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Particle Swarm Optimization

6.1 The PSO Method

Inspired by animal behavior, Eberhart and Kennedy [49, 22] proposed in 1995 an
optimization method called Particle Swarm Optimization (PSO). In this approach, a
swarm of particles simultaneously explore a problem’s search space with the goal of
finding the global optimum configuration.

6.2 Principles of the Method

In PSO the position xi of each particle i corresponds to a possible solution to the
problem, with fitness f(xi). In each iteration of the search algorithm the particles
move as a function of their velocity vi. It is thus necessary that the structure of the
search space allows such movement. For example, searching for the optimum of a
continuous function in Rn offers such a possibility.

The particles’ movement is similar to a flock of birds or a school of fish, or to a
swarm of insects. In these examples, it is assumed that the animals move by following
the individual in the group that knows the path to the optimum, perhaps a source of
food. In addition, however, the individuals also follow their instinct and integrate the
knowledge they have about the optimum into their movements.

In the PSO method two quantities xbesti (t) and B(t) have to be defined and up-
dated in each iteration. The first one, xbesti (t), which is often called particle-best,
corresponds to the best fitness point visited by particle i since the beginning of the
search. The second quantity, B(t), called global-best, is the best fitness point reached
by the population as a whole up to time step t:

B(t) = argmaxxbesti
f(xbesti (t))

In certain variants of PSO the global-best position B(t) is defined with respect to
a sub-population to which a given individual belongs. The subgroup can be defined
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by a neighborhood relationship, either geographical or social. In this case, B will
depend on i.

Therefore, as illustrated in Figure 6.1, the particles’ movement in PSO is deter-
mined by three contributions. In the first place, there is a term accounting for the
“inertia” of the particles: this term tends to keep them on their present trajectory.
Second, they are attracted towards B(t), the global best. And third, they are also
attracted towards their best fitness point xbesti (t).

Fig. 6.1. The three forces acting on a PSO particle. In red, the particle’s trajectory; in black,
its present direction of movement; in blue, the attraction toward the global-best, and in green,
the attraction towards the particle-best

Mathematically, the movement of a particle from one iteration to the next is de-
scribed by the following formulas:

vi(t+ 1) = ωvi(t) + c1r1(t+ 1)[xbesti (t)− xi(t)]

+c2r2(t+ 1)[B(t)− xi(t)]

xi(t+ 1) = xi(t) + vi(t+ 1) (6.1)

where ω, c1 and c2 are constants to be specified, and r1 and r2 are pseudo-random
numbers uniformly distributed in the interval [0, 1]. We remark that a different ran-
dom number is used for each velocity component.

The c1 parameter is called the cognitive coefficient since it reflects the individ-
ual’s own “perception,” and c2 is called the social coefficient, since it takes into
account the group’s behavior. For example, c1 ≈ c2 ≈ 2 can be chosen. The ω pa-
rameter is the inertia constant, whose value is in general chosen as being slightly less
than one.

Besides formulas (6.1), one must also impose the constraints that each velocity
component must not be allowed to become arbitrarily large in absolute value. To this
end, a vmax cutoff is prescribed. In the same way, the positions xi are constrained to
lie in a finite domain having diameter xmax.
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In the initialization phase of the algorithm the particles are distributed in a uni-
form manner in the search domain and are given zero initial velocity. The relations
above make it clear that it is necessary to work in a search space in which the
arithmetic operations of sum and product make sense. If the problem variables are
Boolean it is possible to temporarily work in real numbers and then round the re-
sults. The method can also be extended to combinatorial problems [56], although
this is not the natural frame for this approach, which is clearly geared towards math-
ematical optimization.

Similarly to the ant colony method, PSO is a population-based metaheuristic.
In each iteration, n candidate solutions are generated, one per particle, and the set
of solutions is used to construct the next generation. PSO is characterized by rapid
convergence speed. Its problem-solving capabilities are comparable to those of other
metaheuristics such as ant colonies and evolutionary algorithms, with the advantage
of simpler implementation and tuning. There have been several applications of the
method [68, 75, 1], and it has proved very competitive in the field of optimization of
difficult continuous functions.

6.3 How Does It Work?

In order to intuitively understand how and why PSO can find an optimum in a given
fitness landscape, perhaps the global one, we shall consider a toy example. Figure 6.2
illustrates a PSO with two particles in a one-dimensional space (x ∈ [−1, 8]) with a
simple fitness function f(x) that is to be maximized. We find that, after a sufficient
number of iterations, the two particules have traveled towards the maximum of f , as
they should.

According to the general PSO equations (6.1), here the following system must
be solved for i = 1, 2:

vi(t+ 1) = 0.9vi(t) + [bi(t)− xi(t)] + [B(t)− xi(t)]
xi(t+ 1) = xi(t) + 0.2vi(t+ 1)

where t is the iteration number of the process, bi(t) is the particle-best, and B(t) is
the global-best.

Initially the two particles are at rest, randomly placed in the search space. Their
bi(0) are thus their respective positions xi(0). The global-best B(0) corresponds to
the position of the “best” particle, represented here by the black one.

• The grey particle is attracted towards the black particle but the latter, being al-
ready the global-best, doesn’t move.

• Since the grey particle is increasing its fitness, its local-best continues to be its
current position, which doesn’t modify its attraction towards the black particle.

• Thanks to its momentum, the grey particle will overtake the black one and will
reach a better fitness value.

• In this way, the grey particle becomes the new global-best, slows down progres-
sively and stops.
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Fig. 6.2. PSO example with two particles in the one-dimensional space x ∈ [−1, 8] with a
parabolic fitness function of which the maximum is sought. To better illustrate the evolution,
particles are shown here moving on the fitness curve; actually, they only move along the x axis

• Once the grey particle has passed it, the black particle starts moving towards the
grey particle.

6.4 Two-Dimensional Examples

In this section we look at two examples of PSO in which several particles explore
a relatively complex subspace of R2. For the sake of the numerical simulation, the
continuous space has been discretized as a grid of 80 × 60 points. It is interesting
to observe the trajectory of the moving particles and their approach to the global
maximum. The problem is simple enough for an exhaustive search to be applied
since there are only 80× 60 = 4,800 points in the search space.



6.4 Two-Dimensional Examples 101

10

20

30

40

50

60

70

80

10

20

30

40

50

60

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

Fig. 6.3. An example of PSO in 2D on a single-maximum fitness landscape

The example, illustrated in Figure 6.3, has the following properties:

• Global optimum at: (75, 36); fitness value at the global optimum: 0.436,
• With five particles, 50 iterations, the best solution found in a single run (Fig-

ure 6.3) was

B = (75, 39) f(B) = 0.384

• With 20 particles, 100 iterations, the optimal solution was found in each run.
• We note that the particles are grouped around the maximum at the end.
• In this example r1 = r2 = 1 (see eq. 6.1), and the particles are reflected by the

domain borders.

Figure 6.4 gives an example of a more difficult search space with several maxima.
The global optimum is at (22, 7), with a fitness value of 0.754. With 10 particles and
200 iterations the best solution found by PSO in one run was

B = (23, 7) f(B) = 0.74

This is very close to the global optimum. The computational effort can be esti-
mated as the product of the number of particles times the number of iterations, that is
10× 200 = 2,000, which is less than half the effort needed for an exhaustive search
of the 4,800 points in the space.
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Fig. 6.4. An example of PSO in 2D with a multimodal fitness landscape
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