
Sushil K. Prasad · Anshul Gupta
Arnold Rosenberg · Alan Sussman
Charles Weems Editors

Topics in Parallel
and Distributed
Computing
Enhancing the Undergraduate
Curriculum: Performance, Concurrency,
and Programming on Modern Platforms

Topics in Parallel and Distributed Computing

Sushil K. Prasad • Anshul Gupta • Arnold Rosenberg
Alan Sussman • Charles Weems
Editors

Topics in Parallel and
Distributed Computing
Enhancing the Undergraduate Curriculum:
Performance, Concurrency, and Programming
on Modern Platforms

123

Editors
Sushil K. Prasad
Georgia State University
Atlanta, GA, USA

Arnold Rosenberg
University of Massachusetts Amherst
Amherst, MA, USA

Charles Weems
University of Massachusetts Amherst
Amherst, MA, USA

Anshul Gupta
IBM Research AI
Yorktown Heights, NY, USA

Alan Sussman
University of Maryland
College Park, MD, USA

ISBN 978-3-319-93108-1 ISBN 978-3-319-93109-8 (eBook)
https://doi.org/10.1007/978-3-319-93109-8

Library of Congress Control Number: 2018955463

© Springer International Publishing AG, part of Springer Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-93109-8

Contents

Editors’ Introduction and Roadmap . 1
Sushil K. Prasad, Anshul Gupta, Arnold L. Rosenberg, Alan Sussman,
and Charles Weems

Part I For Instructors

What Do We Need to Know About Parallel Algorithms and Their
Efficient Implementation?. 23
Vladimir Voevodin, Alexander Antonov, and Vadim Voevodin

Modules for Teaching Parallel Performance Concepts . 59
Apan Qasem

Scalability in Parallel Processing . 79
Yanik Ngoko and Denis Trystram

Energy Efficiency Issues in Computing Systems . 111
Krishna Kant

Scheduling for Fault-Tolerance: An Introduction . 143
Guillaume Aupy and Yves Robert

Part II For Students

MapReduce – The Scalable Distributed Data Processing Solution 173
Bushra Anjum

The Realm of Graphical Processing Unit (GPU) Computing 191
Vivek K. Pallipuram and Jinzhu Gao

v

vi Contents

Managing Concurrency in Mobile User Interfaces with Examples
in Android. 243
Konstantin Läufer and George K. Thiruvathukal

Parallel Programming for Interactive GUI Applications . 287
Nasser Giacaman and Oliver Sinnen

Scheduling in Parallel and Distributed Computing Systems 313
Srishti Srivastava and Ioana Banicescu

Editors’ Introduction and Roadmap

Sushil K. Prasad, Anshul Gupta, Arnold L. Rosenberg, Alan Sussman,
and Charles Weems

The premise of the NSF-supported Center for Parallel and Distributed Computing
Curriculum Development and Educational Resources (CDER) is that every com-
puter science (CS) and computer engineering (CE) undergraduate student should
achieve a basic skill level in parallel and distributed computing (PDC). This book is
a companion to our 2015 book, the first product of the CDER Book Project.1 The
book series we have embarked on addresses the lack of adequate textbook support
for integrating PDC-related topics into undergraduate courses, especially in the early
curriculum.2

1Prasad, Gupta, Rosenberg, Sussman, and Weems. 2015. Topics in Parallel and Distributed
Computing: Introducing Concurrency in Undergraduate Courses, 1st Edition, Morgan Kaufmann,
ISBN : 9780128038994, Pages: 360. http://grid.cs.gsu.edu/~tcpp/curriculum/?q=cedr_book
2This material is based upon work partially supported by the National Science Foundation under
Grants IIS 1143533, CCF 1135124, CCF 1048711 and CNS 0950432. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

S. K. Prasad (�)
Georgia State University, Atlanta, GA, USA
e-mail: sprasad@gsu.edu

A. Gupta
IBM Research AI, Yorktown Heights, NY, USA

A. L. Rosenberg · C. Weems
University of Massachusetts Amherst, Amherst, MA, USA

A. Sussman
University of Maryland, College Park, MD, USA

© Springer International Publishing AG, part of Springer Nature 2018
S. K. Prasad et al. (eds.), Topics in Parallel and Distributed Computing,
https://doi.org/10.1007/978-3-319-93109-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93109-8_1&domain=pdf
http://grid.cs.gsu.edu/~tcpp/curriculum/?q=cedr_book
mailto:sprasad@gsu.edu
https://doi.org/10.1007/978-3-319-93109-8_1

2 S. K. Prasad et al.

Why the CDER Book Project?

A curriculum working group drawn from the IEEE Technical Committee on
Parallel Processing (TCPP), the National Science Foundation (NSF), and sibling
communities such as the ACM and industry, has taken up the challenge of proposing
and refining curricular guidelines for blending PDC-related concepts into early-
stage undergraduate curricula in computational areas. A first version of the group’s
guidelines for a core curriculum that includes PDC was released in December 2012.3

This curriculum and related activities – see Appendix for a brief description of the
NSF/TCPP Curriculum Initiative – have spawned a vibrant international community
of educators who are committed to PDC education. It is from this community
that the desirability of the CDER Book Project, a series of books to support both
instructors and students of PDC, became evident.

Curricular guidelines such as those promulgated by both us and the CS2013
ACM/IEEE Computer Science Curriculum Joint Task Force are an essential first
step in propelling the teaching of PDC-related material into the twenty-first century.
But such guidelines are only a first step: both instructors and students will benefit
from suitable textual material to effectively translate guidelines into the curriculum.
Moreover, experience to this point has made it clear that the members of the PDC
community have much to share with each other and with aspiring new members, in
terms of creativity in forging new directions and experience in evaluating existing
ones. The Book Project’s goal is to engage the community to address the need for
suitable textbooks and related textual material to integrate PDC topics into the lower
level core courses (which we affectionately, and hopefully transparently, refer to as
CS1, CS2, Systems, Data Structures and Algorithms, Logic Design, etc.), and, as
appropriate, into upper level courses. The current edited book series intends, over
time, to cover all of these proposed topics.

In 2016, we invited proposals for chapters on teaching parallel and distributed
computing topics, suitable for either instructors or students, specifically on topics
from the current NSF/TCPP curriculum guidelines for introductory courses that
have not been addressed by the chapters in the earlier book. Subsequently, we saw
good community interest in authoring chapters for higher level elective courses
as well. To address this, we extended the scope of this book to both lower-level
core courses and more advanced, specialized topics in parallel and distributed
computing that are targeted at students in upper level classes. The book has evolved
organically based on contributions received in response to calls for book chapters.
All contributions have been rigorously reviewed internally by the editors and
externally by experts.

3Prasad, S. K., Chtchelkanova, A., Dehne, F., Gouda, M., Gupta, A., Jaja, J., Kant, K., La Salle,
A., LeBlanc, R., Lumsdaine, A., Padua, D., Parashar, M., Prasanna, V., Robert, Y., Rosenberg, A.,
Sahni, S., Shirazi, B., Sussman, A., Weems, C., and Wu, J. 2012. NSF/IEEE-TCPP Curriculum
Initiative on Parallel and Distributed Computing – Core Topics for Undergraduates, Version I,
Online: https://grid.cs.gsu.edu/~tcpp/curriculum/, 55 pages.

https://grid.cs.gsu.edu/~tcpp/curriculum/

Editors’ Introduction and Roadmap 3

Book Organization

This book has two parts.

Part I – For instructors: These chapters are aimed at instructors to provide back-
ground, scholarly materials, insights into pedagogical strategies, and descriptions
of experience with both strategies and materials. The emphasis is on the basic
concepts and references on what and how to teach PDC topics in the context of
the existing topics in various core courses.

Part 2 – For students: These chapters provide supplemental textual material for
core courses that students can rely on for learning and exercises. These are
envisioned as being at the quality of a textbook presentation, with many
illustrations and examples, following a sequence of smaller steps to build larger
concepts. We envision the student materials as supplemental sections that could
be inserted into existing texts by instructors.

Print and Free Web Publication: While a print version through a renowned
commercial publisher will foster our dissemination efforts in a professional format,
the preprint versions of all the chapters of this book series will be freely available
on the CDER Book Project website.4

Chapter Organization: This introductory chapter is organized as follows. Sec-
tion “Chapter Introductions” gives brief outlines of each of the ten subsequent
chapters. Section “How to Find a Topic or Material for a Course?” provides a
roadmap for the readers to find suitable chapters and sections within these which
are relevant for specific courses or PDC topics from the NSF/TCPP Curriculum.
Section “Editor and Author Biographical Sketches” contains biographical sketches
of the editors and authors. Appendix gives a brief history of the NSF/TCPP
Curriculum Initiative.

Chapter Introductions

Part I: For Instructors

Chapter 2, What Do We Need to Know about Parallel Algorithms and Their Efficient
Implementation?, by Vladimir Voevodin, Alexander Antonov, and Vadim Voevodin,
explores a two-phase paradigm for teaching parallel algorithmics. A student is first
taught to investigate an algorithmic problem in a machine-independent manner,
learning to recognize opportunities for exploiting concurrency and to identify
inherent sequentiality that will preclude such exploitation. After having mastered

4CDER Book Project – Free Preprint Version: http://cs.gsu.edu/~tcpp/curriculum/?q=
CDER_Book_Project

http://cs.gsu.edu/~tcpp/curriculum/?q=CDER_Book_Project
http://cs.gsu.edu/~tcpp/curriculum/?q=CDER_Book_Project

4 S. K. Prasad et al.

this inherent aspect of the problem, the student is taught to investigate the problem
in the context of a variety of computing platforms. This two-phase paradigm allows
a student to approach computing with an understanding of the opportunities and
challenges provided by the structure of the problem to be solved, as well as the
opportunities and challenges provided by the structure of the computing platform
one has access to. This chapter is intended for the instructors of introductory courses
on parallel algorithms.

In chapter 3, titled Modules for Teaching Parallel Performance Concepts, Apan
Qasem discusses three teaching modules targeting parallel performance concepts.
The first module discusses fundamental concepts in parallel computing performance
and mainly targets a CS1 course, highlighting parallel programming tools and
performance metrics, and provides several sample exercises. The second module
targets an upper-level operating systems class and focuses on communication
and synchronization and how they affect performance for parallel applications,
introducing the concepts of data dependences, synchronization, race conditions, and
load balancing, again providing several sample exercises. The third module focuses
on performance measurement and estimation of parallel systems, targeting compiler
and computer architecture classes. This module reviews basic performance concepts
and discusses advanced concepts such as strong and weak scaling, linear and super-
linear speedup, and latency vs. bandwidth measurements in the context of OpenMP,
and provides two sample exercises.

Chapter 4, Scalability in Parallel Processing, by Yanik Ngoko and Denis
Trystram, provides a broad exposure to the notion of scalability, which is so
important in modern (and future) large-scale parallel computing environments.
The chapter discusses how scalability manifests itself and the many ways in
which the “degree” of scalability is measured. The classical laws of Amdahl and
Gustafson provide a central focus. The original arguments leading to those laws are
described, accompanied by a reexamination of the laws’ applicability in today’s
machines and computational problems. The notion of scalability is then further
examined in the light of the evolution of the field of computing, with explorations of
modern resource-sharing techniques and the more specific issue of reducing energy
consumption. The chapter ends with a statistical approach to the design of scalable
algorithms, specifically by organizing teams of parallel algorithms that “cooperate”
in solving a single problem. The technically sophisticated aspects of organizing such
cooperations is illustrated using the classical Satisfiability Problem. This chapter
is intended for intermediate and advanced courses on the design and analysis of
parallel algorithms.

In chapter 5, titled Energy Efficiency Issues in Computing Systems, Krishna Kant
introduces energy efficiency issues in computer systems. Traditionally, computing
has focused only on performance at all levels including circuits, architecture,
algorithms, and systems. With power consumption and power density playing a
central role at all these levels, it is crucial to teach students about power and
performance tradeoffs. Power and energy issues are gaining importance in the
context of mobile and embedded systems as well as server farms and data centers,
although for different reasons. This chapter introduces topics like the basics of

Editors’ Introduction and Roadmap 5

energy, power and thermal issues in computing, importance of and technology
trends in power consumption, power-performance tradeoffs, power states, power
adaptation, and energy efficiency of parallel programs.

Chapter 6, Scheduling for fault-tolerance, by Guillaume Aupy and Yves Robert,
addresses a problem that has plagued large-scale parallel computing since its devel-
opment in the 1970s and 1980s – fault tolerance. The electronically “aggressive”
circuitry that enables high-performance large-scale parallel computing is vulnerable
to both (permanent) failures and (transient) faults. Achieving high performance
in practice, even for perfectly parallel applications, therefore demands the use of
techniques that cope with these vulnerabilities. This chapter discusses the challenges
of coping with faults and failures and introduces three simple strategies to achieve
this: checkpointing, prediction, and work replication. Scheduling techniques are
developed to optimize these three strategies. This chapter is intended for interme-
diate and advanced courses on the design and analysis of parallel algorithms. An
operational understanding of elementary probability theory is necessary for true
mastery of this material.

Part 2: For Students

In chapter 7, titled MapReduce – The Scalable Distributed Data Processing
Solution, Bushra Anjum provides students with an overview of how to process large
datasets using the MapReduce programming model. Along with multiple examples
of MapReduce applications, the chapter provides an outline of the basic functions
that must be written to build a MapReduce application, and also discusses how the
map and reduce steps in a distributed MapReduce system (i.e., Hadoop) execute
a MapReduce application with scalable performance. The chapter also discusses
the strengths and limitations of the MapReduce model, addressing scalability,
flexibility, and fault tolerance. Finally, the chapter discusses higher level services
built on top of the basic Hadoop MapReduce system.

In chapter 8, titled The Realm of Graphical Processing Unit (GPU) Computing,
Vivek Pallipuram and Jinzhu Gao provide an introduction to general-purpose
graphical processing unit (GPGPU) computing using the Compute Unified Device
Architecture (CUDA) programming model. The chapter extensively covers the
GPGPU architecture as viewed by a CUDA programmer and CUDA concepts
including CUDA thread management, memory management, and performance
optimization strategies. The chapter pedagogically reinforces the CUDA concepts
using parallel patterns such as matrix-matrix multiplication and convolution. The
chapter includes several active-learning exercises that engage students with the
text. Throughout this chapter, students will develop an ability to write effective
CUDA codes for maximum application performance. The chapter is intended for
an upper-level undergraduate course with object-oriented programming and data
structures using C++ as prerequisites. The chapter can also be used in a sophomore-
or junior-level software engineering course, or in an undergraduate elective course

6 S. K. Prasad et al.

dedicated to high-performance computing using a specialized architecture. Because
the chapter covers the GPGPU architecture and programming in detail, a prior
exposure to CS1/CS2 level programming with basic computer organization is
desirable.

In chapter 9, titled Managing Concurrency in Mobile User Interfaces with Exam-
ples in Android, Konstantin Läufer and George K. Thiruvathukal discuss parallel
and distributed computing from a mobile application development perspective,
specifically addressing concurrency in interactive, GUI-based applications on the
Android platform. The chapter gives an overview of GUI-based applications and
frameworks, then looks at implementing simple interactive application behavior in
the Android mobile application development framework using a running example.
More complex use cases are introduced that enable discussing event handling and
timers, to further show how GUI applications display all the benefits and costs
of concurrent execution. Finally, the chapter closes with a deeper exploration
of long-running compute-bound applications, where the problem is to maintain
responsiveness to user requests.

In chapter 10, titled Parallel Programming for Interactive GUI Applications,
Nasser Giacaman and Oliver Sinnen show students how to use Java threads to imple-
ment a graphical user interface (GUI) that is responsive even while computation is
being done. Because this example of concurrency is concrete and visual, it can be
introduced fairly early in the curriculum. If the first course in programming makes
active use of the Java GUI framework, then this will be a modest extension of that
coverage. By at least the second course in programming (again if GUI programming
is already included), and certainly in a sophomore software engineering class, this
material can be used as a means to introduce many ideas that are basic to PDC, and
get students thinking in terms of using explicit concurrency to take advantage of the
capabilities of modern systems. The foundation that is laid by this material could
easily be extended, for example, in a programming with data structures course, to
introduce thread-safe processing of larger structures, including algorithms such as
parallel merge sort.

Chapter 11, titled Scheduling in Parallel and Distributed Computing Systems by
Srishti Srivastava and Ioana Banicescu addresses the important topic of mapping
tasks onto computational resources for parallel execution. The chapter provides
an introduction to scheduling in PDC systems such that it can be understood by
undergraduate students who are exposed to this topic for the first time. It contains
detailed taxonomy of scheduling methods and comparisons between different
methods from the point of view of applicability as well performance metrics such
as runtime, speedup, efficiency, etc.

Editors’ Introduction and Roadmap 7

How to Find a Topic or Material for a Course?

Table 1 lists the remaining chapters in the book, core/elective undergraduate courses
they can be used for (see list below), and their prerequisites, if any. More detailed
chapter-wise tables which follow list the topics covered in each chapter.

Relevant Courses and Prerequisites

CORE COURSES:
CS0: Computer Literacy for Non-majors
CS1: Introduction to Computer Programming (First Course)
CS2: Second Programming Course in the Introductory Sequence
Systems: Introductory Systems/Architecture Course
DS/A: Data Structures and Algorithms
CE1: Digital Logic (First Course)

ADVANCED/ELECTIVE COURSES:
Arch2: Advanced Elective Course on Architecture
Algo2: Elective/Advanced Algorithm Design and Analysis (CS7)
Lang: Programming Language/Principles (after introductory sequence)
SwEngg: Software Engineering
ParAlgo: Parallel Algorithms
ParProg: Parallel Programming
Compilers: Compiler Design
Networking: Communication Networks
DistSystems: Distributed Systems
OS: Operating Systems

Chapters and Topics

The following tables list the topics covered in each chapter. The depth of coverage
of each topic is indicated by the intended outcome of teaching that topic, expressed
using Bloom’s taxonomy of educational objectives:

K = Know the term
C = Comprehend so as to paraphrase/illustrate
A = Apply it in some way

8 S. K. Prasad et al.

Table 1 Relevant Courses and Prerequisites

Chap Short Primary Other

title core course courses Prerequisites

Part I

2 Parallel algorithms CS0 CS1, DS/A, –

and implementation ParAlgo

3 Parallel performance CS1, OS, DS/A DS/A for

concepts Systems advanced modules

4 Scalability Systems CS2, ParAlgo Math maturity

5 Energy efficiency CE1 CS2, DS/A Math maturity

6 Scheduling Systems CS2, DS/A CS1, Probabilities

for fault tolerance

Part II

7 MapReduce DS/A CS2, ParAlgo, CS0, CS1

DistSystems

8 GPU computing Systems Arch 2, CS1, CS2

ParProg

9 Mobile user DS/A Lang, CS1, CS2

interfaces ParProg

10 Interactive GUI CS2 SwEng, CS1, CS2

applications DS/A ParProg

11 Scheduling DS/A ParAlgo, Basic PDC terms

DistSystems and concepts

Editor and Author Biographical Sketches

Editors

Anshul Gupta is a Principal Research Staff Member in IBM Research AI at IBM
T.J. Watson Research Center. His research interests include sparse matrix
computations and their applications in optimization and computational sciences,
parallel algorithms, and graph/combinatorial algorithms for scientific computing.
He has coauthored several journal articles and conference papers on these topics
and a textbook titled “Introduction to Parallel Computing.” He is the primary
author of Watson Sparse Matrix Package (WSMP), one of the most robust and
scalable parallel direct solvers for large sparse systems of linear equations.

Sushil K. Prasad (BTech’85 IIT Kharagpur, MS’86 Washington State, Pullman;
PhD’90 Central Florida, Orlando – all in Computer Science/Engineering) is
a Professor of Computer Science at Georgia State University and Director
of Distributed and Mobile Systems (DiMoS) Lab. Sushil has been honored
as an ACM Distinguished Scientist in Fall 2013 for his research on parallel
data structures and applications. He was the elected chair of IEEE Technical
Committee on Parallel Processing for two terms (2007–2011), and received its

Editors’ Introduction and Roadmap 9

Chapter 2: What Do We Need to Know About Parallel Algorithms and Their
Efficient Implementation?

Chapter section

PDC concept 2.1 2.2 2.3

Performance issues C C C

Information structure C C C

Data locality C C

Computational intensity K

Resource of parallelism C C C

Computational kernel K

Serial complexity K C

Parallel complexity K C

Load balancing C A

Determinacy of an algorithm C

Scalability C A

Efficiency C C

Race conditions A

Chapter 3: Modules for Teaching Parallel Performance Concepts

Chapter section

PDC concept 3.2 3.3 3.4

Speedup K C

Efficiency K C

Linear and super linear speedup K C

Strong and weak scaling K C

Amdahl’s law C A

Power vs. time trade-offs K A

Task granularity A

Load balancing A

Communication and synchronization C

Scheduling and thread mapping A

SMP and NUMA C

Data locality C

highest honors in 2012 – IEEE TCPP Outstanding Service Award. Currently,
he is leading the NSF-supported IEEE-TCPP curriculum initiative on parallel
and distributed computing with a vision to ensure that all computer science
and engineering graduates are well-prepared in parallelism through their core
courses in this era of multi- and many-cores desktops and handhelds. His
current research interests are in Parallel Data Structures and Algorithms, and
Computation over Geo-Spatiotemporal Datasets over Cloud, GPU and Multicore
Platforms. Sushil is currently a Program Director leading the Office of Advanced
Cyberinfrastructure (OAC) Learning and Workforce Development crosscutting

10 S. K. Prasad et al.

Chapter 4: Scalability in Parallel Processing

Chapter section

PDC concept 4.1 4.2 4.3 4.4 4.5

Scalability K C

Speedup C C C A

Efficiency C C C A

Data parallelism K

Isoefficiency C

Amdahl’ law K C C A

Gustafson’ law K C C A

Strong scaling C C

Weak scaling C C

Resource sharing C A

Energy efficiency K K

P-completeness K

Algorithm portfolio A

Chapter 5: Energy Efficiency Issues in Computing Systems

Chapter section

PDC concept 5.1 5.2 5.3 5.4 5.5 5.6 5.7

Energy efficiency in computing C C

Power states and their Management K K

Software energy efficiency K

Energy efficiency vs. parallelism C

Energy adaptation N

Chapter 6: Scheduling for Fault-Tolerance

Chapter section

PDC concept 6.1 6.2 6.3 6.4 6.5 6.6

Why/What is par/Dist computing K K K K K K

Performance issues, Computation K A C A A K

Cluster K K K K K K

Performance measures A A A A

Basic probabilities C A C C

Programming SPMD C

Load balancing K K A

Scheduling C C C

Dynamic programming A

programs at U.S. National Science Foundation. His homepage is www.cs.gsu.
edu/prasad.

Arnold L. Rosenberg holds the rank of Distinguished University Professor Emeritus
in the School of Computer Science at the University of Massachusetts Amherst.

www.cs.gsu.edu/prasad
www.cs.gsu.edu/prasad

Editors’ Introduction and Roadmap 11

Chapter 7: MapReduce: The Scalable Distributed Data Processing Solution

Chapter section

PDC concept 7.1 7.2 7.3 7.4 7.5

Why/What is par/Dist computing A A C K A

Concurrency K K C A

Cluster computing A C A K K

Scalability A C A K A

Speedup K C A

Divide & Conquer (parallel aspects) C A K A

Recursion (parallel aspects) K A

Scan (parallel-prefix) K A C

Reduction (map-reduce) K A K A

Time C A A

Sorting K A A

Chapter 8: The Realm of Graphical Processing Unit (GPU) Computing

Chapter section

PDC concept 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9

Data parallelism C

GPGPU devices C A A A A A A

nvcc compiler A

Thread management A A

Parallel patterns A A

Performance evaluation A

Performance
optimization

A A

CUDA A A A A A A

Advancements in GPU
computing

K

Prior to joining UMass, Rosenberg was a Professor of Computer Science at
Duke University from 1981 to 1986, and a Research Staff Member at the IBM
Watson Research Center from 1965 to 1981. He has held visiting positions at
Yale University and the University of Toronto, as well as research professorships
at Colorado State University and Northeastern University. He was a Lady Davis
Visiting Professor at the Technion (Israel Institute of Technology) in 1994, and
a Fulbright Senior Research Scholar at the University of Paris-South in 2000.
Rosenberg’s research focuses on developing algorithmic models and techniques
to exploit the new modalities of “collaborative computing" (wherein multiple
computers cooperate to solve a computational problem) that result from emerging
computing technologies. Rosenberg is the author or coauthor of more than 190
technical papers on these and other topics in theoretical computer science and
discrete mathematics. He is the coauthor of the research book Graph Separators,
with Applications and the author of the textbook The Pillars of Computation

12 S. K. Prasad et al.

Chapter 9: Managing Concurrency in Mobile User Interfaces with Examples in
Android

Chapter section

PDC concept 9.1 9.2 9.3 9.4 9.5 9.6 9.7

Why and what is PDC K

Tasks and threads K C A A

Thread safety K C C A A A

Race conditions K C C C A A

Thread/Task spawning K A A

Synchronization C C A A A

Nondeterminism C A

Deadlocks K

Chapter 10: Parallel Programming for Interactive GUI Applications

Chapter section

PDC concept 10.1 10.2 10.3 10.4 10.5 10.6

Concurrency C A A C A A

Race conditions C A

Thread safety C C

GUI concurrency C A A

Theory: State, Encoding, Nondeterminism; additionally, he has served as coeditor
of several books. Rosenberg is a Life Fellow of the ACM, a Life Fellow of the
IEEE, a Golden Core member of the IEEE Computer Society, and a member
of the Sigma Xi Research Society. Rosenberg received an A.B. in mathematics
at Harvard College and an A.M. and Ph.D. in applied mathematics at Harvard
University.

Alan Sussman is a Professor in the Department of Computer Science and Institute
for Advanced Computer Studies at the University of Maryland. Working with
students and other researchers at Maryland and other institutions he has published
numerous conference and journal papers and received several best paper awards
in various topics related to software tools for high performance parallel and
distributed computing, and has contributed chapters to six books. His research
interests include peer-to-peer distributed systems, software engineering for high
performance computing, and large scale data intensive computing. Software tools
he has built with his graduate students have been widely distributed and used in
many computational science applications, in areas such as earth science, space
science, and medical informatics. He is a subject area editor for the Parallel
Computing journal and an associate editor for IEEE Transactions on Services
Computing, and edited a previous book on teaching parallel and distributed
computing. He is a founding member of the Center for Parallel and Distributed
Computing Curriculum Development and Educational Resources (CDER). He
received his Ph.D. in computer science from Carnegie Mellon University.

Editors’ Introduction and Roadmap 13

Chapter 11: Scheduling in Parallel and Distributed Computing Systems

Chapter section

PDC concept 11.1 11.2 11.3 11.4

MIMD architecture K

Multicore C

SMP N C

Topologies N N

Latency K

Heterogeneous K K

Data Parallel C

Computation C C C C

Load balancing C C C

Distributed memory C C

Client server C

Static C C

Dynamic C C C

Asymptotic C

Communication C C

Synchronization C C

Speedup A

Efficiency A A

Makespan C C

Concurrency C

Performance modeling K

Fault tolerance K

Charles Weems is co-director of the Architecture and Language Implementation
lab at the University of Massachusetts. His current research interests include
architectures for media and embedded applications, GPU computing, and high
precision arithmetic, and he has over 100 conference and journal publications.
Previously he led development of two generations of a heterogeneous parallel
processor for machine vision, called the Image Understanding Architecture, and
co-directed initial work on the Scale compiler that was eventually used for
the TRIPS architecture. He is the author of numerous articles, has served on
many program committees, chaired the 1997 IEEE CAMP Workshop, the 1999
IEEE Frontiers Symposium, co-chaired IEEE IPDPS in 1999, 2000, and 2013,
was general vice-chair for IPDPS from 2001 through 2005, is on the steering
committees of EduPar and EduHPC. He has co-authored 28 introductory CS
texts. He is a member of ACM, Senior Member of IEEE, a member of the
Executive Committee of the IEEE TC on Parallel Processing, has been an editor
for IEEE TPDS, Elsevier JPDC, and is an editor with Parallel Computing.

14 S. K. Prasad et al.

Authors

Bushra Anjum has a PhD in Computer Science from North Carolina State University
and is currently serving as a Tech Lead for the Amazon Prime Program at
Amazon, Inc. Alongside, she is also a visiting professor at the Computer Science
Department of the California Polytechnic Institute, San Luis Obispo. Anjum has
been extensively using Elastic MapReduce platform provided by Amazon Web
Services for a few years now for job related tasks. Before joining industry, she
served in academia full time both in the USA and in Pakistan for 5+ years.
With unconventional career choices and international exposure, she brings the
expertise of being an academician, a researcher and a practitioner at the same
time.

Alexander Antonov is a leading researcher in Research Computing Center of
Lomonosov Moscow State University (RCC MSU). His main research interests
are related to research in such fields as parallel and distributed computing,
performance and efficiency of computers, parallel programming, informational
structure of algorithms and programs, application optimization and fine tuning,
architecture of computers, benchmarks, etc. In 1999 Alexander Antonov received
PhD degree on the subject of interprocedural analysis of programs. Alexander
took part in a number of projects supported by the Ministry of Education and
Sciences of the Russian Federation, Russian Foundation for Basic Research
and Russian Science Foundation. Alexander is editor of Parallel.Ru Information
analytical center for parallel computing. Alexander Antonov is one of the main
developers of the AlgoWiki Open encyclopedia of parallel algorithmic features.
At the present time Alexander Antonov takes part in different researches being
conducted in RCC MSU that are devoted to efficiency analysis of parallel
applications and supercomputer systems in general. He has published over 50
scientific papers with 4 books among them.

Guillaume Aupy received his PhD from ENS Lyon. He is currently a tenured
researcher at Inria Bordeaux Sud-Ouest. His research interests include data-
aware scheduling, reliability, energy efficiency in high-performance computing.
He is the author of numerous articles, has served on many program committees.
He was the technical program vice-chair of SC17.

Ioana Banicescu is a professor in the Department of Computer Science and Engi-
neering at Mississippi State University (MSU). Between 2009 and 2017, she
was also a Director of the NSF Center for Cloud and Autonomic Comput-
ing at MSU. Professor Banicescu received the Diploma in Electronics and
Telecommunications from Polytechnic University – Bucharest, and the M.S.
and the Ph.D. degrees in Computer Science from New York University –
Polytechnic Institute. Her research interests include parallel algorithms, scientific
computing, scheduling and load balancing algorithms, performance modeling,
analysis and prediction, and autonomic computing. Between 2004–2017, she
was an Associate Editor of the Cluster Computing journal and the International
Journal on Computational Science and Engineering. Professor Banicescu, served

Editors’ Introduction and Roadmap 15

and continues to serve on numerous research review panels for advanced
research grants in the US and Europe, on steering and program committees
of a number of international conferences, symposia and workshops, on the
Executive Board and Advisory Board of the IEEE Technical Committee on
Parallel Processing (TCPP). She has given many invited talks at universities,
government laboratories, and at various national and international forums in the
United States and overseas.

Jinzhu Gao received the Ph.D. degree in Computer Science from The Ohio State
University in 2004. From June 2004 to August 2008, she worked at the Oak
Ridge National Laboratory as a research associate and then the University of
Minnesota, Morris, as an Assistant Professor of Computer Science. She joined
the University of the Pacific (Pacific) in 2008 and is currently a Professor of
Computer Science at Pacific. Her main research focus is on intelligent data
visual analytics. Over the past 15 years, Dr. Gao has been working closely
with application scientists and Silicon Valley technology companies to develop
online data visual analytics and deep learning platforms to support collaborative
science, mobile health, IoT data analytics, business operational visibility, and
visual predicative analysis for industries. Her work has been published in top
journals such as IEEE Transactions on Visualization and Computer Graphics,
IEEE Transactions on Computers, and IEEE Computer Graphics and Applica-
tions.

Nasser Giacaman is a Senior Lecturer in the Department of Electrical and Com-
puter Engineering at the University of Auckland, New Zealand. His disciplinary
research interest includes parallel programming, particularly focusing on high-
level languages in the context of desktop and mobile applications running
on multi-core systems. He also researches Software Engineering Education
by driving the development of tools and apps to help students learn difficult
programming concepts.

Krishna Kant is a full professor in the department of computer and information
science at Temple University. He has 37 years of combined experience in
academia, industry, and government and has published in a wide variety of areas
in computer science, telecommunications, and logistics systems. His current
research interests span energy management, data centers, wireless networks,
resilience in high performance computing, critical infrastructure security, storage
systems, database systems, configuration management, and logistics networks.
He is a fellow of IEEE.

Konstantin Läufer is a full professor of computer science at Loyola University
Chicago. He received a PhD in computer science from the Courant Institute at
New York University in 1992. His research interests include programming lan-
guages, software architecture, and distributed and pervasive computing systems.
His recent focus in research and teaching has been on the impact of programming
languages, methodologies, frameworks, and tools on software quality. Konstantin
has repeatedly served as a consultant in academia and industry and is a co-
inventor on two patents owned by Lucent Technologies.

16 S. K. Prasad et al.

Yanik Ngoko received his B.Sc. in Computer Science from University of Yaoundé
I (UYI), Cameroon, his M.Sc. in parallel and numerical computing also from
UYI, and his doctorate in Computer Science from the Institut National Polytech-
nique de Grenoble, France (2010). From 2011 to 2014, he was a postdoctoral
researcher, first at the university of São Paulo and then at the university of Paris
13. Since October 2014, he is a research scientist at Qarnot computing and an
associate member of the Laboratoire d’Informatique de Paris Nord (University
of Paris 13). His research interests include parallel and distributed computing,
web services, cloud computing, applications of edge computing to IoT.

Vivek Pallipuram (B.Tech.2008 NIT Trichy, MS2010 Clemson University,
Ph.D.2013 Clemson University) is an Assistant Professor of Computer Engi-
neering at University of the Pacific, Stockton, California. His research interests
include high-performance computing (HPC), heterogeneous architectures such
as general-purpose graphical processing units (GPGPUs) and Xeon Phi co-
processors, Cloud computing, image processing, and random signal processing.
His interests also include promoting HPC education and scientific computing in
primarily-undergraduate universities. His work has been published in journals
such as the Journal of Supercomputing, and Concurrency and Computation:
Practice and Experience; and in top conferences such as IEEE Cluster and
eScience. He is also a peer-reviewer for a number of international journals
and conference proceedings. In the classroom, he strives to be a facilitator by
engaging students using active-learning techniques. In addition to receiving
information from the instructor, students interact with their peers via in-class
group activities and gain valuable perspective. This process increases the
influx of knowledge per student, promoting well-rounded and comprehensive
learning. He enjoys teaching high-performance computing, computer systems
and networks, random signals, and image processing.

Apan Qasem is an Associate Professor in the Computer Science Department at
Texas State University. He received his PhD in 2008 from Rice University.
Qasem directs the Compilers Research Group at Texas State where he and his
students are working on a number of projects in the area of high-performance
computing including developing intelligent software for improving programmer
productivity and using GPUs for general-purpose computation. Qasem’s research
has received funding from the National Science Foundation, Department of
Energy, Semiconductor Research Consortium (SRC), IBM, Nvidia and the
Research Enhancement Program at Texas State. In 2012, he received an NSF
CAREER award to pursue research in autotuning of exascale systems. Qasem
has co-authored over 50 peer-reviewed publications including two that won best
paper awards. He regularly teaches the undergraduate and graduate Compilers
and Computer Architecture courses.

Yves Robert received the PhD degree from Institut National Polytechnique de
Grenoble. He is currently a full professor in the Computer Science Laboratory
LIP at ENS Lyon. He is the author of 7 books, 150 papers published in
international journals, and 240 papers published in international conferences. He
is the editor of 11 book proceedings and 13 journal special issues. He is the

Editors’ Introduction and Roadmap 17

advisor of 30 PhD theses. His main research interests are scheduling techniques
and resilient algorithms for large-scale platforms. He is a Fellow of the IEEE.
He has been elected a Senior Member of Institut Universitaire de France in
2007 and renewed in 2012. He has been awarded the 2014 IEEE TCSC Award
for Excellence in Scalable Computing, and the 2016 IEEE TCPP Outstanding
Service Award. He holds a Visiting Scientist position at the University of
Tennessee Knoxville since 2011.

Oliver Sinnen graduated in Electrical and Computer Engineering at RWTH Aachen
University, Germany. Subsequently, he moved to Portugal, where he received
his PhD from Instituto Superior Técnico (IST), University of Lisbon, Portugal
in 2003. Since 2004 he is a (Senior) Lecturer in the Department of Electrical
and Computer Engineering at the University of Auckland, New Zealand, where
he leads the Parallel and Reconfigurable Computing Lab. His research interests
include parallel computing and programming, scheduling and reconfigurable
computing. Oliver authored the book “Task Scheduling for Parallel Systems",
published by Wiley.

Srishti Srivastava is an Assistant Professor of Computer Science at the University
of Southern Indiana. She received her Ph.D. in Computer Science at Missis-
sippi State University in May 2015. Her research interests include dynamic
load balancing in parallel and distributed computing, performance modeling,
optimization, and prediction, robustness analysis of resource allocations, and
autonomic computing. Srishti has authored and co-authored a number of articles
published in renowned IEEE and ACM conferences, journals, and book chapters.
Srishti has served on the program committees of international conference
workshops such as, EduHPC, and EduPar. She has also been a peer reviewer
for a number of international journals, and conference proceedings. She is a
professional member of the IEEE computer society, ACM, Society for Industrial
and Applied Mathematics (SIAM), Computing Research Association (CRA,
CRA-W), Anita Borg Institute Grace Hopper Celebration (ABI-GHC), and an
honor society of Upsilon Pi Epsilon (UPE). She is also a 2014 young researcher
alumna of the Heidelberg Laureate Forum, Germany.

George K. Thiruvathukal received his PhD from the Illinois Institute of Technology
in 1995. He is a full professor of computer science at Loyola University
Chicago and visiting faculty at Argonne National Laboratory in the Mathematics
and Computer Science Division, where he collaborates in high-performance
distributed systems and data science. He is the author of three books, co-editor of
a peer-reviewed collection, and author of various peer-reviewed journal and con-
ference papers. His early research involved object-oriented approaches to parallel
programming and the development of object models, languages, libraries, and
tools (messaging middleware) for parallel programming, mostly based on C/C++
on Unix platforms. His subsequent work in Java resulted in the book High-
Performance Java Platform Computing, Prentice Hall and Sun Microsystems
Press, 2000. He also co-authored the book Codename Revolution: The Nintendo
Wii Platform in the MIT Press Platform Studies Series, 2012. Recently, he co-

18 S. K. Prasad et al.

edited Software Engineering for Science, Taylor and Francis/CRC Press, October
2016.

Denis Trystram is a Professor in Computer Science at Grenoble Institute of tech-
nology since 1991 and is now distinguished professor there. He was a senior
member of Institut Universitaire de France from 2010 to 2014. He obtained in
2011 a Google research award in Optimization for his contributions in the field of
multi-objective Optimisation. Denis is leading a research group on optimization
of resource management for parallel and distributed computing platforms in a
joint team with Inria. Since 2010, he is director of the international Master
program in Computer Science at university Grenoble-Alpes. He has been elected
recently as the director of the research pole in Maths and Computer Science in
this university.

Vadim Voevodin is a senior research fellow in Research computing center of
Lomonosov Moscow state university (RCC MSU). His main research interests
are related to different aspects of high-performance computing: analysis
of parallel program efficiency, development of system software, parallel
programming, etc. Vadim Voevodin got his PhD in memory locality analysis
in parallel computing. Also he was a main developer in a research devoted to
the study of memory hierarchy usage. At the present time Vadim Voevodin is
actively involved in different researches being conducted in RCC MSU that
are devoted to efficiency analysis of parallel applications and supercomputer
systems in general. One research is dedicated to detecting abnormal inefficient
job behavior based on constant monitoring of supercomputer job flow. The other
newly started research is aimed to develop a universal software tool suite that will
help common users to conduct both large-scale efficiency analysis of the entire
set of applications and a professional in-depth analysis of individual parallel
applications, based on many researches previously done in RCC MSU. Another
major research area concerns the analysis of supercomputer resource utilization
and efficiency of using application packages installed on a supercomputer.

Vladimir Voevodin is Deputy Director of the Research Computing Center
at Lomonosov Moscow State University. He is Head of the Department
“Supercomputers and Quantum Informatics” at the Computational Mathematics
and Cybernetics Faculty of MSU, professor, corresponding member of Russian
academy of sciences. Vl. Voevodin specializes in parallel computing, super-
computing, extreme computing, program tuning and optimization, fine structure
of algorithms and programs, parallel programming technologies, scalability
and efficiency of supercomputers and applications, supercomputing co-design
technologies, software tools for parallel computers, and supercomputing
education. His research, experience and knowledge became a basis for the
supercomputing center of Moscow State University, which was founded
in 1999 and is currently the largest supercomputing center in Russia. He
has contributed to the design and implementation of the following tools,
software packages, systems and online resources: V-Ray, X-Com, AGORA,
Parallel.ru, hpc-education.ru, hpc-russia.ru, LINEAL, Sigma, Top50, OctoShell,
Octotron, AlgoWiki. He has published over 100 scientific papers with 4

Editors’ Introduction and Roadmap 19

books among them. Voevodin is one of the founders of Supercomputing
Consortium of Russian Universities established in 2008, which currently
comprises more than 60 members. He is a leader of the major national activities
on Supercomputing Education in Russia and General Chair of the two largest
Russian supercomputing conferences.

Appendix: A Brief History of The NSF/TCPP Curriculum
Initiative

The pervasiveness of computing devices containing multicore CPUs and GPUs,
including PCs, laptops, tablets, and mobile devices, is making even casual users
of computing technology beneficiaries of parallel processing. Certainly, technology
has developed to the point where it is no longer sufficient for even basic pro-
grammers to acquire only the sequential programming skills that are the staple in
computing curricula. The trends in technology point to the need for imparting a
broad-based skill set in PDC technology at various levels in the educational fabric
woven by Computer Science and Computer Engineering programs as well as their
allied computational disciplines. To address this need, a curriculum working group
drawn from the IEEE Technical Committee on Parallel Processing (TCPP), the
National Science Foundation (NSF), and sibling communities such as the ACM
and industry, has taken up the challenge of proposing and refining a curricular
guidleines for blending PDC-related concepts into even early-stage undergraduate
curricula in computational areas. This working group is built around a constant core
of members and typically includes members from all segments of the computing
world and the geographical world. A first version of the group’s guidelines for a core
curriculum that includes PDC was released informally in December, 2010, with a
formal version3 following in December 2012. The CS2013 ACM/IEEE Computer
Science Curriculum Joint Task Force has recognized the need to integrate parallel
and distributed computing topics in the early core courses in the computer science
and computer engineering curriculum, and has collaborated with our working group
in leveraging our curricular guidelines. The CS2013 curriculum5 explicitly refers to
the NSF/TCPP curricular guideines for comprehensive coverage of parallelism (and
provides a direct hyperlink to the guidelines).

The enthusiastic reception of the CDER guidelines has led to a commitment
within the working group to continue to develop the guidelines and to foster
their adoption at an even broader range of academic institutions. Toward these
ends, the Center for Curriculum Development and Educational Resources (CDER)
was founded, with the five editors of this volume comprising the initial Board of
Directors. An expanded version of the working group has taken up the task of

5The ACM/IEEE Computer Science Curricula 2013: (https://www.acm.org/binaries/content/
assets/education/cs2013_web_final.pdf)

https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

20 S. K. Prasad et al.

revising and expanding the 2012 NSF/TCPP curriculum during the 2016–2018
timeframe. One avenue for expansion has been to add special foci on a select set
of important aspects of computing that are of particular interest today – Big Data,
Energy-Aware Computing, Distributed Computing – and to develop Exemplars that
will assist instructors in assimilating the guidelines’ suggested topics into their
curricula. CDER has initiated several activities toward the goal of fostering PDC
education.

1. A courseware repository6 has been established for pedagogical materials –
sample lectures, recommended problem sets, experiential anecdotes, evaluations,
papers, etc. This is a living repository. CDER invites the community to contribute
existing and new material to it. The Exemplars aspect group is working to provide
extensive set of exemplars for various topics and courses.

2. An Early Adopter Program has been established to foster the adoption and
evaluation of the guidelines. This activity has fostered educational work on
PDC at more than 100 educational institutions in North and South America,
Europe, and Asia. The Program has thereby played a major role in establishing
a worldwide community of people interested in developing and implementing
PDC curricula. Additional early adopter training workshops and competitions
are planned.

3. The EduPar workshop series has been established. The original instantiation of
EduPar was as a satellite of the International Parallel and Distributed Processing
Symposium (IPDPS). EduPar was – and continues to be – the first education-
oriented workshop at a major research conference. The success of EduPar led
to the development of a sibling workshop, EduHPC, at the Supercomputing
Conference (SC) in 2013. In 2015 EduPar and EduHPC was joined by a third
sibling workshop, Euro-EduPar, a satellite of the International Conference on
Parallel Computing (EuroPar). CDER has also sponsored panels, and BOF
and special sessions at the ACM Conference on Computer Science Education
(SIGCSE).

4. A CDER Compute Cluster has been setup for free accesses by the early adopters
and other educators and their students. The CDER cluster is a heterogeneous 14-
node cluster featuring 280 cores, 1 TB of RAM, and GPUs that are able to sustain
a mixed user workload.7

6CDER Courseware Repository: https://grid.cs.gsu.edu/~tcpp/curriculum/?q=
courseware_management
7CDER Cluster free access: https://grid.cs.gsu.edu/~tcpp/curriculum/?q=node/21615

https://grid.cs.gsu.edu/~tcpp/curriculum/?q=courseware_management
https://grid.cs.gsu.edu/~tcpp/curriculum/?q=courseware_management
https://grid.cs.gsu.edu/~tcpp/curriculum/?q=node/21615

Part I
For Instructors

What Do We Need to Know About
Parallel Algorithms and Their Efficient
Implementation?

Vladimir Voevodin, Alexander Antonov, and Vadim Voevodin

Abstract The computing world is changing and all devices—from mobile phones
and personal computers to high-performance supercomputers—are becoming paral-
lel. At the same time, the efficient usage of all the opportunities offered by modern
computing systems represents a global challenge. Using full potential of parallel
computing systems and distributed computing resources requires new knowledge,
skills and abilities, where one of the main roles belongs to understanding key
properties of parallel algorithms. What are these properties? What should be
discovered and expressed explicitly in existing algorithms when a new parallel
architecture appears? How to ensure efficient implementation of an algorithm on
a particular parallel computing platform? All these as well as many other issues are
addressed in this chapter. The idea that we use in our educational practice is to split
a description of an algorithm into two parts. The first part describes algorithms and
their properties. The second part is dedicated to describing particular aspects of their
implementation on various computing platforms. This division is made intentionally
to highlight the machine-independent properties of algorithms and to describe them
separately from a number of issues related to the subsequent stages of programming
and executing the resulting programs.

Relevant core courses: Data Structures and Algorithms, Second Programming
Course in the Introductory Sequence.

Relevant PDC topics: Parallel algorithms, computer architectures, parallel pro-
gramming paradigms and notations, performance, efficiency, scalability, locality.

Learning outcomes: Faculty staff mastering the material in this chapter should
be able to:

• Understand basic concepts of parallelism in algorithms and programs.
• Detect parallel (information) structure of algorithms.

V. Voevodin (�) · A. Antonov · V. Voevodin
Lomonosov Moscow State University, Moscow, Russia
e-mail: voevodin@parallel.ru; asa@parallel.ru; vadim@parallel.ru

© Springer International Publishing AG, part of Springer Nature 2018
S. K. Prasad et al. (eds.), Topics in Parallel and Distributed Computing,
https://doi.org/10.1007/978-3-319-93109-8_2

23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93109-8_2&domain=pdf
mailto:voevodin@parallel.ru
mailto:asa@parallel.ru
mailto:vadim@parallel.ru
https://doi.org/10.1007/978-3-319-93109-8_2

24 V. Voevodin et al.

• Understand deep relationship between properties of algorithms and features
of computer architectures.

• Identify main features and properties of algorithms and programs affecting
performance and scalability of applications.

• Use proper algorithms for different types of computer architectures.

Context for use: This chapter has to touch all the main areas of computer sci-
ence and engineering: Architecture, Programming, Algorithms and Crosscutting
topics. The primary area is Algorithms but these materials should be taught
after learning the fundamentals of computer architecture and programming
technologies. Materials of the chapter can be easily adapted for use in core,
advanced or elective courses within bachelor’s or master’s curricula.

Introduction

Parallelism has been the “big thing” in the computing world in recent years.
All devices run in parallel: supercomputers, clusters, servers, notebooks, tablets,
smartphones. . . Even individual components are parallel: computing nodes can
consist of several processors, processors have numerous cores, each core has several
independent functional units that can be pipelined as well. All this hardware can
work in parallel, provided that special software and the corresponding parallel
algorithms are available.

After more than 60 years of development, a huge pool of software and algorithms
has been accumulated for computers. The training process has been refined with the
goal of learning programming technologies, and developing software, algorithms
and methods to address various tasks. Now all of this is changing as the word
“parallel” has literally found its way into everything: parallel programming tech-
nologies, parallel methods, parallel computing systems architecture, etc. Adding
parallelism to existing training curricula definitely implies preserving the current
serial programming methods, methodologies, technologies and algorithms, but
many new things that never existed before need to be added [6, 12, 15]. How does
one organize the parallel execution of a program to get a job completed faster? The
question sounds simple, but answering it requires learning new ideas that have not
been studied before.

In this chapter,1 we present our experience in studying and teaching parallel
methods of problem solving. This experience is based on using a large number
of very different parallel computing systems: vector-pipeline, with shared and
distributed memory, multi-core, computing systems with accelerators, and many

1The results were obtained in Lomonosov Moscow State University with the financial support of
the Russian Science Foundation (agreement N 14-11-00190). The research is carried out using the
equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow
State University.

What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 25

others. Various forums for teaching parallel computing, parallel programming
technologies, program and algorithm structures have been piloted at Lomonosov
Moscow State University including general and special courses, seminars, practical
computing exercises as part of the educational curricula at the Faculty of Com-
putational Mathematics and Cybernetics, as well as at the annual MSU Summer
Supercomputing Academy [1]. Many of the ideas described in this chapter were
implemented in the national project “Supercomputing education” [11, 21].

The chapter consists of three sections. In the first section, we want to show, using
numerous real-life examples, how many different properties of parallel algorithms
and programs need to be taken into account to create efficient parallel applications.
In the second section, these properties are described in a more systematic way,
building on a structure that can be used to describe any algorithm. This helps to
identify the most important properties for creating an efficient implementation. The
description structure itself is universal, and not limited to any specific class of
algorithms or methods. In the third section, we would like to show that the described
materials can easily be incorporated into the educational process.

Before proceeding to the chapter we would like to make a special remark. This
chapter is not a ready-to-use packaged lesson or a set of lessons, but rather ideas that
should be presented throughout courses devoted to modern computational sciences
and technologies. There is a high degree of freedom in choosing the methods for
incorporating parallelism concepts into educational curricula, which do not require
revolutionary changes and can be performed by existing academic staff within a
current set of educational courses. We intentionally did not explain all the notions
used in the chapter in a classical pedagogical way trying to concentrate on the main
goal—to show a universal nature and wide use of parallel computing. From this
point of view, our main target audience can be described as instructors who are
already familiar with the subject and want to introduce parallel computing concepts
into their courses, and parallel computing experts that teach related classes. At the
same time it is really necessary to extend this audience involving a wide range of
faculty staff into parallel computing as one of the most significant trends in computer
science. The idea behind the chapter is to outline possible directions and ways how
a teacher or instructor can incorporate parallel computing notions into any course.

What Knowledge of Algorithm Properties Is Needed in
Practice?

In this section, we will consider several examples, focusing in each case on one
property or another that determines how efficiently an algorithm is implemented.
While reading the section, it may seem that we are conflating parallel algorithms,
parallel computing for different platforms, and performance issues. In a sense, this
is true but this is necessary. If we are discussing high performance computing, we

26 V. Voevodin et al.

have to consider parallel algorithms, programming technologies, and architectures
all together to ensure high efficiency of the resulting code.

By giving examples, we are not trying to explain every minute detail, give
definitions, or explain newly introduced concepts, especially since many of them
are quite intuitive. Our goals here are different. On the one hand, we want to
show the great diversity of questions that arise in practice, the answers to which
are determined by knowledge of the fundamental properties of algorithms and
programs. On the other hand, by analyzing examples, we will gradually identify
the set of properties that must be included in an algorithm description, and which
teachers need to point out to their students.

Even in Simple Cases, It Is Important to Understand the
Algorithm Structure

Let’s look at the classical algorithm for multiplying dense square matrices of size
n × n. Based on the formula

Aij =
∑

k

BikCkj ,

it is quite natural to write the following version of the program (hereinafter in this
paragraph matrix A is initialized with zeros):

for(i=0; i<n; ++i)
for(j=0; j<n; ++j)

for(k=0; k<n; ++k)
A[i][j] += B[i][k] * C[k][j];

It has three nested loops and one assignment statement which calculates the
element Aij . The sequence of the loops in this example (i, j , k are the control
parameters) is absolutely clear as it reflects the essence of the algorithm: for each
element in matrix A (loop by i, loop by j), calculate the element Aij (loop by k).

Let’s perform a seemingly strange procedure: shuffle the three loops. We’ll get a
new fragment in which the loops can be organized in any of the six possible orders,
for example (k, i, j) or (j , k, i). Will the new fragment provide the same results as
the original program? A more general question also needs to be answered: “What
loop order will provide the same result for the new program as the original version?”
Below we show the two fragments mentioned above, with a loop order of (k, i, j)
and (j , k, i); will the results of their execution be the same as those of the original
fragment?

for(k=0; k<n; ++k)
for(i=0; i<n; ++i)

for(j=0; j<n; ++j)

What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 27

A[i][j] += B[i][k] * C[k][j];

for(j=0; j<n; ++j)
for(k=0; k<n; ++k)

for(i=0; i<n; ++i)
A[i][j] += B[i][k] * C[k][j];

Questions like this may sound surprising, as there doesn’t seem to be a reason
why a formal loop interchange can result in a fragment equivalent to the original
program. But the answer is even more surprising: in this example any loop order
provides a result that is equal to the original fragment’s results, accurate up to the
rounding error. This begs two questions. Why does any loop order result in an
equivalent fragment in this example? And the second question is why would we
do something so strange as interchanging loops?

The first question can be answered by looking at the information structure of
the matrix multiplication algorithm, shown in Fig. 1. The information structure is
presented in a graph, where each vertex corresponds to one iteration of the three
nested loops, and the vertices are connected with a directed edge [20, 22] if one
vertex calculates the data used in another one. We see n2 independent computational
branches, where each branch corresponds to the innermost k-loop for certain values
of i and j , i.e. the calculation of the element Aij . The picture is worth a thousand
words. First, we see at once that all n2 elements in the resulting matrix Aij can be
calculated independently from one another: the algorithm has a tremendous resource
of parallelism, offering good prerequisites for writing a parallel program. Second,

Fig. 1 Information structure of the matrix multiplication algorithm

28 V. Voevodin et al.

Fig. 2 Comparison of execution times for matrix multiplication programs with various loop orders
against the execution time for the classical order (i, j , k), the higher bars, the faster execution of
the order (x, y, z)

whatever the loop order in this fragment of the program: (k, i, j), (j , k, i) or any
other, going through the vertices never violates the information relationship between
the vertices; thus a fragment with any loop order is guaranteed to produce the same
result as the original fragment. This feature of the information structure (information
graph) for this algorithm explains the equivalence of the original and transformed
fragments.

Now we only have to answer the second question: why did the need to
interchange loops arise at all? Figure 2 compares the execution time of the original
program (with the i, j , k loop order) with fragments using other loop orders on
different platforms. In some cases, a fragment with a loop order different from
the classical (i, j , k) order works several times faster! By simply changing the
loop order, we won’t change the program result, but may significantly reduce
its execution time. Why does this happen? This brings to the forefront another
property that we need to study, assess and describe—the data locality within a
program. In practice, both spatial and temporal locality can be of importance, so
both types of locality are important in understanding the quality of an algorithm’s
implementation. This is what we did for the example above: we revealed the
parallel structure of the algorithm (Fig. 1), understood its potential for equivalent
transformations (six sequences of loops) and finally found fragments with the
highest locality (i, k, j) or (k, i, j).

This transformation of the program is quite simple, and therefore it is often
performed by optimizers in modern compilers. At the same time, the compiler
isn’t actually guaranteed to perform the transformation. Moreover, even if the
transformation is performed, there is no guarantee that the compiler will actually
do it correctly and choose the one version with minimum execution time out of the
six possible loop orders: we’ve already seen how complex the reasoning behind such
a “simple” text change can be.

What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 29

Fig. 3 Linear graph (a) and its transitive closure (b): quadratic increase in the volume of output
information

Simple Properties Can Be Very Important, Too

No detail is an afterthought in an algorithm description, and even seemingly obvious
properties and parameters need to be properly observed. Let’s look at the volume
of input and output data for an algorithm. These figures almost invariably follow
the algorithm formulation and are therefore considered obvious and shrugged off
as being of little relevance. At the same time, these figures aren’t just important—
they can completely determine the structure of the resulting program. Suppose we
need to develop an algorithm to find the transitive closure of a directed graph. Let
the graph consist of n vertices and m edges—these are the input parameters of
the algorithm, which determine the input data volume. However, the output data
volume for this task is strongly dependent not just on n and m, but also on the graph
structure. In particular, if the input is a linear graph consisting of n vertices and
n − 1 edges, its transitive closure will contain n(n − 1)/2 edges (see Fig. 3). This
fact is no problem for processing relatively small graphs. However, it will be crucial
for processing graphs representing social networks, which are obviously nonlinear
but contain hundreds of millions of vertices and hundreds of billions of edges: due
to immense volumes of output information (a quadratic dependence on the input
data volume), the results will be impossible to store anywhere! The only way out
of this situation is to restate the task so that it doesn’t require listing every pair of
vertices connected by edges. Input and output data volumes seem to be quite obvious
parameters, but they do have to be thoroughly reviewed and described to understand
the algorithm properties.

A New Look at Traditional Concepts

There are other arguments in favor of considering every detail when describing
algorithm properties. Let’s look at an array of input data V and the total number
of operations N in an algorithm. Both values are well known, each one is of interest
in and of itself and is frequently used in practice. But it is equally important to
pay attention to the ratio P = N/V . P stands for “computational intensity” and
represents the number of operations per unit of input data required to execute the
algorithm.

30 V. Voevodin et al.

Despite its simplicity, computational intensity is a very important feature of
an algorithm. Suppose an algorithm’s computational intensity is very high. This
means input data requires a lot of processing before the algorithm’s results can be
obtained. As a result, this algorithm can be executed on an accelerator or a remote
computing node, as the data transmission overhead will be low compared to the
time it takes to process that data. This fact in particular explains why the Linpack
test, with a computational intensity of n is so efficient on computers with distributed
memory (about n2 data elements are transferred to each computing node and about
n3 operations are performed on them). The same fact explains the low efficiency of
an element-wise addition of two vectors using graphic accelerators: the time it takes
to transfer 2n vector elements to a GPU completely offsets the rapid execution of n

operations by the GPU.
In many cases determining the computational intensity requires taking output

data into account, and not just input. In the vector addition example above, correctly
evaluating the efficiency of the algorithm requires taking into account not just the
time it takes to send input data to the GPU, but also the time it takes to get the results
back. This will definitely reduce efficiency and decrease the computational intensity
of this algorithm from 1/2 to 1/3, but that’s the nature of the algorithm, and it must
be considered. In practice, it is sometimes possible to increase the computational
intensity by combining consecutive processing steps. For example, you might not
want to return the results of a vector addition but instead continue processing at the
accelerator, thereby eliminating unneeded data transfers.

Mathematics and Parallelism

The information structure of an algorithm is an important concept, but it should not
be used alone to evaluate the parallelism potential of an algorithmic approach. The
math behind the algorithm plays an equally important role. Let’s look at the classical
vector elements addition algorithm:

s = 0;
for(i=0; i<n; ++i)

s += A[i];

The information graph for this algorithm is a linear graph (see Fig. 4a), where
all vertices are connected with data dependency, which means only serial execution
can be performed. Does this mean that neither the addition of vector elements, nor
any other algorithms based on this operation can be used on parallel computers?
Not exactly. The summation operation obeys the associative law, which allows us to
tweak the original algorithm to achieve the appropriate degree of parallelism. Let’s
break all of the vector elements into non-overlapping groups, then find the subtotals
for each group, and finally sum up the subtotals to get the total of all elements
in a vector (see Fig. 4b). As the subtotals can be calculated independently (i.e.
simultaneously), we now have a parallel version of the vector addition algorithm.

What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 31

Fig. 4 The information structure of several vector element summation algorithms: (a) classical
algorithm, (b) parallel calculation of partial sums and (c) pairwise summation method

The associative law allows the elements to be added in any order with the same
result, so other methods of implementation are also possible. Figure 4c shows the
information structure of the pairwise summation method, which is also a parallel
modification of the original algorithm. All subtotals located at the same level can be
calculated in parallel, moving between levels from top to bottom, until we get the
desired result.

There are several important remarks regarding the serial-to-parallel process
described above. First, it is math that enables us to make the key step: we would
never get a parallel algorithm without using the associative law, based on just
the knowledge of the information structure (Fig. 4a). One needs to pay attention
to possibilities like this when explaining or describing algorithm’s properties,
otherwise their potential will not be fully revealed. Second, the associative law
implies that all operations are executed precisely, but computers operate using
approximations of the original numbers. When we change the summation order,
we may get a different result. Often the difference falls within the rounding error
accuracy, which is negligible in most cases, but the fact that the associative law may
not always work in computer arithmetic (just like the commutative and distributive
laws) is something to be kept in mind. This explains, to a certain extent, the
lack of reproducible results for parallel applications executed on supercomputers
with a high degree of parallelism: literally every global MPI operation is based
on the associative law, which results in various rounding errors and ultimately
in different results when executing the same application. This is a serious issue
that complicates the transition to Exaflop systems with an enormous degree of
parallelism [5, 10]. Third, one needs to understand clearly that Fig. 4a, b, c represent
different algorithms. The original task is the same: summing up the vector
elements, but the algorithms are different. There are many differences between these
algorithms: different information structures, different parallel complexity, different
complexity of the respective programs, different rounding errors. . .

A situation like this, where knowing the mathematical basics of an approach can
increase the degree of parallelism, is important in practice, and should be taken into
account. Let’s look at the task of finding the minimum spanning tree in a weighted
graph G with E edges and V vertices. Suppose MST (E) is the procedure for finding
the minimum spanning tree. If we break the set of edges E into k non-overlapping
subsets E1, E2, . . . Ek:

32 V. Voevodin et al.

E = E1 ∪ E2 ∪ · · · ∪ Ek,

then the basic MST procedure can be presented as follows:

MST (E) = MST (E1 ∪ E2 ∪ · · · ∪ Ek)

= MST (MST (E1) ∪ MST (E2) ∪ · · · ∪ MST (Ek))

Minimum spanning trees for subgraphs with edges in the subsets E1, E2, . . . Ek

can be found independently from one another; therefore, MST (E1), MST (E2),
. . . , MST (Ek) procedures can also be performed in parallel. If we leave this
mathematical fact aside, the algorithm’s potential will not be utilized in full, as the
available degree of parallelism grows with an increasing number of subsets Ei . After
finding MST (E1), MST (E2), . . . , MST (Ek), it is necessary to join the minimum
spanning trees found and perform the MST operation once again; however, the
advantage of using parallel computing will still be substantial for |E| >> |V |.

This correlation does more than just increase resource of the parallelism. Its
variations are exceptionally useful when processing very large graphs, as individual
subsets Ei can be entirely stored and efficiently processed within RAM.

Parallelism Can Be Inconvenient

If an algorithm has internal parallelism, this information is very important, but
knowing this fact alone is not enough to make an efficient parallel program. Let’s
look at the example in Fig. 5a.

All iterations of the outer loop by parameter i are independent and can be
executed in parallel (see Fig. 5b). To use the parallelism available in this fragment
all we need to do is, for example, to place an OpenMP directive similar to “#pragma
omp parallel for”—this makes the program parallel without any other modifications
to its text. Moreover, all parallel branches will be perfectly balanced, as each one is
used to execute n operations of the same kind.

The algorithm above has a very convenient structure and is easy to work with, but
that’s not always the case. Let’s look at the example in Fig. 6a. The source code here
looks very similar to the example we just looked at in Fig. 5a, but its information
structure is completely different (see Fig. 6b).

None of the loops in the fragment Fig. 6a can be marked as parallel, since
there are data dependencies in each dimension. But the fragment still has a great
resource of parallelism; its serial complexity equals n2 while the critical path of the
information graph, reflecting the algorithm’s parallel complexity, equals 2n − 2. To
show the possibility of parallel execution of the algorithm, we can draw diagonals,
as shown in Fig. 7a: all diagonals must be accessed serially, one after the other in
ascending order, while all vertices located on the same diagonal can be computed
in parallel (this type of parallelism is called skewed parallelism). To describe this

What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 33

Fig. 5 A fragment with “convenient” parallelism and its information graph

Fig. 6 A fragment with “inconvenient” parallelism

execution method for the program, its text needs to be transformed; one possible
transformation is shown in Fig. 7b. Moving from fragment Fig. 6a to fragment
Fig. 7b is not a trivial task, as parallelism must be explicitly declared in most existing
programming technologies.

The first reason why the parallelism in an algorithm can be called “inconvenient”
is the need to transform the original code. Suppose the transformation has been
completed; let’s go back to example Fig. 7. The first diagonal contains just one

34 V. Voevodin et al.

Fig. 7 Explicit identification of “inconvenient” parallelism

vertex, the second has two, the third—three; this number will increase to the value
of n, then it will reverse its course, reaching 1 by the last diagonal. The available
resource of parallelism change between steps, going from 1 to n and then returning
to 1 again. It is extremely hard to develop an efficient way to execute this fragment:
if too much computing resources (cores, processors, computing nodes) are allocated,
some of them will be idle for a long time; but allocate too little resources—and the
speed advantage will not be substantial compared to a serial implementation. This
serious imbalance in computation is the second reason for the “inconvenience” of
this type of parallelism.

How often do we focus on such properties of parallelism when we explain
algorithm features during classes? In practice, the criterion of “convenient” or
“inconvenient” parallelism in an algorithm is frequently the key factor in designing
parallel applications.

It’s All About Locality

Simple operations are efficiently implemented by a computer. This seems like
an intuitively clear and correct thesis. It’s much more complex in practice. The
simplicity of an operation is primarily understood as a simple algorithm structure,
but when we talk about implementation efficiency, it is important to take into
account not just the algorithm but also the program implementing it. Niklaus
Wirth called one of his books “Algorithms + Data Structures = Programs” [23],
and “Data Structures” are often what determines the efficiency of an algorithm’s
implementation, even for very simple algorithms.

What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 35

(a) A[i] = B[i]*x + c;
(b) A[i] = B[i]*x + C[i];
(c) A[i] = B[i]*X[i] + C[i];
(d) A[ind[i]] = B[ind[i]]*x+c;
(e) A[ind[i]] = B[ind[i]]*x+C[ind[i]];
(f) A[ind[i]] = B[ind[i]]*X[ind[i]]+C[ind[i]];

Fig. 8 Versions of the “triad” operation

Fig. 9 Efficiency (the ratio of sustained performance to peak performance) of different options for
“triad” operation

Let’s look at several versions of a “triad”, a basic operation used in many
algorithms (see Fig. 8). Everything seems very clear and should not cause any
efficiency implementation issues on modern processors: the structure is trivial,
regular, no data dependencies, and the addition and multiplication operations
are perfectly balanced. At the same time, the efficiency (the ratio of sustained
performance to peak performance) for the simplest operation in Fig. 8a never
exceeds 10% (see Fig. 9)! As we increase the number of input arrays (operations
Fig. 8b, c), the efficiency falls even further.

What is the reason behind such low efficiency for a seemingly “perfect”
operation? The main reason is the poor data locality in the resulting programs. The
main data structure in every version Fig. 8a–c is the arrays, and the elements in each
operation are accessed serially, but each element is used only once. This means that
spatial data locality is relatively low, and temporal locality does not exist at all. As
the number of input arrays increases, the situation only gets worse. How often do we
explain to the students what data locality is and how it affects program efficiency?

Let’s go further and look at sparse data structures, instead of dense ones
(operations Fig. 8d–f). In this case we must use indirect addressing arrays (ind[i]
array in Fig. 8), which further degrade the already low locality values and reduce
efficiency to less than one percent! How often do we pay attention to this aspect

36 V. Voevodin et al.

of algorithms that operate with sparse arrays? One should not skip over a locality
analysis when describing algorithm properties, otherwise the resulting program
efficiency can be an unpleasant surprise.

Parallel Algorithms: What to Pay Attention to?

In the previous section, we discussed just a few examples, but even this small
amount of material shows how diverse are the algorithm properties that affect
implementation efficiency. In this section we will focus on what needs to be
included in training curricula, so as to draw attention to the nuances for efficiently
implementing parallel algorithms for different parallel computing systems.

A description of any algorithm can reasonably be divided into two parts. The
first part is dedicated to the theoretical properties of the algorithm, while the second
describes the features of its implementation. This division is quite natural and helps
to separate the machine-independent properties of the algorithm from the numerous
issues that arise in practice. Both parts of the description are important: the first part
helps to describe theoretical potential of the algorithms, while the second part shows
the practical use of this potential. By learning information in the first part, students
will understand the algorithm’s general applicability, while the second part will help
finding a way to efficiently implement it.

Parallel Algorithms: Theoretical Potential

Let’s look at an algorithm’s computational kernel. It is the part of the algorithm
that takes up most of the processing time. The computational kernel determines the
quality of an algorithm’s implementation in general, therefore it has to be an area
of focus in the algorithm implementation process. If no acceptable implementation
exists for an algorithm’s computational kernel, it won’t exist for the entire algorithm
as well. Remember the analysis of the “triad” operation in the previous section
(see Fig. 8): if we suppose it is the computational kernel of an algorithm, and the
application uses sparse data structures, you can’t expect high efficiency from the
application in general (see Fig. 9).

The computational kernel does not have to be determined by operations on
real numbers: addition, multiplication, division, square root, sin(x), cos(x), etc.
For many algorithms, data load/store operations, boolean or integer operations are
the biggest bottlenecks. This doesn’t change anything, and a computational kernel
consisting of such operations has to be singled out and described just as well. If
most of the execution time for an algorithm is spent on matrix transposition, special
attention must be paid to carefully storing and copying the data.

Another fact must be noted. Even though the full description of an algorithm can
be quite large, the computational kernel is usually very compact, which allows the

What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 37

computational structure to be quickly understood and thus simplifies and speeds up
the algorithm analysis.

Serial complexity, i.e. the number of operations that need to be executed in a
serial implementation of the algorithm, is a highly important feature. Complexity
is always expressed through parameters that determine the task size, and helps
to quickly assess the viability of an algorithm’s practical implementation. The
operation type is not specified in any way, so whatever operations contribute
the most to an algorithm’s execution time shall be included in the formula for
serial complexity. This can include operations on real numbers or integers, bitwise
or memory loads/stores operations, array element updates, elementary functions,
macro operations, etc. Arithmetic operations on real numbers prevail in LU decom-
position, while large number factorization relies heavily on bitwise and boolean
operations; this has to be reflected in the complexity evaluation.

If an algorithm has high complexity, then it must be used for large task sizes
with extreme care. Moreover, if the algorithm is a component of another algorithm,
then overall complexity can be even higher, and one should be even more careful.
The computational complexity of a fast Fourier transform (Cooley-Tukey algorithm)
for vectors with a length equal to powers of two equals n log2 n complex addition
operations and (n log2 n)/2 complex multiplication operations. At the same time,
when looking at this algorithm, one should remember that a fast Fourier transform
is often a basic component of other algorithms, being part of some large loops,
which increases overall complexity.

All modern computers are parallel, so it is important to not just explain an
algorithm, it is vital to simultaneously show the algorithm’s parallel structure.
This can be done, for example, with the help of an information graph, sometimes
called an algorithm graph, data dependency graph or data-flow graph. Determining
the parallel structure of an algorithm is always the first step in creating a parallel
program, regardless of what specific parallel computing system the program is being
written for. This step is very important, and if the algorithm’s parallel structure is
known (see Figs. 1, 5b, 7a), many subsequent decisions become obvious.

There are many possible options for representing the information structure of
an algorithm. For some algorithms, the information structure must be shown in
every detail; for others a macro structure is more important. A lot of information
is available in various forms of information graph projections, which clarify the
algorithm’s regular components while hiding insignificant details. Sometimes it may
be useful to show a pattern in the graph that changes with the values of external
variables (e.g., matrix sizes): we often expect “similar” behavior in the information
graph, but it isn’t always obvious in practice.

Visualization of the information graph can be very useful for studying various
algorithm properties. But the task of displaying an information graph is not trivial.
To begin with, the information graph can potentially be endless, as the number of
vertices and edges is determined by external variables which can be very large.
In this situation it helps to look at likenesses, as described above, which consider
graphs for different values of external variables as “similar”: it is almost always
enough to present one small graph, stating that graphs for other values will look

38 V. Voevodin et al.

“exactly the same.” Not everything is so simple in practice, however; and one should
be very careful here.

Next, an information graph is potentially a multi-dimensional object. The most
natural coordinate system for placing vertices and edges in an information graph
relies on the nested loops in an algorithm’s implementation. If nested loops have
not more than three levels (see Fig. 1), the graph can be placed in the traditional
three-dimensional space, but complex loop constructs with nesting levels of four or
more require special methods for presenting and displaying the graph.

There are many difficulties here, but also many ways to deliver the information to
the students. The main task is to show the information structure of an algorithm so as
to demonstrate all its key features, its parallel structure features, edge sets features,
regularity areas and, vice versa, areas with an indeterministic structure dependent
on the input data, etc. Teachers very rarely talk about parallel algorithm structure,
while this is required in practice more and more often.

After telling about the parallel algorithm structure, one should proceed with
describing its resource of parallelism. The main characteristic is parallel com-
plexity, which is understood as the number of steps needed to execute this
algorithm given an infinite number of processors (functional units, computing
nodes, cores. . .). The concept of infinite parallelism is somewhat idealistic, but it
helps to understand the advantages offered by the parallel execution of an algo-
rithm. Parallel complexity of the fast Fourier transform (Cooley-Tukey algorithm)
mentioned above for vectors with lengths equal to a power of two is log2 n, which
means this algorithm can potentially be executed 1.5n times faster.

The concepts of a canonical parallel form or the critical path of an information
graph are often used to evaluate and describe the resource of parallelism. The height
of the parallel form, or the length of the critical path, determine the algorithm’s
parallel complexity, while the level width is determined by the number of processors
needed at a specific level; all of this can be used to describe algorithm’s properties.
The complexity of an algorithm featuring the summation of n vector elements is
reduced from n − 1 in a serial implementation to log2 n in the parallel version, with
the number of operations executed in parallel at each level (i.e. at each step of the
pairwise parallel algorithm) falling from n/2 to 1.

Parallelism in an algorithm often has a natural hierarchical structure. This fact
is very useful in practice and should be reflected in a description of algorithm’s
properties. This hierarchical parallelism structure is well reflected through a loop
profile of the resulting program (including, in general, the call graph). Figure 10
shows a loop profile of a program, where each square bracket corresponds to a one
loop of the program and nesting structure of the brackets repeats nesting structure of

Fig. 10 Resource of parallelism of a program: parallel loops are marked by ‘1’ or ‘2’ in the loop
profile of the program

What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 39

loops. Information that the outer loop (marked by ‘1’) and all inner loops (marked
by ‘2’) are parallel (their iterations are independent) substantially improves the
perception of the original algorithm’s structure.

When explaining algorithms, it is important to pay attention to the algorithm
properties which can prove important during implementation. We mentioned some
of them in the previous section, namely computational complexity or input/output
data volume: these properties are simple, but they often determine the quality of the
future implementation.

Application efficiency and the balance of the computation process are two
closely related concepts. The main challenge is that the balance can appear in
different ways. This can include balancing between different types of operations,
particularly between arithmetic operations (addition and multiplication) or between
arithmetic operations and memory access operations. This can also include compu-
tational balance between different parallel branches of the algorithm. On the one
hand, load balancing is a necessary condition for efficiency of a parallel algorithm.
At the same time, this is a very challenging task, and one must explicitly show how
many of these features the algorithm has. If ensuring of balance is not obvious, it is
recommended to describe possible ways for solving a task.

An important aspect in practice is the determinacy of an algorithm, which can
be understood as the consistency of the computational process structure. From this
viewpoint, the classical multiplication of dense matrices is a highly deterministic
algorithm, as its structure, given a fixed matrix size, does not depend on the input
matrix elements. Multiplying a sparse matrix by a vector, when the matrix is stored
in a special format, is no longer deterministic: data locality depends on the structure
of the input matrices. An iterative algorithm with precision-based exit is also not
a highly deterministic one: the number of iterations, and therefore the number of
operations, changes depending on the input data.

The reason for pointing out determinacy as a property is clear: working with
a deterministic algorithm is easier, since a structure, once found, will determine
its implementation quality at all times. If determinacy is missing, this should be
specially pointed out, along with a description of how indeterminacy affects the
structure of the computational process.

A serious reason for the indeterminacy of a parallel program is a change in the
execution order of associative operations. A typical example is the use of collective
MPI operations by a group of parallel processes, such as summing elements of a
distributed array. The MPI runtime system chooses the operation execution order
assuming compliance with the associative law; rounding errors change for each
program run, introducing changes in the program output. This is a serious issue often
encountered on systems with massive parallelism, and it affects the reproducibility
of results of parallel programs. If analysis of an algorithm’s structure shows that a
parallel application cannot work without collective operations, this property must
also be kept in mind.

Interestingly, in some cases, determinacy can be “enforced” in an algorithm by
introducing macro operations, which makes the structure not only deterministic but
also more clearly understandable.

40 V. Voevodin et al.

An important aspect is a description of bit capacity needed to execute the
algorithm’s operations (precision). In practice, executing all arithmetic operations
on real numbers with double precision is rarely required, as this doesn’t affect
the algorithm’s stability or the accuracy of the output. If most operations can be
performed using a float type, and just a few fragments need to be changed to
double, this fact must also be explicitly mentioned, as it can substantially improve
implementation efficiency.

Parallel Algorithms: Implementation Features

In the beginning of this section we discussed two parts of the description for any
algorithm: a description of its theoretical potential and its implementation features.
The properties considered above are related to the first part of the description.
This information is important and relevant, it has to be explained, but it is just as
important to look ahead and point out some possible stumbling blocks that can be
encountered in the process of implementation. This is what we will address below.

The issues of data locality and computation locality are rarely included in
any training courses, but locality has a very high impact on the efficiency of
program execution on modern computing platforms. To get the whole picture of
an algorithm’s implementation features, it is important to analyze both temporal
and spatial locality, noting positive and negative factors related to locality, and
under which conditions and situations they are caused. It is important to mention
how locality changes when moving from a serial to a parallel implementation,
and to highlight typical memory access patterns for a program implementing
the given algorithm. We should also mention the potential correlation between
the available programming language constructs and the locality exhibited by the
resulting programs.

It is useful to show memory access profiles for computational kernels, which
often explain the efficiency of the entire application. Figure 11 shows memory
access profiles for programs that implement FFT, LU decomposition, dense matrix
multiplication and random memory access. Each small red dot corresponds to one
memory access operation. The X-axis shows the serial numbers of memory access
operations arranged in the order they were performed during the program execution.
It is similar to the timeline chart, but in this case we analyze only the order of
memory accesses, not the particular time when they were performed. The Y-axis
indicates the memory address used in each particular memory access operation.

For example, Fig. 11d, e show the memory access profiles for two versions of
matrix multiplication algorithms, which makes it clear why the (IKJ) fragment is
executed much faster than the (JKI) fragment: the profile in Fig. 11d has a much
higher spatial and temporal locality than that in Fig. 11e.

Knowing the algorithm’s resource of parallelism, it is important to show the
opportunities for equivalent transformation of the programs: the students will
see the program features for computers with certain architectures, and will feel

What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 41

Fig. 11 Memory access profiles for programs implementing FFT (a), LU decomposition (b),
random memory access (c) and dense matrix multiplication with different loop orders (d, e)

freedom in transforming the programs and obtaining program optimization skills.
Let’s go back to the program with loop profile shown in Fig. 10. It was mentioned
that the outer loop (marked by ‘1’) has many iterations, while the inner loops
were very short. In this form, the parallel structure is suitable for SMP computers,
allowing parallel execution of the outer loop iterations by processor cores. However,
if the target system is a vector-pipeline computer, the efficiency will be low for
sure: only the short innermost loops (marked by ‘2’) can be vectorized. As a way
out of this situation, we can perform a series of elementary transformations on
the loops (see Fig. 12), moving the long outside loop (marked by ‘1’) inside. The
transformation is certainly not trivial, and the program must effectively be “turned
inside out.” During some transformations we obtain loops which are not perfectly
nested (“dots” in the fourth and fifth loop profiles denote additional statements
“between” loops), but all the transformations are fully equivalent (program’s
information structure remains intact, and we operate strictly within the available
resource of parallelism). If you know about this freedom in code transformations,
you can easily compose a variant of code which matches well any target architecture.

It is worth noting that such non-trivial transformations can’t always be automat-
ically identified and performed by the compiler, which means that the programmer
himself must be aware of such features.

Scalability is one of the central notions in parallel computing, which shows how
efficiently the algorithm and the program implementing it can use the available
processing cores, processors and computing nodes. This is an important idea since
all computers are parallel today, yet it is a highly complex one. Application’s
scalability potential is originally determined by the algorithm, but can be reduced

42 V. Voevodin et al.

Fig. 12 Series of loop transformations that convert the outermost loop ‘1’ in the original fragment
into the innermost loop

substantially depending on the programming technology, bad data distribution,
inadequate composition of the parallel program, and many other reasons.

Many things can be discussed with students here: strong scalability, weak scala-
bility, wide scaling, possible reasons for low scalability. It is interesting to compare
scalability of different algorithms that address the same task. It is important to
show the connection between algorithm properties, program structure and computer
architecture features, which lays the groundwork for co-design technologies and
determines the scalability of parallel applications.

When explaining this idea, the most efficient argument is the behavior of the
actual scalability of a given algorithm’s various implementations, depending on
the number of processors and the problem size. An important thing here is to find
the right correlation between the number of processors used and the problem size
to highlight all points of interest in the behavior of a parallel program, such as
achieving maximum performance, and the more subtle issues that arise, for example,
out of the algorithm’s block structure or memory hierarchy.

Figure 13a shows scalability for an MPI implementation of the classical dense
matrix multiplication algorithm depending on the number of processes and the size
of the dataset. The chart clearly displays areas with higher performance correspond-
ing to different levels of cache memory. Figure 13b shows good scalability for the
Linpack benchmark: as the number of processors grows, so does the performance for

What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 43

Fig. 13 Scalability of the MPI implementation of the dense matrix multiplication algorithm (a)
and Linpack benchmark (b), MSU “Lomonosov” supercomputer

any matrix size shown in the chart. Some values are missing from the front part of
Fig. 13b, as large tasks cannot fit into the memory of a small number of processors.

In addition to scalability, performance and efficiency are other concepts of par-
ticular interest in understanding the quality of a parallel algorithm implementation.
These two notions are closely related and are often viewed not in abstract terms
but in combination with a specific computing system. Efficiency can be understood
differently: as parallel efficiency, or as efficiency compared to peak performance
indicators for the computing system.

Algorithms or their implementations can possess specific features that prevent
performance and efficiency from exceeding certain limits. These features need to
be singled out and discussed with students, as they will likely run into something
similar in practice. Figure 14 shows the performance and efficiency for Poisson’s
equation solution using the discrete Fourier transform depending on the number
of processors and the problem size. Despite using serious computing resources
(the experiments were conducted on the “Lomonosov” supercomputer [16] at
Lomonosov Moscow State University), the program’s performance was very low,
with efficiency never exceeding 1.5% and falling quickly as the number of proces-
sors grew (the main reason of poor efficiency is low data locality). These facts need
to be mentioned if we want students to have a realistic perception of what modern
parallel computing systems are capable of, to understand peak performance figures
correctly and to clearly understand the reasons why these situations arise.

Another subject for a more professional and detailed discussion is the search
for the root causes for low performance and efficiency in parallel applications.
The task is not a simple one. There isn’t currently a single, universally accepted
methodology or the respective tools to conduct such analysis. In fact, this requires
conducting a comprehensive analysis adequate for modern supercomputer co-design
technologies. One would need to assess and describe the efficiency of memory
access operations, the efficiency of using the resource of parallelism inherent
in an algorithm, the efficiency of using communication networks and particular
features of the communication profile, the efficiency of input/output operations, and

44 V. Voevodin et al.

Fig. 14 Performance and efficiency of Poisson’s equation solution using the discrete Fourier
transform

many other aspects. Sometimes average aggregated characteristics of a program are
generally sufficient; in some cases, it is necessary to show lower-level monitoring
data such as CPU load, cache misses, InfiniBand network usage intensity, etc.
Tools like TAU [18], Scalasca [17], Vampir [19], and JobDigest [2] provide a good
understanding of the parallel program quality, and students need to be taught how to
use them. Moreover, using such quality maintenance tools for parallel applications
must become an integral element of the software development cycle.

While discussing the properties of a parallel algorithm, it is also important
to evaluate its potential for the specific architecture of various classes of com-
puting systems, and the specific parallel programming technologies used. The
computational kernel is compact and has high computational intensity—a good
condition for using accelerators. The interaction between parallel processes is
intensive and results in major overhead on delivering messages—this means that
developers should look at computers with shared memory or use one-sided data
transfer functions like Put/Get. An algorithm has SIMD parallelism, so graphics
processors can efficiently implement it. By adding these touches to the description
of algorithm’s properties, we pursue the main goal of showing students a strong
connection between the parallel algorithm properties and the computer architecture
features, which form the grounds for creating high-quality parallel applications to
efficiently solve real-life problems.

Our experience in analyzing algorithm properties and implementations not only
determined the key issues that are addressed in this work, but also became the
foundation for the AlgoWiki project [3, 4]. The project’s main goal is to provide
a description of the fundamental algorithm properties that enable full understanding
of their theoretical potential and their implementation features regarding various
classes of parallel computing systems. The project is expected to result in the
development of an open encyclopedia based on wiki technologies and available
to the entire academic and educational community. The first version of the ency-
clopedia is available at [13], where users can describe both their own pedagogical
experience and their knowledge of specific parallel algorithms. The encyclopedia
already contains many useful and live examples that can be used in lectures and
seminars to explain the particular features of parallel algorithms.

What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 45

How Does One Make a Training Curriculum Parallel?

Parallel algorithms, parallel computing systems, parallelism—all of these are funda-
mental concepts that must be at the foundation of any curriculum on computational
mathematics, applied mathematics, and generally of any curriculum on Computer
Science. We are implementing this approach at the Faculty of Computational
Mathematics and Cybernetics at the Lomonosov Moscow State University (CMC
MSU), starting with Bachelor’s degree coursework and continuing with many
Master’s degree and post-graduate education programs. In this section we would
like to show the great diversity of methods and techniques that can be used in
the educational process to support parallel computing topics in various training
programs. The choice of particular materials needed in each specific case is up to
teachers. Our goal is to help selecting the most suitable methods for including this
topic in a curriculum, to inspire the teacher to explore various directions, and to
suggest potential pedagogical techniques for implementing this in practice.

Parallelism Concepts: In Every Lecture Course

We analyzed the structure of lecture courses in the Bachelor’s degree programs at
CMC MSU, and it turned out that parallelism concepts can be added to each one
rather easily and gracefully. Some courses only require parallelism to be mentioned;
for some, examples would need to be replaced with those having parallel specifics,
but without any impact on the logical flow of presentation; sometimes, a course
would need to add new lectures. However, this modification, turning the classical
“serial” curriculum into a parallel one based on the ideas of parallel computing, does
not present any specific challenges. Let’s give some examples of how individual
training courses can be modified; this will make it clearer regarding how parallelism
can be introduced into any training course.

Algorithms and algorithmic languages (1st year). The concept of parallel
execution for an algorithm needs to be introduced right in the very first semester
of study (at an intuitive level).

Linear algebra and analytical geometry (1st year). For simple examples (sum-
ming vector elements, dot product), introduce the idea of computational complexity,
discuss the possibility of parallel execution (without any theoretical justification),
and perform assessments of parallel execution timing. The information structure
of a classical matrix multiplication algorithm should be shown, pointing out the
possible options for parallel execution.

Computer architecture (1st year). Introduce the principles of pipeline and par-
allel data processing, explain the architecture of multi-core processors, introduce
the notions of independent functional units, vectorization, peak and sustained

46 V. Voevodin et al.

performance. Explain organization of memory subsystems in modern processors,
and memory hierarchies.

Physical basics of designing computers (2nd year). Computer representations of
numbers, accuracy, rounding, parallel bitwise execution of arithmetic operations.
Rounding, the laws of exact and machine arithmetic.

Operating systems (2nd year). Parallel processes, the fork/join model, synchro-
nization methods, process interaction methods, deadlocks, determinacy, correctness,
viability, fault tolerance.

Discrete mathematics, graph theory (2nd year). Two-dimensional grid, n-
dimensional torus, n-dimensional hypercube, etc. as examples of multi-processor
system topologies. The shortest path between nodes, critical path length, the
outcome degree of graph vertices, routing and fault-tolerance. The need for and
complexities of processing ultra-large graphs.

Algorithm complexity (3rd year). The serial and parallel complexity of an
algorithm, computational intensity of an algorithm.

Introduction to numerical methods (3rd year). Information structure of implicit
and explicit numerical methods, the trade-offs between computational complexity
and the parallel structure of algorithms (explicit methods have good parallel
structure but can have slow convergence, while implicit methods are serial in nature
but can have better convergence).

Mathematical physics equations (3rd year). Parallel problem-solving meth-
ods, key steps in problem-solving on computers: task—algorithm—programming
technology—program—compilation—execution, the need to preserve parallelism
at every problem-solving step.

Databases (4th year). Parallel DBMS, ultra-large DBMS, load balancing in
parallel query execution.

Optimization methods (4th year). Examples of parallel optimization methods.

Distributed systems (4th year). Metacomputing concepts, grid, cloud technolo-
gies, distributed processing technologies.

A detailed description can be provided for each training course, but this is not in
the scope of this work. The idea is to show how naturally the ideas of parallelism
can be included into almost every lecture course in a bachelor’s degree program.

Emphasis on Parallelism in Exam and Test Questions

Questions on exams and tests for various disciplines must be formulated in such
a way as to explicitly mention the ideas of parallelism, rather than conceal them.
Accents in the questions can vary and they can change a flavour of the questions—

What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 47

several possible question formulations are shown below, which could be used, with
minor modifications, for exams within many disciplines.

1. Types of parallel data processing, their features.
2. Evaluating the computational complexity of large tasks.
3. Memory hierarchy, computational locality, data locality.
4. Amdahl’s law, its corollaries, and superlinear speedup.
5. Quality indicators of parallel programs: speedup, efficiency, scalability.
6. Strong scalability, wide scaling, weak scalability. Isoefficiency.
7. Parallel implementation of problems characterized by high computational

complexity with matrix multiplication as an example.
8. Graph models of programs, their relationship.
9. The concepts of information dependency and information independence. An

algorithm’s resource of parallelism.
10. Information structure of algorithms. The critical path of an information graph.
11. Equivalent transformations of programs. Elementary loop transformations.
12. Types of parallelism: finite parallelism, massive parallelism, coordinate paral-

lelism, skewed parallelism.
13. Parallel form of an information graph, its width and height. Canonical parallel

form. Parallel complexity of algorithms.
14. Application efficiency dependence on the choice of data structures.

Online Testing: Knowledge Check and Continuing Education

A properly formulated question does more than just test the level of knowledge:
it allows objects and ideas to be observed and studied from another perspective,
showing alternative sides of the material just learned. An extensive bank of
questions was built with the authors’ active involvement in the Sigma student
knowledge online testing system for parallel computing [14]. Importantly, a system
like this not only allows one’s knowledge level to be checked for taking a test or
exam. It can be successfully used for self-testing, providing students an opportunity
to test how well they understand the material learned in the classroom.

All questions in the system can be divided into several categories, as we will
illustrate below with a few examples (“+” marks the correct answers).

1. Questions for testing the correct understanding of the definitions.
Mark the correct statements:

• Superlinear speedup can be achieved by a large number of functional units.
• Program’s scalability means that the program is suitable for parallel execution.
• A parallel program that does not possess strong scalability can possess weak

scalability. +
• Efficient parallelization can be measured in terms of the number of processes

running at a given moment in time.

48 V. Voevodin et al.

2. Simple calculation questions.
What is the minimum time it will take to add up 512 numbers on 200

processors using pairwise summation, if two numbers are added in 1 second and
the time for a transfer data between the processors is negligible:

• 1 second
• 8 seconds
• 9 seconds
• 10 seconds +
• 11 seconds
• 200 seconds
• 384 seconds
• No correct answer.

3. Questions for analyzing the structure of algorithms or program fragments.
The multiplication of two matrices is programmed using the following

fragment:

for(i = 0; i < n; ++i)
for(j = 0; j < n; ++j)

for(k = 0; k < n; ++k)
A[i][j] = A[i][j]+B[i][k]*C[k][j];

What statements regarding the structure of this fragment are correct:

• The height of the canonical parallel form of the information graph for this
fragment equals n. +

• The critical path length of the informational graph for this fragment equals n.
• The information graph for this fragment consists of n2 independent computa-

tional branches. +
• This fragment cannot be executed on a computer with shared memory.
• Using any loop order in this fragment will yield the same result up to the

rounding error. +
• Reordering the loops will not change the program’s execution time.

4. Questions for understanding serial and parallel algorithm complexity.
A computer executed a program that multiplies two square dense matrices

using a standard algorithm (without using fast multiplication methods) in
4 seconds at a performance of 32 GFlops. What were the sizes of the arrays?

• 500 × 500
• 1000 × 1000
• 2500 × 2500
• 4000 × 4000 +
• 5000 × 5000
• No correct answer.

What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 49

From Theory to Practice

Parallel algorithms, like parallel computing in general, are an area where practice
is the key. All of the theoretical ideas introduced can be easily illustrated with
examples, tasks, and exercises from parallel programming practice, and by all means
this should be done. Parallelism came from practice and should be explained in
practical examples all the time. The experience of teaching such disciplines shows
this is completely feasible even for “purely theoretical” concepts.

Various graph models of programs are considered as part of the “Structure of
algorithms and programs” topic. Let’s consider two types of vertices—operators
(V1) or separate executions of operators (V2). For example, if a statement is
executed three times in a loop, we’ll get 1 operator or 3 executions of operators.

Also there are two types of edges—operational (E1) or information (E2)
relationship. Vertex A is connected to vertex B with operational relationship if and
only if vertex B can be executed right after vertex A. Vertex A is connected to vertex
B with information relationship if and only if vertex B uses as an argument some
value obtained in vertex A.

By using different methods of choosing vertices and types of relationships
between them, we can derive four basic graph models: program control graph
(V1 + E1), program information graph (V1 + E2), operational history (V2 + E1)
and information history (sometimes referred to as information or dependency or
dataflow graph (V2 + E2)). Despite the abstract nature of these concepts, they can
easily be illustrated with simple examples. In particular, for one and the same
example:

for(i = 0; i < n; ++i) {
A[i] = A[i-1] + x; (1)
B[i] = B[i] + A[i]; (2)

}

all the four basic graph models are presented in Fig. 15.
To understand potential and properties of the models and to relate these ideas to

program features, presentation of the material can be accompanied by a number of
questions or tasks.

Fig. 15 Four basic graph models: program control graph (a); program information graph (b);
operational history (c); information graph (d)

50 V. Voevodin et al.

Task. Can the information history of a certain fragment be represented by an
empty graph?

The answer is “yes”. A fragment possessing this property is shown below:

for(i = 0; i < n; ++i)
A[i] = A[i] + B[i]*c;

Interestingly, an empty graph is far from “exotic”; on the contrary, it reflects an
exceptionally important property of the program—its high degree of parallelism.

It is also important to show potential limits for the introduced concepts.
Task. Can the information history of a certain program fragment have 20 vertices

and 200 edges?
Indeed, information history can be structured in different ways. But to answer

this question correctly, one needs to remember its two main properties: the absence
of multiple edges and its acyclic nature. This means that an information graph with
the maximum number of edges will look as follows (Fig. 16).

It follows from here that the maximum number of edges for a graph of n vertices
can be calculated as (n− 1)+ (n− 2)+ (n− 3)+ · · · + 2 + 1 = n(n− 1)/2, which
equals 190 for n = 20, so the correct answer to the question above is “no”.

Another type of task can help to assess the understanding of basic concepts such
as the serial and parallel complexity of an algorithm.

Task. Determine the serial and parallel complexity of an algorithm implemented
using the following fragment:

for(i = 2 ; i <= n ; ++i)
for(j = 2 ; j <= m ; ++j)

A[i][j] = A[i][j] * A[i][j-2];

The loop body will be executed (n − 1)(m − 1) times, and each execution of
the operator placed in the loop body corresponds to one multiplication operation;
therefore, the total number of operations and the serial complexity equal to (n −
1)(m − 1).

Parallel complexity is the critical path length of the fragment’s information graph
plus 1, where each vertex corresponds to one execution of the operator in the loop
body. To determine it, we need to build an information graph, which looks as follows
for this fragment (Fig. 17).

Obviously, parallel complexity is equal to �m/2�.
The next exercise is used in the “Equivalent transformations of programs” topic.
Task. Analyze the structure and transform the following fragment for parallel

execution:

for(i = 1; i < n; ++i) {

Fig. 16 Information graph
with the maximum number of
edges

What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 51

Fig. 17 Information graph of
the fragment

Fig. 18 Information graph of the fragment (a) and transformation of the loop body (b)

1 A[i] = A[i-1]*p + q;
2 C[i] = (A[i] + B[i-1])*s;
3 B[i] = (A[i] - B[i])*t;

}

The entire fragment’s information structure is shown in the Fig. 18a: the fragment
definitely has a substantial resource of parallelism. First let’s break down the
loop body to identify the serial and parallel parts within the loop body operators.
The respective training course contains a statement: the necessary and sufficient
condition for loop distribution is that the parts being distributed must be located in
different, strongly-connected components of the information graph that represents
the loop body. All three operations represent individual, strongly-connected compo-
nents of the information graph, so loop distribution is possible for all three operators.
The execution order for the three new loops is determined by the information
structure of the information graph for the loop body: first 1, then 3, then 2, as shown
on the right side of Fig. 18b.

Executions of operator 1 are connected with an informational dependency, so
vertex 1 has a self-loop, and the corresponding loop requires serial execution.
Operations 2 and 3 are not self-connected, so all iterations of these loops can be

52 V. Voevodin et al.

performed in parallel. The resulting fragment is shown below (OpenMP directives
are used to declare parallel loops):

for(i = 1; i < n; ++i)
A[i] = A[i-1]*p + q;

#pragma omp parallel for
for(i = 1; i < n; ++i)

B[i] = (A[i] - B[i])*t;
#pragma omp parallel for
for(i = 1; i < n; ++i)

C[i] = (A[i] + B[i-1])*s;

Parallel Programming Features

Moving students from serial programming to writing parallel programs usually
does not cause major issues. Nevertheless, they need to be explicitly warned about
the prospective issues that are typical for parallel algorithms and programs, to
prevent them from occurring again in the future. Race condition, computational load
disbalance, Amdahl’s law impact—it is very helpful to review these and many other
concepts.

A possible assignment for this topic would be to build a parallel implementation
of a simple algorithm, while the task can focus on very different ideas. For example,
build a parallel implementation of an algorithm optimized for a certain parameter,
such as the utilized resource of parallelism, execution time on a specific computer,
amount of memory used, scalability, implementation efficiency, etc.

Task. A program fragment is given:

for(i = 1 ; i <= n ; ++i)
for(j = 1 ; j <= n ; ++j)

A[i][j] = A[i][j] * A[i][j] * A[i-1][j-1] ;

Create an implementation that uses the maximum resource of parallelism for this
algorithm at any given moment.

The first thing one needs to do before building a parallel implementation is
to determine the information structure of a code and identify its resource of
parallelism. The information graph for this fragment will look as follows (Fig. 19a).

To use the maximum possible resource of parallelism, one needs to build the
canonical parallel form for this graph (it is shown in the Fig. 19b). Individual levels
are shown using dashed lines. The required parallel implementation must use the
entire resource of parallelism in a fragment by going through the levels in the
parallel form: the total number of levels is n (this number represents the parallel
complexity), and the number of vertices on each level, which can be executed in
parallel, varies from 2n − 1 to 1. This approach can be implemented as follows:

for(k = 1 ; k <= n ; ++k){

What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 53

Fig. 19 Information graph of the fragment (a) and its canonical parallel form (b)

#pragma omp parallel sections
{

#pragma omp parallel for
for(i = k; i <= n ; ++i)

A[i][k] = A[i][k] * A[i][k] * A[i-1][k-1];
#pragma omp section
#pragma omp parallel for

for(i = k+1 ; i <= n ; ++i)
A[k][i] = A[k][i] * A[k][i] * A[k-1][i-1];

}
}

This implementation also has its own nuances: the potential for using the
entire resource of parallelism with this program depends on whether the OpenMP
programming system supports nested parallelism.

One should recognize that this implementation is not necessarily optimal for
other criteria such as execution time or code simplicity. For example, the parallel
execution of the fragment can be organized using skewed parallel branches, even
though this type of implementation increases parallel complexity from n to 2n − 1.
At the same time, the structure of the dependencies in this example allows a very
simple form of parallelism to be used for any coordinate, i or j , as in the example
shown in the Fig. 20.

The parallel complexity of the implementation equals n, just like the first case,
but a more convenient regular parallelism type is used with the same number of
operations at every step. This version will likely be used in practice.

54 V. Voevodin et al.

Fig. 20 An implementation of the fragment using coordinate parallelism

The Efficiency of Parallel Applications: A Matter of Special
Attention

Creating efficient parallel applications is one of the objectives for training students
in this field. It requires knowledge of parallel problem-solving methods, experience
in using parallel programming technologies, and an understanding of parallel
computing system architecture. A number of techniques and methodologies can be
used to reinforce the material with focus on various stages of supercomputer co-
design, which is the central element ensuring the efficiency of parallel applications.

Let’s look at one possible version of this task which we used at the Summer
Supercomputing Academy [1] held at the Lomonosov Moscow State University.

Task. Implement a parallel program on a supercomputer that multiples dense
square matrices with double precision, and examine its scalability. A description
of the algorithm can be found at [7]. The implementation needs to be written in a
high-level programming language (C or Fortran) using MPI technology (for extra
points—write a hybrid version using OpenMP inside a computing node and MPI
for communication between nodes). The task requires that none of the matrices a, b

or c can be stored as a whole at any given node. Moreover, auxiliary arrays at each
node can only be used to store portions of the original matrices, but not the whole
matrices. The total RAM at all nodes is sufficient for storing all relevant data. The
size of matrices to be multiplied in this experiment is n = 4096. Matrix elements of
the type double (DOUBLE PRECISION) can be initialized as follows:

aii = bii = (n − 2)/n

What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 55

aij = bij = −2/n if i �= j

With these inputs, the output shall be an identity matrix, which is easy to verify.
The task is to determine the correlation between program execution time (excluding
initialization) and the number of processors. The number of processors p shall equal
to powers of four.

First let’s describe the approach to parallelization. A review of the information
dependency graph for this algorithm provided in section “What Knowledge of
Algorithm Properties Is Needed in Practice?” shows that all elements of the matrix
c can be computed independently from each other. Therefore, the parallel program
can use a procedure to determine a single element in the resulting matrix c as the
basic building block. In this case, various methods of distributing elements within
the matrix c between various processes will determine the different versions of the
resulting program.

Generally, an absence of information dependencies makes any distribution of the
elements in the matrix c possible; however, the most natural ones are row, column
and block distributions. To improve data locality, it is best to use a block distribution,
where the basic block is a set parts of adjacent rows or columns (see Fig. 21).

In the case of MPI implementation, the distribution cannot just apply to the
resulting matrix c (and related operations), but must also be determined for the
original matrices a and b. This determines how much data transfer the program
will need. Different versions of parallel implementation for this algorithm can be
found here:

• Version 1 [8] (row distribution of matrices a and c, column distribution of matrix
b);

• Version 2 [9] (block distribution of all three matrices).

In version 1, the whole row of matrix a needed to compute a certain matrix
element is stored in the memory allocated to that process, while a column in matrix
b may not be present in the memory for the same process, but rather is stored entirely
in the memory for another process. In fact, each column in matrix b is involved in

p1

p1

p1
p2

p2

p2

p3

p3

p3

p4

p4

p4

Fig. 21 Row, column and block distributions of the matrices between four processes

56 V. Voevodin et al.

Table 1 Comparison of two versions of matrix multiplication implementations

Number of Amount of data Volume of data stored
arithmetic operations transferred for each process

Version 1 2n3 n2(p − 1) 4n2

p

Version 2 2n3 2n2(
√

p − 1)
3n2+2n2√

p

p

Table 2 Comparison of execution time (in seconds) for two versions of the matrix multiplication
implementations on the MSU “Lomonosov-2” supercomputer

Number of processes 1 4 16 64 256 1024

Version 1 44.19 12.86 4.49 1.43 0.50 49.05

Version 2 44.66 12.76 4.44 0.84 1.05 3.05

computing the entire column of matrix c, so it must be sent to all processes of the
application.

In case of a block distribution into a two-dimensional process grid (version 2),
each matrix dimension requires

√
p processes. Matrices a, b and c are distributed

between the processes in uniform blocks. For the process to be able to execute its
part of operations associated with the elements of matrix c, it needs to receive data
from the processes containing the rows of matrix a and columns of matrix b for the
respective block.

A comparison of the two versions by the number of arithmetic operations, total
volume of data transferred and the volume of data stored by each process is shown
in the Table 1. Even though both versions have the same number of arithmetic
operations, version 2 requires transferring less data, but more data needs to be stored
for this implementation.

A comparison of each implementation’s scalability on the MSU “Lomonosov-2”
supercomputer (1280 nodes using Intel Xeon E5-2697v3 processors connected with
an InfiniBand FDR communication network) is shown in the Table 2.

The examples above illustrate just a small portion of the wide variety of
techniques and methods that can be used in the educational process for this topic. A
lot of materials for exercises can be found in the numerous algorithms described in
the AlgoWiki Open encyclopedia of parallel algorithmic features [13]. At the same
time, the results obtained by students while performing exercises can be used to
update the encyclopedia.

Task statements can easily be modified as well. In particular, the exercises can
focus on studying individual dynamic properties of programs, data locality, and var-
ious types of scalability, identifying bottlenecks in parallel implementation, building
a communication profile for an application, comparing various implementations of
the same algorithm, etc. Many options are possible, and they all should stimulate
a creative review of the theoretical materials presented in the lecture course. There
is a clear belief that obtaining practical skills in this area is as important as the
theoretical study.

What Do We Need to Know About Parallel Algorithms and Their Efficient. . . 57

References

1. Summer Supercomputing Academy. http://academy.hpc-russia.ru/en. Cited 26 Jan 2018
2. Adinets, A.V., Bryzgalov, P.A., Voevodin, V.V., Zhumatii, S.A., Nikitenko, D.A., Stefanov,

K.S.: Job Digest: an approach to dynamic analysis of job characteristics on supercomputers.
Computational Methods and Software Development: New Computational Technologies, vol.
13, pp. 160–166 (2012)

3. Antonov, A., Voevodin, Vad., Voevodin, Vl., Teplov, A.: A study of the dynamic characteristics
of software implementation as an essential part for a universal description of algorithm
properties. In 24th Euromicro International Conference on Parallel, Distributed, and Network-
Based Proceedings, pp. 359–363 (2016)

4. Antonov, A., Voevodin, V., Dongarra, J.: Algowiki: an Open encyclopedia of parallel algorith-
mic features. Supercomputing Frontiers and Innovations, vol. 2, no. 1, pp. 4–18 (2015)

5. Big Data and Extreme-scale Computing (BDEC). http://www.exascale.org/bdec. Cited 26 Jan
2018

6. Computer Science Curricula 2013 (CS2013). http://ai.stanford.edu/users/sahami/CS2013.
Cited 26 Jan 2018

7. Dense matrix multiplication. http://algowiki-project.org/en/Densematrixmultiplication. Cited
26 Jan 2018

8. Dense matrix multiplication example, version 1. https://github.com/srcc-msu/CDER-2016/
blob/master/dgemm/mpi_1d_grid.c. Cited 26 Jan 2018

9. Dense matrix multiplication example, version 2. https://github.com/srcc-msu/CDER-2016/
blob/master/dgemm/mpi_2d_grid.c. Cited 26 Jan 2018

10. Dongarra, J., Beckman, P., Moore, T., Aerts, P., Aloisio, G., Andre, J., Barkai, D., Berthou,
J., Boku, T., Braunschweig, B., et al.: The international exascale software project roadmap.
International Journal of High Performance Computing Applications, vol. 25, no. 1, pp. 3–60
(2011)

11. Supercomputing Education in Russia, Supercomputing Consortium of the Russian Univer-
sities, Tech. Rep. (2012) http://hpc.msu.ru/files/HPC-Education-in-Russia.pdf. Cited 26 Jan
2018

12. Future Directions in CSE Education and Research. Workshop Sponsored by the Society for
Industrial and Applied Mathematics (SIAM) and the European Exascale Software Initiative
(EESI-2), Tech. Rep. (2015) http://wiki.siam.org/siag-cse/images/siag-cse/f/ff/CSE-report-
draft-Mar2015.pdf. Cited 26 Jan 2018

13. Open Encyclopedia of Parallel Algorithmic Features. http://algowiki-project.org/en. Cited 26
Jan 2018

14. Parallel computing collective test bank “SIGMA”.
https://sigma.parallel.ru/BankTest/Start/index.php?lang=en. Cited 26 Jan 2018

15. Prasad, S.K., Chtchelkanova, A., Dehne, F., Gouda, M., Gupta, A., Jaja, J., Kant, K., La Salle,
A., LeBlanc, R., Lumsdaine, A., Padua, D., Parashar, M., Prasanna, V., Robert, Y., Rosenberg,
A., Sahni, S., Shirazi, B., Sussman, A., Weems, C., and Wu, J.: NSF/IEEE-TCPP Curriculum
Initiative on Parallel and Distributed Computing — Core Topics for Undergraduates, Version
I. 55 pages (2012) http://www.cs.gsu.edu/~tcpp/curriculum. Cited 26 Jan 2018

16. Sadovnichy, V., Tikhonravov, A., Voevodin, V., Opanasenko, V.: Lomonosov: Supercomputing
at Moscow State University. In: Contemporary High Performance Computing: From Petascale
toward Exascale, ser. Chapman & Hall/CRC Computational Science. Boca Raton, United
States: Boca Raton, United States, pp. 283–307 (2013)

17. Scalasca. http://www.scalasca.org. Cited 26 Jan 2018
18. Tau Performance System. http://www.paratools.com/tau. Cited 26 Jan 2018
19. Vampir — Performance Optimization. https://www.vampir.eu. Cited 26 Jan 2018
20. Voevodin, V.: Mathematical Foundations of Parallel Computing. World Scientific Publishing

Co., Series in computer science, vol. 33 (1992)

http://academy.hpc-russia.ru/en
http://www.exascale.org/bdec
http://ai.stanford.edu/users/sahami/CS2013
http://algowiki-project.org/en/Densematrixmultiplication
https://github.com/srcc-msu/CDER-2016/blob/master/dgemm/mpi_1d_grid.c
https://github.com/srcc-msu/CDER-2016/blob/master/dgemm/mpi_1d_grid.c
https://github.com/srcc-msu/CDER-2016/blob/master/dgemm/mpi_2d_grid.c
https://github.com/srcc-msu/CDER-2016/blob/master/dgemm/mpi_2d_grid.c
http://hpc.msu.ru/files/HPC-Education-in-Russia.pdf
http://wiki.siam.org/siag-cse/images/siag-cse/f/ff/CSE-report-draft-Mar2015.pdf
http://wiki.siam.org/siag-cse/images/siag-cse/f/ff/CSE-report-draft-Mar2015.pdf
http://algowiki-project.org/en
https://sigma.parallel.ru/BankTest/Start/index.php?lang=en
http://www.cs.gsu.edu/~tcpp/curriculum
http://www.scalasca.org
http://www.paratools.com/tau
https://www.vampir.eu

58 V. Voevodin et al.

21. Voevodin, V., Gergel, V.: Supercomputing education: the third pillar of HPC. Computational
Methods and Software Development: New Computational Technologies, vol. 11, no. 2,
pp. 117–122 (2010)

22. Voevodin, V., Voevodin, Vl.: Parallel Computing. BHV-Petersburg, St. Petersburg (2002)
23. Wirth, N.: Algorithms + Data Structures = Programs. Prentice Hall PTR (1978)

Modules for Teaching Parallel
Performance Concepts

Apan Qasem

Abstract This chapter introduces three teaching modules centered on parallel
performance concepts. Performance related topics embody many fundamental ideas
in parallel computing. In the ACM/IEEE curricular guidelines (ACM2013), an
entire knowledge unit has been devoted to parallel performance. In addition,
performance topics pervade every knowledge area within PDC and can be found
across other knowledge areas including Algorithms, Architecture and Systems
Fundamentals. The three modules presented in this chapter cover a range of parallel
performance topics. Since power savings have become an important consideration
from hand-held devices to supercomputers, energy efficiency is also emphasized in
each module. The modules focus more on architectural and algorithmic issues rather
than the programming aspects. The modules are constructed to illustrate parallel
performance issues primarily through code examples and experimental studies. This
approach makes the modules accessible to students who do not yet have a strong
background in parallel programming. Thus, the target audience for this chapter are
instructors who are teaching CS1, with or without parallel programming, and also
instructors who are teaching upper-level electives where their students may already
have taken a semester of parallel programming.

Relevant core courses: CS1, Operating Systems, Computer Architecture
Relevant PDC topics: speedup (C), efficiency (C), Amdahls Law (A), space

vs. time (C), power vs. time (C), synchronization and communication (C),
task granularity (A), scheduling and mapping on multicore (A), load balancing
(A), trade-offs in performance and power (C), Analysis and Evaluation: linear
and super linear speedup (C), latency and bandwidth trade-offs, data locality,
SMP (C), NUMA (C), strong and weak scaling (C), (Bloom classification in
parentheses)

A. Qasem (�)
Texas State University, San Marcos, TX, USA
e-mail: apan@txstate.edu

© Springer International Publishing AG, part of Springer Nature 2018
S. K. Prasad et al. (eds.), Topics in Parallel and Distributed Computing,
https://doi.org/10.1007/978-3-319-93109-8_3

59

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93109-8_3&domain=pdf
mailto:apan@txstate.edu
https://doi.org/10.1007/978-3-319-93109-8_3

60 A. Qasem

Context for use: CS1 fundamentals, operating system thread scheduling, parallel
architecture performance evaluation

Learning outcomes:

• list and define parallel performance metrics: speedup, efficiency, linear
speedup, super linear speedup, latency and bandwidth

• describe the implications of Amdahl’s law on parallel performance
• recognize the use of parallelism to achieve strong scaling and weak scaling
• analyze the effects of load imbalances on performance and power
• apply techniques to balance load across threads or processes
• explain the need for inter-thread synchronization and communication
• apply techniques to pin and schedule threads on multicore systems for

improved performance
• describe how cores share memory resources, such as DRAM and cache
• recognize the importance of exploiting data locality in parallel applications

Introduction

This chapter introduces three teaching modules centered on parallel performance
concepts. Performance related topics embody many fundamental ideas in parallel
computing. In the ACM/IEEE 2013 curricular guidelines (ACM2013), an entire
knowledge unit has been devoted to parallel performance [1, 2]. In addition,
performance topics pervade every knowledge area within PDC and can be found
across other knowledge areas including Algorithms, Architecture and Systems
Fundamentals.

The three modules presented in this chapter cover a range of parallel performance
topics. Since power savings have become an important consideration from hand-
held devices to supercomputers, energy efficiency is also emphasized in each
module. The topics provide at least 3.5 h of Core-Tier 1, Tier 2 and Elective hours
from ACM2013. The modules are designed to be introduced in CS1 and two
upper-level electives, namely, Operating Systems and Computer Architecture. They
are, however, designed with enough flexibility to enable adoption in a number of
undergraduate courses at various levels.

The modules focus more on architectural and algorithmic issues rather than
the programming aspects. The modules are constructed to illustrate parallel per-
formance issues primarily through code examples and experimental studies. This
approach makes the modules accessible to students who do not yet have a strong
background in parallel programming. Thus, the target audience for this chapter are
instructors who are teaching CS1, with or without parallel programming, and also
instructors who are teaching upper-level electives where their students may already
have taken a semester of parallel programming.

Modules for Teaching Parallel Performance Concepts 61

Elementary Concepts

This module is designed to introduce fundamental concepts in parallel computing
in a CS1 course. The concepts are illustrated with no particular binding to any
programming language and therefore can be introduced in different flavors of CS1
courses.

Recommended Length 1 lecture (1:15 min)
Recommended Course CS1, CS2

Organization and Content

The major topics in this module include (i) overview of parallel computation on a
multicore processor, (ii) data dependence and need for synchronization in parallel
programs, (iii) parallel performance and Amdahl’s law and (iv) energy efficient
computing. The topics are introduced through lectures slides, an in-class activity,
code examples and a program demo. The following subsections describe how these
topics are explained and the order in which they are introduced.

Parallelism in Real Life

The module begins with an in-class activity that engages the students and demon-
strates the benefits of parallelism. An activity that works quite well with CS
freshman is a live simulation of the word search problem where students act as
processing threads. In this activity, the class is split into k groups. Each group
is assigned the task of finding a collection of words in a book and reporting the
page numbers where the words occurred. Each group gets a copy of the book. But
the copies are sectioned into different-sized segments. Thus, one group might get
the entire book in one chunk while another may be assigned one page per group
member. The students are then asked to try to find an efficient method of solving the
problem with resources they are given. Naturally, the teams with fewer pages per
student (thread) are likely to get to the results first. However, care must be taken in
selecting the words and their positions and in segmenting the text.

Parallel Computing and Its Importance Today

Following the in-class example, a set of lecture slides defines parallel computing
and discusses its importance in today’s world. A high-level definition of a parallel
computer is presented. Student familiarity with basic Von-Neumann architecture is
assumed (not an unrealistic expectation for CS1 students). The discussion of the
definition of a parallel computer is followed by some history of parallel computing.

62 A. Qasem

Fig. 1 Lecture slides illustrating the differences in serial and parallel program execution. Anima-
tion is used for the different blocks in the slideshow

The point is made that parallel computing has been around for a long time, ever
since the beginning of computing. Notwithstanding, it has only become mainstream
in the last decade. Brief descriptions of mainframe, vector computers and clusters
are presented. This is followed by a discussion of multicore computers of today.
The importance of energy efficiency and the role it has played in the evolution of
computer chips and given rise to multicore systems is discussed. The lecture slides
emphasize the need for achieving higher performance at lower power consumption
or at specified power budgets. The ubiquity of parallel computers is also discussed.
Students are asked to guess/comment on the number of processing cores on their
smartphones and tablets. Their guesses are then validated against actual numbers. A
discussion follows on the need for more parallel processing cores.

Sequential vs. Parallel Program Execution

A major portion of the module is spent introducing the student to the fundamental
difference in sequential and parallel program execution. A walk-through example

Modules for Teaching Parallel Performance Concepts 63

Fig. 2 A simple parallel
code written in SimPar

int add() {
int x, y, result;
#PARALLEL {

x = 17;
y = 13;

}
result = x + y;
return result;

}

Fig. 3 Incorrectly
parallelized code

int add() {
int x, y, result;
#PARALLEL {

x = 17;
y = 13;
result = x + y;

}
return result;

}

is used for this purpose. Figure 1 shows a subset of the slides that are used to
explain this topic. The slides are accompanied by a set of examples written in
SimPar [3]. Two such examples are shown in Figs. 2 and 3. SimPar is a simple macro
language that uses an intuitive pragma based syntax. Since students are generally not
expected to be familiar with any parallel programming language in CS1, SimPar is
an effective tool to discuss parallelism with real examples without getting bogged
down in syntax minutiae. SimPar contains only one kind of parallel statement, a
directive in the form of #PARALLEL { ...}. This implies that all high-level
statements enclosed in the subsequent block will be executed concurrently. SimPar
processes such directives by taking each statement in the block and converting it
into a Pthread function. Supplementary materials for this chapter includes a SimPar
parser that can be used to create other simple examples. The instructor should be
aware that SimPar is not a realistic parallel language and is very limited in ability.
Thus it should not be used for creating extended examples beyond CS1. During
the walk-through of the example, students are asked to list the order in which
the statements will execute on the processor. A parallel directive is then inserted
for the two assignment statements and the meaning is explained to the students.
The program is then extended to include array assignments instead of just simple
assignments. This program is compiled and executed and the result examined in
class. Students are then asked to comment on what other statements could be
parallelized. The instructor leads them to an example where the result statement
is put in the PARALLEL block along with the two assignment statements. This

64 A. Qasem

program is run, potentially several times, and the error demonstrated to the students.
The students are then asked to describe the problem in the code. This is followed by
a discussion of data dependence and the challenges with parallel programming.

Parallel Programming Tools

Students are told that SimPar is not a real language. The syntax for real languages
are more complex and so is the programming model. Some of the currently available
parallel languages and tools, including OpenMP, Pthreads, MPI are presented. The
suitability of each is briefly discussed. The slides include example codes for each of
these parallel languages. However, students are told they are not expected to learn
the syntax at this stage.

Performance Metrics

In this segment of the module, performance issues in parallel computing are
reiterated. This is followed by definitions and examples of sequential and parallel
performance metrics. A simple parallel search code written in SimPar is used to do
an in-class demo to show the differences in the performance metrics. Sequential
and parallel (OpenMP) versions of the code are also shown in class. The code
is compiled and executed with different data sets. Execution time and energy are
measured for each run. A convenient tool for measuring power consumption on Intel
processors is Likwid [4], freely available for download. The specific performance
metrics and definitions that are discussed include

• Execution time
• Energy
• Speedup and Greenup
• Amdahl’s Law
• Linear speedup
• Scalability

Pedagogical Notes

The author has used this module in CS1 courses in three semesters at Texas State
University. In all three cases, it was helpful to introduce this module towards the end
of the semester when students are somewhat more confident with the syntax of the
sequential language that is being used in the class.

Modules for Teaching Parallel Performance Concepts 65

For the in-class activity, we found that a group size of four and a section size of
two pages per member for the most parallel group is ideal. Making groups larger,
makes the sequential group not as engaged. More than two pages of dense text
makes the example run too long. We also found that, it is helpful to assign some form
of reward to the team finishing first. This motivates the teams to be more engaged
in the activity. Our experience also showed that it is better to place the stronger
and more vocal students in the sequential group. Since the activity is framed as a
competition and the sequential group is almost certain to not win, putting under-
performing students in that group is not advisable.

It is advisable that instructors practice the live coding examples ahead of lecture
time. Students often raise questions and suggest alternate approaches. The instructor
should be fairly comfortable with the examples in order to incorporate these
suggestions on-the-fly. The instructor should also take care to use the same system
for the demo as the one used for practice. Variations in system configuration can
make some examples not work as expected.

Sample Exercises

1. Computer A has 4 processors and Computer B has 8 processors. A parallel
program P, takes 16 s to run on A and 12 s to run on B. Is this the type of
performance you would expect out of P? Give one explanation as to why P does
not achieve more/less performance.

2. Execute simple programs written in SimPar. Compare their performance with
performance of sequential versions.

3. Download the C++ implementations of (i) knapsack and (ii) quicksort from
http://tues.cs.txstate.edu. Consider the opportunities for paral-
lelism in these two codes. Insert SimPar directives to parallelize the two
applications. Execute the parallel applications and compare their performance
with the sequential version of the code.

Task Orchestration

This module focuses on performance issues related to communication and synchro-
nization of parallel applications. It is intended to be introduced in the Operating
Systems course, as it provides the most context for the material covered.

Recommended Length 1.5 lectures (2 h)
Recommended Course Operating Systems

66 A. Qasem

S2 needs
radius

from S1

S3
needs
area

from S2

#define PI 3.141

int main() {
double radius, area;
radius = get_radius_from_circle();
area = PI * radius * radius;
printf("Circle area = %f\n", area);

}

#define PI 3.141

int main() {
double radius, area;

S1 radius = get_radius_from_circle();
S2 area = PI * radius * radius;
S3 printf("Circle area = %f\n",area);

}

Fig. 4 Code example illustrating data dependence

Organization and Content

This module begins by introducing students to some fundamental concepts in
parallel programming. Notions of data dependence, synchronization, race condition,
load balance and task granularity are explained. Architecture-specific performance
issues such as those that occur on shared and distributed-memory parallel computers
are also covered. A producer-consumer application is used as a running example to
illustrate various performance issues. Power-performance trade-offs are highlighted
in each context.

Data Dependence

After a quick review of parallel computing (two slides, as used in CS1 module),
the module introduces the students to the notion of data dependence in parallel
programs. Sequential and parallel versions of a simple function is presented. The
example in Fig. 4 uses the computation of an area of a circle. But many other
examples are possible. The parallel version of the example code is written in
SimPar [3].

Students are asked to predict the outcome of the code when executed with
certain input. The code is run several times in sequential and parallel mode.
Results are discussed and students are asked to comment on the discrepancy.
Following this discussion, the annotated code is presented as a slide, highlighting
the dependencies in the code. The formal definition of data dependence is then
presented. Various forms of dependence are also discussed briefly. The point is

Modules for Teaching Parallel Performance Concepts 67

Fig. 5 Sequential version of
producer-consumer code

int main() {
while (!done) {

fill_buffer(buf); // produce
if (buf_is_full(buf))

empty_buffer(buf); // consume
}

}

#pragma omp parallel {
#pragma omp section {

fill_buffer(buf);
}
#pragma omp section {

empty_buffer(buf);
}

}

Fig. 6 Incorrectly parallelized producer-consumer code

made that both sequential and parallel programs must preserve all dependencies
in the code for semantically correct execution. For sequential programs this is
trivial since instructions are executed in program order. If students have already
taken the Architecture course, then the notion of instruction-level parallelism (ILP)
can be brought into this discussion. An example can be used to convey that the
degree to which ILP can be performed is determined by the dependencies between
the statements in question. Re-ordering transformations performed by compilers
can also be discussed to further illustrate the importance of data dependence in
semantically correct program execution.

Following this, the running example, a produce-consumer application is pre-
sented. The one shown in Fig. 5 uses the bounded-buffer problem as an example.
But many other examples for parallel producer-consumer can be created with slight
modifications. The supplementary material for this module includes an example
with the knapsack problem. The sequential code is then explained to the class.
(Figure 5 omits the actual producer-consumer functions). The parallel version of
the code is then presented. Figure 6 shows the example in OpenMP. The instructor
may continue the parallel example in SimPar but then it cannot be used later in the
module for performance experiments, as the results would prove non-intuitive. If
an OpenMP example is used, a brief review of OpenMP syntax may be required
at this point. Alternatively, this can be handled off-line with the aid of tutorials or
handouts, as discussed in section “Pedagogical Notes”. The parallel version of the
code is executed several times to produce incorrect results. Again, students are asked
to identify the cause of the problem. Class discussion ensues, until the dependencies
in the code have been identified and clearly articulated.

68 A. Qasem

Fig. 7 Another incorrectly
parallelized
producer-consumer code

full = 0;
#pragma omp parallel {

#pragma omp section {
fill_buffer(buf);
full = 1;

}
#pragma omp section {

while (!full) {
/* wait */

}
empty_buffer(buf);

}
}

flag = 0;
#pragma omp parallel {

#pragma omp section {
fill_buffer(buf);
#pragma omp flush
flag = 1;
#pragma omp flush(flag)

}
#pragma omp section {

#pragma omp flush
while (!flag)
#pragma omp flush(flag)

empty_buffer(buf);
}

}

Fig. 8 Correctly parallelized producer-consumer code

Synchronization

After it has been established that the code in Fig. 6 is producing incorrect results due
to data dependence violation, students are then asked if it is possible to correctly
parallelize the code and if so what conditions must hold. This discussion leads to
the notion of synchronization in parallel programs. The example in Fig. 7 is then
constructed in-class by editing the example from Fig. 6. This code is compiled and
executed several times to show the code still has not been correctly parallelized.
The students are then asked to identify the dependence that caused this problem.
This brings up the need for atomic operations, the idea of a critical section and race

Modules for Teaching Parallel Performance Concepts 69

Pipelined Parallelism

CP

Shared
Buffer

P

C

Synchronization window

Example: Streaming applications such as Netflix

(a)

Synchronization Interval

CP

Shared
Data Set

P

C

Data produced in one stage is
being consumed in the next one

(b)

Synchronization Interval

CP

Shared
Data Set

P

C

Length of synchronization window
controlled by programmer

(c)

Ideal Synchronization Interval

Bad

Not as
bad

Better?

(d)

Fig. 9 Lecture slides illustrating pipelined parallelism and the role of synchronization interval on
performance

condition. The code is then fixed in-class by placing guards around the operations
on the flag. This version of the code is shown in Fig. 8. Finally, the code is executed
a few times to show that it indeed now produces correct results.

The pragmas are then modified to parallelize the example code in a pipelined
fashion. Figure 9 shows a subset of the animated slides that explains pipelined-
parallelism, the synchronization interval and its effect on performance.

Task Granularity

Task granularity and how it is controlled by the synchronization interval is intro-
duced using a set of lecture slides. The impact of task granularity on performance is
also explained. Following this the pipelined-parallel producer-consumer example
is revisited. Students are asked to identify the amount of work performed per
thread (i.e., task granularity). The amount of work is expressed in number of items
read/written to the buffer. The code is then executed with different task granularity
by using the BLOCK parameter in the OpenMP pragma. The results of these
executions demonstrate to the student the significance of task granularity and cost
of synchronization to parallel performance.

70 A. Qasem

Load Balancing

OS scheduling is revisited to introduce the concept of load balancing. The basic
scheduling algorithm is reviewed and once again the running example is used for an
in-class demo. In this demo, the program is launched with multiple producers and
consumers and the work is broken un-evenly between producers and consumers.
At launch time, Linux thread_affinity() API is used to pin certain threads
to specific cores to illustrate load imbalance. The script to perform this demo is
available with the supplementary materials.

Pedagogical Notes

Although this module can be introduced in other upper-level courses (e.g., Unix
Systems Programming), in our experience it works best in the OS course. A
seamless integration is possible if the module is introduced in the OS class during
the week when thread scheduling is discussed.

To provide background for OpenMP, a handout can be distributed ahead of time.
A sample handout is included with the lecture material. Furthermore, there are
several excellent online tutorials. Students can be asked to review one of these before
the lecture. The supplementary material contains urls for online tutorials.

To increase student engagement, lecture slides related to load balancing for
energy efficiency can be presented interactively as problem sets. The problems can
be drawn out on the board or the slides can be animated and students can be asked
to come up with a thread mapping solution as a group.

It is advisable that instructors practice the live coding examples ahead of
lecture time. Students often raise questions and suggest alternate approaches. The
instructor should be fairly comfortable with the examples in order to incorporate
their suggestions into the demo.

L3

L2 L2

L1

Core 0 Core 1 Core 2 Core 3

L1 L1 L1

Modules for Teaching Parallel Performance Concepts 71

Sample Exercises

1. Consider the high-level block diagram of a multicore system as shown in the
figure above. A multi-threaded producer-consumer application is executing on
this system. The application has 4 threads with 2 producers (p0 and p1) and
2 consumers (c2 and c1). Data produced by p0 is consumed by c1 and data
produced by p1 is consumed by c0.

• Describe a suitable schedule to improve the overall performance of the appli-
cation. Explain why your schedule is likely to deliver improved performance.

• Would your schedule change if the primary objective is to reduce power? Why
or why not?

2. Implement a feedback queue scheduler using the OS framework used in the
class. The scheduler should aim to minimize power consumption on a multicore
system.

3. Parallelize the provided n-body simulation code using OpenMP and then derive
an optimal affinity-based schedule. The scheduler can be implemented using
affinity support in either Pthreads or GNU OpenMP.

Analysis and Evaluation

This module concentrates on performance estimation and measurement of parallel
systems, including efficiency, linear and super-linear speedup, throughput, data
locality, weak and strong scaling, and load balance. Performance estimation of
sequential architectures and the implications of Amdahl’s law are typically part
of current computer architecture courses. This module extends these concepts and
investigates parallel performance in light of Amdahl’s law. It explores modern
parallel benchmark suites such as PARSEC (task, data, and pipelined parallelism)
and Lonestar (amorphous parallelism) and demonstrates how to write benchmark
programs to measure the performance of parallel hardware. It discusses how to
identify potential for speedup as well as upper speedup bounds and performance
obstacles.

Recommended Length 1 lecture (1:15 min)
Recommended Course Compilers, Computer Architecture, Upper-level CS elec-

tive

Organization and Content

This module starts with a review of elementary performance concepts and OpenMP
syntax. This is followed by discussion of several advanced performance concepts.

72 A. Qasem

The lecture slides for this module are complemented with a series of micro-
benchmarks written in OpenMP. Alternate implementations in Pthreads are also
provided in the supplementary materials. Each benchmark highlights a particular
performance issue. Each benchmark will also include several student versions. The
student versions expose parameters in the code that students can alter in various
ways to impact the performance of the code. The student versions of the code also
includes omitted code blocks that the students are expected to fill in as an exercise. A
set of scripts measure various performance metrics including execution time, cache
misses and processor power consumption.

Review of Elementary Performance Concepts

This section is similar to the module section described in section “Performance
Metrics”. The main difference is that the examples used are more involved and
written in OpenMP.

Review of OpenMP Syntax

This segment of the module provides a quick review of basic OpenMP syntax and
semantics. It is assumed the students are familiar with parallel program execution
but not necessarily with any programming language. Therefore, this introduction
is very basic. Only the parallel regions and parallel for constructs are
covered. The goal is to give students enough knowledge for them to modify existing
code but not necessarily for them to be able to write efficient parallel programs on
their own. If a student comes in with OpenMP programming experience, this module
is still very useful as it will train her to tune the OpenMP pragmas to extract better
performance from her code. As was done with the task orchestration module, the
OpenMP tutorial can also be done offline to save some lecture time.

Strong and Weak Scaling

The notion of scalability of parallel programs is introduced in this segment. The
distinction between strong scaling and weak scaling is discussed. The code shown in
Fig. 10 is used as a running example. The code is explained and then executed with
1, 2, 4, and 8 threads on an 8 core machine. Other configurations are feasible based
on computer availability. Before each run of the code, students are asked to guess
the execution time. As the code is written the program will achieve strong scaling on
up to 16 cores on current-generation processors. To observe scaling effects beyond
16 cores, the data set needs to be >4 GB. This introduces NUMA effects and page
faults that prevent the application from achieving linear speedup.

Modules for Teaching Parallel Performance Concepts 73

pixel *src_images = (pixel *) malloc(sizeof(pixel) * PIXELS_PER_IMG * IMGS);
pixel *dst_images = (pixel *) malloc(sizeof(pixel) * PIXELS_PER_IMG * IMGS);

initialize(src_images);

DATA_ITEM_TYPE gs;
omp_set_num_threads(THREADS); // fix number of threads
start = omp_get_wtime();
int i;
#pragma omp parallel for private(i)
for (i = 0; i < IMGS; i++) { // process images in parallel

int img_index = i * PIXELS_PER_IMG;
for (int k = 0; k < ITERS; k++) {

for (unsigned j = img_index; j < img_index + PIXELS_PER_IMG; j++)
dst_images[j] = (0.3 * src_images[j].r + 0.59 *

src_images[j].g + 0.11 * src_images[j].b;
}

}

Fig. 10 Example parallel code to demonstrate scaling

The code in Fig. 10 is then used to conduct a weak scaling experiment. The data
set size is increased progressively until performance stops to scale. How much the
data set needs to be increased depends on the particular platform where the code is
being run. On some machines, runs for larger data sets can take up several minutes.
So this needs to be weighed in when doing the demo. However, the code is designed
in a way such that on most machines, memory bound behavior will show up for
runs that take no more than 30 s. Similar to the strong scaling demo, before each
run students are polled for the execution time. Following these demos the notions of
strong scaling and weak scaling are formalized. A set of lectures slides and charts
illustrating scaling trends are used for this purpose.

Linear and Super Linear Speedup

The code from Fig. 10 is re-used to explain the concepts of linear and super-linear
speedups. The single-threaded version is labeled as the baseline and then speedup is
calculated for 2, 4, and 8 thread versions. The obtained speedup is correlated with
the number of threads/cores and shown to match the definition of linear speedup.
The image processing example code is then transformed using tiling to improve
data locality, as shown in Fig. 11. If time permits, this can be done live in class, as
the technique is explained. Otherwise the example can be created ahead of time.
The tiled version of the code is re-run with 2, 4, and 8 threads to demonstrate super-
linear speedup. The working set size is orchestrated to exceed most L2 caches on
current generation processors. A tiling size of 16–24 would keep the working set
in cache. Some trial and error may be necessary prior to the demo to determine the
exact size.

74 A. Qasem

pixel *src_images = (pixel *) malloc(sizeof(pixel) * PIXELS_PER_IMG * IMGS);
pixel *dst_images = (pixel *) malloc(sizeof(pixel) * PIXELS_PER_IMG * IMGS);

initialize(src_images);

#define TILESIZE 64

DATA_ITEM_TYPE gs;
omp_set_num_threads(THREADS); // fix number of threads
start = omp_get_wtime();
int i;
#pragma omp parallel for private(i)
for (i = 0; i < IMGS; i++) { // process images in parallel

int img_index = i * PIXELS_PER_IMG;
for (usigned j = img_index; j < img_index + PIXELS_PER_IMG; j = j + TILESIZE)

for (int k = 0; k < ITERS; k++) {
for (unsigned jj = j; jj < j + TILESIZE; jj++)

for (unsigned j = img_index; j < img_index + PIXELS_PER_IMG; j++)
dst_images[j] = (0.3 * src_images[j].r + 0.59 *

src_images[j].g + 0.11 * src_images[j].b;
}

}

Fig. 11 Tiled version of image processing parallel code used to demonstrate data locality effects

Latency vs. Bandwidth

The concepts of memory bandwidth and latency and their effects on parallel
performance is discussed next. Sequential versions of the code in Fig. 12 are first
used to demonstrate the importance of locality in performance. The code on the left
exploits spatial locality while the code on the right does not. The parallelization of
the two codes is then explained and the parallel versions of the codes are executed.
A second example with a tiled computation is also introduced briefly to illustrate the
notion of temporal locality and its impact on performance. This demo establishes the
fact that parallelism alone cannot overcome limitations with memory locality. The
code in Fig. 10 is then run with a larger data set where the data set is large enough
to exceed the available memory bandwidth per socket. After the execution of the
program, the point is reiterated that scalable performance can be limited by memory
factors.

SMP vs. NUMA

The discussion on latency and bandwidth leads to a discussion in parallel architec-
tures and the main considerations for programming such systems. This discussion
is left at a very high-level and uses slides to illustrate the differences between
the architectures. Programming models and tools for the different systems is also
discussed. GPUs and heterogeneous systems architectures with CPUs and GPUs
are also touched on.

Modules for Teaching Parallel Performance Concepts 75

Fig. 12 Parallel code with
and without spatial exploited
spatial locality

int main() {
int **a;
omp_set_num_threads(12);
a = (int **) malloc(sizeof(int *) *

DIMSIZE);
int i,j;
for (i = 0; i < DIMSIZE; i++)

a[i] = (int *) malloc(sizeof(int) *
DIMSIZE);

#pragma omp parallel for private(i,j)
for (i = 0; i < DIMSIZE; i++)

for (j = 0; j < DIMSIZE; j++)
a[i][j] = 17;

return 0;
}

int main() {
int **a;
omp_set_num_threads(12);
a = (int **) malloc(sizeof(int *) *

DIMSIZE);
int i,j;
for (i = 0; i < DIMSIZE; i++)

a[i] = (int *) malloc(sizeof(int) *
DIMSIZE);

#pragma omp parallel for private(i,j)
for (j = 0; j < DIMSIZE; j++)

for (i = 0; i < DIMSIZE; i++)
a[i][j] = 17;

return 0;
}

Power vs. Performance

This module ends with a discussion on energy efficiency of parallel applications.
The importance of saving power and attaining high-performance at specified power
budgets is explained.

Pedagogical Notes

It is advisable to run the experiments a few times before the actual in-class demo.
This will allow the codes to adapt to the execution environment and the instructor
will be able to make any necessary changes. Details on how to tune the parameters
of the code so that they exhibit the expected behavior are provided with sample
codes and scripts.

76 A. Qasem

In the default configuration, the slowest code in the examples runs for a few
seconds. This is done to not take up too much class time. Nonetheless, if time
permits, the longer versions of the codes should be used as the performance
differences make more of an impression on the students. During these long runs
the instructor may further elaborate on the topics.

Sample Exercises

1. Set the DIMSIZE, THREADS and BLOCK variables in the above code to
different values (select values based on class discussion) and execute the code
on a server X with 8 cores and server Y with 16 cores. Record performance
statistics using perf. Prepare a report and explain the performance variations
you observe on the two machines.

2. Download the PARSEC benchmark suite (http://parsec.cs.princeton.edu). Select
one application from the group: canneal, dedup and streamcluster and another

http://parsec.cs.princeton.edu

Modules for Teaching Parallel Performance Concepts 77

application from the group: swaptions, bodytrack, facesim. Conduct a perfor-
mance study of the two selected applications on a compute server with at least
16 cores. Use the parsecmgmt package to execute the applications with input
data sets: small, medium, large and native, and with different thread counts: 2, 4,
8, 16, 32 and 64. Record performance statistics using perf.

What are the main performance trends you observe? What does that say about
the characteristics of the two selected programs? Relate the performance trends
to scalability concepts discussed in this module and prepare a report.

References

1. The Joint Task Force on Computing Curricula Association for Computing Machinery
(ACM)/IEEE Computer Society, “Curriculum Guidelines for Undergraduate Degree Programs
in Computer Science,” 2013.

2. S. Prasad, A. Chtchelkanova, F. Dehne, M. Gouda, A. Gupta, J. Jaja, K. Kant, A. La Salle,
R. LeBlanc, A. Lumsdaine, D. Padua, M. Parashar, V. Prasanna, Y. Robert, A. Rosenberg,
S. Sahni, B. Shirazi, A. Sussman, C. Weems, and J. Wu, “2012 NSF/IEEE-TCPP Curriculum
Initiative on Parallel and Distributed Computing - Core Topics for Undergraduates, Version I,”
http://www.cs.gsu.edu/~tcpp/curriculum/, accessed: 2018-02-11.

3. A. Qasem, “SimPar : A macro language for introducing parallel concepts to CS 1 students,”
https://github.com/apanqasem/simpar.git, accessed: 2018-02-11.

4. J. Treibig, G. Hager, and G. Wellein, “LIKWID: A Lightweight Performance-Oriented Tool
Suite for x86 Multicore Environments,” in 39th International Conference on Parallel Processing
Workshops, 2010.

http://www.cs.gsu.edu/~tcpp/curriculum/
https://github.com/apanqasem/simpar.git

Scalability in Parallel Processing

Yanik Ngoko and Denis Trystram

Abstract The objective of this chapter is to discuss the notion of scalability.
We start by explaining the notion with an emphasis on modern (and future)
large scale parallel platforms. We also review the classical metrics used for
estimating the scalability of a parallel platform, namely, speed-up, efficiency and
asymptotic analysis. We continue with the presentation of two fundamental laws of
scalability: Amdahl’s and Gustafson’s laws. Our presentation considers the original
arguments of the authors and reexamines their applicability in today’s machines
and computational problems. Then, the chapter discusses more advanced topics that
cover the evolution of computing fields (in term of problems), modern resource
sharing techniques and the more specific issue of reducing energy consumption. The
chapter ends with a presentation of a statistical approach to the design of scalable
algorithms. The approach describes how scalable algorithms can be designed by
using a “cooperation” of several parallel algorithms solving the same problem.
The construction of such cooperations is particularly interesting while solving hard
combinatorial problems. We provide an illustration of this last point on the classical
satisfiability problem SAT.

Relevant core courses: This material applies to ParAlgo courses.
Relevant PDC topics: Scalability in algorithms and architectures, speedup, Costs

of computation, Data parallelism, Performance modeling
Learning Outcome: Students at the end of this lesson will be able to:

• Perform a classical speed-up analysis,
• Perform an efficiency and isoefficiency analysis,
• Understand the complementarity between Amdahl’s and Gustafson’s laws,

Y. Ngoko
Qarnot Computing, Montrouge, France
e-mail: yanik.ngoko@qarnot-computing.com

D. Trystram (�)
Université Grenoble-Alpes, Grenoble, France
e-mail: Denis.Trystram@univ-grenoble-alpes.fr

© Springer International Publishing AG, part of Springer Nature 2018
S. K. Prasad et al. (eds.), Topics in Parallel and Distributed Computing,
https://doi.org/10.1007/978-3-319-93109-8_4

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93109-8_4&domain=pdf
mailto:yanik.ngoko@qarnot-computing.com
mailto:Denis.Trystram@univ-grenoble-alpes.fr
https://doi.org/10.1007/978-3-319-93109-8_4

80 Y. Ngoko and D. Trystram

• Analyze the benefits of parallel processing,
• Determine the best approaches for designing a parallel program,
• Identify limitations in the parallelism of a program,
• Perform a trade-off analysis between time and energy consumption, and
• Envision alternative approaches for the design of scalable algorithms.

Context for use: This chapter is intended to be used in intermediate-advanced
courses on the design and analysis of parallel algorithms. The material covers
data parallelism, performance metrics, performance modeling, speedup, efficiency,
Amdahl’s law, Gustafson’s law, and isoefficiency. It also presents an analysis of
Amdahl’s and Gustafson’s laws when considering resource sharing techniques,
energy-efficiency and problem types. The analysis could be too advanced for a CS2
student because it requires a background in modern parallel systems and computer
architectures.

Introduction

Parallel machines are always highly powerful and complex (See the history of
computing in [20]). This is obvious when we consider the evolution in the number
of cores of top supercomputers in recent years.1 This progression is driven by
the conviction that with more powerful machines, we could reduce the running
times in the resolution of challenging, compute-intensive problems such as real-
time simulations (climate, brain, health, universe, etc.). On this latter point, let us
emphasize that the experts are convinced that such simulations could be undertaken
only with future exascale platforms.2

At first glance, it might seem obvious that given a parallel algorithm and
a machine, the running time of the algorithm while using x CPUs will be
greater than the one we could expect with more than x CPUs. However, this
is not necessarily true; indeed, the computation of a parallel algorithm is split
between a computational part required for creating parallelism (a set of workers
corresponding to threads or processes), computations required for running the
concurrent workers, and those necessary for communication and synchronization.
Given a more powerful machine (in term of cores or CPUs), the main option for
reducing the running time of a parallel algorithm would consist in increasing the
number of independent computations. However, this will probably induce more
communication, synchronization, and a more important overhead for the creation
of parallelism. Hence, it cannot be totally guaranteed that the gain induced by the
increase in parallelism will be balanced by these additional operations.

1Details are available at http://top500.org
2http://www.exascale-projects.eu/

http://top500.org
http://www.exascale-projects.eu/

Scalability in Parallel Processing 81

This observation shows that we need a conceptual support to justify why super-
computers with more computational units could serve to tackle more efficiently
compute intensive problems. Historically, the notion of scalability was introduced
for this purpose. Roughly speaking, it describes the capacity of an algorithm to
efficiently solve larger problems when it is executed on a machine with more
parallelism.

The purpose of this chapter is three-fold. First, we intend to provide an
understanding of scalability, deeper than the intuitive one. We define the concept,
discuss its interest and introduce key metrics used for its quantification. The
concept of scalability is also associated with two fundamental laws: Amdahl’s and
Gustafson’s laws. Our second objective is to put these laws in perspective with the
computability of problems, modern resource sharing techniques and the concept of
energy-efficiency. Finally, we introduce a new statistical approach for improving the
scalability of parallel algorithms.

Background on the Scalability

We conclude that an algorithm is scalable from an analysis of its behavior when it is
used in the processing of larger problems with more parallelism in the machine. For
this purpose, we need metrics to characterize the behavior of a parallel algorithm. In
this section, we will first introduce some classical metrics. Then, we will show how
they can be used to analyze scalability.

Speedup and Efficiency

Definition 1 (Speedup) Let us consider a parallel machine made of p computing
units and a computational problem P . Let us assume an instance of P for which the
sequential algorithm has a running time equal to T1. Finally, let us assume a parallel
algorithm A whose running time in the resolution of the instance on p computing
units is Tp. Then, we define the speedup achieved by A when solving the problem
instance as

Sp = T1

Tp

The notion of computing units will depend both on the parallelism of the
underlying machine and on the implementation of A . Thus, these units might
consist of cores, processors and even containers. For the sake of simplicity, in
the rest of this chapter, unless otherwise stated, we will consider that computing
units correspond to processors. This choice is debatable as a parallel algorithm
might support different types of parallelism (cores, processors, etc.) However, the

82 Y. Ngoko and D. Trystram

resulting conclusion might still hold in choosing a lower level of parallelism.
Another question in this definition is how to define T1. There are at least two choices:
the execution time of the parallel algorithm on one processor, or the execution time
of the best sequential algorithm for solving P . It is this latter metric that we will
consider.

Given an instance of P , let us consider that the number of sequential operations
to perform in its resolution is W . We will also refer to W as the work. In general,
we could expect to have 1 ≤ Sp ≤ p. The argument derives from the common
sense since with p processors, we could divide the number of sequential operations
to perform into no more than p pieces of work, which leads to an acceleration in the
resolution time of at most p. However, for several reasons, it might be possible to
have Sp > p. One reason is that we might have more cache faults in the sequential
algorithm when it processes an instance I whose total work is W than in the case
where it processes sub-instances of I of work W

p
.

Definition 2 (Efficiency) The efficiency of a parallel algorithm on a problem
instance is as follows:

E = Sp

p

In general E ∈ [0, 1]. But, as Sp could exceed p, E could be greater than 1.
In order to compute the speedup or the efficiency, we need to consider a specific

instance of problem P . However, for the sake of clarity, we will consider that if two
instances have the same size, they also have the same work and execution time. For
instance, let us consider that P consists of multiplying two (dense) square matrices.
Let us also assume two problem instances A × B and C × D where A,B,C,D ∈
R

n×n. The size of the first instance is the number of elements of A added to the
number of elements of B, which is 2n2. The size of the second instance is also 2n2.
Thus, A×B and C×D hold the same amount of work. This conclusion is confirmed
in practice since the processing of both instances will require the same number of
floating-point operations.

Asymptotic Analysis of Speedup and Efficiency

The asymptotic analysis is a central concept in the study of parallel algorithms.
Given a metric that depends on a set of parameters, its objective is to state how
the metric behaves when the parameter values become infinite. The first model of
asymptotic analysis that we consider focuses on speedup. Its objective is to capture
the speedup behavior when the number of processors and problem size increase.
This model can be used for a theoretical or experimental analysis of the parallel
algorithm. The theoretical analysis is discussed in the next section by means of
Amdahl’s and Gustafson’s laws.

Scalability in Parallel Processing 83

In order to capture the speedup behavior through experiments, a classical tool
consists in generating a 2D chart, which states the speedup reached for the various
instances depending on the number of processors. An example is depicted in Fig. 1.
The curves have been obtained using following the function:

T (n, p) =
(

n

p
+ p

)
.4 × 10−8

This function is representative of the running time we could observe on the
problem of finding the maximum of a vector of real numbers. Indeed, with p

processors, the problem can be solved as follows. First the vector is partitioned into
p pieces. Local maxima are then computed in parallel for each sub-vector. Finally,
the maximum of the local maxima is returned. If we proceed this way, then the
number of comparisons is n

p
for each sub-vector and p for finding the maximum

among local maxima. If a comparison takes 4 × 10−8 s, then we have the above
function.

In Fig. 1, one can notice that the greater the size of the problem, the higher the
speedup we can reach with multiple processors. This is because, when n increases,
the speedup curve becomes close to the identity line (y = x). We obtain a speedup
close to p and hence, an efficiency close to 1. In such a situation, we conclude
that the parallel algorithm is scalable. More generally, we say that an algorithm
is scalable if its efficiency can be kept constant when increasing the size and the
number of processors. In this example, we make a projection of the speedup in
establishing that for large values of n and p, it remains close to the identity function.

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

sp
ee

du
p

processors

n=64
n=512

n=1024
n=2048
n=4092
n=8192

n=16384
n=32768

y=x

Fig. 1 Practical example of speedup distribution in the search of the maximum element of a vector
of size n

84 Y. Ngoko and D. Trystram

An interesting question is then to know whether or not it is only such a function that
can be achieved in an asymptotic analysis. This is discussed in the next section.

Types of Speedups

Definition 3 (Linear speedup) We say that a parallel algorithm has a linear
speedup if the speedup Sp converges towards p when both the problem size and
the number of processors increase.

The problem size is not included in the definition. This means that, whatever
the problem instance, the parallel algorithm efficiently shares the amount of work
among the processors. Linear speedups will typically be observed in parallel
algorithms composed of workers that do not need to communicate. This is the case
for instance of Monte-Carlo simulations.

Definition 4 (Super-linear speedup) We say that a parallel algorithm has a super-
linear speedup if Sp > p when both the problem size and the number of processors
increase.

Super-linear speedups will typically be observed in parallel search algorithms
based on backtracking. Indeed, assuming that the sequential depth first search space
is represented as a tree, we could avoid a deep exploration of the paths that do
not lead to optimal results in splitting the tree in the case where the solution is at
the beginning of another path. The order of cache accesses may also play a role in
super-linear speedups phenomena.

Definition 5 (sub-linear speedup) We say that a parallel algorithm has a sub-
linear speedup if Sp < p when both the problem size and the number of processors
increase.

Due to some limits in the parallelization that we will discuss further, sub-linear
speedups will frequently be observed.

Strong and Weak Scaling

Let us consider again the example of section “Asymptotic Analysis of Speedup and
Efficiency” (finding the largest element in a vector). We concluded that there is
a convergence towards the identity function by computing the speedup for various
problem sizes and processors numbers. Our conclusion was based on the distribution
of the chosen points (n, p). It is important to notice that if n was only selected
between 64 and 512, we would not have observed the convergence to the identity
line. As we cannot evaluate all possible points, an important challenge in asymptotic
analysis is to make an appropriate selection. For this purpose, two types of speedup
analysis are considered in practice: weak scaling and strong scaling analysis.

Scalability in Parallel Processing 85

In weak scaling analysis, we evaluate the speedup, efficiency or the running time
of a parallel algorithm in points (n, p) where we ensure that the problem size per
processor remains constant. A common practice in weak scaling analysis consists in
doubling both the size of the problem and the number of processors. If the running
time or the efficiency remains constant, then the algorithm is scalable. In strong
scaling analysis, we are interested in determining how far we can remain efficient
given a fixed problem size. Therefore, for a fixed problem size, we increase the
number or processors until we observe a change in the efficiency.

Isoefficiency

Given the running time function of section “Asymptotic Analysis of Speedup and
Efficiency”, we computed in Fig. 2, different values of the efficiency assuming
that the problem size per processor (denoted by np) is 64 and 1024. As one can
notice, if a linear speedup is clearly visible for np = 1024, it is not the case for
np = 64. An important question in scalability analysis is then to know how to
increase the problem size per number of processors. The isoefficiency [10] concept
was introduced for this purpose.

More generally, for a given efficiency, the isoefficiency function of a parallel
algorithm shows how to increase the problem size with respect to the number of
processors in order to keep a given value of the efficiency. Given a fixed efficiency
value, all parallel algorithms will not have the same isoefficiency function. In
general we will distinguish between algorithms for which the size must be increased

0

0.5

1

1.5

2

0 10 20 30 40 50 60

ef
fic

ie
nc

y

processors

np=16
np=1024

E=1

Fig. 2 Efficiency depending on the work per processor

86 Y. Ngoko and D. Trystram

as an exponential function of the number of processors (poorly scalable algorithms)
and those for which the size must be increased linearly (highly scalable algorithm).

There is no generic method for the computation of the isoefficiency function.
However, in the case where an analytic formulation of the sequential and parallel
algorithm execution time is available, such a function could be computed. For
instance, let us assume a basic sequential algorithm whose running time is expressed
as T1 = n · tc where n is the problem size and tc a computing time. This corresponds
to a simplified case where the sequential algorithm consists in performing n times
a given operation. Let us also assume that the parallelization of this algorithm has a
running time Tp = T1+To

p
. The idea in this latter formula is that given p processors,

we can divide the time of the sequential algorithm by a factor of p. However, we
must consider the overhead induced by communication, synchronization, and other
artifacts such as the creation of parallelism. Assuming the previous expression, the
efficiency becomes:

E = 1

1 + To

n·tc

Therefore, we can relate the problem size to the number of processors and the
efficiency with the following formula:

n = E · To

tc(1 − E)

Thus, if we want to keep efficiency constant, we must use the equation n = K ·To

where K = E
tc(1−E)

. In this formula, p does not explicitly appear; however, it is
implicitly considered in the overhead running time To that depends on the number
of processors. Finally, let us observe that in practice, it might be more complex to
derive the value of n to use since To might be a non-linear function that depends on
both p and n.

Limits of the Formalization

One of the main justification of the popularity of the concept of scalability is that
it provides a theoretical background to: (1) justify the design of large parallel
machines and (2) evaluate and compare parallel algorithms. In the early stage of
parallel computing, scalability was mainly used to show that it is possible to build
algorithms that can efficiently exploit a huge number of concurrent processors. This
argument is still valid today. Indeed, we are witnessing the end of Moore’s law as
it is discussed for instance in [23]; parallelism and scalable algorithms are then
becoming the only option for solving computing problems faster. However, this
does not mean that we have a blank check to design powerful supercomputers. It is
important to notice that we are also in another era of computation where the quality

Scalability in Parallel Processing 87

of algorithms is no longer strictly based on the running time. Other dimensions such
as energy consumption have gained in importance, which has led to the definition
of new metrics like energy-efficiency. Roughly speaking, the energy efficiency of a
parallel program captures the ratio between the amount of energy it uses and the
time it takes. Somehow, the term power efficiency is more precise because this
ratio corresponds to the amount of Watts used by the algorithm. We do believe
that the concept of scalability must be directly extended to deal with this new
notion. For instance, a scalable energy-efficient algorithm could be an algorithm
that can maintain its energy-efficiency when both the problem size and the number
of processors increase. In other words, the first limit of the formalization described
previously is not to take into account the other qualitative dimensions of the behavior
of an algorithm.

The second limit we observe is that the proposed formulation does not handle
the specificity of several computing problems and algorithms. Indeed, we implicitly
assumed here that the size of a problem instance determines (or at least is related
to) its hardness. In addition, we also assumed that all instances with the same size
are similarly hard. These assumptions are not true for many computing problems, in
particular those which are NP-hard. For instance, on the satisfiability problem SAT,
the execution time of a backtracking algorithm will depend on the distribution of
exact solutions in the search space. The difference between the running times of two
instances of the same size could be huge. A direct consequence of this inability to
relate work and problem size is that the concept of asymptotic analysis as described
previously could no longer be applied.

Finally, we considered in our presentation that computing units correspond
to processors. We also implicitly assumed that these processors have the same
performance. Today however, the architecture of parallel machines has greatly
evolved. Computing units could correspond to containers, virtual machines, cores
or any combination of hybrid components (heterogeneity). In addition, with the
complexity of machines nowadays, many other elements are related to the machine
configuration could play a role in the performance of an algorithm (and its
implementation). The question is then to determine whether or not the scalability
results observed on a specific machine are valid on another one. In the past, similar
interrogations led to the introduction of theoretical models of parallel machines like
the well-known PRAM model. We encourage the reader who wish to learn more
about it to read the seminal paper [7] or the dedicated chapter in the book of Cosnard
and Trystram [4].

Scalability Laws

In the previous section, we showed how to use speedup and efficiency in an
experimental evaluation of the scalability of a parallel algorithm. In this section,
we will present how to theoretically estimate these metrics.

88 Y. Ngoko and D. Trystram

Amdahl’s Law

Somehow, it might be counterintuitive to consider Amdahl’s law as a scalability
law. In its original paper [1], Amdahl introduced the law to explain that most actual
problems do not have enough parallelism that could use the full potential power
of supercomputers. Amdahl’s argumentation was originally based on a statistical
analysis. He showed that there is little benefit in parallelizing some computing
problems and particularly, those for which we only have irregular algorithms.3

Amdahl’s analysis was right and even today, there are several computing problems
on which the best parallel algorithms only achieve poor speedups. The idea to
make a statistical analysis of the parallelism in term of computational problems
was also ingenious. We will come back to this point and briefly introduce the P-
completeness theory whose aim is to capture the problems of the P class that are
hard to parallelize [11].

Although Amdahl showed that the usefulness of supercomputers might be
overestimated, he proposed a simple but powerful model for the analysis of parallel
algorithms. This model shows how to characterize the speedup and efficiency of a
parallel algorithm as mathematical equations.

Mathematical Formulation of Amdahl’s Law

Let us assume a sequential algorithm that solves a problem instance in W operations.
The first assumption in Amdahl’s law is to partition W into two fractions: namely,
a sequential fraction fseq and a parallelizable part fpar such that fseq + fpar =
1. The sequential part is composed of operations that must be done one after the
other and the parallelizable part corresponds to operations that can be performed
simultaneously. Let us denote by tc the execution time of a basic operation (all
instructions are assumed to be identical). Then, the sequential running time of the
algorithm is

T1 = (fseq + fpar)W · tc

Given p processors, the second assumption in Amdahl’s law is that we will have
to distinguish between two types of computations: computations of the sequential
part that will be executed on a single processor and the ones from the parallel
fraction that will be shared (ideally) among all processors. This leads to the
following expression:

3Irregular algorithms are characterized by non-uniform memory pattern accesses. For such
algorithms, we will frequently be in the situation where the data we want to access are not in
the caches. Some such well-known irregular algorithms include: Cholesky factorization, finite
differences algorithms, agglomerative clustering, Prim’s algorithm, Kruskal’s algorithm, belief
propagation.

Scalability in Parallel Processing 89

Tp = fseq · W · tc + fpar · W · tc

p

Consequently, the speedup is

Sp = 1

fseq + 1−fseq

p

It is important to observe here that the assumptions underlying Amdahl’s law
are debatable. In particular the speedup in this model is at most linear whereas
super-linear speedups can be observed in practice. This situation happens because
Amdahl’s law assumes a parallel algorithm issued from the parallelization of the
instructions of a sequential one. But in practice, the parallel algorithm could be
issued from a completely new design of the problem.

Limits to Scalability

Amdahl’s work pioneered several researches on the limit to scalability. In 1973,
Stephen Cook introduced the P-completeness theory. This branch of the complexity
theory aims at identifying problems for which there is no parallel algorithm that
takes a poly-logarithmic time in the problem size, while using a polynomial number
of processors. One of the objective of the P-completeness theory is to identify
problems that are inherently sequential. This means that there is no efficient
parallel algorithm for their resolution. In their book, Greenlaw, Hoover and Ruzzo
give a compendium of P-complete problems [11] which includes several classical
problems including scheduling, minimum set cover, and linear programming.

Another important limit to scalability is the memory wall. The memory wall
is due to an imbalance between the memory bandwidth, latency and the processor
speed [26]. On several machines, the running time to perform a Load/Store operation
in DRAM exceeds the time of a multiplication. There are several techniques that
were introduced in computer machines to avoid such a wall. A possible solution is to
recover data loading with computations: the processor can start another instruction
if the data of a prior one are not available. With this approach, given a same parallel
program, the execution order of its instructions could change from one machine to
another (out-of-order execution [16]). However, even with such a solution, we can
still remain constrained by the DRAM access time.

The third limit is the energy consumption. Indeed, the power consumption of
a supercomputer grows with processor utilization. This consumed energy is trans-
formed into heat that must be dissipated. Several studies showed that the cooling
can account for up to 40% of the energy consumed in a datacenter[6]. To reduce
this cost, the Power Usage Efficiency metric (PUE) was introduced to estimate the
efficiency of datacenters. Roughly speaking, the PUE is the ratio between the total
energy consumed by a datacenter and the one devoted to computations. The closer

90 Y. Ngoko and D. Trystram

PUE to 1, the better the datacenter. In such a context, it is important to keep the
parallel efficiency of an algorithm under a threshold where it does not consume too
much energy in the perspective of PUE minimization.

Gustafson’s Law

The concept of scalability as it is known today owes much to the work of
Gustafson [12]. Indeed, the original Amdahl’s paper showed that given a fixed
problem size, we will always reach a limit in its parallelization. This view is what
we refer today as the strong scaling perspective. Without contradicting Amdahl’s
observation, Gustafson showed that this does not mean that huge parallel machines
are useless. Indeed, the greater the numbers of resources, the faster the solution
of large problems. Thus, he introduced the weak scaling analysis and the idea of
evaluating the efficiency of the algorithm in both increasing problem sizes and
number of processors. The work of Gustafson also revisited the analysis proposed
by Amdahl to show how large speedups can be obtained in parallel algorithms. The
general analysis he proposed is reviewed below.

Mathematical Formulation of Gustafson’s Law

Just like with Amdahl’s law, Gustafson’s law is based on the concept of serial
and parallelizable fraction of work (the global work is denoted by W as before).
However, instead of considering these proportions in the sequential algorithm,
Gustafson’s analysis assumes that we know them in the parallel algorithm. Let
us assume that for a parallel algorithm that runs with p processors, the serial and
parallel fractions are f ′

seq and f ′
par respectively. The algorithm running time is

Tp = (f ′
seq + f ′

par) · W · tc

For the equivalent sequential algorithm, the running time is

T1 = (f ′
seq + f ′

par · p) · W · tc

This leads to a scaled speedup equal to

Sp = p + (1 − p)f ′
seq

In order to determine the difference between the scaled speedup and the speedup
as formulated by Amdahl, let us assume that p = 1024 and half of the work is
parallel (fseq = f ′

seq = 0.5). Then, while Amdahl’s speedup is equal to 1.998, the
scaled speedup is equal to 512.5. The difference is huge but it is easy to explain.
Indeed, Amdahl’s and Gustafson’s analyzes are implicitly based on two different

Scalability in Parallel Processing 91

approaches in the design of parallel algorithms. In Amdahl’s case, the parallel
algorithm will execute (in parallel) instructions of a sequential algorithm. This
envisions automatic parallelization and instruction level parallelism. In Gustafson’s
case, the parallelism is created depending on the number of processors. This
envisions data parallelism. Further, the scaled speedup is biased by the fact that
the sequential algorithm was considered as a degenerated version of the parallel
algorithm.

Discussion About Generic Laws

In this section, we will extend the discussion of the Amdahl’s and Gustafson’s laws.
The objective is to put in perspective these laws with respect to the problem types,
modern resource sharing techniques and energy-efficiency.

Problem Types in Amdahl’s and Gustafson’s Law

As already mentioned, the type of addressed problems is a central notion in both
Amdahl’s and Gustafson’s analysis. Indeed, the original Amdahl’s paper targeted a
set of problems that are hard to efficiently solve with a parallel algorithm because
of irregular boundaries or non-homogeneous data distributions. In the same spirit,
Gustafson introduced the notion of scaled speedup, emphasizing problems on which
he obtained near-linear speedups. We do believe that the notion of problem type has
received too little attention in parallel programming studies.

One of the most important theory developed for classifying the problem types
in parallelization is the P-complete theory [11]. Let us recall that a problem is P-
complete if: (1) it can be solved by a parallel algorithm in polynomial time, but (2) it
cannot be solved in poly-logarithmic time with a polynomial number of processors,
although P = NC. Here, NC is the class of problems that can be solved in poly-
logarithmic time using a polynomial number of processors [19]. The fundamental
question of the P-completeness theory reflects the pessimistic Amdahl’s view on the
parallelization (if P �= NC) and the optimistic Gustafson’s view (if P = NC).
Indeed, if P = NC, then we can develop a highly parallelizable algorithm for
all polynomial-time problems. Notice that a way to improve the algorithms is to
consider the randomized version RNC (which aims at determining an efficient
parallel solution with high probability). For instance, the problem of finding a
maximal matching is in RNC and not in NC. Despite its great interest, the P-
complete theory does not completely cover the class of all computational problems.
In particular, there are hard problems that we can only practically address with
heuristics. This includes problems of the NP and PSPACE class [8].

Another interesting view of problems type in parallelization was introduced
in [2]. In their paper, the authors considered 13 key techniques or kernels to

92 Y. Ngoko and D. Trystram

implement parallel algorithms. The techniques/kernels cover several computing
domains like dense and sparse linear algebra, databases, machine learning, etc.
Contrary to the P-completeness theory, NP-hard problems can be considered here
since backtracking and branch-and-bound are part of these techniques. Despite the
interest of this work, it does not however discuss one of the main aspect of Amdahl’s
and Gustafson’s analyzes where the notion of problem types was considered within
the perspective of investigating the limits we can expect from parallelization.

To conclude this “philosophical” section, we could say that when dealing with
parallelization, the problem type under consideration is crucial. For instance, it is
more likely to have an efficient parallel algorithm on a numerical problem than on
NP-hard combinatorial problems. Hence, we feel that, to fully complete the vision
of problem types in both Amdahl’s and Gustafson’s works, a statistical evaluation
of the most frequent parallel computing kernels implemented in parallel systems is
necessary.

Amdahl’s and Gustafson’s Law Revisited for Modern Resource
Sharing

Amdahl’s and Gustafson’s discussions were about the usefulness of a massive
parallel machine. In his original paper, Amdahl wrote: “Demonstration is made
of the continued validity of the single processor approach and of the weaknesses of
the multiple processor approach in terms of application to real problems and their
attendant irregularities”. As an answer, Gustafson concluded with “Our work to
date shows that it is not an insurmountable task to extract very high efficiency from
a massively-parallel ensemble”.

The original papers of Amdahl and Gustafson share at least two common
assumptions regarding the usefulness of parallel machines. The first feature is the
interest in speedup optimization. Somehow, they considered that a parallel machine
is useful if it can help to solve problems faster. As already mentioned, such a
vision is debatable nowadays since computing has an energetic price. We will return
to this point in section “Amdahl’s and Gustafson’s Law and Energy-Efficiency”.
The second feature shared by both works is to consider the usefulness of parallel
machines in an algorithmic/application centered viewpoint that does not account on
the margin, we could have at the operating system and middleware levels.

Today, most parallel machines are associated with a resource managing system,
most often based on a client/server model. Here, each user (client side) can
concurrently submit, deploy and run several parallel algorithms on a subset of
processors of a parallel machine. To manage this concurrency, new concepts have
emerged like the notion of job and job scheduler. A job refers to an instance of a
parallel algorithm composed of features (the source algorithm to run, the input data
files, the output data files, the number of processors, etc.) Each job is routed towards
a job scheduler that will determine the compute nodes on which it will be executed.

Scalability in Parallel Processing 93

Depending on the parallel algorithm under consideration, a job could be parallel,
moldable or malleable [5]. In the former, the requirements in term of processors
for the job is fixed (typically like in MPI applications). In the moldable case, the job
could run with different number of processors. In the malleable case, we additionally
consider that the processor assignment of a job can change during its execution.

With modern resource sharing techniques, it does not matter whether a job
does not fully use the total number of available processors or not. In such cases,
we could deploy another job that will be concurrently executed with it. It is also
important to notice that important progress was done to ensure that a concurrent run
will not negatively impact another one. Finally, resource sharing even goes further
with virtualization [18]. With virtual machines and containers, we can artificially
duplicate the physical resources of a machine that will be shared between several
parallel algorithms. In addition, we can adaptively remove or add physical resources
to any parallel algorithm [13].

To conclude this discussion, we argue that with modern resource sharing
techniques, parallel machines became systems that are exploited to varying degrees
depending mainly on the activity of the users and the interactions with the system.
This does not mean that the question of the scalability of a parallel algorithm is
no longer important, but that there is a complementary answer to the question of
parallel machine utility. Modern resource sharing techniques have also introduced a
new consideration regarding scalability. As alluded to earlier, the greater the number
of requests for job processing, the more useful the parallel machine because it can
be maintained full. However, this reasoning holds only if we are able to quickly
take appropriate scheduling decisions for the submitted jobs. This means that job
scheduling algorithms should also be scalable.

Amdahl’s and Gustafson’s Law and Energy-Efficiency

When considering the question of energy-efficiency, we tend to focus excessively
on the huge consumption of supercomputers while neglecting the progress made in
the design of processors. At this point, it is important to recall that for several years,
the design of processors followed Koomey’s law which states that the number of
computations per joules of energy dissipated has been doubling every year [15]. This
means that for the past several years, efforts have been made to bear on improving
computer hardware regarding the energy-efficiency. Unfortunately, the same is not
true for computer software and algorithms. This is because energy-efficiency was
not taken into account in Amdahl’s and Gustafson’s laws. These laws should be
revisited since energy consumption could not be neglected any longer.

A naive belief is that, in order to minimize energy consumption, it is sufficient
to minimize the running time. This is because the energy consumed by a parallel
algorithm on a given machine can be estimated as the sum of the instantaneous
power consumed throughout the execution of the algorithm [17]. Unfortunately, this
reasoning does not hold for modern large scale platforms. The instantaneous power

94 Y. Ngoko and D. Trystram

consumption is not always a fixed quantity. It includes a variable part that depends
on the algorithm run. This variable consumption will depend on the load, the
frequency and voltage at which the machine is run. Therefore, we could have a faster
algorithm that finally consumes more energy. However, the story does not end here.
Indeed, let us observe that faster algorithms will in general be also the ones which
are more compute-intensive. However, at the processor level, compute-intensive
algorithms generally produce more heat. Consequently, we could even need a more
sophisticated cooling mechanism to lower the temperature of a supercomputer on
which we run a compute-intensive algorithm.

One of the most interesting metrics for energy-efficiency in the vision of
Amdahl’s law is the speedup per Watt or performance per watt ratio used in the
top green 500 list (See the green500.org site for details) and well conceptualized
by Woo and Lee [25]. An algorithm that scales on the speedup per Watt is able
to maintain the same speedup and average watt consumption when both problem
size and number of processors increase. Woo and Lee also proposed a theoretical
estimation of the speedup per Watt on several types of multi-core architectures. In
the proposed expressions, the speedup is defined as in Amdahl’s law. The concept
of speedup per Watt has some weakness, for instance if the Watts refer to a unit, it
is not the case for the speedup. In addition, we could criticize the fact that it is hard
to isolate the consumption of a parallel program from the one induced by the run
of an operating system or middleware. Despite these weaknesses, it is certainly one
of the most promising option to extend Amdahl’s and Gustafson’s speedups to the
minimization of energy consumption.

Finally, let us observe that the isoefficiency could be used as a powerful tool
to reduce energy consumption. Indeed, a parallel algorithm will not lead to the
same energy consumption depending on the number of processors it uses. An
interesting question is then to determine the right number. Thanks to isoefficiency,
we could answer as follows: depending on the efficiency we want to maintain,
we can compute for each problem size the number of processors we want to use.
This observation also suggests new ideas. For instance, it might be interesting to
formulate the isoefficiency while considering an average Watt consumption we wish
to maintain. Such models could in particular use the important progress made these
last years on the theoretical modeling of the power consumption [17].

Designing Scalable Algorithms in Modern Large Scale
Platforms

We propose in this section a general method for building scalable parallel algo-
rithms. The proposed method is in particular motivated by the desire to automate
the parallel resolution of NP-hard problems. However, it can be applied to a larger
range of problems. It is based on three main pillars that are presented as follows.

Scalability in Parallel Processing 95

Background

Pillar I: The Need of New Strategies for Strong Scaling

Fifty years ago, parallelism mainly focused on supercomputers dedicated to sci-
entific computing, it is now available on any general purpose computer and
applications. At the same time, supercomputers are always increasingly more
powerful and alternative parallel systems like computational grids or clouds have
emerged. This constant increase of parallel processing capabilities is challenging
for the design of strong scaling algorithms. We illustrate this point on the following
example.

Let us assume a machine with a huge number of processors (pmax). Let us
also assume that we want to solve three instances I1, I2, I3 of the problem P . For
their resolution, we have two parallel algorithms A and A′. A has the best average
execution time on the three instances while A′ has the best execution time on I1. In
such a context, a rough asymptotic projection would consist in recommending A for
the resolution of P .4

Let us now assume that in the run of A on I1, a number of processors (denoted
by pssl) offers no gain in term of parallelism. We refer to this point as the strong
scaling limit and formally define it as the smallest number of processors pssl such
that:

∀p > pssl, Tp ≤ Tpssl

As one can notice, the strong scaling limit is not the same depending on the instance
we are solving. This is clearly visible in Fig. 1 where the limit is reached more
quickly for n = 64 than for n = 512. Due to the sequential part of any parallel
algorithm, we could expect such a limit to be determined with pmax −→ +∞.
Returning to the asymptotic projection we made, the existence of a strong scaling
limit suggests that for optimizing the efficiency in the resolution of I1, there are
pmax − pssl processors that we should not use. As machines are increasingly
powerful, we can expect in the future to have another machine whose processors are
similar to the ones of the first one but with a greater number of processors p′

max .5 In
this latter machine, the previous asymptotic projection will still hold. However, in
the resolution of I1, we will now have p′

max −pssl > pmax −pssl that are not useful.
In conclusion, if the evolution of architectures leads to generations of machines with
more processors, it could be inefficient to use these additional processors in the
resolution of simpler computational instances.

4The idea to compare algorithms based on their average running time on a set of representative
computational instances is used in international competitions between algorithms. One of the most
famous is the SAT competition where one goal is to solve the maximal number of SAT instances
given a maximal time limit. SAT refers to the boolean satisfiability problem.
5This was observed on multicore machines where generations of machines integrate more cores.

96 Y. Ngoko and D. Trystram

To face this situation, let us assume that the strong scaling limit of A′ on I1 is
p′

l > pssl . We could have been able to scale on p′
l − pssl additional processors if it

was A′ instead of A that was run for solving I1. The fact of having two algorithms
with different strong scaling limits was observed in the resolution of several hard
combinatorial problems, including the boolean satisfiability problem that we will
present in section “Case Study”.

As the parallelism of machines increases, we should invest in the design of
cooperative executions of algorithms solving the same problem. In 1976, John Rice
paved the way for a general theory of cooperative algorithms in theorizing the
algorithm selection problem [21]. The Rice conceptualization latter inspired several
studies on the automatic composition of algorithms and automatic tuning. Rice also
introduced a methodology for the algorithm selection problem that we will not
present here. The method we will present is inspired by the work of Huberman,
Lukose and Hogg [14] on the formulation of a general theory for cooperative
parallelism based on algorithm portfolios. In particular, given k parallel algorithms
A1, . . . Ak , we propose to define a cooperative execution of the various algorithms
as a concurrent run of each algorithm Ai on pi processors that is stopped as soon as
an algorithm finds a solution. Here, pi ∈ {0, . . . , pmax} and

k∑

i=1

pi ≤ pmax

We will refer to such cooperative executions as resource sharing schedules.
Since 2010, resource sharing schedules have been successfully applied to the
parallelization of the boolean satisfiability problem. In particular, several resource
sharing-based solvers won the competition.

It should be noted that resource sharing schedules are not the only model of
cooperative parallelism based on algorithm portfolios. Alternatives like time and
malleable sharing schedules were proposed [9]. Nonetheless, they will not be
discussed in this chapter. In this part, we will show how with resource sharing
schedules, we can envision a new method for the design of scalable algorithms.

Pillar II: Benchmark Instead of Problem Size

In the previous weak scaling analysis, our conclusions on the general behavior
of a parallel algorithm were based on observations made on a subset of instances
characterized by their problem size. As already mentioned, however, the notion of
problem size is not meaningful with all types of problems. On an NP-hard problem,
we could have the following situations:

• the running time of a small instance exceeds the time of a larger instance
• the running times of two instances of the same size completely differ

Scalability in Parallel Processing 97

This suggests that the idea of projecting the general behavior of a parallel
algorithm based on a subset of instances, chosen mainly on their sizes, could be
wrong. In addition, such a selection might not have any sense if we consider the
problem resolution in a business perspective. Indeed, in this context, each problem
will be associated with a context or domain that will constraint the types of practical
instances. For instance, a delivery company that frequently solves the traveling
salesman problem in France will not necessarily be interested in problem instances
coming from Africa or the USA. When designing an algorithm for such a company,
the question is not to be able to scale on any problem instance but on those
representative of its business activity.

For these reasons, we do believe that in the evaluation of a parallel algorithm, we
should constitute a reference benchmark of instances that might be representative
of the context in which the problem will be solved. Fortunately, such benchmarks
exist for several classical computational problems like the resolution of sparse linear
systems or the satisfiability problem.

A main drawback while considering benchmarks is that we need another defi-
nition of the scalability. Indeed, the previous definition was based on maintaining
a value of the efficiency when both the problem size and the number of processors
increase. With this definition, the design of a parallel algorithm has a clear objective,
that is to target linear or super linear speedup in an asymptotic analysis. What should
then be the objective if we restrict ourselves to a (limited) benchmark viewpoint?

To address this question, we propose to proceed as follows. Let us assume that
U is the universe of problem instances on which we want to be efficient. Here, U

could be infinite. Let us also assume that there exists a finite set B of representative
problem instances (i.e., our benchmark). Let T (I, p) be the running time for solving
instance I with p processors. We define the average efficiency in the resolution of
B as:

φ(B) = 1

|B|
∑

I∈B

φ(I), where φ(I) =
(

T (I,1)
pmax ·T (I,pmax)

)

We then say that we correctly scale if

ζ(B) = 1

|B|
∑

I∈B

|φ(I) − φ(B)| −→ 0

This definition of scalability shares a core idea with the prior one we considered
in the previous sections of the chapter. It is to maintain an average efficiency over
the benchmark. Indeed, we scale when the efficiency on any benchmark instance
get close to the average efficiency. However, there is a major difference since the
proposed definition is machine-aware in the sense where the speedup is always
computed on the total number of available processors. Thus, this new definition
somehow combines features of strong scaling (behavior of a single instance on
large number of processors) with those of weak scaling (general behavior of several

98 Y. Ngoko and D. Trystram

instances). However, there is a weak point in the proposed definition: given U , what
we really want is to have

1

|B|
∑

I∈U

|φ(I) − φ(B)| −→ 0

Thus, the choice of B is critical because it must be representative of the instances
we have in U . An open question at this stage is to know how we apply this new
definition of efficiency to cooperative executions. We will return to this point in
section “Computation of Cooperative Executions”.

Pillar III: The Need of Auto-Tuning-Based Approaches

The increasing complexity of current machines makes auto-tuning unavoidable [22].
Any auto-tuning approach aims at solving a fundamental problem whose abstract
view is the following: we assume an algorithm that can be configured on a set
of parameters θ . We also consider a performance criteria (running time, energy
consumption, etc.) on which we want to optimize the run of the algorithm. Each
parameter θi is associated with a definition domain dom(θi) that defines the values
it can take. The goal is then to decide on the values to set for each θi (in the run of the
algorithm) in the perspective of optimizing the performance criteria we considered.
Nowadays, auto-tuning is unavoidable because on modern parallel architectures,
there are several architectural parameters that can be configured to optimize the
implementation of an algorithm. For a short view on such parameters, we refer
the interested reader to works related to the optimization of dense linear algebra
kernels [24].

We are convinced that the design of a parallel algorithm could no longer be
restricted to the formulation of a computational process that states how to generate
a correct output from a given input. The algorithm designed must be associated
with a search optimization process that will state how to automatically tune the
algorithm in a particular machine. The method we will propose formulate such
a search process in the case of a parallel algorithm thought as the cooperative
execution of several other ones.

Computation of Cooperative Executions

Given a computational problem P , we propose the following method to design an
efficient parallel algorithm for its resolution.

• Phase 1: Collect a set of parallel algorithms A1, . . . , Ak that solves P .
• Phase 2: Create a set B of reference instances in the resolution of P .

Scalability in Parallel Processing 99

• Phase 3: Compute the running times TAj
(I, p) for solving any instance I by

algorithm Ai when using p processors (1 ≤ p ≤ pmax).
• Phase 4: Determine the resource sharing schedule for which φ(B) is maximized

and

ζ(B) = 1

|B|
∑

I∈B

|φ(I) − φ(B)| −→ 0.

• Phase 5: Encode the resource sharing schedule as a new parallel algorithm.

In this method, we assume that the running time of the resource sharing schedule
is defined according to the equations:

T (I, pmax) = min
1≤j≤k

TAj
(I, pi)

T (I, 1) = min
1≤j≤k

TAj
(I, 1)

As mentioned earlier, this is because, in resource sharing schedules, the execution
is halted as soon as an algorithm finds a solution. Summarizing our method states
how from a set of parallel algorithms and a benchmark, we can tune and build a
cooperative executions of algorithms. We state how to optimize the cooperation
of algorithms on the running time. But, the method could be extended to other
performance criteria like the minimization of energy consumption. In this case,
one challenge is to define aggregation rules that state how to deduce the energy
consumed by a cooperative execution on p processors, from the one measured on
p′ < p processors.

In the proposed method, we could have several choices in Phase 4. For instance,
let us assume that we have 2 processors and 5 parallel algorithms. Then, there are
20 valid resource sharing schedules we could consider. This result is obtained as
follows: we have 5 potential schedules where only one processor is used, 5 potential
schedules where one algorithm strictly uses the two processors and 10 schedules in
which two algorithms are run concurrently, each with one processor. A challenging
question is to choose between all these schedules. For this choice, our conviction is
that in the case where pmax is not too large, a brute force algorithm might be used.
However, in the general case, we do believe that the optimal solution can be found
from a search that uses the strong scaling limits as the frontiers of the search. We
can also use the different heuristics proposed in [3].

To illustrate the different options in the choice of a resource sharing schedule, let
us consider that we have the running time distribution of Fig. 3 on a basis B of 3
representative instances. Such running times are assumed to be collected in Phase
3 of the proposed method. It is important to notice that this phase can be extremely
time consuming. Indeed, given k algorithms and pmax processors, we have k×pmax

running time values to compute. Let us assume that any estimation takes in average
ta seconds. Then, the expected duration for data collection is k.pmax.ta seconds. In

100 Y. Ngoko and D. Trystram

Fig. 3 Example of running
time on 1 and 2 processors for
5 algorithms and 3 instances

#processors 1 2
A1 A2 A3 A4 A5 A1 A2 A3 A4 A5

I1 40 60 60 80 41 37 56 51 68 38
I2 100 130 70 150 125 89 100 65 125 100
I3 10.2 10.6 10.5 10.3 8.4 10 10.5 10.4 10 9

addition, we must repeat the execution of the algorithms in order to have an accurate
estimation. If we repeat s times, then the expected duration is k.pmax.ta.s seconds.
On NP-hard problems, ta could be high. This means that it is interesting to study
how we could reduce the duration of the data collection processes. We will not
discuss on these aspects on this chapter.

Let us come back to the running times of Fig. 3. On 2 processors, our method
clearly shows that the resource sharing we consider will lead to different behavior.
For instance, if we deploy only A1 on two processors, then we obtain

φ(B) = 40

(37 × 2)
+ 70

(89 × 2)
+ 8.4

(10 × 2)

 0.45

ζ(B) = 1

3

(∣∣∣∣
40

(37 × 2)
− φ(B)

∣∣∣∣+
∣∣∣∣

70

(89 × 2)
− φ(B)

∣∣∣∣+
∣∣∣∣

8.4

(10 × 2)
− φ(B)

∣∣∣∣

)

 0.059

If now we consider the schedule that runs A3 on one processor and A5 on another
processor, then we have: φ(B) = 0.49 and ζ(B) = 0.0054. As one can remark, this
latter schedule is preferable to the prior one on both objectives.

For the method to work, we need to already have several algorithms solving
the same problem. Fortunately, this is the case for most computational problems.
We also need to be able to estimate the running times of an algorithm on problem
instances. Unfortunately, such estimations are not easy to obtain on some algorithms
like those based on random choices. In the next section, we will describe in detail a
practical case study of this method.

Case Study

The Boolean Satisfiability Problem

The objective in the boolean satisfiability problem (known as SAT) is to determine
whether or not, a propositional formula written in Conjunctive Normal Form (CNF)
is true (satisfiable) or not (unsatisfiable) [8]. Let us recall briefly the context of
this classical problem: a CNF formula is defined as a conjunction of clauses
over a finite set of boolean variables. More precisely, let us consider n boolean

Scalability in Parallel Processing 101

variables x1, . . . , xn, a literal has either a variable xi or its negation ¬xi . A
clause is a disjunction of literals. For instance, C1 = x2 ∨ ¬x4 is a clause and
(x2 ∨ ¬x4) ∧ (¬x1 ∨ x2 ∨ x3) is a CNF formula.

SAT is a good candidate for illustrating the previous method for the following
reasons:

• this problem is NP-complete and the hardness to solve an instance is not always
correlated to its size; For instance, if xu in a clause and ¬xu in another clause, it
is easy to remark that the formula is unsatisfiable (whatever its size);

• it is rather easy to find several algorithms for solving SAT. Indeed, new solvers
are proposed each year in the SAT competition (see www.satcompetition.org);

• there exist several benchmarks on the problem. The SAT competition regularly
proposes a set of benchmark instances. The benchmarks are grouped in different
classes reflecting practical scenarios and/or hardness to solve some instances;

• resource sharing schedules have already been applied successfully on SAT.
Several winners of the SAT competition implemented a portfolio of solvers based
on the resource sharing schedule model. However, to the best of our knowledge,
such schedules were not tuned according to the method we proposed in the
previous section.

Building Resource Sharing Schedules for SAT

To illustrate our method, let us consider the data of the SAT competition available
at.6 It is composed of a benchmark of 300 instances (corresponding to set B) and 4
parallel SAT solvers (A1, . . . , A4). The running times of the solvers are known for
all the instances for both 8 and 32 cores. Using these data, we were interested in
studying if the proposed method could be used to build a better solver on a larger
number of cores.

Since we already have a set of solvers and SAT instances, the requirements of
phases 1 and 2 of our method are met. For phase 3, we should have performed a
benchmark evaluation. However, we choose to only use the running time estimation
we already have. These data are available from the website of the Penelope solvers.
The drawback of this choice is that first we do not have the estimation for all
numbers of cores, and second, we cannot compute the efficiency because the
estimation of the sequential run is not known. On the first point, we assumed that
any of the available solver could only be run with 8 or 32 cores. Regarding the
second point, we propose to minimize the cumulative running time

∑

I∈B

T (I, pmax).

Let us remark that this goes in the direction of the maximization of φ(B). Finally, we
did not encode the parallel algorithm corresponding to the cooperative execution of
our resource sharing schedule. Figure 4, shows the cumulative time of the different

6http://www.cril.univ-artois.fr/~hoessen/penelope.html

www.satcompetition.org
http://www.cril.univ-artois.fr/~hoessen/penelope.html

102 Y. Ngoko and D. Trystram

1000

10000

100000

1e+06

crypto

penelope−freeze

penelope−nofreeze

ppfolio

m
anysat

plingeling

C
um

ul
at

iv
e

ru
nt

im
e

Solvers

np = 8
np = 32

Fig. 4 Cumulative runtime

solvers. As we can notice, there is a gain in the running time when increasing the
number of cores. However, this gain is far from what could be expected in a linear
speedup.

On 8 cores, the best solver suggested by this figure is the penelope-nofreeze
solver. As it was run only with 8 cores (the results for 32 cores are not available), an
interesting question is then to know if we could obtain a better solver on 32 cores in
combining the prior ones. The answer is yes, as shown in Fig. 5a, we were able in
combining 4 different solvers to compute a better resource sharing schedule on 32
cores. The gain obtained here is 946.64 s. The gain here is the difference between
the cumulative runtime of the best solver and the best resource sharing schedule.

The second question is to know if in combining the solvers, we could obtain
a better solution on more than 32 cores. The answer again is yes. In Fig. 5b, we
depicted the absolute running time difference between the best solver we found on
p > 32 cores and the best solver on 32 cores. The increase in running time could be
observed until reaching p = 208 cores.

These results showed that the proposed method can be used to build an efficient
parallel algorithm by composing several algorithms solving the same problem SAT.
However, it is important to notice that we only provided here a theoretical validation.
An effective implementation of the resource sharing schedule can in practice add a
runtime overhead. However, the gain states that there is still an important margin.

Scalability in Parallel Processing 103

 1000

 10000

penelope−nofreeze rss

 C
um

ul
at

iv
e

ru
nt

im
e

Solvers

(a)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200

ru
nt

im
e

ga
in

processors

(b)

Fig. 5 Running times of resource sharing schedules. (a) Resource sharing schedules on 32 cores.
(b) Gain using more than 32 cores

It is also important to notice that we did not handle the maximal time limit set in the
run of the solvers and the correctness of the results. This latter point is important
since some of the solvers were based on a heuristic search.

Conclusion

Amdahl’s and Gustafson’s law are still valid for modeling the performance of
parallel algorithms. However, as discussed in this chapter, we need to extend them
to other qualitative dimensions (such as energy-efficiency) and to the specificity
of modern parallel platforms (virtual machines or containers, etc.) We also need
a general formulation of scalability that could handle a larger class of problems;
in particular problems for which it is not reasonable to assume that the larger the
problem size, the more compute intensive the instance.

In this text, we introduced a candidate solution for the modern design of scalable
algorithms. It is based on cooperative parallelism; it shows how to define a parallel
run based on a computable optimization model. The model can be adjusted to
optimize the run on several criteria like the efficiency, the runtime or even the
energy consumption. It is also noteworthy that the proposed method focuses on
strong scaling that will become a major issue, as the parallelism available in modern
machines will continue increasing. Finally, our method is based on automatic
tuning that is inescapable as the complexity of machines continues increasing.
Improvements to our proposed method include the choice of the benchmark of
instances or the reduction of the runtime required to measure the running time of
the algorithms on instances.

104 Y. Ngoko and D. Trystram

Exercises

Exercises for Section “Amdahl’s Law”

1. In Amdahl’s law, assuming that fseq = 0.4, what is the maximal number of
processors to use to achieve an efficiency of at least 0.38?

2. On a machine with 8 cores, what is the maximal speedup in the multicore
parallelization of 90% of a program?

3. Let us consider the computer program

for (i = 0; i < 100; i++){
a[i] = b[i] + c[i];
d[i] = a[i] + d[i-1]/2

}

where a,b,c and d are arrays of integers of size 100.

(a) In considering only the inner loop instructions, what is the fraction of
additions of the program (b[0] + c[0] is an addition)?

(b) What is the maximal speedup we can expect from the parallelization of the
algorithm?

4. With the MapReduce paradigm, we can count the number of words in a document
by the means of a process that includes four steps: splitting, map, shuffle, reduce.

At the beginning, given a document of n lines, the master node splits it
into n sub-documents, each corresponding to a line. It then assigns these sub-
documents to different workers. The map step follows where each worker runs a
map function that consists of sending the pairs ("key", 1) where “key” is a word
found in the sub-document it processes. After the completion of the map step, the
master node groups the emitted pairs by keys and sends all the data of a given key
to a distinct worker. The process ends with the reduce step where each worker
adds up the number of keys it has and returns the cumulative value.

In Fig. 6, a graph illustration of this process is provided with an input
document of 3 lines. The objective is to count the number of occurrences of
each of the words. This number is obtained after the reduce step.

In a MapReduce process, a step is only started if the prior one is completed.
Let us assume that in the map step, we have p workers, each deployed on a
distinct processor. Let us also assume that the map function given a line li of
length |li | will run in Θ(|li |). We consider for the sake of simplicity that all
computations are done using a shared memory.

(a) In the worst case, what is the completion time of the map step assuming that
each worker will get n

p
lines?

(b) How many workers should we use in this phase to achieve a speedup of c (in
the step)?

Scalability in Parallel Processing 105

course about
scalability topic about

about course topic scalability topic about

about course topic

course about

A: Splitting step

scalability1
topic1
about

about1
course1
topic1

course1
about1

course1
course1

scalability 1

topic1
topic1

about1
about1
about1

course2
scalability1

topic2
about3

B: Map step C: Shuffle step D: Reduce step

Fig. 6 MapReduce example

(c) Assuming that in each line li , we have the same probability to have 1, 2 or
|li | distinct words, how many workers should we use in the reduce step to
maximize the efficiency of this step?

(d) Assuming that the time of the splitting and shuffle steps are known, given
p workers in the map phase and q workers in the reduce step, propose a
theoretical estimation of the execution time.

5. The well-known Fibonacci numbers are defined by the recurrence

F(0) = 0 , F(1) = 1 , F(n) = F(n − 1) + F(n − 2) for n > 1

Let us consider a multi-threaded program that proceeds as follows: given a
value n > 1, it creates two threads that respectively computes F(n − 1) and
F(n − 2). It then adds the value produced by the thread and returns it.

(a) How many threads are created in the computation of F(n)?
(b) Propose an asymptotic analysis of the scalability of this program.
(c) What are the limits to the scalability of this program?
(d) Propose a better parallelization for the computation of the Fibonacci numbers.

6. Given a square matrix of size n and a vector of n elements, let consider an
algorithm for matrix-vector multiplication whose cost on p processors is given
by the following equations:

T1 = n2tc

Tp = tc

(
n2

p

)
+ ts log p + twn

where, tc, ts and tw are constants.
Determine the isoefficiency function of this algorithm.

106 Y. Ngoko and D. Trystram

Exercises for Section “Gustafson’s Law”

1. Let us consider the product C = A × B where A,B,C ∈ Rm×m. The
computation of C is done by using a block matrix multiplication algorithm that
splits A,B,C into square blocks of size q. Thus, we have:

C =

⎡

⎢⎢⎢⎣

C11 C12 · · · C1n

C21 C22 · · · C2n

...
. . .

...

Cn1 Cn2 · · · Cnn

⎤

⎥⎥⎥⎦ where nq = m and Cij =
n∑

k=1

Aik · Bkj

Let us consider a multi-threaded implementation on a p cores machine. At
the beginning of the execution, a master thread creates n2 tasks and put them
in a stack S. Here, each task corresponds to the computation of a block Cij . p

other threads are next created; their processing consists of iteratively removing a
task from S that they then process. All threads are stopped as soon as S becomes
empty.

(a) Propose a parallel implementation of this algorithm.
(b) Develop an asymptotic analysis of the scaled speedup of the proposed

implementation in the case where q = n

(c) Assuming 4 threads, deduce the value of q that optimizes the scaled speedup
(Use experimental results of the proposed implementation for this).

2. In the prior algorithm, let us now consider that the sum
∑n

k=1 Aik · Bkj is
parallelized. This means that when a thread steals a task corresponding to the
computation of Cij , it next creates d other sub-threads such that the sub-thread l

will compute

Cij = Cij +
l(n

d
)∑

k=(l−1)(n
d
)+1

Aik · Bkj

Propose an asymptotic analysis for (q = n, d = 2) and (q = n, d = √
n).

3. Let us consider a vector of real numbers x̄ = (x1, . . . xn) on which we want to
compute the standard deviation and mean. Here,

σ(x̄) =
√√√√1

n

n∑

i=1

(xi − μ)2, and μ(x̄) = 1

n

n∑

i=1

xi

For the parallelization of this computation we consider a two-phase algorithm.
The first phase computes the mean in parallel. Assuming that we have p cores,
one subdivides the list into p near-equal partitions. Each thread then adds up

Scalability in Parallel Processing 107

the number in its partition and a final thread adds up the sub-sums of the other
threads. In the second phase, one proceeds in the same way as for the standard
deviation. The threads compute the squared differences of the numbers in their
partitions and a last thread computes the standard deviation.

(a) What is the computational complexity of this algorithm?
(b) What is its theoretical speedup?
(c) Could we do better while parallelizing the sums?

4. Let us consider a web server associated with a queue of incoming requests. The
server processes each request in Δ seconds.

(a) Which minimal number of requests per second ensures that the size of the
queue will be always greater than 1?

(b) In order to reduce the processing time, one decides to create p instances of
the web server. All the instances are associated with the same queue. What is
the number of requests that will be processed per second?

(c) At which date a request that enters in the queue at date t0, with d predecessors
in the queue, will be processed? What is the efficiency of the processing?

Exercises for Section “Designing Scalable Algorithms in
Modern Large Scale Platforms”

1. Let us assume a benchmark of instances B and the running time T (I, p) for
I ∈ B and 1 ≤ p ≤ pmax

(a) Write a brute force algorithm that computes the resource sharing for which
φ(B) is maximized and

1

|B|
∑

I∈B

|φ(I) − φ(B)| −→ 0

(b) What is the computational complexity of your algorithm?
(c) Discuss the desirability of computing such resource sharing schedules on

matrix multiplication algorithms (consider the case of dense and sparse
matrices).

2. Let us reconsider the case study of the satisfiability problem. Assuming that
T (I, 1) = T (I, 8)/8, apply the algorithm of the previous exercise to determine
the best resource sharing schedule.

3. In this case study, compute the best resource sharing schedule on 16 processors
and propose a parallel implementation of this algorithm.

108 Y. Ngoko and D. Trystram

References

1. Gene M. Amdahl. Validity of the single processor approach to achieving large scale computing
capabilities. In Proceedings of the April 18–20, 1967, Spring Joint Computer Conference,
AFIPS ’67 (Spring), pages 483–485, New York, NY, USA, 1967. ACM.

2. Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John Kubia-
towicz, Nelson Morgan, David Patterson, Koushik Sen, John Wawrzynek, David Wessel, and
Katherine Yelick. A view of the parallel computing landscape. Commun. ACM, 52(10):56–67,
October 2009.

3. Marin Bougeret, Pierre-François Dutot, Alfredo Goldman, Yanik Ngoko, and Denis Trystram.
Approximating the discrete resource sharing scheduling problem. Int. J. Found. Comput. Sci.,
22(3):639–656, 2011.

4. Michel Cosnard and Denis Trystram. Algorithmes et Architectures parallèles (english version
by Intenat. Thomson publishing 1995). InterEditions, France, 1993.

5. Pierre-Francois Dutot, Grégory Mounié, and Denis Trystram. Scheduling Parallel Tasks:
Approximation Algorithms. In Joseph T. Leung, editor, Handbook of Scheduling: Algorithms,
Models, and Performance Analysis, chapter 26, pages 26–1–26–24. CRC Press, 2004.

6. Richard Brown et al. Report to Congress on Server and Data Center Energy Efficiency: Public
Law 109–431. Technical report, Lawrence Berkeley National Laboratory, 2008.

7. Steven Fortune and James Wyllie. Parallelism in random access machines. In Proceedings of
the Tenth Annual ACM Symposium on Theory of Computing, STOC ’78, pages 114–118, New
York, NY, USA, 1978. ACM.

8. Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

9. Alfredo Goldman, Yanik Ngoko, and Denis Trystram. Malleable resource sharing algorithms
for cooperative resolution of problems. In IEEE Congress on Evolutionary Computation, pages
1–8. IEEE, 2012.

10. Ananth Y. Grama, Anshul Gupta, and Vipin Kumar. Isoefficiency: Measuring the scalability
of parallel algorithms and architectures. IEEE Parallel Distrib. Technol., 1(3):12–21, August
1993.

11. Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to Parallel Computation:
P-completeness Theory. Oxford University Press, Inc., New York, NY, USA, 1995.

12. John L. Gustafson. Reevaluating amdahl’s law. Commun. ACM, 31(5):532–533, May 1988.
13. Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy

Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for fine-grained resource sharing in the
data center. In Proceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation, NSDI’11, pages 295–308, Berkeley, CA, USA, 2011. USENIX Association.

14. Bernardo. A. Huberman, Rajan. M. Lukose, and Tad. Hogg. An economic approach to hard
computational problems. Science, 27:51–53, 1997.

15. Jonathan Koomey, Stephen Berard, Marla Sanchez, and Henry Wong. Implications of historical
trends in the electrical efficiency of computing. IEEE Ann. Hist. Comput., 33(3):46–54, July
2011.

16. Bich C. Le. An out-of-order execution technique for runtime binary translators. SIGPLAN
Not., 33(11):151–158, October 1998.

17. Tao Li and Lizy Kurian John. Run-time modeling and estimation of operating system power
consumption. SIGMETRICS Perform. Eval. Rev., 31(1):160–171, June 2003.

18. Susanta Nanda and Tzi-cker Chiueh. A survey of virtualization technologies. Technical report,
SUNY at Stony Brook, 2005.

19. Nicholas Pippenger. On simultaneous resource bounds. In Proceedings of the 20th Annual
Symposium on Foundations of Computer Science, SFCS ’79, pages 307–311, Washington, DC,
USA, 1979. IEEE Computer Society.

Scalability in Parallel Processing 109

20. S. K. Prasad, A. Chtchelkanova, F. Dehne, M. Gouda, A. Gupta, J. Jaja, K. Kant, A. La Salle,
R. LeBlanc, A. Lumsdaine, D. Padua, M. Parashar, V. Prasanna, Y. Robert, A. Rosenberg,
S. Sahni, B. Shirazi, A. Sussman, C. Weems, and J. Wu. NSF/IEEE-TCPP Curriculum
Initiative on Parallel and Distributed Computing - Core Topics for Undergraduates, Version I.
Online: http://www.cs.gsu.edu/~tcpp/curriculum/,55pages,USA,2012.

21. John R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118, 1976.
22. Walter Tichy. Auto-tuning parallel software: An interview with thomas fahringer: the multicore

transformation (ubiquity symposium). Ubiquity, 2014(June):5:1–5:9, June 2014.
23. Moshe Y. Vardi. Moore’s law and the sand-heap paradox. Commun. ACM, 57(5):5–5, May

2014.
24. R. Clint Whaley, Antoine Petitet, and Jack Dongarra. Automated empirical optimization of

software and the ATLAS project. Parallel Computing, 27(1–2):3–35, 2001.
25. Dong Hyuk Woo and Hsien-Hsin S. Lee. Extending amdahl’s law for energy-efficient

computing in the many-core era. Computer, 41(12):24–31, December 2008.
26. Wm. A. Wulf and Sally A. McKee. Hitting the memory wall: Implications of the obvious.

SIGARCH Comput. Archit. News, 23(1):20–24, March 1995.

http://www.cs.gsu.edu/~tcpp/curriculum/,55pages,USA,2012

Energy Efficiency Issues in Computing
Systems

Krishna Kant

Abstract The purpose of this chapter is to introduce energy efficiency issues in
computer systems and its importance to the PDC curriculum. This is done mostly at
a basic level, i.e., definitions of terms and basic concepts (K and C Bloom levels),
so that the students get a broad overview of the entire field as it applies from very
low hardware level up to software and service level issues. Energy management in
parallel and distributed systems are also covered. The chapter attempts to convey the
idea that the energy is ultimately consumed by transistors and wires, and a thorough
understanding of the hardware issues is essential to effectively deal with the energy
efficiency and adaptation issues. Some of the material can be considered at the A
Bloom level as well.

Relevant core courses: Systems, Arch 2, ParAlgo
Relevant PDC topics: Cross-cutting topics: Power Consumption
Learning outcomes: Know basics of energy, power and thermal issues in com-

puting, importance of and technology trends in power consumption, power-
performance tradeoffs, power states and their use at HW and SW level, power
adaptation, energy efficiency of parallel programs

Context for use: Traditionally, computing has focused only on performance at
all levels including circuits, architecture, algorithms, and systems. With power
consumption and power density playing a central role at all these levels, it is
crucial to teach students about power and power-performance tradeoffs at all
these levels.

K. Kant (�)
Temple University, Philadelphia, PA, USA
e-mail: kkant@temple.edu

© Springer International Publishing AG, part of Springer Nature 2018
S. K. Prasad et al. (eds.), Topics in Parallel and Distributed Computing,
https://doi.org/10.1007/978-3-319-93109-8_5

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93109-8_5&domain=pdf
mailto:kkant@temple.edu
https://doi.org/10.1007/978-3-319-93109-8_5

112 K. Kant

Why Does Energy Efficiency Matter?

As the world gets increasingly fused with information technology, the energy
consumption associated with the information technology continues to rise. For the
mobile and embedded devices such as mobile phones and sensors, energy efficiency
is crucial because of the increasing demands on the batteries, which have not scaled
well in capacity as compared to the energy demands placed on them. In many
embedded applications, particularly the emerging Internet of Things (IoT), battery
replacement or charging is infeasible or very costly, and there is increasing trend
towards energy harvesting from the environment in a cost effective way. This places
severe limitations on energy use and thus makes energy efficiency the foremost
issue in the design of both hardware and software. On the other end of the scale,
data centers continue to grow in size in order to handle increasing client demands
for running complex queries requiring substantial computation and processing of
large amounts of data, often in real time. This has a direct impact on increasing
energy consumption of data centers, and in turn requires greater emphasis on energy
management and energy efficient processing algorithms.

Energy Related Challenges

The high energy consumption in data centers poses numerous challenges which
make the energy efficiency increasingly important. First, there is the cost of
electricity and electric infrastructure. Large data centers consume 10 MW or
more power, and the corresponding energy cost may amount to 40% or more
of its operating cost. (We will shortly discuss relationship between power and
energy.) Large power consumption implies costly and costly-to-maintain electric
infrastructure that includes large step-down transformers (along with their cooling
costs), uninterruptible power supplies (UPS), relays/switch-gear, backup generators,
multiple stages of AC-DC converters, etc. All of this can be scaled down by making
the data center more energy efficient. Second, large data centers require large
cooling infrastructures (including water chiller plants, air conditioners, fans, etc.),
which too can be scaled down with more efficient operations. It is estimated that
1 W saved by using energy efficient operation of the servers can result in up to 3 W
of total saved power.

Other less obvious side effects of high energy consumption come into play at the
basic architectural levels. Ever since its inception in early 1970s, the semiconductor
technology has thrived on the steady reduction of “feature size”, which refers to a
basic measure used for designing and patterning transistors and on-chip connections
between them (the “wires”). For example, the current Intel processors are based on
the 14 nanometers (nm) technology, the latest one being the so called 8th generation
Coffeelake. Traditionally, the feature size has decreased by a factor of

√
2 every 2–

3 years, however, the huge difficulties in going down to very small feature sizes has

Energy Efficiency Issues in Computing Systems 113

slowed this trend. One critical issue arising due to continued reduction in feature
size is that in addition to the power consumption, we also need to pay attention to
power density, or the power consumed per square cm of chip area.

Power density was already threatening to become unsustainable in early 2000s,
and a variety of techniques were essential to keep it in check, and these continue
to be crucial. The techniques range from the lowest level of semiconductor
device physics to circuit, logic, architecture, and beyond. The current state of the
technology can easily put more than a billion transistors on a cm2. For example,
Intel’s core i7-6950 extreme edition built using the 14 nm technology has 10 cores
and consumes 140 W, and packs 3.4B transistors in 246 mm2 die. The power density
is (140/2.46) or 72 W/cm2. Since all power consumed ultimately appears as heat,
this means that we need to have enough cooling capacity to remove 72 W power
from each cm2 area. With transistor layers already being stacked vertically in the
emerging 3-D architectures, this becomes an extremely challenging task.

The net result is that it is possible to put lot more processing cores on a die than
can be simultaneously powered on due limitations in removing the heat. This leads
to the so called problem of “dark silicon” where it becomes necessary to keep some
of the transistors unpowered in order to meet the heat dissipation requirement. In
other words, energy efficient operation of cores has direct implications in terms of
usable cores per package.

Making Computing Energy Efficient

Achieving energy efficiency involves a multi-level effort that includes an interplay
of energy efficient semiconductor materials, transistor and circuit designs, hardware
architecture, and software design along with suitable power management techniques
that are engaged at various levels in order to provide suitable trade-offs between
performance and energy consumption. Unfortunately, the recent trends in the
manufacturing and circuit design introduce the third element – reliability. One
reason for reliability issues arises from atomic level feature sizes. In particular, the
latest technology already operates at the feature size of 10 nm, which amounts to
only 30 Silicon atoms! Such small sizes allow for quantum mechanical tunneling
and make it impossible to shape the boundaries of transistors accurately, thereby
leading to unreliable operation. Another reason for unreliability is the continuing
decrease in the operating voltage. As we shall see later, decreasing operating voltage
can reduce the power consumption substantially, and there are emerging trends
of operating the chips close to voltage levels where the transistors may not even
switch reliably. This unreliability is handled by error detection and repetition of
errored operation at a very low level; however, there may be some danger of residual
undetected errors. These residual errors can be handled at higher levels by additional
redundancy; however, this results in both additional power consumption and loss of
performance. In other words, increasingly we need to consider a 3-way tradeoff:

114 K. Kant

performance, power, and reliability. In this chapter, we do not address this tradeoff;
however, this is an important emerging issue in the context of energy efficiency.

Basic Concepts

Power vs. Energy vs. Heat

Power and energy are often used interchangeably in informal discussions; however,
they are different and it is crucial not to mix up the two. Energy, measured in Joules,
is defined for the entire computation of interest whereas Power, measured in Watts,
is the rate of energy consumption. That is Watts = Joules/s. For charging purposes,
electric energy is often measured in units of “Kilo-watt hours” (KWH). Obviously,
1 KWH = 3.6 Mega Joules.

For a given program running from start to finish, the important parameters are
its total energy consumption and its running time. The ratio of the two gives the
average power consumption. If it is important to complete the program quickly,
it may be possible to run it at a higher power level and thereby finish it quickly.
Conversely, if we can wait to get the results, it may be possible to run the
program at a lower power. Since the electrical infrastructure at all levels (from
data center to individual servers) has limits on how much power can be drawn,
the maximum allowable power consumption is also often limited. Higher power
also generates more heat (as discussed below) which may further require limits on
power consumption. Smart power management techniques, discussed later, could
reduce the power consumption, so that the power circuit limits are not violated and
the electronics does not overheat. In terms of electricity cost, however, it is the total
energy consumed that is of primary interest. Many power management techniques
can also reduce the total energy consumption, as discussed later.

Power consumption increases the average kinetic energy of the atoms of the
material (e.g., silicon) which heats the material. Since energy cannot be destroyed,
nearly all of the power consumed is eventually converted into heat, which manifests
itself as higher temperature. When two materials (e.g., silicon and surrounding air)
are at different temperatures, there is a heat flow from higher temperature material to
the lower temperature material until the average temperature of the two is equalized.
Thus, in the long run, the temperature of a substance is determined by the balance
between power consumption (which raises temperature) and cooling (forced or
natural) due to the surrounding substance (e.g., air) at lower temperature. The rate
at which the temperature approaches the final steady state value depends on the
thermal properties of the materials which determine heat transfer via conduction,
convection, and radiation. The important point to note is that even if the steady
state temperature is moderate, over short periods the temperature within the material
(e.g., transistor junction) may become high enough to cause damage or errors. Thus
effective cooling at the points of highest heat generation is crucial but becomes
harder and harder to achieve as the transistor density grows.

Energy Efficiency Issues in Computing Systems 115

Idle vs. Active Power Consumption

In the traditional semiconductor technology, there are two types of power con-
sumptions that are of interest: (a) static (also known as idle or passive) power, and
(b) dynamic (also known as active) power. A conventional transistor consists of a
silicon “channel” from Source to the Drain terminal. This channel is controlled by
a “gate” that can apply a positive or negative voltage to the channel. In a so called
npn transistor, the positive voltage causes a flow of electrons through the channel,
which turns the transistor on, whereas a negative voltage cuts off the electron flow
and turns the transistor off. Unfortunately, even with negative voltage, at the gate
there is a small flow of current in the channel, known as “leakage current”, which
tends to increase steadily as the transistor feature size shrinks. A higher current flow
means higher power consumption at the same voltage, since Power = Current ×
Voltage. The leakage current is the primary source of static or idle power, since this
consumption happens even if there is no activity.

In particular, let V denote the Source-Drain voltage (often denoted in the
literature as Vcc or Vdd). Let IL denote the leakage current. Then the idle power
consumption Pidle = V × IL. The idle power may form 20–40% of the total power
consumption of a CPU or a memory module, and is expected to increase as feature
sizes shrink. Thus, it is important to devise mechanisms to reduce it via a set of Idle
power management techniques.

Explaining the dynamic power consumption requires a bit more understanding
of the CMOS (complementary metal oxide semiconductor) technology which is
used almost universally in current digital designs. Suffice to say that a CMOS
device actually uses two basic transistors such that while one of them is on, the
other is off. Thus the functioning of the CMOS device amounts to switching
back and forth between these two complementary configurations, which can be
identified as representing the logical 0 and 1. Each switch from 1 to 0 or 0 to 1
consumes power that is over and above the static (idle) power. This is the dynamic
power and it clearly is proportional to the rate of switching – or the frequency at
which the electronic component operates, henceforth denoted as f and measured in
Hertz. Every transistor has an inherent capacitance, denoted C, and each switching
amounts to charging or discharging this capacitor. The charge held by a capacitor
is given by the product of capacitance and operating voltage, and the current, by
definition, is the rate at which charging (or discharging) happens. That is, dynamic
current = Capacitance × Voltage /switching_time = C × V × f . Since, dynamic
power = Voltage × dynamic current, the dynamic power consumption of a CMOS
transistor, Pdynamic = 1/2 × C × V 2 × f . Here, the factor 1/2 results from the fact
that half the energy is cycled in 0–1 transition and the other half in 1–0 transition.

It is important to note that the Pdynamic computed here will be consumed only
when the transistor switches in every cycle. In general, the transistor will switch only
some fraction of time, denoted U . Then the total power consumption of a transistor
is given by:

116 K. Kant

Ptotal = Pidle + U × Pdynamic = V.IL + 1/2 UC.V 2.f (1)

Notice that reducing V reduces both idle and dynamic power, and hence is an
attractive way to reduce the total power consumption.

The above equation can be used to compute power consumption of the entire
core or CPU by considering all of the transistors that comprise the core or CPU. For
example, IL can be thought of as the total leakage current from all the transistors
comprising the core/CPU. Furthermore, we can think of U as the utilization, defined
as the fraction of cycles for which the core/CPU is busy. The capacitance C then is
an effective value that corresponds to capacitance of all those transistors that switch,
on the average, in one cycle.

Let us illustrate this with an example of a core with operating voltage (V) = 1.2 V,
Leakage current (IL) = 7.5 Amp, Effective Capacitance (C) = 10 nanoFarad, and
operating frequency (f) = 2 GHz. In this case, the idle power is 1.2 × 7.5 = 9.0 W,
and maximum dynamic power = 0.5 × 10 × 1.44 × 2 = 14.4 W. Thus, the core will
consume 23.4 W when 100% busy, or 16.2 W when 50% busy.

The above equation applies to not only the CPUs but also to other compo-
nents of the system (e.g., cache, DRAM, links connecting various components,
etc.), although the details vary. For example, many links within the chip are
“synchronous” in that they continuously transmit either real frames or small “fill-
in” frames. For such links, the power consumption remains the same irrespective
of their utilization. The actual power consumption also depends on circuit level
power management via “power gating”, or not supplying power to any entities that
do not need to be powered up. Aggressive power gating can significantly reduce
the transistors that need to be powered up and thereby reduce the overall power
consumption. Of course, power gating is not free, since the power gating itself
requires transistors that consume extra power. In this chapter, we will largely talk
about power management on the coarser scale than targeted by power gating, and
this may be suitably accomplished in hardware or software.

Power States and Their Management

Almost all major components in a modern server offer control knobs in the form of
power states – a collection of operational modes that trade off power consumption
for performance in different ways. Power control techniques can be defined at
multiple levels within the hardware/software hierarchy with intricate relationships
between knobs across layers. We call a power state for a component active if the
component remains operational while in that state; otherwise we call the state
inactive or idle. These active and inactive states offer temporal power control for the
associated components. Another form of power control is spatial in nature, wherein
only a subset of a set of identical components are operational.

Energy Efficiency Issues in Computing Systems 117

Fig. 1 System and device power states

At the highest level, the OS-directed Power Management (OSPM) defines a set
of power states for the entire machine that most users are already familiar with.
There are six such “system” states denoted S0. . . S5, with the following being the
most relevant: S0 (working), S3 (standby – or inactive with state saved into the
DRAM), S4 (hibernating – or inactive with state saved into the secondary storage),
and S5 (essentially turned off and requiring reboot, but rebooting possible remotely).
For example, when you press the sleep button on a laptop, it enters the S3 state
(unless hibernate or hybrid sleep-hibernate states are chosen in the options). In the
system state S0, individual devices (e.g., CPU, memory, links, etc.) have further
power states defined. In particular, the CPU offers three types of states, C states
(inactive) and P and T states (active) as shown in Fig. 1.

Processor Power States

The most commonly known processor states are the P (performance), where P0
refers to the highest frequency state and P1, P2, etc. refer to progressively lower
frequency states. Lower frequency allows operation at a lower voltage as well and
thus each P state corresponds to a supported (voltage, frequency) pair as illustrated
in Fig. 1. The active power consumption is proportional to frequency but goes as

118 K. Kant

the square of the voltage, as discussed in Eq. 1. The combined effect of reduced
frequency and voltage makes the dynamic power consumption in higher numbered
P states quite low. For instance, consider our earlier example where a core runs at
2.0 GHz with V=1.2 V. Assume that this is the P0 state. Now suppose, that in the P2
state the core runs at 1.0 GHz which allows the voltage to go down to 0.9 V. Thus,
the effective reduction in the dynamic power is given by:

Power Ratio = V 2
0 f0/V 2

1 f1 = 1.22 × 2.0/(0.92 × 1.0) = 3.56 (2)

In other words, the dynamic power of a 100% busy core will go down from 14.4 W
to 4.05 W!

In addition to the reduction in dynamic power, a lower voltage decreases the static
power consumption also. For this reason, dynamic voltage-frequency switching
(DVFS), which suitably controls both the frequency and voltage, are among the
most explored active power management technologies [1]. A changeover to a higher
numbered P state involves two steps: (1) Reduce the voltage to the new level and
let it settle down, and (2) Lower the frequency and let the phase-locked loop (PLL)
circuit settle down.

Modern CPUs also provide inactive or “sleep” states denoted as C0, C1, C2,
. . . , where C0 is the active (operational) state and others are inactive states with
increasing power savings. The power saving in inactive state is achieved by several
techniques including turning off clocks, lowering the voltage (to lower the leakage
power), and taking some additional actions such as flushing the cache and powering
it off. The precise action taken is architecture dependent. For example, C1 and
C2 states only turn off clock, C3 flushes the lowest level cache as well, and C6
flushes the next level cache and powers down some links. It is expected that future
processors will have even deeper inactive states. The deeper C state provides higher
power savings but at the cost of longer transition times into and out of the state.
With actions such as cache flushing, the impact of the sleep persists even beyond
the point when the CPU is active again, since much of the flushed data may need to
be fetched again from lower level cache or memory.

The idle power management techniques must intelligently decide when to put
the CPU in a C state, which one, and when to exit it. With multiple C states, there
is also the question of transitioning between different C states. Unfortunately, the
CPU cannot directly go from one inactive C state to another – instead it must first
become active (i.e., transition to C0 state) and then choose another inactive state to
go into.

In case of a multi-core CPU, many of the above states apply to individual cores as
well. However, depending on the architecture, certain features may not be available
independently to each core. For example, if all (or a group of) cores lie on the same
voltage bus, it is not possible to change their voltages independently. For sensible
power management, it is necessary to relate the core states to the CPU (i.e., entire
package) states. The general rule is that the state of the entire package corresponds
to the state of the core that is in the shallowest C state. For example, if even one
core in a package is active (in C0 state), the entire package must be considered to

Energy Efficiency Issues in Computing Systems 119

be active, so that it can function normally in terms of data transfer to and from the
package level cache or the memory.

Processors often also implement T (throttling) states, but these are entirely
intended to handle thermal emergencies by introducing gaps in the clock (to allow
the processor to cool down). We will not discuss them further here.

Memory Power States

The ever increasing appetite for more memory is already making memory power
consumption rival CPU consumption. Thus aggressive management of memory
power is essential. A memory stick or DIMM (Dual inline memory module) of
DRAM (dynamic random access memory) consists of several memory devices
(or chips), each of which typically provides 8 bits of data in parallel. There is
considerable internal structure to the modern DDR (dual data rate) DIMMs. In
particular, each DIMM is divided into “ranks”, with 1, 2 or 4 ranks per DIMM.
A “rank” is usually a set of 9 memory devices (8 for data and 1 for parity). The
8 devices of a rank collectively and in parallel provide the entire 64 bit (8 bits
from each of 8 devices) “chunk” over the memory channel. Memory controllers
often support multiple channels, each allowing one or more DIMMs and capable of
independent data transfer. Since the data from all ranks of all DIMMs on a channel
must flow over that channel, the ranks can be lightly utilized even if the channel is
quite busy.

As its name implies, a DDR DRAM transfers 8 bytes (64 bits) of data on both
edges of the clock. It thus takes 4 cycles to transfer a typical 64 byte cacheline. The
total power consumption of a 2-rank DIMM is in 3–4 W range with idle power of
about 1 W. Several sleep states are available for the idle power management of the
DRAM. The two shallowest sleep states are called “fast” and “slow” CKE (clock
enable) states; these allow an inactive rank to deactivate parts of the circuitry such
that it is possible to reactivate them in a few ten’s of nanoseconds. As the name
implies, the slow CKE is somewhat slower, but achieves higher power savings.
For a much deeper sleep, it is possible to put a DIMM in “self-refresh” mode.
The essential characteristic of the DRAM technology is that the stored data must
be constantly “refreshed”, i.e., read and then written back every 64 ms or less;
otherwise, it will be lost. Normally, the refreshing is done by the memory controller,
which is the intelligent entity that interfaces CPU and the DRAM. In self-refresh
mode, the DRAM refreshes itself, so that the memory controller and the link
between the memory controller and DRAM can become inactive. Self-refresh is
typically used when the CPU is placed in C6 state. The memory can also use active
power management provided that it can run at several different frequencies. As
with CPU, these active states are most useful if the lowering of frequency is also
accompanied by a suitable lowering of the voltage.

120 K. Kant

Link Power States

Modern computer systems use a variety of networking media both “inside-the-box”
and outside. The best known outside-the-box networking technology is Ethernet,
but there are others as well, such as Fiber-Channel (used for storage networking),
and InfiniBand (for low latency interconnection in high performance computing).
Ethernet and other technologies can consume a substantial percentage of the IT
power in a large data center, and their power management is becoming essential.
These technologies continue to increase in speed – for example, 10 Gb/s Ethernet is
becoming quite popular in data centers, and the higher end data centers are moving
to 40 and 100 Gb/s Ethernet. Although the power consumption of a 10 Gb/s Ethernet
is only about 3 times that of 1 Gb/s Ethernet, the increased speed often results in
power inefficiency. The main reason for this is that most network links carry very
little traffic most of the time, and high bandwidth is required only sporadically. Thus
an upgrade from 1 to 10 Gb/s Ethernet increases the power consumption by a factor
of 3, with very little additional traffic carried on the average.

Moden computer systems have several internal interconnects, that run at much
higher speeds than outside-the-box interconnects, and can collectively consume a
significant percentage of platform power. With many cores per CPU, a significant
number of links and/or link interfaces are required for interconnecting the cores,
and this interconnect must support extremely low latency and very high bandwidth.
The IO interconnects, including PCI-Express, SATA, SAS form other prominent
inside-the-box interconnects. There are still others such as interface between
memory controller and DIMM or interconnect between CPU and IO complexes.
An intelligent power management of such interconnects also becomes crucial for
platform power reduction. Such links are invariably “synchronous” which means
that the power consumption does not depend on the data rate.

Most current links support at least two PHY (physical) layer low power states,
called L0s and L1, respectively which can be used for idle power management. The
L0s power state is unidirectional, in that the transmitter for each direction of the
link can independently decide to go into low power mode when it has nothing to
transmit, whereas the receiver side remains active. The L1 power state involves a
handshake between transmitter and receiver, and thus allows both of them to go into
low power when there is nothing to transmit. The L1 state can reduce the idle power
quite substantially but this comes at the cost of substantial latency; therefore, L1 is
typically used with the C6 CPU state.

As with other devices, links can also be operated at lower speeds in order
to reduce their active power, and thus allow for their active power management.
Depending on the type of link, the speed change may be either a matter of simply
changing the clock rate or a switch-over to a different PHY. An example of the
latter is the 40 Gb/s Ethernet operating at 10 or 1 Gb/s. Such a PHY switch can be
extremely slow, and the power reduction may not be significant. Furthermore, the
lower speed means longer data transmission time and may not provide any gains in
energy consumption.

Energy Efficiency Issues in Computing Systems 121

The energy efficient Ethernet (EEE), also known as Green Ethernet, provides a
software controlled low-power idle (LPI) mode initiated by the transmitter, and thus
can be used independently for each direction of the link. An LPI enabled transmitter
sends a LP_Sleep signal to the receiver, so that the receiver can place its side also
in low power mode. The transmitter can tell the receiver how long it will be in LPI
mode. On wake up, the transmitter sends a LP_Wakeup signal to the receiver. When
the transmitter is in the LPI mode, it continues to send periodic refresh or heart
beat signal to maintain the synchronization while consuming only about 10% of the
normal power. Wakeup from LPI involves a significant exit latency since in addition
to the exit delay, the transmitter needs to wake up the receiver before transmitting
anything. The two relevant parameters in this regard are Sleep time (Ts) and Wake-
Up time (Tw). For a 10 Gb/s link, with 1500 bytes packet size Ts and Tw will be
2.88 and 4.48µs respectively. This amounts to transmission time of several packets
and thus the mechanism is useful when the traffic shows significant gaps between
packet bursts. If the workload does not have such characteristics and there is no
traffic shaping to make it behave so, LPI can be useful only at very low utilization
levels. Consequently, we will also study the usefulness of basic L0s state based
control assuming that is provided by the Ethernet interface. Such a control keeps
the receiver side always awake and only the transmitter can sleep; however, the low
transition latencies and lack of handshake between transmit and receive sides makes
the mechanism suitable at higher utilization levels as well.

Collective Power Management

In the above, we considered the power states of a single entity (e.g., a CPU core,
memory rank, or a link) or a composite entity considered as a single unit (e.g.,
entire CPU with all its cores, entire DIMM, or a set of parallel links between two
devices). However, whenever we have a composite entity or a set of entities (e.g.,
a set of servers), it is possible to power manage them together without significantly
hurting the performance. The basic idea is to consolidate the load on a certain subset
of devices, so that the others can go into low power mode. What is important here
is that the vacated devices can generally go into a deep sleep state and stay there
for long periods of time. In contrast, if each individual device is power managed
separately, it may be able to sleep only briefly, and thus it cannot go into a deep
sleep mode. The reason for the latter is that a deeper sleep mode invariably comes
with long latencies to transition in and out of the sleep mode.

A special case of collective power management occurs in modern interconnection
links, which are made up of several multiple “lanes” of “serial” links. A lane of a
serial link carries only 1-bit of data at a time and uses mechanisms (e.g., differential
signaling) to make it very robust and noise free. Current systems have generations 1,
2, or 3 of the technology, which supports respectively, 2.0, 4.0, and 8 Gb/s bandwidth
per lane. Thus, an 8-lane link, referred to as x8 link, can support 2, 4, and 8 GB/s

122 K. Kant

bandwidth depending on the generation. For example, graphics cards typically use
x8 or x16 PCI-E links.

Serial links allow dynamic width management wherein certain lanes can be put in
low power mode to reduce power consumption when the traffic (i.e., the bandwidth
requirement) is low. A highly desirable feature of width control is that so long as
some lanes are active and traffic is low enough for the available bandwidth, there
is very little delay impact of the power management on the traffic. A dynamic
width control algorithm has to operate within the constraints of supported widths
associated with the underlying link hardware.

Dynamic width management can also be used for DRAM by keeping only some
of the ranks active at a time, as discussed in [2]. For example, if a server has
two DIMMs (presumably on two different memory channels) and each is a 2-rank
DIMM, we have a total of 4 ranks and we could rotate among them so that, say,
only 2 ranks are active on the average. Such a mechanism trades off memory access
latency (and hence performance) against the power consumption since the inactive
ranks can be put in one of the sleep modes.

For more general collective power management, let us consider the set of cores
in a CPU. In general, only some of the cores may be needed to handle the current
workload. In this case, the other cores can go into a deep sleep state such as C6 or
could even be powered off depending on how quickly we want to be able to turn on
those cores. Even if all cores in the CPU are identical, it does matter which cores
are turned on or off by the power management algorithm. One reason for this is
that the heat produced by one core affects the adjacent cores, which means that it
may be undesirable to simultaneously operate two adjacent cores. A well-known
scheme in this regard is called “core hopping”, where the cores are used in a cyclic
fashion to ensure that all cores generate approximately the same amount of heat.
Another reason why the choice of core to turn on/off matters is that each active core
typically accumulates its “working set” (i.e., the data most essential to the operation
of the program) in its cache. Turning off this core and restarting the computation on
another core would force that core to fetch its working set from the shared cache
or memory, and thus slow it down. This is a particularly important issue for core
hopping – while systematic cycling through different cores may balance out the
heat generation, it may also hurt performance due to disturbances to the working
sets. Yet another form of power management for a multicore CPU involves the so
called “turbo mode” operation. If only some of the cores are active, they can run at
a higher frequency and still maintain the desired thermal envelope.

Collective power management also applies at higher levels. For example, if a
server rack has 10 servers, each running at a utilization of at most 20% (a fairly
typical situation), a significant amount of power can be saved by consolidating all
of the workloads and distributing it to only 3 servers. In this case, each server will
run at 67% utilization, which may be reasonable. (Except in case of long-running,
CPU bound tasks, it is generally not possible or desirable to run a server close to
100% utilization on a sustained basis.) The remaining 7 servers could then be put in
one of the system sleep states such as S3, S4, or S5 depending on how much restart
delay we are willing to tolerate. For example, suppose that each server consumes

Energy Efficiency Issues in Computing Systems 123

100W of idle power, 5 W in S4 state (note that in S4 only a small wakeup circuitry is
powered on), and the active power at 100% utilization is 150 W. Then, in the original
configuration the total power consumption is 10x(100 + 0.2 ∗ 150) = 1300 W. With
consolidation, we instead have 3 ∗ (100 + 0.667 ∗ 150) + 7 ∗ 5 = 635 W, a more
than 50% savings.

Energy Management Algorithms

A smart energy management may involve use of several mechanisms used at
different time scales. In the above, we discussed the idle and active power states,
which can be controlled either individually for each device or as a set. The time scale
aspect is crucial since the idle durations of any resource can vary over an extremely
large range. For example, the CPU may experience stalls at the level of individual
instructions while it is waiting for data from memory or last level cache – these
stalls would be in the range of 10’s to 100’s of ns. Larger idle periods – in the range
of microseconds to milliseconds could occur due to wait for network or storage
devices. Even longer idle periods may be governed by user demands (e.g., queries
that require processing) which itself involves variations over 1–100’s seconds (e.g.,
gaps between successive queries) and over hours or longer (e.g., hourly and daily
variations).

The duration of idle period is crucial when using idle power management, since
a longer idle period allows deeper sleep, less latency impact of state transition, and
more sophisticated control. However, with active power management, the duration
of the idle period does not matter; instead, what matters is how quickly the activity
level (e.g., device utilization level) changes. We discuss these in the following
for both short time scales (fine grain power management) and longer time scales
(medium and coarse grain power management).

Fine Grain Power Management

Fine-grain power management refers to power management actions that can capture
traffic intensity changes and idle periods ranging from 10’s of ns to 10’s of us. In
this space, active power management may not be useful, and will not be discussed
here. As for the idle power management, the very short sleep durations demand very
simple, hardware based solutions. Most of the hardware sleep states discussed above
(e.g., C0, C3, C6 for CPU, L0s/L1 for links, fast/slow CKE for DRAM, etc.) can
be exploited here by a hardware algorithm. Note that collective control using sleep
states, such as link width control, are also useful here.

The top part of Fig. 2 shows a device (CPU core, link, DRAM rank, etc.)
without any power management. In this case, the device becomes idle (IDL) once
its transaction queue empties out, and then busy (BSY) again when a request (or

124 K. Kant

Fig. 2 State illustration without and with power control

Fig. 3 State illustration with proactive power control

“traffic”) arrives. The bottom part of Fig. 2 shows the simplest possible approach to
using the low-power (LPR) mode. Since we do not know when the next request will
arrive, we wait for a while (called “runway”), and then transition to LPR mode.
The runway is a parameter of the algorithm and can be set to a fixed value or
adjusted dynamically based on the device utilization. The transition takes some time
as shown. Eventually, when the traffic arrives, we exit the LPR mode and become
busy again. Notice that this is a reactive control with respect to exit from LPR mode.
It has the property to let the device stay in LPR mode as long as possible, but the
incoming traffic is always delayed by the exit delay. Clearly, this algorithm is trivial
to implement in HW and will have negligible overhead.

Figure 3 shows a proactive variation of the algorithm where the device stays
in LPR state for a certain amount of time, say TL, and then exits proactively. Of
course, if the duration TL has not expired and traffic arrives, the device will still exit
reactively from LPR mode. The figure shows two cases. In case (a) the TL estimate
falls too short, in which case the device exits LPR state prematurely, which is not
good for power savings. In case (b), TL estimate is too long, which means that the
traffic experiences some delay (although the delay will always be bounded by exit
latency). In order to make the proactive algorithm work properly, we need a good
estimate of TL, and this estimate needs to be continuously updated. A simple way to
do so is to update TL based on the idle periods observed in the recent past, but more
detailed information about the traffic can provide better predictions.

Energy Efficiency Issues in Computing Systems 125

As discussed above, a device can have multiple sleep states with increasing power
savings and exit delays. The normal way to use multiple states is to first enter the
shallowest state (with smallest exit latency), and then progressively move to deeper
sleep states if no traffic arrives. Unfortunately, it is not possible to directly switch
from one sleep state to another; instead, it is necessary to wake up the device to
full idle mode and then transition it to the desired deeper sleep mode. This limits
the usefulness of successive “promotion” to deeper sleep states; instead, it may be
better to simply choose the most suitable state upfront based on current utilization
level, and promote it further only if the idle period turns out to be extremely long.

In addition to sleep state control, the width control can also be exercised easily
by the HW. An algorithm for this is described in [3]. The basic idea is to monitor the
device utilization, and if the utilization crosses a predefined threshold, change the
width. The algorithm needs to avoid ping-ponging (i.e., a rapid switching between
high and low widths), but this is easily accomplished by introducing some hysteresis
in the algorithm.

Medium and Coarse Grain Power Management

At medium/coarse grain, the algorithms can be implemented in firmware or software
and can be more and more sophisticated as the time granularity increases. The
algorithms can make use of both active and idle state controls, as discussed below.

The active state control such as DVFS reduces power by matching the throughput
capability of the device to the current needs. The best known active controls are
DVFS controls for CPUs – they are an integral part of power management in
current systems. For example, Intel’s SpeedStep technology and AMD’s PowerNow
technology make use of P states to dynamically switch the processor to higher
numbered P state when the CPU utilization is low, and to a lower numbered P state
when the utilization increases. The net effect is to keep the effective CPU utilization
after change over to suitable P state at a fairly high level (say, around 70–80%)
irrespective of the actual load. This allows a significant reduction in the average
CPU power consumption. Both the SpeedStep and PowerNow can be characterized
as reactive in nature in that they change state based on the utilization in recent past.
It is possible to make use of predictive algorithms here, but may not provide any
significant advantages.

It is important to note that a change in P state is not instantaneous and could
require a few microseconds or more depending on how it is done. This is because
a voltage change needs time to settle down, and a frequency change requires to
phase locked loop (PLL) circuitry to lock the new frequency. Intel’s improved
implementation, called Enhanced SpeedStep, tries to reduce this latency with a small
increase in power. If a software based algorithm is used to decide and switch among
P states, the delays could be in milliseconds or more. An important point about P
states is, however, that multiple cores may be supplied voltage from the same “rail”
and thus all of those cores must use the same voltage. This considerably limits the

126 K. Kant

flexibility of DVFS. Furthermore, with voltage levels shrinking and getting closer to
thresholds for reliable switching, there may not be much scope for reducing voltages
at lower frequencies. Note that simply lowering the frequency without lowering
the voltage may be detrimental from the energy perspective. To see this, consider
an entirely CPU bound task which runs for 10 s on a 2.0 GHz processor. Then the
task would take 20 s to complete if the processor frequency is reduced to 1.0 GHz.
Obviously, the active power in this case will be 1/2 of the original, but the active
energy will be the same (twice as long at half the rate). Moreover, the processor will
now be consuming idle power for 20 s, instead of only 10 s (and perhaps placed in
a low power mode rest of the time). Thus, the total energy consumption is actually
larger!

The idle state control can be much like the fine grain HW algorithms described
above, except that there is a scope for more sophisticated decision making here. For
example, if the workload is rather stable, one could learn its characteristics and use
them to determine the “runway” and the low power state to be used. In some cases, it
may be possible to even eliminate the runway since a more detailed understanding
of the application behavior may tell us when the application is unlikely to use a
particular resource.

Although medium and coarse grain power management are often integrated
together, it is worth making a clear distinction between the use of lower speeds and
sleep modes (usually done at the time granularity of minutes or lower) and simply
powering off the resources (which becomes attractive at the granularity of 10’s of
minutes or longer). Two prominent examples of the latter are: (a) consolidating
servers by “packing” the workload on as few a servers as possible and shutting
down the rest, and (b) copying actively used data to certain disks and spinning down
the rest [4, 5]. Such consolidation can save a substantial amount of energy when
the usage pattern is easily predictable or known. For example, once we know the
low usage periods during a day (typically late night and early morning), we can
decide how many servers and disks to keep active. This number may be somewhat
overestimated to deal with uncertainties, and then medium grain controls can extract
further savings by making use of active and passive controls.

Software Energy Efficiency

In the above, our focus has been almost exclusively on hardware energy efficiency
and management techniques. Energy is ultimately consumed by transistors and
wires; in fact, energy is consumed even when the transistors are not switching (i.e.,
not computing). This makes software level energy consumption discussion rather
difficult. For example, it is not possible to associate a fixed amount of energy with
basic operations such as add, multiply, data copy, etc. The problem is that the

Energy Efficiency Issues in Computing Systems 127

energy consumption associated with any operation depends on many hardware level
details, including the number of operation units, how they are used, the location
of the instruction and data (core level cache, shared cache, or memory), and how
any given operation relates to others around it because of pipelining, prefetching,
speculative execution, etc. Furthermore, even if one could estimate per operation
energy consumption, it is not necessarily meaningful because a hardware unit
that does not perform any operation may still consume some idle power, and this
power consumption depends on how the unit is power managed. Because of these
difficulties, it is usually not possible to consider energy consumption in the same
simple way that we use for estimating the complexity of the algorithm. Nevertheless,
it is of great interest to consider how to reduce the energy consumption of the
system during the time the program of interest is running. In this section we discuss
this issue in the context sequential programs. Parallel program related issues are
discussed in the following section.

Algorithmic vs. Energy Efficiency

In general, if we can restructure the program or change the underlying algorithm so
that it finishes more quickly, it will likely also consume less energy. In other words,
a more efficient algorithm (along with its efficient implementation) should generally
lead to less energy consumption. This is because the more efficient algorithm will
likely do one or more of the following: (1) execute fewer instructions and/or touch
less data, (2) improve the hit rates in processor cache(s) and thus reduce data
movement (including traffic on various interconnects), (3) reduce memory footprint
and/or lay out data in memory in a way that results in more efficient accesses to
memory, (4) fewer or more efficient data transfers over the network, (5) better layout
and access to the disk to reduce I/O overhead, and (6) less contention for shared
resources such as locks. All of these can directly reduce the power consumption by
reducing the activity level in the computing infrastructure.

However, we need to be really careful and not equate shorter running time with
less energy consumption. DVFS actually provides a direct contradiction to that
idea – by running slower, and thereby taking longer, we save energy. One could
argue (correctly), that DVFS changes the behavior of the hardware, rather than
the software, and thus does not violate the idea of reducing energy consumption
by making the program run faster. Nevertheless, even software restructuring to
reduce the run-time may not always reduce energy consumption. This could happen
because a more efficient algorithm puts more stress on the CPU and increases the
energy consumption more than the amount by which it reduces the run-time. In
general, the energy consumption and run-time of a program are affected differently
by the choice of algorithm, data structure, data locality, caching behavior, etc. and
the overall impact could be difficult to model and predict.

128 K. Kant

Enhancing Energy Efficiency Opportunities

It is often possible to increase energy efficiency of a program/service by enhancing
opportunities for it to make use of energy saving techniques discussed above. This
applies to both terminating programs (that take some inputs and then run until
completion) and services (that receive an input or query, execute, and then wait
for the next one). With idle power management, if we can increase the idle periods,
the underlying hardware can use low power modes more effectively and thereby
save energy. In a terminating program, this could be done by bunching together
periods of IO, memory accesses to fetch data into the cache, and execution from the
cache. In a service, this can be done by batching the queries together suitably so
that multiple small idle periods turn into one larger idle period. With active power
management, restructuring the workload so that the utilization of various devices
can be more balanced allows energy saving by not having to change the active state
too frequently.

As a concrete example, consider the case of network traffic flow coming into a
switch or router. Suppose that we collect a batch of n > 1 packets and then forward
them. In this case, we can put the switch/router port into low power mode while we
are collecting the next batch. If this batching period is long enough that the overhead
of transition into and out of low power state is a relatively small fraction of the total
idle period, better energy efficiency is achieved than by forwarding the packets one
by one. Of course, the cost is extra delay caused to the packets. Note that for this
solution to work, we should be able to receive and queue up the packets any time; it
is only the forwarding part that can go into the low power mode. This requirement
may be difficult to satisfy or require additional hardware to capture packets arriving
while the port is in low power mode. Another important issue is that the batching
needs to happen for all of the traffic coming into a port, rather than for only some
of the flows. For example, if the port is receiving several flows, and at least one of
them is too latency sensitive to allow for batching, there may not be much advantage
in batching the others.

Data Movement vs. Computation

Computation and communications are two key functions in all of the computing
technology and both need to be fast and energy efficient. Unfortunately, commu-
nication (or data transfer) has not kept pace with computing on either front. This
is true at all levels starting with on-chip wires. As the width of the wires shrinks,
their resistance goes up, and is already measured in Mega-Ohms per inch. This
makes data movement increasingly more costly in terms of power as compared with
computation. While the transistor power decreases with smaller “feature size”, the
wire power does not necessarily scale down due to the wires becoming thinner.

Energy Efficiency Issues in Computing Systems 129

Also, unless the wire length also decreases in the same proportion as the feature size
(generally not true), the increased capacitance makes the wires slower. The net effect
is that the energy consumed to move data on-chip by 1 cm is increasing while the
energy required for computation (say, addition of two numbers in registers) has been
going down. This is true for all interconnects/links including interconnect among
cores, DRAM to memory controller, etc. The net result is that more attention must
be paid to data movement to both on-chip and off-chip than has been done in the
past. Even the system level interconnects such as PCI-E, Ethernet, Infiniband, etc.
suffer from similar issues – their speed increase and energy efficiency has not kept
pace with the computing.

There are several aspects to be considered in minimizing data movement. One
key issue concerns data representation. For elementary data types, it helps to
minimize their size, so that more “information” can be moved using the same
number of bytes. For example, signed integers that are not expected to go beyond
215 − 1, are better represented as “short” rather than “int”. Similarly, the floating
point variables whose computation would be acceptable as single-precision (in
terms of range and precision), should not be declared as double. A compact
representation at larger granularity (e.g., arrays, structures, etc.) is also highly
desirable provided it does not make the algorithm inefficient and thereby erase the
advantages of compact representation.

Another key concept in minimizing data movement is locality of access. The
basic idea is that if some data items are placed close together, the algorithm should
be designed to access them together so that the data can be brought in larger
chunks. Conversely, the data that is normally accessed together should be placed
together. This applies to the algorithm design, memory allocation of variables by
the compiler, placement and access of data on the disk, etc. Locality can be very
difficult to achieve when the data to be accessed depends on external queries, and
the query workload is highly variable.

The third key concept is a tradeoff between computation and data movement.
In the past, computation was expensive and the algorithms emphasized the need
to reuse what has already been computed. This is increasingly not true – it may be
better to recompute the result locally yet again, instead of fetching it from elsewhere.
For example, consider two nodes N1 and N2 in a multiprocessor system, each of
which holds data items A and B in their caches. (Here A and B could be scalars
or vectors.) Suppose that N1 has already computed A + B, and N2 needs it. It may
be faster for N2 to recompute it (in a separate variable) instead of requiring it to
be transferred from N1 (by accessing the variable holding A + B). This situation
applies at higher levels as well. For an example, consider two joinable relational
tables A and B stored on a disk accessible to two nodes N1 and N2. Suppose that
both nodes have cached A and B in the memory and N1 has computed A �� B. Now
if N2 needs A �� B, it may be more efficient for it to compute on its own, rather
than asking N1 to either send the result over the network or write it to the disk from
where N2 can read it.

130 K. Kant

Tradeoff Between Energy and Performance

For best performance, it is usually desirable to spread the load across all resource
instances (e.g., servers in a cluster, cores in a CPU, all channels of DRAM, etc.)
Such load balancing minimizes bottlenecks and hence leads to better performance.
However, from the energy perspective, it is better to concentrate load on as few
resource instances as possible so that the rest can be put in low power mode. The
load balancing among the used resource is still important, although ideally this
would be balancing of power consumption rather than load.

Restructuring of a program to enable better energy efficiency and actually
exploiting this potential by power management technique itself has impact on the
performance. For example, batching of requests means additional delays, which may
be undesirable. Thus, the extent of permissible batching will be governed by the
maximum tolerable delay. Also, any kind of power state transition causes delays,
which again must be controlled. For example, placing the unused servers in S4
(hibernate) state may require 10’s of seconds to resume operation, possibly followed
by some task migration before normal operation can be resumed.

Given the different impact of various techniques on power consumption and
performance, it is often desirable to speak of a metric that involves both performance
and power. The simplest one is performance per watt, which may be reported
as transactions/watt for transactional workload. Unfortunately, such a metric very
much depends on the utilization level with or without power management. Without
any power management, the metric will be the highest if the resource is 100%
utilized and become very small as the utilization goes down to zero if the idle power
consumption is significant. With aggressive power management, the maximum may
be achieved at a very low performance level because at that level one could set the
voltage to the lowest level and thereby gain a substantial reduction in active power.
Thus performance per watt (or a similar work done per Joule of energy) needs to be
interpreted carefully to be meaningful.

Parallelism vs. Energy Efficiency

Parallelism is a property of both hardware and software, and to the extent the
available parallelism in the software can be mapped to that in the hardware, we
can reduce the execution time and possibly the energy consumption. This section
provides an overview of some of these issues.

Hardware vs. Software Parallelism

The hardware provides the following types of parallelisms

Energy Efficiency Issues in Computing Systems 131

1. Instruction Level Parallelism (ILP), where the goal is to complete (or “retire”)
as many instructions as possible in one clock cycle. This is achieved by two
techniques: (a) pipelining, divide the execution into a pipeline of stages, so that
while stage i is working on nth instruction, stage i − 1 could be working on (n+
1)st instruction, etc., and (b) superscalar processing, where several independent
instructions are processed in parallel by independent hardware units.

2. Data Level Parallelism (DLP), where multiple data elements (e.g., elements of a
vector) are processed in parallel either by the same operation (SIMD) or different
operations (MIMD). For example, two vectors can be added in the time it takes
to add two elements.

3. Thread Level Parallelism (TLP), where multiple software threads execute in
parallel on different cores or HW threads (usually followed by a synchronization
point where the computed results are exchanged and prepared for the next phase).
The well-known map reduce framework is a good example of this type of
parallelism.

The ILP occurs naturally in software in that the sequence of instructions in a
program need not be executed in that order – the only thing that matters is ordering
with respect to the dependencies that result from one instruction using the result
produced by another instruction. Branches are also problematic because they force
the execution to move to another spot in the program. Program ILP is automatically
exploited by the current architectures. For exploiting ILP, the instruction execution
is divided into multiple “stages”, such as instruction fetch, decode, operand fetch,
execution, and result generation. These stages work in parallel in that while one
instruction is in the nth stage, the next instruction could simultaneously be in (n-
1)st stage. The hardware required to handle pipelining includes interface registers
between stages and extensive logic to manage dependencies, forward results, handle
branches and exceptions. A deeper pipeline requires more hardware and may need
more complex logic. Although a non-pipelined CPU would not optimally use the
hardware, it can be largely power gated and thus does not result in much of an
energy burden. The power gating of many small stages with complex interface
logic is more difficult and carries more overhead. The biggest problem with deep
pipelines however is the handling of branches, which cause substantial inefficiency.
Superscalar designs also suffer from inefficiency if there are not enough independent
instructions to pack together. In general, simpler designs (e.g., Intel Atom vs. Core
processor, or Arm vs. Intel) tend to be much more energy efficient.

Vector computations occur naturally in software and can exploit the hardware
vector processing capabilities easily for faster and more energy efficient processing.
The energy efficiency results from less per operation overhead of vector processor
vs. scalar processor and the overall shorter processing time. The overhead of
properly using the vector processing units largely occurs in terms of proper code
generation by the compiler, rather than at runtime. Furthermore, unused units can
be easily put in low power mode.

A similar situation occurs with TLP, since the “uncore” hardware is shared
among all the cores (discussed in the next section) and the cores can work in

132 K. Kant

parallel to finish the task much faster than a single core could. Exploiting the multi-
core architecture generally requires parallelism at a much coarser granularity than
provided by ILP or vector processing.

Application Level Parallelism vs. Energy Efficiency

Application level parallelism can be achieved by spreading the operation over
multiple resources such as servers, storage devices, network interfaces, etc. For
example, running the same application on multiple servers can scale up the overall
query processing rate up to the point where some bottleneck develops due to
software contention (e.g., locks), access to shared disks, limited network bandwidth,
etc. Storage system bottlenecks can be relieved by duplicating read-intensive data
across multiple storage devices, or partitioning and striping data intelligently across
them. Similarly, network bottlnecks may be relieved by using multiple network
interfaces.

There are two related perspectives on energy efficiency for this type of paral-
lelism. One is that if the system is limited by some significant bottleneck, the less
used resources will not be used efficiently. For example, if the throughput is limited
by the storage system, the servers will experience stalls, and it may be possible to
retain the same throughput by simply reducing the number of servers to the point
where the storage bottleneck is relieved. The extra servers could then be shut down
or put in deep sleep mode to conserve energy. The other perspective is of dynamic
sizing of resources to match the needs. That is, if the resources (servers, disks,
network interfaces) are not well utilized, better energy efficiency can be achieved by
consolidating the workload on fewer resources (and shutting down the rest). Thus,
the general principle is to size the resources such that all resources operate close to
their bottleneck point, but not above it.

It is important to note that dynamic sizing may be very difficult in many cases
and may itself have significant energy overhead. We will illustrate this with two
examples. First, consider a cluster of web servers that are dynamically sized to
match the web query load. Each time a web server is to be removed from service,
we first need to direct all new queries to other servers, let it finish all existing queries
and then put it to sleep. This involves energy overhead. Similarly, when a web-server
is to be fired up, it needs to fetch all required content to its DRAM and processor
caches, which again involves a significant energy overhead. Thus, the frequency
of changes needs to be properly controlled. The second example concerns disks
where dynamic movement of a lot of data is impractical. This is usually handled by
staging the data on the largest set of disks needed and then varying the number of
active disks. The problem here is that irrespective of whether a disk is in use or not,
its data needs to be kept up to date. This requires that the disk be periodically spun
up, and the data updated. The energy and reliability implications of repeated spin
up/down of disks need to be considered in designing an algorithm for matching the
demanded throughput with the supply.

Energy Efficiency Issues in Computing Systems 133

Application level parallelism can also be used across data centers – for example,
by running the application in multiple data centers in order to do the processing
closer to the demand. A proper application of this idea can reduce delays, lower
network bandwidth requirements, and also save energy by virtue of the increased
locality and less data movement. It can also handle energy supply limitations – for
example, by processing queries or tasks where the energy supply is plentiful.

Thread Level Parallelism

Because of the proliferation of multicore architectures, the topic of designing
parallel algorithms has gained considerable importance. These algorithms are
focused on completing the processing as quickly as possible on the available cores,
but are limited by the available parallelism. A well formulated parallel algorithm
should allow assignment of a substantial chunk of work to each core such that they
can all work in parallel without any need for any synchronization or data sharing
with other cores. A typical algorithm would then follow a map-reduce type of
paradigm: execute in several rounds, where each round involves the following 3
steps: (a) data distribution to some subset of cores, (b) parallel computation on all
these cores, and (c) shuffling or summarization of the data to prepare for the next
round.

The key challenges in devising such an algorithm include: (a) coarse granularity
of work assignment to the core so that a significant amount of parallel computation
is done in each round, (b) ability to use all or most of the available cores, and (c)
workload balancing across the cores so that the computation on all the cores finishes
at about the same time. These objectives could be difficult to achieve in general,
and the parallel algorithm formulation to achieve them could make it substantially
different from the sequential algorithm. Often this amounts to an algorithm that
would be less efficient in time and space than the original sequential algorithm if
executed on a single core machine. This difference, along with the overheads of
parallel execution could make the parallel algorithm inherently less energy efficient
than the sequential algorithm, even though the parallel algorithm would most likely
take much less time to execute than the sequential version.

Designing the parallel algorithm to engage all cores and equalize work for them
is often not possible because the number of data partitions and the size of each
partition is often data dependent. For example, with parallel merge sort, the number
of lists to be merged varies at different levels of the merge tree. As another example,
the pivoting in quicksort invariably results in unequal size lists. This results in
achievable speedup of parallel processing significantly less than the number of
processors, say N , and often decreases with N beyond a certain limit.

Comparing the energy consumption of parallel vs. sequential versions of a
program could itself be a bit tricky. Consider, for simplicity, a situation where all
of the k cores in a system are engaged. Suppose that the sequential algorithm runs
for time τ on one core, and the parallel version is able to divide much of the work

134 K. Kant

into k equal parts, one allocated to each core. Still, there will be some overhead of
parallelization, and we can consider this as a fixed fraction of the code, as suggested
by Amdahl’s Law. Accordingly, let this sequential fraction be fa .

Then the parallel algorithm will take τ(fs + (1 − f)/k) time. Suppose that the
power consumed for each core when executing the algorithm is P

(c)
A and when idle

P
(c)
I . (Note that the active power does include the idle part here.) Let P

(u)
A and P

(u)
I

denote the active and idle power consumption of “uncore”, or parts of the CPU
other than cores (e.g., core interconnect, memory controller, etc.). Since the (k − 1)

cores must remain idle in the sequential program for the entire period τ , the energy
consumption of the sequential program is given by:

ES = [P (u)
A + P

(c)
A + (k − 1) ∗ P

(c)
I] × τ (3)

Since all the cores are active simultaneously for a parallel algorithm, its energy
consumption is given by:

EP = [P (u)
A +k×P

(c)
A]×τ [fs + (1−fs)/k] = [P (u)

A /k+P
(c)
A]×τ [kfs + (1−fs)]

(4)
Notice that in this comparison, we assume that the idle cores are not doing
anything, and thus extra power is consumed even if they are put in a low power
mode. If we instead assume that idle cores can be used for something else, their
energy consumption should not be charged to the sequential program. With our
assumptions, the comparison comes down to the following tradeoff: (a) additional
“uncore” power spent by the sequential algorithm, and (b) additional overhead of
the parallel implementation. Thus the parallel algorithm is better if

[P (u)
A /k + P

(c)
A] × [kfs + (1 − fs)] < [P (u)

A + P
(c)
A] (5)

which can be simplified to yield:

P
(c)
A < P

(u)
A (1/fs − 1)/k (6)

For example, if the core and uncore power are identical, this equation reduced to
k < (1/fs − 1). This means that so long as the number of cores is not too large,
the reduction in execution time will be more than the overhead of parallelism, and
hence the power consumption of the parallel program will be lower. However, with
a large number of cores, this is not true and the parallel program will not provide
any power advantage. As an illustration, Fig. 4 shows the power consumption for the
Cinebench 11.5 benchmark run on different number of cores. This figure is taken
from [6], which talks about techniques for making software energy efficient. Notice
the Amdahl’s law in play – the execution time with 2 cores is more than 1/2 of
execution time for 1 core, and similarly for 4 vs. 2 cores, and 8 vs. 4 cores. Also
note that the 2 core power is less than twice that of single core power because not
all the power consumed in the core.

Energy Efficiency Issues in Computing Systems 135

Fig. 4 Power consumption vs. number of cores. (Taken from [6])

In the more general situation where the different cores do different amount of
work, the cores that finish earlier will remain idle, and will consume extra energy
even if they are placed in a low power mode. This would make the parallel program
less efficient.

Power Management of Parallel Computations

With both sequential and parallel programs, smart energy management can be
exploited to reduce the energy consumption of the cores that are underutilized. In
particular, cores that are idle can autonomously go into a suitable sleep mode using
a suitable “runway”. This also includes progressive algorithms where the core first
enters a shallow sleep mode and then is promoted to a deeper sleep. However, such
autonomous actions are not the most efficient, and an explicit control by the program
(or a middleware that is aware of the program behavior) can do a much better job
by properly scheduling tasks and taking energy management actions with a better
knowledge of task schedules.

In particular, consider the scenario above where multiple cores do some com-
putation in parallel and then “join” at the end. The cores may finish their work
at different times either because the cores have nonhomogenous characteristics or
the work given to them is unequal. In this case, the cores that can finish early be
managed in the following three ways:

1. Schedule another unrelated task on the core and preempt this task when other
cores reach the synchronization point. This approach is workable if the core
has to wait for a long time before others reach the synchronization point,

136 K. Kant

otherwise it could lead to significant switching back and forth and corresponding
inefficiencies due to disturbance to the working sets. Also, the unrelated tasks
that we run must be of the type that does not have any strict QoS requirements,
since they can be preempted whenever the other tasks are ready.

2. Put the core in a suitable low power mode until other cores complete.
3. Stretch the completion time of cores that will finish fast by using DVFS controls.

In order to compare the last two options with respect to energy efficiency,
consider two entirely CPU-bound tasks T1 and T2 running on identical cores that
need to “join” when finished. Suppose that task T2 takes only half the time as task
T1. Then the energy consumption of the two cores, denoted E1 and E2 respectively,
is given by

E1 = (IL.V0 + 1/2.C.V 2
0 .f0)τ

E2 = (IL.V0 + 1/2.C.V 2
0 .f0)τ/2 + IL.V0.αlp.τ/2 (7)

where V0 is the normal voltage, f0 the normal frequency, and IL is the leakage
current. We assume that the leakage current reduces by a factor αlp in the low power
state. Now, if the core frequency for T2 is halved, i.e., core runs at f1 = f0/2, both
tasks will finish at the same time. Let V1 < V0 denote the voltage compatible with
the halved frequency. Then the energy consumption of T2 is given by

E′
2 = (IL.V1 + 1/2.C.V 2

1 .f0/2)τ (8)

Generally, we expect E′
2 < E2 if the frequency halving allows for significant

voltage reduction. For instance, consider the earlier example where f0 = 2.0 GHz
with V0 = 1.2 V, V1 = 0.9 V, IL = 7.5 Amp, and effective Capacitance (C) =
10 nanoFarad. Then, E1/t = 23.4 W as before, but

E2/τ = (7.5 × 1.2 + 5 × 1.22 × 2) × 0.5 + 7.5 × 1.2 × 0.5 × αlp

= 11.7 + 4.5αlpW

E′
2/τ = (7.5 × 0.9 + 5 × 0.92 × 1) = 10.8 W (9)

It is seen that DVFS provides lower energy consumption (E′
2) here irrespective of

the value of αlp. However, if the voltage reduction is limited to 1.1 V at the 1/2
frequency, we have E′

2/τ = 14.3 W. In this case, we need αlp > 0.578, for the
DVFS control to beat the idle power control. In reality, we expect the αlp to be
much smaller than this threshold, and hence low power control may be preferred.

Energy Efficiency Issues in Computing Systems 137

Energy Adaptation

Until now we have largely considered opportunistic reduction of energy consump-
tion with as little impact on performance as possible. While this is very valuable,
there are many situations where such an approach is inadequate. At the architectural
level, the power and thermal densities continue to grow due to shrinking feature
size and it is becoming necessary to limit the power consumption to ensure that the
thermal limits are not exceeded. At the rack level, power capping may be necessary
to ensure that the power circuits remain within their capacity. A typical reason for
stress on power circuit capacity is that the physical infrastructure in a data center
(e.g., racks, power distribution, cooling, etc.) is originally installed based on the
requirements of the servers at that time. However, with increasing density of the
servers, the power limits may be exceeded in the future, thereby requiring power
capping. At the data center level, power capping may be necessary either due to use
of renewable power supply (that naturally fluctuates) or due to the inadequacy of
power and cooling infrastructure.

The worst case situation of power and cooling requirements in a data center will
occur if all of the components of all the servers are simultaneously working at peak
capacity. However, this is unrealistic and undesirable from the infrastructure cost
perspective. Most data center servers run at a very low utilization typically, 10–20%
range, and may hit 70–80% only a few times in a year. In fact, most data center
operators will upgrade/expand their computing capacity much before it threatens to
be a frequent bottleneck. Furthermore, even if the utilization of one component (say,
CPU) goes to 100%, it is highly unlikely that the others (e.g., memory, network
or the storage) could simultaneously be working at their maximum capacity. In
particular, if the CPU is doing heavy IO or pulling in a lot of data from the memory,
it will mostly be stalling, and not executing to the best of its capability.

In the so called “co-lo” (colocation) environments that are becoming popular,
multiple companies lease and operate servers from a single server-farm operator.
In such an environment, a simultaneous peak usage of all the servers belonging to
various client companies is even less likely. Thus, it is highly desirable to design
the power infrastructure in the data centers to a value that is substantially below the
theoretical peak (often by a factor of 3 or more). The same goes for the cooling
infrastructure – provisioning enough cooling capacity to handle the worst case heat
generation situation is usually not sensible.

The underprovisioning of the power/cooling infrastructure does require the
ability to handle those rare situations where the demand may exceed the supply.
It is important to note here the relationship between power and cooling. If the
cooling capacity is inadequate, the power consumption must be capped (even if
there is no power constraint) so that no thermal emergencies are created. An
intelligent power capping can adapt the system to the available power/cooling
capacities without any significant impact on the performance. In fact, with an
intelligent adaptation mechanism, it is possible and highly desirable to deliberately
underdesign the power and cooling infrastructure so that a suitable balance between

138 K. Kant

cost (both infrastructure and operational) and risk of violating quality of service
(QoS) requirements is achieved. Such a tradeoff can result in huge cost savings with
only a minor increase in the risk of degraded QoS.

The key difference between adaptation and the opportunistic energy management
is that the former is a mandatory reduction in energy consumption and can only be
done by compromising on some performance aspect such as delay or throughput.
For this reason, it needs to be performed carefully, else the performance impact
could be substantial. In particular, the energy deficit must be properly distributed
among various resources with an eye towards the requirements and priorities
of the applications using those resources. For example, consider a map-reduce
application running on N servers. Such applications divide the work among all
servers (map phase) and eventually collect/merge results (reduce phase). For the
best performance, all servers should finish at about the same time, and under energy
capping, it is necessary to allocate budgets so that this will be the case. A haphazard
energy capping of the servers may result in significant imbalance and thus affect
both the performance and the energy efficiency of the application.

A similar situation arises if multiple cores used to exploit thread level parallelism
are energy capped – the energy budget of each core (and hence the DVFS controls
used by it) should assure the balance. Finally, a balance is necessary across resources
of various types as well. For example, running the memory or links at lower
frequency while the cores are running at full frequency would result in CPU stalls
and thus slower progress than if the energy budgets were balanced. Similarly, if the
storage system in a data center is not power managed but the servers are, this would
result in suboptimal performance, and hence less work done under energy limited
situations than is possible.

It follows from the above discussion that there are two major issues in adaptation
to energy limitations: (a) how to estimate suitable power budget for each system,
subsystem and down to individual resources (CPU cores, links, DRAM channels,
DRAMs, IO controllers, disks, etc.), and (b) how to apply power management in
order to keep power consumption very close to the budget. For the first problem,
we ideally want to assign power budgets so that it is possible to achieve the
balance discussed above. Simple models that express power consumption as a
linear equation ax + b as a function of performance (x) are often used for this.
(Here b represents the idle power and a is the power consumption per unit of
work.) Although such an approach is often adequate, it is important to note that
nonlinearities often arise when there is a resource bottleneck or contention for
a shared resource. For example, while we may be able to use ax + b type of
expression for programs running individually on a machine, nonlinearities may arise
when multiple such programs run concurrently on the same machine because of
contention for cache or other resources.

An additional complication arises in energy adaptation due to variability in the
workload itself. If the workload (e.g., rate or type of queries arriving at a server)
varies, so will the energy consumption. Thus a budget computed initially cannot
be kept constant even if the energy availability does not change; instead, it needs to
vary with the workload as well. A too frequent a change is itself undesirable because

Energy Efficiency Issues in Computing Systems 139

a change in energy budget may require a change of the DVFS state, redirection of
queries to other servers, or even migration of applications to other servers. A poorly
designed control mechanism could result in ping-ponging, i.e., reduction of energy
budget (and corresponding corrective actions) followed by an increase, followed by
a reduction, etc. Such a behavior must be avoided.

Several of these issues have been explored in [7] which discusses the notion
of “energy adaptive computing” in detail [8]. There are many other investigations
related to energy capping; for example, Sharma et al. [9] propose a scheme to
handle intermittent energy constraints by power cycling servers. The scheme is a
purely power driven management scheme and independent of workload demands.
An interesting aspect of this work is to pay attention to the energy surplus periods
as well, when it may be possible to do additional computation, or speculatively
prefetch data so that less data transfer activity takes place during the low energy
periods.

Emerging Issues and Outlook

For a long time, the semiconductor industry thrived on the voltage reduction each
time the technology moved to the next lower “feature size”. This is known as
“Dennard Scaling”, introduced by Robert Dennard in 1974. The basic idea is as
follows: Let’s say we reduce the feature size by a factor of

√
2, which is typically

how generations of semiconductor processes advance. An example of this is feature
size going from 90 nm (nanometer) to 64 nm in late 1990s. Ideally, the reduction
in the feature size reduces the capacitance C by the same factor and allows voltage
reduction by

√
2 as well. Thus the overall dynamic power reduces by a factor of 2.0.

Now, the feature size reduction allows twice as many transistors to be packed in the
same chip, and we can raise the frequency by a factor of

√
2, which by itself would

increase the power consumption by a factor of 2.0. But the two aspects combined
result in a new chip with same power consumption as before, but with twice as many
transistors, each operating 1.414 times faster!

Denard scaling started to break down in early 2000s and stopped around 2004.
The reasons for this include the inability to lower voltage much, challenges in
reducing transistor capacitance, difficulties in increasing frequency, and the difficult
problem of increasing wire resistance and capacitance. This gave rise to growth
in the “other dimension”, i.e., the number of cores rather than performance of a
single core. In fact, Moore’s law was redefined to refer to the computing power
of all the cores and thus continued unabated. Recently, even this trend has proved
unsustainable. With the industry going for 7 nm technology next, the transistor
widths are only a few tens of atoms wide (one nm = 3 Si atoms), which brings
in numerous technological challenges including very high power densities (power
dissipated per unit area). In fact, the technology is already at a point where we can
easily put hundreds of CPU cores on a chip, but powering them all simultaneously
is not possible.

140 K. Kant

Lowering the power density requires further lowering of the voltage. This is
challenging since voltages are already close to the threshold required for reliable
switching, and lowering them further introduces timing errors. Such errors must be
detected and handled either by repeating the operation or by introducing additional
delays to avoid the errors. This results in concerns of unreliability and residual
“silent errors” in the computations – errors that somehow escape the mechanisms
designed to catch them.

An added problem is that at such small feature sizes, it is extremely difficult to
pattern each transister or wire accurately, which means that supposedly identical
CPU cores, caches, logic units, etc. show considerable variability in their char-
acteristics. This essentially makes the entire chip very heterogeneous, and poses
challenges in using it optimally both in terms of its performance capabilities and
power/thermal limits. In particular, some of the cores may run reliably only at much
lower frequencies than the target frequency, while others may exceed their normal
TDP (total dissipated power). In the past, such cores would be simply disabled, and
the CPU sold with fewer cores, but this could reduce the yields considerably going
forward.

We already discussed the need to minimize data movement for both perfor-
mance and energy reasons, but effective techniques to simultaneously handle both
data movement and computation remain unresolved. The traditional notions of
algorithmic efficiency only concern computational complexity, rather than the
data movement. A proper consideration of both requires new ways of designing
algorithms and evaluating their complexity both in terms of performance and energy.

In short, the importance of power/energy considerations in both hardware and
software design will continue to increase, and so will the additional challenges
brought about by smaller feature sizes and low voltages. The main issues are high
variability and increasing the chance of unreliability or “silent errors” which must
be tackled along with the energy management.

References

1. G. Dhiman and T. S. Rosing, “Dynamic voltage frequency scaling for multi-tasking systems
using online learning,” in ISLPED ‘07: Proceedings of the 2007 international symposium on
Low power electronics and design, 2007.

2. K. Kant, “A control scheme for batching dram requests to improve power efficiency,” in Proc.
of ACM SIGMETRICS, 2011, pp. 139–140.

3. ——, “Multi-state power management of communication links,” in Communication Systems and
Networks (COMSNETS), 2011 Third International Conference on. IEEE, 2011, pp. 1–10.

4. E. Pinheiro and R. Bianchini, “Energy conservation techniques for disk array-based servers,” in
Proceedings of the 18th annual international conference on Supercomputing, ser. ICS ‘04. New
York, NY, USA: ACM, 2004.

5. D. Colarelli and D. Grunwald, “Massive arrays of idle disks for storage archives,” in Supercom-
puting ‘02: Proceedings of the 2002 ACM/IEEE conference on Supercomputing. Los Alamitos,
CA, USA: IEEE Computer Society Press, 2002, pp. 1–11.

Energy Efficiency Issues in Computing Systems 141

6. M. Sabharwal, A. Agrawal, and G. Metri, “Enabling green it through energy-aware software,”
IT Professional, vol. 15, no. 1, pp. 19–27, Jan 2013.

7. K. Kant and M. Murugan and D. H. C. Du, “Willow: A Control System for Energy and Thermal
Adaptive Computing,” in IPDPS ‘11, 2011.

8. K. Kant, M. Murugan and D. H. C. Du, “Enhancing data center sustainability through energy
adaptive computing,” ACM JETC (Special Issue), April 2012.

9. N. Sharma, S. Barker, D. Irwin, and P. Shenoy, “Blink: managing server clusters on intermittent
power,” in Proceedings of the sixteenth international conference on Architectural support for
programming languages and operating systems (ASPLOS), 2011.

Scheduling for Fault-Tolerance:
An Introduction

Guillaume Aupy and Yves Robert

Abstract Parallel execution time is expected to decrease as the number of
processors increases. We show in this chapter that this is not as easy as it seems,
even for perfectly parallel applications. In particular, processors are subject to
faults. The more processors are available, the more likely faults will strike during
execution. The main strategy to cope with faults in High Performance Computing
is checkpointing. We introduce the reader to this approach, and explain how to
determine the optimal checkpointing period through scheduling techniques. We
also detail how to combine checkpointing with prediction and with replication.

Relevant core courses: Data Structures and Algorithms, Probabilities
Relevant PDC topics: Scalability in algorithms and architectures; Fault tolerance;

Time
Context for use: Mid under-graduate curriculum. Having a minimal background

in probabilities is better. The appendices are for students who are more advanced.
Learning outcomes: Comprehend that having access to more processors does not

guarantee faster execution—introduce the notion of faults and easy algorithms to
cope with faults

G. Aupy
Inria & Labri, University of Bordeaux, Bordeaux, France
e-mail: Guillaume.Aupy@inria.fr

Y. Robert (�)
ENS Lyon, Lyon, France

University of Tennessee, Knoxville, TN, USA
e-mail: yves.robert@ens-lyon.fr; Yves.Robert@inria.fr

© Springer International Publishing AG, part of Springer Nature 2018
S. K. Prasad et al. (eds.), Topics in Parallel and Distributed Computing,
https://doi.org/10.1007/978-3-319-93109-8_6

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93109-8_6&domain=pdf
mailto:Guillaume.Aupy@inria.fr
mailto:yves.robert@ens-lyon.fr
mailto:Yves.Robert@inria.fr
https://doi.org/10.1007/978-3-319-93109-8_6

144 G. Aupy and Y. Robert

Introduction

In this chapter, we present scheduling algorithms to cope with faults on large-scale
parallel platforms. We study checkpointing and show how to derive the optimal
checkpointing period. Then we explain how to combine checkpointing with fault
prediction, and discuss how the optimal period is modified when this combination
is used. And finally we follow the very same approach for the combination of
checkpointing with replication. But wait. First, we have to help Alice out: she is
having trouble with her laptop while writing her thesis.

Checkpointing on a Single Processor

Alice Needs Help

The most natural fault-tolerance technique when considering a fault-prone environ-
ment is to save your work periodically. This is what we (should) do in every-day’s
life. Alice is doing a very long and fastidious work: she is writing her PhD thesis,
using an unreliable resource, namely a 4-year-old laptop. Because she is afraid of
losing her precious work if the laptop crashes, she regularly saves her work on an
external disk.

At first, because she knew that her laptop could not be trusted, Alice decided
to save her work on the external disk every 3 h. Writing her file to disk takes
approximatively 3 min. On the mid-afternoon of day 3, Alice’s laptop crashed, she
had to reboot it, and as a consequence she lost the last hour and a half of her work!
Indeed, the crash happened right 90 min after her last saving on the external disk; she
could have lost much more if, say, the crash had happened only 10 min before the
next saving. Piqued, Alice decided that from now on, she would save her work on
the external disk more frequently, every half hour of work instead of every 3 h. But
after three additional days of work without further problem, she compared what she
did during days 1, 2 and 3, and during days 4, 5 and 6. She noticed that she did less
work on days 4, 5 and 6 than on days 1, 2 and 3 (even though she lost 90 min of work
on the third day). Alice is puzzled now: what is the best frequency to save her work?

The technique of saving intermediate work is called checkpointing. Because
Alice works for a constant amount of time between two checkpoints, her technique
is called periodic checkpointing. In the following, we explain why she did more
work during the three first days, and how she could find the best period between
each checkpoint.

Modeling the Occurrence of Faults

Computing environments, such as Alice’s laptop, are prone to faults. The first
question is to quantify the rate or frequency at which these faults strike. To that

Scheduling for Fault-Tolerance: An Introduction 145

purpose, one uses probability distributions, and more specifically, Exponential
probability distributions. The definition of Exp(λ), the Exponential distribution law
of parameter λ, goes as follows:

• The probability density function is f (t) = λe−λtdt for t ≥ 0;
• The cumulative distribution function is F(t) = 1 − e−λt for t ≥ 0;
• The mean is μ = 1

λ
.

Consider a process executing in a fault-prone environment. The time-steps at
which fault strike are non-deterministic, meaning that they vary from one execution
to another. To model this, we use IID (Independent and Identically Distributed)
random variables X1, X2, X3, Here X1 is the delay until the first fault, X2 is
the delay between the first and second fault, X3 is the delay between the second
and third fault, and so on. All these random variables obey the same probability
distribution Exp(λ). We write Xi ∼ Exp(λ) to express that Xi obeys an Exponential
distribution Exp(λ).

Each random variable Xi has the same cumulative distribution function F(t) =
1−e−λt : by definition, F(t) gives the probability of the event Xi < t . In other words,
F(t) = P (Xi < t) is the probability of having the next fault strike after a delay not
larger than t . See Fig. 1 for the cumulative distribution function of Exp(1

6×3,600).

For simplicity, time is counted in hours in the figure, so that λ = 1
6 and μ = 6:

in average, a fault will strike every 6 h. Reading the plot, we have F(2) ≈ 0.283,
which means that there is a 28% chance of having the next fault strike within 2 h.

We already observed that each random variable Xi has the same mean E (Xi) =
μ. In average, a fault will strike every μ seconds. This is why μ is called the MTBF
of the process, where MTBF stands for Mean Time Between Faults. The MTBF is

Fig. 1 Assuming λ = 1/6
(counting time in hours), the
probability that a failure will
strike within 2 h is
F(2) = P (X < 2) =
1 − e−2/6 ≈ 0.283

0 2 4 6 8 10

0.8

0.6

0.4

0.2

0

1

t (hours)

P
(X

≤
t)

F(t) = 1− e−t/6

146 G. Aupy and Y. Robert

a key parameter to Alice’s problem. One can show (see “Appendix 3: MTBF of a
Platform with p Parallel Processors” for a proof) that the expected number of faults
Nfaults(T) that will strike during T seconds is such that

lim
T →∞

Nfaults(T)

T
= 1

μ
(1)

Why are Exponential distribution laws so important? This is because of their
memoryless property, which writes: if X ∼ Exp(λ), then P (X ≥ t + s | X ≥ s) =
P (X ≥ t) for all t, s ≥ 0. This equation means that at any instant, the delay until
the next fault does not depend upon the time that has elapsed since the last fault.
The memoryless property is equivalent to saying that the fault rate is constant. The
fault rate at time t , RATE(t), is defined as the (instantaneous) rate of fault for the
survivors to time t , during the next instant of time:

RATE(t) = lim
Δ→0

F(t + Δ) − F(t)

Δ
× 1

1 − F(t)
= f (t)

1 − F(t)
= λ = 1

μ

The fault rate is sometimes called a conditional fault rate since the denominator
1 −F(t) is the probability that no fault has occurred until time t , hence converts the
expression into a conditional rate, given survival past time t .

We have discussed Exponential laws above, but other probability laws could be
used. For instance, it may not be realistic to assume that the fault rate is constant:
indeed, computers, like washing machines, suffer from a phenomenon called infant
mortality: the probability of fault is higher in the first weeks than later on. In other
words, the fault rate is not constant but instead decreasing with time. Well, this is
true up to a certain point, where another phenomenon called ageing takes over: your
computer, like your car, becomes more and more subject to faults after a certain
amount of time: then the fault rate increases! However, after a few weeks of service
and before ageing, there are a few years during which it is a good approximation
to consider that the fault rate is constant, and therefore to use an Exponential law
Exp(λ) to model the occurrence of faults. The key parameter is the MTBF μ = 1

λ
.

Problem Statement

We start by stating the problem formally. Let TIMEbase be the base time of the
work that needs to be done, without any overhead (neither checkpoints nor faults).
Assume that Alice’s computer is subject to faults with a mean time between faults
(MTBF) equal to μ.

The time to take a checkpoint is C seconds (C = 180 in the example). We say that
the period is T seconds when a checkpoint is done each time Alice has completed
T − C seconds of work. When a fault occurs, the time between the last checkpoint
and the fault is lost. After the fault, there is a downtime of D seconds to account for

Scheduling for Fault-Tolerance: An Introduction 147

Time

fault

period Tlost

p C T -C C T -C C T -C C D R T -C C . . .

Fig. 2 An execution

the temporary unavailability (for example Alice’s laptop is restarted, or the mouse
is changed, or she now needs to use her brother Bob’s laptop). Finally, in order to
be able to resume the work, the content of the last checkpoint needs to be recovered
which takes a time of R seconds (the external disk is connected and the checkpoint
file is read). The sum of the time lost after the fault, of the downtime and of the
recovery time is denoted Tlost. All these notations are depicted in Fig. 2.

Example

The difficulty of the problem is to trade-off between the time spent checkpointing,
and the time lost in case of a fault. Consider an application such that TIMEbase =
30 min, and assume a checkpoint time of C = 3 min, a downtime of D = 1 min and
a recovery time of R = 3 min.

We consider the following combinations:

Strategies

1. Only one checkpoint at the end of the execu-
tion;

2. Three checkpoints during the execution, after
every 10 minutes of work;

3. Five checkpoints during the execution, after ev-
ery 6 minutes of work.

Scenarios

(a) A large time between faults (in this example,
no fault during the execution);

(b) A medium time between faults (only one fault
at the 19th minute during the first hour);

(c) A small time between faults (one fault at the
19th, 42nd, 62nd minutes).

In Fig. 3, we picture the execution of the application for the three different
strategies, under the three different scenarios. This example shows that the lower
the time between faults, the higher the frequency of checkpoints should be.
However, the checkpointing strategy with the smallest period is not always the best
one: sometimes, there are not enough faults to pay off the overhead of frequent
checkpoints.

148 G. Aupy and Y. Robert

Time

Strategy 1 C

Strategy 2 C C C

Strategy 3 C C C C C

(a)

Time

Strategy 1 D R C

Strategy 2 C D R C C

Strategy 3 C C D R C C C

(b)

Time

Strategy 1 D R D R . . .

Strategy 2 C D R C D R C

Strategy 3 C C D R C C D R C

(c)

Fig. 3 The three strategies obtain different results depending upon the MTBF. (a) Large MTBF:
there are no or very few faults. Checkpointing is too expensive. The first strategy wins. (b) Medium
MTBF: there are more faults. It is good to checkpoint, but not too frequently, because of the
corresponding overhead. The second strategy wins. (c) Small MTBF: there are many faults. The
cost of the checkpoints is paid off because the time lost due to faults is dramatically reduced. The
third strategy wins

Solution

Let TIMEfinal(T) be the expectation of the total execution time of an application of
size TIMEbase with a checkpointing period of size T . The optimization problem is to
find the period T minimizing TIMEfinal(T). However, for the sake of convenience,
we rather aim at minimizing

WASTE(T) = TIMEfinal(T) − TIMEbase

TIMEfinal(T)
.

This objective is called the waste as it corresponds to the fraction of the execution
time that does not contribute to the progress of the application (the time wasted).
Of course minimizing the waste WASTE is equivalent to minimizing the total time
TIMEfinal, because we have

(1 − WASTE(T)) TIMEfinal(T) = TIMEbase,

but using the waste is more convenient. The waste varies between 0 and 1. When
the waste is close to 0, it means that TIMEfinal(T) is very close to TIMEbase (which
is good), whereas, if the waste is close to 1, it means that TIMEfinal(T) is very large
compared to TIMEbase (which is bad).

Scheduling for Fault-Tolerance: An Introduction 149

First Source of Waste

Consider a fault-free execution of the application with periodic checkpointing. By
definition, during each period of length T we take a checkpoint, which lasts for C

time units, and only T −C units of work are executed. Let TIMEFF be the execution
time of the application in this setting. The fault-free execution time TIMEFF is equal
to the time needed to execute the whole application, TIMEbase, plus the time taken
by the checkpoints:

TIMEFF = TIMEbase + NckptC,

where Nckpt is the number of checkpoints taken. Additionally, we have

Nckpt =
⌈

TIMEbase

T − C

⌉
≈ TIMEbase

T − C
.

To discard the ceiling function, we assume that the execution time TIMEbase is large
with respect to the period or, equivalently, that there are many periods during the
execution. Plugging back the (approximated) value Nckpt = TIMEbase

T −C
, we derive that

TIMEFF = T

T − C
TIMEbase. (2)

Similarly to the WASTE objective, the waste due to checkpointing in a fault-free
execution, WASTEFF, is defined as the fraction of the fault-free execution time that
does not contribute to the progress of the application:

WASTEFF = TIMEFF − TIMEbase

TIMEFF
⇔ (

1 − WASTEFF
)
TIMEFF = TIMEbase. (3)

Combining Eqs. (2) and (3), we get:

WASTEFF = C

T
. (4)

This result is quite intuitive: every T seconds, we waste C for checkpointing.
This calls for a very large period in a fault-free execution (even an infinite period,
meaning no checkpoint at all). However, a large period also implies that a large
amount of work is lost whenever a fault strikes, as we discuss now.

Second Source of Waste

Consider the entire execution (with faults) of the application. Let TIMEfinal denote
the expected execution time of the application in the presence of faults. This

150 G. Aupy and Y. Robert

TIMEFF =TIMEFinal (1-WASTE Fail) TIMEFinal × WASTE Fail

TIMEFinal

T -C C T -C C T -C C T -C C T -C C

T -C C T -C C T -C C T -C C T -C C

Fig. 4 An execution (top), and its re-ordering (bottom), to illustrate both sources of waste.
Blackened intervals correspond to time lost due to faults: downtimes, recoveries, and re-execution
of work that has been lost

execution time can be divided into two parts: (i) the execution of chunks of work of
size T −C followed by their checkpoint; and (ii) the time lost due to the faults. This
decomposition is illustrated in Fig. 4. The first part of the execution time is equal to
TIMEFF. Let Nfaults be the number of faults occurring during the execution, and let
Tlost be the average time lost per fault. Then,

TIMEfinal = TIMEFF + NfaultsTlost.

In average, during a time TIMEfinal, Nfaults = TIMEfinal
μ

faults happen (recall
Eq. (1)). We need to estimate Tlost (see Fig. 2). A natural estimation for the moment
when the fault strikes in the period is T

2 . Intuitively, faults strike anywhere in
the period, hence in average they strike in the middle of the period. Daly [6]
give the proof of this result for Exponential distribution laws. We conclude that
Tlost = T

2 + D + R, because after each fault there is a downtime and a recovery.
This leads to:

TIMEfinal = TIMEFF + TIMEfinal

μ

(
D + R + T

2

)
.

Let WASTEfault be the fraction of the total execution time that is lost because of
faults:

WASTEfault = TIMEfinal − TIMEFF

TIMEfinal
⇔ (1 − WASTEfault) TIMEfinal = TIMEFF

We derive:

WASTEfault = 1

μ

(
D + R + T

2

)
. (5)

Equations (4) and (5) show that each source of waste calls for a different period: a
large period for WASTEFF, as already discussed, but a small period for WASTEfault,

Scheduling for Fault-Tolerance: An Introduction 151

to decrease the amount of work to re-execute after each fault. Clearly, a trade-off is
to be found. Here is how. By definition we have

WASTE = 1 − TIMEbase

TIMEfinal

= 1 − TIMEbase

TIMEFF

TIMEFF

TIMEfinal

= 1 − (1 − WASTEFF)(1 − WASTEfault).

Altogether, we derive the final result:

WASTE = WASTEFF + WASTEfault − WASTEFFWASTEfault (6)

= C

T
+
(

1 − C

T

)
1

μ

(
D + R + T

2

)
. (7)

In Fig. 5, we plot WASTE as a function of the period T for a set of parameters.
We obtain WASTE = u

T
+ v +wT , where u = C

(
1 − D+R

μ

)
, v = D+R−C/2

μ
, and

w = 1
2μ

. It is easy to see that WASTE is minimized for T =
√

u
w

. The First-Order

(FO) formula for the optimal period is thus:

TFO = √2(μ − (D + R))C. (8)

and the optimal waste is WASTEFO = 2
√

uw + v, therefore

WASTEFO =
√

2C

μ

(
1 − D + R

μ

)+ D + R − C/2

μ
. (9)

Fig. 5 Waste as a function of
the period T , for
C = 3,D = 1, R = 3 and
μ = 40. TFO ≈ 14.7. Shorter
periods increase WASTEFF
too much. Longer periods
increase WASTEfault too
much. TFO achieves the best
trade-off between both
sources of waste

152 G. Aupy and Y. Robert

Finally, we show in “Appendix 1: First-Order Approximation of TFO ” why the
computation above is a first order approximation.

In 1974, Young [18] obtained a different formula, namely TFO = √
2μC +

C. Thirty years later, Daly [6] refined Young’s formula and obtained TFO =√
2(μ + R)C+C. Equation (8) is yet another variant of the formula, which we have

obtained through the computation of the waste. There is no mystery, though. None
of the three formulas is correct! They represent different first-order approximations,
which collapse into the beautiful formula TFO = √

2μC when μ is large in front of
the resilience parameters D, C and R. This latter condition is the key to the accuracy
of the approximation (see “Appendix 1: First-Order Approximation of TFO ”). Let
us formulate our result as a theorem:

Theorem 1 The optimal checkpointing period is TFO = √
2μC + o(

√
μ) and the

corresponding waste is WASTEFO =
√

2C
μ

+ o(
√

1
μ
).

Theorem 1 has a wide range of applications. We discuss three of them in the
following sections.

Checkpointing on a Parallel Platform

In this section, we deal with the problem of checkpointing a parallel application.
We show how to reduce the optimization problem with p processors to the previous
problem with only one processor. Most high performance applications are tightly-
coupled applications, where each processor is frequently sending messages to, and
receiving messages from the other processors. This implies that the execution can
progress only when all processors are up and running. This also implies that when
a fault strikes one processor, the whole application must be restarted from the last
checkpoint. Indeed, even though the other processors are still alive, they will very
soon need some information from the faulty processor. But to catch up, the faulty
processor must re-execute the work that it has lost, during which it had received
messages from the other processors. But these messages are no longer available.
This is why all processors have to recover from the last checkpoint and re-execute
the work in parallel (Fig. 6).

Time

fault

Tlost

p1

p2

p3

C T -C C T -C C T -C C D R T -C C . . .

C T -C C T -C C T -C C R T -C C . . .

C T -C C T -C C T -C C R T -C C . . .

Fig. 6 Behavior for a tightly coupled application

Scheduling for Fault-Tolerance: An Introduction 153

Time

p1

p2

p3

(a)

Time

P

(b)

Fig. 7 Platform model: the super-processor replaces p = 3 processors. (a) Three faulty
processors. . . . (b) . . . make up for an equivalent even more faulty processor!

Time

p1

p2

p3

t

(a)

Time

p

t

(b)

Fig. 8 Intuition of the proof of Proposition 1. (a) If three processors have around 20 faults during
a time t (μind = t

20). . . . (b) . . . during the same time, the equivalent processor has around 60 faults
(μ = t

60)

Let us recap. Each time a fault strikes somewhere on the platform, the application
stops, all processors perform a downtime and a recovery, and they re-execute the
work during a time Tlost. This sounds familiar. We can see the whole platform as
a single super-processor, very powerful (its speed is p times that of individual
processors) but also very prone to faults: all the faults strike this poor super-
processor! See Fig. 7 for an illustration.

We can apply Theorem 1 to the super-processor and determine the optimal
checkpointing period as TFO = √

2μC + o(
√

μ), where μ now is the MTBF of the
super-processor. How can we compute this MTBF? Have a look at Fig. 8. We see
that the super-processor is hit by faults p times more frequently than the individual
processors. We should then conclude that its MTBF is p times smaller than that of
each processor. We state this result formally:

Proposition 1 Consider a platform with p identical processors, each with MTBF
μind. Let μ be the MTBF of the platform. Then

μ = μind

p
(10)

Proof If the inter-arrival times of the faults on each individual processor are IID
random variables (recall that IID means Independent and Identically Distributed)
with probability distribution Exp(λ) (where λ = 1

μind
), then the inter-arrival times

of the faults on the super-processor are IID random variables with probability
distribution Exp(pλ), which will prove the result.

The arrival time of the first fault on the super-processor is a random variable
Y1 ∼ Exp(λ). This is because Y1 is the minimum of X

(1)
1 , X(2)

1 . . . , X(p)

1 , where X
(i)
1

154 G. Aupy and Y. Robert

is the arrival time of the first fault on processor Pi . But X
(i)
1 ∼ Exp(λ) for all i, and

the minimum of p random variables following an Exponential distribution Exp(λi)

is a random variable following an Exponential distribution Exp(
∑p

i=1 λi) (see the
textbook by Ross [16, p. 288]).

The memoryless property of Exponential distributions is the key to the result for
the delay between the first and second fault on the super-processor. Knowing that
first fault occurred on processor P1 at time t , what is the (conditional) probability
distribution of a random variable for the occurrence of the first fault on processor
P2? This probability distribution is conditioned on the information that P2 has been
alive for t seconds. The memoryless property states that the probability distribution
of the arrival time of the first fault on P2 is not changed at all by when given this
information! It is still an Exponential distribution Exp(λ). Of course this holds true
not only for P2, but for each processor. And we can use the same minimum trick as
for the first fault. Finally, the reasoning is the same for the third fault, and so on.

This concludes the proof. We refer the reader to “Appendix 3: MTBF of a
Platform with p Parallel Processors” for another proof, where we also prove Eq. (1).

Proposition 1 shows that scale is the enemy of fault-tolerance. If we double up the
number of components in the platform, we divide the MTBF by 2, and the minimum
waste automatically increases by a factor

√
2 ≈ 1.4 (see Eq. (9)). And this assumes

that the checkpoint time C remains constant. With twice as many processors, there
is twice more data to write onto stable storage, hence the aggregated I/O bandwidth
of the platform must be doubled to match this latter requirement.

Fault Prediction

A possible way to cope with the numerous faults and their impact on the execution
time is to try and predict them. In this section we do not explain how this is done,
although Gainaru et al. [10], Yu et al. [19] and Zheng et al. [21] provide more details
for the interested reader.

A fault predictor (or simply a predictor) is a mechanism that warns the user about
upcoming faults on the platform. More specifically, a predictor is characterized
by two key parameters, its recall r , which is the fraction of faults that are indeed
predicted, and its precision pr , which is the fraction of predictions that are correct
(i.e., correspond to actual faults). In this section, we discuss how to combine
checkpointing and prediction to decrease the platform waste.

We start with a few definitions. Let μPr be the mean time between predicted
events (both true positive and false positive), and μNPr the mean time between
unpredicted faults (false negative). The relations between μPr, μNPr, μ, r and pr

are as follows:

• Rate of unpredicted faults: 1
μNPr

= 1−r
μ

, since 1 − r is the fraction of faults that
are unpredicted;

Scheduling for Fault-Tolerance: An Introduction 155

• Rate of predicted faults: r
μ

= pr
μPr

, since r is the fraction of faults that are
predicted, and pr is the fraction of fault predictions that are correct.

To illustrate all these definitions, consider the time interval below and the different
events occurring:

fault fault fault fault fault

pred. pred. pred. pred. pred. pred.

Time

F+Pr F+Pr
pred.

F+Pr
pred.

F+Pr
fault

t

Actual faults:

Predictor:

Overlap:

During this time interval of length t , the predictor predicts six faults, and there were
five actual faults. One fault was not predicted. This gives approximatively: μ = t

5 ,
μPr = t

6 , and μNPr = t . For this predictor, the recall is r = 4
5 (green “F+Pr” arrows

over red “fault” arrows), and its precision is pr = 4
6 (green “F+Pr” arrows over blue

“pred.” arrows).
Now, given a fault predictor of parameters pr and r , can we improve the waste?

More specifically, how to modify the periodic checkpointing algorithm to get better
results? In order to answer this question, we introduce proactive checkpointing:
when there is a prediction, we assume that the prediction is given early enough
so that we have time for a checkpoint of size Cpr (which can be different from C).
We consider the following simple algorithm:

• While no fault prediction is available, checkpoints are taken periodically with
period T ;

• When a fault is predicted, we take a proactive checkpoint (of length Cpr) as
late as possible, so that it completes right at the time when the fault is predicted
to strike. After this checkpoint, we complete the execution of the period (see
Fig. 9b, c);

We compute the expected waste as before. We reproduce Eq. (6) below:

WASTE = WASTEFF + WASTEfault − WASTEFFWASTEfault (11)

While the value of WASTEFF is unchanged (WASTEFF = C
T

), the value of
WASTEfault is modified because of predictions. As illustrated in Fig. 9, there are
different scenarios that contribute to WASTEfault. We classify them as follows:

(1) Unpredicted faults: This overhead occurs each time an unpredicted fault
strikes, that is, on average, once every μNPr seconds. Just as in Eq. (5), the
corresponding waste is 1

μNPr

[
T
2 + D + R

]
.

156 G. Aupy and Y. Robert

TimeTlost

fault

C T -C C T -C C D R T -C C

(a)

TimeWreg

pred.

T -Wreg-C

C T -C C Cpr C T -C C T -C C

(b)

TimeWreg

F+Pr

T -Wreg-C

C T -C C Cpr D R C T -C C T -C

(c)

Fig. 9 Actions taken for the different event types. (a) Unpredicted fault. (b) Prediction taken into
account – no actual fault. (c) Prediction taken into account – with actual fault

(2) Predictions: We now compute the overhead due to a prediction. If the predic-
tion is an actual fault (with probability pr), we lose Cpr + D + R seconds, but
if it is not (with probability 1 − pr), we lose the unnecessary extra checkpoint
time Cpr . Hence

Tlost = pr(Cpr + D + R) + (1 − pr)Cpr = Cpr + pr(D + R)

We derive the final value of WASTEfault:

WASTEfault = 1

μNPr

(
T

2
+ D + R

)
+ 1

μPr

(
Cpr + pr(D + R)

)

= 1 − r

μ

(
T

2
+ D + R

)
+ r

prμ

(
Cpr + pr(D + R)

)

= 1

μ

(
(1 − r)

T

2
+ D + R + rCpr

pr

)

We can now plug this expression back into Eq. (11):

WASTE = WASTEFF + WASTEfault − WASTEFFWASTEfault

= C

T
+
(

1 − C

T

)
1

μ

(
D + R + rCpr

pr
+ (1 − r)T

2

)
.

To compute the value of T
pr

FO , the period that minimizes the total waste, we use the
same reasoning as in section “Solution” and obtain:

T
pr

FO =

√√√√2
(
μ −

(
D + R + rCpr

pr

))
C

1 − r
.

We observe the similarity of this result with the value of TFO from Eq. (8). If μ is

large in front of the resilience parameters, we derive that T
pr

FO =
√

2μC
1−r

. This tells
us that the recall is more important than the precision. If the predictor is capable of

Scheduling for Fault-Tolerance: An Introduction 157

predicting, say, 84% of the faults, then r = 0.84 and
√

1 − r = 0.4. The optimal
period gets 2.5 times larger, and the waste is decreased by 60%. Prediction can help!
See “Appendix 4: Going Further with Prediction” for further information.

Replication

Another possible way to cope with the numerous faults and their impact on
the execution time is to use replication. Replication consists in duplicating all
computations. Processors are grouped by pairs, such that each processor has a buddy
(another processor performing exactly the same computations, receiving the same
messages, etc.). See Fig. 10 for an illustration. We say that the two processes in a
given pair are replicas. When a processor is hit by a fault, its buddy is not impacted.
The execution of the application can still progress, until the buddy itself is hit by
a fault later on. This sounds quite expensive: by definition, half of the resources
are wasted (and this does not include the overhead of maintaining a consistent state
between the two processors of each pair). At first sight, the idea of using replication
on a large parallel platform is puzzling: who is ready to waste half of these expensive
supercomputers?

In this section, we explain how replication can be used in conjunction with
checkpointing and under which conditions it becomes profitable. In order to do
this, we compare the checkpointing technique introduced earlier to the replication
technique.

A perfectly parallel application is an application such that in a fault-free,
checkpoint-free environment, the time to execute the application (TIMEBase)
decreases linearly with the number of processors. More precisely:

p1

p2

p1

p2

p1

p2

p1

p2

Time

Pair 1

Pair 2

Pair 3

Pair 4

Fig. 10 Processor pairs for replication: each blue processor is paired with a red processor. In each
pair, both processors do the same work

158 G. Aupy and Y. Robert

TIMEbase(p) = TIMEbase(1)

p
.

Consider the execution of a perfectly parallel application on a platform with p = 2P

processors, each with individual MTBF μind. As in the previous sections, the
optimization problem is to find the strategy minimizing TIMEfinal. Because we
compare two approaches using a different number of processors, we introduce the
THROUGHPUT, which is defined as the total number of useful flops per second:

THROUGHPUT = TIMEbase(1)

TIMEfinal

Note that for an application executing on p processors, THROUGHPUT =
p (1 − WASTE).

The standard approach, as seen before, is to use all 2P processors to fully
parallelize the execution of the application on the platform. This would be optimal in
a fault-free environment, but we are required to checkpoint frequently because faults
repeatedly strike the p processors. According to Proposition 1, the platform MTBF
is μ = μind

p
. According to Theorem 1, the waste is (approximately) WASTE =

√
2C
μ

=
√

2Cp
μind

. We have:

THROUGHPUTStd = p

(
1 −

√
2Cp

μind

)
(12)

The second approach uses replication. There are P pairs of processors, all
computations are executed twice, hence only half the processors produce useful
flops. One way to see the replication technique is as if there were half the processors
using only the checkpoint technique, with a different (potentially higher) mean
time between faults, μrep. Hence, the throughput THROUGHPUTRep of this approach
writes:

THROUGHPUTRep = P

2

(
1 −

√
2C

μrep

)
(13)

In fact, rather than MTBF, we should say MTTI, for Mean Time To Interruption. As
already mentioned, a single fault on the platform does not interrupt the application,
because the replica of the faulty processor is still alive. What is the value of MNFTI,
the Mean Number of Faults To Interruption, i.e., the mean number of faults that
should strike the platform until there is a replica pair whose processors have both
been hit? If we find how to compute MNFTI, we are done, because we know that

μrep = MNFTI × μ = MNFTI × μind

p

Scheduling for Fault-Tolerance: An Introduction 159

Pair1 Pair2 Pair3 Pair4

Fig. 11 Modeling the state of the platform of Fig. 10 as a balls-into-bins problem. We put a red
ball in bin Pairi when there is a fault on its red processor p1, and a blue ball when there is a fault
on its blue processor p2. As long as no bin has received a ball of each color, the game is on

We make an analogy with a balls-into-bins problem to compute MNFTI. The
classical problem is the following: what is the expected number of balls that you will
need, if you throw these balls randomly into P bins, until one bins gets two balls?
The answer to this question is given by Ramanujan’s Q-Function (see Flajolet [9]),

and is equal to �q(P)� where q(P) = 2
3 +

√
πP
2 +

√
π

288P
− 4

135P
+ When

P = 365, this is the birthday problem where balls are persons and bins are calendar
dates; in the best case, one needs two persons; in the worst case, one needs P + 1 =
366 persons; on average, one needs �q(P)� = 25 persons.1

In the replication problem, the bins are the processor pairs, and the balls are
the faults. However, the analogy stops here. The problem is more complicated, see
Fig. 11 to see why. Each processor pair is composed of a blue processor and of a
red processor. Faults are (randomly) colored blue or red too. When a fault strikes
a processor pair, we need to know which processor inside that pair: we decide that
it is the one of the same color as the fault. Blue faults strike blue processors, and
red faults strike red processors. We now understand that we may need more than
two faults hitting the same pair to interrupt the application: we need one fault of
each color. The balls-and-bins problem to compute MNFTI is now clear: what is the
expected number of red and blue balls that you will need, if you throw these balls
randomly into P bins, until one bins gets both one red ball and one blue ball? To the
best of our knowledge, there is no closed-form solution to answer this question, but
a recursive computation does the job:

Proposition 2 MNFTI = E(NFTI|0) where

E(NFTI|nf) =
{

2 if nf = P,
2P

2P−nf
+ 2P−2nf

2P−nf
E
(
NFTI|nf + 1

)
otherwise.

Proof Let E(NFTI|nf) be the expectation of the number of faults needed to
interrupt the application, knowing that the application is still running and that faults

1As a side note, one needs only 23 persons for the probability of a common birthday to reach 0.5
(a question often asked in geek evenings).

160 G. Aupy and Y. Robert

have already hit nf different processor pairs. Because each pair initially has 2
replicas, this means that nf different pairs are no longer replicated, and that P −nf

are still replicated. Overall, there are nf + 2(P − nf) = 2P − nf processors still
running.

The case nf = P is simple. In this case, all pairs have already been hit, and all
pairs have only one of their two initial replicas still running. A new fault will hit
such a pair. Two cases are then possible:

1. The fault hits the running processor. This leads to an application interruption, and
in this case E(NFTI|P) = 1.

2. The fault hits the processor that has already been hit. Then the fault has no
impact on the application. The MNFTI of this case is then: E(NFTI|P) =
1 + E (NFTI |P).

The probability of fault is uniformly distributed between the two replicas, and thus
between these two cases. Weighting the values by their probabilities of occurrence
yields:

E (NFTI |P) = 1

2
× 1 + 1

2
× (1 + E (NFTI |P)) ,

hence E (NFTI |P) = 2.
For the general case 0 ≤ nf ≤ P − 1, either the next fault hits a new pair, i.e., a

pair whose 2 processors are still running, or it hits a pair that has already been hit,
hence with a single processor running. The latter case leads to the same sub-cases as
the nf = P case studied above. The fault probability is uniformly distributed among
the 2P processors, including the ones already hit. Hence the probability that the next
fault hits a new pair is

2P−2nf

2P
. In this case, the expected number of faults needed

to interrupt the application fail is one (the considered fault) plus E
(
NFTI|nf + 1

)
.

Altogether we have:

E
(
NFTI|nf

) = 2P − 2nf

2P
× (1 + E

(
NFTI|nf + 1

))

+2nf

2P
×
(

1

2
× 1 + 1

2

(
1 + E

(
NFTI|nf

)))
.

Therefore,

E
(
NFTI|nf

) = 2P

2P − nf

+ 2P − 2nf

2P − nf

E
(
NFTI|nf + 1

)
.

Scheduling for Fault-Tolerance: An Introduction 161

Let us compare the throughput of each approach with an example. From Eqs. (12)
and (13), we have

THROUGHPUTRep ≥ THROUGHPUTStd ⇔ (1 −
√

2Cp

MNFTI μind
) ≥ 2(1 −

√
2Cp

μind
)

which we rewrite into

C ≥ μind

2p

1

(2 − 1√
MNFTI

)2
(14)

Take a parallel machine with p = 220 processors. This is a little more than one
million processors, but this corresponds to the size of the largest platforms today.
Using Proposition 2, we compute MNFTI = 1284.4. Assume that the individual
MTBF is 10 years, or in seconds μind = 10 × 365 × 24 × 3600. After some
painful computations, we derive that replication is more efficient if the checkpoint
time is greater than 293 s (around 6 min). This sets a target both for architects and
checkpoint protocol designers.

Maybe you can say that μind = 10 years is pessimistic, because one would
observe that μind = 100 years in current supercomputers. Because μind = 100 years
allows to checkpoint up to 1 h, you would decide that replication is not worth it.
But maybe you can also say that μind = 10 years is optimistic for processors
equipped with thousands of cores and rather take μind = 1 year. In that case, unless
you checkpoint in less than 30 s, better be prepared for replication. The beauty of
performance models is that you can decide which approach is better without bias
nor a-priori, simply by plugging your own parameters into Eq. (14).

Conclusion

In this chapter, we have dealt with fail-stop faults, i.e. faults that cause the
application to crash and require to repair the resource or to find a spare one, and to
re-execute work from some state of the application that had been previously saved.
Other techniques involve to reconstruct the data lost by the failing processor from
redundant information (e.g., checksums) maintained by the other processors. While
unrecoverable, a fail-stop error has the nice characteristic that it can be detected
immediately. On the contrary, a silent error, a.k.a. silent data corruption, gets
unnoticed until it manifests after some random delay, e.g. because corrupted data
is activated. Silent errors come from many sources, from errors in the arithmetic
unit (due to low voltages) to bit flips in cache (due to cosmic radiation). Silent
errors are difficult to detect, and because of the detection latency, they are even
more difficult to correct. We refer the interested reader to studies such as Cappello
et al. [4] or Gainaru et al. [11] to know more about the fascinating problems and

162 G. Aupy and Y. Robert

solution techniques in the area of fault-tolerant computing at very large scale. See
also the monograph [13] for a recent survey of fault-tolerant techniques for High
Performance Computing.

Exascale computing (1018 operations per second, which require either one mil-
lion processors, each with one thousand cores, or one hundred thousand processors,
each with ten thousand cores) is a very large scale, but it is the scale of future-
generation machines that will be with us in less than 10 years. Thus the area of
resilience at scale is extremely important, and clever scheduling techniques are
needed to help solve all the problems. Alice needs more help.2

Appendix 1: First-Order Approximation of TFO

It is interesting to point out why the value of TFO given by Eq. (8) is a first-order
approximation, even for large jobs. Indeed, there are several restrictions for the
approach to be valid:

• We have stated that the expected number of faults during execution is Nfaults =
TIMEfinal

μ
, and that the expected time lost due to a fault is Tlost = T

2 +D+R. Both
statements are true individually, but the expectation of a product is the product
of the expectations only if the random variables are independent, which is not
the case here because TIMEfinal depends upon the fault inter-arrival times.

• In Eq. (4), we have to enforce C ≤ T in order to have WASTEFF ≤ 1.
• In Eq. (5), we have to enforce D +R + T

2 ≤ μ in order to have WASTEfault ≤ 1.
We must cap the period to enforce this latter constraint. Intuitively, we need μ to
be large enough for Eq. (5) to make sense. However, for large-scale platforms,
regardless of the value of the individual MTBF μind, there is always a threshold
in the number of components p above which the platform MTBF, μ = μind

p
,

becomes too small for Eq. (5) to be valid.
• Equation (5) is accurate only when two or more faults do not take place within

the same period. Although unlikely when μ is large in front of T , the possible
occurrence of many faults during the same period cannot be eliminated.

To ensure that the condition of having at most a single fault per period is met
with a high probability, we cap the length of the period: we enforce the condition
T ≤ αμ, where α is some tuning parameter chosen as follows. The number of faults
during a period of length T can be modeled as a Poisson process of parameter β =
T
μ

. The probability of having k ≥ 0 faults is P(X = k) = βk

k! e
−β , where X is the

random variable showing the number of faults. Hence the probability of having two
or more faults is π = P(X ≥ 2) = 1− (P (X = 0)+P(X = 1)) = 1− (1+β)e−β .
If we assume α = 0.27 then π ≤ 0.03, hence a valid approximation when bounding
the period range accordingly. Indeed, with such a conservative value for α, we have

2By the way, there is a nice little exercise in “Appendix 6: Scheduling a Linear Chain of Tasks” if
you are motivated to help.

Scheduling for Fault-Tolerance: An Introduction 163

overlapping faults for only 3% of the checkpointing segments in average, so that the
model is quite reliable. For consistency, we also enforce the same type of bound on
the checkpoint time, and on the downtime and recovery: C ≤ αμ and D +R ≤ αμ.
However, enforcing these constraints may lead to use a sub-optimal period: it may
well be the case that the optimal period

√
2(μ − (D + R))C of Eq. (8) does not

belong to the admissible interval [C, αμ]. In that case, the waste is minimized for
one of the bounds of the admissible interval. This is because, as seen from Eq. (7),
the waste is a convex function of the period.

We conclude this discussion on a positive note. While capping the period,
and enforcing a lower bound on the MTBF, is mandatory for mathematical rigor,
simulations in Aupy et al. [2] show that actual job executions can always use
the value from Eq. (8), accounting for multiple faults whenever they occur by re-
executing the work until success. The first-order model turns out to be surprisingly
robust!

Appendix 2: Optimal Value of TFO

There is a beautiful method to compute the optimal value of TFO accurately. First
we show how to compute the expected time E(TIME(T −C,C,D,R, λ)) to execute
a work of duration T − C followed by a checkpoint of duration C, given the values
of C, D, and R, and a fault distribution Exp(λ). If a fault interrupts a given trial
before success, there is a downtime of duration D followed by a recovery of length
R. We assume that faults can strike during checkpoint and recovery, but not during
downtime.

Proposition 3

E(TIME(T − C,C,D,R, λ)) = eλR
(

1
λ

+ D
)

(eλT − 1).

Proof For simplification, we write TIME instead of TIME(T −C,C,D,R, λ) in the
proof below. Consider the following two cases:

(i) Either there is no fault during the execution of the period, then the time needed
is exactly T ;

(ii) Or there is one fault before successfully completing the period, then some
additional delays are incurred. More specifically, as seen for the first order
approximation, there are two sources of delays: the time spent computing by the
processors before the fault (accounted for by variable TIMElost), and the time
spent for downtime and recovery (accounted for by variable TIMErec). Once a
successful recovery has been completed, there still remain T − C units of work
to execute.

164 G. Aupy and Y. Robert

Thus TIME obeys the following recursive equation:

TIME =
{

T if there is no fault
TIMElost + TIMErec + TIME otherwise

(15)

TIMElost denotes the amount of time spent by the processors before the first fault,
knowing that this fault occurs within the next T units of time. In other terms,
it is the time that is wasted because computation and checkpoint were not
successfully completed (the corresponding value in Fig. 2 is Tlost − D − R).

TIMErec represents the amount of time needed by the system to recover from the
fault (the corresponding value in Fig. 2 is D + R).

The expectation of TIME can be computed from Eq. (15) by weighting each case by
its probability to occur:

E(TIME) = P (no fault) · T + P (a fault strikes) · E (TIMElost + TIMErec + TIME)

= e−λT T + (1 − e−λT) (E(TIMElost) + E(TIMErec) + E(TIME)) ,

which simplifies into:

E(TIME) = T + (eλT − 1) (E(TIMElost) + E(TIMErec)) (16)

We have E(TIMElost) = ∫∞
0 xP(X = x|X < T)dx = 1

P(X<T)

∫ T

0 xe−λxdx, and

P(X < T) = 1 − e−λT . Integrating by parts, we derive that

E(TIMElost) = 1

λ
− T

eλT − 1
(17)

Next, the reasoning to compute E(TIMErec), is very similar to E(TIME) (note that
there can be no fault during D but there can be some during R):

E(TIMErec) = e−λR(D + R) + (1 − e−λR)(D + E(Rlost) + E(TIMErec))

Here, Rlost is the amount of time lost to executing the recovery before a fault
happens, knowing that this fault occurs within the next R units of time. Replacing T

by R in Eq. (17), we obtain E(Rlost) = 1
λ

− R
eλR−1

. The expression for E(TIMErec)

simplifies to

E(TIMErec) = DeλR + 1

λ
(eλR − 1)

Plugging the values of E(TIMElost) and E(TIMErec) into Eq. (16) leads to the
desired value:

E(TIME(T − C,C,D,R, λ)) = eλR

(
1

λ
+ D

)
(eλT − 1)

Scheduling for Fault-Tolerance: An Introduction 165

Proposition 3 is the key to proving that the optimal checkpointing strategy
is periodic. Indeed, consider an application of duration TIMEbase, and divide the
execution into periods of different lengths Ti , each with a checkpoint as the end.
The expectation of the total execution time is the sum of the expectations of the
time needed for each period. Proposition 3 shows that the expected time for a period
is a convex function of its length, hence all periods must be equal and Ti = T for
all i.

There remains to find the best number of periods, or equivalently, the size of each
work chunk before checkpointing. With k periods of length T = TIMEbase

k
, we have

to minimize a function that depends on k. This is easy for a skilled mathematician
who knows the Lambert function L (defined as L(z)eL(z) = z). She would find the
optimal rational value kopt of k by differentiation, prove that the objective function
is convex, and conclude that the optimal value is either �kopt� or �kopt�, thereby
determining the optimal period Topt. What if you are not a skilled mathematician?
No problem, simply use TFO as a first-order approximation, and be comforted that
the first-order terms in the Taylor expansion of Topt is . . . TFO! See Bougeret et al. [3]
for all details.

Appendix 3: MTBF of a Platform with p Parallel Processors

In this section we give another proof of Proposition 1. Interestingly, it applies to
any continuous probability distribution with bounded (nonzero) expectation, not just
Exponential laws.

First we prove that Eq. (1) does hold true. Consider a single processor, say
processor pq . Let Xi , i ≥ 0 denote the IID (independent and identically distributed)
random variables for the fault inter-arrival times on pq , and assume that Xi ∼
DX, where DX is a continuous probability distribution with bounded (nonzero)
expectation μind. In particular, E (Xi) = μind for all i. Consider a fixed time
bound F . Let nq(F) be the number of faults on pq until time F . More precisely,
the (nq(F))-th fault is the last one to happen before time F or at time F , and the
(nq(F) + 1)-st fault is the first to happen after time F . By definition of nq(F), we
have

nq(F)∑

i=1

Xi ≤ F <

nq(F)+1∑

i=1

Xi.

Using Wald’s equation (see the textbook of Ross [16, p. 420]), with nq(F) as a
stopping criterion, we derive:

E
(
nq(F)

)
μind ≤ F ≤ (E

(
nq(F)

)+ 1)μind,

166 G. Aupy and Y. Robert

and we obtain:

lim
F→+∞

E
(
nq(F)

)

F
= 1

μind
. (18)

As promised, Eq. (18) is exactly Eq. (1).
Now consider a platform with p identical processors, whose fault inter-arrival

times are IID random variables that follow the distribution DX. Unfortunately,
if DX is not an Exponential law, then the inter-arrival times of the faults of the
whole platform, i.e., of the super-processor of section “Checkpointing on a Parallel
Platform”, are no longer IID. The minimum trick used in the proof of Proposition 1
works only for the first fault. For the following ones, we need to remember
the history of the previous faults, and things get too complicated. However, we
could still define the MTBF μ of the super-processor. Using Eq. (18), μ must
satisfy:

lim
F→+∞

E (n(F))

F
= 1

μ
,

where n(F) is the number of faults on the super-processor until time F . But does
the limit always exist? and if yes, what is its value?

The answer to both questions is not difficult. Consider a fixed time bound F as
before. Let n(F) be the number of faults on the whole platform until time F , and
let mq(F) be the number of these faults that strike component number q. Of course
we have n(F) = ∑p

q=1 mq(F). By definition, mq(F) is the number of faults on
component q until time F . From Eq. (18) again, we have for each component q:

lim
F→+∞

E
(
mq(F)

)

F
= 1

μind
.

Since n(F) =∑p

q=1 mq(F), we also have:

lim
F→+∞

E (n(F))

F
= p

μind
(19)

which answers both questions at the same time!
The curious reader may ask how to extend Eq. (19) when processors have

different fault-rates. Let X
(q)
i , i ≥ 0 denote the IID random variables for the

fault inter-arrival times on pq , and assume that X
(q)
i ∼ D

(q)
X , where D

(q)
X is a

continuous probability distribution with bounded (nonzero) expectation μ(q). For
instance if μ(2) = 3 μ(1), then (in expectation) processor 1 experiences three times
more failures than processor 2. As before, consider a fixed time bound F , and
let nq(F) be the number of faults on pq until time F . Equation (18) now writes

Scheduling for Fault-Tolerance: An Introduction 167

limF→+∞
E(mq(F))

F
= 1

μ(q) . Now let n(F) be the total number of faults on the
whole platform until time F . The same proof as above leads to

lim
F→+∞

E (n(F))

F
=

p∑

q=1

1

μ(q)
(20)

Kella and Stadje [14] provide more results on the superposition of renewal processes
(which is the actual mathematical name of the topic discussed here!).

Appendix 4: Going Further with Prediction

The discussion on predictions in section “Fault Prediction” has been kept overly
simple. For instance when a fault is predicted, sometimes there is not enough time
to take proactive actions, because we are already checkpointing. In this case, there
is no other choice than ignoring the prediction.

Furthermore, a better strategy should take into account at what point in the period
does the prediction occur. After all, there is no reason to always trust the predictor,
in particular if it has a bad precision. Intuitively, the later the prediction takes place
in the period, the more likely we are inclined to trust the predictor and take proactive
actions. This is because the amount of work that we could lose gets larger and larger.
On the contrary, if the prediction happens in the beginning of the period, we have to
trade-off the probability that the proactive checkpoint may be useless (if we take a
proactive action) with the small amount of work that may be lost in the case where a
fault would actually happen (if we do not trust the predictor). The optimal approach
is to never trust the predictor in the beginning of a period, and to always trust it in
the end; the cross-over point Cpr

pr
depends on the time to take a proactive checkpoint

and on the precision of the predictor. Details are provided by Aupy et al. [2] for
details.

Finally, it is more realistic to assume that the predictor cannot give the exact
moment where the fault is going to strike, but rather will provide an interval of time,
a.k.a. a prediction window. Aupy et al. [1] provide more information.

Appendix 5: Going Further with Replication

In the context of replication, there are two natural options for “counting” faults. The
option chosen in section “Replication” is to allow new faults to hit processors that
have already been hit. This is the option chosen by Ferreira et al. [8], who introduced
the problem. Another option is to count only faults that hit running processors,
and thus effectively kill replica pairs and interrupt the application. This second

168 G. Aupy and Y. Robert

option may seem more natural as the running processors are the only ones that
are important for the application execution. It turns out that both options are almost
equivalent, the values of their MNFTI only differ by one, as shown by Casanova
et al. [5].

Speaking of faults, an important question is: why don’t we repair (or rejuvenate)
processors on the fly, instead of doing so only when the whole application is forced
to stop, recover from the last checkpoint, and restart execution? The answer is
technical: current HPC resource management systems assign the user a fixed set of
resources for the execution, and do not allow new resources (such as spare nodes) to
be dynamically added during the execution. In fact, frequently, a new configuration
is assigned to the user at restart time. But nothing prevents us from enhancing the
tools! It should then be possible to reserve a few additional nodes in addition to
the computing nodes. These nodes would be used to migrate the system image of a
replica node as soon as its buddy fails, in order to re-create the failed node on the
fly. Of course the surviving node must be isolated from the application while the
migration is taking place, in order to maintain a coherent view of both nodes, and
this induces some overhead. It would be quite interesting to explore such strategies.

Here a few bibliographical notes about replication. Replication has long been
used as a fault-tolerance mechanism in distributed systems (see the survey of
Gartner [12]), and in the context of volunteer computing (see the work of Kondo
et al. [15]). Replication has recently received attention in the context of HPC
(High Performance Computing) applications. Representative papers are those by
Schroeder and Gibson [17], Zheng and Lan [20], Engelmann, Ong, and Scorr [7],
and Ferreira et al. [8]. While replicating all processors is very expensive, replicating
only critical processes, or only a fraction of all processes, is a direction being
currently explored under the name partial replication.

Speaking of critical processes, we make a final digression. The de-facto standard
to enforce fault-tolerance in critical or embedded systems is Triple Modular
Redundancy, or TMR. Computations are triplicated on three different processors,
and if their results differ, a voting mechanism is called. TMR is not used to protect
from fail-stop faults, but rather to detect and correct errors in the execution of
the application. While we all like, say, safe planes protected by TMR, the cost is
tremendous: by definition, two thirds of the resources are wasted (and this does not
include the overhead of voting when an error is identified).

Appendix 6: Scheduling a Linear Chain of Tasks

In this exercise you are asked to help Alice (again). She is still writing her thesis
but she does not want to checkpoint at given periods of time. She hates being
interrupted in the middle of something because she loses concentration. She now
wants to checkpoint only at the end of a chapter. She still has to decide after which
chapters it is best to checkpoint.

Scheduling for Fault-Tolerance: An Introduction 169

TimeTIMEC(i) TIMEZ (i+1, j)

p T1 T2 . . . Ti C Ti+1 . . . Tj C . . .

Fig. 12 Hint for the exercise

The difference with the original problem is that the checkpoints can only be taken
at given time-steps. If we formulate the problem in a abstract way, we have a linear
chain of n tasks (the n chapters in Alice’s thesis), T1, T2, . . . , Tn. Each task Ti has
weight wi (the time it takes to write that chapter). The cost to checkpoint after Ti

is Ci . The time to recover from a fault depends upon where the last checkpoint was
taken. For example, assume that Ti was checkpointed, and that Ti+1, Ti+2 were not.
If a fault strikes during the execution of Ti+3, we need to roll back and read the
checkpoint of Ti from stable storage, which costs Ri . Then we start re-executing
Ti+1 and the following tasks. Note that the costs Ci and Ri are likely proportional
to the chapter length).

As before, the inter-arrival times of the faults are IID random variables following
the Exponential law Exp(λ). We must decide after which tasks to checkpoint, in
order to minimize the expectation of the total time. Figure 12 gives you a hint.
TIMEC(i) is the optimal solution for the execution of tasks T1, T2, . . . , Ti . The
solution to the problem is TIMEC(n), and we use a dynamic programming algorithm
to compute it. In the algorithm, we need to know TIMEZ (i+1,j), the expected time to
compute a segment of tasks [Ti+1 . . . Tj] and to checkpoint the last one Tj , knowing
that there is a checkpoint before the first one (hence after Ti) and that no intermediate
checkpoint is taken. TIMEZ stands for Zero intermediate checkpoint. It turns out that
we already know the value of TIMEZ(i + 1, j): check that we have

TIMEZ(i + 1, j) = E

⎛

⎝TIME

⎛

⎝
j∑

k=i+1

wk,Cj ,D,Ri, λ

⎞

⎠

⎞

⎠

and use Proposition 3.

References

1. G. Aupy, Y. Robert, F. Vivien, and D. Zaidouni. Checkpointing strategies with prediction
windows. In Dependable Computing (PRDC), 2013 IEEE 19th Pacific Rim International
Symposium on, pages 1–10. IEEE, 2013.

2. G. Aupy, Y. Robert, F. Vivien, and D. Zaidouni. Checkpointing algorithms and fault prediction.
Journal of Parallel and Distributed Computing, 74(2):2048–2064, 2014.

3. M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and F. Vivien. Checkpointing strategies for
parallel jobs. In Proceedings of SC’11, 2011.

4. F. Cappello, A. Geist, B. Gropp, L. V. Kalé, B. Kramer, and M. Snir. Toward Exascale
Resilience. Int. Journal of High Performance Computing Applications, 23(4):374–388, 2009.

170 G. Aupy and Y. Robert

5. H. Casanova, Y. Robert, F. Vivien, and D. Zaidouni. Combining process replication and
checkpointing for resilience on exascale systems. Research report RR-7951, INRIA, May
2012.

6. J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart dumps.
FGCS, 22(3):303–312, 2004.

7. C. Engelmann, H. H. Ong, and S. L. Scorr. The case for modular redundancy in large-scale
highh performance computing systems. In Proc. of the 8th IASTED Infernational Conference
on Parallel and Distributed Computing and Networks (PDCN), pages 189–194, 2009.

8. K. Ferreira, J. Stearley, J. H. I. Laros, R. Oldfield, K. Pedretti, R. Brightwell, R. Riesen,
P. G. Bridges, and D. Arnold. Evaluating the Viability of Process Replication Reliability for
Exascale Systems. In Proc. of the ACM/IEEE SC Conf., 2011.

9. P. Flajolet, P. J. Grabner, P. Kirschenhofer, and H. Prodinger. On Ramanujan’s Q-Function. J.
Computational and Applied Mathematics, 58:103–116, 1995.

10. A. Gainaru, F. Cappello, and W. Kramer. Taming of the shrew: Modeling the normal and faulty
behavior of large-scale hpc systems. In Proc. IPDPS’12, 2012.

11. A. Gainaru, F. Cappello, M. Snir, and W. Kramer. Failure prediction for hpc systems
and applications: Current situation and open issues. Int. J. High Perform. Comput. Appl.,
27(3):273–282, 2013.

12. F. Gärtner. Fundamentals of fault-tolerant distributed computing in asynchronous environ-
ments. ACM Computing Surveys, 31(1), 1999.

13. T. Hérault and Y. Robert, editors. Fault-Tolerance Techniques for High-Performance Comput-
ing, Computer Communications and Networks. Springer Verlag, 2015.

14. O. Kella and W. Stadje. Superposition of renewal processes and an application to multi-server
queues. Statistics & probability letters, 76(17):1914–1924, 2006.

15. D. Kondo, A. Chien, and H. Casanova. Scheduling Task Parallel Applications for Rapid
Application Turnaround on Enterprise Desktop Grids. J. Grid Computing, 5(4):379–405, 2007.

16. S. M. Ross. Introduction to Probability Models, Eleventh Edition. Academic Press, 2009.
17. B. Schroeder and G. Gibson. Understanding failures in petascale computers. Journal of

Physics: Conference Series, 78(1), 2007.
18. J. W. Young. A first order approximation to the optimum checkpoint interval. Comm. of the

ACM, 17(9):530–531, 1974.
19. L. Yu, Z. Zheng, Z. Lan, and S. Coghlan. Practical online failure prediction for blue gene/p:

Period-based vs event-driven. In Dependable Systems and Networks Workshops (DSN-W),
pages 259–264, 2011.

20. Z. Zheng and Z. Lan. Reliability-aware scalability models for high performance computing.
In Proc. of the IEEE Conference on Cluster Computing, 2009.

21. Z. Zheng, Z. Lan, R. Gupta, S. Coghlan, and P. Beckman. A practical failure prediction with
location and lead time for blue gene/p. In Dependable Systems and Networks Workshops (DSN-
W), pages 15–22, 2010.

Part II
For Students

MapReduce – The Scalable Distributed
Data Processing Solution

Bushra Anjum

Abstract MapReduce is a programming paradigm used for processing massive
data sets with a scalable and parallel approach on a cluster of distributed compute
nodes. In this chapter we aim to provide background on the MapReduce program-
ming paradigm and framework, highlighting its significance and usage for data
crunching in today’s scenario. Alongside, students will be introduced to important
concepts such as Big Data, scalability, parallelization and divide & conquer. The
chapter provides ample examples, both beginner level and advanced, for students to
become proficient in recognizing problems suitable for a MapReduce solution and
to define efficient Map and Reduce functions for those data sets.

Relevant core courses DS/A (Data Structures and Algorithms), CS2 (Second
Programming Course in the Introductory Sequence)

Relevant PDC topics Why and what is parallel/distributed computing? (A),
Concurrency (K/C), Cluster Computing (A), Scalability in algorithms and
architectures (A), Speedup (C), Divide & conquer (parallel aspects) (A),
Recursion (parallel aspects) (A), Scan (parallel-prefix) (K/C), Reduction (map-
reduce) (K/A), Time (C/A), Sorting (K)

Context for use This chapter is a student centric resource and intended as
supplementary material to any course focused on distributed systems and parallel
algorithms. Students are expected to have a CS1 level basic knowledge going into
this chapter.

Learning Outcomes After finishing this chapter, the student will be able to:

1. Recognize the growing need for scalable and distributed data processing
solutions and how this need is addressed by the MapReduce paradigm.

2. Describe the MapReduce programming abstraction and runtime environment.

B. Anjum (�)
Technical Lead and Senior Software Engineer Amazon, San Luis Obispo, CA, USA
e-mail: bushra.anjum@gmail.com

© Springer International Publishing AG, part of Springer Nature 2018
S. K. Prasad et al. (eds.), Topics in Parallel and Distributed Computing,
https://doi.org/10.1007/978-3-319-93109-8_7

173

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93109-8_7&domain=pdf
mailto:bushra.anjum@gmail.com
https://doi.org/10.1007/978-3-319-93109-8_7

174 B. Anjum

3. Analyze the strengths and limitations of the MapReduce platform.
4. Define the problem characteristics that make it a candidate for a MapReduce

solution.
5. Evaluate a given problem for its suitability to be solved using a MapReduce

approach.
6. Transform a candidate problem into the map and reduce computing phases.
7. Outline the growing system of open source components, around the MapRe-

duce framework, for large-scale data processing.

Background and Introduction

Professor Patrick Wolfe, executive director of the University College of London’s
Big Data Institute, has recently said in an interview with Business Insider [1], “The
rate at which we’re generating data is rapidly outpacing our ability to analyze it. The
trick here is to turn these massive data streams from a liability into a strength.”

Indeed digital data has been growing at an exponential rate, doubling every
2 years, and it is predicted [2] that by 2020 the digital universe will contain nearly
as many bits as there are stars in the physical universe!

The increase of data opens up huge learning and analysis opportunities. However,
it also comes with its unique set of challenge, e.g., How to store the data? How to
process it economically in an acceptable amount of time? The complexity is not
limited to the enormous size of the data, but also includes other dimensions such as
the speed at which the data is produced, the various formats it comes in, etc. The
popular term used to describe such datasets is “Big Data”. Big Data is defined by the
‘three Vs’ of data: volume, variety, and velocity [3]. Volume refers to the size of the
data, Variety refers to the fact that the data is often coming from a variety of different
sources and in many different formats, and Velocity relates to the speed at which the
data is being generated. Storing and processing these ever growing datasets require
scalable storage and computing solutions. Let’s define scalability next.

Scalability has been classically defined as the ability to process data even when
it is larger than the available capacity of a server machine. One way to achieve this
is to process the dataset piece by piece, i.e., to take the first piece of data, operate
on it, write the results back then take the next piece of data, operate on it, write the
results back and so on.

As an example, let’s assume that we are given an extensive weather dataset
consisting of millions of temperature, humidity, and air pressure readings. We would
like to calculate the average temperature, average humidity, and average air pressure
values over all the records in the dataset. Since the dataset is large and cannot fit
inside a single server, we will analyze it by first breaking it down into smaller blocks
and then working on it one block at a time. So we bring the first block of data in and
calculate the three statistics (average temperature, average humidity, and average
air pressure) on it. Then we bring the second block and calculate and update the
three statistics to reflect the data present in both blocks. Then bring the third block,

MapReduce – The Scalable Distributed Data Processing Solution 175

Fig. 1 Distributed processing without parallelism

and so on. After bringing in and processing the last block, we will have the average
temperature, average humidity, and average air pressure statistics calculated over
the entire dataset. This approach is shown in Fig. 1.

This block by block processing will give us the required results. Even so, a
potential problem with this method is that as the size of the dataset increases, so
does the overall processing time, as this approach is serial in nature. One way to
scale the solution is to make this server machine better with a faster processor,
more memory, etc. This approach is known as “Scaling up” (or vertical scaling),
and it takes place through an improvement in the specification of a resource (e.g.,
upgrading a server with more main memory, larger hard drive, or a faster CPU,
etc.). Still, there are limits to the upgrades that can be done to a computer system
governed by the law of diminishing returns, price and power considerations, limiting
Input/Output latencies, etc.

The alternate approach is to parallelize the solution. With this approach we could
use multiple servers where each server works on an individual block of data, while
all of them operate in parallel. This approach is called “Scaling out” (or horizontal
scaling), and it takes place through an increase in the number of resources available
to solve a problem (e.g., adding more hard drives to a storage system or adding more
servers to support an application, etc.).

Scaling out is an excellent way to build Big Data applications, as it allows
distribution of workloads to multiple servers operating in parallel. Thus by scaling
out, we can use hundreds or even thousands of commodity servers and apply
them all to the same problem. Such a collection of server machines, connected via
hardware, networks, and software, and working in parallel on the same problem, is
called a cluster.

Scaling out and parallelizing the solution is an attractive option, however, as a
result of processing different data blocks on different server machines, now we have
results distributed all over the cluster. In the context of our example, this means
that we have an average temperature, average humidity, and average air pressure
reading calculated over the first block on one server, an average temperature,

176 B. Anjum

Fig. 2 Distributed processing with parallelism

Fig. 3 Multi-stage distributed processing with parallelism

average humidity, and average air pressure reading calculated over the second block
on another server and so on. Whereas, we are interested in consolidated results
calculated over the entire dataset. This situation is depicted in Fig. 2 above.

Here is an interesting insight though, the key insight that led to the development
of the MapReduce paradigm. We already have individual statistics calculated per
block of data. Now, we can use more servers to parallelize the consolidation task
too! That is, take all those average temperatures, average humidity, and average
air pressure statistics calculated per block and combine them on additional server
machines, in parallel if possible. This added step is demonstrated in Fig. 3 above.

Hence scaling out is part of the solution, the other part is having distributed
algorithms that can run on these clusters and produce desired results. MapReduce
is one category of such distributed algorithms. It started when Google developed
and published on Google File System (GFS), a scalable and distributed data storage

MapReduce – The Scalable Distributed Data Processing Solution 177

solution in 2003 to store the large corpus of web crawling data [4]. Then in 2004
Google further presented the MapReduce framework to help search and find the
insights from the data stored in the GFS [5]. Inspired by Google’s proprietary
GFS and MapReduce, their open source equivalents were developed by the Apache
Software Foundation and became the Hadoop project [6]. Much like Google’s
MapReduce is layered on top of GFS, in Hadoop, MapReduce framework is layered
on top of Hadoop Distributed File System (HDFS), a distributed fault tolerant
storage facility. Hadoop and its variants are currently in use at Yahoo!, Facebook,
Amazon and Google-IBM NSF clusters, to name a few.

We have almost described the MapReduce paradigm here. Let’s look at it
formally in the next section.

MapReduce

MapReduce is a scalable distributed data processing solution that works in collab-
oration with a massively scalable distributed file system, such as HDFS. HDFS is
responsible for taking large datasets, dividing them into smaller blocks and storing
them on individual nodes of a cluster while providing additional services like
availability, fault tolerance, replication, persistence, etc. MapReduce framework,
which is layered on top of HDFS, is responsible for bringing the computation to
the data stored in these nodes and running it in parallel.

MapReduce consists of two separate and distinct computation phases, the Map
phase and the Reduce phase. During the first phase, the framework runs a map
function (also called a mapper) in parallel on the entire dataset stored in the HDFS.
In the second phase, the framework runs a reduce function (also known as a reducer)
on all the data produced by the mappers during the Map phase. The output from the
reducers, which is the final result of the data processing job, is written back to the
HDFS cluster. As the sequence of the name MapReduce implies, the reduce task is
always performed after the map task is finished.

A map function is executed in parallel on each node in the HDFS cluster
that is storing a block of the input data. The mapper reads the block of data
one record or one line at a time, depending on the type of data. The data is
read record by record if it is structured in nature such as originating from a
database, or it may be read line by line, if the data is unstructured such as log
files, social media streams, etc. The mapper then processes this record or line
of data and outputs the results of its processing in a specialized format. The
format is essentially a list consisting of key-value pairs, i.e., {(key1, value1),
(key2, value2), . . . , (keyn, valuen)}. For example, for our weather dataset, the
mapper may emit the following three key-value pairs for each record of input
read: {(‘temperature’: value_of_temperature_in_current_record), (‘humidity’:
value_of_humidity_in_current_record), (‘air pressure’: value_of_airpressure_
in_ current_record)}. Then the Reduce phase begins. Here several reducers work
in parallel, each taking as input a ‘subset’ of key-value pairs produced by the

178 B. Anjum

map function and combining those into a final result. For weather data example,
three reducers may work in parallel. The first reducer may combine all the key-
value pairs that have the key ‘temperature’ into a single result (‘temperature’:
avg_value_of_temperature_of_all_records). The second reducer may combine
all the key-value pairs with the key ’humidity’ into a single result (humidity:
avg_value_of_humidity_of_all_records), and a third reducer may combine all
the key-value pairs with the key ‘air pressure’ into a single result (air pressure:
avg_value_of_airpressure_of_all_records). If the reader recalls, this is what we
suggested in Fig. 3 above.

In general, a map and a reduce function can be defined by the following
mappings:

map : valueinput → (
keyoutput , valueintermediate

)

reduce : (keyoutput , {list (valueintermediate)}) → valueoutput

The reader may be wondering how all the key-value pairs associated with a
unique key end up at a single reducer? This functionality is provided by the “shuffle”
phase of the underlying MapReduce framework.

After the mapper, and before the reducer, a background shuffle phase comes into
play. It involves sorting the mapper outputs, combining all the key-value pairs with
the same key into a list format {key, list(values)} and deciding on which reducers to
send the list to for further processing. The shuffle phase assures that every key-value
pair with the same key goes to the same reducer. It is important to mention here that
a single reducer may process more than one list but, a list corresponding to a unique
key is only handled by a single reducer.

Now is a good place to call out the difference between the MapReduce
abstraction (also called the programming paradigm) and the MapReduce framework
(also called the runtime system). As a user of MapReduce, we load the data into
the HDFS and write the MapReduce abstractions, i.e., a ‘serial’ map function and
a ‘serial’ reduce function, to process the data. The MapReduce system then takes
care of everything else such as taking the map function and applying it in parallel
to all the input blocks, shuffling intermediate results produced by the mappers and
re-routing them to the appropriate reducers, running the reducers in parallel and
writing the final output back to the HDFS. The MapReduce framework also provides
distributed processing services such as scheduling, synchronization, parallelization,
maintaining data and code locality, monitoring, failure recovery, etc. As far as the
user is concerned, all this happens automatically. Therefore one of the strengths of
MapReduce, and main contributor to its widespread popularity is the ability of the
framework to separate the ‘what’ of distributed processing from the ‘how’. The user
focuses on the data problem they are trying to solve, and all the required aspects of
distributed code execution are transparently handled for them by the framework.

Let’s spend a little more time discussing the framework. The MapReduce
framework uses the master-worker architecture. The master process is responsible
for task scheduling, overall resource management, monitoring, and failure recovery.

MapReduce – The Scalable Distributed Data Processing Solution 179

Fig. 4 YARN execution framework for Hadoop 2.0

The worker processes are responsible for managing per node resources and job
executions. As an example, we will briefly discuss YARN here, the MapReduce
execution framework for Hadoop v2 [7]. YARN, which stands for ‘Yet Another
Resource Negotiator,’ is built on top of HDFS and has three essential elements, as
shown in Fig. 4 above:

1. A singleton master process called the ‘Resource Manager’ (RM). The RM keeps
track of the worker processes; which cluster node they are running at, how
many resources they have available and how to assign those resources to the
MapReduce tasks. RM accepts MapReduce job requests, allocate resources to
the job and schedules the execution.

2. An ‘Application Master’ (AM) is spawned by the RM for every accepted
MapReduce job request. AM has the responsibility of negotiating appropriate
resources from the RM, starting the map and reduce tasks on the assigned
resources and monitoring for progress.

3. A per node (or per group of nodes) worker process called the ‘Node Manager’
(NM) is responsible for announcing itself to the RM along with its available
resources (memory, cores) and sending periodic updates.

We will shift our focus back to the MapReduce programming paradigm, which
is the original intent of this chapter. Let’s take the classic example of counting word
frequency and see how it can efficiently be solved using the MapReduce approach.

180 B. Anjum

Fig. 5 Counting world frequency using MapReduce

Example: Counting Word Frequency

The ‘Word Count’ example is the ‘Hello World’ equivalent of the MapReduce
paradigm. In this example, we count the number of occurrences of each unique
word in an input dataset, possibly a huge dataset, which consists of text files.

The first step is to split the input files into smaller blocks and to store each block
on a distinct node in a distributed cluster with the help of an HDFS. The mapper
then looks at the block of text, one line at a time, and emits each word with a count
of 1, i.e., the map function output is the key-value pair (wordi , 1). It is primarily
marking the word as being seen once. All the mappers operate in parallel on the
cluster nodes and emit similar key-value pairs. Next, the shuffle phase collects
all the words emitted by the mappers, sorts them alphabetically, makes a list for
each unique word and sends each list to a reducer. The output of the shuffle phase
looks like:{(word1, 1), (word1, 1),, (word1, 1)}, {(word2, 1), (word2, 1),,
(word2, 1)}, . . . , {(wordn, 1), (wordn, 1),, (wordn, 1)}. The reducer then sums
the number of occurrences in the input list and emits that value as the final result.
The MapReduce mappings of this problem is given below and a pictorial depiction
of the various phases in Fig. 5.

map : word1word2 . . . wordn → {(word1, 1) , (word2, 1) , . . . (wordn, 1)}
reduce : (wordi, {1, 1, . . . 1}) → wordi :

∑
All

1

Let’s look at another example, where we combine dictionaries using the MapRe-
duce distributed programming paradigm.

MapReduce – The Scalable Distributed Data Processing Solution 181

Fig. 6 Combining dictionaries using MapReduce

Example: Combining Dictionaries

In this example, we will take a set of translation dictionaries, English-Spanish,
English-Italian, English-French, and create a dictionary file that has the English
word followed by all the different translations separated by the pipe (|) character.
For example, looking at Fig. 6, if the input files are as shown in the top boxes, we
expect the final output as shown in the box below. This example is a modified version
of the dictionary example discussed at the DZone blog [8].

In this example, each dictionary will be parsed by a mapper (or a set of mappers)
line by line, emitting each English word and its corresponding translation as the
output of the map function. The reducer, with the help of the shuffle phase, will then
receive all the translations related to a particular word and combine them into the
final output. We present these mappings below.

map : word translation → (word, translation)

reduce : (wordi, {list (translation)}) → wordi |translation1| . . . |translationn

For this example, we also present simplified code excerpts of a Java-based
implementation of the map and reduce functions. The complete code, along with
running instructions can be found at [7].

182 B. Anjum

public void map(String key_word, String value
_translation, Context context)

{
context.write(key_word, value_translation);

}

public void reduce(String key_word, Iterable<String>
values, Context context)

{
String translations = "";
for (String value_translation : values)
{

translations += "|" + value_translation;
}
context.write(key_word, translations);

}

We have provided several other examples at the end of this chapter.

Strengths and Limitations of MapReduce

MapReduce is a programming model (and execution framework) for processing
large datasets distributed across a cluster with a parallel, distributed algorithm. It has
found merits in many applications, such as recommendation systems, processing of
logs, marketing analysis, warehousing of data, fraud detection etc.

MapReduce is ideal for running batch computations over large datasets as it can
easily scale to hundreds, even thousands, of server nodes. The framework takes
the computation to the data rather than bringing the data from various cluster
nodes to a centralized processing location. Running mappers on the same node
as the data block achieves data locality, consequently conserving precious network
bandwidth and allowing for faster processing [9]. The framework is designed to
both take advantage of massive parallelism while at the same time hiding messy
internal details (parallelization, synchronization, failure recovery, etc.) from the
programmer.

Another advantage of the MapReduce programming paradigm is its flexibility.
MapReduce programming has the capability to operate on different types and

MapReduce – The Scalable Distributed Data Processing Solution 183

sources of data, whether they are structured (database records) or unstructured (from
social media, email, or clickstream, etc.). MapReduce can work on all of them with
the help of the various input processing libraries available with the framework.

MapReduce framework is built to be both available and resilient. The underlying
HDFS ensures that when data is sent to an individual node in the entire cluster,
the very same set of data is replicated at other numerous nodes that make up the
cluster. Thus, if there is any failure that affects a particular node, there are always
other copies that can still be accessed whenever the need may arise. This replication
always assures the availability of data. On top of that MapReduce framework has
baked in fault tolerance. In a distributed system, failures are a norm. Anything from
a processing node to a network connection to a storage disk may fail at any time. In
fact this is one of the prime responsibilities of the Master process. The framework
can quickly recognize failures that occur and then apply a quick and automatic
recovery solution.

MapReduce works well in its domain, offline batch processing, however, it is
less effective outside of it. For example, MapReduce is not an ideal solution for
tasks that need a shared state or global coordination. MapReduce does not support
shared mutable state. The technique is, in general, embarrassingly parallel. There is
only a single opportunity for a global synchronization in MapReduce which is after
the map phase ends and before the reduce phase begins [10].

Also, as it is designed for large and distributed datasets, the performance is not
ideal when it operates on small datasets or individual records. The MapReduce
framework has considerable startup and execution costs such as setting up the
parallel environment, task creation, communication, synchronization, etc. These
overheads are usually negligible as the framework is optimized to conduct batch
operations over a large amount of data. However, for smaller problems, it is probably
going to be faster to process the data serially on a single fast processor than use a
distributed MapReduce system.

MapReduce is not ideal for real-time processing of data, or iterative and interac-
tive applications either. This is because both Iterative and Interactive applications
require faster data sharing across parallel jobs. Unfortunately, in most current
frameworks, the only way to reuse data between computations (Ex – between two
MapReduce jobs) is to write it to an external stable storage system. A framework
like YARN can enable such applications by scheduling multiple tasks, however,
data sharing remains slow in MapReduce due to replication, serialization, and disk
IO. Apache Software Foundation introduced Spark for speeding up the Hadoop
computational computing software process [11]. The main feature of Spark is its
in-memory cluster computing that increases the processing speed of an application.
It is used to model efficiently several other types of computations such as Interactive
Queries and Stream Processing.

184 B. Anjum

The Hadoop-MapReduce Ecosystem

The Hadoop platform primarily consists of two essential services: a reliable, dis-
tributed file system called HDFS and the high-performance parallel data processing
engine called MapReduce. Though they form the core of the Hadoop project, they
are just two parts of a growing system of open source components for large-scale
data processing. Below we briefly discuss some of the related technologies. The
reader is encouraged to look at the references for more details.

Hive [12] was originally developed at Facebook for business analysts to be able
to access data on Hadoop using an SQL-like engine. Hive offers techniques to map a
tabular structure onto a distributed file system like HDFS, and also allows querying
of the data from this mapped tabular structure using an SQL dialect known as
HiveQL. HiveQL queries are executed via MapReduce, i.e., when a HiveQL query
is issued, it triggers Map and Reduce tasks to perform the operation specified in the
query.

Pig [13], developed at Yahoo, is a platform for constructing data flows for extract,
transform, and load (ETL) processing and analysis of large datasets. Pig uses a
high-level scripting language called Pig Latin. Pig Latin queries and commands
are compiled into one or more MapReduce tasks and then executed on a Hadoop
cluster.

Where Hive was developed to process completely structured data, Pig can be
used for both structured as well as unstructured data (a pig will eat anything!). Both
Pig and Hive queries get converted into MapReduce tasks under the hood.

The MapReduce framework is at its best when the data is huge, and we want
to batch process it offline. However, it is not suitable for real-time processing or
random read and write accesses. It led to the development of Apache HBase [14],
the distributed, scalable, NoSQL database for Hadoop, built on top of HDFS, that is
great for quick updates and low latency data accesses. HBase is a column-oriented
store and runs on top of HDFS in a distributed fashion. HBase can provide fast,
random read/write access to users and applications in near real-time.

Mahout [15] is the machine learning and data mining library for Hadoop. It
implements machine learning and data mining algorithms, such as collaborative
filtering, classification, clustering and dimensionality reduction using MapReduce.

Oozie [16], developed at Yahoo, is a workflow coordination service to coordinate,
schedule and manage tasks executed on Hadoop. The tasks are represented as action
nodes on a Directed Acyclic Graph (DAG), and the DAG sequence is used to control
the subsequent actions. You can have several different action nodes within your
Oozie workflows such as steps for chaining events, Pig and Hive tasks, MapReduce
tasks or HDFS actions.

These Hadoop components are presented in Fig. 7 below.
Apart from those, there are various other Apache Projects built around the

Hadoop framework and have become a part of the Hadoop Ecosystem. For a
complete list, see [17].

MapReduce – The Scalable Distributed Data Processing Solution 185

Fig. 7 Simplified Hadoop-MapReduce ecosystem

Additional Examples

We wrap up this chapter by providing additional MapReduce examples.

Example: Inverted Index

An inverted index consists of a list of all the unique words that appear in any
document, and for each word, a list of the documents in which it appears. The
inverted index is useful for fast retrieval of relevant information. Let’s look at
building an inverted index for a set of tweets based on their hashtags and how we
can map the solution as a MapReduce.
Input Data:

“It’s not too late to vote. #ElectionDay”
“Midtown polling office seeing a steady flow of voters!

#PrimaryDay”
“Today’s the day. Be a voter! #ElectionDay”
“Happy #PrimaryDay”
“Say NO to corruption & vote! #ElectionDay”
“About to go cast my vote...first time #ElectionDay”

186 B. Anjum

MapReduce mapping:

map : tweet → (hashtag, tweet)

reduce : (hashtag, {list (tweet)}) → hashtag, {list (tweet)}

Map Output:

(“ElectionDay”, “It’s not too late to vote. #ElectionDay”)
(“PrimaryDay”, “Midtown polling office seeing a steady flow of

voters! #PrimaryDay”)
(“ElectionDay”, “Today’s the day. Be a voter! #ElectionDay ”)
(“PrimaryDay”, “Happy #PrimaryDay”)
(“ElectionDay”, “Say NO to corruption & vote! #ElectionDay”)
(“ElectionDay”, “About to go cast my vote...first time

#ElectionDay”)

Reduce Input:

Reducer 1:

(“ElectionDay”, “It’s not too late to vote. #ElectionDay”)
(“ElectionDay”, “Today’s the day. Be a voter! #ElectionDay ”)
(“ElectionDay”, “Say NO to corruption & vote! #ElectionDay”)
(“ElectionDay”, “About to go cast my vote...first time

#ElectionDay”)

Reducer 2:

(“PrimaryDay”, “Midtown polling office seeing a steady flow of
voters! #PrimaryDay”)

(“PrimaryDay”, “Happy #PrimaryDay”)

Reduce Output:
(“ElectionDay”, [“It’s not too late to vote.

#ElectionDay”,
“Today’s the day. Be a voter!
#ElectionDay ”,
“Say NO to corruption & vote!
#ElectionDay”,
“About to go cast my vote...first time
#ElectionDay”])

(“PrimaryDay”, [“Midtown polling office seeing a
steady flow of voters! #PrimaryDay”,

“Happy #PrimaryDay”])

MapReduce – The Scalable Distributed Data Processing Solution 187

Example: Relational Algebra (Table JOIN)

MapReduce can be used to join two database tables based on common criteria.
Let’s take an example. We have two tables, where the first contains an employee’s
personal information primary keyed on SSN and the second table includes the
employee’s income again keyed on SSN. We would like to compute average income
in each city in 2016. This computation requires a JOIN operation on these two
tables. We will map the problem to a two-phase MapReduce solution. The first
phase effectively creates a JOIN on the two tables using two map functions (one for
each table), and the second phase gathers the relevant data for calculating desired
statistics.
Input Data:

Table 1: (SSN, {Personal Information})
111222:(Stephen King; Sacramento, CA)
333444:(Edward Lee; San Diego, CA)
555666:(Karen Taylor; San Diego, CA)

Table 2: (SSN, {year, income})
111222:(2016,$70000),(2015,$65000),(2014,$6000),...
333444:(2016,$72000),(2015,$70000),(2014,$6000),...
555666:(2016,$80000),(2015,$85000),(2014,$7500),...

MapReduce Mapping:
Stage 1 (table JOIN)

maptable1 : recordtable1 → (SSN,City)

maptable2 : recordtable2 → (SSN, Income2016)

reduce : (SSN, {City, Income2016}) → SSN, (City, Income2016)

Stage 2

map : SSN, (City, Income2016) → (City, Income2016)

reduce : City, {list (Income2016)} → City, avg(Income2016)

Stage 1
Map Output:

188 B. Anjum

Mapper 1a: (SSN, city) Mapper 1b: (SSN, income 2016)

(111222, “Sacramento, CA”) (111222, $70000)

(333444, “San Diego, CA) (333444, $72000)

(555666, “San Diego, CA) (555666, $80000)

Reduce Input: (SSN, city), (SSN, income)

(111222, “Sacramento, CA”)

(111222, $70000)

(333444, “San Diego, CA”)

(333444, $72000)

(555666, “San Diego, CA”)

(555666, $80000)

Reduce Output: (SSN, [city, income])

(111222, [“Sacramento, CA”, 70000])

(333444, [“San Diego, CA”, 72000])

(555666, [“San Diego, CA”, 80000])

Stage 2:

Map Input: (SSN, [city, income])

(111222, [“Sacramento, CA”, 70000])

(333444, [“San Diego, CA”, 72000])

(555666, [“San Diego, CA”, 80000])

Map Output: (city, income)

(“Sacramento, CA”, 70000)

(“San Diego, CA”, 72000)

(“San Diego, CA”, 80000)

Reduce Input: (city, income)

Reducer 2a: Reducer 2b:

(“Sacramento, CA”, 70000) (“San Diego, CA”, 72000)

(“San Diego, CA”, 80000)

Reduce Output: (city, average [income])

Reducer 2a: Reducer 2b:

(“Sacramento, CA”, 70000) (“San Diego, CA”, 76000)

The reader is encouraged to think how the solution will differ if the employee is
allowed to have multiple addresses, i.e., there can be multiple addresses per SSN in
Table 1.

Advanced Example: Graph Algorithm (Single Source Shortest
Path)

This example assumes that the reader has familiarity with the graph algorithm
terminology, such as vertices, edges, adjacency lists, etc. MapReduce can be used to
calculate statistics iteratively where each iteration can use the previous iteration’s

MapReduce – The Scalable Distributed Data Processing Solution 189

Fig. 8 Input graph for single source shortest path problem

output as its input. This kind of iterative MapReduce is useful for applications
including graph problems. For example, given Fig. 8, we would like to calculate
the single source shortest path from source vertex ‘s’ to all other vertices in the
graph. The shortest path is defined as a path between two vertices in a graph such
that the sum of the weights of its constituent edges is minimized.

We will be using MapReduce iterative approach to solve this problem, where
each iteration, starting from the origin, will be ‘radiating’ information ‘one edge
hop’ distance at a time.
Input Data Format:

Node :< id, costF romSource, prevHopFromSource,AdjacencyList >

AdjacencyList : {neighborNode, costT oNeighborNode}

Initial Input Data:

Node s: <s, 0, - , {(Node a, 1), (Node c, 5)}>

Node a: <a, ∞, - , {(Node b, 1), (Node c, 2)}>

Node b: <b, ∞, - , {(Node d, 4)}>

Node c: <c, ∞, - , {(Node a, 3), (Node b, 9), (Node d, 2)}>

Node d: <d, ∞, - , {(Node s, 7), (Node b, 6)}>

MapReduce Iteration Mapping:

map1 : Node.id : Node → {list(Node.neighborNode.id : (Node.id, SUM

(Node.costT oNeighborNode,Node.costF romSource))) }
map2 : Node.id : Node → {list (Node.NeighborNode.id,Node.Neighbor

Node)}
reduce : Node.id : {list (prevHopFromSource, costF romSource,Node)} →

Node.id : Node′

190 B. Anjum

where

Node′.costF romSource = MIN(costF romSource),

Node′.prevHopFromSource = prevHopFromSourcemin

Note: Reducer only emits value if Node structure is updated, i.e., the iteration found
a new shortest path from the source.

Iteration 1:

Map Input: s: <s, 0, - , {(Node a, 1), (Node c, 5)}>

Map Output: (a: s, 1), (a: Node a), (c: s, 5), (c, Node c)
Reduce 1 Input: a: (s, 1, Node a)
Reduce 1 Output: a: <a, 1, s, {(Node b, 1), (Node c, 2)}>

Reduce 2 Input: c: (s, 5, Node c)
Reduce 2 Output: c: <c, 5, s, {(Node a, 3), (Node b, 9), (Node

d, 2)}>

The reader is encouraged to continue the example and see how the solution
converges in four iterations.

References

1. [Online]. “Mind-blowing growth & power of big data - Business Insider” Available: http://
www.businessinsider.com/mind-blowing-growth-and-power-of-big-data-2015-6

2. EMC Digital Universe with Research & Analysis by IDC. The Digital Universe of Opportuni-
ties: Rich Data and the Increasing Value of the Internet of Things. 2014

3. [Online]. “Volume, velocity, and variety: Understanding the three V’s of big data,” in DIY-
IT Available: http://www.zdnet.com/article/volume-velocity-and-variety-understanding-the-
three-vs-of-big-data/

4. G. Sanjay, G. Howard, and L. Shun-Tak, “The Google File system,” in ACM SIGOPS
Operating Systems Review - Volume 37 Issue 5, December 2003

5. D. Jeff and G. Sanjay, “MapReduce: Simplified Data Processing on Large Clusters,” in
Communications of the ACM – 50th Anniversary Issue, Vol. 51 No. 1, Pages 107–113, 2008.

6. [Online]. “Apache Hadoop” Available: http://hadoop.apache.org/
7. [Online]. “Apache Hadoop YARN” Available: http://hadoop.apache.org/docs/current/hadoop-

yarn/hadoop-yarn-site/YARN.html
8. [Online]. “Hadoop Basics—Creating a MapReduce Program,” DZone Available: https://dzone.

com/articles/hadoop-basics-creating
9. “Data-Intensive Text Processing with MapReduce” by Jimmy Lin and Chris Dyer, University

of Maryland, College Park, Manuscript prepared April 11, 2010
10. “MapReduce Patterns, Algorithms, and Use Cases” by Ilya Katsov in Highly Scalable Blog,

2012 (https://highlyscalable.wordpress.com/2012/02/01/MapReduce-patterns/)
11. [Online]. “Apache Spark” Available: http://spark.apache.org/
12. [Online]. “Apache Hive” Available: https://hive.apache.org/
13. [Online]. “Apache Pig” Available: https://pig.apache.org/
14. [Online]. “Apache HBase” Available: https://hbase.apache.org/
15. [Online]. “Apache Mahout” Available: http://mahout.apache.org/
16. [Online]. “Apache Oozie” Available: http://oozie.apache.org/
17. [Online]. “The Hadoop Ecosystem Table” Available: https://hadoopecosystemtable.github.io/

http://www.businessinsider.com/mind-blowing-growth-and-power-of-big-data-2015-6
http://www.businessinsider.com/mind-blowing-growth-and-power-of-big-data-2015-6
http://www.zdnet.com/article/volume-velocity-and-variety-understanding-the-three-vs-of-big-data/
http://www.zdnet.com/article/volume-velocity-and-variety-understanding-the-three-vs-of-big-data/
http://hadoop.apache.org/
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://dzone.com/articles/hadoop-basics-creating
https://dzone.com/articles/hadoop-basics-creating
https://highlyscalable.wordpress.com/2012/02/01/MapReduce-patterns/
http://spark.apache.org/
https://hive.apache.org/
https://pig.apache.org/
https://hbase.apache.org/
http://mahout.apache.org/
http://oozie.apache.org/
https://hadoopecosystemtable.github.io/

The Realm of Graphical Processing Unit
(GPU) Computing

Vivek K. Pallipuram and Jinzhu Gao

Abstract The goal of the chapter is to introduce the upper-level Computer Engi-
neering/Computer Science undergraduate (UG) students to general-purpose graph-
ical processing unit (GPGPU) computing. The specific focus of the chapter is on
GPGPU computing using the Compute Unified Device Architecture (CUDA) C
framework due to the following three reasons: (1) Nvidia GPUs are ubiquitous
in high-performance computing, (2) CUDA is relatively easy to understand versus
OpenCL, especially for UG students with limited heterogeneous device program-
ming experience, and (3) CUDA experience simplifies learning OpenCL and
OpenACC. The chapter consists of nine pedagogical sections with several active-
learning exercises to effectively engage students with the text. The chapter opens
with an introduction to GPGPU computing. The chapter sections include: (1) Data
parallelism; (2) CUDA program structure; (3) CUDA compilation flow; (4) CUDA
thread organization; (5) Kernel: Execution configuration and kernel structure; (6)
CUDA memory organization; (7) CUDA optimizations; (8) Case study: Image
convolution on GPUs; and (9) GPU computing: The future. The authors believe that
the chapter layout facilitates effective student-learning by starting from the basics of
GPGPU computing and then leading up to the advanced concepts. With this chapter,
the authors aim to equip students with the necessary skills to undertake graduate-
level courses on GPU programming and make a strong start with undergraduate
research.

Relevant core courses: Computer Systems Architecture and Advanced Computer
Systems courses.

Relevant PDC topics: Table 1 lists the relevant PDC concepts covered along with
their Bloom levels.

V. K. Pallipuram (�) · J. Gao
University of the Pacific, Stockton, CA, USA
e-mail: vpallipuramkrishnamani@pacific.edu; jgao@pacific.edu

© Springer International Publishing AG, part of Springer Nature 2018
S. K. Prasad et al. (eds.), Topics in Parallel and Distributed Computing,
https://doi.org/10.1007/978-3-319-93109-8_8

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93109-8_8&domain=pdf
mailto:vpallipuramkrishnamani@pacific.edu
mailto:jgao@pacific.edu
https://doi.org/10.1007/978-3-319-93109-8_8

192 V. K. Pallipuram and J. Gao

Table 1 PDC concepts across chapter sections and their Bloom levels

Chapter section

PDC concept 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9

Data parallelism C

GPGPU devices C A A A A A A

nvcc compiler A

Thread management A A

Parallel patterns A A

Performance evaluation A

Performance optimization A A

CUDA A A A A A A

Advancements in GPU computing K

Learning outcomes: By the end of this chapter, students will be able to:

• Explain CUDA concepts including thread management, memory manage-
ment, and device management.

• Identify performance bottlenecks in CUDA programs and calculate perfor-
mance achieved in floating-point operations per second (FLOPS).

• Develop CUDA programs and apply optimizations pertaining to memory
hierarchy, instructions, and execution configuration.

Context for use: The book chapter is envisioned for upper-level Computer
Science/Computer Engineering undergraduate courses/electives on systems,
advanced computer systems architecture, and high-performance computing with
GPUs. The book chapter is also intended as a “quick start” guide to general-
purpose GPU programming in undergraduate research.

The general-purpose graphical processing units (commonly referred to as GPG-
PUs) are throughput-oriented devices. Unlike the conventional central processing
units (CPUs) that employ a significant portion of the silicon wafer for caches,
GPGPU devices devote a large chunk of the chip real-estate to computing logic.
Consequently, GPGPU devices today feature several hundreds of cores dedicated
to performing accelerated computing. To unleash the tremendous power in these
computing cores, programmers must create several hundreds of thousands of
threads. This task warrants programmers devise creative techniques for task decom-
position, data partitioning, and synchronization. The GPGPU computing includes
an additional challenge of CPU-GPGPU device communication, which stems from
the fact that CPU and GPGPU device memories are typically disjoint. In most
GPGPU programs, the CPU (host) prepares and transfers the data to the GPGPU
device via the Peripheral Interconnect Express (PCIe) bus for computations. Once
the GPGPU device finishes all of the computations, it sends the processed data back
to the CPU host via the PCIe bus. A few recent architectures from AMD feature
accelerated processing units (APUs) that integrate CPU and GPU in a single chip.
AMD calls this approach as heterogeneous unified memory access (hUMA) where

The Realm of Graphical Processing Unit (GPU) Computing 193

the CPU and GPU memory spaces are unified, thereby avoiding any explicit data
transfers between the CPU host and GPU device. However, such integration leads
to CPU-GPU competition for the on-chip resources, leading to limited performance
benefits. This chapter builds the GPGPU programming concepts using the disjoint
CPU-GPGPU memory model.

To enable programmers to perform general purpose computing with GPUs,
NVIDIA introduced the Compute Unified Device Architecture (CUDA) [1] in
2006, ultimately replacing the notion of “express-it-as-graphics” approach to GPU
computing. CUDA is appropriately classified as a parallel computing platform and
programming model – it helps programmers to develop GPGPU programs written
in common languages such as C, C++, and Fortran by providing an elegant set of
keywords and language extensions. Additionally, CUDA provides useful libraries
such as the CUDA Basic Linear Algebra Subroutines (cuBLAS) library [2] for
GPGPU accelerated linear algebra routines and the CUDA Deep Neural Network
(cuDNN) library [3] for GPGPU accelerated primitives for deep neural networks.
At the time of this writing, CUDA is in its current avatar CUDA 9 and is freely
available for Linux, Windows, and Mac OSX.

GPGPU programming has continued to evolve ever since the introduction of
CUDA. Open Computing Language (OpenCL [4]) was released in 2009 as a royalty-
free standard for parallel programming on diverse architectures such as GPGPUs,
multi-core CPUs, field programmable gate arrays (FPGAs), and digital signal
processors (DSPs). Using a set of platform specific modifications, OpenCL allows
programmers to adapt their codes for execution across a variety of heterogeneous
platforms. Both CUDA and OpenCL tend to be verbose, for instance CUDA
traditionally requires programmers to perform explicit data transfers between the
CPU host and GPGPU device. The CPU host explicitly calls the GPGPU device
functions (called kernels) to execute the parallel tasks. OpenCL, with its cross-
platform requirements, further requires programmers to explicitly create device-
related task queues. To reduce such burden on programmers, OpenACC [5] standard
was officially released in 2013 as a paradigm to simplify CPU-GPGPU program-
ming. OpenACC offers compiler directives (for example, #pragma acc) that are
strategically placed across the source code to automatically map computations to
the GPGPU device. The software advancements are not only limited to GPGPU
programming models – software libraries such as Thrust [6] accelerate GPGPU code
development by providing helper classes and functions for common algorithms such
as sort, scan, reduction, and transformations, enabling programmers to focus on the
high-level details of the application.

This chapter introduces students to the basics of GPGPU computing using the
CUDA programming model. Section “Data Parallelism” introduces the concept of
data parallelism, which is critical for GPGPU computing. Section “CUDA Program
Structure” explains the typical structure of a CUDA program. Section “CUDA Com-
pilation Flow” describes the compilation flow of CUDA programs. Sections “CUDA
Thread Organization” and “Kernel: Execution Configuration and Kernel Struc-
ture” describe the CUDA thread organization and CUDA kernel configuration,
respectively. Section “CUDA Memory Organization” details the GPGPU memory

194 V. K. Pallipuram and J. Gao

organization as viewed by a CUDA program. Section “CUDA Optimizations”
expounds several CUDA optimization techniques employed by programmers to
maximize the application performance. The chapter concludes in section “Case
Study: Image Convolution on GPUs” on convolution with GPGPU devices as a
case study. By the end of this chapter, students will be able to explain computation
mapping to CUDA threads, write GPGPU device kernels, and employ optimization
strategies to achieve high application performance using GPGPU devices.

Data Parallelism

Several scientific applications today process large amounts of data. Some example
applications include molecular dynamics, deep neural networks, and image pro-
cessing, among others. A sequential scan of the data for such applications on a
conventional CPU may incur significant application runtime. Fortunately, several
scientific applications offer data parallelism, meaning the data can be partitioned
into several chunks that can be executed independent of each other. The data
parallelism is the primary source of scalability for many programs. In a molecular
dynamics simulation, the electrostatic potential of atoms at grid points is evaluated
in parallel. In a neural network simulation, the voltages of firing neurons at a given
neuron layer are independent, and therefore can be evaluated in parallel. Several
image-processing applications offer data parallelism via independent evaluation of
pixel attributes. Life teaches us several lessons – including data parallelism! When
the professor allows students to collaborate for an assignment, students divide work
(equally) with each other and complete the assignment in a short time. Similarly,
teaching assistants divide the grading work among themselves to reduce the grading
time.

Active Learning Exercise 1 – Identify five common activities in day-to-day life
that express significant data parallelism.

GPGPU devices work extremely well with applications that offer significant data
parallelism. In fact, the very primitive job of a GPU device, i.e. graphics rendering,
is extremely data parallel. Consider a simple example of vector-vector addition to
illustrate the concept of data parallelism. Figure 1 shows the addition of two vectors
A and B; the result is stored in vector C. The corresponding elements of vectors A

and B are added using processing elements, PEs. Clearly, each processing element,
PEi , works independently of any other processing element. Therefore, each data
element of vector C can be evaluated in parallel, thereby utilizing data parallelism
inherent in this operation.

Matrix-matrix multiplication is another frequently used mathematical operation
that offers significant data parallelism. Consider the multiplication of two matrices,
Am×n and Bn×p; the result is stored in the matrix Cm×p. Each element cij of Cm×p

is evaluated by computing the scalar product (also called the inner product in the
context of Euclidean space) between the ith row of Am×n and j th column of matrix
Bn×p. Equation 1 summarizes cij computation.

The Realm of Graphical Processing Unit (GPU) Computing 195

Fig. 1 Addition of two vectors A and B to elucidate data parallelism. The processing elements,
PEs, work independently to evaluate elements in C

cij =
n∑

k=1

aik × bkj (1)

A careful inspection of the above equation reveals that computation of any cij is
independent of the others; therefore, cij can be computed in parallel. Matrix-matrix
multiplication is an interesting operation because it can be parallelized in a variety
of ways. For example, one can create m×p processing elements (PEs) where each
PEij computes a specific matrix element, cij . Consider another example, where the
PEs perform partial product computations and then add the partial product results
from other pertinent PEs to obtain the final result, cij . Ahead in this chapter, we
study the parallelization of matrix-matrix multiplication on the GPGPU device.

There are several computationally-intensive mathematical operations used in
engineering and science that offer data-parallelism. Some examples include reduc-
tion, prefix sum, scan, sorting, among many others. Not surprisingly, many scientific
applications are composed of these computationally-intensive operations. By paral-
lelizing these operations, programmers can achieve significantly high performance
for their scientific codes and simulations.

Active Learning Exercise 2 – Perform a research on the following operations and
explain how they offer data-parallelism: reduction, prefix sum, scan, and sorting.

CUDA Program Structure

In this section, we explore the structure of common CUDA programs. First, we
explore a simple real-world example and then transfer the intuition to CUDA
programs. Consider the example of multiple graders sharing the grading workload

196 V. K. Pallipuram and J. Gao

Fig. 2 Program flow of a
typical CUDA program
interleaved with host portion
(executed by a single CPU
thread) and device portion
(executed by several
thousands of GPU threads).
The host-to-device (H2D) and
device-to-host (D2H)
communications occur
between the interleaved
portions denoting data
transfers from
CPU-to-GPGPU and
GPGPU-to-CPU, respectively

for a large class. Let us assume that the instructor collects the student assignments
and distributes them equally to all of the graders. There are multiple scenarios that
can arise in this case. In Scenario A, the graders complete the grading job easily
without any doubts and/or clarifications with respect to grading. In this scenario,
the instructor gets the graded assignments expeditiously. In Scenario B, the graders
may have questions on grading and they visit the instructor’s office for clarification.
Due to this instructor-grader communication, the grading is slower than Scenario
A. In another Scenario C, the graders may choose to communicate with each
other and avoid long trips to the instructor’s office, thereby finishing the job faster
than Scenario B. The structure of typical CUDA programs is no different than the
structure of grading scenarios – in what follows, we describe the layout of a typical
CUDA program.

Figure 2 illustrates the structure of a typical CUDA program, which has two
primary interleaved sections namely, the host portion and the device portion.
Depending on the application, these interleaved sections may be repeated several
times. A single CPU thread executes the host portion, while the GPGPU device
executes the device portion of the CUDA program. At the start of the program, the
CPU host portion prepares the data to be executed on the GPGPU device. After
the data preparation, the CPU host transfers the data to the GPGPU device memory
via host-to-device (H2D) transfer operation, which is performed over the PCIe bus.
After the GPGPU device portion finishes operating on the data, the processed data
is transferred back to the CPU host memory via device-to-host (D2H) operation. A
CUDA program may contain several interleaved host and device portions (similar
to the multiple graders case discussed above); however a prudent programmer must
be wary of communication costs incurred due to frequent H2D and D2H transfers.
To maximize the performance of CUDA programs, it is recommended to minimize
the host-device communications.

Let us investigate the structure of our first CUDA program. Listing 1 provides the
complete CUDA program for vector-vector addition. Line 1 includes the cuda.h

The Realm of Graphical Processing Unit (GPU) Computing 197

header file that provides GPGPU device-related functions. Inside the main()
function, note the host and device pointer variables declaration in lines 14 and
15, respectively. It is recommended to provide the h_ prefix for the host pointer
variables and d_ prefix for the device pointer variables. These prefixes enable
programmers to avoid the accidental de-referencing of device pointers by the
host and vice-versa, which cause the programs to break with error messages.
The host portion of the CUDA program prepares the data for the GPGPU device
execution (see Lines 18 through 29) and allocates the host and device memories for
computations (Lines 19 though 25). For seamless programming, CUDA provides
the cudaMalloc() function (similar to host’s malloc() function) for allocating
device pointers in the GPGPU device memory.

Once the host portion of the code finishes the necessary preprocessing steps, it
initiates a host-to-device data transfer via the cudaMemcpy() function call (Lines
31 and 32). The cudaMemcpy() function inputs the destination pointer, source
pointer, number of bytes to be transferred, and the data transfer direction (host-
to-device, device-to-host, etc.). Readers are encouraged to pay special attention to
cudaMemcpy() function and its parameters. Incorrect function parameters can
also lead to incorrect referencing of pointers. In Listing 1 on lines 31 and 32, the
destination pointer arguments are the device pointers d_a and d_b, respectively,
the source pointer arguments are the host pointers h_a and h_b, respectively, and
the data transfer direction is specified by the cudaMemcpyHostToDevice flag,
denoting host-to-device data transfer.

Listing 1 An example CUDA program illustrating vector-vector addition. Note the interleaved
CPU-host and GPGPU device portions. Host-device communications occur between the inter-
leaved host and device portions of the CUDA program.
1 . # i n c l u d e <cuda . h>
2 . # i n c l u d e < s t d i o . h>
3 . / / Device k e r n e l
4 . _ _ g l o b a l _ _
5 . vo id g p u _ k e r n e l (i n t ∗d_a , i n t ∗d_b , i n t ∗d_c , i n t v e c _ s i z e) {
6 . i n t t i d = t h r e a d I d x . x + b l o c k I d x . x∗blockDim . x ;
7 . i f (t i d < v e c _ s i z e) {
8 . d_c [t i d] = d_a [t i d] + d_b [t i d] ;
9 . }
1 0 . } / / end d e v i c e k e r n e l
1 1 . i n t main (i n t a rgc , c h a r ∗∗ a r g v) {
1 2 . / / d e c l a r e v a r i a b l e s
1 3 . i n t i , v e c _ s i z e ;
1 4 . i n t ∗h_a ,∗ h_b ,∗ h_c ; / / d a t a p o i n t e r s f o r hos t −s e c t i o n
1 5 . i n t ∗d_a ,∗ d_b ,∗ d_c ; / / d a t a p o i n t e r s f o r dev i ce −s e c t i o n
1 6 . / / Host−S e c t i o n p r e p a r e s t h e d a t a
1 7 . v e c _ s i z e =1000;
1 8 . / / Host−p o r t i o n p r e p a r e s t h e h o s t d a t a and a l l o c a t e s d e v i c e p o i n t e r s
1 9 . h_a =(i n t ∗) m a l loc (s i z e o f (i n t)∗ v e c _ s i z e) ;
2 0 . h_b =(i n t ∗) m a l loc (s i z e o f (i n t)∗ v e c _ s i z e) ;
2 1 . h_c =(i n t ∗) m a l loc (s i z e o f (i n t)∗ v e c _ s i z e) ;
2 2 . / / A l l o c a t e GPGPU d e v i c e p o i n t e r s
2 3 . cudaMal loc ((vo id ∗∗)&d_a , s i z e o f (i n t)∗ v e c _ s i z e) ;
2 4 . cudaMal loc ((vo id ∗∗)&d_b , s i z e o f (i n t)∗ v e c _ s i z e) ;
2 5 . cudaMal loc ((vo id ∗∗)&d_c , s i z e o f (i n t)∗ v e c _ s i z e) ;
2 6 . / / Host−p o r t i o n p r e p a r e s t h e d a t a
2 7 . f o r (i =0 ; i < v e c _ s i z e ; i ++) {
2 8 . h_a [i]= i ; h_b [i]= i ;
2 9 . }

198 V. K. Pallipuram and J. Gao

3 0 . / / CPU h o s t t r a n s f e r s t h e d a t a t o GPGPU d e v i c e memory
3 1 . cudaMemcpy (d_a , h_a , s i z e o f (i n t)∗ v e c _ s i z e , cudaMemcpyHostToDevice) ;
3 2 . cudaMemcpy (d_b , h_b , s i z e o f (i n t)∗ v e c _ s i z e , cudaMemcpyHostToDevice) ;
3 3 . / / CPU h o s t i n v o k e s t h e GPGPU d e v i c e p o r t i o n
3 4 . gpu_ke rne l <<<1 , 1000 > > >(d_a , d_b , d_c , v e c _ s i z e) ;
3 5 . / / GPGPU d e v i c e t r a n s f e r s t h e p r o c e s s e d d a t a t o CPU h o s t
3 6 . cudaMemcpy (h_c , d_c , s i z e o f (i n t)∗ v e c _ s i z e , cudaMemcpyDeviceToHost) ;
3 7 . / / CPU hos t −p o r t i o n resumes o p e r a t i o n
3 8 . f o r (i =0 ; i < v e c _ s i z e ; i ++){
3 9 . p r i n t f (‘ ‘ \ n C[%d]=%d ’ ’ , i , h_c [i]) ;
4 0 . }
4 1 . f r e e (h_a) ;
4 2 . f r e e (h_b) ;
4 3 . f r e e (h_c) ;
4 4 . c u d a F r e e (d_a) ;
4 5 . c u d a F r e e (d_b) ;
4 6 . c u d a F r e e (d_c) ;
4 7 . r e t u r n 0 ;
4 8 . }

After transferring the data to the GPGPU device, the host portion invokes the
GPGPU device kernel in Line 34. A device kernel is a GPGPU device function
that is callable from the host and executed by the GPGPU device. A device kernel
invocation is also referred to as a kernel launch. The calling name (gpu_kernel)
specifies the name of the device kernel. The angular brackets (<<< >>>) specify
the GPGPU device execution configuration, which mainly consists of the number
of thread blocks and the number of threads per block to operate on the input
data. We discuss threads and thread blocks in detail in section “CUDA Thread
Organization”. In this example when the gpu_kernel is launched, one thread
block containing 1000 CUDA threads are created that execute the kernel function
concurrently. More details on GPGPU device kernels and execution configuration
appear in section “Kernel: Execution Configuration and Kernel Structure”. The lines
4–9 are executed as the device portion of the code on the GPGPU device. The
__global__ keyword specifies that the following function (gpu_kernel in
our case) is a device kernel. The in-built variables threadIdx, blockIdx, and
blockDim in Line 6 enable programmers to access the threads’ global indices. In
this program, a thread with index tid operates on tid-th element of the vectors
A, B, and C. It should be noted that GPGPU device kernel calls are asynchronous,
meaning that after the kernel launch, the control immediately returns to the host
portion. In this program after the kernel launch, the host portion invokes the
cudaMemcpy() function (Line 36), which waits for all of the GPGPU threads to
finish the execution. After the GPGPU device finishes execution, the control returns
to line 36 where the device transfers the processed data (vector C) to the host.
Note that in this device-to-host transfer, the host pointer (h_c) is the destination,
the device pointer (d_c) is the source, and the direction of the data transfer is
device-to-host denoted by the cudaMemcpyDeviceToHost flag. The lines 44
through 46 release the device memory variables via the cudaFree() function
call.

The Realm of Graphical Processing Unit (GPU) Computing 199

CUDA Compilation Flow

Now that we understand the structure of CUDA programs, let us study how
CUDA programs are compiled and a single executable is generated in a Linux-
based environment. NVIDIA’s nvcc compiler facilitates the splitting, compilation,
preprocessing, and merging of CUDA source files to create an application’s
executable. Although the nvcc compiler enables transparent code compilation, an
understanding of the compilation flow can enable further performance improvement.
The nvcc compiler in the Linux environment recognizes a selected set of input files
given in Table 2. In what follows, we study a high-level compilation flow of CUDA
source programs.

Figure 3 provides a high-level abstraction of the CUDA compilation process.
The nvcc compiler, in conjunction with a compatible host code compiler such as
gcc/g++, splits the compilation of CUDA source programs into two trajectories
namely, the host trajectory and the device trajectory. These trajectories are not
completely disjoint and often interact with each other via intermediate ‘stub’
functions. The host trajectory extracts the host code, host stub functions (functions
that set up the kernel launch when the device kernel is invoked by the host), and
compiles the host code to produce the .o object file. The device trajectory includes
multiple steps such as device code extraction, host stub extraction, and device code
optimization. The nvopenacc command inputs the intermediate compilation files
(.cpp3.i) to produce the virtual architecture assembly file (.ptx) that contains
a generic device instruction set. Next, the ptxas assembly command generates
the .cubin file: the real architecture binary for a specific GPGPU device. The
fatbinary stage combines multiple .cubin files (each targeting a different GPGPU
device) into a .fatbin binary file. This binary file is ultimately linked with the
host .o object file to create the final executable file, a.out. When a.out is
executed, an appropriate .cubin file is selected from .fatbin for the target
GPGPU device.

The CUDA toolkit documentation [7] provides a highly detailed explanation
of the compilation process. The nvcc compiler also offers programmers with

Table 2 List of input files recognized by the nvcc compiler in Linux-based environment

Input file type Description

.cu CUDA source file containing host and device portions

.c C source file

.cpp, .cc, .cxx C++ source file

.gpu Intermediate device-code only file

.o Object file

.a Library file

.so Shared object files (not included in executable)

.res Resource file

200 V. K. Pallipuram and J. Gao

Fig. 3 A high-level abstraction of nvcc compilation process. The nvcc compiler breaks the
compilation process into two trajectories: host trajectory and device trajectory

several compiler switches to control the code generation. Here, we only discuss two
important switches: --gpu-architecture and --gpu-code. These switches
allow for the GPGPU device architecture evolution. Before describing the role of
these compiler switches, let us define the term Compute Capability. The Compute
Capability of a device is represented by a version number that identifies the
supported hardware features of the GPGPU device. The Compute Capability is used
during the compilation process to determine the set of instructions for the target
GPGPU device. The purpose of the above-mentioned nvcc compiler switches is as
follows.

--gpu-architecture (short: -arch): This switch enables the selection of
a virtual architecture, thereby controlling the output of the nvopencc command. A
virtual architecture is a generic set of instructions for the virtual GPGPU device with
the desired compute capabilities. By itself, the virtual architecture does not represent
a specific GPGPU device. Some example values of --gpu-architecture
switch are: compute_20 (Fermi support); compute_30 (Kepler support);
compute_35 (recursion via dynamic parallelism); compute_50 (Maxwell
support).

--gpu-code (short: -code): The switch enables the selection of a specific
GPGPU device (the actual GPU architecture). Some examples values include:

The Realm of Graphical Processing Unit (GPU) Computing 201

Table 3 Examples of code generation using --gpu-architecture and --gpu-code
switches

Example Description

nvcc vector.cu The fatbinary includes two cubins;

--gpu-architecture=compute_30 one cubin corresponding to each architecture.

--gpu-code=sm_30,sm_35

nvcc vector.cu The same as the above with the inclusion

--gpu-architecture=compute_30 of PTX assembly in the fatbinary.

--gpu-code=compute_30,
sm_30,sm_35

nvcc vector.cu Fails because sm_20 is lower than the

--gpu-architecture=compute_30 virtual architecture compute_30

--gpu-code= sm_20,sm_30

sm_20 (Fermi support); sm_30 (Kepler support); sm_35 (recursion via dynamic
parallelism); sm_50 (Maxwell support).

In what follows, we outline the general guidelines used to set values of
the above mentioned compiler switches for different types of code generation.
The --gpu-architecture switch takes a specific value, whereas the
--gpu-code switch can be set to multiple architectures. In such a case, .cubin
files are generated for each architecture and included in the fatbinary. The
--gpu-code switch can include a single virtual architecture, which causes
the corresponding PTX code to be added to the fatbinary. The NVIDIA
documentation suggests keeping the value of --gpu-architecture switch
as low as possible to maximize the number of actual GPGPU devices. The
--gpu-code switch should preferably be higher than the selected virtual
architecture. Table 3 provides several compilation examples for code generation.
We encourage readers to peruse the Nvidia software development kit (SDK) for
sample Makefiles and adapt them for their respective applications and GPGPU
devices.

Active Learning Exercise 3 – Write a compilation command for generating a
fatbinary with PTX included for Fermi and Kepler architectures.

CUDA Thread Organization

A CUDA program follows Single Program, Multiple Data (SPMD) methodology
where several thousands of threads work concurrently to execute the same kernel
function on different data elements. However, different groups of threads may be
executing different sections of the same CUDA kernel. To enable CUDA threads
to access the relevant data elements upon which to operate, it is imperative to fully
understand the CUDA thread organization. The CUDA threads are organized in a
two-level hierarchy of grids and blocks. A grid is a three-dimensional collection

202 V. K. Pallipuram and J. Gao

Fig. 4 Two examples of
CUDA grids and thread
blocks. When Kernel1 is
called, it launches a 2 × 2
grid of 2 × 2 thread blocks.
When Kernel2 is called, it
launches a 1D grid with two
1D thread blocks with each
block containing 5 threads

of one or more blocks and a block is a three-dimensional collection of several
threads. When a kernel function is called, a grid containing multiple thread blocks
is launched on the GPGPU device (Fig. 4). As shown in the same figure, when
the kernel function Kernel1 is called, a two-dimensional grid of thread blocks
(2 blocks each in x and y dimensions) is launched on the GPGPU device. In this
example, each thread block is a two-dimensional arrangement of threads with two
threads in both the x and y dimensions. The Kernel2 function call launches a
CUDA grid with two thread blocks, where each thread block is a one-dimensional
arrangement of five threads. For illustration purposes, the above examples work with
only four or five threads per block. Readers should note that GPGPU devices require
a minimum number of threads per block depending on the Compute Capability.

First, let us investigate CUDA grids. As mentioned earlier, each grid is a three-
dimensional arrangement of thread blocks. When the kernel function is launched,
the first parameter in execution configuration, <<<dimGrid, ..>>>, specifies
the dimensions of the CUDA grid. The size of grid dimensions depends on the
Compute Capability of the GPGPU device. In CUDA programs, the dimensions of
the grids can be set using the C structure, dim3, which consists of three fields:
x, y, and z for x, y, and z dimensions, respectively. By setting the dimensions
of CUDA grids in the execution configuration, we automatically set the values of
x, y, and z fields of the predefined variable, gridDim. This variable is used in
the kernel function to access the number of blocks in a given grid dimension. The
blocks in each dimension are then accessed via the predefined variable, blockIdx,
which also contains three fields: x, y, and z. The variable blockIdx.x takes on
values ranging from 0 to gridDim.x-1; blockIdx.y takes on values ranging
from 0 to gridDim.y-1; and blockIdx.z takes on values ranging from 0 to
gridDim.z-1. Table 4 provides examples of CUDA grid initialization using the

The Realm of Graphical Processing Unit (GPU) Computing 203

Table 4 Examples of CUDA grid initialization using dim3 structure. The corresponding values
(range of values) of gridDim and blockIdx variables are shown

gridDim blockIdx

Example Description variable variable

dim3 dimGrid1(32,1,1) 1D grid with 32 thread-blocks x y z x y z

32 1 1 0–31 0 0

dim3 2D grid with 16 blocks in 16 16 1 0–15 0–15 0

dimGrid2(16,16,1) x and y dimensions

dim3 3D grid with 16 blocks in 16 16 2 0–15 0–15 0–1

dimGrid3(16,16,2) x and y dimensions and 2

blocks in z dimension

dim3 structure and illustrates the values of gridDim and blockIdx variables.
Note that the unused dimensions in the dim3 structure are set to one.

The dimensions of a CUDA grid can also be set at runtime. For instance, if a
programmer requires 256 threads per block to work on n elements, the dimensions
of the grid can be set as:

<<<dimGrid(round_up(n,256)),..>>>. Note that round_up()
function is required to launch enough thread blocks to operate on all of the n
elements.

Active Learning Exercise 4 – Initialize a three-dimensional CUDA grid with two
blocks in each dimension. Give the values of pertinent predefined variables.

Next, we turn our attention to CUDA thread blocks. As mentioned before, the
CUDA thread blocks are three-dimensional arrangements of threads. The second
parameter in the execution configuration, <<<dimGrid,dimBlock,..>>>,
specifies the dimensions of a single thread block. Similar to grids, the thread
block dimensions can also be set using the dim3 structure. It should be noted that
the total number of threads in a block should not exceed 1024. Once the block
dimensions are set, the x, y, and z fields of the in-built variable, blockDim
are initialized. Each field of blockDim variable denotes the number of threads
in x, y, and z dimensions. Each thread in a given thread block is then accessed
using the predefined variable, threadIdx. Akin to the blockIdx variable, the
threadIdx variable has three fields namely, threadIdx.x varying from 0
to blockDim.x-1, threadIdx.y varying from 0 to blockDim.y-1, and
threadIdx.z varying from 0 to blockDim.z-1. Table 5 provides examples
of block dimension initialization and the corresponding values of blockDim and
threadIdx variables.

Active Learning Exercise 5 – Initialize a 2D CUDA block with 16 threads in each
dimension. Give the values of pertinent predefined variables.

As discussed before, the maximum grid and block dimensions depend on the
Compute Capability of the GPGPU device. It is always a good idea to verify these
values for newer architectures. Table 6 provides the maximum device specific values
for Compute Capability 3.x, 5.x, and 6.x devices.

204 V. K. Pallipuram and J. Gao

Active Learning Exercise 6 – Investigate the device specific values of earlier
compute capabilities, i.e. 1.x and 2.x. Also provide one GPGPU device from these
compute capabilities. What are the significant changes in device specific values for
Compute Capability 2.x onwards? Make a note on how these changes influence the
GPGPU programming.

Kernel: Execution Configuration and Kernel Structure

As readers may recall, several thousands of threads created by the programmer in a
CUDA program concurrently execute a special device function, the kernel. The host
portion of the CUDA program asynchronously calls the CUDA kernel, meaning that
the control immediately returns to the host portion after the kernel launch. During
the kernel execution, the host portion may perform some computations (thereby
overlapping computations) or may choose to wait for the GPGPU device to finish
operating on the data. An example of kernel launch is as follows:

gpu_kernel <<<dimGrid,dimBlock>>> (arg1, arg2,..,argN);
In the above statement, the GPGPU device kernel named gpu_kernel is

executed by all of the threads created in the CUDA program. The number of
threads created is a function of the kernel execution configuration specified by the
dimGrid and dimBlock (dim3 type) variables configured by the programmer
(see Tables 4 and 5 for examples). As discussed in the foregoing section, the
dimGrid variable specifies the number of CUDA blocks arranged in x, y, and z
dimensions of a CUDA grid, whereas the dimBlock variable specifies the number
of CUDA threads arranged in x, y, and z dimensions in a CUDA block. A general
procedure for setting an execution configuration is follows.

1. Set the thread block dimensions and the number of threads in each dimension
such that the total number of threads in a block does not exceed 1024. Pay
attention to GPGPU device specific limits (see Table 6).

2. Calculate the number of thread blocks required in each grid dimension.

Table 5 Examples of CUDA block initialization using dim3 structure. The corresponding values
(range of values) of blockDim and threadIdx variables are shown

blockDim threadIdx

Example Description variable variable

dim3 dimblock1(32,1,1) 1D block with 32 threads x y z x y z

32 1 1 0–31 0 0

dim3
dimblock2(32,32,1)

2D block with 32 threads in x
and y dimensions

32 32 1 0–31 0–31 0

dim3
dimblock3(32,32,2)

Incorrect. The number of
threads in the block exceeds
1024.

– – – – – –

The Realm of Graphical Processing Unit (GPU) Computing 205

Table 6 Limitations on device specific parameters for Compute Capability 3.x, 5.x, and 6.x
devices

Device parameter Maximum number

Maximum number of grid dimensions 3

Grid maximum in x dimension 231 − 1

Grid maximum in y and z dimensions 216 − 1

Maximum number of block dimensions 3

Block maximum in x and y dimensions 1024

Block maximum in z dimension 64

Maximum threads per block 1024

Example GPGPU device (3.x) Kepler GK110

Example GPGPU device (5.x) Maxwell GM200

Example GPGPU device (6.x) Pascal GP102

Once the execution configuration is set and the kernel is launched, it is customary
for each thread to ‘know’ its local and global thread identification numbers (IDs).
It is via these thread IDs that different threads access their respective portions of
the data. As discussed in section “CUDA Thread Organization”, threads can access
their IDs inside the device kernel function using in-built variables: gridDim,
blockDim, blockIdx, and threadIdx. These variables are set when the
execution configuration is passed to the kernel during the kernel launch. The
methodology of setting the execution configuration usually depends on the type
of parallel patterns in an application. Simple parallel patterns such as vector-
vector addition, prefix sum, etc. may only require one-dimensional execution
configuration. Whereas more complex patterns such as matrix-matrix multipli-
cation, two-dimensional image convolution, etc. intuitively lend themselves to
two-dimensional execution configuration. More complex applications that operate
on three-dimensional data are parallelized using a three-dimensional execution
configuration. In what follows, we use two example parallel patterns illustrating
one-dimensional and two-dimensional execution configurations, namely vector-
vector addition and matrix-matrix multiplication. We study how the execution
configuration is set and the threads are accessed inside the device kernel function
for these two parallel patterns. These examples help us build our intuition for one-
and two-dimensional grids and blocks, which can be easily extended to three-
dimensional execution configuration.

Consider addition of two vectors A and B, each containing n elements. The result
of addition is stored in vector C as illustrated by Fig. 1. We use 1D blocks and grids
for this case, given that our working arrays A, B, and C are one-dimensional arrays.
An example execution configuration with 256 threads per block appears in Listing 2.

Listing 2 The example illustrates an execution configuration with 256 threads per block for
vector-vector addition. The example also shows how a thread accesses its global index/identifier
(ID) in the CUDA grid.
/ / A u x i l i a r y C f u n c t i o n f o r r o u n d i n g up
i n t round_up (i n t numera to r , i n t d e n o m i n a t o r) {

206 V. K. Pallipuram and J. Gao

Fig. 5 The illustration shows how a thread accesses its global ID and the corresponding data
element in the vector

r e t u r n (n u m e r a t o r + denomina to r −1) / d e n o m i n a t o r ;
}

/ / I n s i d e main

/ / S t e p 1 : S e t t h e b l o c k c o n f i g u r a t i o n
1 . dim3 dimBlock (2 5 6 , 1 , 1) ;
/ / S t ep 2 : S e t t h e g r i d c o n f i g u r a t i o n
2 . dim3 dimGrid (round_up (n , 2 5 6) , 1 , 1) ;
/ / GPU k e r n e l c a l l
3 . g p u _ k e r n e l <<<dimGrid , dimBlock >>>(A, B , C) ;
:
:
/ / I n s i d e g p u _ k e r n e l f u n c t i o n (d e v i c e p o r t i o n)
:
/ / The l o c a l t h r e a d ID i n a g i v e n b l o c k

A. l o c a l _ t i d = t h r e a d I d x . x ;
/ / The g l o b a l t h r e a d ID i n t h e e n t i r e g r i d
B . g l o b a l _ t i d = l o c a l _ t i d + b l o c k I d x . x∗blockDim . x ;
:
/ / Array a c c e s s

AA. C[g l o b a l _ t i d] = A[g l o b a l _ t i d] + B[g l o b a l _ t i d] ;

In Listing 2, Line 1 sets the x dimension of the thread block to 256 and the
remaining unused fields (y and z) are set to one. In Line 2, the x dimension of
the grid is set to round_up(n,256), whereas the unused y and z dimensions
are set to 1. The rounding up operation (using round_up()) is performed to
create enough number of thread blocks to execute all of the n data elements.
Inside the gpu_kernel function, Line A performs the access of the local thread
ID, i.e. the thread’s ID in its block. Line B shows how a thread accesses its
global thread ID. In general, the global thread ID in any dimension follows
the formula: global_tid = local_tid + offset. In this case, the offset
equals blockIdx.x*blockDim.x and local ID equals threadIdx.x. Each
thread then accesses a unique element of vectors A, B, and C using the global
thread ID (global_tid) in Line AA. Figure 5 illustrates the global thread ID
access discussed above.

Next, we consider the example of matrix-matrix multiplication to illustrate
two-dimensional execution configuration. For simplicity, assume multiplication of
two 2D matrices An×n and Bn×n of dimensions n × n each. The result of this
multiplication is stored in another 2D matrix of the same dimensions, Cn×n. For
the purpose of illustration, assume 16 × 16 as the thread block dimensions. Readers
should recall that the number of threads per block should not exceed 1024. The
dim3 type variables, dimGrid and dimBlock, are configured as shown in
Listing 3.

The Realm of Graphical Processing Unit (GPU) Computing 207

Listing 3 Configuration of dimGrid and dimBlock in the host portion; and access of local and
global thread IDs in the device portion.
/ / P r e p a r i n g t h e e x e c u t i o n c o n f i g u r a t i o n i n s i d e h o s t p o r t i o n o f t h e code
/ / S t e p 1 : S e t t h e b l o c k c o n f i g u r a t i o n
1 . dim3 dimBlock (1 6 , 16 , 1) ;
/ / S t ep 2 : S e t t h e g r i d c o n f i g u r a t i o n
2 . dim3 dimGrid (round_up (n , 1 6) , round_up (n , 1 6) , 1) ;
/ / GPU k e r n e l c a l l
3 . g p u _ k e r n e l <<<dimGrid , dimBlock >>>(A, B , C) ;
:
:
/ / I n s i d e g p u _ k e r n e l f u n c t i o n (d e v i c e p o r t i o n)
:
/ / The l o c a l t h r e a d ID i n x−d im e ns ion i n a g i v e n b l o c k

A. l o c a l _ t i d x = t h r e a d I d x . x ;
/ / The l o c a l t h r e a d ID i n y−d im e ns ion i n a g i v e n b l o c k
B . l o c a l _ t i d y = t h r e a d I d x . y ;
/ / The g l o b a l t h r e a d ID i n x−d imens ion i n t h e e n t i r e g r i d
C . g l o b a l _ t i d x = l o c a l _ t i d x + b l o c k I d x . x∗blockDim . x ;
/ / The g l o b a l t h r e a d ID i n y−d imens ion i n t h e e n t i r e g r i d

D. g l o b a l _ t i d y = l o c a l _ t i d y + b l o c k I d x . y∗blockDim . y ;
:
/ / Array a c c e s s

AA. a=A[g l o b a l _ t i d x] [g l o b a l _ t i d y] ; b=B[g l o b a l _ t i d x] [g l o b a l _ t i d y] ;

In the example shown in Listing 3, a dim3 structure (dimBlock) for 2D CUDA
block is declared with 16 threads in x and y dimensions, respectively; the unused
z dimension is set to 1. Because the matrices are square with n elements in x and
y dimensions, the CUDA grid consists of round_up(n,16) number of CUDA
blocks in x and y dimensions; the unused z dimension is set to 1 (Line 2). Inside the
gpu_kernel, the local and global thread IDs in x and y dimensions are accessed
as shown in lines A through D. The global element access using the global thread
IDs is elucidated in Line AA. Figure 6 illustrates the above discussed concept for
two-dimensional thread ID access.

In the foregoing examples and parallel patterns similar to them, readers should
ensure that the threads cover all of the data elements and the number of idle threads
is minimized. For instance, consider an example of addition of two vectors with
1000 elements each. A choice of 256 threads per block results in four thread blocks,
thereby creating 1024 threads for the entire application. Because the threads with
global IDs 0 through 999 operate on the corresponding data elements 0 through
999, the threads with IDs 1000 through 1023 remain idle. Similarly, a choice of
200 threads per block results in 5 thread blocks with no idle threads. However,
there is more to execution configuration than simply creating sufficient number of
threads. The number of threads per block and thread blocks affect the number of
concurrent thread groups (a group of 32 concurrent threads is called a warp) active
on a streaming multiprocessor. This concept is discussed in detail in section “CUDA
Memory Organization”.

Active Learning Exercise 7 – Create a 2D grid with 2D blocks for operation on
an image of size 480 × 512. Elucidate, how each thread accesses its ID and its
corresponding pixel element (x, y). How can you extend this process for a color
image 480 × 512 × 3 where the third dimension corresponds to the red, green, and
blue (RGB) color channels?

208 V. K. Pallipuram and J. Gao

Fig. 6 The illustration shows how a thread accesses its global 2D ID (x, y) and the corresponding
data element (x, y) in a two-dimensional matrix, An×n

CUDA Memory Organization

The GPGPU devices are throughput-oriented architectures, favoring compute-logic
units over memory units. The GPGPU device’s main memory (also called the
device memory) is usually separate from the GPGPU device. Consequently, most
of the CUDA programs observe a performance bottleneck due to frequent device
memory accesses. Therefore, programmers pursuing high-performance on GPGPU
devices must have a deep understanding of the device memory hierarchy. A sound
understanding of the CUDA memory hierarchy enables programmers to perform
optimizations effectively. In what follows, we discuss the device memory hierarchy
with respect to the CUDA programming model.

Figure 7 shows an abstract representation of a CUDA GPGPU device with its
streaming multiprocessors interacting with the device memory. Henceforth, we refer
to this memory hierarchy as the CUDA memory hierarchy.

As shown in Fig. 7, a GPGPU device contains multiple streaming processors
(SMs), each containing multiple CUDA cores. In a typical CUDA program, the
thread blocks are launched on the SMs while the CUDA cores execute the threads
in a thread block. The CUDA memory hierarchy follows a pyramid fashion from
the fastest but smallest memory units to the slowest but largest memory units as
under:

• On-chip Registers (≈32 K registers per SM) – In a SM, each CUDA core has
exclusive access to its own set of registers. The register accesses are blazingly
fast, each access taking only one clock cycle. The lifetime of registers is the

The Realm of Graphical Processing Unit (GPU) Computing 209

Fig. 7 The CUDA memory hierarchy: at the lowest level, CUDA cores inside SMs have access
to fast registers. All of the CUDA cores in a given SM have shared access to L1 cache/shared
memory (fast but slower than registers). All the SMs share the L2 cache (if present). The farthest
memory unit from the GPGPU device is the device memory, which consists of special memory
units including local memory, cached constant memory, texture memory, and global memory

lifetime of a thread. The automatic variables in the CUDA kernel are allotted
registers depending on the device’s Compute Capability. The leftover registers
spill into the device’s local memory, which resides in the off-chip device memory.

• On-chip Shared memory (≈64 KB per SM) – Further away from the registers
is the shared memory shared by all of the CUDA cores in a SM. The accesses
to shared memory are also fast; an access typically takes ≈30 clock cycles. The
shared memory persists for the lifetime of a thread block.

• Off-chip Device Memory (typically several GB) – The largest and perhaps the
most important memory unit of all is the GPGPU device memory, which resides
in the off-chip random access memory (RAM). The device memory further
consists of sub-units including:

– Local memory for storing ‘spilled’ register variables.
– Cached constant memory for storing constant values.
– Texture memory with specialized hardware for filtering operations.
– Global memory accessible to the entire GPGPU device via CUDA memory

transfer functions.

Accesses to the device memory typically take 300–600 clock cycles. However,
a CUDA program can obtain significant performance boost due to L1/L2 caches
in recent GPGPU architectures. The device memory persists for the lifetime of
the entire program.

210 V. K. Pallipuram and J. Gao

In what follows, we explore registers, shared memory, constant memory, and the
global memory in detail. The texture memory is operated via the Texture Object
APIs and its usefulness is limited in general-purpose computing. Therefore, we
skip the discussion on texture memory, although readers are encouraged to explore
texture memory discussed in the CUDA programming guide [7].

Registers

As shown in Fig. 7, each streaming multiprocessor has a set of on-chip registers that
provide fast data access for various operations, which would otherwise consume
several clock cycles due to frequent device memory accesses. Upon compilation
with the nvcc compiler, the automatic variables declared in a CUDA kernel are
stored in registers. However, not all automatic variables reap the benefits of registers
because the GPGPU device’s Compute Capability limits the maximum number of
registers per streaming multiprocessor. If the number of requested registers in a
CUDA kernel exceeds the device’s capability, the leftover variables spill into the
local memory (in off-chip device memory). Thereafter, any subsequent accesses
to these variables may consume several hundreds of clock cycles. With recent
advancements in the GPGPU device architecture and inclusion of caches, this
performance artifact can be alleviated, however it is application-specific.

The number of registers used by threads in a CUDA kernel in conjunction with
the number of threads per block also has a major performance implication – to what
extent are the SMs occupied? The GPGPU devices realize parallelism via warps,
a group of 32 concurrent threads. All of the threads in a warp execute the same
instruction. Although, different warps may be executing different instructions of the
same kernel. A streaming multiprocessor can have several active warps that can
execute concurrently – when a set of warps executes memory instructions, the other
set of warps performs useful computations. This level of concurrency amortizes the
global memory latency. The multiprocessor occupancy is defined as the ratio of the
number of active warps on SM to the maximum number of warps that can reside
on a SM. Consequently, this ratio can at most be equal to 1 and a high value of
multiprocessor occupancy is desirable to ensure high concurrency.

With the above background, let us study how the number of registers per thread
and the number of threads per block affect the multiprocessor occupancy. Consider
the Kepler K20Xm GPGPU device architecture, which belongs to Compute Capa-
bility 3.5. For this device, the maximum number of registers per SM is equal to
65536 and the maximum number of warps per SM is equal to 64. Using the nvcc
compiler’s Xptxas switch, we can determine the number of registers used and the
amount of spill into the local memory. An illustration appears in Listing 4 where
we compile a CUDA program, convolve.cu. As shown in the listing, the total
number of registers per thread is 23 and there is no spill into the device’s local
memory.

The Realm of Graphical Processing Unit (GPU) Computing 211

Listing 4 An illustration of nvcc compiler’s Xptxas option to determine the number of registers
used and the amount of register spill into the local memory.
bash −4.2# nvcc −Xptxas −v −a r c h =sm_35 c o n v o l v e . cu
p t x a s i n f o : 0 \ , b y t e s gmem
p t x a s i n f o : Compi l ing e n t r y f u n c t i o n ’ _ Z 8 c o n v o l v e P i i i P f i S _ ’ f o r ’ sm_35 ’
p t x a s i n f o : F u n c t i o n p r o p e r t i e s f o r _ Z 8 c o n v o l v e P i i i P f i S _
0 \ , b y t e s s t a c k frame , 0 \ , b y t e s s p i l l s t o r e s , 0 \ , b y t e s s p i l l l o a d s
p t x a s i n f o : Used 23 r e g i s t e r s , 3 6 0 \ , b y t e s cmem [0]

The multiprocessor occupancy for a given kernel is obtained via Eqs. 2 through 5.

registers_per_block = registers_per_thread × threads_per_block (2)

total_blocks = (max_registers_per_SM)

(registers_per_block)
(3)

resident_warps = min

(
maximum_warps,

total_blocks × threads_per_block

32

)

(4)

occupancy = resident_warps

maximum_warps
(5)

For the example in Listing 4, let us assume that the CUDA kernel is launched with
256 threads per block. The total number of registers per block is: 23 × 256 = 588
registers. For this example, a SM in theory can execute a total of 11 blocks.
The total number of resident warps is min(64, 11×256

32) = 64, thereby yielding
multiprocessor occupancy equal to 1. Equations 6 through 11 show the calculations
for multiprocessor occupancy if the threads in the above example were to use 100
registers.

registers_per_thread = 100; threads_per_block = 256 (6)

registers_per_SM = 65536;maximum_warps = 64 (7)

registers_per_block = 100 × 256 = 25600 (8)

total_blocks =
⌊

65536

25600

⌋
= 2 (9)

resident_warps = min(64,
2 × 256

32
) = 16 (10)

occupancy = 16

64
= 25% (11)

NVIDIA’s CUDA occupancy calculator facilitates the occupancy calculations
and elucidates the impact of varying thread block size and register count per thread
on the multiprocessor occupancy. We discuss the occupancy calculator in detail in
section “CUDA Optimizations”.

212 V. K. Pallipuram and J. Gao

Active Learning Exercise 8 – For a Compute Capability device 3.0, the nvcc
compiler reports a usage of 50 registers per thread. If the thread block size is 512,
what is the multiprocessor occupancy? Make sure to use the NVIDIA GPU data
for the device related constants (maximum registers per SM, warp size, maximum
number of warps per SM, etc.). Will the occupancy be any better if the kernel were
to use 128 threads per block?

Shared Memory

NVIDIA GPGPU devices offer 64 KB on-chip shared memory that is used to cache
frequently accessed data. The shared memory is slower than registers (≈30 cycles
per access versus 1 cycle per access for registers). However unlike registers, shared
memory is accessible to all the threads in a thread block. The shared memory space
is commonly used for thread collaboration and synchronization. These accesses, if
performed via global memory, would typically consume several hundreds of clock
cycles, thereby reducing the performance.

The kernel functions should be ‘aware of’ whether the variables are located in
the device memory or in the shared memory. Programmers can statically allocate
shared memory inside the kernel using the __shared__ qualifier. Some examples

Table 7 Examples of CUDA shared memory declaration

Example Syntax Description

1 __shared__ float a; The variable a is allocated in
shared memory and is accessible
to all threads inside a thread block

2 __shared__ float
A[BLOCKSIZE][BLOCKSIZE];
//All threads
load a value
tidx=threadIdx.x;
tidy=threadIdx.y;
global_tidx=
tidx+blockIdx.x

*blockDim.x;
global_tidy=
tidy+blockIdx.y

*blockDim.y;
A[tidx][tidy]=
global_A[global_tidx]
[global_tidy];

A two-dimensional array A
is declared in the shared
memory. The dimensions are
BLOCKSIZE x BLOCKSIZE
where BLOCKSIZE is the
number of threads per block.
All of the threads inside the
thread block can access this
array. This type of allocation is
usually performed when each
thread inside a thread block loads
a value from the device global
memory to shared memory,
thereby optimizing the global
memory bandwidth

3 __shared__ float *A;
A=(float *)malloc
(sizeof(float)

*BLOCKSIZE);

Incorrect because array A is
not static. See text for dynamic
shared memory allocation

The Realm of Graphical Processing Unit (GPU) Computing 213

of static shared memory allocation appear in Table 7. In the first example, a simple
shared memory variable, a is declared. Example 2 shows how a 2D shared memory
variable is declared inside a kernel function. All of the threads in a thread block
have access to this 2D shared memory variable. Example 2 also shows how local
threads in a thread block load the corresponding global data element into this shared
variable. The last example shows an incorrect way of dynamically allocating a
shared memory variable.

It is also possible to dynamically allocate variables in the shared memory.
The third parameter of execution configuration (the first two parameters are for
specifying the dimensions of grid and thread blocks, respectively) specifies the
size of the shared memory to be dynamically allocated inside the kernel function.
Additionally, the dynamic shared memory variable inside the kernel function is
declared with the extern qualifier. For example, consider that the BLOCKSIZE
parameter is determined at runtime – in this case, example 3 in Table 7 for allocating
array A will not work. Programmers can specify the size of the shared memory in
the execution configuration during the kernel call as shown in Listing 5.

Note that it is also possible to perform multiple dynamic shared memory
allocations by specifying the combined size of required arrays in the execution
configuration. Inside the kernel function, a single shared memory array is used
with appropriate offsets (using array sizes) to access the individual shared memory
arrays.

Listing 5 An illustration of dynamic shared memory allocation by specifying the amount of
memory to be allocated in the execution configuration. The corresponding shared memory variable
declaration has extern qualifier.
_ _ g l o b a l _ _ v o i d k e r n e l (k e r n e l −a r g s) {
:
e x t e r n _ _ s h a r e d _ _ f l o a t A [] ;
:
}
i n t main () {
: k e r n e l <<<dimGrid , dimBlock , s i z e o f (f l o a t)∗BLOCKSIZE>>>(k e r n e l −a r g s) ;
:
}

Next, we study how threads within a thread block synchronize their accesses
to the shared memory for thread collaboration. The threads in a thread block can
synchronize via the __syncthreads() function, which provides a barrier for
all of the threads in a thread block. Unless all the threads in a thread block finish
executing the code preceding the __syncthreads(), the execution does not
proceed ahead. This concept is illustrated by Fig. 8. More on __syncthreads()
function appears in section “CUDA Optimizations” where we discuss shared mem-
ory optimization for algorithms that re-use the data (matrix-matrix multiplication
for instance).

Active Learning Exercise 9 – Declare a BLOCKSIZE sized shared memory
variable called mask inside of a CUDA kernel. Outline the methodology for
allocating shared memory space for the shared variable, mask.

Active Learning Exercise 10 – In the foregoing section, we mentioned a
method of allocating multiple shared memory variables inside a CUDA kernel. The

214 V. K. Pallipuram and J. Gao

Fig. 8 Threads 0 to t inside a thread block synchronizing via the __syncthreads() function.
All of the preceding statements before the __syncthreads() statement must be executed by
all the threads in a thread block

methodology is as follows: (a) Specify the overall shared memory size in bytes
in the execution configuration. This step is similar to the dynamic shared memory
allocation method. (b) Declare a single extern __shared__ variable in the
CUDA kernel. (c) Using the individual shared variable sizes as offsets, access the
appropriate base addresses using the shared variable declared in Step b. Employ the
outlined methodology to reserve a shared memory space for three variables: float
A (k elements), float B (l elements), and float C (m elements).

In addition to shared memory, there are other mechanisms that enable threads
to communicate with each other. The preceding discussion examines how threads
within a block synchronize using the shared memory and __synchthreads()
function. The threads within a warp can also synchronize and/or communicate via
warp vote functions and warp shuffle functions. As readers may recall, a warp is a
group of 32 concurrent threads.

The vote functions allow active threads within a warp to perform reduce-and-
broadcast operation. The active threads within a warp are all threads that are in the
intended path of warp execution. The threads that are not in this path are disabled
(inactive). The vote functions allow active threads to compare an input integer from
each participating thread to zero. The result of comparison is then broadcast to all
of the participating threads in the warp. The warp voting functions are as follows.

• __all(int input): All participating threads compare input with zero.
The function returns a non-zero value if and only if all active threads evaluate
the input as non-zero.

The Realm of Graphical Processing Unit (GPU) Computing 215

• __any(int input): The function is similar to __any(input), however
the function returns a non-zero value if and only if any one of the active threads
evaluates the input as non-zero.

• __ballot(int input): The function compares the input to zero on all
active threads and returns an integer whose Nth bit is set when the Nth thread of
the warp evaluates the input as non-zero.

The shuffle functions (__shfl()) allow all active threads within a warp to
exchange data while avoiding shared memory all together. At a time, threads
exchange 4 bytes of data; exchanges of 8 byte data is performed by calling shuffle
functions multiple times. The exchanges are performed with respect to a thread’s
lane ID, which is an integer number from 0 to warpSize − 1. Some of the shuffle
functions are as follows:

• __shfl(int var, int srcLane,int width=warpSize): This fun-
ction allows an active thread to look up the value of variable var in the source
thread whose ID is given by srcLane. If the width is less than warpSize
then each subsection of the warp acts as a separate entity with starting lane ID
of 0. If srcLane is outside the [0 : width − 1], then the function calculates the
source as srcLane%width.

• __shfl_up(int var, unsigned int delta, int width=warp
Size): The function calculates the lane ID of the source thread by subtracting
delta from the current thread’s lane ID and returns the value var held by the
source thread. If the width is less than warpSize then each subsection of
the warp acts as a separate entity with starting lane ID of 0. The source index
does not wrap around the value of width, therefore lower delta lanes are
unchanged.

• __shfl_down(int var,unsigned int delta,int width=warp
Size): This function is similar to __shfl_up() function, except that
__shfl_up() computes the source lane ID by adding delta to the current
thread’s lane ID. Similar to __shfl_up(), the function does not wrap around
for upper values of delta.

• __shfl_xor(int var,int laneMask,int width=warpSize):
This function calculates the source’s lane ID by performing bitwise-XOR of
the caller’s lane ID and laneMask. The value held by the resulting source is
returned into var. If width is less than warpSize, then each group of width
threads is able to access elements from earlier groups of threads. However, if a
group attempts to access later groups’ elements, then the function returns their
own value of the variable, var.

The warp vote and shuffle functions typically find their application when
programmers wish to perform reduction or scan operations. Note that our discussion
thus far comprised intra-block and intra-warp synchronizations. The synchroniza-
tion between two blocks can only be accomplished via global memory accesses,
which consumes significant amount of time. Programmers must pay attention to
the type of applications they are porting to the GPGPU devices – applications that

216 V. K. Pallipuram and J. Gao

involve significant memory accesses and frequent global memory synchronization
may perform better on the CPU host instead on the GPGPU device.

Constant Memory

The constant memory resides in the device memory and is cached. This memory
space is used for storing any constant values frequently accessed by the kernel
function, which would otherwise consume several clock-cycles if done via the
device global memory. The constant memory is also useful for passing immutable
arguments to the kernel function. The current GPGPU architectures provide L1 and
L2 caches for global memory, making the constant memory less lucrative. However,
constant memory can provide performance boost for earlier GPGPU architectures.
To declare constant memory variables inside a .cu file, programmers must declare
global variables with __constant__ prefix. For example,

__constant__ float pi=3.14159;
The host portion (CPU) is capable of changing a constant memory variable since

a constant variable is constant only with respect to the GPGPU device. The host
performs any changes to the constant memory via cudaMemcpyToSymbol()
function:

t e m p l a t e < c l a s s T> c u d a E r r o r _ t cudaMemcpyToSymbol (
c o n s t T & symbol , / / D e s t i n a t i o n a d d r e s s
c o n s t vo id &s r c , / / s o u r c e a d d r e s s
s i z e _ t count , / / t h e number o f b y t e s t o copy
s i z e _ t o f f s e t , / / O f f s e t from t h e s t a r t o f symbol
enum cudaMemcpyKind k ind) ; / / k ind i s cudaMemcpyHostToDevice

Active Learning Exercise 11 – Consider a host variable h_Cosine, a one-
dimensional vector of constant size, Bins, initialized with cosine function values
at Bins number of angles between 0 and 2π . Declare a constant memory variable
d_Cosine of a fixed size equal to Bins. Perform a host-to-device copy from
h_Cosine to d_Cosine.

Global Memory

In section “CUDA Program Structure”, we explored how to manage the device
global memory using cudaMalloc and cudaMemcpy functions. In this section,
we study these functions in more depth. The device global memory is easily the
most important unit with respect to the CUDA architecture. It is the largest memory
unit where all (or at least, most) of the data for GPGPU processing is stored.
Because this memory unit is located in the off-chip RAM, frequent accesses to the
device global memory constitutes one of the major performance limiting factors
in GPGPU computing. As discussed before, the CPU host and GPGPU device
memories are usually disjoint. The host portion of a CUDA program explicitly

The Realm of Graphical Processing Unit (GPU) Computing 217

allocates the device global memory for device variables. Throughout the program,
the host portion communicates with the GPGPU device by copying data to-and-
from the device global memory. In what follows, we discuss CUDA functions that
enable programmers to allocate the device memory variables and perform host-
device communications.

C programmers are already aware of the procedure for allocating and deallocat-
ing memory regions using the malloc() and free() functions, respectively. The
CUDA programming model provides simple C extensions to facilitate device global
memory management using the cudaMalloc() and cudaFree() functions.
The syntaxes appear under.

/ / cudaMal loc : h o s t p o r t i o n a l l o c a t e s d e v i c e g l o b a l memory f o r d e v i c e v a r i a b l e s
c u d a E r r o r _ t cudaMal loc (
vo id ∗∗ devP t r , / / Host p o i n t e r a d d r e s s t h a t w i l l s t o r e t h e
/ / a l l o c a t e d d e v i c e memory s a d d r e s s
s i z e _ t s i z e) / / s i z e number o f b y t e s t o be a l l o c a t e d i n d e v i c e memory

/ / c u d a F r e e : h o s t p o r t i o n ‘ f r e e s ’ t h e d e v i c e g l o b a l memory
c u d a E r r o r _ t c u d a F r e e (vo id ∗ d e v P t r) ;
/ / The h o s t p o i n t e r a d d r e s s s t o r i n g t h e a l l o c a t e d e v i c e memory ’ s
/ / a d d r e s s t o be f r e e d

The data transfer between the host portion of the code and device portion of the
code is performed via the cudaMemcpy() function as follows:

/ / cudaMemcpy : Data t r a n s f e r be tween t h e h o s t and GPGPU d e v i c e
cudaMemcpy (
vo id ∗ d s t _ p t r , / / d e s t i n a t i o n a d d r e s s
c o n s t vo id ∗ s r c , / / s o u r c e a d d r e s s
s i z e _ t count , / / number o f b y t e s t o be t r a n s f e r r e d
cudaMemcpyKind k ind) / / enum t y p e k ind where k ind can be
/ / cudaMemcpyHostToHost (0) , cudaMemcpyHostToDevice (1) ,
/ / cudaMemcpyDeviceToHost (2) , cudaMemcpyDeviceToDevice (3)

Readers are encouraged to exercise caution with de-referencing the device
pointers inside the host portion, which can prove fatal for the CUDA program.
Seasoned CUDA programmers avoid such mistakes by adding h_ prefix for the
host pointers and d_ prefix for the device pointers. Additionally, readers are strongly
encouraged to free the allocated device global memory pointers because the GPGPU
device does not have a smart operating system for garbage collection. A complete
reboot may be the only way to recover the lost device global memory.

CUDA Optimizations

The CUDA programming model is not known for straight-forward GPGPU appli-
cation development. A naïve and sloppy CUDA program may provide little to no
performance benefits at all! To develop an efficient CUDA application, program-
mers must be highly intimate with the device architecture to reap its complete
benefits. Fortunately, researchers have meticulously studied different applications
on GPGPU architectures to provide a generic set of strategies to perform GPGPU

218 V. K. Pallipuram and J. Gao

Fig. 9 A list of commonly used memory-level optimization strategies to alleviate host-device and
global memory traffic

program optimization. Although, the strategies may vary from one application
to another. In general, CUDA provides three primary optimization strategies
namely, Memory-level optimization, Execution Configuration-level optimization,
and Instruction-level optimization. In addition, CUDA also offers program structure
optimization via unified memory. In what follows, we discuss each of these
optimization strategies.

Memory-Level Optimization

While CUDA programming model provides several memory-level optimizations,
we discuss memory optimization strategies to alleviate common performance
bottlenecks arising due to host-device transfers and global memory traffic. These
memory-level optimization strategies are listed in Fig. 9.

Memory-level optimization: Host-device transfers – One memory optimization
strategy is to reduce the frequent transfers between the host and the device since the
host-to-device bandwidth is usually an order of magnitude lower than the device-
to-device bandwidth. It is highly beneficial to transfer all of the relevant data to the
device memory for processing (even if it requires multiple kernel calls) and later
transfer the data back to the host memory once all of the operations are finished.

The Realm of Graphical Processing Unit (GPU) Computing 219

Overlapping the kernel execution with data transfers using Zero-Copy can
further optimize the host-device bandwidth. In this technique, the data transfers are
performed implicitly as needed by the device kernel code. To enable Zero-Copy,
the GPGPU device should support the host-mapped memory. The CUDA program-
ming model provides cudaHostAlloc() and cudaFreeHost() functions
to allocate and free the paged host memory. The mapping of the paged host
memory into the address space of the device memory is performed by pass-
ing cudaHostAllocMapped parameter to cudaHostAlloc() function. The
GPGPU device kernel implicitly accesses this mapped memory via the device
pointer returned by the cudaHostGetDevicePointer() function. The func-
tions for managing the page mapped memory are as follows.

Listing 6 Functions for zero-copy between host and device.
c u d a E r r o r _ t c u d a H o s t A l l o c (
vo id ∗∗ p t r , / / Host p o i n t e r t o be paged
s i z e _ t s i z e , / / S i z e o f t h e paged memory i n b y t e s
u n s i g n e d i n t f l a g s) ; / / cudaHostAl locMapped f o r z e r o copy .

c u d a H o s t G e t D e v i c e P o i n t e r (
vo id ∗∗ d e v p t r , / / Device p o i n t e r f o r GPGPU t o a c c e s s t h e paged memory
vo id ∗ h o s t p t r , / / The h o s t p o i n t e r o f t h e paged memory
u n s i g n e d i n t f l a g s) ; / / f l a g s i s meant f o r any e x t e n s i o n s , z e r o f o r now

Listing 7 illustrates Zero-Copy between the CPU host and the GPGPU device.
The readers are also encouraged to read about cudaMemcpyAsync() [7] function
for asynchronous host-device data transfers.

Listing 7 Illustration of Zero-Copy between the CPU host and GPGPU device. The memory copy
is performed implicitly whenever the device accesses the host mapped memory via the device
pointer (d_nfire) returned by cudaHostGetDevicePointer() function.
i n t main () {
:
/ / h o s t v e c t o r t o be page mapped
c h a r ∗ h _ n f i r e ;
/ / d e v i c e p o i n t e r f o r t h e mapped memory
c h a r ∗ d _ n f i r e ;
c u d a A l l o c H o s t ((vo id ∗∗)& h _ n f i r e , s i z e o f (c h a r)∗ num_neurons , cudaHostAl locMapped)) ;
c u d a H o s t G e t D e v i c e P o i n t e r ((vo id ∗∗)& d _ n f i r e , (vo id ∗) h _ n f i r e , 0)) ;
:
k e r n e l <<dimGrid , dimBlock >>>(d _ n f i r e , num_neurons) ;
:
}

Memory-level optimization: Caching in L1 and L2 caches; and coalescing – The
more recent GPGPU devices (Compute Capability 2 and higher) offer caches for
global memory namely the L1 and L2 caches. For Compute Capability devices 2.x,
by using the nvcc compiler flag dlcm, programmers can enable either both L1
and L2 caches by default (-Xptxas dlcm=ca) or L2 cache alone (-Xptxas
dlcm=cg). A cache line is 128 bytes and is aligned with a 128-byte segment in the
device memory. If both L1 and L2 caches are enabled, then the memory accesses
are serviced via 128-byte transactions. If only L2 cache is enabled, then the memory
accesses are serviced via 32-byte transactions. If the request size is 8 bytes, then

220 V. K. Pallipuram and J. Gao

the 128-byte transaction is broken into two requests, one for each half-warp. If the
request size is 16 bytes, then the 128-byte transaction is broken into four requests,
one for each quarter warp (8 threads). Each memory request is broken into cache
line requests, which are serviced independently. The cache behavior for GPGPU
devices is similar to general-purpose processors. If there is a cache hit, the request
is served at the throughput of L1 or L2 cache. A cache miss results in a request that
is serviced at the device global memory throughput.

Compute Capability 3.x, 5.x, and 6.x devices usually allow global memory
caching in L2 cache alone. However some 3.5 and 3.7 devices allow programmers
to opt for the L1 cache as well. The L2 caching for Compute Capability devices 3.x
and above is similar to Compute Capability 2.x devices.

A progam optimally utilizes the global memory when the accesses lead to
as many cache hits as possible. In such a case, threads within a warp complete
memory accesses in fewer transactions. This optimized global memory access
pattern is generally called coalesced access. The term global memory coalescing
had significant importance to Compute Capability 1.x devices, where coalesced
access rules were highly stringent. However, with the introduction of caches in
recent GPGPU architectures, the term coalescing has become obscure. To achieve
global memory ‘coalescing’ in recent GPGPU architectures, programmers must
strive to write cache-friendly codes that perform aligned accesses. Similar to CPU
architectures, good programming practices lead to optimal GPGPU codes.

Active Learning Exercise 12 – Perform research on Compute Capability 1.x
devices; and write down the rules for coalesced global memory accesses.

Memory-level optimization: Software-prefetching using registers and shared
memory – The device global memory is an order of magnitude slower than registers
and shared memory. Programmers can use the register and shared memory space
for caching frequently used data from the device global memory. This technique is
referred to as software prefetching; avid assembly language programmers among
readers may already be aware of this technique.

Memory-level optimization: Shared memory to alleviate global memory traffic
– The judicious use of shared memory space to reduce the global memory traffic
is a highly important technique especially for algorithms that exploit data locality,
matrix-matrix multiplication and several image processing applications for instance.
Here, we discuss how the shared memory space can be used to enhance the global
memory throughput using matrix-matrix multiplication as a case study. Readers
should recall the concept of matrix-matrix multiplication: any two matrices Am×n

and Bn×p are multiplied to yield a matrix, Cm×p. Any element cij in matrix Cm×p

is obtained by computing the scalar product between the ith row of matrix A and
j th column of matrix B. Let us first consider a naïve matrix-matrix multiplication
and find out why it sub-optimally utilizes the global memory bandwidth. Listing 8
shows the naïve implementation that multiplies two matrices of equal dimensions
(width x width each).

Listing 8 A naïve implementation of matrix-matrix multiplication kernel.
1 . _ _ g l o b a l _ _ vo id
2 . m a t r i x m u l _ k e r n e l (f l o a t ∗d_A , f l o a t ∗d_B , f l o a t ∗d_C , i n t wid th) {
3 . i n t row , co l , k =0;

The Realm of Graphical Processing Unit (GPU) Computing 221

4 . f l o a t temp =0;
/ / t h r e a d a c c e s s e s g l o b a l row
5 . row = t h r e a d I d x . x + b l o c k I d x . x∗blockDim . x ;
/ / t h r e a d a c c e s s e s g l o b a l c o l
6 . c o l = t h r e a d I d x . y + b l o c k I d x . y∗blockDim . y ;
7 . i f (row < wid th && c o l < wid th) { / / o u t o f bound t h r e a d s must n o t work
8 . temp =0;
9 . f o r (k =0; k< wid th ; k ++){
1 0 . temp+=d_A [row∗ wid th + k]∗ d_B [k∗ wid th + c o l] ;
1 1 . }
1 2 . d_C [row∗ wid th + c o l]= temp ;
1 3 . }
1 4 . }

A careful inspection of the kernel function in Listing 8 reveals that the per-
formance bottleneck is in lines 9 and 10. Note that in each iteration of the
for loop in Line 9, a thread performs two global memory loads (loads ele-
ments d_A[row*width +k] and d_B[k*width + col], respectively) and
performs two floating-point operations (multiplies the two loaded elements and
adds the product with the temp variable). Let us define the term computation-
to-global memory access (CGMA) ratio, which is the ratio of the total number of
computations to the total number of global memory accesses. The CGMA ratio
is often used to characterize a GPGPU kernel as a computation-bound kernel or a
communication-bound kernel. In our example of naïve matrix-matrix multiplication,
the CGMA ratio is (2 floating-point operations per 2 floating-point accesses) equal
to 1. This ratio is too small to reap the maximum benefits of a throughput-oriented
architecture. For instance, if the GPGPU device memory has a bandwidth of
200 GB/s, then the kernel in Listing 8 performs computations at the rate of 50 giga-
floating point operations per second (GFLOPS). This computation throughput does
not do justice to modern day GPGPU devices with peak performance as high as 10
TFLOPS for single-precision.

It is clear from the above example that the CGMA ratio for matrix-matrix multi-
plication needs to improve, possibly by boosting the global memory bandwidth. In
what follows, we discuss ‘tiled’ matrix-matrix multiplication using shared memory,
which enables us to improve the global memory bandwidth for this operation. Prior
to delving into the GPGPU implementation, let us investigate the concept of ‘tiling’.
To perform matrix-matrix multiplication, the matrices can be broken into smaller
tiles that are multiplied together to yield partial results. The partial results from
pertinent tile-multiplication are then added to obtain the final result.

For example, consider multiplication of two matrices, M4×4 and N4×4; the result
is stored in the matrix, P4×4 (see Fig. 10). The matrix P can be broken into four tiles
where tile-1 comprises elements P0,0, P0,1, P1,0, and P1,1; tile-2 comprises elements
P0,2, P0,3, P1,2, and P1,3, and so on. Consider the evaluation of tile-1 elements;
Fig. 10 shows the tile-1 elements of matrix P enclosed in the square box. The tile-1
elements are evaluated in two steps: In the first step, the curved tiles over matrices
M and N (see Fig. 10) are multiplied together to yield the partial result for tile-1
elements P0,0 through P1,1 (first two terms in the right hand side of the equations in
Fig. 10). In the second step, the tile over matrix M moves to the right (see Fig. 11)
and the tile over matrix N moves down (see Fig. 11) to compute the next set of

222 V. K. Pallipuram and J. Gao

Fig. 10 The tiles in matrices M and N (curved tiles) multiply to yield the partial results for the tile
in matrix P (highlighted in square box)

Fig. 11 The tiles in matrices M and N (curved tiles) multiply to yield the partial results for the tile
in matrix P (square box)

The Realm of Graphical Processing Unit (GPU) Computing 223

Fig. 12 A general depiction of matrix-matrix multiplication on a multi-threaded architecture with
shared memory

partial results (last two terms in the right hand side of the equations in Fig. 11). The
partial results from the above two steps are added to produce the complete result
for tile-1 elements. This tile movement is in agreement with the concept of matrix-
matrix multiplication where we compute the scalar product between the rows of
the first matrix (M in this case) and the columns of the second matrix (N in this
case). The evaluation of the other tiles is similar to this tile-1 example. Readers are
encouraged to compute the results for the remaining tiles for practice.

In general, how does tiling help with parallelization of matrix-matrix multipli-
cation? To obtain an answer to this question, consider a multi-threaded computing
architecture (see Fig. 12) that stores the operand matrices in the off-chip memory,
which resides far away from the computing architecture. Consequently, accesses to
this off-chip memory is slow. Let us assume that this architecture is also equipped
with on-chip shared memory that provides faster access versus the off-chip memory.
The architecture contains four processing elements (PEs) that share the on-chip
memory. For the foregoing example of multiplying matrices M4×4 and N4×4,
envision the following scenario. Each one of the four PEs loads a curved tile
element from matrices M and N into the shared memory as depicted in Fig. 12
(top). PE1 loads M0,0 and N0,0; PE2 loads M0,1 and N0,1; and so on. After this
collaborative loading, the shared memory now contains the curved tiles from M and
N for the computation of the first set of partial result. Each PE computes its partial
result via shared memory look-up: PE1 computes the partial result for P0,0, PE2
computes the partial result for P0,1 and so on. Similarly, the PEs cooperatively load
the next set of curved tile elements (see Fig. 12 bottom) to evaluate the second set
of partial result. This collaborative loading has clearly reduced the number of trips
to the farther, off-chip memory, thereby providing tremendous benefits. Do we have
an architecture that facilitates this tiling operation? GPGPU devices are great fit!

224 V. K. Pallipuram and J. Gao

Listing 9 The shared memory implementation of matrix-matrix multiplication, also called as tiled
matrix-matrix multiplication.
0 . # d e f i n e TILEWIDTH 16
1 . _ _ g l o b a l _ _ vo id
2 . m a t r i x m u l _ k e r n e l (f l o a t ∗d_A , f l o a t ∗d_B , f l o a t ∗d_C , i n t wid th) {
3 . _ _ s h a r e d _ _ f l o a t Ashared [TILEWIDTH] [TILEWIDTH] ;
/ / s h a r e d memory t o l o a d s h a r e d t i l e from m a t r i x A
4 . _ _ s h a r e d _ _ f l o a t Bshared [TILEWIDTH] [TILEWIDTH] ;
/ / s h a r e d memory t o l o a d s h a r e d t i l e from m a t r i x B
5 . i n t bx= b l o c k I d x . x , by= b l o c k I d x . y ;
6 . i n t t x = t h r e a d I d x . x , t y = t h r e a d I d x . y ;
7 . i n t row=bx∗TILEWIDTH+ t x ;
8 . i n t c o l =by∗TILEWIDTH+ t y ;
9 . f l o a t temp =0;
1 0 . / / Loop ove r t h e t i l e s Ashared and Bshared t o compute an e l e m e n t i n d_C
1 1 . f o r (i n t i =0 ; i < wid th / TILEWIDTH ; i ++){
/ / t h r e a d s c o l l a b o r a t i v e l y l o a d Ashared
1 2 . Ashared [t x] [t y] = d_A [row∗ wid th + i ∗TILEWIDTH + t y] ;
/ / t h r e a d s c o l l a b o r a t i v e l y l o a d Bshared
1 3 . Bshared [t x] [t y] = d_B [(i ∗TILEWIDTH+ t x)∗ wid th + c o l] ;
1 4 . _ _ s y n c t h r e a d s () ; / / w a i t f o r t h r e a d s i n t t h e b l o c k t o f i n i s h
1 5 . / / Loop ove r t h e t i l e s and pe r fo rm c o m p u t a t i o n s
1 6 . f o r (i n t k =0; k<TILEWIDTH ; k ++){
1 7 . temp+= Ashared [t x] [k]∗ Bshared [k] [t y] ;
1 8 . }
1 9 . _ _ s y n c t h r e a d s () ; / / w a i t f o r t h r e a d s i n t h e b l o c k t o f i n i s h
2 0 . }
2 1 . d_C [row∗ wid th + c o l] = temp ;
2 2 . }

Listing 9 provides the kernel for the shared memory implementation. In List-
ing 9, Line 0 sets the width of the tile via #define TILEWIDTH 16. For
simplicity, we assume that the program creates thread blocks of dimensions,
TILEWIDTH*TILEWIDTH. Lines 3 and 4 statically declare two shared variables,
Ashared and Bshared. Because these variables reside in the shared memory
space, all the threads in a thread block will have access to these variables. Lines
5 and 6 store the thread block IDs (in x and y dimensions) and thread IDs (in x
and y dimensions) in variables bx, by, tx, and ty, respectively. In Lines 7 and 8,
each thread calculates the global row (row) and global column (col) indices of the
target element in d_C.

Figure 13 shows the conceptual representation of calculating the matrix indices
for tiled matrix multiplication. A for loop over counter, i in Line 11 performs tile
traversal over the matrices. Because the matrix d_A is traversed horizontally, the tile
traversal requires an offset of i*TILEWIDTH in the horizontal direction for each
iteration of the counter, i. A single thread with local ID (tx, ty) then accesses the
element (row, i*TILEWIDTH + ty) in matrix d_A and loads it in the shared
array Ashared[tx][ty] (Line 12). Similarly, the matrix d_B is traversed in
vertical direction; therefore the tile traversal requires an offset of i*TILEWIDTH
in vertical direction for each iteration of counter, i. Correspondingly, a thread with
local ID (tx, ty) accesses the element (i*TILEWIDTH + tx, col) in matrix
d_B and loads it in shared array, Bshared[tx][ty] (Line 13). Note that the
threads in a thread block must wait for all the other participant threads to load their
respective elements. This synchronization is provided by __syncthreads()
in Line 14. After loading the shared arrays with relevant matrix elements, each

The Realm of Graphical Processing Unit (GPU) Computing 225

Fig. 13 Conceptual representation of index calculation for tiled matrix multiplication

thread evaluates its partial result in Lines 16 through 18. Line 19 provides the
synchronization such that all the threads in a thread block finish their respective
computations. At the end of the for loop (Line 20), each thread loads the complete
result of its respective element (row,col) in matrix, d_C (Line 21).

Readers should carefully observe that each thread performs exactly two global
loads, one for each matrix in lines 12 and 13. After these global loads, each
thread performs TILEWIDTH multiplications and TILEWIDTH additions (i.e.,
TILEWIDTHx2 floating-point operations) in lines 16–18. Therefore, this kernel
performs TILEWIDTH floating-point computations for every floating-point global
memory access, thereby providing TILEWIDTH times boost to the CGMA ratio
(recall that CGMA ratio for the naïve implementation is 1). On a GPGPU device
with 200 GB/s global memory bandwidth, the kernel provides a performance of

200 GB/s
4B per f loating−point

× (T ILEWIDT H = 16) = 800 GFLOPS!
Active Learning Exercise 13 – A kernel performs 100 floating-point operations

for every 10 floating-point global memory accesses. What is the CGMA ratio for this
kernel? Assuming that the GPGPU device has a global memory bandwidth equal to
150 GB/s, what is the kernel performance in GFLOPS?

226 V. K. Pallipuram and J. Gao

Fig. 14 This illustration shows examples of two stride accesses, s= 1 (top) and s= 2 (bottom).
For the stride access, s= 1, each thread in a warp accesses a unique bank. For stride access, s= 2,
there is two-way bank conflict between the first half-warp and the second half-warp

With our previous discussion on the use of shared memory to alleviate the global
memory congestion, it is clear that judicious use of the shared memory can provide
substantial performance boost for CUDA programs. However, programmers should
be aware of a potential shared memory performance bottleneck called the bank
conflict. In GPGPU devices, the shared memory is divided into 32 banks such that
successive 32-bit words are stored in successive banks. A bank conflict arises when
multiple threads within a warp access the same bank. Whenever a bank conflict
arises, the accesses to the shared memory bank are serialized. An n-way bank
conflict arises when n threads in a warp access the same bank – such accesses are
completed in n serial steps. If two threads access the addresses within the same 32-
bit word, then the word is broadcast to the threads, thereby avoiding a bank conflict.
Similarly, a bank conflict is avoided when all the threads in a warp or a half-warp
access the same word. In such a case, the word is broadcast to the entire warp or
the half-warp. Bank conflicts usually arise when threads access the shared memory
with some stride, s. For example:

extern __shared__ float Ashared[];
data=Ashared[Base+s*thread_id];

Figure 14 shows examples of two stride accesses, s= 1 and s= 2. As shown in
the same figure, the shared memory is divided into 32 banks with successive words
stored in successive banks. The bank-0 stores words 0 and 32, bank-1 stores, 1 and
33, and so on. For stride s= 1, each thread (0 through 31) in a warp accesses a unique
bank (0 through 31), therefore there is no bank conflict in this case. However, for
stride s= 2, the threads in the first half-warp (0–15) have a two-way bank conflict
with the threads in the second half-warp (16–31). For example, the thread with ID
equal to 0 (belonging to the first half-warp) accesses a word at offset 0 from the
base address (stored in bank-0) and the thread with ID equal to 16 (belonging to the
second half-warp) accesses a word at offset 32 from the base address (also stored in
bank-0), leading to a two-way bank conflict.

The Realm of Graphical Processing Unit (GPU) Computing 227

Active Learning Exercise 14 – This activity summarizes our understanding of
the CGMA ratio and shared memory bank conflict. Assume that the kernel given in
Listing 10 is executed on a GPGPU device with global memory bandwidth equal to
200 GB/s. Calculate the CGMA ratio and the performance achieved by this kernel
in GFLOPS. Notice the use of two shared memory variables, fire and fired. Is
there a potential for bank conflict(s)? Why or why not?

Listing 10 Kernel code for active learning Exercise 14.
1 . _ _ g l o b a l _ _ vo id k e r n e l (f l o a t ∗ l e v e l 1 _ I , f l o a t ∗ l e v e l 1 _ v ,
f l o a t ∗ l e v e l 1 _ u , mytype ∗ L 1 _ f i r i n g s , mytype2 ∗ myf i re , i n t Ne) {
2 . e x t e r n _ _ s h a r e d _ _ b o o l f i r e [] ;
3 . _ _ s h a r e d _ _ b o o l f i r e d ;
4 . i n t k = t h r e a d I d x . x + b l o c k I d x . x∗blockDim . x ;
5 . i n t j = t h r e a d I d x . x ;
6 . a u t o f l o a t l e v e l 1 v , l e v e l 1 u ;
7 . i f (j ==0)
8 . f i r e d =1;
9 . _ _ s y n c t h r e a d s () ;
1 0 . i f (k<Ne) {
1 1 . l e v e l 1 v = l e v e l 1 _ v [k] ;
1 2 . l e v e l 1 u = l e v e l 1 _ u [k] ;
1 3 . i f (l e v e l 1 v >30) {
1 4 . L 1 _ f i r i n g s [k] = 0 ;
1 5 . l e v e l 1 v =−55;
1 6 . l e v e l 1 u = l e v e l 1 u +4;
1 7 . }
1 8 . l e v e l 1 v = l e v e l 1 v + 0 . 5∗ (l e v e l 1 v ∗ (0 . 0 4∗ l e v e l 1 v +5)

+140− l e v e l 1 u + l e v e l 1 _ I [k]) ;
1 9 . l e v e l 1 u = l e v e l 1 u + 0 . 0 2 ∗ (0 . 2 ∗ (l e v e l 1 v)− l e v e l 1 u) ;
2 0 . l e v e l 1 _ v [k] = l e v e l 1 v ; l e v e l 1 _ u [k] = l e v e l 1 u ;
2 1 . f i r e [j] = L 1 _ f i r i n g s [k] ;
2 2 . f i r e d &= f i r e [j] ;
2 3 . _ _ s y n c t h r e a d s () ;
2 4 . }
2 5 . }

Execution Configuration-Level Optimization

This level of optimization targets the parameters appearing in the kernel execution
configuration (<<< >>>) and serves two primary performance objectives: (1)
maximize the multiprocessor occupancy and (2) enable concurrent execution via
streams. In what follows, we discuss these two performance objectives.

Maximizing multiprocessor occupancy – As discussed in section “CUDA Mem-
ory Organization”, on-chip, fast memories such as registers and shared memory
can provide tremendous performance boost. However, the catch lies in their limited
quantity, which is dependent on the device’s Compute Capability. The limited
number of registers and shared memory limits the number of thread blocks (and
therefore, the number of warps) that can reside on a streaming multiprocessor
(SM), affecting the multiprocessor occupancy. Readers should recall that the
multiprocessor occupancy is the ratio of the total number of warps residing on an
SM to the maximum number of warps that can reside on an SM. While a high
multiprocessor occupancy does not always imply high performance, nonetheless it

228 V. K. Pallipuram and J. Gao

is a good measure of concurrency. Therefore, CUDA programmers must strive to
create grids and thread blocks for kernels such that the multiprocessor occupancy
is generally high. Although this process may involve some experimentation with
multiple execution configurations.

How can I achieve high multiprocessor occupancy, whilst not spending time
performing meticulous calculations as shown in Eqs. 6, 7, 8, 9, 10, and 11? NVIDIA
has a wonderful and simple tool called the CUDA occupancy calculator [7] to
perform all of this mathematical work! The CUDA occupancy calculator allows
users to select the Compute Capability and shared memory configuration for
their GPGPU devices. Once these device configurations are selected, the CUDA
occupancy calculator automatically fills the device related constants such as active
threads per SM, active warps per SM, etc. The programmer then provides kernel
information including the number of registers per thread (identified using the
Xptxas nvcc switch discussed in section “CUDA Memory Organization”),
the amount of shared memory per block, and the number of threads per block
information to the occupancy calculator. After receiving the above pertinent kernel
information, the occupancy calculator provides the multiprocessor occupancy value
(in percentage) and graphically displays the impact of varying block size, shared
memory usage per block, and register count per thread on the multiprocessor
occupancy.

For the CUDA kernel in Listing 10, let us assume that the target architecture
belongs to Compute Capability 3.5 and the shared memory configuration is 16 KB
(48 KB for L1 cache). The nvcc compilation with Xptxas option for this kernel
yields 20 registers per thread. If we assume a thread block size equal to 192 and
shared memory per block equal to 192 bytes, then CUDA occupancy calculator
provides us with multiprocessor occupancy value equal to 94%. Figure 15 shows
the impact of varying block size, shared memory usage, and register count on
occupancy, as given by the occupancy calculator. These figures suggest that for the
thread block size equal to 256, we can expect the occupancy to reach 100%.

Readers are also encouraged to explore CUDA APIs such as
cudaOccupancyMaxActiveBlocksPerMultiprocessor [7] for cal-

culating the multiprocessor occupancy for CUDA kernels.
Active Learning Exercise 15 – Analyze the multiprocessor occupancy for the

tiled matrix-matrix multiplication example. Assuming Compute Capability devices
3 and 5, use the CUDA occupancy calculator to obtain the multiprocessor occupancy
values for thread block sizes: 128, 256, 512, and 1024.

Concurrent execution using streams – Readers should recall that frequent host-
device transfers are significant bottlenecks that appear in CUDA programs. The
CUDA streams provide a way to hide the data transfer latency by overlapping
the memory transfers with kernel invocations. A stream consists of a sequence
of instructions that execute in-order; these sequences include host-device transfers,
memory allocations, and kernel invocations. For devices with Compute Capability
2.0 and above, streams enable programmers to perform device-level concurrency
– while all of the instruction sequences within a stream execute in-order, multiple
streams may have instruction sequences executing out-of-order. Therefore, instruc-

The Realm of Graphical Processing Unit (GPU) Computing 229

Fig. 15 Impact of thread block size, shared memory per block usage, and register count per thread
on multiprocessor occupancy. (a) Impact of block size on occupancy. (b) Impact of shared memory
on occupancy. (c) Impact of register count on occupancy

tion sequences from different streams can be issued concurrently. For instance, when
a single stream performs kernel invocation, the other stream completes any data
transfer operation. It should be noted that relative execution order of instruction
sequences across streams is unknown.

CUDA streams are of type cudaStream_t type and generally follow the
coding sequence given under:

• Stream creation: : cudaStreamCreate() function call creates a stream:
cudaError_t cudaStreamCreate(cudaStream_t *stream);

• Stream use in asynchronous data transfer: A stream can also perform
asynchronous data transfers using cudaMemcpyAsync() function as follows:

230 V. K. Pallipuram and J. Gao

cudaError_t cudaMemcpyAsync(void *dst, const void *src, size_

t count, enum cudaMemcpyKind kind, cudaStream_t stream);

It should be noted that the host memory should be pinned for the above usage.
• Stream use in execution configuration: A kernel invocation is assigned to a

stream by specifying the stream in execution configuration as under:
kernel <<<dimGrid,dimBlock,SharedMemory,stream>>>

(<kernel-args>);

• Stream Destruction: After use, the stream is destroyed using the
cudaStreamDestroy() function. This function is blocking and only returns
when all of the instruction sequences within a stream are completed.

Listing 11 provides a self-explaining code snippet elucidating the above
described sequence.

Listing 11 Illustration of two concurrent streams following the sequences: stream creation,
asynchronous data transfer, kernel invocation, and stream destruction.
/ / C r e a t i n g two s t r e a m s
1 . i n t s i z e =1024; / / 1 0 2 4 d a t a i t e m s p e r s t r e a m
2 . :
3 . c u d a S t r e a m _ t s t r e a m [2] ;
4 . / / A l l o c a t e h o s t and d e v i c e memory
5 . f l o a t ∗ h _ d a t a [2] , ∗ d _ d a t a [2] ;
/ / one hos t −d e v i c e p a i r f o r each s t r e a m
6 . f o r (i =0 ; i <2 ; i ++) {
7 . cudaMal locHos t ((vo id ∗∗)& h _ d a t a [i] , s i z e o f (f l o a t)∗ s i z e) ;
8 . cudaMal loc ((vo id ∗∗)& d _ d a t a [i] , s i z e o f (f l o a t)∗ s i z e) ;
9 . }
1 0 . / / Per fo rm i n i t i a l i z a t i o n
1 1 . :
1 2 . / / Fol low t h e s t r e a m s e q u e n c e s e x c e p t f o r d e s t r u c t i o n
1 3 . f o r (i =0 ; i <2 ; i ++) {
1 4 . c u d a S t r e a m C r e a t e (& s t r e a m [i]) ; / / c r e a t e s t r e a m i
/ / i t h s t r e a m i n i t i a l i z e s async . hos t −to−d e v i c e t r a n s f e r
1 5 . cudaMemcpyAsync (d _ d a t a [i] , h _ d a t a [i] , s i z e o f (f l o a t)∗ s i z e ,

cudaMemcpyHostToDevice , s t r e a m [i]) ;
/ / i t h s t r e a m i n v o k e s t h e k e r n e l
1 6 . k e r n e l <<<dimGrid , dimBlock , sha red , s t r e a m [i] > > >(d _ d a t a [i] , s i z e) ;
1 7 . cudaMemcpyAsync (h _ d a t a [i] , d _ d a t a [i] , s i z e o f (f l o a t)∗ s i z e ,

cudaMemcpyDeviceToHost , s t r e a m [i]) ;
/ / i t h s t r e a m i n i t i a l i z e s async . dev ice −to−h o s t t r a n s f e r
1 8 . }
1 9 . / / S t r eams s y n c h r o n i z e . B locks u n t i l s t r e a m s f i n i s h
2 0 . c u d a S t r e a m D e s t r o y (s t r e a m [0]) ;
2 1 . c u d a S t r e a m D e s t r o y (s t r e a m [1]) ;
2 2 . / / f r e e p o i n t e r s
2 3 . }

Active Learning Exercise 16 – Write a CUDA program that creates n streams to
perform vector-vector addition. Hint: The ith stream operates on the data starting
from &d_A[i*data_per_stream] and &d_B[i*data_per_stream].

Instruction-Level Optimization

This level of optimization targets the optimization of arithmetic instructions and
branching statements in a CUDA kernel. The arithmetic operations can be easily

The Realm of Graphical Processing Unit (GPU) Computing 231

Fig. 16 An illustration of participating threads (highlighted in black) within hypothetical warps
of size equal to 8 threads. In each iteration of the for loop, there is at least one divergent warp

optimized using fast math [1] functions. The branching statement optimization,
however, requires meticulous handling of statements to avoid an artifact known as
divergent warps. Readers should recall that all of the threads within a warp execute
the same instruction. A warp is divergent if the threads inside a warp follow different
execution paths (for example, first half-warp satisfies the if statement while the
second half-warp satisfies the else statement). In such a case, divergent paths
are serialized, which results in reduced performance. To illustrate this concept, we
discuss an important parallel pattern called reduction, which derives a single value
by applying an operation (addition, for instance) to all of the elements in an array.
Listing 12 provides the code snippet of a reduction kernel (Variant 1), which is prone
to producing divergent warps. Readers are encouraged to verify that the code will
produce the correct reduction result.

Listing 12 Reduction kernel snippet (Variant 1) that produces divergent warps.
1 . _ _ s h a r e d _ _ f l o a t p a r t i a l S u m [BLOCKSIZE] ;
2 . :
3 . i n t t = t h r e a d I d x . x ;
4 . f o r (i n t s t r i d e = 1 ; s t r i d e < blockDim . x ; s t r i d e ∗=2){
5 . _ _ s y n c t h r e a d s () ;
6 . i f (t %(2∗ s t r i d e)==0)
7 . p a r t i a l S u m [t]+= p a r t i a l S u m [t + s t r i d e] ;
8 . }

To analyze this example, let us assume that our hypothetical GPGPU device
supports 8 threads per warp. Further assume that reduction is performed using
blocks of size 32 threads. Figure 16 illustrates the participating threads (highlighted
in black) within a warp in each iteration of the for loop (stride varies from 1 to
16). As seen in the same figure, there is at least one divergent warp in each iteration
of the for loop. Specifically, strides 1, 2, and 4 include four divergent warps each;
whereas strides 8 and 16 include two and one divergent warps, respectively. The
entire execution of the for loop leads to 4+4+4+2+1 = 15 divergent warps. As
discussed before, divergent warps are serialized, thereby reducing the performance.

232 V. K. Pallipuram and J. Gao

Fig. 17 Illustration of participating threads (highlighted in black) within hypothetical warps of
size equal to 8 threads. In first two iterations, none of the warps are divergent. Divergent warps
(one each) occur in last three iterations

Listing 13 provides the code snippet of a reduction kernel (Variant 2 that reduces
the number of divergent warps). Figure 17 illustrates the participating threads within
a warp in each iteration of the for loop (stride varies from 16 to 1).

Listing 13 Reduction kernel snippet (Variant 2) that reduces the number of divergent warps.
1 . _ _ s h a r e d _ _ f l o a t p a r t i a l S u m [BLOCKSIZE] ;
2 . i n t t = t h r e a d I d x . x ;
3 . f o r (i n t s t r i d e = blockDim . x / 2 ; s t r i d e >= 1 ; s t r i d e / = 2) {
4 . _ _ s y n c t h r e a d s () ;
5 . i f (t < s t r i d e)
6 . p a r t i a l S u m [t]+= p a r t i a l S u m [t + s t r i d e] ;
7 . }

As seen in Fig. 17, none of the 8-thread warps are divergent in the first two
iterations of the for loop. The divergent warps (one each) occur only in the last
three iterations, thereby leading to a total of three divergent warps (versus 15
divergent warps in Variant 1). Therefore, Variant 2 provides higher performance
versus Variant 1.

Active Learning Exercise 17 – Assume that there are 256 threads per block;
calculate the total number of divergent warps for Variant 1 and Variant 2 of the
reduction kernel. Is the scenario any better for 512 threads per block?

Program Structure Optimization: Unified Memory

In our programs so far, we performed explicit (with the exception of Zero-
Copy) data transfers between the CPU host and GPGPU device via cudaMemcpy
function. Needless to say, this process may be very lengthy and highly error-prone
for large programs. Unified memory is a nice feature introduced in CUDA 6.0 that
enables programmers to perform implicit data transfers between the host and the
device. Unified memory introduces the concept of managed memory wherein the
memory is allocated on both the host and the device under the supervision of the

The Realm of Graphical Processing Unit (GPU) Computing 233

Fig. 18 Difference in ‘developer’s view’ between explicit data transfers and unified memory data
transfers

device driver. The device driver ensures that these two sets of data remain coherent
throughout the program execution. In essence, the user just maintains a single
pointer for both the CPU host and GPGPU device. A data transfer is implicitly
triggered before the kernel launch and another one immediately after the kernel
termination. Readers should note that the unified memory operation is similar to
explicit host-device transfers, with the exception that the device driver automatically
manages data transfers in unified memory. Unified memory alleviates programmers
with the burden of meticulous host-device transfer management, allowing them to
write shorter codes and focus more on the program logic. Unified memory should
not be confused with Zero-Copy where the data transfer is triggered whenever the
device kernel accesses the data. Figure 18 summarizes the difference in ‘developer’s
view’ between an explicit data transfer (shown on the left) and unified memory data
transfer (shown on the right).

Programmers can allocate managed memory in two ways:

1. Dynamically via the cudaMallocManaged() function call.
2. Statically by declaring global variable with the prefix: __managed__.

The syntax for cudaMallocManaged() is as follows.

t e m p l a t e < c l a s s T> cudaMallocManaged (
T ∗∗ d e v _ p t r , / / a d d r e s s o f t h e memory p o i n t e r

s i z e _ t b y t e s , / / s i z e i n b y t e s o f t h e r e q u i r e d memory
u n s i g n e d f l a g s) / / E i t h e r cudaMemAttachGlobal f o r a l l k e r n e l s t o a c c e s s o r

/ / cudaMemAttachHost t o make t h e v a r i a b l e l o c a l t o d e c l a r i n g h o s t
/ / and k e r n e l s invoked by t h e d e c l a r i n g h o s t .

Listing 14 illustrates unified memory using vector-vector addition as example.
While the kernel construction is the same as Listing 1, notice the changes in
the main() function. Using cudaMallocManaged(), lines 4–6 allocate the
space for variables a, b, and c on both the CPU host and GPGPU device. The

234 V. K. Pallipuram and J. Gao

host input is initialized in lines 8–10 and the device output is evaluated by the
kernel call in Line 12. Prior to accessing the modified values of the variables,
programmers must ensure that the kernel has terminated. This check is done via
cudaDeviceSynchronize() function call in Line 13. The variables a, b, and
c are freed via cudaFree() function call in lines 15–17.

Listing 14 Vector-vector addition code snippet illustrating unified memory.
1 . i n t main (i n t a rgc , c h a r ∗∗ a rgv) {
2 . i n t ∗a ,∗ b ,∗ c ;
3 . i n t v e c _ s i z e =1000 , i ;
4 . cudaMallocManaged (&a , v e c _ s i z e ∗ s i z e o f (i n t)) ;
5 . cudaMallocManaged (&b , v e c _ s i z e ∗ s i z e o f (i n t)) ;
6 . cudaMallocManaged (&c , v e c _ s i z e ∗ s i z e o f (i n t)) ;
7 . / / Host−p o r t i o n p r e p a r e s t h e d a t a
8 . f o r (i =0 ; i < v e c _ s i z e ; i ++) {
9 . a [i]= i ; b [i]= i ;
1 0 . }
1 1 . / / Run t h e GPU Ke r ne l
1 2 . gpu_ke rne l <<<1 , v e c _ s i z e >>>(a , b , c , v e c _ s i z e) ;
1 3 . c u d a D e v i c e S y n c h r o n i z e () ; / / Wait f o r t h e GPU t o f i n i s h e x e c u t i o n .
1 4 . / / F r e e p o i n t e r s
1 5 . c u d a F r e e (a) ;
1 6 . c u d a F r e e (b) ;
1 7 . c u d a F r e e (c) ;
1 8 . r e t u r n 0 ;
1 9 . }

The example in Listing 14 shows substantial simplification of the vector-vector
addition code structure using the unified memory concept. Although, programmers
must note that unified memory is not a performance optimization. Proficient CUDA
programmers with a command on explicit host-device transfers and Zero-Copy
optimization technique can achieve high-performance for their applications.

In this section, we discussed several optimization strategies that CUDA program-
mers can employ to achieve significant application performance. It is worth noting
that the choice of optimization varies across applications. While the techniques cov-
ered here are quite comprehensive, we have not fully exhausted the list of possible
strategies. For instance, dynamic parallelism allows a CUDA kernel to create child
kernels, thereby avoiding kernel synchronization in the host portion and any host-
device transfers. The high-performance computing (HPC) community continually
augments the optimization strategy list via exhaustive research efforts. Readers are
encouraged to stay abreast with scientific publications. Several applications share
‘parallelization logic’ that helps programmers avoid re-inventing the wheel.

Case Study: Image Convolution on GPUs

In this section, we study a parallel pattern that commonly arises in various scientific
applications namely, the convolution. The convolution algorithm frequently occurs
in signal processing contexts such as audio processing, video processing, and image
filtering, among others. For example, images are convolved with convolution kernels
(henceforth referred to as convolution masks to avoid ambiguity with the CUDA

The Realm of Graphical Processing Unit (GPU) Computing 235

kernel) to detect sharp edges. The output of a linear time invariant (LTI) design is
obtained via convolution of the input signal with the impulse response of the LTI
design. The convolution operation has two interesting aspects that make it highly
lucrative for the GPGPU device. First, the convolution operation is highly data
parallel – different elements of the input data can be evaluated independent of the
other elements. Second, the convolution operation on a large input (a large image
or an audio signal for instance) leads to significantly large number of operations.
In what follows, we first provide a brief mathematical background on this highly
important mathematical operation. Then, we explore how the convolution operation
can be effectively deployed on GPGPU devices.

Convolution is a mathematical array operation (denoted with asterisk, *) where
each output element (P[j]) is a weighted sum of neighboring elements of the
target input element (N[j]). The weights are defined by an input array called, the
convolution mask. The weighted sum, P[j], is calculated by aligning the center
of the convolution mask over the target element, N[j]. The input mask usually
consists of odd number of elements so that equal numbers of neighboring elements
surround the target element in all directions.

Let us consolidate our understanding of the convolution operation via an
example. For simplicity, let us assume that we need to convolve an array of eight
elements, N, with a convolution mask of five elements, M. Figure 19 illustrates the
convolution procedure. Notice the evaluation of element, P[2] (top) – the center
of the mask (M[2]) is aligned with the target input element N[2] (dark gray); next
the overlapping elements of P and M are multiplied and the products are added to
obtain the weighted sum:

P [2] = N [0]×M[0]+N [1]×M[1]+N [2]×M[2]+N [3]×M[3]+N [4]×M[4]
Notice the evaluation procedure of the element, P[1] (Fig. 19 bottom). Similar

to evaluation of P[2], the center of the mask, M[2] is aligned with the target input
element N[1] (highlighted in dark gray). However, the mask element, M[0] flows
out of array, N. In such a case, the overflowing elements of the mask are multiplied
with ‘ghost elements’, gi , which are customarily set to zero. The element, P[1] in
this case is evaluated as:

g1 = 0
P [1] = g1×M[0]+N [0]×M[1]+N [1]×M[2]+N [2]×M[3]+N [3]×M[4]
This process is performed on all of the array elements to obtain the convolution

output, P.
The convolution operation can also be extended to higher dimensions. Figure 20

shows the convolution of a two-dimensional matrix, N5×5 with a two-dimensional
convolution mask, M5×5. Consider the evaluation of element, P[1][1]. As shown
in Fig. 20, the center of the convolution mask, M[1][1], aligns with the target
element, N[1][1]. The overlapping elements of matrices M and N are then
multiplied and the products are added to obtain the weighted sum as:

P [1][1] = M[0][0] × N [0][0] + M[0][1] × N [0][1] + M[0][2] × N [0][2]+

236 V. K. Pallipuram and J. Gao

Fig. 19 An illustration of one-dimensional convolution operation. The evaluation of element
P[2] (see top) involves internal elements N[0] through N[4]. However, the evaluation of
element P[1] (see bottom) requires a ghost element, g1, which is customarily set to zero. The
aligned elements are highlighted in gray and the center and target elements of M and N are
highlighted in dark gray

M[1][0] × N [1][0] + M[1][1] × N [1][1] + M[1][2] × N [1][2]+
M[2][0] × N [2][0] + M[2][1] × N [2][1] + M[2][2] × N [2][2]
Notice the evaluation of element P[0][1] as shown in the same figure with

mask element, M[1][1] aligned with the target element, N[0][1]. The mask
elements M[0][0], M[0][1], and M[0][2] flow beyond the bounds of matrix,
N. Therefore, the overflowing mask elements are multiplied with ghost elements,
g1, g2, g3, which are all set to zero. The element P[0][1] is evaluated as:

g1 = g2 = g3 = 0
P [0][1] = M[0][0] × g1 + M[0][1] × g2 + M[0][2] × g3+
M[1][0] × N [0][0] + M[1][1] × N [0][1] + M[1][2] × N [0][2]+
M[2][0] × N [1][0] + M[1][1] × N[2][1] + M[2][2] × N [1][2]
The above process is performed on all of the array elements to obtain the

convolution output, P. As illustrated through examples in Figs. 19 and 20, it is clear
that: (a) convolution operation is highly data parallel; (b) convolution operation can
be computationally intensive for large input sizes; and (c) programmers must pay
special attention to boundary conditions, i.e. when the convolution mask elements
flow beyond the bounds of the input data.

Active Learning Exercise 18 – Perform the convolution of the two vectors, A and
B given as: A = [−1, 0, 1] B = [−3,−2,−1, 0, 1, 2, 3].

The Realm of Graphical Processing Unit (GPU) Computing 237

Fig. 20 Illustration of two-dimensional convolution operation. The evaluation of element
P[1][1] (see top) involves internal elements of N highlighted in gray (target element is
highlighted in dark gray). However, the evaluation of element P[0][1] requires a ghost elements,
g1, g2, g3, which are customarily set to zero

Now that we are mathematically equipped to perform the convolution operation,
let us study how it can be performed on the GPGPU devices. For simplicity, let
us perform one-dimensional convolution. The arguments for a CUDA convolution
kernel include the following arrays: N (input), M (mask), and output, P. In addition,
the kernel requires the width of array N, let this variable be width; and width of
the convolution mask, let this variable be mask_width. A naïve implementation
of the one-dimensional convolution kernel appears in Listing 15.

Listing 15 A naïve implementation of one-dimensional convolution kernel.
1 . _ _ g l o b a l _ _ vo id k e r n e l (f l o a t ∗N, f l o a t ∗M, f l o a t ∗P ,

i n t width , i n t mask_width) {
2 . i n t t i d = t h r e a d I d x . x + b l o c k I d x . x∗blockDim . x ;
3 . i n t s t a r t _ p o i n t = t i d −mask_width / 2 ; / / p l a c e t h e mask c e n t e r on N[t i d]
4 . f l o a t temp =0;
5 . f o r (i n t i =0 ; i <mask_width ; i ++) { / / l oop ove r t h e mask
6 . i f (s t a r t _ p o i n t + i >=0 && s t a r t _ p o i n t + i < wid th) / / check boundary
7 . temp+=N[s t a r t _ p o i n t + i]∗M[i] ;
8 . }
9 . P [t i d]= temp ;
1 0 . }

As seen in Listing 15, each thread obtains its global thread ID, tid in Line 2.
Because the center of the mask is placed on the target element N[tid], the starting
element of the mask, M[0] is aligned with N[tid - mask_width/2]. Line 3
sets the starting point to tid - mask_width/2. Lines 5 through 8 perform the

238 V. K. Pallipuram and J. Gao

weighted sum calculation and finally, the answer is written to the global memory
location, P[tid](Line 9).

What are the performance bottlenecks for this naïve kernel? A careful inspection
would yield two bottlenecks: (1) There is a control flow divergence due to Line 6
– threads within a warp may or may not satisfy the if statement; and (2) global
memory is sub-optimally utilized. In each iteration of the for loop in Line 5,
each thread performs two floating-point operations (one multiplication and one
addition) for every two accesses of the global memory (access of the input array
and the mask). Consequently, the CGMA ratio is only 1, yielding a fraction of
the peak performance. The control flow divergence may not be a significant issue
here because only a handful of threads process the ghost elements (mask size is
usually much smaller than the thread block size). The global memory accesses are a
significant source of performance bottleneck and therefore must be alleviated. One
immediate remedy is to store the convolution mask in the constant memory. As
discussed in section “CUDA Memory Organization”, all of the threads in a kernel
globally access the constant memory. Because the constant memory is immutable,
the GPGPU device aggressively caches the constant memory variables, promoting
performance. As an exercise, readers are left with the task of declaring constant
memory for the convolution mask and use cudaMemcpyToSymbol() to copy
the host mask pointer, h_M to the device constant memory, M.

A careful inspection of the naïve convolution kernel in Listing 15 also suggests
that threads within a block tend to share the access to array elements. For instance
in Fig. 19, elements required to evaluate P[2] are N[0] through N[4]. Similarly,
elements needed to evaluate P[3] are N[1] through N[5]. Therefore, consecutive
threads in a warp evaluating elements P[2] and P[3] require common access
to elements N[2] through N[4]. The threads in a block can access the shared
computational elements via shared memory. Specifically, the threads in a block
load their respective elements into the shared memory, reducing the number of
trips to the global memory unlike the naïve convolution. Despite of this cooperative
loading, some of the threads may need access to the elements loaded by the adjacent
thread blocks. Additionally, some threads within a block may require access to ghost
elements. This issue is illustrated in Fig. 21. In the same figure, consider the thread
blocks of size four threads, array N of size equal to 15, and a convolution mask of
size equal to 5. The convolution operation requires four blocks: block-0 operates on
elements 0 through 3; block-1 operates on elements 4 through 7, and so on. Consider
block-0 for example – the evaluation of elements 2 and 3 clearly require elements 4
and 5, which are loaded into the shared memory by threads in block-1. We refer to
these elements as halo elements (highlighted in gray). In addition to halo elements,
threads 0 and 1 need access to ghost elements (highlighted in vertical bars).

With the introduction of L2 caches in modern GPGPU devices, the access to
the halo elements is greatly simplified; whereas the ghost elements can be tackled
using the code logic. When the threads in block-1 load elements N[4] through
N[7], it is a reasonable assumption that these values will also be stored in the L2
cache. Consequently with high probability, block-0 can find its halo elements (N[4]
and N[5]) in the L2 cache, thereby optimizing global memory accesses. Similarly,

The Realm of Graphical Processing Unit (GPU) Computing 239

Fig. 21 Illustration of thread blocks of size 4 requiring access to halo and ghost elements

block-1 can also find the halo elements, 8 and 9 when block-2 threads load their
respective elements (N[8] through N[11]) into the shared memory.

To summarize, an optimized CUDA kernel can alleviate the global memory
traffic using three strategies: (1) by storing the convolution mask in the constant
memory, which is aggressively cached, (2) by requiring threads in a block to load
their respective elements into the shared memory; these elements will also be cached
in L2, and (3) access the halo elements via L2 cache. The optimized CUDA kernel
for convolution operation appears in Listing 16.

Listing 16 Optimized convolution kernel that makes use of: constant memory to cache the
convolution mask, L2 cache to enable threads access the elements loaded by neighboring thread
blocks, and shared memory for collaborative load of elements by threads in a block.
1 . _ _ g l o b a l _ _ vo id c o n v o l u t i o n _ k e r n e l (f l o a t ∗N, f l o a t ∗P ,

i n t width , i n t mask_width) {
2 . i n t t i d = t h r e a d I d x . x + b l o c k I d x . x∗blockDim . x ;
3 . _ _ s h a r e d _ _ f l o a t Nshared [BLOCKSIZE] ;
4 . Nshared [t h r e a d I d x . x]=N[t i d] ; / / each t h r e a d l o a d s i t s r e s p e c t i v e e l e m e n t i n
/ / s h a r e d memory
5 . _ _ s y n c t h r e a d s () ; / / make s u r e a l l t h r e a d s f i n i s h l o a d i n g b e f o r e p r o c e e d i n g
6 . i n t m y b l o c k _ s t a r t = b l o c k I d x . x∗blockDim . x ;
7 . i n t n e x t b l o c k _ s t a r t =(b l o c k I d x . x +1)∗ blockDim . x ;
8 . i n t s t a r t = t i d − mask_width / 2 ; / / p l a c e s t h e c e n t e r o f mask on N[t i d]
9 . f l o a t temp =0;
1 0 . f o r (i n t i =0 ; i <mask_width ; i ++){ / / l oop ove r t h e mask
1 1 . i n t Nelement= s t a r t + i ; / / e l e m e n t o v e r l a p p i n g wi th i
1 2 . i f (Nelement >=0 && Nelement < wid th) { / / boundary check
1 3 . i f (Nelement >= m y b l o c k _ s t a r t &&Nelement < n e x t b l o c k _ s t a r t) {
/ / Nelement p r e s e n t i n s h a r e d memory
1 4 . temp+= Nshared [t h r e a d I d x . x+ i−mask_width / 2] ∗M[i] ; }
1 5 . e l s e {

/ / n o t i n s h a r e d memory . Access u s i n g L2 cache
1 6 . temp+=N[Nelement]∗M[i] ;
1 7 . }
1 8 . }
1 9 . }
2 0 . P [t i d]= temp ; / / w r i t e t h e answer t o g l o b a l memory
2 1 . }

240 V. K. Pallipuram and J. Gao

In Listing 16, note that the convolution mask, M resides in the device constant
memory (copied into the constant memory of the device by the host in host portion);
therefore, it is not passed as an argument to the kernel. In line 4, each local thread
(threadIdx.x) within a block cooperatively loads its respective global element
N[tid], where tid is equal to threadIdx + blockIdx.x*blockDim.x,
into the shared memory, Nshared (see Lines 3–5). After the shared memory has
been loaded by all of the threads within a block, the threads in a block identify the
end points of their block (see Lines 6 and 7) and their respective start positions such
that the center of the mask is centered at N[tid] (see Line 8). The computations
occur from Line 10 through 19 – for each iteration of the mask counter, i, the
thread obtains the position of the element in N (labeled as Nelement) that overlaps
with mask element, M[i]. If this element is within the bounds of the thread block
(calculated in Lines 6 and 7), then the Nelement is obtained from the shared
memory variable, Nshared (see Lines 13 and 14). However, if Nelement lies
outside of the block boundaries, then the corresponding element in N is obtained
via a global memory access (see Lines 15 through 17). With high probability, this
global memory location is cached in L2, therefore served with L2 cache throughput.
The final computation result is written back to the global memory in Line 20.

Active Learning Exercise 19 – Extend the optimized 1D convolution kernel to
perform 2D convolution. Assume modern GPGPU devices that allows for general
L2 caching.

In section “Case Study: Image Convolution on GPUs”, we discussed an interest-
ing parallel pattern, the convolution, which appears frequently in several scientific
applications and simulations. Due to its inherent data parallelism and computation-
intensiveness, the convolution operation is a great fit for GPGPU devices. Readers
are also encouraged to investigate other parallel patterns including prefix sums and
sparse matrix multiplication for a comprehensive understanding of GPGPU device
optimizations.

We conclude our discussion on the CUDA programming model. In this chapter,
we discussed the CUDA thread model and CUDA memory hierarchy, which are
critical to writing effective CUDA programs. We studied different optimization
strategies to attain a significant fraction of the device’s peak performance. We com-
pleted our discussion on CUDA with convolution as a case study, which highlights
the importance of optimizations such as constant memory, shared memory, and
general L2 caching. The exploration of CUDA optimizations is figuratively endless
– several applications continue to emerge that are re-organized or re-written for
GPGPU computing, thereby making it a truly disruptive technology.

GPU Computing: The Future

In summary, this chapter covers major topics in GPGPU computing using the CUDA
framework for upper-level Computer Engineering/Computer Science undergraduate
(UG) students. Starting with the concept of data parallelism, we explained in

The Realm of Graphical Processing Unit (GPU) Computing 241

detail the CUDA program structure, compilation flow, thread organization, memory
organization, and common CUDA optimizations. All of these concepts were put
together in section “Case Study: Image Convolution on GPUs” where we discussed
convolution on GPGPUs as a case study. We organized the previous eight sections in
a way that promotes active learning, encourages students to apply their knowledge
and skills immediately after learning, and prepares them for more advanced topics
in HPC. We hope that, after studying this chapter and finishing all active learning
exercises, the students will have a good understanding of GPGPU computing and
will be able to program GPGPUs using the CUDA paradigm.

Over the years, with a humble start as graphics-rendering devices, GPUs have
evolved into powerful devices that support tasks that are more general, more
sophisticated, and more computationally intensive. After decades of competition in
the GPU world, NVIDIA and AMD are the two major players left. Their GPUs have
been used to build the world’s fastest and greenest supercomputers. In April 2016,
NVIDIA unveiled the world’s first deep-learning supercomputer in a box. Supported
by a group of AI industry leaders, the company’s new products and technologies
are focusing on deep learning, virtual reality and self-driving cars. Equipped with
the NVIDIA Tesla P100 GPU, the servers can now deliver the performance of
hundreds of CPU server nodes. Taking advantage of the new Pascal architecture,
the updated NVIDIA SDK provides extensive supports in deep learning, accelerated
computing, self-driving cars, design visualization, autonomous machines, gaming,
and virtual reality. Supporting these key areas will definitely attract more researchers
and developers to this exciting field and enable them to create efficient solutions for
problems that were considered unsolvable before. In the coming years, the evolution
of GPUs will follow this increasing trend in terms of GPU processing power,
software capabilities, as well as the diversity of GPU-accelerated applications.

References

1. CUDA zone.
https://developer.nvidia.com/cuda-zone. Last Accessed 11 Feb. 2018

2. cuBLAS.
https://developer.nvidia.com/cublas. Last Accessed 11 Feb. 2018

3. Nvidia cuDDN. GPU Accelerated Deep Learning.
https://developer.nvidia.com/cudnn. Last Accessed 11 Feb. 2018

4. OpenCL overview.
https://www.khronos.org/opencl/. Last Accessed 11 Feb. 2018

5. OpenACC. More sciene, less programming.
https://www.openacc.org/. Last Accessed 11 Feb. 2018

6. Thrust. https://developer.nvidia.com/thrust.
https://developer.nvidia.com/cudnn. Last Accessed 11 Feb. 2018

7. Nvidia.
www.nvidia.com. Last Accessed 11 Feb. 2018

https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cublas
https://developer.nvidia.com/cudnn
https://www.khronos.org/opencl/
https://www.openacc.org/
https://developer.nvidia.com/thrust
https://developer.nvidia.com/cudnn
www.nvidia.com

Managing Concurrency in Mobile User
Interfaces with Examples in Android

Konstantin Läufer and George K. Thiruvathukal

Abstract In this chapter, we explore various parallel and distributed computing
topics from a user-centric software engineering perspective. Specifically, in the
context of mobile application development, we study the basic building blocks of
interactive applications in the form of events, timers, and asynchronous activities,
along with related software modeling, architecture, and design topics.

Relevant software engineering topics: software requirements: functional require-
ments (C), nonfunctional requirements (C) software design: user interface
patterns (A), concurrency patterns (A), testing patterns (A), architectural patterns
(C), dependency injection (C), design complexity (C); software testing: unit
testing (A), managing dependencies in testing (A); cross-cutting topics: web
services (C), pervasive and mobile computing (A)

Relevant parallel and distributed computing topics: algorithmic problems: asyn-
chrony (C); architecture classes: simultaneous multithreading (K), SMP (K); par-
allel programming paradigms and notations: task/thread spawning (A); semantics
and correctness issues: tasks and threads (C), synchronization (A); concurrency
defects: deadlocks (C), thread safety/race conditions (A); cross-cutting topics:
why and what is parallel/distributed computing (C), concurrency (A), nondeter-
minism (C)

Learning outcomes: The student will be able to model and design mobile appli-
cations involving events, timers, and asynchronous activities. The student will
be able to implement these types of applications on the Android platform. The
student will develop an understanding of nonfunctional requirements.

Context for use: A semester-long intermediate to advanced undergraduate course
on object-oriented development. Assumes prerequisite CS2 and background in
an object-oriented language such as Java, C++, or C#.

K. Läufer (�) · G. K. Thiruvathukal
Department of Computer Science, Loyola University Chicago, Chicago, IL, USA
e-mail: laufer@cs.luc.edu; gkt@cs.luc.edu

© Springer International Publishing AG, part of Springer Nature 2018
S. K. Prasad et al. (eds.), Topics in Parallel and Distributed Computing,
https://doi.org/10.1007/978-3-319-93109-8_9

243

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93109-8_9&domain=pdf
mailto:laufer@cs.luc.edu
mailto:gkt@cs.luc.edu
https://doi.org/10.1007/978-3-319-93109-8_9

244 K. Läufer and G. K. Thiruvathukal

Background and Motivation

In this chapter, we will explore various parallel and distributed computing topics
from a user-centric software engineering perspective. Specifically, in the context
of mobile application development, we will study the basic building blocks of
interactive applications in the form of events, timers, and asynchronous activities,
along with related software modeling, architecture, and design topics.

Based on the authors’ ongoing research and teaching in this area, this material
is suitable for a five-week module on concurrency topics within a semester-long
intermediate to advanced undergraduate course on object-oriented development. It
is possible to extend coverage by going into more depth on the online examples [17]
and studying techniques for offloading tasks to the cloud [19]. The chapter is
intended to be useful to instructors and students alike.

Given the central importance of the human-computer interface for enabling
humans to use computers effectively, this area has received considerable attention
since around 1960 [26]. Graphical user interfaces (GUIs) emerged in the early 1970s
and have become a prominent technical domain addressed by numerous widget
toolkits (application frameworks for GUI development). Common to most of these is
the need to balance ease of programming, correctness, performance, and consistency
of look-and-feel. Concurrency always plays at least an implicit role and usually
becomes an explicit programmer concern when the application involves processor-
bound, potentially long-running activities controlled by the GUI. Here, long-running
means anything longer than the user wants to wait for before being able to continue
interacting with the application. This chapter is about the concepts and techniques
required to achieve this balance between correctness and performance in the context
of GUI development.

During the last few years, mobile devices such as smartphones and tablets have
displaced the desktop PC as the predominant front-end interface to information and
computing resources. In terms of global internet consumption (minutes per day),
mobile devices overtook desktop computers in mid-2014 [5], and “more websites
are now loaded on smartphones and tablets than on desktop computers” [14] as of
October 2016. Google also announced [3] that it will be displaying mobile-friendly
web sites higher in the search results, which speaks to the new world order. These
mobile devices participate in a massive global distributed system where mobile
applications offload substantial resource needs (computation and storage) to the
cloud.

In response to this important trend, this chapter focuses on concurrency in the
context of mobile application development, especially Android, which shares many
aspects with previous-generation (and desktop-centric) GUI application frameworks
such as Java AWT and Swing yet. (And it almost goes without saying that students
are more excited about learning programming principles via technologies like
Android and iOS, which they are using more often than their desktop computers.)

While the focus of this chapter is largely on concurrency within the mobile device
itself, the online source code for one of our examples [19] goes beyond the on-device

Managing Concurrency in Mobile User Interfaces with Examples in Android 245

experience by providing versions that connect to RESTful web services (optionally
hosted in the cloud) [6]. We’ve deliberately focused this chapter around the on-
device experience, consistent with “mobile first” thinking, which more generally
is the way the “Internet of Things” also works [1]. This thinking results in proper
separation of concerns when it comes to the user experience, local computation, and
remote interactions (mediated using web services).

It is worth taking a few moments to ponder why mobile platforms are interesting
from the standpoint of parallel and distributed computing, even if at first glance it
is obvious. From an architectural point of view, the landscape of mobile devices
has followed a similar trajectory to that of traditional multiprocessing systems. The
early mobile device offerings, even when it came to smartphones, were single core.
At the time of writing, the typical smartphone or tablet is equipped with four CPU
cores and a graphics processing unit (GPU), with the trend of increasing cores (to at
least 8) expected to continue in mobile CPUs. In this vein, today’s–and tomorrow’s–
devices need to be considered serious parallel systems in their own right. (In fact, in
the embedded space, there has been a corresponding emergence of parallel boards,
similar to the Raspberry Pi.)

The state of parallel computing today largely requires the mastery of two
styles, often appearing in a hybrid form: task parallelism and data parallelism.
The emerging mobile devices are following desktop and server architecture by
supporting both of these. In the case of task parallelism, to get good performance,
especially when it comes to the user experience, concurrency must be disciplined.
An additional constraint placed on mobile devices, compared to parallel computing,
is that unbounded concurrency (threading) makes the device unusable/unresponsive,
even to a greater extent than on desktops and servers (where there is better
I/O performance in general). We posit that learning to program concurrency in
a resource-constrained environment (e.g. Android smartphones) can be greatly
helpful for writing better concurrent, parallel, and distributed code in general. More
importantly, today’s students really want to learn about emerging platforms, so this
is a great way to develop new talent in languages and systems that are likely to be
used in future parallel/distributed programming environments.

Roadmap

In the remainder of this chapter, we first summarize the fundamentals of thread
safety in terms of concurrent access to shared mutable state.

We then discuss the technical domain of applications with graphical user
interfaces (GUIs), GUI application frameworks that target this domain, and the
runtime environment these frameworks typically provide.

Next, we examine a simple interactive behavior and explore how to implement
this using the Android mobile application development framework. To make our
presentation relevant to problem solvers, our running example is a bounded click

246 K. Läufer and G. K. Thiruvathukal

counter application (more interactive and exciting than the examples commonly
found in concurrency textbooks, e.g., atomic counters and bounded buffers) that
can be used to keep track of the capacity of, say, a movie theater.

We then explore more interesting scenarios by introducing timers and internal
events. For example, a countdown timer can be used for notification of elapsed time,
a concept that has almost uniquely emerged in the mobile space but has applications
in embedded and parallel computing in general, where asynchronous paradigms
have been present for some time, dating to job scheduling, especially for longer-
running jobs.

We close by exploring applications requiring longer-running, processor-bound
activities. In mobile app development, a crucial design goal is to ensure UI
responsiveness and appropriate progress reporting. We demonstrate techniques for
making sure that computation proceeds but can be interrupted by the user. These
techniques can be generalized to offload processor-bound activities to cloud-hosted
web services.1

Fundamentals of Thread Safety

Before we discuss concurrency issues in GUI applications, it is helpful to understand
the underlying fundamentals of thread safety in situations where two or more
concurrent threads (or other types of activities) access shared mutable state.

Thread safety is best understood in terms of correctness: An implementation
is correct if and only if it conforms to its specification. The implementation is
thread-safe if and only if it continues to behave correctly in the presence of multiple
threads [28].

Example: Incrementing a Shared Variable

Let’s illustrate these concepts with perhaps the simplest possible example: incre-
menting an integer number. The specification for this behavior follows from the
definition of increment: After performing the increment, the number should be one
greater than before.

Here is a first attempt to implement this specification in the form of an instance
variable in a Java class and a Runnable instance that wraps around our increment
code and performs it on demand when we invoke its run method (see below).

1 int shared = 0;
2

3 final Runnable incrementUnsafe = new Runnable() {
4 @Override public void run() {

1This topic goes beyond the scope of this chapter but is included in the corresponding example [19].

Managing Concurrency in Mobile User Interfaces with Examples in Android 247

5 final int local = shared;
6 tinyDelay();
7 shared = local + 1;
8 }
9 };

To test whether our implementation satisfies the specification, we can write a
simple test case:

1 final int oldValue = shared;
2 incrementUnsafe.run();
3 assertEquals(oldValue + 1, shared);

In this test, we perform the increment operation in the only thread we have, that is,
the main thread. Our implementation passes the test with flying colors. Does this
mean it is thread-safe, though?

To find out, we will now test two or more concurrent increment operations,
where the instance variable shared becomes shared state. Generalizing from our
specification, the value of the variable should go up by one for each increment we
perform. We can write this test for two concurrent increments

1 final int threadCount = 2;
2 final int oldValue = shared;
3 runConcurrently(incrementUnsafe, threadCount);
4 assertEquals(oldValue + threadCount, shared);

where runConcurrently runs the given code concurrently in the desired
number of threads:

1 public void runConcurrently(
2 final Runnable inc, final int threadCount) {
3 final Thread[] threads = new Thread[threadCount];
4 for (int i = 0; i < threadCount; i += 1) {
5 threads[i] = new Thread(inc);
6 }
7 for (final Thread t : threads) {
8 t.start();
9 }

10 for (final Thread t : threads) {
11 try {
12 t.join();
13 } catch (final InterruptedException e) {
14 throw new RuntimeException("interrupted during join");
15 }
16 }
17 }

248 K. Läufer and G. K. Thiruvathukal

But this test does not always pass! When it does not, one of the two increments
appears to be lost. Even if its failure rate were one in a million, the specification is
violated, meaning that our implementation of increment is not thread-safe.

Interleaved Versus Serialized Execution

Let’s try to understand exactly what is going on here. We are essentially running
two concurrent instances of this code:

1 /*f1*/ int local1 = shared; /*f2*/ int local2 = shared;
2 /*s1*/ shared = local1 + 1; /*s2*/ shared = local2 + 1;

(For clarity, we omit the invocation of tinyDelay present in the code above; this
invokes Thread.sleep(0) and is there just so we can observe and discuss this
phenomenon in conjunction with the Java thread scheduler.)

The instructions are labeled fn and sn for fetch and set, respectively. Within
each thread, execution proceeds sequentially, so we are guaranteed that f1 always
comes before s1 and f2 always comes before s2. But we do not have any guarantees
about the relative order across the two threads, so all of the following interleavings
are possible:

• f1 s1 f2 s2: increments shared by 2
• f1 f2 s1 s2: increments shared by 1
• f1 f2 s2 s1: increments shared by 1
• f2 f1 s1 s2: increments shared by 1
• f2 f1 s2 s1: increments shared by 1
• f2 s2 f1 s1: increments shared by 2

This kind of situation, where the behavior is nondeterministic in the presence of
two or more threads is also called a race condition.2

Based on our specification, the only correct result for incrementing twice is to
see the effect of the two increments, meaning the value of shared goes up by two.
Upon inspection of the possible interleavings and their results, the only correct ones
are those where both steps of one increment happen before both steps of the other
increment.

Therefore, to make our implementation thread-safe, we need to make sure that
the two increments do not overlap. Each has to take place atomically. This requires
one to go first and the other to go second; their execution has to be serialized
or sequentialized (see also [10] for details on the happens-before relation among
operations on shared memory).

2When analyzing race conditions, we might be tempted to enumerate the different possible
interleavings. While it seems reasonable for our example, this quickly becomes impractical because
of the combinatorial explosion for larger number of threads with more steps.

Managing Concurrency in Mobile User Interfaces with Examples in Android 249

Using Locks to Guarantee Serialization

In thread-based concurrent programming, the primary means to ensure atomicity
is mutual exclusion by locking. Most thread implementations, including p-threads
(POSIX threads), provide some type of locking mechanism.

Because Java supports threads in the language, each object carries its own lock,
and there is a synchronized construct for allowing a thread to execute a block of
code only with the lock held. While one thread holds the lock, other threads wanting
to acquire the lock on the same object will join the wait set for that object. As soon
as the lock becomes available—when the thread currently holding the lock finishes
the synchronized block—, another thread from the wait set receives the lock and
proceeds. (In particular, there is no first-come-first-serve or other fairness guarantee
for this wait set.)

We can use locking to make our implementation of increment atomic and thereby
thread-safe [20]:

1 final Object lock = new Object();
2

3 final Runnable incrementSafe = new Runnable() {
4 @Override public void run() {
5 synchronized (lock) {
6 final int local = shared;
7 tinyDelay();
8 shared = local + 1;
9 }

10 }
11 };

Now it is guaranteed to pass the test every time.

1 final int threadCount = 2;
2 final int oldValue = shared;
3 runConcurrently(incrementUnsafe, threadCount);
4 assertEquals(oldValue + threadCount, shared);

We should note that thread safety comes at a price: There is a small but not
insignificant overhead in handling locks and managing their wait sets.

The GUI Programming Model and Runtime Environment

As we mentioned above, common to most GUI application framework is the need to
balance ease of programming, correctness, performance, and consistency of look-
and-feel. In this section, we will discuss the programming model and runtime
environment of a typical GUI framework.

250 K. Läufer and G. K. Thiruvathukal

In a GUI application, the user communicates with the application through input
events, such as button presses, menu item selections, etc. The application responds
to user events by invoking some piece of code called an event handler or event
listener. To send output back to the user, the event handler typically performs some
action that the user can observe, e.g., displaying some text on the screen or playing
a sound.

The GUI Runtime Environment

Real-world GUI applications can be quite complex in terms of the number of com-
ponents and their logical containment hierarchy. The GUI framework is responsible
for translating low-level events such as mouse clicks and key presses to semantic
events such as button presses and menu item selections targeting the correct
component instances. To manage this complexity, typical GUI frameworks use a
producer-consumer architecture, in which an internal, high-priority system thread
places low-level events on an event queue, while an application-facing UI thread3

takes successive events from this queue and delivers each event to its correct target
component, which then forward it to any attached listener(s). The UML sequence
diagram in Fig. 1 illustrates this architecture.

Because the event queue is designed to be thread-safe, it can be shared safely
between producer and consumer. It coalesces and filters groups of events as
appropriate, maintaining the following discipline:

• Sequential (single-threaded) processing: At most one event from this queue is
dispatched simultaneously.

• Preservation of ordering: If an event A is enqueued to the event queue before
event B, then event B will not be dispatched before event A.

Concretely, the UI thread continually takes events from the event queue and
processes them. Here is the pseudo-code for a typical UI thread.

1 run() {
2 while (true) {
3 final Event event = eq.getNextEvent();
4 final Object src = event.getSource();
5 ((Component) src).processEvent(event);
6 }
7 }

3In some frameworks, including Java AWT/Swing, the UI thread is known as event dispatch thread
(EDT).

Managing Concurrency in Mobile User Interfaces with Examples in Android 251

Fig. 1 UML sequence diagram showing the producer-consumer architecture of a GUI. Stick
arrowheads represent asynchronous invocation, while solid arrowheads represent (synchronous)
method invocation

The target component, e.g., Button, forwards events to its listener(s).

1 processEvent(e) {
2 if (e instanceof OnClickEvent) {
3 listener.onClick(e);
4 }
5 ...
6 }

While this presentation is mostly based on Java’s AWT for simplicity, Android
follows a similar approach with MessageQueue at the core and some responsibil-
ities split between Handler and Looper instances [27].

This general approach, where requests (the events) come in concurrently, get
placed on a request queue, and are dispatched sequentially to handlers, is an instance
of the Reactor design pattern [30].

The Application Programmer’s Perspective

Within the GUI programming model, the application programmer focuses on
creating components and attaching event listeners to them. The following is a very

252 K. Läufer and G. K. Thiruvathukal

simple example of the round-trip flow of information between the user and the
application.

1 final Button button = new Button("press me");
2 final TextView display = new TextView("hello");
3

4 increment.setOnClickListener(new OnClickListener() {
5 @Override public void onClick(final View view) {
6 display.setText("world");
7 }
8 });

The event listener mechanism at work here is an instance of the Observer design
pattern [8]: Whenever the event source, such as the button, has something to say,
it notifies its observer(s) by invoking the corresponding event handling method and
passing itself as the argument to this method. If desired, the listener can then obtain
additional information from the event source.

Thread Safety in GUI Applications: The Single-Threaded Rule

Generally, the programmer is oblivious to the concurrency between the internal
event producer thread and the UI thread. The question is whether there is or should
be any concurrency on the application side. For example, if two button presses occur
in very short succession, can the two resulting invocations of display.setText
overlap in time and give rise to thread safety concerns? In that case, should we not
make the GUI thread-safe by using locking?

The answer is that typical GUI frameworks are already designed to address
this concern. Because a typical event listener accesses and/or modifies the data
structure constituting the visible GUI, if there were concurrency among event
listener invocations, we would have to achieve thread safety by serializing access
to the GUI using a lock (and paying the price for this). It would be the application
programmer’s responsibility to use locking whenever an event listener accesses the
GUI. So we would have greatly complicated the whole model without achieving
significantly greater concurrency in our system.

We recall our underlying producer-consumer architecture, in which the UI thread
processes one event at a time in its main loop. This means that event listener
invocations are already serialized. Therefore, we can achieve thread safety directly
and without placing an additional burden on the programmer by adopting this simple
rule:

The application must always access GUI components from the UI thread.

This rule, known as the single-threaded rule, is common among most GUI
frameworks, including Java Swing and Android. In practice, such access must
happen either during initialization (before the application becomes visible), or

Managing Concurrency in Mobile User Interfaces with Examples in Android 253

within event listener code. Because it sometimes becomes necessary to create
additional threads (usually for performance reasons), there are ways for those
threads to schedule code for execution on the UI thread.

Android actually enforces the single-threaded GUI component access rule by
raising an exception if this rule is violated at runtime. Android also enforces the
“opposite” rule: It prohibits any code on the UI thread that will block the thread,
such as network access or database queries [11].

Using Java Functional Programming Features for Higher
Conciseness

To ensure compatibility with the latest and earlier versions of the Android platform,
the examples in this chapter are based on Java 6 language features and API. As
of October 2017, Android Studio 3.0 supports several recently introduced Java
language features, including lambda expressions and method references; for details,
please see [13].

These features can substantially improve both the conciseness and clarity of
callback code, such as runnable tasks and Android event listeners. For example,
given the equivalence between a single-method interface and a lambda expression
with the same signature as the method, we can rewrite incrementSafe from
section “Using Locks to Guarantee Serialization” and setOnClickListener
from section “The Application Programmer’s Perspective” more concisely:

1 final Runnable incrementSafe = () ->
2 synchronized (lock) {
3 final int local = shared;
4 tinyDelay();
5 shared = local + 1;
6 };

1 increment.setOnClickListener(
2 (final View view) -> display.setText("world")
3);

Single-Threaded Event-Based Applications

In this section, we will study a large class of applications that will not need any
explicit concurrency at all. As long as each response to an input event is short, we
can keep these applications simple and responsive by staying within the Reactor
pattern.

254 K. Läufer and G. K. Thiruvathukal

We will start with a simple interactive behavior and explore how to implement
this using the Android mobile application development framework [9]. Our running
example will be a bounded click counter application that can be used to keep track of
the capacity of, say, a movie theater. The complete code for this example is available
online [18].

The Bounded Counter Abstraction

A bounded counter [16], the concept underlying this application, is an integer
counter that is guaranteed to stay between a preconfigured minimum and maximum
value. This is called the data invariant of the bounded counter.

min ≤ counter ≤ max

We can represent this abstraction as a simple, passive object with, say, the
following interface:

1 public interface BoundedCounter {
2 void increment();
3 void decrement();
4 int get();
5 boolean isFull();
6 boolean isEmpty();
7 }

In following a test-driven mindset [2], we test implementations of this interface
using methods such as this one, which ensures that incrementing the counter works
properly:

1 @Test
2 public void testIncrement() {
3 decrementIfFull();
4 assertFalse(counter.isFull());
5 final int v = counter.get();
6 counter.increment();
7 assertEquals(v + 1, counter.get());
8 }

In the remainder of this section, we’ll put this abstraction to good use by building
an interactive application on top of it.

Managing Concurrency in Mobile User Interfaces with Examples in Android 255

The Functional Requirements for a Click Counter Device

Next, let’s imagine a device that realizes this bounded counter concept. For example,
a greeter positioned at the door of a movie theater to prevent overcrowding would
require a device with the following behavior:

• The device is preconfigured to the capacity of the venue.
• The device always displays the current counter value, initially zero.
• Whenever a person enters the movie theater, the greeter presses the increment

button; if there is still capacity, the counter value goes up by one.
• Whenever a person leaves the theater, the greeter presses the decrement button;

the counter value goes down by one (but not below zero).
• If the maximum has been reached, the increment button either becomes unavail-

able (or, as an alternative design choice, attempts to press it cause an error). This
behavior continues until the counter value falls below the maximum again.

• There is a reset button for resetting the counter value directly to zero.

A Simple Graphical User Interface (GUI) for a Click Counter

We now provide greater detail on the user interface of this click counter device. In
the case of a dedicated hardware device, the interface could have tactile inputs and
visual outputs, along with, say, audio and haptic outputs.

As a minimum, we require these interface elements:

• Three buttons, for incrementing and decrementing the counter value and for
resetting it to zero.

• A numeric display of the current counter value.

Optionally, we would benefit from different types of feedback:

• Beep and/or vibrate when reaching the maximum counter value.
• Show the percentage of capacity as a numeric percentage or color thermometer.

Instead of a hardware device, we’ll now implement this behavior as a mobile
software app, so let’s focus first on the minimum interface elements. In addition,
we’ll make the design choice to disable operations that would violate the counter’s
data invariant.

These decisions lead to the three view states for the bounded click counter
Android app (see Fig. 2: In the initial (minimum) view state, the decrement button
is disabled. In the counting view state of the, all buttons are enabled. Finally, in the
maximum view state, the increment button is disabled; we assume a maximum value
of 10). In our design, the reset button is always enabled.

256 K. Läufer and G. K. Thiruvathukal

Fig. 2 View states for the click counter. (a) Minimum state. (b) Counting state. (c) Maximum
state

Understanding User Interaction as Events

It was fairly easy to express the familiar bounded counter abstraction and to envision
a possible user interface for putting this abstraction to practical use. The remaining
challenge is to tie the two together in a meaningful way, such that the interface
uses the abstraction to provide the required behavior. In this section, we’ll work on
bridging this gap.

Modeling the Interactive Behavior

As a first step, let’s abstract away the concrete aspects of the user interface:

• Instead of touch buttons, we’ll have input events.
• Instead of setting a visual display, we’ll modify a counter value.

After we take this step, we can use a UML state machine diagram [29] to model
the dynamic behavior we described at the beginning of this section more formally.4

Note how the touch buttons correspond to events (triggers of transitions, i.e., arrows)
with the matching names.

The behavior starts with the initial pseudostate represented by the black circle.
From there, the counter value gets its initial value, and we start in the minimum state.
Assuming that the minimum and maximum values are at least two apart, we can
increment unconditionally and reach the counting state. As we keep incrementing,
we stay here as long as we are at least two away from the maximum state. As soon
as we are exactly one away from the maximum state, the next increment takes us to
that state, and now we can no longer increment, just decrement. The system mirrors
this behavior in response to the decrement event. There is a surrounding global state
to support a single reset transition back to the minimum state. Figure 3 shows the
complete diagram.

4A full introduction to the Unified Modeling Language (UML) [29] would go far beyond the scope
of this chapter. Therefore, we aim to introduce the key elements of UML needed here in an informal
and pragmatic manner. Various UML resources, including the official specification, are available
at http://www.uml.org/. Third-party tutorials are available online and in book form.

http://www.uml.org/

Managing Concurrency in Mobile User Interfaces with Examples in Android 257

Fig. 3 UML state machine diagram modeling the dynamic behavior of the bounded counter
application

As you can see, the three model states map directly to the view states from the
previous subsection, and the transitions enabled in each model state map to the
buttons enabled in each view state. This is not always the case, though, and we will
see examples in a later section of an application with multiple model states but only
a single view state.

GUI Components as Event Sources

Our next step is to bring the app to life by connecting the visual interface to the
interactive behavior. For example, when pressing the increment button in a non-full
counter state, we expect the displayed value to go up by one. In general, the user can
trigger certain events by interacting with view components and other event sources.
For example, one can press a button, swipe one’s finger across the screen, rotate the
device, etc.

Event Listeners and the Observer Pattern

We now discuss what an event is and what happens after it gets triggered. We will
continue focusing on our running example of pressing the increment button.

The visual representation of an Android GUI is usually auto-generated from an
XML source during the build process.5 For example, the source element for our
increment button looks like this; it declaratively maps the onClick attribute to the
onIncrement method in the associated activity instance.

1 <Button
2 android:id="@+id/button_increment"
3 android:layout_width="fill_parent"
4 android:layout_height="wrap_content"
5 android:onClick="onIncrement"
6 android:text="@string/label_increment" />

5It is also possible—though less practical—to build an Android GUI programmatically.

258 K. Läufer and G. K. Thiruvathukal

The Android manifest associates an app with its main activity class. The top-
level manifest element specifies the Java package of the activity class, and the
activity element on line 5 specifies the name of the activity class, ClickCounter-
Activity.

1 <manifest
2 xmlns:android="http://schemas.android.com/apk/res/android"
3 package="edu.luc.etl.cs313.android.clickcounter" ...>
4 ...
5 <application ...>
6 <activity android:name=".ClickCounterActivity" ...>
7 <intent-filter>
8 <action android:name="android.intent.action.MAIN" />
9 <category

10 android:name="android.intent.category.LAUNCHER" />
11 </intent-filter>
12 </activity>
13 </application>
14 </manifest>

An event is just an invocation of an event listener method, possibly with an
argument describing the event. We first need to establish the association between
an event source and one (or possibly several) event listener(s) by subscribing the
listener to the source. Once we do that, every time this source emits an event,
normally triggered by the user, the appropriate event listener method gets called
on each subscribed listener.

Unlike ordinary method invocations, where the caller knows the identity of the
callee, the (observable) event source provides a general mechanism for subscribing
a listener to a source. This technique is widely known as the Observer design
pattern [8].

Many GUI frameworks follow this approach. In Android, for example, the
general component superclass is View, and there are various types of listener
interfaces, including OnClickListener. In following the Dependency Inver-
sion Principle (DIP) [24], the View class owns the interfaces its listeners must
implement.

1 public class View {
2 ...
3 public static interface OnClickListener {
4 void onClick(View source);
5 }
6 public void setOnClickListener(OnClickListener listener) {
7 ...
8 }
9 ...

10 }

Managing Concurrency in Mobile User Interfaces with Examples in Android 259

Android follows an event source/listener naming idiom loosely based on the
JavaBeans specification [15]. Listeners of, say, the onX event implement the
OnXListener interface with the onX(Source source) method. Sources of
this kind of event implement the setOnXListener method.6 An actual event
instance corresponds to an invocation of the onXmethod with the source component
passed as the source argument.

Processing Events Triggered by the User

The Android activity is responsible for mediating between the view components
and the POJO (plain old Java object) bounded counter model we saw above. The
full cycle of each event-based interaction goes like this.

• By pressing the increment button, the user triggers the onClick event on that
button, and the onIncrement method gets called.

• The onIncrement method interacts with the model instance by invoking the
increment method and then requests a view update of the activity itself.

• The corresponding updateView method also interacts with the model instance
by retrieving the current counter value using the get method, displays this value
in the corresponding GUI element with unique ID textview_value, and
finally updates the view states as necessary.

Figure 4 illustrates this interaction step-by-step.

1 public void onIncrement(final View view) {
2 model.increment();
3 updateView();
4 }
5 protected void updateView() {
6 final TextView valueView =
7 (TextView) findViewById(R.id.textview_value);
8 valueView.setText(Integer.toString(model.get()));
9 // afford controls according to model state

10 ((Button) findViewById(R.id.button_increment))
11 .setEnabled(!model.isFull());
12 ((Button) findViewById(R.id.button_decrement))
13 .setEnabled(!model.isEmpty());
14 }

What happens if the user presses two buttons at the same time? As discussed
above, the GUI framework responds to at most one button press or other event
trigger at any given time. While the GUI framework is processing an event, it

6 Readers who have worked with GUI framework that supports multiple listeners, such as Swing,
might initially find it restrictive of Android to allow only one. We’ll leave it as an exercise to figure
out which well-known software design pattern can be used to work around this restriction.

260 K. Läufer and G. K. Thiruvathukal

Fig. 4 Sequence diagram showing the full event-based interaction cycle in response to a press
of the increment button. Stick arrowheads represent events, while solid arrowheads represent
(synchronous) method invocation

places additional incoming event triggers on a queue and fully processes each
one in turn. Specifically, only after the event listener method handling the current
event returns will the framework process the next event. (Accordingly, activation
boxes of different event listener method invocations in the UML sequence diagram
must not overlap.) As discussed in section “Thread Safety in GUI Applications:
The Single-Threaded Rule”, this single-threaded event handling approach keeps
the programming model simple and avoids problems, such as race conditions or
deadlocks, that can arise in multithreaded approaches.

Application Architecture

This overall application architecture, where a component mediates between view
components and model components, is known as Model-View-Adapter (MVA) [4],
where the adapter component mediates all interactions between the view and the
model. (By contrast, the Model-View-Controller (MVC) architecture has a triangular
shape and allows the model to update the view(s) directly via update events.)

Figure 5 illustrates the MVA architecture. The solid arrows represent ordinary
method invocations, and the dashed arrow represents event-based interaction. View
and adapter play the roles of observable and observer, respectively, in the Observer
pattern that describes the top half of this architecture.

Managing Concurrency in Mobile User Interfaces with Examples in Android 261

Fig. 5 UML class diagram
showing the
Model-View-Adapter (MVA)
architecture of the bounded
click counter Android app.
Solid arrows represent
method invocation, and
dashed arrows represent event
flow

System-Testing GUI Applications

Automated system testing of entire GUI applications is a broad and important topic
that goes beyond the scope of this chapter. Here, we complete our running example
by focusing on a few key concepts and techniques.

In system testing, we distinguish between our application code, usually referred
to as the system under test (SUT), and the test code. At the beginning of this
section, we already saw an example of a simple component-level unit test method
for the POJO bounded counter model. Because Android view components support
triggering events programmatically, we can also write system-level test methods that
mimic the way a human user would interact with the application.

System-Testing the Click Counter

The following test handles a simple scenario of pressing the reset button, verifying
that we are in the minimum view state, then pressing the increment button, verifying
that the value has gone up and we are in the counting state, pressing the reset button
again, and finally verifying that we are back in the minimum state.

1 @Test
2 public void testActivityScenarioIncReset() {
3 assertTrue(getResetButton().performClick());
4 assertEquals(0, getDisplayedValue());
5 assertTrue(getIncButton().isEnabled());
6 assertFalse(getDecButton().isEnabled());
7 assertTrue(getResetButton().isEnabled());
8 assertTrue(getIncButton().performClick());
9 assertEquals(1, getDisplayedValue());

10 assertTrue(getIncButton().isEnabled());

262 K. Läufer and G. K. Thiruvathukal

11 assertTrue(getDecButton().isEnabled());
12 assertTrue(getResetButton().isEnabled());
13 assertTrue(getResetButton().performClick());
14 assertEquals(0, getDisplayedValue());
15 assertTrue(getIncButton().isEnabled());
16 assertFalse(getDecButton().isEnabled());
17 assertTrue(getResetButton().isEnabled());
18 assertTrue(getResetButton().performClick());
19 }

The next test ensures that the visible application state is preserved under device
rotation. This is an important and effective test because an Android application goes
through its entire lifecycle under rotation.

1 @Test
2 public void testActivityScenarioRotation() {
3 assertTrue(getResetButton().performClick());
4 assertEquals(0, getDisplayedValue());
5 assertTrue(getIncButton().performClick());
6 assertTrue(getIncButton().performClick());
7 assertTrue(getIncButton().performClick());
8 assertEquals(3, getDisplayedValue());
9 getActivity().setRequestedOrientation(

10 ActivityInfo.SCREEN_ORIENTATION_LANDSCAPE);
11 assertEquals(3, getDisplayedValue());
12 getActivity().setRequestedOrientation(
13 ActivityInfo.SCREEN_ORIENTATION_PORTRAIT);
14 assertEquals(3, getDisplayedValue());
15 assertTrue(getResetButton().performClick());
16 }

System Testing In and Out of Container

We have two main choices for system-testing our app:

• In-container/instrumentation testing in the presence of the target execution
environment, such as an actual Android phone or tablet emulator (or physical
device). This requires deploying both the SUT and the test code to the emulator
and tends to be quite slow. So far, Android’s build tools officially support only
this mode.

• Out-of-container testing on the development workstation using a test framework
such as Robolectric that simulates an Android runtime environment tends to be
considerably faster. This and other non-instrumentation types of testing can be
integrated in the Android build process with a bit of extra effort.

Managing Concurrency in Mobile User Interfaces with Examples in Android 263

Although the Android build process does not officially support this or other types
of non-instrumentation testing, they can be integrated in the Android build process
with a bit of extra effort.

Structuring Test Code for Flexibility and Reuse

Typically, we’ll want to run the exact same test logic in both cases, starting with
the simulated environment and occasionally targeting the emulator or device. An
effective way to structure our test code for this purpose is the xUnit design pattern
Testcase Superclass [25]. As the pattern name suggests, we pull up the common test
code into an abstract superclass, and each of the two concrete test classes inherits
the common code and runs it in the desired environment.

1 @RunWith(RobolectricTestRunner.class)
2 public class ClickCounterActivityRobolectric
3 extends AbstractClickCounterActivityTest {
4 // some minimal Robolectric-specific code
5 }

The official Android test support, however, requires inheriting from a specific
superclass called ActivityInstrumentationTestCase2. This class now
takes up the only superclass slot, so we cannot use the Testcase Superclass pattern
literally. Instead, we need to approximate inheriting from our AbstractClick-
CounterActivityTest using delegation to a subobject. This gets the job done
but can get quite tedious when a lot of test methods are involved.

1 public class ClickCounterActivityTest
2 extends ActivityInstrumentationTestCase2<ClickCounterActivity>

{
3 ...
4 // test subclass instance to delegate to
5 private AbstractClickCounterActivityTest actualTest;
6

7 @UiThreadTest
8 public void testActivityScenarioIncReset() {
9 actualTest.testActivityScenarioIncReset();

10 }
11 ...
12 }

Having a modular architecture, such as model-view-adapter, enables us to test most
of the application components in isolation. For example, our simple unit tests for
the POJO bounded counter model still work in the context of the overall Android
app.

264 K. Läufer and G. K. Thiruvathukal

Test Coverage

Test coverage describes the extent to which our test code exercises the system under
test, and there are several ways to measure test coverage [31]. We generally want
test coverage to be as close to 100% as possible and can measure this using suitable
tools, such as JaCoCo along with the corresponding Gradle plugin.7

Interactive Behaviors and Implicit Concurrency with Internal
Timers

In this section, we’ll study applications that have richer, timer-based behaviors
compared to the previous section. Our example will be a countdown timer for
cooking and similar scenarios where we want to be notified when a set amount
of time has elapsed. The complete code for a very similar example is available
online [21].

The Functional Requirements for a Countdown Timer

Let’s start with the functional requirements for the countdown timer, amounting to
a fairly abstract description of its controls and behavior.

The timer exposes the following controls:

• One two-digit display of the form 88.
• One multi-function button.

The timer behaves as follows:

• The timer always displays the remaining time in seconds.
• Initially, the timer is stopped and the (remaining) time is zero.
• If the button is pressed when the timer is stopped, the time is incremented by one

up to a preset maximum of 99. (The button acts as an increment button.)
• If the time is greater than zero and three seconds elapse from the most recent

time the button was pressed, then the timer beeps once and starts running.
• While running, the timer subtracts one from the time for every second that

elapses.
• If the timer is running and the button is pressed, the timer stops and the time is

reset to zero. (The button acts as a cancel button.)

7More information on JaCoCo the JaCoCo Gradle plugin is available at http://www.eclemma.org/
jacoco/ and https://github.com/arturdm/jacoco-android-gradle-plugin, respectively.

http://www.eclemma.org/jacoco/
http://www.eclemma.org/jacoco/
https://github.com/arturdm/jacoco-android-gradle-plugin

Managing Concurrency in Mobile User Interfaces with Examples in Android 265

Fig. 6 View states for the countdown timer. (a) Initial stopped state with zero time. (b) Initial
stopped state after adding some time. (c) Running (counting down) state. (d) Alarm ringing state

• If the timer is running and the time reaches zero by itself (without the button
being pressed), then the timer stops counting down, and the alarm starts beeping
continually and indefinitely.

• If the alarm is sounding and the button is pressed, the alarm stops sounding; the
timer is now stopped and the (remaining) time is zero. (The button acts as a stop
button.)

A Graphical User Interface (GUI) for a Countdown Timer

Our next step is to flesh out the GUI for our timer. For usability, we’ll label the
multifunction button with its current function. We’ll also indicate which state the
timer is currently in.

The screenshots in Fig. 6 show the default scenario where we start up the timer,
add a few seconds, wait for it to start counting down, and ultimately reach the alarm
state.

Modeling the Interactive Behavior

Let’s again try to describe the abstract behavior of the countdown timer using a
UML state machine diagram. As usual, there are various ways to do this, and our
guiding principle is to keep things simple and close to the informal description of
the behavior.

It is easy to see that we need to represent the current counter value. Once we
accept this, we really don’t need to distinguish between the stopped state (with
counter value zero) and the counting state (with counter value greater than zero).
The other states that arise naturally are the running state and the alarm state. Figure 7
shows the resulting UML state machine diagram.

266 K. Läufer and G. K. Thiruvathukal

Fig. 7 UML state machine diagram modeling the dynamic behavior of the countdown timer
application

As in the click counter example, these model states map directly to the view
states shown above. Again, the differences among the view states are very minor and
are aimed mostly at usability: A properly labeled button is a much more effective
affordance than an unlabeled or generically labeled one.

Note that there are two types of (internal) timers at work here:

• one-shot timers, such as the three-second timer in the stopped state that gets
restarted every time we press the multifunction button to add time

• recurring timers, such as the one-second timer in the running state that fires
continually for every second that goes by

The following is the control method that starts a recurring timer that ticks
approximately every second.

1 // called on the UI thread
2 public void startTick(final int periodInSec) {
3 if (recurring != null) throw new IllegalStateException();
4

5 recurring = new Timer();
6

7 // The clock model runs onTick every 1000 milliseconds
8 // by specifying initial and periodic delays
9 recurring.schedule(new TimerTask() {

10 @Override public void run() {
11 // fire event on the timer’s internal thread
12 listener.onTick();
13 }
14 }, periodInSec * 1000, periodInSec * 1000);
15 }

Managing Concurrency in Mobile User Interfaces with Examples in Android 267

Thread-Safety in the Model

Within the application model, each timer has its own internal thread on which it
schedules the run method of its TimerTask instances. Therefore, other model
components, such as the state machine, that receive events from either the UI and
one or more timers, or more than one timer, will have to be kept thread-safe.
The easiest way to achieve this is to use locking by making all relevant methods
in the state machine object synchronized; this design pattern is known as Fully
Synchronized Object [22] or Monitor Object [7, 28, 30].

1 @Override public synchronized void onButtonPress() {
2 state.onButtonPress();
3 }
4 @Override public synchronized void onTick() {
5 state.onTick();
6 }
7 @Override public synchronized void onTimeout() {
8 state.onTimeout();
9 }

Furthermore, update events coming back into the adapter component of the UI
may happen on one of the timer threads. Therefore, to comply with the single-
threaded rule, the adapter has to explicitly reschedule such events on the UI thread,
using the runOnUiThreadmethod it inherits from android.app.Activity.

1 @Override public void updateTime(final int time) {
2 // UI adapter responsibility
3 // to schedule incoming events on UI thread
4 runOnUiThread(new Runnable() {
5 @Override public void run() {
6 final TextView tvS =
7 (TextView) findViewById(R.id.seconds);
8 tvS.setText(Integer.toString(time / 10) +
9 Integer.toString(time % 10));

10 }
11 });
12 }

Alternatively, you may wonder whether we can stay true to the single-threaded
rule and reschedule all events on the UI thread at their sources. This is possible
using mechanisms such as the runOnUiThread method and has the advantage
that the other model components such as the state machine no longer have to be
thread-safe. The event sources, however, would now depend on the adapter; to keep
this dependency manageable and our event sources testable, we can express it in
terms of a small interface (to be implemented by the adapter) and inject it into the
event sources.

268 K. Läufer and G. K. Thiruvathukal

1 public interface UIThreadScheduler {
2 void runOnUiThread(Runnable r);
3 }

Some GUI frameworks, such as Java Swing, provide non-view components for
scheduling tasks or events on the UI thread, such as javax.swing.Timer. This
avoids the need for an explicit dependency on the adapter but retains the implicit
dependency on the UI layer.

Meanwhile, Android developers are being encouraged to use Scheduled-
ThreadPoolExecutor instead of java.util.Timer, though the thread-
safety concerns remain the same as before.

Implementing Time-Based Autonomous Behavior

While the entirely passive bounded counter behavior from the previous section was
straightforward to implement, the countdown timer includes autonomous timer-
based behaviors that give rise to another level of complexity.

There are different ways to deal with this behavioral complexity. Given that
we have already expressed the behavior as a state machine, we can use the State
design pattern [8] to separate state-dependent behavior from overarching handling
of external and internal triggers and actions.

We start by defining a state abstraction. Besides the same common methods and
reference to its surrounding state machine, each state has a unique identifier.

1 abstract class TimerState
2 implements TimerUIListener, ClockListener {
3

4 public TimerState(final TimerStateMachine sm) {
5 this.sm = sm;
6 }
7

8 protected final TimerStateMachine sm;
9

10 @Override public final void onStart() { onEntry(); }
11 public void onEntry() { }
12 public void onExit() { }
13 public void onButtonPress() { }
14 public void onTick() { }
15 public void onTimeout() { }
16 public abstract int getId();
17 }

In addition, a state receives UI events and clock ticks. Accordingly, it implements
the corresponding interfaces, which are defined as follows:

Managing Concurrency in Mobile User Interfaces with Examples in Android 269

1 public interface TimerUIListener {
2 void onStart();
3 void onButtonPress();
4 }
5

6 public interface ClockListener {
7 void onTick();
8 void onTimeout();
9 }

As we discussed in section “Understanding User Interaction as Events”, Android
follows an event source/listener naming idiom. Our examples illustrate that it
is straightforward to define custom app-specific events that follow this same
convention. Our ClockListener, for example, combines two kinds of events
within a single interface.

Concrete state classes implement the abstract TimerState class. The key parts
of the state machine implementation follow:

1 // intial pseudo-state
2 private TimerState state = new TimerState(this) {
3 @Override public int getId() {
4 throw new IllegalStateException();
5 }
6 };
7

8 protected void setState(final TimerState nextState) {
9 state.onExit();

10 state = nextState;
11 uiUpdateListener.updateState(state.getId());
12 state.onEntry();
13 }

Let’s focus on the stopped state first. In this state, neither is the clock ticking,
nor is the alarm ringing. On every button press, the remaining running time goes up
by one second and the one-shot three-second idle timeout starts from zero. If three
seconds elapse before another button press, we transition to the running state.

1 private final TimerState STOPPED = new TimerState(this) {
2 @Override public void onEntry() {
3 timeModel.reset(); updateUIRuntime();
4 }
5 @Override public void onButtonPress() {
6 clockModel.restartTimeout(3 /* seconds */);
7 timeModel.inc(); updateUIRuntime();
8 }
9 @Override public void onTimeout() { setState(RUNNING); }

10 @Override public int getId() { return R.string.STOPPED; }
11 };

270 K. Läufer and G. K. Thiruvathukal

Let’s now take a look at the running state. In this state, the clock is ticking but
the alarm is not ringing. With every recurring clock tick, the remaining running time
goes down by one second. If it reaches zero, we transition to the ringing state. If a
button press occurs, we stop the clock and transition to the stopped state.

1 private final TimerState RUNNING = new TimerState(this) {
2 @Override public void onEntry() {
3 clockModel.startTick(1 /* second */);
4 }
5 @Override public void onExit() { clockModel.stopTick(); }
6 @Override public void onButtonPress() { setState(STOPPED); }
7 @Override public void onTick() {
8 timeModel.dec(); updateUIRuntime();
9 if (timeModel.get() == 0) { setState(RINGING); }

10 }
11 @Override public int getId() { return R.string.RUNNING; }
12 };

Finally, in the ringing state, nothing is happening other than the alarm ringing. If
a button press occurs, we stop the alarm and transition to the stopped state.

1 private final TimerState RINGING = new TimerState(this) {
2 @Override public void onEntry() {
3 uiUpdateListener.ringAlarm(true);
4 }
5 @Override public void onExit() {
6 uiUpdateListener.ringAlarm(false);
7 }
8 @Override public void onButtonPress() { setState(STOPPED); }
9 @Override public int getId() { return R.string.RINGING; }

10 };

Managing Structural Complexity

We can again describe the architecture of the countdown timer Android app as
an instance of the Model-View-Adapter (MVA) architectural pattern. In Fig. 8,
solid arrows represent (synchronous) method invocation, and dashed arrows rep-
resent (asynchronous) events. Here, both the view components and the model’s
autonomous timer send events to the adapter.

The user input scenario in Fig. 9 illustrates the system’s end-to-end response to a
button press. The internal timeout gets set in response to a button press. When the
timeout event actually occurs, corresponding to an invocation of the onTimeout
method, the system responds by transitioning to the running state.

By contrast, the autonomous scenario in Fig. 10 shows the system’s end-to-end
response to a recurring internal clock tick, corresponding to an invocation of the
onTick method. When the remaining time reaches zero, the system responds by
transitioning to the alarm-ringing state.

Managing Concurrency in Mobile User Interfaces with Examples in Android 271

Fig. 8 The countdown
timer’s Model-View-Adapter
(MVA) architecture with
additional event flow from
model to view

Fig. 9 Countdown timer: user input scenario (button press)

Testing GUI Applications with Complex Behavior and Structure

As we develop more complex applications, we increasingly benefit from thorough
automated testing. In particular, there are different structural levels of testing:

272 K. Läufer and G. K. Thiruvathukal

Fig. 10 Countdown timer: autonomous scenario (timeout)

component-level unit testing, integration testing, and system testing. Testing is
particularly important in the presence of concurrency, where timing and nondeter-
minism are of concern.

In addition, as our application grows in complexity, so does our test code, so
it makes sense to use good software engineering practice in the development of
our test code. Accordingly, software design patterns for test code have emerged,
such as the Testclass Superclass pattern [25] we use in section “Understanding User
Interaction as Events”.

Unit-Testing Passive Model Components

The time model is a simple passive component, so we can test it very similarly as
the bounded counter model in section “Understanding User Interaction as Events”.

Unit-Testing Components with Autonomous Behavior

Testing components with autonomous behavior is more challenging because we
have to attach some kind of probe to observe the behavior while taking into account
the presence of additional threads.

Managing Concurrency in Mobile User Interfaces with Examples in Android 273

Let’s try this on our clock model. The following test verifies that a stopped clock
does not emit any tick events.

1 @Test
2 public void testStopped() throws InterruptedException {
3 final AtomicInteger i = new AtomicInteger(0);
4 model.setClockListener(new ClockListener() {
5 @Override public void onTick() { i.incrementAndGet(); }
6 @Override public void onTimeout() { }
7 });
8 Thread.sleep(5500);
9 assertEquals(0, i.get());

10 }

And this one verifies that a running clock emits roughly one tick event per second.

1 @Test
2 public void testRunning() throws InterruptedException {
3 final AtomicInteger i = new AtomicInteger(0);
4 model.setClockListener(new ClockListener() {
5 @Override public void onTick() { i.incrementAndGet(); }
6 @Override public void onTimeout() { }
7 });
8 model.startTick(1 /* second */);
9 Thread.sleep(5500);

10 model.stopTick();
11 assertEquals(5, i.get());
12 }

Because the clock model has its own timer thread, separate from the main thread
executing the tests, we need to use a thread-safe AtomicInteger to keep track
of the number of clock ticks across the two threads.

Unit-Testing Components with Autonomous Behavior and Complex
Dependencies

Some model components have complex dependencies that pose additional dif-
ficulties with respect to testing. Our timer’s state machine model, e.g., expects
implementations of the interfaces TimeModel, ClockModel, and Timer-
UIUpdateListener to be present. We can achieve this by manually implement-
ing a so-called mock object8 that unifies these three dependencies of the timer state
machine model, corresponding to the three interfaces this mock object implements.

8There are also various mocking frameworks, such as Mockito and JMockit, which can automat-
ically generate mock objects that represent component dependencies from interfaces and provide
APIs or domain-specific languages for specifying test expectations.

274 K. Läufer and G. K. Thiruvathukal

1 class UnifiedMockDependency
2 implements TimeModel, ClockModel, TimerUIUpdateListener {
3

4 private int timeValue = -1, stateId = -1;
5 private int runningTime = -1, idleTime = -1;
6 private boolean started = false, ringing = false;
7

8 public int getTime() { return timeValue; }
9 public int getState() { return stateId; }

10 public boolean isStarted() { return started; }
11 public boolean isRinging() { return ringing; }
12

13 @Override public void updateTime(final int tv) {
14 this.timeValue = tv;
15 }
16 @Override public void updateState(final int stateId) {
17 this.stateId = stateId;
18 }
19 @Override public void ringAlarm(final boolean b) {
20 ringing = b;
21 }
22

23 @Override public void setClockListener(
24 final ClockListener listener) {
25 throw new UnsupportedOperationException();
26 }
27 @Override public void startTick(final int period) {
28 started = true;
29 }
30 @Override public void stopTick() { started = false; }
31 @Override public void restartTimeout(final int period) { }
32

33 @Override public void reset() { runningTime = 0; }
34 @Override public void inc() {
35 if (runningTime != 99) { runningTime++; }
36 }
37 @Override public void dec() {
38 if (runningTime != 0) { runningTime--; }
39 }
40 @Override public int get() { return runningTime; }
41 }

The instance variables and corresponding getter methods enable us to test
whether the SUT produced the expected state changes in the mock object. The
three remaining blocks of methods correspond to the three implemented interfaces,
respectively.

Now we can write tests to verify actual scenarios. In the following scenario, we
start with time 0, press the button once, expect time 1, press the button 198 times
(the max time is 99), expect time 99, produce a timeout event, check if running, wait
50 s, expect time 49 (99–50), wait 49 s, expect time 0, check if ringing, wait 3 more
seconds (just in case), check if still ringing, press the button to stop the ringing, and
make sure the ringing has stopped and we are in the stopped state.

Managing Concurrency in Mobile User Interfaces with Examples in Android 275

1 @Test
2 public void testScenarioRun2() {
3 assertEquals(R.string.STOPPED, dependency.getState());
4 model.onButtonPress();
5 assertTimeEquals(1);
6 assertEquals(R.string.STOPPED, dependency.getState());
7 onButtonRepeat(MAX_TIME * 2);
8 assertTimeEquals(MAX_TIME);
9 model.onTimeout();

10 assertEquals(R.string.RUNNING, dependency.getState());
11 onTickRepeat(50);
12 assertTimeEquals(MAX_TIME - 50);
13 onTickRepeat(49);
14 assertTimeEquals(0);
15 assertEquals(R.string.RINGING, dependency.getState());
16 assertTrue(dependency.isRinging());
17 onTickRepeat(3);
18 assertEquals(R.string.RINGING, dependency.getState());
19 assertTrue(dependency.isRinging());
20 model.onButtonPress();
21 assertFalse(dependency.isRinging());
22 assertEquals(R.string.STOPPED, dependency.getState());
23 }

Note that this happens in “fake time” (fast-forward mode) because we can make the
rate of the clock ticks as fast as the state machine can keep up.

Programmatic System Testing of the App

The following is a system test of the application with all of its real component
present. It verifies the following scenario in real time: time is 0, press button five
times, expect time 5, wait 3 s, expect time 5, wait 3 more seconds, expect time 2,
press stopTick button to reset time, and expect time 0. This test also includes the
effect of all state transitions as assertions.

1 @Test
2 public void testScenarioRun2() throws Throwable {
3 getActivity().runOnUiThread(new Runnable() {
4 @Override public void run() {
5 assertEquals(STOPPED, getStateValue());
6 assertEquals(0, getDisplayedValue());
7 for (int i = 0; i < 5; i++) {
8 assertTrue(getButton().performClick());
9 }

10 }
11 });
12 runUiThreadTasks();
13 getActivity().runOnUiThread(new Runnable() {
14 @Override public void run() {
15 assertEquals(5, getDisplayedValue());

276 K. Läufer and G. K. Thiruvathukal

16 }
17 });
18 Thread.sleep(3200); // <-- do not run this in the UI thread!
19 runUiThreadTasks();
20 getActivity().runOnUiThread(new Runnable() {
21 @Override public void run() {
22 assertEquals(RUNNING, getStateValue());
23 assertEquals(5, getDisplayedValue());
24 }
25 });
26 Thread.sleep(3200);
27 runUiThreadTasks();
28 getActivity().runOnUiThread(new Runnable() {
29 @Override public void run() {
30 assertEquals(RUNNING, getStateValue());
31 assertEquals(2, getDisplayedValue());
32 assertTrue(getButton().performClick());
33 }
34 });
35 runUiThreadTasks();
36 getActivity().runOnUiThread(new Runnable() {
37 @Override public void run() {
38 assertEquals(STOPPED, getStateValue());
39 }
40 });
41 }

As in section “Understanding User Interaction as Events”, we can run this test as an
in-container instrumentation test or out-of-container using a simulated environment
such as Robolectric.

During testing, our use of threading should mirror that of the SUT: The button
press events we simulate using the performClick method have to run on the
UI thread of the simulated environment. While the UI thread handles these events,
we use Thread.sleep in the main thread of the test runner to wait in pseudo-
real-time, much like the user would wait and watch the screen update.

Robolectric queues tasks scheduled on the UI thread until it is told to per-
form these. Therefore, we must invoke the runUiThreadTasks method before
attempting our assertions on the UI components.

Keeping the User Interface Responsive with Asynchronous
Activities

In this section, we explore the issues that arise when we use a GUI to control long-
running, processor-bound activities. In particular, we’ll want to make sure the GUI
stays responsive even in such scenarios and the activity supports progress reporting
and cancelation. Our running example will be a simple app for checking whether a
number is prime. The complete code for this example is available online [19].

Managing Concurrency in Mobile User Interfaces with Examples in Android 277

Fig. 11 Screenshot of an
Android app for checking
prime numbers

The Functional Requirements for the Prime Checker App

The functional requirements for this app are as follows:

• The app allows us to enter a number in a text field.
• When we press the check button, the app checks whether the number we entered

is prime.
• If we press the cancel button, any ongoing check(s) are discontinued.

Figure 11 shows a possible UI for this app.
To check whether a number is prime, we can use this iterative brute-force

algorithm.

1 protected boolean isPrime(final long i) {
2 if (i < 2) return false;
3 final long half = i / 2;
4 for (long k = 2; k <= half; k += 1) {
5 if (isCancelled() || i % k == 0) return false;
6 publishProgress((int) (k * 100 / half));
7 }
8 return true;
9 }

278 K. Läufer and G. K. Thiruvathukal

For now, let’s ignore the isCancelled and updateProgress methods and
agree to discuss their significance later in this section.

While this is not an efficient prime checker implementation, this app will allow us
to explore and discuss different ways to run one or more such checks. In particular,
the fact that the algorithm is heavily processor-bound makes it an effective running
example for discussing whether to move such activities to the background (or remote
servers).

The Problem with Foreground Tasks

As a first attempt, we now can run the isPrime method from within our event
listener in the current thread of execution (the main GUI thread).

1 final PrimeCheckerTask t =
2 new PrimeCheckerTask(progressBars[0], input);
3 localTasks.add(t);
4 t.onPreExecute();
5 final boolean result = t.isPrime(number);
6 t.onPostExecute(result);
7 localTasks.clear();

The methods onPreExecute and onPostExecute are for resetting the user
interface and displaying the result.

As shown in Table 1 below, response times (in seconds) are negligible for very
small numbers but increase roughly linearly. “�1” means no noticeable delay, and
“∗” means that the test was canceled before it completed.

The actual execution targets for the app or isPrime implementation are

• Samsung Galaxy Nexus I9250 phone (2012 model): dual-core 1.2 GHz Cortex-
A9 ARM processor with 1 GB of RAM (using one core)

• Genymotion x86 Android emulator with 1 GB of RAM and one processor
running on a MacBook Air

• MacBook Air (mid-2013) with 1.7 GHz Intel Core i7 and 8 GB of RAM
• Heroku free plan with one web dyno with 512 MB of RAM

For larger numbers, the user interface on the device freezes noticeably while
the prime number check is going on, so it does not respond to pressing the cancel
button. There is no progress reporting either: The progress bar jumps from zero
to 100 when the check finishes. In the UX (user experience) world, any freezing
for more than a fraction of a second is considered unacceptable, especially without
progress reporting.

Managing Concurrency in Mobile User Interfaces with Examples in Android 279

Table 1 Response times for checking different prime numbers on representative execution
targets

Execution target prime Phone Emulator Computer Web service

1013 � 1 � 1 � 1 � 1

10007 1 � 1 � 1 � 1

100003 3 1 � 1 � 1

1000003 27 6 � 1 1

10000169 ∗ 60 2 2

100000007 ∗ ∗ 8 8

Reenter the Single-Threaded User Interface Model

The behavior we are observing is a consequence of the single-threaded execu-
tion model underlying Android and similar GUI frameworks. As discussed in
section “Thread Safety in GUI Applications: The Single-Threaded Rule”, in this
design, all UI events, including user inputs such as button presses and mouse moves,
outputs such as changes to text fields, progress bar updates, and other component
repaints, and internal timers, are processed sequentially by a single thread, known
in Android as the main thread (or UI thread). We will continue to say UI thread for
clarity.

To process an event completely, the UI thread needs to dispatch the event to
any event listener(s) attached to the event source component. Accordingly, single-
threaded UI designs typically come with two rules:

1. To ensure responsiveness, code running on the UI thread must never block.
2. To ensure thread-safety, only code running on the UI thread is allowed to access

the UI components.

In interactive applications, running for a long time is almost as bad as blocking
indefinitely on, say, user input. To understand exactly what is happening, let’s focus
on the point that events are processed sequentially in our scenario of entering a
number and attempting to cancel the ongoing check.

• The user enters the number to be checked.
• The user presses the check button.
• To process this event, the UI thread runs the attached listener, which checks

whether the number is prime.
• While the UI thread running the listener, all other incoming UI events—pressing

the cancel button, updating the progress bar, changing the background color of
the input field, etc.—are queued sequentially.

• Once the UI thread is done running the listener, it will process the remaining
events on the queue. At this point, the cancel button has no effect anymore, and
we will instantly see the progress bar jump to 100% and the background color of
the input field change according to the result of the check.

280 K. Läufer and G. K. Thiruvathukal

So why doesn’t Android simply handle incoming events concurrently, say, each
in its own thread? The main reason not to do this is that it greatly complicates the
design while at the same time sending us back to square one in most scenarios:
Because the UI components are a shared resource, to ensure thread safety in the
presence of race conditions to access the UI, we would now have to use mutual
exclusion in every event listener that accesses a UI component. Because that is what
event listeners typically do, in practice, mutual exclusion would amount to bringing
back a sequential order. So we would have greatly complicated the whole model
without effectively increasing the extent of concurrency in our system (see also
section “Thread Safety in GUI Applications: The Single-Threaded Rule” above).

There are two main approaches to keeping the UI from freezing while a long-
running activity is going on.

Breaking Up an Activity Into Small Units of Work

The first approach is still single-threaded: We break up the long-running activity
into very small units of work to be executed directly by the UI thread. When the
current chunk is about to finish, it schedules the next unit of work for execution on
the UI thread. Once the next unit of work runs, it first checks whether a cancelation
request has come in. If so, it simply will not continue, otherwise it will do its work
and then schedule its successor. This approach allows other events, such as reporting
progress or pressing the cancel button, to get in between two consecutive units of
work and will keep the UI responsive as long as each unit executes fast enough.

Now, in the same scenario as above—entering a number and attempting to cancel
the ongoing check—the behavior will be much more responsive:

• The user enters the number to be checked.
• The user presses the check button.
• To process this event, the UI thread runs the attached listener, which makes a little

bit of progress toward checking whether the number is prime and then schedules
the next unit of work on the event queue.

• Meanwhile, the user has pressed the cancel button, so this event is on the event
queue before the next unit of work toward checking the number.

• Once the UI thread is done running the first (very short) unit of work, it will run
the event listener attached to the cancel button, which will prevent further units
of work from running.

Asynchronous Tasks to the Rescue

The second approach is typically multi-threaded: We represent the entire activity
as a separate asynchronous task. Because this is such a common scenario, Android
provides the abstract class AsyncTask for this purpose.

Managing Concurrency in Mobile User Interfaces with Examples in Android 281

1 public abstract class AsyncTask<Params, Progress, Result> {
2 protected void onPreExecute() { }
3 protected abstract Result doInBackground(Params... params);
4 protected void onProgressUpdate(Progress... values) { }
5 protected void onPostExecute(Result result) { }
6 protected void onCancelled(Result result) { }
7 protected final void publishProgress(Progress... values) {
8 ...
9 }

10 public final boolean isCancelled() { ... }
11 public final AsyncTask<...> executeOnExecutor(
12 Executor exec, Params... ps) {
13 ...
14 }
15 public final boolean cancel(boolean mayInterruptIfRunning) {
16 ...
17 }
18 }

The three generic type parameters are Params, the type of the arguments of the
activity; Progress, they type of the progress values reported while the activity
runs in the background, and Result, the result type of the background activity.
Not all three type parameters have to be used, and we can use the type Void to
mark a type parameter as unused.

When an asynchronous task is executed, the task goes through the following
lifecycle:

• onPreExecute runs on the UI thread and is used to set up the task in a thread-
safe manner.

• doInBackground(Params...) is an abstract template method that we
override to perform the desired task. Within this method, we can report progress
using publishProgress(Progress...) and check for cancelation
attempts using isCancelled().

• onProgressUpdate(Progress...) is scheduled on the UI thread when-
ever the background task reports progress and runs whenever the UI thread gets
to this event. Typically, we use this method to advance the progress bar or display
progress to the user in some other form.

• onPostExecute(Result) receives the result of the background task as an
argument and runs on the UI thread after the background task finishes.

Using AsyncTask in the Prime Number Checker

We set up the corresponding asynchronous task with an input of type Long,
progress of type Integer, and result of type Boolean. In addition, the task has
access to the progress bar and input text field in the Android GUI for reporting
progress and results, respectively.

282 K. Läufer and G. K. Thiruvathukal

The centerpiece of our solution is to invoke the isPrime method from the main
method of the task, doInBackground. The auxiliary methods isCancelled
and publishProgress we saw earlier in the implementation of isPrime are
for checking for requests to cancel the current task and updating the progress bar,
respectively. doInBackground and the other lifecycle methods are implemented
here:

1 @Override protected void onPreExecute() {
2 progressBar.setMax(100);
3 input.setBackgroundColor(Color.YELLOW);
4 }
5

6 @Override protected Boolean doInBackground(
7 final Long... params) {
8 if (params.length != 1)
9 throw new IllegalArgumentException(

10 "exactly one argument expected");
11 return isPrime(params[0]);
12 }
13

14 @Override protected void onProgressUpdate(
15 final Integer... values) {
16 progressBar.setProgress(values[0]);
17 }
18

19 @Override protected void onPostExecute(final Boolean result) {
20 input.setBackgroundColor(result ? Color.GREEN : Color.RED);
21 }
22

23 @Override protected void onCancelled(final Boolean result) {
24 input.setBackgroundColor(Color.WHITE);
25 }

When the user presses the cancel button in the UI, any currently running
tasks are canceled using the control method cancel(boolean), and subsequent
invocations of isCancelled return false; as a result, the isPrime method
returns on the next iteration.

How often to check for cancelation attempts is a matter of experimentation: Typi-
cally, it is sufficient to check only every so many iterations to ensure that the task can
make progress on the actual computation. Note how this design decision is closely
related to the granularity of the units of work in the single-threaded design discussed
in section “Thread Safety in GUI Applications: The Single-Threaded Rule” above.

Execution of Asynchronous Tasks in the Background

So far, we have seen how to define background tasks as subclasses of the abstract
framework class AsyncTask. Actually executing background tasks arises as an

Managing Concurrency in Mobile User Interfaces with Examples in Android 283

orthogonal concern with the following strategies to choose from for assigning tasks
to worker threads:

• Serial executor: Tasks are queued and executed by a single background thread.
• Thread pool executor: Tasks are executed concurrently by a pool of background

worker threads. The default thread pool size depend on the available hardware
resources; a typical pool size even for a single-core Android device is two.

In our example, we can schedule PrimeCheckerTask instances on a thread
pool executor:

1 final PrimeCheckerTask t =
2 new PrimeCheckerTask(progressBars[i], input);
3 localTasks.add(t);
4 t.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, number);

This completes the picture of moving processor-bound, potentially long-running
activities out of the UI thread but in a way that they can still be controlled by the
UI thread.

Additional considerations apply when targeting symmetric multi-core hard-
ware (SMP), which is increasingly common among mobile devices. While the
application-level, coarse-grained concurrency techniques discussed in this chapter
still apply to multi-core execution, SMP gives rise to more complicated low-level
memory consistency issues than those discussed above in section “Fundamentals
of Thread Safety”. An in-depth discussion of Android app development for SMP
hardware is available here [12].

Summary

In this chapter, we have studied various parallel and distributed computing topics
from a user-centric software development perspective. Specifically, in the context
of mobile application development, we have studied the basic building blocks of
interactive applications in the form of events, timers, and asynchronous activities,
along with related software modeling, architecture, and design topics.

The complete source code for the examples from this chapter, along with
instructions for building and running these examples, is available from [17]. For
further reading on designing concurrent object-oriented software, please have a look
at [7, 22, 23, 28].

Acknowledgements We are grateful to our former graduate students Michael Dotson and Audrey
Redovan for having contributed their countdown timer implementation, and to our colleague Dr.
Robert Yacobellis for providing feedback on this chapter and trying these ideas in the classroom.

We are also grateful to the anonymous CDER reviewers for their helpful suggestions.

284 K. Läufer and G. K. Thiruvathukal

References

1. Kevin Ashton. That ’Internet of Things’ thing. RFID Journal, http://www.rfidjournal.com/
articles/view?4986, July 2009. Accessed: 2016-12-09.

2. Kent Beck. Test Driven Development: By Example. Addison-Wesley Professional, 2002.
3. Google Webmaster Central Blog. Rolling out the mobile-friendly update. https://webmasters.

googleblog.com/2015/04/rolling-out-mobile-friendly-update.html, April 2015. Accessed:
2016-12-12.

4. Stefano Borini. Understanding model-view-controller. https://www.gitbook.com/book/
stefanoborini/modelviewcontroller, 2016. Accessed: 2016-12-09.

5. Jemma Brackebush. How mobile is overtaking desktop for global media consumption, in 5
charts. Digiday, http://digiday.com/publishers/mobile-overtaking-desktops-around-world-5-
charts/, June 2016. Accessed: 2016-12-10.

6. Jason H. Christensen. Using restful web-services and cloud computing to create next
generation mobile applications. In Proceedings of the 24th ACM SIGPLAN Conference
Companion on Object Oriented Programming Systems Languages and Applications, OOPSLA
‘09, pages 627–634, New York, NY, USA, 2009. ACM.

7. Thomas W. Christopher and George K. Thiruvathukal. High Performance Java Platform
Computing. Prentice Hall PTR, Upper Saddle Ridge, NJ, 2000.

8. Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements
of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995.

9. Google. Android developer reference. http://developer.android.com/develop/, 2009–2018.
Accessed: 2016-12-09.

10. Google. Memory consistency properties. https://developer.android.com/reference/java/util/
concurrent/package-summary.html#MemoryVisibility, 2009–2018. Accessed: 2016-12-09.

11. Google. Processes and threads. http://developer.android.com/guide/components/processes-
and-threads.html, 2009–2018. Accessed: 2016-12-09.

12. Google. SMP primer for Android. http://developer.android.com/training/articles/smp.html,
2009–2018. Accessed: 2016-12-09.

13. Google. Android Studio: Use Java 8 language features. https://developer.android.com/studio/
write/java8-support.html#supported_features, 2017. Accessed: 2018-02-05.

14. The Guardian. Mobile web browsing overtakes desktop for the first time. https://www.
theguardian.com/technology/2016/nov/02/mobile-web-browsing-desktop-smartphones-
tablets/, November 2016. Accessed: 2016-12-10.

15. Graham Hamilton. JavaBeans specification. Technical report, Sun Microsystems, inc, 1997.
16. Per Brinch Hansen. Operating System Principles. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA, 1973.
17. Konstantin Läufer, George K. Thiruvathukal, and Robert H. Yacobellis. Loyola Uni-

versity Chicago Computer Science COMP 313/413 course examples. https://github.com/
lucoodevcourse/, 2012–2018.

18. Konstantin Läufer, George K. Thiruvathukal, and Robert H. Yacobellis. Loyola University
Chicago Computer Science COMP 313/413 course examples: Click counter. https://github.
com/lucoodevcourse/clickcounter-android-java, 2012–2018.

19. Konstantin Läufer, George K. Thiruvathukal, and Robert H. Yacobellis. Loyola University
Chicago Computer Science COMP 313/413 course examples: Prime number checker. https://
github.com/lucoodevcourse/primenumbers-android-java, 2012–2018.

20. Konstantin Läufer, George K. Thiruvathukal, and Robert H. Yacobellis. Loyola University
Chicago Computer Science COMP 313/413 course examples: Simple threads. https://github.
com/lucoodevcourse/simplethreads-java, 2012–2018.

21. Konstantin Läufer, George K. Thiruvathukal, and Robert H. Yacobellis. Loyola University
Chicago Computer Science COMP 313/413 course examples: Stopwatch. https://github.com/
lucoodevcourse/stopwatch-android-java, 2012–2018.

http://www.rfidjournal.com/articles/view?4986
http://www.rfidjournal.com/articles/view?4986
https://webmasters.googleblog.com/2015/04/rolling-out-mobile-friendly-update.html
https://webmasters.googleblog.com/2015/04/rolling-out-mobile-friendly-update.html
https://www.gitbook.com/book/stefanoborini/modelviewcontroller
https://www.gitbook.com/book/stefanoborini/modelviewcontroller
http://digiday.com/publishers/mobile-overtaking-desktops-around-world-5-charts/
http://digiday.com/publishers/mobile-overtaking-desktops-around-world-5-charts/
http://developer.android.com/develop/
https://developer.android.com/reference/java/util/concurrent/package-summary.html#MemoryVisibility
https://developer.android.com/reference/java/util/concurrent/package-summary.html#MemoryVisibility
http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/guide/components/processes-and-threads.html
http://developer.android.com/training/articles/smp.html
https://developer.android.com/studio/write/java8-support.html#supported_features
https://developer.android.com/studio/write/java8-support.html#supported_features
https://www.theguardian.com/technology/2016/nov/02/mobile-web-browsing-desktop-smartphones-tablets/
https://www.theguardian.com/technology/2016/nov/02/mobile-web-browsing-desktop-smartphones-tablets/
https://www.theguardian.com/technology/2016/nov/02/mobile-web-browsing-desktop-smartphones-tablets/
https://github.com/lucoodevcourse/
https://github.com/lucoodevcourse/
https://github.com/lucoodevcourse/clickcounter-android-java
https://github.com/lucoodevcourse/clickcounter-android-java
https://github.com/lucoodevcourse/primenumbers-android-java
https://github.com/lucoodevcourse/primenumbers-android-java
https://github.com/lucoodevcourse/simplethreads-java
https://github.com/lucoodevcourse/simplethreads-java
https://github.com/lucoodevcourse/stopwatch-android-java
https://github.com/lucoodevcourse/stopwatch-android-java

Managing Concurrency in Mobile User Interfaces with Examples in Android 285

22. Doug Lea. Concurrent Programming in Java. Second Edition: Design Principles and Patterns.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1999.

23. Jeff Magee and Jeff Kramer. Concurrency: State Models and Java Programs. John Wiley &
Sons, Inc., New York, NY, USA, 1999.

24. Robert C. Martin and Micah Martin. Agile Principles, Patterns, and Practices in C# (Robert
C. Martin). Prentice Hall PTR, Upper Saddle River, NJ, USA, 2006.

25. Gerard Meszaros. XUnit Test Patterns: Refactoring Test Code. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2006.

26. Brad A. Myers. A brief history of human-computer interaction technology. interactions,
5(2):44–54, March 1998.

27. Oracle. Java platform, standard ed. 8 API specification: Class EventQueue. http://docs.oracle.
com/javase/8/docs/api/java/awt/EventQueue.html, 1993–2018. Accessed: 2016-12-09.

28. Tim Peierls, Brian Goetz, Joshua Bloch, Joseph Bowbeer, Doug Lea, and David Holmes. Java
Concurrency in Practice. Addison-Wesley Professional, 2005.

29. James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language Reference
Manual, The (2nd Edition). Pearson Higher Education, 2004.

30. Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-Oriented
Software Architecture: Patterns for Concurrent and Networked Objects. John Wiley & Sons,
Inc., New York, NY, USA, 2nd edition, 2000.

31. Hong Zhu, Patrick A. V. Hall, and John H. R. May. Software unit test coverage and adequacy.
ACM Comput. Surv., 29(4):366–427, December 1997.

http://docs.oracle.com/javase/8/docs/api/java/awt/EventQueue.html
http://docs.oracle.com/javase/8/docs/api/java/awt/EventQueue.html

Parallel Programming for Interactive
GUI Applications

Nasser Giacaman and Oliver Sinnen

Abstract This chapter will help you understand the rules that you must adhere to
when developing a concurrent application with a graphical user interface (GUI).
Regardless of the technology you use (for example, developing an Android mobile
app or a desktop application using the .NET Framework), the concepts presented
here are standard for the GUI toolkits you will use. The most important aspect
includes ensuring the application does not freeze or become unresponsive, by
employing background threads. This in turn leads to the other important considera-
tion, which relates to ensuring access to any GUI components does not introduce
potential race conditions. Collectively, the concepts presented here relate to the
single-thread rule that governs almost all GUI toolkits you will likely come across.

Relevant core courses: GUI Concurrency is a topic suitable for any CS2-equivalent
course. The material covered in this chapter would be typically covered in around
3–4 h of class time (about a week’s worth of lectures). Rather than focusing
on parallel programming, the focus is on thread-safety issues pertaining to GUI
applications (and does not include general introductory threading). The topic is
also suitable for any course that incorporates GUI development, as well as PDC
courses at any level.

Relevant PDC topics: There is no specific categorization for GUI concurrency
in the NSF/IEEE-TCPP Curriculum Initiative on Parallel and Distributed Com-
puting [1]. However, the topic presented here is essential for CS2 courses that
involve a GUI module. More specifically, this topic is vital for any software
developer creating interactive GUI applications, and not just for the parallel
programming enthusiast. Since GUI concurrency has much of its essence based
on standard parallelization/concurrency concepts, we will be touching on the

N. Giacaman (�) · O. Sinnen
Parallel and Reconfigurable Computing Lab, Department of Electrical and Computer
Engineering, The University of Auckland, Auckland, New Zealand
e-mail: n.giacaman@auckland.ac.nz; o.sinnen@auckland.ac.nz

© Springer International Publishing AG, part of Springer Nature 2018
S. K. Prasad et al. (eds.), Topics in Parallel and Distributed Computing,
https://doi.org/10.1007/978-3-319-93109-8_10

287

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93109-8_10&domain=pdf
mailto:n.giacaman@auckland.ac.nz
mailto:o.sinnen@auckland.ac.nz
https://doi.org/10.1007/978-3-319-93109-8_10

288 N. Giacaman and O. Sinnen

following subtopics – but directly in the context of GUI applications. According
to Bloom’s classification, students are expected to Apply these subtopics:

• Programming

– Parallel programming paradigms (shared memory, task/thread spawning).
– Semantics and correctness issues.

Learning outcomes:

• Students will understand the importance of concurrency and apply it in the
context of GUI applications.

• Students will be able to discuss the main issues associated with GUI applications.
This includes two fundamental primary themes:

– Maintaining a responsive GUI application by introducing concurrency
for event handlers with human-perceived delays (i.e. allowing the GUI-
thread/EDT/UI-thread to promptly return to the event loop to avoid the
backlog of events).

– Ensuring thread-safety of GUI components (i.e. background threads must not
access GUI components, only the GUI-thread/EDT/UI-thread may do this).

• In addition to the essential correctness themes above, students will also be able to
supply intermittent updates (from the background threads) to the GUI-thread to
support improved user-perceived performance (e.g. regular updates to a progress
bar).

• Students will be able to understand the different ways in which a GUI application
becomes unresponsive, and apply the correct techniques to overcome this:

– The GUI-thread is never to invoke blocking functions, even when waiting for
asynchronous tasks.

– The GUI-thread is never to process any events that involve perceived delays.

Context for use: It is intended that this chapter be used directly by students to help
them understand the underlying concepts of GUI concurrency. Rather than just
declare the rules of GUI concurrency, it is important to explain the bigger picture
why those rules are in place. The analogy presented has been used in lectures for
the above courses with positive feedback from students.

Essential Concurrency Definitions

Before we start discussing GUI concurrency, we will briefly mention the most
relevant definitions. Most of these you would have come across already. A thread is
a programming entity that allows a stream of instructions to be executed independent
of (and at the same time as) other instructions. A task (or more specifically a
Runnable in Java) is a packaged entity of code to be executed by a thread. Locks
are a protection mechanism that ensures only one thread executes a piece of code at

Parallel Programming for Interactive GUI Applications 289

any one point in time. As this chapter progresses, more definitions (especially in the
context of GUI applications) are introduced. See section “Here Comes the Auditor”
for a summary of these concepts.

The Cash Balance Problem

To help us understand concurrency in a graphical user interface (GUI) application,
we are going to develop some storylines to explain it in non-technical terms. The
first storyline introduced in this section is a rather classical example that helps
explain the major problem that concurrency introduces in general. As simple as
it may seem, this problem is the fundamental issue underpinning GUI concurrency,
so it is important we have a clear appreciation of the inherent problem.

Figure 1 illustrates a company’s policy in maintaining the cash balance by using
a book. The policy includes three primitive steps to be followed whenever an
employee needs to update the balance. First, the employee must observe the balance
on the open page of the book (for simplicity, we assume only one balance is written
on each page of the book). Once the employee has taken a mental note of the current
balance, the employee momentarily performs a simple calculation on their own
calculator. With this new balance in mind, the employee returns to the book, flips
the page (without taking notice of what page was open) and writes the new balance
on the next empty page. This page becomes the new balance.

While it may seem like a rather straightforward and harmless set of steps, the
obvious situation is when an employee performs steps 1–3 at the same time as
another employee. For example, if Anne and Bob both observe the book balance
(1a and 1b respectively), then they both enter $520 into their calculators. Anne adds
20 to her calculator (2a), which then reports 540. In the meantime, Bob is adding 30
to his calculator (2b), which then reports 550. Anne deposits the $20 into the pile
of cash, flips the page and writes $540 on a new page (3a). Just as she finishes, Bob
is also depositing his $30 into the pile of cash, flips the page and writes $550 on a
new page. The book balance is inconsistent with the actual amount of cash, which
is actually $570! Neither Anne or Bob is to blame – they were simply following
company procedure!

As naive as the three steps seem in updating something as simple as the cash
balance, these are the exact same steps involved in updating an integer in our
program! A statement as simple as “count++;” expands to three instructions that
the processor must execute:

1. Read the value from memory and into a register (a small amount of fast storage
located on the processor), much in the same way Anne glanced the value in the
book and recorded it into her calculator.

2. Perform the increment in the register, much in the same way Anne performed the
addition on the calculator.

3. Write the result from the register back to memory (with disregard to the current
value in memory), much in the same way Anne copied the result from her

290 N. Giacaman and O. Sinnen

Fig. 1 In this company, a record of the cash balance is maintained in a book. The company policy
to maintain the book balance is rather primitive, and involves three simple steps that each employee
follows. (1) An employee observes the balance on the currently open page in the book. (2) The
employee turns away and calculates the new balance using a calculator. (3) The employee returns
to the book, flips the page (without noticing if it had changed since being observed in Step 1) and
writes the new balance on the next page

calculator onto a new page in the book (with disregard to the current value written
in the book).

We can even simulate the cash balance problem in a simple program1:

int currentBookBalance = 520;
...
// Anne
int observedAmount = currentBookBalance; // 1a
blink();
int calculatedAmount = observedAmount + 20; // 2a
blink();

1The first code example (cash balance problem) is included in the Appendix, and all the example
codes are downloadable from http://parallel.auckland.ac.nz/files/gui-chapter-examples.zip

http://parallel.auckland.ac.nz/files/gui-chapter-examples.zip

Parallel Programming for Interactive GUI Applications 291

currentBookBalance = calculatedAmount; // 3a
...
// Bob
int observedAmount = currentBookBalance; // 1b
blink();
int calculatedAmount = observedAmount + 30; // 2b
blink();
currentBookBalance = calculatedAmount; // 3b
...
System.out.println("Final balance = $" + currentBookBalance);

When we run this program (eg01.CashBalanceProblem.java), we
experience what is known as a race condition (a programming bug where the
output depends on the uncontrollable timing and intertwining of the steps since
multiple threads are writing to the same memory location). In our example, we
notice that sometimes the final result is $540, while at other times it is $550. It is
never the expected $570. The blink() function is rather an exaggeration to help
illustrate the point by forcing the intertwining of the three steps between Anne and
Bob by introducing a time delay between steps 1, 2 and 3.

Solving the Cash Balance Problem: Without Locks?

You probably anticipated this section to solve the cash balance problem by
protecting access to the cash balance using fancy concepts such as mutual exclusion
and locks, right? Well, sorry to disappoint you, but we’re not going to do that here.2

If we were going to take this approach, then we would be talking about how we put
the cash balance inside a room that has a lock on the inside of the door. The rule is
that only one person is allowed inside the room, in which case they have full access
to the books while everyone else waits outside. When either of Anne or Bob wants
to deposit money into the cash balance, they enter the room, perform the three steps,
then exit to allow another person to perform the steps.

While using locks seems like a reasonable solution to avoid corrupting the
cash balance, the complexity of managing this approach quickly escalates as we
introduce more and more items that need protecting. Imagine we have multiple
account books, that somewhat relate to each other. We would need to protect each
and every one of these books in the same manner. If each book was placed in a
separate room with its own lock, how do we ensure we do not deadlock as Anne
accesses a book then also wants another book locked by Bob (who in turn wants the
book already locked by Anne)?

Devising a set of policies to manage all these books in a correct (let alone
efficient) manner is very complicated. So, instead of allowing all the employees
to have access to the books, we say that none of them is allowed direct access to

2This isn’t to say that locks cannot be used, but rather that we are going to solve this scenario
without locks.

292 N. Giacaman and O. Sinnen

Fig. 2 A new policy is put into place, not only to manage the book regarding the cash balance,
but all the account books. The new rule states that only Gemma should touch the books, and that
any access to them must be through her. This means that Anne and Bob must now write memos for
Gemma to take action on the cash balance. If multiple employees wish to access any of the books
at the same time, these requests (i.e. the memos) are queued up for Gemma to process one at a time

the books! What we do is employ a new person, Gemma, to be solely responsible
for any direct access to the books, including our original cash balance. If Gemma
is the only employee that accesses the cash balance, then this will naturally ensure
the balance remains correct at all times. Figure 2 illustrates the new policy in place,
where the same three steps to modify the cash balance exist, only this time it is
always performed by Gemma. We can also see how Gemma is responsible for the
other books.

So, what about Anne and Bob when they want to modify the cash balance? It
would not be such a good idea if they directly talked to Gemma, since she might be
busy performing some other tasks. Instead, it would make more sense if they wrote
their request on a memo and placed that memo in the pile next to Gemma. When she
gets a chance, Gemma will pick up one of the memos from the pile and complete the
instructions requested on it. This is known as the single thread rule, where a ded-
icated thread is assigned the sole responsibility of accessing unprotected data. The
single thread rule is implemented in eg01.CashBalanceWithMemos.java:

Parallel Programming for Interactive GUI Applications 293

BlockingQueue<Memo> pileOfMemos = new LinkedBlockingQueue<Memo>();
...
// Anne creates a Memo requesting $20 to be added
pileOfMemos.add(new Memo(20));
...
// Bob creates a Memo requesting $30 to be added
pileOfMemos.add(new Memo(30));

This program differs from the first one, in that Anne and Bob never directly
access currentBookBalance. Instead, they each create a Memo and place it on
the pileOfMemos. The Memo class is a Runnable instance, defining the three
steps necessary to modify the currentBookBalance:

class Memo implements Runnable {
private int amountToAdd;
Memo(int a) {

this.amountToAdd = a;
}
public void run() {

int observedAmount = currentBookBalance;// 1
blink();
int calculatedAmount = observedAmount +amountToAdd; // 2
blink();
currentBookBalance = calculatedAmount;// 3

}
}

Gemma then polls the pileOfMemos, taking one Memo at a time and complet-
ing the instructions on it:

// Gemma
Memo nextMemo = null;
while ((nextMemo = (Memo)pileOfMemos.poll(1,TimeUnit.SECONDS)) != null) {

nextMemo.run();
}

If Gemma waits longer than 1 s, she assumes no more Memos will arrive
and ends her work. Notice that locks were not necessary to protect the
currentBookBalance, since Gemma is the only one that has direct access
to it. Because she executes one Memo at a time, there is never any intertwining
of the three instructions within a Memo. When we execute this program, we will
always get the correct result of $570.

Here Comes the Auditor

We think of Gemma’s role in the company as being the accountant; to ensure the
correctness of the company books, she is the only one within the company allowed
to access the books directly. At some stage, a tax auditor may contact the company
and inquire about the state of the company’s financial records (Fig. 3). Naturally, the
auditor has authority (and skills) to inspect the company books without corrupting

294 N. Giacaman and O. Sinnen

them (it is his job, after all). In this regards, the books become a medium of
communication where the outside world sees the state of the company. If the
auditor requires specific jobs from the company, he will telephone the company
and explain what he needs. Gemma would answer the phone and take note of the
request. Hopefully, Gemma will be able to fulfill the auditor’s request in a short
amount of time. Since there is only one telephone, and Gemma is the only company
representative allowed to operate it, then prolonged handling of any request will
mean that other (external) people trying to contact the company will be frustrated as
they encounter a busy dial tone. Not only will this occur when Gemma is busy on
the telephone, but it will also occur during the time she is completing instructions
on the memos given to her from Anne and Bob. Any attempt to call the company at
this time will again frustrate the outside world, as the phone rings and rings without
being answered.

So, how does this all correspond to a GUI application? In a GUI application, we
have the same policies and interactions in place. Here is how the analogy relates to
a GUI application:

• The company represents the application.
• The company books represent the GUI components that reflect the state of the

application. Much like how there are many forms of books a company may
maintain, there are many forms of GUI components an application may maintain.
Some are forms of input (e.g. text fields and buttons), while others are forms of
output (e.g. progress bars and message dialogs). Regardless, they are all GUI
components and it is not safe for multiple access.

• The auditor (or anyone outside the company) represents the users of the
application.

• A phone call represents an event from a user that requires attention. The arrival
of a new memo to the pile also represents an event.

• The employees within the company represent the threads within the application.
More specifically, Gemma’s role as accountant/receptionist represents the GUI
thread’s role of sole responsibility for the GUI components. Anne and Bob
represent the background threads, and they should never access the GUI
components.

• A memo represents a Runnable (set of instructions).
• A busy dial tone experienced by the outside world represents an unresponsive

application or “frozen” GUI. In fact, any time Gemma is doing any form of
processing (e.g. on the phone, or executing a memo), this corresponds to the
GUI thread being busy handling an event. Such processing should be kept to a
minimum, ensuring Gemma is kept as free as possible. In other words, the GUI
thread should be as idle as possible so that it can respond immediately to any new
events without noticeable lag.

• The pile of memos3 (and list of phone messages) represents the event queue,
containing events yet to be handled by the GUI thread.

3Although “pile” is used in this analogy, the memos will be processed in a first in first out (FIFO)
manner.

Parallel Programming for Interactive GUI Applications 295

Fig. 3 As the accountant for the company, Gemma is responsible for all the book keeping. The
auditor represents an external entity, or client, interested in interacting with the company (i.e. the
users of the application). The auditor is able to interpret the company’s state from the book records
and is able to communicate with the company by making phone calls. Gemma is also the only
person within the company that responds to the phone calls. If Gemma is busy on the phone, then
the outside world gets a busy dial tone. This will inevitably frustrate anyone from outside trying to
communicate with the company. Anne and Bob do not interact with the phone, much in the same
way they should not access the books

• When Gemma is idle and “on the lookout” for memos and messages to arrive, this
corresponds to the GUI thread being in the event loop. This is the ideal situation,
meaning the GUI thread is ready and waiting to respond instantaneously as soon
as an event arrives.

So, what does it mean having the “outside” world interacting with the application?
In the analogy, these represent customers or auditors that will interact with the
company through the phone. We need to ensure this is all responsive. In terms of the
application, this represents the user interaction. To be truly responsive, the outside
world demands:

1. Continuous responsiveness that never results in a frozen GUI, and

296 N. Giacaman and O. Sinnen

2. Frequent updates for tasks that take a long time (i.e. an update at the end is
insufficient for long-processing tasks).

We can appreciate these points from our own personal experience using GUI
applications. How many times have you pressed a button on an application and
it immediately freezes? If you are unfamiliar with the application, chances are you
are wondering if the entire application has crashed and if you should kill it using
the operating system’s task manager. If you are familiar with the application, you
may have the patience to wait for it to complete its actions and come back to life.
Nonetheless, this behavior refers to the first point above and is undesirable to say
the least. Even when this first requirement is fulfilled, is it sufficient? Again, from
your own personal experience, how many times have you clicked a button and the
application displays a “Processing, please wait” message but gives no other hint as
to the progress it is making? What we want is some sort of clue that quantifies the
remaining time, either a determinate progress bar or a constant message updates that
confirm to us “yes, the application is making progress”.

Single-Thread GUI Fundamentals

This section will present the two fundamentals pertaining to GUI concurrency.
While the examples are presented in the context of Java, these fundamentals
are consistent with almost all GUI toolkits you will encounter. Following these
rules will ensure our applications are both correct (without race conditions) and
responsive.

Fundamental 1: Correctness

So, what is the relationship between the single-thread rule of section “Solving
the Cash Balance Problem: Without Locks?” and the GUI aspects discussed in
section “Here Comes the Auditor”? As hinted in section “Here Comes the Auditor”,
the GUI components of an application must be protected from possible corruption
due to potential race conditions. The easiest way to protect these components is
to use the single-thread rule. Almost all the popular GUI toolkits you will come
across follow this rule [2–4], where they dedicate a specific thread to access the
GUI components (just like in our analogy where Gemma was dedicated to access
the books). This thread is most commonly called the UI Thread, the GUI Thread,
or the Event Dispatch Thread (EDT) as in Java [5].

To simulate the race condition using a real GUI application, we create our
own ProgressBar class. This class represents an actual GUI component (it
extends Java Swing), which means we can add it to any GUI application. The
purpose of this class is to represent the functionality of a real progress bar (for
example, javax.swing.JProgressBar), but also to illustrate the potential
race condition that may arise in using such a GUI component. Only a snip-

Parallel Programming for Interactive GUI Applications 297

pet of this class is shown, but you can have a look at the complete code in
eg02.ProgressBar.java:

public class ProgressBar extends JLabel {
private int value = 0;
private double max = 100;
...
public void increment(int delta) {

int oldValue = value; // read from memory to CPU register
minorCPUstall();
oldValue = oldValue + delta; // update value in register
minorCPUstall();
value = oldValue; // write to memory from CPU register
setText(toString()); // update GUI

}
public int getPercent() {

return (int)(100*value/max);
}
public String toString() {

return getPercent()+"%";
}

}

Figure 4 shows a simple GUI application (eg02.BadGUI.java) that makes
use of this progress bar. There are two buttons below the progress bar:

• Anne +2: create a new thread that does some work then increments the progress
bar by 2.

• Bob +3: create a new thread that does some work then increments the progress
bar by 3.

If we have a look at how the code is implemented to achieve this seemingly innocent
behavior, we see that both threads have direct access to the progress bar instance:

public class BadGUI extends JFrame implements
ActionListener {

private JButton btnAnne = new JButton("Anne +2");
private JButton btnBob = new JButton("Bob +3");
private ProgressBar progressBar = new ProgressBar();
...
public void actionPerformed(ActionEvent e) {

if (e.getSource() == btnAnne) {
btnAnne.setEnabled(false);

Thread anne = new Thread() {
public void run() {

doWork(); // This is correctly performed by non-GUI-thread
progressBar.increment(2); // Bad! Accessed by non-GUI thread
btnAnne.setEnabled(true); // Also bad!

}
};
anne.start();

} else if (e.getSource() == btnBob) {
... // equivalent code for Bob’s thread

}
}

}

298 N. Giacaman and O. Sinnen

Fig. 4 Bad practice: a race condition when updating a GUI component (eg02.ProgressBar)
from multiple threads. Since both Anne’s and Bob’s threads update the progress bar directly
themselves, there is the likelihood that the incorrect value results in the progress bar. Instead of
showing 5%, it will either show 2% or 3%, depending on which thread was last. Full example in
eg02.BadGUI.java. (a) Anne’s thread starts to add 2 to the current progress bar value. (b)
Close behind, Bob’s thread starts to add 3 to the current progress bar value. (c) Anne’s thread
finishes updating the progress bar. (d) Bob’s thread finishes, and overrides the update made by
Anne’s thread

If pressed one at a time, with sufficient time between the completion of each
action (i.e. wait for the button to be enabled again), then there is no problem; the
value of the progress bar increases to 5%. However, if we were to quickly press
the two buttons (as in Fig. 4a–d), then one of the threads will override the value of
the progress bar that the other thread has written (rather than incrementing onto
the updated value). This is because both threads have access to the same GUI
component, and the 3 steps of updating a value might with some (bad) luck be
interleaved. Not only is this program incorrect since the threads access our custom-
made ProgressBar, but they also perform the re-enabling on the buttons!

To overcome this problem, we must conform to the single-thread rule discussed
in section “Solving the Cash Balance Problem: Without Locks?”. The same program
is repeated again (eg02.GoodGUI.java), only this time using the correct
approach by conforming to the single-thread rule:

public class GoodGUI extends JFrame implements ActionListener {
...
public void actionPerformed(ActionEvent e) {

if (e.getSource() == btnAnne) {
btnAnne.setEnabled(false);

Thread anne = new Thread() {
public void run() {

// This is correctly performed by non-GUI-thread

Parallel Programming for Interactive GUI Applications 299

doWork();

// GUI-related work moved to a "memo" for the GUI thread
SwingUtilities.invokeLater(new Runnable() {

public void run() {
progressBar.increment(2);
btnAnne.setEnabled(true);

}
});

}
};
anne.start();

} else if (e.getSource() == btnBob) {
... // equivalent code for Bob’s thread

}
}

}

The difference here is that the updating of the progress bar and button are no
longer performed by Anne’s and Bob’s threads. Instead, the instructions to update
the GUI are wrapped inside a Runnable instance (representing the memo in our
analogy) and passed to the GUI toolkit, requesting that the GUI thread invoke
these instructions. This memo is submitted by the respective background thread
(e.g. anne) after the doWork() computation is completed. Regardless of which
memo will be picked up by the GUI thread, they will always be executed one at a
time since they get piled up in the GUI thread’s event queue. Go ahead and modify
the minorCPUstall() function inside the ProgressBar class to increase this
stall amount. The correct result is always achieved!

Fundamental 2: Responsiveness

Section “Fundamental 1: Correctness” demonstrated the single-thread rule in the
context of GUI applications in order to protect the GUI components. In other words,
the purpose was to ensure program correctness. This section will now demon-
strate the single-thread rule with another purpose in mind: ensuring a responsive
application. While this is not required in contributing towards the correctness or
functionality of the application, it is essential in contributing towards a positive user
experience and therefore overall user satisfaction. In fact, you could even consider
an unresponsive application as dysfunctional!

Purpose of Concurrency

Based on section “Here Comes the Auditor”, we already understand that we need to
allow the GUI thread to be idle as much as possible in order for it to patrol the event

300 N. Giacaman and O. Sinnen

loop and therefore react to new events without delay. To achieve this, the GUI thread
employs background threads that perform all the long-lasting processing that would
otherwise preoccupy the GUI thread for an unacceptable amount of time. Ultimately,
this allows the GUI thread to immediately return to the event loop in anticipation
of new events arriving, while the background threads are doing the real work. This
is the concept of GUI concurrency, where the background thread (executing time-
consuming computation) is working concurrently with (i.e. at the same time as)
the GUI thread (patrolling the event loop). You will also hear terminology such as
“the time-consuming computation is executed asynchronously”, which is a fancy
way of saying the time-consuming computation is progressing independently of the
patrolling of the event loop (i.e. on its own time and in “its own little world”).

Classifying a GUI’s Streams of Instructions

As already hinted in the previous section, the underlying concept behind concur-
rency is that of a thread. By having multiple threads, we can logically perform
multiple streams of instructions at the same time. In the context of a GUI
application, we are interested in separating the instructions into two particular
streams of instructions. Each of these streams of instructions will be executed by
a thread in order for the streams to progress concurrently:

• Event management mechanism: this refers to the instructions that define the
administration relevant to the event loop, including the enqueuing, dequeuing and
handling of events on the event queue. Fortunately, GUI toolkits typically provide
an implementation for this event handling mechanism so that programmers do
not need to manage it (or even see it!). This also includes the nomination of
the GUI thread to manage all of this communication in the event loop. All that
programmers need to do is specify the stream (or block) of instructions for the
handling of those events (i.e. the response to a particular event).

• Event handling logic: this refers to the programmer-defined stream of instruc-
tions that depict what should happen when an event is encountered. The GUI
thread will initially commence handling the event, but it is the responsibility of
the programmer to determine if the computation will be time-consuming. If so,
then the programmer needs to “free the GUI thread” by creating a new thread
to take over. The GUI thread therefore classifies the event as being “sorted out”,
and immediately returns to the event loop. This will avoid any “freezing” of the
application.

In Java, the most primitive approach to achieve this is using Threads and the
SwingUtilities class to hook into the event management system whenever
necessary. This is shown by the program of Fig. 5, which demonstrates both a
responsive and unresponsive handling of events within the same application.
The code snippet below refers to the event handling logic when any of the 3
buttons are pressed:

Parallel Programming for Interactive GUI Applications 301

Fig. 5 Good and Bad application. This application contains a standard progress bar (top row), 2
buttons with time-consuming tasks, and a third button to test responsiveness of the application
(it changes color as soon as it is pressed). When either of the “Good” or “Bad” buttons is
pressed, the progress bar is incremented. The only difference is that the “Bad” button freezes
the entire application until the action is completed, whereas the “Good” button maintains
application responsiveness, allowing other buttons to be pressed. The full code is found in
eg03.GoodAndBadGUI.java

public void actionPerformed(ActionEvent e) {

// the GUI thread can quickly create a new color
if (e.getSource() == btnResponsive) {

btnResponsive.setBackground(createRandomColour());
return;

}

// the other buttons involve some time-consuming work being performed
if (e.getSource() == btnBad) {

// The current thread (the GUI thread) does the work itself...
doWork();
// ... and then updates the progress bar
progressBar.setValue(progressBar.getValue()+1);

} else {
// The GUI thread asks a background thread to take over...
Thread bob = new Thread("Bob") {

public void run() {
// the work is performed by the background thread...
doWork();
// ... and the background thread asks the GUI thread to
// update the progress bar
SwingUtilities.invokeLater(new Runnable() {

public void run() {
progressBar.setValue(progressBar.getValue()+1);

}
});

}
};
bob.start();

}
}

302 N. Giacaman and O. Sinnen

The actionPerformed() function is the event handler that responds to any of the
buttons being pressed. The GUI thread always enters this function. Here, we first
query to check if the event received was in regards to the responsiveness button. If
this is the case, then the color of the button is updated. Since this computation can
be performed without any noticeable lag, it is fine for the GUI thread to execute
this and then end the event handler. If the event was in response to the “Bad”
button, then the GUI thread decides to perform the time-consuming doWork()
function, and then increment the progress bar. This ultimately preoccupies the GUI
thread, meaning other events cannot be responded to. The final situation refers to the
desired behavior, where the doWork() function is being assigned to another thread
(“Bob”), which allows the GUI thread to end the event handler and respond to other
events. In the meantime, when thread “Bob” completes doWork(), it requests the
GUI thread to update the progress bar (since only the GUI thread should access GUI
components). When you run the examples, notice the output printed that state the
name of the thread executing the respective sections of code.

More Elegant Library Support: SwingWorker

The code snippets of section “Single-Thread GUI Fundamentals” demonstrated
how we can achieve a responsive and thread-safe application by resorting to
using primitive libraries existing in the Java library (in this case the Thread and
SwingUtilities classes). While this approach got the job done and met our
requirements, it does pose some disadvantages:

• It contained a large amount of boilerplate code to create background threads and
send memos back to the GUI thread. This problem will be exacerbated should
we need to send intermittent memos to the GUI thread (i.e. not just at the very
end).

• Notice how we are creating a new thread every time the “Good” button is pressed.
In most cases, this will not be an issue if we are not expecting to have too many
tasks. However, if we end up having lots of threads that perform a large amount of
computation, then we risk the chance of reducing performance of the application
since a lot of time will be dedicated to managing the threads rather than executing
the work. A smarter solution would create a fixed number of threads, and instead
queue the work to be executed as a thread frees up.

To solve the points above, yet to retain respect to the single-thread GUI model,
Java introduced the SwingWorker class. This provides a more elegant solution by
dealing with the creation and management of a team of background threads, while
also reducing the boilerplate code required. The code snippet below demonstrates
how the event handler is modified:

public void actionPerformed(ActionEvent e) {

// ... same as before

Parallel Programming for Interactive GUI Applications 303

if (e.getSource() == btnBad) {
// ... same as before

} else {
Memo memo = new Memo();
memo.execute();

}
}

What has changed? The code remains essentially identical to that of sec-
tion “Classifying a GUI’s Streams of Instructions”, except now we create a Memo
instance and tell it to execute(). It definitely looks more elegant than the code
we had before! All the logic in regards to doing the work and updating the progress
bar we define in Memo:

class Memo extends SwingWorker {
protected Void doInBackground() {

doWork();
return null;

}
protected void done() {

progressBar.setValue(progressBar.getValue()+1);
}

}

You will notice that this class is not too complicated at all. In fact,
SwingWorker helps guide us by specifying which functions we should be
implementing. In our simple example, doInBackground() is the place we
specify any time-consuming computation that will be passed on to the background
thread. The done() function refers to any computation that must be performed by
the GUI thread when doInBackground() is completed.

You are probably wondering, where is the background thread? This is the
other elegance to this solution, in that the programmer does not need to create or
manage the background threads that will execute the SwingWorker instances.
This is all managed automatically by the library using a pool of threads that
are dedicated to processing doInBackground() functions. If you execute the
example code provided (eg04.GoodAndBadSwingWorker.java), the only
difference you will notice is in the output printed. Notice how the names of
the threads are now something like “SwingWorker-pool-1-thread-5” or
“SwingWorker-pool-1-thread-2”, which refers to the threads that are
being automatically managed to execute background work. In order to see the
multiple background threads being managed by the SwingWorker class, try pressing
the “Good” button as fast as you can 15 times. Every time you press the button, it
enqueues a memo that will eventually be processed by one of the threads. By reading
the thread names, we notice that the same 10 threads are being recycled (the exact
number might be slightly different for you).

You will also notice that it is still the GUI thread that is executing the done()
function. Figure 6 illustrates how we can visualize SwingWorker in terms of our
company analogy. The newly submitted jobs refer to the execute() function
being performed on a newly created SwingWorker instance. When one of the
SW-threads is idle, it picks up the next memo from the pile and completes the

304 N. Giacaman and O. Sinnen

Fig. 6 SwingWorker is designed to meet both the correctness and responsiveness fundamentals
of GUI concurrency. The top right corner shows how we can visualize a SwingWorker instance as
a memo containing 2 sections. The blue section (doInBackground()) is reserved for one of
the SW threads, while the orange section (done()) is reserved for the GUI thread. There are 2
queues: the first is when the job is submitted and it waits for a SW thread, while the second is when
the background portion is completed and the memo is passed on to the GUI thread to execute the
GUI-related portion

top blue section. Upon completion, that memo is passed on to the GUI thread to
complete the bottom orange section. Concurrency is achieved by having multiple
background threads that are available to execute the long-processing computations.
By separating the GUI-related computation in a different section, this also achieves
responsiveness since the GUI thread is not unnecessarily occupied.

Improving User Experience with Intermittent Results/Updates

A big part of GUI applications is ensuring a positive user experience. In this regards,
responsiveness not only means avoiding a freezing user interface, but also providing
regular updates to the user. This is especially important for background jobs
that take a long amount of time. Examples include displaying search results (e.g.
searching through emails) as they are found, or progressively rendering thumbnails

Parallel Programming for Interactive GUI Applications 305

of images in a folder. Bear in mind that we want to still conform to the GUI
concurrency fundamental of correctness. This means that it must be the GUI thread
updating the user interface with the information – but how does the GUI thread
know about the background thread’s progress on a given task? The general idea is
simple:

• The background thread, as it processes the doInBackground() section,
decides that it has accomplished a significant amount of work that warrants
celebration. Since it is not allowed to access the GUI components directly itself,
it simply publishes this achievement and resumes processing the remainder of
the doInBackground() section.

• The GUI thread, upon hearing the update request, takes the published data and
displays it on the GUI.

How is this achieved using SwingWorker? Before seeing the code, lets have a
look at the general concept with the help of Fig. 7. As before, we have the
doInBackground() and done() sections that are executed by the back-
ground SW-threads and the GUI thread respectively. There is a new section,
process(List), which is executed by the GUI thread whenever an “attachment”
is added on the SwingWorker “memo”. How do these attachments get there? This
is the job of the background thread, to publish() these items whenever it feels
it has made substantial progress in the background processing. Rather than waiting
for the GUI-thread to acknowledge receipt of the attachment, the background thread
continues processing the remainder of the doInBackground(). This is how the
attachments potentially “pile up” for the GUI thread to process() (hence a List
of intermittent results to process).

One of the most common cases of publishing intermittent results is when a
progress bar is used. Figure 8a shows such an example, while below is the code
snippet (full code in eg03.ManyUpdates.java) that demonstrates the correct
way to frequently update the status of a progress bar:

class Memo extends SwingWorker<Void, Integer> {
protected Void doInBackground() {

for (int i = 1; i <= 10; i++) {
doWork();
publish(i); // create a new “attachment”

}
return null;

}
protected void process(List<Integer> attachments) {

// process all the attachments that have piled up
for (int attachment : attachments) {

progressBar.setValue(10*attachment);
}

}
protected void done() {

// doInBackground() ended, so re-enable start button
btnStart.setEnabled(true);

}
}

306 N. Giacaman and O. Sinnen

Fig. 7 Our final visualization of Swingworker to include how intermittent results/updates are
propagated from a background thread to the GUI thread. As the background thread processes
the doInBackground(), it frequently decides to publish intermittent data. We imagine this as an
attachment to the SwingWorker instance (i.e. the memo). The GUI thread sees these attachments,
and executes the process() section for the list of attachments as they come along. As before, the
orange sections are GUI-related (to be executed by the GUI thread), while the blue section refers
to non-GUI and time-consuming work

Fig. 8 (a) An example application demonstrating a background computation with intermittent
updates via the progress bar. (b) The same application is extended to allow canceling of the
background computation

Parallel Programming for Interactive GUI Applications 307

Canceling Background Tasks

If you ran the example of Fig. 8a, you probably eventually felt like something was
not quite complete. Did you notice how we had no way to cancel the task? Clearly,
there was no cancel button on the GUI. If we were to introduce such a cancel
button (as in Fig. 8b), what does this mean in the context of a background task that
was executed concurrently? Well, first of all, whoever wishes to cancel() the
background task obviously needs access to the very same SwingWorker instance
that was initially told to execute(). In other words, we need to declare our
SwingWorker memo at a scope such that it is still accessible to the event handler:

public class ManyUpdatesWithCancel extends JFrame implements ActionListener {
private JButton btnStart = new JButton("Start!");
private JButton btnCancel = new JButton("Cancel");

private Memo memo; // instance at a scope accessible to all handlers
...
public void actionPerformed(ActionEvent e) {

if (e.getSource() == btnCancel) {
memo.cancel(true);

} else if (e.getSource() == btnStart) {
memo = new Memo();
memo.execute();

}
}

}

Figure 9 shows how canceling is implemented for background tasks. Assume
the SwingWorker memo instance is being executed by one of the background SW-
threads. In the meantime, the cancel button was pressed, so we invoke cancel()
on that same memo instance. Abruptly killing the background SW-thread as it is
executing doInBackground() is an unsafe practice. Instead, what happens is
the memo is stamped with a cancel request. However, for this to really take effect,
the background SW-thread needs to frequently check the memo status just in case
it has been stamped with cancel. This is achieved by calling isCancelled(),
which checks for the status. If this returns true, then the doInBackground()
method is ended with an early return statement.

Since the doInBackground() method has essentially ended (regardless
of whether it was canceled or not), the GUI-thread takes over the memo by
executing the done() method. It even executes any remaining attachments in
the process() method. For this reason, we sometimes might want to take
alternative decisions inside done() and process() depending on whether
the memo had been canceled. In this case, the GUI-thread may also use the
isCancelled() method to check if the memo had been canceled. The example
of eg03.ManyUpdatesWithCancel.java demonstrates this by discarding
attachments if the memo was canceled, and only displaying a final message if
done() is processed without having received a cancel request.

308 N. Giacaman and O. Sinnen

)b()a(

Fig. 9 Once a SwingWorker memo has started executing, it needs to periodically check if it
has been requested to cancel. This is to allow the background SW-thread to tidy up and end the
doInBackground() in a clean manner. (a) Before a cancel request has been made. (b) After
a SwingWorker memo instance has been instructed to cancel(). The act of canceling a memo
essentially means it is stamped; however, this has no effect unless it is checked for, and acted upon

Wrapping Up

In this chapter, we appreciate the necessity of multi-threading in the context
of applications that possess a graphical user interface (GUI). This is especially
important as multi-core processors have become the norm for desktop and mobile
devices, since the sorts of applications running on these systems will interact with
users via the GUI. The limitations of the GUI toolkits available for these paradigms
means that programmers need to adhere to the single-thread rule. This ultimately
means two things. First, the event handlers that the GUI thread responds to must
be kept minimal without noticeable lag to ensure a responsive application. This is
achieved by off-loading the long processing computation to a background thread.
Second, the background thread must never directly access any GUI component
during that time, and should instead request the GUI thread to do so. Ultimately,
when developing your next GUI application, you need to keep in mind the
user-perceived performance of responsiveness, by implementing the concurrency
features discussed in this chapter. This includes intermittent progress updates from
background threads, as well as canceling the background tasks. But, as you do so,
always remember the single-thread rule.

Parallel Programming for Interactive GUI Applications 309

Appendix

eg01.CashBalanceProblem.java

package eg01 ;

public class CashBalanceProblem {

private s t a t i c i n t currentBookBalance = 520;

public s t a t i c void main (S t r i n g [] args) {

/ / Anne w i l l execute the three steps , i n order to add $20
Thread anne = new Thread () {

public void run () {
i n t observedAmount = currentBookBalance ; / / 1a
b l i n k () ;
i n t calculatedAmount = observedAmount + 20; / / 2a
b l i n k () ;
currentBookBalance = calculatedAmount ; / / 3a

}
} ;
anne . s t a r t () ;

/ / Bob w i l l execute the three steps , i n order to add $30
Thread bob = new Thread () {

public void run () {
i n t observedAmount = currentBookBalance ; / / 1b
b l i n k () ;
i n t calculatedAmount = observedAmount + 30; / / 2b
b l i n k () ;
currentBookBalance = calculatedAmount ; / / 3b

}
} ;
bob . s t a r t () ;

/ / Wait f o r both Anne and Bob to f i n i s h the three steps
t ry {

anne . j o i n () ;
bob . j o i n () ;

} catch (I n te r rup tedExcep t i on e) {
e . p r in tS tackTrace () ;

}

System . out . p r i n t l n (" F i n a l balance = $ "+currentBookBalance) ;
}

/ / Simulate b l i n k i n g
public s t a t i c void b l i n k () {

t ry {
Thread . s leep (100) ;

} catch (I n te r rup tedExcep t i on e) {

310 N. Giacaman and O. Sinnen

e . p r in tS tackTrace () ;
}

}
}

eg01.CashBalanceWithMemos.java

package eg01 ;

import java . u t i l . concur rent . BlockingQueue ;
import java . u t i l . concur rent . LinkedBlockingQueue ;
import java . u t i l . concur rent . TimeUnit ;

public class CashBalanceWithMemos {

private s t a t i c i n t currentBookBalance = 520;

/ / the queue represents a p i l e o f memos
private s t a t i c BlockingQueue <Memo> pileOfMemos = new

LinkedBlockingQueue <Memo>() ;

/ / a d e f i n i t i o n on a Memo, which s ta tes what needs to be done (
i . e . the three steps to modify the cash balance)

s t a t i c class Memo implements Runnable {
private i n t amountToAdd ;
Memo(i n t a) {

th is . amountToAdd = a ;
}

@Override
public void run () {

i n t observedAmount = currentBookBalance ; / / 1
b l i n k () ;
i n t calculatedAmount = observedAmount + amountToAdd ; / /

2
b l i n k () ;
currentBookBalance = calculatedAmount ; / / 3

}
}

public s t a t i c void main (S t r i n g [] args) {

/ / Anne creates a new Memo, reques t ing $20 to be added
Thread anne = new Thread () {

public void run () {
pileOfMemos . add (new Memo(20)) ;

}
} ;
anne . s t a r t () ;

/ / Bob creates a new Memo, reques t ing $30 to be added
Thread bob = new Thread () {

public void run () {

Parallel Programming for Interactive GUI Applications 311

pileOfMemos . add (new Memo(30)) ;
}

} ;
bob . s t a r t () ;

/ / Gemma goes to the p i l e o f Memos, takes one at a t ime . I f
the p i l e i s empty f o r more than 1 second , Gemma stops .

Thread gemma = new Thread () {
public void run () {

Memo nextMemo = nul l ;
t ry {

while ((nextMemo = (Memo) pileOfMemos . p o l l (1 , TimeUnit .
SECONDS)) != nul l) {

nextMemo . run () ;
}

} catch (I n te r rup tedExcep t i on e) {
e . p r in tS tackTrace () ;

}
}

} ;
gemma. s t a r t () ;

/ / wa i t f o r Anne , Bob and Gemma to f i n i s h
t ry {

anne . j o i n () ;
bob . j o i n () ;
gemma. j o i n () ;

} catch (I n te r rup tedExcep t i on e) {
e . p r in tS tackTrace () ;

}

System . out . p r i n t l n (" F i n a l balance = $ "+currentBookBalance) ;
}

/ / Simulate b l i n k i n g
public s t a t i c void b l i n k () {

t ry {
Thread . s leep (100) ;

} catch (I n te r rup tedExcep t i on e) {
e . p r in tS tackTrace () ;

}
}

}

References

1. S. K. Prasad, A. Chtchelkanova, M. G. F. Dehne, A. Gupta, J. Jaja, K. Kant, A. L. Salle,
R. LeBlanc, A. Lumsdaine, D. Padua, M. Parashar, V. Prasanna, Y. Robert, A. Rosenberg,
S. Sahni, B. Shirazi, A. Sussman, C. Weems, and J. Wu, “NSF/IEEE-TCPP Curriculum Initiative
on Parallel and Distributed Computing – Core Topics for Undergraduates, Version 1,” http://
www.cs.gsu.edu/~tcpp/curriculum, 2012.

http://www.cs.gsu.edu/~tcpp/curriculum
http://www.cs.gsu.edu/~tcpp/curriculum

312 N. Giacaman and O. Sinnen

2. D. Lea, Concurrent programming in Java: design principles and patterns, 2nd ed. Addison-
Wesley, 1999.

3. P. Hyde, Java Thread Programming. Sams, 2001.
4. E. Ludwig, “Multi-threaded user interfaces in java,” Ph.D. dissertation, University of Osnabrück,

Germany, May 2006.
5. Oracle. (2017) Lesson: Concurrency in Swing. http://docs.oracle.com/javase/tutorial/uiswing/

concurrency.

http://docs.oracle.com/javase/tutorial/uiswing/concurrency
http://docs.oracle.com/javase/tutorial/uiswing/concurrency

Scheduling in Parallel and Distributed
Computing Systems

Srishti Srivastava and Ioana Banicescu

Abstract Recent advancements in computing technology have increased the com-
plexity of computational systems and their ability to solve larger and more complex
scientific problems. Scientific applications express solutions to complex scientific
problems, which often are data-parallel and contain large loops. The execution of
such applications in parallel and distributed computing (PDC) environments is com-
putationally intensive and exhibits an irregular behavior, in general due to variations
of algorithmic and systemic nature. A parallel and distributed system has a set of
defined policies for the use of its computational resources. Distribution of input data
onto the PDC resources is dependent on these defined policies. To reduce the overall
performance degradation, mapping applications tasks onto PDC resources requires
parallelism detection in the application, partitioning of the problem into tasks, dis-
tribution of tasks onto parallel and distributed processing resources, and scheduling
the task execution on the allocated resources. Most scheduling policies include
provisions for minimizing communication among application tasks, minimizing
load imbalance, and maximizing fault tolerance. Often these techniques minimize
idle time, overloading resources with jobs and control overheads. Over the years,
a number of scheduling techniques have been developed and exploited to address
the challenges in parallel and distributed computing. In addition, these scheduling
algorithms have been classified based on a taxonomy for an understanding and
comparison of the different schemes. These techniques have broadly been classified
into static and dynamic techniques. The static techniques are helpful in minimizing
the individual task’s response time and do not have an overhead for information
gathering. However, they require prior knowledge of the system and they cannot
address unpredictable changes during runtime. On the other hand, the dynamic
techniques have been developed to address unpredictable changes, and maximize
resource utilization at the cost of information gathering overhead. Furthermore,
the scheduling algorithms have also been characterized as optimal or sub-optimal,

S. Srivastava (�) · I. Banicescu
University of Southern Indiana, Evansville, IN, USA

Mississippi State University, Starkville, MS, USA
e-mail: fsrishti@usi.edu; ioana@cse.msstate.edu

© Springer International Publishing AG, part of Springer Nature 2018
S. K. Prasad et al. (eds.), Topics in Parallel and Distributed Computing,
https://doi.org/10.1007/978-3-319-93109-8_11

313

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-93109-8_11&domain=pdf
mailto:fsrishti@usi.edu
mailto:ioana@cse.msstate.edu
https://doi.org/10.1007/978-3-319-93109-8_11

314 S. Srivastava and I. Banicescu

cooperative or non-cooperative, and approximate or heuristic. This chapter provides
content on scheduling in parallel and distributed computing, and a taxonomy of
existing (early and recent) scheduling methodologies.

• Relevant core courses: DS/A, ParAlgo, DistSystems.
• Relevant PDC topics: shared memory (C), distributed memory (C), data parallel

(C), parallel tasks and jobs (K), scheduling and mapping (C), load balancing (C),
performance metrics (C), concurrency (K), dependencies (K), task graphs (K).

• Learning outcomes: The chapter provides an introduction of scheduling in
PDC systems such that it can be easily understood by undergraduate students,
who are exposed to this topic for the first time. The chapter is intended to
provide learning to undergraduate students, who are beginners in the field
of high performance computing. Therefore, the goal of this book chapter is
to present an overview of scheduling in parallel and distributed computing.
Using the knowledge from this chapter, students are expected to understand
the basics and importance of scheduling in parallel and distributed computing,
understand the difference between different classes of scheduling algorithms
and the computational scenarios for their application, and be able to compare
different scheduling strategies based on various performance metrics, such as
execution time, overhead, speedup, efficiency, energy consumption, and others.
In addition, a number of useful resources related to scheduling in PDC systems
have been provided for instructors.

• Context for use: The material is designed for being incorporated into core
courses such as, data structures and algorithms (DS/A), or advanced courses
such as, parallel algorithms (ParAlgo), and distributed systems (DistSystems).
The material is intended for students who already have an understanding of the
basic concepts and terminology of parallel and distributed computing systems.

Introduction

The scheduling problem has been formulated with several definitions across many
different fields of application. The problem of job sequencing in manufacturing
systems forms the basis for scheduling in parallel and distributed computing
systems, and is also recognized as one of the original scheduling problems. Similar
to the job sequencing problem in a manufacturing process, a scheduling system is
comprised of a set of consumers, a set of resources, and a scheduling policy. A basic
scheduling system is illustrated in Fig. 1, where a task in a computer program, a bank
customer, or a factory job are examples of consumers, and a processing element in a
computer system, a bank teller, or a machine in a factory are examples of resources
in a scheduling system. A scheduler acts as an intermediary between the consumers
and the resources to optimally allocate resources to consumers according to the best
available scheduling policy [1].

Scheduling in Parallel and Distributed Computing Systems 315

Fig. 1 A basic scheduling framework

In parallel and distributed computing, multiple computer systems are often
connected to form a multi-processor system. The network formed with these
multiple processing units can vary from being tightly coupled high speed shared
memory systems to relatively slower loosely coupled distributed systems. Often,
processors communicate with each other by exchanging information over the
interconnection structure. One of the fundamental ideas behind task scheduling is
the proper distribution of program tasks among multiple processors, such that the
overall performance is maximized by reducing the communication cost. Various
task scheduling approaches have a trade-off, between performance and scheduling
overhead, associated with them for different applications in parallel and distributed
computing. A solution to a scheduling problem determines both the allocation and
the execution of order of each task. If there is no precedence relationship among the
tasks, then the scheduling problem is known as a task allocation problem [1].

Scheduling is a feature of parallel computing that distinguishes it from sequential
computing. The Von Neumann model provides generic execution instructions for
a sequential program, where a processor fetches and executes instructions one
at a time. As a parallel computing analogy to the sequential model, parallel
random access memory (PRAM) was formulated as a shared memory abstract
machine [2, 3]. However, no such practical model has yet been defined for parallel
computing. Therefore, many different algorithms have been developed for executing
parallel programs on different parallel architectures. Scheduling requires allocation
of parallel parts of an application program onto available computational resources
such that the overall execution time is minimized. In general, the scheduling
problem is known to be NP-Complete [4–6]. Therefore, a large number of heuristics
have been developed towards approximating an optimal schedule. Different heuris-
tics are applicable in different computational environments depending on various
factors, such as, problem size, network topology, available computational power,
and others. Based on the heuristics a large number of scheduling algorithms have
been developed and the performance of these algorithms also vary with the type
of computational environment. One of the goals of this chapter is to clarify the
differences among scheduling algorithms, and their application domains. In general,
during the scheduling of program tasks on parallel and distributed computing
systems, the tasks are often represented using directed graphs called task graphs
and the processing elements and their interconnection network is represented using
undirected graphs. A schedule is represented using a timing diagram that consists
of a list of all processors and all the tasks allocated to every processor. The tasks are
ordered on a processor by their starting times [1].

316 S. Srivastava and I. Banicescu

The rest of the chapter is organized as follows. An overview of mapping
algorithms onto parallel computing architectures is described in section “Mapping
Algorithms onto Architectures”. A detailed taxonomy of scheduling in parallel
and distributed computing is explained in section “A Scheduling Taxonomy”. A
discussion of the recent trends in scheduling in parallel and distributed computing
systems is given in section “Examples of Recent Trends in Scheduling”.

Mapping Algorithms onto Architectures

The mapping problem consists of assigning the subtasks of an application to
processors, so that its execution time is minimized. The basic steps involved are:
detecting parallelism, partitioning the problem into independent sub tasks, and
scheduling these subtasks on processors. Performing any of these steps in isolation
can lead to poor mappings, and therefore, low performance. The parallelism in a
program depends on the nature of the problem and the algorithm employed by
the programmer. To obtain high performance, a problem must contain sufficient
parallelism. Parallelism detection is usually independent of the target machine.
In contrast, partitioning and scheduling are highly dependent on architectural
parameters, such as the number of processors, processor speed, communication
overhead, scheduling overhead, etc. Partitioning attempts to match the granularity
of the parallel subtasks to that of the target machine. Scheduling assigns subtasks
to processors and orders their execution. The goals of scheduling are to spread the
load as evenly as possible to processors and to minimize data communication.

Scheduling schemes can be static or dynamic. In static schemes, subtasks are
assigned to processors at compile time either by the programmer or by the compiler.
There is no runtime overhead. The disadvantage of static allocation is that the
unpredictable runtime execution of subtasks can lead to load imbalance. Dynamic
scheduling schemes assign subtasks to processors at runtime. Dynamic assignment
of tasks can improve processor utilization, with a trade-off for an additional
allocation overhead. Dynamic assignments can be distributed or centralized. In a
centralized allocation scheme, there is a pool of tasks that is accessible by all idle
processors. Accessing the central pool may be a bottleneck when the number of
processors is large. In a distributed allocation scheme, tasks are allocated on the
basis of processor negotiation. Distributed allocation may result in sub-optimal load
balancing, as scheduling decisions are mainly based on local information.

For some applications, it may be necessary to order the execution of tasks
with data dependencies. Executing data dependent tasks on different processors
requires costly synchronization and communication. Therefore tasks allocated to
different processors should be made as independent of each other as possible.
Synchronization and communication overhead depend upon several factors, such
as, the algorithm, the subdomain size, and the machine characteristics. An effective
scheduling algorithm must ensure that computational tasks with dependencies are
mapped onto processors that can communicate with low latency. Therefore, work

Scheduling in Parallel and Distributed Computing Systems 317

allocation is not independent of work partitioning. Mapping should, thus, consider
the communication topology during the partitioning step. This leads to a need for
a close match between the topology of the dependency graph of the tasks and the
communication topology of the machine.

Parallelism Detection

An important component for parallel and distributed computing is a technique that
detects and schedules the parallelism in a sequential program, possibly by applying
code transformations to effectively utilize the system resources. This process of
detecting parallelism is done by examining the code for fine grain operations (such
as, parallel operations in program statements) and/or coarse grain operations (such
as, vector operations or loop parallelization), depending on the target architecture.
Coarse grain parallelism is best detected using the program source code while
the detection of fine grain parallelism usually requires an intermediate level
program representation. Techniques for the detection of both coarse and fine grain
parallel operations have been developed to take advantage of various parallel
architectures [7].

Coarse grain parallelism found in sequential programs is mainly in the form
of vectorizable computations. Considerable research attention has been devoted to
the detection of vectorizable loops in Fortran programs. The techniques include
the detection of coarse grain parallelism useful in generation of code for loosely
coupled multiprocessor systems. Research in the detection and utilization of fine
grain parallelism has also received some attention. A technique that has effectively
tackled the problem of detecting fine grain parallelism across basic blocks is trace
scheduling which uses a control flow graph representation of a program [8].

In general, algorithms for parallelism detection transform the code so that
each statement is surrounded by the same number of loops before and after
the transformation. Parallelism detection is optimal if, after transformation, each
statement is surrounded by a maximal number of parallel loops. The only constraint
that a parallelism detection algorithm must respect is that the partial order of
operations defined by the dependencies in the program are preserved. Parallelism
detection is a wide topic and has been a research topic in the area of compiler
optimization [7].

Partitioning

A process or a task is the basic unit of program execution, and a parallel application
is one that has multiple processes or tasks actively performing computation at one
time. Partitioning is the process of decomposing a serial application into multiple
concurrently executing parts. In parallel and distributed computing applications,

318 S. Srivastava and I. Banicescu

task and data parallelism are two of the most commonly referenced parallel
patterns [9]. A task parallel application is decomposed into concurrent units that
execute separate instructions simultaneously. On the other hand, a data parallel
application is decomposed into concurrent units that execute the same instructions
on distinct data sets. Moreover, applications in parallel and distributed computing
exhibit spatial and temporal patterns indicating their execution in time and space.
For instance, the location of a data point in memory represents the spatial index for
that application, and the order in which the data points are accessed for application
execution represents the temporal index of that application. Different partitioning
strategies are developed to distinguish parallel patterns in an application and further
employ temporal and spatial partitioning as required. A generic procedure for
determining the dimensionality of the instructions and data of an application to
prepare it for partitioning, is summarized as follows [10]:

1. Determine what constitutes a single input to define the temporal dimension of
the program’s data. For some programs an input might be a single reading from
a sensor. In other cases an input might be a file, data from a keyboard or a value
internally generated by the program.

2. Determine the distinct components of an input to define the spatial dimension of
the program’s data.

3. Determine the distinct functions required to process an input to define the spatial
dimension of the program’s instructions.

4. Determine the partial ordering of functions using topological sort on the program
dependence graph to define the temporal dimension of the program’s instruc-
tions.

The problem of building a partition with the smallest partitioning cost is known to
be intractable [11]. Therefore, research in this area has been focused on developing
approximation algorithms to provide a solution to the partitioning problem.

Task Allocation and Scheduling

Task allocation is a relevant concept in distributed systems. Given a distributed
system made up of a number of processing elements connected together using an
interconnection network and a distributed application consisting of communicating
tasks, allocation techniques assign tasks to processing elements, to optimize the
execution of the application as a whole. Task allocation is considered when there
is no precedence among the tasks forming a program or an application [1].
Scheduling is an ordering of the execution of the application tasks on the available
processing elements. Often, task allocation and scheduling are used interchangeably
and are considered to be performed together. Moreover, scheduling is considered
to encompass the previous steps of parallelism detection, partitioning, and task
allocation.

Scheduling in Parallel and Distributed Computing Systems 319

There are four components in any scheduling system: the target machines, the
parallel tasks (defined as a set of sequential tasks, where different tasks can be
executed in parallel if there are no dependencies), the generated schedule, and
a performance criterion. The following mathematical description, of these four
components of a scheduling system, has been adopted from [1].

Target Machine

The target machine is assumed to be made up of m heterogeneous processing
elements connected using an arbitrary interconnection network. Each processing
element can run one task at a time and all tasks can be processed by any processing
element. Formally, the target machine characteristics can be described as a system
(P, [Pij], [Si], [Ii], [Bi], [Rij]) as follows:

1. P = {P1, · · · , Pm} is a set of processors forming the parallel architecture. Pij is
an m×m interconnection topology matrix of processors as its rows and columns,
and each matrix element represents a link between corresponding processors.

2. Si, 1 ≤ i ≤ m, is the speed of processor Pi .
3. Ii, 1 ≤ i ≤ m, is the startup cost of initiating a message on processor Pi .
4. Bi, 1 ≤ i ≤ m, is the startup cost of initiating a process on processor Pi .
5. Rij is the transmission rate over the link connecting two adjacent processors Pi

and Pj .

The connectivity of the processing elements can be represented using an
undirected graph called the target machine graph as illustrated in Fig. 2.

Fig. 2 An example of a
target machine with eight
processors (m = 8) forming a
three dimensional hypercube
network.The nodes are
labeled with integers
indicating the processor
numbers

4

6 7

5

0

2 3

1

320 S. Srivastava and I. Banicescu

Parallel Application Tasks

A parallel program is modeled as a partially ordered set (poset) (T ,<), where T is
a set of tasks. The relation u < v implies that the computation of task v depends on
the results of the computation of task U , and therefore, task u must be computed for
delivering the result to the processor computing the task v. The characteristics of a
parallel program can be defined as the system (T ,<, [Dij], [Ai]) as follows [1]:

1. T = {t1, · · · , tn} is a set of application tasks to be executed.
2. < is a partial order defined on T , which specifies the operational precedence

constraints.
3. [Dij] is an n × n communication data matrix, where Dij ≥ 0 is the amount of

data required to be transmitted from task ti to task tj .
4. [Ai] is an n-length vector specifying the computational requirements of a task ti

in terms of number of instructions.

The ordered tasks are represented using a directed acyclic graph, which is called
a task graph. A directed edge, (i, j), between two tasks ti and tj indicates that ti must
be completed before a processor starts executing tj . An example of a task graph is
illustrated in Fig. 3.

Given a parallel program model in the form of a task graph and a descrip-
tion of the target machine, task execution time (Tij) and communication delay
(C(i1, i2, j1, j2)), between two processors j1, j2 executing tasks i1, i2 respectively,
can be calculated as follows [1]:

1
10

0
5

2 3
15

4

3

11

2

2

3

25

12

Fig. 3 A task graph with five tasks represented as nodes showing task numbers and task execution
times (for example, milliseconds), and directed edges, indicating the order of execution of tasks,
labeled with communication costs

Scheduling in Parallel and Distributed Computing Systems 321

Tij = Ai

Sj

+ Bj (1)

C(i1, i2, j1, j2) = Di1i2

Rj1j2

+ Ij1 (2)

The Schedule

Given a task graph G = (T ,A) for a target machine consisting of m processors, a
schedule is a function f that maps each task to a processor at a specific starting time.
A schedule f (v) = (i, t), indicates that a task v ∈ T is scheduled to be processed
by processor pi starting at time = t units. No two tasks can have equal scheduling
function. If v < u, where v, u ∈ T and f (v) = (i, t1), f (u) = (j, t2), then t1 < t2.
A schedule is considered feasible if it preserves all task precedence relations and
communication restrictions. A Gantt chart is used to represent a schedule with task
start and finishing times [1]. An example of a system that takes as input the task
graph and the target machine representation, and gives out a Gantt chart representing
the schedule as an output is illustrated in Fig. 4.

Performance Measures

The primary goal for scheduling in parallel and distributed computing systems
is to achieve load balancing and to minimize the overall application execution
time. The performance measure used to achieve this goal is the parallel execution
time. The scheduling objective then is to minimize the parallel execution time for
minimizing the overall completion time of an application. This, in turn, requires the
minimization of the overall schedule length. Given a task graph G = (T ,A), the
length of a schedule is the maximum finishing time of any task belonging to G.
Formally [1],

0 5

11

P1

P0 t0 t3

t1 t2

t4

22 34

20 25

Fig. 4 A Gantt chart representing a schedule for the task graph shown in Fig. 3 on a machine with
two processors P0 and P1. The shaded area represents the waiting time for each processor based
on the task communication delays, assuming the tasks are initially located at processor P1

322 S. Srivastava and I. Banicescu

length(f) = tmax, where tmax = max{t + Tij } and f (i) = (j, t)

∀i ∈ T , 1 ≤ j ≤ m
(3)

A Scheduling Taxonomy

Parallel and distributed computing has increasingly gained capacity to include
a large range of applications. However, the power of a parallel and distributed
computation can only be exploited to its full potential with efficient management
and allocation of system resources relative to the computational load of the
system. This motivation led to a large number of research, which focused on
proposing solutions, in the form of scheduling techniques, to solve the problem
of resource management in parallel and distributed computing systems. However,
this has resulted in the development of various scheduling methodologies leading
to the use of inconsistent terminology, problem formulations, and assumptions.
Different techniques have been developed for optimizing different performance
goals that used different performance metrics. Therefore, to unify the vast number of
available scheduling methodologies for parallel and distributed computing, under a
common, uniform set of terminology, Casavant and Kuhl [12] proposed a taxonomy
that allows the classification of distributed scheduling algorithms according to a
common and manageable set of salient features. This section details upon the
proposed taxonomy along with a discussion on scheduling at global or system level,
and at local or operating system level.

As already described in the previous section, the scheduling problem consists of
three main components: (i) consumer(s), (ii) resource(s), and (iii) scheduling policy.
Often, there is an assumption in parallel and distributed computing that considers a
slight difference in the terms scheduling and allocation. Allocation is viewed in
terms of resource allocation from the perspective of a resource, and scheduling
is viewed from the perspective of a consumer in a computing system. Therefore,
it is often assumed that allocation and scheduling are terms that exhibit a similar
general mechanism from different viewpoints. Considering the three components, a
scheduling system is evaluated via (1) performance, and (2) efficiency. Performance
in a scheduling system is directly related to consumer satisfaction, which depends on
how the scheduler allocates resources to process the consumer demands. Efficiency
is measured in terms of the overhead and the cost to access the required resource.

There are two kinds of classification schemes for categorizing the scheduling
algorithms: (i) hierarchical classification, and (ii) flat classification. The taxonomy
presented in [12] is based on a hierarchical classification. However, a hierarchical
classification does not capture all the issues in a scheduling system. Therefore, a
flat classification that covers a number of scheduling parameters, which are not
considered in a hierarchical scheme.

Scheduling in Parallel and Distributed Computing Systems 323

Hierarchical Classification

A tree based hierarchical classification of the taxonomy in [12] is illustrated in
Fig. 5.

(a) Local and global scheduling: Local scheduling is performed at the operating
system (OS) level and manages the assignment of tasks or processes to the
time-slices of a single processor. Global scheduling is done at system level and
provides a mechanism for allocating application tasks onto available processing
elements. The classification discussed below has been developed for global
scheduling techniques. Local scheduling will be discussed in more detail later
in this section.

(b) Static versus dynamic: a choice between static and dynamic scheduling indi-
cates the time at which the scheduling or allocation decisions are to be
determined. Static scheduling algorithms are based on the assumption that the
information regarding the application tasks, processes within these tasks, and
the characteristics of the processing elements are available before the scheduling
decision is made. Hence, each application task has a static assignment to a
specific processor. Moreover, every time the scheduler encounters the same
task, it assigns the task to that specific processor. Therefore, static scheduling
algorithms are developed for a particular system configuration. Further, the
scheduler may generate a new static assignment of tasks to processors, if
the system topology or the task configurations change over a period of time.
Static scheduling algorithms are also referred to as deterministic scheduling
algorithms. Dynamic scheduling algorithms are based on a more realistic
assumption that little or no a priori knowledge is available about the resource
requirements of an application task, or about the computational environment in
which the application will execute during its lifetime. In dynamic scheduling,
an allocation decision is not made until the application tasks begin execution in
the dynamic computational environment.

Scheduling

Static

GlobalLocal

Dynamic

Physically
distributed

Physically non-
distributed

Non-
cooperativeCooperative

Optimal Sub-optimal

Optimal

O

Enumerative Graph theory

Math.
Programming

Queuing
theory

Sub-optimal

Approximate Heuristic

Approximate Heuristic

Fig. 5 Hierarchical classification based taxonomy for distributed scheduling algorithms [12]

324 S. Srivastava and I. Banicescu

(c) Optimal versus sub-optimal: In static scheduling, where complete information
regarding the state of the computational system, and the resource requirements
of application tasks are known a priori, optimal scheduling can be achieved
based on some optimization function, such as, a function for minimizing
the parallel execution time, a function for maximizing resource utilization,
or a function for maximizing system throughput. However, for a different
case of static scheduling, where some system parameters are computationally
infeasible, suboptimal scheduling algorithms are more useful. Suboptimal
scheduling algorithms are further categorized as approximate and heuris-
tic algorithms, which are discussed next. Further, static optimal and static
suboptimal-approximate scheduling is further categorized to employ the fol-
lowing techniques:

• Solution space enumeration and search.
• Graph theory
• Mathematical programming
• Queuing theory

(d) Approximate versus heuristic: Approximate solutions settle for a “good enough”
solution as soon as it can be obtained, instead of searching the entire solution
space for an optimal solution. Such solutions are often based on the assumption
that a good solution can be recognized with minimal overhead. Moreover, in
cases, where a metric is available for evaluating a solution that is obtained using
approximate algorithms, result in decreased overhead time that is required to
obtain the first acceptable schedule. The factors determining when an approx-
imate algorithm should be used are: (i) availability of a function to evaluate
a solution, (ii) time required to evaluate a solution using the function, (iii)
availability of a metric to calculate the value of a solution, and (iv) availability
of a mechanism for efficiently reducing the search space. The other suboptimal
category belongs to heuristic-based algorithms. These are static algorithms,
which are based on realistic assumptions regarding prior knowledge about the
application and system characteristics. Unlike approximate algorithms, heuris-
tic algorithms provide solutions to static scheduling problems, which require an
exhaustive search of the solution space and obtain a solution in a reasonable
amount of time. Often, the parameter being monitored for obtaining a solution
is correlated to system performance in an indirect manner, and is easier to
calculate than the actual performance of the system. Tuning the monitored
parameter results in an impact on the overall application performance. However,
quantitatively, the parameter tuning can not be directly related to system
performance from an application viewpoint. Therefore, heuristic algorithms are
based on the assumption that certain actions, on a system parameter, could
result to an improved system performance. Although, a first-order relationship
between the algorithm actions and the desired results may not be proved for
existence.

(e) Distributed versus non-distributed: This classification has been categorized
under dynamic scheduling algorithms. In dynamic scheduling, the decision

Scheduling in Parallel and Distributed Computing Systems 325

for assigning tasks to processors is made during runtime. This classification
categorizes dynamic scheduling techniques that either distribute the responsi-
bility of assignment decisions among several processors (physically distributed
approach), or that use a single processor for the work involved in making
scheduling decisions (physically non-distributed approach). Therefore, this
classification distinguishes between dynamic scheduling techniques, based on
the logical authority of the decision-making process for task allocation.

(f) Cooperative versus non-cooperative: this classification distinguish between
dynamic scheduling techniques, which target cooperation between the dis-
tributed components (cooperative), or the techniques that are developed for
systems, where individual processors make decisions independent of the actions
of the other processors (non-cooperative). In the non-cooperative case, individ-
ual processors are autonomous entities that make decisions for the use of their
resources independently, disregarding the effect of their decision on the other
processors in the system. In the cooperative case, every processor, in addition
to delivering its own scheduling task, is responsible for working with the other
processors to achieve a common system-wide goal.

In addition to the attributes that have been categorized using the hierarchical
classification, there are a number of other distinguishing characteristics of schedul-
ing in parallel and distributed systems that are not captured under any branch of
the tree-structured taxonomy [12]. These attributes of a scheduling system could be
sub categorized under several nodes of the hierarchical structure. Therefore, for the
sake of clarity, these characteristics of a scheduling system are represented as a flat
classification providing an extension to the existing hierarchical taxonomy.

Flat Classification

(a) Adaptive versus nonadaptive: An adaptive scheduling algorithm provides a
solution for mapping application tasks to processing elements in the presence
of runtime variations in application, algorithm, and system parameters. Such an
adaptive scheduler is capable of taking multiple parameters into consideration
while formulating a scheduling decisions. An adaptive scheduler modifies the
value of a parameter in response to the behavior of the system. Often, such
a system is known as a reward based system, where the scheduler receives
reward, in the form of system performance, upon an action that it executes in
the form of a specific resource assignment. Based on the reward, the scheduler
may reformulate its allocation policy by tuning certain system parameters, if
those parameters are inconsistent with the desired execution performance. On
the other hand, a nonadaptive scheduler does not modify its basic scheduling
mechanism due to variations in system activity. A non-adaptive scheduler
manipulates the input parameters in the same way regardless of the system
behavior.

326 S. Srivastava and I. Banicescu

(b) Load balancing: Runtime variations in application, algorithm, or system char-
acteristics, along with poor scheduling decisions, lead to load imbalance among
the executing processors in a parallel and distributed computing system. Often,
load imbalance is one of the major reasons for performance degradation causing
poor resource utilization, increased execution time and decreased system
throughput. Recently, scheduling algorithms, focusing on load balancing, have
received a great deal of attention. The goal of such scheduling algorithms
is to allow processes on all nodes to finish execution at the same rate. A
homogeneous system configuration facilitates this approach due to similar char-
acteristics of all the processing elements. A load balancing scheduling system
can further be categorized as a centralized system, or a distributed system.
In a centralized system, a single master node is responsible for maintaining
the information about the workload on the other processing elements. Further,
in case of a load imbalance, the central node is responsible for transferring
work from a heavily loaded processor to an idle or lightly loaded processor.
However, in case of a highly imbalanced environment, the centralized node
can become a bottleneck generating a large overhead leading to performance
degradation. In a distributed scheduling system, each processor is responsible
for maintaining the current state of information about the workload of other
processors. In such a system, workload information is circulated over the
network at regular time intervals, or as demanded by a processor. The processors
are responsible for cooperating such that work can be transferred from a heavily
loaded processor to a lightly loaded processor. However, with an increase in
the skewed distribution of heavily loaded and idle processors, a distributed
approach can generate large communication overhead where processors spend
more time transferring work over the network than performing any useful work
leading to a degraded performance. Often, load balancing scheduling algorithms
are based on the assumption that the workload information, available for making
load balancing decisions, is always accurate.

(c) Bidding: Scheduling techniques that utilize a bidding approach for assigning
tasks to processors, deliver a cooperative scheduler such that enough infor-
mation is exchanged between task nodes and processor nodes to facilitate an
efficient allocation to optimize the overall performance of the system. As a
basic mechanism of bidding, each processor node behaves as a manager and a
contractor. The manager represents a task in a waiting state which is waiting
to be allocated some computational resources. The contractor represents a
processor node that is waiting to be allocated to a task node for execution. The
manager announces the state of the task waiting for a computational resource.
Further, the manager node receives bids from the potential contractor nodes.
The amount and type of information exchanged, between the manager and the
contractor, are the major factors in determining the efficiency of the bidding-
based scheduler. Such a scheduling system is based on the notion of a fully
autonomous collection of nodes, such that the manager has the freedom to
select autonomously from a collection of bidding computational nodes, and
the contractors are allowed to reject any assigned work if it leads to violation

Scheduling in Parallel and Distributed Computing Systems 327

of local performance goals. Cloud brokers are an example of a bidding based
scheduling system in cloud computing environments [13].

(d) Probabilistic: Probabilistic scheduling algorithms employ random selection of
task to processor mapping from a large number of permutations of the available
mappings, to reduce the prohibitive amount of time that would otherwise be
required for analytically examining the entire solution space. The methodology
generates a large number of different schedules via iteratively using the random
selection process. Further, the generated set of randomly selected schedules is
analyzed for selecting the best schedule from this set. Probabilistic scheduling
is based on the assumption that enough variation is introduced by the random
selection (using a certain probability distribution) to allow at least one good
solution to enter into the randomly chosen set.

(e) One-time assignment versus dynamic reassignment: Scheduling methodolo-
gies that use one-time assignment technique are often used for jobs in the
traditional batch processing environment in a parallel and distributed system.
Such techniques generate a fixed schedule at a single point in time. Although
many dynamic scheduling techniques use one-time assignment approach, they
are considered static such that once a schedule has been generated for task
allocation at runtime, no further changes can be made to that schedule. The
scheduler generates a mapping of tasks to resources based on the information
(in the form of estimated execution times or other system resource demands)
provided by the application user. However, the variations that occur in the
application and the system parameters at runtime are not considered by the
generated schedule. Moreover, a user that understands the characteristics of
the underlying computational system and the application, may provide false
information to the system for manipulating the system to achieve better results.

Scheduling techniques that employ dynamic reassignment iteratively improve
on earlier scheduling decisions. Dynamic reassignment is based on information on
smaller computation units that are monitored over a time interval. Such techniques
use dynamically created information, available from monitoring resources, to adapt
to variations in application and system parameters. Therefore, dynamic reassign-
ment can also be viewed as an adaptive approach for scheduling. Often, such an
approach requires migrating tasks among processors generating an overhead. Thus,
the use of such techniques should be weighed for trade-off between the generated
overhead and the performance gain.

Operating System Scheduling

The classification of the scheduling strategies that have been discussed so far have
been designed for global scheduling at system level. However, once the tasks
are mapped to a processor, there is a need for a local scheduling mechanism
that manages the execution of processes mapped to that processor. Scheduling

328 S. Srivastava and I. Banicescu

at operating system level, also known as process scheduling, is an activity of
a process manager that manages process selection, mapping, and removal of a
process for a processor, according to a particular local scheduling methodology.
Process scheduling is an integral part of operating systems running in the processing
elements of parallel and distributed computing systems. A good process scheduling
scheme allows multiple processes to be loaded simultaneously into the executable
memory and share the CPU using time multiplexing.

During the lifetime of a process, it spends some time executing instructions
(computing) and then makes some I/O request, for example, to read or write data
to a file or to get input from a user. The period of computation between I/O
requests is called a CPU burst. Interactive processes spend more time waiting for
I/O and generally experience short CPU bursts. A text editor is an example of an
interactive process with short CPU bursts. Compute-intensive processes, conversely,
spend more time running instructions and less time on I/O. They exhibit long CPU
bursts. A video transcoder is an example of a process with long CPU bursts. Even
though it reads and writes data, it spends most of its time processing that data.
A comparative example of an interactive process and a compute-intensive process
switching between I/O and CPU burst cycles is shown in Fig. 6.

Almost all programs have some alternating cycle of CPU number crunching
and waiting for I/O of some kind. In a simple system running a single process,
the time spent waiting for I/O is wasted, and those CPU cycles are lost forever.
A scheduling system allows one process to use the CPU while another is waiting
for I/O, thereby making full use of otherwise lost CPU cycles. The challenge is
to optimize the overall system performance and efficiency, subject to dynamically
varying conditions. When the process enters into the system, then this process is put
into a job queue. This queue consists of all processes in the system. The operating
system also maintains other queues such as device queues. A device queue contains
multiple processes waiting for a particular I/O device. Each device has its own
device queue. A newly arrived process is put in the ready queue. Processes wait
in ready queue for allocating the CPU. Once the CPU is assigned to a process, then
that process will execute. To provide good time-sharing performance, the scheduler
preempts a running process to let another one run. When an I/O request for a process
is complete, the process moves from the waiting state to the ready state and gets
placed on the ready queue. The process scheduler is the component of the operating
system that is responsible for deciding whether the currently running process should
continue running and, if not, which process should run next. There are four events
that may occur where the scheduler needs to step in and make this decision:

CPU CPU CPU

C
P

U

C
P

U

C
P

U

I/O I/O I/O

(a) (b)

I/O I/O I/O

Fig. 6 A comparative example of differences between the I/O and CPU burst cycles of an
interactive process versus a compute-intensive process. (a) Interactive process. (b) Compute-
intensive process

Scheduling in Parallel and Distributed Computing Systems 329

1. The current process goes from the running to the waiting state because it
issues an I/O request or some operating system request that cannot be satisfied
immediately.

2. The current process terminates.
3. A timer interrupt causes the scheduler to run and decide that a process has run

for its allotted interval of time and it is time to move it from the running to the
ready state.

4. An I/O operation is complete for a process that requested it and the process
now moves from the waiting to the ready state. The scheduler may then decide
to preempt the currently-running process and move this newly-ready process
into the running state.
A scheduler is a preemptive scheduler if it has the ability to get invoked by an
interrupt and move a process out of a running state to let another process run.
The last two events in the above list may cause this to happen. If a scheduler
cannot take the CPU away from a process then it is a cooperative, or non-
preemptive scheduler. Older operating systems, such as Microsoft Windows 3.1
or Apple MacOS prior to OS X, are examples of cooperative schedulers.

A number of local scheduling algorithms are being widely used by different
operating systems. There are several performance metrics that form the optimization
criteria for selecting the most appropriate scheduling algorithm for a specific
computing environment. Following is a list of these performance metrics that play
an important role in the selection of a particular process scheduling algorithm:

• CPU utilization – percentage of CPU being used for computational work.
• Throughput – number of processes completed per unit time.
• Turnaround time – time required for a particular process to complete, from

submission time to completion.
• Waiting time – time spent by a process in the ready queue.
• Response time – The time taken in an interactive program from the issuance of a

command to completion a response to that command.

First come first serve (FCFS) is the most straightforward approach to scheduling
processes that are stored in a first-in, first-out (FIFO) ready queue. When the
scheduler needs to run a process, it picks the process that is at the head of the queue.
This scheduler is non-preemptive. Round robin (RR) scheduling is a preemptive
version of FCFS scheduling. Processes are dispatched in a FIFO sequence, such
that each process is allowed to run for a limited amount of time. This time interval
is known as a time-slice or quantum. If a process does not complete within the
time slice, the process is preempted and placed at the back of the ready queue. The
shortest remaining time first (SRTF) scheduling algorithm is a preemptive version of
an older non-preemptive algorithm known as shortest job first (SJF) scheduling. In
SJF, the queue of jobs is sorted by estimated job length so that the smaller processes
get to run first. This minimizes average response time. In SRTF, the algorithm sorts
the ready queue by the estimated CPU burst time of a process. In priority scheduling,
each process is assigned a priority based on a pre-defined criteria. A process, in the

330 S. Srivastava and I. Banicescu

ready queue, with the highest priority gets to run next (UNIX-derived systems tend
to use smaller numbers for high priorities while Microsoft systems tend to use higher
numbers for high priorities). If the system uses preemptive scheduling, a process is
preempted whenever a higher priority process is available in the ready queue. For a
more detailed study on operating system process scheduling, the reader is referred
to the literature in [14].

Examples of Recent Trends in Scheduling

With the evolution of the complexity of parallel and distributed computing, there
has been a wide range of development of various scheduling algorithms and
methodologies that can cater to the growing needs of the modern computing
systems. A few examples of the recent trends in the development of scheduling in
parallel and distributed computing will be discussed in this section. The examples
have been selected such that they cover multiple classification categories of
scheduling from the taxonomy described in the previous section. The examples
begin with a description of work that have proposed and compared static, dynamic-
nonadaptive, and dynamic-adaptive scheduling techniques employed in traditional
high performance computing systems for scientific applications, followed by a
discussion of a number of heuristic-based scheduling techniques employed in
grid computing systems. Further, an example of scheduling strategies for cloud
computing systems, which are defined as one of the modern parallel and distributed
computing systems, will be discussed.

Dynamic Load Balancing Via Loop Scheduling in High
Performance Computing

High performance computing was developed to serve the interests in the accurate
modeling and simulation of various complex phenomena from various scientific
areas. The scientific applications are often routines that perform varying number of
repetitive computations (in the form of DO/FOR loops) over very large data sets.
Moreover, these applications may exhibit irregular behavior leading to differing
execution times of each iteration. In scientific applications, a loop iteration (or a
chunk of loop iterations) with variable execution time is considered to be a task
with varying execution time.

Dynamic loop scheduling (DLS) algorithms provide application-level load bal-
ancing of loop iterations, with the goal of maximizing application performance on
the underlying system. Many DLS methods are based on probabilistic analyses,
and therefore possess the capability to be inherently robust against unpredictable
variations in application and system characteristics. A number of DLS algorithms

Scheduling in Parallel and Distributed Computing Systems 331

Wi Wj
...

...

... ...

F

W W

Group A

(a) (b)

Group B

FA FB

Wk W

M

1

LEGENDS:
F − Foreman
W − Worker
1 − REQ_MSG
2 − WRK_MSG
3 − GIV_MSG
4 − HLP_MSG

LEGENDS:
M − Manager
F − Foreman
W − Worker
7 − CST_MSG
8 − REL_MSG
9 − MOV_MSG
10 − REP_MSG

5 − RES_MSG
6 − END_MSG

2,6

7

8

7

9

10

3

5
4

Fig. 7 Dynamic loop scheduling management approaches. (a) Centralized management. (b)
Hierarchical management system

have been proposed in the last decade and have been integrated into several sci-
entific applications, yielding significant performance improvements [15]. The DLS
methods are further categorized as non-adaptive and adaptive. The non-adaptive
DLS techniques have been described in a survey presented in [16]. However, the
dynamic non-adaptive techniques did not address the unpredictable changes in the
computational environment at runtime. Therefore, adaptive DLS techniques were
developed to address this problem [17, 18]. Most of the above adaptive methods
use a combination of runtime information about the application and the system, to
estimate the time the remaining tasks will require to finish execution, in order to
achieve the best allocation possible for optimizing application performance via load
balancing.

Most loop scheduling methods are developed assuming a central ready work
queue of tasks (central management approach), where idle processors obtain chunks
of tasks to execute. The scheduling decisions are centralized in the master node,
which is also known as the foreman node. However, accessing the foreman may
become a bottleneck when a large number of workers attempt to simultaneously
communicate with it. To address this bottleneck, a two-level (hierarchical) manage-
ment strategy is employed, which uses multiple-foremen and partitioned disjoint
processor groups of worker nodes. Each processor group executes concurrently
independent parts of the problem. Forming processor groups dynamically assists
the DLS methods to leverage the best possible application performance on the
large-scale platform [19]. Figure 7 illustrates the centralized, and the distributed
management approach used in dynamic loop scheduling methods.

Heuristic Scheduling for Grid Computing

Grids computing is a new trend in parallel and distributed computing. Computa-
tional grids are distributed systems with independent, and non-interactive compute

332 S. Srivastava and I. Banicescu

intensive workloads. Unlike conventional high performance computing systems
such as cluster computing, grid computing is more loosely coupled, heteroge-
neous, and geographically dispersed. Moreover, scheduling in a grid computing
environment is different from scheduling in a traditional computing system, where
a scheduler only manages a single local cluster and has control over the cluster
resources, whereas a grid scheduler has no control over the distributed resources,
and its availability of information about the system state is limited. Scheduling and
resource allocation decisions in grid computing systems are approached differently
for computational grid versus data grid. The scheduling techniques implemented in
a compute grid focuses on managing computational resources, such as, processor
compute cycles. In a data grid, the scheduler focuses on managing the distributed
data and the related communication over the grid network connecting the distributed
geographical locations. The scheduling problem in a grid computing system can
be viewed as an optimization problem which is known to be NP-Complete [20].
Therefore, recent research has shown that heuristic techniques are increasingly
being used for solving the scheduling optimization problem.

Ant Colony Optimization (ACO) is a heuristic algorithm that employs local
search for combinatorial problems. ACO has been used to solve several NP-
hard problems such as the traveling salesman problem, graph coloring problem,
vehicle routing problem, and others. As a recent study, a modified version of the
ACO algorithm, called the Balanced ACO (BACO) algorithm, has been used for
grid scheduling to optimize the system makespan [21]. Using this algorithm, the
grid scheduler selects a resource for mapping to the job request by finding the
largest entry in the Pheromone Indicator (PI) matrix among the available jobs to
be executed, where jobs are independent of each other. Another framework that
combines the Fuzzy C-Mean clustering ACO algorithm to improve the scheduling
in a heterogeneous grid is presented in [22]. Herein, the Fuzzy C-Mean algorithm is
used for classification of the jobs into separate classes, and the ACO algorithm maps
the jobs to the appropriate resources that are relevant to those classes. A scheduling
algorithm for task scheduling using particle swarm optimization (PSO) heuristic for
an improved job classification is given in [23]. The heuristic approach is used to map
jobs to grid resources based on the calculated task length of a job and the calculated
processing power of a grid resource. This method has been developed to optimize
resource utilization in a grid environment. Tabu Search (TS) heuristic has also been
used in a scheduling technique in grid computing using the GridSim tool in [24].
The basic principle of TS is employ local search techniques after reaching a local
optimum and prevent cycling back to previously visited solutions by the use of a
storage data structure called Tabu list. Further, TS can be used in conjunction with
other heuristic approaches such as genetic algorithm, constraint programming, and
integer programming technique, for improved performance results.

Scheduling in Parallel and Distributed Computing Systems 333

Scheduling Advances for Cloud Computing

The advent of cloud computing has revolutionized the concept of parallel and
distributed computing. Cloud computing enables the access to computational
resources, information, and technology to users as services over the Internet. The
services that are provided in a cloud computing environment have been categorized
into three main classes: (i) Infrastructure as a Service (IaaS), (ii) Platform as a
Service (PaaS), and (iii) Software as a Service (SaaS). These services are provided
on demand in a pay-per-use manner via the Internet. Cloud computing differs from
traditional computing environments, such as cluster computing and grid computing,
as it uses virtualization for resource management. This allows cloud computing
resources to be scheduled as cloud services, and are provided to the end-user
as a utility [25]. Recently, the concept of a cloud broker has evolved and cloud
computing environments are being considered as federated systems that consist of a
large number of resources as a federation [13]. However, cloud computing provides
a finite pool of virtual on-demand resources, therefore, requiring efficient scheduling
and resource allocation techniques that can manage the dynamic and competitive
computing environment.

Cloud computing is seen as a three-layered framework consisting of an infras-
tructure layer, a platform layer, and a software layer. Thus, scheduling methodolo-
gies have been proposed for resource management in and between all these layers. A
taxonomy of scheduling in the three cloud resource layers has been defined in [26].
The architecture consisting of the three layers, the IaaS, PaaS, and SaaS stacks, and
a classification of the scheduling requirements for each of the layers is illustrated
in Fig. 8. Scheduling in the software service layer requires delivering software
in the form of user applications, tasks, workflows, and others, while optimizing
the efficiency and maintaining the QoS requirements. Scheduling in the platform
service layer requires mapping virtual resources to physical resources such that
there is minimal load balance, and minimized power consumption. Scheduling
in the infrastructure service layer requires delivery of physical computational
and communication resources to the above two layers for efficient application to
resource mapping, with minimal application or virtual machine migration, in a
federated cloud computing environment.

Given that cloud computing is still an emerging technology, solutions for
scheduling and resource management are fairly recent developments in the field.
Some of the solutions to the scheduling problem for different aspects of cloud
computing have been proposed as combinatorial solutions in [27–29], and as
heuristic approaches in [30–32].

334 S. Srivastava and I. Banicescu

Cl
ou

d
sc

he
du

lin
g

ta
xo

no
m

y

Platform layer

Infrastructure layer

Application layer

Scheduling w.r.t. user
QoS

Scheduling w.r.t.
provider efficiency

Scheduling w.r.t.
negotiation

Scheduling w.r.t. load
imbalance

Scheduling w.r.t. cost

Scheduling w.r.t. service
assignment

Scheduling w.r.t. partner
federation

Scheduling w.r.t. data
communication

Energy aware scheduling

Fig. 8 Taxonomy of the cloud resource scheduling at different service layers with a focus on
different scheduling challenges and objectives [26]

Chapter Review

This chapter provides a fundamental description of scheduling in parallel and
distributed computing systems. The knowledge presented in here is a result of
a survey and collection of information from a number of state-of-the-art work
(provided as references) done in this field. Scheduling has been defined as a
collective task consisting of the following sub-tasks: detecting parallelism, par-
titioning the problem into independent sub-tasks, and scheduling these sub-tasks
on processors. Often, when scheduling is referred, it is assumed to encompass
the afore mentioned sub-tasks. A generic scheduling system is comprised of four
components: the target machines, the parallel tasks, the generated schedule, and
a performance criterion. Over the years, a number of scheduling techniques have
been developed to define the mapping policy for executing applications or tasks in a
parallel and distributed computing environment. A taxonomy, proposed in [12], for
the classification of various scheduling techniques has been described in section “A

Scheduling in Parallel and Distributed Computing Systems 335

Scheduling Taxonomy”. Further, a distinction between application level scheduling
and process scheduling at OS level is given via a description of scheduling at global
and local level, respectively. A few examples of scheduling in traditional parallel and
distributed computing systems, such as clusters and grid, and modern computing
systems, such as clouds, have also been discussed to explain the differences in the
scheduling approaches and objectives for such systems.

Exercises

1. Conduct a comparison between static and dynamic approaches. Exemplify with
some cases, where one approach might be better than the other.

2. Suggest a performance metric that would be most appropriate for each of the
following scenario:

• job scheduling in a manufacturing plant
• management for an aircraft waiting for landing clearance
• customers waiting for a teller in a banking system

3. Show an example of a case, where load balancing is more important than
minimizing the finishing times of every machine.

4. Discuss the differences between scheduling at global and local levels. How does
a poor scheduling decision at one of these levels affect the performance at the
other level?

5. The Ready queue of an operating system at a particular time instance is given in
Table 1. The behavior of each process (if it were to use the CPU exclusively) is as
follows. A process runs for the CPU burst given, then requests an I/O operation
that takes 10 ms, then runs for another CPU burst of equal duration to its first
CPU burst and then terminates. However, the four processes must share the CPU.
Assume that the I/O operations can proceed in parallel. Draw a chart showing the
execution of these processes under the round robin policy, with time quantum = 2.

6. Discuss the differences in the objectives and the challenges for scheduling in
a cluster computing environment, a grid computing environment, and a cloud
computing environment.

Table 1 Ready queue of an
operating system with process
CPU burst in milliseconds

Process Next CPU burst

P1 2

P2 3

P3 7

P4 18

336 S. Srivastava and I. Banicescu

References

1. H. El-Rewini, T. G. Lewis, and H. H. Ali, Task Scheduling in Parallel and Distributed Systems.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1994.

2. N. Immerman, “Expressibility and parallel complexity,” SIAM Journal on Computing, vol. 18,
no. 3, pp. 625–638, 1989.

3. J. C. Wyllie, “The complexity of parallel computations,” Cornell University, Tech. Rep., 1979.
4. E. G. Coffman and J. L. Bruno, Computer and job-shop scheduling theory. John Wiley & Sons,

1976.
5. O. H. Ibarra and C. E. Kim, “Heuristic algorithms for scheduling independent tasks on

nonidentical processors,” J. ACM, vol. 24, no. 2, pp. 280–289, Apr. 1977. [Online]. Available:
http://doi.acm.org/10.1145/322003.322011

6. D. Fernandez-Baca, “Allocating modules to processors in a distributed system,” IEEE Trans-
actions on Software Engineering, vol. 15, no. 11, pp. 1427–1436, Nov 1989.

7. R. Gupta and M. L. Soffa, “Region scheduling: An approach for detecting and redistributing
parallelism,” Software Engineering, IEEE Transactions on, vol. 16, no. 4, pp. 421–431, 1990.

8. J. A. Fisher, “Trace scheduling: A technique for global microcode compaction,” IEEE
Transactions on Computers, vol. C-30, no. 7, pp. 478–490, July 1981.

9. M. D. McCool, A. D. Robison, and J. Reinders, Structured parallel programming: patterns for
efficient computation. Elsevier, 2012.

10. H. Hoffmann, A. Agarwal, and S. Devadas, “Partitioning strategies for concurrent program-
ming,” MIT Open Access Articles, 2009.

11. V. Sarkar, Partitioning and Scheduling Parallel Programs for Multiprocessors. Cambridge,
MA, USA: MIT Press, 1989.

12. T. L. Casavant and J. G. Kuhl, “A taxonomy of scheduling in general-purpose distributed
computing systems,” IEEE Transactions on Software Engineering, vol. 14, no. 2, pp. 141–154,
Feb 1988.

13. R. Mehrotra, S. Srivastava, I. Banicescu, and S. Abdelwahed, “Towards an autonomic
performance management approach for a cloud broker environment using a decomposition-
coordination based methodology,” Future Generation Comp. Syst., vol. 54, pp. 195–205, 2016.
[Online]. Available: http://dx.doi.org/10.1016/j.future.2015.03.020

14. A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts, 9th ed. Wiley
Publishing, 2009.

15. S. Srivastava, I. Banicescu, F. M. Ciorba, and W. E. Nagel, “Enhancing the functionality of a
gridsim-based scheduler for effective use with large-scale scientific applications,” in 2011 10th
International Symposium on Parallel and Distributed Computing, July 2011, pp. 86–93.

16. A. R. Hurson, J. T. Lim, K. M. Kavi, and B. Lee, “Parallelization of doall and doacross loops -
a survey,” Advances in computers, vol. 45, pp. 53–103, 1997.

17. I. Banicescu and V. Velusamy, “Load balancing highly irregular computations with the adaptive
factoring,” in Parallel and Distributed Processing Symposium., Proceedings International,
IPDPS 2002, Abstracts and CD-ROM, April 2002, pp. 12 pp–.

18. I. Banicescu, V. Velusamy, and J. Devaprasad, “On the scalability of dynamic scheduling
scientific applications with adaptive weighted factoring,” Cluster Computing, vol. 6, no. 3,
pp. 215–226, 2003.

19. R. Cariño, I. Banicescu, T. Rauber, and G. Rünger, “Dynamic loop scheduling with processor
groups.” in ISCA PDCS, 2004, pp. 78–84.

20. J. D. Ullman, “Np-complete scheduling problems,” J. Comput. Syst. Sci., vol. 10, no. 3, pp.
384–393, Jun. 1975. [Online]. Available: http://dx.doi.org/10.1016/S0022-0000(75)80008-0

21. R.-S. Chang, J.-S. Chang, and P.-S. Lin, “An ant algorithm for balanced job scheduling
in grids,” Future Generation Computer Systems, vol. 25, no. 1, pp. 20–27, 2009. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0167739X08000848

http://doi.acm.org/10.1145/322003.322011
http://dx.doi.org/10.1016/j.future.2015.03.020
http://dx.doi.org/10.1016/S0022-0000(75)80008-0
http://www.sciencedirect.com/science/article/pii/S0167739X08000848

Scheduling in Parallel and Distributed Computing Systems 337

22. T. Helmy and Z. Rasheed, “Independent job scheduling by fuzzy c-mean clustering and an
ant optimization algorithm in a computation grid.” IAENG International Journal of Computer
Science, vol. 37, no. 2, 2010.

23. S. Selvarani and G. S. Sadhasivam, “Improved job-grouping based pso algorithm for task
scheduling in grid computing,” International Journal of Engineering Science and Technology,
vol. 2, no. 9, pp. 4687–4695, 2010.

24. M. Yusof, K. Badak, and M. Stapa, “Achieving of tabu search algorithm for scheduling
technique in grid computing using gridsim simulation tool: multiple jobs on limited resource,”
Int J Grid Distributed Comput, vol. 3, no. 4, pp. 19–32, 2010.

25. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing and emerging
it platforms: Vision, hype, and reality for delivering computing as the 5th utility,” Future
Generation computer systems, vol. 25, no. 6, pp. 599–616, 2009.

26. Z.-H. Zhan, X.-F. Liu, Y.-J. Gong, J. Zhang, H. S.-H. Chung, and Y. Li, “Cloud computing
resource scheduling and a survey of its evolutionary approaches,” ACM Computing Surveys
(CSUR), vol. 47, no. 4, p. 63, 2015.

27. B. Speitkamp and M. Bichler, “A mathematical programming approach for server consolidation
problems in virtualized data centers,” IEEE Transactions on Services Computing, vol. 3, no. 4,
pp. 266–278, Oct 2010.

28. H. N. Van, F. D. Tran, and J. M. Menaud, “Performance and power management for cloud
infrastructures,” in 2010 IEEE 3rd International Conference on Cloud Computing, July 2010,
pp. 329–336.

29. T. A. L. Genez, L. F. Bittencourt, and E. R. M. Madeira, “Workflow scheduling for saas
/ paas cloud providers considering two sla levels,” in 2012 IEEE Network Operations and
Management Symposium, April 2012, pp. 906–912.

30. V. Roberge, M. Tarbouchi, and G. Labonte, “Comparison of parallel genetic algorithm and
particle swarm optimization for real-time uav path planning,” IEEE Transactions on Industrial
Informatics, vol. 9, no. 1, pp. 132–141, Feb 2013.

31. M. A. Rodriguez and R. Buyya, “Deadline based resource provisioning and scheduling
algorithm for scientific workflows on clouds,” IEEE Transactions on Cloud Computing, vol. 2,
no. 2, pp. 222–235, April 2014.

32. Y. L. Li, Z. H. Zhan, Y. J. Gong, J. Zhang, Y. Li, and Q. Li, “Fast micro-differential evolution
for topological active net optimization,” IEEE Transactions on Cybernetics, vol. 46, no. 6,
pp. 1411–1423, June 2016.

	Contents
	Editors' Introduction and Roadmap
	Why the CDER Book Project?
	Book Organization
	Chapter Introductions
	Part I: For Instructors
	Part 2: For Students

	How to Find a Topic or Material for a Course?
	Relevant Courses and Prerequisites
	Chapters and Topics

	Editor and Author Biographical Sketches
	Editors
	Authors

	Appendix: A Brief History of The NSF/TCPP Curriculum Initiative

	Part I For Instructors
	What Do We Need to Know About Parallel Algorithms and Their Efficient Implementation?
	Introduction
	What Knowledge of Algorithm Properties Is Needed in Practice?
	Even in Simple Cases, It Is Important to Understand the Algorithm Structure
	Simple Properties Can Be Very Important, Too
	A New Look at Traditional Concepts
	Mathematics and Parallelism
	Parallelism Can Be Inconvenient
	It's All About Locality

	Parallel Algorithms: What to Pay Attention to?
	Parallel Algorithms: Theoretical Potential
	Parallel Algorithms: Implementation Features

	How Does One Make a Training Curriculum Parallel?
	Parallelism Concepts: In Every Lecture Course
	Emphasis on Parallelism in Exam and Test Questions
	Online Testing: Knowledge Check and Continuing Education
	From Theory to Practice
	Parallel Programming Features
	The Efficiency of Parallel Applications: A Matter of Special Attention

	References

	Modules for Teaching Parallel Performance Concepts
	Introduction
	Elementary Concepts
	Organization and Content
	Parallelism in Real Life
	Parallel Computing and Its Importance Today
	Sequential vs. Parallel Program Execution
	Parallel Programming Tools
	Performance Metrics

	Pedagogical Notes
	Sample Exercises

	Task Orchestration
	Organization and Content
	Data Dependence

	Synchronization
	Task Granularity
	Load Balancing

	Pedagogical Notes
	Sample Exercises

	Analysis and Evaluation
	Organization and Content
	Review of Elementary Performance Concepts
	Review of OpenMP Syntax
	Strong and Weak Scaling
	Linear and Super Linear Speedup
	Latency vs. Bandwidth
	SMP vs. NUMA
	Power vs. Performance

	Pedagogical Notes
	Sample Exercises

	References

	Scalability in Parallel Processing
	Introduction
	Background on the Scalability
	Speedup and Efficiency
	Asymptotic Analysis of Speedup and Efficiency
	Types of Speedups
	Strong and Weak Scaling
	Isoefficiency
	Limits of the Formalization

	Scalability Laws
	Amdahl's Law
	Mathematical Formulation of Amdahl's Law
	Limits to Scalability

	Gustafson's Law
	Mathematical Formulation of Gustafson's Law

	Discussion About Generic Laws
	Problem Types in Amdahl's and Gustafson's Law
	Amdahl's and Gustafson's Law Revisited for Modern Resource Sharing
	Amdahl's and Gustafson's Law and Energy-Efficiency

	Designing Scalable Algorithms in Modern Large Scale Platforms
	Background
	Pillar I: The Need of New Strategies for Strong Scaling
	Pillar II: Benchmark Instead of Problem Size
	Pillar III: The Need of Auto-Tuning-Based Approaches

	Computation of Cooperative Executions
	Case Study
	 The Boolean Satisfiability Problem
	Building Resource Sharing Schedules for SAT

	Conclusion
	Exercises
	Exercises for Section ``Amdahl's Law''
	Exercises for Section ``Gustafson's Law''
	Exercises for Section ``Designing Scalable Algorithms in Modern Large Scale Platforms''

	References

	Energy Efficiency Issues in Computing Systems
	Why Does Energy Efficiency Matter?
	Energy Related Challenges
	Making Computing Energy Efficient

	Basic Concepts
	Power vs. Energy vs. Heat
	Idle vs. Active Power Consumption

	Power States and Their Management
	Processor Power States
	Memory Power States
	Link Power States
	Collective Power Management

	Energy Management Algorithms
	Fine Grain Power Management
	Medium and Coarse Grain Power Management

	Software Energy Efficiency
	Algorithmic vs. Energy Efficiency
	Enhancing Energy Efficiency Opportunities
	Data Movement vs. Computation
	Tradeoff Between Energy and Performance

	Parallelism vs. Energy Efficiency
	Hardware vs. Software Parallelism
	Application Level Parallelism vs. Energy Efficiency
	Thread Level Parallelism
	Power Management of Parallel Computations

	Energy Adaptation
	Emerging Issues and Outlook
	References

	Scheduling for Fault-Tolerance: An Introduction
	Introduction
	Checkpointing on a Single Processor
	Alice Needs Help
	Modeling the Occurrence of Faults
	Problem Statement
	Example
	Solution
	First Source of Waste
	Second Source of Waste

	Checkpointing on a Parallel Platform
	Fault Prediction
	Replication
	Conclusion
	Appendix 1: First-Order Approximation of TFO
	Appendix 2: Optimal Value of TFO
	Appendix 3: MTBF of a Platform with p Parallel Processors
	Appendix 4: Going Further with Prediction
	Appendix 5: Going Further with Replication
	Appendix 6: Scheduling a Linear Chain of Tasks
	References

	Part II For Students
	MapReduce – The Scalable Distributed Data Processing Solution
	Background and Introduction
	MapReduce
	Example: Counting Word Frequency
	Example: Combining Dictionaries

	Strengths and Limitations of MapReduce
	The Hadoop-MapReduce Ecosystem
	Additional Examples
	Example: Inverted Index
	Example: Relational Algebra (Table JOIN)
	Advanced Example: Graph Algorithm (Single Source Shortest Path)

	References

	The Realm of Graphical Processing Unit (GPU) Computing
	Data Parallelism
	CUDA Program Structure
	CUDA Compilation Flow
	CUDA Thread Organization
	Kernel: Execution Configuration and Kernel Structure
	CUDA Memory Organization
	Registers
	Shared Memory
	Constant Memory
	Global Memory

	CUDA Optimizations
	Memory-Level Optimization
	Execution Configuration-Level Optimization
	Instruction-Level Optimization
	Program Structure Optimization: Unified Memory

	Case Study: Image Convolution on GPUs
	GPU Computing: The Future
	References

	Managing Concurrency in Mobile User Interfaces with Examples in Android
	Background and Motivation
	Roadmap
	Fundamentals of Thread Safety
	Example: Incrementing a Shared Variable
	Interleaved Versus Serialized Execution
	Using Locks to Guarantee Serialization

	The GUI Programming Model and Runtime Environment
	The GUI Runtime Environment
	The Application Programmer's Perspective
	Thread Safety in GUI Applications: The Single-Threaded Rule
	Using Java Functional Programming Features for Higher Conciseness

	Single-Threaded Event-Based Applications
	The Bounded Counter Abstraction
	The Functional Requirements for a Click Counter Device
	A Simple Graphical User Interface (GUI) for a Click Counter
	Understanding User Interaction as Events
	Modeling the Interactive Behavior
	GUI Components as Event Sources
	Event Listeners and the Observer Pattern
	Processing Events Triggered by the User

	Application Architecture
	System-Testing GUI Applications
	System-Testing the Click Counter
	System Testing In and Out of Container
	Structuring Test Code for Flexibility and Reuse
	Test Coverage

	Interactive Behaviors and Implicit Concurrency with Internal Timers
	The Functional Requirements for a Countdown Timer
	A Graphical User Interface (GUI) for a Countdown Timer
	Modeling the Interactive Behavior
	Thread-Safety in the Model
	Implementing Time-Based Autonomous Behavior
	Managing Structural Complexity
	Testing GUI Applications with Complex Behavior and Structure
	Unit-Testing Passive Model Components
	Unit-Testing Components with Autonomous Behavior
	Unit-Testing Components with Autonomous Behavior and Complex Dependencies
	Programmatic System Testing of the App

	Keeping the User Interface Responsive with Asynchronous Activities
	The Functional Requirements for the Prime Checker App
	The Problem with Foreground Tasks
	Reenter the Single-Threaded User Interface Model
	Breaking Up an Activity Into Small Units of Work
	Asynchronous Tasks to the Rescue
	Using AsyncTask in the Prime Number Checker
	Execution of Asynchronous Tasks in the Background

	Summary
	References

	Parallel Programming for Interactive GUI Applications
	Essential Concurrency Definitions
	The Cash Balance Problem
	Solving the Cash Balance Problem: Without Locks?
	Here Comes the Auditor
	Single-Thread GUI Fundamentals
	Fundamental 1: Correctness
	Fundamental 2: Responsiveness
	Purpose of Concurrency
	Classifying a GUI's Streams of Instructions

	More Elegant Library Support: SwingWorker
	Improving User Experience with Intermittent Results/Updates
	Canceling Background Tasks

	Wrapping Up
	References

	Scheduling in Parallel and Distributed Computing Systems
	Introduction
	Mapping Algorithms onto Architectures
	Parallelism Detection
	Partitioning
	Task Allocation and Scheduling
	Target Machine
	Parallel Application Tasks
	The Schedule
	Performance Measures

	A Scheduling Taxonomy
	Hierarchical Classification
	Flat Classification
	Operating System Scheduling

	Examples of Recent Trends in Scheduling
	Dynamic Load Balancing Via Loop Scheduling in High Performance Computing
	Heuristic Scheduling for Grid Computing
	Scheduling Advances for Cloud Computing

	Chapter Review
	Exercises
	References

