –
sample lectures, recommended problem sets, experiential anecdotes, evaluations,
papers, etc. This is a living repository. CDER invites the community to contribute
existing and new material to it. The Exemplars aspect group is working to provide
extensive set of exemplars for various topics and courses.

2. An Early Adopter Program has been established to foster the adoption and
evaluation of the guidelines. This activity has fostered educational work on
PDC at more than 100 educational institutions in North and South America,
Europe, and Asia. The Program has thereby played a major role in establishing
a worldwide community of people interested in developing and implementing
PDC curricula. Additional early adopter training workshops and competitions
are planned.

3. The EduPar workshop series has been established. The original instantiation of
EduPar was as a satellite of the International Parallel and Distributed Processing
Symposium (IPDPS). EduPar was – and continues to be – the first education-
oriented workshop at a major research conference. The success of EduPar led
to the development of a sibling workshop, EduHPC, at the Supercomputing
Conference (SC) in 2013. In 2015 EduPar and EduHPC was joined by a third
sibling workshop, Euro-EduPar, a satellite of the International Conference on
Parallel Computing (EuroPar). CDER has also sponsored panels, and BOF
and special sessions at the ACM Conference on Computer Science Education
(SIGCSE).

4. A CDER Compute Cluster has been setup for free accesses by the early adopters
and other educators and their students. The CDER cluster is a heterogeneous 14-
node cluster featuring 280 cores, 1 TB of RAM, and GPUs that are able to sustain
a mixed user workload.7

6CDER Courseware Repository: https://grid.cs.gsu.edu/~tcpp/curriculum/?q=
courseware_management
7CDER Cluster free access: https://grid.cs.gsu.edu/~tcpp/curriculum/?q=node/21615

https://grid.cs.gsu.edu/~tcpp/curriculum/?q=courseware_management
https://grid.cs.gsu.edu/~tcpp/curriculum/?q=courseware_management
https://grid.cs.gsu.edu/~tcpp/curriculum/?q=node/21615

	Editors' Introduction and Roadmap
	Why the CDER Book Project?
	Book Organization
	Chapter Introductions
	Part I: For Instructors
	Part 2: For Students

	How to Find a Topic or Material for a Course?
	Relevant Courses and Prerequisites
	Chapters and Topics

	Editor and Author Biographical Sketches
	Editors
	Authors

	Appendix: A Brief History of The NSF/TCPP Curriculum Initiative

